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Abstract 
 

Self-learning building HVAC control system based on dynamic occupancy patterns: A 

predictive approach using deep Q-networks and transfer learning 

 

Mohammad Esrafilian-Najafabadi, Ph.D. Concordia University, 2022 

 

This dissertation reports the development of a self-learning control system that adjusts the building 

setpoint temperature to the dynamic occupancy schedules, aiming to maximize energy saving and 

thermal comfort. The controller interacts with the environment and learns the occupancy patterns 

and the lag time of heating, ventilation, and air-conditioning (HVAC) systems with no need for 

developing online models of occupancy and buildings. This process aims to minimize the runtime 

of HVAC systems during vacancy periods to save energy while providing thermal comfort 

conditions upon the occupants’ arrival. This control framework also leverages the knowledge of 

the pre-trained controllers to accelerate the training process in unseen new buildings. This transfer 

learning method is performed based on an inter-building similarity analysis using unsupervised 

learning of the occupancy profiles. This process intends to minimize the thermal discomfort caused 

by the trial-and-error nature of the self-learning algorithm. The proposed system takes advantage 

of a double deep Q-network (DDQN) algorithm to find the optimal control policy. Moreover, an 

optimal feature selection algorithm is integrated into this framework for identifying irrelevancy 

and redundancy in the feature sets to further improve the training process. The merit of the 

controller is quantified by comparing its performance with that of a model-based predictive control 

(MPC), as a well-practiced occupancy-based control method. The results demonstrate that the 

control system provides superior thermal comfort for occupants by taking the occupancy 

forecasting uncertainty into account in the decision-making process. This ability improves thermal 

comfort by 7.87% on average with MPC as the benchmark. The use of the transfer learning method 

enhances thermal comfort by 68% during the training process of the algorithm.  
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Chapter 1: Introduction 

 

1.1. Motivation 

The upward trend of energy consumption in buildings has become a significant concern 

worldwide.  Globally, buildings account for more than one-third of the total energy consumption, 

and it is even expected to increase in the future [1]. Energy-efficient heating, ventilation, and air-

conditioning (HVAC) control has drawn considerable attention to increase building energy 

performance [2]. In addition to energy saving, control strategies give particular attention to 

occupants’ comfort, as people spend the majority of their time indoors [3]. However, energy saving 

objectives are often conflicting with the occupants’ comfort and indoor air quality requirement, 

causing a challenging optimization problem [4].  

In order to make a trade-off between these objectives, information about occupancy schedules 

plays an essential role in control systems [5]. In other words, information about occupancy states 

(i.e. presence/absence states) can be employed for regulating appropriate setback temperature to 

save energy during unoccupied periods while providing an acceptable level of thermal comfort for 

occupants upon their arrival [6]. The use of occupancy information helps the controller to avoid  

conditioning vacant indoor environment and energy waste [7].  

Despite the key role that occupancy information plays in improving the performance of buildings, 

dynamic occupancy information has been mostly neglected by researchers in this field. Not taking 

this type of occupant behavior into account can cause unnecessarily conditioning during vacancy 

periods, and over-ventilation due to maximum occupancy assumptions in ventilation control [7,8]. 

Dynamic occupancy changes are mostly ignored in commercial buildings by implementing static 

occupancy profiles as a function of building types and typical working hours [9]. In contrast to 

commercial buildings where facility managers often define occupancy schedules [10], in 

residential buildings, HVAC systems can be usually adjusted to occupancy states through direct 

interventions of occupants. However, users often mis-program their thermostats or entirely neglect 

the programming features, making such thermostats useless or even causing more energy 

consumption in many cases [11,12]. In addition, manually defined schedules by occupants often 

differ from the actual schedules, which can cause thermal discomfort, especially upon their arrival, 

and additional energy use [11,13]. For example, due to unexpected events that might occasionally 

occur, occupants might return home before the preheating process is fulfilled or long after the 

building is fully preconditioned based on the predefined temperature schedules. Such events can 

cause thermal discomfort and energy waste in many cases.  

Reactive control has been proposed to eliminate the need for occupant interventions in the control 

system to minimize the mentioned limitations. Such systems adjust indoor temperature to the 

current occupancy state. They can also adjust the ventilation rate to the number of people to avoid 

over-ventilating the zone. However, the occupant count and ventilation control are out of scope of 

this study. This study focuses on optimally scheduling indoor air temperature with the 

consideration of dynamic changes in occupancy states.  
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1.2. Problem statement 

Despite the benefits that reactive controllers provide, they suffer from a major limitation, which is 

due to the thermal mass of buildings and lag time of HVAC systems. More specifically, as soon 

as a zone becomes occupied, the reactive control initiates the HVAC operation to reach the desired 

temperature. However, the time required to provide an acceptable temperature depends on the 

weather conditions, building material, and HVAC system. This time lag can cause thermal 

discomfort for occupants during such transition periods. 

Researchers have made attempts to address the mentioned limitation of reactive control by 

proposing predictive control as advanced algorithms. Such control systems take advantage of 

occupancy models to dynamically forecast the future occupancy schedules. Theoretically, they 

predict the future occupancy states and prepare indoor environment in advance to minimize 

thermal discomfort and maximize energy saving. Model predictive control (MPC) has been one of 

the promising control approaches for occupancy-based HVAC operation in the literature. Using a 

receding time horizon as well as optimization algorithms, MPC demonstrated the ability to well 

address non-linearities and disturbances, such as weather and occupancy changes, in the control 

system. However, implementing the predictive power and optimization algorithms adds great deal 

of complexity in the control process. These complications often require expensive occupancy 

monitoring networks, IoT devices, and data storage. Therefore, it is of vital importance for such 

predictive systems to justify the added complexities by providing superior performance than the 

conventional ones. There is a need for a comprehensive evaluation of the predictive control 

performance from the perspectives of financial profitability, energy saving, and peak-demand 

management, when compared with reactive control.  

One of the complications of the predictive control is related to data collection, data storage, and 

data management for developing occupancy models. In the literature, a variety of different features 

have been proposed that might impact the performance of occupancy prediction. The features 

include time of day, weekends/weekdays, day of the week, CO2 concentration, previous 

occupancy states, lighting, and appliance electricity consumption. The problem is that 

implementing too many or too few features can, respectively, result in overfitting or underfitting 

problems [14]. Considering many different candidate features, a wise selection of attributes is 

essential as it can improve the prediction accuracy, provide a better understanding of the 

underlying process and enhance the computational speed [15]. Additionally, as mentioned in [16], 

finding the most relevant features in developing an optimal model can minimize the cost of 

purchasing sensors and the storage expenses. However, despite its importance in developing data-

driven models, feature selection was generally neglected, and it is still unclear what number and 

what types of attributes should be selected for future occupancy prediction.  

The occupancy prediction models can be considered as the heart of the predictive control. 

Consequently, the accuracy of the models has considerable impact on the performance of the 

control system. It was reported that a 10% reduction in prediction errors would result in up to 

almost 9% and 16% improvement in energy saving and thermal comfort, approximately [17]. 

Although many occupancy models have been developed in earlier research to improve the 

prediction performance, there is a need to find the best performing models.  

In addition to the mentioned complexities in implementing advanced predictive control, there are 

other factors preventing them from being practical in the building sector. These barriers include 

the need for accurate models of buildings [18], substantial knowledge and expertise for developing 
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such models, and their poor potential of being generalized for different cases [19]. To deal with 

such issues, model-free data-driven control systems, such as reinforcement learning (RL) 

algorithms, have been proposed as an alternative control method. In this method, the controller 

interacts with the environment and tries to learn the optimal decisions through experience [20]. As 

a result, control decisions can be made without a need for developing and calibrating models of 

buildings and the occupancy [21]. Despite their successful operation in different applications [22–

26], there is a lack of information on their performance when integrated with dynamic occupancy 

states in buildings. 

From a practical point of view, the described model-free control is prone to causing a poor 

performance during the initial learning phase because of their trial-and-error learning process. This 

nature of the algorithms can put thermal comfort of occupancy in a high level of risk during the 

training period. As demonstrated in Ref. [27], the algorithms might take up to multiple years to be 

trained before finding the optimal policy. Because of the importance of indoor environment 

thermal comfort, such wrong decisions are not tolerated in practice and can limit their applications.  

Based on the mentioned research gaps and limitations related to occupancy-based HVAC control 

systems, the following research questions arise: 

1. What are the benefits and drawbacks of including dynamic occupancy information in 

HVAC control in terms of financial profitability, energy saving, and peak-demand 

management? 

2. What predictor variables are necessary to develop the occupancy prediction models? 

3. Which types of occupancy modelling methods provide superior thermal comfort and 

energy saving when integrated with predictive control in buildings? 

4. What are the strengths and limitations of the model-free data-driven control, compared 

with the conventional MPC? 

5. How to minimize the training duration of the model-free control systems to avoid thermal 

discomfort and energy waste? 

1.3. Research objective 

The primary objective of this research work is to develop a self-learning data-driven control 

methodology that learns occupancy patterns and building characteristics without a need for 

development of online occupancy prediction models and building models. The proposed 

framework leverages the experience of pre-trained controllers to minimize the training duration of 

the new controllers that are applied to unseen buildings. The self-learning nature of the system is 

intended to enhance the generalization potential of optimal occupancy-based control systems for 

use in different buildings. The objectives of this study can be summarized as follows: 

1. To develop a control framework to leverage the experience of previously trained control 

systems for reuse in new unseen buildings to minimize the training period, 

2. To develop a self-learning control system to schedule optimal indoor temperature by 

consideration of dynamic occupancy patterns, weather conditions, and building 

characteristics, 
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3. To develop an optimal feature selection method to determine the most valuable predictor 

variables in occupancy prediction by minimizing redundancy and irrelevancy in the feature 

set, 

4. To evaluate the performance of occupancy-based control in terms of energy, financial 

profitability, and peak-demand metrics, and 

5. To determine the most effective data-driven occupancy models for predicting future 

occupancy patterns. 

1.4. Organization 

The rest of the dissertation is structured as follows: Chapter 2 is devoted to a comprehensive 

literature review covering the previous studies on occupancy-based HVAC control. It includes a 

description of the control systems and explore their limitations. Additionally, statistics are also 

provided to demonstrate the limitations and propose potential research directions in this field. 

Chapter 3 discusses the potential profitability of the occupancy-based HVAC operation through a 

comprehensive financial analysis and shed light on their limitations from demand side 

management point of view. In addition, the influences of using online estimations of 

preconditioning time on the control system are quantified. In Chapter 4 and 5, the impact of 

selecting the occupancy prediction approach and selecting different machine learning models on 

the performance of the control system is quantified. Additionally, the correlations between 

conventional performance assessment merits with energy efficiency and thermal comfort are 

measured. Chapter 6 is devoted to exploring the optimal feature subsets using advanced feature 

selection methods. In Chapter 7, the self-learning control system is developed and its performance 

is evaluated and compared with an MPC algorithm. In Chapter 8, a transfer learning framework is 

proposed based on unsupervised learning to accelerate the learning process in new unseen 

buildings. Ultimately, summary, conclusions, and the limitations of the current work are discussed 

in Chapter 9 to provide future research directions. 

1.5. Type of the current dissertation 

The current dissertation is written in a manuscript-based structure, in which most of the following 

chapters are the manuscripts of scientific papers. The manuscripts have been published or under 

preparation for scientific journals and conferences: 

Chapter 2: 

M. Esrafilian-Najafabadi, F. Haghighat, Occupancy-based HVAC control systems in buildings: 

A state-of-the-art review, Building and Environment 197 (2021) 107810. 

https://doi.org/10.1016/j.buildenv.2021.107810. 

Chapter 3: 

M. Esrafilian-Najafabadi, F. Haghighat, Occupancy-based HVAC control using deep learning 

algorithms for estimating online preconditioning time in residential buildings, Energy and 

Building 252 (2021) 111377. https://doi.org/10.1016/j.enbuild.2021.111377. 

Chapter 4: 

M. Esrafilian-Najafabadi, M. Babahaji, F. Haghighat, Deep learning models for future occupancy 

prediction in residential buildings, in: 5th International Conference on Building, Energy and 

Environment 25th-29th July, 2022. 
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Chapter 5: 

M. Esrafilian-Najafabadi, F. Haghighat, Impact of occupancy prediction models on building 

HVAC control system performance: Application of machine learning techniques, Energy and 

Building 257 (2022) 111808. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111808. 

Chapter 6:  

M. Esrafilian-Najafabadi, F. Haghighat, Impact of predictor variables on the performance of future 

occupancy prediction: Feature selection using genetic algorithms and machine learning, Building 

and Environment (2022) 109152. https://doi.org/10.1016/J.buildenv.2022.109152. 

Chapter 7: 

M. Esrafilian-Najafabadi, F. Haghighat, Towards self-learning control of HVAC systems with the 

consideration of dynamic occupancy patterns: Application of model-free deep reinforcement 

learning, (2022) (Submitted) 

Chapter 8:  

M. Esrafilian-Najafabadi, F. Haghighat, Transfer learning for model-free HVAC control based on 

unsupervised learning of occupancy profiles and deep reinforcement learning, (2022). (Under 

preparation) 
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Chapter 2: Occupancy-based HVAC control systems in buildings: A 

state-of-the-art review1 

 

2.1. Overview 

Intelligent buildings have drawn considerable attention due to rapid progress in communication 

and information technologies. These buildings can utilize current and historical data, collected 

from occupancy detection and monitoring networks, to predict occupancy profiles and adjust 

heating, ventilating, and air conditioning (HVAC) operations accordingly. This adjustment aims 

to minimize the energy consumption of HVAC systems while maintaining an acceptable level of 

thermal comfort and indoor air quality. To provide a trade-off between these conflicting objectives, 

a variety of occupancy-based control strategies have been proposed in the literature. The present 

chapter aims to review the research works concerning occupancy-based control systems, classify 

them based on the integration of occupancy information with control systems and identify their 

strengths and limitations. Finally, research gaps in this field are discussed from different aspects, 

including performance evaluation metrics, control methods, occupancy models, and building 

types. Future research directions are also proposed to fill the identified gaps. 

2.2. Introduction 

2.2.1. Motivation for occupancy-based HVAC control 

The upward trend of energy consumption in buildings has become a significant concern 

worldwide.  Globally, buildings account for more than one-third of the total energy consumption, 

and it is even expected to increase in the future [1]. To deal with this issue, advanced controllers 

have drawn great attention as promising solutions to increase building energy performance [2]. In 

addition to energy saving, control strategies give particular attention to occupants’ comfort, as 

people spend the majority of their time indoors [3]. However, energy saving objectives are often 

conflicting with the occupants’ comfort and indoor air quality requirement, causing a challenging 

optimization problem [4]. To address this problem, researchers often apply strict constraints to the 

decision variables according to thermal comfort criteria or employ multi-objective optimization 

algorithms that can consider both energy and comfort objectives simultaneously. In order to make 

a trade-off between these objectives, information about occupant behavior plays an essential role 

in control systems [5]. Information about occupancy states (i.e. presence/absence states) can be 

employed for regulating appropriate setback temperature to save energy during unoccupied hours 

while providing an acceptable level of thermal comfort for occupants upon their arrival [6]. Indeed, 

conditioning vacant building indoor environment can bring about unnecessary run time of HVAC 

operation and consequently, cause energy waste [7]. Masoso et al. [28] emphasized the importance 

of unoccupied hours in overall energy consumption in offices and reported that more than half of 

the overall energy was consumed during unoccupied hours in their cases.  

 
1 This chapter is based on the following publication: M. Esrafilian-Najafabadi, F. Haghighat, Occupancy-based HVAC 

control systems in buildings: A state-of-the-art review, Building and Environment 197 (2021) 107810. 

https://doi.org/10.1016/j.buildenv.2021.107810. 
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Despite the key role that occupancy information plays in improving the performance of buildings, 

analyzing studies on HVAC control systems reveals that dynamic occupancy patterns, as a kind of 

occupant behavior in buildings, have been mostly neglected by researchers in this field. Not taking 

this type of occupant behavior into account can cause unnecessarily conditioning during vacant 

hours, and over-ventilation due to maximum occupancy assumptions used in ventilation control 

[7,8]. Dynamic occupancy patterns are mostly ignored in commercial buildings by implementing 

static occupancy profiles as a function of building types and typical working hours [9]. In contrast 

to commercial buildings where facility managers often define occupancy schedules [10], in 

residential buildings, HVAC systems can be often adjusted to occupancy through direct 

interventions by occupants. However, users often mis-program their thermostats or entirely neglect 

the programming features, making such thermostats useless or even causing more energy 

consumption in many cases [11,12]. In addition, manually defined schedules by occupants often 

differ from the actual schedules, which can cause thermal discomfort, especially upon their arrival, 

and additional energy use [11,13]. For example, due to unexpected events that might occasionally 

occur, occupants might return home before the preheating process is fulfilled or long after the 

building is fully preconditioned based on the predefined temperature schedules, which can 

respectively cause thermal discomfort or energy waste.  

In order to overcome the mentioned shortcomings, control systems can automatically infer and 

predict occupancy patterns. Thanks to the Internet of Things (IoT) devices in smart buildings, 

capturing these relationships have become more possible by employing data mining and machine 

learning approaches [29]. One of the current trends of HVAC research is to make systems aware 

of current and future occupancy information through learning behaviors. 

2.2.2. Previous literature reviews 

Table 1 summarizes the review articles concerning occupant behavior-based HVAC control 

systems. Although these articles are high-quality reviews, there is still a gap for a review paper 

focusing on the state-of-the-art occupancy-based HVAC control systems. On one hand, some of 

these articles concentrated only on a few aspects of these systems. For example, articles [6,30–32] 

only focused on occupancy detection and modeling in buildings, neglecting the integration of 

occupancy information with control systems. These papers provided no insights into the challenges 

and limitations related to the control of occupancy-based HVAC systems. On the other hand, some 

other articles provided comprehensive reviews, covering various topics related to building control 

based on occupancy patterns, including lighting control, HVAC control, comfort-aware HVAC 

systems, occupancy detection methods, and occupancy models. It should be noted that these topics 

have been active research areas in recent years, and there have been a large number of papers 

published in this field. As a consequence, these review papers provided a general overview of the 

previously published papers in this field and identifying the strengths and limitations of the 

methodologies were mostly neglected.  

Limited review work has focused on occupancy-based HVAC control systems. The closest review 

to this work was done by Mirakhorli and Dong [33], where they reviewed the research works on 

occupancy-based model predictive control (MPC). However, they mostly ignored other types of 

occupancy-based control strategies, such as reactive and rule-based control. Additionally, this 

paper was published more than 4 years ago. As demonstrated in Fig. 2.1, since then, a relatively 

large number of research papers have been published in this field. This growing trend highlights 

the necessity of an updated review work to explore the recent state-of-the-art methods.  
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Table 2.1.  

Previously published review papers on the topics related to occupant behavior-based control in buildings. 

Reference Year Research focus 

Nguyen and Aiello 

[34] 

2013 Intelligent buildings with occupancy models used for optimal control of lighting, 

HVAC, and appliances. 

 

Mirakhorli and Dong 

[33] 

2016 Control strategies in occupancy-centric buildings, focusing on model-based 

predictive control (MPC). 

Shen et al. [6] 2017 State-of-the-art methodologies for occupancy detection and monitoring in office 

buildings. 

Naylor et al. [30] 2018 Strengths and limitations of using different types of occupancy detection 

methods in buildings. 

Salimi and Hammad 

[35] 

2019 Occupancy detection techniques, occupancy models, and control of HVAC and 

lighting in office buildings. 

Jung and Jazizadeh 

[36] 

2019 Comfort-aware HVAC operation, occupancy detection, occupancy models, 

and occupancy-based control strategies. 

Park et al. [37] 2019 Field evaluation studies on occupancy-centric control strategies.  

Sun et al. [31] 2020 Occupancy measurement approaches with a focus on vision-based techniques.  

Azar et al. [38] 2020 Design procedure of occupant behavior-based control strategies. 

Dai et al. [32] 2020 Prediction of occupancy and window-opening behavior using machine learning 

algorithms. 

 

 
Fig. 2.1. Distribution of reviewed papers based on publication year. 

2.2.3. Contributions and structure 

This chapter aims to address the limitations of earlier review papers by providing a focused review 

on the state-of-the-art occupancy-based HVAC control strategies. The ultimate target is to utilize 

the results of this thorough literature review to inspect the current research gaps in this field and 

accordingly, propose research directions for future work. For this purpose, the reviewed papers are 

first grouped into different categories according to the incorporation of occupancy information in 

control systems. The papers in each category are reviewed in detail from different perspectives, 

including performance evaluation methods, feature use for occupancy models, occupancy models, 

types of testbeds, and occupancy detection and monitoring techniques.  Then, the reviewed papers 

are summarized and discussed from each perspective to reveal the research limitations from 

different dimensions.  
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The rest of this chapter is structured as follows. In Section 2.3, the reviewed papers are classified 

into different categories for a detailed review. The research items are rigorously reviewed in 

Sections 2.4-2.6 and their limitations and strengths are discussed. Next, the main research gaps are 

identified and discussed in Section 2.7. In Section 0, conclusions are made by summarizing the 

findings and contributions.  

2.3. Research classification 

As shown in Fig. 2.2, occupancy-based HVAC control strategies are classified into two main 

categories based on the integration of occupancy information in control systems: control strategies 

based on user-defined schedules, and occupancy detection and monitoring. In the former category, 

occupancy information is manually included by users, and HVAC systems act according to user-

defined schedules. This category is further classified into three subcategories based on their 

flexibility to receive occupancy schedules: manual, programmable, and scheduled thermostats. 

These control strategies will be discussed in Section 2.4. The control systems in the latter category 

are integrated with the occupancy detection and monitoring networks to automatically capture 

occupancy information without the need for occupants’ interventions. These controllers are further 

classified into reactive and predictive control. Reactive approaches act based on real-time 

occupancy information in the monitored building. The performance of these strategies is mainly 

dependent on occupancy detection and types of sensor networks implemented to infer occupancy. 

In addition to using real-time information, predictive approaches also take advantage of occupancy 

models to provide insight into future occupancy states. Such strategies are also called proactive, 

as they can be prepared in advance before future events happen. As well as occupancy detection 

systems, their performance is also dependent on occupancy prediction models. These strategies 

are divided into rule-based, and optimal control categories, which will be discussed in Section 2.6.  

 
Fig. 2.2. Classification of occupancy-based HVAC control systems based on types of control strategies and the integration of 

occupancy information in systems. 

2.4. HVAC operation based on user-defined occupancy schedules 

The integration of occupancy information with control systems differs depending on building 

types. In commercial buildings, occupants usually lack access to thermostat control for changing 

the setting [39]. It is usually the responsibility of facility managers to define setback or setpoint 

schedules in commercial buildings [10]. Fixed occupancy profiles are often defined by facility 
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managers based on the type of buildings and its functionality. In this study, this type of control 

that is based on fixed pre-defined occupancy schedules is called scheduled control. The 

shortcoming of this control approach is that the static schedules can be different from the actual 

ones in many cases. The discrepancy between these schedules can cause unnecessary conditioning 

during unoccupied hours and over ventilate during partial occupancy.  

In contrast, occupants in residential buildings can control their indoor environment by directly 

interacting with thermostats, opening or closing windows, and changing their clothing. Using 

manual and programmable thermostats, occupants can define a setback temperature according to 

their occupancy patterns and need. However, due to the interactive nature of these kinds of 

thermostats, they do not necessarily lead to energy saving. As demonstrated in [12], using manual 

and programmable thermostats can even negatively impact the energy performance as compared  

with always-on thermostats. According to several field evaluations covering more than 700 homes 

in [40], employing programmable thermostats results in no significant energy saving or even can 

increase energy usage depending on occupants’ behavior. In some other studies, a slight 

improvement in energy saving from programmable thermostats was reported. For example, an 

average of 6% and  3.6% were reported in [41,42]. In addition to the poor energy saving ability of 

such thermostats, the mismatch between pre-defined schedules and the real daily occupancy 

patterns can also cause thermal discomfort especially upon arrival [13].  

Fig. 2.3. shows the popularity of thermostat types among US households in 2015 [43]. It can be 

observed that programmable thermostats were the least popular and accounted for 5% and 20% of 

households with individual and central air conditioning units, respectively. In households with 

individual units, manual thermostats were the most popular type at 64% of households, while the 

most preferred approach for people with central units was to keep the thermostat unchanged. 

 
Fig. 2.3. The proportion of U.S. households using different types of thermostats with central or individual air conditioning system 

[43].  

With the advent of IoT devices in smart buildings, the remote-control of HVAC systems have 

gained a great popularity. Koehler et al. [44] conducted a field evaluation and a survey to evaluate 

the performance of remote controllers. In this study, they developed an eco-feedback system on 

occupants’ smartphones. The system was employed by 10 participants over a three-month period. 

The participants were provided with a control interface through Android applications so that they 

could control the thermostat from any location. To provide occupants with a guideline to help them 

with saving more energy, this application sent them frequent real-time feedback about their energy 

consumption patterns and possible energy saving strategies. The application compared daily 

energy consumption patterns and demonstrated the effects of their behavior on energy 

consumption. They defined two performance criteria: “UnnecessaryHeating” and “LostComfort”. 
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These two indicators were utilized in the literature using different terminologies. In this study, all 

the indicators with the same concept are called “WasteTime” and “MissTime” based on the 

definitions in [45,46]. Throughout this chapter, WasteTime and MissTime are respectively defined 

as the average of unoccupied hours when the indoor temperature deviates from the setback, and 

the average of occupied hours when indoor temperature deviates from the desired setpoint. 

According to the results, an average of 72.5% of the overall testing period, setpoint and setback 

temperature were correctly set by occupants. It was indicated that this remote-control system on 

average ended up with almost 5 hours of WasteTime, and 73 minutes of MissTime for occupants. 

Forgetting to set the temperature to the recommended setback accounted for 96% of the overall 

WasteTime. 

2.5. Reactive control 

The main shortcoming of the control strategies using user-defined occupancy schedules is linked 

with manual interventions required from occupants. This issue made programmable thermostats 

useless in many cases, and as a consequence,  Energy Star suspended its certification on 

programmable thermostats in 2009 [47]. The following findings were the main reasons preventing 

them from being widely recommended: 

• Complexity for some users to effectively program it. 

• Uncertainties in occupants’ plans that make a discrepancy between actual and programmed 

schedules. 

• Unwillingness of occupants to put effort into interacting with the thermostats. 

In order to solve the main problem of user-defined schedules, i.e., manual interactions required by 

users, reactive control systems started to increasingly gain attention. These systems minimize 

manual interventions while improving performance [48]. As the name suggests, reactive control 

automatically reacts to real-time occupancy information received from occupancy detection and 

monitoring systems to dynamically change the temperature setpoint. In addition, they can make 

use of occupancy levels (i.e. counts) to adjust ventilation rates. Researchers have implemented a 

variety of different occupancy detection instruments such as passive infrared (PIR) sensors, CO2 

sensors, electricity meters, door reed switches, chair movement sensors, Wi-Fi, cameras, and 

Bluetooth devices depending on the type of building and privacy issues [7,49–53]. However, 

providing details about these methods is out of the scope of this review study. Interested readers 

in occupancy detection technologies are referred to the related review articles summarized in Table 

2.1.  

Table 2.2.  

Summarization of occupancy-based control strategies proposed in the literature.  

Ref. Building 

type 

Occupancy 

detection  

Control  Performance evaluation 
 

Type V1 H2 C3  Method Performance Baseline 

[54] Residential PIR Reactive 

control 

- ✓ ✓  Field 

evaluation 

Up to 9% energy saving on regular 

days and up to 30% during long 

vacancy periods. 

Manual  

[50] Office Wi-Fi 

network 

Reactive 

control 

✓ ✓ ✓  Field 

evaluation 

17.8% Energy saving 

No thermal discomfort 

Scheduled 

[52] Office Door reed 

switches 
PIR 

Reactive 

control 

- - ✓  Simulation 

EnergyPlus 

15% energy saving Scheduled 

[55] Residential - Reactive 

control 

- ✓ ✓  Field 

evaluation 

17% decrease in the runtime of 

HVAC 

Programmable  

[56] Residential PIR Reactive 

control 

- ✓ -  Field 

evaluation 

14.4% energy saving Whole building 

control 
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[57] Office - Reactive 

control 

- - ✓  Simulation 

EnergyPlus 

Up to 28.3% energy saving Scheduled 

[58] Residential Survey Reactive 

control 

- ✓ ✓  Simulation 

EnergyPlus 

20% energy saving 

Payback period of one year 

Always-on 

Programmable 

[59] Residential - Reactive 

control 

- ✓ ✓  Simulation 

DOE2 

Up to 38.7% decrease in energy 

consumption 

34.7% reduction in peak demand 

Always-on  

[60] Office - RBC4 using 

occupancy 
probability 

- ✓ ✓  Simulation 

EnergyPlus 

Up to 50% electricity saving 

Up to 66 million fossil fuel saving 
0.9-3.7 million metric tons CO2 

reduction 

168-658 million dollars saving in 

energy cost 

Always-on 

Programmable 

[13] Residential 

 

GPS 

Cellular 

network 
Wi-Fi 

RBC using 

occupancy 

probability 
 

- ✓ ✓  Simulation 

EnergyPlus 

28% energy saving  

48 min MissTime  

Programmable 

Reactive 

Perfect 
prediction 

[61] Office Motion 

sensors 

RBC using 

occupancy 

probability 

- - ✓  Field 

evaluation 

7-52% energy saving. Scheduled 

[45] Residential RFID tags 

Motion 

sensors 

RBC using 

conditioning 

rate 

- ✓ -  Field 

evaluation 

No energy saving compared to 

baseline energy consumption. 

Up to 92% MissTime reduction 

Programmable 

[62] Residential GPS RBC using 
preconditioni

ng time 

    Field 
evaluation 

7% energy saving. Manual 
Programmable 

[44] Residential GPS RBC using 

preconditioni

ng time 

- ✓ -  Field 

evaluation 

MissTime of 0.95 hr 

WasteTime of 0.94 hr 

Manual 

GPS- 

thermostat 

PreHeat 

[63] Office Cellular 
network 

Wi-Fi 

RBC 
Preconditioni

ng time 

- ✓ -  Field 
evaluation 

26% energy saving compared  Always on 
Reactive 

[64] Office Thermal 

sensors 

PIR 

RBC using 

preconditioni

ng time 

✓ ✓ ✓  Simulation 

EnergyPlus 

Up to 25% energy saving 

Maximum RMSE of 0.415° C in 

temperature violation 

Scheduled 

Reactive 

Setpoint 

control without 

ventilation 

[65] Conferenc
e hall 

Acoustics 
Lighting 

PIR 

CO2 

Temperature 

Humidity 

RBC using 
preconditioni

ng time 

- - ✓  Simulation 
EnergyPlus 

Up to 30% saving Scheduled 
Meeting 

schedules 

Reactive  

[66] Office Cameras RBC using 

preconditioni

ng time 

✓ ✓ ✓  Simulation 

EnergyPlus 

42% less energy consumption Scheduled 

Reactive 

Setpoint 
control without 

ventilation 

[67] Office Cameras RBC using 

preconditioni

ng time 

✓ ✓ ✓  Field 

evaluation 

Simulation 

26% energy saving for field 

evaluation and up to 30% based on 

yearly energy simulation 

Scheduled 

Reactive  

Setpoint 

control without 

ventilation 
Perfect 

prediction 

[17] Office PIR 

Ultrasonic 

sensors 

RBC using 

preconditioni

ng time 

- ✓ ✓  Simulation 

EnergyPlus 

Up to 28% energy saving 

Up to 40% improvement in thermal 

comfort 

Reactive 

[46] Residential Energy 

meters 

RBC using 

preconditioni

ng time 

- ✓ ✓  - 0.42 kWh energy saving per day 

44.28 min decrease in mismatch 

time  

Programmable 

[68] Residential Applications 

on 

smartphones 

RBC using 

preconditioni

ng time 

- ✓ -  Simulation 

RC 

Up to 26.2% energy saving 

28.2 hr and 132.1 hr for rule-based 

and reactive thermostats 

respectively. 

Always on 

Reactive 

[69] Office Bluetooth 

tags 

Optimal 

control 

- ✓ ✓  Simulation 

EnergyPlus 

2% energy saving 

50% decrease in thermal discomfort 

Scheduled 

[70] Office - Optimal 

control 

(MPC) 

- ✓ ✓  Simulation 

RC 

Negligible energy saving for 

including occupancy prediction in 

MPC 

MPC without 

occupancy 

information 

[71] Office - Optimal 

control 

(MPC) 

- ✓ ✓  Simulation 

RC 

Negligible energy saving for 

including occupancy prediction in 

MPC 

MPC without 

occupancy 

prediction 
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[72] Residential Light 

sensors 

Optimal 

control 

(MPC) 

- ✓ -  Simulation 

RC 

32.80% decrease in temperature 

violation 

MPC without 

occupancy 

prediction 
[73] Office - Optimal 

control 

(MPC) 

- ✓ ✓  Simulation 

ThermalSim 

Robustness to errors MPC without 

PEC 

[74] Residential - Optimal 

control 

(MPC) 

- - ✓  Simulation 

RC 

8% energy saving 

 

Conventional 

MPC 

[75] Residential Applications 

on 
smartphones 

Surveys 

Optimal 

control 
(MPC) 

- ✓ ✓  Simulation 

EnergyPlus 

Up to 13.3% energy saving. Always on 

Rule-based 
Reactive 

[76] Residential - Optimal 

control 

- - -  - MissTime: Up to 40% reduction 

Conditioned time: 15% decrease 

Programmable 

1Ventilation, 2Cooling, 3Heating, 4 Rule-based control 

 

A summary of the reactive control algorithms reviewed in this chapter can be found in Table 2.1. 

Among these studies, some researchers employed reactive control in buildings while keeping the 

investment cost low by avoiding large-scale retrofits such as new rewiring systems. To this aim, 

Agarwal et al. [52] proposed a reactive control strategy based on low-cost magnetic door reed 

switches and PIR sensors in office buildings. This reactive control responded to occupancy states 

achieved from a combination of these two types of sensors. In their study, setpoint and setback 

temperatures were selected as 22.9 °C and 26.1 °C, respectively. Using EnergyPlus [77] to 

simulate office buildings, they reported that this reactive control reduced energy consumption by 

15%, compared with scheduled control as the baseline. Although the occupancy detection system 

required a low-cost infrastructure, it was prone to providing lower accuracy than more complex 

systems. As occupancy detection performance is the most essential factor in reactive controllers, 

decreasing accuracy can cause thermal discomfort and higher energy consumption [52]. However, 

in this study, the performance of occupancy detection was not evaluated to demonstrate the 

effectiveness of the system. Balaji et al. [50] used the existing WiFi networks to identify occupants 

and their locations for reactive control. This network provided an accuracy of 86%, without a need 

for any additional investment in infrastructure. They showed that integrating the occupancy 

detection algorithm with HVAC control systems could result in 17.8% electricity saving. It was 

also reported that no considerable thermal discomfort was caused using this proposed system. It 

was because of using a highly conservative temperature setback during unoccupied hours to 

guarantee thermal comfort upon arrival. However, using highly conservative setbacks limits the 

system energy saving ability. 

Stopps and Touchie [55] conducted a field experiment to monitor HVAC runtime, controlled by 

programmable and smart thermostats. The experiment was conducted using field data gathered 

from 56 thermostats in two different apartment buildings. To achieve a fair comparison between 

the thermostats, each day during the monitoring period was randomly associated with controllers. 

In addition, a random forest algorithm was trained using weather data to provide an estimation of 

baseline run time in those days with smart thermostats running. The results showed that using 

smart thermostats reduced HVAC runtime by an average of 17%. However, the direct relationship 

considered between HVAC run time and energy consumption can be mentioned as a limitation of 

this study. According to the field evaluation performed by Pritoni et al. [54], implementing HVAC 

run time as a performance criterion can cause overvaluation of the performance. They monitored 

2500 rooms in three university residence halls before and after retrofitting them with smart 

thermostats. Before the retrofit, all rooms were equipped with manual thermostats, which were 

selected as the baseline. Smart thermostats, installed after the retrofit, utilized real-time occupancy 
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information from PIR sensors to learn appropriate setback temperatures that can be recovered in 

an acceptable period of time. It was reported that due to heat flows from corridors and neighboring 

rooms, room temperature rarely reached the defined setback despite having long unoccupied hours 

with HVAC systems turned off. In other words, although the run time was significantly reduced 

in one vacant zone, an extra energy load was induced to the HVAC system because of the 

interzonal heat flows between occupied and unoccupied zones. As a result, consideration of HVAC 

run time as an energy indicator can cause overestimation of the performance.  

A limitation of previously reviewed studies is that they mostly focused on whole-building control 

strategies. Indeed, occupancy patterns often vary across different rooms in buildings and the 

operation of HVAC systems can be adjusted to these zonal patterns. As highlighted by Kim and 

Oldham [78], using zoned temperature and humidity control in different hotel rooms can improve 

occupants' thermal comfort. Yang and Becerik-Gerber [57] demonstrated that considering a unique 

optimal schedule for each individual zone led to 5% more energy saving, compared with 

employing a shared optimal profile in the whole building. Sookoor et al. [56] developed a zoned 

reactive HVAC control strategy, called RoomZoner, and compared its performance with that of a 

whole-building control approach as the benchmark.  RoomZoner was designed based on the 

concept of micro-zoning that was utilized by Rose et al. [79]. In this algorithm, the airflow from 

HVAC systems to each zone was dynamically changed based on the current temperature and 

occupancy states in each room. In order to keep the initial cost as low as possible, they developed 

a low-cost occupancy inferring system using PIR motion sensors installed in each zone. They 

assessed RoomZoner performance based on a 42-day field evaluation. It was demonstrated that 

using this zonal control resulted in a 14.4% reduction in energy consumption.  

In the reviewed previous work, the proposed approaches were evaluated in terms of energy saving 

and thermal comfort, neglecting other performance indicators such as economic and peak-shifting 

criteria. To fill this gap, Krarti [59] evaluated the peak-shifting ability of zonal reactive thermostats 

in residential buildings. They reported that these thermostats decreased peak demand and energy 

consumption by up to 34.7% and 38.7%, respectively compared with an always-on thermostat. 

Wang et al. [58] conducted a financial analysis to evaluate the economic merits of reactive control. 

Always-on and programmable thermostats were considered as baselines. They used American 

Time Use Survey [80] to construct a probability function to involve occupancy patterns in the 

development of the control strategy. To construct occupancy profiles, they used random numbers 

between 0 and 1, which were then compared with the probability of occupancy in each time-

interval. They showed that the reactive strategy resulted in an energy saving of 20% and a payback 

period of less than one year.  

2.6. Predictive control  

As discussed in the previous section, reactive control strategies are able to overcome the main 

shortcoming of the control strategies using user-defined occupancy schedules. However, reactive 

control can cause thermal discomfort during transitions from setback to setpoint temperature upon 

occupants’ arrival. The lag time associated with the HVAC systems to return to the desired setpoint 

temperature is the main reason for this limitation [81]. 

To deal with this issue, the control system can take advantage of occupancy prediction models to 

create proactive control rather than being reactive. Proactive controllers forecast future occupancy 

patterns and accordingly, precondition buildings before occupancy. However, the performance of 

these control strategies is highly dependent on the model prediction performance. Indeed, 
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predicting future occupancy in a building is a challenging task as occupant behavior is highly 

stochastic in nature [61]. Furthermore, it is also challenging to effectively integrate the occupancy 

models in HVAC control in order to make a trade-off between energy saving and thermal comfort. 

The predictive control methods and occupancy models developed in the literature are respectively 

summarized in Table 2.2 and Table 2.3. 

2.6.1. Occupancy prediction models  

Because of the complexities and importance of occupancy prediction, some researchers focused 

on developing occupancy prediction models without investigating the integration of the models 

with control systems. Occupancy models are established based on databases gathered during 

occupancy monitoring periods. Depending on available data, occupancy models can predict 

binomial states of future occupancy, estimate occupancy levels, or predict occupancy patterns for 

each individual occupant. 

Table 2.3.  

Summarization of occupancy models used in the reviewed papers. 

Ref. Building Model Features 
Occupancy 
Level 

Performance 

[66] Office Markov model Time of day ✓ Duration 

JSD 

Occupancy flow 

[17] Office Hypothetical model - - Accuracy 

False 

negative/positive 

rates 
[82] Office SVM 

Random Forest 

Decision tree 

kNN 

Holiday 

Time of day 

Day of week 

Weekends 

Season 

- Accuracy 

F-score 

[83] Office kNN 

SVM 

Linear regression 
M5-Rules 

REPTree 

Gaussian processees 

Baggigng 

Day of week 

Month 

Occupancy duration 
Arrival time 

Departure time 

Time of day 

Temperature 

Wind speed 

Cloudiness 

Precipitation 
Snowfall 

✓ MAE 

[84] Office KNN-DTW 

Random forest 

SVM 

PreHeat [45] 

Time of day 

Day of week 

Weekends 

Season 

- F-score 

[85] Residential HMM  

kNN 

SVM 

Zonal occupancy states 

Time of day 

Occupancy duration 

✓ F-score 

[46] Residential Proportional model Time of day - Accuracy 

Matthews 

Correlation 

Coefficient 

[76] Residential Proportional model Time of day 

Departure time 

Arrival time 

- - 

[64,67] Office Blended Markov model Time of day ✓ Accuracy 

[86] Residential PreHeat [45] 

Proportional model 

Hybrid model proposed in 

[87] 

Time of day 

Location 

- Accuracy 

[88] Office Markov model 

Semi-Markov model 

Season 

Day of week 

Time of day 
State transition 

✓ NRMSE 



16 

 

[65] Conference hall Semi Markov Model Acoustic level 

Lighting level 

CO2 Concentration 
Temperature 

Relative Humidity 

- - 

[89] Office Genetic programming Day of week 

Time of day 

Occupancy duration 

✓ Accuracy 

[90] Office Markov model Arrival time 
Departure time 

Occupancy duration 

State transition 

✓ NRMSE 
K-L 

[91] Office Markov model Identity 

Occupancy duration 

Activity type 

✓ Accuracy 

[92] Exhibition hall LSTM 

ARIMA 
RNN 

Holt-winter 

Time of day ✓ RMSE 

MAE 
MAPE 

[93] Commercial GRU Location 

Activity type  

✓ RMSE 

MAE 

MSE 

[94] Research 

laboratory 

LSTM CO2 concentration ✓ Accuracy 

RMSE 

[75] Residential Proportional model 
Perfect prediction 

Time of day 
Day of week 

- Accuracy 

[68] Residential Perfect prediction - - - 

[69] Office Proportional model Time of day 

Day of week 

- - 

[87] Residential Proportional model 

Drive time 

Time of day 

Day of week 

  

[95] Residential Logistic regression 
Random forest 

kNN 

Markov model 

HMM 

LSTM 

Time of day 
Weekends 

- Accuracy 
Computational time 

[96] Office Decision tree 

HMM 

Time of day 

CO2 concentration 

Appliance energy consumption 
Lighting level 

✓ Accuracy 

[60] Office Proportional model Time of day - - 

[13] Residential Proportional model Time of day - Accuracy 

[62] Residential Drive time  Location - - 

[44] Residential Hybrid of destination 

prediction and proportional 

model. 

Location 

Time of day 

- Accuracy 

[63] Office Hybrid of route classification 

and a time-aided order-k 

Markov predictor 

Location 

Time of day 

- Accuracy 

[70,71] Office Perfect prediction - - - 

[72] Residential k-means clustering Time of day 

Day of week 

- - 

[73] Office Proportional model - - Accuracy 

[74] Residential Revised Logistic regression Time of day 

Weekends 

- MAE 

[61] Office kNN 

k-means clustering 

Arrival time 

Departure time 

Vacancy duration 

- Accuracy 

[45] Residential PreHeat Time of day 

Weekends 

- Accuracy 
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2.6.1.2. Occupancy state/level prediction 

Occupancy states are usually presented by 0 and 1, respectively denoting vacant and occupied 

hours, and used to regulate the setback and setpoint temperature. In order to develop models to 

predict occupancy states, relatively simple monitoring sensors, such as motion detectors, would 

suffice to provide an acceptable level of accuracy, while for occupancy levels, more advanced 

infrastructure such as camera networks is often required. Occupancy levels are helpful for 

controlling ventilation rates, as ventilation rates are adjusted based on the number of occupants in 

the monitored space. 

Chen et al. [90] proposed an inhomogeneous Markov chain model to predict occupancy levels in 

office buildings based on their preliminary results [97]. Five attributes were considered in 

developing this model: mean of occupancy level, first arrival time, last departure time, occupied 

duration, and occupancy transitions. To assess the performance of the developed model, 

normalized root mean square deviation and Kullback-Leibler (K-L) were employed. They 

compared the performance of the proposed model with that of an agent-based algorithm proposed 

by Liao et al. [98,99] and showed the superiority of their proposed Markov models. Adamopoulou 

et al. [88] developed a model using spatial-temporal features to capture relationships between 

occupancy patterns in different rooms. They grouped highly correlated rooms into different zones 

and deployed a unique Markov model for each defined zone. Transition matrices were constructed 

to provide the probability of interzone occupants’ transitions. These matrices were then used in 

occupancy models to capture spatial relationships. They employed these matrices as well as 

season, time of day, and day of week as features to develop the model. Depth-image cameras with 

95% accuracy were implemented to collect occupancy data in an office and a kitchen while in a 

rest area, PIR and acoustic sensors were used. A limitation of these reviewed studies is linked with 

the fundamental assumption considered in Markov chain models. To be more specific, in the 

Markov models, it is assumed that future states are only dependent on the current state. Using this 

assumption might neglect some important information existing in the past time intervals for 

predicting occupancy states.  

In order to deal with this issue, Kim et al. [92] established a long short-term memory (LSTM) 

network, which was able to memorize important information from past events. They used this 

model to predict occupancy levels in a large exhibition hall and compared its performance with 

that of an auto regressive integrated moving average (ARIMA), holt-winter, and recurrent neural 

networks (RNN). They collected data from the exhibition hall in 15-min time intervals using image 

sensors. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE) were utilized as evaluation criteria to assess the performance of the deep 

learning algorithms. According to the results, LSTM model provided the best performance among 

the implemented machine learning models. However, there is a shortcoming associated with using 

cameras in data collection, as implementing cameras in buildings could cause privacy issues for 

occupants. 

To protect occupant privacy, some researchers have implemented other alternatives, such as 

environmental features, in developing occupancy models. Ryu et al. [96] developed a decision tree 

for occupancy detection using indoor and outdoor CO2 concentration, lighting, and appliance 

energy consumption. They applied the results of occupancy detection to develop a hidden Markov 

model (HMM) algorithm to predict future occupancy states and levels in office buildings. 

According to the results, occupancy prediction using environmental features had an accuracy of 

more than 90%. Elkhoukhi et al. [94] deployed an LSTM algorithm to predict short-term 
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occupancy levels using historical CO2 concentration data. First, they evaluated the correlation 

between CO2 concentration and the occupant number. In the next step, they trained an LSTM 

model to predict future CO2 concentrations. Based on the steady-state equation proposed in [100], 

they estimated the number of occupants as a function of CO2 concentration in a research 

laboratory. The results showed that this LSTM algorithm provided accuracy and RMSE of 70% 

and 2.93, respectively. Although these research studies addressed privacy issues with a high level 

of accuracy for occupancy prediction, they did not evaluate the impact of using these alternatives 

on the model performance. There is a need for comparing these proposed models with common 

approaches to demonstrate whether using environmental features can have any impact on the 

model prediction performance.  

There have been a variety of occupancy models developed by researchers, which highlights the 

necessity of evaluating and comparing the models using the same dataset to reveal their strengths 

and limitations. For this purpose, Kleiminger et al. [86] compared the performance of PreHeat, a 

hybrid model, and a proportional model which were respectively proposed in [13,45,87]. They 

applied these models to a dataset collected using GPS, Wi-Fi connections, and cellular networks 

through smartphones, described in [101]. The results demonstrated that the proportional method 

outperformed other algorithms with a median accuracy of 85%. Using the upper bounds of human 

mobility prediction performance defined in [102], they also estimated an upper bound accuracy of 

almost 90% for using more complex methods. Huchuk et al. [95] compared the performance of 

logistic regression, kNN, LSTM, random forest, Markov models, and HMM in terms of 

computational time and accuracy. Time of day, weekends/weekdays, and previous occupancy 

states were utilized as features to train the models. The results showed that the random forest 

algorithm provided the highest accuracy for occupancy prediction among the selected machine 

learning techniques, while logistic regression provided the best computational cost. Caleb et al. 

[82] applied SVM, random forest, decision trees, and k-NN, to an occupancy dataset with a 

resolution of 10 minutes to develop occupancy models. They included seasons, holidays, time of 

day, weekends, and day of week features in developing the models. The results showed that for 

schedules with a high occupancy rate (i.e., the frequency of being occupied), SVM outperformed 

other algorithms, while for lower occupancy rates, all models provided a similar performance. 

Sangogboye et al. [84] assumed that no single occupancy model can perform the best for all cases. 

Hence, they established the PROMPT algorithm that consisted of four occupancy algorithms, 

namely PreHeat, SVM, kNN-DTW, and random forest, developed based on previous work  

[45,103]. F-score performance of each model was compared in every prediction case, and the best 

algorithm was selected for the prediction task. It was shown that PROMPT increased F-score by 

up to 2.3% when compared with each individual model. In these studies, the impact of the data 

collection period, dataset resolution, the window size, and types of features used to develop the 

models were neglected. As the performance of models could depend on these factors, analyzing 

their sensitivity to these parameters can be important while comparing the models. 

The impact of training set duration and dataset resolution on the performance of occupancy 

prediction models were evaluated by Salimi and Hammad [104] through a sensitivity analysis. 

They employed an inhomogeneous Markov chain model which was proposed in their previous 

work [91] and selected the coefficient of determination and normalized root mean square error 

(NRMSE) as the performance evaluation metrics. They showed that a sudden improvement in the 

accuracy was achieved by changing the period of the training dataset from one to two months, 

while for longer periods, the impact on accuracy was relatively smaller. In addition, the best time 
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resolutions for the two occupancy zones investigated in this study were 5- and 10-minute intervals. 

However, the dataset used was limited to monitoring occupancy levels in a single office building. 

More research is needed using wider datasets to achieve more reliable results. 

2.6.2. Prediction of individuals’ occupancy patterns  

Some researchers developed models to predict individuals’ occupancy patterns rather than 

predicting occupancy levels in an entire zone. These predicted patterns can be, then, aggregated to 

construct occupancy level profiles. Occupancy models developed based on individuals’ behavior 

might result in more accurate predictions, because they employ occupant identities as an extra 

feature [35]. However, using identities can cause privacy issues for occupants. 

Salimi and Hammad [91] aimed to develop an adaptive occupancy prediction model in office 

buildings, utilizing identities, occupancy duration, and activity types (e.g. dining or working states) 

to train a Markov model. Occupancy information was gathered using Bluetooth tags, associated 

with each occupant. In this study, different prediction horizons were utilized based on two 

applications of occupancy prediction: HVAC and lighting control. In terms of HVAC control, due 

to the lag time associated with preheating, a 30-min prediction horizon was considered, while for 

lighting, a short-term prediction, i.e. 5-min, was utilized. The results showed that prediction 

accuracy significantly decreased from 86% to 68% when the prediction horizon increased from 5 

to 30 minutes. A limitation of this study is linked with the occupancy detection system; the system 

did not collect any occupancy information regarding visitors to the office. Therefore, if one person 

occupied the office temporarily, the system failed to detect the occupancy presence and could not 

meet thermal comfort conditions. Additionally, they limited the prediction horizon to only one lag 

time, i.e. 30 minutes. As discussed in Section 2.6.2.1, the lag time varied from 30 minutes to 3 

hours, and considering a wider range of preconditioning horizons would be more valuable when 

evaluating an occupancy model. 

Shao et al. [85] developed an episode-generating HMM for occupancy prediction based on 

temporal relationships in occupancy patterns. An episode was defined as an ordered sequence of 

different zones visited by an occupant, such as kitchens, bedrooms, and corridors. The episode 

prediction algorithm was similar to life pattern mining proposed in [105]. They predicted future 

events according to the most frequent episodes, and the time of start and end of the last event. The 

results showed that the proposed model improved the F-score performance of occupancy 

prediction, compared with that of kNN and SVM models. However, they limited the proposed 

model to sequential visited spaces inside the building, such as different rooms. In other words, 

they neglected the relationship between these indoor spaces and outdoor locations visited by each 

occupant. Hence, there is a need for evaluating the possible improvements that can be achieved by 

defining an episode as an ordered sequence of visited indoor zones and outdoor locations in 

occupancy models. 

Instead of predicting occupancy patterns, Das and Kjæ rgaard [93] focused on predicting the next 

specific locations of each occupant using a gated recurrent unit (GRU) algorithm. The locations 

were determined using video cameras by recording occupants’ coordinates. To make the prediction 

more accurate, they added sitting and moving labels to each record in the dataset. MSE, MAE, and 

RMSE were selected as the performance evaluation criteria. They demonstrated that the GRU 

model predicted future locations with an RMSE of 4.79 centimeters. Although predicting the next 

locations of each individual can be helpful for predicting future occupancy states, the performance 

of this method for future pattern prediction was not evaluated. 
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Yu [89] proposed a novel model using a genetic programming algorithm for predicting occupancy 

patterns of individuals in single-person offices. The model was trained based on the following 

attributes: day of week (except for weekends), time of day, duration of occupancy in the last state, 

and the period from the last arrival time to the office. According to the results, the algorithm 

provided up to 83% accuracy for predicting occupancy states. However, no comparison between 

the proposed method and commonly used machine learning and statistical models in the literature 

were made. As the prediction performance significantly depends on occupancy profiles in 

buildings, without providing a direct comparison between occupancy models applied to the same 

dataset, the effectiveness of the proposed model cannot be well evaluated.  

In contrast to the previously reviewed studies that used a few features, Gjoresk et al. [83] developed 

an occupancy prediction algorithm based on a relatively wide range of features including day of 

week, month, difference between total and expected working hours per month, historical arrival 

time, historical departure time, morning temperature, wind speed, cloudiness, daily precipitation 

quantity, and snowfall. A database collected from historical occupancy patterns of seven 

employees and weather data in 2 years were utilized to establish prediction algorithms. Naïve 

approach as a baseline model as well as kNN, SVM, Linear regression, M5-Rules, REPTree, 

Gaussian processes, and bagging algorithms were implemented for this regression problem. The 

proposed algorithm decreased MAE value by up to 50% and 32% for arrival and departure time 

predictions, respectively, compared with the baseline. However, although a relatively large number 

of features were utilized in the development of this algorithm, the importance of these features in 

predicting individual patterns was not clarified. To be more specific, a feature selection method 

was lacking in this study to determine the most effective features in developing occupancy models. 

2.6.2.1. Rule-based control 

In rule-based (RB) control, a pre-defined set of rules are applied to predicted future occupancy to 

provide energy saving and thermal comfort. In the literature, these rules were mainly defined as a 

function of preconditioning time, conditioning rate, or occupancy probability. Preconditioning 

time, also called the lag time of HVAC systems or pre-heating/cooling time, is defined as the time 

it takes to precondition a building to reach the setpoint temperature from a setback. Conditioning 

rate is defined as the rate of temperature change per hour during preconditioning periods. The 

previous research items are categorized based on the types of rules and are discussed in the 

following subsections. 

2.6.2.2. RB control using preconditioning time and conservative setback 

The majority of earlier work defined the rules in RB control as a function of future occupancy 

states and estimated preconditioning time. In these strategies, first, an approximate preconditioning 

time is estimated based on previous operations of HVAC systems. Then, it is used as the prediction 

horizon of the occupancy model. If the building is predicted to become occupied during this period, 

the controller turns the HVAC system on to bring back the setpoint before occupants’ arrival.  

Researchers considered various ranges for setback during unoccupied hours. As the depth of 

setback can considerably impact energy saving and occupants' comfort, the reviewed articles on 

RB control are classified into conservative and deep setback categories. The conservative setback 

is defined as a temperature deviation from the setpoint by 3 °C. Larger deviations are classified as 

a deep setback.  

Lee et al. [63] deployed an RB control strategy using a hybrid occupancy prediction model based 

on occupants’ locations received from cellular towers and Wi-Fi connections. This hybrid model 
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used two different methods depending on transition time (i.e. the time it took for occupants to 

reach the target place from their current location). In cases when the transition time was larger than 

preconditioning time, a route classification algorithm was deployed. For short transitions, a time-

aided order-k Markov predictor was applied to historical occupancy data to predict future 

destinations and associated arrival time. Using historical data, preconditioning time was estimated 

as 21.82 minutes with 1.98 minutes error for an average temperature difference of 2.5 °C. In order 

to evaluate the performance, they measured energy consumption and air temperature in target 

zones. The results showed that the proposed strategy decreased energy consumption by 26%, 

compared with always-on thermostats and was able to predict 70% of transitions with an error of 

less than 10 minutes. However, the method failed to learn unregular occupancy patterns with an 

overall accuracy of less than 60%. 

Dong and Andrews [65] applied RB HVAC control to a conference hall. First, they developed an 

occupancy pattern recognition method based on gathered data from 6 types of sensors: acoustics, 

lighting, motion detectors, CO2 concentration, temperature, and relative humidity. The most 

frequent patterns and their subsets were selected as candidates to determine patterns with the 

strongest correlation with occupant behavior. In all control strategies, night and day setback 

temperatures were defined at 30 °C and 27 °C, respectively with a setpoint of 24 °C. The results 

showed that RB control resulted in up to 30% energy saving. As well as setpoint temperature 

control used in this study, OBSERVE control algorithm proposed by Erickson et al. [66] took both 

ventilation and temperature control into account using an RB control. The number of occupants 

from 8 different zones including offices, laboratories, and conference rooms was gathered using a 

network of 7 cameras installed in each corridor for a period of five days. In this study, a Markov 

chain model was used to predict occupancy. To evaluate the occupancy model performance, 

duration of occupancy states and the rate of people entering and exiting different zones were 

compared with the ground truth data. Jensen Shannon divergence (JSD) indicator was also used to 

compare the distributions of predicted results and ground truth during the testing period. The 

ventilation rates were adjusted based on the occupancy levels in each zone using the relationships 

suggested in ASHRAE Standard 62.1 [106]. The allowed temperature was in the range of 21.1-

23.9 °C and 25.5-27.8 °C for heating and cooling seasons, respectively. Based on three virtual test 

environments simulated in EnergyPlus, it was demonstrated that this control system can save 42% 

annual energy, compared with scheduled control.  

However, most of the mentioned works limited their study to evaluating energy saving 

performance and provided no analysis regarding thermal comfort of occupants. As the main aim 

of predictive control is to ensure a thermally comfortable indoor environment for occupants, it is 

essential to consider this criterion when evaluating predictive control systems. Some earlier work 

considered both energy saving and thermal comfort when evaluating the performance of control 

systems. Beltran et al. [64] proposed a control strategy for ventilation and temperature regulation, 

named ThermoSense. ThermoSense employed a network of thermal and PIR sensors and 

implemented a blended Markov chain model [66], to predict future occupancy states with a 
prediction horizon of one hour. The results demonstrated that ThermoSense decreased the annual 

energy consumption by 24.8%. However, it was shown that implementing a reactive control 

instead of ThermoSense provided higher energy saving of 29.6%. The amount of energy consumed 

for preconditioning the building before arrival time was the main reason for the lower energy 

performance of ThermoSence. However, due to this preconditioning period, ThermoSence 

provided lower temperature deviation from the setpoint with a maximum RMSE of 0.415 °C, while 
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reactive thermostat resulted in a maximum RMSE of 1.23 °C. A similar algorithm, named POEM, 

was proposed by Erickson et al. [67]. The main distinction of POEM algorithm with ThermoSense 

was using a network of cameras to provide more accurate occupancy detection. The camera 

network provided an estimation of occupancy levels to regulate temperature schedules and 

minimize ventilation rates while meeting the ASHRAE standards [106]. The results showed that 

POEM reduced energy consumption by 26%. Moreover, it was demonstrated that there was no 

significant difference between the performance of POEM and reactive control algorithms in terms 

of energy saving; however, the reactive controller caused thermal discomfort upon occupants’ 

arrival.  

2.6.2.3. RB control using preconditioning time and deep setback 

A limitation of the research items reviewed in the previous section is linked with the conservative 

temperature range considered in the control systems. This conservative range of setback 

temperature, although is essential in reactive control to minimize the discomfort upon arrival, can 

be widened in predictive control to save more energy in long unoccupied periods . It is because of 

the ability of the system to predict future occupancy and precondition the zone before the arrival 

time. Therefore, some researchers have studied a wider range of temperature in the control 

strategies.  

Koehler et al. [44] developed an RB control algorithm, called TherML. This algorithm employed 

a hybrid occupancy prediction model based on contextual information from individual occupants. 

More specifically, the occupancy prediction was dependent on whether the occupant was driving 

or not. If the monitored occupant was driving, a methodology, similar to that implemented in 

[107,108], was used, in which a sequence of previously visited locations by occupants as well as 

time of day were implemented to predict future destinations. Otherwise, the system made 

predictions using a proportional model by calculating the frequency of historical occupancy states 

in 5-min time intervals. The average preconditioning time to change temperature from 15.5 °C to 

personal desired temperature (an average of 20.6 °C over all participants) was estimated as 59 

minutes based on a data collection over 5 weeks. They compared the performance of TherML with 

that of GPS-thermostat [62], PreHeat algorithm [45], and a manual remote controller described in 

Section 2.4. It was demonstrated that TherML outperformed other methods in terms of accuracy 

and energy saving, providing an average accuracy of 92.1%, which was 1.5% higher than that of 

PreHeat algorithm. The average MissTime and WasteTime for TherML were respectively 

estimated as 0.95 and 0.94 hours, which were slightly lower than those related to PreHeat 

algorithm. A sensitivity analysis was also performed to show the impact of traveling distance on 

the accuracy of TherML. For long distances, 14,000 meters, TherML could provide up to 7% 

higher accuracy than PreHeat, while for short distances such as 200 meters, only 1% improvement 

was achieved using TherML. Implementing the simple proportional occupancy model can be 

mentioned as one of the limitations of this hybrid model. More advanced techniques such as 

machine learning models could be implemented to find more hidden patterns in occupancy profiles 

to boost the accuracy of occupancy prediction. 

Gluck et al. [17] evaluated the impact of occupancy prediction errors and depth of setback 

temperature on the performance of RB control. To this end, they proposed a hypothetical 

occupancy model with 25%, 15%, and 5% errors in accuracy. Their hypothetical model was based 

on real data collected from 235 rooms in an office building with PIR and ultrasonic sensors. Three 

different ranges for setback temperature were considered in this study; 1) low-bound setback with 

a maximum 2 °C deviation from setpoint, 2) medium-bound with a maximum 6 °C  deviation, and 
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3) large-bound with a maximum 10 °C deviation as the deepest bound. A reactive thermostat based 

on the low-bound setback was utilized as the baseline. According to the results, using a medium-

bound and large-bound setback saved up to 26% and 40% energy, respectively compared to 

reactive thermostats. It was also reported that a 10% reduction in prediction errors resulted in up 

to almost 9% and 16% improvement in energy saving and MissTime, respectively. Although they 

considered a deep setback in the high-bound and medium-bound temperature ranges, only a fixed 

approximate preconditioning time of one hour was considered in this study.  

Nägele et al. [68] compared the performance of manual, programmable, reactive, and RB 

thermostats in terms of energy saving and thermal comfort. They also assessed the impact of 

including weather prediction, obtained from meteorological weather stations, on the performance 

of reactive and predictive control. They collected occupancy data through smartphone applications 

over a 14-month period. The preconditioning time was estimated as one hour. They estimated 

energy consumption of the building through a Resistance-Capacitance (RC) model and 

demonstrated that the highest energy saving was achieved using reactive control at an average of 

26.2%, which was followed by RB control at 23.7%. On the other hand, predictive controllers 

provided the lowest MissTime of 28.2 hours, which was 103.9 hours lower than that of reactive 

control. A limitation of this study is linked with the utilized occupancy prediction model. More 

specifically, they implemented perfect occupancy prediction and neglected the impact of errors on 

the control system performance. Therefore, the results for the RB controller is overestimated, 

providing an ideal upper bound for the RB control. As well as utilizing perfect prediction, 

occupancy models can be also implemented to give an insight into predictive control performance 

in real-world applications. 

Iyengar et al. [46] focused on improving currently installed programmable thermostats without a 

need of additional infrastructure. They called these revised thermostats iProgram. iProgram 

predicted future occupancy based on energy consumption patterns in residential buildings without 

the need of a training dataset, as it is not available in many homes with programmable thermostats. 

They evaluated the performance of the proposed occupancy detection algorithm using accuracy 

and Matthews correlation coefficient. As for controller performance, MissTime, WasteTime, 

mismatch time (sum of WasteTime and MissTime) were assessed by simulating 100 homes as 

virtual test cases. It was demonstrated that iProgram resulted in 0.42 kWh average energy saving 

per day. Furthermore, the mismatch time decreased by an average of 42 minutes having a median 

deviation of almost 30 minutes. However, the proposed occupancy detection method using energy 

consumption patterns was limited to predicting occupancy during the day and failed to predict 

occupancy during the nighttime when people are sleeping. 

2.6.2.4. RB control using conditioning rate and occupancy probability 

In the earlier work concerning RB control, researchers considered an average preconditioning time 

as the prediction horizon to make control decisions for initiating the preconditioning process. 

However, this static time cannot consider the actual difference between dynamic room temperature 

and the desired setpoint. As a consequence, when room temperature reaches a setback after a long 

vacant period, it clearly takes more time than the average to precondition the building before 

occupants’ arrival, which increases the MissTime. Similarly, after a short vacancy, it can cause 

energy waste due to over preconditioning the zone. Hence, some researchers have defined the 

preconditioning time by multiplying the conditioning rate and the difference between actual room 

temperature and setpoint. This definition is more helpful when a wider range for temperature is 

allowed in control algorithms. Besides, some researchers have employed occupancy probability in 
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control systems rather than using deterministic occupancy models. In these cases, RB control 

systems determine the depth of setback as a function of occupancy prediction confidence. For 

example, when the probability of occupancy remains negligible in the following hours, a deeper 

setback is defined to save more energy. In contrast, when the probability of presence is relatively 

high, a conservative setback is set to ensure occupants’ comfort. 

Nikdel et al. [60] studied the benefits of using RB control in office buildings from a national point 

of view. They evaluated the influence of such systems on the amount of fossil fuel consumption, 

greenhouse gas emission, and energy cost, compared with always-on and programmable 

thermostats. They defined setpoint temperature as a linear function of the presence probability. 

Based on this relationship, the temperature was allowed to change between 15.6 and 21.1 °C in 

the winter and 23.9 and 29.4 °C in the summer. The results showed that up to 50% and 87% 

reduction in electricity and natural gas consumption was respectively obtained using this 

occupancy-based HVAC operation, compared with always-on control. With all small offices in 

the US having this type of control, the saving of fossil fuel, CO2 emission, and cost at the national 

level were estimated as 15-66 million GJ, up to 3.7 million metric tons, and 658 million dollars, 

respectively. However, the impact of RB control on the thermal comfort conditions was neglected 

in this study. As improving cost or energy saving are often obtained at the expense of occupants’ 

thermal comfort, the control system should be also evaluated in term of providing thermal comfort 

for occupants.  

Using a two-level probabilistic occupancy model, Peng et al. [61] defined an RB HVAC control 

strategy for use in office buildings. At the first level, a k-means clustering algorithm was applied 

to a real occupancy dataset, collected using motion sensors, to cluster similar data records. In the 

second level, a k-NN algorithm was utilized to predict occupants’ first arrival time and the duration 

of occupied hours in office buildings. Arrival time, last departure time, and maximum unoccupied 

duration were utilized as features for developing occupancy models. They defined the setback 

temperature as a function of the probability of presence obtained from the occupancy model. The 

setback temperature could increase from the comfort temperature to 35 °C in cooling seasons 

depending on the occupancy probability. In this study, a field evaluation was performed in an 

office building with a meeting room, and single- and multi-person offices. Energy meters were 

utilized to evaluate the amount of energy consumed by chillers. The results achieved from this 

experiment demonstrated 7%-52% energy saving in comparison with scheduled cooling systems. 

However, in this study, although a novel two-level occupancy prediction algorithm was proposed, 

no comparison between this algorithm and conventional one-level predictions was provided to 

show the strengths of the proposed model.  

Lu et al. [13] proposed a smart thermostat to automatically adjust zone temperature to occupancy 

states in buildings. The proposed smart thermostat employed three strategies to save energy while 

keeping an acceptable thermal comfort level. They included turning off the HVAC system after 

residents left home or slept, preheating the home before their arrival, and employing a deep setback 

temperature during confidently vacant hours. They used a hidden Markov model (HMM) to infer 

three different possible occupancy modes at home; 1) active, 2) away, and 3) sleep modes. Future 

arrival time was estimated using the historical arrival times recorded by the occupancy detection 

system. Three features were used in the occupancy model; 1) time of day, 2) total number of true 

signals received from occupancy sensors, and 3) signals received from door sensors. The results 

showed that this approach led to almost 28% energy saving, compared to conventional thermostats.  
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Scott et al. [45] developed an RB control, called PreHeat, for heating five residential homes in the 

UK and US. They collected occupancy information using radio-frequency identification (RFID) 

tags associated with residences’ keys and motion detectors installed in homes. Based on this data, 

they created a partial occupancy vector that consisted of occupancy information from midnight 

until the current time step. They used this vector as a primary attribute for developing occupancy 

prediction in 15-min intervals. They reported that occupant behavior in the considered homes was 

highly dependent on weekends or weekdays, and as a result, they used this parameter as the second 

feature. They used a kNN algorithm to calculate the probability of presence, based on the mean of 

5 nearest historical occupancy states. PreHeat employed occupancy models and an empirical 

preconditioning rate based on the historical data. They utilized a room-based control for 2 homes 

in the UK and whole-home control for 3 homes in the US. They measured gas consumption for 

each residential unit to evaluate the energy performance of controllers. The results demonstrated 

that PreHeat decreased MissTime by up to 92% without the need for human interventions. 

However, PreHeat did not provide improvements in energy saving compared with programmable 

thermostats.  

As well as using historical occupancy patterns to predict future occupancy in a target zone, some 

researchers have employed information about occupants’ routines even when they are not in the 

monitored building. Gupta et al. [62] proposed a thermostat, called GPS-Therm based on real 

traveling data collected from four households in the US. Occupants' locations were utilized to 

estimate the time it took for the nearest occupant to reach home. The estimated traveling time was 

then employed to schedule a setback profile to save energy. The setback was defined as a function 

of traveling time so that the HVAC system has enough time to preheat the building before the 

arrival. Implementing this heating strategy resulted in 7% energy saving in the considered 

households. However, as the setback temperature was defined as a function of traveling time, in 

cases with short traveling time, a too shallow setback is defined using this method. Therefore, in 

these cases, the GPS-Therm leads to no substantial energy saving compared with always-on 

thermostats. Krumm and Brush [87] developed a proportional occupancy model and compared its 

performance with that of GPS-Therm in terms of occupancy prediction accuracy. They developed 

their model based on real data collected from 11 households using time of day and day of week as 

input features. It was demonstrated that the proportional model performed much better than the 

drive-time algorithm. The reason was that, occupants spent most of their time near their homes, 

and as a result, the traveling time was often short. They reported a slight improvement in the 

performance of occupancy prediction when they combined both methods. 

2.6.3. Optimal control 

In contrast to rule-based control, in which a set of rules are implemented, in optimal control, 

optimization algorithms are employed to make optimal sequences of decisions. In most studies 

conducted in this field, optimal controllers were employed to make an optimal trade-off between 

minimizing energy consumption and maximizing thermal comfort. Model predictive control 

(MPC) has been the most utilized occupancy-based optimal control strategy in the literature. 

Interested readers can find more information about MPC operation in HVAC control applications 

in [33].  

Despite many papers published on MPC-related topics, there are a limited number of papers that 

implemented occupancy prediction in MPC. Oldewurtel et al. [70] evaluated the impact of using 

occupancy prediction in MPC in terms of energy saving. To this end, they compared the 
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performance of an MPC using instant information from occupancy sensors, as the baseline, with 

that of an MPC that took advantage of perfect occupancy prediction for HVAC and lighting 

control. In this study, the temperature setpoint was constrained in the range of 5 to 40 °C in the 

optimization problem during vacant hours. This wide temperature range was assumed to give an 

upper bound of energy saving that can be achieved from this control system. Based on the 

assumptions, they concluded that the amount of energy saving achieved by using complex 

occupancy predictions led to a relatively low improvement in the system performance and might 

not compensate for its complexity. In a similar work by Goyal et al. [71], the performance of a 

reactive control and that of an MPC using 24-hr perfect occupancy prediction were compared in 

terms of energy saving. In this study, the range of setback temperature in all cases during 

unoccupied periods was considered from 21.1 °C to 24.4 °C, which was close to the range of 21.9 

°C to 23.6 °C, considered during occupied hours. They showed that all three proposed methods 

resulted in a considerable amount of energy saving (almost 50%). However, despite the high 

complexity of MPC-based algorithms, these methods did not lead to significantly higher 

performance. Goyal et al. [109] also verified the conclusions made in [71] by conducting an 

experimental study on a single zone office as a testbed. However, it should be noted that in none 

of these studies the impact of MPC on occupants’ comfort was evaluated. As one of the key 

purposes of using predictive control is to improve thermal comfort, considering energy-efficiency 

as the sole indicator can lead to underestimation of the system performance. 

As well as minimizing energy consumption of the system, Salimi and Hammad [69] utilized a 

multi-objective genetic algorithm to minimize MissTime. In their study, occupancy profiles were 

predicted by applying a Markov model to historical occupancy data gathered from an individual 

office. They utilized EnergyPlus to estimate the performance of the proposed algorithm and 

demonstrated that this optimal approach enhanced thermal comfort by 50% and decreased the 

energy consumption by 2%, compared to a scheduled control. However, MissTime fails to 

consider the difference between the actual and desired room temperature in the optimization 

problem. To deal with this limitation, Shi et al. [74] proposed a cost function, similar to that 

implemented by Killian and Kozek  [72], to be minimized in the optimization algorithm of MPC. 

The cost function consisted of thermal discomfort and energy consumption terms. The former term 

was defined by multiplying the presence probability, achieved from occupancy models, and a 

thermal discomfort factor, defined as the difference between the actual room and the desired room 

temperature. In this optimization problem, setpoint and setback temperatures were respectively 

constrained in the ranges of 18-28 °C and 20-24 °C. The results indicated that using occupancy 

prediction in MPC improved energy saving by up to 8%, compared with the traditional MPC, and 

maintained an acceptable level of thermal comfort. Turley et al. [75] evaluated the performance of 

occupancy-based MPC and compared it with that of reactive control. The ground truth occupancy 

data was gathered using applications installed on the users’ phones and using regular surveys filled 

by occupants. Prediction and control horizons for MPC were selected as 24 hr and 1 hr, 

respectively. They employed a particle swarm optimization algorithm to find the temperature that 

optimized predicted mean vote (PMV) and energy use in a weighted optimization algorithm. The 

results showed that MPC reduced energy consumption by up to 13.3%. They also reported that 

MPC with perfect occupancy prediction saved almost 3% more energy, compared to MPC with 

occupancy prediction models. 

Killian et al. [72] compared the performance of MPC with and without integration to occupancy 

prediction models in terms of temperature violation from setpoint in residential buildings. They 
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applied a k-means clustering algorithm to an occupancy dataset, collected using lighting sensors, 

to develop an occupancy prediction model. They showed that an MPC with occupancy prediction 

reduced the temperature violation by up to 32.80%. Gao and Whitehouse [76] developed an 

optimal control based on modifying programmable thermostats. They called the system “self-

programmed thermostats”, that was able to construct a temperature schedule based on historical 

occupancy data. Future occupancy patterns were constructed based on maximum departure time 

and minimum arrival time in the last one-month occupancy patterns. They constructed an 

optimization algorithm to minimize HVAC run time as an indicator of energy saving. Their 

preliminary results showed that using self-programmable thermostats rather than standard 

programmable ones decreased HVAC run time by 15%. It also decreased MissTime by 12%-40% 

depending on occupancy patterns.  

2.7. Discussion of previous research limitations 

Based on this comprehensive literature review, the research gaps in the field of occupancy-based 

HVAC control are discussed in this section. To this aim, the reviewed papers are summarized and 

explored from the following different viewpoints: performance assessment methodologies for 

occupancy models and control strategies, the features used in developing occupancy models, types 

of occupancy models and control systems, and testbeds used for model evaluation. 

2.7.1. Performance indicators for evaluating control systems 

Fig. 2.4 demonstrates the frequency of different performance criteria used to assess occupancy-

based control systems. It can be seen that energy saving was the most popular performance 

indicator in previous studies. However, as discussed in Section 2.6.3, using energy saving as the 

only indicator can result in undervaluation of predictive control performance, especially when 

compared with the performance of reactive control. This is because reactive control often 

decreases energy consumption at the expense of thermal comfort, while predictive control 

improves comfort by preconditioning the building. This preconditioning can cause more energy 

consumption, and if only energy saving is concerned, reactive control can outperform predictive 

control by neglecting their benefits in providing thermal comfort. Therefore, it is strongly 

recommended not to ignore thermal comfort conditions while evaluating the performance of 

predictive control strategies.  

It can be also observed that HVAC runtime has been rarely utilized by researchers to assess the 

merits of the control strategies. This is consistent with the results achieved by Pritoni et al. [54], 

reviewed in Section 2.5. Briefly, they demonstrated that there is not always a relationship between 

HVAC run time and energy saving, and employing HVAC run time as performance merit can lead 

to overestimation of system performance. Therefore, using energy saving rather than HVAC run 

time is more recommended to provide more reliable results. 

As demonstrated in Fig. 2.4, the financial merit of control systems has been one of the least-used 

criteria in evaluating control systems in the earlier studies. However, this is an essential factor for 

encouraging building owners to replace the old control systems in buildings with more intelligent 

ones. To be more specific, the main barrier for many owners in retrofitting the buildings with 

intelligent control is the initial costs; therefore, evaluating the economic benefits, estimated 

through financial analysis, can be a great incentive for them. Similarly, the majority of earlier work 

have neglected peak-shifting performance, despite its importance in demand response 

management. In some areas with cold climates, utility companies encounter serious challenges to 
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provide electricity for customers during on-peak periods in winter. The focus in such areas is to 

find a solution to shift on-peak demand to the off-peak periods via encouraging costumers to 

manage peak demands or using energy storage [110].  However, the occupancy-based control 

systems proposed in the literature aimed to keep the temperature at setback during vacant hours 

and return the thermal condition as soon as occupancy states were changed. It naturally can bring 

about a sudden change in energy demand profiles and, consequently, are prone to cause peak 

energy use. However, as researchers have rarely investigated the control systems in terms of peak 

demand, these aspects have not been clarified yet. In addition to these factors, the environmental 

impacts of occupancy-based HVAC control have been mostly neglected by researchers and there 

is not enough information to show their performance from environmental dimensions.  

Overall, the performance of occupancy-based HVAC control systems from economic, energy, and 

environmental points of view have not been well investigated in previous studies. Because of the 

importance of these aspects, it is recommended to take these factors into account when proposing 

and evaluating control algorithms in this field. 

 
Fig. 2.4. The frequency of different performance criteria utilized to assess the merits of occupancy-based control strategies in the 

reviewed studies. 
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2.7.2. Features used to develop occupancy models 

The frequency of features implemented to develop occupancy models is represented in Fig. 2.5. 

Time of day was the most frequent feature at 25%, that is followed by day of week, that accounts 

for almost 12% of all the utilized features. It is clear that features such as time of day, day of week, 

weekends and seasons are most likely to affect occupancy prediction performance, as we can find 

obvious correlations between them and occupancy patterns. For example, people mostly work 

during the day and sleep at night or schedule their routines based on day of week. However, it is 

still a question that which features are the most effective ones and how many features will provide 

the best results. It is shown that almost 29 different features have been employed in earlier works 

to develop occupancy models. Considering this variety of features, a wise selection of attributes 

can be of great importance as it can improve the accuracy of the prediction, provide a better 

understanding of the underlying process and enhance the computational speed [15] [111]. Too 

many or too few features can, respectively, result in overfitting or underfitting problems [14]. 

Additionally, as mentioned in [16], finding the most relevant features in developing an optimal 

model can minimize the cost of purchasing too many sensors. However, despite the importance of 

feature engineering in developing data-driven models, there is still a question that what number 

and what types of attributes should be selected for future occupancy prediction. In other words, 

feature engineering studies in the field of occupancy prediction lacks in the literature. Hence, 

investigating the optimal features is recommended as future work to provide a guideline for 

researchers to select the most appropriate features. 

 

 
Fig. 2.5. Frequency of different features used for developing occupancy models in the reviewed papers. 

2.7.3. Types of control strategies and evaluation methods 

Fig. 2.6 demonstrates the distribution of earlier works based on types of control strategies and 

evaluation methods (i.e. simulation or field evaluation). As can be seen, rule-based control was the 

most used control strategy in earlier research work, accounting for almost half of all the studies. It 

was followed by reactive and optimal control at 26%. It is observed that all the studies on optimal 

control were simulation-based studies, and no researchers have applied them to actual testbeds. In 

contrast, half of the studies on reactive control were evaluated using real case studies. One of the 

reasons can be linked with the fact that while optimal control strategies are still under development, 
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reactive and rule-based controls are commercially available for use in buildings. In fact, many 

commercial buildings already utilize reactive strategies to control HVAC and lighting systems, 

which makes field evaluation more possible. In addition, optimal control often requires higher 

computational power than the currently available power in building management systems. These 

factors have made the experimental evaluation of optimal strategies more challenging. Hence, 

there is a need to deal with this challenging task and investigate such systems when applied to real-

world applications. 

As mentioned in Section 2.6.3, MPC was the most-utilized approach for occupancy-based optimal 

control in the literature. Despite its promising performance, there are some barriers preventing 

them from being widely utilized in the building sector, such as their poor potential of generalization 

for use in different buildings and the intensive expertise required to develop MPC models [19]. In 

the last decade, reinforcement learning (RL) has attracted a great deal of attention as a powerful 

alternative to MPC in HVAC control systems. RL algorithms are data-driven approaches that can 

be utilized in HVAC control without a need for the development and calibration of building models 

[21]. RL has been utilized in many different building-related applications such as the control of 

lighting systems [22], cogeneration systems [23], domestic water heaters [24], energy storage [25], 

and HVAC systems [26]. However, there is still a need for investigating the effectiveness of RL 

algorithms for occupancy-based HVAC control. It is recommended to evaluate and compare the 

performance of RL-based HVAC control with that of MPC-based algorithms to reveal the 

strengths and limitations of each approach in this field. 

 

 
Fig. 2.6. Distribution of the papers based on control type and evaluation methods. 
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2.7.4. Building types 

Fig. 2.7 depicts the proportion of different building types used as testbeds in the reviewed papers. 

It can be seen that office buildings accounted for more than half of the previous research studies. 

These offices were mostly occupied by researchers in educational institutions. The reason is that 

such buildings are more accessible for researchers to conduct experiments and collect the required 

data. In contrast, gathering data in other types of commercial buildings can cause more privacy 

issues and have been less studied by researchers. It can be observed that other commercial 

buildings such as exhibition halls, conference halls, and hotels account for 9% of the previous 

studies, and there is less information about the effectiveness of occupancy-centric HVAC control 

in these applications. Therefore, investigating different testbeds rather than research offices and 

residential buildings are recommended to provide an insight into using these control strategies in 

various case studies. 

 
Fig. 2.7. The distribution of testbeds used to evaluate occupancy-based control systems in the reviewed papers. 

2.7.5. Occupancy prediction models 

The frequency of using different occupancy models is demonstrated in Fig. 2.8. The most used 

occupancy models were Markov and proportional models which accounted for 28% of all the 

occupancy models. These models are not complex to be implemented and provided an acceptable 

level of accuracy in most of the cases. These models are followed by kNN that accounted for 6% 

of the models. However, there has been relatively less effort put into developing more complex 

models such as deep learning algorithms. More specifically, deep learning algorithms, namely, 

LSTM, GRU, and RNN account for less than 8% of the developed models. Hence, it is 

recommended to make attempts into applying more complex models to occupancy prediction in 

order to capture further hidden patterns in occupancy datasets and improving the performance of 

the models. 
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Fig. 2.8. Frequency of various occupancy models used in the literature. 

2.7.6. Performance indicators for occupancy models 

Different performance metrics utilized for evaluating occupancy models in the reviewed papers 

are shown in Fig. 2.9. Accuracy was by far the most utilized indicator, at around 45% of all metrics. 

However, accuracy might be misleading when used as the primary indicator to show the 

effectiveness of an occupancy model [46]. In some cases, when occupancy/vacancy rates are high 

(i.e. people stay home or are outdoors most of the time), occupancy models might select the most 

frequent state in the dataset as the future occupancy prediction results for all future time steps. In 

this way, the model can provide an acceptable level of accuracy, while the results would not be 

practically useful for HVAC control. Besides, as mentioned in [73], the impact of occupancy 

prediction errors on HVAC control depends on its nature and timing. However, the commonly 

used performance indicators address none of these factors. Hence, there is a need for research 

studies to compare and evaluate different performance indicators to show their limitations when 

applied to occupancy models in HVAC control.  

 
Fig. 2.9. Performance criteria used for evaluation of occupancy models. 

 

 

 

 



33 

 

 

2.8. Conclusion 

This chapter reviews the state-of-the-art occupancy-based HVAC control systems proposed in the 

literature for residential and commercial buildings. To this aim, previously published papers are 

classified into two main categories according to the integration of occupancy information with 

control systems. Then, the papers are further classified based on the control strategies applied to 

occupancy information. The research items in each category are explored in detail, and the 

methodologies are investigated from different viewpoints. It is pointed out that the HVAC control 

systems based on user-defined occupancy schedules provide poor performance in terms of energy 

saving and thermal comfort in many cases. Therefore, there has been an increasing interest in using 

occupancy detection and monitoring systems to minimize occupants’ interventions. Reactive 

control is considered as a successful approach to minimize the interactions; however, employing 

this type of control can cause thermal comfort issues for occupants upon arrival owing to the lag 

time of HVAC systems. Predictive control strategies were proposed in the literature as a solution 

to this issue by enhancing thermal comfort of occupants. However, it was reported that in many 

cases, using predictive control results in lower energy performance than reactive control due to 

preconditioning buildings before occupant arrival.  

This thorough literature review shed light on the limitations of different methodologies. These 

limitations are summarized according to different dimensions, including feature utilization in 

developing occupancy models, types of occupancy models, types of buildings used as testbeds, 

performance metrics used to evaluate control systems and occupancy models, and types of control 

systems integrated with occupancy models. It is indicated that the majority of occupancy-based 

control systems were studied with respect to energy efficiency and thermal comfort, and 

consequently, their effectiveness from other viewpoints such as financial merits, demand-response 

management, and greenhouse gas emissions was not well evaluated in the literature. Additionally, 

despite many studies on developing occupancy models, a limited number of research items 

implemented more advanced algorithms, such as deep learning methods, to capture more hidden 

patterns in occupancy profiles. Furthermore, it is shown that 91% of the previous studies focused 

on occupancy-based control systems in office or residential buildings. Consequently, limited 

information regarding their performance in other types of buildings, such as conference halls, 

schools, and shopping centers, can be found in the literature. 
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Chapter 3: Occupancy-based HVAC control using deep learning 

algorithms for estimating online preconditioning time in residential 

buildings2 

 

3.1. Overview 

This chapter presents a rule-based (RB) heating, ventilation, and air-conditioning (HVAC) control 

system using a multi-layer perceptron network, as a deep learning algorithm, for estimating 

dynamic preconditioning time in residential buildings. The proposed system takes advantage of 

occupancy, indoor temperature, and weather data to make control decisions in buildings. The 

system performance is evaluated in terms of financial, demand-side management, energy-

efficiency, and thermal comfort viewpoints. The proposed approach considers the perfect 

occupancy prediction assumption to remove the impact of the uncertainty associated with 

occupancy prediction and to estimate an upper bound limit for the system performance. The system 

performance is compared with that of conventional RB control approaches to show its 

effectiveness. To select the optimal control system, the TOPSIS method, as a multi-criteria 

decision-making approach, is employed. The sensitivity of the proposed system to the temperature 

setback is also assessed by considering conservative, medium, and deep setback bounds. It is 

demonstrated that the proposed system outperforms other alternatives when the deep and medium 

bounds are utilized. This study reveals two limitations of occupancy-based control systems by 

investigating their performance from financial and peak-demand points of view. First, these 

systems can cause peak-demand issues and increase the on-peak energy consumption by up to 

10%. Secondly, employing a conservative setback can significantly decrease the financial merits 

of the system, leading to a discounted payback period of 10.87 years for implementing smart 

thermostats. 

3.2. Introduction 

Space heating and cooling demands account for more than half of the building energy consumption 

worldwide [112,113]. As discussed in Ref. [60], almost 39% of this amount could be wasted due 

to conditioning vacant zones, over-conditioning, air leakages, and the use of appliances with low 

efficiency. This huge amount of energy waste highlights the necessity of implementing more 

efficient control systems to optimize building energy consumption and cost. In 1906, the first types 

of programmable thermostats were produced as a solution to energy waste, caused by conditioning 

unoccupied spaces [11]. It was previously estimated that a considerable amount of energy saving 

could be achieved through properly programmed thermostats [58]. However, many studies 

reported that such thermostats practically suffer from being inappropriately programmed by users 

and do not lead to significant energy saving in real cases [40]. To deal with this issue, reactive 

control was proposed and investigated [50,52,54–59]. This control system automatically infers 

occupancy states using sensor networks and utilizes a setback temperature in vacant spaces, which 

 
2 This chapter is based on the following publication: M. Esrafilian-Najafabadi, F. Haghighat, Occupancy-based HVAC 

control using deep learning algorithms for estimating online preconditioning time in residential buildings, Energy and 

Building 252 (2021) 111377. https://doi.org/10.1016/j.enbuild.2021.111377. 
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can result in higher energy efficiency and cost reduction. However, it is essential to implement a 

conservative setback temperature to minimize the occupants’ thermal discomfort upon arrival [17]. 

Earlier research studies investigated predictive control, as an alternative to reactive control, by 

integrating future occupancy predictions with control systems. Knowing future occupancy patterns 

in advance provides HVAC systems with enough time to precondition the building before 

occupants’ arrival. Theoretically, using such proactive control systems allows the use of deeper 

setback to save more energy during unoccupied periods while maintaining thermal comfort when 

occupants are present.  

Rule-based (RB) control has been one of the most utilized occupancy-based predictive control 

strategies in the literature [114]. In RB control, a set of rules is implemented to define 

setpoint/setback schedules as a function of future occupancy states, forecasted by occupancy 

models. Most earlier research studies developed RB control by approximating a static 

preconditioning time, also named preheating time or HVAC lag time, as the prediction horizon of 

occupancy models (i.e., how far the models predict occupancy profiles in advance). However, the 

actual preconditioning time often differs from this static average value, which can cause 

inaccuracies in the control system and result in energy waste or thermal discomfort. To be more 

specific, on the one hand, after a long unoccupied period when the temperature can fully drift to 

the setback, it naturally takes more time than the average value to precondition a building before 

occupants’ arrival. On the other hand, after a short unoccupied period, using the average 

preconditioning time can cause a waste of energy owing to unnecessarily conditioning unoccupied 

spaces. Additionally, the preconditioning time can also depend on weather conditions that need to 

be considered for more accurate modeling. It is obvious that it takes much longer to preheat a 

building on a cold day than on a day with moderate temperature, and as a consequence, neglecting 

this dependency might also cause imprecisions in the control system. However, to the best of the 

authors’ knowledge, no earlier studies investigated the integration of online preconditioning-time 

estimations with RB control systems. 

Optimal control algorithms, such as model predictive control (MPC), have been proposed as 

alternatives to RB control. Such control systems take advantage of accurate building models, 

weather data, and robust online optimization algorithms, as well as occupancy models to make 

optimal sequences of control decisions to maximize energy saving and thermal comfort [115]. On 

account of using building models in optimal control, the optimization algorithm can dynamically 

estimate the preconditioning time during the decision-making process. However, there are some 

limitations on the use of such algorithms that prevented them from being widely applied in the 

building sector [19]. The limitations include its relatively low potential for being generalized in 

different cases, the need for high skills in the development stage, and the high computational power 

requirement. Additionally, as discussed in Ref. [109,116], the amount of energy saving achieved 

by using MPC might not compensate for the complications added to the control problem. 

Another limitation of the earlier research works is that they mainly focused on energy efficiency 

and thermal comfort when evaluating the performance of RB control systems, neglecting other 

factors such as financial benefits and demand-response management. However, these criteria are 

of great importance when evaluating a control strategy in buildings. Financial indicators are the 

most effective incentives for many building owners and project managers to replace the old 

thermostats with new ones. Furthermore, in many regions, power plants are struggling with 

covering the energy demand of users during the peak periods [117,118]. In such cases, the timing 
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of energy consumption can be as important as the amount of total consumption, and the main focus 

is given to demand-response management programs. Hence, there is a need for considering all 

these factors when studying occupancy-based control systems. 

This chapter proposes an RB control system, aiming to address the limitations of previous studies 

by predicting online preconditioning time. The proposed control system is expected to outperform 

conventional RB control systems while avoiding the complexities of optimal control. To this end, 

a multi-layer perceptron (MLP) network, as a deep learning algorithm, is developed using the 

historical data for outdoor weather, indoor temperature, and the lag time of HVAC systems. The 

performance of the proposed control system is evaluated and compared to that of conventional RB 

systems with static preconditioning time. As well as energy-efficiency and thermal comfort merits, 

the performance is evaluated in terms of economic and demand-response management. A 

comprehensive financial analysis is performed to quantify the economic benefits that can be 

obtained by using occupancy-based HVAC control systems. Different financial indicators, such as 

the internal rate of return (IRR), discounted payback period (DPB), net present value (NPV), and 

annual total cost saving ratio (ATCSR) with the consideration of tax and inflation rates, are 

estimated in this analysis. The TOPSIS (Techniques for Order Preferences by Similarity to the 

Ideal Solution) method, as a multi-criteria decision-making approach, is employed to provide the 

trade-off between the conflicting criteria for selecting the best control method among the proposed 

and the conventional control systems. In addition, the sensitivity of the control systems to setback 

temperature is evaluated using conservative, medium, and deep setback bounds. The main 

limitation of earlier work and the contributions of this study can be summarized as follows: 

• The dynamic nature of the preconditioning time was ignored in conventional occupancy-

based RB control systems implemented in previous research works. This study proposes a 

novel RB control system using online estimation of the preconditioning time, as a function 

of indoor operative temperature and weather conditions, via deploying deep neural 

networks.  

• Previous research works mainly focused on the energy and thermal comfort merits of 

occupancy-based HVAC control systems while neglecting the financial profitability and 

demand-response management potential of the systems. In this chapter, a comprehensive 

financial analysis is carried out to assess the economic gains achieved from replacing old 

thermostats with smart ones. Furthermore, the impact of using occupancy-based HVAC 

control systems on the peak-demand profiles of buildings is also investigated.  

The rest of the chapter is structured as follows: Section 3.2.1 provides a literature review on the 

related research works and discusses the methodologies implemented for occupancy-based 

control. In Section 3.3, the proposed RB control system is described in detail. The building 

simulation tool used for evaluating the proposed algorithm is discussed in Section 3.4. Section 3.5 

describes the performance evaluation criteria utilized in this study. The results are presented in 

Section 3.6, and finally, the conclusions and main findings are discussed in Section 0. 

3.2.1. Background 

Among different types of occupancy-based HVAC control methods, RB control has been the most 

utilized system in the literature [114]. RB control systems are cost-effective and require relatively 

low computational power. Lee et al. [63] conducted an experimental study to evaluate the 

performance of an RB control system in terms of energy saving using occupancy information 
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collected from smartphones. They approximated a static preconditioning time of almost 22 minutes 

for increasing the temperature by an average of 2.5 °C in different case studies. According to the 

results, this system decreased the energy consumption by 26% in comparison with an always-on 

control system as the baseline. Erickson et al. [66] developed an RB control system, called 

OBSERVE, which used the information from a network of cameras to detect occupancy and 

accordingly regulated setback temperature and ventilation rates with a preconditioning time of 

almost one hour. Using a simulation approach, they demonstrated that this system was able to save 

42% of energy annually. Dong and Andrews [65] also reported up to 30% energy saving when 

they applied occupancy-based RB control to a conference hall. 

As well as energy-efficiency indicators, some earlier works studied the performance of RB control 

from a thermal comfort viewpoint. Beltran et al. [64] applied RB control to regulate temperature 

and ventilation rates in an office building, using a fixed preconditioning time of one hour. They 

reported that this system resulted in 24.8% annual energy saving; however, it caused temperature 

deviation from the setpoint during occupancy hours with a mean square error (MSE) of almost 0.4 

°C. Koehler et al. [44] developed an RB control, called TherML, based on a preconditioning time 

of 59 minutes using 5-week historical data for the lag time of HVAC systems to increase the 

temperature from 15.5 to 20.6 °C. They demonstrated that TherML could lead to almost 22 hours 

with correct temperature setting (i.e. maintaining setpoint temperature during occupied periods 

and setback temperature during vacant periods). Gluck et al. [17] developed an RB control using 

a fixed one-hour prediction horizon and three different setback bounds with  10, 5, and 2 °C 

deviations allowed from the setpoint during the vacancy. They reported that using the same 

temperature bounds, reactive control always outperformed the RB controller in terms of energy 

saving. However, they assumed a more relaxed setback range for the predictive control and showed 

that the RB control provided almost 21% more energy saving than the reactive one. In addition, 

RB control demonstrated the ability to reduce MissTime (i.e. how long occupants encounter a 

space in which the actual temperature deviates from the desired setpoint temperature) of reactive 

control by up to 180 min per day. Nägele et al. [68] studied and compared the operation of reactive 

and RB control from energy-efficiency and thermal-comfort viewpoints using occupancy data 

from smartphones and building simulation. They reported that the reactive control led to the 

highest energy saving by almost 26%, whereas RB control accounted for the lowest MissTime of 

approximately 28 hours. Iyengar et al. [46] proposed iProgram as an opportunity to upgrade current 

programmable thermostats to become occupancy-aware without the need for additional 

infrastructure. Through simulating 100 homes as virtual test cases, they reported 0.42 kWh daily 

energy saving and an average MissTime of around 15 minutes. 

As discussed in Ref. [114], MPC has been the most popular optimal control approach utilized for 

occupancy-based HVAC control. By considering future disturbances such as weather and 

occupancy changes, as well as using optimization algorithms and building models, MPC is able to 

dynamically estimate preconditioning time. MPC often showed superior performance than RB 

control systems [119]. Refs. [72,74] implemented an MPC algorithm to minimize the thermal 

discomfort of occupants and energy consumption. The optimization algorithm in the control 

system utilized a setback temperature when no one was present while preheating the building 

before the arrival time to improve thermal comfort. It was shown that the system led to 8% energy 

saving and kept the thermal comfort within the acceptable range. Turley et al. [75] demonstrated 

that utilizing MPC algorithms could decrease building energy consumption by almost 13%, 

compared with reactive control with an assumption of perfect occupancy prediction. Killian et al. 



38 

 

[72] investigated the performance of occupancy-based MPC in terms of the ability to reduce the 

temperature deviation from the desired setpoint. The results showed that using MPC decreased 

temperature violation by around 33%. A number of researchers demonstrated that despite the 

superior performance of occupancy based MPC, it causes too much complexity in developing the 

control system. Goyal et al. [71,109] demonstrated that including occupancy information in the 

control system can lead to almost 50% energy saving. However, they argued that the energy saving 

achieved by MPC algorithms might not compensate for the complexity induced in the control 

system, compared with the conventional control algorithms.  

3.3. Methodology  

3.3.1. System description 

The schematic diagram of the RB control systems utilized in this study is demonstrated in Fig. 3.1. 

In this framework, occupancy information is collected using occupancy detection and monitoring 

networks, such as PIR sensors [54,56], Wi-Fi networks [50], cameras [66], or environmental 

sensors [94]. The occupancy data are continuously stored using database management systems 

(DBMS). The real-time and historical occupancy data are, then, utilized to train an occupancy 

model. As the control system makes online decisions, the occupancy model should be regularly 

updated using the most recent data. Next, the predicted occupancy patterns are utilized as an input 

to the RB controller. In contrast to conventional RB systems, which are independent of weather 

conditions, the proposed system receives weather data as input. The weather parameters as well as 

indoor operative temperature, as a feedback signal received from temperature sensors, are 

employed to make control decisions. The control decisions are utilized in the HVAC system to 

regulate setback/setpoint temperature in the monitored spaces. This process is repeated in each 

time step and the control decisions are updated continuously.  

 
Fig. 3.1. Schematic diagram of the proposed RB control framework. 

 

 



39 

 

3.3.2. Occupancy database and model description 

A real occupancy database, gathered from five residential units, described in Refs. [29,120], is 

utilized in this study to develop and evaluate the control systems. It is worth noting that because 

of privacy issues that might be caused for the households due to the monitoring process, there are 

a few occupancy databases available for use in this study, among which the selected database 

provides the most reliable and validated information [29,120]. More specifically, the occupancy 

monitoring system consisted of a relatively large number of PIR sensors, which is expected to 

improve the accuracy of occupancy detection in buildings [95]. 13 PIR sensors were implemented 

in each unit: two sensors were used in the living rooms, five sensors in corridors, and one sensor 

in each kitchen, bathroom, and bedroom.  

The data were originally gathered at one-minute time intervals; however, the resolution is 

transformed to 30-min time intervals in the preprocessing step. One of the reasons for changing 

the resolution of occupancy data is linked with the data collection method using motion detectors. 

More specifically, the accuracy of PIR sensors for occupancy detection is dependent on the number 

and positioning of the sensors as well as on the mobility of the occupants. For example, the sensors 

might report no occupancy during some events when the mobility of the occupants decreases while 

watching TVs or taking a nap. As mentioned in Ref. [95], changing the resolution to 30-min 

intervals can help with addressing such errors associated with PIR sensors. It is worth noting that 

using more complex occupancy monitoring systems such as cameras, fine time intervals can also 

be adopted. However, such systems are rarely used in residential buildings due to privacy and cost 

issues. Besides, using 30-min time interval rather than the original one can enhance the 

computational efficiency of the control system. Occupancy states at each 30-min time interval can 

accept 0 or 1, respectively demonstrating the vacancy and occupancy states. A time interval shows 

an occupied state if at least one motion is detected by one of the sensors during this period. The 

raw data include some missing values for motion detectors in different records. During such 

periods when no signals are recorded from the sensors, the building is assumed to be occupied to 

ensure that the thermal comfort of occupants is not compromised. The data are stored in MySQL 

databases and are pre-processed using MySQL workbench [121].  

As shown in Ref. [95], the accuracy of occupancy prediction models mainly varies in the range of 

60-90% depending on the model and case study. Due to the rapid improvements in artificial 

intelligence and data analysis techniques, many different occupancy models have been proposed 

in the literature and their performance has been improved during the last decade. Hence, the 

performance of the control system might depend on the applied occupancy model. Furthermore, 

the performance can also depend on the size of the occupancy database; long-term monitoring 

might result in improved prediction performance of the occupancy model. To remove the 

dependency of the control system performance on the selection and development of the occupancy 

model, a perfect occupancy prediction assumption is made in this study. Perfect occupancy 

prediction was also utilized in earlier studies [70,122] to achieve an ideal upper bound performance 

of the control system. 

3.3.3. Rule-based control 

Fig. 3.2 demonstrates the flow diagram of the proposed rule-based (PRB) control framework. As 

can be observed, first, current indoor temperature and weather data are utilized as the input of the 

preconditioning-time model, described in Section 3.3.4. This model provides an estimation of the 

time required to reach the desired setpoint temperature as a function of input variables. Then, the 
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estimated preconditioning time is utilized as the prediction horizon of the occupancy model. It 

means that the occupancy model forecasts the future occupancy states in a period that is equal to 

the preconditioning time. If a building is going to remain vacant during this period, the HVAC 

system is turned off, allowing the current temperature to approach the setback. Otherwise, the 

control algorithm initiates the HVAC operation to bring back the setpoint temperature before the 

occupant arrival. In this study, a minimum prediction horizon of one hour is considered to ensure 

that the thermal comfort conditions are met in most cases. This process is repeated in each time 

step to update the control decision. 

In this study, to evaluate the effectiveness of the proposed control strategy, its performance is 

compared with that of two types of conventional control systems. The first one is an always-on 

thermostat, which is selected as the baseline. It maintains the setpoint temperature regardless of 

the occupancy patterns or any other factors. Conventional RB (CRB) control systems utilized in 

the literature, operating based on static preconditioning time, are also investigated in this study. 

Three CRB systems with different fixed preconditioning times of 60, 90, and 120 minutes are 

considered to investigate the impact of preconditioning time on the system performance.  

 
Fig. 3.2. The flow diagram of the RB control system proposed in this study. 

 

3.3.4. Preconditioning-time model 

As mentioned earlier and demonstrated in Fig. 3.2 , a model in the PRB control system is developed 

to provide an online estimation of the HVAC lag time. This model should be computationally cost-

effective to be feasible for online control systems. However, using building simulation software is 

not the optimal approach due to its relatively low computational speed, required building physics 
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knowledge, model development expertise, and relatively poor generalization potential. Data-

driven models have attracted great attention because of their promising ability to address these 

issues and as a result, are implemented to predict preconditioning time. In this study, a multi-layer 

perceptron (MLP) network as a deep learning algorithm is employed. As shown in Table 3.1, seven 

candidate features, including indoor temperature as well as outdoor environmental attributes such 

as solar radiation and temperature, which can affect the prediction performance are selected for 

developing the model. In order to remove irrelevant features, a Pearson correlation coefficient as 

a filter feature selection method is adopted. The correlation coefficient among each variable and 

the output is demonstrated in Table 3.1. The correlation coefficients in the range of -0.3-0.3 are 

considered weak and eliminated from the feature set [123]. Fig. 3.3 shows that four features among 

the potential feature set are indoor temperature, outdoor temperature, horizontal solar radiation, 

and diffuse solar radiation. As the changes in the weather condition are mostly small in the 

relatively short-term periods of preconditioning time, the impact of the weather changes on the 

prediction performance is neglected. 

Table 3.1.  

Pearson correlation coefficients between the input variables and the output.  

Variable Pearson correlation coefficient 

Indoor operative temperature -0.86 

Outdoor dry bulb temperature -0.52 

Horizontal solar radiation -0.43 

Diffuse solar radiation -0.35 

Direct solar radiation -0.27 

Precipitation -0.08 

Wind speed -0.02 

 

To construct the dataset required for training the MLP network, the energy simulation tool and the 

test case described in Section 3.4, are utilized. A complete simulation is performed for a five-

month period from November 1st to March 31st to cover the entire heating period. In this 

simulation, temperature schedules are defined using a programmable thermostat, in which the 

HVAC system initiates the preconditioning process at 15:00 every day. A maximum duration of 6 

hours (i.e. from 15:00 to 21:00) is associated with the preheating process. Over the rest of the day, 

the HVAC system remains off to provide enough time for the building to reach a deep setback. 

However, a minimum temperature of 10 °C is assumed to preserve the building from possible 

issues such as pipe freezing. A dataset with 217,440 elements is constructed using the mentioned 

simulation. It is noted that more simulations with different setback/setpoint schedules can be 

utilized for making a larger dataset to obtain a more accurate model [124]. However, in real-world 

applications, it takes several years to provide such a comprehensive dataset; thus, in this study, 

only one simulation is considered to provide an estimation of the system performance close to that 

of real ones.  

The entire database is randomly divided into three parts: training, validation, and testing datasets, 

with a ratio of 80:10:10. The training and validation parts are utilized for the hyperparameter tuning 

process using a random-search method. The number of hidden layers, number of neurons in each 

layer, batch size, and the learning rate are determined in this process. After finding the optimal 

hyperparameters, the model is trained using both training and validation datasets and is applied to 

the testing set to achieve unbiased results for the model performance. 
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For training the model, the number of epochs is considered 20,000. In order to prevent the model 

from overfitting, an early stopping methodology is employed to stop the training procedure after 

500 epochs without any improvement in the performance. Rectified linear activation function 

(ReLU) is implemented for each neuron, and an Adam optimizer is selected to minimize MSE for 

finding the optimal weights of the network. The model is developed using Keras library in Python 

[125].  

 

 
Fig. 3.3. The diagram of a sample multi-layer perceptron network implemented for preconditioning time estimation. 

 

3.4. Building simulation 

The developed control system is applied to a case study to evaluate its performance and 

effectiveness. As no HVAC data are available for the original residential building discussed in 

Section 3.3.2, a hypothetical building is considered in this study as a virtual testbed based on the 

floor plan of the original one. In order to construct a reliable energy model, EnergyPlus is used. 

EnergyPlus is an energy simulation tool, which has been widely validated against many testbeds 

such as those demonstrated in ASHRAE standard 140 [126]. It has been made as bug-free as 

possible [127] and can provide reasonable accuracy by considering detailed heat transfer models. 

However, the appropriate selection of input variables is essential to develop a reliable energy 

model. To this end, the input variables, including construction materials of the building, are 

selected based on ASHRAE standards [128] available as OpenStudio libraries and EnergyPlus 

weather data [129]. 

The 3D model as well as the 2D plan of the building, designed in the SketchUp software [130], is 

demonstrated in Fig. 3.4. The 3D model is imported into EnergyPlus via OpenStudio plug-in [131]. 

As discussed in Section 3.3.2, five occupancy datasets collected from different residential units 

are implemented in five separate building simulations to consider the influence of occupancy 
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behavior on the system’s performance.  Electric baseboards are considered as the heating 

equipment and as a result, electricity is the main source of providing heating demand in this 

testbed. The size of the heating equipment is determined using the auto-sizing feature in 

EnergyPlus for the always-on control. Then, the determined size is also utilized for other control 

systems.  

It is noted that in each time step of the simulation, indoor temperature and weather data are required 

for estimating the preconditioning time, which is, then, utilized to make control decisions for 

regulating the setpoint temperature in the following step. In other words, after completing the 

simulation in each time-step, the setpoint for the following time-step needs to be determined and 

manipulated in EnergyPlus. Additionally, the results need to be retrieved and stored before starting 

the simulation for the next step. This process cannot be performed as a one-time simulation that is 

conventionally utilized in the literature. To deal with this task, EnergyPlus/Python application 

programming interface (API) [132] is employed, which provides flexibility for the users to 

manipulate EnergyPlus variables from the Python environment. This API also makes it possible 

to retrieve and store EnergyPlus results in Python after completing each simulation. The 

interactions between software and different libraries used in this study are demonstrated in Fig. 

3.5. 

 
Fig. 3.4. The designed model of the simulated building as the case study.  

 

 



44 

 

 
Fig. 3.5. Interactions between different applications and libraries used in this study. 

 

3.5. Performance evaluation criteria 

3.5.1. Financial indicators 

The economic merits of the proposed control system could be the most important decision-making 

criteria for many owners. It is because one of the main barriers to retrofitting the buildings with 

smart thermostats is often their relatively high cost. Knowing about the long-term economic gains 

achieved through this investment can be a great incentive in such cases. In this section, a 

comprehensive financial analysis of the system is performed by estimating the main economic 

indicators, including IRR, ATCSR, DPB, and NPV associated with replacing old thermostats with 

smart ones. 

First, it is needed to estimate the annual operating cost of each system. In this study, it is assumed 

that the operating cost equals the utility cost, which is estimated according to the local electricity 

tariffs for residential buildings as follows [133]: 

1 2C Cop tier tierC = +
 

(1)  

where 1Ctier  and 2Ctier indicate the electricity cost in the first and second tier, respectively. In this 

two-tiered pricing, the electricity price per kWh varies based on the total amount of electricity 

consumption. More specifically, if the total electricity consumption by customers during a billing 

period, E, is less than the first-tier limit, 1tierE , they are billed based on the electricity tariffs in the 

first tier, 1tierc . If their consumption exceeds this limit, the rest of their consumption, 1tierE E− , is 

billed based on the electricity tariffs in the second tier, 2tierc , which is higher than that in the first 

tier. Accordingly, the electricity costs in each tier can be calculated using the following 

relationships: 
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(2)  

where c is the cost of electricity per kWh in each tier, E denotes the amount of electricity 

consumption, 1tierE
 represents the energy consumption limit associated with the first tier, and t 

denotes the tax rate.  

Smart thermostats are expected to reduce the annual operating costs by saving energy, compared 

with conventional thermostats. In this regard, the annual benefits, annB
, is defined using the 

following relationship to quantify the amount of annual cost saving: 

,ann op op baselineB C C= −
 

(3)  

where ,op baselineC
 denotes the operating cost associated with the always-on control. Using the annual 

benefits, NPV can be calculated. NPV demonstrates the difference between the initial investment 

cost, capC
, of smart thermostats and the equivalent present value of future benefits. A positive NPV 

shows that the project is profitable and negative values show net loss associated with the current 

project. NPV can be defined using the following equation [134]:  

ann
cap

B
NPV C

CRF
= −

 

(4)  

The first term represents the present value of the future benefits of the system, in which CRF 

denotes the capital-recovery factor and is defined as follows: 

( )

( )

n

n

d 1+d
CRF =

1+d -1
 

(5)  

where d is the discount rate (also called interest rate), and n is the life span of the system. In order 

to take into account the annual inflation rates, that can lead to an increase in the future electricity 

prices, the discount rate is defined based on the market interest rate, i, and inflation rate, f, as 

follows [135]: 

1

i f
d

f

−
=

+  

(6)  

Based on Eq. (4) for NPV, IRR can be defined as the discount rate that can make NPV equal to 

zero. IRR is utilized as another indicator to quantify profitability by estimating the expected yearly 

rate of return. It can be calculated by solving the following equation through trial and error [136]:  

( )

( )

1 1
0

1

n

cap

n

ann

CIRR

BIRR IRR

+ −
− =

+
 

(7)  
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Having the annual benefits and the capital costs for each system, the DPB can also be estimated. 

DPB estimates the time it takes for a project to break even. In other words, it shows the point in 

time when the future benefits fully cover the capital cost while respecting the time value of money. 

DPB can be estimated using the following equation [137]: 

ln( )

ln(1 )

ann

ann cap

B

B C d
DPB

d

−
=

+  

(8)  

ATCSR is utilized as an indicator to estimate how much total cost can be saved annually by 

replacing conventional systems with smart thermostats. ATCSR can be estimated using the 

following equation [138]: 

baseline

baseline

ATC ATC
ATCSR

ATC

−
=

 

(9)  

where ATC is the system total annual cost. It is noted that ATC considers the investment costs as 

well as the annual operating cost. For this purpose, the capital recovery factor is utilized to 

calculate an equivalent annual cost for the initial investment as follows [139]:  

=C .CRF+Ccapital opATC  (10)  

The parameters required for the financial analysis are summarized in Table 3.2. 

Table 3.2.  

The economic parameters utilized for the financial analysis in this study.  

Parameter Unit Value Ref. 

Market interest rate, i % 5.0 
 

Life span, n Year 20 [140] 

Capital cost, Ccap CAD 2501 
 

Electricity price in the 1st tier, 1tierc
 

CAD/kWh 0.0608  [133] 

Electricity price in the 2nd tier, 2tierc
 

CAD/kWh 0.0938 [133] 

1st tier limit for electricity consumption, 1tierE
 

kWh/day 40 [133] 

Tax rate, t  % 14.975 [141] 

Inflation rate, f %  2.0 [142] 
1 The average price of smart thermostats available in the market including tax. 

3.5.2. Energy and peak-demand management indicators 

Energy-efficiency has been the most popular indicator for evaluating the performance of 

occupancy-based HVAC operations in the literature [114]. In this study, the annual energy saving 

ratio (AESR) is utilized to quantify the energy-efficiency performance of the systems. This 

indicator demonstrates the annual amount of energy that can be saved using smart thermostats:  

baseline

baseline

AE AE
AESR

AE

−
=

 

(11)  
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where AE denotes the annual energy consumed for covering the heating demand in kWh associated 

with each system using different setback temperatures. One of the limitations of this definition is 

that it does not consider the timing of energy consumption when evaluating the performance and 

consequently, cannot reflect the potential of demand-response management. To address this issue, 

the annual energy saving is also calculated for mid- and on-peak periods, as defined in Fig. 3.6. 

 
Fig. 3.6. Off-, mid-, and on-peak periods considered for evaluating the peak-demand performance of the systems [143]. 

 

3.5.3. Thermal comfort metrics 

As providing the thermal comfort requirement is the main purpose of using HVAC system, it is of 

essential importance to include comfort criteria when evaluating HVAC control system. For this 

purpose, MissTime which is defined as the period when occupants encounter a temperature that 

deviates from the desired setpoint is employed in this study [17]. In other words, any period when 

occupants are present, and the temperature is less than the setpoint is considered as thermal 

discomfort. In this study, an operative temperature of 21.5 °C is considered as the setpoint (i.e. 

desired temperature) for occupants.  

3.6. Results 

3.6.1. Performance of the preconditioning-time model 

To determine the optimal structure of the MLP model, a random search-based method for tuning 

the hyperparameters is implemented. In this process, the number of hidden layers, number of 

neurons in each layer, batch size, and the learning rate in the optimization algorithm are explored 

as hyperparameters. This method is an iterative technique that randomly tries different values of 

these hyperparameters from predefined ranges, represented in Table 3.3. An MLP model is trained 

based on the selected hyperparameter in each iteration and its performance in terms of MSE is 

evaluated and recorded. This process is repeated at every iteration and stops when the maximum 

number of iterations, which is 100 iterations in this study, is reached. The hyperparameters that 

result in the best model, providing the lowest MSE, are chosen to train the final preconditioning-

time model. The optimal values for the parameters obtained in this process are shown in Table 3.3. 
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Table 3.3.  

The range of hyperparameters used in the tuning process as well as the optimal values obtained. 

Parameter Range Selected value 

Number of layers [1-4] 2 

Number of neurons [2, 6, 16, 32, 64, 128, 256] First layer: 65 

Second layer: 256   

Learning rate [0.005, 0.01, 0.05, 0.1] 0.05 

Batch size [5,000, 10,000, 15,000] 5,000 

 

Using the optimal hyperparameters, the final MLP model is trained using both training and 

validation sets. Then, the model is applied to the test set to obtain unbiased results for evaluating 

the performance. Fig. 3.7 represents MAE after each epoch for training and testing datasets. It is 

observed that the training process is completed before completing 15,000epochs of training, due 

to early stopping conditions explained in Section 3.3.4. Ultimately, the model provides a test MAE 

of 2.68 min. As the control decisions are made at 30-min intervals, the performance of the MLP 

algorithm is considered reasonable in this control framework. 

  
Fig. 3.7. The performance of the final MLP model after each epoch of the training process.  

 

3.6.2. Multi-criteria decision making 

This section is devoted to selecting the best-performing RB control among the conventional and 

proposed systems. As the energy-efficiency and financial merits are consistent, using NPV as an 

indicator among these factors suffices for the decision-making process. NPV associated with each 

RB system in different setback bounds is demonstrated in Fig. 3.8. In this figure, CRB-1, CRB-2, 

and CRB-3 respectively denote the conventional RB control systems with 60-minute, 90-minute, 

and 120-minute preconditioning time. It is observed that CRB-1 resulted in the highest economic 

benefits in all temperature bounds with a median NPV of up to $1,643. Naturally, when the 

preheating time increases in CRB systems, the economic merits decrease as well, as more energy 

is consumed for preheating the space. Using a longer preheating time can even lead to a negative 

NPV in the conservative setback range with a median NPV of as low as $13. It shows that replacing 

old thermostats might not be profitable in some cases. In all the temperature bounds, CRB-1 is 
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followed by the PRB system, with a median NPV of up to $1545 for the deepest setback and a 

median NPV of $289 for using a conservative temperature. It is observed that employing the PRB 

system always leads to a positive NPV in all cases.  

 

 
Fig. 3.8. The distribution of NPV for the RB control systems in different setback bounds. 

 

Fig. 3.9 illustrates the distribution of MissTime for the control systems in different temperature 

setback bounds. In contrast to the economic merits, CRB-1 provides the lowest MissTime at a 

median of up to almost 30 hours. Increasing the preconditioning time for the conventional control 

strategies clearly reduces the MissTime due to using longer preconditioning time that helps the 

HVAC system to reach the setpoint prior to occupants’ arrival. The PRB control provides the 

shortest MissTime in the deep setback range at a median time of 5 hours. As for the setback 

temperature of 15 °C, CRB-3 and PRB systems result in the same performance with no thermal 

discomfort in most cases. For a conservative setback, using all control systems causes no thermal 

discomfort for all cases.  
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Fig. 3.9. The distribution of MissTime for RB control systems in different setback temperature bounds. 

 

As demonstrated above, economic and thermal comfort objectives are mostly conflicting for the 

RB control systems. In other words, none of the systems outperform other alternatives regarding 

both objectives, except for using a conservative temperature bound, in which CRB-1 provides the 

best MissTime and NPV. Therefore, there is not a unique optimal control system for deep and 

medium setback bounds. To systematically choose the best system among these alternatives, 

TOPSIS (Techniques for Order Preferences by Similarity to the Ideal Solution) method, as a multi-

criteria decision-making approach, is employed. The first step in the decision-making process is 

constructing an m×p matrix, called a decision matrix [144], in which m indicates the number of 

alternatives (i.e. the candidate solutions in the decision-making process) and n is the number of 

criteria. As represented in Table 3.4, there are four different alternatives and two decision-making 

criteria in this problem for each temperature bound, and as a result, the decision matrix has a shape 

of 4×2. Next, the matrix is nondimensionalized using the following relationships [144]: 
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(12)  

where N and x respectively indicate the elements of the normalized and original matrices. The 

optimal alternative has the smallest distance from the Positive Ideal Solution (PIS) and the largest 
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distance from the Negative Ideal Solution (NIS) [145]. In this study, PIS is a point that has the 

highest NPV while having the least MissTime, and NIS is the opposite point to PIS. Having PIS 

and NIS, the distances of all the alternatives from these two points are measured using the 

traditional Euclidean metric. In order to find the best point in terms of their distances from PIS and 

NIS, a relative closeness indicator, Ri, for each alternative is defined as follows: 

, 1,...,
NIS

i
i PIS NIS

i i

d
R i m

d d
= =

+
 

(13)  

where 
NIS

id and 
PIS

id are the distances of the ith alternative from the NIS and PIS, respectively. The 

alternative with an Ri closest to 1 is selected as the solution. The values of the relative closeness 

for the alternatives are represented in Table 3.4. As can be observed, the PRB control provides the 

highest R at 0.84 and 0.85, respectively for deep and medium bound setback and is selected as the 

optimal RB systems. 

Table 3.4.  

The mean NPV and MissTime for RB control systems used in the decision-making process as well as the relative closeness index 

achieved from the TOPSIS method. 

System Deep setback    Medium setback   Conservative 

Setback 
 

MissTime 

(hour) 

NPV 

($) 

R  MissTime 

(hour) 

NPV 

($) 

R  MissTime 

(hour) 

NPV 

($) 
 

CRB-1 33.44 2,045 0.5  15.71 1,400 0.5  0 289  

CRB-2 17.73 1,765 0.46  3.55 1,135 0.56  0 153  

CRB-3 11.65 1,607 0.43  0.51 990 0.5  0 79  

PRB 5.57 1,937 0.84  2.03 1,325 0.85  0 283  

 

3.6.3. Impact of setback temperature 

Fig. 3.10 demonstrates the impact of setback temperature on the MissTime and NPV of the selected 

RB control systems. It is observed that increasing the setback from 10 °C to 15 °C can lead to a 

31.61% fall in the NPV while improving the MissTime by 63.64%. Similarly, using a conservative 

setback can cause a 78.66% further reduction in the financial profitability of the system and a 

100% decrease in the MissTime. Table 3.5 summarizes the average values of performance 

indicators for the PRB control systems based on different setback bounds. It can be observed that 

implementing an RB control using conservative setback temperature does not provide compelling 

economic performance. It leads to a payback period of 10.92 years, which is approximately three 

times longer than that obtained for using a medium setback. It also provides an ATCSR of 1.81%, 

which is one-fifth of that for using a medium setback bound. In terms of energy-efficiency, this 

system results in almost 3.64% energy saving without compromising thermal comfort. By relaxing 

the constraints on setback temperature and using a setback of 15 °C, the economic performance 

considerably increases; it leads to a payback period of 3.58 years, reduces annual total cost by 

8.9%, and decreases annual energy consumption by 9%. By decreasing the setback to 10 °C, the 

performance of the system, except for the MissTime, can be further improved. It results in a 

payback period of 2.74 years, which is almost a 23% improvement compared with that of the 



52 

 

medium setback. A closer look at this table reveals that the improvements achieved by the 

transition from the conservative to medium setback temperature are much higher than those 

obtained from the medium to deep setback. The reason is linked with the thermal mass of the 

building, which can store energy and resist temperature reduction. Due to this passive energy 

storage, long vacancy periods are required to reach a setback temperature of less than 15 °C. 

However, as occupants often occupy the buildings for most of the time, the temperature can rarely 

decrease to a deep setback range.  

 

 
Fig. 3.10. Average MissTime and NPV for the selected RB control systems based on the allowed setback temperature. 
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Table 3.5.  

The average performance indices for the selected RB control systems in different setback bounds. 

Performance indicator Unit Setback temperature 

10 °C 15 °C 20 °C 

AESR % 12.24 8.92 3.29 

ATCSR % 12.91 8.81 1.83 

Electricity consumption kWh/day 64.24 66.67 70.80 

DPB Year 2.72 3.63 10.87 

IRR % 45.12 32.75 10.25 

NPV CAD 1,937 1,325 283 

MissTime Hour 5.57 2.03 0 

 

3.6.4. Peak-demand performance 

To study the impact of using occupancy information in the control systems on the peak-demand 

performance, the average hourly energy consumption of the baseline and PRB control systems for 

a sample case is depicted in Fig. 3.11. It shows that during the off-peak period, from midnight to 

7:00, both the baseline and the PRB control system consume almost the same amount of energy. 

It is because of the fact that during this period, the occupants are often sleeping and occupying the 

buildings. However, the PRB control starts to save energy during the morning on-peak period, 

7:00 – 11:00. As summarized in Table 3.6, the PRB control can save energy by 17% during this 

period using a medium setback range. The highest amount of energy saving happens during the 

mid-peak when people usually go outside, and the building is likely to be vacant; the PRB control 

can save energy by 18% during this period with the medium setback. However, in the on-peak 

period, from 17:00 to 19:00, the baseline system considerably outperforms the PRB control. More 

specifically, using occupancy-based control can cause an 8% increase in the peak energy demand 

using a medium setback. It is because of the fact that when people are outside of their homes during 

the day, the indoor temperature gradually decreases towards the setback. Hence, before the arrival 

time, there would be a sudden change in the HVAC operation (energy consumption) to preheat the 

building and provide the thermal comfort condition as soon as possible. Such sudden changes can 

significantly increase the on-peak demands during this period. The energy consumption of PRB 

control still remains slightly higher than that of the baseline during the period between 19:00 and 

23:00. It is because although occupants have mostly returned home during this period, the 

temperature of the building envelopes often remains low. Therefore, an extra amount of energy is 

typically consumed during this period to recharge the thermal mass of the building. 
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Fig. 3.11. Average hourly energy consumption of the PRB system using the medium setback. 

 

Table 3.6.  

On-peak and mid-peak energy consumption using RB control with different setback temperatures. 

Setback 7:00-11:00 peak period  11:00-17:00 mid-peak period  17:00-19:00 peak period  

Energy 

consumption 

(kWh) 

Energy 

saving 

 Energy 

consumption (kWh) 

Energy 

saving 

 Energy 

consumption 

(kWh) 

Energy 

saving 

 

10 1652 18%  1850 19%  734 -10%  

15 1682 17%  1877 18%  720 -8%  

20 1871 8%  2132 7%  703 -5%  

Always 

on 

2029 -  2295 -  669 -  

 

3.7. Conclusion 

In this chapter, an RB control system, using dynamic estimations of preconditioning time and 

future occupancy patterns, is proposed, and its performance is assessed in terms of economic, 

energy, peak-demand management, and thermal comfort. In contrast to conventional RB control 

systems that use static preconditioning time for regulating indoor temperature, this proposed 

system takes advantage of a deep learning algorithm to provide online estimations as a function of 

indoor temperature and outdoor environmental features. To evaluate the impact of setback 

temperature on the system performance, deep, medium, and conservative setback ranges are 

considered. The main findings can be summarized as follows: 

1. The MLP model is able to provide reasonable performance for estimating the 

preconditioning time with an MAE of 2.68 min,  
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2. Using the TOPSIS method, it is shown that employing dynamic estimations of 

preconditioning time in RB control can improve the overall performance of the system in 

deep and medium setback bounds. However, no improvement is observed when a 

conservative setback is concerned,  

3. The financial analysis demonstrates that replacing old thermostats with smart ones can 

result in up to 12.91% saving in annual total cost, 2.72 years of payback period, and $1,937 

net present value,  

4. Implementing conservative setback temperature in the control systems can significantly 

decrease the profitability of the thermostats, leading to a median DPB of 10.87 years. In 

some cases, negative NPV is obtained, showing that using such thermostats can cause net 

loss, 

5. It is revealed that occupancy-based control systems can inversely impact the on-peak 

energy consumption of the control systems. It is demonstrated that it can increase up to 

10% of the on-peak energy consumption due to the sudden rises in the HVAC energy 

consumption prior to occupants’ arrival. This negative impact highlights the necessity of 

taking peak-demand management into account while developing occupancy-based control 

systems. 

It is noted that although using a building block or a district as a case study can provide more 

generalizable results in terms of financial, energy saving, and peak demand performance, this study 

was limited to consideration of a single house as the case study to evaluate the performance of the 

proposed system. Hence, more comprehensive case studies can be considered for investigating the 

RB control systems in future work. Additionally, the occupancy-based control systems are 

examined with an assumption of perfect occupancy prediction in this study, and as a result, this 

study provides an upper bound level of the system’s performance. Implementing actual occupancy 

models in the control systems is proposed as future work to evaluate the impact of occupancy 

prediction errors on system behavior. 
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Chapter 4: Deep learning models for future occupancy prediction in 

residential buildings3 

 

4.1. Overview 

This chapter contributes to the occupancy prediction problem by developing state-of-the-art deep 

learning models. To this end, the occupancy prediction problem is addressed from two different 

viewpoints: multi-label classification and a sequence-to-sequence time-series analysis using 

encoder-decoder architectures. The following deep learning algorithms are employed in this study 

to construct occupancy models: multi-layer perceptron (MLP), recurrent neural networks, long-

short term memory (LSTM), gated recurrent units (GRU), and bidirectional LSTMs. The 

performance of these models is evaluated and compared in terms of accuracy and computational 

speed. The results demonstrate that addressing this problem using MLP models provides the best 

performance for short-term predictions, while for predictions more than 90 minutes ahead, GRU 

results in the highest accuracy. It is also demonstrated that the accuracy of the deep learning models 

can be approximated as a function of the occupancy index with an MAE of 0.014. 

 

4.2. Introduction 

In 2019, residential and commercial sectors were responsible for 28% of the overall energy 

consumption in the U.S [146]. This huge amount of energy demand had also a significant impact 

on the peak load  [147,148]. Intelligent control strategies, with the ability to learn occupancy 

patterns in buildings, have shown promising abilities to address this issue by increasing building 

performance. Gao and Whitehouse [76] demonstrated that using control systems with occupancy 

prediction can save energy by 15% and improve thermal comfort by up to 40% in comparison with 

conventional thermostats. Because of the important role that occupancy prediction models play in 

intelligent control systems, researchers have applied a wide variety of machine learning models to 

occupancy prediction in the past decade. k-means clustering, decision trees [149], support vector 

machines (SVM), random forests, k-nearest neighbors (kNN) [82,84], linear regression, and 

logistic regression [95] were previously applied for occupancy prediction. However, Huchuk et al. 

[95] demonstrated that the accuracy of the previously proposed occupancy models is mostly 

limited in the range of 65% to 85% depending on actual occupancy profiles. Gluck et Al. [17] 

estimated that reducing the errors in occupancy models by 10% can improve the occupants’ 

thermal comfort by 16% and enhance energy saving by 9%. It highlights the necessity of putting 

more effort to develop occupancy models that are able to capture hidden patterns in occupancy 

profiles to provide higher performance. 

Despite the importance of occupancy prediction models, researchers have rarely focused on 

developing deep learning models to predict occupancy profiles. This study aims to fill this research 

 
3 This chapter is based on the following publication: M. Esrafilian-Najafabadi, M. Babahaji, F. Haghighat, Deep 

learning models for future occupancy prediction in residential buildings, in: 5th International Conference on Building, 

Energy and Environment 25th-29th July, 2022. 



57 

 

gap by developing different deep learning algorithms to forecast future occupancy patterns based 

on real-world occupancy data collected from five apartments. In this study, the occupancy 

prediction problem is formulated as multi-label classification and time-series sequence-to-

sequence (S2S) forecasting. For this purpose, multi-layer perceptron (MLP) as well as recurrent 

neural networks (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and 

bidirectional LSTM (BLSTM) using auto decoder-encoder architectures are used. The 

performance of these models is assessed in terms of computational cost and prediction accuracy. 

The optimal structures of the models are determined using a random search-based hyperparameter 

tuning process. Additionally, in order to evaluate the impact of the occupancy profiles on the 

prediction accuracy, the occupancy index is proposed in this study. The correlation between the 

proposed index and the accuracy is assessed using Pearson correlation. Next, this index is utilized 

to approximate the accuracy of deep learning models as a function of the nature of occupancy 

profiles in buildings. This estimation provides an insight into the performance of occupancy 

models based on deep learning algorithms. 

4.3. Method 

4.3.1. Database description and data pre-processing 

In this study, a dataset collected from 5 three-bedroom apartments is used to develop the deep 

learning models. The data was collected over a one-year period in 2016 using passive infrared 

(PIR) motion sensors. The dataset is imported into the MySQL database management system for 

the preprocessing step. The data was originally collected in 1-min intervals, which is too short to 

train deep learning models; hence, the resolution of the dataset is processed from 1-min intervals 

to 30-min intervals. 

The time of day as the most utilized feature in the literature is selected to train occupancy 

prediction models. To include the time of day as a feature, every time step is represented by an 

integer number from 1 to 47. 1 in this scale shows the time step from midnight to 00:30, and 47 

denotes the period between 23:30 to midnight. However, this feature should be transformed into 

dummy variables because it is not a numeric variable in nature. In this way, the time-of-day feature 

transformed into 47 different features. Each new feature takes a value of 1 if the data element is 

recorded in the associated time of day and otherwise takes 0. For example, the first feature which 

is associated with 00:30 takes 1 only for the elements recorded during this period and all other 

dummy variables take 0 in this case. Additionally, as discussed in [86], whether the prediction is 

performed on weekdays or weekends can have a positive impact on the prediction performance. 

Therefore, the Weekend feature is also used to train the models; this feature can accept 1 and 0, 

respectively showing that the prediction is performed for the weekends and weekdays. As well as 

the mentioned features, the occupancy states from previous 24 timesteps (i.e., 12 hours) are also 

added as candidate features.  

4.3.2. Deep learning models for occupancy prediction 

In this study, an MLP algorithm is implemented to address occupancy prediction as a multi-label 

classification problem, in which each data record is associated with eight labels (i.e. occupancy 

states at the future eight time intervals, which is equivalent to a prediction horizon of 4 hours). In 

addition, an RNN model is also employed to address the occupancy prediction as a time-series 

prediction problem. In contrast to the MLP architecture, in which all the features are fed into the 

first hidden layer regardless of the timely order of the features, in RNN algorithms, the features 
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are separately fed into the network in each time step. Then, the output of the previous layers of 

RNN is used in the proceeding layers until the current time step. These connections between time 

steps enable the model to discover the temporal correlations between the occupancy states at each 

time step. In addition, using encoder-decoder architectures for this S2S problem enables the model 

to learn the correlations between future time steps. This architecture consists of two sub models of 

encoders and decoders.  

Theoretically, RNN is very powerful to learn the temporal relationships between each time step. 

However, from the practical point of view, they can be hard to train properly. The Vanishing 

gradient is mentioned as one of the main reasons for this issue [150]. LSTM networks are widely 

employed to overcome the vanishing gradient problem. LSTM is similar to RNN with the 

distinction that it employs memory blocks in each hidden layer with three gates, namely input, 

output and forget gates. This architecture enables LSTM to remember important correlations from 

temporally distant events to the current time step [151]. GRU was also proposed as a solution to 

the vanishing gradient problem of RNN. GRU is a gated approach similar to LSTM, while it uses 

two gates, namely, update and forget gates in the model. As stated in [152], in some cases, GRU 

could provide higher computation speed and higher accuracy compared with the performance of 

RNN. 

All the mentioned time series algorithms can be also utilized in bidirectional networks. These 

structures utilize two separate hidden layers; one of them processes the input vector in the forward 

direction while the other one processes the input in the opposite direction. These two hidden layers 

are connected to the same output layer in the network. This structure enables the model to use the 

information alongside both backward and forward directions of the input sequence [153]. Although 

it has been shown that bidirectional networks can perform better in a variety of fields such as 

phoneme classification [154], no previous studies have reported the results of implementing this 

approach for occupancy prediction. To fill this gap, a BLSTM algorithm, is also developed as an 

occupancy model in this study. 

4.3.3. Model evaluation 

To develop and evaluate the performance of occupancy models in terms of accuracy and 

computational time, each database is split into three sets in this study: a training set, a three-month 

period from February 1st to June 1st, a validation set, the entire month of July, and a test set, the 

entire month of August. First, the training and validation sets are employed to find the optimal 

values of hyperparameters through a random search-based hyperparameter tuning process with 

150 iterations. The number of neurons and hidden layers as well as batch size and learning rate are 

considered the hyperparameters. In this process, a number of candidates hyperparameters are 

randomly selected and utilized to construct the deep learning models. Then, the performance of 

the models associated with each set of hyperparameters is evaluated. The values that lead to the 

highest performance are selected as the ultimate parameters of the network. The number of epochs 

is selected as 300 and an early stopping method with the patience of 50 iterations is employed to 

avoid the overfitting problem. Binary cross-entropy is chosen as the loss function, which is 

optimized using Adam optimizer. In the next step, the test dataset is utilized, as unseen data, to 

estimate the performance of the final occupancy models. In this step, as well as the training set, 

the validation set is also implemented for training the model, as this part of the data carries the 

most recent information related to the testing set. 
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The data preprocessing step is performed using MySQL workbench, and MySQL/Python APIs are 

utilized to retrieve queries from MySQL in the Python environment to develop the occupancy 

models using Keras 2.4 with TensorFlow backend. The computations are performed on the Google 

Collaboratory [155] (or Colab for short). Deep learning models are executed using GPUs on this 

platform with 12 GB of RAM available. 

4.4. Results 

The accuracy of each model on the test dataset for the apartments is represented using box plots in 

Fig. 4.1. The results are classified based on the prediction horizons: T denotes predicting 

occupancy states one timestep ahead (30 minutes) as the shortest period, T+3 shows a prediction 

horizon of three timesteps, and T+7, which is the longest horizon, represents the prediction for 7 

timesteps in advance. This classification aims to investigate the impact of the prediction horizon 

on the models’ performance. As depicted in the figure, depending on the model, horizon, and case 

study, the accuracy can vary between 75% to more than 90%. With a closer look at the figure, it 

can be observed that for short-term predictions, the MLP outperformed other methods with the 

highest median accuracy at 87.45%. It was followed by the LSTM, RNN, and GRU models 

respectively at 86.81%, 86.18%, and 83.97% accuracy. However, for longer durations of 

prediction, the GRU model provides the best performance among the deep learning models. It 

results in a median accuracy of 82.81% and 80.59% for T+3 and T+7 horizons, respectively, while 

MLP leads to 81.77% and 79.85% accuracy, respectively for the same time intervals.  

 

 
Fig. 4.1. The accuracy of the deep learning models based on prediction horizon. 

 

It can be also observed that the accuracy of the models is highly dependent on the case study. In 

other words, using a specific model for a certain time horizon, the accuracy can change by more 

than 10% depending only on the apartment. As suggested by Sangogboye et al. [82], the reason is 

linked to the differences in the vacancy frequency (i.e. how frequently the apartments become 

unoccupied) in occupancy profiles in different apartments. To quantify the relationship between 
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accuracy of the deep learning models and the actual occupancy profiles, an occupancy index,
indexO

, is defined in this study as follows: 
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(14)  

where rateO denotes the occupancy rate, defined as the sum of all occupied time slots divided by 

the number of total time intervals. The occupancy index can change in the range of 0-0.5. The 

value of 0 shows that the occupancy pattern of the household tends to be uniform. For example, 

the building might be in the occupied or vacant states all the time. The value of 0.5 shows that the 

occupancy states and vacancy states are equally exists at the occupancy pattern, that can cause 

more randomness and harder prediction. It is found that there is a direct relationship between the 

occupancy index and the accuracy of deep learning-based occupancy models with a Pearson 

correlation of 0.89. By taking advantage of this direct correlation, the accuracy of occupancy 

models developed in this study are approximated using an exponential relationship as a function 

of the occupancy index with a mean absolute error of 0.0141: 

0.7399exp(0.7767 )
index

Accuracy O=  (15)  

Fig. 4.2 represents the performance of the models in terms of computational time needed for 

training the models. It can be seen that the MLP model is the fastest model with a median training 

time of 11.76 seconds. It is followed by GRU which needs 4.8 seconds more time to be trained. In 

contrast, the slowest training is associated with the BLSTM at almost 40 seconds.  

 

 
Fig. 4.2. Computational time required for training the deep learning models. 

 

4.5. Discussion 

It is found that the performance of the deep learning models depends on the prediction horizon. 

For short-term predictions (i.e., occupancy prediction for less than 90 minutes in advance), the 

MLP model is the preferred method as it provides the best median accuracy. In contrast, for longer-

term prediction, using the GRU model as a more complex approach can improve the accuracy. The 

reason behind selecting different models for long-term and short-term predictions can be linked 

with the level of complexity in the predictions. For example, the use of MLP for short-term 

predictions might indicate that the temporal relationships between the data elements are not 

important in short-term predictions. In contrast, the selection of GRU might indicate the 

importance of the temporal patterns in the long-term occupancy prediction. It is revealed that there 

is also a strong correlation between the models’ performance and the occupancy patterns in the 
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apartments. To quantify the relationship, the Pearson correlation coefficient is estimated between 

the accuracy and the occupancy index proposed in this study. Then, the prediction accuracy is 

estimated using a regression model based on the occupancy index that can result in an MAE of 

less than 0.02. This equation can be helpful for the control system designers to get an estimation 

of the occupancy prediction for their specific applications. However, it should be noted that this 

study is performed based on five residential cases; more cases are required to generalize the results 

for a wide range of applications, which is recommended as future work.  

4.6. Conclusions 

In this work, several state-of-the-art deep learning algorithms are employed to develop occupancy 

prediction models. The results demonstrate that both time series and multi-label classification 

approaches can be utilized to develop occupancy prediction models with an accuracy of more than 

80% in most cases. However, the performance considerably depends on the prediction horizon. 

For short-term predictions, MLP outperforms other algorithms while for longer predictions, GRU 

leads to the best accuracy. These two methods also showed the lowest computational time required 

for training the models. It is also revealed that the accuracy of the deep learning models is strongly 

correlated with an occupancy index proposed in this study, having a Pearson correlation of almost 

90%. Utilizing this correlation, the accuracy of the models is estimated as a function of the 

occupancy index through a regression model with an MAE of 0.0141. It is demonstrated that the 

accuracy of the models is still limited to less than 85% in most cases. More research is needed to 

further improve the accuracy with a special focus on the input variables, which have been often 

neglected in previous studies. 
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Chapter 5: Impact of occupancy prediction models on building 

HVAC control system performance: Application of machine learning 

techniques4 

 

5.1. Overview 

This chapter analyzes the impact of using different types of occupancy models on the performance 

of occupancy-based heating, ventilation, and air conditioning (HVAC) control systems in 

residential buildings. The future occupancy prediction problem is approached from two different 

viewpoints: 1) as a regression task for arrival-time prediction and 2) as a classification task for 

occupancy-state prediction. Four machine learning techniques, namely decision trees (DT), k-

nearest neighbors (kNN), multi-layer perceptron (MLP), and gated recurrent units (GRU), are 

implemented to predict future occupancy from each perspective. The performance of the 

occupancy models is evaluated in terms of mean absolute error (MAE), accuracy, and the ability 

to provide occupants’ thermal comfort and to save energy. An overall performance score is 

proposed by making a trade-off between the energy and thermal comfort objectives using the 

technique for order of preference by similarity to the ideal solution method. The results 

demonstrate that selecting the optimal viewpoint of occupancy prediction has a higher impact on 

the control performance than selecting the machine learning techniques, with occupancy-state 

prediction models providing superior performance in most cases. It is also shown that the machine 

learning evaluation metrics (i.e., MAE and accuracy) provide a weak to moderate correlation with 

the overall performance score. Consequently, relying solely on the MAE and accuracy might fail 

to provide a reliable evaluation of the occupancy model performance for use in HVAC control 

systems. 

5.2. Introduction  

During the past decades, smart thermostats have been proposed and investigated as a promising 

solution for increasing building energy performance and enhancing occupants’ thermal comfort 

and productivity. Smart thermostats have the ability to save energy by modifying the indoor air 

temperature based on the current occupancy states in buildings [13]. More specifically, the 

thermostat can automatically employ a setback temperature while the residents are not present in 

the building, which could help to save energy and reduce negative environmental impact. Given 

the fact that the residential sector is responsible for an average of 30% of the overall energy 

consumption worldwide [135], implementing smart thermostats can highly contribute to 

mitigating carbon dioxide (CO2) emissions and decreasing fossil fuel consumption. Smart 

thermostats can go beyond merely inferring current occupancy states by implementing occupancy 

prediction models. In other words, they can give insight into the future changes in occupancy states 

and provide adequate time for the heating, ventilation, and air conditioning (HVAC) system to 

precondition indoor environment before the building becomes occupied [86]. However, starting 

 
4 This chapter is based on the following publication: M. Esrafilian-Najafabadi, F. Haghighat, Impact of occupancy 

prediction models on building HVAC control system performance: Application of machine learning techniques, 

Energy and Building 257 (2022) 111808. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111808. 
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the preconditioning process too soon or too late can respectively cause energy waste or occupants’ 

thermal discomfort.  

Thereby, many researchers focused on developing more accurate and feasible occupancy models 

for possible integrations with predictive control systems. To this end, data-driven methodologies, 

especially machine learning methods, have attracted great attention among many researchers 

[35,36]. Previous studies formulated the occupancy prediction problem using two different 

approaches. The majority of earlier works addressed the occupancy prediction problem as a 

classification task. In these approaches, occupancy datasets are often divided into equal time 

intervals, with each interval taking values of 0 or 1, respectively showing vacancy or occupancy 

states for the corresponding period. The occupancy models developed based on this approach 

forecast occupancy states in a determined number of future time steps, called prediction horizon. 

The prediction horizon is often determined based on the lag time of HVAC systems, which can 

vary depending on the weather conditions and the characteristics of the buildings and HVAC 

systems [156]. The occupancy prediction problem was also formulated as a function of arrival and 

departure time. In this approach, instead of predicting occupancy states in separate time intervals, 

the occupancy model provides predictions on the future occupants’ arrival or departure time. This 

type of prediction can be addressed as a regression task, in which future arrival or departure time 

is forecasted.  

The variety of occupancy prediction models proposed in the literature indicates the importance of 

making attempts to find the most effective approaches. There is still a question of which occupancy 

prediction viewpoint and technique can provide the most reliable results among the many available 

alternatives. Furthermore, when comparing the performance of different models, most of the 

earlier works solely relied on machine learning and statistical evaluation metrics, such as accuracy, 

overlooking the ability of occupancy models to enhance energy saving and occupants’ thermal 

comfort. There is a question of what evaluation metrics are the best to quantify the effectiveness 

of the occupancy prediction models. The following section provides an overview of the occupancy 

prediction model developments and the applications in HVAC control systems. Next, the current 

research gaps and the contributions of this research work are elaborated. 

5.2.1. Related research works 

The majority of earlier works addressed the occupancy prediction problem as a classification task. 

Sangogboye et al. [84] proposed an occupancy prediction model, named PROMPT, in which four 

different machine learning methods were implemented to predict future occupancy states. They 

assumed that there might not be a unique optimal machine learning method that can provide the 

best performance in all prediction cases. Therefore, the PROMPT algorithm tried to find the model 

that could provide the best performance in each specific case. They applied each machine learning 

algorithm to every case study, evaluated its performance, and selected the model with the highest 

prediction performance for each case. They showed that this integrated model increased the F-

score of occupancy prediction by 2.3% compared with using a single model. Salimi et al. [91] 

developed an occupancy model using the inhomogeneous Markov model based on the identity, 

time of day, and zonal locations of the occupants in an office room. The model used two different 

time horizons of 30 minutes and 5 minutes for HVAC and lighting control systems, respectively. 

Based on the length of the prediction horizon, they reported an accuracy in the range of 68% to 

86% for predicting future occupancy states.  
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Koehler et al. [44] proposed an occupancy prediction model based on the occupants’ locations and 

status. If an occupant was in the driving status, the model predicted the following possible 

destinations using previously visited locations. Otherwise, the most frequent occupancy states in 

the historical data were considered in a proportional model to predict future occupancy states. This 

hybrid model resulted in 92.1% accuracy for occupancy prediction. Some researchers took 

advantage of environmental features to develop occupancy prediction models. Ryu et al. [96] 

applied a DT model to CO2 concentration and lighting level data to estimate the occupancy levels 

(i.e., the number of occupants) in an office building. The estimated occupancy information was 

used to train a hidden Markov model (HMM) to predict occupancy states in future time steps. The 

model yielded an accuracy of 90%. Elkhoukhi et al. [94] proposed an occupancy model by 

predicting future CO2 concentration in an office building. In the first step, the algorithm was 

trained using historical CO2 data to provide short-term predictions for CO2 levels. In the next step, 

the predicted level of CO2 was translated into occupant counts based on a simple steady-state room 

CO2 mass balance [100]. The accuracy of the model was estimated as 70%. 

Some researchers implemented the occupancy-state prediction in HVAC control systems and 

measured the building performance. It was shown that using Markov models for occupancy 

prediction in a control system could save up to 42% annual energy, compared with using an 

always-on control system [64,66,157]. Iyengar et al. [46] investigated the possibility of making 

traditional programmable thermostats occupancy aware in residential buildings without any need 

for providing more infrastructure or capital costs. To this end, they proposed a model using 

household energy consumption patterns that helped to detect and predict future occupancy. This 

proposed thermostat showed a potential saving of 0.42 kWh energy per day on average, taking 

standard programmable thermostats as the baseline. Gluck et al. [17] studied the effects of the 

occupancy prediction errors on the control system performance. First, they demonstrated that a 

predictive occupancy-based HVAC control could result in up to 40% energy saving compared with 

reactive thermostats. They also reported that a 10% reduction in the prediction error could enhance 

the energy saving by 9% and the thermal comfort by 16%. Killian and Kozek [72] used a k-means 

clustering algorithm, as an unsupervised machine learning method, for occupancy prediction in a 

model predictive control (MPC) to regulate the indoor air temperature. This system showed a 

potential to improve the occupants’ thermal comfort by decreasing the temperature deviation from 

the setpoint by almost 32%, as compared with an MPC without occupancy prediction models. Peng 

et al. [61] employed two machine learning techniques, namely k-means clustering and kNN 

models, to predict future occupancy patterns. They implemented the clustering model to categorize 

similar data elements, as a preprocessing step. Then, a KNN model was trained on this 

preprocessed database to predict future occupancy states in an office building. They reported that 

up to 52% energy saving was achieved by using the proposed algorithm in the control system, 

when compared with conventional scheduled thermostats. Scott et al. [45] established an 

occupancy-based control system called PreHeat and experimentally evaluated its performance by 

applying it to five different homes. This system predicted future occupancy states using a kNN 

algorithm. It was reported that PreHeat was able to improve occupants’ thermal comfort by more 

than 90% while consuming almost the same amount of energy, taking the standard programmable 

thermostats as the baseline,  

There are also approaches that consider occupancy prediction as a regression task, in which the 

arrival and departure time of occupants rather than occupancy states are predicted. Gjoresk et al. 

[83] developed occupancy prediction models based on arrival and departure data collected from 



65 

 

seven employees with flexible working hours in an office building. They demonstrated that the 

mean absolute error (MAE) of arrival-time prediction models varied between 10 min to 60 min 

depending on the employees. However, occupancy models provided superior performance for 

departure-time prediction with an MAE of 40 min to 80 min. Lee et al. [63] developed a model to 

predict occupants’ arrival time in an office building utilizing the current and historical locations of 

occupants via the occupants’ cellphones. They reported that this control system forecasted future 

arrival time with approximately a 10-min error in 70% of the cases. The implementation of the 

models in a control system led to a 26% decrease in energy consumption when compared with the 

performance of scheduled thermostats. Gao and Whitehouse [76] developed a control system, 

named  self-programming thermostats, based on one-month daily arrival and departure time. They 

reported that the proposed thermostat was able to improve occupants’ thermal comfort by up to 

40% and decrease the energy demand by 15%, in comparison with the performance of 

conventional programmable thermostat. 

The variety of the proposed occupancy prediction models highlights the necessity of investigating 

their performance and finding the limitations and strengths of each model. To this end, occupancy 

models need to be applied to the same database to provide a reliable comparison between different 

alternatives. Huchuk et al. [95] applied machine learning models to an occupancy database 

collected from 100 homes to find the benefits and limitations of different occupancy models. They 

implemented kNN, recurrent neural network (RNN), random forest (RF), Markov models, HMM, 

and logistic regression models for predicting future occupancy states. Among the alternatives, RF 

was the best-performing model in terms of accuracy. Kleiminger et al. [86] compared the 

performance of different occupancy models, including the PreHeat occupancy prediction model 

[45] and a probabilistic proportional model [87], in terms of accuracy. They reported that the 

proportional model provided the highest accuracy at 85%. Caleb et al. [82] applied support vector 

machine (SVM), RF, DT, and kNN to an occupancy database. They employed various calendar 

features, including seasons and holidays, in the occupancy model development and demonstrated 

that the selection of the best models was linked with the frequency of vacancy/occupancy state 

changes. The SVM provided the highest performance for the higher frequencies, while all the 

models yielded a similar performance for less frequent changes between different states.  

5.2.2. Research gaps and contributions 

Earlier studies have formulated the occupancy prediction problem from two different perspectives; 

some researchers implemented classification methods to forecast occupancy states at future time 

intervals, while others addressed this problem as a departure or arrival time prediction. However, 

the benefits and drawbacks of different viewpoints towards occupancy prediction modeling have 

not been thoroughly investigated. There is a need to clarify which approach is more appropriate 

for application in occupancy-based HVAC control systems. Analyzing the strengths and 

limitations of each approach can be helpful in selecting the most effective occupancy prediction 

viewpoint. Although there are a few studies providing a comparison framework between 

occupancy prediction models, they were limited for evaluating the techniques from the same 

viewpoint. Additionally, these studies evaluated the performance of occupancy models based on 

machine learning evaluation metrics such as accuracy and MAE, neglecting more practical 

indicators such as occupants’ thermal comfort and energy saving. It is worth noting that, as 

reported in [73], the negative impact of the prediction errors on the control performance might 

depend on the timing of the errors. For instance, a mistake in the occupancy prediction near arrival 

time of occupants after a relatively long vacancy period can have detrimental effects on occupants’ 
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thermal comfort. In contrast, the impact of some inaccuracies during short vacancy periods can be 

negligible. However, the accuracy, as the most implemented indicator [114], cannot consider the 

timing nature of the errors. Hence, assessing an occupancy model while relying solely on accuracy 

or MAE might be deceptive in some cases [46].  

The primary objective of this chapter is to evaluate different viewpoints for occupancy prediction 

modeling and to reveal their benefits and limitations when applied to occupancy-based HVAC 

control. This study also aims to quantify the correlation between the commonly utilized statistical 

performance metrics (accuracy and MAE) and the building performance criteria (thermal comfort 

and energy efficiency) to find out whether they can interchangeably be utilized in evaluating and 

comparing occupancy models. In order to achieve the research objectives, this chapter analyzes 

the performance of different types of occupancy models when applied to a predictive rule-based 

(RB) control framework. Occupancy modeling is addressed from both viewpoints of occupancy-

state prediction as a classification task and arrival-time prediction as a regression task. 

Additionally, the performance of different machine learning techniques is assessed by considering 

DT, kNN, MLP, and GRU techniques. As well as using accuracy and MAE, the performance of 

the occupancy models is measured and compared in terms of their ability to improve occupants’ 

thermal comfort and energy-efficiency of the HVAC operation. As maximizing thermal comfort 

and energy saving are often conflicting objectives, an overall performance score is proposed to 

make a trade-off between them based on the technique for order of preference by similarity to ideal 

solution (TOPSIS) method. Using the Pearson correlation coefficients, the correlation between the 

machine learning evaluation metrics and the performance of the control system is quantified. 

The remaining parts of the chapter are structured as follows: Section 5.3 elaborates the 

methodology utilized in this study to construct the occupancy models and to evaluate their 

performance. This section describes the machine learning models, the database preprocessing step, 

the control system, the performance criteria, and the case study utilized to evaluate the models. 

The results are described in Section 0, and finally, the conclusions are made and discussed. 

5.3. Methodology 

5.3.1. Development of the occupancy prediction models 

This section investigates the occupancy prediction problem from two different perspectives of 

occupancy-state prediction and arrival-time prediction. While considering different perspectives, 

the impact of the machine learning techniques on the performance of the control system is also 

assessed by employing different models. kNN and DT techniques, as straightforward and widely 

utilized algorithms, are implemented in this study. These algorithms were among the most used 

machine learning techniques for occupancy prediction [114]. In addition, two deep learning 

algorithms are also employed to model occupancy behavior. Firstly, the MLP model is deployed 

to explore hidden patterns in the occupancy database. However, MLP models do not consider the 

temporal relationships between sequential data elements. As occupancy prediction is a time-series 

prediction problem, consideration of temporal relationships might improve the prediction 

performance. Hence, the GRU model is also developed as a deep learning algorithm, which is able 

to capture temporal relationships between different elements of data. However, whether these 

models can practically result in a better prediction performance than conventional machine 

learning models has not been widely investigated for occupancy prediction algorithms.  
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5.3.1.1. k-nearest neighbors model 

The kNN algorithm is capable of tackling both classification and regression problems and is 

considered one of the simplest machine learning algorithms [158]. kNN is part of lazy learning 

algorithms, in which the training process is not initiated unless there is a need to respond to a query 

[159]. The algorithm keeps the training set in memory until the query has been answered [160]. 

By finding the similarities between an unseen input data element and the samples in the training 

set, the algorithm can fulfill the prediction task. The similarities are often measured using distance 

metrics. Euclidean distance, as one of the most popular distance metrics, is employed for this 

purpose in this study. A predefined number of the nearest neighbors (k) to the new input data is 

determined and utilized to estimate the label of the new element. In this study, k is considered as 

a hyperparameter and is determined using a grid search method. Based on the optimal value of k, 

the algorithm assigns the mode and mean of the closest neighbors’ labels to the input sample for 

classification and regression problems, respectively. In the classification task, the aim is to predict 

the occupancy states in a desired number of the following consecutive time steps (N). To this end, 

N independent kNN models are developed for predicting each state at the future time steps. On the 

other hand, only one model is developed for the regression problem with one label that is the arrival 

time of the occupants. 

5.3.1.2. Decision Tree models  

Similar to kNN algorithms, DT can also be employed for both classification and regression 

problems. The benefits of DT algorithms are their simplicity, high interpretability, and the ability 

to be applied to mixed-type data [161–164]. DT categorizes the data into different branches, 

creating a tree-like structure with a root and internal and leaf nodes [163]. The creation of DT is 

an iterative process. In each iteration, the algorithm aims to find the best feature that can split the 

entire dataset into multiple groups. For this purpose, different features are tried, and the one that 

can minimize a cost function, called attribute selection criterion (AST), is chosen [165]. In this 

study, mean squared error (MSE) and the entropy function are considered as the AST for the 

regression and classification tasks, respectively. The first selected feature splits the data and creates 

the first node in the tree, called the root of the tree. A similar iterative splitting procedure is 

performed to divide the rest of the dataset into different branches and additional internal nodes.  

The splitting procedure should be stopped in a way that maximizes the performance criteria while 

minimizing the number of splits to avoid overfitting the training set. To properly define the 

stopping criteria, maximum depth of the tree, minimum samples required for creating a leaf and a 

split, and the maximum number of features are considered as hyperparameters to be tuned using a 

grid search method. Similar to the kNN, N independent trees are trained for occupancy prediction 

at each future time step, and one tree for the arrival-time prediction. The kNN and DT models are 

developed using the Scikit-learn package [166] in Python. 

5.3.1.3. Multi-layer perceptron 

MLP is a type of feed-forward artificial neural network (ANN), which was originally developed 

based on the operation of the human brain [167]. The network involves at least three layers of 

neurons, namely input, hidden, and output layers. Each neuron, except for those in the input layer, 

employs an activation function, allowing the network to learn non-linear relationships between the 

predictor variables and the labels. In this study, rectified linear unit (ReLU) is implemented as the 

activation function for neurons in the hidden layers as a recommended choice for developing neural 

networks [168]. Furthermore, linear and sigmoid functions are respectively utilized for the output 

layers in the regression and classification models. Backpropagation, as a supervised learning 
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technique, is used to determine the optimal weights and bias values for each neuron during the 

learning process. An Adam optimizer is selected to minimize MSE and binary cross-entropy, for 

arrival time and occupancy-state prediction models, respectively. Table 5.1 provides a summary 

of the structural parameters of the MLP model, including the batch size, learning rate, number of 

neurons, and number of hidden layers, which are determined as hyperparameters. 

Sample MLP for both regression and classification tasks are depicted in Fig. 5.1. These networks 

are similar with a distinction in the output layer. In the occupancy-state prediction, the problem is 

addressed as a multi-label classification approach, in which N future occupancy states are 

associated with each data element as the data labels. Therefore, the output layer of MLP has N 

neurons to provide predictions for each future time step. In contrast, only one output, i.e. arrival 

time, is predicted when approaching the problem as a regression task, and therefore, only one 

output neuron is utilized. The input layer includes M+3 attributes, in which M denotes the number 

of lagged occupancy states. The input features involve the occupancy states in the previous M time 

steps (from Ot-M to Ot-1), the current occupancy state (Ot), time of day (hour), and day of week.  

Table 5.1.  

The summary of the parameters utilized for developing the MLP and GRU models. 

Parameter Description 

Number of neurons  Defined as a hyperparameter 

Number of layers Defined as a hyperparameter 

Batch size Defined as a hyperparameter 

Learning rate Defined as a hyperparameter 

Activation function for the neurons in 

hidden layers 

ReLU 

Activation function in the output layer Linear function for arrival time prediction and  

Sigmoid function for occupancy state prediction 

Optimizer Adam 

Optimization objectives To minimize the binary cross entropy for the classification 

models and to minimize the MSE for the regression models 

Regularization Weight decay and early stopping 

Lambda Defined as a hyperparameter 
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Fig. 5.1. Sample MLP model used for a) arrival time and b) occupancy-state prediction with two hidden layers (N=12 and 

M=12). 

One of the main challenges in implementing deep learning algorithms is to develop a model with 

a high generalization capability when being applied to unseen data. While too simple models might 

not be able to properly capture hidden patterns in the training set, too complex models are prone 

to the overfitting problem and can provide worse performance on the test set due to their poor 

generalization ability [169]. In order to prevent the overfitting issue while training the models, the 

early stopping and weight decay methods are implemented. Early stopping is one of the most 

utilized regularization approaches, recognized as a straightforward and successful technique [168]. 

In this method, the performance of the machine learning algorithms is monitored during the 

training process for both train and test datasets. The training process is halted before the test 

performance starts to decrease due to the overfitting issue. The patience value (i.e., the number of 

epochs with no improvements in the test accuracy) of the early stopping method is considered 50 

epochs. In the weight decay technique, the algorithm encourages the weights to reach zero unless 

reinforced by the data [170]. In other words, this method avoids using large weights in the neural 

networks, which is one of the reasons for the overfitting, by penalizing the sum of the squared 

values of weights in the optimization problem. The amount of lambda (i.e. regularization rate) is 

selected as a hyperparameter and determined in a random search process.  

5.3.1.4. Gated recurrent units  

GRU was originally proposed to address the difficulties that might occur in training RNN models. 

RNN is theoretically a powerful tool for modeling sequential data; However, in practice, they 

might encounter a severe issue named vanishing gradient [171]. Vanishing gradient is referred to 

as the tendency of the loss-function gradients to reach zero during the backpropagation. This issue 

makes it too hard for a network to carry information alongside a long sequence in the network. As 

a consequence, some vital information might be lost during the training process. The GRU 

algorithm showed the ability to address this issue by using some mechanisms, called update and 
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reset gates, which enable the layers to protect and carry important data alongside the network 

[172].  

In this study, two different architectures of GRU, namely many-to-one and many-to-many 

architectures, are respectively implemented for the arrival time and occupancy-state predictions. 

The former architecture is demonstrated in Fig. 5.2. In contrast to the MLP, which does not 

differentiate between data sequences, the input features, namely time of day (T), day of week (D), 

and occupancy states (O), enter the GRU model in M+3 separate time sequences. Then, the 

information is consecutively carried forward from the first time step to the current one and finally 

yields a prediction for the arrival time. On the other hand, the occupancy-state model requires a 

more complex network due to having more than one output (i.e., a sequence of outputs) [173]. 

This problem is addressed using a different architecture, which is called an encoder-decoder 

network, shown in Fig. 5.3. As the name suggests, this network involves two different blocks, 

namely encoder and decoder parts of the model. In the former part, the input data is processed in 

the GRU units and, finally, is encoded in a vector named encoder vector. This vector is passed into 

the first GRU unit in the decoder part as the input. The decoder block employs N cells to provide 

separate predictions for the future occupancy states. The predicted probabilities are then compared 

with the actual values, and accordingly, the loss function is calculated and minimized using the 

backpropagation. The structural parameters and the regularization methods related to the GRU 

network are similar to those of the MLP and are summarized in Table 5.1. The deep learning 

algorithms are developed using Keras library [125] in the Python environment. 

   
Fig. 5.2. Many-to-one architecture of the GRU model for arival time prediction (M=12). 

 

 
Fig. 5.3. Many-to-many architecture of the GRU method for occupancy-state prediction (N=12 and M=12) 
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5.3.2. Occupancy database description and preprocessing 

The models are trained using an occupancy database collected from five apartments 

[29,120,156,174,175]. The database was collected for the year 2016 with a resolution of 1 minute 

using 13 passive infrared (PIR) motion detectors installed in different zones of each apartment. 

The whole database was provided from a single data source, and as a result, there is no need to 

aggregate separated datasets in this study. As part of the data preprocessing step, first, the database 

is resampled from 1-min to 30-min intervals. In other words, each day is divided into 48 elements 

with equal durations. Each element is assigned with 0 or 1, denoting that no motion or at least one 

motion was detected at the corresponding time interval, respectively. As for the classification task, 

the occupancy models predict the occupancy states in 12 successive future time steps (N=12). 

Therefore, each row in the database is associated with 12 different labels, which show the future 

occupancy states in the next 6 hours. Thereby, this task is addressed as a multi-label classification 

problem, in which multiple mutually non-exclusive labels are associated with each instance [176]. 

In contrast, in the regression task, each element in the database has only one label, which is the 

occupants’ arrival time. The arrival time is calculated as the duration between the current time step 

(i.e., at the end of each 30-min time interval) and the closest point of time when the first motion is 

recorded from any sensors based on the original resolution of the database (i.e., 1-min interval). 

The arrival time is associated with each data instance at each 30-min interval as the label.   

As demonstrated in [114], time of day and day of week were the most utilized features to develop 

occupancy models in the literature and, as a result, are utilized in the development of the occupancy 

models. The time-of-day attribute can accept integers from 0 to 23, representing each hour of the 

day. This categorical variable can be used in training the DT models without any further changes, 

as the DT is able to directly deal with categorical variables. In contrast, to train other models, this 

variable is transformed into 24 separate attributes using the one-hot encoding method. The new 

attributes take 1 if the data element was recorded at the corresponding hour of day and otherwise 

take 0. The day-of-week feature is also preprocessed similarly with a distinction that it initially 

takes integers from 0 to 6, representing days of a week starting from Monday. It is worth noting 

that as the occupancy prediction problem is a time series analysis, in which there are meaningful 

ordered time sequences, the occupancy states in the previous time steps can also be helpful in 

predicting future states. Hence, 12 consecutive occupancy states in the previous 6 hours, as well 

as the current occupancy state, are also used as attributes in developing the occupancy models.  

Each dataset is divided into two subsets of validation and testing. The validation set is limited 

between August 1st and the end of October, which is utilized for tuning the hyperparameters of the 

models. It is worth noting that the temporal order of the data elements should be respected while 

constructing the datasets since the prediction problem is a time series analysis. After finding the 

best hyperparameters, the ultimate occupancy models are trained on the whole validation set, and 

their performance is assessed on the unseen test set. The test set consists of data starting from 

November 1st to the end of December. This period is also utilized to evaluate the control 

performance. The entire data preprocessing stages are performed using MySQL [121] and Pandas 

library [177] in Python. 

 

 

 



72 

 

5.3.3. Control system and performance evaluation criteria 

5.3.3.1. Case study description 

In order to evaluate the performance of each occupancy model for use in the HVAC control, a 

residential building is simulated as a virtual testbed. A single-story house, also implemented in 

[156], is taken as the case study with the floor plan shown in Fig. 5.4. The building has a net 

conditioned area of 135 m2, including three bedrooms, a kitchen, a living room, two bathrooms, 

and corridors. The geometry of the building is modeled in the SketchUp software [130] and then 

imported into EnergyPlus [178] using Openstudio [131] for energy simulation. The weather data 

available in [129] for ASHRAE climate zone 6A, which is a cold humid climate [179–181], is 

employed as the input to the energy model. The building construction material is assumed based 

on the ASHRAE recommendations for the same climate zone, available as a library in Openstudio. 

The simulation is run during the same period as the occupancy test set (i.e., from November 1st to 

December 31st), during the winter with only the heating demand. It is assumed that the heating 

demand is fulfilled using electric baseboards, and consequently, electricity is the source of the 

heating energy provision.  

 
Fig. 5.4. The floor plan of the virtual test case.  
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5.3.3.2. Control system description 

One of the main applications of developing the occupancy models is to be implemented in 

predictive control systems for adjusting the setpoint temperature according to the occupancy states. 

As a result, it is essential to evaluate the effectiveness of the occupancy models in a predictive 

control context. To this end, the occupancy model performance is evaluated in the RB control 

framework proposed in [156] because of its superior performance over conventional controllers. 

This control system takes advantage of an MLP model to dynamically estimate the preheating 

time. The database required for training the MLP model is created through building energy 

simulation using the EnergyPlus software. The created database provides information about how 

long it takes to bring back the setpoint temperature as a function of solar radiation, current indoor 

temperature, and outdoor temperature. In the simulation procedure, the indoor setpoint temperature 

is defined according to a programmable thermostat with static setpoint/setback schedules. It is 

noted that the building material and local weather conditions need to be reflected in the database 

since they can significantly impact the lag time of the HVAC systems. As these parameters can 

substantially vary among different buildings, the database is created based on the energy 

simulation of the case study building, described in Section 5.3.3.1, to enable the MLP model to 

learn the characteristics of the building. More details about creating the lag time database can be 

found in [156]. 

The functional diagram of the control system is demonstrated in Fig. 5.5. In this framework, the 

lag time of the HVAC system is estimated by training the MLP model using the database. Next, 

the occupancy-state prediction models take the approximated preheating time as their prediction 

horizon. For instance, given a preheating time of 70 minutes, the occupancy model yields 1 if the 

building is predicted to be occupied at one of the next three-time steps (given that the length of 

each time step equals 30 minutes), and otherwise, the model gives 0 as the output. Accordingly, 

the control system defines a setpoint or a setback temperature if the occupancy model returns 1 or 

0, respectively. In terms of using the arrival time prediction models, the preheating time is directly 

compared with the estimated arrival time of occupants. A longer preheating time than the arrival 

time indicates that occupants will probably arrive before the building has been fully preheated, and 

therefore, the preheating process is initiated immediately. Otherwise, there would be enough time 

for keeping a setback temperature to save more energy while not causing thermal discomfort.  

The setpoint operative temperature is defined as 21.5 °C for all the systems, which is within the 

recommended thermal comfort range [182]. In practical cases, a conservative setback temperature 

is often selected to ensure that the thermal comfort is maintained even when there are occupancy 

prediction errors. Nevertheless, as one of the goals of this study is to investigate the impact of such 

occupancy prediction errors on the control system performance, the temperature constraints are 

further relaxed, and a setback of 15 °C is assumed. This relatively low setback temperature is 

selected to ensure that the benefits and drawbacks of different occupancy models are clearly 

observed.   

It is noted that there might be some periods with immobile occupants, which can be inferred as 

vacant intervals due to detection errors of conventional sensors. Consequently, such events can 

bring about wrong temperature settings and, as a consequence, thermal discomfort. In order to 

minimize the negative impact of such events, the control system always maintains setpoint 

temperature during the first unoccupied time interval after an occupancy period regardless of the 

prediction results. 
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Fig. 5.5. The RB control system using occupancy models for regulating setpoint/setback temperature. 

5.3.3.3. Evaluation criteria 

The performance of the occupancy models can be measured using the accuracy and MAE, as 

conventional statistical metrics, for occupancy-state and arrival time prediction models, 

respectively. Furthermore, the performance of the models is evaluated in the control context in 

terms of the energy efficiency and thermal comfort criteria, as the most popular indicators utilized 

for occupancy-based HVAC control systems in the literature [114]. Energy efficiency is calculated 

as the amount of energy saving achieved by using the occupancy-based control, compared with 

using an always-on control system (i.e., the control system that always maintains the indoor 

temperature at 21.5 °C regardless of occupancy states) as the baseline. MissTime is selected as a 

criterion to quantify the occupants’ thermal discomfort. This factor is defined as the amount of 

time when occupants are present, but the temperature deviates from the desired setpoint [45].  

5.3.3.4. Overall performance score 

Due to the conflicting nature of the thermal comfort and energy saving criteria, it is not 

straightforward to select the best-performing model among different candidates. In other words, 

some models, although provide the highest energy-efficiency performance, might not lead to 

satisfying occupants’ thermal comfort. Multi-criteria decision-making (MCDM) is a powerful tool 

for choosing the best system amongst different alternatives in such complex problems [183].  

Among possible MCDM methods, TOPSIS is selected because of its simplicity, understandable 

process, speed, and the ability to find the ideal and worst solutions [184,185]. In this method, two 

ideal solutions called positive ideal solution (PIS) and negative ideal solution (NIS) are determined 

as the ideal best and worst performance points, respectively. PIS takes the lowest MissTime and 

the largest energy saving among all the alternatives, and the NIS is the opposite point with the 

highest MissTime and the lowest energy saving. The system with the shortest Euclidean distance 

from the PIS and the longest distance from the NIS is selected as the optimum. In order to rank the 

alternatives, a score, called relative closeness (R), is associated with each system that can vary in 

the range of 0-1. This parameter is defined as the distance between the alternative and the NIS 

point divided by the sum of the distances from the alternative to the PIS and to the NIS points. The 
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closer the indicator is to 1, the higher it ranks among the alternatives [144]. Based on the definition, 

the relative closeness includes both MissTime and occupants’ thermal comfort while evaluating 

the performance of the occupancy models, and as a result, it is considered as an overall 

performance score for each occupancy model. 

It is worth noting that in the TOPSIS method, the decision-maker can put higher priority to one 

criterion by assigning a larger weight to it. In some cases, the thermal comfort of occupants needs 

to be strictly maintained at a high level, while in other cases, occupants might be willing to save 

energy and cost with higher flexibility in defining the thermal comfort criterion. Therefore, 

depending on occupants’ preferences and applications, different weights can be utilized. The 

criterion with the higher weight can contribute more to the relative closeness. In order to show the 

effectiveness of the TOPSIS method in this decision-making process, a case is assumed in which 

the energy and thermal comfort criteria are equally important. However, it is acknowledged that 

different weights can also be selected, which could provide different decision-making results. 

There are also mathematical approaches, such as the Entropy method, that can be utilized to 

determine the corresponding weights. Such methods aim to minimize the possible user-dependent 

biases in determining the weights in the TOPSIS method. More details about such techniques can 

be found in [186,187]. 

5.3.4. Correlation between the performance indicators 

As mentioned previously, the statistical indicators were widely utilized in the literature to evaluate 

and compare the performance of the occupancy models regardless of the control system operation. 

A direct relationship between these indicators and the control system performance was assumed 

in earlier studies [95]. In order to evaluate the soundness of this assumption, the linear correlation 

between the metrics is quantified by employing the Pearson correlation coefficient, r(x,y). Since 

the overall performance score includes both thermal comfort and energy saving, it is utilized as 

the control performance indicator, and its correlations with the accuracy, MAE, and their 

normalized values are calculated. The Pearson correlation coefficient is defined [188]: 

𝑟(𝑥, 𝑦)

=
(𝑛 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖)

[√𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2][√𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)2]
    {

𝑥 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑀𝐴𝐸, 𝑜𝑟 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠
𝑦 = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒                              

 

(16)  

where ix  and iy  denote the elements of the variables, and n represents the number of pairs of 

elements. The normalized MAE and accuracy are calculated based on the following equation: 

ormalized values =  {

𝑥 − 𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑥𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚

,      𝑥 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑥𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −  𝑥

𝑥𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚

,      𝑥 = 𝑀𝐴𝐸         
 

(17)  
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5.4. Results and discussion 

5.4.1. Development of the occupancy models 

5.4.1.1. Optimal hyperparameters 

Before the final occupancy models can be applied to the test dataset, the optimal hyperparameters 

need to be determined for each model. For the DT and kNN models, which are relatively 

computationally fast, a grid search technique is used. This method exhaustively searches among 

all the possible combinations of the hyperparameters in a defined range. In contrast, a random 

search method is utilized for the MLP and GRU techniques as they require a relatively long time 

for training. Instead of trying all the possible values, this method randomly goes through a limited 

number of iterations.  

The search ranges and the averages and standard deviations of the optimal hyperparameters for 

each model are summarized in Table 5.2. Regarding the DT algorithm, the values for the maximum 

depth in both classification and regression tasks are close, with an average of six. Furthermore, the 

maximum number of features are similar, with average values of 10 and 11 respectively for the 

regression and classification. On the other hand, the minimum samples required for creating splits 

and leaves are much larger in the classification problem, with an average of almost 96. In terms of 

the kNN algorithm, the optimal number of neighbors for training a classification model is nearly 

three times higher than that of the regression models. Deep learning techniques require a relatively 

large number of hyperparameters to be tuned. The optimal MLP structures were developed using 

three and two hidden layers on average for the arrival-time and occupancy-state prediction, 

respectively. In the GRU model, an average of two hidden layers are selected for the encoder and 

decoder blocks. In both MLP and GRU, the arrival-time prediction is performed with a higher 

learning rate in comparison with the occupancy-state prediction models.  

Table 5.2.  

The mean, standard deviation, and ranges of hyperparameters utilized for developing the occupancy models. 

Model Hyperparameter Value 

Regression Classification Range 

 DT Maximum depth 6 ± 3 6 ± 2 [2 – 10] 

 Minimum samples for split 50 ± 52 96 ± 52 [10 – 200] 

 Minimum samples for leaves 16 ± 6 71 ± 59 [10 – 200] 

 Maximum features 10 ± 1 11 ± 2 15 

kNN Number of neighbors  4 ± 3 15 ± 4 [2 – 20] 

MLP Number of hidden layers 3 ± 1 2 ± 1 [1, 2, 3, 4] 

 Neurons in the 1st layer 60 ± 99 34 ± 26 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 2nd layer 132 ± 110 112 ± 91 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 3rd layer 49 ± 52 144 ± 112 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 4th layer 144 ± 112 - [2, 6, 16, 32, 64, 128, 256] 

 Batch size 920 ± 412 1750 ± 1274 [200, 400, 600, …, training 

set size] 

 Learning rate 0.1 ± 0 0.008 ± 0.002 [0.005, 0.01, 0.05, 0.1] 

 Lambda  4.004e-04 ± 4.9e-03 2.01e-05 ± 

3.21e-04 

[10-1 – 10-7] 

GRU Number of encoder layers - 2 ± 1 [1, 2, 3] 

 Number of decoder layers - 2 ± 0 [1, 2, 3] 

 Number of layers 2 ± 1 - [1, 2, 3, 4] 

 Neurons in the 1st layer 25 ± 22 75 ± 93 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 2nd layer 19 ± 13 100 ± 102 [2, 6, 16, 32, 64, 128, 256] 
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 Neurons in the 3rd layer 19 ± 13 32 ± 48 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 4th layer 64 72 ± 95 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 5th layer - 65 ± 51 [2, 6, 16, 32, 64, 128, 256] 

 Neurons in the 6th layer - - [2, 6, 16, 32, 64, 128, 256] 

 Batch size 760 ± 463 1800 ± 1307 [200, 400, 600, …, training 

set size] 

 Learning rate 0.025 ± 0.02 0.0082 ± 0.0036 [0.005, 0.01, 0.05, 0.1] 

 Lambda 2.22e-05 ± 3.91e-05 1.3e-05 ± 4.2e-

05 

[10-1 – 10-7] 

 

By employing the determined hyperparameters, the final occupancy prediction models can be 

trained, and their performance is evaluated on the test dataset. Fig. 5.6 demonstrates the 

performance of sample deep learning models during the training process. Monitoring the 

performance can provide an opportunity to avoid the overfitting problem. As discussed in [169], 

during the training process, the models’ performance are improved until an optimal point and, 

then, starts moving away, providing a poor performance as the training process continues due to 

the overfitting issue. It can be observed that at the end of the training process for the classification 

models, the performance on the test set remains almost unchanged while the training performance 

still improves. As it can be a sign of the onset of overfitting, the training process is halted by the 

early stopping algorithm described in Section 5.3.1.3.  

 
Fig. 5.6. The performance of deep learning models during the training process for (a) classificatoin and (b) regression tasks.  
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5.4.1.2. Performance of the machine learning techniques 

The accuracy and MAE distributions of the occupancy prediction models are demonstrated using 

box plots in Fig. 5.7 and Fig. 5.8. The kNN model provides the highest median accuracy at 75.92%, 

which is closely followed by the DT and GRU models, leading to a median accuracy of 75.25% 

and 75.08%, respectively. The use of the MLP for occupancy-state prediction results in the poorest 

performance with a median accuracy of 73.33%. In contrast, the MLP yields the best median MAE 

at 58.11 minutes when the arrival-time prediction models are concerned. It is followed by the GRU 

and kNN models at a median MAE of 59.30 minutes and 61.51 minutes, respectively. The highest 

median MAE minutes is obtained at 67.15 by implementing the DT algorithm.  

 
Fig. 5.7. The distribution of the accuracy calculated for the occupancy-state prediction models. 
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Fig. 5.8. The distribution of the MAE calculated for the arrival time prediction models. 

 

5.4.2. Control system performance  

The distribution of MissTime estimated for the RB control system based on different occupancy 

models for all the residential units is shown in Fig. 5.9. Using the occupancy-state prediction in 

the control system mainly results in lower MissTime, compared with the arrival-time models. kNN 

leads to the lowest MissTime with a median of 23 min/day. It is followed by the GRU model for 

the occupancy-state and arrival time prediction with a median of 33 and 35 min/day, respectively. 

Using the DT model for arrival-time prediction causes a poor thermal comfort condition at a 

median MissTime of 70 min/day. In addition to the developed occupancy models, the performance 

of the control system is also evaluated based on perfect occupancy prediction (i.e., the control 

system knows the actual future occupancy states in advance). Using perfect prediction in the 

control system leads to a MissTime of less than 5 minutes in all cases, which gives by far the best 

thermal comfort performance.  
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Fig. 5.9. The ditribution of MissTime performance for using different occupancy models in the RB control system. 

Fig. 5.10 indicates the distribution of the energy saving obtained by using different occupancy 

models in the control system for all apartments, taking the always-on control as the baseline. 

Implementing the actual occupancy models leads to a higher energy saving than using the perfect 

occupancy prediction model in most cases. The energy saving is obtained due to the prediction 

errors in the occupancy models, which reduce the preheating periods at the expense of occupants’ 

thermal comfort. It is not surprising that using arrival-time prediction models often provides a 

higher amount of energy saving than the occupancy-state prediction models since they usually 

sacrifice more thermal comfort, as demonstrated in Fig. 5.9. Utilizing the DT model for the arrival 

time prediction yields the best energy efficiency, saving up to 10.52% energy with a median of 

5.77%, which is 1.47% higher than that of the perfect prediction model. The DT is succeeded by 

the MLP, which results in a median energy saving of 5.28%. Among all the models, the kNN 

model used for occupancy-state prediction showed the lowest potential of energy saving at a 

median of 4.12%, 0.18% lower than that of the perfect occupancy model.  
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Fig. 5.10. The distribution of energy-efficiency performance of using different occupancy models in the RB control system. 

5.4.3. Overall performance of the occupancy models 

The mean relative closeness (i.e., overall performance score) calculated for each occupancy model 

used in the control system is demonstrated in Fig. 5.11. It is observed that using the occupancy-

state prediction models in the control system provides higher performance than using the arrival-

time prediction models. Regarding the occupancy-state prediction, the highest score is held by the 

kNN model at an average of 0.71. It is followed by the MLP, DT, and GRU, leading to similar R 

values at an average of around 0.6. Regarding the arrival-time prediction models, the control 

system based on the GRU model outperforms other algorithms, providing an average score of 0.51. 

The MLP and kNN result in a similar relative closeness at around 0.43. Employing the DT for the 

arrival time prediction significantly reduces the performance of the control system by providing 

an average score of as low as 0.32.  
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Fig. 5.11. The average relative closeness for the occupancy-state and arrival-time prediction models utilized in the RB control 

system. 

5.4.4. Correlation between the performance criteria 

In order to explore the relationship between the machine learning performance indicators (i.e., 

MAE and accuracy) and the performance of the control system, the averages of the indicators and 

the relative closeness are summarized in Table 5.3. The DT technique results in the highest average 

accuracy at 75.24%, and the MLP technique provides the lowest MAE of 58.62 minutes. 

Nevertheless, regarding the occupancy-state prediction models, the DT model offers a low relative 

closeness at 0.62, while the best score was provided by the kNN at 0.71. Furthermore, the GRU 

model outperforms the MLP technique by providing a relative closeness of 0.51 for the arrival-

time prediction.  

Table 5.3.  

The average of the MAE, accuracy, and the overall performance score (relative closeness) for each occupancy model. 

Model Occupancy-state prediction  Arrival-time prediction  

Accuracy (%) Relative 

closeness (R) 

 MAE (min) Relative closeness 

(R) 

 

DT 75.24 0.62  63.91 0.32  

GRU 74.65 0.60  62.23 0.51  

kNN 74.92 0.71  63.04 0.42  

MLP 74.51 0.62  58.62 0.44  

 

To visually explore the relationship of the accuracy and MAE with the relative closeness, the 

normalized indicators and R values associated with each system are represented using a dot chart 

in Fig. 5.12. When normalized MAE increases from 0 to 0.32, the values of R also increase. 

However, when the MAE rises to 1, the score significantly falls to 0.44. It shows that the 

relationship between the MAE and R might not be strong. In terms of accuracy, there are two 

inverse correlations when normalized accuracy increases from 0 to 0.19 and from 0.56 to 0.62 as 
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well as a direct relationship when accuracy rises from 0.19 to 0.56. This inconsistency between 

the variables can be a sign of week relationship between the variables. 

 
Fig. 5.12. Average relative closeness and the corresponding normalized accuracy and MAE associated with each model. 

The Pearson correlation coefficients calculated between the MAE, accuracy, and normalized 

values and the relative closeness are depicted in Fig. 5.13. The MAE provides the highest 

correlation coefficient at 0.42, which is in the range of 0.3 - 0.7 and is considered as a moderate 

correlation [123]. However, for the accuracy, the coefficient is highly reduced to a range of 0 – 

0.3, showing a weak correlation. Considering both MAE and accuracy indicators in a normalized 

form, the correlation is achieved as 0.23, which is also considered weak.  

The weak to moderate correlations between the indicators point out that using the accuracy and 

MAE might be misleading criteria for evaluating and comparing the merits of occupancy models. 

One of the reasons could be linked with the fact that these indicators do not reflect the timing of 

the prediction errors. For example, the MAE and accuracy do not differentiate between the 

prediction errors that might occur after a long or a short vacancy period. In the former case, 

inaccuracies in the occupancy prediction are more substantial, as they can cause a significant 

amount of thermal discomfort for occupants. However, in the latter case, no considerable loss 

might occur because the temperature has not much receded from the setpoint yet. Furthermore, the 

MAE and accuracy are defined regardless of the control rules employed to operate HVAC systems. 

Depending on the control rules and constraints, occupancy prediction results in some points of 

time might have no effects on the HVAC operation. For instance, as discussed in Section 5.3.3.2, 

the implemented control system maintains a setpoint temperature one timestep after the departure 

of the occupants to ensure that the thermal comfort is not damaged due to the probable detection 

errors. Thereby, during such events when the temperature is always kept at the setpoint, the 

occupancy prediction results have no effects on the HVAC operation, and consequently, any errors 

in such periods do not have a negative impact on the overall systems’ performance.  
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Fig. 5.13. Pearson correlation coefficient for evaluating the relationship between the machine learning performance metrics and 

relative closeness.   

5.5. Conclusion 

This study investigates the impact of selecting occupancy prediction models on the performance 

of occupancy-based HVAC control systems in residential buildings. Two different viewpoints of 

occupancy prediction modeling, namely arrival-time prediction and occupancy-state prediction, 

are studied. Additionally, the effectiveness of using different machine learning techniques, DT, 

kNN, MLP, and GRU, to predict future occupancy states in a predictive control system is 

evaluated. This study assesses the performance of the occupancy models when applied to a control 

system in terms of energy efficiency, thermal comfort, accuracy, and MAE. The TOPSIS method 

is implemented to provide an overall performance score by making a trade-off between the energy 

efficiency and thermal comfort. 

The results reveal that selecting the occupancy prediction viewpoint (i.e., arrival time prediction 

or occupancy states prediction) has a higher impact on the HVAC performance than selecting the 

machine learning techniques. In cases when the thermal comfort of occupants is considered as the 

superior criterion, the occupancy-state prediction models generally provide higher performance in 

most cases with the kNN model leading to the lowest MissTime. In contrast, the arrival-time 

prediction models mostly provide higher energy saving with the DT model leading to the best 

median energy saving. However, in terms of the average overall performance score with the 

consideration of equally weighted thermal comfort and energy saving, the occupancy-state 
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prediction models outperform other alternatives. Hence, in cases when the importance of the 

thermal comfort is greater than or equal to that of the energy saving, occupancy-state prediction 

using the kNN model often provides the best performance and is the recommended method. On 

the other hand, when the energy saving is given a substantially higher priority, using the DT model 

for the arrival-time prediction is recommended.   

It is also noted that there is a weak to moderate correlation between the machine learning indicators 

and the overall performance score. The correlation between the accuracy and the overall score is 

calculated as low as 0.2, which indicates a weak correlation. It can be concluded that using 

statistical criteria to evaluate and compare the performance of the occupancy models might be 

misleading in some cases. Instead, it could be more reliable to evaluate the occupancy model 

performance when applied to a control framework. It is worth noting that the current study is 

performed based on a limited number of residential cases. In order to generalize the results, more 

comprehensive cases and different control systems need to be employed. 
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Chapter 6: Impact of predictor variables on the performance of 

future occupancy prediction: Feature selection using genetic 

algorithms and machine learning5 

 

6.1. Overview 

This study analyzes the impact of employing different features on the performance of future 

occupancy prediction models. The aim is to identify the most effective predictor variables for 

occupancy models in order to enhance the prediction performance. To this end, a multi-objective 

genetic algorithm (MOGA) is proposed and employed to maximize accuracy while minimizing 

the number of features utilized in the model. A trade-off between the mentioned objectives is 

provided by using the technique for order of preference by similarity to ideal solution (TOPSIS). 

The performance of the proposed MOGA is compared with that of a single-objective genetic 

algorithm, forward sequential selection, and backward sequential selection methodologies to 

assess the effectiveness of the proposed method. The results reveal that the MOGA provides 

superior performance and is able to improve the median accuracy by up to 4.81% from 70.94% for 

long-term occupancy prediction based on backward sequential feature selection while utilizing 

fewer features. Based on the TOPSIS method, no more than six features are required for 

developing the occupancy models with recent occupancy states and day of week selected as the 

essential features. In some cases, using recent CO2 levels, occupancy duration, lighting states, and 

previous occupancy states also shows a potential improvement in the prediction performance. 

6.2. Introduction 

The efficient operation of heating, ventilation, and air-conditioning (HVAC) systems has been an 

active research area, as building operation is responsible for a large amount of energy consumption 

worldwide and people spend approximately 90% of their life indoors [159,189,190]. The primary 

objectives of numerous research works have been to decrease the amount of HVAC energy 

consumption while ensuring the quality of people’s work and life by providing acceptable thermal 

comfort. However, HVAC operation is still prone to needlessly conditioning vacant spaces and as 

a consequence, wasting energy [7,36]. This limitation is a consequence of ignoring the dynamic 

nature of occupancy patterns in building HVAC control. Furthermore, although programmable 

thermostats consider occupancy schedules in temperature control, it has been shown in several 

studies that they often failed to successfully save energy in residential buildings due to factors such 

as complex user interface design and the residents’ ignorance [114]. However, it was reported that 

the proper use of the occupancy information in HVAC control can save energy by more than 28% 

[13,58,71]. 

To address the shortcoming of conventional control systems, reactive occupancy-based control 

was proposed and evaluated in earlier studies [50,52,54–59]. Such systems adjust the indoor 

 
5 This chapter is based on the following publication: M. Esrafilian-Najafabadi, F. Haghighat, Impact of predictor 

variables on the performance of future occupancy prediction: Feature selection using genetic algorithms and machine 

learning, Building and Environment (2022) 109152. https://doi.org/10.1016/J.buildenv.2022.109152. 
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temperature to the current occupancy state. Each occupancy state takes binary values of 0 and 1, 

indicating the vacancy and occupancy states, respectively. Control systems can also adjust 

ventilation rates to the number of people by considering the information about occupant counts, 

which is out of the scope of this study.  Reactive control employs a setback temperature during 

vacancy hours to save energy while bringing back the desired setpoint as soon as occupants arrived. 

However, it can cause thermal discomfort upon occupants’ arrival as it takes a while to bring back 

the desired temperature from a setback due to HVAC lag time [114]. To minimize the thermal 

discomfort, the setback temperature needs to be selected conservatively, which can adversely 

impact the amount of energy and cost savings in the reactive control. Furthermore, the sudden 

transition from the setback to setpoint temperature might also negatively affect the peak energy 

demand of buildings. It was demonstrated that using occupancy-based HVAC control systems 

could cause a 10% increase in the peak energy demand, compared with conventional always-on 

control [61]. Predictive control was proposed and evaluated as a promising alternative to overcome 

the mentioned issues [13,44,45,61,62,68–71,191]. The predictive control goes beyond relying only 

on the current occupancy information by looking into future probabilities of occupancy. The 

control system can take advantage of future occupancy prediction to pre-condition the building in 

advance by considering demand profiles and HVAC lag time. Such predictive systems have also 

demonstrated the ability to define and plan the setback temperature based on the probability of 

future occupancy presence to save more energy [60]. 

Future occupancy prediction models can be considered the heart of the predictive control systems, 

and consequently, their accuracy can highly impact the overall system performance [192]. Gluck 

et al. [17] reported that a 10% reduction in false positive errors and false negative errors could 

improve the energy saving and thermal comfort by up to 9% and 16%, respectively. However, due 

to the highly scholastic nature of occupant behavior, future forecasting becomes highly 

challenging. In order to improve the prediction performance, many research works were devoted 

to developing different machine learning and statistical models. However, despite the variety of 

occupancy models proposed in the literature, the impact of their input variables on the prediction 

performance has been mostly neglected. The following section provides a literature review on the 

types of utilized features and the developed occupancy models. Next, the limitations of earlier 

research work and the contributions of this study are elaborated. 

6.2.1. Related research works 

Different attributes were utilized to develop the occupancy prediction models in the literature. 

Among different alternatives, time of day has been employed for occupancy prediction in most of 

the previous works [114]. It makes perfect sense that there can be a strong correlation between the 

time of day and occupancy patterns. Many people develop different routines, such as sleeping at 

night and waking up in the morning based on a specific time of day, which can be extremely 

helpful in predicting future occupancy states in residential buildings. The time of day was 

considered the main feature to predict future occupancy patterns in several studies 

[13,60,157,193]. Erickson et al. [66] developed a Markov chain model to predict future occupancy 

patterns based on historical occupancy data. The time of day was considered in an inhomogeneous 

Markov model by implementing different transition matrixes in different timesteps.  

Most researchers utilized multiple features in developing the prediction models to boost the 

performance. The time of day was followed by the day of week in terms of the frequency of use 

[114]. Killian et al. [191] reported that the uncertainty in occupancy prediction increased on certain 
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days of the week, while the patterns were more predictable on the other days. The dependence of 

occupancy patterns on different days of the week can highlight the importance of this attribute in 

occupancy prediction. Krumm and Brush [87] developed occupancy prediction models as a 

function of time of day and day of week. Based on the historical occupancy patterns collected 

using GPS locations, they developed occupancy prediction models for different households and 

achieved an accuracy of higher than 60% for most cases.  

The results achieved by Turley et al. [122] showed that using the day of week might not be the 

best choice for developing occupancy models. They developed several occupancy models and 

included either day of week or the weekends (taking 0 and 1 for the predictions on the weekdays 

and the weekends, respectively) as the attributes. It was demonstrated that in five out of six houses 

considered as case studies, the occupancy models using the weekends feature outperformed those 

using the day of week. Huchuk et al. [95] developed various machine learning models, including 

logistic regression (LR), k-nearest neighbors (kNN), random forests (RF), and long short-term 

memory (LSTM), for occupancy prediction using the time-of-day and weekends attributes. They 

showed that depending on the case study, the prediction technique, and the prediction horizon, the 

accuracy can vary in the range of 60%-90% in most cases. Shi et al. [74] assumed that the 

occupancy behavior generally differs during the weekends and weekdays and, therefore, split the 

entire occupancy database based on the weekends attribute. They utilized each split dataset and 

made use of the time of day to predict future occupancy states. Similarly, Scott et al. [45] split 

their database based the weekends attribute and developed the occupancy models using each 

created dataset. They predicted future occupancy states based on the mean of several historical 

days that were the closest points to the target label. Sangogboye et al. [82,84] included the time of 

day, day of week, and weekends features in the occupancy modeling procedure. They claimed that 

holidays and seasons could also impact the prediction performance because some events, such as 

school closure during the summer and the dependency of business hours on the holidays, can affect 

occupancy patterns in residential buildings.  

Some studies proposed additional features to be implemented in the occupancy models. Yu [89] 

reported that the previous occupancy and vacancy durations might impact the prediction 

performance. They employed these variables for occupancy prediction using genetic 

programming. Occupancy duration was also utilized in [83,88,90] for developing the occupancy 

models. Gjoreski et al. [83] predicted the future arrival and departure time of an employee in an 

office building using the month of the year and environmental features, such as outdoor 

temperature. Dong and Andrews [65] developed occupancy models based on the data received 

from acoustic, lighting, carbon dioxide (CO2), temperature, and relative humidity sensors. They 

assumed that the changes in the sensor data can provide valuable information for occupancy 

prediction and defined such meaningful changes as different events in the database. The defined 

events were utilized in an episode discovery method to find the important patterns and to predict 

future occupancy. The discovered patterns were employed in an HVAC control system to adjust 

the ventilation and indoor temperature to occupancy for saving energy. Salimi et al. [91] employed 

occupants’ identities, their activity types, their zonal locations, and time-of-day features in 

developing a Markov model to predict future occupancy. They considered different types of 

activities, such as working states, lunch breaks, short breaks, and meetings and reported up to 92% 

accuracy for predicting occupancy states in an office. Ryu and Moon [96] focused on using 

different attributes to deal with the privacy issues that might be caused due to using a network of 

cameras or motion detectors in residential buildings. They implemented CO2 concentration, 
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appliance energy consumption, lighting levels, and the time of day and developed a decision tree 

(DT) and a hidden Markov model to detect and predict occupancy states.  

Some researchers developed occupancy models as a function of occupants’ current locations. 

Gupta et al. [62] proposed a thermostat control that communicated with occupants’ cellphones and 

retrieved their current locations. Accordingly, the control system estimated the time it took for the 

closest occupant to arrive at home and signaled the HVAC system to start preheating the building 

in advance. Using this control framework, no thermal discomfort was reported while saving 7% 

energy, compared with conventional thermostats. Krumm and Brush [87] integrated such spatial 

data obtained from occupants’ cell phones with a probabilistic occupancy prediction model and 

showed that the integrated model could provide superior performance when compared to each 

standalone model.  

6.2.2. Research gaps and contributions 

As discussed in the previous section, a variety of different attributes were proposed and employed 

in earlier studies for developing the occupancy models. These predictor variables are summarized 

in Table 6.1. Many studies developed the prediction models based on the most frequent features, 

such as the time of day, day of week, and weekends. On the other hand, there are also studies that 

proposed additional features, such as indoor CO2 concentration. Given the variety of candidate 

features, a wise selection of the features among the alternatives becomes essential for developing 

the occupancy models since employing too many or too few attributes might respectively bring 

about overfitting or underfitting issues [14].  

Based on the mentioned features, different machine learning models, such as kNN and LR, have 

been developed in earlier studies for occupancy prediction. It has been reported that implementing 

feature selection (FS) methods as a preprocessing step before developing such models can improve 

the prediction performance in different applications, such as electricity price forecasting [194–

196]. However, concerning the occupancy prediction problem, this step was mostly neglected in 

earlier studies. 

Some research works implemented tree-based models for occupancy prediction. Due to their built-

in FS algorithms, they have shown the ability to avoid the use of irrelevant features by ranking the 

attributes based on their importance [197,198]. However, an FS process before developing these 

models is also valuable as it can enhance the computational speed, further improve the accuracy, 

and result in a better understanding of the prediction process [15,199]. Furthermore, finding the 

most relevant features can minimize the cost and efforts of installing the sensors in buildings [16] 

and reduce the costs associated with data storage [200]. 

Peng et al. [61] employed a sequential FS method for developing future occupancy prediction 

models. However, they considered few candidate features in this process, neglecting most of the 

possible predictor variables. Consequently, it is still unclear what types and number of features 

can provide the best performance in occupancy prediction models. There is a need for a study to 

consider an extensive number of candidate features and to find the optimal types and size of feature 

sets by avoiding irrelevancy and redundancy. 

This study aims to determine the most effective features and the optimal size of the feature sets for 

use in data-driven occupancy prediction models in residential buildings. For this purpose, an 

optimal FS method based on a multi-objective genetic algorithm (MOGA) is proposed and 

implemented. The objective of the optimization problem is to maximize the occupancy prediction 
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accuracy while minimizing the number of utilized features. Two approaches, namely maximum 

accuracy and technique for order preference by similarity to ideal solution (TOPSIS), are proposed 

to determine an optimal solution within the Pareto front solution set. In order to show the 

superiority of the proposed FS process, the performance of the MOGA is compared with that of a 

single objective genetic algorithm (SOGA), forward sequential selection (FSS), and backward 

sequential selection (BSS) as conventional FS methods. The process is performed based on an 

occupancy database collected from 32 apartments.  

The rest of the chapter is structured as: Section 6.3 provides details about the implemented 

database, its preprocessing step, and the FS methods. Section 6.4 discusses the results, and finally, 

the conclusions are presented in Section 6.5. 

Table 6.1.  

The attributes utilized for developing the occupancy prediction models in the literature. 

Feature Reference 

Calendar features  

   Time of day [13,60,82,84,114,157,193] 

   Day of week    [82,84,87,122,191] 

   Weekends    [45,74,82,84,95,122] 

   Holiday [82,84] 

   Month [83] 

   Season  [82,84,88] 

Indoor features  

   Acoustic data [65] 

   CO2 concentration [65,96] 

   Energy consumption [96] 

   Indoor temperature [65] 

   Lighting [65,96] 

   Relative humidity [65] 

Other features  

   Identity [91] 

   Activity type [91] 

   Occupancy/Vacancy 

duration 

[83,88–90] 

   Location [62,87] 

   Weather condition [83] 

   Zonal location [91] 

 

6.3. Methodology 

6.3.1. Database description and preprocessing 

An extensive occupancy database, gathered from 32 apartments in Lyon, France 

[29,120,156,174,175], is utilized for investigating the impact of features on the occupancy 

prediction performance. In the original database, the occupancy data was recorded at 1-minute 

intervals based on the signals received from passive infrared (PIR) sensors. It is worth noting that 

the use of PIR sensors can cause inaccuracy in occupancy detection. More specifically, during 

periods when occupants are mostly stationary at home, such as when they are sleeping or resting, 

the PIR sensors are prone to reporting false vacancy states. In order to minimize the mentioned 

errors, two actions were taken in both data collection and preprocessing steps. Firstly, in the data 

collection phase, attempts were made to construct a sensor network that can capture as many 
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movements as possible. For this purpose, each part of the apartments was equipped with at least 

one PIR sensor; one sensor was installed in each bedroom, bathroom, and kitchen. Additionally, 

two sensors in the living room and several sensors in the corridors. The sensor network is intended 

to catch small motions even while the occupants are resting with little mobility. However, it is 

natural that there are still some moments when the occupants might be completely stationary with 

no motions recorded by the sensors. In such cases, using too short time intervals (e.g., 1-min 

periods) can increase the chance of false vacancy states. For example, it can be common that 

occupants remain stationary with no motions at 1-min intervals; however, having no motions in 

longer periods such as half an hour is much less frequent. Hence, in the data preprocessing step, 

the data resolution is transformed to 30-minute intervals as recommended in [95]. In the 

transformed database, if any motions are recorded by any sensors in an apartment over a 30-min 

period, the corresponding time interval takes 1 to show the occupancy state; otherwise, 0 is stored 

as the label to indicate the vacancy state at the considered timestep.  

Although the occupancy detection accuracy has been improved using the above-mentioned steps, 

the PIR sensors are still prone to reporting wrong vacancy states. The ideal approach would be to 

employ more accurate detection systems, such as networks of cameras. Nevertheless, using such 

networks in residential cases can cause privacy issues for the occupants and cause considerable 

infrastructure costs. It should be noted that there are different factors that need to be considered 

when selecting an occupancy monitoring network, including detection accuracy, infrastructure 

costs, privacy, and added complexities. To make a trade-off between such factors, the mentioned 

PIR network is selected and utilized for the purpose of occupancy detection, as also employed in 

earlier works [29,95,120,156,174,175]. 

A brief description of the apartments, including the types of the apartments, corresponding 

occupancy ratios, and the floor plan is provided in Table 6.2 and Fig. 6.1. The occupancy ratio is 

defined as the number of occupied states divided by the number of total timesteps, which quantifies 

the proportion of time when the apartment is occupied. It should be noted that due to the above-

mentioned PIR sensor errors, the reported occupancy ratios are under-estimated. The database 

involves eight one-bedroom, eight two-bedroom, and 16 three-bedroom apartments. A direct 

correlation is observed between the occupancy ratio and the number of bedrooms. Three-bedroom 

apartments have the largest ratio at 55.95%, while 1-bedroom apartments result in an average ratio 

of as low as 41.59%. The reason could be that the apartments with more bedrooms in the same 

building are probably occupied by more crowded households and, as a result, can remain occupied 

for longer periods.  

Table 6.2.  

Information about the type of apartments and occupancy ratio based on 30-min intervals.  

Type Symbol Num. of 

apartments 

Num. of 

sensors per 

apartment 

Area (m2) Occupancy ratio  

(mean ± SD) 

One-bedroom 

apartment 

T2 8 10 52 41.59 ± 14.08 

Two-bedroom 

apartment 

T3 8 11 74 55.59 ± 13.1 

Three-bedroom 

apartment 

T4 16 13 110 and 90 55.95 ± 19.4 
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Fig. 6.1. The floor plan of the apartments utilized to collect the occupancy database. 

In order to visually explore possible occupancy patterns in the database, the average occupancy 

ratios in each hour of day, and day of week are demonstrated for three sample apartments in Fig. 

6.2. Although the whole feature selection process is performed based on 30-min intervals, the 

visualization of the occupancy ratios is provided based on 1-hour periods in this figure. It is 

because presenting the data at half hours (i.e., at 30-min intervals) might overcomplicate the 

visualization process without adding further values.  

An occupancy pattern can be observed for the sample T4 apartment. The large occupancy ratios 

from 8:00 to 12:00 indicate the higher occupants’ tendency to stay at home in the morning. 

However, the average occupancy ratios significantly fall between 12:00 and 16:00, showing that 

the probability of vacancy hours is higher during this period. Furthermore, the occupancy ratios 

significantly drop on Sundays, indicating the possible dependence of the occupancy patterns on 

the day of week. Similarly, T3 apartment also demonstrates a quite regular occupancy pattern. The 

household tends to leave home during working hours as the occupancy ratios are substantially 

smaller from 8:00 to 20:00. However, they often stay at home during the weekends leading to 

larger occupancy ratios. In contrast, no clear occupancy patterns can be detected by visualizing the 

occupancy ratios for the T2 apartment possibly because the household might not follow a regular 

daily occupancy routine. 

6.3.1.1. Candidate features 

Table 6.3 summarizes the features that are available in the utilized database and are employed as 

candidate features in this study. These features are classified into four categories: calendar, 

previous occupancy patterns, indoor, and environmental features. The features in the first category 

are intended to help the model to learn seasonality in the occupancy patterns.  The seasonality in 

time-series data is defined as the patterns that are repeated at the same frequency [201]. Most of 

the previous studies highlighted the possible impact of time of day, day of week, and weekends on 

the occupancy patterns. Although a few studies suggested the use of longer-term features such as 

months and even seasons, they are excluded from the current study. It is because in order to capture 
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monthly and quarterly patterns, the occupancy data over a long period is required, which is not 

available in this study.  

The time-of-day feature is created by dividing the entire day into 48 equal intervals with each 

interval taking values from 0 to 47, denoting 00:00 to 23:30, respectively. The day-of-week 

attribute takes values from 0 to 6 to show the days of the week in a sequential order starting from 

Monday. As people tend to go for vacations on the weekends and holidays, these attributes might 

also contribute to providing more accurate occupancy predictions. Hence, weekends and holiday 

attributes are also included as candidates, taking 1 and 0 to indicate days off and working days, 

respectively. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.2. The average occupancy ratios in different hours of day and days of week for three sample a) T4, b) T3, and c) T2 

apartments. 

Table 6.3.  

The candidate features utilized in the FS process. 

Feature Unit 

Calendar features  

   Time of day - 

   Day of week - 

   Weekends - 

   Holiday - 

Previous occupancy patterns  

   Current and lagged occupancy states - 

   Occupancy duration -  

   Vacancy duration - 

Indoor features  

   Current and lagged CO2 concentration ppm 

   Current and lagged lighting states - 

   Current and lagged appliance energy 

consumption 

kWh 
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   Current and lagged window states - 

Weather condition  

   Current and lagged outdoor temperature °C 

 

As the occupancy prediction problem is addressed as a time series analysis, the previous occupancy 

states might also be helpful in predicting future occupancy patterns. In this study, the occupancy 

state at timestep t (i.e., the current time step) and 12 occupancy states at previous time steps (i.e., 

at t-1, t-2, …, t-12), called lagged variables, are utilized to create a binary occupancy vector as 

shown in Fig. 6.3. In order to create the lagged variables, the current occupancy state at each time 

step needs to be regularly stored in a database so that the required information from the previous 

timesteps can be always available for the model. Each element of this vector can take 0 and 1 

representing vacancy and occupancy states, respectively [45]. The occupancy information can also 

be used as the occupancy or vacancy duration. These variables demonstrate how long the building 

has remained in the last occupancy or vacancy states. For example, if the building has been in the 

vacancy state for p sequential timesteps, the vacancy duration takes p as its current value. In this 

case, the occupancy duration takes the number of consecutive timesteps when the building was 

occupied prior to the last state (i.e., the vacancy period in this case). 

 
Fig. 6.3. The lagged and current occupancy states utilized to forecast future occupancy. 

There might also be  a relationship between the occupancy patterns and CO2 concentration, lighting 

states, and energy consumption [65,96]. The CO2 concentration is correlated with the number of 

people occupying a place [94,100]. This correlation can be utilized to correct the possible PIR 

sensor errors when people are stationary with minimum movements. During such events, although 

no motions are recorded by the motion detectors, the occupancy model can estimate whether the 

building is still occupied or not based on the CO2 data. Additionally, the information about the 

occupant counts can help the model to better predict future occupancy states since there might be 

a relationship between the current number of people occupying a place and the possible future 

occupancy behavior. The changes in the CO2 concentration can be a sign of changes in the 

occupancy patterns, and as a result, similar to the occupancy-state attribute, 13 CO2 features (i.e., 

the CO2 concentration at the current timestep and at 12 previous consecutive timesteps) are 

considered as candidate features in the selection process. The lighting state is also considered a 

candidate feature. It may also help the model to correct wrong occupancy sensor recordings. For 

instance, if no motions are recorded from the sensors, the probability of a false vacancy state is 

higher when the lighting states have remained unchanged. Besides, the lighting patterns can be 

correlated with the occupancy patterns and can help to improve the prediction accuracy [65]. The 

lighting states take 0 and 1, denoting the on and off states, respectively. The plug loads in the 

households are also considered candidate features as there might be a relationship between 

occupants’ habits, such as watching TVs and using coffee machines, with their occupancy 
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behavior. The energy features recorded in the database have rare large values that might be outliers 

due to sensor errors [202]. Hence, the database needs to be preprocessed to detect and handle the 

potential outliers. To this end, the standard deviation (SD) method as a statistical approach is 

employed. According to this method, all the data elements which are not placed in the following 

range are labeled as outliers [203,204]: 

 (18)  

in which μ is the mean and σ is the standard deviation of the data. In this study, if the plug load 

value of a data instance, which is labeled as an outlier, is placed above (below) this range, they are 

replaced by the upper bound (lower bound) values. Fig. 6.4 illustrates the plug loads recorded for 

a sample apartment before and after the outlier handling step. There are a limited number of 

timesteps with an unusually large energy consumption of as high as 300 kWh before preprocessing 

the data. These rare events can be considered as noise and might cause overfitting to the train set 

when learning the occupancy behavior. After eliminating the potential noise, the data is placed in 

a more narrowed range of 10-110 kWh. Hence, the concerned rare events with unusually high 

energy consumption are smoothed out in the preprocessed database, and therefore, the SD method 

shows the ability to deal with the possible outliers. It is acknowledged that the energy consumption 

data might not follow the Gaussian distribution assumption in some cases. However, in this study, 

the SD method is utilized because of its ability to address too large elements of energy consumption 

data and its simplicity. 

 
Fig. 6.4. The plug load patterns from a sample apartment a) before and b) after addressing the outliers. 

The window states, taking 0 and 1 respectively for closed and opened windows, are selected as 

candidate features because of the direct relationship between the CO2 concentration and the 

building ventilation rate. When occupants open a window, they can change the CO2 level in the 
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building by allowing more natural ventilation. In such cases, the correlation between the 

occupancy level and CO2 level might change. Thereby, utilizing the window state and its lagged 

variables might be helpful in future occupancy prediction, especially when utilized along with the 

CO2 concentration.  

The last category consists of the outdoor temperature. This attribute can impact vacations and 

recreational activities and, thus, may be helpful in developing the occupancy models. For example, 

people might tend to stay at home in extremely cold weather and as a result, occupy the building 

more often during such events. 

The database utilized in this study consists of the sensor data from March 14, 2016, to the end of 

the year. It is split into two datasets of training and test. The training dataset consists of the data 

from March 14, 2016, to November 14, 2016. The FS process is performed on the training dataset 

to find the effective features. In this process, the k-fold time-series cross-validation (CV) method 

is utilized to evaluate the performance of each occupancy model using the Scikit-learn library in 

Python [103]. Generally, the value of k is selected to make a trade-off between bias and variance 

of the prediction model [201]. However, as the FS approaches used in this study are rather 

computationally expensive, determining the k value should also consider the computational speed. 

Although the k values of 5 and 10 have been selected most frequently in the literature because of 

their acceptable bias-variance trade-off provided in most cases [205], this study selects a smaller 

value of k at 3, as also suggested in [95], to make the FS process computationally affordable. In 

the next step, the final performance of occupancy models based on each FS method is unbiasedly 

evaluated based on the unseen test dataset.   

6.3.2. Optimal feature selection 

The MOGA is proposed and developed to find the optimal features that can lead to the highest 

occupancy prediction performance. More specifically, the MOGA tries to find a set of solutions 

that maximize the accuracy of the occupancy prediction while minimizing the number of utilized 

features. Accuracy is defined as the number of correct predictions (i.e., the sum of true positive 

and true negative predictions) divided by the total number of predictions for each occupancy 

model. According to its definition, accuracy gives equal weights to all different errors regardless 

of their timing and importance. Hence, it was suggested in [192] that the performance of the 

occupancy prediction models should be evaluated in the context of HVAC control in terms of 

practical performance criteria such as thermal comfort and energy saving. However, implementing 

such detailed metrics requires thorough models of buildings and control systems, which can add 

to the problem complexity and the required computational time. Since the FS methods utilized in 

this study are iterative and relatively time-consuming, using such performance metrics is too 

computationally expensive. Hence, the accuracy, as the most selected performance score for 

occupancy model evaluation in the literature [114], is selected in this study to enhance the 

evaluation speed. 

The reason behind considering the second objective (i.e., minimizing the number of features) is to 

avoid selecting redundant or irrelevant features since they might bring about the overfitting issue 

and, consequently, a decrease in the prediction accuracy when applied to new unseen datasets 

[206]. In order to assess the effectiveness of the proposed MOGA, its performance is compared 

with that of the SOGA, which only focuses on maximizing the prediction accuracy. 
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6.3.2.1. Genetic algorithm for feature selection 

The genetic algorithm (GA) was initially inspired by the evolution theory [207]. It is an iterative 

search method that has been implemented for a variety of problems, aiming to find the global 

optimal solution [135]. As demonstrated in Fig. 6.5, the GA begins the optimization process by 

randomly initializing the first population of chromosomes (also called individuals). Each 

chromosome is a potential solution to the optimization problem (i.e., a candidate feature subset). 

The GA repeatedly tries to improve the population and obtain the optimal feature set using some 

operations, including crossover and mutation [208]. The number of chromosomes is called the 

population size, which is denoted by N in this study. In the FS problem, each chromosome can be 

represented by a bit string taking M binary values, in which M is the number of candidate features; 

0 and 1 values respectively indicate whether the corresponding feature is utilized or neglected in 

developing every machine learning model. In the next step, N machine learning models are trained, 

and the corresponding accuracies are measured. In the MOGA, the fitness of each individual is 

evaluated as a function of the accuracy and the number of features, while only accuracy is 

considered in the SOGA. As the individuals with higher merits (i.e., higher fitness) are more likely 

to result in the optimal solution, they are ranked based on their fitness. The best N/2 of the 

individuals are selected to be carried forward to the next population using the tournament selection 

method [209], and the rest is eliminated from the population. In order to reconstruct the entire 

population, the removed individuals are replaced with the offspring of the selected ones. More 

specifically, the genes of the selected individuals (also called parents) are combined, and new 

children are generated. After creating the new generation, a mutation rate is utilized to add more 

diversity amongst the children by randomly changing their genes. The entire process is repeated, 

and the population is continuously improved until the stopping criterion is met (i.e., the maximum 

number of iterations). The parameters utilized to develop the GA in this study are summarized in 

Table 6.4. 

 

Table 6.4.  

The parameters utilized in the MOGA and SOGA. 

Parameter Value 

Population size, N 200 

Number of maximum iterations 200 

Mutation rate 0.1 

Selection method Tournament 

Maximum number of features 20 
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Fig. 6.5. The schematic diagram of the MOGA. 

The FS methods utilized in this study are considered wrapper methods, in which the FS process is 

performed by repeatedly measuring and enhancing the performance of a developed prediction 

model [111]. Consequently, an occupancy prediction model needs to be selected and implemented 

in the FS process. Various algorithms, including conventional machine learning techniques, deep 

learning algorithms, and sequential models can be utilized for this purpose [192]. However, one 

of the main limitations of the GA algorithm is the rather long computational time [138], and 

consequently, it is of essential importance to choose a fast occupancy model. This limitation 

prevents the use of more complex algorithms, such as deep learning models, as they are often 
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associated with relatively longer training time. In this study, the occupancy models are developed 

based on DT algorithms that can provide a relatively higher computational efficiency [210]. As 

demonstrated in [192], DT models can provide an acceptable level of accuracy when compared to 

kNN, multi-layer perceptron (MLP), and gated recurrent unit (GRU) algorithms. The DT algorithm 

is developed in Python using the Scikit-learn library [103] based on the entropy metric as the 

attribute selection criteria. The SOGA and MOGA techniques are developed using the Pymoo 

library [211], as a powerful multi-objective optimization tool, in the same environment. The 

MOGA and SOGA are employed separately for each apartment and for different prediction 

horizons of one, four, and eight timesteps (i.e., 30, 120, and 240-minute predictions in advance), 

which are respectively named short-, mid-, and long-term predictions throughout this chapter. 

6.3.2.2. Multi-criteria decision making 

As discussed earlier, the MOGA tries to maximize the accuracy and minimize the number of 

features utilized in the occupancy prediction. Since the MOGA does not often converge to a unique 

optimal solution due to the conflict between these objectives, it gives a set of the Pareto optimal 

solution (also called non-dominated solutions) for each apartment and prediction horizon. The 

Pareto optimal set is defined as a solution set that cannot be dominated by other solutions in terms 

of both criteria [212]. In other words, none of these solutions can be improved without sacrificing 

at least one of the criteria (i.e., either the accuracy or the number of selected features) [213]. 

In such multi-criteria decision-making (MCDM) processes, a solution among the alternatives can 

be selected according to the decision makers’ preferences [214]. Two decision making (DM) 

approaches are implemented in this study: first, it is assumed that as long as the accuracy increases, 

the decision-maker is willing to provide the model with the required attributes, and as a result, 

there is no limit on the number of features utilized in the model. As the only focus of this method 

is to increase the accuracy, this approach is named the maximum accuracy (MA) method. In the 

second approach, it is considered that the decision-maker is willing to make a trade-off between 

the number of features and the accuracy. It is especially helpful when the decision-maker needs to 

minimize the number of sensors to be installed in a building and to keep the occupancy modeling 

problem as simple as possible. To make the mentioned trade-off, the TOPSIS methodology is 

utilized. 

In TOPSIS, each alternative within the Pareto set is compared with two ideal points, namely the 

positive ideal solution (PIS) and the negative ideal solution (NIS) [145]. The PIS is an ideal 

solution with the best ideal performance, i.e., with the highest accuracy and fewest number of 

features among all the alternatives. In contrast, the NIS indicates the worst case with the largest 

feature subset and the lowest accuracy. The alternative with the shortest Euclidian distance from 

the PIS and longest distance from the NIS is considered the optimal point. In order to 

mathematically select the best solution, the relative closeness for the alternative j, Rj, can be 

calculated for each point as follows [144]: 

𝑅𝑗 =
𝑑𝑗

𝑁𝐼𝑆

𝑑𝑗
𝑃𝐼𝑆 + 𝑑𝑗

𝑁𝐼𝑆 (19)  
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in which 𝑑𝑗
𝑁𝐼𝑆 and 𝑑𝑗

𝑃𝐼𝑆 indicate the distances between the alternative j and the NIS and PIS points, 

respectively. The point with larger relative closeness is selected as the ultimate solution for each 

apartment and prediction horizon. 

6.3.3. Sequential feature selection 

It is acknowledged that the MOGA adds a great deal of complexity to the FS process and, as a 

result, it is essential to find out whether the added complications can be compensated by providing 

superior performance. In other words, using the MOGA need to result in a higher prediction 

accuracy or fewer selected features, compared with the more straightforward FS methods. To this 

end, two conventional sequential FS methods, namely FSS and BSS, are used as baselines. 

Although many studies have evaluated and compared the performance of the BSS and FSS 

techniques in different problems, it is still not clear which method provides superior performance 

for a given database [215]. Therefore, both methods are employed and compared in this study. 

Fig. 6.6 shows the working diagram of the FSS algorithm. The process begins with an empty 

feature subset. In the first step, M different feature subsets are created with a size of i, in which i 

denotes the number of iterations. Each created subset is employed to develop an occupancy 

prediction model and its performance is evaluated using the CV. The feature set that leads to the 

highest occupancy prediction performance is permanently added to the feature subset and proceeds 

to the next iteration. This process continues until the size of the feature set equals a predefined 

feature number, which is assumed as 20 for both FSS and BSS.  
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Fig. 6.6. The schematic diagram of the FSS process. 

In contrast, the BSS starts the process with a subset involving all the candidate features. As shown 

in Fig. 6.7, in the first step, all the possible feature sets with the size of M-i are created by removing 

a single feature. Based on each subset, a DT model is developed, and its performance is assessed 

using the CV. The feature that its removal leads to the highest performance is permanently 

removed from the candidate features for proceeding to the successive iterations [216]. Similar to 

the FSS, the process continues until the predefined number of features is met.  
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Fig. 6.7. The schematic diagram of the BSS process. 

6.4. Results and discussion 

6.4.1. Multi-objective genetic algorithm 

This section discusses the Pareto solution set provided by the MOGA and compares the 

performance of the MA and TOPSIS approaches. The normalized Pareto frontier solution set, PIS, 

NIS, and the selected solutions based on the TOPSIS and MA methods for a sample T4 apartment 

and for the short-term prediction are demonstrated in Fig. 6.8. The contradiction between the two 

objectives can be observed; as the number of features decreases, the accuracy of the model falls. 

Consequently, as discussed in Section 6.3.2.2, no features can provide a superior performance 

when both criteria are considered. Using TOPSIS, an optimal solution is chosen among the 

alternatives with the shortest and longest distances from the PIS and NIS, respectively, while the 

MA approach selects the point with the highest accuracy regardless of the number of features.  

In order to compare the final solutions selected based on the TOPSIS and MA methods, the mean 

and standard deviations of the test accuracy for both approaches are summarized in Table 6.5. The 

largest distinction between the average performance occurs for mid-term occupancy prediction; 

the accuracy decreases from 79.09% in the MA method to 78.38% in the TOPSIS method, which 

is a 0.71% difference in the mean test accuracy. In contrast, the selection approach has a minor 

impact on the short-term occupancy prediction with a 0.31% difference between the mean 

accuracy of both methods. As for the mid-term occupancy prediction, the average accuracy drops 

by 0.56% from 77.85% for the MA to 77.29% for TOPSIS.  
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Fig. 6.8. A sample Pareto frontier solution including the PIS, NIS, and the selected solutions based on the TOPSIS and MA 

methods. 

 

 

Table 6.5.  

Mean and standard deviation of the occupancy prediction test accuracy for the MA and TOPSIS methods. 

DM 

approaches 
Prediction horizon 

 

 Short term Mid term Long term  

MA 
83.89 ± 

5.45 

79.09 ± 

7.55 

77.85 ± 

7.68 

 

TOPSIS 
83.58 ± 

5.56 

78.38 ± 

7.70 

77.29 ± 

7.74 

 

 

It is worth noting that the existence of a set of solutions rather than a unique optimum makes it 

rather complicated to check whether the algorithm converges to the global optimum point, or it 

can still search for a higher quality solution. To address this issue, hypervolumes are calculated to 

track the convergence of the algorithm. The hypervolume indicator has been one of the most 

utilized set-quality indicators in multi-objective optimization problems [217]. It is defined as the 

volume between the Pareto solutions and a user-defined reference point [214]. Fig. 6.9 

demonstrates the changes in the hypervolume as the algorithm proceeds with the reference point 

assumed at (1, 1) for a sample apartment. After almost 12,000 evaluations, the algorithm almost 

converges to a stable solution; the following negligible changes in the hypervolume increase the 

probability that the optimization algorithm has reached the global optimum rather than the local 

ones. 
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Fig. 6.9. The convergence of the hypervolume quality indicator based on the number of function evaluations.  

6.4.2. Performance of feature selection methods 

In order to compare the performance of the FS methods, the distribution of the test accuracy of the 

occupancy prediction models developed based on the MOGA, SOGA, FSS, and BSS are 

demonstrated using box plots in Fig. 6.10. To analyze the impact of the prediction horizon, the 

results are categorized according to the short-, mid-, and long-term predictions. As this comparison 

is based on testing accuracy, the MA approach is implemented for decision-making in the MOGA. 

It can be observed that the MOGA outperforms other methods by providing the largest maximum, 

minimum, and median test accuracy in all the categories. It is observed that the prediction accuracy 

falls by increasing the prediction horizon regardless of the FS method. It is because predicting 

longer-term events often causes higher uncertainty and, consequently, lower prediction accuracy. 

The MOGA yields a median accuracy from 75.75% for the long-term to 81.95% for the short-term 

predictions. It is followed by the FSS for all the prediction horizons in most cases. It is worth 

mentioning that despite the higher complications in developing the SOGA, it is mostly 

outperformed by the FSS. In most cases, the BSS gives the poorest performance, leading to median 

test accuracy in the range of 70.94%-79.05% as a function of the prediction horizon. The difference 

between the median accuracy of the MOGA and the BSS is as high as 4.81% (for long-term 

predictions), highlighting the importance of choosing the right FS method in occupancy prediction. 
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Fig. 6.10. Distribution of the test accuracy based on different FS methods. 

The distribution of the mean CV accuracy of different methods is demonstrated in Fig. 6.11. 

Although the MOGA led to the best median test accuracy among the models, it results in the lowest 

median train accuracy from 77.34% for the long-term prediction to 84.06% for the short-term 

prediction. The FSS method gives the second-lowest median accuracy in the range of 79.46%-

84.86%. It is followed by the SOGA and BSS methods, respectively. Hence, the methods that lead 

to the lowest training performance give the best predictions on the test set. It can be concluded that 

the lower testing performance, given by the SOGA, FSS, and BSS methods, can be partially due 

to the overfitting issue. Therefore, implementing the second objective (i.e., minimizing the number 

of features) in the MOGA can be considered a successful approach to enhance the final accuracy 

of the model by avoiding this issue. 
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Fig. 6.11. Distribution of the mean CV accuracy based on different FS methods. 

Fig. 6.12 compares the distribution of the number of features selected using the MOGA and the 

SOGA for all the prediction horizons and apartments. It is noted that the number of features utilized 

in the FSS and the BSS is not demonstrated because these methods work based on the predefined 

number of features assumed as 20. As can be seen, there is a significant distinction between the 

number of features selected using both methods; the MOGA leads to a median feature number of 

as low as three, while the SOGA requires a median of 18 features, which is close to the maximum 

limit.  

Overall, regarding both the number of features and test accuracy, the MOGA provides superior 

performance in comparison with other methods. Hence, the rest of the section is devoted to 

elaborating the results obtained by the MOGA to find out which features result in the best accuracy 

and are essential in developing future occupancy prediction models. 
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Fig. 6.12. Distribution of the number of features selected using the MOGA and SOGA. 

6.4.3. Optimal feature types 

Fig. 6.13 and Fig. 6.14 respectively demonstrate how frequently each feature is selected based on 

the MA and TOPSIS approaches. In these figures, [t-3, t] indicates that the corresponding variables 

give information at a time step in the range of t-3 to t, in which t is the current time step.  Similarly, 

[t-11, t-8] and [t-7, t-4] demonstrate the variables recorded at the determined time ranges. For 

instance, Occupancy [t-3, t] refers to an occupancy state at either the current time step t or earlier 

timesteps of t-1, t-2, or t-3. As each timestep presents information over half an hour, each range 

demonstrates a 2-hour time period for each variable. 

 In all the prediction horizons and approaches, the attribute of recent occupancy states (i.e., the 

occupancy states at the previous four timesteps), denoted by Occupancy [t-3, t], is selected the 

most for predicting future occupancy, accounting for up to 38.5% of the utilized features. This 

attribute is followed by the hour of day with a selection frequency in the range of 14%-25%. 

The selection of the rest of the features depends on the prediction horizon and the DM approach. 

In terms of the short-term prediction, recent CO2 concentration, denoted by CO2 [t-3, t], follows 

the time-of-day attribute and accounts for 8.09% and 11.84% of the selected features in the MA 

and TOPSIS methods, respectively. Based on TOPSIS, the mentioned three features constitute 

81.57% of the selected attributes while the others provide a contribution of less than 3% each. On 

the other hand, in the MA approach, recent lighting and window states can also contribute to the 

occupancy prediction with 6.62% and 5.88% selection frequency, respectively. Each of the other 

features is utilized less than 5% for the short-term prediction according to the MA approach. 
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Regarding the mid- and long-term predictions, vacancy duration was the third most-used variable, 

with a selection frequency in the range of 7.8%-17.74%. Following the vacancy duration, the 

information about the older occupancy states, namely occupancy [t-7, t-4], occupancy [t-11, t-8], 

and occupancy duration, provided the highest contribution. In the mid-term prediction, the 

mentioned features, day of week, hour of day constitute 74.55% and 91.94% of the total features 

in the MA and TOPSIS approaches, respectively. In the long-term prediction, the holiday and 

recent lighting states might also improve the prediction performance with a selection frequency of 

more than 5%. Other features for mid- and long-term predictions were rarely utilized in developing 

the occupancy models and removing them from the feature sets might not significantly impact the 

prediction accuracy in most cases. 

 
Fig. 6.13. The frequency of the selected features based on the MA approach. 
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Fig. 6.14. The frequency of the selected features based on the TOPSIS method. 

6.4.4. Optimal number of features 

The average number of features selected for the occupancy prediction models based on the MA 

and TOPSIS approaches are respectively demonstrated in Fig. 6.15 and Fig. 6.16. According to 

the MA approach, almost half of the occupancy prediction models employed less than four 

features. The second largest group is associated with four to six features, accounting for 34% of 

the total occupancy prediction models. Only 14% of the models require more than six features for 

occupancy prediction with the 10-13 feature group accounting for only 3%. The models developed 

based on the TOPSIS method employed a significantly smaller number of features with no models 

using more than six features. Almost half of the models implemented only two attributes. The 

three-feature category, as the second-largest group, makes up 22% of the occupancy models, which 

is followed by single-feature models at 19%. Only 6% of the models are developed using more 

than three features. 

 
Fig. 6.15. The average number of features selected based on the MA approach. 
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Fig. 6.16. The average number of features selected according to the TOPSIS method. 

6.5. Conclusion 

In this study, an optimal FS method based on the MOGA is proposed and applied to a database 

collected from 32 apartments. The MOGA minimizes the number of features utilized in occupancy 

prediction models and maximizes the prediction accuracy. The aim is to enhance the occupancy 

prediction performance by optimizing the features employed in the occupancy models. More 

specifically, this study investigates which features are essential in developing the occupancy 

prediction models, which features are likely to contribute to the occupancy prediction, how many 

features lead to the best accuracy in most cases, and which FS methodologies can yield superior 

performance. The optimal solutions are determined among the Pareto solution set using the MA 

and TOPSIS approaches. In order to investigate the effectiveness of the proposed MOGA, its 

performance is compared with that of the SOGA, FSS, and BSS in terms of test accuracy and the 

number of utilized features. The FS process is performed separately for short-term, mid-term, and 

long-term predictions to consider the impact of the prediction horizon on the selected features.  

The results show that the MOGA outperforms other algorithms, leading to the best accuracy while 

requiring a substantially smaller number of features in developing the occupancy models. The 

MOGA yields different results depending on the DM approaches. Employing the MA approach 

results in up to 0.71% rise in the average accuracy, compared with the TOPSIS method; however, 

TOPSIS leads to a fewer number of features used in the occupancy models. According to the 

TOPSIS method, no more than six features are required in developing the occupancy models, while 

based on the MA approach, up to 13 features can be implemented in some cases. In all the 

prediction horizons and DM approaches, recent occupancy states and the time of day are shown to 

be essential in developing the occupancy prediction models. However, the selection of the rest of 

the optimal features depends on the prediction conditions and the DM methods. The recent CO2 

concentration is the recommended feature for short-term predictions, while for longer horizons, 

vacancy duration, previous occupancy states, holiday, and lighting states demonstrate potential 

contributions to the occupancy prediction performance. 

It should be noted that the performance of the FS algorithms presented in this study depends on 

the performance of the machine learning model (i.e., the DT model). Although DT provides 

benefits such as high computational speed and the ability to capture non-linear relationships 

between the variables, it is prone to overfitting the database, which can negatively impact the 

testing performance. Hence, it is suggested to investigate the impact of different machine learning 
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models when analyzing the features in future research. Furthermore, this study considers a limited 

number of FS methods, namely FSS, BSS, SOGA, and MOGA. There are also other feature 

selection methodologies such as recursive feature elimination, premutation importance, filter, and 

embedded FS methods, which can also be considered. It is suggested to investigate more FS 

methods to compare and find the most effective features in future works. Additionally, there are 

limitations in terms of the utilized database. Although the database provided extensive information 

and features, it lacks some variables, such as occupants’ activity types and their locations when 

they are not present at home, which might be helpful for occupancy prediction. It is recommended 

to collect and utilize a wider range of variables, as candidate features, in the FS process in future 

works. 
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Chapter 7: Towards self-learning control of HVAC systems with the 

consideration of dynamic occupancy patterns: Application of model-

free deep reinforcement learning6 

 

7.1. Overview 

This study proposes a self-learning control system with the ability to learn dynamic changes in 

occupancy patterns and HVAC lag time. This control system takes advantage of a double deep Q-

networks (DDQN) model, as a model-free reinforcement learning algorithm. The aim is to learn 

an optimal decision-making policy by interacting with the environment without a need for 

developing building and occupancy models. The control system’s performance is evaluated and 

compared with that of a model-based predictive control (MPC) algorithm, which is assisted by 

supervised learning models. The results reveal that the proposed method results in superior thermal 

comfort for occupants by taking prediction uncertainty into account for making control decisions. 

This ability improves the average temperature deviation and deviation period respectively by 0.24 

°C and 7.87% with MPC as the benchmark. However, analyzing the performance of the algorithm 

shows significant thermal comfort violations during the initial training periods. It causes a 2.8% 

more deviation period and 0.32 °C higher temperature deviation in the first episode of training 

compared with the performance of the fully-trained agent. 

7.2. Methodology 

7.2.1. Reinforcement learning (RL) 

7.2.1.1. Markov decision process (MDP) 

To develop the RL algorithm to make the sequential control decisions, the problem is first 

formulated as Markov decision processes (MDP). The MDP framework consists of three key 

components of states, actions, and rewards. Each state is a representation of the environment, 

which is observed by the agent (i.e., the element of the system that makes the control decisions) 

[218]. In every state, the agent interacts with its environment by making control decisions, also 

called actions. Taking each action can lead to a transition from the current state to a different state 

and an instant reward. The agent always tries to improve the actions to maximize the amount of 

the cumulative reward [20]. Hence, the reward function is utilized to define the ultimate goal of 

the RL algorithm. In the following sections, the state space, action space, and the reward signal 

are defined in more detail. 

7.2.1.1.1. State-space formulation 

In this study, five attributes are employed in the MDP framework to represent the states to the 

control agent. As summarized in Table 7.1, these features are classified into two categories based 

on the type of information they provide for the agent: HVAC lag time and Occupancy schedules. 

The first category is primarily utilized to help the agent to learn the HVAC system lag time. In 

 
6 This chapter is based on the following publication: M. Esrafilian-Najafabadi, F. Haghighat, Towards self-learning 

control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep 

reinforcement learning, (2022) (Submitted) 
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other words, the agent is expected to estimate how long it takes for the HVAC system to warm up 

or cool down the indoor environment. The first feature in this category is the outdoor temperature, 

which is selected because of the dependency of HVAC performance on outdoor weather 

conditions. It is worth noting that there are also other factors such as relative humidity, solar 

radiation, wind speed, and rainfall, which can be utilized for this purpose. Nevertheless, as 

mentioned in [14], among these variables, the outdoor temperature has the highest impact on the 

building energy prediction, and for the sake of not over-complicating the control problem, other 

features are neglected in this study. The HVAC lag time also depends on the indoor temperature, 

which is also utilized to represent the agents. For example, it naturally takes more time to warm 

up a building when the temperature difference between the indoor and desired temperature is 

larger.  

As will be discussed in Section 7.2.1.2, the agent always strives to maximize the expected 

cumulative rewards. To this end, the algorithm tries to estimate the future rewards associated with 

different actions. As the goal of the control system is to maximize energy saving and thermal 

comfort, occupancy information might enable the agent to learn the occupancy patterns and adjust 

the current temperature to the future probabilities of occupancy. In this way, the agent can pre-

heat or pre-cool to prepare the zone before occupants’ arrival time to save energy while avoiding 

thermal discomfort. The variables placed in the second category are expected to help the agent to 

learn and forecast the occupancy patterns. Various attributes, such as day of week, time of day, 

type of day (i.e., working days or weekends), and carbon dioxide (CO2) concentration, might be 

useful for this purpose. However, two essential features, namely occupancy states in the last two 

hours and time of day, can provide an acceptable level of accuracy in most cases [219]. Therefore, 

these variables are selected to provide the agent with occupancy information in this study.  

Due to the complex nature of occupant behavior, which includes occupancy patterns, a great deal 

of uncertainty exists in future occupancy patterns [220]. Such uncertainty and prediction errors 

can negatively impact the control system performance [17]. To investigate such effects, a scenario 

with perfect occupancy prediction (i.e., occupancy prediction with no errors) is also considered. 

In this scenario, the control system accesses the actual future occupancy states as a state feature. 

In other words, the agent receives the next following 2 hours of the occupancy data in advance at 

the current timestep of interest. Consequently, the agent does not receive other occupancy-related 

features (i.e., recent occupancy states and time of day) in this case.  

Table 7.1.  

The features utilized to represent the state-space for the agent. 

Feature Unit 

HVAC lag time   

   Outdoor temperature °C 

   Indoor operative temperature    °C 

Occupancy schedules  

   Recent occupancy states - 

   Time of day Hour 

   Actual future occupancy states - 
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7.2.1.1.2. Action-space formulation 

The task of the control system is to determine a setpoint temperature at every control timestep. 

Although temperature can be defined as a continuous variable, the action space, A, is discretized 

for the sake of avoiding complexities in the control framework. Three indoor temperature settings 

of deep setback at 15 °C, conservative setback at 19 °C, and setpoint temperature at 22 °C are 

considered as the action set. It should be noted that the thermal inertia of the building makes it 

possible for the agent to reach the intermediate temperature values via switching between these 

settings. Thus, introducing more actions does not necessarily lead to performance improvement 

[18]. The action space is defined based on the described setpoint/setback temperatures as follows: 

𝐴𝑡 = [15, 19, 22] °C (20)  

7.2.1.1.3. Reward function  

The control system’s function is to accomplish two main tasks: to minimize energy consumption 

and thermal comfort. These objectives need to be reflected in the reward function so the agent can 

find the optimal actions accordingly. It is a common practice to represent the former objective as 

a function of the amount of heating energy supplied to the building, denoted by Qheat [221]. 

Regarding the latter, the thermal discomfort can be defined as the difference between the indoor 

operative temperature, 𝑇𝑜𝑝 , and the desired setpoint, 𝑇𝑠𝑝 , when occupants are present. The 

operative temperature can be defined as the average of mean radiant temperature and the air 

temperature [222]. This variable quantifies the impacts of both radiant and convective heat 

transfers from the occupants’ bodies to the environment, which are two main components for 

representing the thermal comfort of occupants [182]. The following reward function can be defined 

based on both energy and thermal comfort terms [18,223]: 

𝑅𝑡 = −𝛽(𝑄ℎ𝑒𝑎𝑡) − (1 − 𝛽). 𝑂𝑐𝑐. (𝑇𝑜𝑝 − 𝑇𝑠𝑝)
𝑛

 (21)  

where   weights each objective while n weights the magnitude of temperature deviation. The 

weights can be determined based on the designer’s experience and trial and error [224]. Occ 

indicates the binary occupancy state (i.e., 0 and 1 respectively showing the absence and presence 

of occupants). As suggested in [225], normalizing the reward function to put the energy and 

thermal comfort on the same scale might help to learn the optimal policy (i.e., the mapping between 

the states and the selection probability of the actions [18]). Hence, the following normalized 

reward function is also considered in this study: 

𝑅𝑡 = −𝛽 (
𝑄ℎ𝑒𝑎𝑡

𝑄ℎ𝑒𝑎𝑡,𝑚𝑎𝑥
) − (1 − 𝛽). 𝑂𝑐𝑐. (

𝑇𝑜𝑝 − 𝑇𝑠𝑝

∆𝑇𝑚𝑎𝑥
)

𝑛

 
(22)  

in which 𝑄ℎ𝑒𝑎𝑡,𝑚𝑎𝑥 and ∆𝑇𝑚𝑎𝑥 represent the maximum values of heating energy and temperature 

difference, respectively. The smart design of the reward function is a vital task in RL [226]. Thus, 

the parameters of the reward function, namely n and 𝛽, and the type of the reward function (i.e., 

normalized or original form of the reward function) are carefully selected through trial and error. 

7.2.1.2. Q-learning algorithm 

Q-learning has been a popular RL algorithm proposed by Watkins [227], which can be utilized to 

find the optimal solutions to the MDPs [22,228]. It is a model-free algorithm, in which the agent 

learns directly from the experience through trial and error. The agent tries to find the actions that 

lead to the highest Q-value in each state. The Q-value, also called the state-action value is defined 
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as the expected reward for taking a specific action a given a state s, which can be formulated as 

follows [20]: 

2

1 2( , ) E( ... | , )t t t t tQ s a r r r s s a a + += + + + = =
 

(23)  

where ( , )Q s a  is the Q-value, E is the expected return, r is the instant reward at each timestep, and 

 is the discount factor. The Q-values are randomly initiated and are updated at each timestep 

based on the new experience gained by the agent using the following equation [229]: 

( , ) ( , ) ( max ( , ) ( , ))
a

Q s a Q s a r Q s a Q s a 


  + + −  (24)  

in which  is the learning rate, s is the next state, and a is the next action. The learning rate can 

be selected in the range of 0 – 1; a learning rate that equals to 1 leads the model to replace the old 

Q-values with the new ones, while a learning rate that equals to 0 results in an algorithm that 

practically does not update the old values. The value of the learning rate is considered a 

hyperparameter of the RL algorithm and is tuned through trial and error. 

7.2.1.3. Deep Q-network 

Q-learning techniques traditionally make use of so-called Q-tables, in which the values of the Q-

function for each action and state are recorded [230]. However, this methodology becomes 

infeasible for cases in which a large number of actions or states are implemented [225]. As a 

promising solution to this issue, DQN was proposed [231]. The DQN replaces the use of 

conventional Q-tables with a deep neural network (DNN) as a well-practiced function 

approximator. In this approach, the number of neurons in the input layer equals the number of 

features that represent the states, defined in Section 7.2.1.1.1. The number of neurons in the output 

layer equals the number of actions, defined in Section 7.2.1.1.2. The DNN structure tries to learn 

the relationships between the Q-values and each action and state. The weights of this Q-network,

 , are updated via optimizing the following loss function, L, as follows [231]: 

( )
2

( , ; )DQNL Y Q s a  = −   
(25)  

where 
DQNY is the target value that can be defined as: 

max ( , ; )DQN

a
Y r Q s a  −


 = +  (26)  

in which 
−

represents the weights of the target network. The target network is a separate DNN 

that is utilized along with the Q-network to prevent the learning process from possible divergences 

[225]. The target network utilizes the same structure as the Q-network. It was initially proposed 

that the weights of the target network are updated cyclically as a copy of the weights of the Q-

network, which is known as the hard update method [231,232]. However, another method called 

soft update was later introduced and integrated with the developed libraries [233,234]. This method 

updates the weights via interpolation with a fixed ratio in each step. The update method is selected 

in the hyperparameter tuning process, which will be discussed in more detail in Section 7.2.1.6. 

Table 7.2 summarizes the structural parameter of the implemented networks.  
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Table 7.2.  

The structural parameters of the function approximator. 

Parameter Value 

Number of hidden layers 3 

Number of neurons (64, 32, 64) 

Optimizer Adam [235] 

Activation function in the hidden layers Rectified Linear Unit (ReLU) 

[168] 

 

7.2.1.4. Double deep Q-networks (DQN) 

In practice, DQN is prone to overestimating the Q-values, which might negatively affect the 

performance of the RL algorithm [229]. Hasalt et al. [236] stated that utilizing the same Q-network 

for both selection and evaluation of an action is the main reason for the overestimation problem in 

conventional DQN. They proposed double deep Q-networks (DDQN) to deal with this issue and 

demonstrated its ability to improve the optimal policy found by the RL algorithms. DDQN 

decouples the processes of action evaluation and selection by redefining the target value as 

follows: 

( ,arg max ( , ; ), )DDQN

a

Y r Q s Q s a   −



  = +  (27)  

Based on this relationship, first, the DDQN algorithm selects the optimal action based on the Q-

network. Then, instead of using the same network to evaluate the Q-value, the target network is 

employed.  

7.2.1.5. Policy 

One of the key points in developing RL algorithms is to define an appropriate policy to provide a 

trade-off between the tasks of exploration and exploitation. More specifically, if a greedy policy 

(i.e., a policy that always exploits to maximize the expected rewards) is utilized in all states, the 

agent might never try all the possible actions. Consequently, it increases the likelihood of 

converging to a suboptimal solution. To solve this issue, the agent should be able to try many 

different possibilities while learning the Q-values. The balance between exploration and 

exploitation can be obtained using the epsilon-greedy policy [27]. According to this method, the 

agent selects a random action with a probability of epsilon (i.e., the rate of exploration) while 

exploiting with the probability of (1 - epsilon). 

It should be noted that the epsilon-greedy method assigns equal probabilities to each action 

regardless of their corresponding Q-values. In other words, the agent does not differentiate 

between different actions when it explores, which can cause the risk of having too large thermal 

discomfort for occupants. For example, when the agent is searching among possible actions and 

interacts with the environment, it might randomly select a deep setback temperature when 

occupants are present even though it might be associated with a relatively small Q-value. To 

address this limitation, this study also considers the Boltzmann exploration policy as an alternative 

approach. In this method, each action is assigned with a probability of being selected based on 

their Q-values using the following equation [237]: 
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( , )
exp( )

( | )
( , )

exp( )
i

Q s a

TP a s
Q s i

T

=


 

(28)  

where T is the temperature parameter that is used to change the exploration rate. The higher values 

of the temperature parameter leads the model to search more. Based on this equation, the higher 

the Q-values of a certain action, the more probable that the action is selected by the agent. As a 

result, this policy tends to become greedy when there are large differences between probabilities, 

while it does more exploration when the probability distribution is almost uniform. This strategy 

is valuable for decreasing the risks associated with exploring new actions by giving more chances 

to those with higher Q-values.  

It should be noted that in the initial steps of the learning process, the estimated Q-values can be 

unreliable, and consequently, more explorations are required for both epsilon-greedy and 

Boltzmann methods. However, as the learning process proceeds and more trustable Q-values are 

obtained, the agent can exploit more to minimize the risk of thermal comfort violation and energy 

waste. Hence, the temperature and epsilon parameters are initiated with higher values of 1 (i.e., 

higher explorations), and while the learning process proceeds, they linearly decrease to a minimum 

value. This minimum value is important to ensure that the agent always tries to improve its actions 

and adapts to any changes to the occupancy patterns. In this study, the policy type (i.e., epsilon-

greedy and Boltzmann), the decay duration (i.e., the number of episodes in which the search 

coefficients are linearly decreasing), and the minimum values of epsilon and T are considered as 

hyperparameters that need to be tuned.  

7.2.1.6. Hyperparameter tuning 

The hyperparameters of the DDQN and the assigned search ranges are summarized in Table 7.3. 

Buffer size indicates the maximum number of the recent data elements that are stored in memory 

to be utilized for training the agent. Target model update shows how frequently and based on what 

update rule the target model is updated. The values higher than 1 indicates the number of steps 

after which the weights of the target network are replaced by a copy of the Q-network weights 

based on a hard update. On the other hand, the values less than 1 refer to the soft update method, 

in which the parameter values demonstrate the interpolation coefficient [232]. Learning rate 

controls how fast the gradient descent adjusts the weights of the Q-network to the target values. 

While too large values can cause divergence in the learning process, small values can increase the 

training time [225]. Discount factor determines the weights that the agent gives to the distant future 

rewards, compared with immediate rewards. A discount factor equal to 0 results in an agent that 

only consider the immediate rewards, ignoring the effects of the current actions on the following 

steps. In contrast, a discount factor equal to 1 leads the agent to equally weight all the future 

rewards for making its current control action [238]. As discussed in Section 7.2.1.5, the policy, 

decay duration, and the minimum search coefficient are also considered hyperparameters and are 

determined in the tuning process. Those hyperparameters leading to the best accumulative rewards 

based on trial and error are considered the final parameters for the network. 
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Table 7.3.  

Hyperparameters of the DDQN model with the associated search ranges for the tuning process. 

Hyperparameters Ranges 

Buffer size  [2,000-20,000] 

Target model update [10-5, 10-4, 10-3, 10-2, 10-1, 0, 1, 10, 100] 

Learning rate [10-5, 10-4, 10-3, 10-2] 

Discount factor [0.1-0.9] 

Policy [E-greedy, Boltzmann] 

Decay duration (episodes) [5-10] 

Minimum search coefficient [0.05, 0.1, 0.15, 0.2] 

 

7.2.1.7. Employment of DDQN  

The working diagram of the DDQN algorithm is demonstrated in Fig. 7.1. The learning process 

begins with the environment sending the initial state to the control agent. In other words, in step 

1, the current state at time step t, S(t), which consists of occupancy states over the last four 

timesteps, Occ [t-4, t], hour of day, H(t), outdoor temperature, Tout(t), and operative temperature, 

Top(t), are given to the control agent. This information is directly utilized in the Q-network to 

estimate the Q-values associated with each action. In step 2, according to the policy and the 

estimated Q-values, the action at time step t, At, (i.e., the setpoint temperature for the following 

time step, Tsp(t+1), is selected and is applied to the environment. Along with Tsp(t+1) and Top(t), 

the values of solar radiation, SR(t+1), and outdoor temperature in the next timestep, Tout(t+1), are 

passed into the building model to obtain the associated energy consumption, EC(t+1) and indoor 

temperature, Top(t+1), at time step t+1. Now, step 3 calculates the reward, R(t+1), that is associated 

with the taken action using the reward function. Then, the feedback of the environment involving 

the state, action, and reward values can be given to the agent (step 4). The control algorithm, first, 

stores the feedback in the reply buffer, and then, passes a batch of recent experiences to the 

networks. The aim is to calculate the loss function and update the weights of the Q-networks via 

the gradient descent method. Depending on the update approach (i.e., soft or hard update methods) 

the weights of the target network are regularly updated. The learning and control processes are 

continuously repeated until the end of the training episode. 

A heating season starting from the first of November to the end of March is utilized for training 

the DDQN algorithm. The agent is trained repeatedly on the database with each iteration defined 

as a training episode. After 20 episodes of training, the agent is applied to unseen occupancy data 

over a heating season of the same length to evaluate its performance using a greedy policy. More 

details about the databases are provided in Section 7.3. 
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Fig. 7.1. The working diagram of the implemented DDQN algorithm. 

Fig. 7.2 demonstrates a general overview of the interactions between the software packages and 

Python libraries utilized to develop the DDQN agent. In the first step, a virtual testbed is 

constructed by developing a white-box model using the EnergyPlus [129] engine as described in 

Section 7.3.2. The virtual building provides an interactive environment for the control system, 

which is later utilized to evaluate the system performance. As will be discussed in Section 0, the 

simulation process is accelerated by developing a black-box building model that replicates the 

behavior of the virtual building. The building models are developed using Keras [125] and scikit-

learn [103] libraries in Python. Moreover, the Keras library is also utilized to develop the function 

approximator of the DDQN.  

The interactions between the building environment and the control agent, which is developed using 

Keras-RL [239], are enabled through the use of OpenAi Gym toolkit  in Python [240]. The OpenAi 

gym includes a Python class, in which three main functions, namely Initialization, Step, and Reset, 

are defined and utilized to enable the agent to directly interact with the environment. In the 

Initialization function, the action space, observation space, the initial state of the building, and the 

length of each episode (i.e., the five-month heating period) are defined. These variables are always 

initialized in the first step of the learning process. The interactions between the agent and 

environment are performed through the Step function. More specifically, in each control step, the 

agent sends the selected action to OpenAi Gym using this function, and then, the next state and 

instant rewards are sent back to the control system. The rewards are calculated as a function of the 

occupancy and weather data, stored in a MySQL database [121], and the outputs of the building 

model in each step. Next, the agent makes the next decision and updates the Q-values accordingly. 

This process continues and the Q-values are updated until the first episode ends. At this point, the 

Reset function is utilized to reset the episode and begin the learning process from the initial state. 

After the last episode, the learning process is completed, and the agent behaves based on the 

optimal policy.  
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Fig. 7.2. The general overview of the interactions between libraries and software packages utilized to develop the DDQN 

controller. 

7.2.2. Model-based predictive control  

The general working diagram of the MPC is demonstrated in Fig. 7.3. Generally, the control 

framework consists of two main parts: 1. The prediction models (i.e., the occupancy and building 

models), and 2. The optimization algorithm. The prediction models are trained based on the 

collected historical data, which will be discussed in detail in Section 7.2.2.2. Regarding the second 

part of the system, the optimization algorithm takes advantage of the prediction models to estimate 

the future disturbances (i.e., occupancy patterns) for the control decisions. Using the weather data 

as another input, the optimization algorithm searches for the optimal control actions that can be 

employed to minimize a cost function, which will be discussed in Section 7.2.2.3. When the control 

decisions are made in each timestep, it is applied to the building. The feedback is measured 

continuously and is stored in the related databases that can be utilized later to improve the quality 

of the models of the building and occupancy. Moreover, the information regarding the indoor 

operative temperature is always employed to adjust the HVAC operations in the following 

timesteps.  
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Fig. 7.3. The overview of the workflow of the MPC. 

7.2.2.2. Building and occupancy prediction models 

The MPC algorithm developed in this study is leveraged with an occupancy model so that it can 

adjust the indoor operative environment to the future occupancy patterns. More specifically, the 

system can determine the depth of setback as a function of the estimated duration of vacancy 

periods. For example, the control system might opt for a deep setback when the zone is expected 

to remain vacant for a long time. The controller might turn the HVAC system on before occupants’ 

arrival to provide thermal comfort for occupants upon arrival. Many studies have made attempts 

to capture the complexities in the occupancy patterns and predict the future occupancy states in 

buildings; from simple Naïve prediction models to complex deep learning algorithms have been 

developed for this purpose [76,82–84,86,94,95]. As reported in an earlier comparative study [192], 

a kNN model can outperform other alternatives in most cases by providing a higher average of 

thermal comfort and energy saving. Thus, a kNN model with a k value of 15, as suggested in [192], 

is developed to be integrated with the MPC algorithm.  

The occupancy model can receive a variety of different attributes, such as time of day, day of 

week, holidays, weekends, and CO2 concentrations, as input variables [114]. However, it was 

demonstrated in [219] that among different predictor variables, previous occupancy states in the 

last two hours and the time of day are essential features, which are adequate for occupancy 

prediction in many cases. Hence, these variables are selected as the input features of the kNN 

model. It is assumed that the future occupancy states during a two-hour period are adequate for 

decision-making in MPC because of the generally short-term HVAC lag time. It is worth noting 

that a separate kNN model is developed to predict the occupancy states in each future control 

timestep. For example, given a 30-min control timestep, four kNN models need to be developed 

to provide the MPC with future occupancy states in two hours. 

In addition to the occupancy models, the MPC algorithm needs an accurate building model to 

evaluate the impacts of the control decisions on the system performance over its prediction horizon 

[241]. As developing building models are often accompanied by prediction errors (i.e., the model 

is not 100% accurate), MPC might encounter uncertainty about future decision making. Such 

potential inaccuracy might negatively impact the MPC performance. This study eliminates such 

effects by utilizing the same building model for both making control decisions and evaluating the 

performance. In other words, a perfect building model is assumed in the MPC algorithm. Hence, 
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the performance of the MPC is overestimated in this study. The building modeling procedure and 

the description of the case study building are provided in Section 0 and Section 7.3, respectively. 

7.2.2.3. Optimization algorithm 

MPC makes the control decisions by solving an optimization problem at every time step [242]. It 

seeks the same goal as the DDQN agent, i.e., to maximize thermal comfort while minimizing 

energy consumption. Therefore, the same reward function, described in Section 7.2.1.1.3, can also 

be utilized to define the objective function of the MPC algorithm. In this way, the MPC aims to 

find the optimal setpoint temperature that can maximize the cumulative rewards over the prediction 

horizon, H. The objective function of the MPC can be formulated as follows: 

max ∑ 𝑅𝑡+ℎ

𝐻

ℎ=1

 

(29)  

where 𝑅𝑡+ℎ represents the instant reward at each future time step, estimated using Eq. 17 or Eq. 

18. The MPC algorithm searches for the optimal operative temperature (i.e., the manipulated 

variable) over the prediction horizon, that can maximize the objective function. Although the 

manipulated variable is optimized over the prediction horizon, only the first optimal variable (i.e., 

the setpoint temperature at the next timestep) is applied to the building. Then, the whole 

optimization process is repeated in the next sampled timestep to regulate the following indoor 

temperature.  

7.2.2.4. MPC employment 

The working diagram of the MPC is demonstrated in Fig. 7.4. At each timestep t, the process 

begins with an optimization algorithm. For this purpose, a genetic algorithm (GA) is employed in 

this study because of its potential ability to reach the global optimum and its promising 

performance in different applications [124,138]. The hyperparameters of the GA are summarized 

in Table 7.4. The process begins by initializing the first population with a size of N in the GA. A 

population consists of a set of chromosomes (also called individuals), where each chromosome 

represents a candidate solution to the optimization problem (i.e., the indoor operative temperatures 

over the prediction horizon). Every chromosome contains H genes that represent the setpoint at 

each future timestep. The prediction horizon of the MPC is considered as four timesteps because 

of the short-term nature of the occupancy-based control systems. 

In the next step, the fitness of the individuals needs to be evaluated based on the objective function. 

To this end, each solution (Top(t+1), …, Top(t+H)) along with SR(t), Tout(t), and Top(t) are utilized 

in the building model to provide an estimation of the energy consumption and indoor temperature 

over the prediction horizon. For the sake of not overcomplicating the control process, it is assumed 

that the changes in the weather condition are negligible over the course of the prediction horizon, 

and therefore, no future weather forecast is required in the control framework. It is also worth 

noting that as well as the current value of the operative temperature recorded by the sensors in the 

building, its future values (i.e., Top(t+1), …, Top(t+H-1)) are also required as the inputs of the 

building model. As the future values are not available at timestep t, the estimated output of the 

building model is also utilized as the model input. For example, Top(t) is first utilized to estimate 

the future operative temperature, Top(t+1). Next, this estimated value is then employed in the 

building model for calculating the following value, Top(t+2). 
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Table 7.4.  

The parameters utilized for developing the GA. 

Parameters MPC optimizer 

Population size 30 

Mutation rate 0.05 

Selection method Tournament 

Stopping criteria Not improvement in the solution 

 

In order to calculate the fitness of the individuals, it is also essential to estimate future occupancy 

patterns to estimate the future values of Occ as an input for the reward function. The occupancy 

model receives the recent occupancy states (i.e., Occ(t-4), …, Occ(t)) and time of day as input and 

yields predictions of future occupancy states over the prediction horizon. The same dataset utilized 

to train the DDQN network is also employed to develop the kNN model for occupancy prediction. 

In step 4, the reward function is calculated, as defined in Eq. 25, and the fitness of each individual 

is achieved. 

After calculating their fitness, the individuals are ranked and the best half of them are selected to 

proceed to the next step. A crossover operation is performed on the selected individuals to 

repopulate the whole set via producing the children. The children are randomly undergone 

mutation to add more diversity to the solution set to prevent getting stuck in the local optima. This 

process is iteratively repeated to improve the population until the stopping criterion is met. In the 

last iteration at timestep t, Tsp(t+1) is selected and applied to the building. The process repeats at 

the next timestep to make the control decisions.   

 

Fig. 7.4. The schematic diagram of the MPC implemented in this study.  
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7.2.3. Building model 

The building model is a key component for the RL and MPC control systems. To briefly recall, 

the DDQN control requires a building model to enable the interactions between the agent and the 

environment. The MPC algorithm needs the building model to estimate the energy consumption 

and indoor temperature associated with the control decisions. Although white-box models often 

yield high accuracy by solving detailed mathematical equations, they are computationally 

inefficient for use in such control applications [124]. More specifically, the MPC and DDQN are 

iterative techniques, which are computationally expensive, and thus, it is essential to select a model 

that can be fast and reliable. To this end, this study utilizes black-box models to replicate the 

behavior of the virtual building, described in Section 7.3.2, by estimating future energy 

consumption and indoor operative temperature. Various machine learning models can be 

employed for this purpose [111]. Among the possible models, some of the most popular ones, 

namely random forest (RF), linear regression (LR), kNN, and artificial neural networks (ANN) are 

developed, and their performance is compared in terms of execution time and mean absolute error 

(MAE).  

The hyperparameters of different algorithms are determined through trial and error and are 

summarized in Table 7.5. RF, LR, and kNN models are developed using Scikit-learn [166] library 

and the ANN model is developed using Keras [125] with TensorFlow backend [243] in the Python 

environment. In order to generate the required database to develop the black-box model, 10 

separate simulations are performed using the white-box model described in Section 7.3.2. Each 

simulation is run using a different setpoint schedule, generated by assigning a random operative 

temperature in the range of 15-23 °C to each hour of day. The simulations are run based on 10-

min intervals, with each simulation providing 21,745 data records for the heating season. the 

granularity of the created database is transformed into 30-min intervals to be consistent with the 

length of control timesteps. The entire database is split into two subsets of train and the test with 

a ratio of 80:20 based on random sampling. The models are trained on the train set and their 

performance is measured on the test dataset in terms of MAE and the execution time. The 

execution time is calculated as the time the model takes to predict future occupancy states for the 

entire test dataset.  

Table 7.5.  

Hyperparameters of the ML models employed as building models. 

Hyperparameters Values 

RF  

   Number of trees 10 

kNN  

   Number of neighbors 10 

ANN  

   Number of hidden layers 2 

   Number of neurons in each hidden layer 1st layer: 64 

2nd layer: 128 

   Learning rate 0.005 

   Optimizer Adam 

   Activation function Hidden layers: ReLU 

Output layer: Linear function 

   Regularization method Early stopping with a patience size of 2,000 

   Number of epochs 20,000 

   Batch size 5,000 
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7.2.4. Performance evaluation metrics 

The thermal comfort of occupants is measured from two different viewpoints: 1) average 

temperature deviation, devT , and 2) deviation period, devP . The former criterion is defined as the 

average deviation of the indoor operative temperature from the desired setpoint when occupants 

are present at home and can be formulated as a function of temperature deviation, devT , as follows: 
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where ( )Occ t shows the occupancy state at timestep t and L shows the number of total timesteps 

in each episode. The deviation period is defined as the proportion of time when occupants 

encounter a temperature deviation of more than 0.5 ºC. The period of temperature deviation, devP , 

can be calculated using the following equation:  
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in which ( )devC t  is the temperature deviation coefficient. The control performance is also assessed 

in terms of saving energy. For this purpose, the energy consumption of each control system is 

compared with that of an always-on controller as the baseline. The always-on controller maintains 

the temperature at the desired setpoint all the time regardless of the occupancy states. The energy 

saving, ES, of the RL and MPC is estimated using the following equation: 
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(34)  

where baselineEC and cEC  are respectively the energy consumption of the baseline and the 

controllers.  
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7.3. Case study 

7.3.1. Occupancy database preprocessing 

This study employs an occupancy database gathered from 20 residential units in an apartment 

block during the years 2015 to 2017. A detailed description of the database can be found in 

[192,219]. In the preprocessing step, the occupancy data is aggregated from 1-min to 30-min 

intervals to be consistent with the duration of the control timesteps, which can accelerate the 

simulation process and reduce the impact of occupancy detection errors [156]. Each interval takes 

1 if at least one motion is detected over the 30-min interval and otherwise takes 0 to show the 

vacancy state. There are also missing values in the occupancy data possibly due to sensor or 

network failure. The missing values are replaced with 1 to ensure that thermal comfort is not 

sacrificed.  

As discussed in Sections 7.2.1.1.1 and 7.2.2.2, two types of predictor variables are implemented 

to predict future occupancy patterns. First, the hour-of-day attribute is employed to reflect the time 

of day for the occupancy prediction. This variable can take integer values in the range of 0-23 to 

indicate each hour of day. In order to utilize this feature in the ML model, it is converted to 23 

independent dummy features. In addition to the time of day, the occupancy states from four 

previous timesteps (i.e., two hours) are also utilized for the occupancy prediction.  

7.3.2. Building testbed 

To assess the performance of the control algorithms, a virtual detached residential building, also 

implemented in earlier studies [156,192], is employed as a testbed. The characteristics of the 

building and the conditions used for the simulation are summarized in Table 7.6. The simulation 

consists of a five-month period covering the whole heating season from the first of October to the 

end of March. Electric baseboards are selected as the heating equipment to meet the thermal 

comfort requirements. Given the efficiency of electric baseboards as 100%, the amount of 

electricity consumption equals the amount of heating energy associated with each controller. The 

building envelope and the construction material are defined in SketchUp software [130] via 

Openstudio plug-in [131]. Then, the developed model is imported into EnergyPlus to complete the 

simulation. 

Table 7.6.  

The characteristics of the virtual building and the conditions under which the simulation is performed. 

Parameter Value 

Net conditioned area 135 m2 

Number of floors 1 

Type Detached house 

Number of bedrooms 3 

Season Winter (Heating season) 

Weather data Very cold climate [129] 

Heating equipment Electric baseboards 

Efficiency of heating 

device 

100% 

Building material ASHRAE standard [128] 

Design software SketchUp and Openstudio [130,131] 

Simulation engine EnergyPlus [178] 

Simulation timestep 10 minutes 
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7.4. Results and discussion 

7.4.1. Building model selection 

To evaluate the control performance, the best building model needs to be determined among the 

candidate ML algorithms. Fig. 7.5 demonstrates the performance of the ML algorithms in terms 

of MAE and computational time (i.e., the time it takes to perform the prediction task on the test 

dataset). The ANN model provides the most accurate prediction with an MAE of 0.18 kWh and 

0.21 °C respectively for energy and temperature estimations. However, the high accuracy is 

obtained at the expense of computational time, taking 0.23 seconds to perform the prediction task. 

The RF model closely follows the performance of the ANN model by providing an MAE of 0.19 

kWh and 0.22 °C respectively for the energy and temperature estimation while providing a 

substantially faster computation with 0.05 seconds execution time.  

It should be noted that as the MPC and RL are iterative control algorithms, the execution time, 

although small, can accumulate and might bring about too large computational time, especially in 

the hyperparameter tuning process. Hence, a tradeoff between prediction performance and 

computational efficiency becomes necessary in such applications. In this study, the RF model is 

selected as the preferred building model because it is almost four times faster than the ANN model 

while providing acceptable performance. It is noted that although the LR model provides much 

faster execution at 0.002 seconds, it is not selected because of its poor prediction performance with 

MAE of 0.59 kWh and 0.69 °C respectively for energy and temperature predictions. 

 

Fig. 7.5. The performance of the building models in terms of prediction performance and computational time.  
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7.4.2. DDQN control system 

7.4.2.1. Hyperparameter tuning  

Table 7.7 summarizes the parameters of the reward function and the hyperparameters of the control 

system determined based on trial and error. In the first step, the type and parameters of the reward 

function need to be selected. For this purpose, various values are tried, and the performance of the 

agent is closely monitored. Those values that can enable the agent to learn the following behavior 

are selected: 1) not sacrificing thermal comfort of occupants to save energy and 2) preheating the 

building before the occupants arrive.  

After determining the parameters of the reward function, the hyperparameters of the DDQN are 

determined through trial and error. The parameters leading to the highest accumulative reward are 

selected to develop the ultimate models. It is observed that a median buffer size of 12,875 is 

selected in this process. This value demonstrates that the agent uses the experience from more than 

one episode in most cases as an episode consists of around 7,200 steps. The median coefficient of 

the target model update is calculated as 0.1, showing that a soft update method is the preferred 

update strategy in most cases. Additionally, the Boltzmann policy is mainly selected with a median 

minimum search coefficient of 0.10.  

Table 7.7.  

The hyperparameters of the DDQN model.  

Hyperparameters Ranges 

Reward function  

   type Original form 

of the 

function 

   n 2 

   beta 0.7 

DDQN algorithm  

   Median buffer size  12,875 

   Median target model update 0.1 

   Median f the learning rate 0.001 

   Median discount factor 0.8 

   Median decay duration 7 episodes 

   Mode Policy Boltzmann 

   Median minimum search coefficient 0.10 

 

7.4.2.2. Training process and convergence 

Fig. 7.6 shows the rewards obtained by the DDQN algorithm over 40 episodes of training for a 

sample apartment. During the initial episodes, the algorithm continuously improves its 

performance and increases the rewards. The episodic rewards improve from less than -8,500 to 

more than -5,000 after 10 episodes of training, which is approximately 41% improvement in the 

performance. However, after 10 episodes of training, the agent cannot find a superior policy to 

enhance the performance.  
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Fig. 7.6. The episodic rewards achieved by the DDQN agent during the training process. 

As discussed above, the agent yields a relatively poor performance over the initial periods, which 

might cause important thermal discomfort or energy waste. Fig. 7.7 depicts the average values of 

devT caused by the DDQN algorithm during the first 10 episodes of training. The impact of the 

training process can be observed in the first two episodes, during which devT decreases from 0.44 

°C to 0.28 °C, an almost 36% improvement in the thermal comfort. After 10 episodes, the training 

performance reaches an average of 0.10 °C, which is more than 75% enhancement in the training 

performance. Fig. 7.8 demonstrates the average values of devP  over the same duration. During the 

first episode, occupants encounter a thermally uncomfortable environment almost 4% of the time. 

However, this value decreases by 2.8% to 1.2% after the training process is completed.  
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Fig. 7.7. Average temperature deviation during the training period of the DDQN controller.  

 

Fig. 7.8. Deviation period during the training period of the DDQN controller.  

The average energy consumption per control timestep is demonstrated in Fig. 7.9. Despite the 

improvements in thermal comfort, the average energy consumption almost remains the same in 

the initial and the last episodes. More specifically, although the energy consumption increases 
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from 2.04 kWh in episode 1 to 2.06 kWh in episode 2, it gradually decreases to 2.03 kWh in 

episode 10. 

 

Fig. 7.9. The energy consumption per timestep during the training period of the DDQN controller. 

7.4.3. Test performance evaluation  

This section discusses the performance of the fully trained DDQN agent on the test dataset and 

compares it with that of the MPC. The amount of energy saving is calculated by taking the always-

on control as the baseline for both the DDQN and MPC algorithms. The following sections discuss 

their intra-day and annual performance.  

7.4.3.1. Intra-day performance 

Fig. 7.10 illustrates intra-day indoor operative temperature and associated energy consumption for 

both DDQN agent and MPC for a sample apartment based on the perfect occupancy prediction. It 

is observed that both control systems successfully adjust the indoor temperature to the occupancy 

states, leading to similar energy consumption and indoor temperature patterns. They define a slight 

setback temperature during the nighttime to save energy when short vacancy intervals are reported 

while providing an acceptable level of thermal comfort as soon as the occupancy states are 

reported. Over the long vacancy period starting from 11:30 in the morning, both controllers select 

a deep setback of as low as 15 ºC to maximize the energy consumption. They start pre-heating the 

indoor environment one timestep before the arrival of occupants to avoid thermal discomfort. 

Hence, adopting a setback temperature saved a considerable amount of energy during the 

mentioned period while not violating thermal comfort conditions.  
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Fig. 7.10. The intra-day operative temperature and energy consumption based on perfect occupancy prediction for a sample 

apartment on February 1st. 

Although both MPC and DDQN make similar control decisions when perfect occupancy 

prediction is concerned, they respond quite differently to the occupancy prediction uncertainty. 

Fig. Fig. 7.11 demonstrates the decisions of the control systems based on actual occupancy 

prediction for the same sample apartment. The DDQN agent follows a conservative strategy for 

setting the temperature while the MPC acts more aggressively to save as much energy as possible. 

It is worth mentioning that the use of motion detectors for occupancy detection is prone to reporting 

false vacancy states during stationary periods such as when people are sleeping at night. During 

such periods, the uncertainty and randomness is expected to increase. The DDQN agent shows the 

ability to recognize such uncertainty during the nighttime and, as a result, maintains the thermal 

comfort level regardless of the reported vacancy states.  

The controllers also act differently in response to the long vacancy period during the day. The 

DDQN agent takes a conservative approach to minimize the possible thermal discomfort that might 

be caused due to any unexpected return of occupants. It also starts preheating the building before 

the arrival time of occupants. On the other hand, the MPC algorithm chooses a deep setback and 

allows the temperature to drop to as low as 17 °C right before the occupants’ arrival. Hence, 

although higher energy saving is achieved by the MPC, a considerable amount of thermal comfort 

is sacrificed. 
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Fig. 7.11. The intra-day operative temperature and energy consumption based on actual occupancy prediction for a sample 

apartment on February 1st. 

7.4.3.2. Overall performance 

The distribution of the annual performance of the control systems based on perfect and actual 

occupancy predictions is investigated in terms of average temperature deviation, deviation period, 

and energy saving. Fig. 7.12 depicts the distribution of the average temperature deviation for 

perfect and actual occupancy predictions. Regarding the perfect occupancy prediction, both control 

systems result in a similar temperature deviation of less than 0.1 °C in most cases. The MPC 

slightly outperforms the DDQN agent by providing a median value of 0.066 °C, which is 0.008 °C 

lower than that of the DDQN agent. In contrast, when occupancy prediction uncertainty is added 

to the problem, the MPC causes poor thermal comfort with a median devT of as large as 0.32 °C. 

The DDQN agent still keeps devT below 0.1 °C in most cases despite the higher uncertainty. A 

similar pattern can also be observed for devP as shown in Fig. 7.13. The MPC outperforms the 

DDQN agent when perfect prediction is available; it results in a median devP of 2.23%, which is 

1.22% lower than that of the DDQN. However, the performance of the DDQN considerably 

improves when there is uncertainty about the future patterns as it leads to a median devP  of as low 

as 1.17%. In contrast, the MPC causes a great deal of thermal discomfort at a median devP  of 

9.04% in the same situation. 

The higher thermal comfort provided by the DDQN for actual occupancy prediction can be 

justified by its conservative intra-day decisions described in Section 7.4.3.1. More specifically, the 

DDQN agent is aware of the uncertainty in occupancy prediction and often acts conservatively to 
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avoid thermal discomfort in cases of unexpected occupancy arrivals. On the other hand, the MPC 

does not take the prediction errors into account while making the control decisions, which ends up 

causing large thermal discomfort for occupants. 

 

Fig. 7.12. The distribution of average temperature deviation associated with the control systems based on perfect and actual 

occupancy models. 

 

Fig. 7.13. The distribution of deviation period associated with the control systems based on perfect and actual occupancy models. 
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The distribution of the energy saving percentage is shown in Fig. 7.14 for the perfect and actual 

occupancy predictions. Along with its superior thermal comfort, the MPC algorithm yields slightly 

higher energy saving at a median of 27.97% in perfect prediction cases, which is almost 0.5% 

higher than that of the DDQN. Therefore, it can be concluded that the MPC outperforms the DDQN 

algorithm when perfect occupancy prediction is available. The reason behind the higher 

performance of the MPC can be linked to the building model that is used in the optimization 

algorithm. As discussed in Section 7.2.2.2, while the MPC algorithm takes advantage of a perfect 

building model in the optimization process, the DDQN agent needs to forecast the building energy 

demands and indoor temperature changes via trial-and-error. The use of such a perfect building 

model causes the over-estimation of the MPC performance. Concerning the actual occupancy 

prediction, the performance of the DDQN algorithm significantly drops to a median energy saving 

of less than 10%. This drop in the performance is consistent with its conservative temperature 

setting strategy and its higher thermal comfort level. In contrast, the MPC keeps the energy saving 

level at around that of the perfect prediction case with a median saving of 27.60%. 

 

Fig. 7.14. The distribution of energy saving associated with the control systems based on perfect and actual occupancy models. 

7.5. Conclusion 

This study proposes a self-learning control based on a DDQN algorithm with the aim of learning 

the dynamic occupancy patterns and HVAC behavior to make optimal control decisions 

accordingly. The effectiveness of the proposed control system is evaluated by comparing its 

performance with that of an MPC algorithm, as a well-practiced predictive control approach, and 

an always-on control as the baseline. The impact of occupancy prediction uncertainty is also 

assessed by considering two scenarios of perfect and actual occupancy prediction in the control 

system. 

The DDQN agent shows the ability to learn the patterns with no need for developing the occupancy 

models or building models. When the perfect prediction of occupancy is considered in the control 

framework, both the DDQN and MPC provide similar energy saving and thermal comfort 
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performance. However, they follow a different strategy in response to the uncertainty. When 

compared with the MPC, one of the major strengths of the DDQN algorithm is its ability to learn 

the uncertainty in occupancy prediction. Such understanding leads the agent to adopt a 

conservative strategy for temperature setting, which significantly reduces the occupants’ thermal 

discomfort. Hence, the DDQN leads to a deviation period of 1.17%, which is 7.87% lower than 

that of the MPC. However, the higher thermal comfort is achieved at the cost of energy saving as 

this strategy yields almost three times higher energy consumption than that of the MPC. The 

DDQN algorithm also shows the ability to reduce the negative impacts of occupancy detection 

errors due to the use of motion detectors. During the periods when the possibility of false vacancy 

states is high, such as nighttime when the occupants are mostly stationary, the controller maintains 

a setpoint temperature. In contrast, the MPC opts for a setback even during such short and random 

vacancy periods. 

Despite its promising ultimate performance on the test dataset, the DDQN is prone to causing 

serious thermal comfort issues in the training period, especially during the first learning episode. 

More specifically, the DDQN interactions with the environment can cause an almost 0.43°C 

average temperature deviation and a 3.9% deviation period in most cases. However, as the learning 

process continues, these values decrease to as low as 0.10 °C and 1.2%, respectively. This 

limitation of the model-free DDQN algorithms can be a barrier to the wide adoption of such smart 

controllers in practical cases. Hence, more research studies are required to focus on the learning 

phase of the control system to avoid thermal discomfort. 

 



 

Chapter 8: Transfer learning for model-free HVAC control based on 

unsupervised learning of occupancy profiles and deep reinforcement 

learning 7 

 

8.1. Overview 

Reinforcement learning (RL) has shown promising potential for developing self-learning control systems 

in smart buildings with no need for building models or occupancy models. However, the trial-and-error 

nature that exists in the RL learning process makes the controller prone to causing serious thermal 

discomfort for occupants, especially during the initial learning periods. Because of the vital importance 

of thermal comfort, this limitation can be a key barrier that prevents such control systems from being 

practical in this sector. This study proposes a control framework that leverages a transfer learning (TL) 

technique to deal with this limitation by accelerating the learning process. In this control system, the 

transfer learning is performed based on a similarity analysis in terms of occupancy patterns using 

unsupervised learning of occupancy profiles. To this end, a k-means clustering algorithm using dynamic 

time warping is proposed and applied to the occupancy databases collected from 26 residential units. The 

results indicate that the proposed method can considerably enhance the performance of the system by 

improving the jumpstart performance and total rewards by almost 25% and 5%, respectively, compared 

with a conventional RL algorithm. The reward improvements reflect an increase in thermal comfort of 

occupants as it enhances the deviation period and mean temperature deviation by around 4% and 68%, 

respectively. 

8.2. Methodology 

8.2.1. General description of the control framework 

The schematic diagram of the proposed control framework is demonstrated in Fig. 8.1. The control 

system primarily works based on the information that is available from a set of buildings called train 

cases. These cases can be virtual buildings created through building simulation software or can be 

experimental testbeds with actual control systems. In the first step, the data from the buildings need to 

be collected and preprocessed as described in Section 8.2.2. Then, the building data, including indoor 

temperature and occupancy states, as well as weather data are utilized to develop an RL control system 

for each building (Section 8.2.3). Additionally, an unsupervised learning technique is applied to the 

occupancy databases to find the dominant occupancy patterns associated with each household (Section 

8.2.4). The extracted occupancy patterns and the pre-trained control agents are stored in a database so 

that they can be employed in the transfer learning process (Section 8.2.5). The system leverages such 

information to enhance the control performance in a new unseen building, called a test case. As soon as 

a test case connects to the network, the system starts collecting new occupancy data. Such information 

is implemented to provide an estimation of the new occupancy pattern to find its most similar train case 

(Section 8.2.5.1). The experience of the most similar pre-trained agent is transferred to the new building 

 
7 This chapter is based on the following publication: M. Esrafilian-Najafabadi, F. Haghighat, Transfer learning for model-free 

HVAC control based on unsupervised learning of occupancy profiles and deep reinforcement learning, (2022). (Under 

preparation) 
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to accelerate the learning process. Ultimately, the control system starts interacting with the environment 

to improve itself and to save energy while enhancing thermal comfort. The performance of the system is 

measured on the test case to evaluate the effectiveness of the proposed controller (Section 8.2.5.2). 

 

Fig. 8.1. The general framework of the proposed control system. 

8.2.2. Database description and preprocessing 

A general overview of the occupancy database and the preprocessing steps are illustrated in Fig. 8.2. The 

database is constructed based on the sensor signals received from passive infrared (PIR) motion detectors 

installed in 26 residential units in an apartment block. The building consists of one-, two-, and three-

bedroom units with an average of 13 sensors installed in different zones of every apartment, including 

kitchen, bedrooms, and living rooms. A detailed description of the apartments can be found in [219]. 

The data is stored in an occupancy database at 1-min intervals with each data record taking values of 0 

or 1, showing the vacancy and occupancy states, respectively. The data is prepared for use in the control 

process through two preprocessing steps. First, the data granularity is reduced by aggregating the data 

from its original one-minute level to a 30-min level to accelerate the control process and to minimize the 

impact of the occupancy detection errors of the motion detectors [95]. Secondly, the missing values that 

exist in the database possibly due to sensor or network failures are replaced by the value of 1, to ensure 

that the thermal comfort of occupants is not sacrificed. 

 

Fig. 8.2. The schematic diagram of the data collection and preprocessing process. 

As described in the previous section, the control framework requires two sets of apartments, namely train 

and test cases. These two sets are created by randomly selecting an individual apartment as the test case 

and selecting the rest as the train cases. The performance of the control system is assessed based on the 

test case and stored in a database. Then, a different apartment is selected as the next test case, and the 

evaluation process repeats. This process results in 26 iterations to cover all the apartments. The evaluation 
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is performed for an entire heating season starting from November 1st to March 31st, which is considered 

a training episode for the reinforcement learning algorithm, described in Section 8.2.3. 

8.2.3. Control system 

The DDQN algorithm, proposed in Chapter 7, is employed to learn the occupancy patterns and HVAC 

characteristics to make optimal control decisions. This technique is selected because of its potential 

ability to consider the uncertainty of occupancy prediction in making the control decisions and its 

superior thermal comfort performance when compared with model-based predictive control. 

In the first step of developing the DDQN agent, the control problem is formulated as a Markov decision 

process (MDP). To this end, the reward function, action-space, and state-space need to be defined for the 

agent, as summarized in Table 8.1. With the aim of saving energy and improving thermal comfort, the 

reward is defined as a function of energy consumption and temperature deviation. The former term 

indicates the amount of heating energy, heat
Q , that is supplied to the building. The latter term reflects the 

thermal discomfort caused when the operative temperature, opT , deviates from the setpoint, spT . The 

binary variable Occ indicates the occupancy state (i.e., taking 0 and 1 respectively for vacancy and 

occupancy states) because when the building is vacant the thermal comfort is not an issue. As the agent 

tries to maximize the reward function, these terms are multiplied by a minus sign to make it a 

minimization problem.   and  are defined to weight each term of the reward function based on their 

importance. Regarding the action space, the agent can choose between three discrete actions of deep 

setback, conservative setback, and setpoint temperature, which are respectively assumed as 15 °C, 19 °C, 

and 22 °C. It is worth mentioning that the thermal mass of the building might enable the agent to reach 

intermediate temperatures by switching between the defined setbacks. Therefore, although defining a 

continuous action space can overcomplicate the control process, it does not necessarily improve the 

performance. Concerning the state-space, four types of features, namely previous occupancy states, the 

hour of day, outdoor temperature, and operative temperature, are utilized to help the agent to make the 

optimal decisions. The first two attributes are selected to enable the agent to learn the occupancy patterns. 

Accordingly, the controller can try to forecast the values of Occ and adjust the indoor temperature. The 

second two features are selected because of the dependency of the HVAC energy consumption and lag 

time on the indoor and outdoor temperature. In other words, the agent can utilize these features to learn 

the HVAC system behavior based on the historical patterns. 

Table 8.1.  

The state space, action space, and reward function defined for training the RL agent. 

Parameter Value 

Reward function ( )
2

( ) . .

0.7

1

heat op sp
R Q Occ T T 



 

= − − −

=

= −

 

Action-space Deep setback at 15 °C,  

Conservative setback 19 °C, and 

Setpoint at 22 °C. 

State-space Occupancy states in the last two hours,  

Hour of day, 

Outdoor temperature, and 

Indoor operative temperature. 
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A general overlook of the control system, including the interactions between the agent and environment, 

is demonstrated in Fig. 8.3. In the first step, the state of the environment (i.e., occupancy states, time of 

day, indoor temperature, and outdoor weather conditions) is given to the agent so that it can make a 

control decision. Then, the control action (i.e., a setpoint or setback temperature) is passed into the HVAC 

system. The HVAC system adjusts its operation to provide the required indoor temperature. Next, the 

sensor network, including motion detectors, temperature sensors, and energy meters, sends the next state 

and rewards to the controller as feedback. The RL agent starts learning the consequences of the made 

decisions and corrects itself to maximize energy saving and thermal comfort. This process is iterated in 

each timestep to enhance the control decisions and adapt to the new conditions.  

 

Fig. 8.3. The general description of the RL agent via MDP.  

The characteristics and the hyperparameters of the control systems are summarized in Table 8.2. A 

Boltzmann policy is implemented with a temperature value of 0.1 to make a tradeoff between exploration 

and exploitation tasks. The control system takes advantage of an ANN as a function approximator to 

replace the traditional Q-tables with a neural network of three hidden layers. In this network, the number 

of neurons implemented in the input and output layers equals the number of states and actions, 

respectively. The interested readers can find more details regarding the selection of the hyperparameters 

in Chapter 7. 

Table 8.2.  

The structural parameters of the DDQN algorithm. 

Parameter Value 

Policy  

   Policy type Boltzmann 

   Temperature value 0.1 

Function approximator  

   Number of hidden layers    3 

   Number of neurons    (64, 32, 64) 

   Optimizer Adam [235] 

   Activation function Rectified Linear 

Unit (ReLU) [168] 

DDQN hyperparameters  

   Buffer size  12,875 

   Target model update 0.1 

   Learning rate 0.001 

   Discount factor 0.8 
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8.2.4. Unsupervised learning 

The target of the unsupervised learning process in the control framework is to determine the dominant 

occupancy patterns of each household. As demonstrated in Fig. 8.4, the process begins with an additional 

occupancy data preprocessing step, in which a new structure of the occupancy database is constructed 

with the daily occupancy profiles as its elements (Section 8.2.4.2). Next, the k-means clustering method 

is applied to this database to extract the dominant occupancy patterns associated with every household 

(Section 8.2.4.3). After finding the occupancy patterns of all the apartments, the process is stopped, and 

the results are stored. 

 

Fig. 8.4. The unsupervised learning process to find the dominant occupancy profiles. 

8.2.4.2. Database preprocessing 

Before employing the clustering method, the daily occupancy profiles need to be extracted from the 

original occupancy database. This process creates a new database, in which every element represents a 

daily occupancy pattern with 24 hour-of-day features. These attributes are binary variables, taking a value 

of 1 if occupants are present at the corresponding hour. A sample data element of this database is shown 

in Fig. 8.5. This diagram can be interpreted as a daily occupancy profile, showing that the occupants 

stayed at the apartment from almost 18:30 to 9:30 and mostly left the place during working hours.   
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Fig. 8.5. Daily occupancy patterns for a random day in a sample apartment. 

8.2.4.3. K-means clustering using dynamic time warping  

The k-means clustering, as a widely utilized unsupervised learning technique [244], is implemented to 

extract the dominant occupancy patterns for each household. This algorithm organizes the data elements 

within different groups (i.e., clusters) based on their similarity [245]. It is a common practice to measure 

the similarity via the Euclidean metric. Using this metric, the distance between the occupancy profiles 

on two different days, denoted by d1 and d2, can be calculated as follows: 

𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =  √∑ (𝑂𝑑1,𝑡 −23
𝑡=0 𝑂𝑑2,𝑡)2 

(35)  

in which 𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 is the Euclidian distance, t denotes hour of day, and O indicates the occupancy state 

at each time interval. The clustering algorithm begins with defining k centroids with random positions 

within the database, in which k is a predefined number of clusters. Then, the distance between the data 

records and the centroids is measured, and then, each record is assigned to its closest cluster. After 

organizing all the data into the determined groups, the centroids are recalculated and the average of the 

intra-cluster points is considered as the new position of the corresponding centroid [246]. The process 

stops when the centroids’ locations converge to a final solution [247,248]. 

It should be noted that the use of the Euclidean distance might lead to ignorance of some similarities in 

the shape of occupancy profiles [174]. More specifically, although the overall shape of daily patterns can 

be very similar, the arrival or departure time might be shifted by one or two timesteps. To illustrate such 

cases, two sample daily occupancy patterns from the same apartment are demonstrated in Fig. 8.6. Both 

days follow quite similar occupancy patterns; the occupants leave at around 10:00 in the morning and 

come back after 18:00. Despite their exact arrival time, they leave almost one hour earlier in the morning 

in day (b). In such cases, using the Euclidean metric might result in rather large distances and low 

similarity between the apartments. A bi-directional alignment of the occupancy profiles can enable the 

algorithm to consider the similarity in the shapes. To this end, the dynamic time warping (DTW) 

algorithm is utilized in this study. The DTW aims to minimize the distance between two time-series 
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profiles by implementing dynamic programming [249]. In this method, the distance of different pairs of 

points in two profiles is calculated and stored in a corresponding matrix. Using dynamic programming, 

the shortest paths between the points in the profiles are utilized to measure the closeness between 

different points. The described clustering methodology based on DTW metric is performed in Python 

using tslearn library [250]. 

 

Fig. 8.6. The occupancy patterns of two sample days from the same apartment.  

As mentioned earlier, the clustering process using k-means techniques depends on the defined number 

of clusters. In this study, its optimal number is determined based on a silhouette score [251]. This score 

evaluates the similarity of data records to their own clusters (intra-cluster similarities) and compares it to 

their similarity to the neighbor clusters (inter-cluster similarities). A larger score indicates that the 

samples are good fits for their assigned clusters. The number of clusters that lead to the highest score can 

be considered optimal [252]. However, each cluster must be representative of a certain occupancy pattern 

of the households. Hence, a cluster with a size of only a few days is too small to reflect a dominant 

occupancy schedule for people. To avoid creating such meaningless clusters, a minimum sample number 

of 14 days is selected as a constraint for cluster creation. The highest number that meets this requirement 

and results in the highest Silhouette score is selected as the optimal cluster number. 

8.2.5. Transfer learning 

This section discusses how to transfer the information from a pre-trained controller to the new agent 

employed in an unseen apartment with the aim of accelerating the training duration. The schematic 

diagram of this process is depicted in Fig. 8.7. In the first step, the control process begins with collecting 

and analyzing the occupancy information from the new test case. Although a long data collection can 

lead to more accurate analysis, it delays the start of the control process, which might cause a waste of 

energy and cost. In this study, it is assumed that 14 days of data collection from the new apartment can 

provide an acceptable trade-off between these factors and is selected as the initial data collection duration. 

In step 2, the occupancy pattern of the new apartment is compared with those of the train cases so that 

the similarity of the apartments can be evaluated (Section 8.2.5.1). Then, the RL model trained on the 

most similar apartment is reused to initialize the Q-network weights of the new control agent. In step 3, 

the control loop begins, and the agent starts interacting with the environment to make control decisions 
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while improving its policy. During this process, the layers of the DNN, which are initialized based on 

the source task (i.e., train cases), are fine-tuned based on the interaction of the new agent and the target 

task (i.e., test cases). 

 

Fig. 8.7. The schematic diagram of the transfer learning process. 

8.2.5.1. Similarity analysis 

The similarity between the occupancy schedules is quantified by measuring the Euclidean distance, d, 

between the occupancy pattern of the new apartment and the centroids of the training cases. An overall 

score, S, is assigned to each centroid as a function of the measured distance using the following equation: 

min

max min

c
c

d d
S

d d

−
=

−  

(1)   

in which cd represents the distance between centroid c and the profile of the new apartment. The defined 

score can vary in the range of 0-1; the higher values indicate the higher similarity between the cases. It 

is worth noting that there is a limitation to using this score coefficient for transferring the agent 

experience to the new apartment; the formula does not consider the number of the samples that create 

the occupancy patterns in the apartment. Take a train case apartment with two clusters as an example; 

one cluster contains only 14 days of elements, called the minor cluster, while the other one contains data 

from multiple months, called the primary cluster. Assume that a new apartment and the centroid of the 

minor cluster provide the highest similarity score and are selected for transfer learning. In this case, it is 

expected that the pre-trained agent is mostly influenced by the occupancy patterns of the major cluster, 

and consequently, the transfer learning might be negatively affected. To avoid this potential shortcoming, 

the similarity score is revised based on the number of samples in the train cases as follows: 

Number of data elementsin cluster

Number of totaldata elementsof thecorrespondingapartment
c c

c
WS S=

 

(2)  
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where cWS  represents the weighted score for cluster c. Using this score function, the clusters with the 

highest elements have priority to be selected for transfer learning.  

8.2.5.2. Performance evaluation 

It is acknowledged that the use of transfer learning adds considerably higher complexity to the control 

process. Hence, the proposed control framework essentially needs to provide superior performance to 

justify the added complications, compared with conventional algorithms. To this end, the proposed 

system needs is applied to a case study to evaluate its performance. a single-story detached building 

developed and proposed in [156] is considered in this study as a virtual building testbed. Three metrics 

are employed to quantify the TL performance as proposed in [253]: 

Jumpstart performance: This criterion investigates the initial performance of the agent, defined as the 

sum of the rewards achieved over the first heating period (i.e., episode of training) for the RL algorithm 

with and without TL. As the main goal of the control system is to reduce the training time and decrease 

the thermal discomfort of occupants during the training period, and as a result, this metric is considered 

the primary target of this study. 

Asymptotic performance: In contrast to the jumpstart performance, this metric focuses on the final 

performance of the agent. In other words, it quantifies how much the transfer learning can improve the 

ultimate policy learned by the agent. As the learning process is a continuing task (i.e., the learning and 

adjustment of the control system do not end in practice), the maximum episodic reward during the 

training process is defined as asymptotic performance.  

Total reward: As the name suggests, this criterion evaluates the total performance of the agent by 

calculating the accumulative reward throughout the training period, which equals the area under the 

reward curve. An agent can gain more rewards by starting with higher performance in the initial step, 

learning faster, and converging to higher performance. 

As well as the above-mentioned criteria which are based on the obtained rewards, the performance of the 

TL is also assessed in terms of the energy consumption and thermal comfort of occupants. As proposed 

in Chapter 7, the thermal comfort can be quantified using mean temperature deviation and deviation 

period. The former is defined as the average temperature difference between the actual indoor 

temperature and the setpoint when the occupants are present in the monitored building. The latter is 

defined as the proportion of time when the occupants are present but the indoor temperature deviates 

from the setpoint by more than 0.5 °C. Moreover, the amount of energy consumption associated with the 

proposed and conventional control systems is also evaluated and compared.  
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8.3. Results 

8.3.1. Occupancy patterns extraction 

This section discusses the dominant occupancy patterns of each apartment given by the 

unsupervised learning method. Fig. 8.8 illustrates the distribution of the number of clusters for use 

in the k-means clustering method. The number of clusters indicates the variety of the occupancy 

patterns in every household. In other words, an apartment with more clusters is expected to give 

more diversity in occupancy patterns. It is observed that more than 60% of the cases yield only 

two occupancy patterns, creating the largest category. It is followed by the four-cluster group, 

accounting for almost 27% of the apartments. Three clusters are assigned with the smallest number 

of apartments at 11.54%.  

 

Fig. 8.8. The distribution of the number of clusters for use in k-means clustering algorithm. 

The centroids of some sample apartments are investigated in more detail to illustrate the occupancy 

patterns in the households. Fig. 8.9 demonstrates the occupancy patterns of a sample household 

with two clusters. The first cluster can be interpreted as a regular working schedule, in which 

occupants are present during the night and leave the apartment during the day from 10:00 to 19:00. 

In contrast, cluster 2 indicates an almost uniform occupancy pattern throughout the day. This 

pattern might illustrate the tendency of the occupants to say home during the vacations.  

 

Fig. 8.9. The centroids of a sample household with two clusters.  
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Fig. 8.10 demonstrates the extracted occupancy patterns from a sample apartment with four 

clusters. Similar to the previous apartment, cluster 1 refers to a working schedule, in which people 

usually leave home at 9:00 and return at 19:00. In contrast to the previous apartment, in which 

people mostly occupy the apartment, this apartment remains vacant most of the day as indicated 

by the other clusters. Clusters 2 and 4 show that the residents often are not present at home for 

more than half of the day. Moreover, as can be seen in cluster 3, it is common that the home 

remains vacant for the entire day.   

 

Fig. 8.10. The centroids of a sample apartment with four dominant cluster centroids. 
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8.3.2. Similarity between the occupancy patterns 

After determining the occupancy patterns for each apartment, the weighted score between the test 

case and the train cases can be calculated to find the most similar patterns. Fig. 8.11 illustrates the 

initial occupancy pattern in a sample test case and its most similar profile from the training 

database with the highest weighted score. Both patterns follow a working day profile with the 

occupancy ratios mostly varying in the range of 0.4-0.8. In both diagrams, the ratios are higher 

than 0.4 most of the time. As can be seen, there are also dissimilarities between the profiles; the 

occupancy ratio in the train case can reach as high as 0.9 while it is always limited to 0.6 in the 

other one.  

 

Fig. 8.11. The occupancy patterns of a) a sample test case and b) its most similar train apartment. 

8.3.3. Transfer learning performance 

Fig. 8.12 illustrates the median values of jumpstart performance, asymptotic performance, and 

total rewards. RL and TL respectively refer to the performance of the conventional RL and the 

proposed TL method. The highest impact of the TL on the system is demonstrated in the jumpstart 

performance. The TL method improves the median jumpstart performance from -6900 to -5076, 

an almost 25.43% increase in the performance. It also boosts the total rewards, increasing from -

5206 for conventional RL control to -4947 for using TL, which is approximately a 5% 

improvement in the median accumulative rewards. However, the TL method has a negligible 

impact on the asymptotic performance of the control systems. Hence, it suggests that although TL 

can accelerate the learning process, it might not be helpful to find a superior ultimate policy. 
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Fig. 8.12. The median jumpstart, asymptotic, and total performance of the conventional control (RL) and the proposed transfer 

learning method (TL). 

Based on the performance of the system, the main strength of the transfer learning is enhancing 

the jumpstart performance. This improvement can be valuable because it can address the main 

limitation of the RL algorithm in the building control, which is the extreme thermal discomfort 

caused during the learning period. Fig. 8.13 depicts the distribution of the deviation period, average 

temperature deviation, and energy consumption. As expected, the conventional RL agent causes 

higher thermal discomfort for occupants in terms of the deviation period and average temperature 

deviation. When the conventional RL is employed, the occupants of almost half of the apartments 

encounter thermal discomfort more than 6% of the heating season. However, the TL method 

substantially improves this metric to less than 2% in most cases. Moreover, more than 75% of the 

households experience a mean temperature deviation of more than 0.13 ºC with a median value of 

0.19 ºC when the traditional RL algorithm is implemented. However, almost all the apartments 

experience a temperature deviation of less than 0.1 ºC, when the TL method is applied. More 

specifically, the use of TL yields a median deviation of 0.06, almost 68% improvement.  

A large improvement in thermal comfort is achieved at the expense of energy consumption. It is 

observed that the conventional RL slightly overcome the TL method in terms of energy saving. 

The conventional RL agent consumes a median of 2.47 kWh energy per each time interval (i.e., 

30-minute periods) which is 0.08 kWh lower than that of the TL method. The difference is 

equivalent to an almost 3% rise in energy consumption of the households. However, regarding the 

improvements in thermal comfort, the added energy can be considered relatively small. 
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Fig. 8.13. The distribution of the average temperature deviation, deviation period, and energy consumption in the first episode of 

training for the conventional RL control and the proposed TL.  

8.4. Conclusion 

This study investigates the use of transfer learning to improve the performance of self-learning 

HVAC control systems based on model-free reinforcement learning. The transfer learning is 

performed based on an inter-apartment similarity analysis in terms of occupancy schedules, using 

a k-means clustering algorithm based on the DTW distance metric. The effectiveness of the 

proposed control system is evaluated by measuring its jumpstart, asymptotic, and total 

performance and comparing them with those of a traditional RL algorithm. Moreover, the initial 

performance of the control system is assessed from thermal comfort and energy viewpoints by 

evaluating the deviation period, mean temperature deviation, and energy consumption. 

The unsupervised learning reveals that the households can be assigned to no more than four 

dominant occupancy patterns. More than half of the cases result in two occupancy patterns, which 

may be interpreted as working and non-working schedules. The TL-based control framework 

shows the ability to improve the performance of the RL agent in unseen test buildings. It improves 

the jumpstart performance and total rewards by 25% and 5%, respectively. However, no 

improvements are observed in terms of asymptotic performance. The higher jumpstart leads to 

considerably less thermal discomfort for occupants during the first episode of learning; the median 

of the deviation period and average temperature deviation are improved by 4% and 68%, 

respectively. It is worth noting that the thermal comfort enhancements come with a 3% rise in the 

median energy consumption during this period. 

The promising performance of the proposed framework can provide opportunities to deal with one 

of the main limitations of the conventional model-free controllers, which is their poor thermal 
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comfort performance during the initial period of training. However, this study is performed based 

on the occupancy data of a limited number of apartments, and more cases are still required to 

generalize the results. Additionally, only occupancy data is utilized as a criterion to investigate the 

similarity among the control agents. Undoubtedly, there are more factors such as weather 

conditions, building material, and HVAC characteristics that need to be considered for the 

similarity analysis and performance evaluation. There is a need for future research to investigate 

the impact of such factors on the performance of the control system in residential buildings. 
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Chapter 9: Summary, conclusion and future directions 

 

9.1. Summary and conclusion 

This research work begins with identifying the current research gaps and limitations regarding 

occupancy-based control methods based on a comprehensive literature review on the state-of-the-

art systems. The literature review classifies the earlier studies based on the control strategy and 

discusses the strengths and limitations of different strategies. The limitations are discussed from 

different perspectives, such as feature utilization, model selection, case study buildings, and 

performance evaluation metrics.  

This research work proposes a new control methodology that leverages artificial intelligence to 

enhance thermal comfort and energy saving in residential buildings. The control framework works 

based on a DDQN algorithm to interact with the building environment with the goal of learning 

occupancy schedules and HVAC lag time. Without a need for developing models of the occupancy 

and building, the control system seeks optimal control decisions to save energy while maintaining 

an acceptable level of thermal comfort for occupants. The merit of the proposed controller is 

evaluated by comparing its performance with that of an MPC algorithm, as a well-practiced 

method. This algorithm takes advantage of occupancy models to forecast future states. Because of 

the importance of occupancy information, the impact of selecting different occupancy models is 

investigated. Two different approaches, namely arrival time prediction and occupancy states 

predictions, are implemented and the performance of different machine learning models including 

DT, kNN, MLP, GRU, LSTM, and BLSTM are also evaluated. Based on a TOPSIS method, the 

model that leads to the best trade-off between thermal comfort and energy saving is selected as the 

occupancy forecasting model of the control system. 

The proposed self-learning control utilizes two methods to improve the initial performance: 1) a 

MOGA for feature selection and 2) a transfer learning methodology based on unsupervised 

learning of occupancy patterns. To ensure that the proposed MOGA is a reliable method to remove 

redundancy and irrelevancy, its performance is compared with the FSS, BSS, and SOGA as 

conventional methods. The MOGA aims to maximize the accuracy of the models while 

minimizing the size of the feature set to reduce the impact of overfitting. Concerning the latter 

technique, the transfer learning method is employed to reuse the valuable knowledge gained by 

previously trained controllers in new buildings. The control framework takes advantage of a K-

means clustering method based on the DTW distance metric to quantify the similarity between the 

buildings in terms of occupancy schedules. Next, this method utilizes the most similar buildings 

for transferring the information. This framework aims to reduce the training duration of the RL 

agent and, consequently, reduce the risk of thermal discomfort due to the trial-and-error nature of 

the RL method.  

The trained DDQN agent shows superior thermal comfort performance with the MPC as a baseline. 

The MPC algorithm is developed based on a kNN algorithm as the occupancy-state prediction 

model because of its higher performance among the investigated models. In contrast to the MPC, 

the DDQN agent shows the potential of learning uncertainty in occupancy schedules and opts for 



153 

 

a more conservative temperature setting, which results in an almost 8% lower temperature 

deviation. It also shows the ability to deal with the potential errors of the occupancy detection 

network as it often ignores the changes in occupancy states during the nighttime when people are 

mostly stationary. 

The proposed MOGA yields superior performance among the utilized FS methods by increasing 

the accuracy by up to 4.81% and requiring the smallest feature set for occupancy prediction. 

According to the TOPSIS method, a maximum value of six features is needed to develop the 

occupancy models. While recent occupancy states and time of day show essential importance in 

occupancy prediction modeling, recent CO2 concentration, vacancy duration, holiday, and lighting 

states might also improve the performance in some cases.  

The TL method shows promising effects on the first episode of training via improving the 

jumpstart performance by 25%. It also improves the total rewards over the training period by 5%. 

Regarding the building performance, this control system provides better thermal comfort for 

occupants by reducing the deviation period and average temperature duration by 4% and 68%, 

respectively. The unsupervised learning method demonstrates that the investigated households 

give up to four different occupancy schedules with more than half of the cases having only two 

clusters. The schedules can be mostly classified as working and non-working patterns in buildings.  

The comprehensive performance analysis also reports a promising improvement that can be 

achieved by taking dynamic occupancy changes into account for making control decisions. It 

shows that the use of occupancy data in the control system can result in up to 2.72 years of payback 

period, 12,91% energy saving, and almost $2,000 net present value. It is also revealed that there 

are negative impacts on the peak-energy demand of the residential buildings; the system can 

increase the peak energy demand by up to 10%.   

9.2. Contributions 

The contributions of this research work can be summarized as follows: 

1. This study developed a self-learning control system based on dynamic occupancy patterns 

with no need for employing models of occupancy and building, 

2. A transfer-learning framework was proposed to enhance the training performance of the 

data-driven control system, 

3. An optimal feature selection method was developed to determine the key features for 

forecasting occupancy patterns, 

4. The effectiveness of the occupancy prediction models was evaluated for use in the 

predictive control systems, 

5. An assessment framework was developed for a comprehensive evaluation of the financial, 

energy, and peak-demand performance, and 

6. The research gaps in the field of occupancy-based HVAC control were carefully identified 

by conducting a comprehensive literature review on the state-of-the-art methodologies. 
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9.3. Limitations and directions for future work 

Despite the mentioned contributions of this study and the promising performance of the proposed 

control framework, there are some limitations that need more research for further improvements 

towards the practical application in the residential sector. The limitations can be summarized as 

follows: 

• The investigations of occupancy modeling and control system evaluations are performed 

based on a limited number of occupancy datasets collected from an apartment block. In 

order to generalize the results, there is a need to collect more data from different buildings 

for further analysis.  

• In the unsupervised learning method and transfer learning framework, only the occupancy 

schedules are considered as a metric to quantify the similarity between the apartments. 

However, there are more factors such as building characteristics, type of HVAC systems, 

and weather conditions that can influence the decisions of the controller. There is a need 

to investigate the impact of such factors on improving the performance of the transfer 

learning method.  

• Regarding the FS process, a limited number of methods, namely BSS, FSS, and SOGA, 

are employed. Given that there are more well-known methods, such as recursive feature 

elimination, premutation importance, filter, and embedded FS methods, there is a need to 

utilize more methods for feature selection to ensure that the accuracy is not sacrificed by 

eliminating valuable features. 

• There is a wide variety of features that could be utilized in the FS process. Although most 

of them are considered in this study, some are lacking in the utilized database, such as 

occupants’ identity, occupant counts, and the exact locations, which might be helpful. A 

database containing such information is required to reveal the impacts of these features on 

the control performance.  
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