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Abstract

Development of Deep Convolutional Neural Network Techniques for Edge
Detection in Images

Abdullah Mohammad Al-Amaren, Ph.D.
Concordia University, 2022

Edge detection plays a very crucial role in many image processing, and computer vi-

sion applications. Several edge detection methods have been proposed in the literature,

which can be categorized into two groups: non learning based methods and learning based

methods. The performance of the methods in the first category is not as good as of the

methods in the second category. Use of deep convolutional neural networks (DCNNs) has

significantly advanced the performance of image edge detection techniques. Most of the

existing DCNN techniques are based on the ResNet architecture or on the VGG-16 archi-

tecture. The ResNet based techniques exhibit a good edge detection performance at the

expense of an extremely high computational complexity due to the use of very large num-

ber of convolutional layers. The VGG-16 based techniques have much lower complexity,

however, their performance is inferior to that of ResNet based techniques. This inferior

performance is due to the fact that the spatial resolution of the feature maps in the last layer

is very small. Restoring this small spatial resolution to the original image size would result

in a blurred output and a poor localization of the edges. In addition, the deeper layers of

the VGG16-based techniques are not able to learn some of the information captured by

the initial layers. In this thesis, deep convolutional neural networks based on the VGG-16

architecture, with a focus on a reduced complexity and a performance that is comparable or

superior to those of the other existing edge detection techniques, are developed. The thesis

has two parts.

In the first part, the idea of residual learning is introduced for the first time in a VGG-16

architecture for the task of edge detection with a view to improve the performance of the

existing VGG-16 based networks and also to reduce the complexity. The idea of residual

learning enables the network to progressively increase the spatial resolution of the maps
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as the features extraction process is moved from the shallow layers to the deeper layers of

the network through an appropriate use of transposed convolutions, and the use of smaller

number and larger size filters in the deeper layers. The proposed network is experimented

on different datasets and is shown to outperform most of the existing techniques. At the

same time, the complexity of the proposed network in terms of the number of parameters

is lower than that of all the other existing edge detection techniques.

Even though the complexity of the technique proposed in the first part is lower than that

of all of the other networks, it is still high and its performance is lower than that of a couple

of the other existing techniques, one of which is VGG-16 based and the other is ResNet

based. Hence, it is important to develop an edge detection convolutional network having a

complexity that is still lower than that of the network proposed in the first part, but without

lowering its performance. With this objective in mind, in the second part, we develop deep

residual convolutional neural networks based on the VGG-16 architecture. The objective

of reduced complexity of the networks is achieved through the use of fire modules which

results in increasing the depth of the proposed networks. Also, the use of residual learning

allows to maintain or even improve the performance of the networks. The objectives of

the proposed networks are validated by conducting experiments employing two different

datasets and the proposed networks are shown to outperform all the existing techniques in

terms of the edge detection accuracy and complexity.
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Chapter 1

Introduction

1.1 General

Edge detection plays a very important role in several applications, such as fingerprint recog-

nition [1–3], image mosaicing [4, 5], object detection and recognition [6–11], tracking of

moving objects [12, 13], motion estimation [14] and medical imaging [15–17]. The edge

detection process aims to simplify the analysis of images by reducing the amount of data

to be processed, while simultaneously conserving their useful structural information. An

example of edge map extracted from the Lena gray image is shown in Figure 1.1.

Several edge detection methods have been discussed in the literature, and they can be di-

vided into two classes: learning-based and non- learning-based methods. The nonlearning-

based methods can be further classified into two categories: gradient-based methods such

as those in [18], [19], [20], and [21], which, respectively, use the Sobel, Prewitt, Robert’s,

and Canny operators, and the one proposed in [22]; and Laplacian-based methods that

use the Laplacian filter [23] or the Laplacian of Gaussian filter [24]. The gradient-based

methods detect the edges by determining the minimum and maximum of the first-order

derivatives of an image. The Laplacian-based methods, on the other hand, make use of the

zero-crossing of the second-order derivatives of the image to recognize the edges. It should
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(a)

(b)

Figure 1.1: (a) Lena gray image, (b) Its edge map.

be noted that in all the non- learning-based methods, the edge detection is based on finding

the discontinuities in the image using pixel intensity values.

In recent years, several deep learning edge detection methods have been presented in the

literature [25–37]. In these methods, the edge features are automatically learned by using a

large number of convolutional layers. They need a large amount of training data as well as

the corresponding ground-truth label maps, but the performance of these methods is much
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superior to that of the non-learning-based techniques.

1.2 A Brief Review of Learning-Based Methods for Edge

Detection

In this section, a review of some of the learning-based methods for edge detection is pre-

sented.

The first edge detection technique using deep learning, referred to as the N4-Fields tech-

nique, was proposed in 2014 [25]. The network used in this technique essentially consists

of the first three layers of AlexNet network [38], which was proposed for the task of image

classification. At the training stage, this technique creates a dictionary of the network out-

puts obtained by passing a sample of input patches randomly chosen from the images of the

training dataset. Then, at the test stage, the output of a patch of the test image is matched

with the dictionary items using the nearest neighbor search [39]. The performance of this

technique is much superior to that provided by any of the non-learning techniques. How-

ever, the N4-Fields network is a shallow network, since it uses only three convolutional

layers of AlexNet. This network is unable to detect all the edges of an image in view of its

limited feature extraction capability by using only three layers.

In order to enhance the performance of the N4-Fields technique, in [26] a network referred

to as the DeepEdge network has been constructed for edge detection by employing all the

five convolutional layers of the AlexNet network and adding a few additional layers that

are fully connected. This network uses the Canny edge detector to extract the candidate

edge points. Then, at each candidate point patches with different scales are extracted and

passed through the five convolutional layers. The performance of the DeepEdge network is

superior to that of the N4-Fields method, but with an increased computational time.

In [27], the authors have presented a deep CNN scheme in order to learn discriminative
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features of natural images for the task of edge map extraction, and have referred to their

network as DeepContour network. The DeepContour technique outperforms the DeepEdge

technique with a lower computational speed.

The aforementioned techniques [25–27] can be regarded as patch-level prediction tech-

niques, since the features are extracted for each patch of the input image. As the edge

detection task is to determine as to whether a pixel is an edge or a non-edge pixel, one

could also generate the features for each pixel of the input image. In [28], a pre-trained

architecture is used to construct a per-pixel feature learner for contour detection. In this

technique, a feature vector for every pixel is extracted by using the first five convolutional

layers of AlexNet. This technique outperforms the patch-based techniques of [25–27].

In [29], a technique, referred to as High for Low (HFL) technique, has been developed in

which a pre-trained VGG16 [40] classification network is fine-tuned and used to perform

edge detection. This technique is similar to that of the DeepEdge technique of [26], in that

they both use semantic high level features in order to obtain the final edge map, without

using the complicated multi-scale and bifurcated architecture of [26]. The HFL architecture

uses the structured edge (SE) detector [41] to extract a set of candidate edge points in order

to speed up the computation and outperforms the network of [28].

In [30], the authors proposed a method for edge detection, called the holistically nested

edge detection (HED), and implemented it in a deep network based on the architecture of

VGG-16. This network has been divided into a number of blocks, each of which consists of

convolutional layers and a max pooling layer, except for the last block which contains only

fully connected convolutional layers. The outputs, referred to as the side outputs, of the

last convolutional layers of all the blocks are then exploited in a nested multiscale feature

learning framework for a deep supervision of the network. The performance of the HED

network is superior to that provided by the CNNs reported previously [25–29], and has a

lower computational complexity.
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Based on the idea of deep supervision of [30], a new edge detection technique called the

relaxed deep supervision (RDS) has been developed in [31], wherein the authors have used

relaxed labels for the supervision of the network, without increasing its complexity over

that of [30].

The authors in [32] have proposed a network referred to as DeepBoundaries to improve

the performance of HED technique by incorporating the idea of multi-resolution learning

by using three parallel stages of the HED network with shared parameters and by carefully

designing a loss function for boundary detection training. Each of the three stages operates

on the same input image but at a different resolution. The DeepBoundaries technique out-

performs both the HED and RDS techniques.

In [33], a technique, called crisp edge detection (CED) network, was proposed for edge

detection. This technique has a forward propagation pathway and a backward refining

pathway. The former, which uses the VGG-16 architecture as its backbone, generates low-

resolution high-dimensional feature maps, and the latter is designed to gradually increase

the resolution of the feature maps produced by the former by using an efficient up-sampling

method. The feature maps resulting from the backward refining pathway are finally fused

to generate an edge map of the input image. The authors of [33] have demonstrated that

their CED network has a performance that is superior to that of the networks of [30], [31]

and [32]. By replacing VGG-16 in the forward propagation pathway by ResNet-50, the

authors have provided another version of their network whose performance is even better

than that of CED that uses VGG-16; however, this is achieved at the expense of a much

higher computational complexity. In order to distinguish the two versions of the network

proposed in [33], we refer to these two CEDs as CED-VGG16 and CED-ResNet50.

In [34], the authors have developed a VGG16-based network, referred to as richer con-

volutional features (RCF) network. This network employs the idea of deep supervision
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by using the outputs of all the convolutional layers for training the network. The perfor-

mance of this network was shown to be superior to that of CED-VGG16, but inferior to

that of CED-ResNet50. The authors of [34] have also provided two other versions of their

network using ResNet50 and ResNet101 as backbones. We refer to these three versions

of RCF as RCF-VGG16, RCF-ResNet50, and RCF-ResNet101, respectively. It has been

shown in [34] that the performance of RCF-ResNet50 is inferior to that of CED-ResNet50.

On the other hand,it has been shown that RCF-ResNet101 outperforms all versions of the

CED and RCF networks, but with an extraordinarily large computational complexity.

In [36] a new edge detection network, referred to as bidirectional cascade network (BDCN),

has been designed based on the architecture of VGG-16. In this network, the features are

extracted by the various blocks of the network each at a different scale. Since this network

also uses a deep supervision for its training, and the resolutions of the edge maps produced

by the various blocks are different, the resolution of the label used for calculating the er-

ror at the output of a block is matched with that of the edge map produced by the block.

The performance of this network, which we refer to as BDCN-VGG16, was shown to be

superior to that of RCF-VGG16, but at the expense of a higher computational complexity.

In [36], another version of their network using ResNet50 instead of VGG-16 as backbone

has also been developed. We refer to this version of their network as BDCN-ResNet50

whose performance is even better than that of BDCN-VGG16, but at a much higher com-

plexity.

Very recently, a new network referred to as BFENet has been proposed for edge detec-

tion [37]. This network consists of three parts: pre-enhancement network, encoding net-

work, and decoding network. The pre-enhancement network simulates the visual infor-

mation processing and transmission mechanism of the retina/lateral geniculate nucleus in

order to enhance the ability of the encoding network to extract details and local features.

The encoding network is the VGG-16 network. The decoding network is a new feature
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fusion network that fuses the feature maps resulting from the encoding network to gener-

ate an edge map of the input image. We refer to this technique as BFENet-VGG16. The

performance of this technique is superior to that of all the aforementioned VGG16- based

techniques, however with a large computational complexity, except for BDCN-VGG16.

There are some other recently proposed edge detection techniques [35, 42, 43] that are nei-

ther VGG-16 based nor ResNet based architectures. In [35], the authors have presented a

novel architecture, referred to as dense extreme inception (DexiNed) network, to generate

thin edge-maps. This network has two parts, a dense extreme inception (Dexi) subnet-

work and an up-sampling blocks (UB) subnetwork. The output from each of the Dexi main

blocks is fed to an up-sampling block to generate an intermediate edge map. All of the

intermediate edge maps are fused to generate the final edge map. In [42], a multi-scale

decoder architecture, referred to as NAO-Multi-scale network, is presented. This architec-

ture uses mathematical morphology to perform morphological operations using standard

convolution layers. These two heavy networks provide good edge detection performance.

However, their complexity is very high, in that the complexity of [42] is higher than those

of the networks designed based on VGG-16 or ResNet architectures and that of [35] is

higher than that of all the VGG-16 based techniques. In [43], the authors have devel-

oped a lightweight convolutional neural network, referred to as pixel difference network

(PiDiNet), to achieve a trade-off between accuracy and efficiency for the task of edge de-

tection. This network uses an ELBP edge detector to capture the gradient information of

the input image and uses this information to generate the edge map of the image through

the powerful learning ability of the deep convolutional layers of the network. However, the

performance of the network is limited in view of the lightweight nature of the network.
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1.3 Motivation and Objectives

It is seen from Section 1.2 that the deep residual learning methods, such as CED-ResNet50

[33], RCF-ResNet50 [34], RCF-ResNet101 [34], and BDCN-ResNet50 [36], provide very

good edge detection performance. The high performance of these networks results from

their capability of extracting a richer set of features resulting from their residual learn-

ing and use of a large number of convolutional layers. However, the complexity of these

networks is extremely high. For example, the number of parameters employed by BDCN-

ResNet50 is 28.7 M. there are some other edge detection networks, such as HED-VGG16

[30], CED-VGG16 [33] and RCF-VGG16 [34], which have been designed based on the

VGG-16 architecture, and have relatively a much lower complexity. For example, the

number of parameters employed by HED-VGG16 [30] and RCF-VGG16 [34] networks

is around 14.7 M, and the number of parameters employed by the latest technique, namely,

BDCN-VGG16 [36], is 16.3 M. Although these networks greatly benefit from deep super-

vision, their performance is not as good as that provided by the networks developed based

on the ResNet architecture.

The objective of this thesis is to develop edge detection convolutional networks that have

a complexity comparable or lower than that of the VGG-16 based convolutional neural

networks and a performance that is comparable or superior to that of the ResNet based

convolutional neural networks. This thesis attempts to achieve the aforementioned objec-

tive by developing VGG-16 architecture based edge detection neural networks, which have

the capabilities of deep supervision, residual learning, and rich feature generation while

using small number of parameters.

This thesis has two parts. In the first part, an edge detection convolutional neural network,

based on the VGG-16 architecture, is developed by introducing in it deep supervision and

residual learning in such a way that the overall complexity of the network proposed is lower

than that of all the VGG-16 based networks and its performance is very close to that of the
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ResNet based networks. In the second part, deep neural networks, also based on the VGG-

16 architecture, are developed for the task of edge detection whose complexity are lower

than that of the edge detection network of part one and the performance superior to that of

all the existing edge detection networks. As in the network of part one, these networks also

use deep supervision and residual learning in their architectures; however, the significant

improvements in performance and complexity of these networks are achieved by introduc-

ing fire modules in their architectures.

1.4 Organization of the Thesis

The thesis is organized as follows. Chapter 2 provides the fundamental concepts of deep

learning and convolutional neural networks. In addition, we present a brief overview on

the VGG-16 and ResNet architectures. Chapter 3 starts with the presentation of the design

and implementation of the first edge detection neural network proposed in this thesis. Ex-

perimental results are then provided to demonstrate the performance and complexity of the

network proposed. A comparison of the performance and complexity of the proposed net-

work with that of the other edge detection networks is provided. In Chapter 4, the design

and implementation of the baseline edge detection neural network is first presented. The

results obtained by performing experiments on the baseline network are then provided and

compared with the other networks commonly used for edge detection. Two modified ver-

sions of the baseline network are also presented and discussed. Finally, in Chapter 5, some

concluding remarks on the work undertaken in this thesis are made and some suggestions

given for further research based on the findings of the thesis.
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Chapter 2

Background Material

In this chapter, a brief review of convolutional neural networks, as a background mate-

rial useful to understand the work carried out in this thesis, is given. First, the motivation

behind the development of convolutional neural networks is discussed. The architecture

of a typical convolutional neural network and its various components are next presented.

Then, the two schemes commonly used for the training of a convolutional neural network

are described. Finally, two specific architectures, namely, VGG-16 and ResNet-34, are

described, since the architectures of the edge detection neural networks developed in this

thesis are based on the architecture of the former by introducing in them the concept of

residual learning originally proposed in the architecture of the latter to address the gradient

vanishing problem of deep convolutional networks.

2.1 Convolutional Neural Networks

Convolutional neural network (CNN), also called, ConvNet, was first introduced in 1998

by LeCun, et.al [44] for recognizing hand written digits by proposing a CNN architecture

called LeNet. Through this architecture the authors introduced the concept of end-to-end
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learning, in which the features of the network inputs are automatically learned by using

convolutional layers. A convolutional layer is a layer of filters carrying out convolutional

operations on the same input by using different filters each of which is characterized by

a different set of learnable coefficients or kernel values. A convolutional neural network

provides a data driven platform for extracting useful features of the input signal automati-

cally. Therefore, it is capable of providing a performance superior to that of a scheme that

uses hand-crafted features. However, the capability of a CNN for extracting useful features

is very much dependent on the number of coefficients employed by it and the availability

of large training dataset. Both these requirements became bottlenecks for using CNNs in

various applications. In the following period, as more powerful hardware resources and

large training datasets became available, CNN became a very powerful tool for various ap-

plications. As a result, since the beginning of 2010, different CNN architectures have been

developed as they differ in the capabilities of extracting good features and in their stabilities

for different applications. AlexNet is the first large CNN (with 62 million parameters) that

was proposed in 2012 for the task of image classification [38]. In subsequent years, many

other powerful CNN architectures, each having its own strength and limitation, have been

proposed [40,45–53] for a wide variety of applications such as computer vision, healthcare,

entertainment, and machine translation.

2.2 Architecture of a typical CNN

The architecture of a typical CNN has three types of layers [54]: convolutional layers,

pooling layers, and fully connected layers, as shown in Figure 2.1. A convolutional layer

uses several filters of kernel size SxSxD, where S represents the height or width of the filter

and D the filter depth, which is equal to the number of channels in the volumetric data input

to the layer. The weights (coefficients) of the filter are generally randomly initialized. A
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Figure 2.1: A typical architecture of a convolutional neural network.

filter slides over the feature tensor input to the layer and at each position of the window,

a convolutional operation is performed followed by an activation operation, to produce a

single pixel of a map of the output of the convolutional layer. Different filters are used in a

layer to produce different maps of its output.

A convolutional layer may be followed by a pooling layer, the purpose of which is to

reduce the spatial resolution of the feature maps produced by a convolutional layer so as

to allow the succeeding convolutional layers to employ a larger number of filters in order

to extract additional robust features without adversely affecting the complexity of the net-

work. There are two types of pooling layers, average pooling layer and max pooling layer,

commonly used in convolutional neural networks. For a pooling operation, a window of a

given size is slid over a feature map and at each position of the window, the pixels within

the window are replaced by a single pixel, where the value of the single pixel is the average

of the pixel values within the window in the case of an average pooling layer, whereas it

is the maximum value of the pixels within the window in the case of a max pooling layer.

Figures 2.3 and 2.2 illustrate examples of the two types of pooling operations.

The focus in the design of a convolutional neural network is to develop an architecture

that is able to extract a set of feature maps, which are very rich from the perspective of

the intended application of the network. Once such a rich set of feature maps is extracted,

the network needs to have some additional layers, which can be used to finally produce the
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Figure 2.2: Example of the average pooling operation

Figure 2.3: Example of the max pooling operation
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network’s desired objective, such as to denoise, detect edges or classify input images using

these maps. For example for denoising and edge detection of gray level images, these final

layers could be 1x1 convolutional layers. On the other hand, for the task of image clas-

sifications, these final layers are fully connected. Some other examples of applications in

which the network require fully connected layers as additional layers are speech recogni-

tion [55] and image clustering [56]. The purpose of fully connected layers is to determine

the label of the input data from its maps extracted by the convolutional layers of the net-

work. In a fully connected layer, at a time, a 1D convolution is performed with all the

pixels of the entire set of the maps produced by the previous layer. Figure 2.4 illustrates an

example of how fully connected layers are used for the task of image classification wherein

two fully connected layers are employed. It is seen from this figure that a set of M feature

maps each of size NxN corresponding to an input image that needs to be classified are first

flattened into a single MNx1 size feature vector and then convolved using successively K

1D filters, each of kernel size MNx1, of the first fully connected layer (FC1). The output of

FC1 is further processed by the filters in the second fully connected layer (FC2). Since in

this example the second fully connected layer is the last layer of the network, the number

of filters C used in FC2 needs to be the same as the number of possible classes. The entries

of the final vector produced by FC2 are the probabilities of the input image belonging to

the various classes.

2.3 Training of a typical CNN

As seen in Section 2.2, convolutional neural network consists of several convolutional lay-

ers that employ a large number of filters. In order to make a network operational, that is,

for it to extract features of a given input and use them to achieve the desired objective,

the values of the parameters of these filters must be known. The process of determining
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Figure 2.4: An example of how fully connected layers are used for the task of image
classification.
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suitable values of these parameters is referred to as training the network. The network can

be trained through a supervised learning or unsupervised learning.

In supervised learning assuming that a training set containing a sufficient number of

labeled data is available, the values of the network parameters are determined by making

the network to map the data in the training set to a set of labels that are as close to the actual

labels of the data in the training set as possible.

In a supervised learning the training process starts by feeding in a single input data from

the training set to the network with its parameter values initialized randomly. The network

computes an output corresponding to this input data. Then, a loss (prediction error) between

this predicted output and the given label corresponding to the input data is obtained. The

idea of training the network is to adjust the parameter values of the network using this

prediction error so that in the next iteration, in which a new training data is fed into the

network with the adjusted parameters, the prediction error would be lower than the current

prediction error. Backpropagation is a mechanism used to update the parameter values

for the next iteration using the current prediction error. The gradient descent optimization

algorithm and its variants, such as stochastic gradient descent (SGD) or adaptive moment

estimation (Adam), are the optimization algorithms that are commonly used to iteratively

adjust the values of the network parameter in order to minimize the loss function. In the

gradient descent algorithm, the value of the gradient of the loss function evaluated using the

values of the parameters and prediction error at the current iteration is used to determine the

adjustment in the parameter values for the next iteration. A forward pass and a backward

pass together using a single input data is counted as one pass. One cycle of all the passes

using the entire dataset is called one epoch. Generally, a network requires several epochs

using the same training set in each epoch to train it satisfactorily. The performance of the
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trained model is finally tested by examining the accuracy of its output when it is fed with

the input from the test dataset comprising the data not seen by it during the training. In

summary, in supervised learning, a network is trained by minimizing a loss function given

by

E = L(fΘ(y), x) (2.1)

where y is the input to the network being trained and x is the given label corresponding

to the input y, fΘ(y) represents the network operation employing a set of parameters Θ,

by using a gradient descent optimization algorithm, and thus, the final set of the parameter

values of the trained network is obtained.

In unsupervised learning, the network needs to be trained, that is, its parameter values are

to be determined, without the knowledge of annotations or labels of the data in the training

set. In this case, the input data y from the training set itself is used for the label x in the

loss function given by (1). Also, depending on the application of the network, the training

data itself may be modified and used for y in (1). Minimization of the loss function thus

modified is carried out by applying an optimization algorithm in the same way as done in

the case of supervised learning.

2.4 VGG-16 Network

The VGG-16 convolutional neural network was developed by Karen Simonyan and Andrew

Zisserman for the task of image classification [40]. The architecture of VGG16 network

consists of six blocks, as shown in Figure 2.5 Each of the first two blocks contains two

convolutional layers and one pooling layer, each of the next three blocks contains three

convolutional layers and one pooling layer, and finally, the last block contains three fully
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connected layers. Therefore, the network, in total, has 13 convolutional layers, 5 pooling

layers, and 3 fully connected layers. Each of the convolutional operations in this network is

performed using filters of kernel size 3x3 and followed by an activation operation using the

RelU function. Even though the VGG16 architecture was developed for the task of image

classification, its modified versions have been successfully used in many other applications,

such as edge detection, object recognition [57], and medical image segmentation [58], in

view of the richness of the features extracted by the architecture of VGG16.

2.5 ResNet-34 Network

ResNet-34, which was developed originally also for the task of image classification, is a

very deep convolutional neural network where skip connections between the layers are used

to avoid the vanishing gradients problem of deep networks [47]. As a result, this network is

able to use a very large number of convolutional layers to produce a very rich set of hierar-

chal features. The architecture of ResNet34 network has 33 convolutional layers, 2 pooling

layers, and 1 fully connected layer, as shown in Figure 2.6. Each of the convolutional oper-

ations in this network is performed using filters of kernel size 3x3 followed by an activation

operation using the RelU function, except for the first convolutional layer in which a ker-

nel size 7x7 is used in its filters. There are three other ResNet architectures, ResNet-50,

ResNet-101, and ResNet-152, with the only difference in each from the original one being

in the number of convolutional layers in the architecture. Specifically, the numbers of layers

used by these three architectures are 50, 101, and 152, respectively. There are several mod-

ified versions of ResNet architectures that have been developed for applications other than

classification, such as the architectures of [33], [59], and [60] which have been developed

for the tasks of edge detection, image compression, and speech recognition, respectively.
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Figure 2.5: The VGG-16 network.
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Figure 2.6: ResNet-34 Architecture.
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2.6 Summary

This chapter has presented the background material that is relevant and necessary to un-

derstand the research work carried out in this thesis. First, a brief introduction to convo-

lutional neural networks has been given, and the architecture and components of a typical

convolutional neural network have been explained. Then, the schemes for training convolu-

tional neural networks are described. Finally, the architectures of the two specific networks,

VGG-16 and ResNet-34, have been briefly described.

21



Chapter 3

A Residual Neural Network for Edge

Detection

3.1 Introduction

Existing deep residual learning based techniques for edge detection provide good perfor-

mance but at the expense of an extremely high computational complexity. On the other

hand, the complexity of the VGG16-based edge detection techniques is relatively much

lower than that of the residual learning based techniques but their performance is low. The

reasons for the low performance of the VGG-16 based networks are as follows. (i) The

deeper layers of the VGG-16 architecture are not able to learn some of the information

captured by the initial layers. (ii) The spatial resolution of N x M of the feature maps in the

convolutional layers of the first block finally decreases to N/32 x M/32 in the convolutional

layers of the fifth block. Restoring these feature maps to the original input size is necessary

in some of the applications such as image edge detection. However, a sudden restoration

of the spatial resolution of N/32 x M/32 of the maps in the fifth block to the original N x

M resolution would result in a blurred output. (iii) Increasing the number of layers in the

VGG-16 architecture in order to improve the performance, even in applications where a
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somewhat larger complexity is acceptable, would potentially risk the vanishing gradients

problem. In this chapter, we develop a new VGG-16 based edge detection architecture [61]

that is capable of addressing these limitations of the existing VGG-16 based edge detec-

tion networks by introducing in it a mechanism of residual learning. In Section 3.2, the

proposed architecture is presented. In Section 3.3, the performance and complexity of the

proposed edge detection network are provided and compared with those of the state-of-the-

art edge detection networks. Finally, the conclusion of this study is provided in Section

3.4.

3.2 The Proposed Method

The proposed edge detection network is built upon the VGG-16 architecture. In order to

better understand the various concepts used in building the proposed edge detection net-

work and to contrast it with VGG-16 that was originally designed for image classification,

the architecture of the latter is dedicated in Figure 2.5 and that of proposed network in Fig-

ure 3.1.

The proposed network, referred to as residual holistic network (RHN), for edge detection

consists of elven blocks, blocks 1 – 11, of which only the first one is exactly the same as

that used in VGG16. The second block contains two convolutional layers, one max pool-

ing layer, and one transposed convolutional layer. The third and fifth blocks have three

convolutional layers, and in addition, the former has a max pooling layer and the later a

feature map pooling layer. The fourth block is similar to the second one with a feature map

pooling layer and an additional convolutional layer. Block 6 and block 11 have a convolu-

tional layer and a loss function, whereas each of blocks 7-10 has in addition a transposed

convolutional layer.

Each of the convolutional layers in the first five blocks has filters of size SxSxD, where

S represents the height and width of the filter and D is the filter depth that is equal to the
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number of channels in the volumetric data input to the layer. For example, in the first con-

volutional layer (Conv1) the value of D is 3, since image input to the network is a color

image and thus has 3 channels.

The number of filters in each of the two layers of block 1 is chosen to be 64 for achiev-

ing a good balance between the complexity and variety of features to be extracted by the

network. A max pooling layer follows these two convolutional layers, which produces a

lower resolution version of the feature maps input to this layer by selecting the most salient

feature in each of the 2x2 windows of each of the channels of the input. The use of the max

pooling layer reduces the amount of data that is input to block 2. This reduction allows

the use of a larger number of filters in the layers of block 2 in order to extract more robust

features without adversely affecting the complexity. We use 128 filters in each of the three

convolutional layers of block 2. Since residual learning schemes have been successfully

used to extract richer set of features, we now apply this idea first to block 2. In order to

accomplish this, a transposed convolutional layer is used after the max pooling layer of this

block to up-sample the feature maps resulting from the max pooling layer and to decrease

their number to match the spatial resolution and the depth of the data from block 1. As a

result of applying the residual learning to block 2, the output of this block is the sum of the

outputs from its transposed convolutional layer and that of block 1. The role of block 3,

whose architecture is similar to that of block 1 with one additional convolutional layer and

the use of 128 filters rather than 64 in each of the convolutional layers, is simply to improve

the network performance.

The size of the filters used in all of the convolutional layers in the first 3 blocks is 3x3, since

a small size filter is more appropriate to extract low-level features. However, the use of a

larger size filter enables a denser connection between the feature maps and thus can help in

learning the global features for the task of edge detection. For this reason, the size of the

filters used in blocks 4 and 5 are increased, respectively, to 5x5 and 7x7. To deal with the

24



Figure 3.1: The proposed edge detection architecture.
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problem of higher number of arithmetic operations associated with the increased number

of parameters by the use of larger size and number of filters in the convolutional layers of

block 4, a smaller amount of data is used for processing by this block. This is achieved

through the reduction of the spatial resolution by the max pooling layer of block 3 and the

number of channel reduction by a feature map pooling layer at the beginning of block 4 by

using only 64 filters. The residual learning is also applied to this block, which then requires

the use of a transposed convolutional layer as well. In view of using even a larger size of

filters in block 5, we again use a feature map pooling layer with 64 filters at the beginning

of the block in order to keep the number of operations low by making the size of the data

to be processed by its three convolutional layers to be smaller.

The proposed network is further developed in order for it to benefit from deep supervision

learning by augmenting it with blocks 6 – 11. These six blocks generate six different loss

functions, L1 – L6. The loss functions L1 – L5 are generated using the side feature maps S1

– S5, respectively. Figure 3.2 shows some examples of the network side feature maps after

up-sampling (side outputs).

It is to be noted that these five side feature maps have, 64, 128, 128, 256, and 256

feature maps with spatial resolutions of NxM, N/2xM/2, N/2xM/2, N/4xM/4 and N/4xM/4,

respectively. While the existing algorithms such as HED and RCF, have spatial resolutions

of NxM, N/2xM/2, N/4xM/4, N/8xM/8 and N/16xM/16. In order to construct the loss

functions L1 – L5, each of these sets of feature maps has to be converted into a single

map of spatial resolution NxM. This is accomplished by the convolutional and transpose

convolutional layers of the blocks 6-10 producing, respectively, the feature maps S6 – S10.

For example, the input to block 9 has 256 feature maps of size N/4xM/4 resulting from

block 4. Therefore, block 9 first by using one convolutional filter of kernel size 1x1x256

is able to produce a single feature map of size N/4xM/4, and then by using a transposed
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Figure 3.2: Examples of the network side outputs
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convolutional layer of size 8x8x1 up-samples this feature map to the spatial resolution of

NxM. Note that block 1 does not need a transposed convolutional layer, since its input maps

already have the desired spatial resolution of NxM resulting from block 1. The feature

maps S6, ..., S10 are concatenated and then the resulting feature maps S11 are combined into

a single map, S12, by using a convolutional filter in block 13. Six balanced cross entropy

loss functions denoted by Li, i = 1, ..., 6, are produced using the edge maps S1, ..., S5 and

S11, respectively, and the ground truth, [62]

Li(W,w(i)) = −β
∑
j∈Y+

logPr(yj = 1 | X;W,w(i))

−(1− β)
∑
j∈Y−

logPr(yj = 0 | X;W,w(i))

(3.1)

where W denotes the set of all the network parameters, w(i) denotes the classifier weights

corresponding to the side output Si, i = 1, ..., 5, 11, X = (xj , j = 1, ..., | X |) and Y = (yj ,

j = 1, ..., | Y |), respectively, denote a training image and the corresponding ground-truth

image, Y+ and Y−, respectively, denote the set of indices in the edge and non-edge ground-

truth labels, and β = | Y− | / | Y+ + Y− | represents the fraction of the non-edge pixels in

Y. β and 1 − β in (1) are used to overcome the problem of inequitable distribution of the

edge and non-edge pixels in the ground-truth. Pr(yj = 1 | X;W,w(i)) is computed using

the ReLU function on the activation value at pixel j. The six loss functions, L1, ..., L6, are

finally combined to obtain a single cost function [62], given by

L =
6∑

i=1

Li(W,w(i)) (3.2)

This single cost function is used for a deep supervised training of the network.
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3.3 Experimental Results and Comparisons

In this section, experiments on the proposed RHN are performed using three datasets,

namely, the Berkeley Segmentation Dataset and Benchmark (BSDS500) [63], NYU Depth

(NYUD) [64], and Multicue [65] datasets. The first two datasets provide ground-truth im-

ages which may not necessarily be considered as an edge map or a boundary map of the

images in the dataset, whereas the third dataset has two ground-truth images for each image

in the dataset, the first one being an edge map and the second one a boundary map of the

image. The performance of the proposed network in terms of ODS and OIS , and complex-

ity in terms of the average number of frames produced by the network per second (FPS) and

the number of network parameters are studied and compared with that of the other exist-

ing state-of-the-art networks for edge detection. Localization tolerance is a parameter used

to compute the ODS and OIS metrics for evaluating the performance of an edge detection

method [66,67]. This parameter is related to the maximum distance (in terms of the number

of pixels) between the corresponding pixels of the predicted and ground truth edge maps,

and controls the crispness of the predicted edge map (i.e. the values of the performance

metrics). The value of this parameter is empirically determined in order to provide the best

edge detection performance on the images of a given dataset [66, 67].

For the training of the proposed network, the mini-batch-size is set to 10. The adaptive

moment estimation [68] is used, instead of stochastic gradient descent [69] because it is

computationally efficient and needs less memory requirements. The weight decay is set

to 2x10-4 and the learning rate to 10-6. The size of the training images is set to 320 x

480, 480 x 480, and 500 x 500 for the BSDS500, NYUD and Multicue datasets, respec-

tively. Furthermore, data augmentation is used to increase the sample size in each dataset.

Each convolutional layer is followed by a ReLU activation unit. Batch normalization is

used after each ReLU function in order to improve the network performance and stability

by normalizing the distribution of the features produced by the activation operation of the
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previous layer [70–72]. The training is terminated after 35 epochs. The proposed algo-

rithm is implemented using Keras [73] that is back ended by the TensorFlow package [74].

The training procedure for the proposed networks is conducted on a machine with Intel(R)

Core(TM) i7-7700K CPU @4.2 GHz, 32 GB RAM and NVIDIA GeForce GTX 1080 GPU.

3.3.1 Quantitative Performance and Comparison

The performance of the proposed deep learning technique in terms ODS and OIS F-measures

as well as the complexity of the network in terms of FPS and number of network param-

eters are obtained using the different datasets. All the results are compared to that of the

state-of-the-art- networks. As in other deep learning methods, the standard non-maximal

suppression (NMS) technique [75] is used for thinning the detected edges for the evaluation

of the different edge maps resulting from the various methods.

Performance Using the BSDS500 Dataset

The BSDS500 dataset consists of 200 training, 100 validation, and 200 test images. Each

image in this dataset is labeled by 4 to 9 annotators to generate the ground truth edge maps,

where if a pixel is assigned a positive label by at least three annotators then it is consid-

ered as belonging to an edge. Similar to the previous works, we mix the augmented data

of BSDS500 with the Pascal-Context dataset [76] as training data. The PASCAL Context

dataset has 10K labeled images. For the network training, we augment the images of the

BSDS500 dataset and their ground-truths, by applying only the operations of scaling by

0.5, 1 and 1.5, and rotation by 0°, 22.5°, 45°, . . . , 315° and 337.5°, and flipping. For the

training, Pascal-Context dataset is also augmented but only through the operation of flip-

ping its images.
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Table 3.1: Comparison of the proposed network with state-of-art networks on the BSDS500
dataset. The networks trained using a mix of the BSDS500 and PASCAL Context datasets
and tested only on the images of the BSDS500 dataset

Method ODS F-measure OIS F-measure No. of parameters in Millions FPS
Human 0.80 0.80 - -

Canny [21] 0.611 0.695 - 28
Pb [77] 0.672 0.695 - -
SE [41] 0.743 0.763 - 2.5

OEF [79] 0.746 0.770 - 2/3
DeepContour [27] 0.757 0.776 - 1/30

DeepEdge [26] 0.753 0.772 - 1/1000
HFL [29] 0.767 0.788 - 5/6

N4-Fields [25] 0.753 0.769 - 1/6
DexiNed-f [35] 0.729 0.745 >>18 -
CSCNN [80] 0.756 0.775 - -

CED-ResNet50 [33] 0.810 0.829 - -
RCF-ResNet101 [34] 0.812 0.829 >>44 12
BDCN-ResNet50 [33] 0.826 0.840 28.7 -

HED [30] 0.788 0.804 14.7 30
RDS [31] 0.792 0.810 14.7 30

CED-VGG16 [33] 0.803 0.820 - -
RCF-VGG16 [34] 0.806 0.823 14.8 30

BDCN-VGG16 [34] 0.820 0.838 16.3 -
RHN 0.817 0.833 11.5 33

Results in terms of ODS F-measure, OIS F-measure and FPS of the proposed technique

for the BSDS500 dataset are given in Table 3.1. For the purpose of comparison, the re-

sults from different classical edge detection techniques, Canny [21], Pb [77], SE [78], and

OEF [79], and also those obtained of the recent deep learning techniques, namely, Deep-

Contour [27], DeepEdge [26], HFL [29], N4-Fields [25], DexiNed-f [35], CSCNN [80],

HED [30], RDS [31], CED-VGG16 [33], CED-ResNet50 [33], RCF-VGG16 [34], RCF-

ResNet101 [34], BDCN-VGG16 [36], and BDCN-ResNet50 [36] are listed in this table.

It is seen from this table that the performance of the proposed RHN in terms of ODS

F-measure and OIS F-measure is superior to that of all the other VGG-16 based techniques

except for BDCN-VGG16 and superior or comparable to that of the ResNet based tech-

niques. It is seen from this table that the values of the ODS and OIS F-measures provided
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by the proposed RHN are, respectively, 0.011 and 0.010 higher than that of RCF-VGG16

technique. This improved performance of the proposed technique is achieved with 11.5

M parameters and a rate of 33 frames per second, as compared to the 14.8 M parameters

and a rate of 30 frames per second provided by RCF-VGG16 technique. It is also to be

noted that even though the performance of the proposed technique is inferior to that of

the BDCN-VGG16 and BDCN-ResNet50 techniques, the number of parameters employed

by these techniques are 16.3 M and 28.7 M, which are significantly higher compared to

11.5 M parameters utilized by the proposed RHN. Figure 3.3 presents the precision-recall

curves of the proposed RHN and some of the other methods used in our comparison on the

BSDS500 dataset.

Performance Using the NYUD Dataset

The NYUD dataset has 1449 pairs of input images recorded by Microsoft Kinect cameras

from indoor scenes. The first image in each pair of this dataset is captured by an RGB cam-

era, whereas the second one by a depth camera. Figure 3.4 shows two such pairs of images

from this data set. In our experiments, the NYUD dataset is spilt into 381 training, 414

validation and 654 test pairs of images. For the network training, we augment the images

of the NYUD dataset and their ground-truths, by applying only the operations of scaling

by 0.5, 1 and 1.5, and rotation by 0°, 90°, 180°, and 270°, and flipping. For the purpose

of evaluation, the maximum tolerance allowed for correct matches of edge predictions is

0.011 for the images of this dataset instead of 0.0075 that was used for BSDS500 dataset,

since the size of the images in the former is larger. The network is trained separately for

the RGB and depth training sets resulting in two trained models. The final predicted edge

map is obtained by averaging the outputs from the RGB and depth models.
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Figure 3.3: precision/recall on the BSDS500 dataset.
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Figure 3.4: Two examples of pairs of RGB and depth images from the NYUD dataset.
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Results in terms of ODS F-measure, OIS F-measure and FPS of the proposed RHN

technique for the NYUD dataset are given in Table 3.2. For the purpose of comparison,

results of the edge detection techniques, SE [78], OEF [79], gPb+NG [81], SE+NG+ [82],

DexiNed-f [35], HED [83], RCF-VGG16 [34], RCF-ResNet50 [34], BDCN-VGG16 [36],

and BDCN-ResNet50 [36], are also listed in this table.

First of all, it is observed from this table that regardless of the technique used, both the

ODS F and OIS F measures are improved when the maps obtained from the RGB and

HHA models are averaged over that using either RGB or HHA model alone, and hence, we

use these improved measures in our comparison of the various methods.

It is seen from this table that the values of the ODS and OIS F-measures provided by the

proposed RHN (RGB + HHA) are, respectively, 0.007 and 0.009 higher than that provided

by the RCF-VGG16 technique and they are 0.005 and 0.006 higher than that provided by

the BDCN-VGG16 technique. This improved performance of the proposed technique is

achieved with 11.5 M parameters, as compared to 14.8 M and 16.3 M parameters provided

respectively by the RCF-VGG16 and BDCN-VGG16 techniques. It is also to be noted that

even though the performance of the residual learning-based techniques is superior to that

of the proposed technique, the number of parameters employed by the proposed technique

is much lower than that provided by the RCF-ResNet50 and BDCN-ResNet50 techniques.

Figure 3.5 presents the precision-recall curves of the proposed RHN and some of the other

methods used in our comparison on the NYUD dataset.

Edges Versus Boundaries: Multicue Dataset

In the case of the previous two datasets, BSDS500 and NYUD, all the networks includ-

ing the proposed one were trained using a single set of ground-truth images. In these two

datasets, the ground-truths are, in fact, neither fully edge maps nor fully boundary maps.

35



Ta
bl

e
3.

2:
C

om
pa

ri
so

n
to

T
he

St
at

e-
of

-T
he

-A
rt

M
et

ho
ds

on
N

Y
U

D

M
et

ho
d

O
D

S
F-

m
ea

su
re

O
IS

F-
m

ea
su

re
N

o.
of

pa
ra

m
et

er
s

in
M

ill
io

ns
FP

S
SE

[7
8]

(R
G

B
+H

H
A

)
0.

69
5

0.
70

8
-

5
O

E
F

[7
9]

(R
G

B
+H

H
A

)
0.

65
1

0.
66

7
-

1/
2

gP
b+

N
G

[8
1]

(R
G

B
+H

H
A

)
0.

68
7

0.
71

6
-

1/
37

5
SE

+N
G

+
[8

2]
(R

G
B

+H
H

A
)

0.
70

6
0.

73
4

-
1/

15
D

ex
iN

ed
-f

[3
5]

(R
G

B
+H

H
A

)
0.

65
8

0.
67

4
-

-
R

C
F-

R
es

N
et

50
[3

4]
(R

G
B

+H
H

A
)

0.
78

1
0.

79
3

-
7

B
D

C
N

-R
es

N
et

50
[3

6]
(R

G
B

+H
H

A
)

0.
78

8
0.

80
2

28
.7

-
H

E
D

[3
0]

(H
H

A
)

0.
68

1
0.

69
5

14
.7

20
H

E
D

[3
0]

(R
G

B
)

0.
71

7
0.

73
2

14
.7

20
H

E
D

[3
0]

(R
G

B
+H

H
A

)
0.

74
1

0.
75

7
14

.7
10

R
C

F-
V

G
G

16
[3

4]
(H

H
A

)
0.

70
3

0.
71

7
14

.8
20

R
C

F-
V

G
G

16
[3

4]
(R

G
B

)
0.

74
3

0.
75

7
14

.8
20

R
C

F-
V

G
G

16
[3

4]
(R

G
B

+H
H

A
)

0.
76

5
0.

78
0

14
.8

10
B

D
C

N
-V

G
G

16
[3

6]
(H

H
A

)
0.

70
8

0.
72

0
16

.3
-

B
D

C
N

-V
G

G
16

[3
6]

(R
G

B
)

0.
74

8
0.

76
3

16
.3

-
B

D
C

N
-V

G
G

16
[3

6]
(R

G
B

+H
H

A
)

0.
76

7
0.

78
3

16
.3

-
R

H
N

(H
H

A
)

0.
71

1
0.

72
1

11
.5

24
R

H
N

(R
G

B
)

0.
75

1
0.

76
2

11
.5

24
R

H
N

(R
G

B
+H

H
A

)
0.

77
2

0.
78

9
11

.5
12

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

NYUD

[F=.803] Human

[F=.781] RCF-ResNet50

[F=.772] RHN

[F=.765] RCF

[F=.741] HED

[F=.695] SE

[F=.651] OEF

Figure 3.5: precision/recall on the NYUD dataset.
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Hence, the trained networks are capable of detecting only the maps of the objects in the

input image guided by the ground-truth maps. The Multicue dataset [65] has two sets of

hand-annotations: one containing the entire edge map and the other one containing only

the boundary map corresponding to each image in the dataset. Hence, the deep edge de-

tection networks can have two trained networks depending on the set of ground-truth maps

used for training. Hence, the Multicue dataset enables us to use one of the two trained

networks depending on whether we want to determine a boundary map or an edge map for

a given image. The Multicue dataset contains 100 video sequences of different scenes with

the frame spatial resolution of 1280 by 720 pixels. Each sequence contains 10 frames of

the left view and 10 frames of the right view of the scene. A set containing the training

and test images was then formed by taking the last frame of the left views from each of

the sequences [65]. Thus, this set has a total of 100 images to be used for the training of

the networks and testing of the algorithms. Each of the 100 images in the set are manu-

ally labeled for two annotations, one giving a ground-truth boundary map and the other a

ground-truth edge map.

In our experiments, the training and test set is randomly split into 80 images for training and

20 images for testing. We augment the images and the corresponding ground-truth labels

in the training set by scaling them by 75% and 125% and rotating them by 90◦, 180◦, and

270◦. Since the resolution of the image in this set is very high, we randomly crop them into

500 x 500 sub-images. The process of obtaining the training and test sets as described in

this paragraph is repeated three times in order to have three different training and test sets.

Each training set is used individually to obtain three different models of the proposed net-

work trained to extract an edge map and again three different models to extract a boundary

map. The ODS and OIS scores are obtained for each of the three models trained to obtain

an edge (boundary) map for each of the images in the test set. The final values of these

metrics are then obtained by averaging the results obtained from the three trained models
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over all the 20 images in the test set.

Results in terms of ODS F-measure and OIS F-measure of the proposed RHN technique

are given in Tables 3.3 and 3.4. For the purpose of comparing the performance of the pro-

posed network with that of the three techniques, namely, HED [30], RCF-VGG16 [34],

and BDCN-VGG16 [36], the results for the measures of these techniques are also listed

in these tables. It is seen from these tables that the proposed RHN outperforms the other

three networks in terms of the two measures both in edge detection and boundary detection.

Table 3.3: Performance comparison with state-of-the-arts for boundary detection using
Multicue dataset

Method ODS F-measure OIS F-measure
HED [30] 0.814 0.822

RCF- VGG16 [34] 0.817 0.825
BDCN-VGG16 [36] 0.836 0.846

RHN 0.841 0.856

Table 3.4: Performance comparison with state-of-the-arts for edge detection using Multicue
dataset

Method ODS F-measure OIS F-measure
HED [30] 0.851 0.864

RCF- VGG16 [34] 0.857 0.862
BDCN-VGG16 [36] 0.891 0.898

RHN 0.896 0.905

3.3.2 Qualitative Performance and Comparison

In this section, we give some examples of the visual quality of the edge maps obtained

from using the proposed scheme and compared with the visual quality of the edge maps

obtained by using the RCF technique [34]. We also illustrate using the proposed network
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the significance of suitable training of an edge detection network depending on whether the

objective of the network is to obtain a boundary map or an edge map.

Figure 3.6 shows the maps of the images obtained by using the RCF-VGG16 [34] and

proposed RHN networks trained separately on BSDS500 leading two different trained mod-

els. In this figure, the first row show two different images from the BSDS500 dataset and

the corresponding. The maps in row b of the figure are the ground-truth maps, whereas

those in rows c and d are the ones obtained by using, respectively, the RCF-VGG16 and

proposed RHN networks. It is seen from this figure that the edge maps obtained by using

the proposed network are closer to the ground-truth maps than the maps obtained by the

RCF-VGG16 technique are. For example, it is seen from the maps of the first column of

this figure that the children’s eyes and chin of the middle child are better represented in the

map obtained by the proposed scheme. Also, it is seen from the maps of the second column

of this figure that the edge of the shadow of the barn roof on its wall is sharper in the map

obtained by using the proposed scheme.

Figure 3.7 shows the maps of the images obtained by using the RCF-VGG16 [34] and

proposed RHN networks trained separately on NYUD datasets. In this figure, the first row

show two different images from the NYUD dataset and the corresponding maps. The maps

in row b of the figure are the ground-truth maps, whereas those in rows c and d are the ones

obtained by using, respectively, the RCF-VGG16 and proposed RHN networks. It is also

seen from this figure that the edge maps obtained by using the proposed RHN are closer

to the ground-truth maps than the maps obtained by the RCF-VGG16 technique are. For

example, it is seen from the maps of the first column that the left edge of the curtain in the

deeper background of the image and the ring on the wall of the foreground do appear in the

map provided by the proposed scheme, whereas they are completely missed out in the map
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Figure 3.6: The edge maps of two of the images from the BSDS500. (a) Original images.
(b) Ground-truth edge maps. (c) Edge maps using RCF. (d) Edge maps using the proposed
RHN.
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produced by RCF-VGG16 network. Finally, it is seen from the maps of the second column

that the edges in the lamp pole are cleaner and sharper in the map obtained by using the

proposed RHN.

We now illustrate the impact of a suitable network training on the subjective quality

of the maps produced. For this purpose we train the proposed RHN network on the two

training sets of the Multicue dataset and the BSDS500 dataset providing three different

trained models. Figure 3.8 shows the maps of three images obtained by using the three

trained models. In this figure, each of the three columns relate to a different image. The

original images are shown in row a, whereas the corresponding ground-truth boundary and

edge maps are shown, respectively, in rows b and c. Row d shows the maps obtained

from the RHN network trained using the Multicue training set to detect boundaries of the

images, whereas row e shows the maps obtained from the RHN network trained using the

Multicue training set to detect edges of the images. Row f shows the maps obtained from

the RHN network trained using the BSDS500 training set which is not constructed to detect

specifically either the boundary map or the edge map entirely. It is seen from this figure

that the maps in row f are neither as good as the boundary maps in row d nor are they as

good as the edge maps in row e.

3.4 Summary

Several techniques have been developed for the task of edge detection based on the VGG16

network, since the convolutional layers of the networks of such schemes have fewer param-

eters than those of the existing residual networks. However, their performance is inferior

to that of the residual techniques. This reduced performance is due to the fact that the spa-

tial resolutions of the feature maps in this architecture significantly decrease between the
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Figure 3.7: The edge maps of two of the images from the NYUD datasets. (a) Original
images. (b) Ground-truth edge maps. (c) Edge maps using RCF. (d) Edge maps using the
proposed RHN.
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Figure 3.8: The boundary and edge maps of three images. (a) Original images. (b) Ground-
truth boundary maps. (c) Ground-truth edge maps. (d) Boundary maps from the proposed
RHN trained by using the Multicue dataset. (e) Edge maps from the proposed RHN trained
by using the Multicue dataset. (f) Maps from the proposed RHN trained by using the
BSDS500 dataset.
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convolutional layers of the first block and that of the last block. Further, the deeper layers

cannot learn some of the information captured by the shallower layers. In this chapter, a

mechanism of residual learning has been introduced in the VGG16 architecture to obtain

a deep edge detection convolutional neural network to provide superior performance while

still preserving its lower complexity character. Extensive experiments have been carried

out on the proposed edge detection network using several benchmarks datasets to evaluate

its performance and complexity. It has been shown that the performance of the proposed

network outperforms most of the existing techniques in terms of ODS F-measure and OIS

F-measure and provides edge maps of superior visual quality. In terms of the network com-

plexity, the number of parameters used by the proposed RHN is lower than that of all the

existing techniques.
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Chapter 4

A Reduced Complexity Residual Deep

Neural Network for Edge Detection

4.1 Introduction

Even though the complexity of RHN, which proposed in Chapter 3, is lower than that of

other VGG-16 based networks, it is still high in view of employing a large number of

parameters; further, its performance is lower than that of the BDCN in view of its lim-

ited capacity in extracting a rich set of features. The objective of this chapter is to build

further on the work of Chapter 3 and develop VGG-16 based residual deep convolutional

neural networks having complexity that are not only lower than that of ResNet-based net-

works, but also substantially lower than those of the existing VGG16-based networks and

a performance, which surpasses that of all the edge detection networks [84]. Generally,

deep convolutional neural networks are made to yield improved performance by designing

them so as to extract richer and more useful features from the input data by increasing the

depth, width, receptive fields, and multiresolution capability of the networks. However,

this course of action results in substantially increased complexity of the networks. The

main idea of this chapter that has not been utilized earlier in the design of edge detection
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networks is the use of fire modules in the convolutional layers in the design of the proposed

networks. In a fire module, which was originally introduced in [85] for compressing the

AlexNet architecture for the task of image classification, the number of parameters is de-

creased without losing the accuracy of the network by first squeezing and then expanding

the number of feature maps in a convolutional layer of AlexNet. The rest of this chapter

is organized as follows: In Section 4.2, the proposed architecture of the baseline network

is presented. In Section 4.3 experimental results providing the performance evaluation and

complexity analysis of the proposed edge detection network, along with a comparison of

these results with that of some of the other networks commonly used for edge detection,

are presented. Two other modified versions of the proposed baseline network are also pre-

sented and discussed. Finally, some concluding remarks are made in Section 4.4.

4.2 The Proposed Method

In this section, we develop our proposed residual edge detection network based on the

VGG-16 architecture. The VGG16 architecture was originally developed for the task of

image classification, and it composed of a total of 13 convolutional layers, 5 pooling lay-

ers, and 3 fully connected layers. This network can be divided into six blocks, as shown

in Fig. 2.5. The size of the filters used in all the convolutional layers is 3x3. Each of

the first two blocks contains two convolutional layers and one pooling layer. Each of the

succeeding three blocks contains three convolutional layers and one pooling layer. The

last block of the VGG16 network contains three fully connected layers, which perform the

classification task. Hence, in the development of our proposed edge detection network, we

will use the first five blocks as a founding architecture. Since the fire module [85] consti-

tutes a very important component in the development of our edge detection network, we

start this section with a brief review of this module in Section 4.2.1 The architecture of the
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proposed network is developed in Section 4.2.2 The details on the numbers and sizes of the

filters used in the various layers of the network are also given in this subsection. Finally,

the training details of the proposed network are provided in Section 4.2.3.

4.2.1 Fire module

The schematic of a fire module is shown in Fig. 4.1. This module consists of two con-

volutional layers, a squeeze convolutional layer containing only 1x1 filters and an expand

convolutional layer containing a mix of 1x1 and a larger size filters. Since a convolu-

tional layer cannot accommodate filters of mixed sizes, the expand layer of the fire module

is composed of two convolutional layers, the first of which uses 1x1 filters and the second

one uses filters that are of larger size. The outputs of these two layers are then concatenated

to obtain the output of the fire module. The number of filters in the squeeze layer is kept

low making the number of channels input to the expand layer small so that the complexity

of processing in the expand layer resulting from its use of larger size filters is not adversely

affected. This small number of channels input to the expand layer allows for the use of a

large number of filters in the expand layer, which results in a large number of feature maps.

The ratio of the number of filters in the squeeze layer to that in the expand layer, called the

squeeze ratio (SR), is an important parameter whose value is chosen so as to have a trade-

off between the performance accuracy and the complexity of the network using the module.

4.2.2 The architecture of the proposed network

The architecture of the proposed network for edge detection, referred to as low-complexity

residual deep neural network (LRDNN), is depicted in Fig. 4.2. The network consists of

13 blocks. Blocks 1, 2, 4, 5, and 7 of the proposed network employ fire modules, instead of
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Figure 4.1: Organization of convolution filters in the fire module.
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the regular convolutional layers as used in the original VGG-16 architecture, except for the

first block in which only the second convolutional layer is replaced by a fire module. Our

main motivation of using fire modules in the proposed edge detection network is that they

increase the depth of the network, and at the same time, reduce the network complexity. In

the proposed network, similar to [85] and [86], the value of the squeeze ratio for the fire

module is chosen to be 1/8, and the numbers of 1x1 and the larger size filters in the expand

layer are chosen to be equal. Each of the blocks 1, 2, 4, and 5 also use a max pooling

layer. As in many other convolutional networks, the purpose of using a max pooling layer

is to reduce the spatial resolution of the feature maps produced by a convolutional layer

so as to allow the succeeding convolutional layers to employ a larger number of filters in

order to extract additional robust features without adversely affecting the complexity of the

network. Blocks 3 and 6 of the proposed architecture are the information fusion blocks in

which the maps resulting from two different blocks are resolution-wise matched using a

transposed convolution layer and then added. Blocks 8 to 13 are used to facilitate a deep

supervision of the network for its training, as to be explained in Section 4.2.3. Each of

these blocks has a reconstruction convolutional layer and a balanced cross-entropy loss

layer. With the exception of blocks 8 and 13, each of these blocks also has a transposed

convolutional layer. The purpose of each of the blocks 8-12 is to construct a loss function

between the labeled ground-truth and the edge map constructed from the feature maps (

S1, S2, S3, S4, and S5) generated by each of the blocks, 1, 2, 4, 5, and 7. However, the

purpose of block 13 is to construct a loss function between the ground-truth and the edge

map obtained by concatenating the edge maps generated by blocks 8-12. The convolutional

operations in each of the convolution layers of the proposed architecture are followed by a

ReLu activation function.

In block 1, the numbers of filters in the convolutional layer (Conv1), the squeeze layer
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and the expand layer of Fire Module 1, are chosen to be 64, 8, and 64, respectively. In block

2, the numbers of filters used in the squeeze and expand layers are 16 and 128, respectively.

Since residual learning schemes have been used to extract richer sets of features, this idea

is also employed in blocks 3 and 6. To accomplish this, a transposed convolutional layer is

used to match the spatial resolution and the number of maps of the outputs of blocks 1 and

2 (blocks 4 and 5) and then to add the first output with the resulting second output.In block

4, the numbers of filters used in the squeeze and expand layers are 32 and 256, respectively.

The size of the filters in the second convolutional layers of the expand layers used in all of

the fire modules of blocks 1, 2, and 4 is 3x3. Since the purpose of the network is, to finally

provide edge maps, that is, maps containing global low level features (edges and corners

of the objects in the image), the sizes of the filters in the second convolutional layers of

the expand layers in blocks 5 and 7 are, respectively, increased to 5x5 and 7x7. The use of

larger size filters in these blocks would facilitate extraction of such global low level features

by providing denser connections between the feature maps that are input to these blocks.

In blocks 5 and 7, the numbers of filters used in the squeeze and expand layers are 64 and

512, respectively.

4.2.3 Training of the proposed network through deep supervision

The blocks 8, 9, 10, 11, 12, and 13 generate six loss functions, L1, L2, L3, L4, L5 and L6,

respectively. The loss functions L1, L2, L3, L4, and L5 are generated using the side feature

maps S1, S2, S3, S4, and S5, generated by blocks, 1, 2, 4, 5 and 7, respectively, and the

labeled ground-truth. It should be noted that these 5 side feature maps have 64, 128, 256,

512, and 512 maps with spatial resolutions of H x W, H/2 x W/2, H/2 x W/2, H/4 x W/4 and

H/4 x W/4, respectively. To construct the loss functions L2, ..., L5, each of the feature maps,

S2, ..., S5, must be converted into a single map with a spatial resolution of H x W. This is
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Figure 4.2: Architecture of the proposed edge detection convolution network.
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accomplished by a convolutional filter and the transposed convolutional layer of the blocks

9-12, which produce the feature maps S7, S8, S9 and S10, respectively. However, since the

resolution of the maps, S1, is already H x W, these maps are combined into a single map by

using only a convolutional filter to generate the feature map S6. Finally, the feature maps

S6, ..., S10 are concatenated and then the resulting feature maps S11 are combined into a

single map, S12, by using a convolutional filter in block 13. As in Section 3.2 of Chapter

3, six balanced cross entropy loss functions denoted by Li, i = 1, ..., 6, are produced using

the edge maps S1, ..., S5 and S11, respectively, and the ground truth. The six loss functions

L1 , ..., L6 are combined to obtain a single cost function as given by Eqn. (3.2). This single

cost function is then used for the deep supervision of the training of the network given in

Figure 4.2.

4.3 Results and comparison with the state-of-the-art edge

detection schemes

In this section, experiments are performed on the scheme proposed in this chapter to es-

tablish its effectiveness. The performance of the scheme is measured in terms of the opti-

mal dataset scale (ODS) and optimal image scale (OIS) metrics and the complexity of the

scheme in terms of the network parameters. For training the networks, BSDS500 [63], a

mix of BSDS500 and PASCAL-Context datasets, and NYUD [64] datasets are used. For

the training of all the networks, we augment the images of the datasets and their ground-

truths, by applying only the operations of scaling, rotation, and flipping as done in Chapter

3.

The adaptive moment estimation technique [68] is used to update the network parameters.

The value of the weight decay is set to 2x10-4, the learning rate to 10-6 and a batch size of

10 is chosen in all of the experiments. In order to improve the performance and stability
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of the network, a batch normalization is carried out on the feature maps obtained after the

operation of each ReLU [70–72]. Since the loss function used for training does not have

appreciable change in its value after 45 epochs, we set the maximum number of epochs to

be 45. The Keras library [73], back ended by the TensorFlow package [74], is used for im-

plementation on a hardware platform that uses an Intel(R) Core(TM) i7-7700K CPU @4.2

GHz, 32 GB of RAM and an NVIDIA GeForce GTX 1080 GPU.

As in all other deep learning methods, the standard non-maximal suppression (NMS) tech-

nique is used to thin the edges detected for evaluating the estimated edge maps.

In Section 4.3.1, an ablation study is carried out by performing experiments using LRDNN

and its two variants, which do not use the fire modules, on the images of the BSDS500 and

NYUD datasets. In Section 4.3.2, experiments are performed on the proposed LRDNN

using the BSDS500 dataset and the performance results are compared with that of some

of the other edge detection networks. In Section 4.3.3, we developed a modified version

of LRDNN in order to improve its performance. Experiments are also performed on the

modified network using the BSDS500 dataset to evaluate its performance. In Section 4.3.4,

the performance of the LRDNN and M-LRDNN networks are evaluated by carrying out

experiments using the NYUD dataset. In Section 4.3.5, the qualitative performance is pre-

sented. Finally, in Section 4.3.6, we developed an ultra-lightweight version of the proposed

LRDNN network and compare its performance with another lightweight network in the

literature by conducting experiments using the BSDS500 dataset.

4.3.1 Ablation study on the proposed baseline architecture

In this subsection, we conduct an ablation study to examine the impact of the main idea, i.e.

the use of the fire modules in the design of our proposed baseline architecture, LRDNN,

on its performance. We carry out this study in two parts. For the first part, we construct a
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variant M1 of LRDNN in which instead of using the fire modules in the various blocks of

the network, we simply use the standard convolutional layers. However, in order to keep

the complexity, in terms of the number of parameters, of M1 to be about the same as that

of LRDNN, the number of filters used by the convolutional layers of blocks 2, 4, 5, and

7 are reduced to 64, 128, 128 and 128, respectively; whereas the number of filters in the

convolutional layers of block 1 is retained to be 64. For the second part, we construct

another variant of LRDNN, namely M2, in which we increase the number of filters of

the convolutional layers in M1 so that the performance of the resulting M2 is as close as

possible to that of the baseline LRDNN. Through an empirical study, we determined that

by using 64, 128, 256, 512 and 512 filters in the convolutional layers of blocks 1, 2, 4, 5,

and 7, respectively, this goal is achieved. Each of these two variants are trained and tested

individually on two datasets, namely, BSDS500 and NYUD. The performance results and

the number of parameters of the two variants, along with that of our proposed LRDNN

baseline architecture are given in Table 4.1. It is seen from this table that the performance

of M1 (which has the same number of parameters as that of LRDNN) drops down from

that of the baseline architecture. It is also seen from this table that when the fire modules

are replaced by the standard convolutional layers, the number of parameters in the resulting

variant network M2 has to be raised by more than 10 folds in order to give a performance

that is still somewhat lower than that of the baseline architecture. Therefore, the results of

this ablation study clearly demonstrate the effectiveness of our main idea in the design of

the proposed edge detection architecture, i.e., the use of the fire modules.

4.3.2 Performance of the LRDNN network on the images of BSDS500

dataset

In this subsection, we obtain two sets of results on the LRDNN network. The results of

the first set are obtained, when the network is trained using the BSDS500 dataset and that

55



Table 4.1: Experiments on BSDS500 and NYUD datasets to study the impact of fire mod-
ules on the proposed network.

Method
ODS F-measure OIS F-measure

No. of parameters
BSDS500 NYUD BSDS500 NYUD

Variant M1 0.791 0.767 0.811 0.779 4.3 M
Variant M2 0.806 0.778 0.825 0.793 50.1 M

LRDNN 0.808 0.784 0.827 0.797 4.3 M

of the second set obtained, when it is trained using a mix of the BSDS500 and PASCAL

Context datasets [76]. All the edge detection schemes that we have used in our comparison

have chosen the value of the localization tolerance parameter to be 0.0075 for the BSDS500

dataset [30–37,61,65,70] for the calculation of the ODS and OIS F-measures. We also use

the same value of this parameter for the computation of the two measures.

The results in terms of the ODS F-measure, OIS F-measure and the number of parameters

obtained by the proposed architecture (LRDNN) are given in Table 4.2. For the purpose

of comparison, the results obtained by using some of the recently developed deep learn-

ing techniques, namely, the HED-VGG16 network [30], RDS-VGG16 [31], CED-VGG16

[33], CED-ResNet50 [33], RCF-VGG16 [34], RCF-ResNet101 [34], RHN-VGG16 [61],

BDCN-VGG16 [36], BDCN-ResNet50 [36], DexiNed-f [35], NAO-Multi-scale [42], and

BFENet-VGG16 [37], are also listed in this table. It should be pointed out that all the

networks in this table are tested using the images from the BSDS500 dataset, regardless

of whether the network to have been trained using only the BSDS500 dataset or a mix of

both the datasets. The networks trained using the mixed dataset are marked with a dagger

(†). It is observed from this table that the performance of the proposed LRDNN network

trained using only the BSDS500 dataset, in terms of the two metrics, is superior to that

of all the other VGG16-based techniques, irrespective of whether these other networks are

trained using only the BSDS500 dataset or the mixed dataset, except for BDCN-VGG16

when it is trained with the mixed dataset. However, it is also seen that when the proposed
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LRDNN is trained using the mixed dataset, its performance becomes superior even with

respect to BDCN-VGG16 trained with the mixed dataset. In terms of the network com-

plexity, the number of parameters used by the proposed LRDNN is only 26.4 percent of the

number of parameters used by this best performing network. It is also to be noted that the

complexity of the proposed network is 37.4 percent of the number of parameters used by

RHN-VGG16, the VGG16-based network that employs the lowest number of parameters.

It is also seen from this table that the proposed LRDNN outperforms all the ResNet-based

networks both in terms of the performance measures and complexity, except for BDCN-

ResNet50 compared to which the performance of the proposed LRDNN is lower by 0.1

percent in terms of ODS F-measure only. However, the number of parameters employed

by this technique is 28.7 M, which is significantly higher compared to 4.3 M parameters

utilized by the proposed LRDNN.

In order to further improve the performance of the proposed LRDNN trained using the

mixed dataset and tested individually at three different scales namely, 0.5, 1, and 1.5 on

the various test images of the BSDS500 dataset. The three edge maps thus obtained for a

test image are restored to the original scale and the final predicted edge map is obtained by

fusing the three edge maps. This single fused map is then used to obtain the ODS and OIS

values corresponding to this edge map. Table 4.3 gives the values of these metrics averaged

over all the test images for the proposed LRDNN and those of the networks that also use

multi-scale inputs for testing them. By comparing the results of this table with those of

Table 4.2, it is seen that fusing the maps at the three different scales helps in improving the

performance by increasing the values of ODS and OIS F-measures. It is also seen that the

proposed LRDNN still remains the best performing network with the exception of BDCN-

ResNet50††. It should be pointed out that this improvement in the performance is achieved

by all the networks individually at the cost of increasing computational time by slightly
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Table 4.2: Comparison of the proposed network with state-of-art methods on the BSDS500
dataset with and without the PASCAL-Context dataset. The networks trained with both the
datasets are marked by †. All the networks are tested only on the images of the BSDS500
dataset.

Method ODS F-measure OIS F-measure No. of parameters (in Millions)
RCF-ResNet101† 0.812 0.829 >>44
RCF-ResNet50† 0.808 0.825 >>23

BDCN-ResNet50 0.809 0.828 28.7
BDCN-ResNet50† 0.826 0.840 28.7

RDS-VGG16† 0.792 0.810 14.7
HED-VGG16† 0.788 0.808 14.7
CED-VGG16 0.794 0.811 21.4
CED-VGG16† 0.803 0.820 21.4
RCF-VGG16 0.798 0.815 14.8
RCF-VGG16† 0.806 0.823 14.8

BDCN-VGG16 0.806 0.826 16.3
BFENet-VGG16† 0.809 0.829 >>20

RHN-VGG16 0.801 0.820 11.5
RHN-VGG16† 0.817 0.833 11.5

BDCN-VGG16† 0.820 0.838 16.3
DexiNed-f† 0.729 0.745 >>18

NAO-Multi-scale† 0.814 0.831 >>44
LRDNN 0.808 0.827 4.3
LRDNN† 0.825 0.840 4.3
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Table 4.3: Comparison of the proposed network with the state-of-art methods employing
multi-scale testing strategy, where the networks are trained using a mix of BSDS500 and
PASCAL-Context datasets. The networks in this table are marked by †† to indicate their
training using the mixed dataset and the multi-scale testing strategy.

Method ODS F-measure OIS F-measure No. of parameters (in Millions)
CED-ResNet50†† 0.817 0.834 >>23
RCF-ResNet101†† 0.819 0.836 >>44
BDCN-ResNet50†† 0.832 0.847 28.7

CED-VGG16†† 0.815 0.833 21.4
RCF-VGG16†† 0.811 0.830 14.8

BFENet-VGG16†† 0.822 0.843 >>20
RHN-VGG16†† 0.824 0.843 11.5

BDCN-VGG16†† 0.828 0.844 16.3
LRDNN†† 0.830 0.846 4.3

more than three times.

4.3.3 A modified version of the proposed LRDNN network and its per-

formance on the images of the BSDS500 dataset

In this subsection, we now study the impact of suitably increasing the number of layers

and filters in our proposed LRDNN network, while keeping its complexity still much lower

than that of the other schemes, on its performance. Specifically, we increase the depth of

the proposed network, the baseline network, by modifying it to have one additional block

(block 8) for extracting more features. To facilitate the extraction of global low level fea-

tures in the proposed baseline network, LRDNN, the receptive fields of the filters were

increased in its deeper layers. Specifically, 5x5 and 7x7 filters, instead of 3x3 filters, were

used in the blocks 5 and 7, respectively. Therefore, in the modified network the larger size

filters, namely the 5x5 and 7x7 filters, are now used for blocks 7 and 8, respectively, and

the size of the filters in all the other convolutional blocks remains 3x3 as in the baseline

architecture. Further, the numbers of filters in the squeeze layers of blocks 4, 5, and 7 are
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increased to 64, 96, and 128, respectively. Thus, the number of filters in the corresponding

expand layers now need to be increased to 512, 768, and 1024. The number of filters used

in the squeeze and expand layers of the new block (block 8) of the modified network are,

respectively, 32 and 256. Since in this chapter, the deep supervision is used for network

training, we utilize the feature maps produced by block 8 by constructing one additional

loss function L6 in the same way as was done for constructing each of the other loss func-

tions, L1, . . . , L5, were produced by introducing another block, block 14. The architecture

of the modified edge detection network, which we refer to as M-LRDNN, is shown in Fig.

4.3.

In view of adding additional blocks, namely, blocks 8 and 14, and the use of increased

number of filters in blocks 4, 5, and 7, the complexity of M-LRDNN becomes almost dou-

ble of that of the baseline architecture LRDNN, but still significantly lower (almost one

quarter) than that of the BDCN-ResNet50, the best performing edge detection architecture

in the literature.

Our M-LRDNN network is trained using BSDS500 and PASCAL-Context datasets and

tested using the 200 images of BSDS500. Table 4.4 gives the performance of M-LRDNN,

along with that of BDCN-ResNet50, BFENet-VGG16, and our baseline LRDNN network,

in terms of the ODS and OIS F-measures as well as the number of parameters. It is seen

from this table that the modifications in the baseline network have resulted in improving

the values of the ODS and OIS F-measures by 0.009. It was seen from Table 4.3 that

the performance of BDCN-ResNet50 on images with a single scale or multi scales was

superior to that of our baseline network on images with a single scale. However, it is now

seen from Table 4.4 that the performance of M-LRDNN on images with a single scale

is superior even to that of BDCN-ResNet50 on images with a single scale or multi scales.

Thus, M-LRDNN on images with single scale outperforms all the networks in the literature
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Figure 4.3: Architecture of the the modified network M-LRDNN.

whether these other networks are tested with a single scale or multi scales. It is especially

noteworthy from this table that even though the number of network parameters used in M-

LRDNN is almost two times that used in our baseline network, it is less than one-half of
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Table 4.4: Comparison of the modified network M-LRDNN with state-of-art methods on
the BSDS500 dataset when the networks are trained using a mix of the BSDS500 and
PASCAL-Context datasets. The networks marked with † indicate that they are trained using
a mixed of the two datasets.

Method ODS F-measure OIS F-measure No. of parameters (in Millions)
BDCN-ResNet50† 0.826 0.840 28.7

LRDNN† 0.825 0.840 4.3
M-LRDNN† 0.834 0.849 8

that used by BDCN-VGG16 (the best performing VGG16-based architecture), and almost

one-quarter of that of BDCN-ResNet50, the best performing architecture in the literature.

It goes without saying that the performance of M-LRDNN can be expected to improve

further if it is tested on images with multi scales. It is worth mentioning that the number of

frames per second produced by the proposed techniques, LRDNN, and M-LRDNN, in the

testing stage are 94, and 49, respectively.

Fig. 4.4 presents the precision-recall curves of the proposed methods, namely, the base-

line LRDNN and M-LRDNN, and that of the other methods used in our comparison, using

the BSDS500 dataset. It is seen from this figure that the M-LRDNN network provides the

best performance in terms of the precision-recall curves as well.

4.3.4 Performance of LRDNN and M-LRDNN on the images of the

NYUD dataset

In the previous two subsections, we evaluated the performance of our LRDNN and M-

LRDNN networks using the images of the BSDS500 dataset. In this subsection, the per-

formance of these two networks is carried out using the images of the NYUD dataset [64].

For this dataset, the value of the localization tolerance parameter is set to 0.011 compared

to 0.0075 used for the BSDS500 dataset in view of the larger size images in the NYUD
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Figure 4.4: Precision/Recall curves of different methods on the images of the BSDS500
dataset.

dataset. It is noted that the value 0.011 for the tolerance parameter is the same as has been

used by the other networks for this dataset. The network is trained separately on the RGB

and depth training sets, resulting in two trained models referred to as RGB model and HHA

model, respectively. The final predicted edge map is obtained by fusing the outputs from

the two models.
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The results in terms of the ODS F-measure, OIS F-measure and the number of param-

eters of the proposed LRDNN technique for the NYUD dataset are given in Table 4.5.

For comparison, the results obtained by the HED-VGG16 [30], RCF-VGG16 [?], RCF-

ResNet50 [34], RHN-VGG16 [61], BDCN-VGG16 [36], BDCN-ResNet50 [36], DexiNed-

f [35], and BFENet-VGG16 [37] edge detection techniques are also listed in this table. It

is seen from this table that, irrespective of the technique used, the values of both the met-

rics are enhanced, when the maps obtained from the RGB and HHA models are fused in

contrast to those obtained using either the RGB or HHA model alone. It is also to be seen

from this table if only one of the RGB and HHA models is to be used, it is the first model

that provides superior results to that provided by the second one.

It is also seen from Table 4.5 that the values of the ODS and OIS F-measures provided by

the proposed LRDNN (RGB + HHA) are, respectively, 0.012 and 0.008 larger than those

provided by the RHN-VGG16 technique [61] and they are 0.011 and 0.010 larger than

those provided by the recently published BFENet-VGG16 technique [37]. This improve-

ment in the performance is achieved with only 4.3 M parameters utilized by our LRDNN

(RGB + HHA) compared to the 11.5 M parameters employed by the RHN-VGG16 tech-

nique and greater than 20 M parameters provided by BFENet-VGG16 technique [37]. It is

to be pointed out that, as in the case of the BSDS500 dataset, the performance of the pro-

posed LRDNN technique is slightly inferior to that of the BDCN-ResNet50 technique, but

the number of parameters employed by this latter technique is very much larger (28.7 M).

However, it is to be seen from this table that the performance of the proposed M-LRDNN

(RGB + HHA) in terms of the two metrics, as well as in terms of the number of parameters,

is superior even to that of the BDCN-ResNet50 network.

Fig. 4.5 presents the precision-recall curves of the proposed methods, namely, the

baseline LRDNN and M-LRDNN, and that of the other methods used in our comparison,
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Table 4.5: Comparison of the proposed network with state-of-art methods on the NYUD
dataset.

Method ODS F-measure OIS F-measure No. of parameters (in Millions)
RCF-ResNet50 (RGB+HHA) 0.781 0.793 >>23

BDCN-ResNet50 (HHA) 0.717 0.730 28.7
BDCN-ResNet50 (RGB) 0.760 0.773 28.7

BDCN-ResNet50 (RGB+HHA) 0.788 0.802 28.7
HED-VGG16 (RGB+HHA) 0.741 0.757 14.7

DexiNed-f (RGB+HHA) 0.658 0.674 >>18
RCF-VGG16 (HHA) 0.703 0.717 14.8
RCF-VGG16 (RGB) 0.743 0.757 14.8

RCF-VGG16 (RGB+HHA) 0.765 0.780 14.8
BDCN-VGG16 (HHA) 0.708 0.720 16.3
BDCN-VGG16 (RGB) 0.748 0.763 16.3

BDCN-VGG16 (RGB+HHA) 0.767 0.783 16.3
BFENet-VGG16 (HHA) 0.719 0.732 >>20
BFENet-VGG16 (RGB) 0.752 0.766 >>20

BFENet-VGG16 (RGB+HHA) 0.773 0.787 >>20
RHN-VGG16 (HHA) 0.711 0.721 11.5
RHN-VGG16 (RGB) 0.751 0.762 11.5

RHN-VGG16 (RGB+HHA) 0.772 0.789 11.5
LRDNN (HHA) 0.721 0.734 4.3
LRDNN (RGB) 0.759 0.770 4.3

LRDNN (RGB+HHA) 0.784 0.797 4.3
M-LRDNN (HHA) 0.724 0.738 8
M-LRDNN (RGB) 0.767 0.779 8

M-LRDNN (RGB+HHA) 0.792 0.805 8
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using the NYUD dataset. It is seen from this figure that the M-LRDNN network, as in the

case of the BSDS500 dataset, provides the best performance in terms of the precision-recall

curves.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

NYUD

[F=.803] Human

[F=.792] M-LRDNN

[F=.788] BDCN-ResNet50

[F=.784] LRDNN

[F=.781] RCF-ResNet50

[F=.767] BDCN

[F=.765] RCF

[F=.741] HED

Figure 4.5: Precision/Recall curves of different methods on the images of the NYUD
dataset.
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4.3.5 Qualitative Performance and Comparison

In this section, we give some examples of the visual quality of the edge maps obtained from

using the proposed LRDNN and M-LRDNN networks and compared with the visual qual-

ity of the edge maps obtained by using some of the other methods used in our comparison

on the BSDS500 dataset.

Fig. 4.6 shows the edge maps of the images obtained by using the HED-VGG-16, CED-

VGG16, RCF-VGG-16, RHN-VGG-16, BDCN-ResNet50, LRDNN, and M-LRDNN net-

works. In this figure, the first row shows five different images selected from the BSDS500

dataset, and the second row shows the corresponding ground truth maps. The remaining

seven rows show, respectively, the maps yielded by HED-VGG-16, CED-VGG16, RCF-

VGG-16, RHN-VGG-16, BDCN-ResNet50, LRDNN, and M-LRDNN after performing

NMS. It is seen from this figure that the edge maps obtained from our two networks,

LRDNN and M-LRDNN, are generally sharper and more complete compared to the maps

obtained from the other techniques, with the maps of the M-LRDNN having a slight supe-

riority over that obtained by using LRDNN.

4.3.6 An ultra-lightweight version of the LRDNN network and its per-

formance on the images of the BSDS500 dataset

In this subsection, we propose an ultra lightweight version of the proposed LRDNN. In

this lightweight version, we decrease the number of filters in blocks 2, 4, 5, and 7 of the

baseline network. Specifically, the numbers of filters in the squeeze layers of blocks 2, 4,

5, and 7 are decreased to 8, 16, 16, and 16, respectively. Thus, the number of filters in the

corresponding expand layers now need to be decreased to 64, 128, 128, and 128. In order

to distinguish the lightweight network from the baseline network, we refer to the former as

LW-LRDNN.
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Figure 4.6: Visual quality of the edge maps obtained by seven different methods. (a)
Original images from BSDS500 dataset. (b) Corresponding ground truth edge maps. (c)
Edge maps obtained using HED-VGG16. (d) Edge maps obtained using CED-VGG16. (e)
Edge maps obtained using RCF-VGG16. (f) Edge maps obtained using RHN-VGG16 (g)
Edge maps obtained using BDCN-ResNet50. (h) Edge maps obtained using LRDNN. (i)
Edge maps obtained using M-LRDNN.
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Our LW-LRDNN network is trained using the mix of BSDS500 and PASCAL-Context

datasets and tested using the 200 images of BSDS500. Table 4.6 gives the performance

in terms of the ODS and OIS F-measures as well as the number of parameters of LW-

LRDNN along with that of the recently published lightweight PiDiNet technique [43]. It is

seen from this table that the performance of the proposed LW-LRDNN is about the same

or slightly better than that of PiDiNet by using the number of parameters that is about 25

percent lower.

Table 4.6: Comparison of the proposed lightweight network with the lightweight PiDiNet
network where the networks are trained using a mix of BSDS500 and PASCAL-Context
datasets.

Method ODS F-measure OIS F-measure No. of parameters (in Millions)
PiDiNet 0.807 0.823 0.71

LW-LRDNN 0.808 0.823 0.53

4.4 Summary

Existing edge detection deep networks based on the VGG-16 and ResNet architectures

have extremely high complexity because the convolutional layers of such networks use

large number of parameters. In this chapter, the idea of fire module along with residual

learning has been used in a VGG16 architecture to propose a baseline edge detection net-

work LRDNN. Since the complexity of this network is so much lower than that of all the

other existing networks, we have been motivated to improve its performance by proposing

a somewhat higher complexity version of LRDNN, M-LRDNN. In order to show the effec-

tiveness of the idea used for designing LRDNN, we have also proposed in this chapter its

ultra-lightweight version, LW-LRDNN. All the three proposed networks have been exten-

sively experimented on two publicly available datasets. It has been shown that the proposed
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LRDNN network has a complexity that is not only lower than that of ResNet-based net-

works, but also substantially lower than those of all the existing VGG16-based networks

and it has a performance, which surpasses that of all the VGG-16 edge detection networks

and all the other networks except that it is slightly lower in terms of ODS F-measure than

that of BDCN-ResNet50. The second proposed edge detection network, M-LRDNN, pro-

vides a performance that is superior to all the existing edge detection networks in the lit-

erature. Even though the complexity of M-LRDNN is almost twice that of the baseline

architecture, LRDNN, this complexity is still only a quarter of that of BDCN-ResNet50,

the best performing edge detection network in the literature. The third proposed edge detec-

tion network, LW-LRDNN, is an ultra-lightweight version of the baseline LRDNN network

and has been shown to outperform the only other existing ultra-lightweight edge detection

network, PiDiNet [43], in the literature both in terms of the edge detection accuracy and

complexity.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

Existing deep residual learning based techniques for edge detection provide good perfor-

mance but at the expense of an extremely high computational complexity. The reason for

this large complexity in these networks is the use of very large number of convolutional

layers, which cannot be reduced without degrading their performance. On the other hand,

the complexity of the VGG16-based edge detection techniques is relatively much lower

than that of the residual learning based techniques but with reduced performance. This

reduced performance is due to the fact that the spatial resolution of the feature maps in

the last block is very small. Restoring the spatial resolution of the feature maps in the last

block to the original image size is necessary for the edge detection task. However, such

a sudden increase in spatial resolution of the maps results in a blurred output and a poor

localization of the edges. Further, the deeper layers of the VGG16-based techniques are

not able to learn some of the information captured by the initial layers. In this thesis, new

VGG16-based DCNN techniques for edge detection with the capability of deep supervision

and residual learning have been developed.

In the first part of the thesis, a mechanism of residual learning has been introduced in the
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VGG16 architecture to obtain a deep edge detection convolutional neural network to pro-

vide superior performance while still preserving its lower complexity character. It has been

shown that despite the larger spatial resolution of the feature maps produced by the convo-

lutional layers, necessitated to introduce the residual learning idea, the overall complexity

of the network is not increased. This has been achieved through a judicious choice of the

number of filters and the kernel size used in each of the convolutional layers of the network.

Extensive experiments have been carried out on the proposed edge detection network using

several datasets, namely, BSDS500, NYUD, and Multicue, to evaluate its performance and

complexity. It has been shown that the proposed network outperforms all the existing tech-

niques except for BDCN-VGG16 and BDCN-ResNet50 in terms of ODS F-measure and

OIS F-measure. At the same time, the complexity of the proposed network in terms of the

number of parameters is lower than that of all the other existing edge detection techniques,

and specifically, it is 4.8 M parameters lower than that of the BDCN-VGG16 network.

Even though the complexity of the edge detection network, RHN, proposed in the first

part of the thesis is lower than that all of the other networks, it is still high. Further its

performance is limited by its capability in extracting rich features. Therefore, in the sec-

ond part of the thesis, VGG16-based edge detection networks that requires extremely low

number of parameters and yet have edge detection performance that is superior to that of

RHN network proposed in the first part have been proposed and that of other edge detection

networks. This has been made possible by using fire modules in the convolutional layers

of the VGG-16 architecture. Through the use of fire modules, the number of parameters

of a VGG-16 based edge detection network is made so much lower as to make it possible

to maintain or even to improve the performance of the resulting networks by make them

deeper, while at the same time, drastically reducing the computational complexity. Specifi-

cally, three edge detection networks, namely, LRDNN, M-LRDNN, and LW-LRDNN. The

M-LRDNN network has been built upon the architecture of LRDNN by increasing the
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number of layers and filters in the convolutional layers of the latter. The network LW-

LRDNN is an ultra-lightweight version of the baseline model LRDNN and is obtained by

decreasing the number of filters in the latter network. Extensive experiments have been

performed on all the three networks proposed in the second part. The proposed LRDNN is

shown to outperform all of the edge detection networks, except the BDCN-ResNet50 net-

work, in terms of edge detection accuracy with a complexity that is substantially smaller

than that of any edge detection network in the literature. The M-LRDNN is shown to pro-

vide an edge detection performance that is superior to that of all edge detection networks.

Even though the complexity in terms of number of parameters of M-LRDNN is twice that

of the baseline LRDNN network, it is only about one-quarter of that of BDCN-ResNet50,

the best performing edge detection network in the existing literature and one-half of that of

BDCN-VGG16. Finally, the proposed LW-LRDNN has been shown to maintain the detec-

tion performance of the only ultra-lightweight edge detection network, PiDiNet, existing

in the literature by using a number of parameters that is about 25 percent lower than that of

the latter.

5.2 Scope for Future Investigation

The following are a couple of examples for further investigating the edge detection net-

works proposed in this thesis.

(i) It has been shown in Chapters 3 and 4 that the use of the images from the NYUD dataset,

which includes images with a representation in RGB as well as that describing the depth of

the pixels, in training the proposed networks has enhanced their performance. Therefore, it

would be worth exploring the performance of the proposed edge detection networks trained

using images with multiple representations.
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(ii) An architectural unit called, squeeze-and-excitation (SE) is a network unit that can be

used to perform feature recalibration to selectively emphasize useful features and suppress

the less useful features and thus can make the network to learn more efficiently the useful

features. The use of SE has been shown [43] to enhance the performance of classification

networks. A study could be undertaken to investigate the performance of the networks

proposed in this thesis by adding SE units in their blocks.
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