Topology Discovery in Autonomic Networks

Parsa Ghaderi

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science at
Concordia University

Montréal, Québec, Canada

September 2022

© Parsa Ghaderi, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Parsa Ghaderi

Entitled: Topology Discovery in Autonomic Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the Final Examining Committee:

Chair and Examiner

Dr. S. Cespedes

Examiner

Dr. J. Paquet

Supervisor
Dr. JW. Atwood

Co-supervisor

Dr. L. Narayanan

Approved by

Dr. L. Kosseim, Graduate Program Director
Department of Computer Science and Software Engineering

2022

Dr. M. Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Topology Discovery in Autonomic Networks

Parsa Ghaderi

The network Management Research Group (NMRG) introduced their own version of autonomic
networks based on the viewpoint of the Internet Society and following the definition provided by
IBM of autonomic systems. NMRG focused on self-optimizing, self-configuring, self-protecting,
and self-healing capabilities in the proposed design model of autonomic networks. Later the Au-
tonomic Networking Integrated Model and Approach (ANIMA) working group of the Internet En-
gineering Task Force (IETF) designed protocols to support the goals set by NMRG. The proposed
autonomic network mitigates the human administration influence as much as possible and make the
nodes dependent on themselves and the communications with their neighbors. Therefore, autonomic
nodes will act as a network management entity that depends on the information they receive/send
from/to their surroundings and their knowledge about themselves.

In network management, knowing the network’s topology gives nodes a great advantage toward
becoming more autonomic. Knowing the topology can help nodes with management tasks such
as link failure recovery, routing, and imposing policy. Topology Discovery (TD) is the process
of collecting the neighboring information of all nodes and distributing the processed information
among them. Topology Maintenance (TM) takes place after the topology map is generated during
the TD process. TM updates all nodes upon the changes in the topology map. The TD and TM
can be heavy tasks on the network since they require collecting information from all nodes and
distributing it among them.

We focus on supporting the benefits of autonomic nodes knowing the network’s topology and

iii

suggest efficient methods to collect and maintain the topological information of an autonomic net-
work. Our goal is to minimize the bandwidth consumption by reducing the number of exchanged
messages for TD or TM purposes. There have been many approaches proposed to improve the per-
formance of TD and TM. There has been thorough research on TD methodologies but not all the
proposed solutions can be applied to autonomic networks.

In this thesis, we review different methods for TD and discuss their compatibility with the
proposed autonomic network guidelines. We then propose two new solutions. Our first solution
is based on a clustering algorithm that allows the autonomic nodes to join clusters and limits the
message passing to intra-cluster communications and inter-cluster communication between cluster-
heads. The second proposed solution is based on taking advantage of the secure boot-strapping

protocol (BRSKI) for autonomic nodes to generate the topology map of the autonomic network.

v

Acknowledgments

I want to acknowledge and give my warmest thanks to my supervisors, Dr. Atwood and Dr. Narayanan,
who guided and helped me on this journey. The completion of this research could not have been
possible without their expertise. With their guidance, I gained the most valuable experiences, not
only academic-wise but in life too. I would also like to thank Dr. Carpenter for his help. During the
past year, he provided us with answers that without our work would have never been complete.

I want to thank my parents, brother, and other family members for their unconditional love for
me. They supported me and my every decision throughout all these years. Your support was what
sustained me so far. I would also like to thank my friends. Thank you for all the good memories.

I want to dedicate this work to my late grandfather, whom I lost last year. He was my biggest

supporter and always encouraged me to do my studies.

Contents

List of Figures ix
List of Tables xi
Acronyms xii
1 Introduction 1

2 Autonomic Networks 4
2.1 Architecture L. e 4
2.1.1 Autonomic Network Infrastructure 5

2.1.2 Autonomic Control Plane 6

2.1.3 Autonomic Service Agent 6

2.1.4 Autonomic Network and Internet Protocol 6

22 IPVO . . e 7
221 IPv6 Addressing 7

2.2.2 IPv6 Link-Local Address Structure 8

2.2.3 IPv6 Unique Local Address (ULA) 8

2.2.4 IPv6 Autonomic Behavior o L. 9

2.2.5 Autonomic Networkand IPv6 10

2.3 GeneRic Autonomic Signaling Protocol o000 10
2.3.1 GRASPObjectives 11

232 GRASPMeSsages v v vt i e e e e e e e 12

vi

24

2.3.3 GRASPDIsCOVEry i e e e e

2.34 GRASP Negotiation o
2.3.5 GRASP Synchronization and Flood
2.3.6 Discovery Unsolicited Link-Local
BRSKI. . . e
2.4.1 Manufacturer Authorized Signing Authority
242 Message FlowinBRSKI

3 Topology Discovery

3.1

32

33

Existing Diagnostic and Management Tools
3.1.1 ICMPforTD o o e
3.1.2 ARPforTD o e
3.1.3 SNMPforTD.
3.14 tracerouteforTD
3.1.5 IPv6 Network Discovery Protocol
TD in Centrally Managed Networks
3.2.1 OpenFlow Discovery Protocol
3.2.2 Self-healing TD Protocol for SDN
323 OtherTDMethods
Distributed Methods for TD L
33,1 Clustering v v vt e e e e e e e e e e e
3.3.2 Cluster-based TD in Vehicular Ad-Hoc Networks
3.3.3 Distributed Clustering for Ad-Hoc Networks

4 Problem Statement

5 Proposed Solution

5.1

Solution Based on Clustering
5.1.1 SetupPhase
5.1.2 Maintenance Phase

vii

22
24
25
25
25
26
26
26
26
28
29
30
30
31
33

35

5.2 Utlizing BRSKIfor TD
5.2.1 TD with BRSKI (without altering BRSKI semantics)

5.2.2 TD with BRSKI (with altering BRSKI semantics)

6 Experimental Results

6.1 Testbed e

6.2 Results of Clustering Approach
6.2.1 Weight Exchange Phase

6.2.2 Role Selection and Announcement Phase
6.2.3 Maintenance Phase
6.3 Results of TD during BRSKI and TD after BRSKI

6.4 DISCUSSION v v v v e e e e e e e e

7 Conclusions and Future Work

Bibliography

viii

58
58
60
60
61
63
65
66

68

71

List of Figures

Figure 2.1 Layered architecture of autonomicnodes
Figure 2.2 High-level global view of an autonomic network
Figure 2.3 Link local Address structure [13]
Figure 2.4 Unique local IPv6 address structure [16]
Figure 2.5 GRASP objective data structure [9]
Figure 2.6 GRASP message structure [9]
Figure 2.7 Negotiation sequence diagram
Figure 2.8 Synchronization sequence diagram
Figure 2.9 BRSKI sequence diagram [30]
Figure 2.10 Voucher request structure [30]
Figure 3.1 Different steps of SOFTDP [4]
Figure 3.2 Node u is the cluster head to nodes v and z. Node p has not yet joined the

network.o
Figure 5.1 Structure of node_info
Figure 5.2 Topology discovery GRASP objective
Figure 5.3 TD using clustering state machine
Figure 5.4 Star topology with u as clusterhead and nodes 1 to n a member of w’s cluster.

Node visheavierthannode v e

Figure 5.5

Sample graph with clusterheads only 2 hops away; nodes «# and w and y are

clusterheads and node z has joined node «# and node x has joinedy.

ix

50

Figure 5.6

Sample graph with maximum clusterheads distance; nodes u and z are clus-

terheads, v and p joined u and z, respectively. L. 50
Figure 5.7 Using BRSKI for TD after authentication of the pledge 54
Figure 5.8 Using BRSKI for TD during authentication of the pledge 56
Figure 6.1 Topology L 58
Figure 6.2 Topology A e 59
Figure 6.3 Topology Y 59
Figure 6.4 Illustrating the clusterhead announcement and join messages sent from each

nodeintopology L. 63

List of Tables

Table 6.1 Number of messages exchanged simultaneously or starting randomly from
SOMEeNOdes e e e
Table 6.2 Total number of exchanged messages during clustering phase and topology
map exchange for firsttimeo Lo
Table 6.3 Maximum number of iterations for a clusterhead to synchronize with other
clusterheads L
Table 6.4 Propagating updates in the network; number of messages include updates to
clusterheads and members of each cluster.
Table 6.5 Propagating updates in the network; number of messages include updates to
clusterheads and members of each cluster.
Table 6.6 Propagating updates in the network; number of messages include updates to
clusterheads and members of each cluster.
Table 6.7 TDafter BRSKI
Table 6.8 TDduring BRSKI

Table 6.9 Comparing the results of all methods with all topologies

X1

Acronyms

ACP
ANI
ANIMA
ARP
ASA
BGP
BRSKI
DMAC
GRASP
ICMP
IETF
IRTF
LL
LLDP
MASA
MTU
ND
NMRG
OSPF
P2P
RIP
SDN
SHTD
SNMP
sOFTDP
D

™
ULA

Autonomic Control Plane
Autonomic Network Infrastructure

Autonomic Network Integrated Model and Approach

Address Resolution Protocol

Autonomic Service Agent

Border Gateway Protocol

Bootstrapping Remote Secure Key Infrastructure
Distributed Mobility-Adaptive Clustering
GeneRic Autonomic Signaling Protocol
Internet Control Message Protocol

Internet Engineering Task Force

Internet Research Task Force

Link Local

Link Layer Discovery Protocol
Manufacturer Authorized Signing Authority
Maximum Transmission Unit

Neighbor Discovery

Network Management Research Group
Open Shortest Path First

Peer to Peer

Routing Information Protocol
Software-Defined Network

Self-Healing Topology Discovery

Simple Network management Protocol
Secure OpenFlow Topology Discovery Protocol
Topology Discovery

Topology Maintenance

Unique Local Address

Xii

Chapter 1

Introduction

As its name suggests, network management is the process of administering the components
of a computer network. Network management allows the network to achieve higher performance,
lower costs, and achieve users’ goals. Network management provides facilities for nodes to recover
from failure and optimize their performance. Networks can be managed centrally or in a distributed
fashion. With the increase in the number of network devices, management has become a more
challenging task. The complexity of the network depends on the number of nodes and/or the number
of roles that they can acquire in the network. As networks grow in size, their dependency on
human administrators grows as well, so that the network management meets the pace of the growing
infrastructure. As the size of the networks grow and they are exposed to other networks, the chances
to experience attacks and having malicious nodes inside the networks can grow. Also, the rate
at which network experiences failure of nodes can grow too. Therefore, introducing a network
management solution compatible with the type of the network and its purpose is an essential task.

The growth of management-related issues led to the idea of introducing networks with auto-
nomic capabilities. In 2001, IBM introduced autonomic systems. The goal was to achieve self-
configuring, self-healing, self-protecting, self-optimizing, and self-managing systems [7]. Paul
Horn, former vice-president of IBM, talks about the similarities between autonomic systems and

human nervous systems during the introduction of autonomic systems. Horn:

The body’s autonomic nervous system changes your heart rate and breathing, which

allows humans to adapt to any number of situations physically. This is very much how

you need to think about the middle-ware as it will serve the Internet.

In other words, Horn suggests that the entities in an autonomic system must be capable of
adapting themselves to their surroundings and independently making decisions accordingly. This
adaptation is the result of constant flow of communication between the entities of the autonomic
system.

An autonomic network facilitates the inter-connection of the autonomic systems and inherits
the autonomic behaviour from its constructive elements. To date, different adaptations of autonomic
networks have been introduced. Different companies provide different design models for autonomic
networks based on their needs. The version that we are focusing on was introduced by one of the
member research groups of the Internet Research Task Force (IRTF), which was formed to focus on
long-term internet-related issues '. The IRTF comprises many active research groups, including the
Network Management Research Group (NMRG); this group provides a forum for all researchers
and enthusiasts to explore new technologies in the internet management field >. Besides supervising
research groups, the IRTF works with the Internet Engineering Task Force (IETF), a parallel organi-
zation. The IETF is in charge of maintaining internet standards by developing protocols or providing
guidance on how to use the protocols [18]. NMRG introduced what autonomic networking is, from
the viewpoint of IRTF and IETF. The guideline provided by NMRG produced RFC7575 [7] and
RFC7576 [21]. The former RFC introduces the design goals of autonomic networks, and the latter
is the analysis of the gap between ideal autonomic networks and and the current network abilities.
The IETF introduced the Autonomic Network Integrated Model and Approach (ANIMA) working
group to develop and maintain documentation and specifications related to autonomic networks 3.
So far, ANIMA produced six core RFCs: RFC8990 to RFC8995, which standardized the designed
protocols according to the definition of autonomic networks provided by NMRG. From this point
on, wherever we mention autonomic networks, we refer to the version introduced by NMRG and
developed by ANIMA.

The proposed design model for autonomic networks introduced a hierarchy of layers to share

the network management job across different entities. ANIMA shares the same goals with the

Uhttps://irtf.org/
Zhttps://datatracker.ietf.org/rg/nmrg/about/
3https://datatracker.ietf.org/wg/anima/about/

autonomic systems introduced by IBM: self-configuring, self-healing, self-optimizing, and self-
securing nodes inside an autonomic domain.

In network management, Topology Discovery (TD) plays a vital role by providing information
about the surroundings of the nodes. The TD process gathers the neighbor information of nodes
inside the domain and creates a map of every link between any two entities inside the domain. The
primary consumers of the topology map are services for routing, policy imposition, etc. TD helps
nodes get a better understanding of their neighbors and surroundings. Most of the time, the network
is not static and changes over time, such as in ad-hoc networks or wireless sensor networks. Keeping
the topology map updated could be challenging considering some networks’ volatility. Topology
Maintenance (TM) is the process by which we update the topology map and reflect the updates.

With the growing infrastructure, the result of the TD and TM processes can help us to enhance
the performance of the nodes in different situations. However, the TD and TM processes themselves
also consume considerable bandwidth. There have been solutions proposed for TD in different types
of networks to lower the cost of bandwidth consumption. The efficiency of the TD and TM processes
greatly depends on the structure of the network. A well-defined approach with high efficiency in a
linear network can suffer from low performance in a tree-like network or a clique (fully connected
network). Giving a general solution suitable for all types of networks is a difficult task.

The introduced design model for autonomic networks by ANIMA depends on neighbor nodes
constantly communicating with each other. The problem of designing efficient TD methods and
efficiency in autonomic networks is not well studied. The proposed solution must comply with the
design goals introduced by NMRG and ANIMA. In this thesis, we review the different methods for
TD in the literature and their compatibility with autonomic networks. We propose two new solutions
and implement them on a testbed in our lab.

This thesis is organized as follows. In Chapter 2 we will review the elements of an autonomic
network, and in Chapter 3 we will review the existing TD methods. We specify the problem in
detail in Chapter 4 and give our proposed solutions in Chapter 5. The results of the experiments are

provided in Chapter 6. We conclude the thesis and outline directions for future work in Chapter 7.

Chapter 2

Autonomic Networks

2.1 Architecture

Autonomic networking was introduced as a new network management scheme to deal with con-
figuration, protection, and recovery in the fast-growing network infrastructure. Carpenter et al. [12]
suggest that the entities of the autonomic network can be considered as plug-and-play components
to the network. This means that the nodes must be capable of organizing themselves with minimum
supervision and administration from outside elements. Autonomic networks focuses on minimizing
the dependency on human administrators or other central entities [12]. However, the goal here is
not to entirely eliminate the human administrator, or the central control entity [7]. Human element
and a central entity are needed for tasks such as deciding on or imposing the policy and oversight
[7].

In this chapter, we will discuss the design model of autonomic networks; the architecture, the
layers, and the connection between the autonomic network elements.

We talked about the motive and goals behind autonomic networks in Chapter 1. NMRG intro-
duced a hierarchical architecture for autonomic networks [7]. The hierarchy inside the autonomic
nodes allows them to have a common infrastructure across a group of autonomic nodes to share ser-
vices provided on the lowest level. Autonomic nodes have their control loops by using the services
provided at higher levels of the hierarchy. This shared infrastructure offers a communication facil-

ity between the nodes and information for the node’s local functionalities. The middle layer allows

access to the shared infrastructure by acting as the controller entity to the nodes. The shared infras-
tructure provides various services to the nodes. The middle layer is a collection of all the services
provided by the shared infrastructure. The middle layer gets the information from the shared in-
frastructure and provides it to the higher layers [6]. The higher layer consists of atomic entities and
autonomic functions that allow the autonomic node to utilize the services the lower layers provide.

The proposed architecture consists of the following three layers.
¢ Autonomic Network Infrastructure (ANI)
¢ Autonomic Control Plane (ACP)
* Autonomic Service Agent (ASA)

Figure 2.1 depicts the architecture of an autonomic network from the node’s point of view and

illustrates its different layers.

ASA

ACP

ANI

Figure 2.1: Layered architecture of autonomic nodes

In the following sections we will discuss the three layers mentioned above in more detail.

2.1.1 Autonomic Network Infrastructure

As its name suggests, ANI provides the shared infrastructure among the nodes. There are many
already-existing autonomic functions. They have their own protocols to communicate, discover
services, etc. ANI provides the shared homogeneous infrastructure across all autonomic functions to

synchronize values, negotiate parameters, discover services, etc. [7]. The shared set of capabilities

across the autonomic functions inside an autonomic domain is called ANI. ANI is also responsible
for holding both node-specific and generic information. ANI provides the required information
for autonomic functionalities such as naming and addressing every autonomic node or facilitating

communication between the nodes.

2.1.2 Autonomic Control Plane

ACP is a self-configuring communication infrastructure that primarily serves as the control
plane for autonomic functions [7]. The ACP is a node-specific entity that provides the path be-
tween the ANI and autonomic functions that are trying to use the services from the ANI. ACP is an
automatically built communication infrastructure that is secure, resilient, and re-usable [15]. ACP
acts as a virtual out-of-band channel for autonomic functions [15]. ACP communication is on a
hop-by-hop basis, meaning the information and messages are relayed from a node to its neighbors
until it reaches its destination. Therefore many interactions between the nodes and services rely
on the adjacency table provided by ANI [6, 15]. The ANI is responsible to provide the infrastruc-
tures required for actions such as communication and service discovery, and ACP will provide those

services to higher layer and the autonomic functions.

2.1.3 Autonomic Service Agent

By using the capabilities of the ANI, we can produce autonomic functions. Autonomic func-
tions form out of atomic entities, which we refer to as ASA [6]. ASAs are installed separately on
every autonomic node. There is a one-to-many relation between the autonomic node and the ASA,
meaning every autonomic node can install multiple ASAs.

Figure 2.2 illustrates a high-level global view of the autonomic network.

2.1.4 Autonomic Network and Internet Protocol

The components introduced above together form the autonomic networks. Due to some func-
tionalities of the autonomic network, IPv6 is preferred over IPv4 [9]. IPv6 supports some autonomic

behavior such as self-configuring addresses on the physical interfaces [6]. In the following section,

ASA ASA ASA ASA ASA ASA

Figure 2.2: High-level global view of an autonomic network

we will discuss IPv6, its address scopes, and why IPv6 is a more suitable internet protocol for

autonomic networks.

2.2 IPvé6

This section will discuss IPv6 and some of its properties, especially the address scopes that are
needed for our work.

IPv6 was introduced as the successor to IPv4 with a larger addressing space, trying to resolve
the IPv4 address exhaustion problem. IPv4 can hold 32-bit addressing, while IPv6 is capable of

holding 128-bit identifiers for addresses.

2.2.1 1IPv6 Addressing

For this research, we discuss two main addressing scopes in IPv6: Link-Local (LL) address and
Unique Local Address (ULA).

LL addresses are not routable, but can be generated by a node autonomically. An IPv6 address
is represented in 8 groups of 16-bit addresses separated by colons. Each 16-bit group is shown
as four hexadecimal digits. Behringer et al. [8] claim that using LL. addresses can lead to smaller
routing tables and a decrease in risk of attacks by reducing the exposure of the network to malicious
nodes. Later, we will discuss how autonomic networks uses this property of IPv6. On the other

hand, the ULA is a globally unique address intended for communication within a domain and is

locally routable [13, 16].

2.2.2 1IPv6 Link-Local Address Structure

IPv6 LL address configuration is autonomic. In the following we will describe the autonomic
behavior of IPv6. The LL address can be generated automatically by using the interface ID. The
prefix of an LL address is fixed, FES80::/10 and the next 54 bits are Os. The last 64 bits of the address
are the interface ID that is generated, using the MAC address (using the EUI-64 format), or it can

be 64 random bits. Figure 2.3 from [13] shows the structure of the LL address.

| 10 |

| bits | 54 bits | 64 bits |
tmmm e ——— tem e ———————— Frm e ————————— +
[1111111010] 0 | interface ID |
e e +

Figure 2.3: Link local Address structure [13]

2.2.3 1IPv6 Unique Local Address (ULA)

The ULA is globally unique, but is used for local networking purposes. The uniqueness gives
it an advantage that even if leaked outside the local network, it still raises no conflicts with other
address spaces or domains [16]. Haberman et al. [16] also suggest that if networks are combined or
expanded, since the address is globally unique, we still do not face any conflicts in addresses . ULA
has a prefix FC00::/7 followed by 1 bit local/global identifier, 40 bits Global ID, 16 bits subnet ID,
and 64 bits interface ID. Having a specific prefix allows quick filtering [16]. Figure 2.4 from [16]

demonstrates the structure of IPv6 ULA address.

| 7 bits |1| 40 bits

Figure 2.4: Unique local IPv6 address structure [16]

2.2.4 IPv6 Autonomic Behavior

RFC4861 [31] introduces Neighbor Discovery (ND) protocol, which allows nodes to discover
their neighbors by determining their LL address. The ND protocol also has an autonomic behavior.
The ND protocol does not only return a list of the neighbors; it serves more than that. With its auto-
nomic behavior, ND protocol provides the solution to the following network properties [31]: prefix
discovery, parameter discovery, router discovery, address auto-configuration, address resolution,
next-hop determination, neighbor unreachablility, duplicate address detection, and redirect. The
prefix discovery allows nodes to find the reachable network destinations on each link. Parameter
discovery allows the node to figure out the link specifications such as the Maximum Transmission
Unit (MTU). Address configuration allows nodes to set the addresses of the interfaces in a stateless
manner [31]. Next-hop determination allows nodes to place traffic on a neighbor link toward the
final destination. The duplicate address detections allow nodes to verify if an address they want to
use is already in use, to prevent a collision.

ND protocol also introduces five types of ICMP messages that facilitate the above-mentioned
services. The ICMP messages are as follows [31]: router solicitation, router advertisement, neighbor
solicitation, neighbor advertisement, and redirect.

The router solicitation message allows nodes to force the routers to advertise their presence
ahead of their scheduled advertisement. The IPv6-enabled routers then send out router adver-
tisement messages upon receiving the router solicitation or reaching the scheduled time. Router
advertisement messages include more than the address of the router. They provide nodes with infor-
mation such as prefixes, address configuration parameters, hop-limit, etc. As its name suggests, the
neighbor solicitation ICMP messages are used for finding the LL address of the neighbor or check-
ing whether or not they are still alive. A neighbor solicitation request is followed by a neighbor
advertisement response. A node can also send out neighbor advertisements without receiving the
neighbor’s solicitation, to announce its presence to neighbors. As a part of their autonomic behavior,
routers can inform the nodes about a better next-hop by sending redirect ICMP messages to nodes.
According to the definitions, some of the ICMP messages, such as redirect or router advertisements,

are meant to be used by routers rather than hosts.

2.2.5 Autonomic Network and IPv6

So far, we got familiar with IPv6 and its different address scopes. As discussed in Section
2.1.2, ACP is configured based on the information it receives from its neighbors. By using LL
address, the communication between the neighbors takes place without going through the routing
table. As discussed in Section 2.1.1, ANI provides communication between the nodes. The peers
could be non-neighbor nodes in the domain. Hence ANIMA proposed using both the LL and the
ULA addresses for communication purposes such as negotiation and synchronization.

In the following section, we will discuss utilizing these services by a new communication pro-

tocol called GeneRic Autonomic Signaling Protocol (GRASP).

2.3 GeneRic Autonomic Signaling Protocol

As discussed in Section 2.1.1, ANI is responsible for providing a shared platform for communi-
cation services such as negotiation, synchronization, and discovery. The GenRic Autonomic Signal-
ing Protocol (GRASP) is designed to allow easy expression of these features. The communication
between the entities of an autonomic domain, starting from the early stages of bootstrapping to the
final steps of ending any communication channel, is facilitated by GRASP. GRASP is an extensi-
ble protocol that enables the communication between different autonomic functions and autonomic
nodes. Different protocols and mechanisms in autonomic networks, including our suggested meth-
ods and implementations, use GRASP to enable autonomic nodes to communicate. This section is
dedicated to describing GRASP and its functionalities. GRASP is a communication protocol de-
signed to provide an API to express the architectural concepts according to NMRG’s vision of an
autonomic network. GRASP introduced a new data structure capable of being labeled and taking
values. This data structure is called a GRASP Objective. Each GRASP objective will be mapped on
to an ASA. GRASP allows us to register ASAs and use the name of the ASA as the unique identifier

for future referencing.

10

2.3.1 GRASP Objectives

In order to provide the information needed for the autonomic functions, GRASP introduced a
data structure capable of holding different identifiers and values. Figure 2.5 shows the structure of

the objective.

objective = [objective-name, objective-flags,
loop-count, ?objective-value]

Figure 2.5: GRASP objective data structure [9]

The two main pieces of information that the GRASP objectives data structure holds are name
and value. The name is used as a unique identifier of the GRASP objectives, and the value holds
the actual value of the GRASP objectives. Value can hold any data type, which allows GRASP to
support exchanging any data structure across the domain.

Along with name and value, there are multiple flags accompanying each GRASP objective. The

objective_ flags are
* Neg: set to True if the GRASP objective supports negotiation
» Synch: set to True if the GRASP objective supports synchronization
* Dry: set to true if the GRASP objective supports dry-run negotiation

The other essential field in a GRASP objectives’s data structure is loop_count, which indicates
the maximum number of steps for negotiation purposes.

GRASP restricts the name of the GRASP objectives to be in String format. The loop_count can
hold any value (integer) between 0 to 255. All GRASP objectives, regardless of their value, must
be passed across the domain between the peers in the same byte format. GRASP utilizes CBOR, a
binary data serialization format [10]. Before the initiator of the communication sends the GRASP
objectives, it will convert the GRASP objective’s value to CBOR object and then transmit it to the
peers. On the receiving side, the receiver will convert the CBOR object to the basic format of a

GRASP objective.

11

Each GRASP objective must be registered by an ASA. GRASP introduces another data structure
called a ragged objective. The tagged objective only holds two values, the registered objective and
a pointer to the ASA object on which the GRASP objective is registered. The tagged objective is
the actual data structure being exchanged inside the autonomic domain.

Finally, GRASP assigns a random port number to each objective that is registered on an ASA.
As long as the autonomic node is up and running and the ASA is registered on that autonomic node,

the port number will not be affected. Later we will discuss how we can utilize this port number.

2.3.2 GRASP Messages

GRASP supports a variety of messages for different purposes. Each follows a specific format
along with a specific set of flags. The messages are exchanged for discovery, negotiation, or syn-
chronization purposes. As discussed in [9], the structure of any GRASP message is as shown in
Figure 2.6. Each GRASP message has a Message_type identifier. Below we have listed the

available types of messages:
* Discovery messages

o Discovery request message

o Discovery response message
* Negotiation messages

o Request negotiation
o Negotiation
o Confirm wait

o End negotiation
* Synchronization

o Request synchronization
o Synchronization

o Flood synchronization

12

As shown in Figure 2.6, each message holds a session_id. The session_id is randomly
generated by the initiator of the connection whether it is discovery, negotiation or synchronization
and the receiving peer must use the same session_id for any further messages concerning that
communication. The session_id is randomly generated and double checked by GRASP to avoid
any sort of collision.

grasp-message = (message .within message-structure) / noop-message

message-structure = [MESSAGE_TYPE, session-id, ?initiator,
*grasp-option]

MESSAGE_TYPE = 0..255
session-id = 0..4294967295 ; up to 32 bits
grasp-option = any

Figure 2.6: GRASP message structure [9]

2.3.3 GRASP Discovery

The discovery process allows the autonomic nodes to find peers who have registered a specific
GRASP objective on a specific ASA. As a result of the discovery process, the GRASP discovery
function will return one or more locators, which hold the value of the ULA address of the corre-
sponding autonomic nodes and the port number on which the objective is accessible. The discov-
ered peer is listening for incoming requests for the same GRASP objective (with the same name)
and registered on the ASA with the same name. In order for the GRASP discovery to find a peer (or
multiple peers), the name of the GRASP objective and its respective ASA from the peer must match
the names from the GRASP discovery initiator. The locator also holds the value of the port number
that has been assigned to the objective we are looking for on the corresponding autonomic node.
Since the port number is randomly assigned to each objective on each node, it cannot be guessed nor
be collected by any other means other than requesting it directly from the peer node. The GRASP
discovery request is sent on all interfaces.

The locator is an object of class asa_locator that holds the value of the ULA or LL address
of the peer, the interface on which the autonomic node must reach out to the peer and an instance

of the GRASP objective. The GRASP objective will also hold the port number by which it can be

13

accessed.

The discovery process is used for finding peers and is often followed by negotiation over the
value of the objective. Therefore, for discovery purposes, the objectives must have the NEG flag set
to true.

The GRASP discovery is a hop-by-hop process, meaning the request will be relayed from one
node to another. On this path, if any node satisfies the request, a response will be sent back via
the same path and set of nodes that the request took to reach the corresponding peer. On the way
back to the initiator, all nodes will update their cache with the locator of the corresponding peer.
The GRASP discovery process starts by sending out a discovery message from the initiator on all
interfaces. In the first step, all neighbors will receive the discovery request message. Now one of
the three following outcomes might occur. The autonomic node receiving Discovery_Request
holds the requested objective and will send back a discovery response message. As for the second
possibility, the receiver does not own the objective and does not have any information cached about
other owners that satisfies the discovery request. Therefore, the request will be relayed to its neigh-
bors, except on the interface on which the request was received. As for the third possibility, the
neighbor who received the discovery request has previously cached the peers’ locators that hold the
requested objective. In this case, if the cached information has not yet expired, a response message
will be generated, containing the peers’ locators from the cached information. The discovery func-
tion will return a list (of size one or greater) that contains the locators of the peers that hold that
discovery Objective. Later, the locators will be used to initiate negotiations with peers.

The discovery probes will continue spreading into the domain until they find a suitable peer
or until they expire. To prevent non-ending search in a large domain, where probes continuously
go deeper into the domain to look for the objective, timeout was introduced as a parameter of the
discovery probe by the GRASP discovery function.

The GRASP discovery is a one-way request. Meaning that, if node u discovers node v by

running GRASP discovery, it is not guaranteed that v also finds w.

14

2.3.4 GRASP Negotiation

The result of the GRASP discovery process will be used for negotiation purposes. For the
GRASP negotiation, a negotiation request (M_REQ_NEG) must be sent from the negotiation ini-
tiator to its corresponding peer. This request will be followed by a negotiation response or an
end_negotiation message from the peer. If the responding peer accepts the offer, the negotia-
tion will end with an Accept message (O_ACCEPT) in an END_NEG message. Otherwise, their
peers can continue to negotiate over the value of the Objective by exchanging negotiate messages
(M_LNEGOTIATE). If the responding peer does not accept the offered value, a decline response
message (O_DECLINE) will be sent in an END_NEG message. During the negotiation process,
either party can end the negotiation by accepting or declining offered values.

The logic of the negotiation can vary depending on the purpose of the autonomic function.
Therefore, it is the responsibility of the network administrator to set the logic behind the negotiation.
The two peers will continue negotiating until they reach an agreement or the maximum number of
negotiation_steps is reached. After the negotiation, no other messages such as ending confirmation
will be transmitted.

Figure 2.7 is the sequence diagram of the GRASP negotiation process.

The GRASP negotiation takes a tagged objective, the target peer’s locator, as inputs. The locator
is obtained from the GRASP discovery process, or the initiator will use the cached information to
retrieve the locator of the peer. The mentioned objective must have the NEG flag set to true.

As discussed above, GRASP negotiation takes the locator of the corresponding peer as a param-
eter. Normally, GRASP negotiation comes after the GRASP discovery to obtain the locator of the
required peer. But, if we assume that in some way, we are able to collect the port number and the
ULA address of the autonomic node that the GRASP objective is registered on, we can create the
locator ourselves and establish the negotiation. If the locator is not provided by as a parameter to
GRASP negotiation, the discovery will run first and the first peer in the list of found peers will be

selected.

15

Negotiation Initiator Negotiation Responder

Request Negotiation M_REQ_NEg
M_NEGOT\ATE
M_ NEGOTIATE

M _NEGOTIATE

Negotiation Step

Negotiation Step

Negotiation Step

End Negotiation

Figure 2.7: Negotiation sequence diagram

2.3.5 GRASP Synchronization and Flood

Negotiation and synchronization are the two main communication methods introduced in [9].
While in negotiation, the focus is on reaching an agreement between two nodes, the synchroniza-
tion process is not followed by multiple messages negotiating the objective. There are two types of
synchronization:“unicast synchronization” and “flood and synchronization”. In the case of unicast
synchronization, the synchronization initiator opens a connection with the synchronization respon-
der (initiator already aware of the locator of responder) and sends a M_REQ_SYNCH message and
receives a M_SYNCH in response. No further messages will be exchanged. In the case of unicast
synchronization, if the synchronization initiator does not know the peer’s locator, a Rapid mode
will be used. In this case, the initiator sends a GRASP discovery message containing the synchro-
nization objective, this enables the discovery message to act as synchronization request. This type
of request, allows the discovery responder to reply a synchronization message instead of discovery
response to the initiator of the discovery request [9].

When a large group of nodes wish to synchronize the value of the same objective, we use

16

Listener Requester

/ Listen for incoming Synch requests
YNCH
M_REQ_S
M_syncy
Responds to SYNCH_REQ,

Synchronize Objective

Figure 2.8: Synchronization sequence diagram

GRASP flood and GRASP synchronization. The flood initiator will send an unsolicited flood syn-
chronization message on all interfaces. The flood message is a multicast message to all neighbors.
The receiver of the flood will relay this message to its neighbor (other than on the receiving in-
terface). To prevent infinite flooding, GRASP adds a 1oop_count. Upon receiving the flood
message, the receiver will decrease the value of 1oop_count by one and then relay it to other
neighbors. Any autonomic node will use LL multicast for this purpose [9]. In Section 2.2 we
pointed out that the LL. multicast is bound to only one hop, but for flooding purposes, we must use
LL multicast. Earlier, we discussed that nodes will NOT relay the exact same LL multicast messages
to other nodes. Each node alters the initial LL. multicast, in this case by changing the 1oop_count.

Therefore the message is not the same and has been altered.

2.3.6 Discovery Unsolicited Link-Local

For security purposes, GRASP introduces Discovery Unsolicited Link-Local (DULL) for com-
munication in insecure environments. Some actions, such as finding neighbor ACPs through join
proxy (discussed in Section 2.4), are insecure since the joining node can be malicious. To prevent
this, GRASP limits the communication radius to only one hop in DULL. This means that while
using DULL, autonomic nodes will only communicate with neighbors, and any messages in DULL
will not be relayed to other neighbors.

The DULL initiator can send discovery or flood synchronization messages. The receiver of those

requests will check the loop count of the messages, and if they are greater than one, the message

17

from the initiator will be discarded. The receiver will also not relay any LL multicast messages

since they are only bound to communication between neighbors.

2.4 BRSKI

Carpenter et al. [12] suggests that the autonomic nodes could be looked at as Plug-and-Play
devices. Since self-securing is one of the characteristics of autonomic networks, each node must
be able to find a way to communicate securely and start its ACP autonomously. As mentioned in
Section 2.1.2, ACP is a self-configuring entity in the AN, and BRSKI is the bootstrapping protocol
used to help the autonomic nodes configure their ACP. Multiple autonomic nodes with different
roles are involved during bootstrapping, i.e., pledge, registrar, join proxy, and Manufacturer Autho-
rized Signing Authority (MASA). BRSKI allows nodes to reach the mutual authentication state by
exchanging X.509 certificates. MASA, an entity that resides outside the network, plays an essential
role in helping nodes reach mutual authentication. BRSKI issues X.509 Certificates with authenti-
cating entities for joining the network to authorize bootstrapping ACP and secure communication
with neighbors. X.509 certificate is a public key certificate format mainly used in secure transport
protocols, e.g., SSL. The detailed security aspects of BRSKI are outside the scope of this thesis.
The main focus is the message flow among the domain entities upon joining.

Upon joining the domain, a new node has no fully operational ACP. The new node that is not
yet registered inside the domain is referred to as a pledge. Every domain has a central entity called
the registrar, responsible for authenticating any pledge wishing to join the domain. The registrar
accepts or refuses the pledge’s request to join the domain. The pledge must get in touch with the
registrar to get Authenticated, but it has no knowledge of the domain and therefore does not know
the locator of the registrar to get in touch with it. In Section 2.4.2 we will talk about the message

flow in BRSKI for the pledge to get accepted in the domain.

2.4.1 Manufacturer Authorized Signing Authority

The MASA is not a part of the domain but plays an essential role in the process of authentication

of the pledge. The MASA is a representative of the manufacturer of the pledge device. The MASA

18

keeps track of all the device owners, including current and previous, to verify the ownership. Also,
the manufacturer embeds a certificate inside the pledge device that allows the MASA to authenticate
the device. The pledge does not directly get in touch with the MASA. The registrar is responsible
for asking the MASA to authenticate the device and its owner. The MASA will authenticate the
registrar to the pledge as well. So, the MASA plays a vital role in pledge and registrar reaching

mutual authentication.

2.4.2 Message Flow in BRSKI

Upon joining the domain, the pledge is looking for the registrar. The pledge only has a limited
understanding of its surrounding neighbors. Figure 2.9 shows the sequence diagram of how the

BRSKI protocol works.

Pledge Join-proxy Registrar MASA

Voucher Request

[To forward to registrar]

Voucher Request

Domain info

[to authenticate pledge]
Pledge info

[to authenticate pledge
to authenticate domain]

Voucher response

[to inform registrar of
decision]

WAIT FOR RESPONSE

Voucher response

[to return decision
to pledge

Voucher response

Figure 2.9: BRSKI sequence diagram [30]

In order to get authenticated, the pledge must send a voucher_request to the registrar. The
pledge can not use GRASP discovery method to locate the registrar due to security measures. It can
only be in contact to its directly connected neighbors on the link level and only through LL address
before the registrar authenticates it. At this stage, to mitigate the security risks, the communication

between the pledge and its neighbors, which are authenticated members of the network, is limited.

19

For security concerns, the registrar cannot flood its presence since exposing itself might be a secu-
rity risk that allows malicious nodes to abuse the information. Richardson et al. [30] introduce a
new role that can fill the gap between pledge and registrar with a low-security risk called join proxy.
The join proxy is the middle node connecting the pledge to the registrar, which is already an au-
thenticated part of the domain. The pledge knows that to get to the registrar, it must first go through
the join proxy. Hence, it will start looking for a join proxy among its neighbors using DULL. Upon
finding the join proxy, the pledge will send a voucher_request message destined to the registrar
and relayed through the join proxy. Figure 2.10 illustrates the structure of voucher-response.

If multiple join proxies are discovered, the first one discovered will be used. Figure 2.10 depicts

{
" ietf-voucher-request:voucher”: {
"assertion": "proximity",
"nonce": "62a2e7693d82fcda2624de58Tb6722e5",
"serial-number” : "JADA123456789",
"created-on”: "2017-01-01T00:00:00.000Z",
"proximity-registrar-cert”: "base64encodedvalue=="

Figure 2.10: Voucher request structure [30]

the structure of a voucher request that contains information about the pledge device, such as “serial
number”. A nonce is stored in the voucher_request to guarantee the freshness of the request.
As the pledge receives the confirming voucher request, it will act as join proxy [6, 30].

The join proxy will forward the Pledge_Request_Voucher to the registrar. The registrar
will run a set of preliminary authentication operations of the request and forward it to the MASA
after adding additional information about itself for authentication purposes.

In Section 2.4.1, we discussed how the pledge does not contact the MASA directly, and it is the
responsibility of the registrar to forward the P1edge_Request_Voucher to the MASA.

The MASA will also check the P1edge Request Voucher and the additional information
from the registrar. Upon successful authentication of the pledge device and the registrar, MASA
will inform both pledge and the registrar in a single message. The part meant for the pledge device
will be encrypted using the same keys that the MASA embedded in the pledge. If the request is not

valid, meaning that the pledge device or the registrar is fraudulent or the information sent to MASA

20

is incomplete, a message indicating that the request is invalid will be sent back to the registrar and
pledge. If the registrar is willing to accept the pledge, it will send back the Voucher_Response
through the same join proxy. The pledge will receive the response, and if it is a valid one, the pledge
will then join the domain and configure its ACP. Henceforth the pledge is a part of the domain and

can communicate securely with other entities using the certificate issued by the registrar.

21

Chapter 3

Topology Discovery

Topology discovery is the process of finding the connections between every pair of entities in
a network. In Chapter 1 we mentioned the importance of TD in network management. The output
of this process can allow the autonomic nodes to understand their surroundings better and make the
processes such as routing or failure-recovery faster and more efficient.

The other use case of the TD results is in Software Defined Network (SDN). The SDN is a new
approach toward central network management. SDN proposes separating the control plane from
the data plane to enhance the network management experience [11]. By controlling the software of
the network devices, e.g., SDN-enabled switches or routers, controlling and monitoring the network
entities will take place much more easily through a central SDN controller. Islam et al. [19] suggests
the benefits of knowing the topology of the network for multicasting in SDN. For classical multicast,
the destinations are not known. The individual routers only know there are one or more interested
receivers connected to one of its interfaces. Essentially, a set of shortest-paths are developed, from
the source to the entire set of destinations. Islam et al. [19] discusses in context of an SDN, the
centralized controller can have a view of the overall topology, and can therefore set up the switches
to provide different optimizations. So, the operation of SDN in general depends on the central
controller knowing the actual topology of the network, and multicast SDN can make use of topology
information to make application-dependent optimizations.

Donnet et al. [14] categorizes TD in three main layers. The overlay TD, the network level

(internet level) TD, and link-level TD. The network level TD focuses on the higher level TD in the

22

internet. Networking is not just about the physical connection between two end nodes in a single
domain. Today’s internet is much larger and is about connecting different networks. Routing can be
done inside a domain between two entities in the same subnet by using well-known protocols such
as OSPF [26] (a link-state routing protocol) or RIP [17] (a distance-vector routing protocol), or it
can be done between two independently operating networks with different addresses and subnets
by using protocols such as BGP [22]. In the case of link-state routing protocols, the nodes are fully
aware of the topology of the network and use that information to decide on the shortest path. As
for distance-vector protocols, nodes will have a partial information about the topology available
to them. The overlay topology focuses on the P2P connection of a system [14], and the link-
level TD focuses on the physical connection between two nodes. The link-level TD is the basis of
many network management tasks [14]. The link-level TD describes how devices in a network are
connected. The link-level TD will provide all connections between two entities.

In Chapter 2, dependency of autonomic nodes on their neighbors and their constant commu-
nication were discussed. The constant communication takes place for different purposes such as
enhancing routing or updating/exchanging configuration parameters. Since the physical connec-
tion between the autonomic nodes is critical, methodologies that investigate physical connectivity
between the nodes are more studied in this research.

Another way to categorize TD is based on how the TD method collects, stores, and distributes
the information. All the mentioned actions could be done in a centralized or a decentralized manner.
In a central approach, all the information is gathered by a single node and stored on the same node.
The role of the central management entity is predetermined by the network administrator or decided
by an election process. In distributed computing the leader election is the process in which all the
nodes participate in choosing a single node as their leader. They all send data to or communicate
with that single selected node instead of broadcasting messages to all nodes. The selected leader
node can be distributing the data and responding to requests or facilitating the communication be-
tween two nodes [32]. Heuristics depend on random factors or node-specific information such as
the node id (integer) in the network. For example, the node with greatest id value can be selected
as the leader. However, the efficiency of the election process correlates with the size of the net-

work. As the network size grows, the time and the number of messages required for this process

23

also grows. The second approach is a distributed approach, where different nodes take part in col-
lecting the topology information from the other nodes. The processed information can be stored
in a distributed manner among several nodes. The storage of the topology map can be different in
distributed systems. All nodes responsible for holding the topology map can have replicas of the the
topology map. This type of data storage is referred to as replication in distributed systems terms;
or, each responsible node can hold a part of the topology map. The aggregated stored topological
data from all the nodes, which are storing a part of the map, gives the full topological map of the
network.

This chapter is dedicated to reviewing different methodologies for TD and checking whether or
not they can be applied to autonomic networks. We can categorize the physical TD methodologies
based on the features of the network, such as wired or a wireless network or being centrally managed
or not. Depending on the type of network, different methodologies can be used.

Different methods can be used in different stages of TD or TM. For example, we can propose a
new method for the setup phase of the topology map, and we can use the diagnostic tools for TM
purposes. In the following sections, different approaches will be briefly discussed, and some of the

most well-studied methodologies will be explained along with their limitations.

3.1 Existing Diagnostic and Management Tools

Topology discovery has been investigated in many contexts, and many of the existing method-
ologies depend on traditional tools and protocols such as Simple Network Management Proto-
col (SNMP), Internet Control Message Protocol (ICMP), and Address Resolution Protocol (ARP)
[1, 34].

SNMP is used for managing a network and controlling the devices by collecting information
and organizing it. ICMP is used for diagnostic and monitoring purposes in IP networks [29]. ARP
is used to map the IP address to the physical address of the interfaces, i.e., MAC address [28]. Yin

et al. [34] discuss the limitations of the above internet protocols for TD purposes.

24

3.1.1 ICMP for TD

ICMP requires prior knowledge of the network. This means that the supposed network con-
troller must have a complete list of the entities of the network. That is why ICMP is not a suitable
approach for TD. The controller can use ICMP messages to check whether or not the entity is alive.
As described in Chapter 2, autonomic nodes must be able to configure themselves upon joining
the network without any prior knowledge of the network entities and must only obtain setting pa-
rameters through communicating with their authenticated neighbors [7]. There are also security
concerns regarding ICMP messages, e.g., firewall blocking and spoofing ICMP messages. There-
fore, we suggest using ICMP messages during the TM process for networks that are not dynamic

and have a stable connection.

3.1.2 ARPfor TD

The ARP is used for resolving the IP address to the MAC address of the interfaces. Neverthe-
less, ARP cannot find the connection between the entities in the network. It can help us find the
existing entities, but as mentioned, it cannot generate the map of the network that represents the
connection between the entities. Also, in reasonably large networks, ARP will be inefficient as it
cannot represent all the entities due to the size of the ARP table [34]. However, if needed, ARP can

be used to discover neighbors’ IP addresses and map them to their respective MAC addresses.

3.1.3 SNMP for TD

SNMP is a standard IP protocol used for management purposes by gathering and organizing
the information of the network. For SNMP to work, both peers (the SNMP server and the client)
must support the SNMP as SNMP is not always enabled for security reasons. Much redundant
information can be transmitted as SNMP was not explicitly designed for TD purposes. Also, SNMP

requires prior knowledge of the network.

25

3.14 traceroute for TD

Other tools can be used to discover the network’s topology, like t raceroute. Like ICMP,
traceroute is also a diagnostic tool in an IP network that allows us to find the path and round
trip time from the source to destination. Like previous methods, t raceroute also requires prior
knowledge of the network IP addresses, and it is not capable of representing the full connectivity

between the nodes.

3.1.5 IPv6 Network Discovery Protocol

In Section 2.2 we discussed the [Pv6 address structure and its advantages over IPv4 in autonomic
networks, which is why NRMG chose IPv6. Another approach to finding the network’s topology is
gathering information from the ND protocol. IPv6 allows nodes to find their neighbors and actively
checks their reachability by sending specific ICMP messages discussed in Section 2.2. Most com-
munications in ND protocol is limited to communication between the neighbors by sending simple
ICMP messages. Therefore, it does not consume a considerable amount of bandwidth. However,
the information is still local to a node and its neighbors. We require a central node to collect this

information and process it to generate the topology map of the network.

3.2 TD in Centrally Managed Networks

In the previous sections, the limitations of the traditional tools were discussed. Earlier in this
chapter, SDN was introduced. There has been a thorough investigation of different TD methodolo-
gies in SDN networks [35]. This section is dedicated to investigating some of the most well-known
TD and TM approaches in SDN and checking whether or not the methods apply to autonomic net-

works.

3.2.1 OpenFlow Discovery Protocol

McKeown et al. [25] initially introduced the OpenFlow protocol for research purposes to allow
researchers to run tests in heterogeneous networks regardless of their vendors. OpenFlow works

on the forwarding level of the switches or routers and allows the controller to specify the path

26

each packet takes. OpenFlow protocol is the primary communication protocol between the SDN
controller and the other entities [4]. OpenFlow is a widely used method for TD purposes, but it has
some limitations. OpenFlow is vulnerable to many attacks, e.g., link-fabrication, switch spoofing,
etc. [4].

Azzouni et al. [4] introduced a secure TD method based on OpenFlow protocol in SDN called
Secure OpenFlow Topology Discovery Protocol (sOFTDP). Figure 3.1 will help us demonstrate

how the proposed method works.

Controller

Figure 3.1: Different steps of SOFTDP [4]

The security measurements taken for the SOFTDP are out of the scope of this thesis. We con-
centrated more on the message flow between the entities in order to demonstrate how the topology
map is generated. The proposed solution by Azzouni et al. [4] starts by sending out LLDP packets.
LLDP packets are used for informing neighbors of the node’s information. This information may
include chassis ID, port ID, etc. It is sent out from each interface periodically.

Upon a new switch joining the network, the controller and the switch will start exchanging
OFPT_HELLO. This message is followed by a feature_request from the controller. The
feature_response includes the status of the ports, which are all set to down initially. Consider
Figure 3.1, when all four switches join the controller and then set up the links between themselves,
and their port status will change from down to up. The switches will then inform the controller
about their ports’ status change. The controller will then start sending out LLDP packets to the up
ports on the switches with a specific path starting from one switch and ending in the controller to
determine whether or not there is a path between the switches. After receiving the LLDP packets,

the controller can generate the topology map.

27

To figure out the paths between any two entities in the network, a specific LLDP packet must
be generated. For each path between any pair of nodes, this process must take place. Therefore this
method is highly inefficient and time-consuming. Also, it requires a central node commanding the

other nodes to take actions, which is in contradiction to the desired autonomic behaviour.

3.2.2 Self-healing TD Protocol for SDN

Ochoa-Aday et al. [27] introduced the Self-Healing TD (SHTD) Protocol that allows nodes
decide for themselves and act autonomously during the failure recovery phase. This method cat-
egorizes nodes and ports (interfaces) on each device. Each node in this SDN can hold one of the
following states: non-discovered node, leaf node, v-leaf node, and core node. The SDN’s controller
goal is to create a control tree in which each node knows its parent node and path to the controller.
A non-discovered node is a node that has not yet received any requests (t opoRequest) to join the
control tree. A leaf node is an external node, and a v-leaf node has all its ports connected to other
leaf or v-leaf nodes. The remaining nodes will be considered as core nodes [27].

As discussed by Ochoa-Aday et al. [27], each port can have one of the following states: standby
port, parent port, child port, and pruned port. A port is a standby port when is not a part of the
control tree. A port is considered a parent port when it is an upstream port and initially received a
topoRequest message on that node. A port is a child port when it is a downstream port and has
received an echoReply message. A pruned port is a child port that has received a topoReply
message and now is connected to a leaf or a v-leaf node.

The TD process starts with a probing method. Initially, all nodes before being discovered
are in a non-discovered state. First, the SDN controller will send out t opoRequest messages
to its directly connected subordinates. The receiving node will then reply to the source of the
topoRequest with an echoReply. The echoReply helps to determine the Round Trip Time
(RTT) and also contains information that allows the receiving node to announce to its neighbors
which node it has joined. The receiving node will then start to relay the t opoRequest message
to other neighbors on all interfaces except the one on which it received the request. Depending on
the state of the receiving port, whether it is a standby port or a non-standby port, nodes will

act differently. In the former case, the node that receives the topoRequest messages will set

28

the node that sent the request as its parent, and in the latter case, the receiving node will drop the
request. This is done to avoid sending redundant information by nodes that have already joined the
tree. By doing so, the network will gradually create a tree, and nodes that have joined the tree will
periodically send out neighboring information to the SDN controller through their parent. So far,
this method follows a probing method for creating the topology map of the network. Ochoa-Aday
et al. [27] proposed a solution for self-recovery that is autonomous.

Upon failure of a node in the network, neighbors will take different measures according to the
state of their ports. If any standby, child, or pruned ports fail, the failure will be directly reported to
the SDN controller since their parent port is still alive and a part of the control tree. If a parent port
fails, the node must autonomously decide on recovery on the forwarding level. Since the node has
been separated from the control tree, it has no routes to the controller; therefore, it must first find
a new parent. The failure recovery starts by sending out t opoUpdate messages on all interfaces
(except the one that has failed) to find a new path to the SDN controller. If the ports that receive the
topoUpdate have any active parent ports, they will reply with a replyUpdate; otherwise, they
will relay the topoUpdate to their other neighbors. In this method, the nodes will take action
by communicating with their neighbors, similar to autonomic networks. The autonomic failure
recovery process is similar to the self-recovery goal introduced by ANIMA. But, since the context
is defined in SDN, the network needs a central management entity that performs heavy tasks on
the network and still has control over the nodes inside the network. Also, SHTD protocol is more

focused on the self-healing purpose than on generating the topological map of the network.

3.2.3 Other TD Methods

There has been much research on TD in wireless networks, especially in ad-hoc linear sensor
networks such as the proposed method for linear sensor networks by Jawhar et al. [20]. These meth-
ods mostly depends on the signal strength to detect close neighbors. Some of the proposed solutions
in ad-hoc linear sensor networks such as Jawaher et al. [20] or Ali et al. [2], are purpose-built so-
lutions, designed for linear wireless networks. We are looking for a more general solution capable
of supporting any arrangement of the nodes. For the purpose of this thesis, we have investigated

mostly wired-connected networks.

29

3.3 Distributed Methods for TD

As the network grows in size, the performance of centralized TD algorithms drops. Meaning
that since the central entity must handle more messages, the wait time for other nodes will increase
to get their response from the central entity, and hence decrease the performance of the overall
network. For a more scalable approach, we must look into a distributed solution. In distributed
systems, nodes can have more freedom to make their own decisions and act more autonomously.
Also, by distributing the data and the processing power across the nodes, the network can experi-
ence better performance. In this section, we focus on the distributed method for TD. In distributed
methodologies, each node or a selected group of nodes is responsible for collecting, processing, and
distributing the neighboring information of all nodes or a selected group of nodes. For example, by
using the link-state routing protocols, each node can generate a topological map of the network, but
there is a certain limit to this approach. Clustering is known to be the first stage of solving many
distributed problems. By breaking the problem space and the data into multiple pieces, we can
balance the workload of a distributed network among multiple nodes. Even for centrally managed
networks, clustering can be a good solution to improve their performance. The following section

provides a definition of clustering and its use cases for TD.

3.3.1 Clustering

In previous sections, we discussed autonomic networks and TD, the two main concepts in this
research. According to centrally managed methods mentioned above, centralized TD can be a
heavy task on the network due to the significant number of messages that are exchanged and the
considerable amount of bandwidth it consumes. Clustering is the process of grouping a set of
nodes together based on a similar feature under the same cluster representative, which we call
cluster head. Nodes in the same cluster can have similar behavior, similar functionality, same goal,
reachable within a specific radius of the cluster head, etc. It helps the network to break into non-
overlapping clusters and distributing the collection of data, process of data, and distribution of the
data among the clusters. Clustering gives us the advantages such as increased processing speed,

network extensibility, easier management, minimizing storage for communication informations,

30

optimizing bandwidth consumption, etc. [5].

Dali et al. [33] categorizes the clustering algorithms based on four main criteria: One-hop
or multi-hop, synchronous or asynchronous, location-based or non-location-based, stationary or
mobile. Considering the formation of nodes in the network, the network’s purpose, and the nodes’
features, a clustering scheme will be chosen.

The initial step in every clustering method is to identify the characteristics of the underlying
network and then the network will move to the next phase, which is cluster head selection. The
selection of cluster heads can depend on many features. One of the most common and easy methods
for cluster head selection is the use of the device ID. The device with the lowest or the highest ID
number in a range of k hops, will be selected as cluster head. Lin et al. [24], and Amis et al. [3], use
the lowest and the highest device ID to select their cluster heads respectively. But, depending on the
network a selection mechanism based on more than one attribute can be used for choosing the cluster
head. Zhang et al. [23] introduce a metric based on multiple factors to select the cluster heads. After
the cluster heads are selected, they will make their neighbors aware of the change in their state, and
wait for nodes to join their clusters. After the clusters have been shaped, nodes will move to the
next phase, which is cluster maintenance. During the cluster maintenance phase, nodes can leave
their cluster and join other clusters, new nodes can join or leave the network. Reconstruction of
the clusters is a costly task for the network. It takes time and a considerable number of messages.
Therefore, the cluster reconstruction must be justified perfectly to not affect the performance of the

network.

3.3.2 Cluster-based TD in Vehicular Ad-Hoc Networks

Zhang et al. [23] propose a k-hop, location-based clustering protocol for TD in a Vehicular Ad
Hoc Network (VANET). By definition, a VANET has a dynamic topology, meaning the nodes leave
and join the network non-deterministically often. Zhang et al. [23], use the highest connectivity,
vehicle mobility, and host ID as metrics to select the cluster head. The vehicle mobility metric
is location-based, yielded from the GPS information (location), velocity, and transmission range.
Since nodes tend to send beacon packets periodically to neighbors to announce their presence, they

are made aware of each others’ presence. Using all the above metrics, the average link expiration

31

time between 2 mobile nodes in a VANET will be calculated. Zhang et al. [23]. provide a detailed
description of how to calculate the link expiration in their paper. Zhang et al. [23] argue that the
vehicle’s number of neighbors is important in selecting the cluster head since the proposed solution
focuses on reducing the number of small clusters. Each vehicle node has a predefined link expiration
metric threshold. If the calculated link expiration is greater than the predefined link expiration metric
threshold, the node will announce itself as cluster head. Before announcing it to other neighbors, a
winning metric will be generated based on the average link expiration metric calculated previously,
and the number of neighbor vehicles. The winning metric will be broadcast to neighbor vehicles in

the broadcasting range of the node. The receiving nodes have one of the two following states.

* The node has already announced itself as cluster head and broadcast its winning metric to

other neighbors

¢ The node has not announced itself as cluster head

In both states, the node will continuously listen for incoming winning metrics from other nodes. As
for the nodes that are in the former state, if their winning metric is less than the one received, they
will update the value of their winning state to the received value, and as for the nodes in the latter
state, they will set their winning metric to the one received. The receiving nodes will then start to
broadcast the winning metric of the cluster head to their neighbors to make sure all nodes in the
k-hop distance of the cluster head will receive the winning metric. Once the nodes have broadcast
the information to other neighbors, any node willing to join will respond to the cluster head with the
convergence packets, including device ID, cluster head ID, and their neighboring list. The process
of sending convergence packets starts from the furthest nodes, referred to as cluster-border nodes.
Each node waits until it receives the information from the nodes that are further from the cluster
head, and after receiving their convergence packets, the node will update its cluster information
and send the convergence packets to the cluster head. Upon receiving the convergence packet from
all nodes, the cluster head will generate a complete list of the neighboring nodes and send it back
to the nodes inside its cluster. The cluster head will provide the local connectivity table to the
nodes. The link connectivity table contains the following information: distance to cluster head,

neighbors of each node, gateway to neighbor clusters. Member nodes will use a link-state routing

32

protocol to generate the cluster’s topology map based on the information from the link connectivity
table. The member nodes will also generate an inter-routing table using Dijkstra’s shortest path by
using the information from link connectivity table to other clusters. Autonomic nodes have no prior
knowledge of the network. The proposed solution in this section embeds a link expiration metric
threshold and the range of the cluster head into the device based on the network’s and device’s

characteristics. Hence, it contradicts the design goal for autonomic networks proposed by NMRG.

3.3.3 Distributed Clustering for Ad-Hoc Networks

The proposed solution in this section is a clustering scheme rather than focusing on TD. In the
next chapter we will discuss the reason behind introducing this clustering scheme.

Basagni [5] introduces a one-hop clustering algorithm that allows nodes to decide roles them-
selves without any controller. The algorithm is a single-hop, non-location based, asynchronous
clustering scheme, which can support mobile behaviour in nodes as well. Each node will decide
whether or not it is a cluster head based on its own weight and its neighbors’ weight. The heaviest
node among neighbors that are exactly one hop away will be considered the cluster head.

Each node goes through the initial phase and determines if it is a cluster head. The node will
let its neighbors know if it is a cluster head. The autonomic nodes with heavier neighbors will
wait to receive updates from their heavier neighbors to check which heavier node to join if one
or multiple heavier neighbors declared themselves as cluster heads. This decision is made upon
receiving updates from all of their heavier neighbors.

In the situation where none of the heavier neighbors announce themselves as cluster heads, and
they want to join other clusters, the node will announce itself as the cluster head. After any change
in the roles of the nodes, update messages will be sent to the neighbors. The changes include a node
announcing itself as cluster head, a node joining a cluster, and a node being aware of link failure or
new links.

After each node successfully decides its role, it moves to the maintenance phase. Each node
will listen for updates from their neighbors’ roles or check their reachability. Upon receiving any
updates during the maintenance phase, one of the situations mentioned below might happen. For

clarification purposes, please see Figure 3.2.

33

Figure 3.2: Node u is the cluster head to nodes v and z. Node p has not yet joined the network.

u is aware of node v leaving the network: Node u removes node v from the neighbor list and

updates the map.

v is aware of u leaving the network or changing its role to a non-cluster head node: v will first
update its neighbor list (if # has left the network) and then starts looking for a new cluster
head or announces itself as the cluster head if there are no other heavier cluster heads among

the neighbors.

v is aware of z leaving the network: Since z is neither v’s cluster head or v is not z’s cluster

head, node v simply removes z from the neighbor list.

u is aware of a new link to p it will first update its neighbor list: If p is heavier than u and

announces itself as cluster head, «# will join p and update its neighbors.

34

Chapter 4

Problem Statement

Having access to the topological map of the network is an essential part of network manage-
ment. Having an updated version of the topology map allows the administrator, nodes, and any
management entity in the network to make faster and more efficient decisions. Decisions such as
failure recovery, updating routing tables, applying policies, etc., are some of the actions that depend
on having access to an updated topology map. The importance of TD in network management was
discussed in more detail in Chapter 1.

To our knowledge, there has been no prior research on TD in autonomic networks. This is
the first time that TD and TM solutions and their challenges and benefits are being investigated in
autonomic networks. A primary goal for this research is to investigate whether TD is helpful to
autonomic networks. It must be investigated what type of information we should provide to the
nodes, how we are providing it, and how autonomic nodes will use that information.

In Chapter 1, it is discussed that the autonomic network is expected to be self-configuring,
self-protecting, self-healing, and self-optimizing. These characteristics can directly depend on the
topology of the network. For example, similar to the described TD method in Section 3.2.2, if a
link to a specific node goes down, the autonomic node will move to a failure recovery state. If
the disconnected autonomic node has a good understanding of the network’s topology and it has
multiple options to chose from, it can look for possible neighbors that have the path with the least
cost to the controller and update the routing respective to the information it obtained from the

topology map. Knowing the topology of the network here will reduce the cost of message passing

35

between the autonomic node and the controller. The mentioned example is one of the examples out
of many that show how TD can help autonomic networks to enhance their performance.

At this point, the next step is to find a way to collect, process, and distribute the topological
information efficiently. As discussed in Chapter 3, centrally managed methods are more likely to
be used for TD purposes such as being easier to implement and maintain. However, such meth-
ods require that each node, no matter how many hops away, must be in touch with the network’s
controller. In Chapter 1 and Chapter 2, we discussed how autonomic nodes are in constant com-
munication with their neighbors, as a design goal proposed by NMRG. Therefore, it is important to
propose a solution that mostly depends on communication with the neighbors. The TD approach
we propose should attempt to minimize the number of messages that being exchanged for TD and
TM purposes.

By decreasing the number of TD and TM messages, we can use less bandwidth for control and
management purposes and leave most of the bandwidth for data transfer. By decreasing the time for
all nodes to converge to the same state regarding the topology map, all nodes can make decisions
faster and will not face conflicts.

Another important aspect of this thesis is investigating how the topology map must be stored. In
Chapter 3, most TD methodologies store the topology map in a central node. However, storing the
topology map in a centralized fashion in autonomic networks may lead to lower network efficiency
and more bandwidth consumption. Therefore, we need to find the best possible solution for ways
of storing the topology map in autonomic networks as well.

All the goals mentioned above focus on increasing the efficiency of the network and leaving
more bandwidth for the data to be transferred. In Chapter 5, we will discuss our proposed solutions
that will help an autonomic network to gather, generate and maintain information on the domain’s

topology.

36

Chapter 5

Proposed Solution

In previous chapters, we discussed autonomic networks and TD, the two main concepts in this
research. The autonomic network is the infrastructure that we are using, and our goal is to generate
the topology map of the network by using the facilities provided by the infrastructure.

According to methods reviewed in Section 3, TD can be a heavy task on the network due to
the significant number of messages that are exchanged and the considerable amount of bandwidth
it consumes. In Chapter 3 different TD approaches have been introduced. The TD approaches must
be designed based on the characteristics of the underlying network. For the purpose of this research,
autonomic network constitutes the infrastructure on which we are working. Different attributes of
autonomic networks were discussed in Chapter 2. Autonomic network elements constantly com-
municate with their directly connected neighbors to exchange information such as configuration
parameters, etc. Therefore, a more local approach for gathering the topological information of each
node is more appropriate. However, as described in Section 2.4, in a fully working autonomic
network, BRSKI is in charge of the security aspects of the network. Upon joining the domain,
each node must contact the registrar through a join proxy to verify its authenticity. Therefore, in a
fully working autonomic network, nodes are aware of the presence of the registrar, a central entity
in charge of the security of the network. We have proposed solutions for both scenarios explained
above. In this thesis, we described both centralized and decentralized solutions for TD in autonomic
network. As for the purpose of this research, we consider the network to be stationary during the

TD setup phase but during the TM phase nodes are allowed to leave or join the network.

37

To be able to implement the solutions and communicate between the nodes, we used an imple-
mentation of GRASP that was written in the Python programming language by B. Carpenter !. We
used the communication services from GRASP such as GRASP discovery and GRASP negotiation

mainly, to achieve our implementation goals.

5.1 Solution Based on Clustering

Our first proposed solution for TD is based on clustering approach. The goal here is to group
the nodes into non-overlapping clusters and present a node from each cluster as its representative.
Definition of clustering and different clustering methods have been provided in Section 3.3. As
noted in Chapter 1, we base our solution on the version introduced by NMRG and standardized by
ANIMA.

For the purpose of this research we decided to employ a clustering scheme similar to the de-
scribed clustering methods in Section 3.3.3, which is single-hop, asynchronous, non-location based.
As for the mobility aspect of the clustering scheme, we propose a hybrid model. Depending on the
state of the nodes, the clustering algorithm considers the network to be stationary during clustering
setup phase and supports nodes leaving or joining during the maintenance phase. The described
clustering scheme is single-hop since autonomic nodes are already aware of their neighbors LL
addresses and depend on the updates they receive from neighbors. Since autonomic nodes work
independently, we consider them as asynchronous. The actual location (e.g. yielded from GPS)
of the nodes is not a factor in the TD process and the physical connection is important. Thus, the
proposed clustering solution for TD is a non-location-based clustering scheme.

After each node joins the network, the ACP can provide the autonomic functions with infor-
mation about the neighbors. The ACP utilizes IPv6 ND protocol to provide a list of all physically
connected neighbors and will return a list of the LL address of all neighbors for each node. The
ACP can provide the ULA address of the neighbors to the autonomic node as well.

At the early stage, when the node boots up, the node has preliminary information about its

surroundings but does not know anything beyond its directly-connected neighbors. In order to

"https://github.com/becarpenter/graspy

38

enable the nodes to exchange their neighbor list, we store a list of the neighbors, provided by the
ACP, as a part of the value of a GRASP objective. Since the value of this objective is going to be
negotiated, the negotiation flag of this objective is set to true upon registration on an ASA. Along
with the neighboring information, a weight is assigned to each node. The weight of each node
can depend on different attributes, such as the number of interfaces, the aggregated bandwidth, etc.
Similar to Zhang et al. [23], the number of interfaces (indicating the number of direct neighbors)
is chosen as a metric to calculate the weight of the autonomic nodes. Having larger clusters will
reduce the number of clusterheads. Therefore, it results in a simpler clustered network and more
efficient inter-cluster communication. We assume the weight of a node does not change during its
existence in the network.

Other cluster-related attributes are stored along with the neighbor list and weight, such as the
port number assigned to each objective registered on the ASA, a list of members of the node’s
cluster (if the node is selected as clusterhead), the locator of the node’s clusterhead (if the node is
not a clusterhead), and a flag indicating the node is a clusterhead. All the node related information
is stored in variable, local to each node. The variable is a map container (dictionary in Python),
which is called node_info. The key of the map (dictionary) is the name of the node’s attribute
and the value for those keys are the value of node’s attributes. The structure of node_info is

shown in Figure 5.1. As depicted in Figure 5.1, each node has a weight yield of the product of

node_info = {
'weight': NUMBER_OF_INTERFACES*random(0, 1),
'clusterhead': False,
'clusterhead_location': None,
'cluster_set': [],
'neighbors': NEIGHBORS_LIST,

"ports':{
‘objl': 0,
‘obj2': 0,
‘obj3': 0,

}

Figure 5.1: Structure of node_info

39

the number of interfaces with a random number. The randomness allows us to have better tests and
experiments. The clusterhead is initially set to False, but after the initial clustering phase, the
value changes. If the node is a clusterhead, the value of clusterhead will change to T'rue. Later,
by checking the value of clusterhead, neighbors will understand that the node is a clusterhead. If
a node joins a cluster, the value of clusterhead_location will change to the ULA address of the
cluster’s clusterhead. A clusterhead will store the members of its cluster in the cluster_set list.
The node will store an updated list of its neighbors in the neighbors list. The neighbors lists are
maintained by the ACP and are always up to date. As discussed in Section 2.3.1, a port number
will be assigned to each GRASP objective upon being registered on the ASA. The port numbers are
initially set to 0, but as the objectives get registered, their respective port numbers will also update.

The structure of a GRASP objective that holds the value of node_info is depicted in Fig-
ure 5.2. This objective will later be used to exchange information between the nodes including

neighboring information, cluster-related information, etc.

CLUSTERING_OBJECTIVE = {

name : 'topo_obj',
discoverable : True,

neg : True,

dry : False,

synch : False,

loop_count: 1@,

value : cbor.dumps(node_info)

Figure 5.2: Topology discovery GRASP objective

The objective from Figure 5.2 will be registered on an ASA of an autonomic node. After an
objective is registered, its value can be modified and updated. As discussed Section 2.3.1, upon
registering an objective on any ASA, a random port number is assigned to that objective. As long
as the objective is registered on the same ASA and on an active autonomic node, this port number
does not change. After the t opo_obj is registered on the ASA, the value of its port number will be
stored in the node_info attribute, initially. Then, the value of the t opo_ob j will be updated by
serializing node_info using cbor. At this stage, the local variables and objectives required for a

communication are defined and created. In the following we will describe how nodes are going to

40

utilize them.

The state machine from Figure 5.3 demonstrates a node’s different states during the TD and TM

processes. The state machine below, shows the path each node takes during TD and TM.

LT S '/-\\ /-‘\
7 . .
I," \‘\‘ P _/ Send g _/ B e—
\ . . - ..
l" Weight ¥ a;lr?::;ece _ § _4 | Discover \ s send N
v exchange . / \ other CHs I N update to
\ / . i i . . il J cluster
\\ 4 \, - / N, N e} members
] T~ "I" o _+ . andother
e N, CHs s
. 12 . .
-/ ~.. -
6 | /:
s /
| L
o
e J\Y\ send updates
/)
Send r to CH

update to
neighbors

Non-clusterhead

mmmm » = = Clusterhead

w1 Valid for both

Figure 5.3: TD using clustering state machine
On each arrow of Figure 5.3 there is a number. The numbers refer to an event. The events that

might happen are listed below.

(1) Once the weight of all neighbors is received via GRASP negotiation, the node will run the
initial procedure to decide its role. If heavier neighbors exist, the node will move to the next

state to listen for clusterhead announcements from its neighbors.

(2) Once the weight of all neighbors is received via GRASP negotiation, the node will run the
initial procedure to decide its role. If the node is the heaviest node among neighbors, the node

will proceed to the next state to announces its change of role to clusterhead.
(3) All heavier nodes joined another cluster themselves, the node introduce itself as clusterhead.
(4) The node is a clusterhead and tries to discover other clusterheads.

(5) The node joins a cluster and the neighbors know it has joined which clusterhead.

41

(6) The node is a clusterhead and goes to maintenance phase; to start listening for any types of

update e.g. link-failure, new links detection, etc.

(7) The node is not a clusterhead and goes to maintenance phase; starts listening for any types of

update e.g. link-failure, new links detection, etc.
(8) The link to clusterhead fails; move to looking for new cluster state again.
(9) The node is not a clusterhead and reports update to its clusterhead.
(10) The node is not a clusterhead and after reporting returns to maintenance phase.

(11) The node is a clusterhead and notices an update; update the topology map, updates its peer

clusterheads and then updates its subordinate nodes.

(12) The node is a clusterhead and after reporting updates to clusterheads and non-clusterheads

will return to maintenance phase.

5.1.1 Setup Phase

Before the clustering process begins, each node will exchange its weight with its neighbors
through GRASP negotiation. During this cluster setup phase, nodes are to be stationary. After a
node has received all the weights from its neighbors, it will move to the setup phase. The pseudo
code for the setup phase is provided in Algorithm 1.

During the setup phase, as described in Section 3.3.3, each node will autonomically decide
whether it is a clusterhead. If the node has the heaviest weight among its neighbors, it will announce
itself as clusterhead by letting its neighbors know about its role change.

Autonomic nodes are responsible for letting their neighbors know about any updates. This
method of updating is referred to as the push model. There are two different approaches when it
comes to updating others. The two approaches are push model and pull model. In the former, each
entity in the system will send an update to its peers upon changes, whereas for the latter approach,
an entity will request updates from its peers. The pull model is usually done periodically, while the

push model is trigger-based. An observer constantly checks for changes in trigger-based systems.

42

Algorithm 1 Initial phase for clustering setup on node u

role_decide = False > Used only for internal use
while Vv € neighbors, Weight(v) is Null do > Did not receive weight from neighbors

WAIT > Wait until the weights from all neighbors are received
end while

for Vv € neighbors do
if Weight(v) > Weight(u) then
heavier_neighbors.append(v) > Store heavier nodes in a list called Heavier_neighbors
else if Weight(u) > Weight(v) then
lighter_neighbors.append(v) > Store lighter nodes in a list called Lighter_neighbors

end if

end for

if SizeO f(heavier_neighbors) is 0 then
is_clusterhead = True > variable is_clusterhead is used only for internal use
clusterhead = True > If u is clusterhead, set boolean is_clusterhead to True

role_decided = True
for Vv € neighbors do
Send(v) : I am clusterhead
end for
end if
cluster_heads = DiscoverClusterheads() > The result will be stored in cluster_heads list

If the observer notices any changes, it will follow a pre-defined protocol to take action about the
change that has been made. Since the changes in a network are not deterministic, following the
trigger-based approach and push model is more reasonable. Upon any changes, the autonomic
nodes are responsible for reporting updates to their neighbors or clusterhead. After a node changes
its role to clusterhead, it will start looking for other clusterheads by running GRASP discovery for
other clusterheads. In the implementation provided for this solution, each node initially exchanges
weight and node specific information by running GRASP negotiation over t opo_obj, which is a
GRASP objective. Upon changing its role to clusterhead, a new GRASP objective will be registered
on the same ASA, called cluster_obj. This objective will be used by clusterheads to discover
each other and negotiate t opology_map of the network.

After the initial phase the clusterheads will update their neighbors. Non-clusterhead nodes will
start listening for incoming updates from their neighbors to check which one has changed its role to
clusterhead. Clusterhead nodes will start listening for updates to keep track of the nodes trying to
join them.

Algorithm 2 shows the pseudo code for handling clusterheads announcements on nodes who

43

were not decided as clusterhead during initial state.

Algorithm 2 listening to updates from neighbors on non-clusterhead node u
if Not is_clusterhead then
while Vv € heavier_neighbors, RoleDecided(v)is False do
wait > Wait until all heavier neighbors decide and announce their role
end while
heaviest_candidate = u
for Yv € heavier_neighbors do
if Weight(v) > Weight(heaviest_candidate) and isClusterhead(v) then
heaviest_candidate = v
end if
end for
if heaviest_candidate is not u then
is_clusterhead = False
clusterhead_location = v
role_decided = True
for Vq € neighbors do
Send(q) : I joinedv > Let other nodes know which clusterhead node u joined.
end for
else if candidate_to_join is u then
is_clusterhead = True
clusterhead = T'rue > none of the heavier nodes announced themselves as clusterhead,
therefore, node v announces itself as clusterhead
role_decided = True
for Vq € neighbors do
Send(q) : I am clusterhead
end for
end if
end if

Consider node v a non-clusterhead node. Node u will wait until it receives updates from all its
heavier nodes. The reason is that the chosen clustering scheme is a one-hop clustering method. The
heaviest node in a neighborhood of nodes will be selected as the clusterhead. Therefore, each node
must wait for its heavier nodes to announce themselves as clusterheads. According to Algorithm 2,
each node will decide whom to join among its heavier neighbors, which have announced themselves
as clusterheads. The heaviest neighbor, a clusterhead, will be selected as the clusterhead, and u will
join it. Upon joining a clusterhead, w will announce this update to all its neighbors so that the role
of u will be clear to all neighbors, especially the lighter neighbors. The decision-making of lighter

nodes depends on whether their heavier nodes are clusterheads. By announcing to all neighbors that

44

u has joined a cluster and is not a clusterhead, lighter nodes can remove u from their list of possible
clusterhead options to join. In a situation in which none of the heavier neighbors of « announce
themselves as clusterheads and decide to join other clusters themselves, u will announce itself as
clusterhead and make its neighbors aware of it.

In a very rare situation, where the weight of all the neighbor clusterheads is the same, the metric
that is used to join a clusterhead is the size of its cluster_set. The non-clusterhead node will
join a clusterhead that has a smaller cluster_set. The goal of clustering methods is to maximize
the size of each cluster as much as possible. Therefore, joining a smaller cluster will allow the
distribution of the cluster sizes to be normal, to prevent one cluster to grow considerably larger in

size than other clusters.

5.1.2 Maintenance Phase

After the roles have been decided, nodes will move to the maintenance phase. During the main-
tenance phase, depending on their role, nodes will take different measures towards taking action
according to the updates they receive. The messages a node receives will be either from their direct
neighbor or from a peer clusterhead only. The non-clusterhead nodes will only receive messages
from their neighbors, which include their clusterhead as well. The clusterheads on the other hand,
receive messages from both their neighbors and their non-neighbor clusterhead peers.

Algorithm 3, Algorithm 4, and Algorithm 5 demonstrate how different types of nodes will react
to incoming requests. Each of these algorithms according to their context will run in a separate
thread in parallel to other processes. Based on the information embedded in the values of the
incoming requests and the role of the receiving node, nodes will chose their next steps.

Consider node u is receiving an update message during the maintenance phase from node v.
If v is either w’s clusterhead or its non-clusterhead neighbor, the update sent from v will be stored
in a map container called neighbor_info. If v is a new neighbor and there is no record of v
in neighbor_info, a new record will be added to neighbor_info and then the value of the
incoming request will be stored in the neighbor_info. If v is the clusterhead of u, one of the
following situations might happen. If the update from v does not include any information about

v changing its role from clusterhead to non-clusterhead, v will update its topology map according

45

Algorithm 3 Handling incoming requests from v at non-clusterhead node v during maintenance
if v € neighbors And v ¢ neighbor_in fo then
neighbor _in fo.append(v) > New node added to neighbors_info map.
end if
neighbor_in folv] = incoming_request
if clusterhead_location is v And IsClusterhead(v) then

Update topology_map > Clusterhead sent an update.
end if
if clusterhead_location is v And Not IsClusterhead(v) then >

Current clusterhead announce joining another cluster, therefore it is no longer a clusterhead and
u must look for a new clusterhead.
Call FindClusterhead > Call Algorithm 2
return
end if
if Not clusterhead_locationisv And Weight(v) > Weight(clusterhead) And
IsClusterhead(v) then
clusterhead = v > Changing the clusterhead.
for Vq € neighbors do
Send(q) : I joinedwv > The current and the previous clusterheads of v are one-hop
away, therefore, they will be notified of the update by this message like other neighbors of .
end for
end if

to the update sent from v, its clusterhead. However, if the incoming update from v, which is u’s
current clusterhead, announces that v has changed its role from clusterhead to non-clusterhead, u
will change its state from maintenance to finding a new clusterhead. If v is not w’s clusterhead, but
it is a clusterhead in the network, and its weight is greater than the weight of u’s clusterhead, u will
join v and let its neighbors, including its clusterhead, know by sending them update messages.

If w is a clusterhead, depending on the role of v, one of Algorithm 4 or Algorithm 5 will be
selected to execute. If v is NOT a clusterhead, then Algorithm 4 will execute. Otherwise, if v is a
clusterhead, Algorithm 5 will execute.

Similar to Algorithm 3, the value of the incoming requests is stored in a different container. If
the incoming request is from a clusterhead node, then the value of the incoming request is stored
in cluster_heads, a container similar to neighbor_in fo that is responsible for storing the updates
from peer clusterheads. The clusterheads can still receive updates from neighbors, regardless of
being their clusterhead or not. The neighbor information is stored in neighbor_in fo. For both

mentioned containers, if the incoming request comes from a new clusterhead or a new neighbor,

46

Algorithm 4 Handling incoming requests from the non-clusterhead node v at clusterhead node
during maintenance
Require: Not /sClusterhead(v)

if v € neighbors And v ¢ neighbor_in fo then

neighbor _in fo.append(v) > New node added to neighbors.
end if
neighbor_in fo[v].update(incoming_request) > Updating information of v.
if v € cluster_set And Not Clusterhead(v) is u then

cluster _set.remove(v) > v is no longer a member of u’s cluster_set.

update topology_map
for Vq € cluster_heads do
Send(q) : topology-map
end for
for Vp € cluster_set do
Send(p) : topology_map
end for
end if
if Clusterhead(v) is u then
if v ¢ cluster_set then

cluster_set.append(v) > A new node just joined u’s cluster_set.

end if > If v is already recognized as

update topology_map > Update topology map according to the value of the new incoming
request.

for Vq € cluster_heads do
Send(q) : topology-map
end for
for Vp € cluster_set do
Send(p) : topology-map
end for
end if

a record in the containers will be created for them, and then their value will be stored. If v is
not a clusterhead but it has w as its clusterhead, if v is not a member of u’s cluster_set, it means
v has recently decided to join u. Node v will be added it the cluster_set of uv. Upon changing
the cluster_set, the topology map will be updated and distributed among member of cluster_set and
other clusterheads. If v is a member of u’s cluster_set, or v is a known peer clusterhead, the update
received from v will be applied on the topology_map and then the updates will be sent to all members
of cluster_set and other discovered clusterheads.

A clusterhead changing its role is a costly task on the network. Clusterheads together create the

backbone of the network. Clusterheads are selected based on more stable features, which means

47

Algorithm 5 Handling incoming requests from a clusterhead node v at clusterhead node v during
maintenance
Require: 7sClusterhead(v) is True
ifv € neighbors And v ¢ cluster_heads then > A (new) neighbor
has announced itself as clusterhead. Upon meeting the conditions, the clusterhead may change it
role and join the new neighbor, otherwise, two clusterheads can co-exist as neighbors.
if v ¢ neighbor_info then
neighbor_in fo.append(v)
end if
neighbor_in fo[v].update(v)
if Weight(v) > Weight(u) And SizeO f(clusterSet(v)) > SizeO f(cluster_set) then
15_clusterhead = False
clusterhead_location = v
for Vp € neighbors do
Send(p) : I joined v
end for
return
end if
end if
if v ¢ cluster_heads then > A new clusterhead v found w and is sending updates to u; This case
also include the newly joined neighbor clusterhead as well;
cluster_heads.append(v)
end if
cluster_heads.update(v)
update topology_map > update topology according to the value of update from v
for Vq € cluster_heads do
Send(q) : topology_-map
end for
for Vp € cluster_set do
Send(p) : topology-map
end for

they are less likely to change their roles [23]. Basagni’s [5] solution for clustering is only dependent
on the weight of the neighbors. This may lead to inefficient clustering, a large number of messages
exchanged, etc. Consider a star topology as shown in Figure 5.4. Node wu is the clusterhead of all
the connected nodes. Upon node v joining the network, according to the DMAC algorithm, u joins
v, and all w’s subordinates will lose their clusterheads. Since nodes 1 to n do not have any other
neighbors than « who have now joined v, they will announce themselves as clusterheads. This leaves
the network with n + 1 clusterheads. This autonomic decision-making based on a single factor is
not efficient. Therefore, for a clusterhead to join another cluster, the weight of a new neighbor is

not the only factor for changing its role.

48

If a clusterhead u is notified by the presence of another clusterhead v, it will check both the
weight and size of its cluster set. If both have greater values, then, in that case, © will withdraw from
its role as clusterhead and join v. This case happens only for newly added nodes. Because during
the initial phase, as discussed in Section 5.1.1, only the heaviest node among all of its neighbors will

announce itself as a clusterhead. Only in this case co-existence of two clusterhead will be allowed.

Figure 5.4: Star topology with w as clusterhead and nodes 1 to n a member of u’s cluster. Node v is
heavier than node u

Similarly, for a clusterhead to change its role and join another clusterhead there must be some
metrics more than just comparing the weight of the nodes. Consider v to be a clusterhead. Upon
establishing a new link between u and v, two clusterheads became neighbors. If v is heavier than u
and the size of its cluster_set is greater than the size of u’s clusterhead, v will change its role to
a non-clusterhead node and join v. It will announce joining v by sending updates to all neighbors,
which include the new clusterhead v and its previous members of cluster_set, since they are
all neighbors. In the case that the aforementioned condition is not met, the two clusterheads will
co-exist.

After clusterheads have discovered each other, they will start negotiating over the value of the
cluster_obj objective, which holds the value of the current version of the map of each cluster.
After the first round of negotiation among clusterheads, each clusterhead will review the list of all
the discovered clusterheads again and check whether or not the current version of the map is the
same as the one previously received by the peer clusterhead.

It may take more than one iteration, based on arrangement of the nodes and their distance, for all
clusterheads to have the same topology map. In the worst-case scenario, consider a linear network

of n nodes. Since we are using a one-hop clustering approach, clusterheads are at most three hops

49

away from each other, as shown in Figure 5.5 and Figure 5.6.
OnOn02020

Figure 5.5: Sample graph with clusterheads only 2 hops away; nodes «# and w and y are clusterheads
and node z has joined node u and node x has joined y.

Figure 5.6: Sample graph with maximum clusterheads distance; nodes u and z are clusterheads, v
and p joined u and z, respectively.

The number associated with each node in Figure 5.5 represents the weight of the nodes. In
Figure 5.5, the weights of the nodes are sorted as Weight,, > Weight, > Weight, > Weight, >
Weight,,.

According to the proposed clustering scheme, nodes z, and x will wait for heavier neighbors u
and y respectively, to announce their roles as clusterhead. Node w will wait for nodes z and x to
announce their roles. In the first iteration of updates, nodes u and y will announce themeselves as
clusterheads and nodes z and x will join them respectively. Although node w has the least weight
in the network, but since all of its heavier neighbors have joined another clusters, it will announce
itself as clusterhead. As you can see, the maximum distance between clusterheads is two hops.
In Figure 5.6 the nodes can be sorted as follow based on their weights: Weight,, > Weight, >
Weight,, > Weight,. However, according to Figure 5.6, after the initial phase nodes u and z
will announce themselves as clusterheads. Therefore, this type of network gives us the maximum
distance possible between any two clusterheads that is three hops away in a one-hop clustering
approach. In the worst-case scenario in a linear network, clusterheads are three hops away. If
there are n clusterheads, it will take n-/ iterations for the last node’s data to reach the first node.
In this scenario, we consider the message passing process to be atomic, meaning that they are not

interrupted.

50

Upon any changes happening in the network, the clusterhead is made aware of the changes itself,
or the subordinate nodes will report it to their clusterhead. For updating other nodes we use the push
model. The clusterheads maintain the latest version of the topology map for each node based on the
latest negotiations. After receiving an update message that affects the topology map, the clusterhead
will first update its own version and then check with all neighbor clusterheads and subordinates. If
their versions differ, the clusterhead will send an update messages to them. Algorithm 6 is the

pseudo-code for clusterheads sending update.

Algorithm 6 clusterheads sending updates
for Yv € cluster_heads do
if topology M ap(v) # topology_map then
topology-map.update(topologyM ap(v))
send(v) : topology_map
end if
end for
for Vz € cluster_set do
if latest_map_received|z]| # topology_map then
topology_map.update(topology M ap(v))
send(v) : topology_map
end if
end for

If the update includes a subordinate node leaving the domain, similar to the proposed algorithm
in Section 3.3.3, clusterhead will simply take care of that by removing it from its neighbors list and
the cluster. If the clusterhead is the one leaving the network, again following the same behavior as
described Section 3.3.3, the subordinates will change their state to initial and either look for a new
clusterhead or announce themselves as clusterheads.

As a part of maintenance, each node is responsible for checking whether or not their peers
(neighbors or other clusterheads) are reachable. Neighbor reachability or clusterhead reachability
can be done in two ways. Each node will have three tries before it concludes its peer is out of reach.
If the peer does not respond to the updates the node sends to it, after three failed attempts, the node
will recognize that neighbor is unreachable and remove it from the list of neighbors or clusterheads,
updating the topology and neighboring information and send an update to the accessible peers. The
other method to check peer reachability is by using the ICMP messages. ND protocol and ping

can be used to check the reachability of the neighbor nodes, but only ping can be used to check the

51

availability of peers who are more than one hop away. Similar to the previous method, after three
failed attempts in responding to ICMP messages, the peer would be considered out of reach, the
topology will be updated, and an update will be sent to the other accessible peers. This process takes
place periodically on a separate thread, depending on the node’s role. Clusterheads will use Ping
to reach out to other clusterheads, and all nodes will use ND protocol to maintain their neighboring

list and observe changes in their neighboring list.

5.2 Utilizing BRSKI for TD

The solution discussed in Section 5.1 was a distributed solution in which nodes did not have
to report anything to a central controller since no central management entity was assumed. As
discussed in Section 2.4, before starting any secure communication between any two nodes in a
fully working autonomic network, the BRSKI protocol must be executed. BRSKI allows pledges
and the registrar to achieve mutual authentication and securely communicate to each other or other
verified autonomic nodes in the domain. The details of BRSKI protocol can be found at Section 2.4.

In this section, we describe a centralized solution for TD. We propose taking advantage of the
BRSKI protocol and the participating nodes in its process, i.e., the registrar. This solution collects
the neighboring information in the registrar during the authentication process. Centrally managed
networks have some advantages over distributed networks. They are easier to manage, monitor,
maintain, etc. In centrally managed networks, the network manager role is either predetermined
by the administrator or nodes in the network must go over the election process that is discussed
in Section 3. BRSKI introduced four new roles to the autonomic network: registrar, pledge, join
proxy, and MASA [30]. We take advantage of the registrar and add a new network management
task, i.e., collecting, processing, and distributing the topology map of the network. The proposed
solution greatly impacts the number of messages exchanged for TD purposes and can enhance the
TM efficiency.

The BRSKI protocol has been standardized by the IETF [30]. Altering its semantics would pro-
duce a non-conformant implementation. We consider two scenarios: one with conformant BRSKI

semantics, and one with non-conformant semantics. It will be up to the implementer to decide

52

whether or not to use the non-conformant approach in order to gain the advantages.

5.2.1 TD with BRSKI (without altering BRSKI semantics)

In the first scenario, where the semantics of BRSKI cannot be altered, the TD setup phase takes
place right after the authentication finishes. At this point, the pledge has received credentials and
certificates from the registrar, and both the registrar and the pledge have authenticated each other
mutually. Upon successful authentication, the pledge will become a part of the domain and bootstrap
its fully working ACP. Figure 5.7 is the sequence diagram for the proposed solution.

To collect the TD information in this scenario, the registrar will register an objective called
td_ob7j to later use for negotiation purposes with newly joined authenticated nodes. The td_obj
will also be registered on the newly authenticated pledges after they have started their ACP. On
the registrar, the value of td_obj holds the full topology of the network and the port number on
which td_obj can be accessed. On the newly authenticated pledge, the value of td_obj holds
its neighbor list, the port number of td_obj on which it can be reached, and an updated version
of the topology. Initially, the value of the topology map is set to null since the pledge has not yet
communicated with the registrar. Before authentication, the pledge had the list of its neighbor LL
addresses for each interface. However, after authentication, it can obtain the ULA address of its
neighbors by requesting it from its ACP. Upon having a complete list of its neighbors, the newly
authenticated pledge will establish a negotiation session with the registrar to send its td_obj. The
pledge communicates with the registrar through a join proxy. Therefore, it does not have the locator
of the registrar and must discover it by running GRASP discovery. The join proxy already has the
locator of the registrar since it is an authenticated member of the network. If the newly authenticated
pledge runs GRASP discovery to find the locator of the registrar, the join proxy will return the
cached record of the registrar locator. The GRASP discovery message does not need to go all the
way to the registrar, and the newly authenticated pledge can use its neighbor’s cached information
as long as the cached information is not expired. Upon finding the locator of the registrar, the newly
authenticated pledge will start a GRASP negotiation session with the registrar to report its neighbors
list and get the network’s topology from the registrar.

On the registrar’s side, upon receiving the negotiation request from the newly authenticated

53

Pledge JOoin-proxy Registrar MASA

Voucher Requast

[Te forward to registrar]

Voucher Regquest

[to authenticate pledge] Domain info
Pledge info

v

[te anthenticate pledge
to authenticate demain]

Voucher response

[te inform registrar of
decision]

WAIT FOR RESPONSE

Voucher response

Y

[te return decision
to pledge

Voucher response

Y

Neighbor information

4

Topoleogy Map

Y

Figure 5.7: Using BRSKI for TD after authentication of the pledge

pledge, the topology map will be updated according to the offered value by the negotiator initiator.

Suppose it is the first time that the newly authenticated pledge is contacting the registrar. In
that case, the port number of td_olb j will also be recorded and mapped to the newly authenticated
pledge’s ULA address. After recording all the information from the offer, the registrar will send the
updated topology map to the negotiation initiator. The newly authenticated pledge will collect the
registrar’s response and update the topology map’s value in the td_obj.

As soon as the pledge gets authenticated and receives the voucher response and the updated
version of the topology map, it moves to the maintenance phase and starts listening for events. As
discussed in Section 2.4, each pledge, upon getting authenticated, will act as a join proxy to other
nodes. During the maintenance phase, the join proxy will be notified by two kinds of events. First,
a pledge is trying to join the network and using the node as a join proxy. In this case, the join proxy

is aware of the presence of the pledge but will take no further actions regarding reporting this event

54

to the registrar since the pledge is not yet authenticated, and if the pledge gets authenticated, the
registrar will send an updated version of topology to all nodes. Therefore, sending an update to the
registrar and notifying the registrar of the existence of a new pledge will be considered a redundant
message. The second type of event is noticing the presence or leave of an authenticated neighbor. In
this case, since there are no observers for the network to report such cases to the registrar directly,
the authenticated node notified by this event will report it to the registrar, and the registrar will
process the update and send out updated topology information to all authenticated nodes.

Initially, the registrar can start flooding the updates since every node will receive the same
replica of the topology map or send out update messages individually to each node. In the former
case, the number of redundant messages will increase, and the nodes must listen for flood messages
only from the registrar on a separate thread. In the latter case, the nodes can listen for any incoming
update messages from authenticated nodes and not just from the registrar.

Similar to SDN, in this centralized approach, the registrar can process the incoming information,
and based on the network’s topology, it can form clusters, create control trees, etc. For example,
upon collecting the neighbor list of a node, the registrar can make clusters and let the node know
that it is a clusterhead or will join another cluster. In this case, the registrar will update only the
clusterheads. Acting as the central network manager will reduce the number of connections the
registrar needs to establish and the number of requests it receives, which leads to reducing the

workload on the registrar.

5.2.2 TD with BRSKI (with altering BRSKI semantics)

The second proposed solution based on BRSKI is only applicable if the semantics of BRSKI is
altered. The modification that needs to be done is on the level of the exchanged messages between
the pledge and registrar. The pledge knows the LL address of its neighbors before getting authen-
ticated and joining the network. At this stage, the pledge can prepare a list containing information
about the connectivity between its interfaces and neighbors. The pledge must map the LL addresses
of its interfaces to the LL address of the connected interfaces. Figure 5.8 demonstrates the sequence
diagram for this proposed solution.

By the time the pledge wants to generate the voucher_request message, it should include

55

Pledge Join-proxy Registrar MASA

Voucher Request+
Neighbors list

[To forward to registrar] Voucher Request+
Neighbors list

Domain info

[to authenticate pledge] A
Pledge info

(if authenticated)

[
2 [to authenticate pledge
e to authenticate domain]
A
n
%

Voucher response
o <
O
b Voucher response+ [to inform registrar of
E Topology MAP decision]
<
=

[to return decision
to pledge
Voucher response+
Topology MAP
v (if authenticated)

Figure 5.8: Using BRSKI for TD during authentication of the pledge

the mentioned list of neighbors in the voucher_request. The rest of the process continues as
usual BRSKI protocol until the voucher_request reaches the registrar. The pledge will look
for join proxy in its neighborhood. Upon finding a join proxy, the pledge will send out the voucher
request to the join proxy so it can be relayed to the registrar.

The registrar will receive the voucher_request and extract MASA’s certificate from it, and
then tries to authenticate the pledge by sending a request to the MASA. If MASA authenticates
the certificate and the registrar authenticates the pledge itself, it will then extract the neighbor list
added to the voucher_request. Similar to Section 5.2.1, the registrar has a td_ob j objective
registered that is intended for communications over the topology map between itself and other
nodes. Upon extracting the neighbor list, the registrar will update the topology map’s value of
the td_ob j and the port number value of pledge’s td_ob7j.

The registrar will modify the voucher_response message, include the updated map in the
voucher_response, and send it back to the join proxy. The join proxy will then relay the

response from the registrar to the pledge. If the voucher_response is an approval message,

56

the pledge will first extract the registrar’s certificate from it and then extracts the updated topology
map of the network. At this point, the pledge has been authenticated and has the updated topology
of the network simultaneously. This solution will save us a round of communication between the
pledge and the registrar. If the MASA or the registrar rejects the pledge, the registrar will ignore
the neighbor list of the pledge. Similar to the original BRSKI protocol, the registrar sends the
unsuccessful authentication response to the pledge through the join proxy.

After the authentication and clustering setup phase, the maintenance phase will occur, similar

to the process described in Section 5.2.1.

57

Chapter 6

Experimental Results

This chapter describes our experimental results to validate and test our TD protocols. We set
up a testbed and configured it as three different topologies. We ran the two proposed solutions
described in Chapter 5 and measured the number of messages exchanged. To verify the results, the
final topology map stored in each node was compared with the actual topology after the results were

gathered.

6.1 Testbed

We tried three topologies for test purposes. The three topologies are shown in Figure 6.1, Figure
6.2, and Figure 6.3. Since the linear topology Figure 6.1, starts with letter L, we call the linear
topology, “Topology L”. The topology presented in Figure 6.2 looks like letter A, therefore, we call
it “Topology A”. Similar, the topology presented in Figure 6.3 looks like a rotated letter Y, therefore

we call it “Topology Y.
O OO O O Y O
NN NN/

Figure 6.1: Topology L

Each topology has its unique challenge. As discussed in Section 5.1.2, topology L can be

challenging for a centralized approach. In a cyclic topology such as topology A, the chance of a

58

Figure 6.2: Topology A

OnOntnOnOn®

)

() ("
NN

Figure 6.3: Topology Y

node receiving two inconsistent update messages for the same purpose from each interface is high.
The asynchronous characteristic of the network, can raise the chance of such conflicts. Therefore,
the challenge is handling the duplication of incoming data. Topology Y is a combination of the two
topologies with higher connectivity and complexity than the other two topologies. Adding an inner
smaller cycle in the existing cyclic topology can raise the chance for such unwanted events.

All the participating machines in the testbeds run Ubuntu 18.04 and higher as their operating
system and are wired connected and are all IPv6 enabled. We used Python 3.8 to implement the

algorithms.

The provided library for GRASP by Dr. B. Carpenter ! is also implemented in Python.

6.2 Results of Clustering Approach

6.2.1 Weight Exchange Phase

As for the clustering solution, we initially assume the authentication process has already been
done by BRSKI and all the nodes are authenticated. Therefore, the messages concerning BRSKI are
not counted for the results. The clustering scheme is asynchronous. Initially, nodes have no prior
knowledge about each other’s weight. There is a limited number of methods for a node to obtain
its neighbor’s weight. The neighbor’s weight can be stored either by extracting it from an incoming
request for initiating a GRASP negotiation, or the weight will be extracted from the response of the
peer to a GRASP negotiation initiation request. The weight exchange in this clustering scheme is
limited to only neighbors. Since they are only one hop away, this action takes only a short amount
of time, because it does not need to go through routing and be relayed from one node to the other.

We now describe two methods to realize the weight exchange. In the first method, all nodes
initiate a request for weight exchange simultaneously, because none of the nodes in the network
have any knowledge of their neighbor’s weight. This can lead to exchanging a considerable number
of messages just for exchanging weights.

Alternatively, in the second method, some nodes can start earlier and request the weight of their
neighbors sooner than others. In this case, some nodes obtain their neighbors’ weight from ini-
tiating a negotiation request before they do, so not only they obtain their neighbors’ weight, but
also they will send their own weights as a part of the request to the peer neighbors. This allows
both participating peers to have their significant other neighbor’s weight by establishing a single
negotiation session between them. This short delay in starting the nodes will considerably decrease
the number of messages exchanged. The delay can be simulated by adding a random weight time
between 0 seconds to 10 seconds. We implemented both experiments, the first experiment is called
“Simultaneous”, and the second is called “With delay”. Table 6.1, shows the number of messages

that are exchanged in each topology. The results for starting the process “Simultaneously” or “With

Uhttps://github.com/becarpenter/graspy

60

delay” are separated.

: Topology L | Topology A | Topology Y

Simultaneous run 24 32 46
With delay run 14 20 24

Table 6.1: Number of messages exchanged simultaneously or starting randomly from some nodes

The number of messages exchanged in the same topology is noticeably different when running
tests simultaneously or with a short delay.

In the first scenario, since nodes do not have any prior knowledge of their neighbors, they are
all considered to start negotiating with their neighbors simultaneously. However, in the second
scenario, if some nodes have some knowledge about their neighbors, it will help them to save
messages. The selection of the nodes who have previously communicated with their neighbors is

random.

6.2.2 Role Selection and Announcement Phase

As discussed in Section 5.1.1, nodes will either announce themselves as clusterhead or try to join
clusterheads. The number of clusterhead announcements, join announcements, and topology map
exchange between clusterheads and cluster members are presented in Table 6.2. Since the number
of nodes in each topology is limited, the number of possible outputs is also limited. The unique
results obtained during each test run are recorded in each cell of Table 6.2. The results are grouped
based on the type of the topology and the number of clusterheads. For some of the topologies, the
number of messages remain the same, regardless of the number of test runs. In Table 6.2 some of
the cells are left blank, because depending on the topology not having all the number of clusterheads
are possible. Also, some of the cells has more than one results, which are obtained as a result of
multiple runs. We added a random factor for the weight of the nodes, so that during each test run a
unique result is generated.

Figure 6.4 demonstrates an example for the order in which messages are sent during the clus-

tering setup phase. The order of the weights is as follows: W, > Wy > W, > Wy > W, > Wy >

61

Number of clusterheads | Topology L | Topology A | Topology Y
2 - 18 -
3 18 22 29
4 30 - 39
5 - - 55,58,60

Table 6.2: Total number of exchanged messages during clustering phase and topology map exchange
for first time

W.. During the first iteration of the initial phase of clustering, nodes a and f will announce them-
selves as clusterheads since they are the heaviest nodes among their neighbors and send clusterhead
announcements. One clusterhead announcement is sent from a, and two clusterhead announcements
are sent from f. Node b will join a and let its neighbors know. Nodes e and g join f, since f is
heavier than them and heaviest clusterhead among their neighbors, and send three join messages
in total. Node ¢ wanted to join node b, but it did not receive a clusterhead announcement from b;
similarly node d did not receive a clusterhead announcement from node e. Therefore, since node d
has no heavier neighbor that announced itself as clusterhead, it will announce itself as clusterhead
and send two clusterhead announcement messages to its two neighbors. During the final stage, node
¢ will join d since d is the only neighbor that announced itself as a clusterhead. The dotted lines
above the nodes demonstrate the clusterhead announcements, and the solid lines below the nodes

represent the join messages.

Number of clusterheads | Topology L | Topology A | Topology Y
2 - 1 -
3 2 2 1
4 3 - 2
5 - - 3

Table 6.3: Maximum number of iterations for a clusterhead to synchronize with other clusterheads

After the clusterheads have been identified and non-clusterhead nodes have joined their neighbor
clusterheads, each clusterhead generate the topology map of its own local cluster. The clusterheads
then try to discover each other and synchronize their topology map value by establishing GRASP
negotiation sessions and negotiating the value of the map of their clusters. Depending on how many

clusterheads have been detected and how they are spread across the network, it takes one or more

62

Figure 6.4: Illustrating the clusterhead announcement and join messages sent from each node in
topology L.

steps to synchronize their values. The maximum numbers of iterations needed for any clusterhead
to synchronize completely with other clusterheads during the setup phase is presented in Table 6.3.
Depending on where the clusterheads are located in the topology, nodes can have different numbers
of iterations to synchronize with their peer clusterheads. During each iteration, every clusterhead
will establish a GRASP negotiation session with its peer clusterheads, which were found as a result

of a GRASP discovery process.

6.2.3 Maintenance Phase

After the clusters have been formed and clusterheads have synchronized their value for the
topology map for the first time, every node will listen for events. Events can include a new node
joining/leaving the network or an update message from a subordinate cluster member to its corre-
sponding clusterhead. Establishing a new link or removing an existing one are considered as joining
or leaving a node. The reason is, we are using a one-hop clustering scheme. If a neighbor node is
not accessible by a direct link we can consider it leaving the network. Though it might still be
connected to the network via another link and join another cluster. To consider a node as neighbor

and alive, we need a direct and stable link between any two neighbor nodes.

63

We measured the number of messages exchanged during TM. The results are presented sepa-
rately in Table 6.4, Table 6.5, and Table 6.6.

Results are shown in the format of (x, y) where = represents the number of iterations needed
for the clusterheads to synchronize their value for the topology map again. y represents the number
of update messages sent from or to the non-clusterhead nodes by their respective clusterheads. For
the purpose of testing and experimenting, for joining clusterheads, we added a single clusterhead
node with no other nodes in its cluster_set. In realworld examples, a new link between two
nodes from separate networks can be established. In that case, clusterheads from both networks will
discover each other and update their topology map information of the newly joined network. Joining
two networks may lead to extra iterations for clusterheads to update their topology information and

spread the update across the network.

Number of clusterheads Type of node Type of change | Topology L
Join (3,6),(34)
X Clusterhead node Leave 2.5). (2. 6)
Join 2,4, 2,5)
Non-clusterhead node Leave 2.4). 2. 5)
Join (3,3)
Clusterhead node Leave 2.3).(2.2)
4 Join 3,4
Non-clusterhead node Leave 2.2)

Table 6.4: Propagating updates in the network; number of messages include updates to clusterheads
and members of each cluster.

Number of clusterheads Type of node Type of change | Topology A
JOin (29 5)’ (5’ 4)
Clusterhead node e (2,4),(3,5)
2 Join (1,4)
Non-clusterhead node Leave (1, 5)
Join (5,3),4,4)
. Clusterhead node Leave (2, 3), (2, 4)
Join 2,4
Non-clusterhead node Leave 2,3)

Table 6.5: Propagating updates in the network; number of messages include updates to clusterheads
and members of each cluster.

64

Number of clusterheads Type of node Type of change Topology Y
Join (6,7), (4, 6)
Clusterhead node Leave 2, 6), (2,5), (4, 5)
3 Join 2,7)
Non-clusterhead node Leave 2, 6)
Join (5,6),(8,5), (4, 6)
Clusterhead node Leave (3,7, (3,9
4 Join (3,6)
Non-clusterhead node Leave (3,5)
JOin (5, 5), (6’ 6)
. Clusterhead node Leave 3, 5), (6, 6)
Join 4,6)
Non-clusterhead node Leave 4, 5)

Table 6.6: Propagating updates in the network; number of messages include updates to clusterheads
and members of each cluster.

6.3 Results of TD during BRSKI and TD after BRSKI

The suggested solutions based on BRSKI have only one major difference. If TD takes place after
BRSKI, a negotiation session from the pledge to the registrar is established to exchange the node’s
cluster-related info and receive the updated version topology map. However, if TD and BRSKI take
place simultaneously, the number of messages exchanged for the initial process remains the same as
for the BRSKI process. Table 6.7 shows the number of messages exchanged for TD after BRSKI.
The first row of Table 6.7 contains all the messages concerning the TD. To have a fair comparison
between the two BRSKI-based solutions, the second row which holds the number of the messages
exchanged during the BRSKI authentication phase is added. During the maintenance phase of both
BRSKI-based solutions, a fixed number of messages will be exchanged since the authentication is
already done. The number of messages during maintenance phase for both solutions is the same as
the results shown in the first row of Table 6.7. Each node will reach out to the registrar to report its
neighboring information and updates. The registrar upon receiving the neighboring information or
updates, will reflect those updates onto the topology map and forwards an instance to all the nodes.

Table 6.8 shows the number of messages exchanged in a scenario where the TD takes place after
BRSKI. Depending on which node is selected as the registrar, the number of exchanged messages

is different. In Table 6.8, the minimum, maximum, and average number of messages exchanged

65

[N Topology L | Topology A | Topology Y
Number of messages exchanged 7 31 s4
regarding TD
BRSKI-only messages 22 20 34
Sum 49 51 88

Table 6.7: TD after BRSKI

! Topology L | Topology A | Topology Y
min 34 35 64
max 37 53 70

average 35 41 67

Table 6.8: TD during BRSKI

during this process is mentioned. The messages include registrar enrollment and topology map
update messages. After each node joins the network, upon getting accepted, the registrar has to

update its local version of the topology map and send it to all authenticated nodes.

6.4 Discussion

Table 6.9 shows a comparison among the number of messages in all three solutions on all topolo-
gies for the topology setup phase. For the clustering method, it should be mentioned that after clus-
ters are formed, the clusterheads must go through some iterations and GRASP negotiation sessions
to synchronize their value of the topology map. The messages for the clustering approach are cal-
culated by adding the messages exchanged during weight exchange, role announcement (sending
clusterhead announcements or join announcements), and messages exchanged among clusterheads

and cluster members to synchronize their value of the topology map.

Topology L | Topology A | Topology Y
TD with BRSKI 35 41 67
TD after BRSKI 27 31 54
Clustering 32 38 55

Table 6.9: Comparing the results of all methods with all topologies

Table 6.9 shows the number of messages exchanged during the TD setup phase by each topology

66

running each approach individually. The first observation would be the correlation between the size
and connectivity of the topology to the number of exchanged messages, regardless of the topology.
By taking a closer look at the results, we can observe that the rate at which the number of messages
grows is different. The number of exchanged messages in our three approaches, has the following
order:
TD After BRSKI < Clustering < TD While BRSKI

As discussed in Chapter 3, choosing the TD and TM approach is highly dependent on the nodes’
formation and connectivity. Different approaches can be used depending on the network’s type,
purpose, etc. Therefore, comparing obtained results from each approach does not conclusively

prove the advantage of one approach over the other.

67

Chapter 7

Conclusions and Future Work

Topology discovery plays an important role in network maintenance and network management.
It allows nodes to understand their surroundings better and make decisions such as failure recovery
beforehand. Autonomic networks proposed by the IRTF and the IETF are expected to achieve
self-managing networks, in other words they are self-healing, self-protecting, self-configuring, and
self-optimizing. Providing the topological information of the network to the autonomic nodes can
help them make decisions with fewer messages exchanged.

Our literature survey revealed that the existing TD methods are categorized into two main
groups: centralized approaches and decentralized approaches. The TD approach to be used in a
given situation depends on the type of network and how often nodes in the network require topology
information. In this thesis, we proposed both a centralized and a distributed approach to topology
discovery and maintenance in an autonomic network.

Our centralized approach takes advantage of a secure bootstrapping protocol in autonomic net-
works. BRSKI introduced roles to the network to carry out tasks related to security, such as authen-
tication of the devices. For this study, we took advantage of two roles introduced by BRSKI: the
registrar and the pledge. We implemented two different methods of using BRSKI for TD purposes.
The first method takes place after BRSKI, when nodes have securely reached mutual authentication.
Upon reaching mutual authentication, the pledge, now an authenticated member of the network,

sends its neighboring information to the registrar. Now the registrar is in charge of collecting the

68

neighboring information of all nodes and generating and distributing the topology map of the au-
thenticated nodes. The other method requires modifying BRSKI by adding extra information to the
BRSKI messages. The pledge joins the network by sending a voucher_request to the registrar.
If we can embed the neighboring information of the node in the same voucher_request, we can
authenticate the node and collect its neighboring information simultaneously at the registrar. Then
the registrar would be able to generate/update the topology map of the authenticated network and
distribute the updated version among nodes.

Our second proposed solution utilizes a clustering scheme. We studied several proposed clus-
tering methodologies in the literature. By evaluating the infrastructure of autonomic networks, we
selected a distributed clustering scheme that allows nodes to act autonomously. The proposed clus-
tering scheme is a one-hop, non-location based, and asynchronous scheme. The clustering scheme
is considered stationary during the cluster setup phase, but it supports the nodes’ leaving or joining
during the maintenance phase. Each node will be assigned a weight based on a metric, e.g., the
number of active interfaces in the network. The weight will be shared with neighbors. Generally
speaking, nodes with heavier weight will announce themselves as a clusterhead to its neighbors.
Each node that has not announced itself as a clusterhead will join one of the neighbors that has
introduced itself as a clusterhead. If the non-clusterhead node has heavier neighbors, but none has
introduced itself as clusterhead, then the node will announce itself as clusterhead. Upon clusters
being shaped, clusterheads will discover each other and try to synchronize their cluster’s topology
map by going through multiple iterations of negotiation. For TM, clusters have been created, nodes
will listen for any events, such as new nodes joining or a node leaving the network. The node will
send the update to its clusterhead, and the clusterhead will distribute it among other clusterheads
and members of its cluster_set.

After reviewing the benefits of TD in autonomic networks, we set the goal to decrease the
number of messages exchanged for TD purposes as much as possible as the size of the network grew.
The proposed solutions provide an efficient approach to collect, generate, update, and distribute
the topological map. The solutions presented are all compatible with the definition of autonomic
behavior provided in RFC 7575 [7]. All solutions except “TD with BRSKI” are compatible with

the standardization of autonomic networks provided by the ANIMA Working Group (RFC 8990 to

69

RFC §995).

As part of our contribution to the ANIMA working group, we have reported some bugs regarding
the implementation of GRASP to Dr. B. Carpenter, who provided us with the implementation of
GRASP that was used in this thesis. Subsequently, these bugs were fixed and updates were issued.

We now discuss some future directions for research. To obtain more conclusive results, the
suggested solutions should be tested on more topologies and a scalability analysis should be con-
ducted. We focused on minimizing the number of messages, but the solutions can still be optimized
to lower the number of messages even more during each stage of TD and TM. In the topology main-
tenance phase, we may allow two neighboring nodes to become clusterheads; we suggest that each
node periodically goes through the setup phase to lessen the possibility of having too many such
neighboring clusterheads.

In this thesis, we focused on wired networks, and a limited form of mobility in which nodes can
join and leave the network in the topology maintenance phase. Furthermore, all our implementations
were on wired networks. In future work, it would be important to consider whether these solutions
are also suitable for wireless and mobile networks.

Also, we propose offering nodes with a service-based topology map. The service-based topol-
ogy map provides the nodes with information on which autonomic nodes in the network support
which objective. By mapping the autonomic nodes to the objectives they support, we can allow
nodes to skip the discovery process, which will save a considerable number of messages from oc-
cupying the bandwidth.

As described in Section 5.2, the registrar can act as a central entity and create/maintain clusters
to enhance the performance of the network. We suggest a hybrid method combining centralized and
distributed TD and TM in future work. By using the hybrid method, the workload of the network
will be distributed across the nodes. For example, the clustering setup can happen using the BRSKI-

dependent methods, and the TM can happen using the clustering approach.

70

Bibliography

[1]

R. A. Alhanani and J. Abouchabaka, “An overview of different techniques and algorithms
for network topology discovery,” in Proceedings of the 2nd World Conference on Complex

Systems (WCCS). 1EEE, 2014, pp. 530-535.

S. Ali, A. Ashraf, S. B. Qaisar, M. Kamran Afridi, H. Saeed, S. Rashid, E. A. Felemban, and
A. A. Sheikh, “Simplimote: A wireless sensor network monitoring platform for oil and gas

pipelines,” IEEE Systems Journal, vol. 12, no. 1, pp. 778-789, 2018.

A. Amis, R. Prakash, T. Vuong, and D. Huynh, “Max-min d-cluster formation in wireless ad
hoc networks,” in Proceedings of the Conference on Computer Communications. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM),
vol. 1, 2000, pp. 32-41 vol.1.

A. Azzouni, R. Boutaba, N. T. M. Trang, and G. Pujolle, “sOFTDP: Secure and efficient
openflow topology discovery protocol,” in Proceedings of the IEEE/IFIP Network Operations

and Management Symposium, 2018, pp. 1-7.

S. Basagni, “Distributed clustering for ad hoc networks,” in Proceedings of the 4th Interna-
tional Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’99), 1999, pp.
310-315.

M. H. Behringer, B. E. Carpenter, T. Eckert, L. Ciavaglia, and J. C. Nobre, “A
Reference Model for Autonomic Networking,” no. 8993, 2021. [Online]. Available:

https://www.rfc-editor.org/info/rfc8993

71

https://www.rfc-editor.org/info/rfc8993

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. E. Carpenter, S. Jiang, and
L. Ciavaglia, “Autonomic Networking: Definitions and Design Goals,” RFC 7575, 2015.

[Online]. Available: https://rfc-editor.org/rfc/rfc7575.txt

M. H. Behringer and Eric Vyncke, “Using Only Link-Local Addressing inside an IPv6

Network,” RFC 7404, 2014. [Online]. Available: https://www.rfc-editor.org/info/rfc7404

C. Bormann, B. E. Carpenter, and B. Liu, “GeneRic Autonomic Signaling Protocol

(GRASP),” RFC 8990, 2021. [Online]. Available: https://rfc-editor.org/rfc/rfc8990.txt

C. Bormann and P. E. Hoffman, “Concise Binary Object Representation (CBOR),” RFC 8949,

2020. [Online]. Available: https://www.rfc-editor.org/info/rfc8949

M. Boucadair and C. Jacquenet, “Software-Defined Networking: A Perspective from
within a Service Provider Environment,” RFC 7149, 2014. [Online]. Available: https:

/Iwww.rfc-editor.org/info/rfc7149

B. E. Carpenter, M. C. Richardson, F. Toerless Eckert, J. C. Nobre, S. Jiang, Y. Li, and C. Bor-
mann, “Autonomic networking gets serious,” in The Internet Protocol Journal, vol. 24, no. 3.

1PJ, 2021, pp. 2-19.

D. S. E. Deering and B. Hinden, “IP Version 6 Addressing Architecture,” RFC 4291, 2006.

[Online]. Available: https://www.rfc-editor.org/info/rfc4291

B. Donnet and T. Friedman, “Internet topology discovery: a survey,” IEEE Communications

Surveys & Tutorials, vol. 9, no. 4, pp. 5669, 2007.

T. Eckert, M. H. Behringer, and S. Bjarnason, “An Autonomic Control Plane (ACP),” RFC

8994, 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc8994

B. Haberman and B. Hinden, “Unique Local IPv6 Unicast Addresses,” RFC 4193, 2005.

[Online]. Available: https://www.rfc-editor.org/info/rfc4193

C. Hedrick, “Routing Information Protocol,” RFC 1058, 1988. [Online]. Available:

https://www.rfc-editor.org/info/rfc1058

72

https://rfc-editor.org/rfc/rfc7575.txt
https://www.rfc-editor.org/info/rfc7404
https://rfc-editor.org/rfc/rfc8990.txt
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc7149
https://www.rfc-editor.org/info/rfc7149
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc8994
https://www.rfc-editor.org/info/rfc4193
https://www.rfc-editor.org/info/rfc1058

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

IAB, L. Daigle, and O. Kolkman, “RFC Streams, Headers, and Boilerplates,” RFC 5741,
2009. [Online]. Available: https://www.rfc-editor.org/info/rfc5741

S. Islam, N. Muslim, and J. W. Atwood, “A survey on multicasting in software-defined net-

working,” IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp. 355-387, 2018.

I. Jawhar, N. Mohamed, and L. Zhang, “A distributed topology discovery algorithm for linear
sensor networks,” in Ist IEEE International Conference on Communications in China (ICCC),

2012, pp. 775-780.

S. Jiang, B. E. Carpenter, and M. H. Behringer, “General Gap Analysis for Autonomic
Networking,” RFC 7576, 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7576

Y. R. K. Lougheed, “Border Gateway Protocol (BGP),” RFC 1163, 1990. [Online]. Available:

https://www.rfc-editor.org/info/rfc1163

H. E.-S. L. Zhang, “A novel cluster-based protocol for topology discovery in vehicular ad hoc

network,” Procedia Computer Science, vol. 10, pp. 525-534, 2012.

C. Lin and M. Gerla, “Adaptive clustering for mobile wireless networks,” Proceedings of the

IEEFE Journal on Selected Areas in Communications, vol. 15, no. 7, pp. 1265-1275, 1997.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Com-

puter Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

J. Moy, “OSPF Version 2,” RFC 1247, 1991. [Online]. Available: https://www.rfc-editor.org/
info/rfc1247

L. Ochoa-Aday, C. Cervello-Pastor, and A. Fernandez-Fernandez, “Self-healing topology dis-
covery protocol for software-defined networks,” IEEE Communications Letters, vol. 22, no. 5,

pp. 1070-1073, 2018.

D. C. Plummer, “An Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware,” RFC 826,

1982. [Online]. Available: https://www.rfc-editor.org/info/rfc826

73

https://www.rfc-editor.org/info/rfc5741
https://www.rfc-editor.org/info/rfc7576
https://www.rfc-editor.org/info/rfc1163
https://www.rfc-editor.org/info/rfc1247
https://www.rfc-editor.org/info/rfc1247
https://www.rfc-editor.org/info/rfc826

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Postel, “Internet Control Message Protocol,” RFC 792, 1981. [Online]. Available:

https://www.rfc-editor.org/info/rfc792

M. Pritikin, M. Richardson, T. Eckert, M. H. Behringer, and K. Watsen, “Bootstrapping
Remote Secure Key Infrastructure (BRSKI),” RFC 8995, 2021. [Online]. Available:

https://www.rfc-editor.org/info/rfc8995

W. A. Simpson, D. T. Narten, E. Nordmark, and H. Soliman, “Neighbor Discovery for
IP version 6 (IPv6),” RFC 4861, 2007. [Online]. Available: https://www.rfc-editor.org/info/
rfc4861

S. Vasudevan, J. Kurose, and D. Towsley, “Design and analysis of a leader election algorithm
for mobile ad hoc networks,” Proceedings of the 12th IEEE International Conference on Net-

work Protocols (ICNP), pp. 350-360, 2004.

D. Wei and H. A. Chan, “Clustering ad hoc networks: Schemes and classifications,” Proceed-
ings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications

and Networks, vol. 3, pp. 920-926, 2006.

J. Yin, Y. Li, Q. Wang, B. Ji, and J. Wang, “SNMP-based network topology discovery algo-
rithm and implementation,” Proceedings of the 9th International Conference on Fuzzy Systems

and Knowledge Discovery, pp. 2241-2244, 2012.

A. Zacharis, S. V. Margariti, E. Stergiou, and C. Angelis, “Performance evaluation of topology
discovery protocols in software defined networks,” Proceedings of the IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 135-140,
2021.

74

https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc8995
https://www.rfc-editor.org/info/rfc4861
https://www.rfc-editor.org/info/rfc4861

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Autonomic Networks
	Architecture
	Autonomic Network Infrastructure
	Autonomic Control Plane
	Autonomic Service Agent
	Autonomic Network and Internet Protocol

	IPv6
	IPv6 Addressing
	IPv6 Link-Local Address Structure
	IPv6 Unique Local Address (ULA)
	IPv6 Autonomic Behavior
	Autonomic Network and IPv6

	GeneRic Autonomic Signaling Protocol
	GRASP Objectives
	GRASP Messages
	GRASP Discovery
	GRASP Negotiation
	GRASP Synchronization and Flood
	Discovery Unsolicited Link-Local

	BRSKI
	Manufacturer Authorized Signing Authority
	Message Flow in BRSKI

	Topology Discovery
	Existing Diagnostic and Management Tools
	ICMP for TD
	ARP for TD
	SNMP for TD
	traceroute for TD
	IPv6 Network Discovery Protocol

	TD in Centrally Managed Networks
	OpenFlow Discovery Protocol
	Self-healing TD Protocol for SDN
	Other TD Methods

	Distributed Methods for TD
	Clustering
	Cluster-based TD in Vehicular Ad-Hoc Networks
	Distributed Clustering for Ad-Hoc Networks

	Problem Statement
	Proposed Solution
	Solution Based on Clustering
	Setup Phase
	Maintenance Phase

	Utilizing BRSKI for TD
	TD with BRSKI (without altering BRSKI semantics)
	TD with BRSKI (with altering BRSKI semantics)

	 Experimental Results
	Testbed
	Results of Clustering Approach
	Weight Exchange Phase
	Role Selection and Announcement Phase
	Maintenance Phase

	Results of TD during BRSKI and TD after BRSKI
	Discussion

	Conclusions and Future Work
	Bibliography

