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Abstract 

Analysis and Reduced-Order Modeling of Urban Airflow and Pollutant Dispersion under 

Thermal Stratification Conditions 

Shahin Masoumi-Verki, Ph.D. 

Concordia University, 2022 

Different thermal stratification conditions, namely, stable, isothermal (or neutral), and unstable, 

can locally occur in urban areas. Alteration in the thermal condition of an urban area may 

significantly change the airflow pattern and pollutant dispersion process by affecting both the mean 

and fluctuating components of the variables. The unstable effects can increase the vertical flow 

movement, while the stable ones can suppress it. Furthermore, unstable conditions increase 

turbulence kinetic energy (TKE), which increases the fluctuations in concentration. On the other 

hand, stable conditions lead to buoyant destruction. Due to frequent changes in the boundary 

conditions, a model is required for monitoring these situations, which can be used as a fast-

response (near real-time) model. This thesis aims to propose a systematic approach for analysis 

and reduced-order modeling of the airflow and concentration fields under non-isothermal 

conditions. 

The present study uses a high-fidelity computational fluid dynamics approach, i.e., embedded large 

eddy simulation (ELES), to simulate the impact of the aforementioned thermal conditions on the 

airflow and concentration fields. The model considers the pros of both the Reynolds-averaged 

Navier-Stokes, RANS, (i.e., high speed), and large eddy simulation, LES, (i.e., high accuracy) 

approaches. After thoroughly analyzing the results, the proper orthogonal decomposition (POD) 

and frequency analyses are performed to investigate the impact of thermal conditions on the 

turbulence structure of the flow field. Considering the most energetic POD modes can lead to a 

good approximation of the whole airflow field, which is an important finding in developing a 

reduced-order model (ROM). Due to the limitations arising from the linear nature of POD, 

convolutional autoencoder (CAE)-based methods are used for model order reduction, using the 

unstable dataset generated by ELES. In addition to the conventional CAE, multiscale CAE (MS-

CAE) and self-attention CAE (SA-CAE) are developed to capture multiscale and long-range 

dependencies among the datapoints, respectively. Afterwards, a parallel long short-term memory 

(LSTM) network is used to compute the temporal dynamics of the low-dimensional subspaces. 

ROMs maintain prediction accuracy at an acceptable level compared to ELES, while reducing the 

data reconstruction time to the order of seconds. 
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CAE (SA-CAE), are developed for dimensionality reduction, which is considered 

the first step of the development of a NIROM. The developed models are then used 

to find a low-dimensional representation of the original data. Afterward, a parallel 

long short-term memory (LSTM) network is employed for computing the temporal 

dynamics of the obtained low-dimensional space. The models are trained to 

reconstruct a turbulent airflow field in the wake region of an isolated high-rise 

building, located in an unstable thermal stratification condition, using validated 

CFD data. The models show promising performance in reconstructing the flow 

field. However, discrepancies can be observed in the regions with intense 

gradients. Also, power spectral density functions (PSD) obtained from the 

reconstructed data are in good agreement with those obtained from the CFD results. 

On the whole, SA-CAE performs better in reconstructing the flow field than the 
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Abstract Due to computational barriers of computational fluid dynamics (CFD) models, 

they cannot be used for tasks such as (near) real-time simulations. Reduced-order 

model (ROM) can be used as an alternative to CFD since it can approximate the 

results in a fraction of the CFD simulation time. The present article generates a 

data-driven ROM, using convolutional autoencoders (CAEs) and long short-term 

memory (LSTM) networks, to reconstruct the turbulent flow field within a 

simplified urban area. Furthermore, the effect of the kernel size on capturing spatial 

information is investigated. The results indicate that, although the model has some 

deficiencies in the flow field reconstruction in high-gradients regions, the model's 

overall performance is acceptable. Moreover, it is shown that the kernel size has a 

negligible impact on the model performance for the present model and dataset. 
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Chapter 1. Introduction 

1.1 Motivations 

Changes in urban temperature distribution (e.g., caused by the urban heat island (UHI) formation 

or diurnal and seasonal changes) may significantly affect pollutant dispersion [1–4]. Alteration of 

the urban temperature distribution `leads to the formation of different thermal stratification 

conditions in the atmospheric boundary layers (ABL): (1) isothermal, in which the temperature 

difference between the flow field and surfaces is zero, (2) stable condition occurs when the airflow 

temperature is higher than that of surfaces, and (3) unstable condition, which can occur when the 

temperature of surfaces is higher than that of the airflow. An increase in surface temperature can 

induce buoyant forces, which leads to local instabilities, and thus, turbulent mixing is increased 

[1,2]. Furthermore, in wintertime, or at night [5], when the dominant thermal stratification may 

become stable, considering local temperature rises can induce local instabilities.  

Surfaces in urban areas are usually warmer than the surrounding airflow due to the absorption of 

solar radiation. The increase in the surface temperature leads to the induction of buoyant forces in 

the proximity of surfaces. A field measurement experiment conducted by Niachou et al. [6] during 

hot summer weather conditions showed that unstable stratification conditions were present in 85% 

of cases during the daytime and 64% of cases at night. Santamouris et al. [7] measured up to 19

C  of difference between the temperatures of the canyon’s façades, which affected the airflow 

pattern. Such a large temperature difference can change the airflow pattern and pollutant dispersion 

process within an urban area. It is noteworthy to mention that the buoyant force can become a 

dominant mechanism in the flow field in urban airflow when the background wind velocity is less 

than 2.5 m/s; a situation that can occur 18% of the time in a year in low-latitude cities [8,9]. From 

the wind rose presented in the study of Mirzaie et al. [10], it can be found out that a significant 

percentage of the annual wind speed in is less than 2-3 m/s in Zurich. A remarkable contribution 

of the induced buoyant force to pollution removal in a highly-packed high-rise city, Hong Kong, 

in no wind conditions, has been reported [11]. Thus, non-isothermal conditions can play a 

significant role in defining airflow pattern, and thus, pollutant dispersion in urban areas. 

1.2 Impact of thermal stratification condition on airflow pattern and pollutant 

dispersion 

In the present section, different articles are reviewed to fundamentally tackle the impact of non-

isothermal conditions on the airflow pattern and pollutant dispersion process.  

Bulk Richardson number, 𝑅𝑖𝑏, is used in atmospheric studies in order to quantify the significance 

of thermal effects in flow movement. The definition of 𝑅𝑖𝑏 is as follows [12]: 
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Eq. 1-1 

where, 𝑔 is the gravitational acceleration, and 𝑇 and ∆𝑇 represent the mean canyon temperature 

and mean vertical difference of air temperature, respectively. Also, ∆�̅� is the mean vertical 

difference of horizontal wind speed in the street canyon. The bulk Richardson number can be 

defined as the ratio between the buoyant convective flow and the shear flow. By substituting ∆𝑧 

with the building (or the canyon) height, 𝐻, the bulk Richardson number can be re-written as 

follows [13]: 

𝑅𝑖𝑏 =
𝑔𝐻(𝑇𝐻 − 𝑇0)

𝑇 𝑈𝐻
2  

Eq. 1-2 

where, 𝑇𝐻 and 𝑇0 denote the temperature at the top and bottom of the canyon, respectively. 

Moreover, 𝑈𝐻 is the mean wind speed at the canyon height. 

As can be seen in Eq. 1-2, the impact of the induced buoyant force on the flow field is correlated 

with various factors. Other than the background airflow velocity and the strength of surface 

heating, which can be expressed by the bulk Richardson number, the mutual directions of the wind 

and heated surface (see Figure 1.1), the canyon’s aspect ratio, etc. [2,14–16] are also important. 

Furthermore, UHI mitigation strategies, such as vegetation planting and surface modification, can 

change the (surface) UHI intensity within an urban area, which influences the temperature 

distribution of an urban area. 

 

Figure 1.1: Schematic view of the impact of the induced buoyant force, due to surface heating, on the flow field 

by considering the mutual directions of the wind and heated surface, in the condition with perpendicular wind 

with respect to the canyon axis: (a) leeward wall is heated (unidirectional act of the background wind and the 

induced buoyant flow), and (b) windward wall is heated (bi-directional act of the background wind and the 

induced buoyant flow) (obtained from [17]) 
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The dominant mechanism, among the shear flow and buoyancy-driven one, in airflow movement 

within a canyon can be found by using a non-dimensional parameter, called buoyancy parameter, 

𝐵, defined as below [18]: 

𝐵 = (
𝑔 𝛼 (𝑇ℎ𝑖 − 𝑇𝑙𝑜) 𝐻

𝑢0
2[1 + (𝐻 𝑊⁄ )2]

) 

Eq. 1-3 

where, 𝛼 is the thermal expansion of air. Furthermore, 𝑇ℎ𝑖 and 𝑇𝑙𝑜 denote the temperatures of the 

leeward wall (i.e., heated wall) and the windward façade (i.e., unheated wall, or the wall with lower 

temperature), respectively. 𝑢0 is the characteristic background velocity, and 𝐻 and 𝑊 are the 

height and width of the canyon, consecutively. Dallman et al. [18] stated that as 𝐵 exceeds a critical 

value, 𝐵𝑐 = 0.05, the buoyancy-driven flow becomes dominant. 

From Figure 1.1 (a), for the heated leeward wall, the induced upward flow is prohibited by the 

background flow from completely being mixed with the airflow aloft, and part of it tends to 

circulate within the canyon [13]. Furthermore, due to the downwash effect of the windward wall, 

a portion of the background airflow may also circulate within the canyon. Wang et al. [19] reported 

that when the leeward wall or the ground was heated, the flow structure and the dispersion pattern 

were similar to those in the isothermal case. However, it has been shown that by altering the surface 

temperature, the location of the vortex core in the wake region can be changed [20]. The mentioned 

change obviously affects the dispersion process. Based on the results, even weakly unstable 

conditions should not be neglected in dispersion studies. Also, Three-dimensional simulations 

have shown that by inducing thin thermal boundary layers in the vicinity of the heated surfaces, 

the air's entrainment into the canyon increases, and thus, the pollutant concentration decreases 

[21]. A similar result was reported by [22,23], which showed the entrainment of fresh air from the 

leeward corner at the roof level and decrement of the amount of the pollutant concentration when 

the ground was heated. Wang et al. [19] also stated that an opposing force is induced when the 

windward wall is heated, and thus, two counter-rotating forces, one caused by advection and the 

other caused by the buoyant force, change the flow and pollutant dispersion patterns (see Figure 

1.1 (b)). 

As reported by [24], under unstable conditions, due to ground heating, the recirculation region was 

destroyed due to the formation of an upward buoyancy-driven flow. The mentioned upward flow 

increased the interaction of the canyon flow with the airflow aloft. Mixing the canyon flow with 

the flow above it has also been reported by the experiment of [17]. 

Two fluxes are involved in the pollutant dispersion process: (1) convective flux, which is defined 

as the product of time-averaged velocity and time-averaged concentration values (〈𝑢𝑖〉〈𝑐〉), and (2) 

turbulent diffusion flux, defined as the average of the product of the fluctuations of velocity and 

concentration (〈𝑢𝑖
′𝑐′〉) over time [25]. In dense urban areas, inside street canyons, where the airflow 

velocity is small, the role of the induced buoyant force in flow movement increases. Li et al. [22] 

reported that increasing the instability level by ground heating enhances the flow advection within 



4 

 

a canyon, which results in an increase in the contribution of the convective flux to the dispersion 

process. 

Uehara et al. [26] reported a positive relationship between the turbulence intensity and the level of 

flow instability. The results of [27] also show a significant increase in the turbulence kinetic energy 

(TKE) value near the heated wall. Generally, as mentioned by [28], in the case of unstable stratified 

conditions, buoyancy becomes important in the TKE production, and thus, the transfer of 

momentum. An increase in the TKE level leads to an increase in the concentration fluctuations, 

which results in a shorter plume shape in the wake region of a building [29]. Furthermore, based 

on the results of [22], the roof-level turbulent diffusion, which is a result of the mixing of the shear 

flow and vertically-induced buoyant one, increases as the canyon ground is heated. Therefore, due 

to the increase in the contribution of turbulent diffusion flux to the dispersion process with 

changing the stratification condition from stable to unstable, the pollutant dispersion process 

becomes stronger [30]. 

Pulvirenti and Di Sabatino [31] showed that the effect of turbulent diffusion fluxes in pollutant 

transportation was significant for almost all the Richardson numbers investigated. However, it has 

been reported that as the stratification condition became more unstable, the ratio of the amount of 

pollutant transported by the mean flow to the turbulent flux became larger [32]. Changes in the 

share of each flux in pollutant transportation can be considered as a result of the generation of the 

secondary vortex in the canyon due to the buoyancy effect. It is noteworthy to mention that the 

role of the studied geometry is of utmost importance in defining the dominant dispersion 

mechanism. Thus, generalizing the results to other geometries should be done carefully. 

The stable stratification condition has always attracted a lot of attention (e.g., [33,34]) since it can 

cause pollution to be accumulated in the affected regions. The reason for the mentioned 

phenomenon is that the stable stratification condition causes the turbulence generation to be 

suppressed [35–37]. Stable stratification condition causes a fluid parcel to get back to its 

equilibrium state after a vertical displacement, which results in the energy extraction from 𝑤′2̅̅ ̅̅̅ 

(buoyant destruction) [37], where 𝑤′ is the velocity fluctuation in the vertical direction. 

Furthermore, as mentioned by [37], the energy is extracted from the turbulence generated from 

shear stress (𝑢′𝑤′̅̅ ̅̅ ̅̅ ) due to the excessive energy needed to overcome buoyancy ( 'u  is the velocity 

fluctuation in the longitudinal direction). Therefore, the contribution of the turbulent diffusion flux 

to the dispersion process decreases. It should be noted that, as observed experimentally [36,37], 

weakly stable conditions do not significantly change the turbulence structure and statistics of the 

flow. Figure 1.2 shows that although the Reynolds stress, 𝑢′𝑤′̅̅ ̅̅ ̅̅ , for the weakly stable conditions is 

weaker than that for the isothermal and unstable conditions, its value has not changed significantly 

compared to the isothermal condition [38]. 

It has been reported that the impact of unstable thermal stratification on the concentration field 

was more pronounced than that of the stable one with its counterpart Richardson number [39]. 

However, stable stratification conditions can also change the flow and concentration fields within 

a street canyon. Figure 1.2 shows a comparison between the streamlines and normalized Reynolds 

stress (〈𝑢′𝑤′〉 𝑈2⁄ ) under the isothermal, unstable (𝑅𝑖 = −0.1), and two stable (𝑅𝑖 = 0.1 and 

0.188) conditions within a canyon [38]. In Figure 1.2 (c) and (d), a stagnant region is visible in 
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the proximity of the ground, which can trap pollution. A decrease in the Reynolds stress, which 

can be seen in Figure 1.2 (c) and (d) in comparison with the other two cases, can weaken the 

pollutant removal. Also, Duan and Ngan [24] compared the Reynolds stress in an urban area for 

different stratification conditions, and the results were in-line with those obtained by [38]. 

It has been reported that coherent structures and airflow patterns around an isolated building are 

quite similar to each other under the isothermal and stably stratified boundary layers, with some 

differences in the magnitude of the streamwise velocity [40]. Therefore, it can be concluded that 

the overall pattern of pollutant dispersion can be quite similar for the different cases, as is the case 

with [40]. However, small differences in the width of the polluted area in the wake region and also 

the concentration magnitude for each case at different locations are observable in their reported 

results. 

 

Figure 1.2: Comparison between the streamlines and the normalized Reynolds stresses (〈𝒖′𝒘′〉 𝑼𝟐⁄ ) under 

different stratification conditions: (a) 𝑹𝒊 = 𝟎, (b) 𝑹𝒊 = −𝟎. 𝟏, (c) 𝑹𝒊 = 𝟎. 𝟏, and (d) 𝑹𝒊 = 𝟎. 𝟏𝟖𝟖 (obtained from 

[38]) 
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The growth of boundary layers has been reported to be slower in the stably stratified condition 

compared to the isothermal case [41]. The mentioned phenomenon caused the airflow to be 

entrained farther downstream in the stably stratified condition in comparison with the other case. 

The influence of the stably stratified condition on increasing the pollutant concentration in the 

downstream canyons was reported by [42] and also compared with the isothermal and unstable 

conditions. 

In addition to the effect of the temperature of surfaces on generating different stratification 

conditions (i.e., local stratification), considering the thermal stratification of the approaching flow 

(i.e., boundary layer) is also of utmost importance. By using wind tunnel measurements, Marucci 

and Carpentieri [43] reported that the stable condition caused the pollutant concentration to be 

increased by up to two times compared to the isothermal case, while the unstable one reduced the 

pollution concentration by up to three times. In-line with the findings of the mentioned study, Sessa 

et al. [44] stated that the stable condition increased the pollutant concentration in the tested urban 

area. 

1.3 Problem definition 

Based on the above explanations, it can be concluded that the occurrence of different thermal 

conditions is quite frequent within urban areas, which can be influenced by other factors, such as 

wind speed and direction. These meteorological factors frequently change through time, and the 

airflow and concentration fields can constantly be under the influence of the mentioned factors. 

Therefore, it would be reasonable to account for these alterations in simulating the field variables. 

Furthermore, when dealing with the concentration field, monitoring the situation becomes 

important. For instance, in case of sudden release of pollutants upstream of an urban area, it would 

be essential to monitor the concentration field. Also, long-term simulations are required to assess 

the ventilation performance of an urban area [45]. 

Experimental and numerical (e.g., computational fluid dynamics, CFD) approaches are among the 

most common ones for studying the flow and concentration fields within urban areas. 

Characteristics of these approaches make them suitable for being used to achieve various goals. 

For instance, experimental methods can be used to discover the underlying physics of the problem. 

Also, they can be used to validate the results of CFD simulations. On the other hand, CFD 

simulations can generate high-resolution data, which can be used for a comprehensive analysis of 

the problem. However, conducting experimental and CFD studies is time-consuming, which 

makes them unsuitable for the tasks mentioned in the previous paragraph. Data-driven methods 

can obviate the limitations regarding the simulation time. 

Data-driven algorithms have emerged in fluid dynamics applications for different purposes, 

including turbulence closure, super-resolution, and reduced-order modeling, which are described 

in detail in [46,47]. The idea behind reduced-order modeling is to reduce the degree of freedom of 

a system to achieve significant speed-up. This order reduction in fluid dynamics problems can be 

performed by considering the coherent structures of field variables (e.g., the flow field), which is 

thoroughly discussed in section 4.2 of the present dissertation. Therefore, by providing datasets 
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using CFD simulations, data-driven models can be trained to reduce computational costs, which 

makes them suitable for the aforementioned tasks. It should be noted that some efforts have 

recently been made to use sparse experimental data for training a data-driven model [48–50]. 

1.4 Objectives and thesis organization 

The present dissertation employs numerical and data-driven approaches to: 

1. Fundamentally analyze the impact of thermal stratification conditions on the urban airflow 

field, pollutant dispersion process, and turbulence characteristics of the airflow field, and, 

2. Develop a fast-response model, i.e., reduced-order model (ROM), for prediction tasks 

using datasets generated by the CFD simulations. 

It should be noted that, as mentioned in section 1.3, having access to fast-response models for 

urban areas is of utmost importance since: 

1. The monitoring task is essential due to the occurrence of emergency situations, such as 

sudden pollution release from an industrial plant located upstream of an urban area, 

2. Long-term simulations may be required (for instance, to assess the ventilation performance 

within an urban area), 

3. Capturing frequent changes in the boundary conditions (i.e., meteorological factors, such 

as alteration of the thermal stratification condition, inflow wind speed, and wind direction), 

may be needed. 

Thus, in the present dissertation, after validating the CFD results with available experimental data, 

various non-intrusive ROMs (NIROMs) are developed for predicting the turbulent urban airflow. 

The outline of each chapter of this dissertation is mentioned below. 

Chapter 2 of the present thesis comprehensively reviews experimental and numerical studies 

considering the impact of non-isothermal conditions on the airflow field and pollutant dispersion. 

Although this study is conducted numerically, reviewing experimental research works is of utmost 

importance since they shed light on the fundamentals of the process under investigation and can 

be used for numerical models, which are crucial in the present study. Therefore, being aware of 

the conducted experimental studies and their reported results is beneficial for finding an 

appropriate test case for numerical ones. Thus, these studies provide opportunities for researchers 

to build up a roadmap for their simulations’ goals. 

Chapter 3 introduces the simulation test cases: stable, isothermal, and unstable conditions. In this 

chapter, for the first time, the applicability of embedded large eddy simulation (ELES), also known 

as zonal large eddy simulation, in studying the airflow field and pollutant dispersion under non-

isothermal conditions is shown. After validating the simulations’ results with available 

experimental data, the generated datasets are used for proper orthogonal decomposition (POD) and 

spectral analyses to study the impact of thermal conditions on the turbulence statistics of the urban 

airflow field. The POD technique is considered the most-common dimensionality reduction 
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technique in fluid dynamics problems. Therefore, the results obtained from the POD analysis show 

the feasibility of generating a ROM for the present test cases. 

Chapter 4 introduces different techniques for developing NIROMs in fluid dynamics applications 

by thoroughly reviewing the existing studies. The NIROM development procedure is divided into 

two parts, and the limitations of the frequently-used approaches are mentioned. The scarcity of 

studies on the development of NIROMs for highly turbulent flow fields leads to the development 

of different NIROMs in Chapter 5, in order to try to obviate the limitations of the most-common 

approaches by modifying them based on the physics of the fluid dynamics problems, i.e., 

multiscale nature of turbulence and long-range dependencies that might be present among 

datapoints. The employed models are introduced in this chapter, and the results are 

comprehensively analyzed to prove that the developed NIROMs can be considered a reliable 

approach for CFD simulations when fast-response models are required. 

The present dissertation is a manuscript-based thesis, in which the contents of chapters 3 to 5 are 

part of the published and under review manuscripts. Furthermore, chapter 2 is the longer and more 

comprehensive version of the introduction part of the article used in chapter 3. Also, the 

introduction and the simulation case sections of the article used in chapter 5 are already addressed 

in chapters 4 and 3, respectively. Therefore, the mentioned sections are modified for the sake of 

the dissertation flow. 

Chapter 2: 

The chapter describes the influence of non-isothermal thermal conditions on the urban 

airflow and pollutant dispersion process by reviewing experimental and numerical articles. 

Furthermore, the limitations of previous works are mentioned. 

• Chapter 3: 

Masoumi-Verki, Shahin, Gholamalipour, Payam, Haghighat, Fariborz, Eicker, Ursula. 

“Embedded LES of thermal stratification effects on the airflow and concentration fields 

around an isolated high-rise building: Spectral and POD analyses”, Building and 

Environment 206 (2021), 108388. 

• Chapter 4: 

Masoumi-Verki, Shahin, Haghighat, Fariborz, Eicker, Ursula. “A review of advances 

towards efficient reduced-order models (ROM) for predicting urban airflow and pollutant 

dispersion”, Building and Environment 216 (2022), 108966. 

• Chapter 5: 

 

Masoumi-Verki, Shahin, Haghighat, Fariborz, Eicker, Ursula. “Performance analysis of 

different reduced-order models for predicting urban turbulent flow field”, under review. 
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The present dissertation also includes two appendices. Appendix A explains the governing 

equations of the CFD models used for the simulations, while Appendix B mentions the 

mathematics behind the POD technique. It should be noted that Appendix B is similar to the 

appendix section of the article used in Chapter 3.
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Chapter 2. Literature review on the impact of non-isothermal 

conditions on flow and concentration fields 

 

2.1 Introduction 

In this chapter, the experimental and numerical studies investigating the impact of non-isothermal 

thermal conditions on the urban airflow and pollutant dispersion process are reviewed. The results 

are analyzed, and the limitations of the numerical studies are addressed. 

2.2 Experimental studies 

Experimental methods in urban studies consist of two major approaches: scaled laboratory 

measurements (i.e., wind tunnel and water tunnel measurements) and field measurements, which, 

itself, can be categorized into two classes, namely, reduced-scale and full-scale outdoor 

measurements. Torres et al. [51] also classified experimental studies into two categories: open-

environment, consisting of reduced-scale and full-scale measurements, and closed-environment, 

which is similar to scaled laboratory measurements. In the present section, outdoor field 

measurements and wind tunnel measurements are discussed. 

2.2.1 Open-environment studies 

Full-scale field measurements are not usually suitable for investigating the impact of a particular 

factor (i.e., parametric study) on a process, e.g., dispersion process, since the boundary conditions 

are neither controllable nor repeatable [52]. Furthermore, field measurement studies are usually 

time-consuming and costly. However, field measurements provide valuable information on 

processes within an urban area, considering its complexities and influential factors, as is the case 

with BUBBLE [53], which was conducted in the city of Basel, Switzerland, to study boundary 

layer characteristics. Contrary to full-scale outdoor measurements, scaled outdoor measurements 

(e.g., [18,54]) provide researchers with the opportunity of parametric studies, without having 

trouble with the law of similitude, which is hard to maintain in other scaled studies, such as wind 

tunnel, when thermal effects are considered [54]. In the following paragraphs, some outdoor field 

measurement studies are introduced to find out the role of thermal stratification conditions in urban 

areas. 

Niachou et al. [55] reported that the temperature difference between the opposite sides of the 

investigated canyons (i.e., the two façades) was not significant. However, the temperature 

difference between the ground (particularly near the windward wall) and the airflow was 

remarkable (up to 30 C ), which resulted in the induction of strong buoyant forces. The Nantes’99 

experiment [56] was conducted in a three-lane one-way traffic street, with an aspect ratio of 1.4. 

It should be noted that the height of the leeward wall has mentioned to be 3.4 m taller than that of 
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the windward façade. The pollution concentration (carbon monoxide, CO), temperature, flow and 

turbulence conditions were measured during hot seasons with low wind speed. Furthermore, 

vehicle-induced turbulence was also measured. It should be noted that the pollutant concentration 

was measured at the pedestrian level, 1.5 m. 

Using the data of the Nantes’99 experiment, Louka et al. [57] reported that thin thermal boundary 

layers were formed in the proximity of the windward and leeward walls in the morning and the 

afternoon, respectively. These thermal boundary layers were responsible for generating a strong 

buoyant force close to the wall, which may affect the flow field and pollutant dispersion. Due to 

the absence of wind velocity measurements at the location of temperature measurements in the 

Nantes’99 experiment, studying the induced thermal effects may become difficult and conclusions 

may be erroneous. 

High-resolution wind field measurements in a street canyon, with high geometrical complexity, 

called Joint Urban 2003, were conducted in Oklahoma City, and the effect of stability condition 

on the flow and turbulence statistics was investigated [58]. They reported that the impact of 

stratification conditions on the flow and turbulence statistics was highly dependent upon the 

variables used for normalization. For instance, they stated that by choosing the wind speed at the 

mean height of the buildings as the reference velocity, only minor influences of stability conditions 

could be drawn. On the other hand, when the wind velocity at a higher elevation was selected as 

the reference one, the impact of thermal stratification became remarkable. It should be noted that 

due to the high variability in the heights of the buildings, the influence of aspect ratio cannot be 

interpreted from the results. Also, the sensor was placed in just two different positions at different 

sides of the canyon. Using the data of Joint Urban 2003, Zajic et al. [59] stated that dynamically 

stable conditions did not happen in the canyon, and the thermal characteristics in cities could be 

highly affected by the built environment. 

In another study, using data from the project “Innovative Laboratory for Research and Education 

in Urban Meteorology (ILREUM)”, conducted on the campus of the University of Oklahoma and 

two urban canyons in Oklahoma City, Klein and Galvez [60] reported that the upwind stability 

condition significantly affected TKE in the shear-layer region at the roof level. The results show 

TKE decrement with the increase in the stability level. The same trend was also reported for TKE 

values inside the canyon. However, they reported that the impact of upwind stability conditions on 

the mean flow pattern inside the canyon was quite small. It should be noted that TKE and mean 

flow velocity were normalized with the friction velocity. Also, the aspect ratio of the target canyon 

was reported to be 3.5, in which the flow can be considered as the isolated roughness one [61], in 

which thermal effects are less evident than the other types of flows. 

Using a quasi-2D canyon with an aspect ratio of unity, Aliabadi et al. [5] conducted experiments 

to investigate the impact of several factors on flow and temperature dynamics, including thermal 

stability, wind direction and wind speed, in Guelph, Ontario, Canada. They observed stable 

stratification conditions at night and unstable conditions during the mid-afternoon. The results 

show a gradual decline of TKE with an increase in the value of 𝑅𝑖𝑏. 
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As mentioned earlier, reduced-scale outdoor measurements provide researchers with the 

opportunity of parametric studies. Dallman et al. [18] used ship containers to create a simplified 

street canyon for scaled outdoor measurements, considering the leeward wall as the heated one. 

By defining a dimensionless number, called buoyancy parameter (see Eq. 1-3), they stated that in 

very high ranges of 𝐵 compared to 𝐵𝑐, the flow becomes independent of the background airflow 

velocity. Furthermore, the fluctuating component of velocity was reported to be dependent upon 

𝐵 when the buoyant force became more significant. It has been reported that turbulent mixing 

increased with the increase in the value of 𝐵 [54].  

The canyon aspect ratio plays an important role in defining the airflow pattern [62,63]. By using 

scaled outdoor measurements, Chen et al. [54] reported that the critical value of the buoyancy 

parameter varies with the canyon aspect ratio. It should be noted that they neglected the case with 

the bi-directional act of the background wind and the induced buoyant force. The higher the aspect 

ratio, the lower the critical buoyancy parameter becomes [54]. Thus, in deep canyons, even a small 

temperature difference between the airflow and surfaces may strongly affect the urban airflow and 

pollutant dispersion. 

Based on the reviewed articles, it can be concluded that in most of the studies, the pollutant 

dispersion process has been neglected. Therefore, there is a lack of study on outdoor measurements 

on the impact of thermal stratification on pollutant dispersion. Furthermore, in order to have an 

accurate investigation on the effect of local instabilities on the airflow pattern and dispersion 

process, surface temperature should be measured in different locations since, as reported by [64],  

81% and 94% of the variation in the daytime and nighttime air temperature can be explained by 

the surface temperature at the time, respectively. 

2.2.2 Wind tunnel measurements 

Contrary to full-scale field measurement studies, closed-environment ones, such as those using 

wind tunnels, are useful for parametric studies [65]. However, one of the most critical issues of 

using wind tunnels in urban studies is the complexity of holding the law of similitude, especially 

in the non-isothermal condition [66]. Detailed information on the Reynolds and Richardson 

similarity criteria can be found in [66–72]. 

An overview of the wind tunnel studies on the impact of non-isothermal boundary layers on the 

airflow field and pollutant dispersion in urban areas is given in Table 2.1. 
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Table 2.1: An overview of wind tunnel studies on the impact of non-isothermal boundary layers on the flow field and the pollutant 

dispersion process (Ref.: reference number; Ri/Fr number: Richardson/Froude number; Heated (cooled) surf.: heated (cooled) 

surface; AR: canyon aspect ratio; Dimen.: study dimensionality) 

Ref. Ri/Fr number Heated (cooled) 

surf. 

Geometry (canyon AR) Dim. Findings/goals 

Studies without pollutant source 

[26] Bulk Ri ranging 

from 0.79 (stable) 

to -0.21 (unstable) 

Ground Building arrays - AR=1 3D Unstable (stable) stratification 

led to stronger (weaker) cavity 

eddy compared to neutral case - 

high stability led to zero wind 

speed in canyon 

[27] Fr ranging from 

0.27 to 2.03 

WW Isolated canyon – AR=1 2D Heating windward wall led to 

generation of a weak secondary 

flow in the proximity of ground 

[69] Bulk Ri=0.9 and 

1.6 (unstable) 

LW Isolated building block 2D Impact of Ri on recirculation 

region in wake region 

[66] Fr ranging from 

0.65 to 17.3 

WW, LW, 

ground 

Isolated canyon - AR=1 2D Effect of heated surface on the 

main recirculation region in the 

canyon 

[73] Fr ranging from 

0.3 to 21.9 

Ground Street canyon placed in an urban 

area - AR=1 (considered non-

uniform buildings heights and 

non-equal buildings lengths) 

3D Non-uniform buildings heights 

led to improvement of canyon 

ventilation since lateral airflow 

became more significant 

[2] Bulk Ri ranging 

from 0 to 1.25 

(unstable) 

WW, LW, 

ground 

Street canyon placed in a 

realistic city geometry - 

AR=0.68 

3D As Ri increased, TKE increased 

- significant effect of building 

height on buoyancy 

[16] Bulk Ri=0.131 and 

1.176 (unstable) 

WW, LW, 

ground, roof 

Street canyon placed within a 

number of blocks - AR=0.67, 1, 

2 

2D Impacts of heated surface and 

canyon AR on flow and 

temperature fields 
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Studies with pollutant source 

[74] Bulk Ri=-0.25 

(unstable) 

Ground Isolated high-rise building – 

pollutant was injected from a 

point source located on the 

ground in wake region 

3D Experimental data used for 

validating different CFD 

approaches (LES and RANS) 

[75] Bulk Ri ranging 

from 0 to 4.77 

(unstable) 

Ground between 

two buildings 

One high-rise building and one 

low-rise in its wake, with a stack 

on the roof of the low-rise one 

3D Experimental data used for 

validating the simulations with 

two different turbulence models 

and two different wall treatment 

models 

[30] Bulk Ri=2.3 

(stable) and bulk 

Ri=-3 (unstable) 

Ground Building arrays with AR=0.96 or 

1.91 – pollutant was injected 

from a point source located on 

the ground 

3D Significant effect of 

stratification on pollutant 

diffusion even in the proximity 

of the source 

[76] Fr ranging from 

0.31 to 0.62 

WW, LW Arrays of street canyons with 

AR= 1 and 1.5 – pollutant was 

injected from a line source 

located on the ground 

2D Impact of WW heating was 

reported to be more significant 

than LW heating in pollutant 

removal from square cavities – 

WW heating resulted in 

lowering air quality in narrow 

canyons 

[67] Bulk Ri ranging 

between 0 and 

1.15 (unstable) 

Roof of the low-

rise building 

One high-rise building and one 

low-rise in the wake of that, with 

a stack on the roof of the low-

rise one 

3D Increasing Ri more than 0.78 

did not affect pollutant 

concentration significantly 

[77] Bulk Ri ranging 

from -0.23 

(unstable) to 0.29 

(stable) 

Ground Building arrays with AR=1 – 

pollutant was injected from a 

line source located on the ground 

3D Pollutant concentration was 

increased with the increase in 

bulk Ri – the stability effect 

ratio was independent of the 

measurement location 

[33] Bulk Ri ranging 

from -1.5 

(unstable) to 0.29 

(stable) 

Ground Array of buildings with AR=1 – 

pollutant was injected from a 

circular point source located on 

the ground – wind direction was 

45 degree deviated from the 

canyon axis 

3D Significant impact of 

stratification on vertical 

dispersion – unstable (stable) 

stratification decreased 

(increased) pollutant 

concentration remarkably  

Abbreviations: WW: windward wall; LW: leeward wall 
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From Table 2.1, it can be seen that plenty of the experiments have been conducted in 2D format. 

However, Allegrini [73] reported that buoyant force can induce 3D flow structure, which prevents 

the formation of standing vortices within canyons. Therefore, in addition to the flow in the vertical 

plane, that in the horizontal plane is also important, particularly under non-isothermal flows. 

Furthermore, in most of the studies, urban geometry has been simplified to a number of buildings 

(or even an isolated building) or an isolated canyon. However, in some studies building arrays 

have been used to model complexities of an urban area, such as the sheltering and channeling 

effects. Uehara et al. [26] used several cubes to model a city. They used a laser Doppler 

anemometer (LDA) and a cold wire for measuring the wind velocity components and temperature 

within and above the canyon. The results show an increase in the value of the vertical velocity 

component in the proximity of both the leeward and windward walls. They reported that, under 

the unstable case, due to the increase in the mixing process, the gradients of the vertical 

temperature became smaller, and thus, the instability decreased. 

The impact of uniform wall heating on the airflow field was investigated by Kovar-Panskus et al. 

[27]. They reported that with the decrease in the Froude number's value (i.e., the inverse of the 

Richardson number), the tendency to generate the secondary vortex became stronger. In their 

results, there is no evidence of having the upward dominating buoyant force which may be due to 

the generation of a very thin boundary layer in the proximity of the windward wall and data 

collection far from the wall, outside of the thin boundary layer. 

Using LDA and a cold wire thermometer, Kanda and Yamao [30] studied the impact of thermal 

stratification conditions by controlling the temperature of the ground and airflow on the dispersion 

process. The results illustrate that, inside the canyon, the stratification condition did not change 

the Reynolds stress, 𝑢′𝑤′̅̅ ̅̅ ̅̅ , significantly, and its value is very small for all the conditions. However, 

above the canopy, the magnitude of 𝑢′𝑤′̅̅ ̅̅ ̅̅  became very larger compared to its magnitude inside the 

canyon, and it had a positive relationship with the increase in the instability level. The results of 

the concentration field also show that as the stability level increased, the concentration level also 

increased. Furthermore, in agreement with [36], pollution distributed more horizontally under the 

stable condition compared to the other two situations. Ogawa et al. [36] stated that for strong stable 

conditions, instead of vertically-wise dispersion, the plume spread in a very thin horizontal layer 

as its vertical movement was inhibited. 

Based on the wind tunnel experiment of Ogawa et al. [36], increasing the stability level increases 

the generated shear in the vicinity of the ground. However, the velocity gradients for the strong 

stable condition were reported to be smaller than those for the weak stable condition above a 

specific height from the ground. Also, the results show that as the stable stratification condition 

became stronger, the mean airflow velocity in the longitudinal direction became smaller, 

particularly with the increase in height from the ground. 

Marucci and Carpentieri [43] investigated the combined effects of the stably stratified approaching 

flow profile and local stratification caused by surface heating on pollutant dispersion from a point 

source. In terms of TKE, when the windward wall was heated, the generated TKE within the 

canyon was reported to be the most significant. In contrast, in the case of the heated leeward wall, 
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there was no remarkable increase in the generated TKE. Furthermore, it has been reported that the 

stably stratified approaching flow did not significantly affect the turbulent diffusion flux. 

However, it influenced the convective flux, mainly by increasing the magnitude of the negative 

flux close to the windward wall [43]. 

In most wind tunnel studies, the impact of vegetation coverage on the flow field and dispersion 

process has been neglected. Some wind tunnel studies focus on the aerodynamic effects of trees 

on the flow field and pollutant dispersion [78–80]. However, their thermal effects have been 

overlooked. One of the main barriers to conducting such studies is the lack of ability to model 

differential wall heating, similar to solar radiation, considering the shading effect of trees and 

buildings. As can be seen in Table 2.1, all the studies have been done by controlling the 

temperature of surfaces and airflow, and also the surface heating is uniform. Lin et al. [81] 

conducted a wind tunnel experiment to investigate the possibility of applying artificial light as 

radiation. They stated that this method can provide a better representation of the situation regarding 

the solar angle and shading effects. However, there exist some difficulties, such as air temperature 

measurements, in this situation. Researchers can focus on the possibility of using such an approach 

to model differential wall heating for future studies. 

2.3 Numerical (CFD) studies 

Table 2.2 shows an overview of CFD studies on the effect of non-isothermal boundary layers on 

pollutant dispersion. In the current section, the limitations of the numerical studies are addressed 

based on the indicators mentioned in Table 2.2. 

Table 2.2: An overview of CFD studies on the impact of non-isothermal boundary layers on non-reactive pollutant 

dispersion (Ref.: reference number; Turb. model: turbulence model; Dimen.: dimensionality of studies) 

Ref. CFD approach Turb. model Geometry Dimen. 

[82] RANS SKE [83] Isolated canyon 2D 

[84] RANS SKE Isolated canyon 2D 

[21] RANS RNG Isolated canyon 3D 

[14] RANS SKE Isolated canyon 2D 

[85] RANS SKE Isolated canyon 2D 
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[86] RANS RNG [87] Isolated canyon 2D 

[88] RANS SKE Realistic urban area 3D 

[32] RANS RNG Isolated canyon 2D 

[23] LES 1-eq. SGS model Isolated canyon 3D 

[22] LES 1-eq. SGS model Isolated canyon 3D 

[19] RANS RNG Street canyons 2D 

[74] RANS, LES SKE, SSLM [89] Isolated building 3D 

[90] LES SSLM Isolated canyon 3D 

[91] LES 1-eq. SGS model Isolated canyon 3D 

[39] LES SSLM Arrays of buildings - realistic 3D 

[92] RANS RLZ [93] Four buildings 3D 

[94] RANS RNG Street canyons 2D 

[75] RANS SKE, RLZ Cavity 3D 

[38] LES 1-eq. SGS model Isolated canyon 3D 

[95] RANS RNG Street canyons 2D 

[41] LES Dutch atmospheric large eddy 

simulation (DALES) [96] 

Arrays of buildings 3D 
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[97] RANS SKE Canyons with different aspect 

ratios and roof shapes 

2D 

[31] LES 1-eq. SGS model Isolated canyon 3D 

[40] LES Meneveau's Lagrangian-

dynamic Smagorinsky Model 

[98] 

Different generic configurations - 

Arrays of buildings 

3D 

[99] LES SSLM Arrays of buildings 3D 

[100] LES PALM model [101] Arrays of buildings 3D 

[102] LES PALM model Arrays of buildings 3D 

[103] LES DSLM [104,105] Isolated building 3D 

[106] RANS RNG Street canyons 2D 

[107] RANS SKE Arrays of buildings 3D 

[108] RANS SKE Street canyons 2D 

[109] RANS SST Street canyons 2D 

[42] RANS Modified SKE Arrays of buildings 3D 

[110] RANS RNG Street canyons 2D 

[111] RANS SKE Isolated building 3D 

[112] RANS RNG Arrays of buildings 3D 
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[113] RANS RNG Isolated street canyon with 

different heights of buildings 

3D 

[20] RANS RNG Isolated building 3D 

[114] RANS SKE, RNG Isolated building 3D 

 Abbreviations: RANS: Reynolds-averaged Navier-Stokes; LES: large eddy simulation; DES: detached eddy 

simulation; SKE: standard k-ε; RNG: renormalization group k-ε; RLZ: realizable k-ε; SSLM: standard Smagorinsky-

Lilly model; DSLM: dynamic Smagorinsky-Lilly model; 1-eq. SGS model: one-equation subgrid-scale model; 

WMLES: wall-modeled large eddy simulation; DDES: delayed detached eddy simulation; SA: Spalart-Allmaras; 

PALM: parallelized large eddy simulation model; SST: shear stress transport (SST) k-ω 

2.3.1 Dimensionality and geometry 

As can be seen in Table 2.2, several studies have used 2D street canyons [94,95,106]. Chen et al. 

[115] stated that the airflow structure in 2D and 3D studies, especially under an oblique wind 

direction, is notably different from each other. Therefore, in order to have a reliable simulation of 

microscale pollutant dispersion in urban areas under thermal effects, it is necessary to conduct a 

3D simulation. 

Plenty of previous studies have performed simulations using an isolated street canyon or building 

[38,116], as reported in Table 2.2. This can be due to the lack of experimental data in 

neighborhood-like geometries. However, considering an isolated canyon or building may neglect 

some of the urban airflow features, such as the sheltering effect. Therefore, the airflow pattern in 

an isolated canyon may be remarkably different from that in a more realistic area, e.g., building 

arrays [115]. Also, in cases with an isolated building, the strong downwash effect caused by the 

downstream building is neglected. Furthermore, in the majority of the tabulated studies, 

researchers used a generic geometry without considering the complexities of a real urban area. 

Allegrini and Carmeliet [117] showed that the UHI is a local phenomenon that varies in an urban 

area due to building geometry, surface materials, and wind direction and speed. Thus, the 

dispersion process, particularly under non-isothermal boundary layers, can be influenced by the 

canyon aspect ratio as well. On the other hand, the use of an isolated building or canyon in studies 

is common since it provides researchers with the opportunity of focusing on the fundamentals of 

a particular process, a specific feature of a simulation approach, etc. 

The impact of buildings' heights on the airflow temperature and air quality has been investigated 

using two step-up and two step-down canyons as the test cases [113]. The results show a significant 

effect of the height of the buildings on both airflow temperature and air quality. They stated that 

when the incoming wind speed is low and when the windward wall was heated, an increase in the 

height of the upstream building led to the strengthening of the natural convection. Therefore, due 

to the formation of convergent flows, the averaged wind velocity at the pedestrian level increased 
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significantly. Several other studies considered the impact of variations in the building's height on 

the ventilation performance and the dispersion process within an urban area [118–121]. 

Yang et al. [122] claimed that urban density has a remarkable influence on the airflow and 

concentration fields. These factors also affect the buoyant force, and thus, the airflow pattern in 

urban areas. Xie et al. [39] simulated pollutant dispersion in a realistic site in non-isothermal 

conditions, considering two different wind directions. The results show that the concentration field 

is sensitive to the stratification condition, even a weak one, under oblique wind directions. The 

results show that the value of mean concentration under different stratification conditions can be 

different by up to an order of magnitude. Therefore, it can be concluded that the airflow and 

dispersion patterns in a realistic urban area can differ significantly from those in a generic one, 

especially when thermal effects are considered. 

2.3.2 CFD approach 

In order to use CFD for simulating the impact of non-isothermal boundary layers on pollutant 

dispersion, two different aspects should be considered: (1) the ability of the model in capturing the 

concentration field, and (2) its viability under non-isothermal conditions. This means that the 

model should be able to capture the mean and fluctuating variables under thermal effects. 

Many efforts have been made to determine the capability of CFD models in predicting the airflow 

and pollutants concentration fields under the isothermal condition [123–128]. The RANS approach 

has extensively been used due to its affordable computational costs. However, with the advent of 

high-performance computers, the use of LES has become more common. A comprehensive 

comparison between RANS and LES in urban-/building-related fields can be found in [129]. 

Usually, RANS models over-predict the concentration field [124]. On the other hand, fluctuations 

due to large-scale eddy motions can be captured by LES [124,130]. Capturing fluctuations of the 

airflow and concentration fields is essential in dispersion studies since it is related to pollutant 

dispersion mechanisms (i.e., turbulent diffusion flux) [107,116,131]. It has been mentioned that 

LES can generate acceptable results, regarding the mean flow field and TKE, compared to the 

experimental data even with a simplified subgrid-scale (SGS) model, since the vortex shedding 

around the building can be captured by LES, while RANS cannot reproduce it [124]. 

SSLM-LES showed a better agreement (up to 4 times better) with experimental data than RNG, 

especially in the proximity of the canyon floor, in simulating the airflow and concentration fields 

within a 3D generic street canyon, under the isothermal condition [132]. Using a part of the 

downtown of Montreal as the test case, Gousseau et al. [133] reported that DSLM-LES performed 

better than the SKE in predicting the concentration field. 

Jadidi et al. [128] compared the capability of different unsteady methods, namely, unsteady RANS 

(URANS), using SST, scale-adaptive simulation (SAS) [134], and SSLM-LES, in predicting the 

airflow and pollutant concentration fields around an isolated building in the isothermal condition. 

It has been reported that SST could not predict the time-dependent concentration distribution 

[128]. Furthermore, the results showed the incapability of SST in capturing the turbulence coherent 
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structures in the wake region of the building, while the other two models performed better. The 

authors also compared the three models regarding their computational costs. SAS showed 67% 

increase in the computational costs compared to LES, and LES had an additional computational 

cost of 88% with respect to the URANS. 

As reviewed above, LES provides more accurate results in predicting the concentration field 

compared to RANS-based models. However, large discrepancies have been reported between the 

simulated concentration fields and the experimental data in the vicinity of the pollutant source, 

located on the ground, for both indoor and outdoor regions [25,135], which may be due to lack of 

accuracy in predicting TKE in that region.  

In order to account for thermal effects, the turbulence model should be capable of capturing the 

field variables under non-isothermal boundary layers. RANS, URANS, and LES were employed 

to predict the airflow field within street canyons under non-isothermal conditions [136]. The 

results show that, when the windward wall was heated, RANS and URANS could not predict the 

stagnant area in the canyon. However, LES was able to capture the mentioned region, as can be 

seen in Figure 2.1 (obtained from [136]). Nazarian and Kleissl [137] also reported the incapability 

of URANS in predicting the turbulence nature of the flow, particularly in the canyon region. 

Isothermal condition 

Measurement RANS URANS LES 

 

Windward wall heating condition 

Measurement RANS URANS LES 
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Figure 2.1: Comparison between the results of simulations of [136] (with the RANS, URANS and LES 

approaches) with the wind tunnel measurements of [66] with Re=9000 and Ri=1.56, for a 2D street canyon with 

the aspect ratio of 1 (obtained from [136]) 

Yoshie et al. [74] showed that the RANS approach could not capture the vortex shedding 

phenomena and vortical regions behind the tested building. However, LES showed a good 

performance in predicting the airflow and concentration fields. Regarding the temperature field, 

the vertical temperature distribution in the proximity of the leeward wall, yielded from RANS, was 

more vertical than that obtained by the experiment, which can be attributed to the strong vertical 

flow predicted by the RANS approach in that region. However, based on the experiment [27] and 

the simulation [21], the thermal boundary layers generated in the vicinity of the walls are very thin, 

and their effects on the overall flow field are not significant. Therefore, it can be concluded that 

the RANS approach overestimated the results in [74]. 

Since RANS is computationally efficient, its usage is beneficial in urban studies, particularly in 

those covering large areas. The computational resources required for LES is much higher than that 

for RANS [126]. It has been reported that the CPU time required for the statistical convergence 

using LES is 25 times more than that for RANS in studying the dispersion process around an 

isolated building. The situation can even be worse for a large number of buildings [138]. RANS 

models can be revised to overcome their limitations. Several research items have been performed 

to investigate the impact of modeling/resolving the boundary layer on heat transfer from surfaces 

using the RANS approach [139–142]. It has been reported that the impact of choosing a proper 

wall function on the results is more remarkable in strong stratification conditions than weak ones 

[75]. The results of [143] showed an overestimation of the velocity profiles in the vicinity of the 

walls when the low-Reynolds number modeling was used. Furthermore, the performance of the 

non-equilibrium wall functions in predicting TKE was better than low-Reynolds number 

modeling. 

In order to clearly illustrate the mechanisms of the dispersion process, especially under the non-

isothermal boundary layer, a more complex approach than RANS, such as LES, is required 

[129,136]. Since most of the structures in urban areas are sharp-edged bodies, the flow around 

these bodies is extremely unsteady and turbulent [29]. In order to reduce the computational costs 
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while retaining the pros of LES, a combination of URANS and LES, such as detached eddy 

simulation (DES) [144], delayed detached eddy simulation (DDES) [145], and also multi-domain 

(multi-zonal) models (e.g., zonal or embedded large eddy simulation, ELES) [29,146] can be used 

[145–150]. 

Using DES, the flow in the boundary layer is modeled using URANS, while LES resolves the 

outer regions. Modeling the near-wall flow employing the URANS approach allows users to 

coarsen the computational grid. The grid size is an essential factor in switching to the LES mode 

from the URANS mode and vice versa. Therefore, in DES, computational grids should be 

generated carefully to determine the proper place for the switching process. In some cases, the grid 

resolution in the boundary layer is not suitable for performing DES, and the switching process 

takes place in the wrong location. Therefore, LES is being used on a relatively coarse mesh, which 

yields inaccurate results [35]. Thus, it is reasonable to find a way to delay the process of switching 

to LES from URANS in the boundary layer, using the modified version of DES, called DDES 

[145] (also see [145,150] for the modifications). 

The main idea behind the ELES method is to divide the computational domain into two different 

regions with different concepts of turbulence modeling [29,146]. ELES computational domain is 

composed of two zones: (1) the inner zone encompassing the target region, in which the LES 

approach is used, and (2) the outer zone in which the URANS approach is used. At the URANS-

LES interface, TKE, which is modeled in the URANS zone, should be explicitly converted to the 

resolved scales [29]. In other words, since the URANS approach does not generate turbulent 

fluctuations, an action should be performed to produce the fluctuations at the interface [29,151]. 

Researchers have employed the above-mentioned approaches in dispersion and other urban-related 

studies [29,135,151,152]. Liu and Niu [153] showed that DDES can reduce computational costs 

by 40% compared to LES, while retaining accuracy at an acceptable level in simulating the airflow 

field around an isolated high-rise building under the isothermal condition. However, the results 

showed some discrepancies between the mean flow patterns of DDES and LES in the wake region. 

Paik et al. [154] reported that both URANS and DES (on coarse grids) could not capture the 

coherent structures around cubes. On a finer grid resolution, the results of DES with low-Reynolds 

modification were reported to be in good agreement with the measurements. 

DES was successfully used in predicting the airflow and pollutant concentration fields around 

building arrays at the isothermal condition [155]. In the study of Lateb et al. [156] under the 

isothermal condition, the flow field obtained by DES agreed well with those from the wind tunnel 

measurements. However, DES yielded almost the same average error regarding the concentration 

field compared to RANS. 

In the study of Liu and Niu [157] under the isothermal condition, DDES reduced computational 

costs by approximately 20% while retaining model accuracy at the LES level. Dai et al. [135] 

reported that the performance of DES in predicting the concentration field was better than RANS, 

while it was outperformed by LES. They stated that DES underestimated the concentration field 

in most parts of the simulated case. 
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Although ELES has been used in problems such as channel flows, flow over bluff bodies, etc. 

[149,150,158–160], it has rarely been employed in predicting urban airflow and concentration 

fields [29,151,152,161,162]. The model has been used to enhance the performance of a Gaussian 

model, called AERMOD, by gaining knowledge about the building downwash and sidewash 

effects [152,161,162]. In [152,161,162], similar to [151], the SST model was selected for the 

URANS zone, while the wall-adapting local eddy-viscosity (WALE) subgrid scale (SGS) model 

was employed in the LES part of the domain. The constant turbulent Schmidt number (𝑆𝑐𝑡) 

approach with 𝑆𝑐𝑡 = 0.7 was used in [151], as is the case with [29]. Although using dynamic 

method for turbulent Schmidt number calculation results in higher accuracy in concentration field 

prediction, it increases computational costs [163]. The results of ELES performed in [151] were 

promising under perpendicular and oblique wind directions. Jadidi et al. [29] also reported that, 

with an increase in computational costs by 49% compared to LES, ELES was able to improve the 

accuracy in concentration field prediction. 

It is noteworthy that none of the above-mentioned studies were performed under non-isothermal 

conditions. Thus, it is reasonable to investigate the performance of hybrid/zonal models in 

predicting turbulent airflow and concentration fields under non-isothermal conditions. 

2.4 Conclusions for computational parameter setting 

In this chapter, experimental and numerical studies were reviewed in order to realize the impact of 

non-isothermal conditions on the flow and concentration fields. The reviewed full-scale and 

reduced-scale field measurements have usually neglected the pollutant concentration. On the other 

hand, wind tunnel measurements have been conducted considering pollutant vents and different 

geometries representing urban areas. In addition to providing knowledge on the fundamentals of 

the problem, experimental studies can be used to verify numerical models. In order to have a 

reliable simulation, it would be beneficial to validate the results of various parameters with 

experimental data, including the time-averaged flow and concentration fields, and turbulence 

statistics. Thus, having access to the mentioned experimental data is a vital factor in conducting a 

CFD simulation. 

Numerical studies have been reviewed and their limitations were categorized into various 

parameters, including the dimensionality, the geometry, and the CFD approach. Due to significant 

differences between the airflow pattern in 2D and 3D studies, particularly under thermal effects, 

conducting 3D studies seem to be reasonable. Regarding the geometry used in simulations, 

structural complexities of a realistic urban areas, such as changes in the urban area density and 

buildings’ heights, have usually been overlooked. This neglection can be caused by the 

unavailability of experimental data. Furthermore, conducting simulations employing simplified 

geometries can provide opportunities to fundamentally investigate a process, which can even be 

expandable to more realistic geometries. 

Regarding the CFD approaches used in the reviewed studies, in order to properly simulate the 

airflow and concentration fields in an urban area, the model should be able to capture the unsteady 

and turbulence nature of the flow field due to high turbulence level in urban airflows, arising from 
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the presence of sharp-edged geometries and high Reynolds number flows. Furthermore, non-

isothermal conditions can even increase the turbulence intensity within urban areas. Therefore, 

more complex models than RANS ones, such as LES, can be a reasonable choice. However, high 

computational costs of LES are a barrier for the mentioned task, particularly in the regions covering 

vast areas. Thus, hybrid/zonal URANS-LES approaches were introduced to make a balance 

between computational costs and accuracy. It was reported that thermal effects have usually been 

neglected in studies, particularly those using hybrid/zonal URANS-LES approaches. Since the 

inclusion of thermal effects can increase the turbulence intensity of the flow field, and the use of 

URANS approach in the model may decrease the models’ capability in capturing the turbulence 

nature of the flow field, the viability of these models should be assessed under non-isothermal 

conditions. 

Therefore, in the following chapters,  a simplified geometry (an isolated high-rise building) is used 

to simulate the flow and concentration fields around it. Furthermore, ELES is used for the first 

time under thermal effects in simulating highly-turbulent airflow and concentration fields. ELES 

is considered a complex model since different parameters, including the size of the computational 

domain, computational grids, simulation time step, etc., can significantly affect the results. Since 

there is no comprehensive guideline for conducting ELES, the author of the present thesis had to 

experiment with different parameters to obtain reasonable results. Thus, it is noteworthy to 

mention that the settings used for the simulation in the next chapter may not be expandable to other 

test cases.
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Chapter 3. Embedded LES of thermal stratification effects on 

the airflow and concentration fields around an isolated high-rise 

building: Spectral and POD analyses 

 

3.1 Introduction 

Non-isothermal stratification conditions can alter the airflow pattern and pollutant dispersion 

process within urban areas. The present chapter is focused on the impact of various stratification 

conditions, namely, stable, isothermal (neutral), and unstable, on the airflow and concentration 

fields around an isolated high-rise building. Zonal Reynolds-averaged Navier-Stokes (RANS)-

large eddy simulation (LES), also known as embedded large eddy simulation (ELES), is employed 

for simulating the airflow and concentration fields under non-isothermal boundary layers in order 

to make a balance between computational costs and accuracy. The present chapter, at first, 

qualitatively and quantitatively compares the results obtained by ELES with the available 

experimental data [164] and the prediction made by LES model [103]. The current chapter 

evaluates the performance of ELES for being used in urban studies under thermal effects, with the 

emphasize on the results accuracy and computational costs. Furthermore, after validating the 

results, a comprehensive analysis of the impact of thermal stratification conditions on the airflow 

and concentration fields is carried out. Also, the proper orthogonal decomposition (POD) 

technique and time-frequency analysis are employed to understand the dominant structures of the 

airflow field and assess its transient behavior. 

3.2 Simulation cases, boundary conditions and computational settings 

In the present chapter, an isolated high-rise building, under different stratification conditions, is 

used as the test case. The geometry and conditions are the same as the ones used in the wind tunnel 

experiment [164]. Figure 3.1, obtained from [165], depicts the schematic view of the model 

building under three different stratification conditions, namely, stable, isothermal, and unstable. 

The building height is 𝐻 = 2𝑊 = 2𝐵 = 0.16𝑚, where 𝑊 and 𝐵 are the width and depth of the 

building, respectively. The background wind velocity at the building height, 𝑢𝐻, is set to be almost 

equal for all cases; 1.37 𝑚 𝑠⁄  for both the stable and unstable conditions, and 1.4 𝑚 𝑠⁄  for the 

isothermal case. Therefore, the Reynolds number at the building height is approximately 15,000. 
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a) Stable b) Isothermal 

  

 
c) Unstable 

  

 

 

 

Figure 3.1: The schematic view of the model building, located in different stratification conditions (obtained from [165]). 𝒛 is the 

coordinate in the vertical direction. 𝒖, 𝜽 and 𝒄𝒈𝒂𝒔 represent the streamwise velocity, temperature, and gaseous pollutant concentration, 

respectively. 𝒃𝒖𝒊𝒍𝒅, 𝒈𝒂𝒔 and 𝒇 are the abbreviations for building, gaseous pollutant and floor, consecutively. 

The volume flow rate discharging from a circular point source located in the building’s wake 

region is set to be 𝑞 = 9.17 × 10−6 𝑚3 𝑠⁄  with the ethylene (𝐶2𝐻4 ) concentration of 5% [165]. 

The diameter of the pollutant source is 5𝑚𝑚. It should be noted that the surface temperature is 

constant. In the stable and unstable conditions, the temperature of façades and that of the floor are 

different from each other. The experimental conditions of [164] are summarized in Table 3.1. 
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Table 3.1: Conditions for the wind tunnel experiment of [164]. (𝑹𝒊, ∆𝜽 and 𝜽𝟎 represent bulk Richardson number, 

the absolute value of the temperature difference (|𝜽𝑯 − 𝜽𝒇|), and the space-averaged airflow temperature at the 

inflow boundary layer, respectively. 

 Thermal stratification conditions 

Parameter Stable Isothermal Unstable 

𝑅𝑖 0.08 0.00 -0.10 

𝐻 [𝑚] 0.16 0.16 0.16 

𝑢𝐻 [𝑚 𝑠⁄ ] 1.37 1.40 1.37 

〈𝜃𝑓〉 [℃] 17.7 21.2 45.3 

〈𝜃𝐻〉 [℃] 49.4 21.5 11.3 

〈∆𝜃〉 [℃] 31.6 0.4 33.9 

〈𝜃0〉 [℃] 41.9 21.5 16.6 

〈𝜃𝑏𝑢𝑖𝑙𝑑〉 [℃] 20.9 21.1 41.7 

〈𝜃𝑔𝑎𝑠〉 [℃] 31.6 21.2 30.4 

3.2.1 Computational domain and grid resolution 

The computational domain is generated based on the recommendations of [103,166]. The inlet 

boundary is placed 2𝐻 upstream of the model building, while the outlet one is located 10𝐻 

downstream of the model building. Furthermore, the computational domain is extended in the 

lateral and vertical directions by 7.5𝐻 and 6.25𝐻, respectively. Since the present computational 

domain is aimed to be used with the ELES approach, based on the guidelines of [29], it is divided 
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into two different zones, namely, the URANS zone and the LES zone. The computational domain 

for the present simulation is shown in Figure 3.2 (a) and (b). 

A grid sensitivity analysis is performed on the computational grid to ensure its usability. It should 

be mentioned that this analysis is based on the simulation of the isothermal condition. Three 

different grids, namely, coarse, medium, and fine, with 541,590, 1,457,560, and 2,148,192 cells, 

respectively, were employed to assess the independence of the results from the grid resolution. For 

the concentration field, the results of the medium and fine grids were almost similar to each other. 

Furthermore, two different metrics, namely, hit rate and the factor of 2 of the observations 𝐹𝐴𝐶2 

(see Eqs. 3-1 and 3-2) have shown no remarkable results improvements for the medium and fine 

grids, compared to the coarse one. For instance, 𝐹𝐴𝐶2 increased from 0.88, for the coarse grid, to 

0.90, for the fine one (for the isothermal case). Moreover, regarding the concentration field, the 

mentioned metric remained the same (0.97) for all the mentioned grids. Also, the fine grid 

improved the time-averaged concentration results by 5% of mean relative error compared to the 

coarse one. Findings of [25,103,167,168] also show that refining the computational grid does not 

necessarily guarantee the provision of higher concentration accuracy in the LES approach. 

Furthermore, the time required for the convergence of the simulations with the medium and fine 

grids was much higher than that for the coarse grid (more than three times for the medium one). 

Therefore, due to the high computational costs of the medium and fine grids, the coarse grid is 

selected for further simulations in the present chapter. Moreover, the primary goal of the present 

chapter is to compare the capability of LES and ELES in simulating the airflow and concentration 

fields under non-isothermal boundary layers. Therefore, the coarse grid, which is almost equal in 

cell number with the one employed in the LES study of [103], is chosen. The coarse grid is shown 

in Figure 3.2 (c) and (d). The performance evaluation of ELES with respect to the LES [103] and 

the experiment [164] are then carried out in more detail. 
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Figure 3.2: First row: computational domain for ELES: a) top view in 𝒙 − 𝒚 plane, and b) side view in 𝒙 − 𝒛 plane (orange: the 

model building; chromatic blue: LES zone; pale blue: RANS zone), 

Second row: coarse computational grids: c) top view in the 𝒙 − 𝒚 plane (white square represents the model building), and d) 3D 

view 

The ratio of the number of the grid cells in the LES zone to that in the RANS zone is approximately 

1 3⁄ . Hexahedral cells with the maximum aspect ratio of 1.06 are employed for generating the 

computational grids. The maximum value of the dimensionless wall distance, 𝑦+, over all the 

building façades and the domain ground for the coarse grid in the LES zone is less than 26, which 

is within the acceptable range of using the Werner and Wengle wall functions [169]. Furthermore, 

for grid resolution assessment in the LES zone, the 〈𝜐𝑆𝐺𝑆〉 𝜐⁄  approach, which has been shown to 

be useful [131,170–172], is applied. It should be noted that this describes the ratio of the SGS 

kinematic viscosity to the physical one. As the grid becomes finer, the mentioned ratio approaches 

smaller values [172]. Figure 3.3 shows the profiles of 〈𝜐𝑆𝐺𝑆〉 𝜐⁄  over the sampling lines, 𝑥 𝐻⁄ =
0.375, 𝑥 𝐻⁄ = 0.625, 𝑥 𝐻⁄ = 1, 𝑥 𝐻⁄ = 1.5, along the vertical center-plane, 𝑦 𝐻 = 0⁄ , for the 

coarse grid. Figure 3.3 shows the mentioned ratio, at its maximum value, is in order of one in the 

wake region. Thus, it can be concluded that the coarse grid is suitable for the present simulations. 
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Figure 3.3: Ratio of time-averaged SGS kinematic 

viscosity to the physical one, 〈𝝊𝑺𝑮𝑺〉 𝝊⁄ , obtained from 

isothermal ELES simulation over the sampling lines, 

𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟏, 𝒙 𝑯⁄ = 𝟏. 𝟓, 

along 𝒚 𝑯 = 𝟎⁄  

Figure 3.4 shows the profiles of the non-dimensional form of the streamwise velocity, TKE and 

temperature at the inlet boundary of the wind tunnel experiment of [164]. As mentioned [166], the 

values of turbulence dissipation rate, 𝜀, at the inlet boundary can be derived using 𝜀 = 𝑃𝑘 + 𝐺𝑘, 

where, 𝑃𝑘 and 𝐺𝑘 are the TKE production and buoyancy production terms, respectively.  

Table 3.2 shows the boundary condition type at each surface of the domain. It should be noted that 

at the URANS-LES interface, the vortex method [173] is used to explicitly convert the modeled 

TKE into the resolved scales [29]. Since there is no study regarding the usage of different 

turbulence generation methods at the URANS-LES zone for wind engineering problems, in the 

present study, the authors have relied on previous studies for LES computations. 
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Figure 3.4: Dimensionless form of the Inflow boundary conditions, based on the experiment [164], ELES (conducted in the 

empty domain) at the inlet boundary (i.e., RANS zone), denoted by ELES_R, and at the RANS-LES interface (i.e., beginning of 

the LES zone), represented by ELES_L: 

(a), (b), and (c): streamwise velocity, (d), (e) and (f) TKE, and (g) inflow temperature profiles [103] 

It should be noted that the authors are aware of the difference in the location of the LES inflow 

boundary between ELES and LES (which, obviously, affects the employment of different 

turbulence generation methods regarding their overprediction/under-estimation of the results). 

Studies regarding the usage of these methods in the field of wind engineering using LES are also 

rare [174–176]. Based on the results of the mentioned studies, no inflow turbulence generation 

method can model real turbulence. Therefore, in order to have a reliable simulation, several inflow 

turbulence generation methods should be assessed. However, since the goal of the present study is 

not to evaluate the performance of these methods for being used in ELES computations, the results 

of the mentioned comparative studies have been considered. Since the performance of the vortex 

method in predicting the flow field structures [174] and turbulence statistics and concentration 

field [176] have been reported to be reasonable, the authors of the present study used the mentioned 

method for the simulations. 
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Table 3.2: Boundary conditions of the computational domain 

Inflow boundary The profiles which are shown in Figure 3.3, and computing 𝜀 based on 

𝜀 = 𝑃𝑘 + 𝐺𝑘, mentioned by [166] 

URANS-LES interface Vortex method [173] with number of vortices of 399, based on the 

recommendation of [177] 

Upper and side boundaries Symmetry boundary conditions which imply zero normal velocity 

components and zero normal gradients of all the flow variables 

Floor and the building façades Werner and Wengle [169] wall treatment 

Pollutant vent Uniform and constant velocity, zero turbulence intensity (𝑈𝑣𝑒𝑛𝑡 =
0.467 𝑚 𝑠⁄ ) 

Outlet boundary Zero static gauge pressure and zero gradients for all the variables 

In order to assess the homogeneity of the approaching flow profiles, ELES simulations, for the 

same domain size and grid resolution, are conducted (see Figure 3.4). The alterations in the time-

averaged velocity profiles, for all stratification conditions, remain very limited, indicating that 

horizontal homogeneity is achieved. However, some changes in the TKE profiles have been 

observed. It should be noted that since in ELES, the inflow boundary is located in the RANS zone, 

which does not need any inflow turbulence generation method, the inflow TKE profiles are 

coincident with the experimental ones. However, due to the employment of the vortex method at 

the RANS-LES interface, which produces low velocity fluctuations in the streamwise direction 

[178], TKE underestimation has been observed. A similar finding has also been reported by Refs. 

[29,178]. However, this underestimation has low impact on the dispersion process since the 

turbulence in the wake region is mainly produced due to the presence of the building [178]. 

3.2.2 Solution method 

In this study, ELES is used for the simulations; RLZ [93] in the URANS zone and the dynamic 

Smagorinsky-Lilly model (DSLM) [104,105] in the LES zone. Regarding the usage of RLZ in the 

URANS zone, its applicability in predicting the flow and concentration fields in the ELES  under 

the isothermal condition has been considered [29]. Furthermore, the performance of three different 

turbulence models, standard 𝑘 − 𝜀 (SKE), re-normalization group 𝑘 − 𝜀 (RNG) [87], and RLZ in 

predicting the flow field, turbulence statistics, and the concentration field were evaluated. Based 
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on the results, RLZ, which performed relatively good (but not the best in predicting every variable), 

has been selected for being used in the present study. The governing equations of the mentioned 

models can be found in Appendix A. 

In order to capture the flow characteristics’ evolutions, a fixed time step of ∆𝑡 = 1 × 10−4 𝑠 is 

selected to maintain the Courant-Friedrichs-Lewy (CFL) number less than 1. After initializing the 

simulations with the RLZ model, the effect of initial conditions was disappeared after 

approximately 7 𝑠 regarding the flow time to reach a semi-steady state condition. Then, the time-

averaging process was started to achieve a satisfactory statistical convergence, which was more 

than 30 𝑠 regarding the flow time. Furthermore, the constant turbulent Schmidt number approach, 

with the value of 0.7, is selected for the present simulations [29]. Also, the turbulent Prandtl 

number has been set to 0.9, as is the case with [166]. 

The unsteady SIMPLE [179] algorithm is employed for the pressure-velocity coupling procedure. 

The second-order scheme is used for the pressure interpolation, and the second-order upwind 

schemes are employed for turbulence quantities, energy, and concentration. Furthermore, the 

second-order bounded central differencing schemes are used for the momentum spatial 

discretization. 

3.3 Results validation 

3.3.1 Time-averaged flow field and TKE 

Comparison between the non-dimensional time-averaged streamwise velocity profiles, 〈𝑢〉 𝑈𝐻⁄ , 

obtained by the ELES approach with those from the LES [103] and the wind tunnel experiment 

[164,165], along 𝑦 𝐻 = 0⁄ , for the stable, isothermal and unstable conditions is shown in Figure 

3.5. The comparison is made over the measuring points on four sampling lines, namely, 𝑥 𝐻⁄ =
0.375, 𝑥 𝐻⁄ = 0.625, 𝑥 𝐻⁄ = 1, and 𝑥 𝐻⁄ = 1.5, in the wake of the model building. It should be 

noted that the experiment was performed with an uncertainty of 5% regarding the time-averaged 

velocity [164,165]. 
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Figure 3.5: Comparison between profiles of dimensionless time-averaged streamwise velocity, 〈𝒖〉 𝑼𝑯⁄ , obtained by present simulation 

(ELES), LES of [103] and experiment [164] over sampling lines, 𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟏, and 𝒙 𝑯⁄ = 𝟏. 𝟓, along 𝒚 𝑯 = 𝟎⁄  

(“S”, “I”, and “U” represent stable, isothermal and unstable conditions, respectively) 

Figure 3.5 shows that ELES and the LES of [103] perform almost similarly in predicting 〈𝑢〉 𝑈𝐻⁄ . 

Large deviations between the results of the mentioned models can be found in the proximity of the 

walls, particularly for 𝑥 𝐻⁄ ≤ 0.625, at 𝑧 𝐻⁄ < 1. As the flow moves toward the downstream (i.e., 

getting farther from the recirculating region in the wake of the building), the mentioned deviation 

decreases. In the vicinity of the ground, almost for all datapoints, both ELES and LES under-

predicted the velocity field. Moreover, LES [103] performs slightly better than the present ELES 

near the ground at 𝑥 𝐻⁄ = 0.375 and 0.625. This can be due to different mesh resolutions in the 

proximity of the ground and the difference between the nature of the models (i.e., most of the 

domain is modeled using URANS in ELES. Also, perturbing the URANS results at the URANS-

LES interface plays an important role in the accuracy). However, the model’s tendency in 

overprediction is observable at 𝑧 𝐻⁄ > 0.5 as the flow progresses toward the downstream for the 

stable and isothermal cases. On the other hand, at almost all data points in the 𝑧 𝐻⁄ < 1 zone, both 

ELES and the LES of [103] under-predicted the results under the unstable condition. 

Two different evaluation metrics, namely hit rate (𝑞) and the factor of 2 of the observations 

(𝐹𝐴𝐶2), are employed to quantitatively evaluate the performance of the modeling approaches (i.e., 

ELES of the current study and LES of [103]) with respect to the available experimental data [164]. 

These metrics can be defined as follows [180–184]: 
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Hit rate (𝑞): 

𝑞 =
1

𝑁
∑ 𝑛𝑖

𝑁
𝑖=1      with     𝑛𝑖 = {

1    𝑓𝑜𝑟  |
𝑃𝑖−𝑂𝑖

𝑂𝑖
| ≤ 𝐷𝑞

0   𝑒𝑙𝑠𝑒                         
 

Eq. 3-1 

where, 𝑁 is the number of data points, 𝑂𝑖 and 𝑃𝑖 are the observed (measured) and predicted values 

of a particular variable. Also, 𝐷𝑞 corresponds to the allowed relative deviations, which has been 

set to 𝐷𝑞 = 0.25 as suggested by [180,181,183]. 

𝐹𝐴𝐶2: 

𝐹𝐴𝐶2 =  
1

𝑁
∑ 𝑛𝑖

𝑁
𝑖=1      with     𝑛𝑖 = {

1    𝑓𝑜𝑟  0.5 <
𝑃𝑖

𝑂𝑖
≤ 2

0   𝑒𝑙𝑠𝑒                         
 

 

Eq. 3-2 

 

The hit rate and 𝐹𝐴𝐶2 values of 〈𝑢〉 𝑈𝐻⁄ , obtained by each of the mentioned models, with respect 

to the experiment of [164] is summarized in Table 3.3. It should be noted that the number of data 

points is 44 for each case (i.e., 11 points on each of the four vertical lines). 

 Table 3.3: Hit rate (𝒒) and 𝑭𝑨𝑪𝟐 of 〈𝒖〉 𝑼𝑯⁄  profiles obtained by the present study (ELES) and LES of [103] 

with respect to the experimental data of [164], over the sampling lines along the 𝒚 𝑯 = 𝟎⁄  plane (i.e., 44 

experimental data), for different stratification conditions 

 Thermal stratification condition 

Modeling approach Stable Isothermal Unstable 

ELES 𝑞 = 0.76 

𝐹𝐴𝐶2 = 0.88 

𝑞 = 0.80 

𝐹𝐴𝐶2 = 0.88 

𝑞 = 0.71 

𝐹𝐴𝐶2 = 0.80 

LES [103] 𝑞 = 0.79 

𝐹𝐴𝐶2 = 0.88 

𝑞 = 0.77 

𝐹𝐴𝐶2 = 0.86 

𝑞=0.71 

𝐹𝐴𝐶2 = 0.81 
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Table 3.3 shows that the performance of both ELES and LES deteriorates under the unstable 

condition compared to the other two cases, which can be attributed to the presence of stronger 

shear layers under the unstable condition. The overall performance of both the present ELES and 

LES of [103] are almost similar to each other, with some minor differences mostly in the proximity 

of the ground. Furthermore, the results of the present ELES are in good agreement (fairly) with 

experimental data. As presented in Table 3.3, the values of both metrics, for all the simulated 

conditions, are reported to be higher than the quality acceptance criteria (i.e., 𝑞 ≥ 0.66 and 

𝐹𝐴𝐶2 > 0.5) [182,185]. 

Figure 3.6 illustrates the contours of dimensionless TKE, 𝑘 𝑈𝐻
2⁄ , obtained from ELES and the 

experiment [164]. Since the TKE contours of the LES of [103] have not been reported, there is no 

comparison between the performance of ELES and LES in predicting TKE. 

 

Figure 3.6: Comparison between contours of dimensionless TKE, 𝒌 𝑼𝑯
𝟐⁄ , obtained by ELES and experiment of [164] (experimental contours 

of TKE are obtained from [164]  

Figure 3.6 illustrates that below the high-TKE region, where the shear layers weaken, the ELES 

performance is better. Furthermore, in the vicinity of the leeward wall, the predicted values are in 

good agreement with the experimental data. The location of the maximum TKE values in shear 

layers, predicted by ELES, is in good agreement with the experimental data. However, in general, 

ELES over-predicts the values of TKE, which can be attributed to the fact that the flow is perturbed 

at the URANS-LES interface, near the target region. Thus, the TKE level at the roof and in the 

wake region increases. Also, it should be noted that the 𝑞 and 𝐹𝐴𝐶2 values for TKE, obtained by 

ELES, are in the acceptable range mentioned above (𝑞 values for the stable, isothermal, and 

unstable conditions are about 0.71, 0.74, and 0.75, respectively, and 𝐹𝐴𝐶2 values are 

approximately 0.88, 0.92, and 0.95 for the stable, isothermal, and unstable cases, consecutively). 
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Contrary to LES, for ELES, the inlet TKE profile is almost similar to that of the wind tunnel since 

it is located in the RANS zone [29]. Due to the flow perturbation at the URANS-LES interface, 

the incident TKE profile of ELES may slightly be different from that of the experiment. TKE over-

prediction at the building roof and in the wake region has also been mentioned by [29]. Moreover, 

[151] noted that, downstream of the URANS-LES interface, the TKE values increase for ELES 

with respect to the experimental data. Also, different inflow turbulence generation methods yield 

different TKE results in the wake region [176]. Using the vortex method led to higher fluctuations 

in the wake region compared to other inflow turbulence generation approaches studied in [176]. 

3.3.2 Time-averaged temperature 

Comparison between the non-dimensional time-averaged temperature profiles, (〈𝜃〉 − 𝜃𝑓) ∆𝜃⁄ , 

obtained by the ELES with those from LES [103] and the experimental data [164], along 𝑦 𝐻 = 0⁄ , 

for the stable, isothermal and unstable conditions is shown in Figure 3.7. The comparison is made 

over four sampling lines, 𝑥 𝐻⁄ = −1, 𝑥 𝐻⁄ = −0.625 (upstream of the model building), 𝑥 𝐻⁄ =
0.0625, and 𝑥 𝐻⁄ = 0.625. 

Figure 3.7 shows that the results obtained from ELES are in good agreement with those from the 

LES of [103] and the wind tunnel experiment [164]. At all the vertical lines, the results of ELES 

are almost similar to those obtained by the LES of [103], with some negligible differences in the 

vicinity of the floor. Over 𝑥 𝐻⁄ = 0.0625, particularly for 𝑧 𝐻⁄ < 1, the performance of ELES and 

LES for both the stable and unstable conditions are slightly different. This shows that the LES 

performance in predicting the temperature field, in the very proximity of the wall, is better than 

that of ELES.  
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Figure 3.7: Comparison between profiles of dimensionless time-averaged temperature, (〈𝜽〉 − 𝜽𝒇) ∆𝜽⁄ , obtained by present simulation 

(ELES), LES of [103] and experiment of [164] over sampling lines, 𝒙 𝑯⁄ = −𝟏, 𝒙 𝑯⁄ = −𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟎𝟔𝟐𝟓, and 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 

along 𝒚 𝑯 = 𝟎⁄  (“S” and “U” denote stable and unstable conditions, respectively) 

Table 3.4 gives the mean relative error percentage, (1 𝑀⁄ ∑ (𝑃𝑖 − 𝑂𝑖) 𝑂𝑖⁄ ) × 100𝑀
𝑖=1  (where, 𝑀 is 

the number of datapoints) of (〈𝜃〉 − 𝜃𝑓) ∆𝜃⁄  obtained by each of the mentioned models with 

respect to the experimental data [164]. 

Table 3.4: Mean relative error percentage of (〈𝜽〉 − 𝜽𝒇) ∆𝜽⁄  profiles obtained by the present study (ELES) and 

LES of [103] with respect to the experimental data of [164], over the sampling lines along 𝒚 𝑯 = 𝟎⁄ , for different 

stratification conditions 

 Thermal stratification condition 

Sampling line Stable Unstable 

𝑥 𝐻⁄ = −1 ELES = 9.0% 

LES = 9.6% 

ELES = 5.1% 

LES = 4.8% 

𝑥 𝐻⁄ = −0.625 ELES = 5.5% 

LES = 5.5% 

ELES = 3.1% 

LES = 2.6% 

𝑥 𝐻⁄ = 0.0625 ELES = 11.2% 

LES = 7.5% 

ELES = 10.3% 

LES = 8.6% 

𝑥 𝐻⁄ = 0.625 ELES = 5.1% 

LES = 4.9% 

ELES = 3.5% 

LES = 3.0% 

Average over sampling lines ELES = 7.7% 

LES = 6.9% 

ELES = 5.5% 

LES = 4.8% 
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3.3.3 Time-averaged and fluctuating concentration 

Figure 3.8 compares the profiles of dimensionless time-averaged pollutant concentration, 〈𝑐〉 𝐶0⁄ , 

obtained by ELES with those from the LES of [103] and the wind tunnel experiment [164]. The 

experiment was conducted with an uncertainty of 15% regarding the time-averaged concentration. 

The comparison is made along 𝑦 𝐻 = 0⁄ , over four sampling lines, 𝑥 𝐻⁄ = 0.375, 𝑥 𝐻⁄ = 0.625, 

𝑥 𝐻⁄ = 1, and 𝑥 𝐻⁄ = 1.5, for the stable, isothermal, and unstable conditions. It should be noted 

that the reference concentration, 𝐶0, is defined as follows: 

𝐶0 =
𝑞

𝑈𝐻𝐻2
 

Eq. 3-3 

 

Figure 3.8 shows that the ELES and LES perform almost similar in predicting the concentration 

field under the isothermal and stable conditions, even in the proximity of the ground. However, 

the difference between the capabilities of these approaches in predicting the concentration field 

under the unstable condition is more pronounced. This difference may be due to the changes in the 

role of each mechanism of pollutant dispersion, particularly the turbulent diffusion flux, in the 

whole process under different stratification conditions. Thus, the capability of the model in 

capturing the variables fluctuations may be a reason for the above-mentioned differences. 

 

Figure 3.8: Comparison between profiles of dimensionless time-averaged pollutant concentration, 〈𝒄〉 𝑪𝟎⁄ , obtained by present simulation 

(ELES), LES of [103] and experiment of [164] over sampling lines, 𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟏, and 𝒙 𝑯⁄ = 𝟏. 𝟓, along 

𝒚 𝑯 = 𝟎⁄  (“S”, “I” and “U” denote stable, isothermal and unstable conditions, respectively) 
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The mean relative error and 𝐹𝐴𝐶2 of 〈𝑐〉 𝐶0⁄ , obtained by ELES and the LES of [103], with respect 

to the experiment [164] is listed in Table 3.5. 

Table 3.5: Mean relative error (𝑹𝑬) and 𝑭𝑨𝑪𝟐 of 〈𝒄〉 𝑪𝟎⁄  profiles obtained by the present study (ELES) and 

LES [103] with respect to the experimental data of [164], over the sampling lines along the 𝒚 𝑯 = 𝟎⁄  plane 

(i.e., 44 experimental data), for different stratification conditions 

 Thermal stratification condition 

Modeling approach Stable Isothermal Unstable 

ELES 𝑅𝐸 = 28.82% 

𝐹𝐴𝐶2 = 0.77 

𝑅𝐸 = 17.42% 

𝐹𝐴𝐶2 = 0.97 

𝑅𝐸 = 24.60% 

𝐹𝐴𝐶2 = 0.84 

LES [103] 𝑅𝐸 = 31.61% 

𝐹𝐴𝐶2 = 0.70 

𝑅𝐸 = 24.23% 

𝐹𝐴𝐶2 = 0.89 

𝑅𝐸 = 35.01% 

𝐹𝐴𝐶2 = 0.62 

According to Table 3.5, ELES performs better than LES in predicting the concentration field. As 

the instability increases, the difference between the models' accuracy becomes larger. In other 

words, under the stable condition, ELES and LES of [103] yielded almost similar results, while 

under the unstable condition, ELES outperformed the LES simulation. The local intensity, defined 

as the ratio of the root mean square of the concentration fluctuations to the time-averaged one at 

the same point, plays an important role in the model performance in predicting the time-averaged 

concentration field [29]. Furthermore, TKE and pollutant concentration are related to each other. 

As mentioned by [29], higher TKE values lead to higher concentration fluctuations. Therefore, the 

better performance of ELES in predicting the time-averaged concentration field can be attributed 

to its superior performance in predicting TKE, and thus, concentration fluctuations, compared to 

LES. 

The profiles of dimensionless pollutant concentration fluctuations, 𝑐𝑟𝑚𝑠 𝐶0⁄ , obtained by ELES, 

LES [103], and the experimental data [164] are illustrated in Figure 3.9. It should be noted that 

𝑐𝑟𝑚𝑠 is the root mean square of the concentration fluctuations. These profiles are depicted along 

𝑦 𝐻 = 0⁄ , over four sampling lines,  𝑥 𝐻⁄ = 0.375, 𝑥 𝐻⁄ = 0.625, 𝑥 𝐻⁄ = 1, and 𝑥 𝐻⁄ = 1.5 for 

the stable, isothermal, and unstable conditions. 

Accurate prediction of concentration fluctuations is of the utmost importance since for the purpose 

of assessing pollutant exposure, the role of concentrations measured in the span of a few seconds, 

or even less, is significant, as opposed to those measured over minutes or hours as well as time-

averaged ones [29]. As shown in Figure 3.9, as the flow progresses toward the downstream, the 

values of 𝑐𝑟𝑚𝑠 𝐶0⁄  decreases. The location of the peak value, predicted by ELES, is in good 
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agreement with that reported by the experimental data [164]. Furthermore, the trends of the ELES 

results are similar to those from [164]. As Figure 3.9 shows, the ELES has significantly 

outperformed the LES in predicting pollutant concentration fluctuations, which, as mentioned 

earlier, can be attributed to the better performance of ELES in predicting TKE compared to LES. 

Considering the concentration field, better performance of the ELES compared to the LES has also 

been reported by [29]. 

 

 Figure 3.9: Comparison between profiles of dimensionless pollutant concentration fluctuations, 𝒄𝒓𝒎𝒔 𝑪𝟎⁄ , obtained by present simulation 

(ELES), LES of [103] and experiment of [164] over sampling lines, 𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟏, and 𝒙 𝑯⁄ = 𝟏. 𝟓, along 

𝒚 𝑯 = 𝟎⁄  (“S”, “I” and “U” denote stable, isothermal and unstable conditions, respectively) 

3.3.4 ELES vs. LES: computational costs 

The sampling time of the present simulation is different from the LES of [103], which was sampled 

for 21 𝑠 regarding the flow time. However, the results of the present ELES have once been 

validated with the experimental data and those obtained from the LES of [103] after about 21 𝑠. 

After 21 𝑠 of sampling, in order to achieve better results, the sampling process was continued for 

another 9 𝑠. However, the difference between the results obtained after 21 𝑠 and 30 𝑠 was 

negligible. It should be noted that the figures shown in the present study have been depicted after 

30 𝑠 of sampling. Therefore, in order to compare the required CPU time for the simulations, the 

sampling time (regarding the flow time), per day have been compared for the present ELES and 

the LES of [103]. For the isothermal case, the LES of [103] sampled 0.7 𝑠 per day, while the 

present ELES sampled 2.75 𝑠 each day. For the stable and unstable conditions, the LES of [103] 

sampled 0.65 𝑠 each day, while ELES sampled the results for 1.5 𝑠 per day. Therefore, the speed-

up obtained from using ELES against LES is about 292% for the isothermal condition, and 130% 

for the other two cases. 
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3.4 Impact of thermal stratification on flow field, turbulence statistics, and 

pollutant dispersion 

3.4.1 Time-averaged flow field 

Considering Figure 3.5, and by averaging the values of 〈𝑢〉 𝑈𝐻⁄  over the sampling lines for each 

case, it can be found out that the stratification condition slightly changes the streamwise velocity. 

For example, the average of 〈𝑢〉 𝑈𝐻⁄  over 𝑥 𝐻 = 0.375⁄  is about 5% higher for the unstable case 

compared to the isothermal one. A small influence of thermal stratification conditions on the 

streamwise velocity has been reported by [24]. However, considering 𝑧 𝐻⁄ < 0.5, over 

𝑥 𝐻 = 0.375⁄ , the average of the absolute value of 〈𝑢〉 𝑈𝐻⁄  under the unstable condition is 

significantly higher than that under the stable and isothermal ones by about 18.1% and 7.9%, 

respectively. Furthermore, by analyzing the results, it can be noted that the flow instability 

increases the strength of the recirculating region in the wake region.  

Figure 3.10 shows the impact of thermal stratification conditions on time-averaged streamlines 

and dimensionless time-averaged vertical velocity, 〈𝑤〉 𝑈𝐻⁄ , along 𝑦 𝐻 = 0⁄ . This figure shows 

that in the proximity of the leeward wall, for 𝑧 𝐻⁄ < 0.5, streamlines are steeper in the isothermal 

and unstable conditions compared to the stable case. The same pattern, with a smaller difference 

between the cases, can be observed above the mentioned height. For 0.3 < 𝑧 𝐻⁄ < 0.5, the flow 

is directed downward for the stable and isothermal conditions. However, in the same region, the 

flow is more horizontally directed in the unstable case, which can be attributed to the buoyant flow 

induction. Furthermore, a strong recirculating region is formed under the unstable condition in the 

wake region, approximately at the building height level, which can be related to the generation of 

strong shear layers due to the opposition of the downward background wind velocity and the 

upward buoyant force. 
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Figure 3.10: Time-averaged streamlines and dimensionless time-averaged vertical velocity, 〈𝒘〉 𝑼𝑯⁄ , under different thermal 

stratification conditions 

Figure 3.10 shows the overall pattern of 〈𝑤〉 𝑈𝐻⁄  is similar for the stable and isothermal cases. 

However, the region with positive values of 〈𝑤〉 𝑈𝐻⁄ , i.e., upward direction, becomes smaller for 

the stable condition compared to the isothermal one. In contrast, due to the formation of a thin 

thermal boundary layer in the vicinity of the leeward façade, a larger region with positive 〈𝑤〉 𝑈𝐻⁄  

is observable under the unstable condition in comparison with the other two cases. 
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3.4.2 Turbulence kinetic energy 

Changes in the turbulence level of the airflow considerably influence the dispersion process 

through the turbulent diffusion flux. It has been reported that the turbulent diffusion flux 

significantly affects the dispersion process [31]. Therefore, it is reasonable to study the impact of 

thermal stratification conditions on the TKE generation/suppression. Figure 3.6 shows that as the 

instability increases, in the proximity of the leeward wall, TKE values increase. Furthermore, the 

overall increase in the TKE values under the unstable condition compared to the other two cases 

is observable. Therefore, changes in TKE values due to wall heating are not only restricted to the 

very proximity of the façade. 

Figure 3.11 illustrates the dimensionless TKE profiles, 𝑘 𝑈𝐻
2⁄ , over four sampling lines, 𝑥 𝐻⁄ =

0.375, 𝑥 𝐻⁄ = 0.625, 𝑥 𝐻⁄ = 1, and 𝑥 𝐻⁄ = 1.5, along 𝑦 𝐻 = 0⁄  under different stability 

conditions. The figure shows the stable condition has a very small impact on the TKE value 

compared to the isothermal case. However, a slight reduction in the TKE value can be observed, 

particularly in the vicinity of the leeward façade and the ground. Similar results have been reported 

by Duan and Ngan [24]. They stated that the average of TKE in a street canyon is almost 

independent of the Richardson number for weak stable conditions. The trend of the TKE profile 

under the unstable condition is almost similar to those for the other cases, which may be attributed 

to the uniform surface heating. However, as mentioned earlier, an overall increase in the TKE 

values under the unstable case can be observed. Furthermore, thermal effects have not altered the 

vertical location of the maximum TKE value. 

 

 Figure 3.11: Comparison between profiles of dimensionless TKE profiles, 𝒌 𝑼𝑯
𝟐⁄ , under different stability conditions over sampling lines, 

𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟏, and 𝒙 𝑯⁄ = 𝟏. 𝟓, along 𝒚 𝑯 = 𝟎⁄  
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3.4.3 Frequency analysis 

Time histories of the streamwise and vertical velocity components, at the point 𝑥 𝐻 = 2⁄  and 

𝑧 𝐻 = 0.5⁄ , along 𝑦 𝐻 = 0⁄ , for different thermal stratification conditions, are shown in Figure 

3.12 (a) and (b). It should be noted that the mentioned time histories were depicted for various 

points in the LES zone, and the findings were almost similar. However, due to higher differences 

between the results at the mentioned point amongst the tested ones, this point has been chosen for 

further analyses. It should be noted that the dimensionless time unit, 𝑡∗, is defined as 𝑡∗ =
𝑡 × 𝑈𝐻 𝐻⁄ , where 𝑡 is time (here, the time range in which the required data are sampled). 

For both the streamwise and vertical directions, and for all the stratification conditions, non-

sinusoidal and fast-changing signals are observable in Figure 3.12 (a) and (b). The time series 

obtained under different thermal effects show, to some extent, similarity to each other, in which 

high-frequency structures can be seen. Based on the results, for the streamwise direction, the 

standard deviation, 𝜎, for the stable, isothermal and unstable conditions are 𝜎𝑢,𝑠𝑡𝑎𝑏𝑙𝑒 = 0.15 𝑚/𝑠, 

𝜎𝑢,𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 0.18 𝑚/𝑠 and 𝜎𝑢,𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 = 0.20 𝑚/𝑠, respectively. The mentioned standard 

deviation values for the vertical velocity component are 𝜎𝑤,𝑠𝑡𝑎𝑏𝑙𝑒 = 0.17 𝑚/𝑠, 𝜎𝑤,𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
0.20 𝑚/𝑠 and 𝜎𝑤,𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 = 0.23 𝑚/𝑠. Therefore, it can be concluded that, on the whole, with an 

increase in the flow instability, the deviation of velocity signals from the mean value becomes 

larger. In other words, as the flow becomes unstable, the intensity of fluctuations gets larger. 

Figure 3.12 (c) and (d) compares the power spectrum density (PSD) functions of the streamwise 

and vertical velocity fluctuations, normalized using the velocity variance (𝜎2) along each direction, 

under different thermal stratification conditions at 𝑥 𝐻⁄ = 2 and 𝑧 𝐻 = 0.5⁄ . It should be noted 

that PSD has been sketched for several points; however, for the sake of brevity, just the one at 

𝑥 𝐻⁄ = 2 and 𝑧 𝐻 = 0.5⁄  is provided in the present study. 

Considering Figure 3.12 (c) and (d), at low frequencies, a large eddy behavior can be seen. 

Furthermore, − 5 3⁄  power law inertial sub-range, and decay at high frequencies are observable, 

as is the case with a general spectrum shape. This is attributed to the cascade of energy from low-

frequency eddies to the part of the spectrum with higher frequencies. All cases show several high-

energy frequencies (i.e., dominant frequencies). At low frequencies, for each of the studied 

conditions, the turbulence energy is almost maintained at a specific level. It is noteworthy that 

higher energy levels for the isothermal and unstable cases, compared to the stable condition, 

indicate a larger mixing effect caused by larger velocity fluctuations. Therefore, smaller 

recirculating regions form downstream of the building under the isothermal and unstable 

conditions compared to the stable case. As the frequency increases, the energy decays at different 

rates. In both directions, it can be seen that the frequency content of the velocity fluctuations for 

the stable case is less than that under the other two stratification conditions, which agrees with the 

time history of fluctuations. This can be due to lower vortex shedding under the stable condition 

compared to the isothermal and unstable cases [186]. It can be observed that the spectra generated 

for the stable case decay more rapidly than the other two cases, followed by the isothermal and 

unstable conditions. 
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3.4.4 POD of the flow field 

POD is a powerful tool for analyzing turbulent flow since, contrary to the conventional CFD 

approaches (which use time-averaged and pointwise statistic), it can capture the combined spatio-

temporal nature of the flow dynamics [128]. In other words, the chronological vortex development 

is not obtainable using the time-averaged flow field [187]. In the present study, the snapshot POD 

technique is used to quantitatively investigate the impact of thermal stratification conditions on 

the shape and amplitude of the dynamic modes. POD is applied to the flow field behind the 

building, where 0.025 ≤ 𝑥 𝐻⁄ ≤ 4 and 0.025 ≤ 𝑥 𝐻⁄ ≤ 1.5, along 𝑦 𝐻 = 0⁄ . In the mentioned 

zone, 3500 snapshots are used for the analysis. It should be noted that POD analysis has been 

performed over 3000, 3500 and 4500 snapshots, and the results were almost similar. However, in 

order to reduce minor changes in high POD modes, 3500 snapshots are considered to be adequate 

for the present analysis. Figure 3.13 illustrates the contribution of each POD mode to the total TKE 

for different stratification conditions. 

As can be seen in Figure 3.13, the contribution of the first thirty POD modes to the total TKE is 

increased under both the stable and unstable conditions compared to the isothermal case. For the 

stable and unstable conditions, the first thirty POD modes contain about 80.89% and 81.39% of 

the total TKE, respectively, while those contain about 65.58% of the total TKE for the isothermal 

case. Furthermore, the first four POD modes contain about 31.09%, 20.94%, and 34.23% for the 

stable, isothermal, and unstable conditions, consecutively. From Figure 3.13, it could be 

interpreted that the impact of thermal stratification conditions on the contribution of each mode to 

the total TKE is more dependent upon the magnitude of 𝑅𝑖 rather than its sign. However, this claim 

should be further investigated for different values of 𝑅𝑖 since a general assertion cannot be 

announced with a limited number of simulations. 

Figures 3.14 and 3.15 illustrate the first four POD modes for the velocity field along the streamwise 

and vertical directions, respectively, in the 𝑦 𝐻⁄ = 0 plane. As outlined in Appendix B, each 

velocity component (i.e., in the streamwise, lateral and vertical directions) can be attributed to the 

spatial eigenvector along the specified direction, 𝜑𝑖
𝑛(𝑥), which separately represents the 

contribution of a particular mode to the spatial structure [128]. 
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Figure 3.12: First row: time histories of (a) streamwise and (b) vertical velocity components at point 

𝒙 𝑯 = 𝟐⁄  and 𝒛 𝑯 = 𝟎. 𝟓⁄ , along 𝒚 𝑯 = 𝟎⁄ , for different thermal stratification conditions, 

Second row: power spectrum density (PSD) functions of (c) streamwise and (d) vertical velocity fluctuations, 

normalized by directional velocity variance (𝝈𝟐), under different thermal stratification conditions at 𝐱 𝐇⁄ = 𝟐 

and 𝐳 𝐇 = 𝟎. 𝟓⁄  
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Figure 3.13: Contribution of each POD mode to total TKE for different stratification conditions 

Changes in the sign of the iso-lines can be interpreted as the presence of large vortical regions in 

the region [128]. As shown in Figure 3.14, the stratification condition has significantly changed 

the flow field structure in the streamwise direction. However, the vortical regions under the stable 

and isothermal conditions are somewhat identical to each other. For example, a vortical region can 

be seen in the first mode of the two mentioned cases at approximately 𝑧 𝐻⁄ = 0.5.  On the other 

hand, the instability condition has completely changed the turbulence structure, especially in the 

proximity of the wall. Furthermore, zone alterations in the unstable case usually occur in the 

vicinity of the leeward wall. This can be due to the fact that the mixing process is affected by the 

leeward wall temperature. Therefore, mixing occurs in the vicinity of the wall. However, for the 

stable and isothermal conditions, the mentioned changes can be seen farther from the leeward wall 

compared to the unstable case. 
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Figure 3.14: Iso-lines of the first four velocity POD modes in the streamwise direction along 𝒚 𝑯 = 𝟎⁄  for different thermal stratification 

conditions (positive values: solid orange lines; negative values: dashed blue lines) 

The positive and negative values of the POD modes of the vertical velocity components represent 

the upwash and downwash flows [128]. The mentioned feature is of utmost importance in studying 

pollutant dispersion since these structures are responsible for pollutant transportation in a transient 

manner. As can be seen in Figure 3.15, the stratification condition has significantly altered the 

velocity POD modes in the vertical direction with respect to the isothermal case. The positive iso-

lines (i.e., upwash flow) in the proximity of the leeward wall are observable in all the modes shown 

for the unstable case. However, since the thermal effects are weak, it can be seen in the figure that 

the generated upwash flow is not very strong compared to the other cases. On the other hand, in 

the mentioned region, in other conditions, particularly the stable case, the downwash flow is 

observed.  
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 Figure 3.15: Iso-lines of the first four velocity POD modes in the vertical direction along 𝒚 𝑯 = 𝟎⁄  for different thermal stratification 

conditions (positive values: solid orange lines; negative values: dashed blue lines) 

The PSD functions of the coefficients of the first four POD modes for different stratification 

conditions are provided in Figure 3.16. As can be observed, the stability/instability condition 

increases the energy content at high frequencies. The trends of the profiles for the isothermal case 

are almost similar for the first four modes, with some alteration in the range of the energy content 

at higher frequencies, particularly for the fourth mode. For the unstable condition, for all the modes 

shown, 𝑓 = 1.9989 𝐻𝑧, corresponding to the Strouhal number of 𝑆𝑡 ≈ 0.23, is one of the 

frequencies at which a peak occurs. The mentioned frequency is the same as the one at which the 

peak occurs in the spectral analysis of the streamwise and vertical velocities (see Figure 3.12 (c) 

and (d)). This mode plays an essential role in vortex shedding in the wake region. For the 

isothermal case, 𝑓 = 3.4266 𝐻𝑧 (𝑆𝑡 ≈ 0.39) is the one at which the peak occurs in the third and 

fourth mode, which is exactly the same as the one at which the spectral analysis of the vertical 

velocity shows its peak in Figure 3.12 (d). For the stable condition, although the ultimate peaks in 

Figures 3.12 and 3.16 do not exactly occur at the same frequency, their correspondence frequencies 

are close to each other. By matching the mentioned frequencies, the contribution of the dominant 

modes to the turbulent flow structure and pollutant dispersion process can be addressed. In future 
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works, researchers can focus on relating the dominant modes and the frequencies at which the peak 

occur to the turbulence structures to reveal the impact of different stratification conditions on 

turbulence features.  

 

Figure 3.16: Power spectral density (PSD) functions of the coefficients of the first four POD modes 

3.4.5 Concentration field 

By considering the ELES results depicted in Figure 3.8, it can be found out that the impact of 

thermal stratification condition on the time-averaged concentration field is more pronounced 

below 𝑧 𝐻⁄ = 0.5. On the other hand, as the height increases, the role of thermal effects in altering 

the time-averaged concentration field diminishes. Therefore, it can be concluded that even a 

weakly stable/unstable stratification condition can significantly affect the pollutant concentration 

at the pedestrian level. Over 𝑥 𝐻⁄ = 0.375, for 𝑧 𝐻⁄ ≤ 0.5, the stable condition increases the 

concentration level by about 33.9%, with respect to the isothermal case, while the unstable 

condition reduces the concentration level by approximately 28.2%. The mentioned increase 

(reduction) in the concentration level due to the stable (unstable) condition with respect to the 

isothermal case, at 𝑧 𝐻⁄ ≤ 0.5, over 𝑥 𝐻⁄ = 0.625, 𝑥 𝐻⁄ = 1 and 𝑥 𝐻⁄ = 1.5 is about 15.0% 

(17.3%), 8.2% (28.1%), and 17.3% (22.6%), respectively. Thus, it can be interpreted that the 

influence of thermal stratification conditions (even weak ones) on the concentration field is not 

only restricted to the region near the leeward wall. 

Figure 3.17 illustrates the contours of dimensionless time-averaged pollutant concentration, 
〈𝑐〉 𝐶0⁄ , under different stratification conditions along 𝑦 𝐻 = 0⁄ . Pollution is more vertically 

dispersed along the leeward façade under the isothermal and unstable conditions compared to the 

stable one. Furthermore, the highly polluted region is more compact under the unstable condition 

in comparison with the other two cases. This is in line with the finding of [36], in which they 
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reported that the plume disperses more horizontally as the stability level increases since the vertical 

movement is suppressed. 

Figure 3.18 illustrates the time-averaged and instantaneous plume shapes, obtained by the iso-

surfaces of 〈𝑐〉 𝐶0 = 1⁄  and 𝑐 𝐶0 = 1⁄ , respectively, colored by 𝑘 𝑈𝐻
2⁄ . It can be observed that TKE 

increases at the building height and also in the wake region. An increase in TKE values leads to 

an increase in the concentration fluctuations [29]. Thus, the plume shape is shorter under the 

unstable condition compared to the other two cases. Furthermore, it can be seen that, for the 

unstable case, the width of the plume shape is less than that under the isothermal and stable 

conditions. This is in-line with the findings from the frequency analysis part regarding the length 

of the recirculating regions under different thermal conditions. 
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Figure 3.17: Contours of time-averaged pollutant concentration, 〈𝒄〉 𝑪𝟎⁄ , under different thermal stratification conditions along 

𝒚 𝑯 = 𝟎⁄  

Two different mechanisms, namely, convective flux (i.e., 〈𝑢𝑖〉〈𝑐〉) and turbulent diffusion flux (i.e., 
〈𝑢𝑖

′𝑐′〉) are responsible for the pollutant transportation process. Figure 3.19 shows the contours of 

the mentioned fluxes in the streamwise direction, normalized by the product of the streamwise 

velocity at the building height and the reference concentration, along 𝑦 𝐻 = 0⁄ . Based on the 

results, thermal stratification condition has a negligible effect on the convective flux in the wake 

region, in the proximity of the pollutant source. On the other hand, the impact of the stratification 

condition on the turbulent diffusion flux is more remarkable. As the instability level increases, the 

streamwise flux in the vicinity of the leeward wall also increases. Furthermore, the iso-lines of the 

turbulent diffusion flux under the unstable condition tend toward the leeward wall, while those 

under the stable condition are extended in the streamwise direction. This can explain the reason 

for the more elongated plume shape under the stable condition compared to the other two cases. 
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Figure 3.18: Comparison between three-dimensional time-averaged and instantaneous plume shapes, obtained by iso-surfaces of 〈𝒄〉 𝑪𝟎 = 𝟏⁄  

and 𝒄 𝑪𝟎 = 𝟏⁄ , respectively, colored by dimensionless turbulence kinetic energy, 𝒌 𝑼𝑯
𝟐⁄  

The contours of non-dimensional convective and turbulent diffusion fluxes in the vertical 

direction, along 𝑦 𝐻 = 0⁄ , are depicted in Figure 20. It can be observed that, near the leeward 

façade, the convective flux under the stable condition is weaker than that under the other two cases. 

Moreover, below 𝑧 𝐻⁄ < 0.3, the contours of convective flux under the unstable and isothermal 

conditions are more elongated in the streamwise direction compared to the stable one. This can be 

considered as an explanation for more dispersion along the leeward wall under the unstable and 

isothermal conditions compared to the stable case. It can be seen that the unstable condition 

enhances the strength of the turbulent diffusion flux in the vertical direction, in the proximity of 

the leeward wall.  
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Figure 3.19: Convective flux, 〈𝒖〉〈𝒄〉, and turbulent diffusion flux, 〈𝒖′𝒄′〉, in streamwise direction along 

𝒚 𝑯 = 𝟎⁄  under different thermal stratification conditions 
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Figure 3.20: Convective flux, 〈𝒘〉〈𝒄〉, and turbulent diffusion flux, 〈𝒘′𝒄′〉, in vertical direction along 

𝒚 𝑯 = 𝟎⁄  under different thermal stratification conditions 

3.5 Conclusions 

Thermal stratification conditions significantly affect the airflow pattern and pollutant dispersion 

process within an urban area. In order to have a reliable simulation, particularly under non-

isothermal conditions, in which the role of turbulence is of utmost importance, the use of a high-

fidelity CFD model seems to be necessary. So as to make a balance between computational costs 

and accuracy, the zonal URANS-LES approach, also known as the ELES, was used in the present 

study. ELES was employed for three different stratification conditions, namely, stable, isothermal, 

and unstable. 

In the present study, the ELES results, including the time-averaged flow, temperature and 

concentration fields, TKE, and concentration fluctuations, were quantitatively compared with a 

wind tunnel experimental data [164] and an LES study [103]. Regarding the time-averaged 
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velocity field, the ELES results were in good agreement with both the wind tunnel data and the 

prediction made by LES. ELES over-predicted the TKE values in locations with strong shear 

layers. The findings showed that ELES has the capability to predict the time-averaged temperature 

field similar to LES, if it is set up properly. Furthermore, regarding the time-averaged and 

fluctuating concentration fields, ELES outperformed LES, particularly under the unstable 

condition. Therefore, in addition to lower computational costs of ELES compared to LES, the 

results showed that, under proper settings, its performance in predicting the concentration field can 

be better than LES. 

Regarding the impact of thermal stratification conditions on the flow field and TKE, the unstable 

condition had a significant effect on the mentioned fields, while the stable condition slightly altered 

the results compared to the isothermal case. Considering the time-averaged concentration field, 

the stable condition increased the pollutant concentration by 33.9%, while the unstable one 

lowered that by 28.2%, both compared to the isothermal case. Regarding the pollutant dispersion 

mechanisms, an increase in the flow instability led to higher convective and turbulent diffusion 

fluxes, particularly in the vicinity of the leeward wall. 

The PSD functions of the streamwise and vertical velocity components showed lower energy 

content of the stable condition compared to the isothermal and unstable cases for almost all the 

frequency range. This can be attributed to the lower vortex shedding under the stable case. POD 

analysis revealed that altering the stratification condition to non-isothermal, either stable or 

unstable, increased the contribution of the primary dominant POD modes to the total TKE. This 

shows that the mentioned contribution may be mainly dependent upon the magnitude of the 

Richardson number. Furthermore, the results showed that the unstable condition significantly 

changed the turbulence structures of the POD modes in both streamwise and vertical directions. 
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Chapter 4. A review of advances towards efficient reduced-

order models (ROM) for predicting urban airflow and pollutant 

dispersion 

 

4.1 Introduction 

4.1.1 Motivation 

Due to emissions from power plants located upstream of an urban area, from transportation or 

other anthropogenic activities, pollution often accumulates in urban areas, with higher levels than 

in the outskirt of those regions. Not only does pollution accumulation influence the outdoor air 

quality, but it can also affect the indoor air quality through the windows (i.e., air infiltration) or 

even the intake of heating, ventilation, air conditioning (HVAC) systems [188]. As reported by the 

World Health Organization (WHO), in 2019, 99% of the world population lived in areas where 

the WHO air quality guidelines were not met [189]. It has also been mentioned that, in 2016, about 

4.2 million premature deaths occurred worldwide due to outdoor air pollution. These issues have 

led researchers to focus on outdoor air quality and related studies like urban airflow prediction. 

Factors influencing the airflow structure and pollutant dispersion process within urban areas can 

be categorized into three groups [190,191]: 

1.  Meteorological factors such as wind speed and direction, and thermal stratification 

conditions, etc., 

2. Different urban configurations (i.e., urban morphology), such as the canyon’s aspect ratio, 

non-uniformity of buildings’ heights, the density of the urban area, surface coverage, etc., 

3. Moving vehicles. 

Table 4.1 lists the research items reviewing the impact of the aforementioned factors on pollutant 

dispersion and urban airflow. 

Table 4.1: An overview of previous review articles on pollutant dispersion and urban airflow 

Reference Year Research focus 
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[192]  2005 Impact of urban configuration, variable wind direction, and traffic-induced turbulence on the flow 

and dispersion patterns 

[193]  2012 Studying the role of urban physics in various fields such as pollutant dispersion and thermal 

comfort 

[194] 2013 Reviewing techniques of using computational fluid dynamics (CFD) in near-field dispersion 

studies (reviewing a limited number of studies to address the impact of the inflow stability on 

pollutant dispersion) 

[195]  2014 State-of-the-art review of different modeling and measurement techniques in studying flow and 

concentration fields, considering several influential factors, such as thermal effects, building 

geometries, etc. 

[196] 2016 State-of-the-art review of experimental and numerical studies focusing on near-field pollutant 

dispersion 

[197] 2017 Reviewing the impact of green infrastructure on pollutant dispersion in open roads and built-up 

canyons, mainly considering its aerodynamic and barrier effects 

[198] 2017 Reviewing microclimate CFD studies, categorizing based on the urban morphology and the 

methodology 

[199] 2018 Reviewing urban tree modeling using CFD, considering aerodynamic, deposition, and thermal 

effects 

[200] 2018 Review on isothermal (neutral) urban airflow and pollutant dispersion, considering time-varying 

inflow conditions 

[191] 2020 Reviewing the impact of different factors, such as urban configuration, time-varying inflow 

conditions, thermal effects, tree planting, etc., on urban airflow and pollutant dispersion 

[13] 2020 Reviewing theoretical, experimental, and numerical research items on isothermal and non-

isothermal flows in street canyons 
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[190] 2021 Review on the impact of various factors, such as inflow conditions, thermal effects, geometrical 

factors, etc., on pollutant dispersion 

[51] 2021 Focusing on urban airflow using experimental and numerical simulations, and shedding light on 

the usage of data-driven methods to dynamics of urban flows 

[201] 2021 Reviewing challenges in using CFD in urban studies, such as simplifications of boundary 

conditions, data acquisition, and computational barriers 

[46] 2021 Reviewing applications of data-driven methods in built environment problems, such as turbulence 

closure, super-resolution, reduced-order modeling, etc. 

Factors related to urban morphology are usually constant throughout a long period of time for a 

particular area. However, considering changes in urban morphology can be useful for an efficient 

design of urban environments regarding pollutant dispersion, pedestrian’s health and comfort, etc. 

Detailed information regarding the impact of urban morphology on urban airflow and pollutant 

dispersion can be found in [190,191]. 

Contrary to the urban configuration, the other two factors, namely metrological and pollution 

sources, frequently change. Moving vehicles can be considered as moving pollution sources. 

Furthermore, traffic-related factors and shapes of vehicles can alter the airflow and turbulence 

fields in urban areas. Earlier research work reported the impact of the motion of vehicles on the 

airflow and contaminants concentration fields [202–206]. 

Changes in the wind speed and direction significantly influence the dispersion process [190,191]. 

For instance, in simulating the airflow and contaminants concentration fields in a street canyon, 

changes in the inflow wind conditions caused alteration in the vortical region formed in the canyon 

[207]. Also, considering the real-time incoming wind speed improves prediction of contaminant 

dispersion [191,207,208]. Furthermore, in low wind speed conditions, it is required to consider the 

thermal condition of the region [190,191]. Changes in the thermal condition of an urban area can 

result in alterations of the turbulent diffusion and convective fluxes, which lead to changes in the 

pollutant dispersion pattern [94,209]. Therefore, considering the frequent changes in the 

meteorological conditions is of utmost importance in urban-related problems. Furthermore, (near) 

real-time simulation of the airflow and contaminant concentration fields is required in built 

environment applications, particularly for pollutant dispersion in urban areas in emergency 

situations [46,210]. Also, long-term simulations are necessary for investigating the ventilation and 

pollution characteristic of an urban area [45]. 

A comprehensive model must account for the aforementioned meteorological complexities. CFD 

is considered the most common and promising simulation approach in fluid dynamics problems, 
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such as urban-related ones. According to Table 4.1, the review articles are mainly focused on CFD 

methods. However, due to the limitations of CFD, the use of data-driven approaches in fluid 

dynamics applications is becoming more common in different aspects, such as turbulence closure, 

super-resolution, reduced-order modeling, etc. [46,51,211]. In order to understand the necessity of 

employing data-driven methods in simulating fluid dynamics applications, the following sub-

section is devoted to the application of CFD in urban-related problems and its limitations. 

4.1.2 Pros and cons of CFD application in urban-related problems 

CFD methods have extensively been used in urban-related problems [129] due to their capability 

of capturing different length scales and the turbulence nature of the flow field. Also, their grid-

based approach provides the opportunity of controlling simulation accuracy. CFD approaches can 

be categorized into three main groups, namely, Reynolds-averaged Navier-Stokes (RANS), large 

eddy simulation (LES), and direct numerical simulation (DNS). Among these methods, the RANS 

and LES approaches have commonly been used in urban studies such as airflow prediction and 

pollutant dispersion [15,24,184,186,209,212,213] due to their more reasonable computational 

costs compared to DNS. A complete comparison between the performance of RANS and LES in 

built environments can be found in [129]. 

While RANS provides the average quantities, based on time-averaging, LES uses a spatial filtering 

method to separate large eddies from small ones [179]. By selecting a filter width (i.e., cutoff 

width), LES resolves the eddies larger than the cutoff width while modeling those with smaller 

sizes than the mentioned width using a subgrid-scale (SGS) model. Thus, LES can capture 

fluctuations due to large-scale eddy motions [124,130]. Capturing fluctuations of the airflow and 

concentration fields is essential in dispersion studies since it is related to pollutant dispersion 

mechanisms (i.e., turbulent diffusion flux) [107,116,131]. LES can generate acceptable results 

regarding the mean flow field and turbulence kinetic energy (TKE) even with a simplified SGS 

model since the vortex shedding around buildings can be captured by LES, while RANS cannot 

reproduce it [124]. 

RANS models tend to over-predict pollutant dispersion [124]. Several research items have shown 

the superiority of LES compared to RANS in predicting the airflow and concentration fields 

[128,132,133]. However, it should be mentioned that significant discrepancies have been reported 

between the simulated concentration fields by LES and the experimental data in the vicinity of the 

pollutant source, located on the ground, for both indoor and outdoor regions [25,135]. 

It is noteworthy to mention that non-isothermal flows can be formed in urban areas, particularly 

dense ones, due to the urban heat island (UHI) effect. Since increasing the flow instability increases 

the TKE level, which increases the concentration fluctuations [209], the capability of the model in 

predicting fluctuations becomes crucial. LES has shown a better performance than RANS and 

unsteady RANS (URANS) in predicting the airflow field within street canyons under non-

isothermal conditions [136]. Also, the incapability of URANS in predicting the turbulence nature 

of the flow under unstable thermal conditions has also been reported by Nazarian and Kleissl [137]. 

It should be noted that although URANS is an unsteady approach, it is not able to capture the 

internally-induced fluctuations of flow [214]. URANS models can be used for non-stationary 
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flows, and they can somehow predict vortex shedding, which is related to the largest unsteady 

scales. However, they fail to capture the remaining eddy scales. This can be due to the fact that 

they rely on the mean airflow equations but perform ensemble averaging. Furthermore, LES has 

performed better than RANS in capturing vortex shedding and vortical regions in the wake of an 

isolated building under an unstable non-isothermal condition [74]. 

However, since RANS is computationally efficient, its usage is beneficial in urban studies, 

particularly those covering large areas. The computational resources required for LES are much 

higher than those for RANS. The CPU time needed for the statistical convergence of LES was 

reported to be 25 times more than that for RANS in studying the dispersion process around an 

isolated building [126]. The situation can even be exacerbated for a large number of buildings 

[138]. In order to reduce computational costs while retaining the pros of LES, a combination of 

URANS and LES, such as detached eddy simulation (DES) [144], delayed detached eddy 

simulation (DDES) [145], and also multi-domain (multi-zonal) models (e.g., zonal or embedded 

large eddy simulation, ELES) [29,146] can be used [145–150]. 

Masoumi-Verki et al. [209] reported that using ELES resulted in the speed-up of about 292% and 

130% compared to LES for the isothermal and non-isothermal cases, respectively. Furthermore, 

Liu and Niu [153] showed that DDES reduced computational costs by 40% compared to LES while 

retaining accuracy at an acceptable level in simulating the airflow field around an isolated high-

rise building under the isothermal condition. In another study, the use of DDES resulted in 

reducing computational costs by approximately 20% compared to LES [157]. However, even with 

the mentioned reductions in computational costs, using high-fidelity CFD models in predicting the 

airflow and concentration fields is still costly. For instance, in order to use ELES for simulating 

the airflow and contaminant concentration field around an isolated high-rise building, about 7.6 

and 14 days of data sampling were required to reach statistical convergence under the isothermal 

and non-isothermal conditions, consecutively [209]. 

Therefore, it can be concluded that, even with the aforementioned modifications, conducting long-

term CFD simulations with dynamic boundary conditions is still time-consuming [45]. Also, (near) 

real-time simulations are practically infeasible using CFD approaches. In order to overcome the 

mentioned limitations, using data-driven methods, in tandem with CFD, or in some cases that the 

required data is available from other sources than numerical simulations, as an alternative for CFD, 

is becoming more popular [46,51,211]. 

4.1.3 Objective and contribution 

The present chapter aims at reviewing the advances and challenges of data-driven approaches, 

particularly machine learning algorithms, in the development of reduced-order models (ROMs) 

for predicting the airflow and contaminant concentration fields. It should be noted that using the 

mentioned algorithms in fluid dynamics is not restricted to reduced-order modeling. They can also 

be used in dimensionality reduction, feature extraction, flow control, turbulence closure, shape 

optimization, etc. [46,47]. However, the present chapter is focused on reduced-order modeling. 



65 

 

Using ROMs can lower the CPU time for predicting the airflow and contaminant concentration 

fields compared to conventional CFD simulations, enabling them to be used for (near) real-time 

simulations. Also, the mentioned models can provide the opportunity of conducting long-term 

simulations with dynamic boundary conditions. However, due to the black-box nature of machine 

learning methods, they are not usually physically interpretable (i.e., it is difficult to analyze the 

obtained results based on the physics of the problem). Increasing the physical interpretability of 

such models and embedding physics of the problem into them are challenging tasks. After 

providing an exhaustive review of the existing models, the present chapter tackles the mentioned 

challenges for the development of an efficient while physically interpretable ROM. In addition to 

addressing different data-driven methods for the development of ROMs, the present review tries 

to relate them to the physical aspects of the problems as much as possible. 

4.2 Reduced-order modeling 

4.2.1 Coherent structures 

Coherent structures in turbulent flows are considered as regions that contain the most significant 

characteristics of flows [215]. Generally, turbulence is composed of eddies with different length 

scales [216]. Within the energy spectrum, these ranges are the energy-containing (permanent) sub-

range, inertial sub-range, and dissipation sub-range. Each of these ranges contains a part of the 

energy of the flow. Therefore, in order to reduce computational costs, considering the ranges of 

eddies that cover the most important parts of the energy of the flow results in a good approximation 

of the whole ranges. These low dimensional structures (i.e., coherent structures) can be described 

by dynamical systems [217]. 

Proper orthogonal decomposition (POD) [218,219] is one of the most common approaches for 

analyzing turbulent flows since it can capture the combined spatio-temporal nature of the flow 

dynamics [128]. POD was first introduced to the field of fluid dynamics by Lumley [218], and it 

can capture the most dominant features of turbulent flows. In other words, the most energetic 

modes in the system can be extracted using the singular value decomposition [217]. Thus, instead 

of using a high-dimensional system, a limited number of deterministic functions can be used for 

analysis and representing the turbulent flow [220]. For instance, Masoumi-Verki et al. [209] 

reported that within the wake region of an isolated high-rise building located in stable and unstable 

thermal stratification conditions, the contribution of the first 30 POD modes to the total TKE is 

about 80.89% and 81.39%, respectively. This value has been reported to be 65.58% for the 

isothermal case. Thus, a few characteristic modes can capture a large portion of the total TKE, 

which is an important finding in the development of ROMs. 

4.2.2 Reduced-order models (ROMs) 

The application of ROMs has gained a lot of attention in the past few years in fluid dynamics 

problems, such as urban-related ones [221,222]. Complex systems can be simulated using ROMs 

with reduced computational costs [221]. In other words, it reduces the degrees of freedom (dof) of 

the systems, while the key features will be maintained [223]. Furthermore, multi-query problems 
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(here, alterations in the system's boundary conditions) can be solved using reduced-order modeling 

approaches [224,225]. 

Generally, ROMs can be classified into two main categories: intrusive and non-intrusive 

[226,227]. The intrusive ROMs (IROMs) are projection-based methods in which the governing 

equations describing the problem are projected onto a low-dimensional space, so-called the 

reduced space [228]. Therefore, a reduced-size, physics-based model is generated. The most 

common approach for deriving the reduced space is the POD technique. Other popular approaches 

are dynamic mode decomposition (DMD) [229,230] and greedy algorithms [231], and among 

nonlinear ones, the gappy POD method [232] and discrete empirical interpolation [233], which are 

modifications of POD to reduce the complexity related to the evaluation of the nonlinear terms of 

the ROM. IROMs have been developed for built environment (i.e., both indoor and outdoor) 

studies, such as deriving low-dimensional ventilation model [234], simulating indoor pollutant 

dispersion [235], simulating time-dependent pollution release from a power station [236], 

simulating pollutant dispersion within street canyons [237], etc. 

The most common projection-based approach is the POD-Galerkin method. It is noteworthy to 

mention that the projection-based methods have usually been combined with solvers based on the 

finite element method [237–240]. However, since the majority of CFD solvers are based on the 

finite volume method, applying the POD-Galerkin method to the finite volume approximation has 

recently become popular [228,241,242]. 

Stability and nonlinear inefficiency can be named as the main issues of the POD-Galerkin method 

[225,243,244]. For instance, the truncational approach of the POD technique may result in less 

energy dissipation in IROMs compared to high-fidelity solvers. Thus, IROMs can blow up 

[244,245]. A complete discussion on the stability issues of IROMs can be found in [244]. It should 

be noted that several methods, such as Petrov-Galerkin projection [246–249], discrete empirical 

interpolation [250,251], etc., have been proposed to overcome the previously-mentioned issues of 

the POD-Galerkin method. However, developing IROMs requires source code manipulation and 

knowledge about the discretization schemes, which can be cumbersome, and in some cases, 

impractical since there is no access to the source code of the majority of software packages [226].  

On the other hand, non-intrusive ROMs (NIROMs), which do not require any source code 

manipulations, can overcome the IROMs’ limitations. Contrary to IROMs, researchers can use 

NIROMs to avoid instability and overcome the issues regarding the nonlinear inefficiency 

[249,251,252]. However, they suffer from high computational costs during the training stage. 

There exist a direct relationship between computational costs and the dimensional size of the 

system [253]. In other words, since each variable obtained from snapshots should be treated 

separately, an increase in the number of the variables exponentially increases the computational 

costs. However, their reconstruction time is much faster than conventional CFD models. For 

instance, Xiang et al. [225] reported that using NIROM reduced the simulation time by the factor 

of 226 compared to conventional CFD approaches. In another study, this factor has been reported 

to be 800 [45]. Xiao et al. [224] also reported that using NIROMs in predicting pollutant dispersion 

resulted in five orders of magnitude reduction in the CPU time compared to their high-fidelity 

model. However, NIROMs neglect to incorporate the problems’ physics since they only rely on 
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the obtained data, which may be problematic in engineering applications, thoroughly discussed in 

section 4.5. 

Machine learning (ML) algorithms (and particularly deep learning ones) have become popular in 

developing NIROMs, due to their capability of extracting correlations among data, dealing with 

high dimensional data, and low computational costs of data reconstruction. Table 4.2 lists the 

studies on the development of NIROMs in urban areas to predict airflow field and pollutant 

dispersion. 

Generating a NIROM comprises two different steps: dimensionality reduction and computing 

feature dynamics. Dimensionality reduction is the process of finding a low-dimensional 

representation of the original data, while the feature dynamics step is computing the temporal 

dynamics of the mentioned space. Afterward, the low-dimensional space is reconstructed back to 

the original space. The following sections of the present chapter discuss these two steps of 

NIROMs’ training. 

 Table 4.2: An overview of previous studies on the development of NIROM for predicting urban airflow field and 

pollutant dispersion 

Reference Year Method(s) Research focus 

Linear dimensionality reduction 

[221] 2019 POD - GPR Predicting the turbulent flow field in a realistic urban area 

[254] 2019 POD - GPR Predicting the turbulent flow field in a realistic urban area using 

the domain decomposition method 

[255] 2019 POD - Gaussian RBF Predicting the airflow field within 2D and 3D street canyons using 

the domain decomposition method 

[224] 2019 POD - GPR, LSTM Predicting urban air pollution with different parameters, i.e., 

pollutant sources 

[256] 2021 POD - RBF Predicting urban air pollution within a large urban area 

[257] 2021 PCA – LSTM and 

adversarial LSTM 

Predicting the airflow and concentration fields – comparing the 

performance of classic LSTM with the adversarial one 
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[258] 2021 PC-based adversarial AE – 

adversarial LSTM 

Evaluating the performance of the methodology in predicting the 

airflow field 

Nonlinear dimensionality reduction 

[210] 2018 VAEDC - DNN Real-time analysis of the probability of death in a realistic urban 

area with varying wind speed, direction, and pollution discharge 

rate 

[225] 2021 POD, AE-linear-FCNN, 

AE-FCNN, CAE - XGBoost 

Developing a NIROM for predicting urban airflow with transient 

boundary conditions – comparing the performance of different 

dimensionality reduction techniques  

[45] 2021 CAE - XGBoost Long-term simulation of urban airflow at city scale 

GPR: Gaussian process regression; RBF: radial basis function; LSTM: long short-term memory; PCA: principal 

component analysis; PC: principal component; AE: autoencoder; VAEDC: variational autoencoder with deep 

convolutional layers; DNN: deep neural network; AE-linear-FCNN: linear fully-connected neural network; AE-

FCNN: nonlinear fully-connected neural network; CAE: convolutional neural network-autoencoder; CNN: 

convolutional neural network; XGBoost: eXtreme Gradient Boost 

4.3 Dimensionality reduction 

The idea of dimensionality reduction is to embed the solution manifold onto a lower-dimensional 

latent space (i.e., reduced space). In simpler words, as can be seen in the previous sections, a few 

numbers of POD modes can represent the behavior of the flow field [209]. Therefore, one can use 

the idea of finding a low-dimensional representation of the original data to perform simulations 

with much lower computational costs. The process can be categorized into two main approaches: 

the linear and nonlinear dimensionality reduction methods. 

4.3.1 POD: a linear dimensionality reduction technique 

The POD technique, also known as principal component analysis (PCA), has traditionally been 

used for deriving reduced basis functions of physical systems [253,259]. Although other linear 

dimensionality reduction techniques, such as DMD, have been used in fluid dynamics problems 

for analysis or ROM development [260,261], according to Table 4.2, the linear technique, which 

has dominated urban-related problems, is still POD. Thus, the focus of the current section is on 

the POD technique. 

In the first step, snapshots’ matrix (consider the velocity field, 𝒖, at this step) should be generated 

from the data obtained by high-fidelity simulation (or from an experiment) [221]: 
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𝑆 = [𝒖𝟏  𝒖𝟐  𝒖𝟑  …  𝒖𝑵𝒔] 
Eq. 4-1 

where, 𝑁𝑠 denotes the total number of snapshots. At the 𝑛th time step, velocity can be in the 

following form: 

𝒖𝒏 = {𝑢1
𝑛, 𝑢2

𝑛 … , 𝑢𝑁
𝑛 , 𝑣1

𝑛, 𝑣2
𝑛, … , 𝑣𝑁

𝑛 , 𝑤1
𝑛, 𝑤2

𝑛, … , 𝑤𝑁
𝑛}𝑇 

Eq. 4-2 

where, 𝑁 represents the number of nodes. Furthermore, 𝑢𝑖
𝑛, 𝑣𝑖

𝑛, and 𝑤𝑖
𝑛 show the horizontal, 

lateral, and vertical velocity components at node 𝑖 and time 𝑛. In order to find out the POD basis 

functions, singular value decomposition (SVD) can be applied to the snapshots’ matrix: 

𝑆 = 𝑈Σ𝑉𝑇 

Eq. 4-3 

where, 𝑈 ∈ ℝ3𝑁×3𝑁 states the spatial correlations in data, and its columns are orthogonal. 𝑉 ∈
ℝ𝑁𝑠×𝑁𝑠 gives the corresponding time dynamics for each of these vectors in 𝑈. Also, Σ ∈ ℝ3𝑁×𝑁𝑠, 

which is a diagonal matrix, provides an orthogonal set of vectors in which data is embedded, and 

indicates the significance of each direction. The first 𝑁𝑠 columns of 𝑈 are considered as the POD 

basis functions. The number of basis functions can be reduced to 𝑟 by considering a specific 

tolerance, e.g., 𝜂 ≤ 1, [221] (i.e., low-rank truncation of data): 

∑ 𝜎𝑗
2𝑟

𝑗=1

∑ 𝜎𝑗
2𝑁𝑠

𝑗=1

≥  𝜂 

Eq. 4-4 

Eq. 4-4 shows the ratio between the amount of energy captured by the first 𝑟 modes to the total 

energy. The first 𝑟 modes, then, can be stacked in a matrix, Φ𝑟, showing the low-dimensional 

subspace on which, the data is embedded. Afterward, a variable, 𝐮 (here, velocity or pollutant 

concentration), can be expressed using the following equation: 

𝐮 = �̅� + ∑ 𝑎𝑗Φ𝑗

𝑟

𝑗=1

 

Eq. 4-5 

where, 𝑎 is a time-dependent coefficient of the POD expansion. In other words, 𝑎 shows the time 

dynamics of this subspace. Furthermore, �̅� shows the mean value of 𝐮. The next step is to find 𝑎 
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by, for example, training a time-stepping neural network to reconstruct the original data using the 

reduced space. 

In [254,255], a domain decomposition method has been applied to finite element nodes to divide 

the domain into a number of subdomains in order to compute a set of POD modes for each 

subdomain. Thus, a set of hypersurfaces can be constructed to explain the dynamics of the system. 

Dividing the computational domain into multiple subdomains can be performed using a weighting 

constraint on vertices (e.g., uniform weight, the maximum value of the nodal Reynolds stresses, 

etc.) so as to reach an equal accuracy for each of them while minimizing the dependence of each 

subdomain regarding the system’s dynamic [254]. In order to achieve this goal, different numbers 

of POD modes may be used in each subdomain to represent the low-dimensional system of a 

specific subdomain. This method can improve the model accuracy, particularly in large domains 

with variations in the geometric specifications. 

Quilodrán-Casas et al. [258] combined PCA with adversarial autoencoders to develop a ROM. In 

order to reduce the problem’s dimensionality, they used PCA to derive the dominant modes of a 

3D velocity field obtained by CFD. Afterward, they applied an adversarial autoencoder on the 

principal components obtained by PCA to obtain the latent space, on which computations can be 

done. This method of dimensionality reduction showed better performance than the traditional 

truncation of principal components.  

It is worth noting that since POD is, in nature, an eigenvalue problem, it is physically interpretable. 

For instance, as mentioned before, each POD mode contributes to the total TKE [209]. Although 

this technique has extensively been used in fluid dynamics problems (e.g., see Table 4.2 and 

[227,253]), it has a major drawback, i.e., its linear nature. In other words, it computes an optimal 

linear subspace on which data can be projected. However, real-world data, such as those related to 

fluid dynamics, are strongly nonlinear, particularly in advection-dominated problems. Previous 

studies have compared the performance of POD with some nonlinear methods in generating ROMs 

for different applications [225,262,263]. These studies support the fact that the POD-based ROMs 

are not as efficient and accurate as those generated by nonlinear dimensionality reduction methods. 

Eivazi et al. [264] reported that in order to capture 99% of the energy from the flow reconstruction, 

247 POD modes were required for a simplified urban configuration (i.e., two cubes in a row). 

Thus, a linear approximation may result in insignificant speed-ups for heavily nonlinear and 

advection-dominated problems [265]. Furthermore, the performance of POD-based ROMs may be 

deteriorated under dynamic boundary conditions compared to cases with steady ones [225]. As 

previously explained, boundary conditions in urban areas constantly change. Therefore, using 

linear dimensionality reduction techniques, such as POD, might not be the most suitable choice 

for urban-related applications. 

4.3.2 The relationship between POD and autoencoder 

Under-complete autoencoder can be considered as the generalized form of POD [266]. As 

mentioned before, POD (or PCA) finds a linear low-dimensional hyperplane to describe the 

original data. On the other hand, in autoencoders, nonlinearities can be introduced to the network 
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using nonlinear activation functions. Thus, autoencoders can learn complex data representation, 

which can be employed to describe the original data in a lower dimensionality [211]. Figure 4.1, 

obtained from [267], shows the difference between linear and nonlinear dimensionality reduction 

methods. 

 

Figure 4.1: Difference between linear and nonlinear dimensionality reduction methods (obtained from [267]) 

An autoencoder consists of two parts, namely encoder, and decoder, which are designed to act as 

the inverse of each other. The encoder takes in a high-fidelity state (i.e., the original data) and 

encodes it into a latent space (i.e., low-dimensional representation of the original data), in which 

computations can be done [268]: 

𝐡 = 𝑓𝐸(𝐱; 𝜃𝐸) 

Eq. 4-6 

where, 𝐱 ∈ ℝ𝑁 and 𝐡 ∈ ℝ𝑁ℎ represent the input state and the representation vector (i.e., latent 

space), respectively. 𝑁 and 𝑁ℎ denote the dimensionality of the original space and latent space, 

consecutively. It should be noted that 𝑁ℎ < 𝑁. Also, 𝜃𝐸  represents the parameters of the encoder 

part. Afterward, a decoder network is employed to take back the feature state to reconstruct �̂�, 

which is an approximation of 𝐱 [268]: 

�̂� = 𝑓𝐷(𝐡; 𝜃𝐷) 

Eq. 4-7 

where, 𝜃𝐷 denotes the parameters of the decoder part. In order to identify the latent space, 

snapshots obtained from the high-fidelity solution are used. The procedure consists of finding the 

parameters so as to minimize the reconstruction error over the training examples [268]: 

𝜃𝐸
∗ , 𝜃𝐷

∗ = arg min
𝜃𝐸,𝜃𝐷

𝔼𝑥~𝑃𝑑𝑎𝑡𝑎
[ℒ(�̂�, 𝐱)] 

Eq. 4-8 
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where, ℒ(�̂�, 𝐱) = ‖𝐱 − �̂�‖2
2 is a measure for calculating the deviation of the reconstructed �̂� from 

𝐱 [211]. Also, 𝔼 in statistics is used to denote the “expected value”. In order to prevent the 

autoencoder network from learning the identity function, 𝑁ℎ < 𝑁 can be applied. In this way, 

hidden features of 𝑃𝑑𝑎𝑡𝑎 (i.e., the data generating distribution) can be obtained [268]. It is 

noteworthy to mention that 𝑓𝐸 , 𝑓𝐷, and ℒ(�̂�, 𝐱) are usually selected based on the application. 

Single-layer encoder and decoder, with linear activation function, result in a solution similar to 

that obtained by POD [211,269]. Thus, Eqs. 4-6 and 4-7 can be reformed as follows [268]: 

𝐡 = 𝐖𝐸𝐱 

Eq. 4-9 

�̂� = 𝐖𝐷𝒉 

Eq. 4-10 

where, 𝐖𝐸 ∈ ℝ𝑁ℎ×𝑁 and 𝐖𝐷 ∈ ℝ𝑁×𝑁ℎ. The autoencoder can learn the same subspace as the one 

captured by the first 𝑁ℎ POD modes if 𝐖𝐸 = 𝐖𝐷 = 𝐖 and 𝐖𝐓𝐖 = 𝐈𝑁ℎ×𝑁ℎ
 and with the 

following equation for ℒ(�̂�, 𝐱) [268]: 

ℒ(�̂�, 𝐱) = ‖𝐱 − �̂�‖2
2 = ‖𝐱 − 𝐖𝐖𝐓𝐱‖2

2 

Eq. 4-11 

4.3.3 Nonlinear dimensionality reduction 

In nonlinear dimensionality reduction, the assumption made for the latent space as a linear solution 

manifold should be removed. Therefore, it is not possible to write the projection operator as 𝐖𝐖𝐓 

anymore, and its general form should be used since any nonlinear function may be employed [265]. 

It is noteworthy to mention that one of the most common nonlinear dimensionality reduction 

methods is the kernel PCA. However, using this approach, in some cases, may be problematic 

since there exist no general guidelines for choosing the nonlinear mapping or the kernel [265]. For 

more information regarding the kernel PCA method, one can refer to [270]. 

As can be seen in Table 4.2, the use of nonlinear dimensionality reduction techniques becomes 

more common in urban-related problems. Xiang et al. [225] compared the performance of different 

autoencoder-based dimensionality reduction methods, namely, AE-linear-FCNN, AE-FCNN, and 

CAE, with the POD technique. They applied these methods on 2D velocity fields on the pedestrian 

level. For AE-FCNN, they used SELU activation function [271] to consider the impact of 

nonlinear activation function on dimensionality reduction. The results show that nonlinear 

approaches performed better in finding a low-dimensional representation for the original data than 

POD. A comparison between the structures of the AE-linear-FCNN and AE-FCNN can be 

observed in Figure 4.2, obtained from [225], in which the blue neuron illustrates the nonlinear 

layer.  
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Figure 4.2: Difference between linear and nonlinear dimensionality reduction methods (obtained from [225]) 

Although deep fully-connected autoencoders performed well in previous studies [225,272], the 

approach alone may not be scalable as the dof of the system increases since the number of the 

trainable parameters increases significantly [268]. Also, an increase in the depth of the network 

can even exacerbate the situation (see Figure 4.2). Besides, using fully-connected autoencoders 

for very high-dimensional data may result in over-fitting. Using convolutional layers can solve the 

problem due to their features, namely, local connection and shared weight across the input domain 

[266,273], making them an appropriate feature detection choice. Figure 4.3 shows a schematic 

view of how the input data (i.e., the blue matrix) can be mapped to the output (i.e., the green 

matrix) by sliding the 3 × 3 kernel through the input data [274],. 

 

Figure 4.3: An example of the convolutional operation with a 𝟑 × 𝟑 convolutional kernel, with no padding and 

strides (obtained from [274]) 

Downsampling in convolutional layers is usually done by employing pooling layers (i.e., 

maximum or average pooling layers) or strides larger than one, which is related to the filtering 

process [266]. It is noteworthy to mention that if pattern recognition is important in a specific 

application and data is obtained from a grided topology, CNNs can be helpful [46,266]. Using 

CAE can facilitate the dimensionality reduction procedure. Instead of applying a fully-connected 

autoencoder to the original data (high-dimensional), in CAE, the network can be applied to a 

vectorized feature map with lower dimensionality obtained from a deep CNN [268]. In this way, 
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nonlinear autoencoders can be applied to a large dataset in order to extract hidden features of the 

system. Figure 4.4, showing a schematic view of a CAE, illustrates that in the encoding part, a 

series of convolutional layers with an increasing number of filters leads to a decrease in the 

dimension [265]. Therefore, the dof of the system decreases. After obtaining the hidden layer (from 

CNN-encoder), a similar approach, but in the reverse form, is designed to reconstruct the input 

from the hidden layer. At this point, the loss function should be minimized for training the model. 

 

Figure 4.4: The schematic view of the structure of a convolutional autoencoder (modified from [265]) 

In order to use CAE for dimensionality reduction, Xiang et al. [225] employed five convolutional 

layers with 3 × 3 kernels and ReLU activation function [275], using maximum pooling layers after 

each of the first four ones. Then the reduced, vector-shaped data were fed into fully-connected 

layers. The predictive performance of NIROMs, based on different dimensionality reduction 

techniques, was sorted as CAE>AE-FCNN>AE-linear-FCNN>POD. However, they did not 

compare these methods' training and reconstruction times. Furthermore, Mücke et al. [265] 

compared the performance of CAE and POD in an advection-dominated problem. They reported 

that considering a latent space with the dimension of 2 for CAE led to the flow reconstruction with 

a mean squared error in the range of 10−4 − 10−3. However, in order to achieve a similar accuracy 

using the POD technique, at least 17 POD modes were required. This finding is considered as a 

supporting fact on the claim of the inefficacy of the POD technique for being used in advection-

dominated problems. 

In 3D convolutional layers, instead of just sliding in a 2D space, the kernel also goes through the 

depth, which is helpful to extract dependencies in the third dimension. This method has been used 

in several applications, particularly in studies with video data as the input (e.g., action recognition 

and video segmentation [276,277]) since it can exploit spatio-temporal dependencies in the system. 

Since the nature of fluid dynamics problems is also spatio-temporal, 3D convolutional layers can 

logically be employed. The method has successfully been applied to a synthetic jet problem in a 

transitional regime for prediction tasks [278]. 

Based on the above review, it can be concluded that the most popular approach of nonlinear 

dimensionality reduction in fluid dynamics problems, such as urban-related ones, is CAE due to 

its capability of handling systems with high dof. Using adversarial autoencoders may also increase 

the ability of the method to find a better low-dimensional representation of the original data, as is 
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used in [258] for the POD technique. However, some limitations exist regarding the physical 

interpretation of nonlinear methods, which is of utmost importance in developing NIROMs for 

engineering problems. These issues and recommendations to overcome them are discussed in 

section 4.5. 

4.4 Feature dynamics 

The next step of generating a ROM is to compute the temporal evolution of the low-dimensional 

features obtained from the previous step. Based on Table 4.2, several approaches, including neural 

networks and regression techniques, have been used for the mentioned task. The RBF interpolation 

method, which can be used for the interpolation of multi-dimensional scattered data [279] (using 

a weighted combination of RBFs), has successfully been applied to fluid dynamics problems 

[255,280]. The approach is suitable for handling a large amount of data. The method has been used 

along with the POD technique to generate NIROMs for different fluid dynamics applications such 

as a simplified street canyon, flow past a cylinder, and a lock exchange problem, using unstructured 

finite element grids [255,280]. The results obtained from NIROM showed a generally good 

agreement with those from the high-fidelity solver. 

GPR [281] has also been employed to study the prediction of urban airflow and pollutant 

dispersion [221,224,254]. This linear method is trained to find a combination of Gaussian-shaped 

basis functions to provide hypersurfaces for the NIROM development. The method is suitable for 

small datasets since it does not require intensive training procedures due to its linear nature. 

However, its performance may deteriorate with large datasets [221,282]. It should be noted that 

some efforts have been made to use GPR with large datasets [282,283]. 

Time series data can efficiently be handled using recurrent neural networks (RNNs), such as LSTM 

[284], gated recurrent unit (GRU) [285], and echo-state networks [286]. LSTM, which is a 

modified version of RNN, can solve the issue of vanishing or exploding gradients in the 

backpropagation procedure in classic RNNs. The LSTM layer consists of four parts: cell state, 

input gate, output gate, and forget gate. Using these gates, LSTM has the ability to control the flow 

of information. The gates can learn which information is important and which is not. More details 

on the functionality of each gate can be found in [284]. In this method, values from the reduced 

space are fed into the LSTM model as the initial encoded field [287]. Afterward, the predicted 

field is recursively used as the model’s cell state input. After feeding the input data, the LSTM 

model is trained to minimize a loss function in the latent space. LSTM has successfully been 

employed in modeling the temporal evolution of low-dimensional representations obtained by 

POD and autoencoders [227,265,268]. For instance, the time-averaged error for CAE-LSTM in 

predicting the flow past a cylinder, for Reynolds number ranging between 120 and 200, was 

reported to be 3.92 × 10−2 [265]. The mentioned value for the POD-LSTM method was stated to 

be of the order of magnitude of 10. Furthermore, It has been reported that LSTM has performed 

reasonably well in generating a NIROM for a large urban area with varying parameters, i.e., 

pollution emission intensity [224]. In [224], the root-mean-square error of pollutant concentration 

results, in a realistic urban area, between the developed parametrized NIROM and high-fidelity 
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model was mainly of the order of magnitude of 1. As Mücke et al. [265] reported GRU performed 

similarly to LSTM in problems such as linear advection and flow past a cylinder. 

Adversarial training of LSTM has also been employed in urban-related studies to improve the 

performance of the conventional LSTM [257,258]. In these studies, a discriminator was used to 

differentiate between the original principal components and those predicted by LSTM. Afterward, 

the discriminator training has been performed by minimizing the binary cross-entropy loss. The 

comparison between the performance of the conventional LSTM and the adversarial one exhibits 

that after 80 time steps of forecasting, the former diverged quickly from the underlying state. On 

the other hand, the latter could preserve the underlying physics during the prediction phase [258]. 

Furthermore, the adversarial LSTM was able to create eddies better than the conventional one. It 

should be noted that using the adversarial LSTM resulted in the reduction of, in some locations, 

one order of magnitude in the absolute error with respect to the original data, compared to the 

conventional LSTM [258].  

Echo-state networks, a form of reservoir computing, have been used to learn the dynamics of 

chaotic systems, including those related to fluid dynamics, such as the Kuramoto-Sivashinsky 

equation, Charney-DeVore system, and turbulent moist Rayleigh-Bénard convection flow [288–

290]. In echo-state networks, the weights of the input and reservoir are initialized and kept constant 

during the training phase, while those related to the output layer are trained. Therefore, the issues 

related to the backpropagation procedure are eliminated. Furthermore, training these networks is 

usually faster than LSTM. Although echo-state networks have shown promising performance in 

learning the feature dynamics of nonlinear systems [288–290], they have not been 

comprehensively compared to other RNNs, such as LSTM, in predicting turbulent flows to 

investigate their functionality in complex problems. Moreover, echo-state networks are known to 

face stability issues, particularly when using noisy datasets. [291]. Also, their performance in long-

term prediction attenuates. These limitations may be due to the dependence of such networks on 

hyper-parameters. It is known that echo-state networks are able to perform well in a narrow region 

of hyper-parameter space [292]. Although there exist several research items on overcoming the 

issues arising from the usage of these networks [292–294], their functionality in learning the 

feature dynamics of complex turbulent flows (e.g., urban airflows) is in doubt. 

Xiang et al. [225] used XGBoost [295], a scalable decision tree boosted system, as the regression 

model on the reduced space obtained by different dimensionality reduction methods (see Table 

4.2). The “boosting” term refers to a set of algorithms that can convert weak learners to strong 

ones [296]. The weak model was fitted to the whole space of the input data, while the second 

model was fitted to residuals of the weak model [225]. This process eventually stops by reaching 

a certain criterion. The predictive model is the sum of the prediction of each model. It is noteworthy 

to mention that Xiang et al. [225] used the model for developing a NIROM with transient boundary 

conditions. In other words, the XGBoost algorithm was used to map the dynamics of boundary 

conditions to each low-dimensional space obtained by a particular dimensionality reduction 

technique. The results show that their proposed model was able to capture the dominant features 

of the urban airflow under both low and high wind speed conditions.  
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Causal CNN (CCNN), also known as temporal CNN [297], combined with feed-forward neural 

networks, has been applied to fluid dynamics problems, such as linear advection, discontinuous 

compressible flow, and flow past a cylinder, to capture the time evolution of the latent space 

[265,298]. Using CCNN, the information leakage from the future time steps into the previous ones 

is prevented since it operates only on the data prior to the current time step in the previous layer. 

Comparing CCNN with LSTM for sequence modeling across a diverse range of tasks and datasets 

exhibited that the former has a longer effective memory length than the latter [299]. However, a 

comparison between the results of CAE-LSTM and CAE-CCNN in reconstructing the flow field 

past a cylinder shows that the relative error of the latter approach is about one order of magnitude 

larger than that for the former one beyond the training horizon [265]. On the other hand, CAE-

CCNN slightly performed better than CAE-LSTM for the linear advection problem. 

Self-attention deep learning [300] has recently been applied to fluid dynamics problems, such as 

flow past a cylinder, with 𝑅𝑒 = 3200, to deal with long-term prediction issues arising from the 

use of autoencoder networks [263]. The self-attention mechanism is the one in which the inputs 

interact with each other to realize which one requires more attention. Furthermore, the input data 

sequence is not fed to the model in its sequential order in the self-attention mechanism. After 

feeding the low-dimensional space to the self-attention network, the network predicted the space 

for the next time step [263]. The results showed that using the self-attention method reduced the 

root-mean-square error to approximately 1 3⁄  of that for the conventional POD-based ROM [263]. 

Recent advances in calculating feature dynamics for the NIROM development in the fluid 

dynamics applications are discussed so far in section 4.4. One of the challenges in generating 

NIROMs for urban-related problems is to parameterize it, since, for instance, the weather 

conditions in an urban area constantly change. There exist some studies on the development of 

NIROMs with varying boundary conditions in different applications, such as flow past a cylinder 

[265,287] and urban airflow and concentration fields prediction [224,225]. It should be noted that 

reviewing the advances and challenges of the development of such parametric models is not among 

the topics of the present dissertation. However, noises and small changes in the input data may 

result in significant changes in the models’ outputs since these data-driven models are known to 

be domain-agnostic [301]. Thus, some modifications may be required for generating a robust and 

stable model, which are addressed in section 4.5. 

4.5 Challenges and recent advances 

As discussed in the previous sections, autoencoder-based methods are the most common nonlinear 

dimensionality reduction techniques in fluid dynamics problems (see Table 4.2 and 

[263,265,268,287,302]). However, nonlinear low-dimensional mapping strategies are not 

physically interpretable. In other words, contrary to the modes obtained from POD, which can be 

related to the physical structures present in the system, it is difficult to interpret the physical 

meaning of the latent vectors exploited by autoencoders with nonlinear activation functions [303]. 

This is due to the fact that no concept like eigenvalues can be interpreted from these nonlinear 

modes since they are not orthogonal. Furthermore, unlike POD, the latent modes obtained from 
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conventional autoencoder-based strategies are not sorted in the order of their contribution to the 

total TKE [303]. 

In order to overcome the aforementioned issues, Fukami et al. [303] used CNN combined with 

hierarchical autoencoder [304] to rank the latent modes based on their energy. The method is based 

on dividing a network into different subnetworks and then feeding the latent vector of each 

subnetwork to the next one. In this way, subnetworks already consider the features obtained by 

previous subnetworks in their latent space. Thus, they will try to find the remaining modes that 

have not been observed in the previous subnetworks. The method was, at first, applied to laminar 

and transient wake regions behind a 2D cylinder and then to a turbulent cross-sectional flow in a 

channel with 𝑅𝑒𝜏 = 180, where 𝑅𝑒𝜏 represents the Reynolds number based on the friction velocity 

and channel half height. Although the method solved the problem of ranked modes regarding their 

contribution to reconstructing the flow field, the uniqueness problem remained an issue, which can 

be attributed to the probabilistic process of neural networks during the training phase. Also, since 

multiple neural networks should be trained, the method may be cumbersome, particularly for 

exploiting higher-order modes.  

In order to solve the interpretability issue of nonlinear mode extraction and their rank regarding 

the modes’ energy content, Eivazi et al. [264] used a probabilistic deep neural network algorithm 

based on the combination of CNN and a modified version of variational autoencoder [305,306] to 

exploit near-orthogonal nonlinear modes for turbulent flows by applying the method on a 

simplified urban configuration. For doing so, the correlation between the latent variables was 

minimized, while the size of the latent vector was penalized. Furthermore, in order to rank the 

obtained modes based on their energy content, they used an expression to find out the relative TKE 

percentage captured by the reconstructed model with respect to the original values of fluctuations. 

Although the proposed model outperformed the POD technique, it slightly decreased the 

reconstruction accuracy compared to the conventional CAE and hierarchical CAE. 

Since turbulence is composed of eddies with different scales, several studies have used multiscale 

CNN for the dimensionality reduction process to accommodate the multiscale nature of a complex 

turbulent flow [307–310]. Thus, different kernel sizes can be considered for the mentioned 

purpose. Nakamura et al. [310] used 3D CNN with three different kernel sizes, 3 × 3 × 3, 

5 × 5 × 5, and 7 × 7 × 7, in their model and obtained the weights of their multiscale CAE using 

an iterative optimization. The method was applied to a turbulent channel flow with 𝑅𝑒𝜏 = 110 in 

order to develop a NIROM, which resulted in a good statistical agreement with the DNS data. It 

should be noted that since more complex flows, such as those with higher Reynolds number, may 

require a larger number of latent modes than the case conducted in [310], the combination of this 

method with the hierarchical one introduced in [303] may solve the issue to a great extent. The 

schematic view of the multiscale CAE model used in [310] is shown in Figure 4.5, obtained from 

[310]. 
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Figure 4.5: The schematic view of the multiscale CAE used in [310], using three different kernel sizes of 

𝟑 × 𝟑 × 𝟑, 𝟓 × 𝟓 × 𝟓, and 7× 𝟕 × 𝟕 for dimensionality reduction of DNS data (modified from [310]) 

As mentioned previously, since neural network models are black-box models, they tend to neglect 

the physics and characteristics related to the domain of the problem [301], which may lead to 

erroneous results in the presence of noisy data, small training data, or many hyperparameters. In 

order to overcome this issue to some extent, it is beneficial to embed information related to the 

physics and domain of the problem into the model. In other words, customizing the loss function 

to achieve physics-informed models, such as those pioneered by Raissi et al. [311,312], can 

improve the model regarding its stability and robustness. 

By applying automatic differentiation on the output variables, Raissi et al. [313] embedded the 

coupled dynamics of the passive scalar and the Navier-Stokes equations into the outputs to achieve 

a physics-informed learning algorithm, which is agnostic to the geometry of the problem and its 

initial and boundary conditions. They customized the loss function during the training stage by 

adding a term related to the residuals of the momentum equations, the transport equation of a 

passive scalar, and the continuity equation. The proposed model has been reported to be robust to 

remarkable noises in the input data. Cheng and Zhang [314] also applied automatic differentiation 

with respect to time and space to the output of a residual neural network (ResNet) in order to 

develop a physics-informed network for applications governed by the Navier-Stokes equations. 

They reported that including ResNet can lead to the improvement of the model performance. 

Erichson et al. [301] used the empirical risk minimization to enhance the generalization of a data-

driven model for fluid flow prediction by proposing a method for autoencoders to preserve the 

Lyapunov stability. Using Jacobian regularization in the loss function of a simple feed-forward 

neural network, Pan and Duraisamy [315] suppressed the sensitivity of the predictive model to the 

local error. In this way, they improved the accuracy and robustness of the model in long-term 
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predictions using limited available data. These modifications seem to be of utmost importance in 

developing a NIROM for urban-related applications (e.g., predicting the turbulent airflow field 

and pollutant dispersion), particularly when multi-query and long-term predictions are required. 

4.6 Conclusion 

Due to their high computational costs, CFD solvers cannot usually be used for multi-query 

problems and (near) real-time predictions of the flow and concentration fields. Using ROMs as an 

alternative to high-fidelity models can overcome these issues. In the present chapter, two different 

types of ROMS, namely IROM and NIROM, were introduced, and also their capabilities and 

limitations were mentioned. It was explained that using NIROMs can solve the issues arising from 

the use of IROMs, regarding source code manipulation and nonlinear inefficiency. Thanks to the 

progress of machine learning algorithms, the use of deep learning in generating NIROMs becomes 

popular. Developing a NIROM comprises two stages: dimensionality reduction and calculating 

feature dynamics. Different methodologies, with their advantages and disadvantages, were 

introduced for each of these two stages. 

It was explained that using linear dimensionality reduction techniques, such as POD, results in 

inefficient models, particularly when dealing with advection-dominated problems. Furthermore, 

using a nonlinear autoencoder as a standalone approach is not suitable for complex systems such 

as fluid dynamics problems. Therefore, the combination of CNN-autoencoder can be used for 

reducing the dimensionality of such complex systems. Moreover, using more advanced methods, 

such as adversarial autoencoder, can increase the model’s accuracy. Afterward, several approaches 

for computing the feature dynamics of the derived reduced space were introduced. Among these 

methods, LSTM has successfully been used in fluid dynamics problems. It was stated that using 

adversarial LSTM instead of conventional one can result in a longer prediction horizon over the 

test dataset without a significant decrease in the model accuracy. CCNN was introduced as another 

approach for calculating the feature dynamics of the low-dimensional space due to its long 

effective memory length. However, more investigations are required to find out its effectiveness 

in fluid dynamics problems. 

Due to the black-box nature of machine learning algorithms, there still exist several challenges in 

developing these models, such as the physical interpretation of the models, their stability, and 

robustness under dynamic boundary conditions. In the present chapter, different approaches were 

introduced to make the dimensionality reduction procedure physically interpretable by sorting 

them based on their energy content and making them near-orthogonal. Furthermore, several efforts 

were reviewed to embed physics into the model by customizing loss functions, which is of utmost 

importance in developing NIROMs for the long-term prediction of urban airflow and pollutant 

dispersion under dynamic boundary conditions. The present chapter is expected to shed light on 

the current stage of the development of NIROMs for urban-related applications and pave the way 

for future works by mentioning the existing challenges. 
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Chapter 5. Performance analysis of different reduced-order 

models for predicting urban turbulent flow field 

 

5.1 Introduction 

Computational fluid dynamics (CFD) has been considered as a promising numerical approach in 

fluid dynamics problems, such as urban airflow prediction. However, flow field prediction using 

CFD models is time-consuming. Thus, they cannot be used for (near) real-time and long-term 

simulations. Reduced-order models (ROMs) are emerged to obviate this limitation. Deep learning 

(DL) algorithms have been used for developing non-intrusive ROMs (NIROMs) in fluid dynamics 

applications. In the present study, three different approaches, namely, convolutional autoencoder 

(CAE), multiscale CAE (MS-CAE), and self-attention CAE (SA-CAE) are developed for 

dimensionality reduction, which is considered as the first step of the development of a NIROM. 

The developed models are then used for finding a low-dimensional representation of the original 

data. Afterward, a parallel long short-term memory (LSTM) network is employed for computing 

the temporal dynamics of the obtained low-dimensional space. The models are trained to 

reconstruct a turbulent airflow field in the wake region of an isolated high-rise building, located in 

an unstable thermal stratification condition, using validated CFD data. 

The methods used in this chapter are chosen to overcome the limitations of conventional CAEs 

arising from using a fixed kernel size in convolutional layers. In other words, efforts are made to 

capture multiscale and long-range dependencies among datapoints. Multiscale CAE (MS-CAE) 

and self-attention CAE (SA-CAE) are, for the first time, being used for reconstructing highly 

turbulent flow fields. In addition to qualitative and quantitative comparison of the results of 

developed models with the CFD data using conventional approaches, the spectral analysis is 

performed on the constructed dataset to analyze the large-scale unsteadiness of the reconstructed 

flow field. 

5.2 Methods used in NIROM development 

The current section explains the deep learning (DL) methods used in the present study for 

developing NIROMs. These methods are CAE, MS-CAE, SA-CAE, and LSTM. 

5.2.1 Convolutional autoencoder (CAE) 

Convolutional layers, pooling layers, and fully-connected layers can constitute a CAE. Using the 

encoder part of a trained CAE, a high-dimensional system (here, an airflow field) is mapped onto 
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a low-dimensional latent space. Afterward, the decoder part is designed to reconstruct the encoded 

datapoints to the original space. 

Considering a 2D flow field dataset (i.e., longitudinal and vertical velocity components), 2D 

convolutional layers can be used in CAE. Thus, a 2D kernel with a specified size can be used to 

capture local correlations between the data points by sliding through the input data. An input 

dataset, 𝑋 ∈ ℝ𝐻′×𝑊′
, is convolved using a 2D convolutional kernel, 𝐾 ∈ ℝ𝑀×𝑁, to obtain a feature 

map, 𝑌 ∈ ℝ𝐻′′×𝑊′′
.  It should be noted that 𝐻′ (𝐻′′) and 𝑊′ (𝑊′′) are, respectively, the height and 

width of the input data (output feature map). For any datapoint 𝑥 ∈ 𝑋, the datapoint 𝑦 ∈ 𝑌 can be 

calculated as follows [316]: 

𝑦𝑖,𝑗 = ∑ ∑ 𝑘𝑚,𝑛 . 𝑥𝑖−𝑚+1,𝑗−𝑛+1 

𝑁

𝑛=1

𝑀

𝑚=1

 

Eq. 5-1 

where, 1 ≤ 𝑖 ≤ 𝐻′′ and 1 ≤ 𝑗 ≤ 𝑊′′. In the present study, the padding method is selected as 

“same”; thus, 𝐻′′ = 𝐻′ and 𝑊′′ = 𝑊′.  

Downsampling can be performed using pooling layers, usually maximum or average pooling 

operations [266]. A 2D pooling operation, maximum or average, reports the values inside a 

rectangle with its maximum or average value, respectively. Dimensionality reduction can also be 

performed using strides larger than one. In this case, the stride value defines the movement of the 

kernel of the convolutional layer. Figure 5.1 schematically illustrates how a 3 × 3 kernel acts on a 

7 × 7 input. Strides larger than one  was used in the present study since it can keep spatial 

information more effectively than pooling layers [316]. 

 

Figure 5.1: The schematic view of a 𝟑 × 𝟑 kernel, with a stride value of 2, acting on a 7× 𝟕 input data 
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The structure of the encoder part of the CAE used in the present study is depicted in Figure 5.2. It 

should be noted that the decoder part tries to reconstruct the encoded data back to the original 

space using combined upsampling and convolutional layers. 

 

Figure 5.2: The encoder part structure of the CAE. 𝒌 = 𝟑 × 𝟑 × 𝟑𝟐 means that the size of the convolution kernel 

is 𝟑 × 𝟑, and 𝟑𝟐 convolution kernels are used in this layer. 𝒔 indicates the stride of the convolutional layer. 

5.2.2 Multiscale CAE (MS-CAE) 

To capture the multiscale sense of images, Du et al. [317] proposed a multiscale convolutional 

neural network (CNN) structure. In order to account for the multiscale nature of turbulent flow 

fields, dimensionality reduction can be performed using MS-CAE. MS-CAE has previously been 

applied to fluid dynamics applications, such as turbulent channel flow [309], laminar and 

transitional flow (with the Reynolds number ranging between 20 and 160) past a cylinder [287], 

and unsteady flows (with the Reynolds number of 100) around bluff bodies of various shapes 

[307]. However, as previously mentioned, MS-CAE is being used for the first time in this study 

for highly turbulent urban airflow. 

In the present study, after experimenting with various kernel sizes, 3 × 3, 5 × 5, and 7 × 7 kernels 

are selected. Employing various kernel sizes helps the model capture multiscale spatial correlations 

among data, which can be beneficial in more effective dimensionality reduction compared to the 

conventional CAE. The structure of the encoder part of the MS-CAE used in the present study is 

shown in Figure 5.3. 
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Figure 5.3: The structure of the encoder part of MS-CAE. Three different encoders with the same structure as the 

one used in CAE, but with different kernel sizes, i.e., 𝟑 × 𝟑, 𝟓 × 𝟓, and 𝟕 × 𝟕. 

5.2.3 Self-attention CAE (SA-CAE) 

As explained previously, kernels in convolutional layers are responsible for capturing local 

correlations among data. Therefore, the kernel size might be a limiting factor in finding non-local 

correlations. In sub-section 5.2.2, MS-CAE was introduced, which enables the model to consider 

the multiscale nature of the flow field. The goal of developing SA-CAE can be considered similar 

to MS-CAE. In both models, the aim is to overcome the limitations caused by the fixed size of 

convolutional kernels. In the present study, the methodology proposed by Wang et al. [318], called 

non-local neural networks, was used to capture long-range dependency among data. 

In the self-attention module employed in the present study (see Figure 5.4), the output is the sum 

of the input data and the attention module output multiplies by a factor controlling the attention 

intensity [316]: 

𝑌 = 𝑋 + 𝑋′ 
Eq. 5-2 

where, 𝑋 ∈ ℝ𝐻′×𝑊′×𝐶 is the input to the self-attention module. 𝐶 denotes the number of channels. 

𝑋′ = 𝛼𝑌′, where 𝛼 is the aforementioned trainable controlling factor and 𝑌′ ∈ ℝ𝐻′×𝑊′×𝐶 is the 

output feature map of attention part. Also, 𝑌 ∈ ℝ𝐻′×𝑊′×𝐶 is the output feature map. In order to 

compute the attention weight, the similarity of any 𝑥𝑗 ∈ 𝑋 is compared to a specific 𝑥𝑖 ∈ 𝑋, using 

the following equation [316,318]: 
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Φ(𝑥𝑖, 𝑥𝑗) = exp (𝜙(𝑥𝑖)
𝑇𝜃(𝑥𝑗)) 

Eq. 5-3 

where, 𝑇 refers to “transposed”, 1 ≤ 𝑖, 𝑗 ≤ 𝐻′𝑊′. In order to compress the size of channels, 1 × 1 

convolutions are used in each path, shown in Figure 5.4, i.e., 𝜙, 𝜃, and 𝑔 paths. The compression 

value to decrease the number of channels plays an important role in reducing computational costs. 

Then, the attention weight of a specific 𝑥𝑖 to any 𝑥𝑗 in the input domain can be calculated as the 

ratio of Φ(𝑥𝑖, 𝑥𝑗) to the sum of Φ(𝑥𝑖, 𝑥𝑘), where 𝑘 ∈ [1, 𝐻′𝑊′]: 

ψ(𝑖, 𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙(𝑥𝑖)
𝑇 . 𝜃(𝑥𝑗)) 

Eq. 5-4 

where, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 represents the normalized exponential function. It should be noted that another 

compression ratio (𝑐. 𝑟.) is used to reduce the dimensionality in the 𝜙 and 𝑔 paths, as can be 

observed in Figure 5.4. Afterward, the output of 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 is multiplied by the output of the 𝑔 path 

to obtain a feature map with the dimensionality of 𝐻′𝑊′ × 𝐶′. Then, the output is reshaped to 

𝐻′ × 𝑊′ × 𝐶′ and it goes through a convolutional layer to have a dimensionality similar to that of 

the input feature map. Finally, the output of the module is added to the input feature map to obtain 

𝑌. It should be noted that in the present study, the compression ratio for reducing the number of 

channels (i.e., to obtain the intermediate channel) and 𝑐. 𝑟. are both selected to be 2. The attention 

module is used with the second, third, and fourth convolutional blocks of the CAE shown in Figure 

5.2, before reducing the dimensionality. 
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Figure 5.4: The structure of the self-attention module. ⨂ and ⨁ represent matrix addition and multiplication, 

respectively. 𝑪′ and 𝒄. 𝒓. denote the intermediate channel and the compression ratio, consecutively. 

5.2.4 LSTM 

LSTM is a recurrent neural network (RNN) in which the gating mechanism controls the 

information flow [284]. Using the mentioned characteristic, LSTM can solve the vanishing and 

exploding gradient issues faced in standard RNNs. These gates are the input gate (𝑖), the output 

gate (𝑜), and the forget gate (𝑓). The mathematics behind the LSTM procedure is as follows: 

𝑓𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 

𝑖𝑡 = 𝜎(𝑤𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 
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�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡, 

𝑜𝑡 = 𝜎(𝑤𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) 

Eq. 5-5 

 

 

where, 𝑡 denotes the time step, 𝑤 and 𝑏 are the weight and bias of each gate, respectively.  

Furthermore, 𝐶 and �̃�𝑡 represent the cell state and a vector of new candidate values created by a 

𝑡𝑎𝑛ℎ layer, consecutively. Also, ℎ denotes the cell output. 𝜎 and 𝑡𝑎𝑛ℎ are the sigmoid and 

hyperbolic tangent activation functions. 

In order to handle time-series data related to complex nature, such as turbulence, the parallel form 

of LSTM [310] is used in this investigation. In other words, the summation of different LSTM 

networks yields the final output. The results of different parallel LSTM configurations with each 

other and with conventional LSTM was compared to find the best configuration for this study. The 

results indicated that the parallel LSTM in the current configuration (see Figure 5.5) outperforms 

the other tested forms. Furthermore, various values were used as the input sequence length to find 

the best option. The outcome showed that the mentioned value does not significantly impact the 

results in this application. Therefore, the length of the input sequence is chosen to be five, which 

means that the future state output contains the information from the five previous time steps. 

 

Figure 5.5: The structure of parallel LSTM 
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5.3 Dataset 

The test case used in the present study is the unstable case used in chapter 2. The dataset used for 

this study is composed of the longitudinal and vertical velocity components, 𝑢 and 𝑤, respectively, 

obtained from the above-mentioned CFD simulation, collected in the wake region of the building, 

located in the LES zone, shown in Figure 3.1 (c). The unstable dataset is chosen for this study 

because, based on the CFD simulations and the obtained time histories of the velocity components 

performed in [209], velocity fluctuations under the unstable condition are greater than those in the 

isothermal and stable cases. Furthermore, the number of available snapshots for the unstable case 

is more than those available for the other two cases. Therefore, the NIROM training can be 

performed using different numbers of snapshots to minimize the impact of the training dataset size 

on the results. The snapshots of the velocity components are gathered in the 𝑥 − 𝑧 plane, with 160 

points in the longitudinal direction and 60 points in the vertical direction. However, in order to 

focus on the regions with intense gradients, only the first 60 points in the longitudinal direction 

are selected. Furthermore, the results obtained from the NIROMs trained on the whole datapoints 

were in-line with the models' findings. It is noteworthy that 𝛿𝑡 = 10∆𝑡 = 1 × 10−3 𝑠, where 𝛿𝑡 is 

the data sampling time step. 

In order to train the models, after experimenting with different numbers of snapshots, 7605 

snapshots are used. 80% of the dataset is used for training, while the rest is employed as the test 

dataset. The dimension of each image is 60 × 60 × 2, where the last dimension indicates the 

number of channels. The first and second channels represent 𝑢 and 𝑤, consecutively. Originally, 

data were sampled in the LES zone, where 𝛿𝑥 ≤ 𝑥 ≤ 4𝐻 and 𝛿𝑥 ≤ 𝑧 ≤ 1.5𝐻, where 𝛿𝑥 =
0.025𝐻 = 0.004 𝑚. However, the datasets used for training and testing the models are collected 

in the hatched region shown in Figure 5.6. 

The dataset was preprocessed by subtracting the mean value from it in order to work with 

fluctuations. After this step, the velocity values are scaled to be in the range of 0 and 1. The whole 

procedure can be found below: 

𝑣′
𝑖 = 𝑣𝑖 − �̅� 

𝑣′′
𝑖 = (𝑣′

𝑖 − min (𝑣′)) (𝑚𝑎𝑥(𝑣′) − 𝑚𝑖𝑛(𝑣′))⁄  

 

Eq. 5-6 

 

where, 𝑣𝑖 indicates the either 𝑢 or 𝑤 at the 𝑖𝑡ℎ location. 𝑣′ and 𝑣′′ also represent the velocity 

fluctuation and the scaled velocity fluctuation, respectively, for either 𝑢 or 𝑤. 
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Figure 5.6: The data sampling region, located in the LES zone 

5.4 NIROM training 

Different NIROMs were developed by combining the aforementioned dimensionality reduction 

techniques, CAE, MS-CAE, and SA-CAE, with the parallel LSTM. In order to train the model, 

instantaneous velocity field data is used. As previously mentioned, the image size is (𝑁𝑧 , 𝑁𝑥, 𝑁𝑐) =
 (60,60,2), where 𝑁𝑧 and 𝑁𝑥 are the number of datapoints in the 𝑧 and 𝑥 directions, respectively, 

and 𝑁𝑐 represents the number of channels. After experimenting with different activation functions, 

rectified linear unit (ReLU) [319] is used for training CAE and SA-CAE, and sigmoid [320–322] 

is employed to train MS-CAE due to their better performance compared to other ones. 

In the dimensionality reduction part, in order to train the model, a loss function (𝜀) is minimized. 

A combination of two functions, namely mean squared error (𝑚𝑠𝑒), 𝜀𝑚𝑠𝑒, and gradient difference 

loss [323], 𝜀𝑔𝑑𝑙, is employed. The mentioned loss functions are defined as follows: 

𝜀𝑚𝑠𝑒 = (1 𝑁𝑥𝑁𝑧𝑁𝑐⁄ ) ∑ ∑ ∑(𝑋𝑖𝑗𝑘 − 𝑋𝑖𝑗𝑘
′ )

2

𝑁𝑐

𝑘=1

𝑁𝑧

𝑗=1

𝑁𝑥

𝑖=1

 

𝜀𝑔𝑑𝑙 = (1 𝑁𝑥𝑁𝑧𝑁𝑐⁄ ) ∑ ∑ ∑[|(𝑋𝑖𝑗𝑘 − 𝑋(𝑖−1)𝑗𝑘) − (𝑋𝑖𝑗𝑘
′ − 𝑋(𝑖−1)𝑗𝑘

′ )|

𝑁𝑐

𝑘=1

𝑁𝑧

𝑗=1

𝑁𝑥

𝑖=1

+ |(𝑋𝑖𝑗𝑘 − 𝑋𝑖(𝑗−1)𝑘) − (𝑋𝑖𝑗𝑘
′ − 𝑋𝑖(𝑗−1)𝑘

′ )|] 

𝜀 = 𝜀𝑚𝑠𝑒 + 𝜀𝑔𝑑𝑙 

 

 

Eq. 5-7 

 

where, 𝑋 and 𝑋′ denote the original data and the reconstructed one, consecutively. The gradient 

difference loss function was used in other studies, such as [287], since it is beneficial for the model 

to avoid blurry predictions [324]. Adam gradient descent method [325], with the learning rate of 

0.0001, is used to train CAE and SA-CAE, while the stochastic gradient descent (SGD) algorithm 
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with the learning rate of 0.001 is employed to train MS-CAE since it provides better generalization 

over the test dataset. The training process stopped by reaching convergence after about 220 and 

400 epochs for CAE and MS-CAE, respectively, while it took about 700 epochs for SA-CAE. It 

is noteworthy that the training process was performed using different batch sizes, and the results 

showed the negligible influence of this factor on the training phase. In order to avoid overfitting 

during the training stage, an earlystopping criterion is used. 

Afterward, the encoded field, �̂�, obtained from the encoder part of the dimensionality reduction 

methods, is used as the input of the LSTM model. In order to train the LSTM model, the weights 

are optimized to minimize a loss function, 𝜀̂, using the Adam algorithm, in the latent space: 

𝜀̂ = ‖�̂�(𝑛+1)𝛿𝑡 − ℱ𝐿𝑆𝑇𝑀(�̂�𝑛𝛿𝑡, �̂�(𝑛−1)𝛿𝑡 , … , �̂�(𝑛−4)𝛿𝑡)‖
2

2
 

Eq. 5-8 

where, ℱ𝐿𝑆𝑇𝑀 denotes the LSTM network. The Adam optimizer, with the learning rate of 0.001, is 

employed for the training loss minimization for all models. It took almost 200 epochs for the 

models to reach convergence. Again, an early stopping criterion is used in order to avoid 

overfitting during the training process. Similar to the previous step, the batch size had a negligible 

impact on the training phase. 

5.5 Results and discussions 

In the current section, the results obtained from the developed NIROMs are compared to each 

other and verified by the CFD results [209]. 

5.5.1 Dimensionality reduction part 

In the first step of evaluating the models’ performance, the mapping capability of each model is 

assessed. As previously mentioned, the input of the models is a series of 60 × 60 × 2 images. 

Also, the latent vector of all the methods is set to be 𝑛𝑙 = 100. It should be noted that the models 

have been trained with different latent vector dimensions, i.e., 𝑛𝑙 = 50, 100, 150, and 200. 

The dimensionless time-averaged contours of the velocity components, reconstructed by each 

model over the test dataset, are shown in Figure 5.7 against the results of CFD. 

 Longitudinal velocity component Vertical velocity component 
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SA-CAE 

  

Figure 5.7: Contours of the dimensionless time-averaged velocity components obtained by CFD and the models used in the 

present study  

Qualitatively, as can be observed in Figure 5.7, the performance of all the models in reconstructing 

𝑢 is promising. The location of the core of the wake region is reconstructed well by the models. 

MS-CAE and SA-CAE performed better than CAE in reconstructing 𝑤, particularly in regions 

near the building height. However, all models reconstructed the positive vertical velocity in the 

proximity of the heated ground and wall.  

The profiles of dimensionless time-averaged longitudinal velocity, 〈𝑢〉 𝑢𝐻⁄ , reconstructed by each 

model, are depicted in Figure 5.8 over four sampling lines, 𝑥 𝐻⁄ = 0.375, 𝑥 𝐻⁄ = 0.625, 𝑥 𝐻⁄ =
1, and 𝑥 𝐻⁄ = 1.5, along 𝑦 𝐻 = 0⁄ . It should be noted that the center of the coordinate system is 

located on the ground, right behind the building. These sampling lines are the ones used for 

validating the CFD results [209]. Thus, for the sake of consistency, the same lines are used in this 

study. 
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Figure 5.8: Comparison between the profiles of dimensionless time-averaged longitudinal velocity, 〈𝒖〉 𝒖𝑯⁄ , over 

the training dataset, along the sampling lines, 𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓, 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓, 𝒙 𝑯⁄ = 𝟏, and 𝒙 𝑯⁄ = 𝟏. 𝟓, 

reconstructed by different models against those obtained by the CFD study of [209] 

As shown in Figure 5.8, the models perform almost similarly in reconstructing the longitudinal 

velocity, particularly for 𝑧 𝐻⁄ > 0.8. Furthermore, as the flow progresses downstream, the 

reconstructed velocity becomes more similar to the CFD results. The reason for the mentioned 

findings is that, with the increase in 𝑥 and 𝑧, the fluctuations in the flow field dampen. In 𝑧 𝐻⁄ <
0.8, the deviation of the reconstructed data from the CFD results becomes more significant 

compared to other regions since a strong recirculating region is formed in the mentioned area. 

Therefore, the flow field fluctuations are remarkably larger than in other areas. It can be observed 

that the reconstructed longitudinal velocity by SA-CAE and MS-CAE are in better agreement with 

the CFD data compared to CAE, in the regions close to the ground. 

In order to quantify the reconstruction error, the average of the reconstruction 𝑚𝑠𝑒, over time, for 

each velocity component is reported in Table 5.1.  

Table 5.1: The 𝒎𝒔𝒆 of the reconstruction of the velocity field components for different models 

Model CAE MS-CAE SA-CAE 

𝑚𝑠𝑒𝑢 0.0187 0.0164 0.0153 

𝑚𝑠𝑒𝑤 0.0141 0.0100 0.0092 

As reported in Table 5.1, 𝑚𝑠𝑒𝑢 is larger than 𝑚𝑠𝑒𝑤 for all the models. The results show that 

considering multi-scale and long-range dependencies among datapoints can improve the models’ 

performance, which is supported by the results illustrated in Figures 5.7 and 5.8. In order to study 

the models’ reconstruction quality, the turbulence kinetic energy percentage, 𝐸𝑘, is used for each 

direction to see what percentage of the fluctuations is captured by the models’ reconstruction 

[264]: 
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𝐸𝑘 = (1 − 〈
∑ (𝑣′ − 𝑣 ′̃)

2𝑛
𝑖=1

∑ 𝑣′𝑛
𝑖=1

〉) × 100 

Eq. 5-9 

 

where, where, 〈. 〉 is the ensemble averaging in time, and 𝑣′ and 𝑣′̃ represent the reference and 

the reconstructed values of a velocity component. Also, the number of grid points is denoted by 𝑛. 

The average of 𝐸𝑘 values, through time, for different models are reported in Table 5.2. 

Table 5.2: The average of the directional turbulence kinetic energy percentage, 𝑬𝒌, of the velocity field 

components for different models 

Model CAE MS-CAE SA-CAE 

𝐸𝑘,𝑢 94.48% 95.10% 95.16% 

𝐸𝑘,𝑤 82.35% 83.60% 86.15% 

Excellent reconstruction is performed by all the models, particularly for the longitudinal velocity 

component. It can be observed that the inclusion of the self-attention module can enhance the 

model’s performance, particularly for the reconstruction of the vertical velocity component. On 

the whole, the results show excellent reconstructions by all the models. 

5.5.2 NIROM performance evaluation 

The next step is to feed the latent space, obtained by the encoder part of the autoencoder, into the 

LSTM model to predict its temporal evolution. Afterward, the decoder part of the autoencoder is 

used to take back the temporally evolved data to the original space. Figure 5.9 illustrates the 

contours of instantaneous 𝑢 𝑢𝐻⁄ , obtained from the NIROMs, at different time steps, against the 

available CFD results [209]. It should be noted that the time steps for which the figures are depicted 

represent the snapshot numbers in the dataset, and they are not related to the CFD simulation time 

step. Hereinafter, for the sake of brevity, and in order for the figures’ legends to fit in them, the 

DL-CAE, DL-MS-CAE, and DL-SA-CAE are briefed as CAE, MS-CAE, and SA-CAE, 

respectively. Also, “the dimensionality reduction part” of these models is pointed out whenever it 

is required. Furthermore, Figure 5.10 depicts the profiles of the dimensionless longitudinal velocity 

fluctuations reconstructed by the models and those obtained by the CFD simulation over the first 

two sampling lines (located in the recirculating regions) at different time steps. Also, in order to 

quantitatively compare the models’ performance, the contours of the absolute deviation of the 

reconstructed longitudinal velocity component from the CFD data at different time steps are shown 

in Figure 5.11. These three figures are simultaneously used for the following analysis since they 

can provide more details on the models’ performance. 
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Figure 5.9: The contours of the dimensionless instantaneous longitudinal velocity component, 𝒖 𝒖𝑯⁄ , reconstructed by NIROMs, and the available 

CFD data at different time steps [209] 

Figure 5.9 shows that the longitudinal velocity component, reconstructed by the models, is in good 

agreement with the CFD results and the reconstructed results show similar characteristics to the 

reference data. However, the models are not able to capture all the fluctuations. This incapability 

is obviously more pronounced in the recirculating region, where significant fluctuations are 

observable in the results due to the effect of the walls on the flow field (see Figure 5.10).  

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 6500 
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𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 7000 

  

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 7500 

  

Figure 5.10: The profiles of the dimensionless longitudinal velocity fluctuations reconstructed by the models and those obtained by 

the CFD simulation over 𝒙 𝑯⁄ = 𝟎. 𝟑𝟕𝟓 and 𝒙 𝑯⁄ = 𝟎. 𝟔𝟐𝟓 at three different time steps 

Furthermore, Figures 5.10 and 5.11 show remarkable deviations between the fluctuations 

reconstructed by the models and those from CFD at/above building height at 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 7500, 

where velocity gradients are high. However, this limitation may become less significant if a larger 

dataset can be used for the model training since the model can see more vortex shedding cycles. 

At 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 7000, the shear layer at the building height is better reconstructed by SA-CAE, 

followed by MS-CAE and CAE (see Figure 5.9), which is supported by Figures 5.10 and 5.11. At 

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 7500, the low-velocity region above the building height is better captured by SA-

CAE and MS-CAE, compared to CAE. As Figure 5.10 illustrates, the modified models try to 

predict the sudden changes at 𝑧 𝐻⁄ > 1 (particularly at 𝑥 𝐻⁄ = 0.375). However, a remarkable 

underestimation in the values is visible. Furthermore, SA-CAE and MS-CAE show better 

performance in reconstructing the longitudinal velocity component in the vicinity of the ground 

compared to CAE. 
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Figure 5.11: The contours of the absolute deviation of the instantaneous longitudinal velocity components reconstructed by NIROMs, with respect 

to the CFD data at different time steps [209] 
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Figure 5.12 illustrates the time history of 𝑢′ 𝑢𝐻⁄ , obtained from the NIROMs and the CFD 

simulation, at four different points, (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.375, 0.5), (0.625, 0.5), (1, 0.5) and 
(1.5, 0.5). Furthermore, the time-averaged value of 𝑢′ 𝑢𝐻⁄  and its standard deviation, 𝜎, in the time 

horizon shown in the graphs, are also included below them. 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.375, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.625, 0.5) 

  

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.5725 

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = −0.6581 

(〈𝑢′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.6578 

(〈𝑢′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = −0.6251 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.1955 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.1481 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1558 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1457 

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.5135 

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = −0.4586 

(〈𝑢′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.5696 

(〈𝑢′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = −0.5046 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.1705 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.0951 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1198 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1265 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1.5, 0.5) 
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(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.2088 

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = −0.2001 

(〈𝑢′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.2590 

(〈𝑢′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = −0.2033 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.1653 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.0981 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1155 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1342 

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.0051 

(〈𝑢′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = −0.0082 

(〈𝑢′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.0297 

(〈𝑢′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = −0.0080 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.1843 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.0827 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1362 

(𝜎)〈𝑢′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1246 

Figure 5.12: Time history of 𝒖′ 𝒖𝑯⁄ , obtained from the CFD simulation and the NIROMs, at four sampling points, (𝒙 𝑯⁄ , 𝒛 𝑯⁄ ) =
(𝟎. 𝟑𝟕𝟓, 𝟎. 𝟓), (𝟎. 𝟔𝟐𝟓, 𝟎. 𝟓), (𝟏, 𝟎. 𝟓) and (𝟏. 𝟓, 𝟎. 𝟓), with related time-averaged and standard deviation values 

Non-sinusoidal and fast-changing signals can be seen in the results of the NIROMs in Figure 5.12. 

The results obtained by SA-CAE and MS-CAE are in better agreement with the CFD results, 

compared to those reconstructed by CAE. In other words, the tendency of the modified models to 

capture the jumps in the CFD results is higher than the baseline model, i.e., CAE. However, the 

reconstructed results by the models have a lower standard deviation, and thus, a lower variance, 

than the CFD results. This means that, on the whole, the models have the tendency to underestimate 

TKE related to the longitudinal velocity component. Although the modified models can improve 

the results, some coherent structures are still missing. It should be noted that errors at 
(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1.5, 0.5) may also be related to the location of the point, which is located at the 

very end of the domain (i.e., weaker performance of convolutional layers compared to the locations 

in the middle of the domain). 

The power spectrum density (PSD) function of the longitudinal velocity fluctuations at the 

aforementioned four sampling points is depicted in Figure 5.13. The general spectrum shape (i.e., 

large eddy behavior at low frequencies, − 5 3⁄  power law inertial sub-range, and energy decay at 

high frequencies) is captured by all the models. At low frequencies, the energy content of the 
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reconstructed velocity field of SA-CAE and MS-CAE is closer to that of the CFD. However, as 

mentioned in the explanation of Figure 5.12, the models tend to underestimate the TKE, related to 

the longitudinal velocity component, which can also be observed in Figure 5.13. In most parts of 

the low-frequency region, SA-CAE and MS-CAE perform better than CAE, which may be due to 

considering the long-range and multi-scale dependencies among the datapoints in the decoder part. 

At high frequencies, on the whole, the energy decays at almost similar rates for the results obtained 

by SA-CAE and MS-CAE. This decay rate for CAE is more similar to that of the CFD data, 

compared to the other two models. Furthermore, as can be seen in Figure 5.13, most of the 

frequencies at which peaks occur are captured by the models. For instance, at (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) =
(0.375, 0.5), the most distinct frequency obtained by the models is similar to that yielded by the 

CFD simulation (= 1.4𝐻𝑧), which corresponds to the Strouhal number (𝑆𝑡) of 0.16. Also, at 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1, 0.5), the most dominant frequency resulting from SA-CAE is similar to that of 

the CFD results, corresponding to 𝑆𝑡 = 0.23. 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.375, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.625, 0.5) 

    

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1.5, 0.5) 
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Figure 5.13: Power spectrum density (PSD) function of streamwise velocity fluctuations at four sampling points, 
(𝒙 𝑯⁄ , 𝒛 𝑯⁄ ) = (𝟎. 𝟑𝟕𝟓, 𝟎. 𝟓), (𝟎. 𝟔𝟐𝟓, 𝟎. 𝟓), (𝟏, 𝟎. 𝟓) and (𝟏. 𝟓, 𝟎. 𝟓) 

Figure 5.14 shows the contours of instantaneous 𝑤 𝑢𝐻⁄ , obtained from the NIROMs, at different 

time steps, against the available CFD results [209]. Furthermore, the contours of the absolute 

deviation of the reconstructed 𝑤 from the CFD data, at different time steps, are illustrated in Figure 

5.15. Although the models are able to reconstruct the overall pattern of the vertical velocity 

component, they, on the whole, tend to underestimate the results. This tendency may lead to 

erroneous results even in predicting the velocity direction as reported for CAE, close to the 

building height, at 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 6500. Similar to the reconstruction of the longitudinal velocity 

component, the models are not able to capture all the fluctuations, and the models show smoother 

contours compared to those obtained from CFD. It should be noted that smaller deviations between 

the reconstructed vertical velocity component and the CFD results, compared to the similar 

deviations for the longitudinal component, may be rooted in the difference between their datasets; 

the larger standard deviation of the longitudinal dataset compared to that of the vertical velocity 

component. 

Time 

step 

6500 7000 7500 
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Figure 5.14: The contours of the dimensionless instantaneous vertical velocity component, 𝒘 𝒖𝑯⁄ , reconstructed by NIROMs, and the available 

CFD data [209] 

The reconstructed vertical velocity by SA-CAE and MS-CAE in the proximity of the ground are 

in better agreement with the CFD results compared to that reproduced by CAE. Furthermore, CAE 

reconstructs a smooth and underestimated velocity field in the vicinity of the leeward wall. For 

instance, at 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 7000 and 7500, almost stagnant or, in some cases, downward velocity 

is predicted by CAE, which is not in line with the physics of the problem (i.e., heated wall). On 

the other hand, the modified models are capable of reconstructing the thin upward layer, close to 

the leeward wall, in better agreement with the CFD results. On the whole, the performance of SA-

CAE and MS-CAE in reconstructing the vertical velocity component is better than CAE, 

particularly in the regions with intense gradients, such as at the building height, in the proximity 

of the building wall, and close to the ground. 
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Figure 5.15: The contours of the absolute deviation of the instantaneous vertical velocity components reconstructed by NIROMs, with respect to 

the CFD data at different time steps [209] 

The time history of the vertical velocity fluctuations, at the previously-mentioned sampling points, 

along with the related time-averaged and standard deviation obtained from CFD and the developed 

NIROMs, are shown in Figure 5.16. Similar to the longitudinal velocity component, the modified 

models perform better than the baseline one, i.e., CAE, in capturing fast-changing signals. 

Furthermore, on the whole, the mean values and standard deviations reported for SA-CAE are in 

better agreement with those of the CFD simulation, compared to the other two models. Higher 

standard deviation, and thus, variance, predicted by SA-CAE compared to the other two models 

results in higher TKE related to the vertical velocity component, which is in better agreement with 

the CFD results. 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.375, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.625, 0.5) 
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(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = 0.0138 

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = 0.0490 

(〈𝑤′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = 0.0054 

(〈𝑤′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = 0.0196 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.2135 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.1618 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1698 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1828 

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.0186 

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = 0.0064 

(〈𝑤′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.0384 

(〈𝑤′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = 0.0008 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.2502 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.1793 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1923 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.2037 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1.5, 0.5) 
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The PSD of the vertical velocity fluctuations at the sampling points is illustrated in Figure 5.17. 

Similar to the PSD of the longitudinal velocity components, the general spectrum shape is captured 

by all NIROMs. Although there is good agreement between the results of the models and those 

obtained by CFD at low-frequency ranges, there still exist some discrepancies between the 

reconstructed and reference data, which is supported by the results provided in Figure 5.16. In low-

frequency ranges, the frequencies at which peaks occur are captured by the models, particularly 

by SA-CAE and MS-CAE. However, some errors in the PSD levels are visible at these dominant 

frequencies. The dominant frequencies captured by SA-CAE are similar to those of the CFD 

simulation. At (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.375, 0.5), the dominant frequency is 1.4 𝐻𝑧, corresponding to 

𝑆𝑡 = 0.16. Also, the dominant frequencies captured by CAE and MS-CAE agree with those 

predicted by the CFD simulation, except at (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1.5, 0.5), which may be due to the 

location of the point, as mentioned before in the discussion of Figure 5.12. At higher frequencies, 

the energy level is predicted well by SA-CAE compared to CFD, particularly at (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) =
(0.375, 0.5) and (0.625, 0.5), which are located in the recirculating region. 

(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.375, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (0.625, 0.5) 

    

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.0299 

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = −0.0138 

(〈𝑤′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.0590 

(〈𝑤′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = −0.0412 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.1978 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.1479 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1602 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1612 

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐹𝐷 = −0.0102 

(〈𝑤′〉 𝑢𝐻⁄ )𝐶𝐴𝐸 = −0.0084 

(〈𝑤′〉 𝑢𝐻⁄ )𝑀𝑆−𝐶𝐴𝐸 = −0.0030 

(〈𝑤′〉 𝑢𝐻⁄ )𝑆𝐴−𝐶𝐴𝐸 = −0.0135 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐹𝐷 = 0.1405 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝐶𝐴𝐸 = 0.1186 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑀𝑆−𝐶𝐴𝐸 = 0.1847 

(𝜎)〈𝑤′〉 𝑈𝐻⁄ ,𝑆𝐴−𝐶𝐴𝐸 = 0.1166 

Figure 5.16: Time history of 𝒘′ 𝒖𝑯⁄ , obtained from the CFD simulation and the NIROMs, at four sampling points, (𝒙 𝑯⁄ , 𝒛 𝑯⁄ ) =
(𝟎. 𝟑𝟕𝟓, 𝟎. 𝟓), (𝟎. 𝟔𝟐𝟓, 𝟎. 𝟓), (𝟏, 𝟎. 𝟓) and (𝟏. 𝟓, 𝟎. 𝟓), with related time-averaged and standard deviation values 
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(𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1, 0.5) (𝑥 𝐻⁄ , 𝑧 𝐻⁄ ) = (1.5, 0.5) 

      

Figure 5.17: PSD function of vertical velocity fluctuations at four sampling points, (𝒙 𝑯⁄ , 𝒛 𝑯⁄ ) =
(𝟎. 𝟑𝟕𝟓, 𝟎. 𝟓), (𝟎. 𝟔𝟐𝟓, 𝟎. 𝟓), (𝟏, 𝟎. 𝟓) and (𝟏. 𝟓, 𝟎. 𝟓) 

The time trace of the mean squared error of the longitudinal velocity component (𝑚𝑠𝑒𝑢) and that 

of the vertical velocity component (𝑚𝑠𝑒𝑤) are depicted in Figure 5.18. As previously mentioned, 

the time step on the 𝑥-axis represents the number of snapshots in the dataset. The order of 𝑚𝑠𝑒 for 

all the models remains the same over the whole test dataset. Although there exist some oscillations 

in the error values, they do not grow. As can be observed in Figure 5.18, on the whole, NIROMs 

based on SA-CAE and MS-CAE perform better than that based on CAE in reconstructing both the 

longitudinal and vertical velocity components. Regarding the reconstruction of the vertical 

velocity component, the SA-CAE has the upper hand in almost all time steps. The mean value of 

𝑚𝑠𝑒 for each NIROM is listed in Table 5.3. Furthermore, the time required for the model training 

and velocity field reconstruction is mentioned. 

(a) (b) 
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Figure 5.18: Time trace of 𝒎𝒔𝒆 of the reconstructed flow field (a) longitudinal velocity component, and (b) 

vertical velocity component 

It can be concluded that considering long-range and multi-scale dependencies among datapoints, 

can improve the reconstruction ability of the model over the present dataset, without significantly 

increasing the reconstruction times. On the other hand, the training time may increase significantly. 

More experiments with more complicated datasets are required to understand the models’ 

capabilities. 

 Table 5.3: The mean value of 𝒎𝒔𝒆 of the reconstruction of the velocity field components for different NIROMs 

Model CAE MS-CAE SA-CAE 

𝑚𝑠𝑒𝑢 0.0194 0.0177 0.0164 

𝑚𝑠𝑒𝑤 0.0145 0.0116 0.0103 

𝑚𝑠𝑒𝑎𝑣𝑔 = (𝑚𝑠𝑒𝑢 + 𝑚𝑠𝑒𝑤) 2⁄  0.0170 0.0147 0.0134 

Training time (min) 80 150 165 

Reconstruction time (s) 22 33  26 

5.6 Conclusions and future works 

Developing a NIROM consists of two steps: dimensionality reduction and feature dynamics 

computation. The former step seeks a low-dimensional representation of the original data, in which 

the dominant features of the high-fidelity data are present, while the latter computes the temporal 

dynamics of the obtained low-dimensional space. Different NIROMs were used to approximate 

the airflow field in the wake region of an isolated high-rise building under an unstable thermal 
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stratification condition. The developed NIROMs differ from each other in the dimensionality 

reduction stage. Three different techniques, namely, CAE, MS-CAE, and SA-CAE, were 

employed for the mentioned stage. The last two models were developed to overcome the limitation 

of convolutional layers arising from a fixed kernel size by expanding the receptive field. The 

temporal dynamics computation was also performed using parallel LSTM networks, which 

outperforms the conventional LSTM. 

The capability of the dimensionality reduction parts and the whole models were assessed by 

comparing the results with available CFD data. It was shown that the reconstructed velocity 

components obtained from the dimensionality reduction parts are in good agreement with CFD 

results. The models’ performance was almost similar in the longitudinal velocity component 

reconstruction. However, SA-CAE performed better in reconstructing the vertical velocity 

component, followed by MS-CAE and CAE. 

Considering the whole NIROM model, the instantaneous velocity contours obtained from the 

models showed that the overall trends match the CFD results. However, there exist discrepancies 

between the reconstructed fields and the CFD results in the regions with intense gradients. 

Furthermore, information loss, regarding small-scale coherent structures, is visible in the models’ 

predictions. The PSD function profiles of the reconstructed data showed that the models could 

capture the general spectrum shape. Although the models were able to predict the dominant 

frequencies at which peaks occur, discrepancies were reported in the PSD levels, particularly in 

the longitudinal velocity component. On the whole, SA-CAE performed better than the other two 

models in reconstructing the velocity field, followed by MS-CAE and CAE. 

The present study developed the models over a dataset obtained from a CFD simulation in a 

simplified urban geometry. However, more experiments over more complicated datasets are 

required to reach a consistent conclusion on the models’ performance. Furthermore, larger datasets 

may improve the model performance, particularly in calculating temporal dynamics, since the 

model can be trained over more vortex shedding cycles. Moreover, using physics-informed ROMs 

may improve the models’ performance. 
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Chapter 6. Conclusions and outlook 

6.1 Conclusions 

Studying the impact of thermal stratification conditions on the flow and concentration fields within 

urban areas is of utmost importance. Due to frequent changes in meteorological conditions, it 

would be beneficial to capture these alterations to investigate their impact on the flow and 

concentration fields within an urban area. Furthermore, monitoring tasks may become important 

in studying the concentration field since a sudden release of pollutants upstream of an urban area 

may remarkably affect the residents’ health. Moreover, having access to long-term simulations is 

of utmost importance in studying the ventilation performance of an urban area. Therefore, a model 

with low computational costs is required to be used for the aforementioned tasks. On the other 

hand, due to the significant importance of variables’ fluctuations in the dispersion process (i.e., the 

impact of turbulent diffusion flux in pollutant transportation), the model should be able to capture 

the fluctuations of the flow and concentration fields. Thus, a comprehensive model must be fast 

while accounting for the complexities arising from the physics of the problem. CFD approaches 

have shown promising performance in investigating the impact of thermal stratification conditions 

on the urban airflow field and pollutant dispersion. Although CFD approaches, such as LES, can 

capture the fluctuations of the flow and concentration fields, their computational cost is a barrier 

to being used for the tasks mentioned earlier. In order to obviate the mentioned limitations, the 

present dissertation proposed a framework to generate fast models that are able to capture the 

complexities arising from the physics of the problem, i.e., turbulence. In order to do so, this thesis 

comprises two steps: 

(1) The CFD simulation step: in this step, after conducting CFD simulations, the importance 

of studying the impact of thermal stratification conditions on the flow and concentration 

fields within urban areas was addressed using different analyses. Afterward, the results 

provided by the CFD simulations were used to generate the aforementioned fast model. 

(2) The model order reduction step: in this step, model order reduction techniques were applied 

to the CFD results to generate a fast model. Afterward, the developed model was modified 

in order to account for the complexity of the problem (i.e., turbulence). 

To capture the variable fluctuations, particularly under unstable conditions, complex, high-fidelity 

CFD approaches, such as LES, are more suitable than RANS-based ones for simulations. Using 

high-fidelity and unsteady approaches like LES provides the opportunity to capture the unsteady 

and turbulent nature of the flow field. However, conducting LES in urban areas, particularly in 

studies covering large areas, is complex and, in some cases, impractical due to its high 

computational costs. Thus, to make a balance between computational costs and accuracy, ELES 

was selected to conduct the CFD simulation in the present dissertation.  ELES was used to simulate 

the flow and concentration fields under three different stratification conditions, namely, stable, 

isothermal, and unstable. The results of simulations, including the time-averaged flow, temperature 

and concentration fields, TKE, and concentration fluctuations, were compared with wind tunnel 

experimental data [164] and an LES study [103]. The findings showed that the time-averaged 

velocity field yielded by ELES was in good agreement with the wind tunnel and LES data. 
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However, overprediction was observed in the TKE results obtained by ELES in locations with 

strong shear layers. Regarding the time-averaged temperature field, findings showed that ELES 

has the capability to predict the results similar to LES, if it is set up properly. Also, ELES 

performance in predicting the time-averaged and fluctuating concentration fields was more 

promising than LES, particularly under the unstable condition, which reduced the relative error 

against the wind tunnel data by about 10.41%. It should be noted that the results showed that as 

TKE increased, the ELES performance became better than LES, which can be due to the difference 

between the locations of the turbulence generator in the models. Furthermore, the speed-up 

resulting from the use of ELES instead of LES was reported to be significant: 292% for the 

isothermal condition and 130% for the non-isothermal cases. These findings showed that ELES 

has the potential to be used in urban-related studies, since it can produce results similar to LES 

with less computational costs. 

After validating the results with available experimental [164] data, the impact of thermal 

stratification conditions on the flow and concentration fields was thoroughly investigated, 

considering time-averaged and fluctuating variables, spectral analysis, and POD analysis. The 

results obtained from the simulations showed that the impact of the unstable condition was 

significant on the airflow field and TKE compared to the isothermal case. On the other hand, the 

mentioned variables were slightly changed under the stable condition in comparison with the 

isothermal case. Furthermore, it was reported that the unstable condition could effectively lower 

the pollutant concentration in the wake region of the building. The pollutant concentration under 

the unstable condition was 28.2% lower than that under the isothermal case. On the other hand, 

the pollutant concentration increased by about 33.9%, compared to the isothermal case, due to the 

occurrence of the stable condition. The mentioned effects of the non-isothermal conditions on the 

concentration field were due to the alteration of the convective and turbulent diffusion fluxes under 

the mentioned conditions, which resulted in changes in the pollutant dispersion pattern. 

The spectral and POD analyses were conducted to investigate the impact of thermal stratification 

conditions on the turbulence structure of the flow field. The time history of the velocity 

fluctuations, in both the longitudinal and vertical directions, showed that the impact of flow 

instability on increasing TKE was significant. This finding was supported by the PSD profiles of 

the velocity fluctuations. Furthermore, the results of the spectral analysis showed that the 

recirculating region in the wake of the building becomes smaller with an increase in flow 

instability. Moreover, the PSD functions of the streamwise and vertical velocity components 

illustrated that an increase in the flow instability resulted in an increase in the vortex shedding 

around the building. 

Furthermore, the turbulence structures of the POD modes in both the streamwise and vertical 

directions were remarkably changed under the unstable condition compared to the isothermal case. 

Based on the POD analysis of the flow field, it was mentioned that the first thirty POD modes 

contain 65.58% of the total TKE for the isothermal case. This value was changed for the stable 

and unstable cases to 80.89% and 81.39%, respectively. From this analysis, it can be interpreted 

that considering regions with the most dominant characteristics of the flow can largely represent 

the flow field's behavior. It can be concluded that considering the ranges of eddies with the most 

significant share of the energy of the flow results in a good approximation of the whole ranges. 
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Thus, low-dimensional structures (i.e., coherent structures) can be obtained, which is beneficial 

for describing a dynamical system. 

In order to reduce the dimensionality of the dataset obtained from the CFD simulation, two 

different approaches can be performed: linear and non-linear dimensionality reduction techniques. 

Using a linear dimensionality reduction technique, such as POD, for finding a low-dimensional 

subspace, describing the whole system was reported to be ineffective for advection-dominated 

problems since they are strongly nonlinear. Therefore, this study employed nonlinear 

dimensionality reduction techniques to compute a low-dimensional representation of the original 

data. It should be noted that the results of the unstable case in the gradients-intense regions in the 

wake of the model building were used as the dataset for generating NIROMs. In order to reduce 

the dimensionality of the dataset, CAE-based methods were used as the baseline model to avoid 

over-fitting by taking advantage of the features of convolutional layers, namely, local connection 

and shared weights across the input domain. In addition to the baseline model, two other models, 

namely, MS-CAE and SA-CAE, were employed to account for the physics of the problem by 

capturing multi-scale and large-range dependencies among the datapoints. Low dimensional 

representations of the original dataset were obtained using the mentioned three methods. 

After obtaining low-dimensional representations of the original dataset, the temporal dynamics of 

these subspaces should be computed. In order to capture the temporal evolution of the low-

dimensional subspaces, a parallel LSTM network was used since it outperformed conventional 

LSTM networks in the present study. 

The models’ capabilities were assessed by comparing the results of both the dimensionality 

reduction part and the whole model to the previously validated unstable dataset. Regarding the 

dimensionality reduction part, the models’ performance in reconstructing the longitudinal velocity 

component was slightly different from each other. Also, the results were in good agreement with 

the prediction made by a validated CFD model. However, the difference between the performance 

of the models in reconstructing the vertical velocity component was more pronounced. For both 

directions, SA-CAE performed better than the other models, followed by MS-CAE and CAE. 

Considering the whole NIROMs, the instantaneous velocity contours captured the trends of the 

CFD results. However, in regions with high gradients, there exist discrepancies between the 

models’ results and those from ELES. Furthermore, the time history of the velocity fluctuations 

showed significant errors when there are sudden changes through time. Therefore, it can be 

interpreted that some small-scale structures are missing. Also, the models underestimated the TKE 

predicted by the CFD simulation. However, this underestimation was less significant for the 

modified models compared to the baseline one. Moreover, based on the PSD functions, the models, 

particularly the modified ones, were able to capture the dominant frequencies at which peaks occur. 

The average 𝑚𝑠𝑒, defined as (𝑚𝑠𝑒𝑢 + 𝑚𝑠𝑒𝑤) 2⁄ , showed that the overall performance of SA-

CAE, with 𝑚𝑠𝑒𝑎𝑣𝑔 = 0.0134, was better than the other two models, followed by MS-CAE 

(𝑚𝑠𝑒𝑎𝑣𝑔 = 0.0147) and CAE (𝑚𝑠𝑒𝑎𝑣𝑔 = 0.0170). Also, it should be noted that the 𝑚𝑠𝑒 for the 

models through time was reported to have an oscillatory behavior, but without any signs of 

growing. Thus, the models are useful for further predictions. Although the training time for the 

modified models was reported to be almost twice that of the baseline one, the reconstruction time 



114 

 

for the models was mentioned to be in the same order. On the whole, it seems that trying to consider 

the problem's physics can improve models’ performance. 

6.2 Contributions 

The present dissertation first used a CFD model, i.e., ELES, to thoroughly analyze the impact of 

thermal stratification conditions on the airflow field, pollutant dispersion process, and turbulence 

statistics. It should be noted that ELES was employed for the first time to predict the mentioned 

field variables under thermal effects. This study is considered an incentive for researchers to take 

advantage of the characteristics of this model to conduct their research, particularly for cases with 

high turbulence intensity (e.g., unstable thermal conditions), since the model can provide results 

comparable to LES with less computational costs. 

Afterward, the generated results were used to develop NIROMs for a highly-turbulent flow field. 

This study went beyond linear dimensionality reduction techniques, e.g., POD, which is the most 

common technique for this purpose in fluid dynamics problems such as urban-related ones. 

Furthermore, efforts were made to overcome the limitations of a conventional CAE, arising from 

the fixed kernel size, considering the underlying physics of the problem, i.e., multiscale and long-

range dependencies among datapoints. Moreover, in order to improve the accuracy of the temporal 

dynamics computation, a parallel LSTM network was used to show its applicability in capturing 

the dynamics of highly-turbulent flow fields. Also, the speed-up achieved from using the models 

was reported to be approximately four orders of magnitude compared to ELES, making the models 

suitable for near real-time predictions. 

The results were analyzed using both statistical and fluid dynamics viewpoints to shed light on the 

strengths and weaknesses of the models. Using this study, researchers can figure out and tackle 

the existing limitations of developing a NIROM for turbulent flow fields. 

6.3 Limitations and future remarks 

In order to investigate the impact of non-isothermal conditions on the airflow and concentration 

fields, and turbulence characteristics of the flow field, more realistic experiments are required. 

Although some experiments on the mentioned topic exist, most neglected critical aspects, such as 

realistic geometry, differential surface heating, pollutant dispersion, etc. Furthermore, data 

availability is a barrier to conducting comprehensive simulations in some cases. Due to the 

mentioned limitations, the present study used an isolated high-rise building as a representative of 

a structure within urban areas. Therefore, more experiments with other geometries, considering 

the complexities of a realistic urban area, are required to establish the present study's findings. 

ELES has shown promising performance in simulating flow and concentration fields within urban 

areas under non-isothermal conditions in a fraction of the time required for conducting LES. 

However, as previously stated in section 3.2, no guidelines are available for conducting ELES in 

urban areas regarding the domain generation, the use of proper turbulence generation approach at 
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the URANS-LES interface, etc. Therefore, guidelines are needed for conducting ELES within 

urban areas. 

The present study used the POD technique to analyze the turbulent flow structures by decomposing 

the flow field into a set of deterministic spatial functions and temporal coefficients. However, since 

the POD technique ranks its modes based on their kinetic energy, it contains different spectral 

information [326]. Thus, a continuous frequency spectrum is embedded within a POD mode. This 

characteristic of the POD technique may lead to the ignorance of flow structures with relatively 

small energy contents but with strong connections to other structures sharing the same frequency. 

The DMD method can solve this problem since, contrary to the POD modes, the DMD modes are 

based on their dynamics. Thus, each DMD mode contains a single frequency. The DMD technique, 

which decomposes the system into a series of approximated Koopman modes, was reported to be 

capable of capturing the spatial structures and dominant frequencies [327]. Another approach that 

can be used to decompose the flow field into fluctuation patterns is the spectral POD (SPOD) 

technique. SPOD is an advanced form of POD, considering spatio-temporal modes for statistically 

stationary flows [328]. Therefore, each mode oscillates at a single frequency. In other words, 

SPOD modes can be regarded as optimally averaged DMD modes [328]. However, they can 

consider the statistical variability of turbulent flows. It should be noted that each of the mentioned 

techniques is designed to account for a particular goal. Therefore, in order to fully analyze the 

urban airflow field and the pollutant dispersion mechanisms, these techniques can be used in 

tandem with each other. 

Data was collected from structured computational grids for developing NIROMs in the present 

dissertation. However, using complex geometries for CFD simulations may restrict the use of 

structured grids. In order to properly use CAE-based methods for dimensionality reduction over 

unstructured grids, modifications should be made. Recently, some studies have focused on the 

mentioned topic [329,330]. Also, using graph convolution instead of the one used here, i.e., the 

Euclidean one, can be beneficial for performing the operations over unstructured grids. 

Furthermore, NIROMs have usually been developed for small-scale fluid dynamics applications, 

as is the case with the present thesis. Using the existing approaches for more realistic geometries, 

such as a neighborhood or a city, may lead to the deterioration of the results. In order to use 

NIROMs for large-scale domains, it would be beneficial to divide them into multiple subdomains, 

using domain decomposition methods, and treat them separately. Afterward, an iteration-by-

subdomain technique can be used to converge the solution over the whole domain [331]. 

Plenty of previous studies have used simple problems with low Reynolds number flows, which 

produce almost sinusoidal and slow-changing signals. Therefore, by using a sufficient amount of 

data, RNN methods can capture the dynamics of the systems. However, in a more complex 

problem, such as the one studied here, the temporal variations of the signals at each point are non-

sinusoidal and fast-changing. In order to calculate the temporal dynamics of systems, several 

approaches were introduced in section 4.4. However, based on the literature review, LSTM is 

considered one of the most promising approaches for calculating the temporal dynamics of 

complicated systems. This study tried to improve the performance of the mentioned network by 

using a parallel form of it. Although the results were improved compared to the model using a 
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conventional LSTM, using more robust approaches are required. Using 3D CAE can result in the 

extraction of spatio-temporal characteristics embedded in the dataset [332]. Using discriminators 

in tandem with LSTM may also reduce the error arising from the temporal dynamics calculation. 

Also, probabilistic neural networks (PNNs) can be useful since they provide the model with a 

probabilistic posterior [48]. Using physics-informed learning algorithms may also improve the 

model’s performance since it accounts for the residuals of the governing equations, which make 

the model robust to noisy input data. 

Thus, possible future works based on the limitations of the present thesis can be summarized as 

follows: 

• Preparing guidelines for using ELES in urban areas, 

• Using decomposition methods other than POD to extract more detailed information about 

the turbulence structure of the flow field, 

• Expanding the use of CAE-based dimensionality reduction techniques to unstructured 

grids, 

• Applying the proposed methods to more complex domains using domain decomposition 

methods, 

• Improving accuracy of temporal dynamics calculation by using discriminators in neural 

networks, PNNs, physics-informed learning algorithms, etc.
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Appendix A: Equations of the employed CFD models  

The governing equations are the continuity, Navier-Stokes, energy, and the scalar transport 

(pollutant concentration conservations) equations. In the present dissertation, the ELES approach 

is used to conduct the simulations. This approach comprises of two different models, namely, 

DSLM-LES and RLZ. 

LES part: 

For the LES part, the governing equations must go under a filtering operation, resulting in the 

filtered equations that can be used along with the LES approach [35]: 

𝜕�̅�𝑖
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= 0 

Eq. A- 1 
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Eq. A- 4 

 

where, �̅�𝑖, �̅�, �̄� and �̄� are the resolved filtered field variables denoting the velocity components, 

pressure, temperature, and concentration, respectively. 𝜌, 𝜈, 𝛼, and 𝐷 represent the density, 

molecular kinematic viscosity, thermal diffusivity, and molecular diffusivity, consecutively. 𝑆�̅�𝑗, 

𝜏𝑖𝑗, 𝐻𝑗
SGS, and 𝐽𝑗

SGS show the symmetric stress tensor, the SGS stress tensor, the SGS heat flux, and 

the SGS concentration flux, respectively, which are defined by Eq. A-5 to Eq. A-8. Furthermore, 

𝑔𝑖 is the downward gravitational force; thus, 𝑔1 = 𝑔2 = 0. 

𝑆�̅�𝑗 =
1

2
(

𝜕�̄�𝑖

𝜕𝑥𝑗
+

𝜕�̄�𝑗

𝜕𝑥𝑖
) 

Eq. A- 5 

 

𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − �̄�𝑖�̄�𝑗  

Eq. A- 6 
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𝐻𝑗
SGS = 𝑢𝑗𝑇 − �̄�𝑗�̄� 

Eq. A- 7 

 

𝐽𝑗
SGS = 𝑢𝑗𝑐 − �̄�𝑗�̄� 

Eq. A- 8 

 

The simple box filter is selected as the filter function. The filter width, Δ, equals to (ΔxΔyΔz)
1

3. 

Afterward, the SGS stress tensor, also known as the residual stress tensor, can be modeled based 

on the Boussinesq hypothesis [216,333]: 

𝜏𝑖𝑗 −
1

3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜈SGS�̄�𝑖𝑗 

Eq. A- 9 

 

where, 𝛿𝑖𝑗 is the Kronecker delta. Also, 𝜈SGS, known as the SGS viscosity, is being modeled by 

SGS models. It should be noted that after calculating 𝜈SGS, the heat and mass fluxes can be obtained 

using the SGS Prandtl number (𝑃𝑟𝑆𝐺𝑆) and the SGS Schmidt number (𝑆𝑐𝑆𝐺𝑆). The SGS model used 

in the present study is DSLM. However, SSLM, which is regarded as the simplest model, should 

be explained first since DLSM is achieved by modifying the calculation process in the model 

achieved by SSLM. In SSLM: 

𝜈SGS = (𝐶𝑠Δ)2|𝑆| 

Eq. A- 10 

 

where, 𝐶𝑠 and |𝑆| = √(2𝑆�̅�𝑗𝑆�̅�𝑗) denote the Smagorinsky constant and the magnitude of the strain 

rate, respectively. It is noteworthy that 𝐶𝑠 is flow-dependent. However, SSLM assumes it to be 

constant everywhere in the model. 𝐶𝑠 = 0.1 is an accepted value for a wide range of flows [35]. 

Eq. A-10 shows that by increasing the velocity gradients, the value of 𝜈SGS becomes excessively 

large. However, SGS turbulent fluctuations should approach to zero in the vicinity of a wall. 

Therefore, in order to modify the calculation of 𝜈SGS, a damping function is used in that region. A 

convenient way to dampen 𝜈SGS in the proximity of a wall is the upper limit length scale 

modification [35]: 

Δ = 𝑚𝑖𝑛 {(ΔxΔyΔz)
1
3, 𝜅𝑛} 

Eq. A- 11 
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where, 𝜅 and 𝑛 represent the von-Karman constant and the distance to the nearest wall, 

consecutively. 

As previously mentioned, DSLM is a modified version of SSLM. Instead of assuming a constant 

value for 𝐶𝑠, as is the case with SSLM, its value is dynamically computed based on the information 

from the resolved scales of motions in DSLM. In order to eliminate the smallest scales of the 

resolved field, a test filter, ∆̂= 2Δ is applied to Eq. A-2. It should be noted that the last term in Eq. 

A-2 is omitted since it makes no difference in the procedure. Furthermore, it is beneficial to pay 

attention to Figure A.1, obtained from [35], which shows the energy spectrum with the grid and 

test filters, to understand better how these filters work. 

 

Figure A. 2: The energy spectrum with the test and grid filters [35] 
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Eq. A- 12 

 

where, ijT  is the sub-test scale stress tensor, defined as: 
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𝑇𝑖𝑗 = 𝑢𝑖𝑢𝑗
̂ − 𝑢�̂�𝑢�̂� 

Eq. A- 13 
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Eq. A- 14 

 

Thus, by comparing Eq. A-12 to Eq. A-14: 

𝑇𝑖𝑗 = �̅�𝑖�̅�𝑗
̂ − 𝑢�̂�𝑢�̂� + �̂�𝑖𝑗 

Eq. A- 15 

 

Thus, the dynamic Leonard stresses can be defined as: 

ℒ𝑖𝑗 = �̅�𝑖�̅�𝑗
̂ − 𝑢�̂�𝑢�̂� = 𝑇𝑖𝑗 − �̂�𝑖𝑗 

Eq. A- 16 

 

ℒ𝑖𝑖 = 𝑇𝑖𝑖 − �̂�𝑖𝑖 

Eq. A- 17 

 

Thus, Eq. A-16 turns to: 

ℒ𝑖𝑗 −
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3
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Eq. A- 18 

 

It is noteworthy to mention that the Leonard stresses represent those with the length scale ranging 

between Δ and ∆̂ (intermediate level stresses). Therefore, the ranges of the length scale of 𝜏𝑖𝑗 (grid 

level stresses) and 𝑇𝑖𝑗 (test level stresses) are also ℓ < Δ and ℓ < ∆̂, respectively. 

Considering similarity between 𝑇𝑖𝑗 and 𝜏𝑖𝑗, 𝑇𝑖𝑗 can be modeled as follows: 

𝑇𝑖𝑗 −
1

3
𝑇𝑘𝑘𝛿𝑖𝑗 = −2𝜈SGS�̄�𝑖𝑗

̂  

Eq. A- 19 
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where, 𝜈SGS = 𝐶𝐷Δ̂
2

|�̂�|. Thus, 𝐶𝐷 should be compared to 𝐶𝑠
2. Also, �̄�𝑖𝑗

̂ =
1

2
(

𝜕�̄�𝑖
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+
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𝜕𝑥𝑖
) and |�̂�| =

(2�̄�𝑖𝑗
̂�̄�𝑖𝑗

̂)
1 2⁄

. 

By applying a test filter to Eq. A-9 (and substituting 𝐶𝑠
2 with 𝐶𝐷), and substituting it along with 

Eq. A-19 into Eq. A-18, the Leonard stresses, with the assumption of 𝐶𝐷∆2|𝑆̅|𝑆�̅�𝑗
̂ = 𝐶𝐷∆2|𝑆̅|𝑆�̅�𝑗

̂ , 

can be rewritten as: 
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1

3
ℒ𝑘𝑘𝛿𝑖𝑗 = −2𝐶𝐷 (Δ̂
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Eq. A- 20 

 

where, the 
1

3
ℒ𝑘𝑘𝛿𝑖𝑗 =

1

3
𝑇𝑘𝑘𝛿𝑖𝑗 −

1

3
�̂�𝑘𝑘𝛿𝑖𝑗 is used. It should be noted that 𝐶𝐷 = 𝐶𝐷(𝑥𝑖, 𝑡). The 

model factor, 𝐶𝐷, can be calculated by minimizing the difference between the left- and right-hand 

sides of Eq. A-20, in a least-square sense, as suggested by Lilly [105]: 

𝑄 = (𝐿𝑖𝑗 −
1

3
𝐿𝑘𝑘𝛿𝑖𝑗 + 2𝐶𝐷𝑀𝑖𝑗)
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Eq. A- 21 
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Eq. A- 22 

 

In order to avoid numerical instability, 𝐶𝐷 is clipped at 0.0, and in the positive side to 0.23 [35]. 

URANS part: 

The governing equations of URANS is similar to the RANS equations, but with the unsteady term 

[35]: 
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Eq. A- 23 
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Eq. A- 24 
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Eq. A- 26 

 

where, 〈𝑢𝑖〉, 〈𝑝〉, 〈𝑇〉, and 〈𝑐〉 represent time averaged velocity, pressure, temperature, and 

concentration, respectively. Also, 𝐻𝑗
𝑅𝐴𝑁𝑆 and 𝐽𝑗

𝑅𝐴𝑁𝑆 are turbulent heat and turbulent concentration 

fluxes, consecutively. The stress term in the parentheses, located in the right-hand side of Eq, A-

24 comprises of two stresses: the viscous stresses, and the Reynolds stresses (if they are multiplied 

by 𝜌). Considering eddy viscosity, the stress term in the parentheses can be written as: 

𝜇
𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
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Eq. A- 27 

 

where, 𝜇𝑡 is turbulent viscosity or eddy viscosity. The role of a 𝑘 − 𝜀 turbulence model is to model 

𝜇𝑡 using the following equation: 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 

Eq. A- 28 

 

where, 𝑘 and 𝜀 denote the TKE and turbulence dissipation rate, respectively, which are calculated 

by the RLZ model 𝑘 and 𝜀 transport equations. In the RLZ model, 𝐶𝜇 is variable [334]: 

𝐶𝜇 =
1

𝐴0 + 𝐴𝑠
𝑘𝑈∗

𝜀

 

Eq. A- 29 

 

where, 𝑈∗ = √𝑆𝑖𝑗𝑆𝑖𝑗 + Ω̃𝑖𝑗Ω̃𝑖𝑗. Also, Ω̃𝑖𝑗 = Ω𝑖𝑗 − 2𝜀𝑖𝑗𝑘𝜔𝑘 and Ω𝑖𝑗 = Ω̅𝑖𝑗 − 𝜀𝑖𝑗𝑘𝜔𝑘. It should be 

noted that Ω̅𝑖𝑗 is the mean rate-of-rotation tensor located in a rotating reference frame with the 

angular velocity of 𝜔𝑘 [334]. Furthermore, 𝐴0 = 4.04 and 𝐴0 = √6𝑐𝑜𝑠𝜙, where 𝜙 =
1

3
𝑐𝑜𝑠−1(√6𝑊). Also, 𝑊 =

𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖

�̃�3 , where 𝑆𝑖𝑗 is the strain rate tensor, 𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) and �̃� =

√𝑆𝑖𝑗𝑆𝑖𝑗. More detailed information on the RLZ model can be found in [334]. 
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Appendix B: POD mathematics 

Introduced to the fluid dynamics fields by Lumley [218], POD is a technique that can be used to 

capture dominant features of the turbulent flow. By decomposing a random vector field, 

representing the turbulent flow motion, into a set of deterministic functions, POD can capture the 

most energetic portion of the flow regarding its turbulence kinetic energy (TKE) [335]. Therefore, 

instead of analyzing a high-dimensional system, a limited number of deterministic functions can 

represent the most dominant features of the turbulent flow [220]. The technique can also be 

employed for model reduction by projecting the governing equations on a low-dimensional 

subspace [220]. 

The fluctuating velocity, 𝑢′(𝑥, 𝑡), can be written as a set of deterministic spatial functions, 𝜑𝑛(𝑥), 

and random time coefficients, 𝑎𝑛(𝑡), as follows [128,335]: 

𝑢′
𝑖(𝑥, 𝑡) = ∑ 𝑎𝑛(𝑡)𝜑𝑖

𝑛(𝑥)

𝑁

𝑛=1

 

Eq. B- 1 

 

where, 𝑡 represents the time and 𝑥 denotes the position vector (𝑥, 𝑦, 𝑧), and 𝑁 is the number of 

spatiotemporal modes, which form a complete orthogonal basis for Eq. B-1. The temporal 

correlation tensor, 𝐶(𝑡, 𝑡′), is defined as Eq. B-2, and 𝑎𝑛(𝑡) are its eigenvectors [128]: 

𝐶(𝑡, 𝑡′) =
1

𝑇
∫ 𝑢′

𝑖(𝑥, 𝑡)𝑢′
𝑖(𝑥, 𝑡′)

𝑉

𝑑𝑥 

Eq. B- 2 

 

∫ 𝐶(𝑡, 𝑡′)𝑎𝑛(𝑡′)𝑑𝑡′ = 𝜆𝑛𝑎𝑛(𝑡)
𝑇

 

Eq. B- 3 

 

where, 𝜆𝑛 is the 𝑛𝑡ℎ eigenvalue related to the 𝑛𝑡ℎ mode. Also, 𝑇 is the upper limit of the time 

domain. By projecting the temporal velocity fields onto the temporal modes, the spatial modes can 

be obtained [128]: 

𝜑𝑖
𝑛(𝑥) =

1

𝑇𝜆𝑛
∫ 𝑎𝑛(𝑡)𝑢′

𝑖(𝑥, 𝑡)𝑑𝑡
𝑇

 

Eq. B- 4 
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It should be noted that the obtained eigenvalues contribute to the total TKE in the way that the 

first one has a more significant share in TKE than the rest. Thus, they can be re-ordered as 𝜆𝑛 >
𝜆𝑛+1 [220]. More information on the mathematics of POD can be found in [220]. 


