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Abstract

Hybrid Vision and Force Control in Robotic Manufacturing Systems

Bahar Ahmadi, Ph.D.

Concordia University, 2022

The ability to provide a physical interaction between an industrial robot and a workpiece in
the environment is essential for a successful manipulation task. In this context, a wide range of
operations such as deburring, pushing, and polishing are considered. The key factor to successfully
accomplish such operations by a robot is to simultaneously control the position of the tool-tip of the
end-effector and interaction force between the tool and the workpiece, which is a challenging task.
This thesis aims to develop new reliable control strategies combining vision and force feedbacks to
track a path on the workpiece while controlling the contacting force. In order to fulfill this task, the
novel robust hybrid vision and force control approaches are presented for industrial robots subject to
uncertainties and interacting with unknown workpieces. The main contributions of this thesis lie in
several parts. In the first part of the thesis, a robust cascade vision and force approach is suggested
to control industrial robots interacting with unknown workpieces considering model uncertainties.
This cascade structure, consisting of an inner vision loop and an outer force loop, avoids the conflict
between the force and vision control in traditional hybrid methods without decoupling force and
vision systems. In the second part of the thesis, a novel image-based task-sequence/path planning
scheme coupled with a robust vision and force control method for solving the multi-task operation
problem of an eye-in-hand (EIH) industrial robot interacting with a workpiece is suggested. Each
task is defined as tracking a predefined path or positioning to a single point on the workpiece’s
surface with a desired interacting force signal, i.e., interaction with the workpiece. The proposed
method suggests an optimal task sequence planning scheme to carry out all the tasks and an optimal
path planning method to generate a collision-free path between the tasks, i.e., when the robot per-

forms free-motion (pure vision control). In the third part of the project, a novel multi-stage method
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for robust hybrid vision and force control of industrial robots, subject to model uncertainties is pro-
posed. It aims to improve the performance of the three phases of the control process: a) free-motion
using the image-based visual servoing (IBVS) before the interaction with the workpiece; b) the
moment that the end-effector touches the workpiece; and c¢) hybrid vision and force control during
the interaction with the workpiece. In the fourth part of the thesis, a novel approach for hybrid
vision and force control of eye-in-hand industrial robots is presented which addresses the problem
of camera’s field-of-view (FOV) limitation. The merit of the proposed method is that it is capable
of expanding the workpiece for eye-in-hand industrial robots to cope with the FOV limitation of the
interaction tasks on the workpiece. All the developed algorithms in the thesis are validated via tests

on a 6-DOF Denso robot in an eye-in-hand configuration.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

Nowadays, robotic systems have been widely used in industrial applications such as automotive
industry, aerospace industry and composite manufacturing, etc. However, they are generally
limited to operate in structured (the environment with known and calibrated parameters)
environments. Conventional robots use open-loop kinematic calculations to determine the end
effector position with respect to a known reference frame. The target object position must also be
known with respect to the same coordinate frame. The issue is that any uncertainty of the relevant
parameters would cause the task to fail. Vision sensors can deal with these uncertainties by
providing non-contact and real time measurements of the environment to determine position of the
end-effector and target object with respect to each other and the reference frame. Closed-loop
position control of the end-effector by exploiting the vision signal as a feedback is referred to as
visual servoing [1]. As the tasks become complicated, it poses challenges to the robot control
design, which needs to integrate the information from various sensors and to generate control
commands not only to control the position of the end-effector but also the interaction force between
the end-effector and the environment. Position/force control is the topic that is frequently studied
in the recent years. Due to the increasing development of robotic tasks in industrial applications

such as polishing, deburring, pounding, polishing, grinding, twisting, cutting and excavating.



1.2 Basic Principles
In this subsection, the basic principles of the visual servoing and force control are presented.
The basics and classifications of visual servoing will be introduced first and followed by those of

the force control.

1.2.1 Visual Servoing

Figure 1.1: Visual servoing applications: a) Car steering [88], b) Fruit picking [86], c) Medical surgery [87], d)
Grasping object on conveyer belts [85]

Visual Servoing is an approach to controlling the motion of a robot manipulator using visual
feedback signals. Visual servoing robot takes advantage of the vision captured by a camera to
acquire the accurate positions of the target objects and the end-effector and uses it as a feedback
for controlling system. In visual servoing, the robot uses the image captured by the camera to

determine the position of the end effector and the target object and uses it as feedback to control



the position of the robotic system. Visual servoing has been adopted in a wide range of applications
such as robotic welding, teleoperation, missile tracking cameras, fruit picking, robotic ping-pong,
juggling, car steering and even aircraft landing [1] (Figure 1.1).

Position Based Visual Servoing (PBVS)- In this method, the pose of the target object is
obtained with respect to the camera by using the image features. The errors of position and
orientation can be computed by comparing the current and desired target position and orientation
in the Cartesian frame. So, the important benefit of PBVS is to control the pose of end-effector
directly in the Cartesian space. However, this control scheme has some drawbacks. First, a tedious
vision system calibration is required. Second, in order to measure the target position, an accurate

geometric model of the system is required [2].

S, §
> ( ) B N PBVS .
Controller Robot

Figure 1.2: PBVS structure

Image Based Visual Servoing (IBVS)- In this method, the feature error signal which is used for
generating the control signal is obtained directly in the image space. Different types of image
features have been used in the literature [3] including an area size, an area length, the center point

of a region and so on. The benefits of this visual servoing approach are listed as follows [4]:

1. In contrast to position-based method, no image processing and calculation of pose is

needed in this method which allows using high sampling rate for real time control.



2. Since this method does not require a full model of the target, no camera calibration is

required and also the errors due to target model uncertainties would be reduced.

Image

Figure 1.3: IBVS structure

Hybrid Visual Servoing (HVS)- This technique combines the advantages of 2-D (pixel-space)
and 3-D (task-space) visual servoing feedback to guarantee the stability in a large displacement
servoing. More precisely, it is based on estimation of the camera displacement (the rotation and
translation of the camera) between the current and desired image features. Comparing with other
techniques, this method owns stronger robustness to the calibration error. Moreover, the
trajectories of end effector in both the Cartesian and image spaces are simultaneously straight lines.
In addition, this method is known as a target model free method [5]. Nevertheless, there are some
shortcomings for hybrid system. First, it is necessary to find at least 4 and 8 different feature points
for a planar and non-coplanar target object respectively. Second, it also requires partial pose

estimation. Third, it still needs to consider the image boundary and robot singularity.



1.2.2 Force Control

The ability to provide a physical interaction between a robot and the environment is a crucial
issue for a successful manipulation. In the tasks where the robot is in contact with the environment,

even a small change in the trajectory will lead to operation failure and damage to the work-piece.

Thus, force controllers play a fundamental role in performing the tasks in an unstructured
environment. An accurate model of manipulator kinematics, dynamics and environment geometry
is required in order to succeed in fulfilling the interaction tasks. Force control is normally classified
into two groups: active and passive control [6]. The passive strategy is very simple and ease to
implement because they do not require force/torque sensors. Nevertheless, passive strategy lacks
the flexibility in industrial applications due to the limitation on dealing with position and
orientation deviations of the trajectory. Also, due to the lack of force sensors which can provide
the force signal, it cannot avoid the high contact forces occurring, which may lead to collision. The
basic principle of active force control is based on regulating the energy to actuators. In this
approach, the desired trajectory of the manipulator is generated by measuring the contact force and
providing feedback to the controller. The aforementioned problems with passive force control can
be overcome by using active interaction control, but the design process of the active control is
more complicated than that of the passive one [7]. Also, the implementation of such control system
is more expensive and the computation load is heavier. Therefore, active force control strategy has
been designed in integration with some degrees of passive method to achieve a more satisfactory
performance [8]. The active force control can be categorized in two classes: indirect force control

and direct force control [7].



1.2.2.1 Indirect Force Control

In the indirect force control, there is no need to close the force feedback loop and the controlling
force interaction between the manipulator and the environment is done via motion control.
Impedance and Admittance control are two types of force indirect control strategy. In indirect
strategies, the contact force is related to the deviation of end effector motion from the desired
motion through a mechanical impedance/admittance.

Impedance Control- One of the mostly used indirect force controllers is the impedance control
[9]. This type of force control is designed to regulate the mechanical impedance of the robot. After
measuring the user’s motion signal by the impedance control, a force feedback signal will be
provided to the operator (i.e. the operator velocity is used to drive the output force). So, the
impedance of the manipulator is defined as the connection between input velocity and the applied
force. Impedance control is normally used in high speed applications in order to provide a stable
contact with the object surface [10]. The simplest form of impedance control is stiffness control
which provides a relation among output force, input displacement and stiffness [11]. The dynamic
model of the robot is required to address the stability issue in impedance control. Thus, both the
robot and the environment are modeled as an equivalent mass-spring-damper system with

adjustable parameters.

Stiffness Force Control- Stiffness control is a fundamental type of force control, which
smooths the effects of end-effector forces simulating spring properties. In order to compensate the
orientation errors, the mechanical parts including springs and dampers can be exploited. Also, it is
possible to turn the stiffness control into a programmable spring by having a closed-loop force

feedback.



Admittance Control- Admittance control differs from impedance control in the way reacting
to the motion deviation. In this type of force control, the forces exerted by the user are measured
by the admittance control and then the commanded input is fed back in the form of velocity. By
adjusting the stiffness and the damping matrices, the end-effector velocity command signal can be
changed. One possible solution to developing an admittance force control is provided in [4].
Admittance control shows that the desired performance is achieved by using force outer loops and

an inner position or velocity loop.

1.2.2.2  Direct Force Control

Hybrid force/motion control- The general scheme of hybrid force/motion control is proposed
by Raibert and Craig [12]. This type of control strategy is based on controlling the motion along
the unconstrained task directions and force along the constrained task directions. Thus, the system
presents two separated control loops for motion and force, respectively. Therefore, in those
directions assigned to the motion control, the current position/velocity is determined, whereas in
the directions assigned to the force control, the interaction forces between the robot and the

environment are controlled.

Explicit Force Control- In this method, the desired and measured force signals are compared
to generate the force errors and to provide an actuation input to the system. The ideal option for
explicit force control is the integral control due to its simple structure, low pass nature and its
stability. However, the problem with this type of controller is that it tends to become unstable.
Therefore, any force controller using the derivative of force signal is not suitable since it works as
a band pass filter for the natural frequency of the system. Furthermore, the time derivative of force

input contains a lot of noises.



1.3 A Review on Vision and Force Control
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Figure 1.4: Hybrid vision and force control [7]
Two main approaches for controlling the end effector position while interacting with a workpiece
are the impedance/admittance control and hybrid position/force control [13]-[15] (Figure 1.4). In
the former approach, the relation between the force and position of the tool is derived and both
force and position are controlled simultaneously. However, there is a trade-off between controlling
force and position, which means neither force nor position converges towards its desired reference,
and thus results in low precision [13], [16]. However, in the hybrid position/force control approach,
the force and the position are controlled separately [15]-[17]. In lots of research work, the
orthogonality principle is employed to decompose the constraint surface into the constrained
directions where the force and the motion are controlled on the workpiece [15], [16]. The
performance of a robotic system in fulfilling such tasks is largely dependent on the accurate model
of the robot and knowledge of environment. Since the everyday environment and the workpiece
may be subjected to change, it is not easy or practical to get an exact model. Therefore, the major
problem of hybrid position/force control lies in the need for exact knowledge of the physical model

of the robot and workpiece, which might be inaccessible [15]-[17].



1.3.1 Hybrid IBVS/Force Control Methods

To cope with the problems of using position/force method, the combination of image-based
visual servoing (IBVS) with force control, as hybrid vision and force control method, has been
suggested [16]-[18], [21]-[24]. In this method, the image features are controlled in the image plane
to track the desired image features corresponding to the desired path on the constrained surface.
Therefore, regardless of the physical properties of the surface, the camera detects the image points
on the surface and tracks the corresponding image features, which is equivalent to tracking the
desired path on the unknown constraint surface [16]. Although IBVS can tackle the problem of the
uncertainties of the constraint surface, the uncertainties in the vision model such as the interaction
matrix may deteriorate the control performance [17] and even cause instability. Besides, the
uncertainties in kinematics or dynamics of the robot itself may result in undesirable control
performance such as low precision, chattering, and slow convergence. This may limit the extensive
use of robots for applications in industries. For instance, the tool tip may generate some vibration
disturbance in contact with the surface of the workpiece or may be guided to the wrong place
which results in poor productivity or even damaging the workpiece or the robot. To handle this
issue, adaptive control methods have been suggested [16]-[18]. In [17], an adaptive hybrid vision
and force controller is proposed. The adaptive part estimates the existing uncertainties in
kinematics, dynamics of the robot, and image interaction matrix to improve the performance of
the control process. In [18], a neural network-based hybrid vision and force control method is
proposed, where the neural network estimates the constraints of the surface adaptively. In [16], an
adaptive hybrid vision and force control method is presented to deal with the uncertainties in robot
dynamics, camera model, and constraint surface, while dead-zone input is considered. Despite the

effectiveness of the proposed adaptive methods, some major issues still exist. The control methods



employ the estimated parameters to generate the control signals, which may introduce low
convergence speed and tracking precision. To avoid this issue, robust methods, solely or in
combination with adaptive methods, are suggested [25], [26]. Also, in most cases, eye-to-hand
(ETH) camera configuration is employed which solve the problem with the uncertainty of the
workpiece position. However, the uncertainty of constraint surface still remains unaddressed. In
these studies, by assuming a frictionless contact between the tool-tip and the surface, the angle of
the contact relative to the surface is estimated, which may not be accurate. It is worth noting that
some limited studies have suggested using IBVS with eye-in-hand (EIH) camera, which handles
the uncertainty issue of the constraint surface [24]. However, the system uncertainties are not
considered and the stability proof of controller is not provided. Besides, due to the lack of a
practical method for extracting the image features corresponding to the desired path in 3D space,
the current studies on eye-in-hand IBVS have mainly focused on regulation on some specific
points on the workpiece. Another common issue in IBVS lies in a non-invertible image interaction
matrix, which results in the IBV'S with local stability [19], [20]. In [20], SMC is adopted for IBVS
in a free-motion task which can only guarantee the local stability when the model of the visual
system is subject to uncertainties. In [21], SMC is utilized to design a robust vision and force
control considering both dynamics and kinematics uncertainties. However, the unknown constraint
surface and the uncertainties of the vision system are not considered in the context of robust hybrid

force/vision control.

1.3.2 Hybrid Vision and Force Control for Multi-task Operations
In many industrial robotic operations such as spot welding, milling, drilling, and electrical
circuit soldering, the robot may need to interact with the workpiece several times on different paths

or points, each of which can be considered as a task [27], [28]. To carry out such a multi-task
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operation, one solution is to consider each task as an individual operation. Then, the operator will
program the robot to perform each task one-by-one, i.e., manual task planning. Although widely
used, this method is time-consuming, and the operator’s mistakes may result in a collision and
damaging the workpiece. Therefore, planning an optimal sequence of the tasks and generating a
collision-free path for performing free motion between the tasks are crucial for industrial

manufacturing to gain high productive, low cost, efficient, and safe operations [29].

The task sequence planning aims at determining the order of performing the tasks in a way that
the overall operation time duration is minimized. Usually, the task sequence problem is defined as
a traveling salesman problem (TSP) whose solution is the optimal sequence of the tasks.
Depending on the tasks’ types and constraints, different types of TSP problems, such as standard
TSP [30], generalized TSP [31] and clustered TSP can be defined [27]. In [30], the task sequence
problem of a fruit picking operation is addressed. To this end, the problem is directly formulated
and solved as a standard TSP. In [31], robotic multi-hole drilling operation is addressed, where
the robot task sequence problem is considered as a modified generalized TSP. In [27], a clustering-
based TSP algorithm is used to solve the task sequence problem of a robot manipulator for a large
number of target points and greater spatial constraints in a cluttered environment. In these studies,
the operational areas are assumed to be free of obstacles. In real operations, however, several
obstacles may exist in the robot workspace. Therefore, the lack of designing a suitable path

planning method between the tasks may result in collision or generation of non-optimal paths.

Path planning involves the strategy of generating the shortest path between the initial and
destination positions while avoiding the obstacles under several constraints. Among different
methods of path planning, artificial potential field (APF) method is one of the most well-known

and feasible methods for generating a collision-free path. The basic concept of the APF method
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requires filling the activity area with the artificial potential field in which the agent is attracted to
its target position, and is repulsed away from the obstacles and other agents [33]-[35]. In [33], a
non-collision trajectory planning strategy based on APF is developed for path optimization of
serial robots. In [34], a path planning method is proposed with an APF method for redundant
robots. In [35], a new strategy is developed for assessing the collision risk and avoiding it using
an APF and the fuzzy inference system. Although conventional APF is very effective for obstacle
avoidance, it suffers from major drawbacks, the most important of which is trapping in local
minima. This phenomenon is the result of aligning the repulsive and attractive force but in the
opposite direction. Several approaches have been presented to address this problem. In [39], a new
technique is employed to add repulsive force normal to the direction of attractive force which
provides more flexibility for the APF method and results in the escaping from a local minimum.
Another solution is to use metaheuristic optimization algorithms to set the parameters of the APF,
to find a short path that reaches the target. In [38], a repulsive potential field is proposed by
considering the relative distance between the robot and the target. Then it is optimized by using
particle swarm optimization (PSO) to find the APF parameters in a way that an optimal path
between the target and the departure point is generated. In [36] a dynamic membrane method
combined with the pseudo-bacterial genetic algorithm for adjusting the parameters of APF is
introduced to enhance the optimization procedure. In [37], a membrane evolutionary artificial
potential field approach was proposed to solve the mobile robot route planning problem, which
combines membrane computing with a genetic algorithm and the artificial potential field method
to find the parameters to generate a feasible and safe route. The results show the superiority of the

proposed method to the others.
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Although all these studies have shown successful results, they are only applicable to single task
operations. However, in [32], an integrated path planning and task sequencing approach is
presented for robotic remote laser welding (RLW) operation, which is a multi-task operation. A
TSP with neighborhoods and durative visits (TSP-ND) is defined to find the optimal path and
sequence of tasks. However, the proposed method cannot be adopted when physical interaction
with the workpiece is required. In addition to the path/sequence planning problem, interaction with
a workpiece by an industrial robot is a challenging task that entails simultaneous control of the
position of the end-effector and interaction force [36]. To handle this issue, hybrid vision and force
control has been suggested, in which a vision system provides non-contact measurement of some
features of the workpiece or the end-effector [41]-[44]. Note that for hybrid vision and force
manipulation with multiple tasks, the task-sequence/path planning must be carried out in the image
feature space. Lots of research has been devoted to path planning in image space for pure visual
servoing with different objectives [45], [46]. In [45], a path planning method is coupled with IBVS
that suggests a modification of the projective interpolation algorithm to ensure the visibility of the
target, while the camera calibration is not required. In [46], an image-based trajectory planning
algorithm is proposed to avoid the problems caused by the camera’s field of view of IBV'S methods
by parametrizing the camera velocity screw utilizing time-based profiles. However, integrating
task sequence/path planning with the vision and force control is a challenging task. The reason is
that the planning must be done in Cartesian space to gain an optimal path and avoid the collision,
while in IBVS, the image feature feedback is employed, and the position of the end-effector cannot
be measured directly in real-time. The fulfillment of the task demands a feasible method to map
any arbitrary desired trajectory from Cartesian space to image feature space. It is noted that some

mapping methods have been proposed such as learning by demonstration and spline fitting [47],
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[48]. However, these techniques cannot be utilized to map the specified paths as it is required for
task sequence/path planning. In [47], a spline method has been developed to transform the desired
trajectory from Cartesian space to the desired trajectory in image space. However, in this method,
a new desired image feature path is required to be extracted corresponding to every different
desired pose in the Cartesian space. The same method is suggested in [48]. However, no fitting
method is used and the smoothed signals in the feature space are utilized instead. In addition to the
mapping method, a technique should be integrated with the overall control law for managing the
switching between the interaction and free-motion tasks. By employing such an algorithm, the

robot can touch the surface or detach from it at the beginning and end of each task.

1.3.3 Hybrid Vision and Force Control Dealing with Feature Loss

Another major issue is the FOV limitation of the traditional IBVS method. However, some
research work in visual trajectory planning is presented to cope with FOV constraints and feature
loss problem. [49] presented an extensive overview of the path-planning strategies used in visual
servoing to guarantee occlusion-free trajectories, as well as to consider FOV limitations. In [54],
an enhanced switch image-based visual servoing method is suggested in which a Kalman filter-
based feature prediction algorithm is employed and combined with switch IBVS to make the
switch IBVS control robust in reaction to feature loss. The feature prediction algorithm can predict
the lost feature points based on the previously estimated points. Also, some studies have been
carried out in visual trajectory planning considering feature loss avoidance [50]-[53]. In [50], a
model predictive control method is employed in visual servoing to prevent feature loss. Despite
the success of these studies on dealing with feature loss for pure visual servoing control, the FOV
limitation is not investigated for the hybrid vision and force control. Also, the proposed strategies

suffer from the limited maneuvering workspace of the robot, due to the conservative design
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required to satisfy many constraints. In hybrid vision and force control methods with EIH
configuration, the end-effector needs to be in the closest distance to the workpiece’s surface such
that the tool touches the surface for interaction. Consequently, the FOV will be too small which
limits the robot’s workspace and also may lead to moving the image features points out of the

FOV, i.e., feature loss, which results in failure of the manipulation task.

1.4 Research Objectives and Scopes

Industrial application of vision and force control in many cases requires high speed of the task
and adequate robustness to uncertainties and also camera limitations. The uncertainties include
those in the vision model such as the interaction matrix, in kinematics or dynamics of the robot,
the force model uncertainties and the main camera limitation is its FOV. Thus, the main objective
of this thesis is to develop a series of new vision and force methods to simultaneously increase the
speed of the task, improve its robustness to the mentioned uncertainties and limitations while
keeping the stability of the controller and also enabling the robot to accomplish the multi-task
operation successfully. In addition, this thesis aims to find the solution to expand the workspace
to prevent the feature loss problem. The objectives and scopes of this thesis can be summarized as

follows:

1. Presenting a robust cascade vision and force approach consisting of an inner vision loop
and an outer force loop to control industrial robots interacting with unknown workpieces.

2. Developing a novel image-based task-sequence/path planning scheme coupled with a
robust vision and force control method for solving the multi-task operation problem of an
industrial robot interacting with a workpiece.

3. Developing a novel approach for hybrid vision and force control of eye-in-hand industrial

robots which addresses the problem of FOV limitation.
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1.5 Contributions of the Thesis

This PhD research work is carried out in different stages. The contributions of each stage

of the research work are summarized as follows:

First, a robust cascade vision and force approach is designed to control industrial robots
interacting with unknown workpieces considering model uncertainties. This cascade structure,
consisting of an inner vision loop and an outer force loop, avoids the conflict between the force
and vision control in traditional hybrid methods without decoupling force and vision systems.
To apply an advanced image-based visual servoing (IBVS) compensator, some newly modified
image features are used which render an invertible image interaction matrix. A practical task-
based method is proposed to extract the features corresponding to the desired path in 3D space.
A robust continuous integral sliding mode control method (CISMC) is developed for both
IBVS and force compensators. CISMC exploits advantages of the modified super twisting
algorithm (MSTA) to reduce the chattering. The stability of the proposed cascade controller is
proved. Additionally, a contact detector algorithm (CDA) is developed to manage the robot's

free motion and its interaction with the workpiece.

Second, a novel image-based task-sequence/path planning scheme coupled with a robust
vision and force control method is suggested for solving the multi-task operation problem of
an eye-in-hand (EIH) industrial robot interacting with a workpiece. The proposed method
suggests an optimal task sequence planning scheme to perform all the tasks and an optimal
path planning method to generate a collision-free path between the tasks when the robot
performs free-motion. To this end, a new method is presented which solves both problems
simultaneously. A novel deadlock-free modified artificial potential field (MAPF) based on

rotational potential force is developed for generating the collision-free path between tasks in
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the three-dimensional (3D) environment. The parameters of the MAPF and the sequence of the
tasks are found by an optimizer simultaneously. This problem can be considered as a MAPF-
constrained-generalized-traveling-salesman-problem (MAPF-CGTSP), which is a mix-integer
optimization problem. The mix-integer version of multi-tracker optimization algorithm
(MTOA) is developed to solve the problem. However, since image-based visual servoing
(IBVS) is used for motion control, the planning is conducted in the image space. Integrated
with the proposed planning method, a novel chattering-free filtered quasi sliding mode
controller (FQSMC) is specially designed for robust vision and force control of the robot.
FQSMC exploits a novel variable-gain orthogonal-sliding-manifold (VGOSM)which enables
the robot to switch between free-motion mode and interaction mode. FQSMC overcomes large
uncertainties and filters out the existing noises by exploiting an intrinsic filter within its control

law.

Third, a novel multi-stage method for robust hybrid vision and force control of industrial
robots, subject to model uncertainties is proposed. It aims to improve the performance of the
three phases of the control process: a) free-motion using the image-based visual servoing
(IBVS) before the interaction with the workpiece; b) the moment that the end-effector touches
the workpiece; and c) hybrid vision and force control during the interaction with the workpiece.
First, the camera motion is decomposed into transitional and angular movements. Then,
utilizing a switching method, the rotational and translational movements of the camera are
controlled in the first two stages, respectively. In the last stage, hybrid vision and force control
is activated. For each stage, super-twisting sliding mode controller (STSMC) is utilized.
Employing STSMC results in robustness against uncertainties while addressing the chattering

problem. A variable-gain sliding surface is also proposed to address the instability and
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convergence speed issues of the traditional switch IBVS. The experimental results demonstrate
the effectiveness and superiority of the proposed multi-stage method compared to other

traditional approaches.

Fourth, a novel approach for hybrid vision and force control of eye-in-hand industrial robots
is presented which addresses the problem of camera’s field-of-view (FOV) limitation. During
the interaction with the workpiece, the distance of the camera and the workpiece’s surface is
rather short. Thus, the FOV is very small which restricts the robot’s workspace. To handle this
issue, instead of using only a feature object, an array of objects is provided on the workpiece
in a way that at least one object is entirely in the FOV at each time step. However, conventional
IBVS cannot be employed for hybrid vision and force control of such tasks. Thus, for this
purpose, using a fuzzy inference system (FIS) and orthogonality principle, a novel hierarchical
sliding surface is devised, and the continuous integral sliding mode controller (CISMC) is
adopted, which leads to a robust and precise control method, applicable to the mentioned task.
The stability of the proposed method is also proved. Additionally, a method based on the virtual
desired image features is devised for the free motion before starting the interaction when the

robot is not fully convergent.

The performance of all the proposed methods is examined by experimental tests on a 6-DOF
robot manipulator with an EIH vision system and their performance is compared with that of

traditional methods.

1.6 Publications

The presented research work is published (or submitted for publication) in some journals and

conferences. Following is the list of author’s contributions followed by the related publications.
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1.7 Outline

This thesis starts with an introduction and literature review on hybrid vision and force along
with the research scope and objectives of the thesis. In Chapter 2, the cascade vision and force
method is
presented. In Chapter 3, the optimal image-based task-sequence/path planning integrated with the
hybrid vision and force control is introduced. In Chapter 4, a multi-stage vision force control
strategy is developed. In Chapter 5, the expansion of the workspace of an eye-in-hand industrial
robot for hybrid vision and force control is proposed. Finally, the conclusion and future work are

explained in Chapter 6.
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CHAPTER 2 Cascade Vision and Force Control

2.1 Introduction

This chapter presents a robust cascade vision and force approach to control industrial robots
interacting with unknown workpieces considering model uncertainties. It enables the tool tip to
track a path on the workpiece while controlling the contacting force. This approach adopts a
cascade structure which comprises two feedback loops: inner vision feedback loop and outer force
feedback loop. The main advantage of such a cascade structure is that the inner loop focuses on
visual servoing and handling the existing uncertainties associated with the robot kinematics,
workpiece, and vision system model. As a result, the outer loop focuses on controlling the
contacting force and overcoming the existing uncertainties associated with contacting force model
parameters such as stiffness coefficient. Thus, the problem of local-minima due to the conflict

between controlling the force and vision of traditional hybrid control schemes can be solved.

In the inner loop, IBVS is exploited to track the desired image features path in the image space
corresponding to the desired path on the workpiece surface. Additionally, a novel method based
on the spline fitting [55] and modified images features in [46] is developed to transform the desired
path on the workpiece in the Cartesian space to the desired image feature paths in the image space.
Hence, an invertible interaction matrix can be obtained for an advanced visual servoing controller

while the global stability of the system is guaranteed.

In the outer force feedback loop, the force compensator’s output is the desired modified image

features velocity corresponding to the camera velocity in the normal direction to the workpiece’s

20



surface. This output is combined with the extracted desired features from the desired path on the
workpiece’s surface to generate the ultimate desired image features. Tracking these image features

by the IBVS results in controlling the force as well.

A continuous integral sliding mode control (CISMC) method is developed for vision and force
compensators, which aim at removing the reaching phase by adopting an integral sliding surface
and handling the existing uncertainties. In this chapter, the designed CISMC is an extension of the
conventional ISMC which uses a fast terminal controller (FTC), as the nominal controller, and
modified super-twisting algorithm (MSTA) for perturbation rejection [56], [57]. This combination
can improve control performance in terms of robustness against uncertainties, fast convergence,
precise tracking, and low-level of chattering. A contact detection algorithm (CDA) is also
developed to manage the switching between the pure IBVS task when the robot is not in contact
with the workpiece, i.e., free-motion, and vision and force control task when the robot is interacting
with the workpiece. The finite-time stability of the cascade vision and force controller is proved,

and experimental tests are carried out to validate its effectiveness.

2.2 System Modeling

In this section, the problem of hybrid vision and force control of an industrial robot interacting
with a workpiece is investigated. Referring to Figure 2.1a, a 6-DOF serial robot equipped with a
force sensor and an EIH camera is considered. Also, a rectangular object is placed on the workpiece

whose corners are considered as four feature points (Figure 2.1b).
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Figure 2.1: a) The 6-DOF robot equipped with a force sensor and an EIH camera, b) Feature points.

2.2.1 Visual Servoing Modeling

To design an IBVS controller with an EIH camera, the kinematic relationship between the

image features S = [s{, ... s7 ]T and the camera frame {F,} should be derived. Generally, the image

features are the projections of the feature points on the image plane which are derived using the

perspective projection technique [3] as follows:
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where, f is the focal lengthand P¢, = [X¢;  Yoi  Zci]™ describes the coordinates of the it feature
point with respect to the camera frame. The relation between the time derivative of the i*" image
feature $; on the image plane and the velocity screw of the camera V is denoted as [24]:

$; = Lg,V, (2.2)

where Ly; describes the interaction matrix:
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Accordingly, from (2.2) and (2.3) the following relation yields:
S =LgV, 24)
where S is the image feature velocity vector and
T
Ls = [Lel Le Let L. 25)

During the interaction, the tool tip is in contact with the surface in the normal direction. Therefore,
referring to Figure 2.1a, the distance between the camera frame and the feature points in the normal
direction, i.e., Z,, is approximately considered as lcz. The IBVS controller aims at reducing the
norm of image feature errors. In this case, although the system is locally stable, the global stability
cannot be guaranteed [24]-[26]. Hence, advanced IBVS control strategies are needed to guarantee

the convergence and stability. To cope with this problem, a vector of modified image features S

[46] is adopted as:

- . = = = ~ 1T
S:[xc Ve Do 6. 6 ch] 5 (2.6)

where:
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Accordingly, the kinematic relation between the camera and the modified image features velocities

is:
S=1L,V, 2.8)
where L; is the modified interaction matrix [46]. Since L, is a 6 X 6 matrix with full rank, it would
be invertible. Consequently, designing advanced IBVS strategies will be feasible by employing
this modified interaction matrix. The camera velocity is mapped to the joint space using the
following relation:

V=]q4, (2.9)

where J, € R®*® and ¢ € R®*! are the robot Jacobian matrix and the vector of joint velocities,

respectively. Substituting (2.9) into (2.8), one has

S =LgJqq. (2.10)
In the real applications, the uncertainties exist in the interaction matrix and robotic Jacobian

matrix, i.e., i.slq = isiq + A. Accordingly, the equation is rewritten as:

S =

=

siqq + ZSJ (2'11)

where, A; = A.q is the uncertain part of the vision model.
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2.2.2 Force Modeling

To design a hybrid vision and force controller, the model of contact interaction between the tool
and the workpieces should be derived. To this end, the stiffness model is exploited [6].
Accordingly, the mathematical formulation of the contact force when the tool-tip touches the

workpiece surface is modeled as:

where Ky is the nominal stiffness between the workpiece surface and tool-tip, Pr is the

displacement of the tool tip in its normal direction, i.e., z-axis of the end-effector or camera frame,
and E, is the exerted normal force to the tool tip. In the cases where the tool tip is normal to the

surface, F, would be normal to that surface as well. Taking time derivative of (2.12) yields:

F, = K;DV,,, (2.13)
where D=[0 0 1 0 0 O] and DV, = Pf. V, = QV s the linear velocity of the end-

effector in the z-direction of its frame where Q = diag(D). Using (2.8), (2.13) is written as:

F, = K;DL;'5. (2.14)
Considering the uncertainties in the kinematic relations and stiffness coefficient, 1.e., KfDi.;l =
I?fDigl + Ag, we have:

£, = RDL3'S + &y, (2.15)
where, Ay = AF§ is the uncertain part of the force model, and notation "~ denotes the nominal

part.
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2.3 Robust Cascade Vision and Force Control Method

In this section, the design of the cascade EIH vision and force controller using CISMC is
presented. IBVS in the proposed hybrid controller is designed to track the desired image features.
Therefore, it is required to extract the desired image feature paths on the image plane
corresponding to the desired path on the workpiece. For this purpose, an image feature extraction

method is developed and presented in the following subsection.

2.3.1 Desired Image Feature Extraction

S dn
Sdt \ : Map to Manually movement of the tool ~ Collecting data of feature
1mage planc oy o oints from camera
- from start point 4 to the target p
r'd \A point ¢ on the desired path X y
Image plane (Pixel) _ (Pixel)
Tool and camera _ 5. A /8/\ A
Tool and camera package fé;’; %f;:;‘::; i \a\,:;,;,/
_ package i
S :‘ffh';
d \? FTR L,
Nt
\) Normal K o 123456 ¢
- um‘ nt Feature object  Desired path  (Tps % sec) (Tps % sec)
Feature object I
Magnification

a b
Figure 2.2: a) Decomposition of S4, b) Collecting image features data while moving on the desired path.

The robot manipulator tracks the desired path while the normal force on the workpiece’s surface
is controlled. Therefore, the desired vector of image features comprises two orthogonal vectors as

follows:

Sa = Sar + San, (2.16)
where, S, is the desired vector of image features, S, is the normal desired vector of image features
corresponding to the movement of the end-effector or camera in the direction of z-axis of the

camera frame. The value of Sy, is determined by the force compensator, the procedure of which
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will be explained in the controller design subsection. Sy, is the tangential desired vector of image
features which is associated with the tangential movement of the end-effector on the surface of the
workpiece, i.e., the desired path on the workpiece in Cartesian space (Figure 2.2a). To extract Sz,
a novel technique based on experimental data and spline is suggested. First, the robot’s end-
effector is guided to the desired path on the workpiece manually. While the end-effector is moving
on the desired path, the image features coordinates captured by the camera are collected with a
specific sampling time Trg (Figure 2.2b). Then, a spline is fitted to each series of feature points

and eight desired image feature paths are generated. S;; € R®*1, is obtained as

Sat = [SPL(Saryt) - SPL(3arg )] 2.17)
where Sy, = [§dt'1r §dt§]T € R®™ is the matrix that contains eight series of collected
imaged features, i.e., $4¢;, i € {1, ...,8}, with the length n; . SPL(.,.) [59] is the spline function
that takes the collected data and instant time t, then fits a spline function to those data and finally

returns the value of the fitted curve at the time t. The extracted S;; should be converted to the

modified S, using (2.6) and (2.7) for the proposed hybrid controller.
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2.3.2 Cascade Vision and Force Controller Design Using CISMC
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Figure 2.3: a) Schematic of the proposed robust cascade vision and force controller, b) Detection of
contact with the workpiece and automatic activation and deactivation of the force controller.

In this subsection, a robust cascade control scheme based on CISMC is designed to achieve
a robust and high precision vision and force tracking performance. CISMC is the generalization of
the traditional ISMC whose discontinuous part is replaced with MSTA to achieve a continuous
output and hence, to reduce the chattering [56], [57]. Additionally, its nominal part is chosen to be

an FTC, which results in high tracking accuracy and fast finite-time convergence.

The proposed cascade scheme uses inner and outer feedback loops of image features and the force
signal to perform the control task. The inner loop feeds the vision compensator with S. The vision
compensator compares S with the desired signal, i.e., S;, and computes the control command
accordingly. The outer loop feeds the force compensator with the normal force signal. The force
compensator compares it with the desired force signal F,; and generates the output. Note that the

force compensator’s output is the velocity of the desired image features in the normal direction,

ie., §dn. Since Sy, and Sy, are orthogonal to each other, they satisfy (2.16) and (2.18) [17]:

S, = (I _ STgnS_‘dn)S—. (2-18)
a 1Sall2) "¢

28



Accordingly, if § —» S; then S; = S;;, which is equivalent to tracking the desired path on the
workpiece’s surface, and S,, — Sj,,, which results in controlling the interaction force. Thus, the
control problem is to derive a hybrid control law, i.e., u = ¢ that leads to e, = 0 and e — 0,

where:

ec=S—S,;,ep =F, —F,,. (2.19)
In (2.19), e and e are the vision and force system errors. Taking the time derivative of (2.19) and

substituting (2.11) and (2.15) in it yields:

és = LoJqu + B — Sy, ép = RDLS'S + Ap — Fipy. (2.20)
Generally, ISMC divides the controller commands into two parts which are the nominal
controller command and the uncertainty eliminator [57]. Accordingly, the IBVS control law for

controlling the images features is suggested as:
u=1Uy + U, Ug = iali‘gl (_f(es) + §d) yUp = iali‘glAs(o—s) ) (221)
where u, and u, are the nominal and uncertainty eliminator control commands, f(.) is the fast

terminal law function, o; is the integral sliding mode variable for IBVS, and A(.) is the MSTA

law for IBVS, all of which are given as follows:

f(eg) = Cyes + Cysig®(es), (2.22)

. L t _
As(a5) = —Kq05 — Kosig2(ay) + [, (—Ksos — Kysign(oy))dt , (2.23)
05 =5 = S0 — [ (Lefquo )at. 2.24)

where C; and C, are positive diagonal matrices of controller gains, 0 < a < 1, and sig*(.) =

|. |*sign(.). Ky to Ky are positive diagonal matrices of MSTA’s gains.
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As mentioned before, the force compensator outputis v = §dn. The suggested control law of (2.21)

results in controlling the images features in finite-time, hence one has §dn = §n. Given this fact
and based on (2.20), the output of the interaction force compensator v using CISMC is obtained

as:

V=vy+ v,V = I?f_lisD+(—g(eF) + Fyg), vy = I?f_lisDJfAf(af), (2.25)
where v, and v; are the nominal and uncertainty eliminator control commands, g(.) is the fast
terminal law function, oy is the integral sliding mode variable for interaction force system, and
Ag(.) is the MSTA law for interaction force system, all of which are presented as the following

relations:

g(er) = Diep + Dysigh(ep), (2.26)
1
AF(GF) = _LIO-F - Lzsl‘gE(O'F) + fti)(_L3o-F — L4sign(O-F))dt’ (227)
“(R.pIL; 3 22
or=F—Fy— [ (KfDle (=F (e + e + v())) at. 2.28)

where D, and D, are positive diagonal matrices of controller gains, L, to L, are positive diagonal

matrices of MSTA’s gains.
Substituting (2.25) into (2.21), the overall cascade vision and force control law is obtained as:

A '_ ~_ 42 . 2_29
w=Jg Lt (=f(e) + Sar + RLD* (—glep) + Foa + A(0p)) + As(0)). @)
2.3.3 Contacting Detection and Managing the Robot’s Task

The vision and force control occurs when the robot interacts with the workpiece. Otherwise,
it has a free motion in the workspace, i.e., pure visual servoing. Accordingly, for each task, a proper
controller must be applied. This can be done by modifying the overall control law of (2.29) as

follows:
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u=Jg 'Lt (—f(es) + Sae + Su(B)RFLD™ (—gler) + Fra + Ar(op) + As(as)), (230)

where 8,,(.) is a switching function which returns 1 or 0 when its input E, is greater than zero or
equal to zero, respectively. Theoretically, when the tool tip touches the surface, one has E, > 0,

Oum (F"Z) = 1 and the vision and force control law will be activated. However, when there is no
contact, one has F, = 0, 8, (ﬁz) = 0 and the pure vision control law will be applied to the robot

(Figure 2.3a). In this case, e is set to zero.

In practice, however, during the free motion operation, the force signal is not absolutely
zero due to the existing noises and low resolution. To cope with this problem, a feasible contact
detection algorithm (CDA) is developed to sense the contact and manage between the tasks. CDA
detects the contact by taking the force signal feedback as the input. Its procedure is presented in
Algorithm 1. The algorithm inputs are E,, FC Ay, and Sg,, where FCA, is the force activation
indicator of the previous time instant. The output of the algorithm is FCA, i.e., the force activation
indicator. The algorithm supervises the contact as follows: a) while the force compensator is
inactive i.e., FCAp = &8y (F'Z) = 0, increasing the magnitude of F, beyond Fr, leads to FCA =
SM(FZ) = 1; b) For the values of E, below Fr,, or the values of .§dn3 beyond D¢, FCA=0.
Sans is the third entry of S, and D, is the threshold of detachment. Note that Sg,,, indicates the
displacement change in the normal direction to the workpiece’s surface. When it is positive, it
means that the force compensator intends to move the tool tip towards the surface. However, when
its value increases and passes the threshold, it means the tool tip tends to detach from the surface,
while the force compensator tries to keep the tool tip on the surface and control the normal force.

Thus, Sgy,, will increase (Figure 2.3b).

31



Algorithm 1. Contact detection algorithm.

Initialize Frp Fr, Degs

Input: £, S,,;

FCA = FCA,;

If (FCA, == 0 && E, > Fr,)) Then FCA = 1;
If (F, < Fr, || Sany > D¢,) Then FCA = 0;
Return FCA;

Remark 2.1. In the proposed method, the force compensation will be activated automatically once
the contact is detected. Therefore, to activate the force compensator, the desired path in the
Cartesian space corresponding to Sz, should be defined beneath the surface of the workpiece. Thus,
the tool tip touches the surface while tracking Sz.. Then, CDA detects the contact and the force
compensator will be activated. To deactivate the force compensator, the reverse process must be

adopted and the desired path must be defined out of the workpiece (Figure 2.3b).

2.3.4 Stability Analysis

In this subsection, the stability of the proposed hybrid vision and force controller is analyzed.
In Theorem 2.1, the finite-time convergence of the overall cascade vision and force controller
considering existing uncertainties is proved. The following assumptions are employed in Theorem

2.1.

Assumption 2.1. The time derivatives of A and A are bounded as in (2.31). Also I'y and I', are

bounded as in (2.32).

A, < 8, | 8,6 RO*L 8. > 0,77 < 85 | 5, R, 85 > 0, (2.31)

Fl < 8L1 I 8L1€ ]R6X6, FZ < 8L2 |8L2€ R6*6 , (232)

where I'y and I', are:
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. T
5 R [ alis? X (2.33)
r, = 2 <D ( )c1> DL;Y,

4D, dt

N T
by = i 2 (i) o\ pg
2 4D, a+1 at 2 s -

Assumption 2.2. y € R™ must be chosen large enough, so that the following condition is satisfied:

Min{{Ami{(¥C1 — 8,1) + (¥C1 — 8,) ™} Amin (¥Ca — 85) + (¥C2 — 8,2)T} >0, (234

where A,,;, {*} returns the minimum value of the set of eigenvalues of *.

Assumption 2.3. The MSTASs’ coefficients satisfy the following inequalities:

(K21 [Ka 12 +50Ka ;1 (2.35)
(K3l > R T 32 —=[Kql?i ), (K3l > [Kqlii s
psi_E[KZ]i,i 2
1 1
ps; = [KaD?; (5 [KoJ2, — [6,]; + [Kalyi + 5 [Kal2),
[Kzlii > 24/[6s]i [Kqli; > 0,[Kyli; > [65]i, i €{1, ..., n},
(2.36)

1313+213p; 1,
Ly > <p—"’13—5L ,Ls > Ly, Ly > 6p,

pr, = 13 GL% — 8+ Ly +§L§),L2 > 2./65, L, > 0.
Theorem 2.1. Consider a robot with an EIH camera interacting with a workpiece (Figure 2.1a).

Applying hybrid control law (2.30) to the robot with uncertain vision and force systems as given
in (2.11) and (2.15) leads to their stabilities in finite-time, i.e., e = 0 and ey = 0, when t > T,

where T.e R*.

Proof. Taking time derivative of (2.24) and substituting (2.11) and the hybrid control law of (2.30)

into it, one has:

6, = A (a,) + A, . 2.37)

By substituting (2.23) into (2.37), the following system is obtained:

{ds - _Klas - KZ Sigl/z(as) + Zs (2’38)
Zs = —Kzo5 — K4Sign(0-s) + Zs .
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Considering (2.31) and (2.35), and applying Lemma 2.1 to (2.37), g5 and g5 converge to zero in

finite time. Accordingly, performing the same procedure for 6 yields:

AS(O-S) + ZS = 0, AF(O'F) + ZF = 0 (239)

Consider the candidate Lyapunov function V; as:

V, =V, + Ve +V,, (2.40)
where:
Vo= (1/2)yeles, Ve = (1/2)e}, @41)
Vo = —SM;;ZBK’E (Di§1C1es)T(Digles) +
I T
SM;EK%&(Di;lCzsigmzﬁ(es)) <Diglsig(a2ﬁ(es)> .

When e; = 0 and ez = 0, one has V; = 0. Otherwise, V; > 0. From (2.40), V; is derived as:

Vi=Ve+Ve+V,, (2.42)
where:
. T
. L. . Sm(F)R? d(L3? s (2.43)
V. =yele, Vi = epép, V, = %(eg (D%Q) DleeS> +

T . T
Su(ENR? 2 | (a+) a(iz?) I o)) Sm(E)R?
R <31g 2 (ey) D — C, | DL;sig z (eg) |+ v (Cles+

T a T a
C,sig®(ey)) (DL§1> Di;te, .
Substituting the control laws (2.30) and (2.39) into (2.20) yields:

(2.44)

a

é, = Lg q <i51i;1 <—f(es) + Sy + SM(FZ)I?fDigl (—g(ep) +F,y + As(af)) +

As(as)>) + Zs - ‘STd = _Cles - CZSiga(es) .

Since §dt = is(l - DTD)iglfd, by substituting the hybrid control law of (2.30) into (2.11) and

then the result into (2.20), the following relation is obtained:
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= _‘SM(F'Z) (D13F + Dzsigﬁ (er) — de — Ap (UF)) + I?fDigl(—f(es) + Ag(o5) + (249)

Zs) + ZF - de :

By substituting (2.44) and (2.45) into (2.43), one has:
V, = yel (—Cyes — Cysig®(es)) (2.46)

Ve = ep (—Sm(ﬁ'z) (DleF + D,sigh (ep) — Fpq — AF(UF)) + I?fDigl(—f(es) + (2.47)
Ag(os) + Zs) + ZF - de)

(2.48)

T
. (a+1) (a+1 S (F, R2
Vo = esTieg + <Slg 2 (es)> Lrsig 2 (es) - M( i (Cles

a T a
Czsig“(es))T(DLgl) DLgl(CleS + Czsig"‘(es)),
If 8,/(F,) = 0 then e = 0 and substituting (2.39) into (2.46) to (2.48) results in the following

relation:

V, = —yel(Cyes + Cysig*(es)) <0, (2.49)

and if SM(ﬁZ) = 1, one has:

) (2.50)
Vi = —ef (yCq — Tes — ef (yCp — Tp)sig*(e;) — —Dylep|P*! — | DZep +

2
KfDLS

(Cyes + Cysig*(es))

202
Given (2.32) and Assumption 2.2, based on non-symmetrical positive definite matrix definition in
[29], (yC4 — Iy) and (yC, — Ip) are positive definite. Hence, V; < 0 and therefore, systems (2.11)
and (2.15) are stable. According to (2.41), one has eJ e, = 2V;. Thus, the following conditions are
satisfied.

—ef Cies < —cp,,(2V), —eJ Cpsig¥(e;) < —cy,, (2V;)*/2 (2.51)

¢;. = min |[C; .
TTim k€{1,2,...,6}[ ilici
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Comparing (2.51) with (2.46), the following inequality is obtained.

Ve < —cp, 2Vs — ¢, (2V)%/2. (2.52)

ar

Considering a; = %and Cr = —2%c,_, the inequality above results in V, < —CrV,'T. Since Cr >

0 and 0 < ar < 1, based on finite-time theory in [59], V; converges to zero in finite time Ty <

1-ar
VS

Hence, after Ty, one has e, = 0. Accordingly, after T, if 6, (FZ) = 0, then e = 0.

C2p(1—ar)’

However, if §;, (F'Z) = 1, substituting (2.39) into (2.47) yields:

Ve = —ep (DleF + Dzsigf”(ep)). (2.53)
Equation (2.53) is equivalent to (2.46). Hence, V converges to zero in finite time T, = T + T,

1—ﬁT

where Tr < i and fr = B Consequently, after T, one has e; = 0 and e = 0.
D,(1-p71) 2

Remark 2.2. The closed-loop systems (2.44) and (2.45) include two feedback control terms. The
first term is linear and results in converging the system states to zero with a moderate rate. The
second term is a nonlinear S-shaped function which results in finite-time convergence and

increasing the tracking precision when the error of the system is small.

Lemma 2.1 (MSTA). The perturbed system given in (2.54) is stable as 2-SM if the inequalities in (2.55)

are satisfied.
{0’ = —k,0 — k, sig"/?(0) + ¢ (2.54)
{ = —kgo, — kysign(o) + A °
|4| < 6 € RY ky > 28, ky > 0,k > 8, k3 > ky, (2.55)
ks > <—k§';2_+_ikj” - %k%),p =13 (3K3 =6+ ky +243).

Proof. The proof of this lemma is available in [61].
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Remark 2.3. In the first-order SMCs, the conservative high-value controller gains must be selected
for the switching function to ensure the stability. Such gain adjustment and high frequency
switching may lead to high level of chattering and exciting the control input, which may degrade
the control performance. However, in MSTA, this problem is addressed by applying an integral
operation to the switching term which results in a continuous output and thus, alleviating the

chattering and preventing the control input excitation.

Remark 2.4. In MSTA, the robust gains are selected based on the bound of the derivative of the
uncertainty. As a result, the value of the uncertainty does not affect the robustness as long as the
derivative of the uncertainty is in the admissible range. This is a very advantageous feature, since
the uncertainty in the hybrid vision and force control system consists of the parameters such as

stiffness coefficient, arm lengths, and focal length.

2.4 Experimental Results and Discussion

An experimental setup is provided to test the proposed approach in real time. The setup
consists of a 6-DOF DENSO VP6242G robot, a Quanser open architecture control module, a
Logitech C270 digital camera with 1280 by 720 pixel resolution with an EIH configuration, two
PCs (PC1: CPU 15-2400-3.1GHz and RAM 4GB, PC2: CPU i7-8700-3.7GHz and RAM 16GB),
one for controlling the robot and the other for image acquisition, and a 6-axis ATI model 200
industrial automation force sensor with [—100 100]N measurement range, 14 bits digital
resolution, and 32 LSB/N detection sensitivity installed on the robot end-effector. Also, a piece of
rubber is implemented on the tip of tool. The control process sampling time ¢ is set to 0.01s. The
setup components are shown in Figure 2.4. The actual and/or accurate estimated system parameters
are tabulated in Table 2.1 as known parameters. To evaluate the influence of uncertainties on the

control process, the parameters are adopted with about 5% change in their values as nominal ones.
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Note that the uncertainties are usually emanated from the estimation or calibration errors which

have been observed to be smaller than 5%.

Table 2.1. System’s physical parameters.

kN

[y, ., Lo g L] (m) a;(m) | acm) | fm) | k(%)

known [0.28,0.21,0.21,0.07,0.275,0.345] 0.075 0.105 0.004 4.694
Nominal [0.265,0.2,0.2,0.065,0.2,0.33] 0.08 0.11 0.0038 4.3

Figure 2.4: Experimental setup.

2.4.1 Extraction of Desired Image Features

In order to comprehensively evaluate the performance of the proposed method in various
situations, two experimental tests are designed. In the first test, the effectiveness of the proposed
method in terms of free-motion task, hybrid vision and force task, and switching between the two
etc. is evaluated. This test comprises two cases. In each case, the robot starts from an initial pose
and converges towards the circular path on the workpiece (Figure 2.5a). The desired circular path
is designed such that in the odd quarters (i.e., 1%, 31 ..), the tool moves above the workpiece and

has free-motion, and in the even quarters (i.e., 2nd 4t ), it touches the workpiece surface and the
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hybrid vision and force control is performed. Also, to test the robustness of the hybrid method to

workpiece’s pose, a various poses are considered for each case (Figure 2.6).

In the second test, the performance of the proposed method in terms of precision, chattering,
robustness, and control effort is compared to those of the other well-known methods such as
impedance, traditional vision and force (PD/PI), and standard ISMC method. To this end, an

infinite-shape path is considered on a workpiece with a curved surface (Figure 2.5b).

For both tests, the desired interacting force is set as a sinusoidal signal. Utilizing the proposed
image feature extraction method, the desired image feature signals corresponding to the desired
path of both tests are derived and presented in Figure 2.5.c and d. The gains of the proposed
controller are set as follows: k; to k, = 7.5,2.1,2,1.05,C; =D, = 1.2,C, =D, = 0.8,and a =

B =05
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%

Desired Path

Figure 2.5: Desired path in cartesian space: a) Test 1, b) Test 2, Extracted desired features in image
space: ¢) Test 1, d) Test 2.

2.4.2 Test 1: Free-motion and Hybrid Vision and Force Task

The sequence of the robot behavior for the first test is presented in Figure 2.6. Referring to
this figure, the robot starts from the same pose for all cases at the beginning, while the pose of the
workpiece varies. Then the robot starts converging towards the desired pose on the workpiece
corresponding to the desired image features. Afterwards, the tool-tip interacts with the workpiece
and detaches from it several times. Although the pose of the workpiece is different in each case,
the tool-tip converges to the same pose relative to the workpiece, which means it is robust to the
position and orientation of the workpiece. This advantage is also illustrated with the feature object.

The object has different positions and shapes at the beginning of the control process for each case.
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However, it has converged to the same position and shape during the control process for both
cases. The results of tracking the image features and controlling the interacting force are presented
in Figure 2.7 for both cases. Referring to Figure 2.7a, the signals of image features start from
different values and then converge towards their desired signals. In Figure 2.7b, the 2-D plot of
S1 = x and S, = y is presented which shows path tracking in the image plane. It can be seen that
in both cases, the 2-D image features, i.e., X and y, have converged to the values of the same point
and then tracked the desired path, although their initial positions are different. Besides, Figure 2.7¢
shows that the interacting force tracks the desired signal properly in both cases. These results show
the effectiveness of the proposed algorithm in terms of hybrid control of vision and force on a

workpiece with different positions and orientations.

Robot pose
Cl

C2

Cl1

Image feature

Cc2

Figure 2.6: Control process of test 1 using the proposed method.
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2.4.3 Test 2: Interaction with a Curved Workpiece

The results of the second test are plotted in Figure 2.8 to Figure 2.10. Referring to Figure 2.8a
and b, CISMC outperforms ISMC in terms of tracking image features precision, convergence
speed, and chattering level and oscillation. The chattering issue of ISMC is also evident in Figure
2.8c which shows tracking the desired path in the image plane, while CISMC tracks the desired
path smoothly and accurately. Since the image features used in impedance and traditional methods
are different from the ones used in CISMC and ISMC, the norms of the four feature point errors
are computed and plotted in Figure 2.8d for comparison. According to this plot, the convergence
rate of the CISMC is higher than those of the impedance and traditional methods. In addition,
CISMC outperforms those methods in terms of tracking precision. Also, as expected, it can be
seen that the tracking precision of the impedance method is lower than that of the traditional one.
Figure 2.9 shows the results of force control. It can be seen that CISMC can track the sinusoidal
desired signal precisely and smoothly. ISMC can track the desired signal but with high level of
chattering. PD/PI and impedance methods have almost failed to track the desired signal and
generated high level of error. To compare the chattering and control effort level of the applied
controllers, the results of the control input (joint velocities) are presented in Figure 2.10. According
to this figure, compared to the ISMC, the level of chattering introduced by CISMC is mitigated.
Also, compared to PD/PI and impedance methods, the level of control effort is much lower, which
is the result of having a continuous output and higher precision of CISMC. Additionally, several
numerical indices are considered for a quantitative comparative study. These indices consist of
integral absolute error (IAE), integral time absolute error (ITAE), standard deviation (STD), root

mean square error (RMSE) and integral absolute controller output (IACO). These indices are
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computed for the tracking error and controller output of Test 2 and presented in Table 2.2.

Referring to
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Figure 2.7: Results of Test 1: a) Image feature tracking, b) 2D mage feature tracking, c) Force control.

Table 2.2, CISMC has improved the vision control performance in comparison with ISMC over
30.1%, 15.1%, 53.9%, and 35.5% in terms of IAE, ITAE, SDT, and RMSE, respectively. Also, it
has improved the control performance compared to traditional and impedance methods over
50.7%, 50.1%, 73.6%, 53.6% and 50.8%, 39.9%, 73.7%, 53.71% in terms of IAE, ITAE, SDT,
and RMSE, respectively. For force control, CISMC has improved the performance over 21.7%,
17.1%, 29.4%, and 25.6% in terms of IAE, ITAE, SDT, and RMSE, respectively, compared to
ISMC, 53.5%, 54.7%, 47.0%, and 32.2% compared to PD/PI, and 59.1%, 58.4%, 44.5%, and
35.1% compared to impedance method. Accordingly, the numerical results show the superiority
of the proposed controller to impedance, traditional, and ISMC methods, in terms of precision,

convergence speed, chattering, and control effort.
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Table 2.2: The computed indices for vision and force control in test 2.

Comp. Indicator
IAE ITAE STD RMSE
Impedance 18111 512.22¢04 29.720 43.412
Vision PD 18078 513.06e04 29.646 43.395
ISMC 12728 362.42e04 16.928 30.238
CISMC 8900 307.54e04 7.8017 20.096
Impedance 695.77 1.7259e05 1.8919 2.1543
Force PI 612.99 1.5843e05 1.9807 2.0621
ISMC 364.52 8.7438e04 1.4886 1.8806
CISMC 285.19 7.1763e04 1.0498 1.3982
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2.5 Summary

In this chapter, a robust cascade vision and force method for industrial robots is presented to
control the interaction force while tracking the desired path on the workpiece. A set of six image
features with a full rank interaction matrix is employed for designing advanced robust controller
with global finite-time stability. The designed CISMC in the inner vision loop and outer force loop
of the cascade structure used FTC for its nominal part which result in fast convergence and high
tracking precision and MSTA for the discontinuous part to alleviate the chattering. Also, a method
is introduced to extract the desired image features from desired 3D-path. Then, CDA is developed
to manage the switching between the free-motion and hybrid vision and force tasks. To prove the
effectiveness of the proposed method, two experimental tests are designed. In the first test, the
performance of proposed method in robustness against the workpiece’s pose uncertainty and
feasibility of the CDA on a planar workpiece is evaluated. In the second test, the performance of
the proposed controller on a curved workpiece is compared with the other methods such as
impedance, traditional PD/PI, and ISMC. The results show the superiority of the proposed
approach in terms of precision, convergence rate, robustness, control effort, and chattering

reduction both graphically and quantitively.
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CHAPTER 3 Optimal Image-Based Task-
Sequence and Path Planning

3.1 Introduction

As mentioned before, the industrial robot in this study uses an eye-in-hand IBVS. The
conventional IBVS methods are not suitable for tracking a trajectory on the image plane or
performing a multi-task operation which needs switching between the free-motion and interaction
with the workpiece several times. In the previous chapter, a cascade vision and force method was
proposed and demonstrated that the controller was able to improve the speed and tracking
performance for vision and force control of a single task. However, the failure of the proposed
method in dealing with the obstacles on the workpiece or finding the sequence of performing the
tasks in a multi-task operation still prevents the method from being fully efficient and being

applicable to multi-task operations.

In this chapter, a novel approach on an optimal path/task sequence planning scheme and a robust

hybrid vision and force control method is developed.

Building upon the results on the literature, a novel approach named modified APF-constrained
generalized TSP (MAPF-CGTSP) is developed to solve the task sequence planning for multi-task
operations with the optimal path length and obstacle avoidance. MAPF-CGTSP can be divided

into two parts: a) modified APF (MAPF); and b) constrained generalized TSP (CGSTP).

MAPF is the modification of APF in which a rotational repulsive force is added to the repulsive
force in 3D space. This repulsive force can be defined by two rotational parameters for each

obstacle in the environment. If the parameters of the MAPF are adjusted properly, a deadlock-free
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path will be achieved. CGTSP is a TSP problem that can model multi-tasks operations sequence
for an industrial robot. Employing MAPF for path planning between each two selected tasks by
CGTSP results in MAPF-CGTSP model. Note that the parameters of MAPF are continuous while
the sequence of the CGTSP is integers and binaries. Therefore, to adjust the parameters of the
MAPF and find the optimal solution of CGTSP a mix-integer optimization algorithm can be
employed. To this end, the mix-integer version of multi-tracker optimization algorithms (MTOA)
is developed and applied to the problem [62]. Note that MTOA is a population-based optimizer
that can find the optimal solution with higher precision and reliability compared to those of the
other well-known methods such as genetic algorithm (GA) [63], particle swarm optimization
algorithm (PSO) [64], and grey wolf optimizer (GWO) [65]. The objective function of the
optimization problem is the summation of the length of the paths between every two tasks
generated using the MAPF and CGTSP sequence. When this function is minimized, i.e., MAPF-
CGTSP is solved, an optimal path between the optimal sequence of the tasks is generated. Since
IBVS method is used for controlling the robot, the initial position of the end-effector (IP) is
unknown in the Cartesian space while it is known in the image feature space. Therefore, the cost
value cannot be calculated in the cartesian space directly. To address this issue, first, the MAPF-
CGTSP is transformed from the Cartesian space into image feature space. To this end, using the
real data and a multi-layer perceptron neural network (MLP-NN) [67], [68] a novel method is
developed to obtain the image features corresponding to the desired path in the Cartesian space.

Then, the equivalent cost value will be calculated using the trajectories in the image feature space.

In this chapter, a novel filtered Quasi SMC (FQSMC) is designed for hybrid vision and force
control. FQSMC exploits a variable-gain orthogonal sliding manifold (VGOSM) comprising

orthogonal terms of force and vision errors with variable gains. Thus, the convergence of sliding
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manifold towards zero leads to the convergences of both force and vision errors towards zero. The
variable gains in VGOSM also contribute to increasing the convergence speed, smaller tracking
error, and preventing unwanted oscillation. Additionally, a binary contact variable is defined and
incorporated in the VGOSM whose value changes when the robot performs free motion or interacts
with the surface. A method is also developed to manage to switch between the free-motion and
hybrid vision and force operations. FQSMC has a continuous output which results in Quasi-motion
and elimination of chattering. Besides, by analyzing the control law of FQSMC, an intrinsic low-
pass filter appears, which leads to filtering out the measurement noises associated with the camera
and force sensor. Since the intrinsic filter is part of the control law, it will be involved in the

stability proof and performance analysis.

3.2 Problem Statement

Referring to Figure 2.1a, a six-DOF serial industrial robot equipped with a force sensor and an
eye-in-hand (EIH) camera is considered. The workpiece is fixed with respect to the robot’s
reference frame. Also, a rectangular feature object is marked on the workpiece’s surface whose
corners are considered as four feature points (Figure 2.1b). The surface of the workpiece satisfies
fs(Xs) = 0 where fg: R® - R is the constraint function depending on the workpiece geometry;

Xs = (x5,¥s, 25) is the coordinate of any point on the workpiece’s surface.

An operation may consist of two types of tasks: the tasks in which the end-effector should
interact with the workpiece while a) tracks a path; b) positions to a single point. For the former
tasks, the coordinates of one of the path’s endpoints can be considered as the departure point and
the other endpoint as the destination point. The desired tracking speed and the desired interaction

force are dependent on the position of the tool-tip on the path. For the latter task, the duration of
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the regulation on the point is determined. Also, the desired interaction force could be chosen as a

function of time. These tasks are defined as follows:

( (1, for point 3.1
Type: {2, for path
Pwd (19) = [fx(ﬁ) fy(ﬂ) fz(ﬂ)]T .
, . i=12,..,np,
Taski: < { T:, for point v 9=[0 1]
v4(9), for path B '
{de(t), for point
\ F,;(09), for path

where ny is the number of tasks, ¥ is an auxiliary variable which can vary from zero to one; P,,,; (99)
is the desired path on the planar workpiece which is generated from the departure point to the
destination point when 9 changes from zero to one; T; is the duration of the interaction with the
workpiece for the type 1 tasks, and v, () is the desired velocity for tracking the type 2 tasks. F,4

is the desired interacting force signal, which is the function of time or ¥ for type 1 and type 2 tasks,
respectively. Note that (fX 9), f,(9), f, (8)), i.e. the coordinate of a point on the predefined path
of the task for 9 € [0 1], must satisfy the surface constraint since the task is defined on the

surface of the workpiece, i.e., fg (fx(ﬁ), f, (9), fz(ﬁ)) =0.

The main objective is to develop an image-based task sequence/path planning coupled with a
hybrid vision and force control method for the industrial robot to complete the entire multi-task

operations effectively.

3.3 Image-Based Task Sequence and Path Planning
To accomplish the multi-task operation, the robot should start from its initial position, select a
task, and move towards the position above the start point of the path associated with the first task

by a free motion. When the robot has fully converged to this position, the robot will move towards
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the surface to come into contact with it. Then, the interaction begins, and the robot starts tracking
the desired path and the force signal, simultaneously. When the path is tracked completely, the
robot will detach from the surface and the first task is completed. Then the robot selects the next
task, and the same procedure will be performed. This procedure continues till all tasks are
completed. To make this procedure automatic, four main parts must be considered: a) an optimal
task sequence/path planning method; b) a mechanism to contact with and/or detach from the
workpiece’s surface; ¢) a method to map the desired path from the Cartesian space to image space,
and d) a proper vision and force control method for performing the tasks and free motions. The
first three items are discussed in the following subsections and a novel hybrid control method will

be presented in the next section.

3.3.1 Optimal Task-Sequence and Path Planning

Planning the sequence of the tasks is of significant importance since between every two tasks
there is a distance or path that the robot should pass to reach the next task with a free motion (pure
IBVS). Optimal sequence planning would decrease the overall length of free motion distance and
thereby reduce the operation time and energy consumption. At the same time, generating a feasible
and safe path between the tasks and the avoidance of all obstacles in the environment is desired.
Therefore, the combination of the task sequence and path planning for a multi-task operation result
in decreasing the overall length of the path tracked by the robot for the whole operation. To this
end, in this section, a hybrid optimal task sequence/path planning method is developed while
avoiding the obstacles. First, the predefined tasks are described in the following subsections, and

then, the task sequencing and path planning problems are presented in detail.
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3.3.1.1 Predefined Tasks
For type 1 task, the robot is controlled to the desired point. However, for type 2 task, the desired
path should be transformed to the desired signals so that the robot can track it. Therefore, the

following relation holds for the desired path:

(vd(ﬁ))z _ ((af;fga))Z + (afg,l(;?))Z N (afg—gﬂ)z) (% )2’ (3.2)

where vy is the tracking velocity. According to (3.2), 9(t) is derived as follows:

t AWOONE . (O, (OON . (3F,(9O)\2 B 3:3)
— X Zy\"Aa) Z
9(6) = J; va(®) (( 29(0) ) + ( 39(0) ) + ( 29(0) ) ) dt.
By substituting 9(t), given in (3.3), into (3.1), the following desired signal is obtained:
34

T T
Pea® = |(Prey®) (Pog®) | -
Poog(® = [:(90) £(00) EEO)],
Poca(® = [0xa (Prcg®)  ya (Poea(®) 820 (Poca(®)]

T
s

where (de, 0ya, sz) is the orientation of the end-effector obtained when the end-effector is

. . . e t
normal to the workpiece surface on the interaction position, i.e., rot (PO cd (t)) = ”ant;” where
n

ofs(x,y,z) 0Ofs(xy,z) 0fs(xy,z) T
Q) = [ : ]

™ 3y at Pp_,(t) and rot(.) is the rotation matrix of the end-

effector.
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3.3.1.2 Task Sequencing Problem

®Tniial position (IP) Optimal sequence = Non-optimal sequence
NAEP 1:2 NAEP2:] PNAEPZZ Say
O@NAEP [:] o @ .
. : : f o
FE B | | Say, pTesk2g o?.,
2 : Sy % W, e “Task 3
ZAEP LI P21 F T "t %e""
9 TN [ sTask 1 "2 F 5
= | . * % 4.1
£ LA Task1 / . y /4
§ Curved S” |,|‘r9 it '&5‘”3; 1,2)
o ~ Straight line warkpicce Image plane Task 4
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Figure 3.1:Task sequence planning: a) In the workspace, b) In the image plane.

For each path, two points are considered above its end-points with a specific distance d4 called
auxiliary end-point (AEP). These AEPs are the departure and destination points when the robot
performs free motion for switching between the tasks. When a task completes, the tool-tip detaches
from the workpiece and stays on the corresponding AEP. Then, another task is selected, and the
robot moves towards the AEP corresponding to the next task to move downwards to the surface
and start the interaction. This procedure continues till all tasks are done and the whole operation
completes. As mentioned before, since the control process is carried out in feature space, the initial
position of the end-effector is unknown in Cartesian space. Thus, to prevent the collision with the
workpiece or obstacle at the beginning of the operation, a hypothetical box that encompasses the
workpiece and the obstacles can be considered. The height of this box is higher than the
workpiece’s maximum height and the initial position of the end effector, 1.e., IP, is assumed to be
higher than the height of the hypothetical box. Then AEPs are extended to the top surface of the
box (in the normal direction to the surface of the workpiece) and their intersections with that
surface generate some new AEPs called NAEPs. Therefore, to prevent the collision, the robot

tracks the line that connects the IP to the selected NAEP. Finally, the robot tracks the connecting
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line from the NAEP to the corresponding AEP and continues the operation by selecting the AEPs

of the remaining tasks (Figure 3.1a).

The main objective of the task sequence planning, in this study, is to minimize the summation
of path lengths between the AEPs of the tasks and the distance between the initial point of the tool-
tip and the first AEP. Note that when a path is selected, only one of the AEPs corresponding to its
end-points can be selected which is the main property of generalized TSP (GTSP). Furthermore,
if the selected task is tracking a path, one of its corresponding AEPs must be selected as the
destination point and thus the other corresponding AEP is the departure point of the next sequence.
However, if the selected task is a point, its corresponding AEP is considered as both the destination
and departure points for the current and next sequences. Therefore, this is a constraint for the end-
point selection corresponding to the task. Accordingly, the overall task sequence planning problem

can be defined as a constrained GTSP (CGTSP) (Figure 3.1b). The CGTSP is defined as follows,

Min: Costcgrsp = Z;-Zl Y. (Cijydiy) + 20T 1]'21 Yo X1 (Cijradijser)s (3.5)

Contraints : Y17, ¥2_,(Cizp) = 1;
n
i Yhe12i=1(Cojger) = 0;
n n
N X Bk X (Cijpen) = — 1

Zz ZZ (Cijxr) <1V i€efl,...n;}&j€(L,..,ns}

k=14=1=1

where d; j ., is the length of the path between the k™ AEP of the i*" task and [*" AEP of the j*
task which is calculated using MAPF explained in the next subsection; di;; = ||I P — AEP;,; || is the
distance between the IP and the [*"* AEP of the j" task; C; ik € {0,1} is the binary variable that
indicates the connection from k" AEP of the i" task to I*" AEP of the j*" task, and Ci;; € {0,1}

is the binary variable that indicates the connection from IP to [** AEP of the j* task.
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3.3.1.3 Path Planning Using MAPF
In the manufacturing industry, the robots normally perform the operations on the workpieces
with complex geometries. Thus, the ability to interact with these kinds of surfaces has been

regarded as an important part of the industries [69], [70], [71].

For such workpieces, the free movement from one point to another cannot be performed on a
straight line, due to the potential collision. To avoid the collision, the free motion must be done on

a path that connects those two points (Figure 3.1a).

For generating a collision-free path, APF method has been a prevailing method [72]. In APF, two
kinds of potential fields are considered. a) attractive potential field towards the target destination

AEP, i.e., Uyt (X); and b) repulsive potential fields from the surface of the object, i.e., Upep(X).

Accordingly, the overall potential field U(X) is obtained as:

UX) = Ugee (X) + Urep X, (3.6)
where X € R3 is the coordinate of a point in the Cartesian space in the workpiece frame; Uy, (X)

and U,.¢p, (X) are as follows:

c
Uatt(X) = %IHX - Xdesllz; (3’7)
Gz (1 _ 1Y)’
Upep(X) =1 2 (ds dm) » ds < dp ,
0 , dg=>d,

where d,, is the thickness of the inadmissible layer on the surface and Cp;, i = 1,2,3, are positive
constants, X .5 is the coordinates of the destination point and dg = ||[X — X,,|| is the normal

distance to the surface of the workpiece. X,, is the point on the surface, which has the minimum
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fs(x) =0
distance to X. Thus, X,, is the solution of {6fd(x) —0 where f;(x) = ||X — x||. According to (3.6)
ax

and (3.7), the overall potential force is calculated as follows,
F(X) = Fore(X) + F;‘ep(X)a (3.8)
where Fgi (X) and F..,(X) are the attractive and repulsive potential forces can be obtained as

follows:

Fare = Cpl(Xdes - X), (3.9)
1 1 1
o[ b < o
r —_ S S m .
* 0 L dy > dy,

To generate the desired path from X, to X4, the steepest decent method with a constant velocity

v, 1s adopted as follows:

t( F(X)
X(@) =- fO (m vm) dt + Xgep, X (taes) = Xaes- 3.11)

The main disadvantage of APF is its inability to escape from local minima. When repulsive force
and attractive force has the same value but in the opposite direction, the equivalent force becomes
zero and thus, it sticks in a local minimum point. One way to handle this issue is to use optimization
algorithms to adjust the parameters, with the objective of reaching the destination point. However,
due to the lack of flexibility, the solution for the optimization problem may not exist. To address
this issue, in this paper, APF is modified by adding a rotational force in 3D space which leads to
modified APF (MAPF). This rotational force contributes to escape from local minima by deviating
the direction of the repulsive force and thus rounding the obstacle. Therefore, the overall potential

force will not be zero in the points where the local minima occur and by adjusting the parameters
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properly, the problem of local minima can be solved. The direction of the rotational force is normal

to the repulsive force and can be calculated as follows:

tan(arot) Frep (X)'(Frep (X)XNrot) (3 12)
”Frep(X)XNrot” i

Frot(X) =

where N,,; is the vector normal to the plane that passes through the departure and destination
points and is fixed with a specific angle f,,;. An example of the rotational force in 3D space is

depicted in Figure 3.2. Therefore, the overall potential force can be rewritten as follows:

F(X) = Fare(X) + Frep(X) + Frot (X). (3.13)

-
-
-

-1 Destination
point

— —
-
——

DEparture C __  ———
point

Figure 3.2: Rotational potential force.

3.3.14 CGTSP-MAPF

As mentioned before, to solve the CGTSP, the length of the paths between each task should be
known. These paths, however, are generated using MAPF whose parameters should be adjusted
properly by an optimization algorithm. It is advantageous to merge both CGSTP and MAPF
optimization problems as one optimization problem. Note that since the parameters of CGSTP and
MAPF are binary and continuous, the resultant optimization problem would be a mix-integer one.
To this end, a mix-integer version of MTOA is developed and employed to solve this problem

which is discussed in the following subsections.
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a) CGTSP-MAPF Optimization Problem

Since the control process is carried out in the image feature space, the generated path by MAPF
must be transformed into this space. Besides, the initial pose of the end-effector in the Cartesian
space is unknown. Thus, without the loss of generality, the paths between the AEPs in cartesian
space are replaced with the corresponding trajectories in the image feature space whose length can

be calculated as follows,

—_ T_

ab = fo ab(SAT/IAPF@WpSMAPF@)dt, (3.14)
where Syaprgp € R is the normal image feature vector corresponding to a point on the path
between point a and b; and W,, € R®*® is the positive definite orthogonal matrix to be defined by

the user. Note that S, 4pr is defined as follows:

o [ o & o5 5 g]T (3.15)
MAPF — \/B—c \/E—c c, cx cy cz| »

where c, is the coefficient of the depth in the image plane which is calculated based on the size

of the image object. To map the generated path in the cartesian space to the image plane an MLP

neural network is developed, which will be described in detail. It is worth mentioning that dgj is

a function of MAPF parameters, Le.,
[ Cp2,y + @rotys =+ Erot s Brotys s Broty, dmo A, }. which are adjusted by the

optimization algorithm. Accordingly, based on (3.5), the overall CGSTP-MAPF optimization

problem is derived as follows,

Min: Costcgrs—mapr = 2?21 YE(Cijdyy) + X0 1]-111 Y 1 X (Cijadijg),  (3.16)

Contraints : Y17, ¥2_1(Ciyp) = 1;
20 ER1 2iea(Cijer) = 0;

58



i X Y Xi1(Cijpet) =nr — 15
2 2
Z Z (Cijrr) <1V i€Efl,..,n;}&j€ELL, ...,ng},
k=14=1=1
Optimization Variables:
MAPF variables: {Cpl, szo, . szno' Arotqr -

, arotnoi ﬁ‘rotlﬂ i ﬁrotnoi dmoﬂ e dmno} S R+
CGSTP variables: Ci;;, € {0,1}

b) Mix-integer MTOA

To solve the CGTSP-MAPF, the mix-integer version of MTOA is developed and employed.

MTOA, which is a population-based optimization algorithm, was developed by Zakeri et al. in

2017 [66]. MTOA is composed of two types of trackers, global G and local Ly . During the search

process, the global tracker, Grs, using stochastic motion and information from Ls, explore to find

the global optimal point (GOP), (3.17), [66]. The number of the local trackers is predetermined;

each of them explores in a neighborhood of the corresponding G with radius Rs , (3.18), to find

the local optimal point, LP. The search radius around each G is determined by its rank, RK. The

search process of this algorithm is described in detail in [66].

G; = B(GOP — Gr,) + (1 — B)(LP; — Gr,),0 < B <1

. _{Rfl-, Rf; = Rd,
%t = \Rd,, Rf, <Rd;
RK;—1

= *(RM — Rm) + Rm,

where Rm and RM are the predefined minimum and maximum search radii, respectively. Note

that to make MTOA applicable for integer optimization variables, the following relation has been

used:
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X _ [Xcon' (1+XintMAX_XintMin)] X (319)
int — _ + intymin °
Xconpmax~Xconmin

where [. ] denotes the floor function, X,,,, and X;,,; are the continuous and integer variables for the

optimization, respectively. Xconyay> Xconyin» Xintpax> 804 Xineyy, are the maximum and

minimum of the continuous and integer variables, respectively.

3.3.2 Mapping From Cartesian Space to Image Plane

In IBVS, S(t) is the set of image features corresponding to the pose of the camera (or end-
effector) with respect to the workpiece frame {Ff} at the time instant t, i.e., P.(t). However,
defining S, (t), which is the set of desired image features corresponding to the desired pose P.4(t),
is a challenging task. To this end, two main approaches have been suggested [48]: a) extracting
analytical relationship between P4 (t) and S;(t); and b) experimental derivation of S;(t) when
the camera pose is adjusted to P.;(t) manually, i.e., image trajectory planning based on robot

programming by demonstration [48].

However, the first method may not be precise in the practice due to existing uncertainties in the
camera's intrinsic and extrinsic parameters and the second method involves a cumbersome
procedure which makes it inappropriate for tracking the desired paths. In this study, to handle these
problems, the combination of these two methods is considered. First, the analytical relationship
between S,;(t) and P.4(t) is derived. Then, S;(t) passes through a three-layer multi-layer

perceptron (MLP) neural network [67] whose output, S, is the estimation of S,. Then, the NN is

trained to minimizing e;q = S4 — Sy4.

Let f4: R® — RO be the analytical function that takes the desired pose and returns the estimated

corresponding desired feature, i.e., $;(t) = f4 (Pea(®)). Using NN, S is obtained as:
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S4(t) = NNgq (fsd(Pcd (t))) = fsa(Pea(®) + W3fsig(w2fsig(w1§d +B,)+ B,) + B; (3.20)
where, f5;q (%) = # is the sigmoid activation function. W; € R"1*¢ W, € R"2*™ and W; €

R*"2are weight matrices and B; € R™, B, € R™2, and B; € R® are the biases of the NN, all of
which are tuned by training. n; and n, are the number of neurons in the first and second hidden

layers. The topology of the adopted NN is illustrated in Figure 3.3a.

To train the NN, a set of desired poses, Psp, which are selected randomly with a uniform probability

distribution in the workspace, is determined as follows:

Psp = {Pr1 Prz = PRy}, (3:21)
where Pg_ to PRnd are the preselected desired poses, and n, is the number of sampling data. Then,
the sets of image features, Sgp, corresponding to Psp are acquired as:

Ssp = {SD1 Spp SDnd}, (3.22)
where Sp; is the real image feature corresponding to Pg; acquired in experiment. The pair of Sgp

and Psp can be used to train the NN using Levenberg-Marquardt (LM) method to minimize the

following cost function [73]:

T 3.23
Cost = %1%, (Sp; — NNsa(Pr;)) Cw (Sp; = NNsa(Pr,) ). G2

where Cost is the cost function, and Cyy € R®*® is the diagonal positive definite matrix of cost

value weight.

Besides the mapping network, an approach is needed to manage detachment from and contact with
the workpiece’s surface. The main desired path is defined on the workpiece’s surface. Then,

consider two other desired paths: one is rendered by moving the main desired path above the
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surface, called Py, and the other beneath it, called Py, with the margin shown in Figure 3.3b. The
desired features corresponding to those paths are S, - and Sy ;> respectively. Accordingly, if the
robot needs to detach from the surface, i.e., free motion, §d & 18 selected and if the robot needs to
interact with the surface, Sy ; 1s chosen. Once the tool contacts with the surface, the binary

switching variable e{0,1} is set to 1 and hybrid control is conducted, provided that S ; 1s selected

as the desired path. Otherwise, 1 = 0 and free motion is carried out. This is done by incorporating

1 into the sliding variable which will be described in the next section.

Fsd (Pcd)

o

cd

Figure 3.3: a) The three-layer NN, b) Py, Pp ., and Py,

3.4 Hybrid Vision and Force Controller Design
In this section, FQSMC is designed to exploit a novel VGOSM for hybrid control of vision and
force which leads to robustness against uncertainties and noises. It also can control the robot for

both free-motion and hybrid vision and force tasks.

3.4.1 Variable-Gain Orthogonal Sliding Manifold
34.1.1 Orthogonal Sliding Manifold Design

Consider the suggested sliding manifold o € R® as follows:

o = op + oy, (3.24)
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where 0z€R® and o,eR® are orthogonal vectors associated with the force error and the image

feature error, respectively, presented as follows:

Of = QeFl Os = KC(I - Q)ePJ (325)
where er € R%e, € R®, and Q € R®*® are the vectors of force and robot pose errors and the
compliance selection matrix, respectively, presented in (3.26); K, € R®*® is a positive definite

orthogonal matrix whose terms are variable, which will be discussed in the next subsection.

1
e, Q=yDTD, e, =S—S,, (3:26)

erp =F —F4,ep = is
where, F; € R®is the vector of desired forces, and eg € R® is the vector of image feature errors,
Sq € R® is the vector of desired image features, D € R® is the selection vector whose entries are
either zero or one, corresponding to directions where the exerted force must be controlled, p is
zero when the robot has a free motion and one when the robot is interacting with the workpiece

whose value is determined by the TM algorithm. In this research, the interaction force in the normal

direction to the end-effector is controlled. Thus, D is defined as follows:

D=[0 0 1 0 0 O] (3.27)

In Theorem 3.2, it is proved that o and o,, are orthogonal. Hence, if tlim o = 0, then lim op =

—+00 t—>+oco

lim o; = 0 i.e., the objective of the vision and force control is achieved.

t—+oo

Theorem 3.2. o and o, vectors are orthogonal.

Proof. consider the following relation:

Ops = O " 05 = O-I:"TO-S’ (3.28)

where ogp is the results of dot-product of o and o,. Substituting (3.25) into (3.28) yields:
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ors = (Qep)T(Kc(I - Q)ep). (3:29)
Since K, and Q are diagonal, (3.29) can be rewritten as:
ors = er QI — QK ep. (3.30)
In (3.30), QT(I — Q) = 0, thus ozg = 0. Referring to [74], if the dot product of two vectors is zero,

they are orthogonal, i.e., o and o are orthogonal and the proof is completed.

3.4.1.2 Variable Gain of the Vision Term

One way to reduce the response time of IBVS is to increase the gain values in the control law.
However, there is a limitation on this value because the high gain in IBVS controller tends to make
the robotic system shaky and unstable. On the other hand, low gains may make the system very
slow [75], [76]. To handle this issue, adaptive variable-gain IBVS and switch IBVS have been
suggested, [75], [76], [77]. In the adaptive variable-gain method, the value of the control gain
changes based on the norm of feature errors. When the norm is large, the gain sets to a large value
to speed up the convergence rate. On the other hand, when the norm is small, the control gain is
set to a small value to prevent unwanted oscillation and instability [76]. In the switch IBVS method,
the visual motion is decomposed into translational and orientational motions of the camera,
respectively. Then, each motion is controlled independently and with different feedback gains.
However, due to the switching nature of this method, it is only applicable to vision control systems

that are designed for regulation purposes [75]. Hence, it cannot be utilized in this study.

Based on the two mentioned methods, a novel variable gain using tangent hyperbolic function
is developed for the vision term in the VGOSM. The continuous nature of the obtained method
makes it possible to be adopted for vision systems with tracking trajectory purposes. In (3.25), K,

is identical to the feedback control gain of switch IBVS in [75] which is defined as K, =
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[ K¢  03x3
03><3 Ka

], where K; € R3*3 and K, € R3*3are positive definite diagonal matrices of feedback
gains associated with the translational and orientational motions of the camera, respectively. Also,

translational and orientation errors of the camera motion are ep; € R® and ep, € R3, respectively,
Pt Pa

determined as ep = [ef, ef,]T. Accordingly, the variable-gain relation is suggested as follows:

tanh(a¢llepell+be)+1
Kt = ( : ;t : (CHt - th) + th) I3X3a (331)
tanh(agllepqll+bg)+1
Ka = ( ; (CHa - CLa) + CLa) I3x3,

where a;, a,, b;, and b, are adjustable parameters that determine the characteristics of the smooth
switching function tanh(.). ¢y,, €y ,, €1, and ¢, are the lower and upper bounds of the feedback
gains. The above equation aims to provide adjustable gains based on the errors. According to this
equation, it can be seen that as the error decreases, the gain values of K; and K, changes from their
high-level values ¢y, ¢y, to their low-level values ¢, and ¢, ;. As a result, the vision system

converges fast when the error is high and avoids oscillation when the error is low.

3.4.2 Filtered Quasi Sliding Mode Controller

FQSMC not only is robust against uncertainties, but also filters out the noise in the feedback. It
exploits a filter within its control law which is also considered in the procedure of its stability
proof. Additionally, its continuous output leads to a chattering-free SMC. All of these features
make FQSMC a candidate for the systems subject to large uncertainties and measurement noises

such as the one in this study.

3.4.2.1 Control Law Design
To derive the FQSMC control law, the time derivative of ¢ is taken. It results in appearing the

system input, i.e., u = q. Thus, g is obtained as follows:
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6 = Qér + (diagles} I — QJx + K- @)Ly &, (3.32)

6md{Kc}

where J; = , in which md{x} is the function that takes a squared matrix * and returns its

main diagonal as a vector. Taking time derivatives of (3.26) and then, substituting (2.11) and (2.15)

and into it, results in the following relations:

ér = KeJqu+6p — Fy, &5 = isiqu +8,— S, (3.33)
Substituting (3.33) into (3.32) yields:
6 = Q(Kjqu — Fy) + (diag{ep}d — QJx + K (I - Q))i.s_1 (isiqu — §d) + 8, (3:34)
where
5, = Qb + (diagle,}1 - QJ + K (- Q)L 4. (335)
Based on (3.34), the FQSMC law can be obtained as follows:

u = (QRJ, + (diagle,} — Qi + KcU - Q)fg) (n+ QFy + (diaglep}a—  G30)

Ol + K- Q)L Sy,

where

n = —A7Az0c — Aytsat(po,) (3.37)
d-C = _AZO-C + AIO' ’

q)_lo'c, |(I)_lccl <K (338)
Ksign(¢p~'oc), [p~'ocl =K

st io0) -
In (3.37) and (3.38), 17 € R® is the reaching law and oy is the filtered value of o; ¢ € R is the
positive definite orthogonal matrix of the boundary layer thickness; K € R® is the saturation

threshold whose value is set based on the bounds of system uncertainties. The schematic of

FGSMC is shown in Figure 3.4.
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Figure 3.4: Schematic of the proposed robust hybrid controller.
3.4.2.2  Stability Analysis

The stability proof of FQSMC is presented in Theorem 3.3. A necessary assumption for this

theory is considered as follows:

Assumption 3.1. The following relation holds for & :

16,] < D, | D,eR®*%, D, > 0. (3.39)

Theorem 3.3. Under the condition of (3.40), applying the FQSMC law of (3.36) to the dynamic system of
(3.34) leads to its stability with a Quasi-sliding motion, i.e., |6| < &g for all t > T, where 8g, €, > 0 and
T, > 0 (3.23), provided that Assumption is satisfied.

Al,Az,Ag > O, K> AlDL! (Az - (,UI) > 0, (340)

1 1
V2(Az — wD2V2wA% > |(YI — wAz — A3)| + 24,
A2 —4(A3+dpH>00<w<1y>1.

Proof. Substituting (3.36) into (3.34) yields:

i ~A7'Asoc — Af'sat(dloc) + 6, (3:41)
d—C = —Azo'c + A10' '

By taking the time derivative of the second row of (3.41) and substituting it into its first row, the

following relation is obtained:
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5C = _AZd-C - A3O'C - Sat(q)_lO'C) + A16L. (342)

Consider the following candidate Lyapunov function:

V =yoloc + 2waldc + 6loc. (343)

Based on (3.40), it can be deduced that w < y'/2. This inequality results in the following relation:

1
2waléc| < |2viadec|, lvatoc| 2 0, |68 6c| = 0. (344)
Additionally, the following relation holds:
(y1 20c +adc)T (y1 20c + oc) =yaCToC + 2yl 20CTaC + aCTaC > 0. (3.45)

By comparing (3.44) with (3.45), it can be deduced that yo, o¢ + 2wa( 6 + 62 6c =V = 0 when
(0¢,6¢) = (0,0) and V > 0 when (o, d¢) # (0,0): the required condition of a Lyapunov

function [78], V is obtained as follows:
V =2yoldc + 2wiloc + 2walbc + 261 6. (3.46)

To prove the Quasi SMC under the proposed control law, the attraction towards the boundary layer

should be illustrated, i.e., when |[p~1o.| = K, V < 0. Substituting (3.42) into (3.46) yields:
V=6F(2(yI — wA; — A3)a. — 2(Ksign(oy) — A18L)) — 267 (A, — w6 — (3.47)

2wl Aso; — 2wa) (Ksign(op) — A16,).

Based on Assumption 3.1 and (3.40), the following relations yield:
—2wao} (Ksign(og) — A16,) < 0, (3.48)

VZ(A, — wl)%\/%A% > (Y1 — wAy; — A3)| + 2 = (34)

(L sy
locl locl

Comparing (3.48) and (3.49) with (3.47) yields:

<(V1 —wAy; — A3) —
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1

. 1 1 \T 1 1 (3.50)
V<=2 <(A2 — w26, + \/ZA§GC> <(A2 — wDZ6, + \/5A§00>.

Accordingly, when |¢p~2o.| = K, one has V < 0. When |p 10| < K, (3.42) is obtained as:

&C = _AZO.—C - (Ag + q)_l)Gc + A16L. (351)
Since A; to A5 and @ are constants, the relation above can be transformed to the frequency domain

using Laplace transformation as follows:

Zp? + AgZep + (Ag + ¢~DZ, = AjAy, (3.52)
where p is Laplace operator, . = L{o,} and A;, = L{6,}, where L{x} is Laplace function. Thus,

the transfer function T; (p) = Z.A47 ! is obtained as:

_ -1
T.(p) = 2471 = A ((pP1 + R)(PI+Ry)) (3.53)
1 2 0\ /2
R =3 (A, + (A3 — 45+ 7)) ")
1 1/2
R =5 (-2 = (a5 - 45+ 97) )
Based on (3.40), (3.53) has real poles. Also, taking Laplace of the second row of (3.41) results in

the following transfer function:

T,(p) = 2271 = (pI + Ap) 7 'A,, (3.54)

where £ = L{c}. Based on (3.40), (3.53) and (3.54), T5(p) = XA ! can be obtained as follows:

T3(p) = Ti(@T;' () = As((P1+ A PI + ROPI+R) . (3.55)
Based on (3.40), the nominator’s coefficients of T5(p) are positive and real (there is not nay
imaginary roots). Hence, it is stable. So, it can be seen that the response has its maximum
magnitude in zero frequency [42]. It means that the response is bounded as |o| < §5 where g =
T2 (0) = (R 1R A (A) ™ = Ai (A3 + ¢~ 7TAL. Thus, FQMC is a Quasi SMC and the

theorem is proved.
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Remark 3.1. T, (p) in (3.54) is a low-pass filter that exists in the reaching law in (3.37). Thus, it filters out
the existing noises in the orthogonal sliding manifold o emanated from force sensor and camera measurement
noises. Also, FQSMC does not exploit a discontinuous switching function in the control law, it is free of

chattering.

Remark 3.2. Typically, in Quasi SMC, there is a trade-off between the tracking error and
chattering. Hence, if the control gains are set to large values, chattering increases due to the
existing noises in the sensors’ feedback. If they are set to small values, the tracking error may
increase. However, in FQSMC, the intrinsic filter smooths the signals and thus the controller gains
can be set to larger values. Consequently, the tracking precision will increase without generating

adverse chattering.

3.5 Experimental Results and Discission
In this section, several experiments have been conducted to investigate the performance and
feasibility of the proposed method. Note that two workpieces with planar and curved surfaces are

provided for the tests. The constraint relations of the workpieces’ surfaces are as follows:

Planar: fs(x,y,2) = z, (3.56)
Curved: f5(x,y,z) = (z— 0.15)? + x2 — 0.152.
3.5.1 Result of Training the Neural Network
To train the NN, ng is set to 1000 and 20% of the sampling data is considered for the validation
test. The maximum number of iterations for training is set to 1000. Figure 3.5 shows the results of
training the NN for the planar workpiece. The cost value for training data has converged to zero
after twenty iterations which means the NN is trained well. Additionally, the cost value for

validation data shows a consistent decrement which means the NN is not over-trained.
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Figure 3.5: Training the NN.

3.5.2 Design of the Experimental Test

For the experiments, five experimental tests are designed. In the first four tests, the
performance of the proposed MAPF-CGTSP method and switching between the free-motion and
interacting with the workpiece, along with the proposed controller is investigated for the
environments with obstacles. To this end, four operations labeled as Op.1,..., Op.4 are considered
with a different configuration of the number of tasks and the obstacle positions to analyze the
performance and accuracy of the proposed task-sequence/path planning using MTOA in
challenging situations. The environment configurations corresponding to each operation are

depicted in the next subsection. The equations Obstacles and tasks of Op.1 to Op.4 are given in

(3.57) to (3.60).

( Type: 2 (.57
0.04cos ((91.6 — 0.3)m) Type: 1 )
Task 1: 1 Pwa(®) =10.02sin((3.20 — 0.6)m) +.1| g 5. JPwa(@) =[02 .1 0
0 T, = 50
vy = 0.001 F;(9) =8

71



( Type: 2
1 T
Type: 1 ] 0.08 cos (§ I + §)
)P =[-.02 .1 0] CJPwa (@) = (1 T
Task 3: i T, = 30 , Task 4: 4 0.08 sin (51971 + 5) +0.1
Fy(¥) =8 0
vy = 0.001
Type: 2 (3.58)
0.029 — .06 Type: 1
— — T
Task 1: Pya(9) = 0.1 Task 2: P,qa(®) =1[0.07 0.12 0] ’
0 T, = 30
vg = 0.0005 F;(9) =8
Fa(9) =8
Type: 2
0.07
JPya®) =[0.07 0.14 0]T
Task 3: 0.01045  °
l vy = 0.0005
Fd(ﬁ) =8
Type: 2 (3.59)
0.055 Type: 1
) Ppa(®) = [0.111 —.039 JP,a(®) =[-.055 0111 -.01045]T
Task 1: — 01045 , Task 2: T, = 30 ,
vy = 0.0005 F,(9)=8
F;(9) =8
( Type: 2 (3.60)
.02sin (59m+5) +.03
2 2
1 T
_ .02cos (=9 +—=)+.125
Task 1: < Puwa(9) = (2 2) ,
152~ ((Lozsin(fom+ ) +.03)) - 15
(. — ( Sln(z Tl’+;)+. )) -.
vy = 0.001
\ F;(9) =8
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( Type: 1
Task 2. ipwd(ﬁ)z[—.oss 111 —0.01045]"

T, =50
The objective of the fifth test is to evaluate the performance of the proposed hybrid control
method and compare the results with other aforementioned well-known schemes in terms of
tracking error, convergence rate, control effort, and chattering level. An infinity-shaped path on

the planar workpiece is defined as the desired path and a sinusoidal desired signal is defined as the

desired interaction force as:

P;(t) = [0.05cos(0.025¢) + 0.02 0.025sin(0.05¢t) O (3.61)
0 0 0]%F;(t) =1.5sin(0.15¢t) + 6.
3.5.3 Results and Discussion of the Experimental Tests
3.5.3.1 Hybrid Task Sequence/Path Planning (Tests 1 to 4)

In these tests, a set of four operations is presented. The performance of the proposed optimal
task sequence/path planning method using the MAPF strategy is compared to that of the traditional
APF. Furthermore, a comparative study of solving the MAPF-CGTSP by the mix-integer MTOA
against the PSO, GWO, membrane-inspired evolutionary algorithm (memE) is presented to
compare the performance of the proposed optimization algorithm. Please note that the parameters
of the optimization algorithms are set in a way that their overall populations are almost 10, 20, 20,
and 20 for Op. 1 to Op.4, respectively.

As mentioned before, this problem is composed of two various problems including finding the
optimal task sequence and also the parameters of the proposed MAPF method to have an optimal
collision-free path between the tasks. In the first row of Table 3.1, the result of solving the task

sequence part of the optimization problem for each operation, using the MTOA, and the direction
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of Type 2 tasks is listed in two different subsets. For each case, MTOA is executed thirty times
(30 independent runs) to reach the solution. The first subset defines the sequence of the tasks for
each operation and the second subset shows the direction of entering to a Type 2 task and exiting
from it. Note that, in the second subset, 0 is corresponding to the endpoint A for a Type 2 task and
1 is corresponding to the endpoint B. The other parameters listed in Table 3.1 are obtained by
MTOA for the MAPF to reach an optimized collision-free path between the tasks while the

sequence of the starting and ending points of each path has already been obtained.

Table 3.1: The optimized parameters for MAPF-CGTSP using MTOA.

(i)[:::ll:lz;tel:sn Op. 1 Op. 2 Op.3 Op. 4
Task seq. {213 4}|{01} {23 1}1{1} {1 2}|{0} {1 2}|{0}
k, N/A 0.8234 0.2079 0.4241
k, N/A 0.3735 0.9341 0.0603
a, N/A 0.7738 0.4106 0.7269
Aot N/A 0.000002638 0.00000941 0
Po N/A 0.5163 0.3707 0.9486
Ky g N/A 0.008908 0.1567 0.8594
ap, N/A 0.9204 0.5168 0.002304
Urotq N/A 0.3504 0.00001312 0.4614
Po, N/A 0.9654 0.8814 0.3977
k;, N/A 0.2847 N/A 0.4181
ap, N/A 0.5363 N/A 0.8311
Arot, N/A 0.000008907 N/A 0.5818
Po, N/A 0.3105 N/A 0.01136

Based on this table, in the first operation, four different tasks, two Type 2 tasks and two Type 1 tasks, are
defined on a planar workpiece. Based on the optimal task sequences of the first operation, it can be observed
that this operation starts with the second task (T2) which is a Type 1 task or a point and moves towards the
first task (T1) which is a Type 2 task or a path. The direction of Type 2 tasks affects achieving an optimal
general path for the operations. Based on the obtained direction for the Type 2 tasks in this table, the first Type

2 task (T1) starts from the end-point A (T1A) and exits from the endpoint B (T1B). Then, the robot moves to
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the third task (T3) which is the other Type 1 task. Finally, the robot moves towards the last one which is the
fourth task (T4). This task is also a Type 2 task with two endpoints which based on the second element of the
second subset, the robot will enter from its endpoint B (T4B). The desired tasks and the paths between each
two tasks are depicted in Figure 3.6. From this figure, it can be seen that the first operation is free of obstacles.
Therefore, the path between the tasks can be considered as a straight line. Hence, this operation does not
require to use MAPF for obtaining the path between the tasks. The robot carrying out the tasks for the first
operation is shown in Figure 3.7. The results of the vision and force control system in performing the first
operation are presented in Figure 3.8a and b. According to Figure 3.8a, which shows the trajectory tracking
of Op. 1 on the image plane, it can be seen that the robot tracks the two paths and regulates on each point of
the tasks one-by-one until the entire operation is done. Referring to Figure 3.8b, the effectiveness of the force
control process for each task and also the feasibility of the proposed method for switching between the free

motion and interaction with the workpiece is demonstrated.
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Figure 3.6: Op. 1-Desired paths and points of four tasks on the workpiece
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Figure 3.7: The robot operating Op. 1.
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Figure 3.8: Path tracking in the image space and force control of all the tasks of OP. 1: a) Tracking the paths and
points in the image space of Op. 1, b) Controlling the force of Op. 1.

In the second operation, three different tasks, a Type 2 task and two Type 1 tasks, are defined on

a planar workpiece. Based on the optimal task sequences of the second operation, the robot
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performs the whole operation. The desired tasks and the paths between each two tasks which are
obtained by APF and MAPF methods are depicted in Figure 3.9a and b, respectively. From these
figures, it can be observed that two obstacles are placed between three defined tasks. In Figure
3.9a, using the APF method, the robot moves from the NAEP towards the AEP of the first task
sequence selected by MTOA (T2) through Path 1. Then, using APF method, the robot moves from
T2 to T3 (the second task sequence selected by MTOA) through Path 2 which is depicted in Figure
3.9a. However, the APF method does not work properly in reaching the third task sequence (T1).
Hence, the robot will be trapped and could not continue its trajectory to reach the target. Figure
3.9b shows that when using the MAPF method, the robot successfully reaches the target. So, the
proposed method outperforms the traditional APF method, since it gives a minimum collision-free
traveled distance in performing this multi-task operation in presence of obstacles. The robot
carrying out the tasks for the second operation using MAPF is shown in Figure 3.10. The results
of the vision and force control system in performing the second operation are presented in Figure
3.11aand b. According to Figure 3.11a, which shows the trajectory tracking of Op. 2 on the image
plane, it can be seen that the robot tracks the defined path and regulates on each point of the tasks
one-by-one until the entire operation is done. Referring to Figure 3.11b, the effectiveness of the
force control process for each task and also the feasibility of the proposed method for switching

between the free motion and interaction with the workpiece is demonstrated.
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Figure 3.9: Op. 2: a) Desired paths and points of three tasks on the workpiece using APF method, b) Desired paths
and poin of three tasks on the workpiece using MAPF method.
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Figure 3.10: The robot operating Op. 2.
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Figure 3.11: Path tracking in the image space and force control of all the tasks of OP. 2: a) Tracking the paths and

points in the image space of Op. 2, b) Controlling the force of Op. 2.
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In the third operation, two different tasks, a Type 2 task and two Type 1 tasks, are defined on a
curved workpiece to show the effectiveness of the proposed method in performing the multi-task
operation on more complicated workpieces. Based on the optimal task sequences of the third
operation, the robot performs the whole operation. The desired tasks and the paths between each
two tasks which are obtained by APF and MAPF methods are depicted in Figure 3.14. From these
figures, it can be observed that one obstacle is placed between two defined tasks. In Figure 3.14a,
using the APF method, the robot moves from the NAEP towards the AEP of the first task sequence
selected by MTOA (T1) through Path 1. After completing T1, the robot is required to move

towards the other task (T2) from the other endpoint of the first task (T1B).

However, the APF method does not work properly in reaching T2. Hence, the robot will be trapped
and could not continue its trajectory to reach the target. Figure 3.14b shows that when using the
MAPF method, the robot successfully reached the target. So, the proposed method outperforms
the traditional APF method, since it gives a minimum collision-free traveled distance in
performing this multi-task operation in presence of obstacles. The robot carrying out the tasks for
the third operation is shown in Figure 3.12. The results of the vision and force control system in
performing the third operation are presented in Figure 3.13. According to Figure 3.13a, which
shows the trajectory tracking of Op. 3 on the image plane, it can be seen that the robot tracks the
defined path and regulates the desired point of the task until the entire operation is done. Referring
to Figure 3.13b, the effectiveness of the force control process for each task and also the feasibility
of the proposed method for switching between the free motion and interaction with the workpiece

1s demonstrated.
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Interaction: T2 (:30s)  Free motion (t:80s)  Interaction: T3 (t:142s)

Free motion (t:140s)  Free motion (t:440s) Interaction: T1 (t:296s) Finishing up (t:490s)

Figure 3.12: The robot operating Op. 3.
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Figure 3.13: Path tracking in the image space and force control of all the tasks of OP. 3, a) Tracking the
paths and points in the image space of Op. 3, b) Controlling the force of Op. 3.

Path 2: T1A — T2
0.05y (Does not reach the target)

Figure 3.14: Op. 3 (a) Desired paths and points of three tasks on the workpiece using APF method, b) Desired paths
and points of three tasks on the workpiece using MAPF method.
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The fourth operation is also accomplished on a curved surface with a different obstacle
configuration. Two different tasks are defined for this operation. The results obtained in Figure
3.15a and b, show that the APF method cannot finish the operation successfully. However, using
the MAPF method, the operation is performed properly. The robot carrying out the tasks for the
fourth operation is shown in Figure 3.16.

The results of the control process for the intended tasks are presented in Figure 3.17. According to
Figure 3.17a, the robot has tracked the desired features for each task when interacting with the
workpiece and between the tasks by free-motion properly to complete the operation. Referring to
Figure 3.17b, it can be seen that the interacting force is controlled properly as well. These results
show not only the effectiveness of the proposed path/task sequence planning, but also the

feasibility of the proposed hybrid control method for different workpieces.

Path 2: T1A — T2

(Does not reach the target) Path 1: NAEPL = TIB

Path 1: NAEP1 — TIB |
~. Path 2: T1A — T2

Obstacle-1

0.05

= ;“.- ;‘. ] ‘ _;" / y ’
4 [~/ 005 N —
-0.05 [ T~ S 0,05 ..

z (m)

Figure 3.15: Op. 4: a) Desired paths and points of two tasks on the workpiece using APF method, b)
Desired paths and points of three tasks on the workpiece using MAPF method.
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Free motion (t:420s)  Free motion (t:570s) Interaction: T2 (t:590s) Finishing up (t:610s)

Figure 3.16: The robot operating Op. 4.
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Figure 3.17: Path tracking in the image space and force control of all the tasks of OP. 4: a) Tracking the paths and
points in the image space of Op. 4, b) Controlling the force of Op. 4.

Each test was independently executed 30 times for each operation. The results provided in Table
3.2, show the arithmetic best, mean, worst, and standard deviation of the path length in the image
plane for the 30 individual tests on each operation. From this table, it can be concluded that the
MTOA method outperforms the other optimization algorithms. The best path obtained using the
MTOA for the first operation is the same as the other methods, since the environment is free of
obstacles which leads to a simple CGTSP problem. Therefore, in this operation, the optimization
problem converts to a simple problem of finding the integer sequence of the tasks which is obvious

that all provided algorithms have successfully reached the desired sequence to minimize the path
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length. For the other operations, it can be observed that the MTOA method overcomes the
drawback of PSO and GWO which are easy to be trapped into local optimum on average. The

result also tells that MTOA has a better performance than memE in dealing with environments

with obstacles.

Table 3.2: Results of the different optimization algorithms for all operations expressed in meters (m).

Operation Statistics PSO GWO memE MTOA
Best 0.4803 0.4803 0.4803 0.4803
Op. 1 Mean 0.5415 0.4843 0.4803 0.4803
Worst 0.7406 0.5492 0.4803 0.4803
Std. 0.07183 0.01533 0 0
Best 1.1909 1.1733 1.172 1.169
Op. 2 Mean 20176.93 11000.733 1.2107 1.2015
Worst 73333.70 36667.033 1.4710 1.396
Std. 22182.96 17238.83 0.07289 00.05903
Best 1.175 1.172 1.171 1.167
Op. 3 Mean 1834.8 1.174 1.175 1.172
Worst 36667.03 1.213 1.209 1.201
Std. 8198.66 0.01155 0.01068 9.9476e-3
Best 0.6985 0.6974 0.6948 0.6937
Op. 4 Mean 5501.1 3667.76 0.6959 0.6941
Worst 36667.03 36666.6 0.6974 0.6974
Std. 13432.1 11285.26 0.014751 1.1282¢-03

Figure 3.18 provides a graphical summary of the improvement percentage of the task
sequence/path planning results in terms of path length for the methods GWO, MemE, and MTOA
compared to the PSO. The result in this figure shows that solving the MAPF-CGTSP using MTOA

method provides the highest improvement percentage compared to the other methods.
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Figure 3.18:0p. 1-Desired paths and points of four tasks on the workpiece

3.5.3.2 Test S: COMPARISON OF THE PERFORMANCE OF THE PROPOSED
HYBRID CONTROLLER TO OTHER WELL-KNOWN METHODS

Using NN, in (3.20), the desired image feature signal of the second test (Figure 3.19a) can be
extracted as illustrated in Figure 3.19b. The results of tracking the image feature and interaction
force and joint velocities are demonstrated in Figure 3.20-Figure 3.22, respectively. In Figure 3.20,
the FQSMC tracks the desired image feature signals with higher precision, lower chattering,
oscillation, and faster convergence speed compared with SMC and even P/PI. SMC tracks the
signals with higher precision relative to P/PI. However, the chattering level of the P/PI is much
lower. Figure 3.21 shows the superiority of the FQSMC to P/PI and SMC in terms of chattering
level, tracking precision, and convergence speed. The chattering issue is highlighted in the
controller output, i.e., joint velocities, presented in Figure 3.22. SMC suffers from a high level of
chattering, while the P/PI produces less chattering, and FQSMC'’s output is rather smooth. Note
that, for SMC, the chattering is emanated from the switching function in the control law and the
existing noise of the sensors’ feedbacks. Whereas the chattering in the P/PI’s output is only due to
the noises. The reason is the level of chattering in P/PI is lower compared with that in SMC.
FQSMC, on the other hand, has an intrinsic filter and does not employ any switching function in
its control law. Consequently, it generates a smooth control command. In addition to the plots,

several numerical indicators such as integral absolute error (IAE), integral time absolute error
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(ITAE), standard deviation (STD), and root mean square error (RMSE) indicators are selected for
quantitative comparison in terms of vision and force errors [56]. On the other hand, STD and
integral square controller output (ISCO) indicators are evaluated for the joint velocities (controller
output). These indicators are computed for the third test and tabulated in Table 3.4 and Table 3.3.
Note that since the dimension of the vision and joint velocity results is higher than one (it is six),
the weighted norms of the vision and joint velocity are used to compute those indicators. Referring
to Table 3.3, for the vision control, FQSMC has decreased the values of IAE, ITAE, STD, and
RMSE by 51.29%, 40.79%, 69.09%, and 66.96% compared to SMC, respectively. Compared to
P/PI, these values are over 68.10%, 81.23%, 88.67%, and 93.67%. For the force control, FQSMC
has decreased the values of IAE, ITAE, STD, and RMSE by 59.91%, 58.41%, 39.44%, and 40.58%
compared to SMC, respectively. Compared to P/PI, these values are over 68.43%, 71.36%,
30.88%, and 32.45%. The results show that the proposed hybrid controller results in improvement
of the control performance in terms of chattering, precision, and convergence rate to a significant

extent.

Furthermore, according to

Table 3.4, the values of STD and ISCO for FSMC are 81.1% and 73.19% lower in comparison
with SMC, and 69.85% and 45.02% lower than those of the P/P1. These results show that FQSMC

outperforms both SMC and P/PI in terms of chattering level and control effort.
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Figure 3.20: Tracking image features of the third test:
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Figure 3.21: Force control of the third test.
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Figure 3.22: Robot joint velocities (test 3): a) SMC, b) P/PI, ¢) FQSMC.

Table 3.3: The computed values of the indicators for the norms of system errors of the third

test.
Indicator
Comp.

IAE ITAE STD RMSE

P 0.2069 39.0753 0.0003 0.0006
Vision SMC 0.1355 12.386 1.10e-4 1.15e-4
FQSMC 0.0660 7.334 3.4e-5 3.8e-5

PI 201.85 36239.4 0.7643 0.7898

Force SMC 158.95 24956.4 0.8724 0.8979
FQSMC 63.731 10379.4 0.5283 0.5335

Table 3.4: The computed values of the indicators for the controller output of the third test.

Compensator
Indicator
P/P1 SMC FQSMC
STD 0.018499 0.029509 0.005577
ISCO 0.700458 1.436190 0.385108

3.6 Summary

In this chapter, a novel image-based task-sequence/path planning method (MAPF-CGTSP)

along with a robust vision and force control method is presented for industrial robots to perform
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multi-task operations while interacting with a workpiece. The proposed MAPF-CGTSP algorithm
combines a novel modified artificial potential field and a constrained generalized traveling
salesman problem to achieve an optimal sequence of performing the tasks while generating a
feasible and safe path between tasks for a multi-task operation. A mix-integer MTOA is developed
to solve the proposed MAPF-CGTSP problem to achieve the integer sequence of performing the
tasks and the continuous parameters of the MAPF method. Different test scenarios are employed
to evaluate the MAPF-CGTSP algorithm combined with the vision and force control method. The
results obtained in the different environments demonstrate that the proposed method can perform
the multi-task operations using vision and force control method in different environments which
makes it a suitable algorithm to be employed in industrial applications dealing with complex and
real scenarios. The experimental results demonstrate that the MTOA algorithm yields better
solutions in all the test environments compared to the other optimization methods. Also, the path
planning results of the MAPF method are improved compared to the traditional APF. Another
advantage of the proposed method is developing the FQSMC for vision and force control of
industrial robots exploiting an intrinsic low-pass filter which leads to filtering out the measurement
noises associated with the camera and force sensor. Also, the proposed controller results in Quasi-
motion and elimination of chattering compared to the other provided methods which make it
reliable in real-world scenarios. The experimental results show the benefits of the proposed
MAPF-CGTSP algorithm for task sequence/path planning combined with the vision and force
control in multi-task operations. The performance of the proposed MAPF-CGTSP method has
been assessed in the first test using the test environments composed of different configurations and
several obstacles. Also, the performance of the proposed vision and force control approach is

compared with those of the other control methods to show its effectiveness. The results show the
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effectiveness of the proposed MAPF-CGTSP method in terms of collision avoidance and provide
a safe and feasible path compared to the other methods. Also, the superiority of the proposed vision
and force method to other well-known methods is evaluated in terms of precision, convergence

rate, robustness, control effort, and chattering.
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CHAPTER 4 Multi-Stage Vision and Force

Control

4.1 Introduction

As it was discussed in the last sections, for EIH configuration, there is still a lack of research
work on a stable fast response method of vision and force to be used in industrial applications with
the capability to deal with uncertainties. To address this issue, a new robust hybrid multi-stage

vision and force control approach for industrial robots is proposed.

In this method, the vision and force control is carried out in three sequential stages: in the first
stage, the orientation of the tool is controlled. When the angular errors of the tool reach the
determined desired values, the control process is switched to the second stage, in which the
position of the tool in xy-plane is controlled. Once the second stage is accomplished, the third
stage will begin. This stage is divided into two substages: before and after contact with the
workpiece. In the first substage, the image features are controlled in all six degrees-of-freedom
(DOF). Since the orientation and the position of the end-effector in xy-plane are previously
controlled, the tool moves in a normal direction towards the workpiece until it touches the surface
and the second substage initiates. In this substage, the hybrid controller is activated to control the
force and vision corresponding to the position of the tool on the surface, simultaneously. With this
multi-stage strategy, the tool is perpendicular to the surface when it touches the surface. Besides,
it improves the performance of the overall control process in terms of, precision, singularity
avoidance, and stability [79], [80]. Additionally, super-twisting sliding mode controller (STSMC)

is employed for vision and force control in each stage. This method can handle the uncertainties
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of the system. Also, using this method, the chattering issue of the standard SMCs, is reduced
without affecting the tracking accuracy and robustness [56]. The stability proof of the proposed
controller has been provided by using Lyapunov theorem. A variable gain sliding surface is also

designed to improve the performance of the traditional switch IBVS [79], [80].

4.2 Multi-Stage Vision and Force Control Design

Inspired by the switch IBVS method in [79], a multi-stage switching strategy is proposed to
design the hybrid vision and force control for industrial robots. Applying this method leads the
end-effector to the desired pose, perpendicular to the surface and in a desired position on the
workpiece, before touching the surface. To design the proposed method, first, the vision motion is
decomposed into several movements in different degrees of freedom which are utilized in each

control stage.

4.2.1 Vision Motion Decomposition

To design the proposed multi-stage strategy, the vision motion of (2.11) is decomposed into
three movements corresponding to a) pure rotational movement of the camera, b) pure linear
movement of the camera on the xy-plane, and ¢) constrained movement of the camera in all DOFs

except the z direction. The decomposed vision motion is obtained as:

® =JsaS + 80, Vxy = JsayS + Oxy, Veya = JsayaS + Oxyas (1)
where v, = [V Vy]T and vy, = [viy wT]T, Jsa € R3*®, ]y, € R**8 are interaction matrix
which map the image features’ velocities in image space to angular velocities and linear velocities
on the xy-plane in the Cartesian space, respectively, Jsxyq = []gxy ];ra]T is the interaction matrix

which maps the image features’ velocities in the image space to the angular and linear velocities

in all DOFs in Cartesian space except the z direction. These interaction matrices are derived as:
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| U DA AR Y (42)
where operator (*)* denotes the pseudo-inverse of the non-square matrix * [19], JL, € R*8 is the
Jacobian matrix which maps the image features’ velocities to the camera’s linear velocity in z
direction. In (4.1), 8, € R3, 8,,, € R?, and 84y, = [6xy 84]" are the uncertainties which can be
obtained as:

[63, 5, 6T =-Lts,V, (4.3)
where 6, € R is the uncertainty in the z direction. Based on (4.1), the pose error in Cartesian space

corresponding to the image feature error in the image space can be defined as:

= - — — [T T _ 44
ép = ]SeSJ €q = ]saesr exy - ]sxyes' exya - [exy ea] - ]sxyaes= ( )

where ep, €y,, and ey, are pose errors in all six DOFs, in xy-plane, and in all DOFs except z

direction, respectively, e, is the orientation error of camera in Cartesian space, e is the vector of
image feature error in the image space defined as:

es =S—Sq, 4.5)
where S; € R is the vector of desired image features.
4.2.2 Stages of the Proposed Method

The multi-stage switching strategy is determined as follows:

Stage 1. In the first stage, the orientation of the camera is controlled so that tlil;n e, = 0. Note

that orientation of the camera corresponding to S; must be normal to the surface of the workpiece

(Figure 4.1a). Based on (4.4), taking time derivative of e,, yields:
éq = isaes + Jsa ((Ls +8,)V — Sd) (4.6)
The input of the industrial robots is the vector of joint velocities u = ¢ € R® which satisfies the

following kinematic relations:
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V=_>q+8q)u 4.7
where, J;, 8, € R6*® are the robot Jacobian and its uncertain part, respectively [20]. Substituting
(4.7) into (4.6) yields:

éa = Isaes +Jsa ((Ls + 8)(Jg + 8)u — Sq)- (“8)
Since the desired image features are fixed, then S; = 0. Accordingly, (4.6) can be simplified as:
éq = JsalsJqu + 814, (4.9)
where 6;, = ]sa(LSSq + 8J, + 858q)u + Jsq€s. The system input is defined as u = u; where u,
is the controller output in Stage-1 which is obtained utilizing STSMC, the procedure of which will

be discussed in the next section.

Stage 2. In the second stage, the end-effector’s position in the xy-plane is controlled to reduce the

tracking error in xy-plane, i.e., tliT exy = 0, (Figure 4.1b). To this end, the same procedure as

Stage-1 1s performed which eventually leads to the following relation:
éxy = ]sxyLs]qu + 5nya (4.10)
where 61y, = lsxy(LSSq + &), + 858q)u + isxyes. Like Stage 1, in (4.10), u = u, where u, is

the obtained controller output utilizing STSMC.

Stage 3. This stage comprises two substages: moving the tool in z-direction towards the surface

before touching the surface, and after touching the surface and starting the interaction.

In the first substage, the feature errors corresponding to the pose error in all six DOFs are

controlled, i.e., lim ep = 0. However, since the orientation and position of the robot are

t—+oo
previously controlled in the preceding stages, the tool tip starts moving in z direction (Figure 4.1¢).

Performing the same procedure as in the previous stages, the following relation yields:
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ép = ]qu + 6an (411)

a(Lt .
where 6., = 8,u + LJg(SS]q + 858q) + %es and u = uz, where uz; is the controller output

in Stage-3-Substage-1 obtained using STSMC.

The second substage begins once the end-effector touches the surface of the workpiece. Thus, in
addition to the vision control, the normal exerted force to the tool must be controlled, i.e., a hybrid
vision and force control. To this end, the vision system controls all corresponding DOFs of the
camera except the z direction in Cartesian space. Also, the exerted force in z direction is controlled

independently and simultaneously (Figure 4.1d). i.e., tli&n €axy = 0and lim er = 0 where e is

t—+400
the force error in z direction defined as e = F — F; and F is the desired force reference. To this
end, an orthogonal manifold epy is defined as follows:
epr = (1— H"H)egy, + Hep, “4.12)
where H=[0 0 0 0 0 1]. Thus, due to the orthogonality of the manifold’s terms, if
tl_i)&noo epr = 0, then tl_i)r;noo €axy = 0and tl—i>r-Eloo er = 0. Substituting (2.15), (4.9) and (4.10), into épg
yields:

épr = ((1 = H"H)JsaxyLlq + HKpDJg ) + (HOpy + (1 = HTH) S 0ny) — HE, (413

T
where 8,4 = [6LTa 5,:ny] and &g, = KfD8,up + 8. Also, u =uz, where us, is the

controller output for Stage-3-Substage-2 derived using STSMC.

4.2.3 Switching stage supervisor
To switch between the stages, a robust switching stage supervisor (SSS) is developed. Using

SSS, the proposed multi-stage control strategy will be performed in a sequence from Stage-1 to
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Stage-4. Some predefined thresholds, such as Ty, Tyy, and Tg are defined for switching to the

next stage. The SSS procedure is presented in below.

Initialize Ty, Tyyy, Tp; inx = 1;inx2 = 1; //inx
and inx2 are global variables.
Input: eg, ey, F;

If (inx == 1)
s =1;
End If
If (inx == 2 or (inx == 1 and ||ley|| < Tyq))
Is = 2;inx = 2;
End If
If (inx == 3 or (inx == 2 and ||ey, || < Twxy))
Is =3;inx = 3;
If (inx2 ==1)
Igs = 1;
End If

If (inx2 == 2 or (inx2 == 1 and ||F|| = Tr))
Iss = 2; inx2 = 2;
End If
End If
Return [, Ig; // I and Igg are indexes of stages
and substages, respectively.

Stage-1 Stage-2 Stage-3 b 2
l Pure orientation . Pure pu:.llmn wnlrul I nconstrained Constrained

control in xy-plane vision control \1sloruforcc control

Subslage-1

Figure 4.1: Different stages of the proposed strategy.

4.3 Super-Twisting Sliding Mode Controller
In this section, STSMC with a variable-gain sliding surface is designed for controlling each

stage of the proposed method.
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4.3.1 Variable-gain Sliding Surface

It has been observed that adopting a constant control gain in IBVS deteriorates the
performance of the visual servoing process and may lead to extreme oscillations, instability, and
low convergence speed. e.g., when the gain is set to a large value, instability and unwanted
oscillations occur. On the other hand, when it sets to a small value, the convergence speed
decreases. In this research, to handle this issue, a variable-gain sliding surface is defined as follows:

o; = Céy, (4.14)

where g; € R" is the sliding variable, C; € R™ ™ is the variable-gain orthogonal matrix determined
as (4.15), and é¢; is the system error defined as (4.16). According to (4.15), it can be seen that as

the error decreases, the value of C; changes from a high-level value cy; € R™" to a low-level
value ¢; € R™ ™ where cy; and c;; are orthogonal positive definite matrices. As a result, the

vision system converges fast when the error is high and avoids oscillation when the error is low.
In (4.15), a; and b; are adjustable parameters that determine the characteristics of the smooth

switching function tanh(x).

C, = tanh(ailiil+bi)+1 (CHL' _ CLL') +cpp (4.15)
€1 = €q, €3 = €xy, €3 = €p, €, = €pp. (4.16)
Based on (4.9) to (4.11) and (4.13), e; is obtained:
& = f; + gl + &, (4.17)
where
Uy = Uq, Uy = Uy, Uz = Uzq, Uy = Ugy, (4.18)

i=0£=0f=0f= _HFd'
81— ]saLs]q: 82 = ]sxyLs]q' 83 = ]q:
B _ 84 = (I __HTH)]sax_yLs]q + HKfD]q,
01 = 0pa) 62 = 6ny: 63 = 6Lq' 04 = HOpp + (I — HTH)6Laxy~
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4.3.2 Deriving STSMC Law
Substituting time derivative of (4.14) into (4.17) yields:

g; = C;g;lu l+we_l+Cifi+Cic§i. 4.19)

Employing the STSMC law of (4.20) for (4.19) results is finite-time convergence of g;. The
stability proof of the closed-loop system is investigated in Theorem 4. Figure 4.2 shows the block

diagram of the proposed control method using STSMC.

_ d(Cl) _ (4.20)
u; = (Cigi)+ <( K1|Gl|251gn(al) + 77) i lfl)o
1 = —Kzsign(ay),
where K4, K, € R™™ are orthogonal matrices.
Assumption 4.1. The following relation holds for &; and &;.
(d(C)/dE)8; + C:6;| < A 4; € R, 4, > 0. (421
Assumption 4.2. the following inequalities hold.
K; > 0,K; > 34; + 2(4;47 )K;. (4.22)

Theorem 4.1 (STSMC). Under the control law of (4.20), the closed-loop system of (4.19) is stable as a 2-

SM, provided that Assumption and Assumption are satisfied.

Proof. Substituting (4.20) into (4.19) yields:

4.23)
. “ P (
g; = C;g; ((Cigi)+ (( K1|01|251gn(01) + 77) i 1f1>> e +Cifi +
Cid_i’ T] = —Kzsign(ai).
Considering { = 1 + C;8;, (4.23) can be rewritten as:
4.24)

1
g; = —K1|0i|5818n(01) +3i
¢ = —K,sign(o;) +4 1)6 + C; 6

Let the Lyapunov function V and its derivative V be as [61]:
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T T 1[4K, +K; -K (4.25)
=T = 11/2q; . T . 2 1 1
V=v'Qv [(|0'1| 51gn(al)) g ] Q=7 K, Zlnxn]’
. . 1 acy) = \T 426
V= delag(IaiI 2) Qv+ (T 5 + Cidi) BTv, (4.26)
where BT = [-K;  2I,,,,,]T. Based on Assumption , the following relation yields:
. = (Tlos 72\ = 4.27)
V < —vTdia : v,
g( |o;| 2/ ¢
where:
9= 1[2K; + K? — 2diag(4;) * ] (4.28)
2 [~ (Ky + 2diag(4DKTY)  Inwnl

Considering Assumption , Q > 0. Hence, the right side of (4.27) is negative. Therefore, based on
[59], inequality (4.27) guarantees the finite-time convergence of o; and {; towards the origin, at

2V01/2 _ A;{izn{Qp\max{Q}
vy’ where y= Amax {Q}

most after the time instant T = . Based on (4.24), the convergence

of g; and {; leads to the finite-time convergence of g;. Therefore, based on [81], the closed-loop

system is a 2-SM.

Camera:
Feature points

STSMC-3:2}-232
SSS: -

Figure 4.2: Schematic of the proposed hybrid vision and force control method.
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4.4 Experimental Results

In this test, the performance of the proposed method in terms of precision, chattering and
robustness is compared to those of P/PI controller. The robot starts to move from the initial point
S; to the desired point S; in the image space, as given in (4.29). S, is equivalent to the pose of the
tool tip in the desired position perpendicular to the surface on the workpiece. When the tool tip
touches the surface, the exerted force must track the sinusoidal desired signal F,; (4.29).

S;=1[199.3 754 2284 603 240.4 872 2104 100.0]%, 4.29)
Sq¢=1[1369 929 1925 925 192.6 1432 137.5 143.6]7,
F; = 2sin(0.2t) + 4.

To perform a comparative study, the performance of the proposed method is compared with that
of a traditional switch-based hybrid vision force controller. In this method, the vision part is the
switch-based IBVS using a P compensator and PI controller for controlling the force signal. Figure
4.3 shows the hybrid vision and force control stages using the proposed controller. According to
this figure, during the first and second stages, the orientation of the tool has changed from an
angled pose to a perpendicular one above the desired position on the workpiece’s surface. This
process took 12.3s. In the third stage, the tool starts to move downward, and at the time moment
62.3s, it touches the surface. The results of the hybrid vision and force control using the mentioned
methods are plotted in Figure 4.3. According to Figure 4.3a and Figure 4.3b, using the proposed
method, the image features are matched precisely with the desired signals when the tool comes
into contact with the workpiece at the end of the experiment. Besides, the norms of ep in Figure
4.3c and Figure 4.3d reveal that compared to P/PI, STSMC has a higher convergence speed in each
stage with a higher precision. The e, graph illustrates that using STSMC, the tool touches the
surface after 62.3s. However, using P/PI the time of contact is at the time 99.3s. This superiority

is also obvious in Figure 4.3e and Figure 4.3f, which show the process of controlling the force
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signal. Accordingly, controlling the force with STSMC is more accurate than that with the P/PL.
Additionally, to have a quantitative comparison, several indicators such as IAE, IATE, STD, and
RMSE are selected and their values for the obtained experimental results are computed and
tabulated in Table 4.1. Referring to this table, STSMC outperforms P/PI in terms of all indicators.
Compared to P/PI, STSMC has improved the performance of the vision control by 43.3%, 82.1%,
42.4%, and 75.0% in terms of IAE, IATE, STD, and RMSE, respectively. From the force control
aspect, these improvements have been over 84.7%, 67.9%, 87.2%, and 87.4% in terms of IAE,

IATE, STD, and RMSE, respectively.

Start: (0s) Stage-1: (12.3s) Stage-2: (26.3s)

Figure 4.3: The control process of the experiment using the proposed method.
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Figure 4.4: Results of the experiment: image features: a) P/PI, b) STSMC, Norms: ¢) P/P1, d) STSMC, Interacting
force: e) P/PI, f) STSMC.

Table 4.1: The indicators’ values for the experimental test.

Compensator Svstem Indicator
ompensato yste IAE ITAE STD RMSE
/P Vision 1.415 53.41 0.01299 0.0196
Force 69.13 917.18 2.016 2.059
Vision 0.987 2933 0.00912 0.0112
STSMC Force 10.58 203.89 0258 0.259

4.5 Summary

In this chapter, a new multi-stage hybrid vision and force control approach for industrial robots
has been developed. Performing vision control in several sequential stages enables the tool tip to

move towards the workpiece and start interacting with the workpiece while it touches the surface
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at the desired pose. The designed STSMC method with a variable-gain sliding surface allows the
system to reject the uncertainties and increase the control precision while alleviates the chattering.
Also, the presented approach, enables the robot to achieve greater flexibility in performing the
hybrid vision force tasks successfully. The proposed method has been implemented on an
industrial robot performing a touching operation on a planar workpiece. The extensive
experimental tests show the effectiveness of the proposed method and its superiority to other well-

known methods.
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CHAPTER 5 Expansion of IBYVS Workspace

5.1 Introduction

As it was discussed in previous chapters, many studies have been conducted to overcome the
weaknesses of vision and force control and improve its efficiency. However, the performance of
most reported vision and force controllers is not sufficiently high to meet the requirements of
industrial applications. An efficient vision and force method feasible for practical robotic
operations requires a fast response with strong robustness to feature loss. In the previous chapters,
vision and force control methods were proposed and demonstrated that the controller were able to
improve the speed and tracking performance of vision and force control methods. However, feature
loss caused by the camera’s limited FOV still prevents the method from being fully efficient

and being applicable to real industrial robots.

In this chapter, a novel approach to address the FOV limitation issue of hybrid vision and force
control by EIH industrial robots interacting with planar workspaces is introduced. To this end,
instead of considering only one image object on the workpiece, an array of objects is provided in
such a way that at least one feature object is in the FOV. So, if an object is going out of FOV, at
least another object still exists in the FOV to be used by IBVS. However, conventional IBVS
methods (methods that use single feature object) are designed for controlling only one object in

the FOV, thus they cannot be employed to carry out this task.

To cope with this issue, a novel hierarchical sliding surface comprising two levels of sliding

surfaces is suggested. The 1% level sliding surface comprises the weighted sum of feature errors
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corresponding to all objects. Note that these weights are adjusted based on the distance of the
objects to the center of image plane and also their complete existence in the FOV. One way of
adjusting those value could be using a binary decision-making method, i.e., the distance between
the center of each object to the center of image plane is checked. If it is the shortest compared to
other, i.e., the condition is satisfied, its corresponding coefficient is set to one, otherwise it is set
to zero. However, since objects are moving in the image plane the distance of the objects to the
center of the image plane would change and thus, the true value may switch from one object to
another. This switching between the objects may lead to deteriorating the control performance,
since the desired signal will be discontinuous. To address this issue, fuzzy decision-making method
(or fuzzy inference system (FIS)) is adopted [82]. Using FIS, adjusting the surface coefficients
will be continuous and also the decision making will be robust and more flexible than the binary
counterpart. In [56], the fuzzy decision-making technique is used to adjust the confection of the
hieratical sliding surface of a second-order SMC. The results show the effectiveness of the
proposed technique over other control methods in terms of chattering, control, effort, and tracking

Crror.

The inputs of the FIS are some indicators that denote the states of the objects in the FOV. Based
on the defined fuzzy rules, each coefficient associated with each object takes a value between zero
and one, e.g., the coefficient associated with an object that is out of FOV takes zero, and the ones
that are close to the center of image plane takes values near one. Accordingly, sliding on this
surface results in controlling all objects and smooth transition between the ones that entirely exist
in FOV and those that are out of it. The 2™ level sliding surface comprises two orthogonal terms
of the 1% level sliding surface and error of the interacting force. Therefore, when sliding state

occurs, i.e., when the 2" level sliding variable equals zero, both orthogonal terms converge to zero
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which leads to the hybrid control of vision and force. To bring about the sliding phase, the
continuous integral control sliding controller (CISMC) is designed. CISMC exploits a terminal
control law as its nominal controller part and adopts supertwist algorithm (STA) as the uncertainty
and disturbance rejection part. Therefore, CISMC is robust against uncertainties and leads to high
tracking accuracy with a continuous output, which mitigates the chattering problem. The
advantage of the proposed control scheme is that it not only can be applied to the vision system
with multiple objects, but also eliminates the necessity of designing two individual controllers for

vision and interacting force systems. The stability proof of the proposed controller is also included.

5.2 Problem Statement

The main objective of this paper is to develop a robust hybrid control method that enables an
eye-in-hand (EIH) industrial robot to perform the interaction task with extended workspace. To
this end, instead of using only one object feature, an array of objects (containing n, objects) is
provided on the workpiece in a way that always at least one object is entirely in the FOV. Thus,
the limitation of the FOV can be addressed (The schematic of the robotic system and the workpiece

is demonstrated in Figure 5.1).
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with a planar workpiece containing an array of image objects.

5.2.1 Modeling of the Vision System
The kinematic relationship between the set of image features of the i*" object and the camera

frame {F_} is derived as follows [20], [54], [83]:

= LV (S.1)
where ‘s € R™ is the vector of image features of the i*" object and ng is its length, V € RS is the
relative velocity screw between the camera and the workpiece, and 'L s € R™* is the interaction
matrix related to the it object. As stated in [54], [83], [20], employing advanced IBVS control
strategies is not possible by adopting the traditional features, since the global stability of the closed-
loop system is not ensured due to the fact that their interaction matrices are not invertible.

Employing a set of modified image features [46] makes it possible to design advanced robust

controllers for IBVS, since the corresponding interaction matrix will be invertible. Accordingly,

the modified image features of the i object, i.e., is, is considered as follows:

. . . L . _ . _ . _ T
lg — [ GC lyc ch lecx lecy lecz] , (5.2)
where
P 24= ixc i i Z*: iJ’c i (53)
lxc ) 14 J , lyc ] 14 J ,
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- . ; 2 ; ; 2
De = ?=1\/( e = ) (Ve ) +

\/( ixcl - ixC4)2 + ( inl - in4)za

i~ 1 e, — bx bea—
Oex == (atan (#) — atan (% ,
2 Yec1™ Yea Yecs— Ye3
i 5 1 YVes— 'V YVea— Y
2 Xc3— Xcy Xcp— Xcq
i 5 1 Yei— 'y Ye,—
lHCZ = —| atan % + atan lcz—lc?, .
2 Xcg— Xcq Xcz— Xcy

In the relation above, pairs ( ixcj, iycj) for j = 1, ...4, are the coordinates of the vertices i*"

" object and

object (Figure 5.1). ifc and i}‘/C are the centers of the j** feature points of the i*
'D.is the perimeter of the rectangular object that is shaped by lines connecting each consecutive

corners of the jt* feature points of the i" object. The entries of iLS are available in [46]. The

camera velocity screw is mapped to the joint space using the following relation:

V=1]q, (5.4)
where J4 € R®*® and ¢ € R®*! are the robot Jacobian and vector of joint velocities, respectively.
Substituting (5.4) into (5.1) yields ts = iLS]q. In real applications, uncertainties always exist in

the interaction matrix and Jacobian, i.e., ‘L] = ‘L¢j + 8. Accordingly, the following relation

yields:
‘s = g+ 6. (5.5)
where, §; = 8,4 is the uncertain part of the visual model, and notation " denotes the nominal

part.

5.2.2 Modeling of Interaction Force
To design a force controller, the model of interaction between the tool and the workpiece

should be derived. To this end, the stiffness model is exploited [84]. Accordingly, the mathematical
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formulation of the interacting force when the tool tip is in contact with the workpiece’s surface is
modeled as:

F = K¢Py, (5.6)
where Ky € R6*¢ is the nominal diagonal stiffness matrix, Py is the displacement vector, and F is
the vector of forces and torques exerted to the tool. Taking time derivative of (5.6) yields:

F=KV. (5.7)
Substituting (5.4) into (5.7) yields F = K¢]q. Considering uncertainties in the kinematic relations
and stiffness coefficient, i.e., K¢J = I?fi + 8, which leads to the following relation:

F =Kjq + 5, (5.8)
where, 5_f = 87 is the uncertain part of the interaction force model, and notation " denotes the

nominal part.

5.3 Extracting the Desired Image Features Trajectories Using
Learning-From-Demonstration Method

To perform IBVS by the robot, the desired trajectories in the image space corresponding to
the desired path of the end-effector in the Cartesian space (on the workpiece’s surface) is required.
To this end, a feasible technique based on the learning-from-demonstration method is suggested
in [47]. In this method, first the robot’s end-effector passes through the desired path on the
workpiece manually. In the meantime, the feature points captured by the camera are acquired.
Then, using SP-line interpolation technique, the desired image features signals are obtained. So,
when this desired image features are tracked by the EIH camera, the end-effector tracks the desired

path on the workpiece’s surface. This method is designed for a single object which has a very
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limited workspace. Thus, multiple objects are used to expand the workspace and a novel learning-

from-demonstration is employed to generate the desired trajectory in the image plane.

Accordingly, the robot’s end-effector will be passed through the desired path on the workpiece,
and at the same time, the feature points of the objects that are entirely in the FOV will be acquired

as follows:

is, ={ is—-dl ig-dk i§st}’ (5.9

where 'S, is the set of collected image features of the i*" object, '3, . 1s the sample of image
features of the it" object at time instant t,. N is the number of samples, and T, is the set of

sampling times.

Note that controlling the sets of the image features of all objects cannot be performed at the same
time, since some of them may not be in the FOV. Besides, while the desired features of an object
in the FOV is being tracked in part of the path, the object may go out of the FOV and its features
can be lost in the rest of the path. Thus, one simple way is to switch to the desired features of the
object that has just entered the FOV as the previous object is going out of FOV. However, two
main concerns exist: a) In the applications where the robot is interacting with the workpiece, high
accuracy of trajectory tracking is required. Nonetheless, switching between different objects may
lead to intense oscillation and thus damaging the workpiece, and b) a mechanism should be devised
to decide when and to which object the switching should be done, since there might be more than
one object in the FOV at the same time. To cope with these issues, it is necessary to generate a
smooth and continuous desired image feature signal. To this end, the intensity of the effect of each

desired image feature related to each object on the final desired signal can be acquired using a FIS.
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Using FIS, the acquired image features of all objects are converted to a single variable S, RS
follows:
Sa = iy Say " G (5.10)
where {;, which is the coefficient of i§d . » 1s evaluated as the it" output of the FIS as follows:

¢ = N321Mi X0 (5.11)
t Z?ilm,j ’

In (5.11), O;; is the output of the consequent part of the j th fuzzy rule associated with the it"
object; n;; is the firing strength of the jt™ rule of the i*" object which is computed using

multiplication operation as t-norm operation as follows:
77i,j+5(k—1) = l’l iAk (ICJ) X l’l lé}(ldl)l _] = 1! ---:5; k = 11 -"157 (5‘12)
where p i (.)and u igj(.) are the k., and j™*membership functions of the first and the second

input associated with the i*"® object. The inputs of the proposed FIS are I¢; and I, which indicate

the states of the objects in the FOV and are calculated as follows:

Lo =) o~ 04 613

I;. = min (| ... —1L |i .—H|)
di = %y cd;j t | Ved; 1)

i i
:| xcdj_Lb|r| ycdj_Hr

i = i i T. . , . . .
where ‘0,4 = [ "Xeq l}‘/cd] is the coordinate of the center of the i*" object in the image plane

and O, is the coordinate of the origin of the image plane. L, L,, H,, and H, are bounds of the
image plane. The schematic of the proposed FIS is illustrated in Figure 5.2a. The fuzzy rules are

defined as follows:

'Rivsqe-ny: if (I; is 'Ay) and (I, is 'B;) (5.14)
then (Ui,j+5(k—1) = le+5(k—1));
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where 'Rjys(k—1y is the (j + k)™ fuzzy rule of the i" object. For each input five membership
functional are considered as shown in Figure 5.2b. iﬁk and if?j are fuzzy linguistic variables of

the first and the second inputs related to the i*" object, and iCj+5(k_1) is the output of the

(j +5(k — 1)) rule, all of which are defined as follows:

(5.15)
‘A, = (x,,u "Ak(x)) |x ER, u iAk(X) =
trap(@m,, bmy Cmpr Ay )» kK =2, .4
f < LF(amy, bm, ), k=1,
RF (i dimy, ), k=5
Be={ (0n 5, (0) I ER, w1z () =
trap(em,. fngr Impr g )» kK =2, .4
LF(em, finy): k=1¢,
RF(gm,r imy, ), k=5
where, trap(.,.,.,.), LF(.,.), and RF(.,.) are trapezoidal, left and right membership functions

[84], and @y, , bnys Cmys Amy> €mys fing> Gmy,» and hyy, are the membership parameters.

The fuzzy rules are defined in a way that when an object, e.g., i*" object, is out of the FOV its
corresponding {; equals zero. Also, if the object is in the FOV it takes a value between 0 and 1.
The closer the object is to the center of image plane and further from the image plane’s bounds,
the value of {; is larger. After collecting the samples and generating the new variable (5.17), SP-
line method is used to generate the overall signal

S4(t) = SPL(S;, Ty, t). (5.16)
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SP-line function that takes the sample data sets, i.e., S; and T, and time instant t and returns the
desired signal at the time instant t (More details are available in [47]). Note that S;(t) is defined
as desired generalized image feature signal. By tracking S;(t) using an appropriate controller in
the image space, the end-effector tracks the desired trajectory in the cartesian space as it was when
collecting the data (learning phase). To this end, a novel controller for robust IBVS is developed

and presented in the next section.
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Figure 5.2: a) The schematic of the proposed FIS, b) Membership functions.

5.4 Designing Hybrid Vision and Force Control Using Hierarchical
Sliding Mode Control Method

As mentioned before, IBVS with EIH configuration cannot be performed utilizing
conventional methods when multiple feature objects are in FOV. Besides, in this study, the
objective is to hybrid control of vision and interacting force. Thus, a novel hierarchical sliding
surface (HSS) is suggested that could address the existing issues. To constitute the HSS, FIS and
orthogonality principle are used for each level, respectively. Additionally, continuous integral
sliding mode control method, which shows a superior performance for hybrid vision and force

control, is designed for hybrid vision and force control in this study.
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5.4.1 Hierarchical Sliding Surface
HSS consists of two level. The first layer is obtained for handling the problem of having
multiple image objects and the second one is for addressing the issue of hybrid control of vision

and force simultaneously.

54.1.1 First Level Sliding Surface

The first level of the HSS includes the error of the generalized image feature e, which is

utilized as the following relation:

o, =1L5te, e, =85—-8, (5.17)
where o is the first level sliding surface, ey is error of the generalized image feature, and $ is the
generalized image feature that can be evaluated using FIS with the same process as formulated in
section III as follows:

S = Z?gl s+ ¢ (5.18)
where ¢; 1s obtained by (5.11).
5.4.1.2 Second Level Sliding Surface: Hybridization of Vision and Force
To control the force and vision simultaneously, the orthogonal sliding variable is given as
follows:

0, = Ko (Q — Igxe)or + AQef (5.19)
where e € R® and Q € R®*° are the vector of interaction force errors and the compliance selection
matrix, respectively, presented in (5.20) and (5.21); K. € R®*® and A are positive definite
orthogonal matrix and scalars that their values should be set properly.

ef=F—Fy4 (5.20)

Q=yD™D (5.21)

113



In the relations above, F,; € R® is the vector of desired forces D € R® is the selection vector. Its
entries are either zero or one, corresponding to directions where the exerted force must be
controlled. ¥ € {0,1} is a binary variable which takes zero when the robot has a free motion and
takes one when the robot is interacting with the workpiece. In this research, the interaction force
in the normal direction to the end-effector is controlled. Thus, D is defined as follows:
D=[0 0 1 0 0 O (5.22)

Note that the dot product of the first and the second terms of ¢, are orotogonal. Therefore, o, = 0,
which is the 2" level sliding surface, leads to (Q — I¢x¢)o; = 0 and Qe = 0, which is the main

objective of the hybrid vision and force control. In the next subsection, CISMC control will be

developed to reach the mentioned objective, i.e., 0, = 0.

Remark 5.1. At the start time control process, i.e., when the robot is not fully converged towards
the desired potions, the objects that their desired signals are available may not be in the FOV, i.e.,
feature loss before the convergence. Therefore, the control process cannot be conducted. To handle

this issue, a trajectory planning method is suggested in the next subsection.

5.4.1.3 Trajectory Planning for Free-Motion Task before Interaction

At the beginning of the control process, the robot is not convergent and should perform a free
motion to reach the start point of the desired path on the workpiece’s surface. However, the related
objects to the available desired image features may not be in FOV. Thus, the IBVS cannot be
performed. Besides, since the robot is not convergence, it might be in the wrong position when it
touches the surface and starts interaction, which may damage the workpiece. To cope with these
issues, a trajectory planning algorithm in the image space is devised for free-motion, i.e., pure
IBVS, before starting the interaction. Assume that the shape and the location of objects on the

workpiece’s surface are known. Also, assume that the desired set of image feature corresponding
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to the it" object when the camera is above that object with a specific distance from the surface is

obtained as follows:

. - o T

'Sta = [ %ta  Vta Dea 0 O 0] (523)
Consider that at the beginning of the control process, the k™ object is in the FOV while the k"
object needs to be in the FOV since the desired image features corresponding to this object are

available and extracted using learning by demonstration method (Figure 5.3). Also, consider that

the image features corresponding to the initial point and end point of the desired path on the
workpiece in order to move from k" object towards k" object are ‘s, and ‘sz fori =1, ...,n,
respectively, given as:
. . , — - . = 1T
lSA — [ lfa l}—]a lDa lgax lgay lgaz] ) (5.24)
. . , — - . i~ AT
=% 9 Dy Opx 'Ohy  ‘Obs)
Accordingly, the suggested trajectory planning comprises the following steps:
e First, the robot performs IBVS and regulation on Estd.
e Then, using the proposed control method, the robot performs IBVS and tracks the generated
desired trajectory given in (5.25), to reach the point above the desired path initial point on the
oo Ko ke ks T
workpiece “sz = [ Xa Vg Dyg 0 O 0] .

o 8= Fsu+[My, my, 0 0 0 O]T, (5.25)
e i=1,...,n,

The variables of the relation above are defined as follows:

mui = lui + aut + bu, mvi = hvl’ + avt + bTb (526)
u TI Y TI ’

by = bz by, =—h
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where T; is expected duration of the path tracking and (lui, hvi) for i =1,..,n, are the

coordinates of the objects relative to the 1 object in image plane when ‘D, = D4 (Figure 5.3).

¢ Finally, the robot touches the desired path on the workpiece and the interaction starts.
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Figure 5.3: Desired feature loss at the beginning of IBVS and trajectory tracking by free motion to converge to kg A
5.4.2 Continuous Integral Sliding Mode Control
To achieve the mentioned objective in the previous subsection, i.e., o, = 0, CISMC is
suggested. CISMC is basically an ISMC which exploits a terminal control law as its nominal
control law, which results in gaining a high tracking accuracy, and also uses STA as a substitution
to its discontinuous part for rejecting the existing uncertainties, which leads to a continuous output

and thus mitigating the chattering.

54.2.1 Control Law Design
As an ISMC, the overall control law of the CISMC comprises two parts as follows:

u=u, +u. (5.27)
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where u,, is the nominal control law which is obtained based on the terminal control law, and u,
is the contiguous control law for disturbance and uncertainties rejection which is utilized by

adopting STA as follows:

e 0 5 \71 & —14 5.28
= —F 7 (Ke(Q— Toxe) (5%, 6) +2QR,) ™ (= = (Ke(@ — To)ls "8+ O3
AQFd))
. . 5 \-1
e = —J 7 (Ke(Q ~ Lexe) (232 §) + AQKs)  (~usra) (5.29)
In the relations above, u; and ugr4 are the terminal control law and super twisting algorithm given

as follows:

1
u, = —Ky0; — K;sig2(a,) (530

1 . 5.31
Usrg = —Dysig2(ay) + B (5:31)

B = —D,sign(o;)

where K; and K, are positive definite diagonal matrices of the feedback control coefficients and

1
D, to D, are positive definite diagonal matrices of the STA algorithm; sigz(.) = |. |sign(.), and

o; 1s the integral sliding variable given as follows:

t 0 5 & R : 5.32
01 = 0= 03 = Jy (Ke(@ = 1) 12, ¢ (Tun = $a) + 2Q(Ryfun = £) ) de O
where a,  is the initial value of g;, i.e., when t = 0. The block diagram of the proposed control

method is depicted in Figure 5.4.
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Figure 5.4: Schematic of the proposed robust hybrid controller.

5.4.2.2 Stability and Performance Analysis
The stability proof of CISMC is presented in Theorem 5.1. A necessary assumption for this

theory is considered as follows:

Assumption 5.1. The following relation holds STA parameters:

D, > 0,diag(D,) > 3A, +2(A, A])D, (5.33)
Assumption 5.2. The following relation holds for §; :
|6, <AL | ALeRL A, >0 (5.34)
where,
8, = 84 + Kc(Q — Iexe)Ls* X2, (6:65) + 2Q(5f) (535)

Theorem 5.1. Applying the CISMC law of (5.27) to an eye-in-hand (EIH) industrial robot with multiple

image objects leads to finite-time convergence of 0, , provided that Assumption and Assumption are satisfied.
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Proof. By taking time derivative of o, (5.19) and substituting (5.27) into it, the following relation
yields:
62 = Ke(Q — Toxe) (272, Gils ™ ( Loun +ue) = 'sq)) + QR A un +u) = 430
Fy)+6,
By substituting (5.36) into time derivative of o; in (5.32), the following relation is obtained:
o1 = (Kc(Q — Iexe) (72, Gi) + 2QK )Juc + 6, (5.37)
Substituting (5.29) and (5.31) into (5.37), and considering w = B + §;, results in the following

closed-loop system:

1
6 = —Dysig2(g) + w (5-38)
w = —D,sign(a;) + 6,
Let the candidate Lyapunov function V; and its derivative be as follows:
T T (5.39)
1 1[4D, + D} -D
V. = TF ) — . T ) r=- 2 1 1]
=[] ] =gt 2
. 1 .
V, =v'diag (IUII_E) v+ (5L)TBTV (5.40)
where BT = [-D;  2I4,4]T. Based on Assumption, the following relation yields:
. (a2 - (541)
V, < —vTdia ' Tv
' g( oy |1/
where,
Fol 2D, + D? — 2diag(A,) * ] (542)
21-(D; + 2diag(A,)D1")  Iixn

Considering Assumption , T' > 0. Hence, the right side of (5.41) is negative. Therefore, based on

[59], inequality (5.41) guarantees the finite-time convergence of g; and {; towards origin, at most

L 2v!/? A2 (M maxdT
after the time instant T; = —2—|;—, where y = Amin T Amax(T)
14 Amax {I}
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Based on (5.38), convergence of g; and {; leads to the finite-time convergence of ;. Therefore,
after T;, the left-hand side of (5.37) is zero, which yields the following relation:
(Ke(Q = Toxe) (Zi2, i) + 2QRf)Juc = =5, (543)

Let the candidate Lyapunov function V, and its derivative 2" sliding variable o, be as follows:

v, = (1/2)0302;)’2 >0 (5.44)

V, = 0,6, (5.45)
Substituting (5.36) into (5.45) yields:

V,=0; (Kc(Q — Isxe) (Z:;Ol ii-‘s_l( Lojun +up) — isd)) + AQ(Kfi(un +u,) — (5.46)

Fa) + 6L)

Substituting (5.43) into the relation above results in the following relation:
. . o —1, 0 o ; ~ o . 4
Vy = oF (K@~ Toue) (52, G s (Lfn = '50)) + 2Q(Rpfun — ) O

Also, by substituting (5.28) and (5.30) into (5.47), the following relation yields:

- . 1 (5.48)
V, = —0, | Ky0; + K;sig2(o3)

Hence, V, < 0 and therefore, system of (5.36) is stable. According to (5.44) one has o) 0, = 2V,.
Thus, the following conditions are satisfied.

1
—0,Kq0, < —klm(ZVZ),—O'ZTKzsigE(o-Z) < _kzm(2V2)3/4- (5.49)

where k;  and k,  are the minimum eigenvalues of K, and K, respectively. Comparing (5.49)

with (5.48), the following inequality is obtained.

Vy < —ky, 2Vi — ky, (2V5)3/* (5.50)
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Considering a; = %and Ky = 2Tk, , the inequality above results in V, < —K7V,"T. Since Ky >

0 and 0 < ay < 1, based on finite-time theory in [59], V, converges to zero in finite time T, <

1-ar
VZ

Kr(1—-ar)

Hence, after T,, one has g, = 0 and Theorem 5.1 is proved.

5.5 Experimental Results

5.5.1  First Experiment

Since the expansion of the workspace depends on the distance of the camera to the workpiece
and the number of the image objects, in this experiment, the extent of the expansion of the
workspace are examined when the robot is interacting with the planar workpiece (distance of the
camera to the workpiece’s surface is 0.275m) for different number of image objects (for 1, 2, 4, 6,
12, 18 objects). The size of the workspace for all cases are demonstrated in Figure 5.5. According
to this figure, the expansion is at least 54.89%, 136.02%, 239.07% and 363.89% for two, four, six
and twelve objects, respectively. Interestingly, the expansion has not improved when the number
of objects is more than twelve. This is due to the fact that existing too many objects may occupy
the workpiece surface which prevents the end-effector to interact with the workpiece by blocking

the objects by the tool-tip.
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Figure 5.5: a) Workspace for one image object, b) Workspace for two image object, ¢c) Workspace for four image
object, d) Workspace for six image object, ) Workspace for twelve image object, f) Workspace for eighteen image
object

Furthermore, an infinity-shape path on the workpiece with single and multiple image object (six
objects) is tracked by the robotic arm. The size of the path is set in a way that it covers the whole
workspace to show the effect of proposed method in such scenarios. Using learning-by-
demonstration method (presented in section I1I), the data accusation process and the desired signals

are obtained and shown in Figure 5.6. The desired signal for interacting force is determined as

follows:
F;(t) = 6 + 1.5sin(0.15t) (5.51)

The series images of the robot tracking the desired paths are presented in Figure 5.7a. Also, the
results of controlling the interacting force are plotted in Figure 5.7b. According to this figure, it

can be seen that the robot can interact with the workpiece in a larger area.
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Figure 5.6: a) Data collecting process by the robot for generating the desired image
signal; b) Desired obtained signals
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Figure 5.7: a) Robot operating the first test along with the captured image features in

real time, b) Tracking the desired path and tracking the desired force signal.
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5.5.2 Second Experiment

In the second experiment, the focus is on the proposed controller performance and path
planning technique for handling feature loss at the beginning of the operation. To this end, the
robot starts far away from the departure point of the defined path. Also, a traditional hybrid vision
and force controller (P/PI controller) and traditional SMC are applied to the system to compare
their control results with the proposed method. The number of image objects are considered to be

six and the desired path considered to be an infinity-shaped path.

The desired signal for this test is the same as desired signals for the first experiment. However, the
desired signal for the interacting force signal is a constant of SN. In Figure 5.8, a series of images
of the robot and features objects is provided which shows the performance of the proposed method
when the desired object is not in the FOV. In this case, the operation is achieved in three phases.
In the first phase, the object which is completely in the FOV and closest to the center, i.e., feature
object #2, is detected by the camera and the robot starts regulating on it which takes from 0 to 7s.
In the second phase, the robot moves from this object towards the start point of the desired path.
At the beginning of the desired path, the first feature object is located close to the center of the
image. Thus, in this phase the robot moves from the second feature object towards the first feature
object which takes from 7 to 82s. Finally, in the third phase, after reaching the first object, the
robot moves towards the surface at 87s and tracks the desired path while interacts with the surface.
The control results using the proposed and the other selected methods are presented in Figure 5.9.
Referring to Figure 5.9, the proposed method tracks the desired signals with higher precision,
lower chattering, and faster convergence rate both for vision and interacting force. In addition to
the plots, to perform a comparative study, several numerical indicators such as integral absolute

error (IAE), integral time absolute error (ITAE), standard deviation (STD), and root mean square
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error (RMSE) indicators are computed for this test and tabulated in Table 5.1. Referring to this
table, for the vision control, CISMC has decreased the values of IAE, ITAE, STD, and RMSE by
0.609%, 1.068%, 0.67%, and 0.95% compared to SMC, respectively. Compared to P/PI, these
values are over 15.36%, 7.07%, 33.08%, and 8.38%. For the force control, CISMC has decreased
the values of IAE, ITAE, STD, and RMSE by 22.15%, 43.3%, 1.13%, and 4.7% compared to P/PI,
respectively. Compared to SMC, these values are over 32.7%, 63.73%, 9.82%, and 6.74%. The
results show that the proposed hybrid controller results in improvement of the control performance

in terms of chattering, precision, and convergence rate to a significant extent.

| :-1'_','

~ 1 -

-

|

\

82 sec (Phase-2) 87 sec (Phase-3) 884 sec (Phase-3)
Figure 5.8: Robot operating the second test along with the captured image features in real
time when the desired feature is not available in the FOV.

126



1000 600 F ' [——Desiredsignal = - —p/Pi - SMC Cisvc]
800 ﬁ %\,‘
600 3
)
~ 400

-200F ) 360 380 400 420 ] . L 600, L 620 640

2000 I 1 1 1 1 1 I 1

—Desired signal = = =P/P[ wwne SMC CISMC
<(:Q 1000 b s e By aoon FESTR- S S ST
0 ] I ] 1 ] 1 1 1

0.2 . . .

I 1
—— Desired signal = = =P/P[ s SMC ISMC

(03“ 0.1 [ - —— e - T St o
0 1 L L 1 1 1 L L
0.1 T I . . . . . .
——Desired signal = = =P\P[ wwene SMC CISMC
0
& 0 JE——
_0 1 1 1 1 1 1 1 1 1
02F ' Desiredlsignal - - I-P/PI ---------- SMC CISMC ' b
-02 C 1 1 1 1 1 L 1 1 ]
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the desired force signal using the P/PI, SMC and CISMC.
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Table 5.1: The computed values of the indicators for the norms of system errors of the third test.

Indicator
Comp.
IAE ITAE STD RMSE
P 2.8300E05 9.2646E07 346.56 398.54
Vision SMC 2.410E05 8.7023E07 233.47 368.65
CISMC 2.3953E05 8.6093E07 231.89 365.14
PI 676.58 1.1004E05 1.5865 1.7757
Force SMC 782.87 1.7204E05 1.7393 1.8146
CISMC 526.72 6.2389E04 1.5685 1.6923

5.6 Summary

In this chapter, a novel hybrid vision and force approach based on expanding the workspace is
proposed for eye-in-hand industrial robots to address the FOV limitation of the interaction tasks
on the workpiece. In the proposed method, a single object is replaced by an array of objects to
expand the workspace for hybrid vision and force control using a novel hierarchical sliding surface
with two levels of sliding surfaces. The first level contains the weighted sum of feature errors of
all objects generated by the FIS and the second level contains the orthogonal terms of the first level
and the error of the interaction force. Then, a CISMC is designed to lead the sliding surfaces
towards zero and control the motion of the end-effector and the interaction force with the
workpiece at the same time. To prove the effectiveness of the proposed method, two experimental
tests are designed. In the first experiment, the effect of increasing the number of feature objects on
the workspace enlargement is investigated. The result of obtained FOV using different number of
objects demonstrate that the proposed method can expand the FOV which makes it a suitable

method to be employed in industrial applications, where the robot needs to track a trajectory while
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interacting with the workpiece. Then the performance of the proposed method is investigated in
tracking a specified desired path in larger area. In the second test, the performance of the proposed
method is investigated when the robot is located in a position far from the start point of the desired
path. Also, the proposed controller is compared with the other well-known control systems to show

its effectiveness in terms of precision, convergence rate, robustness, control effort, and chattering.
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CHAPTER 6 Conclusion and Future Works

6.1 Summary of the Thesis

Integration of vision and force control systems has increased the dexterity and intelligence of
industrial robots. This thesis focuses on vision and force control of the industrial robots using an
image-based visual servoing (IBVS) which the features are taken by the vision system as a
feedback in a robotic system to guide the robot to the desired pose. Researchers have introduced
various methods in vision and force control to improve its performance. In this thesis, a series of
new methods are proposed to overcome the current shortcomings. The proposed methods aim to
increase the robustness of the vision and force control method to uncertainties and camera
limitations and also overcome some of its drawbacks. In the following, the proposed methods are

summarized:
1. Cascade Vision and Force Control

A robust cascade vision and force approach is suggested to control industrial robots interacting
with unknown workpieces considering model uncertainties. This cascade structure, consisting of
an inner vision loop and an outer force loop, avoids the conflict between the force and vision
control in traditional hybrid methods without decoupling force and vision systems. To apply an
advanced image-based visual servoing (IBVS) compensator, some newly modified image features
are used which render an invertible image interaction matrix. A practical task-based method is
proposed to extract the features corresponding to the desired path in 3D space. A robust continuous

integral sliding mode control method (CISMC) is developed for both IBVS and force
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compensators. CISMC exploits advantages of the modified super twisting algorithm (MSTA) to
reduce the chattering. The stability of the proposed cascade controller is proved. Additionally, a
contact detector algorithm (CDA) is developed to manage the robot's free motion and its
interaction with the workpiece. To evaluate the performance of the proposed method, several

experimental tests are performed and compared with other well-known methods.

2. Optimal Image-Based Task-Sequence/Path Planning

A novel image-based task-sequence/path planning scheme coupled with a robust vision and force
control method for solving the multi-task operation problem of an eye-in-hand (EIH) industrial
robot interacting with a workpiece is suggested. Each task is defined as tracking a predefined path
or positioning to a single point on the workpiece’s surface with a desired interacting force signal,
i.e., Interaction with the workpiece. The proposed method suggests an optimal task sequence
planning scheme to carry out all the tasks and an optimal path planning method to generate a
collision-free path between the tasks, i.e., when the robot performs free-motion (pure vision
control). To this end, a new method is presented which solve both optimal task sequence planning
and collision-free path planning simultaneously. A novel modified artificial potential field
(MAPF) is employed for generating the collision-free path between each two tasks in the three-
dimensional (3D) environment. Rotational repulsive force on a parallel plan assigned to each
object is considered which results in escaping from local minima. The parameters of the MAPF
and the sequence of the tasks and their direction are found by an optimization algorithm at the
same time. The overall optimization problem can be considered as a new modified artificial
potential field-constrained generalized traveling salesman problem (MAPF-CGTSP), which is a
mix-integer optimization problem. The mix-integer version of multi-tracker optimization

algorithm (MTOA) is developed to solve the problem. Note that, since visual servoing is used for
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robot motion control, the planning should be done in the image feature space which is the main
challenge of the problem. Integrated with the proposed task/path planning, a novel chattering-free
filtered quasi sliding mode control (FQSMC) method is specially designed for robust hybrid vision
and force control of the EIH robot. FQSMC exploits a novel variable-gain orthogonal sliding
manifold (VGOSM) for controlling vision and force to accomplish the tasks. FQSMC not only
overcomes large uncertainties, but also filters out the existing noises by exploiting an intrinsic low-
pass filter within its control law. It also enables the robot to switch between free-motion mode and
interaction mode which is necessary for completing multiple tasks in an operation. Experimental
results using an EIH Denso industrial robot show the effectiveness and superior performance of

the proposed approach compared to other state-of-the-art methods.

3. Multi-Stage Hybrid Vision and Force

A novel multi-stage method for robust hybrid vision and force control of industrial robots, subject
to model uncertainties. It aims to improve the performance of the three phases of the control
process: a) free-motion using the image-based visual servoing (IBVS) before the interaction with
the workpiece; b) the moment that the end-effector touches the workpiece; and ¢) hybrid vision
and force control during the interaction with the workpiece. First, the camera motion is
decomposed into transitional and angular movements. Then, utilizing a switching method, the
rotational and translational movements of the camera are controlled in the first two stages,
respectively. In the last stage, hybrid vision and force control is activated. For each stage, super-
twisting sliding mode controller (STSMC) is utilized. Employing STSMC results in robustness
against uncertainties while addressing the chattering problem. A variable-gain sliding surface is

also proposed to address the instability and convergence speed issues of the traditional switch
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IBVS. The experimental results demonstrated the effectiveness and superiority of the proposed

multi-stage method compared to other traditional approaches.

4. Expansion of IBVS Workspace

A novel approach for hybrid vision and force control of eye-in-hand industrial robots is presented
which addresses the problem of camera’s field-of-view (FOV) limitation. During the interaction
with the workpiece, the distance of the camera and the workpiece’s surface is rather short. Thus,
the FOV is very small which restricts the robot’s workspace. To handle this issue, instead of using
only a feature object, an array of objects is provided on the workpiece in a way that at least one
object is entirely in the FOV. However, conventional IBVS and hybrid vision and force methods
cannot be employed for such task. Thus, for this task, using a fuzzy inference system (FIS) and
orthogonality principle, a novel hierarchical sliding surface is devised, and the continuous integral
sliding mode controller (CISMC) is adopted, which leads to a robust and precise control method,

applicable to the mentioned task.

6.2 Future Work

This thesis focuses on introducing new methods of Vision and force control. In the future
work, it could be interesting to focus on a hybrid multi-camera framework conceived for an
IBVS and force control of a collaborative robot that has to manipulate industrial pieces. The
multi-camera approach overcomes the issues related to single-camera schemes, such as object
occlusions and view-dependent errors. Also, the robustness design technique could be adopted
to overcome the modeling errors and uncertainties of the acquired vision model. Another future

work could be developing a sensor-less method for force measurement and designing
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uncertainty/disturbance observer-based control approaches. Also, implementing the developed

strategies to real applications such as deburring, polishing, etc. could be considered.
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