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Abstract 

 

Reorganization of functional hubs in sleep and in epilepsy 

 

Yimeng Wang 

 

 

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is a non-invasive brain imaging 

technique that measures brain activity non-invasively. Functional connectivity (FC) quantifies how 

Blood-Oxygen-Level-Dependent (BOLD) signal of remote brain regions correlates with each other 

temporally. Using variety of methodologies such as Independent Component Analysis (ICA) or 

sparse dictionary learning, Resting-State Networks (RSNs) are consistently found in human brain 

connectome. Functional hubs denote the brain regions that exhibit connections denser than others, 

whereas connector hubs especially participate in inter-network communication. My Master thesis 

is based on a previously published methodology called Sparsity-based analysis of reliable k-

hubness (SPARK), which estimates the functional hubs by counting the number of RSNs connected 

to each brain voxels. By acquiring simultaneous electroencephalogram (EEG)-fMRI, functional 

connectivity (FC) during sleep can also be investigated. In addition, functional connectivity has 

been commonly applied to find potential biomarkers for neurological disease, such as epilepsy. 

Therefore, in the first study of this thesis, we investigated functional segregation during a recovery 

nap after total sleep deprivation and its association with cognitive performance. We applied an 

algorithm called Hierarchical Segregation Index (HSI) based on the hubness estimated by SPARK. 

As a result, we found significant correlation between functional segregation during sleep and 

working memory performance after sleep. In the second study of this thesis, we investigated the 

different patterns of functional hub reorganization in temporal lobe epilepsy (TLE) and frontal lobe 

epilepsy (FLE). By applying similar methods used in the first study, we found significant and 

exclusive functional hub alteration both in TLE and FLE. To conclude, in sleep, functional 

segregation during a whole night sleep and its association between cognitive performance can be 

further investigated. In TLE and FLE, further research of the hub alterations in subcortical 

structures will be of interest, and might serve as potential biomarkers for post-surgical outcomes.  
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Chapter 1 Introduction 

 

As the most intricate organ, the human brain accounts for about 20% of the energy consumption of 

the body, although it only composes 2% of total body weight. Surprisingly, neuronal activity caused 

by external stimulations explains less than 5% of brain energy consumption, while the rest is 

contributed by the intrinsic brain activity disclosed by background neuronal activations (Raichle & 

Mintun, 2006; Zhang & Raichle, 2010), which inspired more research to examine the brain at rest. 

Functional Magnetic Resonance Imaging (fMRI) has a higher spatial resolution compared to other 

functional imaging techniques and offers a unique opportunity to investigate neuronal activity from 

deep brain structure without an invasive procedure. fMRI indirectly measures brain activity by 

measuring the slow hemodynamic fluctuations evoked by bioelectrical neuronal activity. Resting-

state fMRI (rs-fMRI) serves as a powerful modality to explore intrinsic brain activity, whereas the 

participant is instructed to lie still and stay awake inside the scanner, in the meantime Blood-

Oxygen-Level-Dependent (BOLD) signal are acquired without requiring any external task. By 

calculating the Pearson correlation coefficient between time courses of voxels from the grey matter, 

functional connectivity can be assessed that represents the temporal similarity between two regions. 

A variety of methodologies have been proposed to investigate functional connectivity includes 

seed-based connectivity maps, principal component analysis (PCA), independent component 

analysis (ICA), as well as clustering, sparse coding method and graph theory. Although using 

different methods, resting-state Networks (RSNs) that could be associated with specific functions 

were consistently found, such as for instance the default mode network (DMN), the visual network, 

or the attention network. However, some of those aforementioned methodologies contain 

shortcomings such as requiring a priori definition of region of interest (ROI), requiring the 

assumption of a threshold to generate a sparse matrix, issues of multi-collinearity, or assumption 

of non-overlap between RSNs. An innovative data-driven method called Sparsity-based Analysis 

of Reliable k-hubness (SPARK) based on sparse dictionary learning was recently developed, which 

identifies connector hubs regions responsible for internetwork coordination, by counting the 

number of RSNs involved in each voxel, while in the meantime, carefully handles some of the 

previous issues (Lee et al., 2018).  

 

Functional connectivity summarizes the macro-organization of the human brain as a “small-world” 

structure, which consists of local communities with short-range connections and long-range bridges 

between them (Watts & Strogatz, 1998). Such organization is not only efficient and reactive for 

lower-level tasks requiring a specific local brain region such as preliminary sensory functions, but 
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also highly efficient for higher-level tasks requiring synchronization of different neuronal regions 

such as complex motor coordination or making decisions. Accordingly, the basis of the “small-

world” structure is functional segregation (defined by the differences in functions of the brain 

regions with distinct anatomy and physiology) and functional integration (defined by the 

synchronization between those brain regions) (Tononi et al., 1994). Functional segregation and 

integration appear at different levels of brain network structure, forming the hierarchical 

organization of the brain functional connectome. The extent of segregation and integration altering 

across different arousal states has been quantified by a method called functional clustering ratio 

(FCR) (Boly et al., 2012; N. E. Cross et al., 2021), suggesting increased functional segregation 

during non-rapid-eye-movement (NREM) sleep when compared to wakefulness (N. Cross et al., 

2021a). However, different segregation patterns are yet to be explored between different NREM 

stages. 

 

Although the “small-world” brain structure provides high efficiency for complex information 

processing in the healthy brain, alteration of such a structure may indicate potential problems in 

neurological disease, whereas if certain brain regions are pathologically altered, different severity 

of brain network disruption can occur. For example, abnormal hub disruption and new hub 

emergence have been found by our group when studying resting state fMRI from patients with 

mesial temporal lobe epilepsy (TLE) using SPARK (Lee et al., 2018). However, while emerging 

literature has explored altered functional connectivity and its clinical relevance for TLE, more 

investigation is required for different types of epilepsy (Royer et al., 2022). 

 

Therefore, in the context of this Master Thesis, we extended the application of SPARK in two 

contexts: (a) the network segregation across different vigilance states and sleep stages in the healthy 

brain and (b) the network disruption in epileptic brains with different type of focal drug resistant 

epilepsy. In (a), we quantified the functional network segregation at the voxel-level by comparing 

wakefulness, NREM2, and NREM3 sleep stages, while assessing the interaction between network 

segregation during sleep and cognitive performances. Only NREM2 and NREM3 stages were 

compared because they are the most commonly identified NREM stages across subjects in our 

study. In (b), we studied the group level comparison of connector hubs reorganization using resting 

state fMRI data from patients with in temporal lobe epilepsy (TLE) and frontal lobe epilepsy (FLE). 

We are providing preliminary results for this second study.  

 

In this thesis, Chapter 2 introduces the specificity and problems of rs-fMRI studies, while 

presenting a state-of-the-art of the methodologies considered to analyze functional connectivity 

using fMRI. Chapter 3 is a manuscript in preparation for publication, currently under review with 
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co-authors and expected to be submitted shortly, which describes study 1: Hierarchical segregation 

of functional brain networks during NREM sleep and impacts of the attention function. Notably, 

Dr. Kangjoo Lee and I shared co-first authorship on this study. It also includes an introduction, 

methodology, presentation of results, discussion, and preface describing the work distribution 

between Dr. Lee and myself. Chapter 4 is a preliminary manuscript on Study 2: Connector hub 

reorganization in frontal lobe epilepsy and temporal lobe epilepsy, including an introduction to 

epilepsy, methodology, presentation of preliminary results, and discussion closely focusing on the 

results. Chapter 5 includes the overall conclusion of this thesis, the limitation of our methodology, 

and possible directions for future research in the area.  
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Chapter 2 State of art of functional connectivity 

2.1 Resting-state fMRI 

2.1.1 Blood Oxygen Level Dependent signal detected by fMRI 

FMRI measures brain activity with the BOLD signals, which was invented in the early 1990s by 

Dr. Seiji Ogawa and Dr. Ken Kwong (Huettel, 2004; Ogawa et al., 1990). As a non-invasive 

imaging method, fMRI indirectly measures neuronal activity by measuring the hemodynamic 

response of the human brain. While two different kinds of hemoglobin exist in capillaries, the 

oxygenated hemoglobin (Hb) is diamagnetic and the deoxygenated hemoglobin (dHb) is 

paramagnetic. The magnetic field distortion caused by dHb can therefore be detected as the BOLD 

signal. Whenever there is neural activity in one part of the brain, the demand for O2 consumption 

in the neurons will increase. The nearby capillary will introduce more cerebral blood flow and 

blood volume. Consequently, the ratio of dHb / Hb will decrease in the nearby capillary, leading to 

a change in the BOLD signal.  

 

A typical fMRI acquisition scans the human brain slice by slice from one direction to another. A 

parameter named Repetition Time (TR) is the time difference between successive MRI pulse 

sequences applied to the same slice of the brain and indicates the time resolution of fMRI 

acquisition. A conventional fMRI acquisition has a time resolution of TR=2000~3000ms (i.e., the 

sampling frequency is around 0.5Hz), while a multiband-accelerated fMRI that starts scanning 

multiple slices simultaneously, achieves a time resolution of around TR=600~900ms (~1.6 Hz), 

(Smitha et al., 2018). Although still having temporal resolutions lower than those of 

electrophysiology, fMRI has a higher spatial resolution (up to 2~4 mm3 presently) than 

electrophysiology or other functional imaging and is especially suited to detect functional activity 

even from deep brain structure non-invasively.  

 

A task-fMRI applies a series of external stimuli (e.g., visual or auditory stimulus) to the participants, 

and uses general linear models (GLM) and statistical parametric maps to locate the brain regions 

that show significant activations during tasks compared to rest. Interestingly, using seed regions in 

the contralateral motor regions that show activation during task-fMRI (finger tapping), Biswal et 

al discovered that even without any motor behavior, the spontaneous slow oscillation of BOLD 

time-series (0.01~0.1Hz) (Cordes et al., 2001) of those seed voxels still exhibits high correlations 

with each other suggesting regulated neuronal activity in remote brain regions during rest (B. 

Biswal et al., 1995; B. B. Biswal et al., 1997). Since then, the “resting-state” fMRI (rs-fMRI) has 

been introduced, where the participants are instructed to lie still inside the MRI scanner with eyes 
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opened and fixed on a cross (or eyes closed in some studies), stay awake, and try to avoid any 

specific thought, without applying any external task. A BOLD time series will then be acquired. 

Technically, the “resting-state” fMRI is generally acquired in a wakeful, relaxed, and task-free 

condition. Nonetheless, similar rs-fMRI acquisitions have also been applied to explore the intrinsic 

neuronal activity during other brain states, such as sleep or anesthesia (Fox & Raichle, 2007) 

 

2.1.2 Origin of spontaneous slow oscillations of rs-fMRI 

The origin of the spontaneous slow-oscillation detected during rs-fMRI has been questioned during 

the past two decades: whether the resting-state BOLD signal is originated mainly by fluctuations 

of the underlying neuronal (bioelectrical) activity? Or is it mainly generated by physiological 

processes such as respiratory and cardiac rhythm at higher frequencies? Although studies proved 

the contamination of physiological process (>0.3Hz) to rs-fMRI time-series (Birn et al., 2006, 2008; 

Cordes et al., 2001), other studies found that the brain regions that exhibit high correlation in rs-

fMRI are also highly related in brain anatomy (B. Biswal et al., 1995; Salvador et al., 2005). It has 

been demonstrated that the temporally correlated regions found in rs-fMRI are supported by actual 

anatomical white matter pathways (Honey et al., 2009).  Additionally, in the sensory cortex, some 

have found correlations between rs-fMRI and gamma-power local field potential (LFP), which is 

an electrophysiological technique that records brain activity with micro-electrodes placed in 

extracellular space near neurons (Nir et al., 2008), offering more evidence of the neural origin of 

rs-fMRI signals. 

 

Using rs-fMRI acquisition with high temporal resolution (TR=400ms), Cordes et al have found 

that the frequency components of the seed regions in the auditory, visual, and motor cortex are 

indeed different from those of the artery, vein, and cerebrospinal fluid (Cordes et al., 2001). The 

cortical seed regions virtually contribute to the rs-fMRI signals within 0~0.1 Hz, while the rs-fMRI 

signals of the artery, vein, and cerebrospinal fluid contributed to wider frequency ranges (0~0.1Hz, 

0.1~0.5Hz, and 0.6~1.1 Hz). Accordingly, with appropriate fMRI preprocessing techniques, the 

influence of physiological processes in rs-fMRI can be reduced.  

 

2.1.3 fMRI preprocessing 

To minimize the aforementioned influence of the physiological components on the fMRI time 

series, a variety of strategies have been introduced that identify the spatiotemporal characteristics 

of the targeted effect (e.g., cerebrospinal fluid, white matter, or vascular noise), and then remove 

their fluctuation from the fMRI data of interest. A typical example of package for fMRI 

preprocessing is the Neuroimaging Analysis Kit (NIAK) (Bellec et al., 2010a). NIAK is the fMRI 

preprocessing toolbox we considered for the study presented in Chapter 3. It includes a 
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physiological noise removal algorithm named CORSICA (CORrection of Structured noise using 

spatial Independent Component Analysis) (Perlbarg et al., 2007). CORSICA is an automated 

process that utilizes spatial Independent Component Analysis (ICA) to extract and remove the 

components from physiological origins or body movements, assisted by the spatial location priors 

of the dominant physiological process (cerebrospinal fluid and white matter), the variance of the 

fMRI map, and external monitoring of cardio-respiratory rhythm (if available). Similar to NIAK, 

another recently developed fMRI preprocessing pipeline named “MICApipe” (developed in Dr. 

Bernhardt’s lab) was considered for the sudy presented in Chapter 4.  MICApipe uses the ICA-

FIX algorithm from FSL to remove physiological noise and motion components (Cruces et al., 

2022; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Some literatures model and then remove 

the average of global BOLD signal with the linear regression model, which can be correlated with 

vascular nuisance signal as well (Fox et al., 2005; Fransson, 2005). 

 

Aside from physiological denoising, a typical fMRI preprocessing pipeline also includes slice 

timing correction to compensate for the acquiring time differences between each slice of the brain, 

motion correction by spatially co-registering all volumes to a reference volume with rigid-body 

transformation, temporal high-pass/band-pass filtering to detrend and remove high-frequency 

disturbance if any, co-registration between fMRI and individual anatomical MRI, normalization to 

a template space for group-level analysis with non-linear transformation, and spatial smoothing to 

increase the signal-to-noise (SNR) ratio. Gradient distortion correction can also be applied if field 

maps are available (Jovicich et al., 2006). 

 

2.2 Analysis of Functional connectivity and connector hub 

Functional connectivity is defined as the statistical correlation between two voxels (or regions) of 

the brain, mostly calculated with Pearson correlation coefficients between two averaged fMRI time 

series (Aertsen et al., 1989; K. J. Friston et al., 1993), but other unconventional parametric or 

nonparametric methods have been considered as well (Damoiseaux et al., 2006a; K. Friston et al., 

2006; Salvador et al., 2005), as summarized by (Zhang & Raichle, 2010). Most commonly, 

functional connectivity is calculated using rs-fMRI, but FC can be analyzed for a variety of studies 

as well, such as during tasks or sleep. Nonetheless, functional connectivity calculated with task-

free fMRI is rather versatile and can be easily applied to a wide category of healthy or diseased 

participants, with its easy-to-achieve acquisition condition  (B. B. Biswal et al., 2010; Zuo & Xing, 

2014). The whole brain functional connectivity patterns of a person are mostly consistent even 

across different brain states (e.g., sleep), suggesting the functional connectivity patterns are the 

intrinsic “fingerprint” of the brain (Finn et al., 2015; Fox & Raichle, 2007). In general, 

methodologies used to investigate functional connectivity can be divided into two main categories: 
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hypothesis-driven such as seed-based connectivity map, and hypothesis-free (data-driven) methods 

including but not limited to independent component analysis (ICA), hierarchical clustering, 

principal component analysis (PCA) (Viviani et al., 2005), sparse coding such as singular value 

decomposition (SVD) and functional gradient (Bethlehem et al., 2020; N. Cross et al., 2021a). 

When looking at the connectivity matrix of the whole brain, i.e., the connectome (Leergaard et al., 

2012), graph theory is also a powerful tool to quantify the local and global efficiency of the network 

structure (He et al., 2015; Rubinov & Sporns, 2010; Watts & Strogatz, 1998).  

 

2.2.1 Seed-based functional connectivity studies  

Seed-based functional connectivity mapping is one of the most popular approaches since 

researchers first started revealing intrinsic neuronal coactivations from rs-fMRI (B. B. Biswal et 

al., 1997; Cordes et al., 2000; Pittau et al., 2012). The relatively simple implementation and the 

straightforward interpretation of results are the two strongest advantages of seed-based study 

(Buckner & Vincent, 2007). Initially, a rather small area of the region of interest (ROI) is required, 

which is named the “seed” region. The seed region can either be determined by a priori hypothesis 

(e.g., a study aiming at finding an association between functional connectivity and mTLE 

anatomical abnormalities might use the hippocampus and amygdala as the “seeds”) (Pittau et al., 

2012), or can be chosen as the activated regions in related task-fMRI analysis, which requires 

another study design of the task. After a seed is chosen, the Pearson correlation coefficient will 

then be calculated between the averaged fMRI time-course of this seed region and every other 

voxel (or region) of the whole brain. An example of a seed-based functional connectivity map can 

be found in Figure 2-1B. Nonetheless, an obvious disadvantage of seed-based method is that it 

requires an a priori choice of seed region, which can bias the results and also complicate the 

comparison of results across different studies. 

 

 

Figure 2-1 An example of a seed-based functional connectivity map. (Cordes et al., 2000). 

Adapted from Figure 3 of Cordes et al 2000. A is the brain regions that show significant activations 

in fMRI during a text-listening task. B shows the areas that exhibit significant correlation with the 

seed voxel (located at the green crosshairs) in the resting-state fMRI of the same subject.  
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2.2.2 ICA and RSNs 

Independent component analysis (ICA) is a more revolutionary, model-free method in functional 

connectivity studies (Beckmann et al., 2005; Calhoun et al., 2001; Damoiseaux et al., 2006b; de 

Luca et al., 2006), allow a data-driven summary of general connectivity without any assumption 

(van den Heuvel & Hulshoff Pol, 2010). ICA decomposes the fMRI time series of the whole brain 

into several spatial components that exhibit maximum spatial independence from each other 

(Buckner & Vincent, 2007), and interprets the whole functional activity as the contribution of 

several spatially independent components. High consistency of results findings has been reported 

across different ICA studies (Damoiseaux et al., 2006b). Another advantage of ICA is that it can 

also be applied to further identify and remove any “noisy” components that are contributed by non-

neuronal sources. However, a possible disadvantage includes that ICA-based or similar methods 

must require an a priori definition of the number of components, and a standard estimation 

algorithm to define the number of components is yet to be developed (Beckmann et al., 2005). In 

addition, the naming of the independent components is usually required at the later stages of 

analysis, whereas current techniques are mostly manual or semi-manual algorithms that compare 

components maps to existing templates (Zhang & Raichle, 2010), which is time-consuming and 

might be biased by subjective judgment. Most importantly, ICA aims to generate a series of non-

overlapping spatial networks that have maximum independence from each other’s, therefore, ICA 

is not, “in theory”, able to handle the overlaps between each network, although some degree of 

spatial overlap does exist and has been investigated.  

 

Several resting-state networks (RSNs) with distinct spatial maps have been consistently found 

across different ICA decomposition of rs-fMRI, including (a) Primary sensory networks like 

sensorimotor network, primary visual network, and auditory network; (b) Higher-order secondary 

networks that integrate information and participate in the decision making processes, such as 

Default Mode Network (DMN), executive controls networks, dorsal attention network, ventral 

attention networks, salience network, and language network; (c) as well as cortical-subcortical 

connections including thalamus subcortical network, basal ganglia network, limbic network and 

cerebellum (Fox & Raichle, 2007; Zhang & Raichle, 2010). An example illustration of 10 

commonly found RSNs with ICA is shown in Figure 2-2 (Smith et al., 2009). Smith et al applied 

20-components ICA on the BrainMap dataset, which is a dataset that consists of 29671 brain 

activation maps collected from a variety of task-based fMRI studies, in the meantime applying ICA 

on resting-state fMRI acquired from 36 healthy individuals. Then, the association between the 

components from BrainMap and the components from 36 rs-fMRI were assessed with Pearson 

spatial correlation. Eventually, 10 components from 36 rs-fMRI were found with significant 

correlation with BrainMap (r>0.25) (Smith et al., 2009). Notably, RSNs can also be identified by 
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seed-based method, e.g., Zhou et al extracted the posterior DMN using the posterior cingulate 

cortex (PCC) region as seeds and extracted anterior DMN using medial prefrontal cortex (MPFC) 

as seeds (Zhou et al., 2012). Interestingly, those aforementioned resting-state networks are found 

with high reproducibility, even with different methodologies used (ICA, seed, or hierarchical 

clustering) (van den Heuvel & Hulshoff Pol, 2010b), as well as similar RSNs identified from graph 

theory (Moussa et al., 2012). RSNs indicate the extended brain regions that work closely together 

and show synchrony in intrinsic functional connectivity within each RSN. Nonetheless, the 

synchrony between RSNs, such as existing communication between DMN and attention network 

(Fox et al., 2005; Fransson, 2005). Additionally, diverse functions have been found within an RSN 

(Vincent et al., 2006), despite being less characterized (Zhang & Raichle, 2010), which brings 

attention to the possible hierarchy organization of brain functional networks.  

 

 

Figure 2-2 An example of RSNs found using ICA-based method. It shows 10 consistently found RSNs by applying 

a 20-component ICA analysis on a database with 29671 brain activation maps and 36 resting-state fMRI time series. 

Adapted from Figure 1 of Smith et al., PNAS 2009 (Smith et al., 2009). 

 

However, a fundamental limitation of ICA is the assumption of independence between networks. 

The brain is a complex organ with multiple interacting networks and potential dynamic 

reconfigurations of their spatial extent. It is potentially challenging to assume fully independence 

between RSNs in ICA. SPARK, on the other hand, decompose the whole brain networks while 

modelling the dependency between networks. SPARK will be further illustrated in section 2.2.4 

and Chapter 3.  

 

2.2.3 hierarchical clustering 

The aforementioned hierarchical organizations of functional networks can be investigated by ICA, 

by adjusting the assumed number of components. Another effective method is hierarchical 
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clustering. Hierarchical clustering can be fully data-driven and requires no a priori information, 

which usually starts from basic parcellation of the whole brain to reduce dimension, and then 

repeatedly clustering parcels with temporal similarity together (Salvador et al., 2005). At the end, 

this method generates a hierarchical tree of different levels of spatial networks, being another 

hypothesis-free methodology to identify RSNs and explore multi-level functional connectivity 

organizations (Bellec et al., 2010a). 

 

Some other studies, despite not being hypothesis-free, instead quantify the functional integration 

and segregation among a known hierarchical tree, serving as a powerful tool to explore how known 

sub-networks of RSNs coordinate with each other (Boly et al., 2012; N. E. Cross et al., 2021). 

However, hierarchical clustering also usually only generates spatially non-overlapping networks, 

making the statistical assumption that functional networks are spatially independent, while the 

existence of multiple networks in one brain region has been proven (Thomas Yeo et al., 2011a). 

 

2.2.4 Sparse coding algorithms 

Nonetheless, a series of sparse coding algorithms based on various dictionary learning techniques 

have been developed and used in functional connectivity studies recently, which handle 

overlapping of networks because of the sparsity property. Some studies use SVD to reduce the 

dimensionality of fMRI time-series and summarize the intrinsic correlation, either applying SVD 

in PCA to summarize whole-brain connectivity patterns (Worsley et al., 2005) or applying SVD to 

extract a series of hierarchical networks (Sahoo et al., 2019). L1 regularization learning was also 

applied to extract different RSNs (Campos et al., 2015; Xie et al., 2017). Other studies applied K-

SVD to extract RSNs (Le et al., 2018; Lee et al., 2011, 2016; Nguyen et al., 2022; Seghouane & 

Iqbal, 2017; Xie et al., 2017), which is a generalized form of k-mean clustering that tries to estimate 

spatially overlapping atoms that explain the fMRI data using nearest neighbor estimation. Xie et al 

particularly found sparse coding algorithm outperformed ICA in predicting fMRI activations in 

machine learning analysis (Xie et al., 2017).  

 

Significantly, the sparsity-based analysis of reliable k-hubness and overlapping network structure 

in brain functional connectivity (SPARK), developed by our colleague Dr. Kangjoo Lee extracts 

overlapping RSNs using K-SVD as well (Lee et al., 2016). It applies K-SVD to solve a generalized 

linear model which decomposes the fMRI time series into several sparse spatial networks. The 

specificity of SPARK is that it counts the number of sparse RSNs involved in each brain voxels, 

while in the meantime offering the spatial maps of each RSN involved in each voxel (hub), 

providing easy-to-interpret results. Certainly, SPARK is a data-driven method that requires no 

assumption of connectivity. Extra advantages of SPARK include that it requires no thresholding 



 

11 

 

assumption as in Graph Theory that might bias the results, and it handles the multi-collinearity 

issues that can occur in other correlation-based methods. The multi-collinearity is defined as 

follows: if A and B have high correlations as well as B and C, A and C may be identified as 

correlated even if they come from different RSNs. Therefore, a standard functional connectome 

based on pairwise correlation will then be sensitive to the problem of multi-collinearity. Another 

way to handle this issue is by partial correlation, which was originally proposed by Marrelec et al 

(Marrelec et al., 2006a, 2007, 2008a). 

 

SPARK is used in both Chapter 3 and Chapter 4 and will be elaborated on in Chapter 3.  

 

However, most sparse coding algorithms are mathematically-complicated, which might limit their 

application by researchers from other backgrounds.  

 

2.2.5 Graph theory 

Graph theory is a strong tool for characterizing and quantifying the connectivity organization on 

the whole brain level (He et al., 2015; Rubinov & Sporns, 2010; Watts & Strogatz, 1998), which 

also focus on identifying overlapping connectivity. Graph theory represents brain parcels (or voxels) 

as nodes and functional connectivity (usually, the Pearson correlation coefficient) between two 

nodes as connections or edges. To do so, after calculating the Pearson correlation coefficient 

between any possible combination of any two nodes of the whole brain (voxel, region, parcel), a 

predefined threshold will be applied to the connectivity matrix, to binarize the whole brain 

functional connectivity (or called “connectome”), then represented as a topological map. 

 

Graph theory studies have also proposed several connectivity models of the whole brain structure 

– “small-world”, which is a type of network organization that has several local and dense 

communities connected by a few long-range connections between local communities (Watts & 

Strogatz, 1998). The “small-world” models align with the aforementioned findings of functional 

synchrony between large RSNs (Fox et al., 2005). As opposed to “small-world” network, in graph 

theory, regular networks denote a regular lattice-like network where each node has the same 

number of connections. A regular network is characterized by both high clustering-coefficients and 

high path length, whose local efficiency is high but global efficiency is low. In addition, a random 

network is generated by randomly disturbing the regular network, resulting in a randomizing 

organization which contains a lot of long-range connections between remote nodes. Random 

network is characterized by both low clustering-coefficients and low path length, whose global 

efficiency is high but local efficiency is low. The “small-world” network, instead, combines the 
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advantages of two aforementioned network, is characterized by high clustering ratio and low path 

length, therefore highly efficient both locally and globally.  

 

In graph theory, hubs are defined as the regions (nodes) exhibiting dense or essential connections. 

Among them, a provincial hub refers to a hub in local communities whereas a connector hub refers 

to brain regions that participate in internetwork communication. In graph theory analysis, hubs can 

be identified by high degree centrality, high betweenness centrality, or high eigenvector 

centrality (Royer et al., 2022). Degree centrality simply implies the number of connections to a 

node. Betweenness centrality quantifies how many times a given node sits on the shortest paths 

between any two remote nodes of the overall network (Perez & Germon, 2016). Eigenvector 

centrality quantifies the importance of the nodes that are connected to the given node. Instead of 

quantifying how many nodes or regions are “connected” to a specific node (or voxel), SPARK 

methodology mentioned in section 2.2.4 quantifies the number of RSNs connected to each voxel. 

Since the decomposition of the signal in each voxel is sparse it will only involve contribution from 

the time course of a small/sparse number of RSNs defined as “k-hubness” (k<10 networks). 

Therefore, voxels exhibiting higher k-hubness values, tends to be connectors hubs involving in 

long-distance communication between RSNs (Lee et al., 2016).  

 

Participation coefficients is another measure of hubness in graph theory proposed by Power et al. 

(Power et al., 2013), which is also similar to the method of k-hubness. Participation coefficients 

quantify the contribution of a node’s edges to all communities of the whole brain. If a node (voxels 

or brain regions) has low participation coefficients, it denotes that this node has minimum 

contribution to the communities. If a node has high participation coefficients, it denotes that this 

node has maximum contribution to different clusters over the brain. Therefore, a low participation 

coefficient indicates this node tends to be a provincial hub, and a high participation coefficient 

indicates a connector hub.  

 

Despite offering a global perspective of the functional connectome, the shortcomings of graph 

theory are also obvious. Other than the multi-collinearity issue mentioned in section 2.2.4, graph 

theory methods also depend on the assumption of the threshold applied to the connectivity matrix, 

although a variety of data-driven methods to estimate the optimal threshold based on data 

variability have been proposed (Bordier et al., 2017). SPARK, on the other hand, requires no a 

priori definition of threshold and offers a straightforward representation of RSNs, because of its 

sparse dictionary learning algorithm.  
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2.3 Functional connectivity during sleep 

Sleep allows restoring physical capability and cognition. It is generally characterized by low 

arousal states, low reaction to external stimuli, and reduced muscle activity, which can be 

monitored by Electromyography (EMG) (Ferri et al., 2008). Monitoring brain bioelectrical activity 

using Electroencephalogram (EEG), several sleep specific patterns, such as slow rhythms involving 

low frequency bands of neural activity and specific featured neuronal events such as sleep spindles 

and k-complex can be recorded and are used to characterize sleep (Caporro et al., 2012). A 

systematic judgment and scoring of sleep are usually conducted following the American Academy 

of Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events, according to 

which sleep can be categorized into rapid-eye-movement (REM) sleep and non-rapid-eye-

movement (NREM) sleep (AASM, 2007). NREM sleep as a deeper state of sleep can be further 

categorized into NREM1, NREM2, NREM3 and NREM4 based on different characteristics of 

electrophysiology, with NREM4 being the deepest NREM sleep stage. Emerging evidence in EEG 

studies suggested the association between NREM sleep and cognition, reflected both in brain 

maturation of children (Knoop et al., 2021) and brain aging (Taillard et al., 2019). Functional 

imaging using functional Near-infrared spectroscopy (fNIRS) (Le et al., 2018) or fMRI can be 

utilized in sleep studies to understand the intrinsic link between neuronal activity and cognitive 

function. However, functional imaging studies of sleep must be companied by electrophysiological 

recording to monitor sleep stages, thus requiring EEG-fNIRS or EEG-fMRI simultaneous 

acquisition and additional preprocessing techniques.  

 

The EEG recording will then need to be manually scored by professionals according to the AASM 

scoring manual (AASM, 2007). As described in Acharya et al (Acharya et al., 2015), EEG shows 

different characteristics at different NREM stages: in NREM1, Alpha band of EEG (8-12Hz) 

disappears and Theta band of EEG (4-7Hz) appears; in NREM2, the characteristic sleep spindles 

(11-15Hz) and K-complexes waves will appear with Theta waves; in NREM3, sleep spindles and 

K-complexes still exist but Delta band of EEG starts appearing (1-3Hz); in NREM4, Delta waves 

of frequency <2Hz will be dominant and have high EEG amplitude. An illustration of EEG 

characteristics in NREM sleep can be found in Figure 2-3. However, EEG obtained from 

simultaneous EEG-fMRI acquisition is largely contaminated by magnetic resonance related noise, 

including gradient artefacts and ballistocardiogram noise (Uji et al., 2021). Gradient artefacts are 

due to the large voltage amplitude induced by varying magnetic field gradients (Allen et al., 2000). 

Although because its high reproducibility, it can be removed by the average artefact subtraction 

approach. On the other hand, ballistocardiogram noise caused by head motion from the cardiac 

process, is less unreproducible and require more advanced denoising techniques to remove. A 
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recently published paper from our group proposed a data-driven beamforming technique to remove 

ballistocardiogram, tested on the same dataset in Study 1 of the present thesis (Uji et al., 2021).  

 

 

 

Figure 2-3 Illustration of EEG characteristic waves in wakefulness, NREM1, NREM2 and NREM3 stages. 

Adapted from a webpage article authored by Dang-Vu et al (Dang-Vu et al., 2022).  

https://www.britannica.com/science/sleep#ref38758.  

 

Simultaneous EEG-fMRI acquisition made it possible to assess functional connectivity during 

sleep. Cross et al recently found significantly increased functional network segregation during a 

recovery nap quantified by functional clustering ratio (FCR) (N. E. Cross et al., 2021). Using the 

same metric FCR, Boly et al found significantly increased network segregation in NREM sleep 

comparing to wakeful rest, especially in Visual network and salience network (Boly et al., 2012). 

The topic of investigating the association between functional connectivity and sleep will be further 

discussed in Chapter 3, where we applied SPARK to investigate brain network segregation during 

sleep.  

 

 

https://www.britannica.com/science/sleep#ref38758
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2.4 Functional connectivity in epilepsy 

As mentioned in graph theory studies, the “small-world” structure of the human brain is highly 

efficient both globally and locally. However, the disadvantage of “small-world” is that the 

connector hub brain regions are even sensitive to neuronal disease, then leading to significant 

functional network alteration. In epilepsy, anatomical abnormalities can appear in connector hub 

regions, such as the hippocampus, leading to overall network disruption. A growing literature has 

reported altered functional connectivity in epilepsy (Bettus et al., 2009; Lee et al., 2018; W. Liu et 

al., 2021; Royer et al., 2022; Waites et al., 2006; Zhang & Raichle, 2010). Royer et al reviewed 

and summarized recent discoveries regarding functional and structural hub reorganization in 

common epilepsy types, based on fMRI, structural MRI, and electrophysiological imaging findings 

(Royer et al., 2022). As suggested by Royer et al., not only do the atypical hub maps help 

understand the underlying seizure-generating network, but hub maps may also serve as potential 

biomarkers for epilepsy-related cognitive disruption and predicting postsurgical seizure outcomes 

(Royer et al., 2022). The association between functional connector hub and epilepsy will be further 

discussed in the introduction in Chapter 4, where we apply SPARK as a novel method to quantify 

the hub reorganization in TLE and FLE. 

 

Evidence of long-term post-surgical failures raises concerns about whether patients are receiving 

the most effective care. Rs-fMRI reveals highly organized spatial functional networks across 

subjects (Fox & Raichle, 2007), which are often reorganized in epilepsy (Constable et al., 2013; 

Lee et al., 2018). Whereas the reorganizations depend on the etiology of the disease, specific 

functional network properties are likely to predict postsurgical outcomes (He et al., 2015). In 

addition, structural connectivity analyzed using Diffusion Weighted Imaging (DWI) reveals white 

matter pathways, which suggests alteration of structural connectivity in epilepsy, as another 

candidate biomarker for the postsurgical outcome (Alizadeh et al., 2019). In this next study, we 

will focus our investigation on the analysis of functional connector hubs of brain networks, whereas 

hubs are defined as brain regions exhibiting denser connections with distant brain regions than 

others (Bullmore & Sporns, 2009). Connector hubs are the key regions participating in inter-

network connectivity through long-range connections and ensuring overall network integrity 

(Heuvel & Sporns, 2011). Temporal Lobe Epilepsy (TLE) and Frontal Lobe Epilepsy (FLE) are 

two typical categories of focal epilepsy (Culhane-Shelburne et al., 2002). Using SPARK (Lee et 

al., 2016), a new methodology proposed by our group to estimate connector hubs in rs-fMRI, 

alterations of functional connector hubs have been previously reported in TLE (Lee et al., 2018). 

When comparing TLE and FLE, other groups reported different functional networks, involving 

notably specific subcortical connectivity patterns (Výtvarová et al., 2017), together with the 



 

16 

 

specific reorganization of structural pathways detected using DWI (Campos et al., 2015).  

 

In conclusion, in Chapter 2, we introduced the concept of functional connectivity studies. We 

introduced the state-of-the-art methodologies used to investigate functional connectivity. 

Functional connectivity can also be a powerful tool to investigate brain functions in sleep and 

discovering brain alterations in disease.  
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Chapter 3 – Study 1: Hierarchical segregation of functional brain networks at 

NREM sleep and attention function 

 

Title: Hierarchical segregation of functional brain networks at NREM sleep and attention 

function (Publication in preparation) 

Authors: Kangjoo Lee+, Yimeng Wang+, Nathan Cross, Aude Jegou, Fatemeh Razavipour, 

Florence B. Pomares, Aurore A. Perrault, Alex Nguyen, Umit Aydin, Jean Gotman, Thien Thanh 

Dang-Vu, Christophe Grova 

(+: co-first authors) 

 

3.1 Preface 

 

This study is based on a dataset of 20 healthy participants who underwent total sleep deprivation 

then took a one-hour recovery nap while being scanned for fMRI time-series. This dataset was 

acquired by Aude Jegou during her Master’s degree at Concordia. This dataset was supported by 

Dr. Christophe Grova and Dr. Thien Thanh Dang-Vu. Three papers have been published based on 

this study focusing on research interests by our colleagues (N. Cross et al., 2021a; N. E. Cross et 

al., 2021; Uji et al., 2021). The present study specially focusing on functional segregation during 

NREM sleep and its association with cognitive performance after nap. The present study is under 

close collaboration between Dr. Kangjoo Lee and I. The present study is adapted from one of the 

projects in Dr. Kangjoo Lee’s PhD dissertation. A detailed description of the work distribution 

between us can be found in section 3.7. Notably, section 3.7 will not be included in the 

publishing paper, but only included in the thesis for clarity of my work.   



 

18 

 

3.2 Abstract 

 

Decline in cognitive performance is usually observed after sleep deprivation in healthy adults, 

where non-rapid eye movement (NREM) sleep may play a role. Neuroimaging can be used to 

decipher complex patterns of interconnection between brain regions the awake condition but also 

during sleep. We hypothesize that patterns of integration within hierarchical network organizations 

alter at NREM sleep compared to wakefulness. 

 

Using a sparse dictionary learning based analysis of resting state fMRI, we identify individual hub 

regions located at the intersection of spatiotemporally overlapping networks by measuring k-

hubness, which is the number of overlapping networks in each voxel. To quantify systematic 

changes in hub-associated network organizations, we propose a new metric, the hierarchical 

segregation index (HSI), using the ratio of k-hubness estimated at the voxel level and at the regional 

level.  

 

We found increased network segregation occurring during NREM2 sleep, when compared to awake 

resting state, mainly within the visual, default mode and association cortex areas. In the visual 

network, we also found further segregation increase in NREM3 when compared to NREM2.  Such 

patterns were associated with the amount of working memory performance decline associated with 

sleep deprivation. The observed state-dependent changes in HSI provided complementary 

information to those estimated using the functional clustering ratio which is an algorithm 

quantifying network segregation based on a Bayesian framework. The correspondence between the 

two measures is inhomogeneous over the cortex, exhibiting the strongest correspondence in the 

dorsal attention network. This study provides multi-faceted evidence of functional brain network 

segregation during NREM sleep and a role of network segregation in the association areas during 

sleep and attention function. 

 

Keywords: non-rapid eye movement sleep, fMRI, sleep deprivation, hub, attention 
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3.3 Introduction 

 

The role of sleep in human cognition can be studied using neuroimaging techniques able to track 

variations in brain activity across different sleep stages. Non-rapid eye-movement (NREM) sleep 

stages are usually defined using spontaneous brain waves detected on scalp 

electroencephalography (EEG) in the absence of rapid eye movements (Berry et al., 2015). 

Spindles are transient oscillations that mostly occur during NREM sleep stage 2 (NREM2)(de 

Gennaro & Ferrara, 2003; Steriade et al., 1993) and are suggested to play an important role in 

memory consolidation and sleep quality (Dang-Vu et al., 2008). The deepest NREM stage, NREM3, 

is related to sleep homeostasis (Marshall et al., 2006; Ngo et al., 2013), characterized by the 

occurrence of slow waves on scalp EEG. Using simultaneous recordings of scalp EEG with 

functional magnetic resonance imaging (fMRI), one can monitor hemodynamic processes through 

the measurement of the blood-oxygen-level-dependent (BOLD) signal, during different sleep 

stages or conditions (few review). Such studies have notably reported fMRI signals consistently 

synchronized to slow waves activity (< 1 Hz) on scale EEG (Dang-Vu et al., 2008). Considering 

potential roles of sleep in cognitive functions, experiments involving cognitive tasks following 

sleep deprivation (SD) can be useful to study the relationship between sleep, cognition and 

functional organizations of the brain (N. E. Cross et al., 2021). 

 

Mapping brain functions to the brain can be facilitated by further understanding the brain 

organizations as patterns of large-scale networks. Large-scale networks can be identified by 

measuring functional connectivity between brain regions from resting state fMRI data. Several 

resting state networks patterns have been consistently found during wakeful resting state (Smith et 

al., 2009), whereas during NREM sleep, resting state network architecture was associated with 

reorganization, especially in the visual and salience network (Boly et al., 2012). Indeed, EEG/fMRI 

sleep studies have reported functional connectivity decreases during sleep within the default mode 

network (Horovitz et al., 2009) and between the default mode and its anti-correlated networks (de 

Havas et al., 2012; Sämann et al., 2011). Using high-density scalp EEG and source imaging, 

activation of the premotor region evoked by non-invasive transcranial magnetic stimulation was 

associated with propagations of neuronal activity to neighboring regions, whereas during NREM 

sleep, such an evoked response disappeared more rapidly with no propagations (Massimini et al., 

2005). Decrease in thalamo-cortical connectivity during NREM1 was followed by disruption of 

cortical-cortical connectivity during deep NREM sleep (Spoormaker et al., 2010), suggesting a 

systematic reorganization of brain networks associated with different sleep stages.  
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Integration within and between brain networks plays a key role in information processing and 

cognition, whereas decreases in network integration has been reported in low vigilance states (Lee 

et al., 2022; T. T. Liu & Falahpour, 2020; Tagliazucchi et al., 2013). Decrease of corticocortical 

functional connectivity have been found in slow-wave sleep (NREM3 and 4) (Spoormaker et al., 

2010). Brain regions exhibiting several connections to other regions are identified as hubs using 

graph theory, whereas some have found increased number of hubs in NREM1 and 2 sleep stages 

when comparing to wakefulness, and following by decreased number of hubs in NREM3 and 4 

(Spoormaker et al., 2011). Using a metric derived from information theory, Boly et al quantified 

hierarchical segregation of brain networks into their respective sub-networks during sleep (Boly et 

al., 2012), by measuring the so-called functional clustering ratio (FCR) (Marrelec et al., 2006b, 

2008b). FCR was estimated as the ratio between the integration within sub-networks when 

compared with the integration between these subnetworks, therefore reflecting the balance of 

between-network integration and within-network integration. They reported increased FCR in 

motor, visual, default mode, dorsal attention, executive control and salience networks during 

NREM sleep when compared to wakefulness, suggesting more segregation between networks 

during NREM sleep (Boly et al., 2012). Recently, by measuring FCR during task-based fMRI after 

normal sleep and after a night of total SD, our group reported reduced network integrations 

following SD which is associated with attention and executive cognitive performance (N. E. Cross 

et al., 2021). These studies, however, did not study potential variations of network integration 

during different NREM sleep stages (e.g., NREM2 and 3).  

 

We aim at quantifying and assessing brain network integration up to the voxel resolution from 

resting state fMRI, while aiming at evaluating hubs during NREM sleep which was lack of attention 

before. We hypothesize that hub regions that participate in between-network integration play a role 

in state-dependent changes in functional brain integration, and such changes are associated with 

maintenance or loss of cognitive performances elicited by sleep deprivation.  

 

Analyzing hubs of brain network from connectome matrices, reporting correlation between brain 

regions, is actually biased by multicollinearity, since the time-courses of networks decomposed 

from the whole brain are themselves related (Lee et al., 2022; Yeo et al., 2014). To detect such 

complex structures reliably at the single subject level, we recently developed a method called a 

sparsity-based analysis of reliable k-hubness (SPARK) based on sparse dictionary learning. k-

hubness is the number of overlapping networks in each voxel or region, and has been applied to 

identify reorganization of hubs in epilepsy (Lee et al., 2018) and in healthy adults across different 

levels of arousal (Lee et al., 2022). 
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In the present study, we propose to investigate resting state network segregation during NREM2 

and NREM3 sleep stages, measured during a one-hour nap following a whole-night SD, in 

comparison to wakeful resting state after normal sleep. We used the SPARK method to estimate 

overlapping network structures and hubs from individual resting state fMRI. An important 

contribution of this work is to propose and validate the usefulness of a new metric, the hierarchical 

segregation index (HSI), to quantify network segregation using the ratio of k-hubness estimated 

across two spatial resolutions. The HSI utilizes the unique ability of SPARK to provide the hubness 

in the voxel-to-region hierarchy at the same time. In comparison to FCR (Boly et al., 2012; N. E. 

Cross et al., 2021), our proposed HSI is computed at the lower-level system (i.e., voxel) of this 

hierarchy, i.e., at the voxel level, thus providing a finer-scale evaluation of network segregation, 

when compared to other approaches such as FCR assessing segregation at higher levels of the 

hierarchy of brain networks (Boly et al., 2012; N. E. Cross et al., 2021). 

 

3.4 Results 

 

We recruited 20 volunteers according to our inclusion criteria, which is the same as Cross et al (N. 

E. Cross et al., 2021): participants were aged between 18 to 30 years, healthy and good sleepers. 

For each subject, we obtained and analyzed simultaneous high-density EEG/fMRI data from the 5-

minute resting state fMRI scan following normal sleep night and the 60-minute resting state fMRI 

scan during the 1-hour nap inside the scanner, after a whole night of SD (highlighted in orange 

boxes in Figure 3-1A). During the night of SD, to ensure the subject does not fall asleep, an 

investigator accompanied the subject and offered to talk, watch movies and play games. Sleep 

stages during the recovery nap were marked by expert for the 60-minute EEG data acquired during 

the nap after SD. Subsequently, fMRI segments being in NREM2 or NREM3 stages for >5 min 

was selected and trimmed to 5 min. We considered the following datasets for further network 

analysis: resting state fMRI data obtained from 14 subjects after normal sleep, 18 subjects during 

NREM2 after whole-night SD, and 12 subjects during NREM3 after whole-night SD. We obtained 

a total duration of 36 ± 13.4 minutes (mean and standard deviation across subjects) for NREM2 

and 10.8 ± 8.8 minutes for NREM3 (Figure 3-1B). The total number of time windows (segments) 

exhibiting 5 minutes or more of sequential time frames during a specific sleep stage was 2.4 ± 1.1 

segments for NREM2 and 0.9 ± 0.8 segments for NREM3 (Figure 3-1C). Finally, one continuous 

5-minute fMRI run was selected for each state per subject based on our inclusion criteria (See 

Methods). SPARK method was applied on those selected datasets to estimate the functional hub 

organizations in each 5-minute run within a specific sleep stage. 
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Figure 3-1 Simultaneous EEG/fMRI data across vigilance states. (A) Overview of study design, which is the same 

study design as Cross et al (N. E. Cross et al., 2021). Participants visited to the lab three times: a habituation night to 

evaluate their eligibility (good sleepers), followed by a counterbalanced design of two experimental nights, starting 

with either session 1 or 2. In the morning following a normal sleep (at least 8 hours), high-density EEG/fMRI scans 

are acquired while the subjects either perform three cognitive tasks (ANT: Attention network task, N-back and MCT: 

Mackworth clock test) or rest while watching a fixation cross. In the morning following a whole-night SD (0-hour 

sleep), subjects underwent high-density EEG/fMRI acquisition while first performing the same three cognitive tasks 

and rest for 5 minutes. Next, subjects were provided an opportunity to sleep inside the scanner for one hour, before 

performing again the same three tasks and rest for 5 minutes after this recovery nap. Data analyzed in this study are 

highlighted in orange (imaging data) and blue (behavioral data) boxes. (B) Total duration of NREM2 sleep (N2) and 

NREM3 sleep (N3) during the one-hour nap inside the MRI scanner after a whole-night SD of each individual. (C) 

Total number of time windows (segments) equal or longer than 5 min that N2 or N3 sleep stages. (D) Distribution of 

the global network scale, i.e., the total number of networks N estimated by SPARK at the individual level. The total 

number of functional networks, estimated for each 5-minute individual fMRI run using SPARK, was preserved across 
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brain states. (E) Estimation of the voxel-level (𝑘𝑉 ) and region-level (𝑘𝑅 ) k-hubness from the individual sparse 

coefficient matrix (N networks by voxels) using SPARK. (F) The 9-region atlas used to estimate k-hubness at the 

region level. (G) The mean and standard deviation of region-level k-hubness within the nine pre-defined networks. (H) 

The hierarchical segregation index (HSI) is computed for each voxel as the ratio between k-hubness values estimated 

at the region-level and at the voxel-level. In this toy example, voxel 5 that has the highest number of network overlaps 

exhibits the lowest HSI value (i.e., more integration or less segregation within that region). 

 

Functional network hubs reconfigure during NREM sleep 

 

We first assessed using SPARK if the global network scale N, i.e., the total number of networks 

estimated for each analyzed fMRI segment, was preserved across brain states within individuals 

(Achard et al., 2012; T. T. Liu & Falahpour, 2020). To do so we applied the methodology developed 

in (Lee et al NIMG clin), to estimate N from the data. We found that the estimated total number of 

networks in the whole brain in individuals was preserved across brain states: 10.7 ± 3.4 (mean ± 

standard deviation) for resting state after a normal night, 11.6 ± 2.6 during NREM2 sleep and 11.6 

± 2.4 during NREM3 sleep (Figure 3-1D). In the subsequent analyses, we tested our hypothesis 

that topological patterns of network integration alter from wakeful resting state to NREM sleep, 

even if the global network scale N was preserved within individuals across different states. For 

each state per subject, in addition to the estimation voxel level k-hubness estimated using SPARK 

(𝑘𝑉: the number of networks overlapping in this voxel), we proposed a new method to estimate k-

hubness at the region level (𝑘𝑅: the number of networks overlapping in a region of interest) from 

SPARK decomposition (Figure 3-1D).  

 

To estimate the region level k-hubness, we considered nine larger networks, defined using a 

modified version of Yeo-7 functional atlas (Thomas Yeo et al., 2011b) combined with two 

additional networks defined using automated anatomical labeling (AAL) template (Rolls et al., 

2020), the subcortical network (basal ganglia) and the cerebellum network-based subcortical 

regions (basal ganglia and cerebellum) (Figure 3-1F) (Thomas Yeo et al., 2011b; Tzourio-Mazoyer 

et al., 2002). The original Yeo-7 functional limbic network was modified to add the hippocampi 

and amygdalae from the AAL atlas. Estimating hubness at the regional level over those nine 

networks, we found that 𝑘𝑅  increased in the visual regions and decreased in the frontoparietal 

regions during NREM2 sleep when compared to wakeful resting state (Figure 3-1G, Bonferroni 

corrected p<.05). Our results are in agreement with our previous work showing arousal level-

dependent changes in region-level k-hubness during wakeful resting state (Lee et al., 2022).  

 

We then assessed how patterns of hubness values estimated at the voxel level (𝑘𝑉), would vary 

across vigilance states, as a measure of integration between networks. During wakeful resting state 
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(WR), the group average 𝑘𝑉  over subjects was found high in the default mode, frontoparietal 

association, somatomotor, and visual areas (Figure 3-2A), in agreement with our previous work 

estimating voxel-level k-hubness (Lee et al., 2016, 2018). Such patterns were found to alter when 

subjects slept in scanner after whole-night SD (permutation test, FDR corrected p<.05, Figure 3-

2B). When comparing NREM2 relative to wakeful resting state, we found decreases in k-hubness 

in parts orbitofrontal cortex. Specifically, we found sleep-associated hubs in the hippocampus, right 

posterior cingulate cortex, right cerebellum, right inferior temporal gyrus, fusiform gyrus, posterior 

orbitofrontal cortex, insula, olfactory cortex, and subcortical structures including the putamen, 

caudate and ventral striatum (two-sample permutation test, 𝑝𝐹𝐷𝑅 < 0.05 , corrected for false 

discovery rate, Figure 3-2B). Surprisingly, we found that k-hubness then increased within these 

regions during NREM3 sleep when compared to WR (𝑝𝐹𝐷𝑅 < 0.05; N3 > WR > N2), suggesting 

that sleep stage specific changes in overlaps between brain networks and therefore hubness 

distribution. Note that between-network integration measured from overlapping networks using the 

SPARK framework should be interpreted differently from conventional measure of between-

network integration of non-overlapping networks. It is because network overlap using SPARK can 

be observed at one of the core regions of large-scale network, rather than at its anatomical 

boundaries. See our discussion for details.  
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Figure 3-2 Altered patterns of functional network overlap across different vigilance states. (A) Group average 

voxel level k-hubness maps (𝑘𝑉) estimated from wakeful resting (WR), NREM2 (N2) and NREM3 (N3) sleep states. 

(B) t-statistics map comparing 𝑘𝑉 between states: N2 > WR (top), N3 > WR (middle), N3 > N2 (bottom). 𝑝𝐹𝐷𝑅 < 0.05 

using two-sample permutation tests with 10,000 permutations.  

 

Hierarchical segregation of brain networks during NREM sleep 

 

Our extension of SPARK was used to estimate k-hubness at two hierarchical levels, at the voxel 

level and at a regional level, within nine networks.  We used this ability to define a new measure 

of network segregation. To assess if a region was functionally segregated into several sub-networks, 

we defined the 𝐻𝑆𝐼𝑖 for each voxel i using the ratio of region-level k-hubness for a region R to 

which the voxel i belongs (𝑘𝑖∈𝑅
𝑅 ), to voxel-level k-hubness (𝑘𝑖

𝑉) (Figure 3-1H). 

 

𝐻𝑆𝐼𝑖 = 𝑘𝑖∈𝑅
𝑅 𝑘𝑖

𝑉⁄  
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Therefore, a high HSI value reflects that the number of networks involved in a region R, to which 

the voxel i belongs to, is larger than the number of networks involved in this particular voxel. This 

also reflects that this voxel may be involved in several networks (𝑘𝑖
𝑉), but it belongs to a larger 

system (the pre-defined region R) that involves more subnetworks, whereas functional integration 

between those sub-networks is low, suggesting more segregation between subnetworks involved in 

the region/network R. A high HSI value suggests within-region inhomogeneity of the region R. On 

the other hand, a low HSI value reflects that this voxel i belongs to a system (the pre-defined region 

R) that involves a similar number of networks than the value 𝑘𝑖
𝑉. Therefore, a low HSI suggests 

within -region homogeneity, reflecting large integration between subnetworks involved in 

region/network R. HSI is equal or larger than 1, because the network, in which a voxel belongs to, 

should involve an equal or larger number of networks than the number of networks involved in this 

particular voxel. The particular feature of this new proposed metric of network segregation, HSI, 

is that it can be estimated at the voxel level, for a specific level of the network hierarchy, i.e., the 

total number of R regions considered (here nine regions). For each state (WR, NREM2, NREM3), 

we estimated group average maps of k-hubness and HSI values by averaging the values across 

subjects in each voxel. 

 

In Figure 3-3A, we are presenting group average HSI maps estimated using SPARK during 

wakeful resting state, NREM2 sleep and NREM3 sleep. During NREM2, when compared to WR, 

we found increased network segregation in regions of the visual and default mode networks 

(permutation test, FDR corrected p<.05, Figure 3-3B). Specifically, regions involving more 

network segregation during NREM2 sleep include parts of the visual association cortex, lingual 

occipital superior, left fusiform gyri, superior parietal, postcentral, paracentral lobule, precuneus, 

posterior cingulate, and medial superior frontal cortex. Among them, regions of the default mode 

and somatomotor network did not show any changes in HSI when comparing NREM2 and NREM3 

sleep stages (N3 ≈ N2 > WR). On the other hand, regions involving the visual network showing 

decreases in HSI values (N2 > N3 ≈ WR). On the other hand, during NREM2 relative to wakeful 

resting state, we found decreased network segregation in regions of the orbitofrontal cortex, ventral 

striatum, rectus, medial orbitofrontal cortex, caudate, putamen, right fusiform, inferior temporal 

cortex, parahippocampal gyrus and hippocampus. These regions, however, then showed increases 

in HSI values during NREM3 sleep (N3 > WR > N2). 
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Figure 3-3 Altered patterns of functional network segregation across different vigilance states. (A) Group average 

HSI maps estimated from wakeful resting state (WR), NREM2 sleep (N2) and NREM3 sleep (N3). (B) t-statistics map 

comparing HSI between states: N2 > WR (top), N3 > WR (middle), N3 > N2 (bottom). Two-sample permutation tests, 

10,000 permutations, 𝑝𝐹𝐷𝑅 < 0.05. 

 

 

More network segregation during NREM sleep was associated with decreases in task 

performance after SD. 

 

We next investigated whether the observed functional network segregation during NREM sleep 

were associated with the level of cognitive performances after recovery nap. As reported by Cross 

et al., the cognitive performance after total sleep deprivation was significantly dropped comparing 

to the cognitive performance after a normal night of sleep (N. E. Cross et al., 2021). After a one-

hour recovery nap, the cognitive performance was significantly increased comparing to SD, but 

still the level of performance remains low comparing to normal night (N. E. Cross et al., 2021). 
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Therefore, we want to specifically compare if the segregation during the recovery nap comparing 

to the segregation during WR will be associated with the performances after the recovery nap 

comparing to the performance after a normal night of sleep, i.e., using the wakefulness after a 

normal night as a baseline for each subject.   

 

To assess cognitive performance during N-back, MCT and ANT tasks realized either during the 

WR period or following the recovery nap after SD, we measured reaction time (RT) in milliseconds 

and the accuracy as the percentage of correct responses. To assess if these behavioral scores were 

associated with network segregation during sleep, voxel-wise HSI measures were averaged within 

each region R for each subject (< 𝐻𝑆𝐼 >𝑅). We considered 9 regions R, consisting in the modified 

Yeo-7 functional networks in addition to basal ganglia and cerebellum regions as mentioned before. 

We therefore obtained nine region-average < 𝐻𝑆𝐼 >𝑅 values per subject in each state. Between-

state difference in region-average < 𝐻𝑆𝐼 >𝑅  values were then computed for each subject 

(∆< 𝐻𝑆𝐼 >𝑅).  

 

Our goal was to study if there was any association between state-dependent changes in 

< 𝐻𝑆𝐼 >𝑅values and the scores assessing individual task performances: reaction time (ms) and 

accuracy (%). To quantify state-dependent changes in network segregation, we assessed the 

difference in HSI values (∆< 𝐻𝑆𝐼 >𝑅) between NREM sleep (N2 or N3) and wakeful resting state 

after normal sleep (WR) together with the average change in task performance (RT or accuracy) 

between task completed during the recovery nap and the normal night. Pulling together results from 

all 9 regions R and all subjects, we found a weak correlation (p<0.05) between ∆< 𝐻𝑆𝐼 >𝑅 and 

the difference in N-back task performances between post-nap and normal night conditions. More 

precisely, increase network segregation associated with NREM 2 sleep (when compared to WR), 

was negatively correlated with task accuracy (𝑟 = −0.2, 𝑝 < 0.05; Figure 3-4A) and positively 

correlated with latency (𝑟 = 0.23, 𝑝 < 0.05; Figure 3-4B). More specifically, decrease in the task 

performances was correlated with increase ∆< 𝐻𝑆𝐼 >𝑅 during NREM2, in the regions belonging 

to the dorsal attention network, as defined using the Yeo-7 atlas (Figure 3-4C, D). Similarly, 

increases in network segregation during NREM 3 sleep was also negatively correlated with task 

accuracy ( 𝑟 = −0.24, 𝑝 < 0.05 ; Figure 3-4) and positively correlated with latency ( 𝑟 =

−0.28, 𝑝 < 0.01 ; Figure 3-4F). We found a similar association of ∆< 𝐻𝑆𝐼 >𝑅  in the dorsal 

attention areas during NREM3 when compared to WR with changes in task performances (Figure 

3-4G-H). Other than dorsal attention network region, we did not find any significant association 

between HSI and task performances for N-back task performance.  

 

Given the fact that the whole-brain level results, pulling together average  ∆< 𝐻𝑆𝐼 >𝑅  values for 
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all 9 regions and all subjects, showed an association with the N-back task scores, we also performed 

an ad-hoc analysis to obtain a more robust statistical evaluation. Instead of directly correlating 

difference  ∆< 𝐻𝑆𝐼 >𝑅 of average HSI values within each region to the N-back task performance 

scores, we performed a bootstrap resampling approach, to obtain 1,000 bootstrap replications of 

average  < 𝐻𝑆𝐼 >𝑅 values for each region R by selecting parcels with replacement (See Methods). 

We then correlated each resampled ∆< 𝐻𝑆𝐼 >𝑅  values with corresponding task performance, 

therefore ensuring that averaging HIS values within each region R was robust.  and computed the 

corresponding 1,000 correlation coefficients (see Methods). When re-analyzing the association for 

the ∆< 𝐻𝑆𝐼 >𝑅 (N2-WR) in Figure 3-4A and Figure 3-4B using the proposed bootstrap approach, 

the median correlation  (𝑟𝑚𝑒𝑑𝑖𝑎𝑛 ) computed between the ∆< 𝐻𝑆𝐼 >𝑅  values from the whole 

cerebral cortex with the N-back task performance accuracy was -0.65 ( median of p-values, 

𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = 0.013), whereas the median correlation  𝑟𝑚𝑒𝑑𝑖𝑎𝑛 computed between these values with 

the latency was 0.64 ( 𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = 0.014 ). When re-analyzing the same association using the 

bootstrap approach for the ∆< 𝐻𝑆𝐼 >𝑅  from each region separately, the ∆< 𝐻𝑆𝐼 >𝑅  (N2-WR) 

from the dorsal attention network was associated with the N-back task performance accuracy at 

𝑟𝑚𝑒𝑑𝑖𝑎𝑛 = −0.553  (𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = 0.04 ) and with the latency at 𝑟𝑚𝑒𝑑𝑖𝑎𝑛 = 0.57 (𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = 0.033 ). 

We did not find any effect when re-analyzing the association of the N3 sleep associated changes in 

< 𝐻𝑆𝐼 > and task performances using this bootstrap approach.  

 

Other than the task performance of N-back task, we have also applied the aforementioned analysis 

for ANT task and MCT task. In ANT task, using the bootstrap resampling technique, the 

∆< 𝐻𝑆𝐼 >𝑅  (N2-WR) from the dorsal attention network was associated with the accuracy at 

𝑟𝑚𝑒𝑑𝑖𝑎𝑛 = −0.545 (𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = 0.044), but its latency showed no significant effect. Additionally, 

the ∆< 𝐻𝑆𝐼 >𝑅  (N2-WR) from the frontoparietal network was associated with latency at 

𝑟𝑚𝑒𝑑𝑖𝑎𝑛 = −0.551 (𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = 0.041), but the accuracy showed no significant effect. However, in 

MCT task, we did not find significant association between HSI and MCT task performance.  

 

Overall, our results suggest that more network segregation during NREM sleep following SD was 

as associated with further reduced post-nap task performance, when compared to the normal night. 

The dorsal attention network seems to play a particular role in this neural-behavioral relationship.  
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Figure 3-4 Network segregation during NREM sleep after a whole-night SD is associated with worse retrieval 

of N-Back task performance after the recovery nap following whole night SD. A region-average  < 𝐻𝑆𝐼 >𝑅  was 

computed averaging the voxel-level HSI values across the voxels belonging to a region R. Nine regions were pre-

defined using the modified Yeo-7 functional network atlas, basal ganglia and cerebellum. ∆< 𝐻𝑆𝐼 >𝑅 was estimated 

as the difference in < 𝐻𝑆𝐼 >𝑅values between NREM sleep stage (N2 or N3) and well-rested state (WR). The correlated 

with the difference in task performance measured during task fMRI after normal night sleep (subscript: nn) and after 

the recovery nap after whole-night SD (subscript: postnap). In graph A, B, E, F, we pulled together results from all 

regions and all subject, and each dark grey dot represents one of the nine regions from an individual. The total number 

triangles are therefore 9 times the number of subjects at each state. In graph C, D, G, H, each dark grey dot represents 

the dorsal attention region only from an individual. Red solid line and shaded area represent a linear fit and 95% 

confidence interval, estimated between the  ∆< 𝐻𝑆𝐼 >𝑅 and behavioral scores. 𝑟 is the Pearson’s linear correlation 

coefficient. p-value was calculated for the F-test on the model. 𝑅𝑎𝑑𝑗
2  is the adjusted coefficient of determination. 
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Relationship between the HSI and FCR 

 

Functional Clustering Ratio (FCR) is defined as the ratio of the integration within subsystems and 

the integration between subsystems, originally proposed by Marrelec et al. (Marrelec et al., 2006b, 

2008b), adapted in Boly et al (Boly et al., 2012) and Cross et al (N. E. Cross et al., 2021). An 

increase in FCR indicates that subsystems become functionally more independent of each other, 

indicating more segregation within the given system (Boly et al., 2012). Cross et al. found the task 

performances during WR, SD and after the recovery nap were associated with the network 

integration/segregation of the task fMRI during those stages, measured by FCR (N. E. Cross et al., 

2021). Our objective instead was to investigate if the network segregation during NREM sleep of 

the recovery naps measured with HSI associates with the task performances after the recovery nap. 

HSI and FCR have different assumptions about network organizations and hierarchy. In addition, 

HSI generates a whole brain segregation quantification map as shown in Figure 3-3, while FCR 

generates a single value for a network of interest. However, both HSI and FCR showed association 

with cognitive performance. Therefore, we wanted to explore to which degree the two measures 

overlap and how they differ to each other. More specifically, in the present work, we computed 

FCR separately for each sleep stage (N2 and N3) during the recovery nap, and for the resting state 

after a normal night (WR) using our present fMRI data. For all brain stages, we evaluated FCR at 

two different level: (i) how functional connectivity of the whole cortex segregates into Yeo7 

networks (𝐹𝐶𝑅𝑤), and (ii) how brain functions on the scale of Yeo7 networks segregates into Yeo17 

networks (𝐹𝐶𝑅𝑅 ). More detail of the computation of FCR can be found in Methods. We then 

compared the resulting FCR values to the HSI maps. The whole-cortex level 𝐹𝐶𝑅𝑤 was compared 

to the mean FCR of the whole cortex. The regional level (𝐹𝐶𝑅𝑅) was compared to the mean FCR 

within each Yeo7 regions.  

 

For each individual subject, we averaged the HSI values over the voxels belonging to the whole 

brain (< 𝐻𝑆𝐼 >𝑊). For comparison purposes, subcortical and mesial temporal structures that were 

not part of the Schaefer100 parcellation considered for FCR estimation were therefore not 

considered. As a result, whole-brain average < 𝐻𝑆𝐼 >𝑊  was 2.08  0.47 during resting state 

following normal sleep, 2.36  0.52 during NREM2 sleep, 2.23  0.67 during NREM3 sleep, and 

2.31  0.58 when combining NREM2 and NREM3 sleep states (Figure 3-5A). The 𝐹𝐶𝑅𝑤 was 0.66 

 0.12 at resting state after normal sleep and increased to 0.74  0.09 at N2 (Wilcoxon rank sum 

test, p<0.05), 0.73  0.1 at N3 sleep, and 0.73  0.1 when combined N2 and N3 sleep stages (p<0.01; 

Figure 3-5B). On the whole cortex level, we have found that the segregation measured by HSI and 

FCR were on a similar trend when comparing across stages, but only FCR (Figure 3-5B) showed 

significant differences between stages.  
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For the other analyses, we pooled together data from the three states (WR, N2, N3, in order to 

compare the FCR estimated for seven large networks (𝐹𝐶𝑅𝑅) to the < 𝐻𝑆𝐼 >𝑅 estimated for each 

of those 7 regions R. We first averaged the HSI values within each of the Schaefer100 parcels. We 

compared the FCR and HSI values collected from all brain states, opting out effects of vigilance 

state and focusing on the methodological comparison between the two metrics. A bootstrap 

approach was employed to obtain robust statistics for the association between the region-average 

HSI and the region-level FCR, to prevent a potential bias induced by within-region inhomogeneity 

when averaging HSI values over large regions. The bootstrap strategy was the same as the previous 

session of evaluating association between HSI and task performance. For each region R, 1,000 

replications of < 𝐻𝑆𝐼 >𝑅 were generated. The correlation coefficient (r) between the 𝐹𝐶𝑅𝑅 and 

each bootstrap surrogate < 𝐻𝑆𝐼 >𝑅
′   was then calculated (see Methods). The distribution of r 

revealed the presence of three groups of regions, suggesting different HSI-FCR associations over 

the cerebral cortex (Figure 3-5C). Group ① mainly exhibiting significant correlation between HSI 

and FCR (r=0.38  0.04, p<0.05) mainly included the regions of the somatomotor, dorsal attention 

network, and default mode network from the Yeo-7 atlas. Group ② reporting no significant 

correlation (r=0.11  0.04, p>0.05) included the ventral attention network, limbic and frontoparietal 

network. Group ③ included reporting no significant correlation (r=-0.03  0.02) with a tendency 

to show negative correlation pattern included the visual network. Since group ① was exhibiting 

the largest correlations, we then studied more specifically the HSI-FCR association for the three 

networks: somatomotor, dorsal attention and default mode network (Figure 3-5D-F). Among those 

three, the dorsal attention network exhibited the largest correlation between the two measures, 

suggesting similar patterns of segregations assessed with those complementary metrics. Note that 

we observed that network segregation estimated using HSI in the dorsal attention network was also 

largely associated with changes in N-back attention task performances (Figure 3-4).  

 

Together, our results demonstrate that the relationship between the two measures is inhomogeneous 

over the cerebral cortex, while the most relevance emerging from the dorsal attention network, 

supporting an association of functional brain network segregation and cognitive functions.  
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Figure 3-5 Comparison between two measure of network segregation:  the hierarchical segregation index 

(HSI) and the functional clustering ratio (FCR), pooling together results from the three states (WR, N2, 

N3). (A) Network segregation estimated using HSI, as the ratio between k-hubness measured at the region- and 

voxel-levels. < 𝐻𝑆𝐼 >𝑊 is the average of voxel-level HSI values estimated over the whole cerebral cortex. For 

comparison purposes, subcortical and mesial temporal structures that are not part of the Schaefer100 parcellation 

were not considered. Wilcoxon rank sum test applied, p<0.05. (B) Network segregation of whole cerebral cortex 

into seven large networks estimated using 𝐹𝐶𝑅𝑤 . Each data point in (A) and (B) indicates a subject. (C) 

Distribution of the correlation coefficients between < 𝐻𝑆𝐼 >𝑅 and 𝐹𝐶𝑅𝑅 obtained using a bootstrap approach. 

Results from all seven cortical regions defined using the Yeo-7 network atlas were concatenated (resulting in a 

total of 7,000 data points). We identified three groups of data from this histogram (dotted gray lines at local 

minima r=0.02 and 0.23). Group ① mainly included regions of the somatomotor, dorsal attention and default 

mode networks, representing 42.94% of total data points in the histogram and suggesting significant correlation 

between HSI and FCR metrics. Group ② exhibiting weak or no correlation between HIS and FCR mainly 

included the ventral attention network, limbic and frontoparietal networks (42.26%). Group ③ mainly includes 

the visual network (15.41%) and suggested non-significant negative correlations. The distribution of p-values 

computed for each correlation coefficient is presented for each group in the boxes. Red vertical dotted lines 

indicate 𝑝 = 0.05. (D) The correlations between < 𝐻𝑆𝐼 >𝑅 and 𝐹𝐶𝑅𝑅 for the somatomotor, dorsal attention and 

default mode networks are further illustrated. Yellow triangles in (D) indicate < 𝐻𝑆𝐼 >𝑅, the average of HSI 

values of each region R (y-axis) and the 𝐹𝐶𝑅𝑅  values obtained from the region (x-axis), while each yellow 

triangle corresponds to one state (WR, N2, N3) of one subject. The red line and shadow area indicates the linear 

regression models fitted to these data. The corresponding correlation coefficients (r), p-value and 95% confidence 

intervals are then presented shown. The distribution of correlation coefficients and p-values obtained from the 
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ad-hoc bootstrap analysis are presented in (E) and (F).  

 

Reorganization of network overlap patterns within the dorsal attention network during 

NREM sleep 

 

Taking advantage of SPARK unique ability to identify what are the actual networks associated in 

each hub, we finally investigated the actual patterns of network overlaps associated with the dorsal 

attention network and how such patterns were reorganized during NREM sleep when compared to 

wakeful resting state (WR). We applied such detailed analysis for the dorsal attention area only, 

since this network exhibited the most relevance association between HSI, FCR and changes in 

cognitive task performances (Figure 3-4, 3-5). To do so, we collected the maps of all networks 

involved in dorsal attention estimated at the individual level. Notably, network maps that involve 

less than 10% of volume overlap with the dorsal attention regions defined using Yeo-7 atlas were 

excluded and not collected to reduce artifactual voxel signals. Each network map was first 

converted to absolute values to avoid any ambiguity of signs in sparse dictionary learning and 

normalized to exhibit values between 0 and 1. Therefore, this analysis was limited to the spatial 

distribution of network overlap, without taking into account strengths of network involvement or 

information about antagonistic network relationships. Next, starting from all normalized networks 

estimating by SPARK and featuring sufficient spatial overlap with the dorsal attention are, we 

clustered the collection of resulted maps using the K-means clustering algorithm, where the number 

of clusters was determined by the median of individual region-level k-hubness (𝑘𝑅) in this region 

across subjects. Network maps belonging to each cluster were finally averaged in each voxel.  

 

Figure 3-6 shows the main clusters of functional networks involved in dorsal attention area, 

whereas the clusters 1/2/3/4 were manually named and organized according to their spatial 

similarity across states. During wakeful resting state, we found 4 clusters of networks that 

consistently overlap with the dorsal attention area (Figure 3-6A). The well-known dorsal-attention 

network and its anti-correlated default-mode network were found merged within in cluster 2. In 

addition, we also found three sensory networks functionally connected to parts of the dorsal 

attention area: the visual (cluster 1), somatomotor I (clusters 3), and somatomotor II (cluster 4) 

networks. During NREM sleep, we found three clusters involving the dorsal attention area during 

NREM2 sleep and three other clusters during NREM3 sleep (Figure 3-6A). As shown in Figure 

3-6B, spatial patterns of clusters 1 and 2 were the least similar when comparing N2 to WR stages 

(cluster 1: 𝑟(𝑊𝑅,𝑁2) = 0.62; cluster 2: 𝑟(𝑊𝑅,𝑁2) = 0.78), while there is more spatial similarity of 

networks involved in dorsal attention region between N3 and WR (cluster 1: 𝑟(𝑊𝑅,𝑁3) = 0.82 ; 

cluster 2: 𝑟(𝑊𝑅,𝑁3) = 0.84 ). The spatial patterns of clusters 1 and 2 are the most similar when 
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comparing N2 to N3 (cluster 3: 𝑟(𝑊𝑅,𝑁2) = 0.96   and 𝑟(𝑊𝑅,𝑁3) = 0.95 ). In cluster 2 showing 

overlap between the default mode and dorsal attention networks, we observed decreased functional 

connectivity in the posterior cingulate cortex during NREM2 sleep, which was then partially 

recovered during NREM3 sleep. These results indicate that a larger network reorganization occurs 

during N2 comparing to WR, while less network reorganization occurs when between N3 and WR 

and between N2 and N3. On the other hand, we estimated cluster 4 exhibiting a strong functional 

connectivity in the motor and auditory areas overlap with dorsal attention region only during well-

rested state after normal sleep but not during NREM sleep, suggesting a loss or decrease in 

functional processes in the dorsal attention area involving the motor and auditory functional 

connectivity during sleep. Indeed, our results provide converging evidence of different network 

reorganization during NREM2 and NREM3 sleep stages.   

 

 

 

Figure 3-6 Reorganized patterns of network overlaps within the dorsal attention area during NREM sleep when 

compared to wakeful resting state. (A) The dorsal attention area was defined using the Yeo-7 functional network 

atlas. Individual functional networks were estimated using SPARK. Networks estimated using SPARK and overlapping 

with the dorsal attention region were collected from all subjects, spatially clustered and finally averaged within each 

cluster in order to identify the group-level network maps overlapping in this region. (B) Spatial correlation between 

the group-level network clusters overlapping with the dorsal attention area during wakeful resting state (WR) and to 

those estimated during NREM2 (N2) or NREM3 (N3) sleep states. Correlation heat maps are shown for the four 

clusters estimated for WR state and three clusters estimated for N2 (top) or N3 (bottom) states. 

 

 



 

36 

 

3.5 Discussion and Conclusions 

In this study, we investigated whether and how patterns of integrations/segregation between and 

withing brain networks integration would reorganize during NREM2 and NREM3 sleep within a 

one-hour recovery nap following a whole-night SD, in comparison to wakeful resting state after 

normal sleep.  

 

We hypothesized that hub regions that participate in between-network integration/segregation play 

a role in state-dependent changes in functional brain integration. To investigate these important 

questions, we applied our proposed and validated methodology entitled SPARK to estimate 

overlapping network structures and hubs from individual resting state fMRI, an original sparse 

decomposition approach which is not requiring conventional pairwise connectivity matrix and 

Graph Theory to characterize brain resting state networks (Lee et al., 2016, 2018).  

 

To quantify systematic network integration and segregation, at the voxel resolution, we are 

proposing a new metric in this study, the Hierarchical Segregation Index HSI. HSI is computed as 

the ratio of k-hubness assessed at the region-level and at the voxel-level, taking advantage of the 

unique ability of SPARK to estimate hubs at these two levels of brain network architecture at the 

same time (Figure 3-1). First, in this study we are reporting resting state connector hubs found 

across the unimodal and multimodal cortices, in agreement with previous work (Lee et al., 2016, 

2018, 2022), suggesting reliability of SPARK methodology. Moreover, we are reporting state-

specific reorganization of connector hubs occurring during NREM sleep, where the global network 

scale, i.e., the total number of networks estimated in each state for each subject, was preserved 

(Figure 3-2).  

 

Our analysis using our newly proposed HIS metric allowed us to demonstrate that NREM2 sleep 

was associated with more network segregation into-subnetworks within the visual, default mode 

and association cortex areas, when comparing to wakeful resting state, whereas the visual area also 

showed increased integration from NREM2 to NREM3 (Figure 3-3). Network segregation during 

NREM sleep, notably within the dorsal attention regions, was associated with larger decrease N-

back working memory task performances obtained after a recovery nap following whole night SD, 

when compared to normal night (Figure 3-4). Our observed vigilance level-dependent changes in 

HSI were overall in agreement with finding using FCR, a complementary metric of network 

segregation proposed within the Bayesian framework (Boly et al., 2012; N. E. Cross et al., 2021). 

This correspondence between the two measures was inhomogeneous when assessing correlation 

within specific cortical regions, whilst the strongest correspondence was found within the dorsal 
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attention network (Figure 3-5). A more comprehensive analysis of what were actually the group-

level networks that were overlapping with the dorsal attention network and visual hubs confirmed 

these findings (Figure 3-6). Our results provide evidence that functional brain network segregation 

occurs during NREM sleep and impacts cognitive performance during task involving attention. 

The association to attention function suggests that our methodology using SPARK and HSI is a 

promising metric to quantify hierarchical network segregation at the voxel level. 

 

We found preservation of global network scale, i.e., the total number of across brain states within 

individuals using SPARK. It is worth mentioning that as opposed to other approaches where the 

total number of decomposition networks is defined a priori, SPARK is actually estimating this 

global network scale from the data, using minimum description length criteria as described in Lee 

et al (Lee et al., 2018). Our global network scales were similar within the three explored states 

(WR, N2 and N3) and were also in agreement with previous findings from comatose patients in the 

absence of consciousness using Graph Theory (Achard et al., 2012). Similar preservation of global 

network scale was also found within healthy young adults across different pupil-size linked arousal 

levels even within wakeful resting state using SPARK (Lee et al., 2022). In this study, SPARK was 

actually applied to resting state fMRI data using two functional parcellation schemes involving 268 

or 368 cortical and subcortical parcels. Together, these results demonstrate the preservation of 

global network scale across different vigilance levels using both region- and voxel-level analyses 

estimated using SPARK methodology.  

 

In subsequent analyses, we then demonstrated that topological patterns of network overlap 

reorganized from wakeful resting state to NREM sleep, even if the global network scale was 

preserved for each individual. The region level k-hubness 𝑘𝑅 increased within visual regions and 

decreased in the frontoparietal regions during NREM2 sleep when compared to wakeful resting 

state (Figure 3-1G). Then, 𝑘𝑅 values decreased in these regions during NREM3 sleep, suggesting 

a pattern of increased segregation in N2 followed by increase integration in N3. When studying 

voxel level hubness using group average 𝑘𝑉, we first found resting state connector hubs mainly 

within the default mode, frontoparietal association and visual areas (Figure 3-2A), therefore 

reproducing our previous findings in healthy conditions using SPARK (Lee et al., 2016, 2018). 

During NREM2, when compare to wakeful resting state, k-hubness decreased in parts of the visual, 

default mode areas (Figure 3-2B), whereas k-hubness increased in the visual and association 

cortices during NREM3. Together, the results suggest differential changes in network overlaps 

across different NREM sleep stages.  
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However, the k-hubness map, the number of overlapping networks or comparison of k-hubness 

with conventional hubness measures in Graph theory should be interpreted with caution (Lee et al., 

2022). Indeed, networks estimated using SPARK framework can have overlap at the core regions 

of well-known canonical resting state networks, not only at their anatomical boundaries (Figure 3-

1H). Because SPARK offers the unique feature of estimating what are the network involved in each 

hub, as opposed to standard Graph Theory metric, we were able to carefully analyze those subject 

specific networks. Our newly proposed metric HSI is indeed assessing the level of correspondence 

between those subject specific networks estimated from the data using SPARK to a higher 

hierarchical representation of brain networks at the group level, using here a parcellation in 9 

regions/networks.  For example, in (Lee et al., 2016), using SPARK and voxel-level k-hubness, we 

showed that the posterior cingulate cortex (PCC) has been shown to be a hub where two sub-

networks of default mode network were overlapping; one involving the midline components (the 

PCC and medial prefrontal cortex) and another one involving the midline, lateral, and mesial 

components (Lee et al., 2018). In another scenario, a network involving voxels in the V1 and V2 

area in the visual cortex and a larger network involving voxels covering from the V1 to V4 areas 

overlap in the V1 area, resulting have k-hubness of 2. Similar patterns of networks reorganization 

have been also observed from the detailed network analysis associated with the dorsal attention 

region presented in this work (Figure 3-6). Similar findings have been suggested using an 

innovative co-activation pattern analysis. Indeed, patterns of network overlaps estimated using 

SPARK may involve information about intrinsic hierarchy among these networks 

 

An important contribution of this work is the development of an HSI metric to assess 

integration/segregation between and within subnetworks, while offering the unique feature of 

providing voxel level mapping of these properties. To do so, we exploited the ability of SPARK to 

provide the region- and voxel-level measures of hubness at the same time for a pre-defined region, 

allowing to define HSI as the ratio of region-level k-hubness to voxel-level k-hubness associated 

with an underlying voxel-region hierarchy. We demonstrated the use of HSI for quantifying 

network segregation for each voxel and for detecting state-dependent changes in network 

segregation. During NREM2 relative to resting state, we found increases in the HSI, therefore more 

segregation, in the visual, somatomotor and default mode regions (Figure 3-3). On the other hand, 

HSI in regions of the default mode and somatomotor network did not exhibit any significant change 

when comparing data during NREM2 and NREM3 sleep (N3 ≈ N2 > WR). However, in the visual 

area, we found a significant decrease in segregation (decrease in HIS) during N3 when compared 

to N2 , (N2 > N3 ≈ WR). On the other hand, during NREM2 relative to resting state, we found 

decreased network segregation in regions of the orbitofrontal and temporal cortices, mesial 
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temporal, and subcortical structures. These regions, however, then showed increases in HSI values 

during NREM3 sleep (N3 > WR > N2).  

 

Importantly, we found an association between the HSI values measured across the whole brain with 

individual variability in N-back working memory task performances. Overall, we found that 

increased segregation during sleep, during a recovery nap following whole night SD, was 

associated with worse cognitive performance in N-Back task when comparing post-recovery map 

and normal night conditions. Those finding were found to be mainly relevant with the dorsal 

attention network (Figure 3-4) Our findings are in agreement with previous findings using FCR 

for the same dataset (Boly et al., 2012; N. E. Cross et al., 2021), suggesting the HSI as a promising 

tool for studying the neural basis of cognitive functions and the role of sleep for cognition. In Cross 

et al., changes in FCR (∆𝐹𝐶𝑅) between sleep-deprived task states and post-recovery nap task states 

was positively related to changes in task performances, suggesting a role of network segregation 

in the improvement in task performances after taking a nap.  

 

Although we found overall similar network segregation during sleep when compared to wakeful 

resting state, using the same dataset using the two different measures (HSI and FCR), the 

correspondence between the two measures was inhomogeneous across the cerebral cortex (Figure 

3-5). These findings are not surprising since there are also differences in underlying methodological 

approaches considered for HSI and FCR. First, given a network hierarchy including an upper-level 

system and its lower-level systems, HSI is a measure estimating segregation for each lower-level 

system, whereas the FCR is a measure estimating segregation for the upper-level system. Therefore, 

to compare the two measures, it was necessary to have a representative metric summarizing all HSI 

values within the upper-level system. Indeed, whereas FCR was able to estimate levels of network 

integrations/segregation when comparing Yeo 17 and Yeo 7 parcellations, providing results at the 

spatial scale of Yeo 7, we add to integrate/average HSI voxel value over each Yeo-7 network to 

obtain a metric derived at the same spatial scale. Therefore, to avoid any bias induced by 

inhomogeneous HSI distribution when averaging HSI value along Yeo-7 regions, we proposed a 

bootstrap resampling strategy to achieve a robust estimation of regional average HSI values. 

Second, we did not include the subcortical areas including the basal ganglia, cerebellum, 

hippocampi, and amygdalae in our FCR estimation, due to the mathematical constraint in the 

computation of FCR that requires the number of fundamental parcels less than the number of time-

points (Boly et al., 2012). 

 

 The HSI values were estimated using SPARK from the whole brain voxels including these 

subcortical areas, however, only the HSI values from the cerebral cortex that are part of 
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Schaefer100-atlas were considered and averaged within each region, to compare with the FCR 

values estimated for the same region. 

 

There are also differences between the present study and our previous work in Cross et al (N. E. 

Cross et al., 2021). First, the assumed spatial hierarchy in this work (whole brain - Yeo7 - Yeo17; 

with the baseline resolution of Schaefer100 parcels) is not identical to the assumed hierarchy used 

in Cross et al (whole brain - Yeo7 - Yeo17 - 57 assemblies; with the baseline resolution of 400 

parcels). Second, in Cross et al., FCR was measured for 20 individuals using task fMRI data and 

the whole period of concatenated timeframes of NREM sleep within one-hour nap, including both 

NREM2 and NREM3 (N. E. Cross et al., 2021). Here, we analyzed only a continuous 5-minute 

segment of NREM2 and NREM3 sleep datasets respectively to match with the total duration (5 

minutes) of resting state data, to avoid any bias in sparse dictionary learning and network estimation 

procedures induced by the length or amount of data. When compared to Cross et al, a smaller 

number of subjects was included in our present study, due to our conservative data screening 

criteria for motion parameters, which is a limitation of this study.  

 

We also found other sleep-associated changes in functional connectivity in the visual (cluster 1), 

somatomotor I (cluster 2), and somatomotor II (cluster 3) networks in relation to the dorsal attention 

area. While changes in spatial patterns of clusters 1 and 2 were larger at NREM2 from well-rested 

state than at NREM3 from well-rested state, the somatomotor I cluster 3 remained similar. () Cluster 

4 involved a strong functional connectivity in the motor and auditory areas with dorsal attention 

region only at well-rested state after normal sleep but not at NREM sleep, suggesting a loss or 

decrease in functional processes in the dorsal attention area involving the motor and auditory 

functional connectivity. The results indicate that a larger reorganization of between-network 

integration occur during NREM2 sleep from wakefulness, and such changes partially recover its 

spatial pattern at NREM 3 similar to the patterns found at resting state.  

In conclusion, our results provide converging evidence of different network reorganization during 

NREM2 and NREM3 sleep stages.  
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3.6 Materials and Methods 

This study has been approved by le Comité central d’éthique de la recherche du ministre de la Santé 

et des Services sociaux (CCER) at Montreal, Quebec, Canada. The data acquisition was performed 

and completed in the Sleep Laboratory and in the Neuroimaging Unit of PERFORM Centre in 

Concordia University, Montreal, Quebec, Canada. 

 

Participants 

 

We recruited 53 volunteers according to the following inclusion criteria: participants aged between 

18 to 30 years, healthy and good sleepers. Among them, 34 volunteers were selected as eligible 

after self-report assessment of sleep quality and ruling out the following exclusion criteria: 

volunteers without MRI compatibility (pregnancy, claustrophobia, metallic objects such as vascular 

clip, prosthetic valve, metal prosthesis, metal fragment or pacemaker into the body); with sleep 

disorders such as obstructive sleep apnea, narcolepsy, insomnia; with neurological disorders such 

as epilepsy, migraine and stroke; with medical conditions such as chronic pain and chronic 

respiratory disease, with psychiatric condition such as major depression, anxiety or psychotic 

disorder; and individuals taking psychotropic medications such as hypnotics and antidepressants. 

Selected participants were then involved in a three nights protocol, in the sleep laboratory of 

PERFORM Centre. After the first night assessment (control night), involving standard 

polysomnography monitoring to assess sleep quality, three participants were excluded; two had 

periodic leg movements during sleep and one had sleep apnea. Five participants were later excluded 

because of several unexpected equipment issues during data acquisition. Finally, six participants 

withdrew before the end of the experiment. This resulted in 20 eligible participants (age: 21.2  2.5 

years, 12 females) who completed the whole protocol. 

 

Study design 

 

The acquisition protocol for each participant included three visits with an interval of one week, as 

illustrated in Figure 3-1A. The first night acquisition was a control night using polysomnography 

monitoring to assess sleep quality and if participants were presented any sleep disorders. Once a 

participant was considered eligible after the first control night, a two-night experiment was planned 

with an interval of seven days between the two nights: one night with normal sleep and another 

with total whole-night SD. For each participant, the order between the normal and SD nights was 

randomly assigned to avoid potential bias induced by a specific order. In the next morning after 

each experimental night, a series of data acquisition was performed. 
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The experimental protocol for the night with normal sleep opportunity was the following. During 

seven days before the normal night acquisition, actigraphy data were acquired to record the 

movements and light sensitivity to ensure that the participants had regular sleep and followed their 

daily activities. During the normal sleep experimental night, we assessed the quality of sleep by 

acquiring a whole-night EEG. We used 18 electrodes for the EEG following the 10-20 system. The 

participant was asked to sleep before midnight and wake up around 6 and 7 AM the next morning, 

to sleep a minimum of 6 hours during the normal night in the Sleep Laboratory. The next morning 

around 8:30 AM after offering breakfast to the participant, we acquired four runs of high-density 

EEG/fMRI data during three cognitive tasks and resting states. The participants performed the N-

back task with three levels (N = 0, 1 and 2; duration: 8 minutes) assessing working memory, 

attention network task (ANT, 13 minutes) and Mackworth clock test (MCT, 5 minutes) which both 

assessed attention ability. The duration of resting state scans was 5 minutes, during which the 

participant was asked not to fall asleep and to rest, while maintaining fixation on a cross presented 

on the screen inside the MRI scanner. Finally, an T1-weighted anatomical MRI was obtained.  

 

The experimental protocol for the whole-night SD was the following. To ensure that the participant 

did not fall asleep during the whole night with SD, an investigator stayed overnight with the 

participant and offered to talk, watch movies or play games. The next morning around 8:30 AM 

after offering breakfast to the participant, we acquired high density EEG/fMRI data, while the 

participant performed the same three cognitive tasks: N-back, ANT and MCT followed by a 5-

minute resting state fMRI was acquired with a fixation cross. Around 9:15 AM, the participant was 

then asked to take a nap inside the MRI scanner for a maximum of one hour, during which we 

continued acquiring high density EEG/fMRI data. After one hour of nap, we woke up the 

participant and acquired 5-minute resting state EEG/fMRI data, while the participant was staring 

at fixation cross. Next, participants were asked to perform the same three cognitive tasks again, 

while continuing acquiring EEG/fMRI data. Finally, a T1-weighted anatomical MRI was obtained.  

 

Cognitive tasks 

 

First, we considered N-back tasks, including three difficulty levels (N=0,1 and 2) to assess 

working-memory function (Chee & Choo, 2004). A series of English letters (e.g., R, K, K, F, and so 

on) was presented sequentially on the screen and the participants were asked to press the button if 

the letter presented on the current screen was the same as the letter presented N times before (make 

sure not to use the same letter N for N-back and for total number of networks for SPARK). The N-

back task lasted 8 minutes and consisted in a block design, each block lasting 38 seconds followed 
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by 10 seconds between each trial (12 blocks, 4 of 0-back, 4 of 1-back, 4 of 2-back). Before the start 

of the block, a cross was presented for 500ms then 15 letters were presented during one block for 

a duration of 2.5 seconds. 

 

Second, the ANT task was considered to assess different types of attention: alerting, orienting, 

validity, and executive control (Fan et al., 2005). This task consisting in a visual stimulus presenting 

two presentation boxes on the screen next to each other, either of which may include an array of 

five arrows (stimulus). The stimuli can have three forms: uncued (no arrows appear), congruent 

cued (all five arrows will point to the same direction), and incongruent cued (the middle arrow may 

point to the opposite direction than the other four). The task for participants was then to respond to 

the direction presented by the middle arrow by pressing the corresponding button (left or right) as 

quickly as possible. Prior to the appearance of arrows, cues (flashing box) will appear to allow the 

participants to predict on which presentation box the arrows will appear. To disturb the participants, 

different cues are presented: valid, invalid or double (i.e., both boxes are flashing).  

 

Finally, to assess psychomotor vigilance function, we considered the Mackworth Clock test 

(Lichstein et al., 2000), to evaluate ability to watch the environment intensively and carefully with 

sustained attention. To do so, a clock that consisted of two-layer circles of white vertices (24 

vertices for each of the inner- and outer-layer circles) was presented on the black screen. The visual 

stimuli were presented by the sequential movement of clock-ticking of a red vertex between each 

pair of two vertices in the inner and outer layers, while several random jumps skipping ticks on the 

clock were generated. Participants were instructed to press a button as quickly as possible in 

response to every random jump of the red vertex. 

 

Data acquisition 

 

The simultaneous high-density EEG/fMRI data was acquired using a 3T MRI scanner with 8 

channels head coil (General Electric, GE) and an MRI-compatible high-density EEG with a cap of 

256 electrodes (Magstim EGI, Eugene, OR, USA). High density EEG data were transmitted from 

the amplifier (1000 Hz sampling rate) to the EEG monitor outside the scanner room via optic fiber. 

Electrocardiography was also collected via 2 MR compatible electrodes through a bipolar amplifier 

(Physiobox, Magtism EGI). A T1-weighted anatomical image was obtained using the 3-

dimensional inversion recovery-prepared fast spoiled gradient echo acquisition sequence 

(BRAVO), with inversion time (TI) = 450 ms, flip angle = 12°, 256 × 256 matrix, 196 slices, and 

voxel resolution = 1 × 1 × 1 mm. The functional images were acquired using a T2*-weighted 

gradient echo-planar imaging (EPI) sequence with echo time (TE) = 26 ms, repetition time 
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(TR)=2500 ms, flip angle = 77°, 64 × 64 matrix, 41 slices, and voxel resolution = 4 × 4 × 4 mm. 

 

EEG preprocessing and analysis 

 

We used BrainVision Analyzer 2 software (Brain Products, Munich, Germany) for EEG 

preprocessing. The MRI gradient artifacts and ballistocardiographic pulse-related artefacts were 

detected and corrected using an average artifact subtraction-based method, by BrainvisionAnalyzer 

(BrainProducts, Gilching, Germany). The MR-denoised EEG signal was then band-pass filtered 

(1-20 Hz) and down-sampled to 250 Hz, followed by re-referencing to the linked mastoids. Eye 

blinks in wake EEG recordings were removed with independent component analysis (ICA) using 

the MNE Python package (https://mne.tools/stable/index.html) (Gramfort et al., 2013). Any ICs 

that matched to the signals from electrooculogram electrodes were automatically detected and 

excluded from the original signal. This de-noised EEG signal was then used for all subsequent 

analysis. After preprocessing of EEG data acquired during nap inside the MRI scanner, we 

conducted the scoring of sleep-stages by visual inspection using Wonambi software, a Python-

based toolbox for EEG visualization and analysis (https://github.com/wonambi-python/wonambi). 

Two experts segmented EEG data into several segments, providing an identification of sleep stages 

for each segment following to the American Academy of Sleep Medicine (AASM) manual for the 

scoring of sleep and associated events. A detailed presentation of EEG data preprocessing for this 

study was reported in (N. Cross et al., 2021b; Uji et al., 2021). 

 

fMRI preprocessing 

 

The first resting state fMRI scan was acquired with a duration of 5 minutes in the morning 

following a night of normal sleep. The second fMRI scan was obtained during a one-hour recovery 

nap following whole night SD. Sleep-stage scoring on EEG segments from data simultaneously 

acquired during the nap was used to identify fMRI runs corresponding to every sleep stage for each 

subject. Only the EEG segments corresponding to a continuous stage of 5 minutes or more were 

considered for further fMRI analysis. The duration of available data during NREM2 and NREM3 

ranged between 5-40 minutes. To ensure that we analyzed and compared the same number of 

frames per state, we trimmed each continuous segment in sleep data, such that only the first 120 

timeframes were selected from the runs if the length of time-course was longer than 120 timeframes 

(5 min). Therefore, we were not able to select fMRI data recorded during NREM1 sleep due to the 

short duration of the segments.  

 

fMRI data were them preprocessed used the Neuroimaging Analysis Toolkit (NIAK) version 0.13.0, 

https://mne.tools/stable/index.html
https://github.com/wonambi-python/wonambi
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with the MINC Tool Kit (Bellec et al., 2010b). The EPI volumes were first corrected for inter-slice 

timing differences. Six rigid-body motion parameters (3 translations and 3 rotations) were 

estimated within and between sessions using the median volume of the first session as a target. This 

coregistration procedure was obtained by maximization of correlation coefficient between volumes, 

using Minctracc software (Collingnon et al., 1995; Minoshima et al., 1992; Woods et al., 1993). T1 

anatomical MRI images were preprocessed using CIVET pipeline (Ad-Dab’bagh et al., 1998; 

Zijdenbos et al., 2002). Linear coregistration of a T1 image in native space to the non-linear MNI 

ICBM 152 template stereotaxic space (Grabner et al., 2006) was performed accounting for a nine-

parameter transformation (3 translations, 3 rotations and 3 scales), estimated by maximization of 

correlation coefficient using Minctracc software. Non-linear coregistration from T1 native to the 

MNI template (Grabner et al., 2006) was then performed by maximization of correlation coefficient 

with a multiresolution iterative strategy. Non-uniformity correction was then applied (Orżanowski, 

2016). Individual coregistration between an averaged EPI volume (mean volume of the first session, 

after motion correction) to the anatomical T1-weighted volume in native space was done by 

maximization of the mutual information, considering a rigid transformation (3 translations and 3 

rotations) by Minctracc. Then, the EPI volumes were resampled at a voxel resolution of 4 × 4 × 4 

mm in the MNI space, by combining a linear transformation from EPI to T1 and a non-linear 

transformation from T1 to the MNI template. Once coregistration step was completed, time frames 

exhibiting excessive motion, i.e., showing a frame displacement > 0.5 mm, we discarded by 

scrubbing (Power et al., 2014). The remaining motion artefacts were further estimated and removed 

using SPARK (see below). Slow time drifts were removed by applying a high pass filter using 

discrete cosine basis functions to ensure a cutoff of 0.01 Hz. Confounds consisting in motion 

parameters, the average signals from the white matter and the lateral ventricles were regressed out 

from data. To do so, we considered the six rigid-body motion parameters (3 translations and 3 

rotations) and their square, before applying a principal component analysis to retain 95% of the 

variance of these twelve parameters, to extract regressors for motion correction in fMRI time series 

(Lund et al., 2006). Each fMRI run in the MNI space was spatially smoothed using an isotropic 

Gaussian blurring kernel with 6 mm full-width half maximum. Several runs were excluded when 

there was too much motion, notably when more than 35% of the total time frames were removed 

by scrubbing. Finally, we selected a set of consecutive NREM2 and NREM3 runs (one fMRI data 

per state) for each subject. 

 

As a result, we considered the following datasets for network/hubness analysis: resting state fMRI 

data obtained from 14 subjects wakeful rested (WR) after normal sleep, fMRI data obtained from 

18 subjects during NREM2 and from 12 subjects during NREM3 after whole-night SD. In 9 

subjects, we were able to select data from the three states (WR, NREM2, NREM3).   
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Brain masking and network atlases 

 

From these preprocessed fMRI data, gray matter voxels were selected using a modified version of 

the AAL template (Tzourio-Mazoyer et al., 2002). This modified AAL template was generated by 

NIAK using non-linear coregistration to the MNI ICBM 152 template, using the same 

coregistration strategy applied for our fMRI preprocessing. We resampled the modified AAL 

template at a voxel resolution of 4 × 4 × 4 mm3 (the resolution used for resampling of our EPI 

images) and then selected gray matter voxels from each participant data actually belonging to the 

AAL mask. This gray matter mask was considered when applying our method SPARK for the 

estimation of hubs. For our proposed region-level analyses, we considered the two proposed scales 

of the Yeo atlas of consistent brain networks, the Yeo-7 and Yeo-17 templates (Thomas Yeo et al., 

2011b). The Yeo functional atlases provide parcellations of the cerebral cortex into 7 or 17 

functional networks estimated from the analysis of 1,000 young healthy adults. The Yeo-7 atlas 

included visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, default 

mode networks, while Yeo-17 atlas included definition of their sub-networks at the finer scale. The 

Yeo templates were resampled at a voxel resolution of 4 × 4 × 4 mm3 within the non-linear MNI 

152 space.  In addition, to take subcortical brain regions into account for our proposed analysis, we 

also defined 3 extra regions: (i) basal ganglia region including the thalamus, caudate nucleus, 

putamen and globus pallidus, (ii) the cerebellum and (iii) the hippocampus and amygdala, which 

were then merged with the limbic network in Yeo-7 template. Therefore, we finally considered 

obtained 9 regions of interest (ROIs) or networks including the modified Yeo-7 networks, the AAL-

defined basal ganglia and cerebellum. Caudate, putamen, thalamus and pallidum defined by AAL 

were grouped as the “basal ganglia” ROI. 26 parcels defined by AAL with their name started with 

“cerebellum” or “vermis” was defined as the “Cerebellum” ROI. The hippocampus, 

parahippocampal and amygdala was grouped together with number 5 ROI of Yeo7 template, which 

we named it as “Limbic” network, including both cortical and subcortical structures. These 9 ROIs 

were used for HSI estimation. In addition, to compare our hub measures with the proposed 

functional clustering ratio (FCR) method to assess integration/segregations between networks 

(Boly et al., 2012; N. E. Cross et al., 2021), we also considered a baseline parcellation obtained 

using the Schaefer-100 atlas (Schaefer et al., 2018),  The Schaefer-100 atlas, originally provided 

within the MNI ICBM 152 template at a 2x2x2 mm3 resolution was resampled at a voxel resolution 

of 4 × 4 × 4 mm3 for our proposed analysis.   

 

Estimation of Hubs of brain network using SPARK  
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For each preprocessed fMRI run on which we applied the gray matter mask previously described, 

we estimated the organization of functional connector hubs in individual brain networks at the 

voxel level using SPARK (Lee et al., 2016, 2018, 2022). Using SPARK, the whole-brain spatio-

temporal activity in fMRI (Y) can be decomposed into n resting state networks, estimating n time-

course characteristics (temporal features) and the corresponding n spatial maps. The collection of 

n temporal features is called a subject-specific dictionary. SPARK is based on a data-driven sparse 

general linear model (GLM), which represents the BOLD signal measured in each voxel as a 

weighted linear combination of k temporal features. As the main specificity of SPARK method, k 

is the level of sparsity specific to this voxel, indicating that only a small number of networks, 

among those estimated N networks, are actually involved in this voxel. Hubs are then defined as 

brain voxels that are involved in more than one functional network (i.e., k>1) that are overlapping 

in time and space. Importantly, SPARK is not only able to estimate a realistic/sparse number of 

network associated within one particular voxel, SPARK can also uniquely identify what are those 

connected/integrated networks. The implementation of SPARK is described as follows. 

 

Step 1. In order to assess individual-level reproducibility of sparse GLM decomposition, SPARK 

actually consists in applying hub estimation several times on data sets exhibiting similar properties, 

using a bootstrap resampling-based strategy. To do so, we first applied the circular block bootstrap 

resampling to the preprocessed data (Y) and generated b=1, ..., 200 resampled datasets with equal 

dimension. For the circular block bootstrap resampling, the length of each block was randomly 

selected between 10 and 30 continuous time samples to preserve the temporal structure in the 

BOLD signals (Bellec et al., 2010b). For each resampled data (Yb), the same sparse GLM 

considered for analyzing Y was applied. Sparse GLM was actually a variant of K-Singular value 

Decomposition (SVD) algorithm (Lee et al., 2011, 2018), a sparse dictionary learning method 

providing the estimation of resting state networks and their sparse representation in every voxel. 

The total number of networks N and voxel-specific level of sparsity k were estimated for each 

subject using the minimum description criteria, as proposed in (Lee et al., 2018). 

 

Step 2. The parallel process of sparse dictionary learning for every resampled data (time by voxel) 

generated 200 sets of outputs - the sparse representation of N time-course characteristics (time by 

N) and the corresponding N spatial maps (N by voxel) of resting state networks.  

 

Step 3. To find a spatially reproducible set of resting state networks across the 200 resampled 

datasets, we then applied nearest neighbor spatial clustering to the collection of all 200 x N spatial 

maps to identify N clusters. The maps were then spatially averaged within each cluster, therefore 

only retaining most reproducible results at the individual level.   
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Step 4. Statistically inconsistent elements with a low signal amplitude in these average maps were 

considered as Gaussian noise and removed by thresholding (p<0.05). Because we wanted to 

estimate only highly reproducible networks across the bootstrap resampled datasets in our analysis, 

several voxels then resulted in the estimation of k-hubness as zero. However, this does not 

necessarily mean that the voxel was never involved in any of the estimated networks, but rather 

that the corresponding signal for that voxel was noisy and results were not reproducible.  

 

Step 5. An expert (KL) reviewed all those estimated spatial maps by visual inspection to manually 

classify and exclude the maps that were still contaminated by physiological noise, such as 

remaining cardiac, respiratory artifacts or subject motion, according to the manual classification 

criteria proposed in Griffanti et al (Griffanti et al., 2017; Lee et al., 2019). On average, about 14.41 

atoms were estimated from SPARK among all subjects, from which about 4.35 noisy atoms were 

discarded.  

 

Step 6. Voxel-level k-hubness (𝑘𝑉 ) was finally estimated by counting the number of networks 

involved in each voxel (Figure 3-1E). Technically, this was done by counting the non-zero values 

in each column from the individual sparse coefficient matrix (the total number of networks-by-the 

number of whole brain voxels) using SPARK.  For group-level analyses, a group average k-hubness 

map was obtained by averaging k-hubness in each voxel across subjects at each state.  

 

Hierarchical Segregation Index (HSI) 

 

Using SPARK, measuring k-hubness at the voxel level can identify connector hubs that are 

involved in more than one functional network. Given that we can also consider a set of voxels 

involved in a specific region of interest or consistent resting state network (e.g., Yeo parcellation), 

k-hubness at the region level can be also estimated by counting the number of resting state networks 

involved in a specific ROI. In this context, we propose the use of the measure of k-hubness over 

different levels or spatial scales, to estimate the hierarchical segregation of functional brain 

networks within a specific ROI, an approach that is actually similar to the one suggested for FCR 

estimation using Bayesian framework (see details below, Figure 3-1E) (Boly et al., 2012).  

 

To estimate region-level k-hubness (𝑘𝑅) (Figure 3-1E), voxels belonging to a region R were first 

identified and the corresponding columns in the individual sparse coefficient matrix were collected. 

This sub-matrix is therefore a N-by-𝑛𝑅 matrix, where 𝑛𝑅 indicates the number of voxels belonging 
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to the region R. Then, we computed the volume proportion (%𝑣𝑜𝑙𝑗
𝑅) by counting the number of 

voxels belonging to this region R that were involved in each network j (𝑛𝑗
𝑅) with respect to the total 

number of voxels in the region R (𝑛𝑅).  

%𝑣𝑜𝑙𝑗
𝑅 =

𝑛𝑗
𝑅

𝑛𝑅 × 100%. 

When estimating region-level k-hubness (𝑘𝑅), we considered only the major networks involved 

within each region, by selecting the networks for which more than 10% of the within-region volume 

was involved, i.e., %𝑣𝑜𝑙𝑗
𝑅 > 10%. This 10% threshold was empirically chosen to find a tradeoff 

between the detection power and sensitivity. 

 

To assess if a region R was functionally segregated or divided into sub-networks within this region, 

we defined the 𝐻𝑆𝐼𝑖 for each voxel i as the ratio of region-level k-hubness for a region R to which 

the voxel i belongs to (𝑘𝑖∈𝑅
𝑅 ), to the corresponding voxel-level k-hubness (𝑘𝑖

𝑉) as follows: 

𝐻𝑆𝐼𝑖 =
𝑘𝑖∈𝑅

𝑅

𝑘𝑖
𝑉 . 

A high HSI value reflects that the number of networks involved in this region to which this voxel 

belongs to is larger than the number of networks involved in this voxel. This also reflects that this 

voxel may be involved in several networks (𝑘𝑖
𝑉), but it belongs to a large system (the pre-defined 

region R) that involves more subnetworks, whereas functional integration between those sub-

networks is low. Therefore, a high HSI value suggests within-region inhomogeneity of the region 

R, in other words, the presence of sub-networks involved in other voxels in this system and 

therefore segregation between those sub-networks. On the other hand, a low HSI value reflects that 

this voxel belongs to a system R that involves a similar number of networks than the voxel level 

value 𝑘𝑖
𝑉. Therefore, a low HSI rather suggests within-region homogeneity or integration between 

subnetworks, reflecting that the function of this voxel is associated with the function of the entire 

region. Our new proposed metric HSI can be considered as a measure of within-region functional 

integration/segregation, offering the unique property of providing estimations at the voxel level.  

 

In this context, a priori definition of a region was important for the estimation of the HSI. First, we 

had to choose a network parcellation that was at lower spatial scale than the number of networks 

estimated by SPARK (N ranging from 9 to 21, mean = 14.41). We therefore considered the nine 

cortical parcellation scheme by integrating the modified Yeo-7 cortical networks and two 

anatomically defined subcortical networks using the AAL atlas (Figure 3-2A). For several voxels 

that were exhibiting 𝑘𝑖
𝑉=0 at the voxel level, we did not estimate HSI and assigned 𝐻𝑆𝐼𝑖=0.  
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Voxel-wise between-state comparisons 

 

To compare our hubness measures h (e.g., 𝑘𝑖
𝑉 or 𝐻𝑆𝐼𝑖 for a specific voxel i) between different brain 

states (WR, NREM2, NREM3), we performed voxel-wise two sample permutation tests, therefore 

taking inter-subject variability through non parametric approaches. To do so, considering n 

individual hubness maps from two different brain states A and B (e.g., WR vs NREM2), group 

average hubness values 〈ℎ〉𝐴  and 〈ℎ〉𝐵  were calculated for states A and B, by averaging the ℎ𝑖 

values in each voxel i across n subjects. A test statistic T was defined as the observed difference in 

each voxel as:  

𝑇 =  〈ℎ〉𝐴 − 〈ℎ〉𝐵 

To test if the observed difference was statistically significant, we generated null data using 10,000 

permutations. For each permutation, the n hubness maps from two states A and B were pooled and 

shuffled to classify them into two randomized states 𝐴′  and 𝐵′ , each consisting of n randomly 

selected maps. The difference between two randomized states was calculated as: 

𝑇𝑛𝑢𝑙𝑙 =  〈ℎ〉𝐴′ − 〈ℎ〉𝐵′. 

Finally, a p-value was estimated for 𝑇 from each voxel with respect to 10,000 samples from the 

null distribution. The p-value was then null data and adjusted using the false discovery rate (FDR) 

correction. A separate t-score map was calculated between two stages using student t-statistics. The 

resulting t statistic maps were then thresholded using the p-value from the previous permutation 

test (𝑝𝐹𝐷𝑅 < 0.05).  

 

Functional Clustering Ratio (FCR) 

 

As originally proposed by Marrelec et al (Marrelec et al., 2008b), the Functional Clustering Ratio 

(FCR) is another metric developed within the Bayesian framework, allowing to quantify the 

segregation of a large network system into its sub-systems. Using mutual information derived 

metric to assess integration of information within a system (Marrelec et al., 2008b), FCR is defined 

as the ratio of the integration within subsystems (𝐼𝑊𝑆) to the integration between subsystems (𝐼𝐵𝑊). 

Therefore, an increase in FCR indicates that subsystems become functionally more independent to 

each other, quantifying the degree of functional segregation of a given system into subsystems. We 

refer the reader to Marrelec et al (Marrelec et al., 2008b) and Boly et al (Boly et al., 2012). 

𝐹𝐶𝑅 =
𝐼𝑊𝑆

𝐼𝐵𝑆
 

Estimating FCR requires a priori definition of hierarchical structure of the brain (Boly et al., 2012). 

In the present study, we considered a four-level cortical hierarchy. We first considered the whole 
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cerebral cortex as the system at the highest level (level 4). The whole cortex was then divided into 

seven non-overlapping functional networks using first the Yeo-7 atlas (level 3), and then into 

seventeen non-overlapping functional networks using the Yeo-17 atlas (level 2) (Thomas Yeo et al., 

2011b). Finally, we considered the Schaefer-100 cortical atlas defined within the non-linear MNI 

ICBM 152 space, as our proposed baseline brain parcellation (level 1). Notably, we cannot estimate 

FCR for hierarchy lower than Schaefer-100, because FCR requires that one should avoid an ill-

posed problem where the number of parcels (the Schaefer100 parcels) exceeds the number of 

timeframes (the maximum of 120 timeframes of our resting state fMRI data). Finally, at this lower 

spatial scale (level 1), parcel-level fMRI time-series were computed by averaging individual fMRI 

time series across voxels belonging to each of the 100 parcels. Note that we are using the same 

hierarchical strategy proposed in Cross et al (N. E. Cross et al., 2021) to estimate FCR on those 

data.  

 

This four-level cortical hierarchy allowed us to compute FCR between two different sets of levels: 

(1) between levels 4 and 3: the segregation of whole cerebral cortex into seven large networks 

(𝐹𝐶𝑅𝑤), and (2) between levels 3 vs 2: the segregation of the seven large networks into smaller 17 

sub-networks (𝐹𝐶𝑅𝑅). The computation of FCR requires defining the common spatial boundaries 

and an exact assignment of subsystems to its higher-level system. Notably, we are investigating 

functional segregation on similar scales using HSI (from 9 pre-defined ROIs to around 14.41 

SPARK atoms) and FCR (from Yeo7 to Yeo17). In addition, because of the aforementioned reason 

that in FCR, the number of parcels should not exceed the number of timeframes, the NREM3 data 

of 3 subjects were excluded for this analysis specifically, due to their shorter time length. 

  

Brain-behavior associations 

 

To assess performance when performing cognitive tasks in different conditions (after a normal 

night, after the recovery nap), we measured the reaction time of participants, i.e., the time delay 

between stimuli presentation and the response (button-press), as well as the percentage of correct 

response. Since the main objective of the study was to investigate resting state functional 

connectivity patterns during wakefulness and sleep, therefore, we are not presenting here statistical 

analyses of task-evoked fMRI responses, previously reported in (N. E. Cross et al., 2021). In this 

study, we quantified the correlation between our proposed HSI measure and these behavioral scores 

measured from N-back, MCT and ANT tasks. First, the voxel-wise HSI values were averaged 

within each functional networks for each subject (< 𝐻𝑆𝐼 >𝑅), which were defined using 9 ROIs 

(Yeo-7 networks + two anatomical regions including basal ganglia and cerebellum). As a result, 

nine region-average < 𝐻𝑆𝐼 >𝑅  values were obtained per subject in each state. Between-state 
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difference in region-average < 𝐻𝑆𝐼 >𝑅 values were then computed for each subject (∆< 𝐻𝑆𝐼 >𝑅). 

Specifically, our goal was to study if there was any association between changes in < 𝐻𝑆𝐼 >𝑅 

values and changes scores of individual task performance (accuracy in % and latency in ms) across 

conditions.   

 

Meanwhile, the average of HSI values within a region disregards other important information such 

as within-region inhomogeneity. To avoid such a bias, instead of directly associate these values to 

behavioral scores, we applied a bootstrap approach to acquire more robust statistics adjusted for 

HSI (Efron & Tibshirani, 1994). This included a resampling procedure to obtain 1,000 bootstrap 

replications of < 𝐻𝑆𝐼 >𝑅  values for each region R. For example, assuming that there were m 

Schaefer100 parcels belonging to one of the Yeo-7 network R. Then, a bootstrap replication 

< 𝐻𝑆𝐼 >𝑅
′  was generated by resampling a new set of m Schaefer100 parcels with replacement and 

computing the average HSI. For each replication < 𝐻𝑆𝐼 >𝑅
′  , the corresponding correlation 

coefficient and p-value between <HSI> and task performance were calculated. The resulting 1000 

correlation coefficient and 1000 p-values were represented separately as histograms, to 

demonstrate the relation between the HSI values in one region R and task performance, offering 

more robustness than simply calculate the averaged HSI.  

 

Comparison between HSI and FCR metric of network segregation  

 

Finally, both HSI and FCR are providing measures of functional network segregation within a 

similar hierarchical model of brain networks architecture: larger HSI or FCR value represent more 

segregation between subsystems within a large system. Therefore, we first compared  𝐹𝐶𝑅𝑤 

estimates to the HSI values averaged across the voxels in the whole brain (< 𝐻𝑆𝐼 >𝑊). At a lower 

level of the hierarchy, when then compared 𝐹𝐶𝑅𝑅 values computed for a region R to the HSI values 

averaged across voxels belonging to the same network (< 𝐻𝑆𝐼 >𝑅). Notably, using FCR, we have 

only investigated the cortical region within the extent of Yeo7 template, while in HSI, we have also 

investigated areas including hippocampus, amygdala, basal ganglia and cerebellum. Therefore, 

care was needed when interpretating the results. 

 

In order to take into account of the variance of HSI in one region R, we also proposed the 

resampling procedure to obtain 1,000 bootstrap replications of < 𝐻𝑆𝐼 >𝑅 values for each region 

R. To do so, we used the Schaefer100 atlas and the assignment from Schaefer100 to Yeo-7 networks 

as used for FCR computations, such that one of the Yeo-7 networks involves n parcels. Then, a 

bootstrap replication < 𝐻𝑆𝐼 >𝑅
′  of 1000 times was generated by resampling a new set of n parcels 

with replacement and computing the average. For each replication < 𝐻𝑆𝐼 >𝑅
′ , the corresponding 
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correlation coefficient and p-value between < 𝐻𝑆𝐼 >𝑅
′    and 𝐹𝐶𝑅𝑅  estimated from the same 

network R were calculated. The resulting 1000 correlation coefficient and 1000 p-values were 

represented separately as histograms, to demonstrate the relation between the HSI values in one 

region R and task performance, offering more robustness than simply calculate the averaged HSI. 
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3.7 Appendix: contribution of co-first authors 

It is important to mention that this first study was completed in close collaboration with Dr. 

Kangjoo Lee, who is now a postdoctoral fellow at Yale University, New Haven, US. Dr. Lee was 

also supervised by Dr. Grova and graduated from the Ph.D. program in Integrated Program in 

Neuroscience from McGill University, Montreal, Canada, in June 2018. This study is a continuation 

of a previous study from Dr. Lee’s Ph.D. dissertation: Reorganization of Functional Brain Network 

Hubs during Non-Rapid Eye Movement (NREM) Sleep after Sleep Deprivation (will be referred to 

as “the original study”). In the original study, Dr. Lee investigated the same topic as in this new 

study: connector hub reorganization during recovery nap after sleep deprivation. Dr. Lee initiated 

the development of a new method named Hierarchical Segregation Index (HSI) based on a 

Sparsity-based analysis of reliable k-hubness (SPARK), whereas SPARK method was also mainly 

developed and validated by Dr Lee during her PhD (Lee et al., 2016, 2018, 2019). 

 

In this original study included (a) group comparison of k-hubness and HSI compared between 

wakefulness, NREM2, and NREM3; (b) the association between HSI and cognitive performance 

after recovery nap. Significantly, during the Ph.D. defense of Dr. Lee, it was suggested that the 

regional k-hubness used in HSI might be biased by the size of chosen regions of interest required 

for HIS estimation. Moreover, in the meantime, few more subjects have been acquired following 

the same protocol considered in the original study. Therefore, in the new study, with close 

collaboration with Dr. Lee, I further evaluated and validated the HSI methodology, reran and 

expanded the analysis, while including new dataset, and finally included new research objectives, 

and expanded the interpretation of results.  

 

3.1.1 Similarity between the original study and the new study  

(a) The same study design was applied, using EEG-fMRI acquisition on healthy subjects to 

investigate the fMRI characteristic during the recovery nap after total sleep deprivation and its 

relation to cognitive performance. (b) This fMRI dataset underwent the same fMRI preprocessing 

procedure by the NIAK toolbox with the same parameters and consequently underwent the same 

analysis of SPARK to calculate brain connector hubs. (c) Both studies investigated the group 

differences of k-hubness and HSI in wakefulness, NREM2, and NREM3, using permutation tests. 

(d) Both studies investigated the association between HSI and cognitive performance including the 

N-back task, attention network task, and psychomotor vigilance task.  

 

3.1.2 The difference between two studies 

(a) in the new study, one fMRI segment from the wakefulness category following whole night sleep 
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deprivation was further excluded, because the percentage of noisy atoms / (noisy atoms + signal 

atoms) was found to be larger than 50% after running SPARK (since participants were fighting not 

to fall asleep during this resting state acquisition. Therefore, we are now comparing wakeful resting 

state after normal night with sleep data recorded during the recovery nap following whole night 

sleep deprivation.  We excluded this fMRI segment to ensure reliable data quanlity. (b) In the new 

study, I carefully investigated the association between ROI size required for HSI estimation and 

regional k-hubness, in the new study. Notably the threshold for calculating regional k was set to 6% 

in this new analysis instead of 10% as in the original study. (c) Additionally, in the new study, we 

now compared HSI measure of network segregation with another methodology called Functional 

Clustering Ratio (FCR) in the collaboration with Dr. Nathan Cross (Boly et al., 2012; N. E. Cross 

et al., 2021; Marrelec et al., 2007), which quantifies functional segregation by assessing the 

integration between sub-networks and within each sub-network. To provide more robust statistics, 

I also implemented resampling procedures to ensure a more robust comparison between HSI and 

FCR. (d) In the new study, when investigating the association between HSI and cognitive tasks, I 

also considered the same aforementioned resampling procedure to have a more robust summary of 

the HSI value in one ROI. (e) In the new study, we investigated the association between the 

difference of HSI in NREM and wakefulness and the differences in cognitive task scores after a 

recovery nap and after a normal night of sleep, therefore, using the fMRI during wakefulness as 

the baseline, and using the cognitive performance after a normal night of sleep as a baseline as well. 

However, in the original study, the association between HSI in NREM and cognitive performance 

after a recovery nap was directly investigated, therefore, without the baselines. (f) In the new study, 

I also proposed a detailed investigation the functional networks mainly involved in the visual area 

and the dorsal attention area in different arousal states (awake, NREM2, NREM3). (g) In the new 

study, the EEG denoising has been improved and therefore new sleep stage classification was 

considered, which allowed more reliable identification of NREM fMRI segments in the new study. 

 

3.1.3 My detailed contribution 

a) I studied the association between the size of ROI and regional k-hubness at the different 

thresholds. In our study, we have separated the whole brain into 9 brain regions (ROI), which 

consist of 7 ROIs from the Yeo7 template (Thomas Yeo et al., 2011a) and 2 subcortical ROIs 

adapted from the AAL template (Rolls et al., 2020). We have applied SPARK which counts how 

many resting-state networks (RSN) are involved in each brain voxel and identify the spatial maps 

of each network. The regional k-hubness instead is defined by the number of RSNs mainly involved 

in each brain ROI. If the spatial overlaps between an RSN and an ROI are larger than x% of the 

total number of voxels in the ROI, then this RSN will be identified as “involved” with this ROI 

and vice versa. (The details of the ROI template, SPARK, voxel k-hubness, and regional k-hubness 
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can be found in the “materials and methods” in the manuscript). Yet it still needs to be investigated 

if there was any correlation between the size of ROI and regional k value that could bias the results. 

For example, ROIs with larger spatial extents such as the DMN area tend to involve more RSNs. 

Although we applied a percentage threshold of x% to avoid this effect as much as possible, the 

effect still needs to be validated, while the threshold x% itself needs to be chosen with caution. To 

do so, I rerun the analysis of regional k for a series of the different thresholds between 0% to 50%. 

One example violin plot of regional k from all fMRI segments (WR, N2, and N3 fMRI segments 

are concatenated) categorized and arranged by the size of ROI, at a threshold of 6%, can be found 

in Figure A1. The Pearson correlation coefficients between regional k and size of ROI as a 

functional to threshold x% can be found in Figure A2. As shown in Figure A2, x% should not be 

too small which would not effectively prevent this ROI-size bias. In the meantime, x% should also 

not be too large since it would not preserve enough hubness information. Therefore, considering 

the above factors, we have set the threshold at 6% in the new study, to ensure that the bias of 

regional k caused by different ROI sizes is minimum.  

b) I have individually investigated an issue of redundant networks from SPARK output and adapted 

the code of the SPARK toolbox (Lee et al., 2016). During Study 1, Dr. Lee discovered an issue that 

the current version of the SPARK toolbox could sometime generate around 1 or several pairs of 

redundant network atoms, where the spatial patterns of two atoms are almost identical. In brief, the 

pipeline of SPARK includes: First, it applies bootstrap resampling to an fMRI time series, then 

applies a sparse GLM on each bootstrap sample to estimate a series of spatial network maps by 

data-driven temporal dictionary learning. The maps are then clustered into several consistent 

spatial networks. Finally, absolute values of the clustered networks are taken (the sign of the 

clustered networks are not informational because of the sign ambiguity of the dictionary learning 

process) and are thresholded (to remove the estimated background noise). After investigation 

using 2 testing fMRI data, I have found that those redundant atoms are always sign-flipped before 

taking absolute values in the pipeline. Therefore, we suspected that during the spatial clustering 

step of the pipeline, the sign-flipped activities have been clustered into two different consistent 

networks though they pertain to the same desired spatial information, leading to the redundancy of 

final network outputs. To fix this issue, I have updated the pipeline of SPARK to take absolute 

values of spatial networks before spatial clustering instead of taking absolute values after spatial 

clustering. This instead will make sure the sign-flipped activities will be clustered into one 

consistent network. Test runs using the updated version of SPARK showed no redundant networks. 

However, we have also questioned the accuracy of the thresholding part of the updated SPARK 

pipeline. In SPARK, because the C-mean spatial clustering will amplify any signals that are 

consistent among different networks, the histogram of all clustered spatial networks will be 

dominated by background noise with the signal of interests (i.e., the desired RSNs) only on the tails 
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of the distribution. The thresholding of background noise was originally done by approximating 

the histogram of clustered spatial networks into inverse normal distribution whose mean is at the 

peak of the histogram (illustrated as Figure A3), after which, only the network coefficient of 

p<0.05 on the histogram will be kept while the dominant central peak of the histogram will be 

removed as background noise. Hence, we suspect that after we revise the code to take absolute 

values before spatial clustering, forcing the resulting non-negative histogram into normal 

distribution will not be statically accurate enough. Therefore, after investigating, I also added a step 

in the SPARK pipeline to manually mirror the histogram to the negative quadrant, in the meantime 

forcing the mean of the approximated normal distribution to be 0, to ensure the validity of the 

thresholding. The rest of the pipeline was then be applied as usual. Notably, although all 

investigation mentioned above were done during Study 1, unfortunately, we did not have enough 

time to rerun the large data cohort with the updated version of SPARK. Therefore, in Study 1, the 

redundant networks were finally manually removed by Dr. Lee. However, this updated version of 

SPARK was then applied to Study 2.  

Aside from a) and b) that are less reflected during the manuscript, I have also conducted the 

majority of analyses of Study 1. A summary of the rest of my contribution is described below:  

c) Using the SPARK output provided by Dr. Lee with redundant atoms manually removed, I rerun 

the analysis of regional k-hubness and HSI. I conducted group comparisons of voxel k, regional k, 

and HSI between WR, NREM2, and NREM3 stages by permutation test with FDR correction. I 

identified the coordinates and anatomical labels of all clusters of voxels with significant differences 

in voxel k or HSI between stages. I generated Figure 3-1B, 1C, 1D, 1F, and 1G, Figure 3-2 and 

Figure 3-3.  

d) With the assistance of Dr. Nathan Cross, who provided the original code of FCR and helped 

with the code adaption, I calculated FCR for all fMRI segments at two different hierarchical levels: 

from the whole brain to Yeo7 levels, from Yeo7 levels to Yeo17 levels (Thomas Yeo et al., 2011a). 

While other hierarchical structures such as MIST (Urchs et al., 2019) have also been tested, the 

Yeo7-Yeo17 structure was chosen to facilitate the comparison of results with Cross et al and Boly 

et al (Boly et al., 2012; N. E. Cross et al., 2021). I then assessed the correlation between HSI and 

FCR results, with a self-developed bootstrap resampling technique to generate a more robust 

summary of HSI in each brain region. I generated Figure 3-5.  

e) I assessed the association between HSI and cognitive performance after a normal night of sleep 

and after a recovery nap following total sleep deprivation. The same resampling technique 

mentioned in d) was also applied. I generated Figure 3-4. 

f) I investigated the different patterns of networks involved in the dorsal attention area across 

different brain states, by applying robust k-mean clustering on all networks found in all subjects. I 

generated Figure 3-6. 
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g) I supported the writing of the manuscript in several parts of methodology: the bootstrap 

resampling technique mentioned in d) and e), and the k-mean clustering mentioned in f). I generate 

all the figures mentioned above.  

 

3.1.4 Detailed contribution of Dr. Lee 

a) During the collaboration, Dr. Lee, my supervisor Dr. Christophe Grova and I meet regularly to 

offer suggestions, guidance, and interpretation of the results of the analyses done by me.  

b) fMRI preprocessing and running of SPARK were done by Dr. Lee assisted by Fatemeh 

Razavipour. The physiological noisy atoms and redundant atoms were manually removed by Dr. 

Lee because of her expertise, while I was getting trained for performing this task. However, after I 

was trained, I performed the fMRI preprocessing, SPARK and manual removal of physiological 

noisy atoms in Study 2 of Chapter 4. 

c) Dr. Lee provided the objectives of the whole study which are consistent with the original study 

from her Ph.D. dissertation, including a group comparison of HSI between states, and the 

association of HSI and cognitive performances. 

d) Dr. Lee was the original author of SPARK. Dr. Lee also originally developed and supported the 

code of regional k-hubness and HSI. Dr. Lee generated Figure 3-1A, 1E, and 1H.  

e) Dr. Lee and I both contributed in the manuscript writing.  

f) Although the majority of the figures were generated by me, all figures have been visually 

improved by Dr. Lee.  

g) Dr. Lee and I both contributed in interpretation of the results and literature research.  
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Chapter 4 – Study 2: A preliminary investigation: connector hub reorganization 

in frontal lobe epilepsy and temporal lobe epilepsy 

 

4.1 Introduction 

Epilepsy surgery may be considered for 30% of patients resistant to drug therapy. The standard 

surgical intervention consists of focal resection targeting the epilepsy focus (EF), the brain region 

from where the epileptic seizure starts. However, there is clear electrophysiological evidence that 

epilepsy is a network disease (Bartolomei et al., 2017). Epileptogenic networks (EN) are the brain 

regions producing and propagating epileptic activities (Bartolomei et al., 2017).  

 

Therefore, in this chapter, we intend to apply the same method of HSI based on SPARK as 

described in Chapter 3, on the topic of functional connectivity in epilepsy. We applied HSI the 

same way and using the same hierarchical template as described in Chapter 3. Furthermore, we 

applied an additional methodology that quantifies the disruption and emergence of hubs in patient 

groups, when compared to a control group. These new metrics defined as hub disruption index 

(HDI) and hub emergence index (HEI), estimated using a linear regression model based on SPARK, 

was investigated by Lee and originally proposed by Achard et al., 2012 (Achard et al., 2012; Lee 

et al., 2018). Notably, a similar HDI metric was also considered to assess functional hub 

reorganization during two different levels of propofol-induced sedation (Vatansever et al., 2020), 

and also to investigate functional hub reorganization at different arousal states monitored by 

pupillometry (Lee et al., 2022). The aforementioned network segregation using HSI and hub 

reorganization using HDI/HEI will be compared between the two typical focal epilepsy types: TLE 

and FLE, to investigate if there is any characteristic pattern of network disruption/reorganization 

in these two types of epilepsy.  

 

However, it is worth mentioning that this second study is only in a preliminary stage with 

exploratory results available. Other than Dr. Lee, this study was completed in close collaboration 

with the labs of Dr. Boris Bernhardt and Dr. Birgit Frauscher, who acquired the datasets of healthy 

control, TLE, and FLE used in this study and supported parts of fMRI preprocessing pipelines. The 

dataset of controls, TLE and FLE will keep growing, therefore we are expecting to further improve 

such analysis by including more participants and patients. We might also include post-surgical 

outcome results when they are available. Therefore, in the long term, our objectives also include 

searching for possible neuroimaging biomarkers based on hubness that could predict postsurgical 

outcomes. Consequently, our long-term hypotheses would be the following: Specific connector hub 
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reorganizations in epilepsy will predict the postsurgical outcome: a) For an EF located in a region 

that is not a hub in healthy subjects, hub disruption will tend to isolate the EN from the rest of the 

brain, resulting a local EN. Resection of a local EN is likely associated with a good surgical 

outcome. b) For an EF located in a region that is a connector hub in healthy subjects, hub disruption, 

and emergence will result in a widespread EN involving distant brain regions. Such epilepsy will 

be difficult to be treated by focal resection. 

 

The aforementioned long-term hypotheses may be further studied after the completion of this thesis, 

in collaboration with other lab members. Nonetheless, the present Chapter 4 described in this 

chapter preliminarily compares the functional network reorganization in TLE and FLE patients 

when compared to healthy controls. 
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4.2 Methodology 

This study was completed in collaboration with Dr. Boris Bernhardt, Jessica Royer, Dr. Raul 

Rodriguez-Cruces, and Dr. Birgit Frauscher, who have acquired and provided the whole dataset 

of healthy controls, TLE patients, and FLE patients, and completed the majority of fMRI 

preprocessing with an fMRI toolbox called MICA, developed by their group (Cruces et al., 2022). 

The healthy control subjects included in this project are also part of an open-source MRI dataset 

recently published (Royer et al., 2021). In our preliminary analysis, we proposed to apply 

SPARK methodology introduced in previous chapter (i.e. k-hubness, regional-k, and HSI) on 

this dataset. More data will be available in near future and we will continue our collaboration after 

submitting this thesis, aiming at completing this study with a publication.  

 

Participants 

26 healthy controls, 14 TLE patients (11 left-lateralized, 1 right- lateralized, and 2 bilateral), and 

11 FLE patients (5 left- lateralized and 6 left- lateralized) were included in this study. Controls and 

patients are sex and age matched. All healthy subjects denied any history of neurological and 

psychiatric illness. All subjects went through a single acquisition session. After fMRI preprocessing 

and running them through the SPARK pipeline (Lee et al., 2016), manual removal of physiological 

noise was done. Subjects exhibiting a ratio of the number of noisy atoms / total number of atoms > 

50% were further excluded from the analysis (2 healthy controls, 2 TLE, and 1 FLE subjects), 

indicating their fMRI data were dominated by physiological noise such as vascular noise or 

movement noise. Therefore, 24 healthy controls, 12 TLE, and 10 FLE subjects were included in 

the final analysis.  

 

Data acquisition 

The data acquisition took place at the McConnell Brain Imaging Centre of the Montreal 

Neurological Institute and Hospital. Using a 3T Siemens MRI system with a 64-channel head coil, 

all participants undertook two T1-weighted structural scans, DWI, and rs-fMRI. The rs-fMRI data 

were acquired using multiband acceleration 2D-BOLD imaging, for a duration of 7 min, with 3mm 

isotropic voxels, TR=600ms, TE=30ms. All participants were instructed to keep their eyes opened, 

to look at a fixed cross and not to sleep. More details regarding scanning parameters including 

information on the T1-weighted and DWI scans can be found in (Royer et al., 2021). 

 

fMRI data preprocessing 

The motion correction and band-pass filtering steps were done using a recently published fMRI 

preprocessing pipeline called MICApipe (Cruces et al., 2022), developed in the lab of Dr Bernhardt. 
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The link to its open-source code is https://github.com/MICA-MNI/micapipe. MICApipe is a 

comprehensive multimodal MRI preprocessing toolkit that can not only preprocess T1-weighted 

MRI, rs-fMRI, and DWI, but also several output results, including functional connectome using 

fMRI data, structural connectome using DWI data, geodesic distance matrices and microstructural 

profile covariance matrices. In brief, the typical MICApipe of fMRI preprocessing includes motion 

correction, co-registration, normalization by registering all subjects to FreeSurfer space, spatial 

smoothing, and at the end, registration to FreeSurfer cortical surface and parcellation. To facilitate 

the analysis of SPARK, since we have more experience using fMRI data in volumetric MNI space, 

we considered output fMRI file of MICApipe after motion correction, but before interpolation on 

the cortical surface. To do so, we first co-registered all subjects to MNI 152 nonlinear asymmetric 

space in the resolution of 2*2*2 mm3 and then completed the rest of the fMRI preprocessing. 

Notably, with some adaptions, SPARK could also be applied to fMRI data in other normalized 

spaces aside from MNI and notably along the cortical surface, but this was out of the scope of 

present study.  

 

Therefore, the first part of fMRI preprocessing by MICApipe starts with removing the first 5 TRs. 

Notably, slice timing was skipped because some argued that slice timing is less necessary for 

multiband acquisition fMRI data because the short TR indicates little time gap between each slice 

and slice timing would show less difference (Functional Imaging Laboratory, 2016). Motion 

correction within scans was then applied using the “3dvolreg” function from AFNI (Cox, 1996) as 

well as distortion correction. A function called “fsl_motion_outliers” from FSL (Woolrich et al., 

2009) was then applied, and the time frames exhibiting excessive motion were identified and saved 

as confounds (to be elaborated in the next section: scrubbing vs despiking). Next, a high-pass 

filter of >0.1Hz was applied to remove unwanted frequencies. ICA-FIX from FSL (Griffanti et al., 

2014; Salimi-Khorshidi et al., 2014) was then applied to identify and remove nuisance variable 

signals, in replacement of conventional regression of white matter and cerebrospinal fluid signals.  

 

We then manually added steps to complete the preprocessing and ensure compatibility with SPARK. 

The second part of fMRI preprocessing by MICApipe starts with brain extraction, applying the 

recon-all function from FreeSurfer (Reuter et al., 2012) on T1-weighted anatomical data and 

applying the BET toolbox on fMRI data (Smith, 2002). Secondly, all fMRI data (3mm isotropic 

voxels) were co-registered to the corresponding T1-weighted anatomical MRI (0.8 mm isotropic 

voxels), and subsequently registered and resampled at a 2mm resolution on the asymmetric 

nonlinear MNI152 template (Fonov et al., 2009, 2011), using FLIRT from FSL with 12 parameters 

affine transformation (Greve & Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001). 

This 2mm MNI space was then downsampled to 4mm resolution, ending up at a similar resolution 
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when compared to our previous studies using SPARK. Afterwards, spatial smoothing with full 

width at half maximum (FWHM) = 6mm was applied, consistent with previous studies in our group 

(Lee et al., 2018). Importantly, the motion outlier confounds estimated using MICApipe (i.e. 

“fsl_motion_outliers”) were regressed out from the fMRI data using FSL, to further decrease the 

influence of small “spiking” motions.  

 

Comparison between scrubbing and despiking 

It is worth mentioning that as a fully data-driven technique, SPARK is highly sensitive to motion 

components. In our previous studies (Lee et al., 2016, 2018) and also in Chapter 3, we considered 

an additional motion control process called scrubbing (Power et al., 2014) during fMRI 

preprocessing. Scrubbing consists in removing, from the fMRI time series, time points exhibiting 

frame displacement (FD) larger than a certain threshold, FD > 0.5 mm was considered in (Lee et 

al., 2016, 2018). However, in this study, instead of scrubbing, we applied another motion control 

technique where a confound of motion outliers was regressed out, which is the so-called “despiking” 

process. Using the function “fsl_motion_outliers” from FSL (Woolrich et al., 2009), motion outliers 

were identified as time points with frame displacement larger than 75th percentile + 1.5 times the 

Interquartile Range (IQR) among its distribution. Note that this is the standard definition of outliers 

used in boxplot representation. The time points that would have been be removed with scrubbing 

versus despiking are respectively shown in Figure A4, considering all healthy control subjects as 

an example. Our results are suggesting that on subjects exhibiting relatively small movements, 

despiking would be more aggressive, while on subjects exhibiting larger movements, scrubbing 

would be more aggressive. Nonetheless, while we separately applied scrubbing and despiking on 

one testing subject and did two trial runs of SPARK, the output k-hubness map showed no 

significant differences, and we also found similar RSNs involved and a similar ratio of noisy atom, 

when considering the two approaches. Therefore, we decided to applied the despiking procedure, 

which also aligns the convention in MICApipe.  

 

Adaptation of SPARK for fMRI with shorter TR 

After fMRI preprocessing, SPARK was applied to all subjects to generate a k-hubness map for each 

subject, where the k-hubness denotes the number of networks connected to each voxel (Lee et al., 

2016, 2018, 2022). The details of SPARK can be found in the methodology part of Chapter 3. As 

introduced in Contribution of Authors in Chapter 3, and adapted version of SPARK was applied in 

this study to avoid generating redundant RSN atoms, by taking absolute values before C-mean 

clustering instead of after.  

 

In addition, to adapt fMRI data analysis of shorter TR using SPARK, we had to implement two 
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adjustments:  

(1) A parameter of SPARK called window block length h was adjusted, which is the length of a 

sliding time window that is used to generate bootstrap samples of fMRI time series. This length 

parameter of the block Bootstrap ensure independency between Bootstrap sample and also taking 

into account fMRI intrinsic autocorrelation for each Bootstrap sample, as originally proposed in 

Bellec et al (Bellec et al., 2010a). In SPARK, we chose the most optimal window block length h 

within the range of sqrt(T) < h <= 2*sqrt(T) (T=number of time points) to preserve temporal 

dependencies, as proposed in Bellec et al (Bellec et al., 2010a). This range was usually enlarged to 

a small extent to ensure robustness. Therefore, since the number of time points was T=695 for the 

multiband accelerated fMRI data of this study (TR=600ms, time length is around 7min), we 

therefore set the window block length to be 20 < h < 55, while it was 10 < h < 30 in Study 1 of 

Chapter 3 (TR=2500ms, where T ranged from 91 to 121 after scrubbing).  

 

(2) The fMRI time series were downsampled temporally before estimating optimal k-hubness for 

sparse dictionary learning with K-SVD. In the sparse dictionary learning of SPARK, the scale of 

the number of outputs SPARK atoms (RSNs), e.g., the total number of networks estimated, is 

estimated from the data using a minimum description length (MDL) principle, as we introduced 

and evaluated in Lee et al 2018 (Lee et al., 2018; Saito, 1994), allowing to find the best trade-off 

between goodness-of-fit and model complexity. Nonetheless, the scale of networks is also 

subjective and depends on which scale the researcher is interested in. It is worth mentioning that 

downsampling or upsampling the time series before MDL estimation would result in significant 

changes in the resulting global scale of networks. Therefore, to investigate the functional networks 

on a similar scale to Study 1 and to our previous studies (the global number of the network was 

ranging from 10 to 20 before manual removal of physiological noisy atoms), we downsampled the 

time series of the current study by a factor of 4 to end up with similar global scale values and 

therefore range of k-hubness values. It could have been of interest to investigate SPARK results at 

a more accurate temporal resolution, taking advantage of multiband acquisitions, but this was out 

of the scope of present study. Similar method has also been applied in Lee et al ((Lee et al., 2011). 

 

Similar to Study 1, after applying SPARK on all subjects, atoms resulting from physiological noise 

were visually identified and manually removed, for example, atoms showing patterns of motion 

noise or noise from dominant veins or vessels (Lee et al., 2019). Subsequently, subjects exhibiting 

a ratio of the number of noisy atoms / total number of atoms > 50% were further excluded.  

 

 

Functional segregation of TLE and FLE 
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The same methods proposed in Study 1 to estimate regional k and HSI were applied to the current 

dataset. The same group comparison of voxel k-hubness and HSI using permutation test was also 

considered.  

 

Hub disruption and hub emergence in TLE and FLE 

To quantify the hub alterations in epilepsy groups when compared to healthy groups, we applied 

two algorithms: hub disruption index (HDI) and hub emergence index (HEI), following 

methodology originally proposed by (Achard et al., 2012) and further adapted and validated by Lee 

et al, (Lee et al., 2018, 2022).  

 

Group-level HDI and HEI are estimating by comparing hubness distribution of each participant 

(control or patient) to the distribution of hubness found within the healthy control group, using the 

following linear regression model: 

 

𝑑𝑃 = 𝑎
𝜇𝑘

𝐶

𝜎𝑘
𝐶 + 𝑏 

While, 𝑑𝑃 =
𝜇𝑘

𝑃 − 𝜇𝑘
𝐶

𝜎𝑘
𝐶  

𝑎 = 𝐻𝐷𝐼, 𝑏 = 𝐻𝐸𝐼 

μk
P

 denotes the average k-hubness in a specific patient group (TLE or FLE) for one voxel in a 

selected ROI (e.g., the hippocampus), μk
C denotes the average k-hubness in the control group for 

one voxel in the ROI, σk
C

 denotes the standard deviation (SD) of k-hubness in the control group for 

one voxel in the ROI. Representing 𝑑𝑃as y-coordinates and 
𝜇𝑘

𝐶

𝜎𝑘
𝐶 as x-coordinates for n voxels in the 

ROI, we obtain a scatterplot with N data points. By fitting a straight line through the 

aforementioned scatter plot, the slope a will be defined as HDI, and the intercept b will be defined 

HEI. HDI and HEI can therefore quantify the k-hubness alterations/reorganization in the patient 

group when compared to the mean distribution of k-hubness values within the control group. 

Specifically, a negative HDI (slope) suggests the voxels that are hubs in controls are becoming 

non-hub in patients, or their hubness is decreasing in patients, indicating an overall hub disruption 

within the ROI. A positive HDI (slope) suggests the hub region in controls is having even higher 

k-hubness in patients, indicating more involvement of the ROI with other parts of the brain, i.e., 

“hyperconnectivity”. A positive HEI (intercept) indicates the region that is non-hub in controls 

tends to become hub in patients. It is worth mentioning that HEI will not be negative because voxels 

will not involve any negative number of networks (Lee et al., 2018).  
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Individual-level HDI and HEI could also be computed using a similar linear regression model:  

𝑑𝑖
𝑃 = 𝑎

𝜇𝑘
𝐶

𝜎𝑘
𝐶 + 𝑏 

𝑊ℎ𝑖𝑙𝑒, 𝑑𝑖
𝑃 =

𝑘𝑖
𝑃 − 𝜇𝑘

𝐶

𝜎𝑘
𝐶  

𝑎 = 𝐻𝐷𝐼𝑖 , 𝑏 = 𝐻𝐸𝐼𝑖 

Notably, 𝑘𝑖
𝑃

 indicates the k-hubness of one voxel in the ROI for one single patient. The resulted 

individual-level HDIi and HEIi will instead indicate the extent of hub alterations of one subject 

specifically, when compared to the mean of the control group. Subsequently, the distribution of 

individual-level HDIi and HEIi will be compared across groups using violin plots. The individual-

level HDIi and HEIi of each control subject were also calculated to facilitate the comparison. 
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4.3 Results 

4.3.1 Network segregation for TLE and FLE patients 

After applying fMRI preprocessing and SPARK to estimate k-hubness, we applied the same 

regional k and HSI method as Chapter 3, using the same atlas. The results of averaged voxel k-

hubness map are shown in Figure 4-1A, the results of averaged and SD of regional k-hubness are 

shown in Figure 4-1D, and the results of averaged HSI map are shown in Figure 4-1B.  

 

We applied the same group comparison method using non parametric permutation tests (see section 

3.6 of this thesis). No significant difference was found between the three groups for voxel level k-

hubness values. However, we found significant differences in regional k-hubness among groups, 

as illustrated in Figure 4-1D. The number of RSNs involved in ventral attention network, 

frontoparietal network, DMN and cerebellum was reduced in TLE comparing to HC. The number 

of RSNs involved in limbic network, frontoparietal, DMN and cerebellum was reduced in FLE 

comparing to HC. No significant difference was found in regional k-hubness when comparing TLE 

to FLE. We also found significant differences in HSI among groups as shown in Figure 4-1C. 

When compared to controls, TLE patients exhibited increased network segregation mostly in the 

caudate, thalamus, frontal orbital lobe, and both mesial temporal lobe (mTL) region, as well as 

decreased network segregation mainly in the dorsolateral frontal lobe, mesial prefrontal lobe and 

precuneus. On the other hand, when comparing FLE patients to controls, FLE data were associated 

with increased network segregation principally in the thalamus and mTL regions, together with 

reduced segregation in the cerebellum, mesial frontal lobe, dorsolateral frontal lobe, and PCC 

regions. When comparing directly TLE and FLE patients, we found that FLE data were 

characterized by significant increased functional network segregation mainly in subcortical regions 

including the thalamus, head caudate, pallidum, and putamen, near the midline of the frontal cortex, 

and also in mTL regions. 

 

 



 

68 

 

 

Figure 4-1 Altered functional network segregation and regional involvements of RSNs in epilepsy. (A) Group 

average voxel-level k-hubness map. Non-parametric permutation test was also applied, but no voxel was found with 

significant differences between group. Therefore, the result of between group comparison of voxel-level k-hubness is 
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not shown. (B) Group average HSI map. Non-parametric permutation test was also applied, the voxels with significant 

differences between groups were shown in Figure 4-1. (C) Group comparison of HSI between HC, TLE, and FLE 

groups showing in t-statistics map which is filtered by p<0.05 according to permutation test. Only the voxels with 

significant differences (non-parametric permutation test, p<0.05, FDR corrected) between the two groups are shown, 

according to the color bar.  (D) The mean and standard deviation of region-level k-hubness in nine pre-defined networks. 

The pairs with significant differences are marked with red solid indicators (permutation test applied, p<0.05, FDR 

corrected).  

 

4.3.2 Hub disruption and hub emergence of TLE and FLE 

We applied group-level and individual-level HDI and HEI to both patient groups. HDI and HEI 

can be applied either to the whole brain or on any particular ROI. Notably, because this study is 

still in a preliminary stage, we are not presenting a systematic investigation of ROI, instead, we 

chose a few ROIs of interest. All ROIs mentioned below were defined according to the Automated 

Anatomical Labelling version 3 (AAL3) template (Rolls et al., 2020). The name of those ROIs was 

the same as the label name in AAL3. The definition of those ROIs is bilateral. For example, in 

Figure 4-2, ROI named “thalamus” indicates both the left and right thalamus.  

 

(1) We first investigated HDI/HEI within 3 subcortical regions: thalamus, caudate, and putamen, 

as illustrated in Figure 4-2, since the thalamus has been suggested to be involve in seizure 

propagation at some degree (He et al., 2015; Martín-López et al., 2017), caudate and putamen have 

been reported with reduced grey matter volume in FLE (Klugah-Brown et al., 2019), and as we 

found significant clusters in subcortical regions in our HSI results. Group-level HDI of caudate and 

putamen indicates an overall hub disruption in both TLE and FLE, while TLE generally exhibited 

more hub emergence than FLE in caudate. In caudate nuclei, TLE shows significant differences 

with HC of both individual-level HDI (iHDI) and individual-level HEI (iHEI), suggesting hub 

disruption and emergence. In FLE, only hub disruption was found showing significant differences 

with HC of iHDI. In the putamen, we found significant differences between FLE and HC (iHDI 

and iHEI) but non for TLE. Surprisingly, the thalamus region, unlike the majority of ROIs we have 

investigated, shows mostly positive HDI. Notably, as shown in the iHDI graph (Column 2) of 

Figure 4-2, the distribution of the thalamus is not gaussian, unlike the generally Gaussian 

distribution of other ROIs, despite outliners. Therefore, the current result of the thalamus region 

should be interpreted with caution. We suspect several reasons that may explain those findings: 

lack of power because of our sample size, a lower signal-to-noise ratio fMRI signal in the thalamus, 

and the associated difficulty of SPARK in estimating hubs in this structure (several voxels 

associated with k=0 values) (see Discussion).  If the aforementioned issues can be resolved in 

future studies and if suppose a similar positive HDI and HEI still occur, we might then conclude of 

a special hyperconnectivity of the thalamus region in TLE and FLE, but this is too early to propose 
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such a conclusion for the moment and our analysis deserves further investigations.    

 

(2) Secondly, we investigated the mTL and the DMN regions, with the same ROIs considered in 

our previous study of Lee et al, who reported hub disruption and hub emergence in both mTL and 

DMN in mesial TLE patients (Lee et al., 2018). For the ROI definition, we followed the same 

definition of mTL ROI as in the paper of Lee et al., which includes the amygdala, hippocampus, 

and parahippocampal gyrus using AAL3. The results of mTL are shown in Figure 4-3, and the 

results of DMN are shown in Row 3 of Figure A5. We found both significant hub disruption and 

hub emergence in both TLE and FLE in the mTL region. Our TLE results in mTL regions are 

clearly in agreement with our previous findings reported in (Lee et al., 2018). Interestingly, we are 

reporting for the first-time hub disruption and hub emergence in mTL structure for FLE patients 

when compared to controls, suggesting remote network reorganizations. On the other hand, we did 

not find any significant differences in the DMN regions. As the insignificant trend shown in Figure 

A5 (Row 3), if we were expecting more participating patients, we might be able to find the hub 

disruption and emergence in DMN regions in TLE groups, but not in FLE, which could be a 

distinction between TLE and FLE.  

 

 

Figure 4-2 HDI and HEI of selected subcortical regions (thalamus, caudate, and putamen). Column 1 denotes 

the group-level HDI and HEI.  <Epilepsy> indicates averaged k-hubness of one voxel across all patients (either FLE 
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or TLE). <HC> indicates the averaged k-hubness across healthy controls. σHC indicates the Standard Deviation (SD) 

of healthy controls. Statistics of TLE patients are shown in blue, and the statistics of FLE patients are shown in purple. 

The blue (TLE) and purple (FLE) solid lines are the best line of fit for the linear regression models. HDI is the slope 

of this line and HEI is the intercept of it. Each blue point or purple point represents one voxel in the corresponding 

ROI. Column 2 and Column 3 are presenting the distribution of individual HDI and HEI for all healthy controls (darker 

blue), TLE (blue), and FLE (purple) patients, denoted here as iHDI and iHEI respectively. The pairs of groups with 

significant differences of iHDI or iHEI values are marked as red, orange, or yellow horizontal lines (p<0.05, Kruskal 

Wallis test applied). It is worth mentioning that the y-axis was not on the same scale for different ROIs to facilitate 

showing the distribution shape better. 

 

Figure 4-3 HDI and HEI of mTL regions. The mTL regions include the amygdala, hippocampus, and 

parahippocampal gyrus, as defined according to the AAL atlas. The color and notions are the same as Figure 4-2. 

 

(3) Finally, we investigated the HDI and HEI in some frontal lobe regions, since we have found 

significant HSI differences between groups in the mesial frontal region. We are mainly reporting 

significant differences between groups of iHDI and iHEI in 4 ROIs: superior frontal lobe, middle 

frontal lobe, superior mesial frontal lobe, and supplementary motor areas (as shown in Figure 

4-4), all frontal regions located close to the midline of the brain between two hemispheres, showing 

agreement with HSI our results with HSI. Notably, all ROIs defined are bilateral. We found mainly 

hub disruption and sometimes hub emergence, occurring more in TLE patients than in FLE patients. 

Only in the supplementary motor cortex, we found a significant increase in iHEI in FLE, but not 

in TLE. Nonetheless, Figure 4-4 still indicates a general hub disruption in the frontal area in TLE, 

even whose lesions are not located in the frontal cortex, which might suggest a more severe global 

network disruption in TLE when compared to FLE. We have also investigated all other frontal lobe 

regions; however, we did not find significant differences in iHDI/iHEI.  

 

(4) Aside from the aforementioned regions, we also found significant differences in iHDI or iHEI 

between the TLE and FLE in the transverse temporal lobe and the superior occipital lobe, as 

illustrated in Figure A4 (Row 1 and Row 2). Nonetheless, in these two regions, only TLE showed 

a trend to have hub disruption and emergence, whereas FLE was not showing significant hubness 

changes. 
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Generally, based on preliminary results, we generally found more alterations reported in HDI than 

in HEI, suggesting rather hub disruption, i.e., hubs in controls becoming non hubs in patients, 

suggesting regularization of the network and loss of distant connections. TLE patients generally 

exhibited more hub alterations when compared to FLE. In FLE, only the superior frontal mesial 

lobe, supplementary motor area, mTL, caudate and putamen were showing significant differences 

in hub alterations (thalamus was not counted). Among those, only supplementary motor area and 

putamen show different patterns when comparing TLE and FLE. The supplementary motor areas 

show significantly more hub emergence in FLE compared to TLE. In the putamen, our preliminary 

results are suggesting that hub alteration occurs in FLE but not in TLE. These findings indicate that 

those 2 ROIs might perhaps serve as biomarkers of distinction between FLE and TLE.  

 
Figure 4-4 HDI and HEI of selected frontal regions near mesial frontal lobe. The color and notions are the same 

as Figure 4-2. 

 

4.4 Discussion and conclusion 

By applying the same method of HSI as described in chapter 3 on our dataset involving healthy 
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controls, TLE and FLE patients, we found significant alterations of functional segregation between 

groups revealed by HSI, predominantly in subcortical regions, mesial frontal lobe, and mTL 

regions. Additionally, we found a decreased number of networks connecting ventral attention 

network, limbic, frontoparietal, DMN and cerebellum regions in TLE or FLE when compared to 

healthy controls, revealed by regional k values (Figure 4-1). The results using regional k indicate 

the large-scale RSNs are generally less interconnected with each other in epilepsy, in other words, 

some connector hubs are disrupted in TLE and FLE, which is in agreement with our previous 

founding in mesial TLE (Lee et al., 2018). Since HSI = regional k / voxel k, and because we found 

significantly decreased regional k in epilepsy but no significant changes in voxel k, it might indicate 

that generally in TLE and FLE, there is no appearance of new RSN or complete disappearance of 

RSN, but instead, existing large-scale networks might have broken down into smaller networks and 

are less connected with each other. This is opposed to the patterns of segregation we found in 

Chapter 3 using sleep data on all healthy subject cohorts, where we found changes both in voxel-

level k and region-level k during sleep when compared to wakefulness. It suggests that although 

the “small-world” macrostructure varied due to the disruption of long-range connections, there is 

globally no reduced or hyper neural activity in TLE and FLE when compared to controls at rest. 

 

In addition, using the HDI and HEI algorithm as in Lee et al (2018), we first found similar patterns 

of hub reorganization in TLE (Figure 4-3) (Lee et al., 2018), which are attached in Figure A6. 

Surprisingly, whereas hub disruption in TLE was expected because of the commonly found mTL 

sclerosis in TLE, we also found very similar HDI and HEI in FLE in the mTL regions, suggesting 

more attention is needed regarding the role of mTL in FLE. This hypothesis would deserve further 

investigation. In caudate nuclei, hub disruption was found for both TLE and FLE, while hub 

emergence was only found for TLE. In the putamen, FLE showed distinct hub disruption and 

emergence, which can serve as a potential biomarker for FLE (Figure 4-2). In mesial frontal area, 

hub disruption and emergence were found more in TLE and less in FLE (Figure 4-4), aligning with 

our results from HSI, whereas in mesial frontal area TLE showed segregation but not FLE (Figure 

4-1). In addition, this result can explain the commonly found reduced cognitive ability in TLE, 

because the mesial frontal region supports (Stretton & Thompson, 2012).  

 

Considering the definition of k-hubness, a voxel or region with higher k-hubness is more likely to 

be a connector hub participating to long-range connection while one with lower k-hubness is more 

likely a provincial hub participating in local communication. Considering the multi-level and 

complex hierarchical structure of the brain functional connectome, the connector hub and 

provincial hub are defined relatively instead of with a certain threshold. Thus, in our application of 

HDI and HEI, the results should also be interpreted relatively, a ROI with significantly positive 
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HEI and negative HDI would indicate that the voxels participating in longer-range communication 

are losing long-range connection, in the meantime, the voxels that are non-hub or participate in 

local communication are engaging more with other brain areas. Such patterns of reorganization 

appeared in the majority of results shown in Figure 4-2 to Figure 4-4. Such patterns also generally 

align with the inference we got from the results of regional k that large-scale RSNs are breaking 

down and less interconnected in TLE and FLE. Accordingly, we have verified the reorganization 

of functional connectivity in epilepsy on both network-level using HSI and voxel-level using 

HDI/HEI. Our results again addressed the importance of treating epilepsy as a network disease 

instead of focally and highlighted the importance of research that predicts post-surgical outcomes 

by examining whether the targeted lesion is a connector hub or not. 

 

Additionally, we found unconventional positive HDI especially in TLE in the thalamus region, 

which might indicate hyperconnectivity where the regions that are connector hubs in controls are 

engaging with even more long-range connections in patients. However, our results on this question 

should be interpreted with caution, especially because of bimodal distribution of HDI and HEI 

results found in the thalamus (see Figure 4-2). In the future, aside from including more epilepsy 

patients and control subjects, we might consider tailoring SPARK to the need of investigating the 

role of the thalamus in epileptic functional connectivity, by sourcing the dictionary learning from 

the fMRI time-series from thalamic or subcortical structures only. Such an approach would likely 

compensate the issue of relatively lower signal-to-noise (SNR) ratio in thalamus region in fMRI 

acquisition, since the thalamus is one the most remote regions from the MR head coils. Nonetheless, 

if supposing the aforementioned measures can be taken in the future and similar HDI and HEI were 

to be found, we might speculate the thalamus has even more long-range communication to other 

RSNs, which can either compensate for decreased cognitive ability or more plausibly, form an 

underlying network that is responsible for seizure generation and propagation. The role of thalamus 

nuclei in the propagation of seizure, termination of seizure, and consciousness during seizures have 

been suggested in the literature (Evangelista et al., 2015; Feng et al., 2017; Velíšek, 2018), while 

further investigation from the perspective of functional networks would offer valuable information 

as well. Overall, although with only preliminary results, we have found significant functional 

connectivity alterations in TLE and FLE compared to controls. In the future, to complete this study, 

we expect to include more analysis: including more participants, tailoring the SPARK algorithm, 

as well as investigating the rate of appearance of different RSNs among groups, and investigating 

the role of different thalamus nuclei.  
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Chapter 5 Conclusion 

 

In this thesis, we have introduced the background of functional connectivity studies in Chapter 1. 

In Chapter 2, we have introduced several types of state-of-the-art methodologies used in functional 

connectivity and addressed the specificity of SPARK. Subsequently, we have investigated 

functional networks using SPARK for two specific applications: sleep and epilepsy. In Chapter 3, 

we found that the visual cortex showed significantly more segregation in NREM2 compared to 

NREM3 (NREM2>NREM3≈WR) and the orbitofrontal cortex showed significantly more 

segregation in NREM3 compared to NREM2 and wakefulness (NREM3>WR>NREM2). We have 

also found that more functional segregation during the recovery nap can be associated with poorer 

working memory performance after the nap. In Chapter 4, we found altered patterns of network 

segregation predominantly in subcortical structures near the thalamus (FLE>TLE≈HC), mesial 

frontal lobe (HC>FLE>TLE), dorsolateral frontal regions (HC>TLE≈FLE), and mTL 

(FLE>TLE>HC). We have also found fewer networks interconnected to ventral attention, limbic, 

frontoparietal, DMN, and cerebellum networks. In addition, we found hub disruption and 

emergence in TLE in Caudate, mTL, and mesial frontal lobe, while in FLE other than general 

disruptions in several other ROIs we have also found distinct hub disruption and emergence in 

putamen and hub emergence in the supplementary motor area.  

 

The main methodology used in this thesis, SPARK, is a novel method to quantify functional hubs, 

in the meantime handles the overlaps between functional networks. This thesis identified the 

difference in functional segregation between different NREM stages and offered a perspective on 

how recovery nap after sleep deprivation correlates with cognitive ability. Despite being in a 

preliminary state, this thesis also found specific functional network patterns associated with TLE 

or FLE.  

 

However, this thesis involves several limitations. In Study 1 of Chapter 3, firstly, the overall blood 

flow level might differ in sleep comparing to rest. Therefore, it needs to be validated that if HSI 

results will be biased by such effect. A validation analysis can be done, where this effect will be 

modeled and regressed out from the fMRI time-series, and then conducting the same analysis 

afterward and comparing the results to existing results. Secondly, our research question was 

restricted to a one-hour recovery nap after total sleep deprivation. By waking up a participant after 

one-hour nap, we interrupted the recovery of severely impaired cognitive function. Variables 

caused by the “interruption” might contribute to the cognitive performance variability, such as the 

length of time taken to wake up the participant, or which part of the sleep cycles (REM, NREM1, 
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or NREM4) was the participant in when woken up, we question if those variables affect the 

cognitive ability afterward. More investigation is required to reveal how sleep recovers cognitive 

ability systematically, considering the influence of sleep cycles. In Study 2 of Chapter 4, as 

mentioned in the discussion section of Chapter 4, firstly we expect a greater number of participants 

to draw more reliable conclusions from group comparison, and secondly, a tailored version of 

SPARK with dictionary learning focusing on thalamus is required to compensate the low SNR of 

the thalamus and to further investigate its network association. Thirdly, currently simultaneous 

EEG is not involved during the fMRI acquisition, which should be considered because it identifies 

fMRI segment with epileptic spike discharge that can appear in some epilepsy patients even during 

rest, and such fMRI segments should be excluded from the following analysis to increase reliability. 

Lastly, in the current stage of analysis, the ROIs explored with HDI/HSI was defined according to 

AAL template, although the AAL template is not the optimal parcellations to study FC, given that 

the sulcation patterns do not completely align with functional boundaries and networks. Other 

templates can be considered in future investigation.  

 

In the future, many possible directions can be further investigated related to our research topic. In 

study 1, as mentioned in the previous paragraph, a similar study design but with different lengths 

of sleep can offer more insights into exploring the whole scheme of cognitive restoration, which 

can potentially lead to professional advice on how to get more effective sleep with inadequate time, 

or even contribute to advancement in sleep disorder treatment. In study 2, the most essential future 

interest is to investigate if HSI, HDI, or HEI can serve as biomarkers to predict the post-surgical 

outcome. Combining with other modalities such as the structural biomarkers using DWI and the 

metabolic biomarkers using positron emission tomography (PET), we might be able to offer an 

anticipated rate of success for lobectomy, which can potentially lead to significant advancement in 

pre-surgical assessment.  
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Appendix 

 

 

Figure A 1. Relationship between distribution of regional k-hubness and the size of ROIs with a 6% threshold 

applied on the regional k-hubness methods. Each violin indicates one ROI. The x-coordinates of the violins are the 

area of each ROI counted by voxels. In each violin, each point represents one subjects, whose y-coordinates indicate 

the regional k-hubness of this subject in this ROI.  

 

 

Figure A 2. Correlation coefficient between regional k-hubness and ROI size and its relevance with different 

threshold, in resting wakefulness (left), NREM2 (middle) and NREM3 (left). 
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Figure A 3. An illustration of the thresholding procedure in SPARK pipeline. It shows the thresholding procedure 

before revising the pipeline. The blue solid curve indicates the probability density function a standard normal 

distribution, although the curve was enlarged in the direction of y-axis for better visualization. The green histogram 

indicates the distribution of the sparse spatial network atoms after clustering, which was fitted to a inverse normal 

distribution with the mean equal to the x-coordinates of the bin with largest number of counts. The red dash lines 

indicate p = 0.05. After the thresholding procedure, the spatial atom data inside the two red dash lines will be removed, 

but one outside the two red dash lines will be kept (p<0.05).   

 

 

Figure A 4. The distribution of frame displacements of all time points of all healthy control subjects. The grey 

dash line indicates Frame Displacement = 0.5 mm, above which are the time points that would be removed using 

scrubbing. The red crosses are outliners identified with boxplot (>75% + 1.5 IQR), which are the time points that 

would be removed using despiking. 
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Figure A 5. HDI and HEI of the transverse temporal region (row 1), superior occipital lobe (row 2), and DMN 

(row 3). The color and notions are the same as Figure 4-2. 

 

 

Figure A 6. HDI and HEI of right and left-lateralized mesial TLE of the ROI of left and right mTL. Adapted 

from Figure 2 of Lee et al., Neuroimaging: Clinical, 2018, for comparison purposes. a indicates HDI as the slope and 

b indicates HEI as the intercept.  

 

 


