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Abstract 

 

Simulation of Multi Pulse EPR Signals for Distance Measurement in Biological Systems by 

Exploitation of COSY, DQ, DQM, DQC, and DEER Signals; Relaxation Due to Fluctuation 

of Spin-Hamiltonian Parameters of Echo ELDOR Signal; and Effect of Instantaneous 

Diffusion and Many Body Interaction in a Frozen Malonic Acid Crystal on a SECSY 

Signal 

 

Hamidreza Salahi, Ph.D. 

Concordia University, 2022 

 

This dissertation is devoted to three main subjects:  

In the first part, an algorithm to calculate the multi-pulse EPR signals including COSY 

(Correlation Spectroscopy), two-pulse DQ (Double Quantum), five-pulse DQM (Double 

Quantum Modulation), four-, five-, six-pulse DQC (Double Quantum Coherence) is developed. 

The applicability of each of these pulse sequences is further studied.  

In addition, a novel method based on doubly rotating frames (DRF) has been exploited to 

calculate three- and four-pulse DEER (Double Electron-Electron Resonance) signals for a 

system of two dipolar-coupled nitroxides on a sample of bis-nitroxide nanowire, P1, in 

deuterated ortho-terphenyl solvent with 5% BnPy (d14-oTP/BnPy) as well as two coupled ὋὨ  

ions in ὋὨ ruler ρ  in Ὀὕ/glycerol-Ὠ  (7/3 volume ratio). The technique is then used to 

calculate the basis kernel signals accurately by numerical techniques to obtain the probabilities 

of distance distribution, ὖὶȟ using Tikhonov regularization and DeerAnalysis software.  

In the second part, two models, namely cylindrical and conical models of fluctuation, are 

presented wherein one considers the random fluctuations in the Ὣ and ὃ  matrices of the spin 

Hamiltonian due to thermal motion of malonic acid molecule. Accordingly, the relaxation matrix 

is calculated in Liouville space for the four-level coupled electron-nuclear spin system, using the 

formalism outlined by (Lee, Patyal and Freed 1993). The obtained relaxation matrix is then used 

to calculate the time-dependent echo-ELDOR signal by solving the relevant Liouville-von 

Neumann (LVN) equation.  

In the third part, the relaxation during free evolution and many-body effects in a SECSY 

signal, including instantaneous and spectral diffusions, which are due to the dipolar interaction 

between an electron with other electrons in a -irradiated malonic acid crystal are investigated.  



 

iv 
 

Acknowledgements 

 

I am deeply grateful to my supervisor Prof. Sushil K. Misra for his endless support and 

encouragement throughout my PhD candidature. I was lucky to have a supervisor who always 

was willing to answer my questions and to provide me with many seminal contributions to deal 

with all the challenges I faced while working on the projects presented in this thesis. 

I would like to express my special gratitude to Dr. Mariana Frank and Dr. Calvin S. Kalman for 

providing me with encouragement during my studies at Concordia University. 

I would like to express my appreciation to Dr. Lin Li for providing us with a robust Matlab 

source code for calculation of pulsed EPR SECSY signal. 

 

I also thank the Graduate Program Director Prof. Alexandre Champagne, and Assistant to the 

Chair Madam Marie-Anne Cheong Youne for their help in my studies. 

Financial assistance from Dr. Misraôs NSERC grant towards my bursary is gratefully 

acknowledged. I thank the Physics Department for providing me with sufficient TA support 

throughout my studies as a Ph. D. student. 

Finally, I would like to thank my wife, Reyhaneh Tavakolipour, for her moral support 

throughout my study. 

  



 

v 
 

Contribution of the authors 

The original research study is presented in chapters 3-6 and the list of the publications can be 

found in Appendix G. Professor Sushil K. Misra conceived of the presented ideas and prepared a 

Fortran code, which was further converted into a Matlab code by Hamidreza Salahi, who 

performed the computations. The theory was developed through daily discussions between the 

supervisor and the student, both of whom discussed the results and prepared the final 

manuscripts together.  



 

vi 
 

Table of Contents 

 

List of Tables ............................................................................................................................................ xviii 

List of Abbreviations .................................................................................................................................. xix 

1. Introduction to Electron Paramagnetic Resonance ......................................................................... 1 

1.1 Spin Hamiltonian ................................................................................................................................ 2 

1.2 Continuous wave EPR and pulsed EPR .............................................................................................. 5 

1.2.1 Continuous wave EPR ................................................................................................................. 6 

1.2.2 Pulsed EPR ................................................................................................................................... 6 

1.3 Pulsed dipolar spectroscopy ................................................................................................................ 7 

1.3.1 The Pake pattern and distance measurements .............................................................................. 7 

1.4 Relaxation ........................................................................................................................................... 8 

1.4.1 Spin-lattice relaxation .................................................................................................................. 9 

1.4.2 Spin-spin relaxation ..................................................................................................................... 9 

1.4.3 Relaxation, as treated in Liouville space...................................................................................... 9 

1.5 Organization of the thesis ................................................................................................................. 10 

2. Calculation of pulsed EPR signal .................................................................................................... 11 

2.1 Liouville-von Neumann equation ..................................................................................................... 11 

2.2 Coherence pathways and phase cycling ............................................................................................ 12 

2.3 Finite and infinite pulses ................................................................................................................... 13 

2.4 Final density matrix and EPR signal ................................................................................................. 13 

2.5 Rotating frame .................................................................................................................................. 13 

2.6 Polycrystalline averaging .................................................................................................................. 15 

3. Applicability of multi -pulse EPR sequences for distance measurements .................................... 16 

3.1 Numerical procedure ......................................................................................................................... 16 

3.1.1 Spin Hamiltonian of coupled nitroxide system .......................................................................... 16 

3.1.2 Initial density matrix .................................................................................................................. 18 

3.1.3 Relaxation matrix elements ........................................................................................................ 18 

3.1.4 Calculation of polycrystalline signal and Pake doublets in the absence of relaxation ............... 19 

3.1.5 Gaussian inhomogeneous broadening ........................................................................................ 19 

3.2 Two-pulse COSY at Ku-band (17.3 GHz) ........................................................................................ 20 

3.2.1 Calculation of polycrystalline signal and Pake doublets in the absence of relaxation ............... 21 

3.2.2 Relaxation in polycrystalline sample ......................................................................................... 21 



 

vii 
 

3.2.3. Effect of dead time on COSY signal ......................................................................................... 23 

3.2.4. Modulation depths of the calculated signals and Fourier transforms ........................................ 26 

3.2.5 Discussion of various simulations performed for COSY at Ku-band ........................................ 27 

3.3 Four-, five-, six-pulse DQC at Ku-band ........................................................................................... 29 

3.3.2 General procedure to derive analytical expressions for multi-pulse-EPR Signals ..................... 31 

3.3.3 One dimensional signals: Analytical Expressions for four-, five- and six- pulse DQC signals . 33 

3.3.4 Two-dimensional signal ............................................................................................................. 36 

3.3.5 Relaxation for  chosen orientations ʂȟʇρȟʇς .......................................................................... 36 

3.3.6. Comparison of four-, five-, and six-pulse DQC sequences for distance measurement ............. 38 

3.3.7. Details of simulations................................................................................................................ 42 

3.4 Two-pulse DQ and five-pulse DQM at X-band (9.26 GHz) and Ku-band (17.3 GHz) .................... 51 

3.4.1 Pulse schemes ............................................................................................................................ 51 

3.4.2 Analytical expressions of two-pulse DQ and five-pulse DQM one-dimensional signals .......... 53 

3.4.4 Results of numerical simulations of two-pulse DQ and five-pulse DQM at X-band................. 62 

3.4.5 Two-pulse DQ and five-pulse DQM at Ku-band ....................................................................... 70 

3.5 Comparison of the various multi-pulse techniques used for distance measurements ....................... 73 

3.6 Conclusions ....................................................................................................................................... 74 

4. Calculation of DEER spectrum and distance distribution, ╟►, by the use of doubly rotating 

frames ......................................................................................................................................................... 76 

4.1 Three-pulse and four-pulse nitroxide biradical DEER signals using DRF technique ....................... 77 

4.1.1 Calculation of the effect of observer and pump pulses using doubly rotating frames. .............. 77 

4.1.2 Illustrative examples .................................................................................................................. 81 

4.1.3 Inter-molecular interaction ......................................................................................................... 87 

4.2 Four-pulse DEER signal for two coupled Gd3+ ions using DRF technique ...................................... 88 

4.2.1 Theoretical Details ..................................................................................................................... 89 

4.2.2 Rotating-frames technique to calculate DEER signal for two coupled Gd3+ ions for a 

polycrystalline sample......................................................................................................................... 90 

4.2.3 Calculation of ╖▀  DEER signal by using DRF technique ................................................... 91 

4.2.4 Illustrative examples .................................................................................................................. 92 

4.3 Estimation of distance-distribution probabilities from DEER data of two coupled nitroxide and two 

coupled ╖▀  spin labels using doubly rotating frames ....................................................................... 94 

4.3.1 The general procedure of Tikhonov regularization. ................................................................... 95 

4.3.2 Use of DeerAnalysis software with analytical kernel signals .................................................... 95 

4.3.3 Use of DeerAnalysis software with DRF-calculated basis kernel signals.................................. 97 



 

viii 
 

4.4 Conclusions ..................................................................................................................................... 102 

5. Relaxation in pulsed EPR: thermal variation of spin-Hamiltonian parameters of an electron-

nuclear spin-coupled system in a ♬-irradiated malonic acid single crystal ....................................... 105 

5.1 Calculation of single crystal and polycrystalline SECSY and echo-ELDOR signal ...................... 105 

5.1.1 Spin Hamiltonian for an electron-nuclear spin-coupled system in an irradiated malonic acid 

crystal ................................................................................................................................................ 105 

5.1.2 Phenomenological relaxation matrix elements ........................................................................ 107 

5.1.3 Pulse sequences and coherence pathways ................................................................................ 110 

5.1.4 Gaussian inhomogeneous broadening effect ............................................................................ 112 

5.1.5 Illustrative Examples................................................................................................................ 112 

5.2 Quantitative calculation of relaxation matrix elements in a -irradiated malonic acid single crystal

 .............................................................................................................................................................. 119 

5.2.1 Spin Hamiltonian due to thermal fluctuation ........................................................................... 119 

5.2.2 Cylindrical model of fluctuation for calculation of ♯╢╗╟ ...................................................... 122 

5.2.3 Conical model of fluctuation for calculation of ♯╢╗╟ ............................................................ 128 

5.3 Conclusions ..................................................................................................................................... 135 

6 Relaxation during free evolution and effects of many-body interactions in a ♬-irradiated 

malonic-acid single-crystal SECSY signal of an electron-nuclear spin coupled system ................... 136 

6.1 Relaxation during free evolution ..................................................................................................... 136 

6.2 Many-body effects on the malonic-acid-radicals single-crystal SECSY signal of the electron-

nuclear spin coupled system ................................................................................................................. 138 

6.2.1 Spin Hamiltonian of two-coupled electron system (instantaneous diffusion) ......................... 138 

6.2.2 The Physical Picture................................................................................................................. 143 

6.3 Concluding remarks ........................................................................................................................ 147 

7. Concluding remarks ....................................................................................................................... 148 

8. Future perspectives ......................................................................................................................... 150 

References ................................................................................................................................................ 151 

Appendices ............................................................................................................................................... 156 

 

  



 

ix 
 

List of Figures  

 

Figure 1.1. External magnetic field ὄπ causes a splitting of the energy levels of the spin system. When the 

resonance condition ȹE=hɜ is met, spin transitions between the energy levels άί ρȾς and άί

ρȾς can be detected as energy absorption. ................................................................................................. 2 

Figure 1.2. (a) Schematic representation of a two-electron system and definition of the angle ʻ between 

the magnetic field B0 and the distance vector ►ρς. (b) The Pake pattern for two spins obtained by a 

weighted sum of the differences between the two pairs of EPR transition frequencies over all values of ʻ 

in the weak-coupling regime. ....................................................................................................................... 8 

Figure 2.1. Pulse scheme and the relevant coherence pathway for a two-pulse EPR experiment............ 13 

Figure 2.2. The effective microwave magnetic field in the rotating frame ................................................ 15 

Figure 3.1. (a) The configuration of the two nitroxides in the biradical as shown in the dipolar frame of 

reference. The ᾀ-axis of the dipolar frame is chosen to be along the vector ► connecting the magnetic 

dipoles of the nitroxides.  The relative orientation of the laboratory frame, along with its ᾀὰὥὦ axis 

parallel to the external magnetic field, ὄπ; the dipolar frame is defined by the Euler angles  ʂ πȟʃȟה 

with respect to the lab frame; (b) The set of Euler angles ʇὯ = (ɻὯ, ɼὯ, ɾὯ), (Ὧ  ρȟς), defining the 

orientations of the principal axes of the hyperfine and g-matrices for the nitroxides 1 and 2 in the dipolar 

frame with respect to molecular frame of reference, as denoted by ὢὯȟὣὯȟὤὯ, Ὧ ρȟς; here ὔρ and ὔς 

indicate the lines of nodes for the frames of the two nitroxides. For the present numerical calculations, the 

ὼ axis of the magnetic frame of the first nitroxide is chosen to be along the line of nodes of the first 

nitroxide, ὔρ, so the value of ɻρ becomes zero. (This figure is reproduced from (Misra et. al. 2009) by 

permission.) ................................................................................................................................................ 17 

Figure 3.2. The pulse scheme and the relevant coherence pathway for two-pulse COSY showing Ὓὧ  

and Ὓὧpathways. Here, ὴ is the coherence order, which represents transverse magnetization, 

corresponding to spins rotating in a plane perpendicular to the external field. .......................................... 20 

Figure 3.3. COSY signal at Ku-band for ║ ╖ . Dependence of COSY signal on the dipolar 

constant for a polycrystalline sample. (left) The time domain COSY signals for ὸς ὸρ and (right) their 

Fourier transforms for four different values of the dipolar coupling constant: Figs (σὥρ) and (σὥς): Ὠ

πȢυ; Figs (σὦρ) and (3ὦς): Ὠ χ MHz; Figs (3ὧρ) and (3ὧς):  Ὠ ρπ MHz. The parameters used for the 

simulations are listed in Table 3.1. The relaxation effect is not considered in these simulations. The initial 

25 ns interval of the time domain signals, included in the dead-time of the pulse, is shown as hatched; it 

cannot be recorded in the experiment. The corresponding Fourier transform with respect to both ὸρ and 

ὸρ ὸὨ are plotted, shown in black and blue, respectively. ....................................................................... 24 

Figure 3.4. COSY signal at Ku-band with a stronger ║ ╖. The same details as in the caption of 

Figure 3.3, except here ὄρ φπ G. By comparing these results with those obtained in Figure 3.3 for 

ὄρ σπ G, it is seen that at Ku-band, increasing ὄρ from 30 G to 60 G does not affect the shape of the 

simulated COSY signals and their Fourier transform significantly. However, the intensity of the signal is 

increased by about 15% for  ὄρ φπ '. .................................................................................................... 25 

Figure 3.5. The modulation depth ɝϷ  of the COSY signal at Ku-band, plotted as a function of the 

amplitude of the irradiation microwave field  ὄρ for Ὠ πȢυ MHz and χȢπ MHz, with the dead-time 

considered. The red dots indicate the values for Ὠ χȢπ MHz, whereas the green dots indicate the values 

for  Ὠ πȢυ MHz. All the other parameters used are the same as those listed in Table 3.1. The value of  

ɝϷ  is calculated by a linear extrapolation of the signal during the period ὸὨ to π; this estimate is 

expected to give a modulation depth larger by ~2-4% than that calculated without extrapolation. ........... 27 



 

x 
 

Figure 3.6.  Effect of relaxation on the COSY signal for a polycrystalline sample at Ku-band. The Fourier 

transform of the COSY signal as a function of Ὂρ, the frequency corresponding to ὸρ ὸὨ, to consider 

the dead-time effect for: (left) without taking relaxation into account and (right) with relaxation 

considered for ὝςὛ υππ ὲί and ɼ πȢψ. The dipolar coupling constant Ὠ χ MHz and amplitude of 

the irradiation microwave field ὄρ φπȢπ Ὃ are used for these simulations. The values of all the other 

parameters used for the simulations are listed in Table 3.1. The effect of relaxation is clearly seen to 

broaden the Pake-doublet peaks. ................................................................................................................. 28 

Figure 3.7.  (a) The time-domain signal Ὓᴂὸ and (b) its Fourier transform (Pake doublets) Ὓᴂᴂʖ, as given 

by Eqs. (D.1) and (D.5) in Appendix D, respectively, plotted for two values of the modulation depth ɝ

πȢτ and ɝ πȢχ. The dipolar coupling constant Ὠ ρ ὓὌᾀ and Ὓπᴂρππ are used in these plots. ....... 29 

Figure 3.8.  The pulse schemes and the relevant coherence pathways for (a) four-pulse DQC, (b) five-

pulse DQC, and (c) six-pulse DQC. PerfectʌȾςὼ or ʌØ pulses are used for all sequences, where the 

duration of the pulses, ὸὴȟ is determined by ὸὴɾÅ"ρȾɼ , knowing ὄρ, where ὄρ is the amplitude of the 

microwave field and ɼ ʌȾς Ƞ ʌ is the tip angle. ...................................................................................... 31 

Figure 3.9. Comparison between the intensity of the Pake doublets obtained for (a) four-pulse; (b) five-

pulse and (c) six-pulse DQC. The amplitude of the irradiation microwave field ὄρ φπȢπ Ὃ and the 

dipolar coupling constant Ὠ ρπ MHz are used in the simulations. The intensity of the Pake doublet in 

four-pulse DQC is almost 4 times and 10 times larger than those of five- and six-pulse DQC Pake 

doublets, respectively. In order to make a valid comparison between the intensities, the relaxation effect is 

considered in all the simulations using ὝςὛ υππὲί and ὝςὈ σππὲί. The depths of dipolar 

modulation of ~100% are found in all three cases. It is noted from Figs. (ὥς), (ὦςȟὧς) that even though 

the Pake doublets of the four-pulse DQC sequence are broadened by relaxation, they are still sufficiently 

distinguishable from each other to be exploited for distance measurements. The advantage for the four-

pulse DQC sequence is that the intensity of the Fourier transform is significantly larger than those of the 

five- and six-pulse DQC signals, although the latter have much sharper Pake doublets. ........................... 41 

Figure 3.10. Experimental four-pulse DQC spectrum of the nitroxide biradical and the best fit numerical 

simulation. The value of — representing the orientation of the external magnetic field with respect to the 

dipolar axis of the couple nitroxide in the experiment is 0°. The duration of the ʌ and ʌȾς pulses are 6.2 

ns and 3.6 ns, respectively. The value of ὸὈὗτ ςφȢυ ns is chosen to be the same as that used in the 

experiment, and the step size in ὸρ is 8 ns. This simulation carried out, using the value of the dipolar 

interaction constant Ὠ ςȢρ MHz, shows a very good agreement with the experiment, within 

experimental error. The experimental data is reproduced from (Borbat and Freed 2002). ......................... 42 

Figure 3.11. Experimental five-pulse DQC spectrum of the nitroxide biradical and the best fit numerical 

simulation. The value of — for the five-pulse experiment was 90°.  The value of the double quantum time 

was chosen to be ὸὈὗυ ςφȢυ. All the other parameters used in the simulation are the same as those 

mentioned in the caption of Figure 3.10. The five-pulse data is plotted as a function of ὸάὥὼὸρ with 

ὸάὥὼωτχ ὲί.  The simulated signal calculated using the procedure given in Sec. 4 is found to be in 

good agreement with the experiment. The experimental spectrum is reproduced from (Borbat and Freed 

2002). .......................................................................................................................................................... 43 

Figure 3.12. Experimental spectrum for a polycrystalline sample of the nitroxide biradical and the best fit 

numerical simulation of the six-pulse (a) DQC time domain signal and (b) its Fourier transform. The 

value of the double quantum time was chosen to be ὸὈὗφ ςφȢυ. All the other parameters used in the 

simulation are the same as those mentioned in the caption of Figure 3.10. The six-pulse signal is plotted 

as a function of ὸὨὭὴὸάὥὼςὸρ with ὸάὥὼρςππ ὲί. A baseline correction has been applied to the 

experimental time-domain signal. The simulated signal its Fourier transform are in very good agreement 

with those of the experiment. The experimental spectra reproduced from (Borbat and Freed 2002). ........ 45 



 

xi 
 

Figure 3.13. Experimental six-pulse DQC ESR spectrum of the nitroxide biradical and the best fit 

numerical simulation. The ESR frequency is a constant slice along ὪὩὧὬέ of 2D magnitude Fourier 

transform vs. ὪὨὭὴ and ὪὩὧὬέ, which are respective Fourier variables of ὸὨὭὴ and ὸὩὧὬέ, at ὪὨὭὴ

ςȢρὓὌᾀ. For the simulation, the value of —ȟה ʌȾςȟπ with the combination of three sets of Euler angles 

which are (i) ɻρȟɼρȟɾρ ɻςȟɼςȟɾς πȟʌȾςȟπ; (ii) ɻρȟɼρȟɾρ πȟʌȾςȟπ, ɻςȟɼςȟɾς πȟπȟπ and (iii) 

ɻρȟɼρȟɾρ πȟʌȾςȟπ, ɻςȟɼςȟɾς ʌȾσȟʌȾτȟʌȾσ was used. The value of the double quantum time was 

chosen to be ὸὈὗφ ςφȢυ. ......................................................................................................................... 46 

Figure 3.14. The absolute value of the time-domain DQC signals (left) and their corresponding Fourier 

transforms (right) for the coupled nitroxides radicals system along the ὸὩὧὬέ axis, sliced about the middle 

of the dipolar axis in the 2D ὸὨὭὴȟὸὩὧὬέ plot, as calculated for the cases: (a) without relaxation; (b) with 

relaxation for Ὕς ίὸὶὛ,Ὕς ίὸὶὈ) = (500 ns,300 ns); (c) with relaxation for Ὕς ίὸὶὛ,Ὕς ίὸὶὈ) = (50 ns, 

25 ns). The chosen values of Ὕς ίὸὶὈ are consistent with Ὕς ίὸὶὈ  Ὕς ίὸὶὛȾς as found experimentallyװ

(Saxena and Freed 1996). It should be noted that the Gaussian broadening is in competition with the 

relaxation broadening due to  Ὕς ίὸὶὈ, as discussed in Sec. 4. The insets in the right panel show the 

amplified part of the signal in the range 40-60 MHz to accentuate the effect of relaxation. ...................... 47 

Figure 3.15.   Plots of the absolute values of the two-dimensional time domain DQC six-pulse signals for 

the coupled nitroxide system for three cases: (a) without relaxation and (b) and (c) with relaxation for two 

different values of Ὕς ίὸὶὛ,Ὕς ίὸὶὈ as noted on the top of each figure. ................................................ 49 

Figure 3.16.  Contour plots of the 2D-Fourier transform of DQC six-pulse signals for three cases 

corresponding to Fig. 5. The corresponding 1D spectra, joined on the top and on the right-hand side of the 

contour plots, are obtained by integration along the ὪὩὧὬέ and ὪὨὭὴ axes, respectively, and dividing by 

the number of data points to calculate averages.   The joined figures on the right-hand side represent the 

CW ESR spectra. ........................................................................................................................................ 50 

Figure 3.17.  Semi-log plot intensity of the Fourier transforms versus (a) ὪὨὭὴ and (b) ὪὩὧὬέfor different 

values of the relaxation times. The values of the parameter used for the simulation are given in Table I. 

The intensity of the Fourier transform of the signal is reduced by several orders of magnitudes due to the 

relaxation in both cases. The relaxation also broadens the peaks along ὪὩὧὬέ axis. ................................. 51 

Figure 3.18.  The pulse schemes and the relevant coherence pathways for (a) two-pulse DQ sequence; (b) 

five-pulse DQM sequence. The time intervals (ὸὭ; Ὥ ρȟς for DQ and Ὥ ρȟςȟσȟτȟυ for DQM) between 

the pulses, as well as after the last pulse for the two sequences are indicated. ........................................... 52 

Figure 3.19 Two-pulse DQ coherence transfers for a polycrystalline sample, averaged over twenty Monte-

Carlo orientations of the nitroxide dipoles of the biradical: (left) the absolute values and (right) their 

contour plots of the coherence transfers; (top) T0 Ą 2 and (bottom) T2 Ą-1, as functions of the intensity of 

the irradiation microwave magnetic pulse, ὄρ and the duration of the pulses, ὸὴ for the dipolar coupling 

constant Ὠ ρπ MHz. All the parameters used for simulations are the same as those listed in Table 3.1. It 

is seen from these simulations that the maximum coherence transfer is achieved for both π Ąς and 

ς Ą ρ transitions with  ὄρ φπ Ὃ and ὸὴφυ ns, which are experimentally feasible values. ........... 56 

Figure 3.20 The same details as those for Figure 3.19, except that here the simulations are for the dipolar-

coupling constant d = 20 MHz .................................................................................................................... 57 

Figure 3.21 The same details as those for Figure 3.19, except that here the simulations are for the dipolar-

coupling constant d = 30 MHz. ................................................................................................................... 58 

Figure 3.22 The coherence transfer ὝπĄς plotted as function of ʃ, as calculated: left (ὥρȟὦρȟὧρ) using 

the analytical expression, Eq.(3.59), and right (ὥςȟὦςȟὧς) rigorously using numerical simulations for 

different values of the amplitude of the irradiation microwave pulse, ὄρ, indicated next to each plot for 

(ὥρȟὥς) Ὠ ςπ MHz, (ὦρȟὦς) Ὠ σπ MHz and (ὧρȟὧς) Ὠ τπ MHz. The duration of the pulse ὸὴ in 

each case is chosen consistent with a nominal ʌȾς pulse and amplitude ὄρ. The two sets, calculated using 



 

xii 
 

analytical expressions and exact numerical algorithm, are found to be in very good agreement with each 

other. Regardless of the values of Ὠ and ὄρ, the coherence transfer is zero at the magic angle ʃ υτȢχτ 

and at its supplementary angle ʃ ρςυȢςφ, i.e., the values which make σὧέίςʃ ρ π. The 

orientational selectivity, determined by the sharpness of the peaks, occurs at lower values of ὄρ for each 

Ὠ value. These values are less than 1.5, 2.0, and 3.0 G for d = 20, 30, and 40 MHz, respectively. ........... 60 

Figure 3.23 Dependence of the two-pulse DQ signal on the dipolar-coupling constant for a polycrystalline 

sample, averaged over twenty Monte-Carlo orientations of the nitroxide dipoles: left 

(ὥρȟὦρȟὧρȟὨρȟװὩρȟὪρȟװὫρ): time domain DQ signals for ὸς ςὸρ and right (ὥςȟὦςȟὧςȟὨςȟװὩςȟὪςȟװὫς): 

their Fourier transforms (Pake doublets) for three different values of the dipolar-coupling constant  Ὠ

ρπȟςπȟσπ MHz. In all simulations, the amplitude of the irradiation microwave pulse ὄρ ÉÓ ρπὋ and the 

duration, ὸὴ ȟ for both pulses is ψπ ns. All the other parameters used for the simulations are the same those 

listed in Table 3.1. The relaxation is not considered in these simulations. All Pake doublets appear at 

σὨȾτ. The same dead time, ὸὨ=35 ns, as that reported in (Borbat and Freed 2002), is used here. The 

time-domain signal in the initial 35 ns interval, shown as hatched is lost in the dead-time of the pulse. The 

corresponding Fourier transform with respect to both ὸς and ὸς ὸὨ are plotted, shown in black and blue, 

respectively. ................................................................................................................................................ 64 

Figure 3.24. The same details as in the caption of Figure 3.23, except here ὄρ φπὋ and ὸὴφυ ns, 

corresponding to the maximum coherence efficiencies for both ὝπO ς and ὝςO ρ as discussed in Sec. 

3.4.3.1 Coherence transfer efficiency. ........................................................................................................ 66 

Figure 3.25. Dependence of the five-pulse DQM signal on dipolar coupling constant for a polycrystalline 

sample, averaged over twenty Monte-Carlo orientations of the nitroxide dipoles: left (ὥρȟὦρȟὧρ) time 

domain DQ signals for ὸυ ὸρ and right (ὥςȟὦςȟὧς) their Fourier transforms (Pake doublets) for three 

different values of the dipolar coupling constant  Ὠ ρπȟςπȢσπ MHz. The amplitude of the irradiation 

microwave pulse ὄρ ρχȢψὋ and the duration of the finite pulses ὸὴρ ὸὴσ ὸὴυ υὲί ʌȾ

ς ὴόὰίὩί and ὸὴς ὸὴτ ρπὲί ʌ ὴόὰίὩί  ns are used for all simulations.. The relaxation is not 

considered in these simulations. The dead-time of ὸὨ συ ns, as used experimentally in (Borbat and 

Freed 2002), at X-band is used. The initial 35 ns interval of the time domain signals, included in the dead-

time of the pulse, is shown as hatched; it cannot be recorded in the experiment. The Fourier transform 

shown in blue is taken with respect to ὸρ ὸὨ  whereas that in black is taken with respect to ὸρ. All Pake 

doublets appear at Ὠ. ................................................................................................................................ 68 

Figure 3.26 The two-dimensional top views of the Fourier transforms of the DQ signal as a function of 

the double quantum frequency, denoted as Ὂρ, corresponding to the time ὸρ in Figure 3.18(a), showing 

the pulse sequence, and the ESR frequency, ὊὉὛὙ, corresponding to the time ὸς after the second pulse  as 

shown in Figure 3.18 (a) for a coupled nitroxides biradical with the coupling constants: (a) Ὠ ςπ MHz 

and (b) Ὠ σπ MHz. The corresponding 1D spectra, are joined on the top and on the right-hand sides of 

the top views, as obtained by the summation along the ὊὉὛὙ and Ὂρ axes, respectively, and by dividing 

by the number of data points to calculate averages. The attached figures on the right-hand sides represent 

the CW ESR spectra, wherein the static field is kept at the fixed value and the frequency is varied. The 

amplitude of the radiation microwave field ὄρ φπὋ and the duration of the pulse ὸὴφυ ns is used for 

both pulses, corresponding to the maximum coherence efficiencies for both ὝπO ς and ὝςO ρ are 

used for the simulations. All other parameters used for the simulations are the same as those listed in 

Table 3.1. The relaxation is not considered here. ....................................................................................... 69 

Figure 3.27 The simulation made using the numerical algorithm to fit the experimental five-pulse DQM 

signal of the nitroxide biradical (Saxena and Freed 1996). The experimental data shown is a profile of the 

three-dimensional experiment along the maximum slice at ὸυ ὸρ reported in (Saxena and Freed 1996). 

The simulation parameters are: ὄρ 17.8 G, d=12.3 MHz, ὝςὛ υππὲί, ὝςὈ σππὲί. The duration 



 

xiii 
 

of the pulses is: ὸὴρ ὸὴσ ὸὴυ υὲί and ὸὴς ὸὴτ ρπὲί . The other parameters are the same as 

those listed in Table 3.1. ............................................................................................................................. 70 

Figure 3.28 The two pulse DQ and five pulse DQM signals at  Ku-band for a polycrystalline sample, 

averaged over twenty Monte-Carlo orientations of the nitroxide dipoles: left (ὥρ) time domain DQ signal 

for ὸς ςὸρ; (ὥς) time domain DQM signal for ὸυ ὸρ and right (ὥς, ὦς) their Fourier transforms 

(Pake doublets) for Ὠ  ρπ MHz. For simulation of DQ signal, the amplitude of the irradiation 

microwave pulse was ὄρ φπG and the duration of the finite pulses ὸὴ for both pulses was 65 ns, 

whereas for the simulation of five-pulse DQM signal ὄρ= 17.8G and the duration of the finite pulses 

ὸὴρ ὸὴσ ὸὴυ υns (ʌȾς pulses) and ὸὴς ὸὴτ ρπ ns (ʌ pulses) ns are used. All other 

parameters used for the simulations are the same as those listed in Table 3.1. The relaxation is not 

considered in these simulations................................................................................................................... 71 

Figure 3.29 Comparison between the intensities of the Pake doublets at Ku-band obtained for (a) COSY; 

(b) two-pulse DQ; (c) five-pulse DQM; (d) four-pulse DQC; (e) five-pulse DQC and (f) six-pulse DQC at 

Ku-band. The Fourier transform of the various signals are taken with respect to ὸρ ὸὨ to consider the 

dead-time effect, except for five- and 6-pulse DQC sequences, where the dead-time effect is absent. The 

amplitude of the irradiation microwave field is ὄρ φπȢπ Ὃ and the dipolar coupling constant Ὠ ρπ 

MHz are used in the simulations. All the other parameters used are the same as those listed in Table I. In 

order to make a valid comparison between the intensities, the relaxation effect is considered in all the 

simulations, using ὝςὛ υππ ὲί, ὝςὈ σππ ὲί and ɼ πȢψ. ............................................................... 72 

Figure 4.1  The pulse schemes for (a) three-pulse and (b) four-pulse DEER sequences. Here ὄ ὃ and 

are the observer and pump frequencies, respectively. The pulses at frequency .ὃ induce echo signals 

The time † in (a) and the times †ρȟ†ς (independent of each other)  in (b), are kept fixed, whereas the time 

interval ὸ in (a), and after the time interval t after the first inverted echo in (b) at which the pump pulse is 

applied, is stepped from 0 to † and from 0 to †ς for three- and four-pulse DEER sequences, respectively.

 .................................................................................................................................................................... 80 

Figure 4.2  Dependence of three-pulse DEER signal on the dipolar coupling constant, Ὠ, for a fixed value 

of the amplitude of the irradiation microwave field, assumed to be the same for the observer and pump 

pulses ὄρέὦίὄρὴόάὴςȢπ Ὃ) for a polycrystalline sample. The time domain signals 

(ὥρȟὦρȟὧρȟὨρ) and their Fourier transforms (ὥςȟὦςȟὧςȟὨς) are shown for the ratios ὶ ὨὓὌᾀὄρὋ

 πȢυȟρȢπȟςȢπȟτȢπ ὓὌᾀȾὋ. The time-domain signal in the initial ὸὨ35 ns interval, shown as the hatched 

area on the left, is lost in the dead-time of the pulse.  The Fourier transforms are taken with respect to the 

reduced time ὸ ὸὨȢ. .................................................................................................................................. 83 

Figure 4.3    The same details as in the caption of Figure 4.2, except here ὄρέὦίὄρὴόάὴσȢπ Ὃ. . 84 

Figure 4.4. The same details as in the caption of Figure 4.2, except here ὄρέὦίὄρὴόάὴτȢπ Ὃ .... 85 

Figure 4.5. The relative intensity of the peak at ὨȾς with respect to the peak at Ὠ  in the Fourier 

transform of the three-pulse DEER signal as a function of ὨὓὌᾀ calculated for three values of the 

amplitude of the irradiation microwave field (a) ὄρ ςȢπὋ, (b) ὄρ σȢπὋ and (c) ὄρ τȢπὋȟ assumed 

to be the same for the observer and pump pulses. The value of Ὠ up to which the Pake doublets at Ὠ 

increases as the amplitude ὄρ increases, being Ὠ  σȢτ ὓὌᾀ, 4.5 ὓὌᾀ and 8.0 ὓὌᾀ for ὄρ = 2.0 Ὃ, 3.0 

Ὃ, and 4.0 Ὃ, respectively. .......................................................................................................................... 86 

Figure 4.6 (a) The probability of distribution of distances ὖὶ as reported in (Georgieva et. al. 2012) and 

(b) the calculated resulting signal, by overlapping time-dependent DEER signals, calculated for the 

various ὶ values using doubly rotating frame, in accordance with the probability distribution given in (a). 

An excellent agreement is found between the simulated (blue) and experimentally measured (brown) 

signals. A modulation depth ɝϷ  of about 100% is found from the simulation of the four-pulse DEER 

signal. .......................................................................................................................................................... 88 



 

xiv 
 

Figure 4.7  (a) Figure showing the configuration of the two ὋὨσ ions in the biradical, as shown in the 

dipolar (molecular) frame of reference, wherein the ᾀ-axis is chosen parallel to the vector ► , 

connecting the dipoles of the two ὋὨσ  ions. The ᾀὰὥὦÁØÉÓin the laboratory frame is oriented along 

the external magnetic field ὄπ. The Euler angles, shown in (a), which define the dipolar frame, are given 

by ʂ πȟʃȟה ×ÉÔÈ ÒÅÓÐÅÃÔ ÔÏ ÔÈÅ ÌÁÂÏÒÁÔÏÒÙ ÆÒÁÍÅ. (b) The orientations of the principal axes of the 

zero-field splitting tensors for the ὋὨσ  ions 1 and 2, denoted by ὢὯȟὣὯȟὤὯ; Ὧ ρȟς. are defined by the 

set of Euler angles ʇὯ = (ɻὯ, ɼὯ, ɾὯ), (Ὧ  ρȟς) with respect to the dipolar (molecular) frame of 

reference (x, y, z). The lines of nodes for the two ὋὨσ  ions frames are ὔρ and ὔςȢ as shown in (b). The 

ὼ axis of the first ὋὨσ  ion magnetic frame is chosen to be along its line of nodes, ὔρ, for the numerical 

calculations in the present work, so that  ɻρ = 0, since only five of the six Euler angles are independent 

(Sec. 3.3). (This figure is reproduced from (Misra et.al 2009) by permission.) ......................................... 91 

Figure 4.8  Simulation of four-pulse DEER signals using the RF technique for three values of the dipolar 

coupling constant: ʖὨὨ πȢφσ ὓὌᾀ ὶ τȢσφ ὲά, ὨὨπȢτω ὓὌᾀ ὶ τȢχσ ὲά and ὨὨ

πȢσω ὓὌᾀ ὶ υȢρπ ὲά, representing the two end and one middle values of the range of d values 

considered here for the calculation of basis DEER signals for a polycrystalline sample. The time-domain 

signals and their Fourier transforms are shown in (ὥρȟὦρȟὧρ  and (ὥςȟὦςȟὧς), respectively. The 

parameters used for the simulations are listed in Table 4.3. ....................................................................... 93 

Figure 4.9 (a) The probability distribution  as a function of distance as obtained from the experimental 

data, reported in (Lovett et. al. 2012) for bis-nitroxide labeled nanowire, calculated by DeerAnalysis with 

Tikhonov-regularization using analytical kernel functions, shown in blue, and the distances chosen for the 

calculation DRF signals indicated by green dots; (b) The probability of distance distribution calculated 

using the DRF-calculated signals described in Sec. 4.1, shown in red and that calculated using the 

analytical kernel functions, shown in blue {the same as that shown in (a)}; there are found significant 

differences in the two for distances ὶ  3.3 nm; (c) The calculated time-domain signal, as obtained by 

using the DRF-calculated signals, shown by the red solid line, and the signal calculated by the 

DeerAnalysis software using the analytical kernels, shown by the blue solid line. An improvement is 

found in the overall signal calculated by using DRF-calculated signals as compared to that calculated 

using the analytical kernel functions. The zero of ὸ is set just after the deadtime that occurs subsequent to 

the third pulse in the experiment. The experimental time trace, shown in (c) by black line, is the original 

data, obtained from Dr. J. E. Lovett, one of the authors of Ref. (Lovett et. al. 2012). ............................... 99 

Figure 4.10 The kernel signals calculated using the DRF technique including the ZFS at (ὥρ) ὶ τȢρω 

nm; (ὦρ) ὶ τȢχφ nm and (ὧρ) ὶ υȢρς nm and those calculated with the kernel functions, calculated 

using the analytical expression for infinite pulse without including the ZFS at (ὥς) ὶ τȢρω nm; (ὦς) ὶ

τȢχφ nm and (ὧς) ὶ υȢρς nm corresponding to the maximum of the probability of distance distribution 

as determined from Figs 4.11(a) and 4.12(a), at Q- and W-bands, respectively.  The DRF and the 

analytical kernel signals are shown by red and blue solid lines, respectively. There is seen a significant 

difference between the two sets of kernel signals. .................................................................................... 103 

Figure 4.11 The probability distributions  as functions of distance, obtained from the experimental data, 

for ὋὨ ruler ρυ in Ὀςὕ/glycerol-Ὠψ  at Q-band, calculated by DeerAnalysis with Tikhonov-regularization 

using the DRF-calculated basis signals, with finite pulses including the ZFS, shown in red and those 

obtained using analytical kernel functions with infinite pulses and no ZFS, shown in blue; (b) The time-

domain signals, as calculated by DeerAnalysis software using the DRF-calculated signals, shown by red 

solid line, and the time-domain signal, as calculated by DeerAnalysis software, obtained by using the 

analytical kernels, shown by the blue solid line. The inset in (b) amplifies the region around t = 1s for a 

better comparison. ..................................................................................................................................... 104 



 

xv 
 

Figure 4.12 The probability distributions  as functions of distance, obtained from the experimental data, 

for ὋὨ ruler ρυ in Ὀςὕ/glycerol-Ὠψ (7/3 volume ratio) at W-band, calculated by DeerAnalysis with 

Tikhonov-regularization using analytical kernel functions with infinite pulses, shown in blue, and that 

obtained using the DRF-calculated basis signals, with finite pulses,  shown in red; (b) The time-domain 

signals, as calculated by DeerAnalysis software using the analytical kernels, shown by red solid line, and 

the time-domain signal, as calculated by DeerAnalysis software, obtained by using the DRF-calculated 

signals, shown by the blue solid line. The inset in (b) amplifies the region around t = 5.5 s for a better 

comparison. ............................................................................................................................................... 104 

Figure 5.1 Relation of principal axes (x,y,z) of the  Ὣ and ὃ (hyperfine) matrices, assumed coincident to 

the structure of the malonic acid radical CH(COOH)2 to the. Here, the z axis is along the C-H bond 

direction and the x- axis is perpendicular to the plane of the three carbon atoms). The direction of the 

external static field B0 is defined by the angles ɗ and ◖, where ɗ is the angle between B0 and the z axis, 

and ◖ is the angle between the x axis and the projection of B0 on the xy plane. ...................................... 106 

Figure 5.2 The energy levels of an electron-nuclear spin-coupled system ............................................... 109 

Figure 5.3 (Top) Pulse sequence for obtaining SECSY signal. The t1 time between the two pulses and t2 

time from the echo are stepped. (Bottom) The coherence pathway Sc- used for calculating SECSY signal 

for an unpaired electron (S = ½) interacting with a single nucleus (I = ½) is shown by the solid line. .... 110 

Figure 5.4 (Top) Pulse sequence for obtaining echo- ELDOR signal. The t1 time between the first two 

pulses and t2 time from the echo are stepped. Here Tm is the mixing time. (Bottom) The coherence 

pathways used for calculating 2D- ELDOR signal for an unpaired electron (S = ½) interacting with a 

single nucleus (I = ½) is shown by the solid line. ..................................................................................... 111 

Figure 5.5 Simulated single-crystal SECSY time-domain signal with relaxation taken into account at 

—ȟ‰= (30°, 0°) orientation of the external magnetic field with respect to the crystal axes in the zx-

quadrant (Lee et. al. 1993), shown in the left column. The corresponding FT figures are shown in the 

column to the right. A Gaussian inhomogeneous broadening width ȹ=4 MHz in accordance with (Lee et. 

al. 1993) has been added along the t2 axis in calculating the Fourier transform as shown in the second row 

for the time domain and FT signals. The corresponding SECSY experimental spectrum as extracted from 

(Lee et. al. 1993) is shown in the bottom row for comparison. ................................................................ 113 

Figure 5.6 Simulated single-crystal echo-ELDOR time-domain signal with relaxation taken into account 

at —ȟ‰= (30°, 0°) orientation of the external magnetic field with respect to the crystal axes in the zx-

quadrant, with the mixing times Tm = 40 ɛs, shown in the left column. The corresponding FT figures are 

shown in the column to the right. A Gaussian inhomogeneous broadening width ȹ=5 MHz has been 

added along the t2 axis in calculating the Fourier transform as shown in the bottom row for the time 

domain and FT signals. The corresponding echo-ELDOR experimental spectrum as extracted from (Lee 

et. al. 1993) is shown in the bottom row for comparison.......................................................................... 114 

Figure 5.7 SECSY polycrystalline spectrum, for the —ȟ‰grid: nTheta = 180, nPhi = 180, without Gaussian 

inhomogeneous broadening. The simulated time-domain signal is shown at the left and the corresponding 

FT is shown on the right. .......................................................................................................................... 115 

Figure 5.8 Echo-ELDOR polycrystalline spectrum, for the —ȟ‰grid: nTheta = 180, nPhi = 180, without 

Gaussian inhomogeneous broadening. The simulated time-domain signal is shown at the left and the 

corresponding FT is shown on the right. The mixing time, Tm, is 40 ɛs. ................................................. 115 

Figure 5.9 SECSY polycrystalline spectrum, for the —ȟ‰grid: nTheta = 180, nPhi = 180, with Gaussian 

inhomogeneous broadening of ȹ=4 MHz added. The simulated time-domain signal is shown at the left 

and the corresponding FT is shown on the right. ...................................................................................... 116 



 

xvi 
 

Figure 5.10 Echo-ELDOR polycrystalline spectrum, for the —ȟ‰grid: nTheta = 180, nPhi = 180, with 

Gaussian inhomogeneous broadening of ȹ=5 MHz added. The simulated time-domain signal is shown at 

the left and the corresponding FT is shown on the right. The mixing time, Tm, is 40 ɛs. ........................ 116 

Figure 5.11 Comparison of SECSY 1D spectrum in the Fourier domain along f2 for the slice along f1=0 

for four different cases: i) Without H0 and relaxation ii) Without H0 but with relaxation included iii) With 

H0 without relaxation iv) With H0 and with relaxation during the pulses. ................................................ 117 

Figure 5.12 Comparison of echo-ELDOR 1D spectrum in the Fourier domain along f2 for the slice along 

f1=0 for four different cases: i) Without H0 and relaxation ii) Without H0 but with relaxation included iii) 

With H0 without relaxation iv) With H0 and with relaxation during the pulses. ....................................... 118 

Figure 5.13 The fluctuation of the director of the molecule. The directors fluctuate in such a way that the 

end points remain on the upper and bottom circular ends to the cylinder. The vector along A refers to the 

average director along the symmetric axis (x). ......................................................................................... 123 

Figure 5.14 Relative orientations of the laboratory frame (X,Y,Z) and the average director frame (x,y,z). 

The Euler angles (0,ɗ,0) relate the two frames. Here B0 denotes the external magnetic field and ὲ denotes 

the average orientation of the director axis. .............................................................................................. 123 

Figure 5.15 Contour plots of Ὕςὥὧ; ὝςὦὨ; ὝςὥὨ; Ὕςὦὧ for the experimental value ὝςὩὩὼὴ  = 900 ns and 

those for ὝςὧὨȟὝςὥὦ, for the experimental value ὝςὲὩὼὴ = 22  ‘s as a function of the correlation time †ὧ 

and Ὤς .The red point inside the overlapping region represents the average values †ὧ = 8.9  ρπψ s and 

Ὤς = 1:18 ρπς. .................................................................................................................................. 127 

Figure 5.16 (a) Fourier transform of the simulated echo-ELDOR spectrum with the relaxation matrix 

calculated in this work (b) with phenomenological relaxation matrix introduced in (Lee et. al. 1993) (c) 

experimental Fourier transforms of the echo-ELDOR signal (d) simulated without any relaxation at the 

orientations (ȟȟ ) = (πʐ , σπʐ ,  πʐ ), with the mixing times Ὕά = 40 ‘s. The experimental Figure (c) 

is reproduced with the permission of the authors of (Lee et. al. 1993). .................................................... 127 

Figure 5.17 Figure to show the fluctuations of the ensemble-average director of the molecules. The tip of 

the director indicated by the arrow fluctuates within the circular periphery of the cone. Here x-axis 

represents the symmetry axis of malonic molecule. ................................................................................. 128 

Figure 5.18 Contour plots of (T2)ac, (T2)bd, (T2)ad, (T2)bc for the experimental value T2e=900 ns and those 

for (T2)ab, (T2)cd for the experimental value T2n=22 ɛs as a function of the correlation time Űc and ɚ for the 

ground state (a), first excited state (b) and second excited state (c) of the harmonic oscillator. The red 

circle in the overlapping region represents the average of (Űc, ɚ) values used for simulation of the echo-

ELDOR signal representing the best average which are found to be (a) (8.1 ρπψ s, 4.43) (b) ((8.π

ρπψ s, 9.93)) and (c) ((7.9 ρπψ s, 15.85)). .................................................................................... 133 

Figure 5.19  Fourier transform of the simulated echo-ELDOR spectrum for (a) second excited state (n=2), 

(b) first excited state (n=1), (c) ground state (n=0), and (d) the experimental Fourier transforms of the 

echo-ELDOR signal. The simulations are done for the orientation of the external magnetic field ȟȟ

πȟσπέȟπ, with the mixing times Tm = 40 ɛs. The same best fit values of the correlation time †ὧ and ɚ, as 
determined in Figure 5.18 are used in these simulations. An inhomogeneous Gaussian broadening along 

the f2 axis with the width ῳ= 5 MHz is used in the simulations. All simulated figures, drawn using the 

best fit values, show excellent agreements with the experiment (Fig. (d), but (c), the one for n=0 (ground 

state), represents the most populated state at room temperature. The experimental Figure (d) is reproduced 

with the permission of the authors of (Lee et. al. 1993). .......................................................................... 134 

Figure 6.1 Comparison of two-dimensional Fourier transforms obtained from malonic-acid single-crystal 

SECSY signals. (a) using the modified projection operator (b) same as Figure 5.5 and (c) Experimental 

Fourier transform. The same parameter as those used for Figure 5.5 is used for the simulation of (b). The 

value of the phenomenological relaxation time for matrix element (3.1) is chosen to be Ὕςᴂφππ ὲί. 138 



 

xvii 
 

Figure 6.2 (a) The unit cell of malonic acid crystal. The unit cell parameters are (McConnell et. al. (1959)) 

(ὥ υȢσσ Bȟὦ υȢρτ Bȟὧ ρρȢςυB and  ρπςʐȟ ρσυʐȟ ψυʐ . (b) The top view of the 

triclinic lattice. The red dot represents observer spin which is located at ὰȟάȟὲ πȟπȟπ whereas the 

interacting spins (blue dot) can be at any lattice point. The vector ὶρς connects the two spins. ............. 143 

Figure 6.3 Two dimensional Fourier transforms obtained from malonic acid single crystal SECSY signal. 

(a) Without spectral and/or instantaneous diffusion (b) with spectral diffusion (c) with instantaneous 

diffusion (d) with both instantaneous and spectral diffusions and (e) the experimental Fourier transform. 

The parameter used for instantaneous and spectral diffusions are ὡρ υ ρπυί ρȟ ὡςὥὺὫ

υ ρπυ ί ρȟ„ὡς ρ ρπυί ρ, ὴ πȢυ. The parameters used to simulate LPF signal are the same 

as those used for Figure 6.1 except for the nuclear Zeeman term, ὲ ὲ, which is chosen to be ρτȢς 

MHz as found to give a better agreement with the experimental data. ..................................................... 146 

 

  



 

xviii 
 

List of Tables 

 

Table 3.1. The values of the parameters used in the simulations of the multi-pulse EPR signals for the 

nitroxide bilabel. ......................................................................................................................................... 22 

Table 3.2 The free evolution terms for ὴ π, ὴ ρ and ὴ ς used in the analytical expressions. The 

superscripts on ὛὭὸ indicates the coherence pathway. The free evolution terms corresponding to ὴ ρ 

and ὴ ς are the complex conjugate of those for ὴ ρ and ὴ ς, respectively. .......................... 33 

Table 3.3 Comparison between different pulse sequences in terms of the intensities of their Fourier 

transforms and the effect of the relaxation on them. ................................................................................... 39 

Table 3.4. Comparison of the intensities of the Pake doublets and the effect of relaxation on them for the 

various pulse sequences. The same parameters as those given in Table 3.1 are used in these simulations.

 .................................................................................................................................................................... 74 

Table 4.1 The values of the parameters used in the simulations of the DEER signals of the coupled 

nitroxide biradical. ...................................................................................................................................... 81 

Table 4.2 List of the side peaks present along with the main peaks in the Fourier transform of the three-

pulse DEER signal for chosen values of dipolar coupling constant ὨὓὌᾀ and  ὶ ὨὓὌᾀȾὄρὋȢ The 

side peaks are listed in a descending order when there is more than one significant side peak. The relative 

intensity of each side peak with respect to the corresponding main peak is indicated by the percentage in 

the bracket. .................................................................................................................................................. 82 

Table 4.3 The values of the parameters used in the simulations of four-pulse W-band DEER signals of 

two coupled ὋὨσ ions in  DOTA. ............................................................................................................ 94 

Table 4.4 The values of the parameters used in the simulations of the DEER signals of the coupled 

nitroxide biradical, for the data of (Lovett et al. 2012). .............................................................................. 96 

Table 4.5 The values of the parameters used in the simulations of the four-pulse W-band DEER signals of 

the coupled ὋὨσ ions. ............................................................................................................................ 101 

Table 5.1 Illustration of the various spin operators in the laboratory frame. The άρ and άς terms are 

defined as  άρ ὧρὧσ ὧςὧτ ȟάς ὧρὧτ ὧςὧσȢ .............................................................................. 122 

  



 

xix 
 

 

 

List of Abbreviations 

 

EPR - Electron Paramagnetic Resonance 

ESR - Electron Spin Resonance 

LVN ï Liouville-von Neumann  

COSY (Correlation Spectroscopy) 

DQ (Double Quantum) 

DQM (Double Quantum Modulation) 

DQC (Double Quantum Coherence) 

DEER - Double Electron-Electron Resonance 

Echo-ELDOR - Echo Electron-electron Double Resonance 

SECSY - Spin Echo Correlation Spectroscopy 

FID - Free Induction Decay 

FT - Fourier Transform 

HF ï Hyperfine 

NMR - Nuclear Magnetic Resonance 

PELDOR - Pulse Electron Double Resonance 

RIDME - Relaxation-Induced Dipolar Modulation Enhancement 

TR- Tikhonov Regularization 

SHP - Spin-Hamiltonian Parameters  

 

 



 

1 
 

Chapter 1 

1. Introduction  to Electron Paramagnetic Resonance 

Electron Paramagnetic Resonance (EPR) spectroscopy is a very powerful technique in 

that it can be exploited to reveal the electronic and geometric structures of the environment 

around paramagnetic centers. Even weak interactions between electron spins, as well as those 

between electron and nuclear spins not resolved by continuous wave (CW) EPR, can be 

distinguished by pulsed EPR (Misra, Multifrequency electron paramagnetic resonance: theory 

and applications 2011).  

 

 The EPR spectroscopy can be understood using the concept of the magnetic moment of 

electron spin. The electron spin, a quantum mechanical property, has an intrinsic angular 

momentum characterized by a quantum number ί  ρȾς. In accordance with the quantum 

theory, it exists in two states: spin-up state with ά ρȾς, and a spin-down state with ά
ρȾς. As an electron has a charge, there is a magnetic moment associated with the spin angular 

momentum: 

 ‘ Ὣ
Ὡᴐ

ςά
Ὓ ὫὛ 1.1) 

where  is the Bohr magneton, Ὓ is the spin angular momentum, and the factor g can be 

obtained in accordance with Diracôs relativistic quantum mechanics. The free electron g-value is 

Ὣ = 2.00231930436153(53).  

In the presence of an external magnetic field with the strength ὄ the electron's magnetic 

moment aligns itself either antiparallel (ά ρȾς) or parallel (ά ρȾς), to the field. Each 

alignment has a specific energy due to the Zeeman effect, which is Ὁ Ὣ άὄ. Therefore, 

the separation between the lower and the upper state is ɝὉ  Ὣὄ for unpaired free electrons. 

This equation implies that the splitting of the energy levels is directly proportional to the strength 

of the magnetic field, as shown in Figure 1.1. 

An unpaired electron can change its electron spin by either absorbing or emitting 

a photon of energy Ὤ’ȟ such that the resonance condition, Ὤ’ ɝὉ, is obeyed. Experimentally,  

this equation permits a large combination of frequency and magnetic field values, but the great 

majority of EPR measurements are made with the microwaves in the 9000ï10000 MHz (9ï

10 GHz) range, with fields corresponding to about 3500 G (0.35 T). A collection 

of paramagnetic centers, such as free radicals, is exposed to microwaves at a fixed frequency. At 

this point the unpaired electrons can move between their two spin states. Since, there are 

typically more electrons in the lower state, due to the MaxwellïBoltzmann distribution, there is a 

net absorption of energy, and it is this absorption that is monitored and converted into a spectrum.  

 

https://en.wikipedia.org/wiki/Zeeman_effect
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Photon
https://en.wikipedia.org/wiki/Gauss_(unit)
https://en.wikipedia.org/wiki/Tesla_(unit)
https://en.wikipedia.org/wiki/Paramagnetic
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Figure 1.1. External magnetic field ὄ causes a splitting of the energy levels of the spin system. 

When the resonance condition ȹE=hɜ is met, spin transitions between the energy levels ά
ρȾς and ά ρȾς can be detected as energy absorption. The figure is taken from Electron 

Paramagnetic Resonance, ñWikipediaò, 2022, https://en.wikipedia.org/wiki/Electron_ 

_paramagnetic_resonance  

 

1.1 Spin Hamiltonian 

 

 The interactions between unpaired electron and nuclei spins in a magnetic field are 

characterized by two interactions:  (i) between the magnetic moments of electron or nucleus and 

the external magnetic field and (ii)  by the electron-nuclear spin interactions. The Hamiltonian 

describing such a system is referred to as spin Hamiltonian. 

 

 The spin Hamiltonian, Ὄ , for the system of an effective electron spin S interacting with 

N nuclei with spins I consists of electron Zeeman Ὄ , nuclear Zeeman Ὄ ȟ hyperfine Ὄ  

and zero-field splitting (Ὄ  has the following form (Schweiger and Jeschke 2001): 

 

 

Ὄ Ὄ Ὄ Ὄ Ὄ

ɼ

Ὤ
ὄὫ Ὓ ɼ

Ὣ

Ὤ
ὄὍ Ὓ ὃὍ ὛὈὛ 

1.2) 

where Ὓ and Ὅ are the electron and nuclear spin operators, respectively, ὄ  is the external 

magnetic field, ὃ  and Ὀ are the hyperfine matrix and zero-field splitting matrix, respectively. 

Each type of interactions can be described by a matrix (Ὣ, Ὀ and ὃ  in Eq. 1.2) above), which is 

diagonal in an appropriate coordinate system (also known as molecular frame or principal axis 

system). In this system the interaction can be described by three principal components of the 

matrix. The different types of interactions are as follows.  

i) Electron Zeeman interaction  
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The Electron Zeeman interaction defines the interaction between the electron spin 

magnetic moment Ὓ and external magnetic field ὄ, and  the corresponding spin Hamiltonian 

term is:  

 Ὄ
ɼ

Ὤ
ὄὫ Ὓ 1.3) 

As was mentioned before, in a principal axis system ▌-matrix can be diagonalized, and 

the interaction can be defined by three principal g-values: Ὣ ȟὫ  and Ὣ  and three Euler 

angles defining the orientation of the matrix in the molecular frame.  

In the case of a liquid solution the electron Zeeman interaction is typically averaged to a 

single isotropic value, Ὣ ρȾσ Ὣ Ὣ Ὣ . In frozen solution and powder states, the 

principal components of the ▌-matrix can be identified from the turning points of the EPR 

spectrum. The lineshape of an EPR spectrum is dominated by electron Zeeman interaction, and 

there are three limiting symmetries of the lineshape: cubic (Ὣ Ὣ Ὣ ), axial (Ὣ

Ὣ ὫṶȟὫ Ὣ᷆) and orthorhombic (Ὣ Ὣ Ὣ ). 

ii)  Nuclear Zeeman interaction 

The nuclear Zeeman interaction of a spin Ὅ with an external magnetic field ὄ  can be 

described in a similar way: 

 Ὄ
ɼ

Ὤ
ὄὫὍ 1.4) 

where the spin quantum number I and the nuclear Ὣ  factor depend on the nucleus type. Nuclear 

Zeeman interaction does not generally contribute to the EPR spectrum, because the nuclear 

magneton is three orders of magnitude smaller than the Bohr magneton. However, it plays a role 

in hyperfine techniques. 

iii)  Hyperfine interaction 

The interaction between the electron spin and coupled nuclei of spin I is called the 

hyperfine interaction, and can be defined by an effective spin Hamiltonian as following: 

 Ὄ 3!)Á 3)34) 1.5) 

There are two different contributions in the isotropic hyperfine interaction: the isotropic 

part Á  and the anisotropic part described by tensor T.  

The isotropic hyperfine coupling constant ὥ   is defined as the following:  
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 ὥ
ς‘

σᴐ
ὫὫȿ πȿ 1.6) 

It originates from the finite electron spin density at the nucleus ȿ πȿ. 

 The anisotropic hyperfine interaction can be described in terms of the classic dipole-

dipole interaction and the elements of the symmetric tensor, T, which can be expressed as 

follows:   

 Ὕ
‘

τʌᴐ
ὫὫ ȿ

ὶὶ ɿὶ

ὶ
 ȿ  1.7) 

where   is the ground-state electronic wave-function and ὶ is the distance between the nuclear 

and electron spins (Schweiger and Jeschke 2001). 

 The hyperfine interaction causes splitting of the EPR line. The isotropic hyperfine 

coupling can be determined from the distance between peaks of the hyperfine structure for 

solution EPR spectrum when hyperfine anomaly is less than 1% (Schweiger and Jeschke 2001). 

The splitting pattern depends on the number and type (Ὅ ρȾς, Ὅ ρ, etc.) of coupled nuclei, 

and is used for the characterisation of molecular structures. In the case of interaction between 

electron spin and ὔ nuclei with spin Ὅ, there occurs a splitting into ς ὔ Ὅ ρ lines with 

separations determined by the relevant isotropic hyperfine coupling and relative intensities that 

can be predicted by Pascalôs triangles (Perrin 2018).  

 In frozen solutions and powders the anisotropic parts of the hyperfine couplings also 

contribute to the EPR spectrum and this makes spectrum analysis more complicated. Pulse 

techniques such as Electron Spin Echo Envelope Modulation (ESEEM) are used when the 

hyperfine interactions are not too strong to be resolved by CW EPR. 

iv) Zero-Field splitting interaction  

 In systems with electron spin Ὓ ρȾςȟ there exist a dipolar interaction between electron 

spins which removes the degeneracy of the different άί levels even in the absence of an external 

magnetic field. This interaction is called zero-field splitting (ZFS). This interaction is represented 

by the following spin Hamiltonian term: 

 Ὄ ὛὈὛ 1.8) 

where Ὀ is the symmetric, traceless zero-field splitting interaction tensor. The ZFS interactions 

are due to the spin-spin dipolar interaction (mostly dominant in the case of organic molecules) 

and spin-orbit interaction (mostly dominates in case of transition metal ions) (Schweiger and 

Jeschke 2001). 

v) Electron-Electron Dipole interaction 
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 In the case of a two-spin system, spin 1 and spin 2 denoted as Ὓ and Ὓ, respectively,  the 

spin Hamiltonian consists of the Hamiltonians for the single spins that could include all the 

previously-described interactions, from i) ï iv), and dipolar coupling Hamiltonian between the 

two spins: 

 ὌὛȟὛ ὌὛ ὌὛ Ὄ  1.9) 

where ὌὛȠὭ ρȟς  is the static spin Hamiltonian for the system of an effective electron spin 

Ὓ interacting with N nuclei with spins I which, in general, consists of electron Zeeman, nuclear 

Zeemanȟ hyperfine,  and zero-field splitting as given in Eq. (2.1).  In the high-field 

approximation, the dipolar part of the Hamiltonian could be rewritten in pseudo-secular 

approximation as follows: 

 

Ὄ ʖ ὃ ὄ 

ʖ
ʈ

τʌᴐ

ὫὫɼ

ὶ
 

ὃ ὛὛ σὧέί— ρȠ ὄ
ρ

τ
Ὓ Ὓ Ὓ Ὓ σὧέί— ρ 

1.10) 

where ɗ is an angle between the magnetic field ὄ and the vector ►  connecting the two spins 

and ʖ  is called dipolar coupling constant which is inversely proportional to the distance 

between the two spins. The dipolar coupling leads to a splitting of the EPR signal or to a 

broadening of the EPR spectra, depending on the size of the interaction compared to other 

interactions in the spin system. 

1.2 Continuous wave EPR and pulsed EPR 

There are two common conventional methods, namely continuous wave (CW) EPR and 

pulsed EPR.  EPR spectra can be recorded at different frequencies: L-band (å1-2 GHz), S-band 

(2-4 GHz), X-band (8-10 GHz), Q-band (å 35 GHz) and W-band (å 90 GHz). The choice of 

frequency band depends on the specific type of interactions of interest that contributes to the 

system spin Hamiltonian discussed later.  

There are limitations of spectral resolution in CW EPR. However, some EPR applications 

still make use of CW methods as the recording and interpretation of pulsed EPR spectra requires 

sophisticated technical equipment. A limitation of pulsed EPR is the low measuring temperatures 

required because of the short relaxation times of the transverse magnetization involved in pulse 

experiments, especially for transition metal ions. CW EPR spectra, on the other hand, can be 

recorded at room temperature for a large number of spin systems, including radicals and 

transition metal ions. The additional information about weakly coupled nuclei and relaxation 

properties of the spin system that can be obtained by manipulating the spins with sequences of 

MW pulses justifies the efforts put into the development of new pulse methods. The 

enhancement of forbidden transitions or establishing of correlations via 2D spectroscopy are 

examples of such manipulations. Nevertheless, CW and pulse EPR are complementary and only 

the exploitation of the two gives a reliable picture of the spin system. 
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1.2.1 Continuous wave EPR 

 

 In the case of continuous wave (CW) EPR the sample is continuously irradiated by 

microwaves at a fixed frequency, while an external magnetic field ὄ  is swept. ὄ  causes a 

splitting of the energy levels of the spin system. In case of spin 1/2 system such as electrons 

(Figure 1.1), the system is characterized by two quantum mechanical states, one with its 

magnetic moment parallel to ὄ and one antiparallel. The parallel state has lower energy and at 

thermal equilibrium, there is a surplus of electron spins in the parallel state according to the 

Boltzmann distribution. Therefore, there is a net magnetization parallel to the z axis.  A 

microwave radiation source creates a standing wave inside the resonator. The resonators are 

designed to ensure that the magnetic field component is maximum in the center, while the 

electric field component is to be minimized there. The magnetic component of the microwave 

radiation ὄ is perpendicular to the external magnetic field ὄ. When the resonance condition ȹE 

= hɜ is satisfied, ὄ causes spin transition between the energy levels, which is detected as energy 

absorption, constituting an EPR signal.  

  

1.2.2 Pulsed EPR 

 Due to the limitations of spectral resolution, CW EPR cannot always be used as an EPR 

spectroscopy method. Pulsed EPR provides better resolution separating different interactions 

from each other. Different pulse sequences such as hyperfine splitting, relaxation times, dipolar 

couplings, etc., were developed for investigating different properties of the spin system.  

 In pulsed EPR, the microwave radiation is in the form of a pulse, consisting of different 

frequencies. The circuity that generates the pulse consists of attenuators and phase shifters to 

adjust the length and phase of the pulses and also to apply phase cycling to eliminate unwanted 

echoes. The generated pulses are of an order of nanoseconds. The pulse rotates the magnetization 

vector toward the x-y plane. The angle by which the net magnetization vector is rotated is 

commonly called the tip angle and it is equal to  

  ὄὸ 1.11) 

 

 where  is the gyromagnetic ration of electron, ὄ is the amplitude of the pulse and ὸ is 

the duration of the pulse. Pulses are often labeled by their tip angle, i.e., a “Ⱦς pulse corresponds 

to a rotation of magnetisation vector by “Ⱦς. The most commonly used tip angles are “Ⱦς and “ 

(90 and 180 degrees). The tip angle depends on both the amplitude of ὄ and the duration of the 

pulse. For instance, a pulse with amplitude ὄ of 10 Gauss and the duration of approximately 9 

ns results in a “Ⱦς pulse. The pulse Hamiltonian in the rotating frame, which is described in next 

chapter, can be expressed as 

 Ὄ
ὄ

ς
Ὡ Ὓ Ὡ Ὓ  

 

1.12) 

where ‰ is the phase of the pulse and Ὓ, Ὓ are the raising and lowering spin operators. 
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It is important to note that in pulsed ERP spectroscopy, there is usually a time, known as 

deadtime, after a microwave pulse during which no measurements can be performed due to the 

ringing of high frequency pulses in the resonator. This issue can be overcome via over-coupling 

of the resonator and reducing its quality factor Q, which leads to reduced sensitivity and 

increased excitation bandwidth.  

 

1.3 Pulsed dipolar spectroscopy  

 

 Weak interactions between two and more electron spins can be measured via dipolar 

spectroscopy. The object of the measurements is a distance distribution between the spins of 

interest. The data on distance distribution between different paramagnetic centers at different 

points of the macromolecule of interest can be utilized for structural studies. Depending on the 

length of the distances measured, different techniques can be used. For shorter distances in the 

range of 1 ï 1.7 nm CW EPR can be used, and the distances can be extracted from the line 

broadening of the spectrum. The double quantum coherence (DQC) spectroscopy is used to 

determine distances in the range of 1-5 nm. For longer distances in the range of 8 ï 12 nm, 

Double Electron-Electron Resonance (DEER), also called Pulsed Electron Double Resonance 

(PELDOR) (El Mkami 2015), can be employed. 

 For structural studies of biological systems, EPR dipolar spectroscopy has an advantage 

over the well-established X-ray crystallography and solution-state NMR methods, because it 

allows to study complexes that cannot be crystallised or are too large for efficient NMR 

investigation. EPR can also provide information about longer distance constraints than NMR, 

which is typically limited to a range of around 0.5 nm.  

 

 Most often, nitroxide spin labels are used for dipolar EPR spectroscopy (Misra et. al. 

2009). Other spin labels such as gadolinium spin labels, ὋὨ ȟ a cryptand ligand that, as a unit, 

replaces the organic nitroxide, (Dalaloyan et. al. 2015), (Raitsimring et. al 2007) are extensively 

used in various studies.  

1.3.1 The Pake pattern and distance measurements 

 

 When two spins are distant from each other more than 1.5 nm, the exchange spin-spin 

interaction can be neglected. In this case, the spin Hamiltonian of two weakly coupled electron 

spins with Ὓ Ὓ ρȾς can be written as follows:  

 ὌὛὃȟὛὄ
ɼ

ᴐ
ὄὫὛ

ɼ

ᴐ
ὄὫὛ Ὄ  1.13) 

where Ὄ  is given by Eq. (1.10). If the difference in resonance frequency of two spins is larger 

than a dipolar frequency  , the regime is called a weak-coupling regime. In this regime the 

splitting between most obvious peaks in the Pake pattern corresponds to  . In the case of 

strong coupling, the pseudo-secular terms of the spin Hamiltonian i.e., the ὄ term in Eq. (1.10), 

which will lead to different eigenstates and eigenvalues, have to be considered. 
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 In isotropic frozen solution all orientations of the spin system relative to the magnetic 

field exist and contribute to the Pake pattern shown in Figure 1.2. (a) Schematic representation of 
a two-electron system and definition of the angle ʻ between the magnetic field ║  and the distance 
vector ► . (b) The DEER (double electron-electron resonance) signal for two spins obtained by a 
weighted sum of the differences between the two pairs of EPR transition frequencies over all values 
of ʻ in the weak-coupling regime. The position of the turning points in the spectrum (shown with 

arrows in Figure 1.2) defines the inter-spin distance ὶ  ( 

ʖ
ᴐ

). For short distances, the dipolar interaction is sufficiently large to cause 

broadening of the EPR spectrum, corresponding to a convolution of the EPR spectrum of the 

isolated spins with the Pake pattern due to the dipolar interaction between the spins. DEER can, 

therefore, be used for determination of long distances.  

 

 

 

 

Figure 1.2. (a) Schematic representation of a two-electron system and definition of the angle ɗ 

between the magnetic field ║  and the distance vector ► . (b) The DEER (double electron-electron 

resonance) signal for two spins obtained by a weighted sum of the differences between the two pairs 

of EPR transition frequencies over all values of ɗ in the weak-coupling regime. (c) The Fourier 

transform of DEER signal shown in (b), known as the Pake pattern or Pake doublet.  

 

1.4 Relaxation 

  

 In an EPR experiments the spin system is perturbed by either oscillating microwave field 

or microwave pulses and then returns to its state of equilibrium, which is called relaxation. 

(b) 

(c) 
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Relaxation defines a linewidth in CW EPR. In pulsed EPR, the relaxation time determines the 

length of the pulse sequence used and its repetition time.  

 Depending on a particular spin system, different processes can be involved in relaxation. 

Typically, two types of processes occur: spin-lattice relaxation, and spin-spin relaxation. Both 

types of relaxation are briefly discussed below, but more details can be found in (Misra 2011). 

 

1.4.1 Spin-lattice relaxation 

 

 The spin-lattice relaxation is characterised by relaxation time Ὕ. Due to dynamic 

interactions and energy exchange between electron spins and the surrounding environment 

(solution, powder or crystal lattice), electron spins flip, and the magnetisation vector returns to 

the state of their equilibrium position along the direction of ║ (z-axis). 

 Different processes can cause the spin-lattice relaxation process: molecular motion 

causing anisotropic interactions like hyperfine, exchange or electron dipole-dipole interaction 

which perturbs a local field of the electron spin and causes its flip. Collisions with other 

molecules like oxygen or metal ions cause longitudinal relaxation as well. In solid state spin-

lattice -relaxation can be caused by molecular vibrations which is due to the interaction between 

the lattice and spins. 
 

1.4.2 Spin-spin relaxation  

 

 Spin flips can occur with no energy exchange with the surroundings and can cause a loss 

of phase coherence in the plane perpendicular to ὄ direction (x-y plane). Phase coherence can be 

lost due to two processes: (i) spin-lattice relaxation and (ii) spin flip-flop. The term phase 

memory time Ὕȟ as used in EPR experiments, includes any processes that cause the loss of 

phase coherence, including spin-spin relaxation (Schweiger and Jeschke 2001). If we consider 

two spin systems, one of those (spin system A) is excited and the other one (spin system B) is not. 

The magnetic field of spins A is influenced by dipolar coupling to spins B. If spins B experience 

spin-spin or spin-lattice relaxation, that process will contribute to Ὕ of spins A that is inversely 

proportional to the concentration of spins B. If spins B are nuclear spins, the process is called 

nuclear spin diffusion. This process is typically the main contributor to Ὕ  and can be reduced 

via sample deuteration (El Mkami, Ward, et al. 2014). If spins B are electronic spins, the process 

is called spectral diffusion  

 When the spin magnetization is shifted to a different region of the EPR spectrum, the 

resonance frequency of the spin changes, which contributes to Ὕ . An example of such a 

contribution is spectral diffusion. Spectral diffusion happens when only part of the spins is 

excited because of limited bandwidth of the resonator. When magnetisation of spins A changes 

under the influence of spins B as discussed earlier, the resonance frequency of spins A can 

change to fall outside of the resonator bandwidth. The magnetization of spins B can also change 

due to the same process, and the resonance frequency for spins B can change to fall within the 

detection window, replacing spins A and contributing to relaxation. 

 The local magnetic field around each spin changes due to dipolar interaction during a 

pulse, depending on the position of the neighbor spins. This process is called instantaneous 

diffusion. 
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1.4.3 Relaxation, as treated in Liouville space 

 Hilbert-space formulation cannot be directly used to calculate relaxation effects 

rigorously, because the matrix elements of the relaxation superoperator require a pair of double 

indices, based on the eigenbasis of the Hamiltonian operator, which are not amenable to use in 

Hilbert space formulations, see e.g., Stoll (2009). Misra et al, (2009). Misra (2011), Misra and 

Freed (2011), Schwartz et al, (1982), Gamliel and Levanon (1995), Håkansson et al, (2013), 

Franck et al, (2015). Accordingly, one needs to perform numerical simulation technique for 

calculating pulsed EPR experiments by treating the Liouville-von Neumann (LVN) equation as a 

matrix differential equation in Liouville space to take into account the relaxation effects 

rigorously. The LVN equation is an exact quantum-mechanical equation of motion for the 

density matrix. This equation is valid even for relatively fast random processes, and is therefore 

especially suitable for EPR, where the natural time scale is so short that the random processes are 

not usually fast on this time scale (Lee, Patyal and Freed 1993).   

 

1.5 Organization of the thesis 

The organization of this thesis is as follows. The procedure for solution of the LVN 

equation to calculate the pulsed EPR signal is developed in Chapter 2. Thereafter, the details of 

the calculation of Correlation Spectroscopy (COSY), two-pulse Double Quantum (DQ), five-

pulse Double Quantum Modulation (DQM) and four-, five-, six-pulse Double Quantum 

Coherence (DQC) signals, along with a detailed study of their applicability for distance 

measurements are given in Chapter 3. The technique of doubly rotating frame to calculate DEER 

signal and its application to estimate distance distribution for the system of two coupled 

nitroxides and two coupled ὋὨ  ions are presented in Chapter 4. Chapter 5 deals with 

cylindrical and conical models of thermal fluctuation of spin-Hamiltonian parameters which 

leads to rigorous calculation of relaxation matrix elements in Liouville space. The electron spin- 

echo decay of SECSY signal induced by dipole-dipole interaction between the electrons in a 

malonic acid crystal, modulated simultaneously by the spectral diffusion and instantaneous 

diffusion mechanisms is analyzed in Chapter 6. The concluding remarks and future perspectives 

are included in Chapter 7.  
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Chapter 2 

2. Calculation of pulsed EPR signal 

 

A pulsed EPR experiment consists of a series of ὔ microwave pulses separated by ὔ ρ 

periods of free evolutions of length ὸ. The EPR echo signal from a paramagnetic sample is 

detected after a delay of length ὸ  To describe the time evolution of the density matrix, 

Liouville-von Neumann equation is used. 

2.1 Liouville-von Neumann equation 

The time evolution of the density matrix is described by the LVN equation which gives 

an exact quantum-mechanical description of motion for the density matrix. This equation is valid 

even for relatively fast random processes, and is therefore especially suitable for EPR, where the 

natural time scale is so short that the random processes are not usually fast on this time scale 

(Gamliel and Levanon 1995).  

The LVN equation which governs the time evolution of the density matrix during free 

evolution, i.e., in the absence of a pulse is expressed as (Abragam (1961), Jeener (1982), 

Redfield (1957), Gamliel and Levanon (1995), Slichter (2013)): 

 Ὠ

Ὠὸ
…ὸ ὭὌȟ…ὸ ɜ …ὸ 

(2.1) 

where … ” ”  is the reduced density matrix with ”ᶿÅØÐ Ὄ ὯὝϳ  being the initial 

density matrix and discussed in the next Chapter in Sec 3.1.2, and Ὄ  is the static spin-

Hamiltonian. In Eq. (2.1), ɜ is the relaxation superoperator in Liouville space whose elements are 

usually determined phenomenologically. Equation (2.1) is a matrix differential equation which 

cannot be solved  in Hilbert space, since the relaxation superoperator ɜ , is a four-index tensor 

which connects two elements of the density matrix, which are characterized by two indices each. 

The procedure to solve Eq. (2.1) is given in Misra and Li (2018) in details. The solution of Eq. 

(2.1) after time ὸ in Liouville space is given as 

 

 …Ƕὸ Ὡ …Ƕὸ  (2.2) 

where …Ƕ is the column vector of dimension ὲ ρ i.e., …Ƕ ὅέὰ…, (Magnus and Neudecker 

2019), (Misra and Li 2018) and the Liouville superoperator, ὒȟ is defined as  

 ὒ ὭὌ ɜ ὍṧὌ ὌṧὍ ɜ  (2.3) 

In Eq. (2.3), Ὅ is unit matrix of dimension ὲ ὲ and ἆ stands for the direct product.  

The spin relaxation is usually neglected during the application of a pulse as it has negligible 

effect since the duration of the pulses (~5-10 ns) are much smaller than the relaxation time (500-

1000 ns). Then, the evolution of the density matrix due to the pulse can described in Hilbert 

space, as follows: 

 ”ὸ ὭὌ Ὄ ȟ”ὸ , (2.4) 
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where  Ὄ is the pulse Hamiltonian expressed by Eq. 1.12). 

 The density matrix is transformed by the application of a pulse of duration ὸ. The 

solution of Eq. (2.4), neglecting relaxation during the pulse, is given as (Saxena and Freed 1997), 

(Misra et. al 2009): 

 ”ὸ ὸ Ὡ ”ὸװὩ  (2.5) 

   

2.2 Coherence pathways and phase cycling 

The selection of well-defined coherence transfer pathways is an essential feature in 

COSY, SECSY, echo-ELDOR, two-pulse DQ, five-pulse DQM, four-, five-, six- pulse DQC 

experiments. Multi -pulse sequences produce a series of free induction decays (FIDs) and echos. 

Among these, only one is of actual interest. All the others distort the measurement but can be 

removed by phase cycling (Bodenhausen et. al. 1984, Gemperle et. al 1990).  

Phase cycling is based on the concept of coherence order (Bodenhausen et. al. 1984, 

Gemperle et. al 1990). For a paramagnetic sample containing one electron with spin Ὓ ρȾς 
each, there are three possible coherence orders, ὴ. Coherence order ὴ π corresponds to 

longitudinal magnetization and is due to spins parallel or antiparallel to the external magnetic 

field direction. Coherence orders ὴ ρ and ὴ ρ represent transverse magnetization and 

corresponds to spins rotating in a plane perpendicular to the external magnetic field. Coherences 

with order 0, ρ  and ρ correspond to the Ὓ, Ὓ and Ὓ components of the density operator, 

respectively. Higher coherence orders such as ὴ ς are achieved in the systems with two 

coupled electrons.  

The path describing the progress of a coherence order in a pulse sequence is called 

a coherence transfer pathway. It is possible to change the coherence level by applying a pulse. 

On the other hand, during the time interval between the applications of the pulses the coherence 

level does not change. 

All  the multi-pulse experiments start with zero order coherence (z-magnetization) and 

should end with a coherence order of ρ, which is by convention the one that is detected by the 

quadrature detector. Without quadrature detection the +1 coherences would be equally detectable, 

all higher orders are not correlated with observable magnetization. 

The pulse scheme and the coherence pathway of a simple two-pulse EPR experiment is 

shown in Figure 2.1. Pulse scheme and the relevant coherence pathway for a two-pulse EPR 
experiment. The pulses are shown with P1 and P2. The coherence order changes after the 

application of each pulse. The pathways shown with Ὓ  and Ὓ  produce echo and free 

induction decay due to the first pulse, respectively.    
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Figure 2.1. Pulse scheme and the relevant coherence pathway for a two-pulse EPR experiment.   

 

In the numerical simulations, the density matrix is projected onto the coherence pathways 

of interest after the application of a pulse by taking the Hadamard product, ” ὖ ”, of the 

projection operator matrix,  ὖ,  with the density matrix, ”, resulting from the application of a 

pulse. The Hadamard product retains only the relevant elements of the density matrix which 

correspond to the coherence pathways of interest, putting all the other elements equal to zero.  

 

2.3 Finite and infinite pulses 
 

When the amplitude of the microwave pulse is much larger than the static spin 

Hamiltonian, one can assume that the microwave pulses are perfect “ or “Ⱦς pulses which is 

called as the infinite pulse (also known as non-selective pulse, ideal pulse, perfect pulse) 

approximation (Misra et. al. 2009). An ideal “Ⱦς pulse starting from coherence pathway ὴ π 

generates exclusively coherence orders ὴ ρ and an ideal “ pulse inverts the coherence order 

i.e., ὴ πO ὴ π and ὴ ρO ρᴜ (Borbat and Freed 1999).   

2.4 Final density matrix and EPR signal 

The final density matrix for relevant coherence pathway(s) from a sequence of pulses can 

be obtained. To this end, one can use Eq. (2.5) for the evolution of the density matrix under the 

application of a pulse followed by free evolution of the density matrix using Eq. (2.2). Having 

the final density matrix, ”, the complex EPR echo signal corresponding to Ὓ  pathway can be 

calculated as (Saxena and Freed 1997) 

 ὛὭὫὲὥὰὸ ὝὶὛ”  (2.6) 

where Ὕὶ stands for trace and Ὓ is the raising operator.   

2.5 Rotating frame  

  

The magnetization vector in a sample can often undergo very complicated motions. A 

useful technique, widely used in EPR, is to go to a rotating coordinate system, referred to as the 

rotating frame. From this alternative point of view, much of the mathematics is simplified and an 

intuitive understanding of the complicated motion can be gained. The classical picture of the 

rotating frame is often clearer and more productive than the quantum mechanical picture. Even 

though the phenomenon on a microscopic scale is best described by quantum mechanics, a bulk 

property of the sample, namely magnetization, is measured in EPR which is nicely described 

from a classical point of view (Schweiger and Jeschke 2001).  

In order to describe the rotating frame, one needs to first establish a fixed axis system of 

reference frame. The most common fixed frame is the lab frame which consist of three stationary 

mutually perpendicular axes. The z-axis is considered parallel to the external magnetic field, ὄ, 

the x-axis is parallel to the microwave field, ὄ and the y-axis is orthogonal to the x and z axes. 
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When an electron spin is placed in a magnetic field, a torque is exerted on the electron spin, 

causing its magnetic moment to precess about the magnetic field. The angular frequency of the 

precession is called Larmor frequency and it is related to the magnetic field by 

  ὄ (2.7) 

where   is the gyromagnetic ratio of the electron. The effect of ὄ on the magnetization is very 

difficult to envision when the magnetization vector is rotating about the z axis. Alternatively, one 

can observe what is happening from a rotating coordinate system. For simplicity, first we assume 

a system which is on resonance i.e., the frequency of the microwave pulse matches the Larmor 

frequency   

    (2.8) 

where   is the microwave frequency. By rotating the coordinate system at an angular velocity 

of  , one can make the magnetization components precessing at the Larmor frequency to 

appear stationary. Three very interesting features about the system in the rotating frame should 

be noted: (A. a. Schweiger 2001) 

 

1)  The effect of the static magnetic field ὄ disappears.  In the rotating frame the precession 

of the magnetization vector (and that of its component individual spins) around ὄ is no longer 

occurring.  

2) The microwave field is no longer rotating but appears static.  

3) The magnetization vector appears to begin a new precession around ὄ.  Since ὄ no longer 

exists in this frame of reference, the only magnetic field acting on the magnetization is the now 

stationary ὄ  field. As a result, the magnetization vector  will precess around ὄ  with 

frequency    =  ὄ.  

 EPR spectra contain different frequencies so not all parts of the EPR spectrum can be 

exactly on-resonance simultaneously. Therefore, one has to consider off-resonance effects as 

well. When the part of EPR spectrum under study is not on resonance  i.e.,   , the 

magnetization vector appears to rotate in the x-y plane with a rate equal to the frequency 

differences ɝ   . In the case of  ɝ πȟ the rotation rate is zero which means that the 

system is exactly on resonance. For off-resonance case, the magnetization rotates counter-

clockwise (ɝ π or clockwise (ɝ π. As a consequence, the microwave magnetic field 

ὄ  tips the magnetization into x-y plane differently becauseὄ   does not disappear 

completely. In other words, the magnetization is not tipped by only  ὄ  but by the vector sum of 

ὄ and ὄ which is called effective magnetic field, ὄ . The magnetization is then tipped about  

ὄ  at a faster effective rate    

   ɝ  (2.9) 
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As shown in Figure 2.2, ὄ  does not lie in the x-y plane as ὄ  does. As a result, the 

magnetization does not move in an arc as it does on-resonance, but instead its motion is 

described by a cone.  

 
Figure 2.2. The effective microwave magnetic field in the rotating frame 

 

2.6 Polycrystalline averaging 

 

The sample under study in an EPR experiment can be a polycrystalline (powder) material. 

The pulsed EPR signal for a polycrystalline sample without any dipolar interaction is obtained by 

averaging the signal given by Eq. (2.6), over the Euler angles  ʂ ʃȟה  which are defined by 

the relative orientation of the principal axes-in which the g-matrix is diagonal-with respect to the 

lab axes. For isotropic distribution of spins there exists a symmetry in the calculated EPR signal 

with respect to the different quadrants of the unit sphere. Therefore, the EPR signal for a 

polycrystalline sample is obtained by integrating the signal over ʃȟהȟ considering the spins 

included in a quarter of the unit sphere (Misra et. al. 2009). It is given as 

 

 
ὛὭὫὲὥὰὸ

τ

τʌ
Ὠה Ὓὸ Ὠὧέί —

Ⱦ

 
(2.10) 

The multiplicative factor of 4 appearing in Eq, (2.10) takes into account the signal over the entire 

unit sphere, whereas the division by 4ˊ is made to take into account the isotropic distribution of 

spins (Misra et. al. 2009). 
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Chapter 3 

3. Applicability of multi -pulse EPR sequences for distance measurements 

 

In this chapter, multi-pulse EPR signals in biological systems using nitroxide biradicals 

are calculated and their feasibility for distance measurements is investigated. For the numerical 

calculations of the pulsed-EPR signals for a polycrystalline sample and its Monte-Carlo average 

over the various orientations of the two nitroxide dipole moments, the procedure presented in 

Chapter 2 is used. The signals are first calculated in the absence of relaxation and are extended to 

calculate the signal in the presence of relaxation using a stretched exponential (Stein et.al. 2019, 

Pfenninger et.al 1995). 

 

3.1 Numerical procedure 
 

3.1.1 Spin Hamiltonian of coupled nitroxide system 

 
The spin Hamiltonian for the coupled nitroxides system in the frozen state is expressed in 

the rigid limit as (Saxena and Freed 1997, Misra ὩὸȢὥὰ.  2009, Borbat and Freed 2009) 

 Ὄ Ὄ Ὄ Ὄ  (3.1) 

Here, the static Hamiltonian of the two nitroxide radicals are denoted by Ὄ ; Ὧ ρȟς, which 

includes the Zeeman and hyperfine interactions. Assuming the respective g and hyperfine (HF) 

matrices of each nitroxide to have coincident principal-axis systems, the effective Ὄ in the 

high-field approximation (Saxena and Freed 1997) is expressed as: 

 Ὄ ὅὛ ὃὛ Ὅ ὄ ὛὍ ὄᶻὛ Ὅ ;   k = 1,2 (3.2) 

where the expressions for the coefficients ὅȟὃ and ὄ are provided in Appendix A and Ὓ , 

ὍȟὍ  and Ὅ  are the spin operators for the two nitroxides. In Eq. (3.1),  Ὄ  includes the 

dipolar and exchange couplings between the two nitroxide radicals, expressed as  

Ὄ
Ὀ

ς
σὧέί— ρ Ὓ ╢Ⱦσ ὐ

ρ

ς
ς ╢Ȣ╢  (3.3) 

where J is the exchange-interaction constant between the two electrons, ʃ is the polar angle of 

the orientation of the static magnetic field with respect to the dipolar axis that connects the 

magnetic dipoles of the two nitroxides, as shown in Figure 3.1, ╢ ╢ ╢ is the total electron 

spin and Ὀ denotes the dipolar interaction constant, expressed in terms of ὶȟ the distance between 

nitroxides, as (Saxena and Freed 1997, Misra ὩὸȢὥὰ.  2009) 

Ὀ
σɾᴐ

ςὶ
 (3.4) 
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Figure 3.1. (a) The configuration of the two nitroxides in the biradical as shown in the dipolar 

frame of reference. The ᾀ-axis of the dipolar frame is chosen to be along the vector ► connecting 

the magnetic dipoles of the nitroxides.  The relative orientation of the laboratory frame, along 

with its ᾀ  axis parallel to the external magnetic field, ὄ; the dipolar frame is defined by the 

Euler angles  ʂ πȟʃȟה  with respect to the lab frame; (b) The set of Euler angles ʇ = (ɻ, ɼ, 

ɾ), (Ὧ  ρȟς), defining the orientations of the principal axes of the hyperfine and g-matrices 

for the nitroxides 1 and 2 in the dipolar frame with respect to molecular frame of reference, as 

denoted by ὢȟὣȟὤ, Ὧ ρȟς; here ὔ and ὔ  indicate the lines of nodes for the frames of the 

two nitroxides. For the present numerical calculations, the ὼ axis of the magnetic frame of the 

first nitroxide is chosen to be along the line of nodes of the first nitroxide, ὔ, so the value of ɻ 

becomes zero. (This figure is reproduced from Misra et. al. 2009 by permission.) 

 

In Eq. (3.4) ɾ is the gyromagnetic ratio of the electron and ᴐ ὬȾς “ is the reduced Planckôs 

constant. In the present work, the constant Ὠ ςȾσװὈ is used and will be referred to as the 

ñdipolar constantò hereafter.   

 The Hamiltonian of a pulse with amplitude, ὄ, of radiation microwave magnetic field is 

given as (Saxena and Freed 1997, Misra ὩὸȢὥὰ.  2009) 

 Ὄ


ς
Ὡ Ὓ Ὡ Ὓ  (3.5) 
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where  ὄɾȟ ה is the phase of the pulse and Ὓ are the raising/lowering operators of the 

total electronic spin of the coupled nitroxide system in the σφ σφ Hilbert-space, defined as 

 Ὓ 3 ἆ ἆ ἆ ἆ3 ἆ ἆ  (3.6) 

where 3 ȠὯ ρȟς are expressed in terms of the Pauli matrices ʎ and ʎ ÁÓ 3 ʎ

Ὥʎ Ƞ   and ; Ὧ ρȟς, are identity matrices in the electronic ς ς and nuclear σ σ 

spaces, respectively, of each nitroxide, and ἆ stands for the direct product. 

In the numerical calculations performed here, the magnetic basis with the basis vectors 

ὓ ȟὓ ȟά ȟά  is used to calculate the matrix elements. Here ὓ ȟὓ ȟά ȟά  are the two 

electronic and the two nuclear magnetic quantum numbers, respectively, for the two nitroxides. 

In this basis, the static Hamiltonian Ὄ  is not diagonal. The eigenvalues of Ὄ  are obtained by 

diagonalizing it as ὟὌὟ Ὁ, where ɖ denotes the Hermitian adjoint of a matrix and E is the 

diagonal matrix, whose diagonal elements are the eigenvalues, whereas the columns of the 

matrix Ὗ are the corresponding eigenvectors. 

 

3.1.2 Initial density matrix 
 

The initial density matrix, ”, required to calculate the signal for a multi-pulse sequence, 

is governed by the Boltzmann distribution for the two electrons in thermal equilibrium, each with 

spin . The initial density matrix in the high-temperature approximation, neglecting the hyperfine 

interaction, which is much less than the electronic Zeeman interaction, is: 

 ”
 ϳ

 ϳ
ᶿ  

 ᴐ
 Ὓ Ễ , (3.7) 

where H0 is given by Eq.(3.1); Ὧ  is Boltzmann constant; T is the temperature; Ὓ is the ᾀ-
component of the total electronic spin ╢ ╢ ╢; and ᴐπ is the Zeeman splitting of the total 

electron spin. During the evolution of the initial density matrix, ”, to the final density matrix, 

”ȟ the term  in Eq. (3.7) remains invariant. Thus, it does not contribute to the signal {= 

Ὕὶ(Ὓ ” , since Ὕὶ(Ὓ   = 0. For the calculation of the (unnormalized) signal, one can then 

replace ” , as follows: 

 ” O Ὓװ Ὓ Ὓ װ
ʎᾀρ
ς
ἆ Ὓςἆ Ὅρἆ Ὅς

 Ὓρἆ 
ʎᾀς
ς
ἆ Ὅρἆ Ὅς

 
(3.8) 

where ʎ  ȠὭ ρȟς are the Pauli spin matrices for the two electron spins.     

3.1.3 Relaxation matrix elements 

 

Following (Saxena and Freed 1997), the following relaxation superoperator in Liouville 

space is considered for the numerical calculations of this chapter: 
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 ɜȟ ɿɿ
ρ

Ὕ
ɿɿ ρ ɿ

ρ

Ὕȟ
 (3.9) 

where Ὕ  are the spin-lattice relaxation times between the populations ii  to kk, which are 

operative on the coherence pathway ὴ π, and Ὕȟ are the spin-spin relaxation times operative 

over the ὴ ρ and ὴ ς pathway, respectively. The indices in Eq. (3.9) are the spin 

quantum numbers that represent the eigenstate of spin Hamiltonian expressed by Eq. (3.1).   It is 

noted that, in general, different transitions will have different spin-spin relaxation times, Ὕȟ . 

However, as shown in (Misra and Salahi 2021), these relaxation times are only slightly different 

from each other. Thus, they are here approximated by an average spin-spin relaxation time Ὕȟ  

in Eq. (3.9). 

 

3.1.4 Calculation of polycrystalline signal and Pake doublets in the absence of relaxation 

 

The multi-pulse EPR signals for a polycrystalline sample is obtained by averaging the 

signal for chosen orientations of the two nitroxide dipoles with respect to the dipolar axis, 

oriented at an angle  ʂ ʃȟה  with respect to the lab axes, over the unit sphere. The EPR signal 

for a polycrystalline sample, for isotropic distribution of spins, is obtained by integrating the 

signal over  ʃȟהȟ considering the spins included in a quarter of the unit sphere due to the 

symmetry of the signal, as confirmed numerically by also integrating the signal over the 

hemisphere and the full sphere for some cases considered here. It is given as 

 ὛὭὫὲὥὰὸ
τ

τʌ
Ὠה Ὓʂȟʇȟʇ  Ὠὧέί —

Ⱦ

ȟ

 (3.10) 

In Eq. (3.10) the Euler angles ɻ πȟɼȟɾ Ƞɻȟɼȟɾ ) are denoted as ʇȠὮ

ρȟςȟÒÅÓÐÅÃÔÉÖÅÌÙȢ The multiplicative factor of 4 appearing in Eq, (3.10) takes into account the 

signal over the entire unit sphere, whereas the division by 4ˊ is made to take into account the 

isotropic distribution of spins.  

The Pake doublets are calculated by averaging the signal for polycrystalline sample over 

the five independent Euler angles (πȟȟȟȟȟ), keeping = 0, which is arbitrary and 

considering no correlation between the orientations of the two nitroxides. This is achieved by 

Monte Carlo averaging over random sets of the Euler angles ʇȟʇ, wherein the varied five 

independent Euler angles are chosen using random numbers. A set of twenty such simulations 

seemed to be sufficient as our simulations show. Thus, a total of 180 —-values and 180 ‰-values 

were used over a quarter of a unit sphere, as indicated by the limits of integrations in Eq. (3.10), 

along with 20 sets of five randomly chosen Euler angles (ʇȟʇ). This amounts to an average 

over ρψπ ρψπ ςπ = φȢτψρπ simulations. (Simulation over a quarter of the unit sphere is 

sufficient as the other quarters yield the same values as verified by independent simulations.)  

 

3.1.5 Gaussian inhomogeneous broadening 

Different spins in a sample (liquid or solid) have slightly different resonant frequencies 

because they are in slightly different local environments. This results in the inhomogeneous 
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broadening of the observed signal. The observed broadening of the spectrum arises from a 

superposition of a large number of slightly different spectra. In order to consider the 

inhomogeneous broadening effect, the final signal is multiplied by a Gaussian factor  

Ὡ  where ɝ  is the Gaussian inhomogeneous broadening parameter and ὸȟὸ are 

the times after the first “Ⱦς and the last pulse in a pulse sequence, respectively.  

 

 

3.2 Two-pulse COSY at Ku-band (17.3 GHz) 

The pulse sequence for a Ὓ  COSY experiment is shown in Figure 3.2, which consists of 

two ʌȾς pulses. After the application of the first pulse, the system evolves freely over time ὸ on 

the coherence pathway ὴ ρ by phase cycling before the application of the second pulse, after 

which the system evolves freely on the coherence pathway ὴ ρ by phase cycling. Thereafter, 

the signal is measured after time ὸ.The echo occurs at the time ὸ ὸ, which is measured in the 

one-dimensional COSY sequence. In the experiment the time ὸis stepped by  ɝὸ   ὸ Ⱦὲ , 
where ὲ is the number of data points for which the signal is measured, e.g., ὲ ρππ, and  ὸ  

is the maximum time of free evolution after the first pulse. 

 

 
Figure 3.2. The pulse scheme and the relevant coherence pathway for two-pulse COSY showing 

Ὓ   and Ὓpathways. Here, ὴ is the coherence order, which represents transverse magnetization, 

corresponding to spins rotating in a plane perpendicular to the external field. 

 

 In the two-pulse COSY sequence as shown in Figure 3.2, the pathway ὴ π is not used. 

Therefore, the relaxation times Ὕ , which appear in Eq. (3.9), affecting the populations, have 

no effect on the COSY signal, since the populations appear only on the ὴ π pathway. As for 

the other coherence pathways ὴ ρ, which do participate in the two-pulse COSY sequence 

considered here, only the second term on the right-hand side of Eq. (3.9) which corresponds to 

the Ὥ Ὦ elements of the reduced density matrix, affects the relaxation of the two-pulse COSY 

signal. In that case, the solution of LVN equation after time ὸ, expressing the modification of 

reduced density matrix, ʔ  due to the relaxation along the ὴ  ρ  pathways, is given as 

 …ὸ ὸ Ὡ Ⱦ Ὡ …ὸ Ὡ  (3.11) 

The spin relaxation will here be neglected during the application of a pulse as it has 

negligible effect since the duration of the pulses are much smaller than the relaxation time. Then, 

the evolution of the density matrix due to the pulse is described in Hilbert space, as follows: 
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 ”ὸ ὸ Ὡ ”ὸװὩ  (3.12) 

where Ὄ is given by Eq. (3.5). After the application of a pulse, the density matrix is projected 

onto the coherence pathways of interest, which are: ὴ   ρȟρ as shown in Figure 3.2. This is 

achieved, in the numerical simulation, by taking the Hadamard product, ” ὖ ”, of the 

projection operator matrix,  ὖ , for the coherence pathways ὴ   ρȟρ  for Ὧ = 1, 2, 

respectively, with the density matrix, ”, resulting from the application of a pulse. This Hadamard 

product retains only the relevant elements of the density matrix which correspond to the 

coherence pathways, ὴ   ρȟρ, putting all the other elements equal to zero. Specifically, the 

projection operator matrices,  ὖ,   for the various coherence pathways are listed in Appendix B.   

The two-pulse COSY signal for a single orientation  of the dipolar axis —ȟװ‰  and 

chosen orientations (ɻȟɼȟɾȟɻȟɼȟɾ  ÏÆ ÔÈÅ Ô×Ï ÎÉÔÒÏØÉÄÅ ÄÉÐÏÌÅÓ ÏÆ ÔÈÅ ÂÉÒÁÄÉÃÁÌ for the 

pathway Ὓ   is calculated, in the absence of relaxation, using the following steps. (i) Transform 

the initial density matrix by the first pulse using Eq.(3.12); (ii) Apply the coherence pathway 

projection operator for ὴ ρ given in Appendix B to the density matrix transformed in step (i) 

by Hadamard product. (iii) Calculate the density matrix after free evolution of the density matrix 

obtained in step (ii) over the duration ὸ between the first and the second pulses using Eq. (3.11); 

(iv) Transform the density matrix obtained in step (iii) by the second pulse using Eq. (3.12); (v) 

Apply the coherence pathway projection operator for the coherence pathway ὴ  ρ to the 

density matrix obtained in step (iv); (v) the final density matrix ” ὸȟὸ  is obtained after free 

evolution of the density matrix obtained in step (iv) over the time interval ὸ ὸ . (vi) The 

complex signal is obtained from the final density matrix using Eq. (2.6). (vii)  The 2D COSY 

signal, which is a function of ὸ and ὸ is reduced to one-dimensional signal by substituting ὸ

ὸ. It is noted that the Gaussian inhomogeneous broadening factor, Ὡ , vanishes at 

ὸ ὸȢ The values of the parameters used in the simulations of this chapter are listed in Table 

3.1. The Flow chart for the calculation of multi-pulse EPR signal, including COSY, is given in 

Appendix C. 

The simulations of the COSY signal considered here are those carried out over the range 

of dipolar coupling constants 0.5 MHz Ὠ ρπ MHz, because for Ὠ πȢυ MHz, one does not 

have enough cycles of dipolar modulation of the signal within the time period of ὸ ~7000 ns, 

the maximum time over which the signal is measured.  On the other hand, for Ὠ ρπ MHz, the 

modulation depth cannot be measured as discussed in Sec.3.2.3.  
 

3.2.1 Calculation of polycrystalline signal and Pake doublets in the absence of relaxation 

 The two-pulse COSY signal for a polycrystalline sample is calculated with Monte-Carlo 

averaging over the orientations of the two nitroxide dipoles in the absence of relaxation 

following the procedure in Sec. 3.1.4. 

3.2.2 Relaxation in polycrystalline sample 

To consider the effect of the relaxation for a powder average, the stretched exponential 

approach is used, following (Stein et.al. 2019, Pfenninger et.al 1995), which considers the effect 

of different relaxation times for different orientations of the magnetic field with respect to the 

crystal axes, on average, by a stretched exponential with an exponent ɼ. This is considered as 

follows. 
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Parameter value 

Static magnetic field (ὄ  6186 G (Ku-band) 

3300 G (X-band) 

Microwave frequency  17.3 GHz (Ku-band) 

9.3 GHz (X-band) 

Exchange constant (J) 0 MHz 

Time on the double quantum coherence 

pathway (ὴ ς) 

 (ὸ ὸ ὸ ὸ ) 

 

 

26.5 ns 

Relaxation time on Single-quantum 

coherence pathway (Ὕ  

500 ns 

Relaxation time on Double-quantum 

coherence pathway (Ὕ  

300 ns 

Dead time (Ὕ) 25 ns (Ku-band) 

35 ns (X-band) 

Stretched exponential parameter (ɼ) 0.8 

g-matrix ▌ ▌●●ȟ▌◐◐ȟ▌◑◑ (2.0086,2.0066,2.0032) 

Hyperfine matrix ═ ═●●ȟ═◐◐ȟ═◑◑ (6.0 G,6.0 G,35.0 G) 

Table 3.1. The values of the parameters used in the simulations of the multi-pulse EPR signals 

for the nitroxide bilabel.  

Averaging over relaxation time ╣╢. According to Eq. (3.11), the effect of the relaxation 

for a chosen orientation of the external magnetic field with respect to the dipolar axes and the 

five independent Euler angles after time ὸ is described by multiplying the calculated signal by an 

exponential factor ὩὼὴὸȾὝ ʂȟʇȟʇ , for the coherence pathway ὴ ρ, with the time 

constants Ὕ ʂȟʇȟʇ , appropriate for that orientation. Then the cumulative effect of the 

relaxation, considering the two coherence pathways involved in the COSY sequence as shown in 

Figure 3.2, is tantamount to a multiplication of two decaying exponential functions multiplied by 

the calculated signal for the single orientation of the magnetic field with respect to the crystal 

axes as calculated in the absence of any relaxation. For a polycrystalline sample, the COSY 

signal is averaged over different values of ʃȟה), characterized by relaxation time Ὕ ʂȟʇȟʇ , 

the effect of the relaxation at the top of the echo can be expressed as 

        ὛὭὫὲὥὰὸ ὛὭὫὲὥὰὸȟʂȟʇȟʇ

ȟ ȟ

ὩὼὴςὸȾὝ ʂȟʇȟʇ      (3.13) 
 

  where ὛὭὫὲὥὰὸȟʂȟʇȟʇ  is the EPR signal calculated in the absence of any 

relaxation. Using the same reasoning as in (Stein et.al. 2019, Pfenninger et.al 1995), considering 
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the variation of  Ὕ ʂȟʇȟʇ   over ʂȟʇȟʇ  the polycrystalline average, Eq. (3.2), becomes 

modified, as follows (Stein et.al. 2019, Pfenninger et.al 1995), 

 

  ὛὭὫὲὥὰ ὸ ὛὭὫὲὥὰ ὸ ὩὼὴςὸȾὝ  (3.14) 

where, ὛὭὫὲὥὰ ὸ  is the average of ὛὭὫὲὥὰὸȟʂȟʇȟʇ  over all orientations ʂȟʇȟʇ  

without considering the relaxation: 

 Ὓ ὸ Ὓ ὸȟʂȟʇȟʇ

ȟ ȟ

 (3.15) 

and Ὕ  is the stretched relaxation times over single (ὴ ρ pathway) quantum states. In Eq. 

(3.14), ɼ is the stretching parameter that ranges between zero and one (Stein et.al. 2019, 

Pfenninger et.al 1995). In the limiting case when ɼĄ1, Eq. (3.14) reduces to a system with 

orientation independent relaxation times. For the calculations of the present section, the 

illustrative value of ɼ  πȢψ is used. It suffices to first calculate the COSY signal, averaged over 

the polycrystalline sample without any relaxation, and then multiplying it by the stretched 

exponential factor as in Eq. (3.14), finding the value of ɼ by fitting the experimental data to the 

simulation.  

 

3.2.3. Effect of dead time on COSY signal 

 Recording the signal immediately after the second pulse is not possible during the dead-

time, denoted as ὸ hereafter, of the spectrometer. The best values of the deadtime as reported in 

(Borbat and Freed 2002) at Ku-band is  ὸ ςυ ὲί, which will be considered here. This means 

that the signal up to the dead-time after the second pulse will not be considered in the calculation 

following the procedure given in Sec. 3.1 Numerical procedure. The time-domain signals at two 

different ὄ values calculated with and without dead-time are shown in Figure 3.3 and Figure 3.4. 

The dead-time effect is shown by hatching the initial time interval ὸ of the signal.  The Fourier 

transforms of the COSY signals taken with repsect to both time variables ὸ and ὸ ὸ are 

plotted, which show that the intensity of the Fourier transforms are reduced by including the 

dead-time. However, the Pake doublets still occur at Ὠ, although  diminished in their intensities 

and widths. 
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Figure 3.3. COSY signal at Ku-band for ║ ╖ . Dependence of COSY signal on the 

dipolar constant for a polycrystalline sample. (left) The time domain COSY signals for ὸ ὸ 

and (right) their Fourier transforms for four different values of the dipolar coupling constant: 

Figs (σὥ) and (σὥ): Ὠ πȢυ; Figs (σὦ) and (3ὦ): Ὠ χ MHz; Figs (3ὧ) and (3ὧ):  Ὠ
ρπ MHz. The parameters used for the simulations are listed in Table 3.1. The relaxation effect is 

not considered in these simulations. The initial 25 ns interval of the time domain signals, 

included in the dead-time of the pulse, is shown as hatched; it cannot be recorded in the 

experiment. The corresponding Fourier transform with respect to both ὸ and ὸ ὸ are plotted, 

shown in black and blue, respectively.  
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Figure 3.4. COSY signal at Ku-band with a stronger ║ ╖. The same details as in the 

caption of Figure 3.3, except here ὄ φπ G. By comparing these results with those obtained in 

Figure 3.3 for ὄ σπ G, it is seen that at Ku-band, increasing ὄ from 30 G to 60 G does not 

affect the shape of the simulated COSY signals and their Fourier transform significantly. 

However, the intensity of the signal is increased by about 15% for  ὄ φπ '. 

 

 
 

  

  








































































































































































































































































