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Abstract

Data-Driven Optimization Models for Shared Mobility-on-Demand

Systems

Xiaoming Li, Ph.D.

Concordia University, 2022

Shared Mobility-on-Demand (MoD) has tremendously reshaped the transportation

patterns in urban areas. The prosperity of Big Data and 5G network technology

brings new challenges to shared MoD systems. Specifically, the major challenges in

shared MoD systems under the data-driven environment include dynamic environ-

ment, stochasticity, large-scale optimization, and Big Data characteristics. In this

research, we identify shared MoD management as a resource allocation problem in

the two-sided market environment. Further, we adopt optimization under uncertainty

modeling techniques to address the resource allocation issues for shared MoD sys-

tems. To improve the performance of the shared MoD systems under the data-driven

environment considering uncertain parameters, we propose a generic learning-based

data-driven optimization framework and apply it to three shared MoD optimization

issues.

Specifically, we develop a generic learning-based data-driven optimization frame-

work that integrates data processing, feature engineering, machine & deep learning

approaches, reformulation, and decomposition algorithms to optimize the resource

allocation problems in shared MoD systems. The research involves three synergistic

shared MoD areas. (1) Kernel density enabled stochastic programming modeling for

proactive vehicle allocation and reactive relocation in the car-sharing system. We

design a data-driven optimization framework that seamlessly integrates kernel den-

sity estimation and a two-stage stochastic programming model to address the issue.

(2) Mixture density networks enabled stochastic programming modeling for dynamic

proactive idle vehicle guidance in the ride-hailing system. We design a novel deep neu-

ral network and integrate it with a one-stage stochastic programming model to guide

the idle vehicle to alleviate the supply-demand gap in the ride-hailing region. (3)
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Dynamic data-driven robust optimization modeling for ride-sharing matching prob-

lems under travel time uncertainty. We develop a data-driven robust optimization

framework that organically integrates gated recurrent networks, a one-stage robust

optimization model, model reformulation, and a hybrid meta-heuristic algorithm to

address the ride-sharing participants matching issue. Based on these research points,

this Ph.D. thesis is a compilation of three published or submitted journal papers.

To sum up, this Ph.D. thesis presents a general data-driven optimization frame-

work that organically integrates the artificial intelligence (AI) paradigm, including

machine and deep learning approaches with optimization under uncertainty modeling

techniques. Driven by AI techniques, the learning-based data-driven optimization

framework can address the resource allocation problems in shared MoD systems by

hedging against the uncertainty in a decent way. Further, the proposed approach is

not limited to the shared MoD systems. Still, it can be applied to other relevant fields

by replacing the learning and optimization components in the framework.
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Chapter 1

Introduction

With the rapid development and broad application of 5G networks and mobile Apps,

shared Mobility-on-Demand (MoD) has significantly reshaped the public transporta-

tion mode in the urban area. Compared to the regular transportation mode, shared

MoD companies, users (including drivers and riders), and municipalities benefit from

the merits and advantages from different perspectives, such as traffic congestion al-

leviation, gas emission reduction, travel cost saving, etc. [94]. Meanwhile, managing

the shared MoD platform and allocating the resource effectively have become one of

the promising research points in intelligent transportation systems (ITS).

To optimize the resource allocation problems in a shared MoD platform, the con-

ventional deterministic modeling technique tackles the problem by assuming all the

input parameters of the mathematical model are known [155]. The assumption, how-

ever, is too strong in real practice in the Big Data environment. In fact, the pa-

rameters involved in mathematical models are subject to uncertainty due to various

reasons such as data inappropriate collection, estimation bias, data noise, etc. Hence,

optimization under uncertainty modeling techniques is considered a powerful tool to

address optimization issues in shared MoD systems under the Big Data environment.

Ideally, optimization under uncertainty can make reasonable decisions while hedg-

ing against uncertainty for specific shared MoD applications with perfect information.

However, in practice, the uncertainty that exists in shared MoD historical data is too

complex to be estimated and quantified. In fact, Shared MoD systems generate a

huge volume of data daily, including users’ GPS and trajectory, trip transactions,

service rating data, etc., which brings more challenges to the shared MoD systems.
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Considering the optimization under the uncertainty modeling technique under the

Big Data environment, we adopt the data-driven optimization paradigm in this re-

search. Although there is no agreement on the definition of data-driven optimization,

it is deemed as the uncertainty is formulated based on the real data, which enables the

data ”speak” for themselves in the mathematical models and algorithms [9]. Conse-

quently, the hidden information underlying the data could be leveraged in a way that

the optimization models could better describe the realistic scenarios. Along with this

research trend, we investigate the state-of-the-art machine learning and deep learning

approaches to extract accurate information and knowledge to facilitate the optimiza-

tion under uncertainty since machine and deep learning approaches have been proved

as effective and efficient tools to discover useful knowledge among historical data.

To this end, this Ph.D. thesis aims to explore and exploit the state-of-the-art

machine and deep learning-enabled data-driven optimization models for the shared

MoD applications in the Big Data era. The key innovation is to design a learning-

based data-driven optimization framework that seamlessly integrates machine and

deep learning models and optimization under uncertainty modeling techniques to

improve the performance of the shared MoD platforms.

The structure of this chapter is organized as follows. Firstly, we briefly introduce

the background of shared MoD systems with basic problem settings in car-sharing,

ride-hailing, and ride-sharing applications. Next, we present the research scope and

methodology. Then, we identify the three applications in shared MoD systems as

resource allocation problems and discuss the major challenges in the data-driven

environment. Finally, we highlight our contributions and show the thesis outline.

1.1 The Ecosystem of Shared Mobility on Demand

Systems

Shared mobility is one of the variants of MoD systems. The rapid growth of shared

MoD platforms such as Uber, Didi, and Lyft have significantly reshaped urban mobil-

ity due to intrinsic merits such as energy-saving, traffic improvement, cost reduction,

etc. It is roughly estimated that the global shared MoD market is expected to reach

36 million users by 2025 [38].

Along with the sharing economy, numerous shared mobility and services have
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pushed shared MoD systems from the fringe to the mainstream, including car-sharing,

ride-sharing / hailing, bike-sharing, vehicle dispatching, electric vehicle charging, etc.

In this study, we concentrate on three shared MoD resource allocation issues: one-way

car-sharing vehicle relocation in car-sharing systems, idle vehicle proactive guidance

in ride-hailing systems, and one-to-many traveler matching in ride-sharing systems.

The basic concepts and backgrounds are introduced in the following sections.

1.1.1 Car-Sharing

Car-sharing is a typical business-to-customer (B2C) service model [140]. Motivated by

the idea that members share vehicle usage for their trips, the car-sharing service allows

members to benefit from private vehicles while alleviating purchase and maintenance

costs. Customers can access the shared vehicles owned by car-sharing firms by using

a mobile app or the Internet. A Majority of car-sharing problems can be categorized

from two dimensions, namely, rules of vehicle return and the planning period of

decision-making which can be summarized as follows [37].

In terms of the rules of vehicle return, B2C car-sharing service involves one-way

station-based, round-trip station-based, and free-floating car-sharing services, which

are compared as follows.

• One-way station-based car-sharing service provides more flexibility for the cus-

tomers by allowing a customer picks up the reserved vehicle at one service area

and park in any other designated service area after use.

• Round-trip station-based car-sharing service enforces that the customers must

return the vehicles to the service area where the vehicles were picked up.

• In the free-floating mode, the shared vehicles are permitted to park in the public

operational areas. The relevant cost (fee) incurs when the customer parks the

shared vehicle.

In terms of the planning period of decision-making, car-sharing problems can

be classified into strategic level, tactical level, and operational level decision-making

problems.

• Strategic level (or long-term) decision-making is associated with customer be-

havior, price policies, vehicle parking lot design, etc.
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• Tactical level (or medium-term) decision-making refers to fleet size manage-

ment, urban area boundaries, local demand management, etc.

• Operational level (or short-term) decision-making is related to the daily service,

including vehicle relocation strategies, vehicle re-fueling or re-charging, etc.

1.1.2 Ride-Hailing

Ride-haling is a typical for-hire service model [140] in shared MoD systems. Trans-

portation Network Companies (TNCs) provide ride-hailing services that can be at-

tributed to the convenience of mobile app access and a higher availability compared

to traditional taxi services. Generally, a ride-hailing service platform involves three

parts: riders who request rides, drivers who offer rides, and a central decision-maker

who operates the ride-hailing platform. The central decision-maker handles order

dispatching, trip fare, and vehicle management by optimizing different ride-hailing

objectives.

The ride-hailing service process can be described as follows. The riders hail service

by sending requests that include their identities and the exact pick-up and drop-off

locations to the central platform. The platform dispatches orders to idle drivers based

on their proximity to the pick-up locations. Both sides (driver and rider) can decide

whether to accept the matched order. The platform can trace the drivers’ real-time

locations by their equipped sensors when they approach the pick-up locations. Once

the driver and rider meet, a notification is sent to the platform to indicate that the

service starts. Upon reaching the destination, the driver notifies the platform that

the ride has ended. Finally, the platform computes the trip fare and automatically

charges the rider. The driver and rider may also rate each other based on the service

experience. Further, the idle vehicle could re-fuel / recharge (based on the type of

vehicle) or wait for the notification from the platform.

From the aforementioned ride-hailing service period, we identify that there are

quite a few research points throughout the entire service process. For example, the

significant difference between the level of rider demand and the level of idle vehicles

(imbalance of demand and supply) in the ride-hailing regions leads to idle vehicle

guidance operation [41, 42, 84]; the matching and pricing mechanism greatly impacts

the system performance and user experience [52, 127, 57]; and the management of
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vacant vehicles for the next service period [171].

1.1.3 Ride-Sharing

Ride-sharing is a typical peer-to-peer (P2P) service model [140]. Ride-sharing service

involves a joint trip of at least two participants who share a vehicle with similar

itineraries and schedules. Thanks to rapid development in GPS navigation devices,

ride-sharing has become a popular transportation mode by which travelers can quickly

match up. Social issues such as traffic congestion and air pollution can be alleviated

by sharing trips, travel costs such as gas, toll, and parking fees. Due to the advantages

compared to regular taxis, ride-sharing has gained much attention and attracted more

research. The critical problem in a ride-sharing system is quickly determining the

matching solutions between riders and drivers or the optimal routes for drivers.

In literature, ride-sharing problems can be roughly classified into two categories

in terms of planning horizon: static and dynamic [1]. The static ride-sharing prob-

lems assume that both riders and drivers must provide information on their origins,

destinations, and time schedule before the matching decision is made by the plat-

form. By contrast, dynamic ride-sharing problems assume that the platform collects

information from riders and drivers in real-time, and the platform matches up drivers

and riders using the rolling horizon method. In the latter paradigm, operating time

is discretized into several planning horizons (the time duration could be identical or

different), and the rolling horizon framework is adopted.

In terms of objectives in the ride-sharing matching optimization, there are three

types of objectives in existing ride-sharing matching models shown as follows.

• To minimize system-wide vehicle miles.

• To minimize system-wide travel time or cost.

• To maximize the number of participants.

1.2 Scope and Methodology

In this section, we discuss our research scope along with the approaches studied in

this work. Specifically, we introduce the background and basic concepts of sharing
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economy [116], two-sided market [120], optimization under uncertainty, and machine

& deep learning, as well as their contributions to the shared MoD systems. Along this

research line, this section aims to guide the readers to understand the big picture of

our research by targeting the research position in relevant theories and applications.

1.2.1 Sharing Economy

Sharing economy (SE) [25], also known as collaborative economy, has recently at-

tracted more attention from academia and industry. Sharing economy and MoD

systems are strongly correlated in that the economic models in sharing economy field

have been ubiquitously applied in most applications in MoD systems such as car-

sharing, bike-sharing, and ride-sharing problem [66]. Shared MoD under the context

of sharing economy can be classified into the following two types - shared vehicle and

shared ride in terms of what is being shared [128].

• Shared Vehicles. Such as car-sharing, electric vehicle sharing, automated

vehicle sharing, bike-sharing, scooter-sharing, etc.

• Shared Services. Such as ride-sharing, ride-sourcing, ride-splitting, crowd-

sourcing, crowd-shipping, etc.

1.2.2 Two-Sided Market

There are typically three aspects in the two-sided market environment: the demand

side, the supply side, and the service provider side. By mapping the sharing economy

from the perspective of a two-sided market [62], in this study, we identify the shared

MoD applications as a resource allocation problem in the context of a two-sided

market by defining a four-tuple theme: 〈α|β|γ|ω〉, where α, β, γ, and ω denotes

demand side, supply side, operational (platform) side, and objectives, respectively.

The four aspects are introduced as follows.

• Demand Side (α). Demand side refers to passenger/customer/rider’s re-

quest/order during a service period or rolling horizon window.

• Supply Side (β). Supply side refers to the resource for allocation, it could be

available vehicles, idle drivers, vacant seats, etc.
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• Operational Side (γ). We define the operational side as the centralized op-

timization model, the central decision-maker can obtain the optimal or near-

optimal solutions by adjusting the input parameters.

• Objectives (ω). The typical objectives in shared MoD applications include

minimizing cost, travel time, travel distance, supply-demand ratio, etc., and

maximizing profit, service rate, social welfare, etc. The objectives are quite

correlated to the specific applications and environment. Notice that there would

be more than one of the objectives that are considered in some applications 1.

1.2.3 Optimization under Uncertainty

Optimization under the uncertainty modeling technique is a powerful tool for opti-

mization in the data-driven environment, where part (or all) of the parameters in

the optimization models are subject to uncertainty. In this research, We identify

two modeling paradigms. Namely, stochastic programming and robust optimization,

from the perspective of objectives and parameter forms. For each paradigm, we will

introduce the basic concepts followed by the applications in the shared MoD systems.

Stochastic programming

Stochastic programming (SP) is a powerful modeling technique for optimization un-

der uncertainty whose objective is to optimize the expected objective value across

all the uncertainty realizations [11]. It has been ubiquitously applied in diverse ar-

eas of science and industry, including healthcare [142, 183], energy [105, 83, 53],

scheduling [126, 99], supply chain management [122, 187] etc. The key idea is to

model the uncertainty (randomness) by uncertain parameters with probability distri-

butions. Generally, SP can effectively accommodate decision-making processes with

various time stages, among which two types of SP models are extensively discussed

in the existing literature. Namely, one-stage SP and two-stage SP. In one-stage SP

models, no recourse (also known as ’wait-and-see’) decision variables are involved; all

the decisions must be made before the uncertainty realize. By contrast, two-stage SP

models divide the decision variables into first-stage type (also known as ’here-and-

now’) that are determined prior to the uncertainty being realized, and second-stage

1Multiple objectives will lead to multiple objective optimization models. Without loss of gen-
erosity, in this research, we only consider a single objective function for all the research points
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type (also known as ’wait-and-see’) that are made after the uncertainty is known. In

addition, the two-stage SP can be extended to a multi-stage SP that can be imple-

mented by rolling horizon framework [159].

Robust Optimization

Robust Optimization (RO) [5, 175], on the other hand, does not require accurate

knowledge of probability distributions that SP heavily relies on. Like SP, RO also

has been extensively applied in diverse areas of science and industry, including health-

care [4, 71], energy [80, 129, 85], supply chain management [96, 49, 60] etc. Com-

pared to the deterministic model, RO can hedge against the uncertainty by finding

sub-optimal solutions that can work under the ’worst-case’ scenario with a very low

probability of constraint violation. RO models uncertainty by assuming the uncertain

parameters range in uncertainty set(s), which includes all the possibilities of the un-

certainty. The range of the uncertain parameters is controlled by the decision-maker

to determine the sub-optimal solution. Theoretically, the solution under a low degree

of conservatism (uncertainty) is close to the optimal solution but with less robustness

(high violation probability). On the contrary, the solution under a high degree of

conservatism is of lower quality but with more robustness. Therefore, the essential

problem is constructing an appropriate uncertainty set to describe the parameters’

randomness and find the best trade-off between optimality and robustness. Like SP,

RO can also formulate decision-making processes with various time stages, which

leads to one-stage RO and two-stage RO.

1.2.4 Machine Learning Approaches

In recent years, machine and deep learning techniques have witnessed overwhelming

success in shared MoD systems and ITS. By leveraging the historical data, the ma-

chine and deep learning models can forecast accurate outcomes that facilitate further

decision-making in shared MoD systems. Although machine and deep learning ap-

proaches can apply various ITS domains such as visual recognition [177, 180] and

traffic flow prediction [164, 173], we mainly summarize those domains that are closely

related to our study.

• Destination Prediction. Destination prediction focuses on where a trip ends
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that plays a vital role in shared MoD, such as ride-hailing and ride-sharing. A

few works have been done by Convolutional Neural Network (CNN) [98] and

Recurrent Neural Network (RNN) [35].

• Demand Prediction. In contrast to destination prediction, demand prediction

studies where a trip may start. Shared MoD firms can be incredibly benefi-

cial from demand prediction by increasing revenue/income or maximizing so-

cial welfare. Various machine and deep learning approaches have demonstrated

this task, such as least squares support vector machine [65], and ensemble learn-

ing [93] for short-term demand prediction for car-hailing systems, convolutional-

LSTM [68] and graph-CNN [44] to forecast demand in ride-hailing systems.

• Travel Time Estimation. In shared MoD systems, the travel time in a route

or trajectory greatly impacts the optimization solutions. A few research has

been conducted to take advantage of machine and deep learning models for the

travel time prediction, such as support vector regression (SVR) [76], gradient

boosting regression tree method (GBM) [182], Restricted Boltzmann Machines

(RBM) [137], and LSTM [157, 162, 179].

Since machine and deep learning techniques have been successfully applied in

shared MoD systems and ITS under a stochastic environment, we believe that the

quality of the decision-making solutions could be tremendously improved by leverag-

ing the machine and deep learning techniques, which is the major motivation of this

study.

1.3 Problems and Challenges of Shared MoD sys-

tems under Data-Driven Environments

In this section, we summarize and discuss the following four challenges in the shared

MoD systems under the data-driven environment.

• Dynamic Environment. One possible way of describing the shared MoD sys-

tem is to divide the entire framework into demand and supply sides. From this

perspective, one significant characteristic of the shared MoD system is that the

demands (riders/passengers/customers) and supplies (drivers/cabs/vehicles) in
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shared MoD markets change over time. Unless properly managed, mismatches

between demands and supplies (such as a sudden increase of ride requests in a

city zone with fewer drivers/cabs nearby) can cause a significant loss of revenue

to MoD businesses and discourage customers and drivers. Since the drivers

of many shared MoD (e.g., ride-sharing) platforms are often freelancers rather

than full-time workers, it is difficult in practice to enforce their spatial-temporal

availability directly.

• Stochasticity. One of the significant challenges in the MoD applications un-

der the data-driven environment is that uncertainty exists due to the inherent

characteristics. As discussed in the previous section, the shared MoD systems

can be considered as the integration of the four-element tuple from the two-

sided market perspective. Namely, demand side (α), supply side (β), the op-

erational (platform) side (γ), and the objectives (ω). In fact, all four sides

are likely to be subject to uncertainty. For example, on the demand side, the

rider/passenger/customer demand is subject to uncertainty since the number

of service requests during each operational window (time slot) is a sequence of

outcomes that follows a specific type of stochastic process; on the supply side,

the number of drivers (fleet size) is subject to the uncertainty because of the

unexpected vehicle or service availability; on the operational side, such as driver

travel time, travel cost, etc. are also subject to the uncertainty because of the

traffic congestion or the road capacity.

• Large-Scale Optimization. A variety of applications in shared MoD can be

formulated as mathematical optimization models with uncertain parameters us-

ing optimization under uncertainty (will be discussed in the following section)

modeling techniques. These mathematical optimization models will always re-

fer to large-scale optimization problems. For example, stochastic programming

models contain at least one parameter that follows a type of probability distri-

bution (either discrete or continuous), which involves many (infinite for contin-

uous type) scenarios. Consequently, many scenarios are denoted by a huge set

of decision variables and constraints, namely, large-scale optimization models.

In addition, robust optimization considers at least one parameter whose value

varies in a given uncertainty set that may contain infinite scenarios. Therefore,

stochastic and robust optimization models (after reformulation) also lead to
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large-scale optimization models.

• Big Data Characteristics. The real and popular shared MoD applications

are often working under a rich data environment. Specifically, quite a few at-

tributes are formulated in the optimization model; on the other hand, big data’s

spatial-temporal attributes must be considered spatial-temporal features for pa-

rameter prediction 2. For example, in the New York city green and yellow taxi-

cab systems 3, there are over millions of trip records each month. In particular,

the trip record data sets provide spatio-temporal data (rider pickup/drop-off

time and vehicle pickup/drop-off coordinates incorporated).

To sum up, the four challenges significantly impact the optimal solutions for the

decision-maker on the shared MoD platform. Furthermore, the four challenges are

not independent but highly correlated. Specifically, data quality greatly impacts the

predicted (or evaluated) outcomes such as the number of requests on the demand side;

meanwhile, the predicted outcomes involve randomness (or uncertainty) which are

modeled by stochastic programming or robust optimization technique. The different

types of uncertainty lead to different large-scale optimization models.

1.4 Major Contributions

To tackle the issues and challenges in shared MoD systems under the data-driven en-

vironment, we propose a generic learning-based data-driven optimization framework

that integrates the state-of-the-art machine/deep learning algorithms with optimiza-

tion under uncertainty modeling techniques. The holistic framework is illustrated in

Fig 1.

The framework is capable of handling the challenges above in a decent way. Specifi-

cally, the learning component can address challenges 1 and 4. The learning component

involves data processing and various machine learning algorithms. The optimization

component can address challenges 2 and 3. In our research, the optimization com-

ponent refers to stochastic programming or robust optimization along with various

model reformulation and decomposition algorithms such as Benders decomposition,

Lagrangian relaxation, etc. since we mainly focus on optimization under uncertainty.

2In most cases, the prediction using spatial-temporal feature data refers to time-series prediction
3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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Figure 1: The generic learning-based data-driven optimization framework

However, the deterministic models and the corresponding algorithms such as branch

& bound, branch & cut, branch & price, and column generation can also seamlessly

be embedded in our framework.

By applying and extending the generic learning-based data-driven optimization

framework, the major contributions based on the three research points are summa-

rized as follows.

• To reduce the vehicle relocation rate and relieve the disequilibrium of the supply-

demand ratios across regions for car-sharing systems, in Chapter 3, we propose

a data-driven optimization framework by integrating the non-parametric learn-

ing algorithm and two-stage stochastic programming modeling technique to

address the one-way station-based car-sharing relocation problem. In contrast

with most existing work that deals with demand uncertainty using predefined

probability distributions, the learning-based framework can handle demand un-

certainty by learning the intrinsic pattern from large-scale historical data and

computing high-quality solutions. To validate the performance of our proposed

approach, we conduct a group of numerical experiments based on the New York

taxicab trip record data set. The experimental results show that our proposed

data-driven approach outperforms the parametric and deterministic models in

terms of business profit, relocation rate, and value of the stochastic solution

(VSS). Most significantly, compared with the deterministic approach, the ve-

hicle relocation rates are reduced by approximately 80%, 70%, and 40% under

small fleet size, medium fleet size, and large fleet size, respectively. In addition,

the VSS of our approach is more than three times higher than the one of Poisson

distribution by average.

Papers related to this research point have been published in the Proceedings
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of International Journal of Intelligent Transportation Systems Research, with

the title of A Data-Driven Approach for Vehicle Relocation in Car-Sharing Ser-

vices with Balanced Supply-Demand Ratios, and the Proceedings of 2020 IEEE

23rd International Conference on Intelligent Transportation Systems (ITSC),

with the title of Reducing Car-Sharing Relocation Cost through Non-parametric

Density Estimation and Stochastic Programming.

• Proactive vehicle guidance strategies are used by ride-hailing platforms to miti-

gate supply-demand imbalance across regions by directing idle vehicles to high-

demand regions before the demands are realized. In Chapter 4, we presents a

data-driven stochastic optimization framework for computing idle vehicle guid-

ance strategies. The objective is to minimize drivers’ idle travel distance, riders’

wait time and the over-supply and under-supply costs of the platform. Specif-

ically, we design a novel neural network that integrates gated recurrent units

(GRUs) with mixture density networks (MDNs) to capture the spatial-temporal

features of the rider demand distribution. The outcome of the neural network is

fed into a stochastic optimization process to compute near-optimal idle vehicle

guidance solutions. The performance of the proposed framework is validated

through numeric experiments using New York yellow taxi trip record data. Our

results show that the MDN-enabled stochastic optimization approach outper-

forms other machine learning-based vehicle guidance models that only utilize

the point estimates of rider demands. In terms of managerial implications, it is

clear from our experiment results that, by adopting data-driven stochastic op-

timization models in their vehicle guidance systems, ride-hailing platforms can

improve rider and driver satisfaction and reduce their operating costs. Most

significantly, we quantify how much benefit we obtain from the data-driven

guidance approach compared with the idle vehicles under negatively correlated

and uniform distributions without guidance. The gap between the idle vehicles

is under positively correlated distribution.

Papers related to this research point have been published in the Proceedings

of 2020 IEEE International Conference on Parallel & Distributed Processing

with Applications (ISPA), with the title of A Data-Driven Dynamic Stochas-

tic Programming Framework for Ride-Sharing Rebalancing Problem under De-

mand Uncertainty, Proceedings of 2021 IEEE 7th International Smart Cities
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Conference (ISC2), with the title of Driver Guidance and Rebalancing in Ride-

Hailing Systems through Mixture Density Networks and Stochastic Program-

ming, and one journal paper has been submitted to Transportation Research

Part C: Emerging Technologies, with the title of Mixture Density Networks

Enabled Stochastic Optimization for Idle Vehicle Proactive Guidance in Ride-

Hailing Systems.

• In ride-sharing services, a vehicle’s travel time significantly impacts the driver

and rider matching solutions for the ride-sharing matching problem. In Chap-

ter 5, we study a one-to-many ride-sharing matching problem where travel time

between locations could be uncertain. The goal is to generate robust ride-

sharing matching solutions that minimize the total system cost. To this end,

we formulate the ride-sharing matching problem as a robust vehicle routing

problem with time window (RVRPTW). To effectively capture the travel time

uncertainty, we propose a learning-based data-driven approach that can dynam-

ically estimate the uncertainty set through deep learning and uses the results

as an input for the robust optimization model. Since this problem is NP-hard,

we further design a hybrid meta-heuristic algorithm that can handle large-scale

instances in a time-efficient manner. We then conduct a set of numeric experi-

ments based on real traffic data to verify the proposed method. The results con-

firm that the proposed data-driven approach outperforms the non-data-driven

one in several important performance metrics, including a proper balance be-

tween robustness and inclusiveness of the matching solution.

Papers related to this research point have been published in the Proceedings

of 2021 IEEE International Conference on Autonomous Systems (ICAS), with

the title of Order Dispatching in Ride-Sharing Platform under Travel Time Un-

certainty: A Data-Driven Robust Optimization Approach, and Proceedings of

2021 IEEE 24th International Conference on Intelligent Transportation Systems

(ITSC), with the title of Ride-Sharing Matching under Travel Time Uncertainty

through A Data-Driven Robust Optimization Approach, and one paper has been

submitted to IEEE Transactions on Intelligent Transportation Systems, with

the title of Dynamic Ride-Sharing Matching under Travel Time Uncertainty

through Data-Driven Robust Optimization.

Furthermore, the three research points are not independent but highly correlated
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in terms of the proposed generic learning-based data-driven optimization framework.

Specifically, we consider two types of data for the learning component, one is indepen-

dent and identically distributed (i.i.d.), and the other is spatio-temporal data. Also,

we consider two types of optimization under uncertainty modeling techniques for the

optimization component. Namely, stochastic programming and robust optimization,

where the former paradigm aims to optimize the objective considering expected sce-

narios, while the latter paradigm focuses on optimizing the objective considering the

worst-case scenario. The connection of the three research points corresponding to the

chapters is shown in Table 1.

Table 1: The connection of the three research points in the corresponding chapters

stochastic programming robust optimization

i.i.d. chapter 3 N/A

spatio-temporal chapter 4 chapter 5

1.5 Outline of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we classify and summarize

the literature in terms of modeling techniques and methodology. In Chapter 3, we

present our research work on the kernel density estimation-based stochastic program-

ming approach for vehicle relocation problems in one-way reserved car-sharing sys-

tems. In Chapter 4, we present our research on the mixture density networks enabled

stochastic optimization for idle vehicle proactive guidance strategy in the ride-hailing

systems. In Chapter 5, we present our research on the dynamic ride-sharing match-

ing problem considering driver travel time uncertainty through a data-driven robust

optimization perspective. In Chapter 6, we conclude our research work, highlight the

contribution, and discuss the potential research directions.
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Chapter 2

Literature Review

As the theory of machine learning and optimization under uncertainty modeling tech-

niques with their applications in shared MoD systems is evolutionary, this chapter

provides a taxonomy and summary of shared MoD applications in the literature. In

addition, we position our research in the literature.

2.1 Taxonomy

In view of the related work, we present a taxonomy for the shared MoD problems

according to the operational environment. The classification standard is based on two

environmental factors: information availability which involves a deterministic and

stochastic environment, as well as information control, which involves a centralized

and decentralized environment.

The deterministic environment assumes that all the inputs (e.g., rider demand

and supply under the shared MoD context) for the optimization models are known

with perfect information in advance. On the contrary, the stochastic environment

considers that the input parameters are subject to uncertainty which may involve a

group of scenarios, a family of distributions, or uncertainty sets.

The centralized environment aims to solve the shared MoD problems in that a

central operator is in charge of the decision-making solution and allocates the available

resource to the requested users. In this paradigm, the users send information to the

central operator and communicate through the central operator. Compared to a

centralized environment, the decentralized environment allows users on both supply
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and demand sides to work as intelligent agents. The entire shared MoD systems are

formulated as multi-agent systems (MAS) [135] where the agents are assumed to be

self-interested and intelligent to maximize their utility.

In the following section, we summarize the most recent related literature according

to the taxonomy from the perspectives of modeling and methodology.

2.2 Modeling and Methodology

In this section, we review most of the recent relevant literature regarding the opti-

mization of shared MoD problems. Specifically, we mainly focus on the applications

close to our research, namely, car-sharing, ride-hailing, and ride-sharing. Meanwhile,

relevant topics such as EV charging are also incorporated. We classify the literature

with applications according to two dimensions, (1) information availability including

the centralized and decentralized environment, and (2) information control includ-

ing the deterministic and stochastic environment. Therefore, there are four types of

modeling paradigms as shown in Table 2.

Table 2: The classification of existing approaches regarding the shared MoD applica-
tions in literature

Deterministic Stochastic

Centralized

Mathematical Optimization

Decomposition

Meta-heuristic

Stochastic Programming

Robust Optimization

Distributionally Robust Optimization1

Decentralized
Game Theory

Auction
(Deep) Reinforcement Learning

2.2.1 Centralized & Deterministic Approach

In theory, a deterministic model under the centralized environment can reach the op-

timum (if it exists). However, the major difficulty of this method lies in the problem

1Distributionally Robust Optimization (DRO) is one type of optimization under uncertainty
modeling paradigms that aims to optimize the objective function over a family of distributions
(controlled by an ambiguity set). We summarize a few share MoD applications modeled by DRO
although we do not use this modeling paradigm in this research.
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characteristic. For example, the vehicle routing problem (VRP) is inherently NP-

hard. Moreover, as the large-scale optimization challenge discussed in the previous

section, the scalability and computational tractability also hinder the solution solving

in deterministic modeling in real-time. Therefore, decomposition algorithms are usu-

ally utilized to accelerate the problem solving by finding either the upper bound (for

maximization problem) or the lower bound (for minimization problem) of the original

models. By contrast, meta-heuristic algorithms such as Simulated Annealing (SA),

Genetic Algorithm (GA), Particle Swarm Optimization (PSO) can effectively explore

a large search space, although they do not guarantee the global optimal solutions.

These meta-heuristic algorithms are tremendously implemented in real-time shared

MoD applications. In this section, we summarize the decomposition approaches for

exact solutions and meta-heuristic algorithms for approximate solutions in recent

related work.

Decomposition Methods for Exact Solutions

Decomposition algorithms such as column generation, Lagrangian relaxation, and

Branch & X family (X includes Bound, Cut, and Price. Namely, B & B, B & C,

B & P in literature) are normally applied for the large-scale optimization models to

derive the exact or near-optimal solutions. The decomposition algorithms can be

classified into row (constraint) generation and column (decision variable) generation,

and the essential idea is that the original model is separated into a (restricted) master

problem and multiple sub-problems. The optimal solution can then be obtained by

the convergence of upper and lower bounds.

Lagrangian relaxation approach-based work can be found in [149, 123]. For ex-

ample, [149] study a customized bus service network design problem to optimize the

utilization of the vehicle capacity as well as satisfy the customer demand through the

space-time windows. The problem is formulated as a multi-commodity network flow-

based model that is known as a vehicle routing problem with pickup and delivery with

time windows (VRPPDTW). The VRPPDTW variant model is then tackled by the

Lagrangian relaxation technique, where the primal problem is decomposed into two

sub-problems that are solved with the updated Lagrangian multipliers in an iterative

way. Using a similar decomposition strategy, a general queuing-based formulation to

deal with the idle vehicles relocating operation in the on-demand mobility service is
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proposed in [123]. The model is then solved by a Lagrangian decomposition heuristic

to derive a high-quality upper bound. Decompostion-based algorithms are applied

in [91, 147, 102, 174]. For instance, Liu et al. [91] study the endogenous traffic patterns

with uncertainty for future transportation planning and management in ride-sharing

services. The problem is formulated as one arc-based & agent-based integer linear

programming and one path-based & flow-based linear programming model. Further,

multiple decomposition algorithms, including Dantzig-Wolfe decomposition and col-

umn generation are designed to solve the two models. A network flow-based model

to address the carpooling problem is proposed in [147]. The objective is to minimize

the overall cost that involves travel times, vehicle use, and vehicle delays. A tailored

branch and bound algorithm with node selection rule is developed to solve the large-

scale optimization instance. In [102], a multi-hop P2P ride-sharing matching problem

is formulated as a many-to-many matching problem. The original model is processed

by reducing the problem size and then solved by a decomposition algorithm through

solving multiple small sub-problems. Yu et al. [174] explore a green ride-sharing prob-

lem considering the drivers’ interests with dual objectives: one is to minimize carbon

emissions, and the other is to maximize the average profit of all the rides. The issue

is then formulated as a non-linear multi-objective problem where the Pareto optimal

solution is found by a tailored decomposition algorithm.

Meta-Heuristic Algorithms for Approximate Solutions

Meta-heuristic algorithms are a family of intelligent optimization algorithms that are

used to obtain approximate solutions for those problems that are difficult and complex

to solve. Based on the solution generation strategies, the meta-heuristic algorithms

can be divided into single solution-based and population-based meta-heuristics [146].

For the single solution-based algorithms, neigborhood search, Tabu search, and

simulated annealing are used to address the shared MoD issues. For example, Nasri et

al. [110] address a customer-oriented MoD problem where the problem is formulated

as a mixed-integer linear programming model. To overcome the exponential compu-

tational time issue in the large-scale instance, they design an evolutionary descent

method (EDA) that is based on a neighborhood local search strategy. To minimize

the time of the trips, a dynamic ride-sharing problem is studied in [136]. The work

provides a computational efficiency ride-sharing federated optimization architecture
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by proposing a distributed heuristic algorithm that involves an insertion heuristic and

local neighborhood search strategy. [23] discusses a particular type of ride-sharing

problem considering meeting points and return restrictions. The problem is formu-

lated as an MILP model, which is solved by a constructive heuristic based on the

saving concept. The dynamic greedy-based heuristic strategy can effectively con-

struct the ride-sharing plan as the near-optimal solution. Jung et al. [67] investigate

a dynamic shared MoD dispatch problem aiming at two objectives: minimizing the

customers’ total travel time and maximizing the system profit from the served cus-

tomers on the current schedule. The problem is repeatedly solved by the assignment

optimization of the new requests and the updated schedules where three heuristic

strategies - nearest vehicle dispatch, insertion heuristic, and hybrid-simulated anneal-

ing are applied. Cheikh et al. [21] present a dynamic carpooling optimization system

that automatically supports the ride-sharing matching process within short notice and

en-route. To enable the ride-sharing system to operate in real-time, a meta-heuristic

algorithm based on Tabu search is proposed where a transfer process is introduced

to allow the customer to walk a distance to his destination at a transfer node. In

addition, detour operation is used to avoid entrapment by local solutions.

For the population-based algorithms, genetic algorithm (GA) and particle swarm

optimization (PSO) are the most frequently used methods in shared MoD systems.

For instance, Chu et al. [29] study a joint rebalancing and vehicle-to-grid (V2G) coor-

dination strategy for autonomous vehicle public transportation systems. The problem

is formulated as a linear integer programming model where the decision variables are

controlled by Model Predictive Control. Further, GA is introduced to overcome the

original model’s NP-hard property, which can reach very close to the optimal. [56]

studies the ride-sharing matching problem with time windows (RMPTW) in dynamic

ride-sharing systems. The objective is to minimize the total travel distance and travel

time while maximizing the number of matches. The problem is then formulated as a

mixed-integer linear programming model. Since the problem is intrinsically NP-hard,

they propose a tailored GA to solve the large-scale instances under the dynamic en-

vironment. A long-term carpooling system - a particular type of car-sharing system

is investigated in [141]. The long-term carpooling problem with the time window is

explored for the riders with a similar destination. To obtain a solution that guar-

antees fairness, a hybrid algorithm that combines an artificial bee colony, variable
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neighborhood search, and tabu list is proposed. Further, five neighborhood search

strategies are designed to accelerate algorithm convergence and enable the algorithm

to obtain better solution quality. Chou et al. [26] discuss a carpooling service problem

that aims to provide a satisfactory matching solution. A carpooling algorithm based

on PSO with stochastic coding for the particle augment is proposed. The algorithm

process can be realized by local exploration.

2.2.2 Centralized & Stochastic Approach

Since we will systematically summarize and review the shared MoD applications using

stochastic programming and robust optimization modeling techniques in the following

three chapters, in this section, we only consider those share MoD applications for-

mulated by distributionally robust optimization (DRO). We primarily focus on two

research points, the DRO models for the problem formulation and the construction

strategies for the ambiguity set.

Miao et al. study a dynamic vehicle balancing problem [103] and a ride-sharing

vehicle proactive allocation problem [104] in shared MoD systems considering a family

of probability distributions through one-stage DRO models. In [103], to minimize

the worst-case expected cost, the problem is formulated as a one-stage DRO model.

The ambiguity set is constructed on bootstrapping mean and covariance matrix by

leveraging spatial-temporal demand data. In [104], the problem is formulated as

a one-stage DRO model to minimize the worst-case expected cost. In addition, a

novel algorithm is designed for constructing the ambiguity set by leveraging a quad-

tree dynamic region partition approach. The DRO model is then reformulated as a

regular convex optimization model by utilizing duality theory that is computationally

tractable. To improve the electric vehicle (EV) supply-demand ratio and charging

station utilization balancing, [54] develops a data-driven DRO model considering both

demand and supply uncertainty. The goal is to minimize the worst-case expected cost

under the two uncertain factors. Further, an ellipsoid uncertainty set is constructed

from the real traffic data while computational efficiency is guaranteed.

In addition, a few works have attempt to utilize two-stage DRO modeling tech-

nique. For instance, a variety of challenges in shared MoD, including order dispatch,

vehicle repositioning, and vehicle fuel levels management are explored in [185] in a

systematic way. Considering the stochastic demand with partially known statistical
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information, the issue is formulated as a max-profit-min-cost problem through a two-

stage DRO model. The ambiguity set is constructed based on the first and second-

order moment information. The DRO model is then reformulated as a second-order

cone programming (SOCP) model that can be solved by off-the-shelf solvers. She-

hadeh et al. [132] study the fleet sizing and allocation problem for the on-demand

Last-Mile Transportation Systems (LMTS). Assuming the passengers’ demands are

subject to uncertainty with known and unknown probability distributions, they pro-

pose an SP and a DRO model to formulate the problem. The two-stage DRO model

aims at minimizing a linear cost function of the passengers’ total waiting time and

riding time where the number of vehicles along with their routes and the number

of trips on each route are determined during the first-stage. At the same time, the

passenger assignment and waiting time computation are determined during the sec-

ond stage. In addition, a mean-support ambiguity set is constructed from a real data

set. A fleet sizing, routing, and scheduling problem (MFRSP) for the mobile facility

(MF) is studied in [131]. To find out the appropriate fleet size of MFs within the

planning horizon and schedule, they propose a DRO model to minimize the fixed cost

of establishing the MF fleet and a risk measure of the operational cost over a family of

demand distributions. Two construction strategies for the ambiguity set are studied

in this work, where the first ambiguity set is based on the demand’s mean, support,

and mean absolute deviation, and the second ambiguity set is built on Wasserstein

distance.

2.2.3 Decentralized & Deterministic Approach

The supply and demand sides in the shared MoD systems are modeled as intelligent

agents under decentralized environments. Among the modeling approaches under the

decentralized environment, we explore and exploit game theory and auction methods

that are applied for shared MoD systems in this section.

Game Theory

Zhu et al. [188] study ride-sharing services with electric cars as public transporta-

tion vehicles (PV). To tackle the challenges of transportation balance and charging

demand while ensuing long-term operations, a cake-cutting game model is proposed

to capture the interactions among the PVs. The objective is to maximize the PVs
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joint transportation and charging utilities. An algorithm based on the KKT condi-

tion is designed to obtain the unique normalized Nash equilibrium point. To balance

the supply and demand in the ride-hailing systems, [124] study a dynamic pricing

mechanism through game theory and time-series analysis. Furthermore, they iden-

tify how the dynamic pricing mechanism induces anomalous supply shortages. Ruch

et al. [121] present a three-node network model for a one-way MoD system where

the drivers and vehicles are modeled as agents playing a non-cooperative game to

maximize their individual expected profit. Furthermore, Nash equilibria outperform

the system with coordinate agents under different customer load cases. By lever-

aging mechanism design, Bian et al. [10] design a ride-sharing platform with mixed

scheduled and on-demand passenger requests. Specifically, an online hybrid mecha-

nism combing multiple incentive objectives is designed to dynamically optimize for

re-matching and re-routing operations. Meanwhile, a hybrid real-time pricing mech-

anism is also proposed. Zardini et al. [176] present a game-theoretic framework to

explore the interactions between mobile service providers (MSP) in the MoD sys-

tems. The framework involves a parallel-arc congestion game and a game-theoretic

model that optimize the pricing strategy, fleet size, and vehicle design. In more re-

cent work [27, 28, 153], share MoD systems are formulated and tackled as a ‘mobility

game’ to find out the conditions that guarantee the stability of vehicle assignments.

The problem is formulated as linear programming models that maximize the social

welfare of all the participants while guaranteeing the stability of the assignment.

Auction

Nourinejad et al. [112] study a multi-passenger multi-driver dynamic ride-sharing

matching problem where drivers and passengers are modeled as agents. The problem

is formulated as decentralized optimization based on a dynamic auction-based multi-

agent. The auction algorithm returns the optimal solution if no other driver can

offer a ride. Zheng et al. [186] present an auction mechanism for order dispatch and

pricing in the ride-sharing system. The objective is to maximize the overall auction

utility with truthfulness, and individual rationality is ensured. In addition, a greedy

and ranking approach for order dispatching and pricing strategies are proposed to

reach the goal. Shi et al. [133] investigate real-time ride-sharing matching problems

considering the drivers are selfish and heterogeneous. The objective is to maximize
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the social welfare of the ride-sharing platform and vehicles. Two reverse auction-based

incentive order matching mechanisms where drivers bid for the published orders from

the platform are proposed to achieve the goal. Yu et al. [172] explore the intra-city

freight transportation service transaction problem under the carpooling model. To

overcome the problem of underutilized spaces, a truthful carpooling double auction

mechanism is proposed to improve the social welfare and vehicle utilization rate. A

recent work [95] develop a MAS approach to address the multiple pickup and delivery

problem through vehicle routing optimization. Autonomous vehicles are modeled as

independent agents interacting with auctioneers for transportation orders.

2.2.4 Decentralized & Stochastic Approach

Reinforcement learning (RL) [143] is a sequential decision-making paradigm that op-

timizes agents’ utility via the optimal actions interacting with the environment mea-

sured by the total cumulative reward. The objective is to maximize the overall reward

by finding the optimal action sequence. Deep reinforcement learning (DRL) [87], on

the other hand, is one type of RL where the merit of DL is utilized and integrated

with RL. As a state-of-the-art machine learning paradigm, DRL has demonstrated

great potential to address the problems in shared MoD and ITS [117]. In this section,

we summarize a few recent five years of work regarding shared MoD applications that

are solved by (D)RL approaches.

Among the ride-hailing applications, Shi et al. [134] design a framework that is

characterized by DRL and centralized decision-making to address the electric vehicle

(EV) fleet dispatch problem. During the decentralized learning process, DRL is uti-

lized to allow vehicles to report their individual information, and then the centralized

model solves the vehicle fleet coordination problem. The objective is to minimize

the rider’s waiting time, electricity cost, and operational cost by operating the EV

fleet. To reduce the rebalancing cost in Autonomous MoD systems, Gammelli et

al. [40] propose a graph neural networks (GNN) based DRL framework where the idle

vehicles attempt to learn the rebalance behavior such that the ride demand can be

satisfied. With the similar objective but applied in ride-sharing applications, Gueriau

et al. [47] study vehicle relocation and ride request assignment by proposing an RL de-

centralized approach where each vehicle learns the rebalancing and requests selecting

behavior autonomously by leveraging the local current and historical observations.
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Zhang et al. [181] discuss a ride-hailing vehicle routing problem where the dynamic

routing strategy is expected. The problem is formulated as a Markov decision process

(MDP). Moreover, all the drivers are considered as playing an MDP routing game

under the decentralized environment. By accumulating the maximum total expected

reward of all the drivers over time, the ride-hailing system can archive the optimum.

Among the ride-sharing applications, Guo et al. [50] study a ride-sharing vehicle

dispatching and route problem where the vehicle routing decision is formulated as an

MDP, the look-ahead decision is implemented via CNN and double deep Q-learning.

The objective is to improve the service rate, average waiting time, and travel dis-

tance. To proactively dispatch vehicles towards riders, an MoD coordination-learning

mechanism that is formalized into an RL framework is proposed in [55]. The MoD

platform then optimizes the best potential rewards by learning the supply-demand

dynamics. Xie et al. [165] investigate a hybrid shared MoD platform that involves

autonomous vehicles (AV) and conventional vehicles (CV). They focus on the real-

time fleet management decision-making in the shared MoD platform where demand

is subject to spatial-temporal uncertainty, and complex interactions among human

drivers are considered. To tackle the complex challenges, the issue is formulated as a

decentralized decision-making problem where a two-sided multi-agent DRL approach

is applied.

2.3 Summary

In this chapter, we categorize the mainstream literature related to the applications

in shared MoD systems into four different types according to the information avail-

ability and system environment. We summarize the existing work and discuss the

characteristics and challenges of each type. By classifying the related work, we iden-

tify the position of this research in literature, namely, the shared MoD applications

under centralized & deterministic settings considering data-driven environments. We

believe that this taxonomy can enable us to better understand the research gaps in

the current shared MoD systems and highlight our contributions clearly.
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Chapter 3

Kernel Density Estimation

Enabled Stochastic Programming

Model for Vehicle Relocation in

Car-Sharing Services with

Balanced Supply-Demand Ratios

3.1 Introduction

Riding on the wave of the sharing economy, car-sharing services such as Car2go1,

Wunder Mobility2, TURO3, Zipcar4 and Communauto5 play an increasingly impor-

tant role in terms of offering economical and environmentally conscious mobility op-

tions to citizens, especially in highly populated urban areas. For society, car-sharing

services can save parking places and reduce traffic congestion and air pollution [18].

For individual users, it requires fewer ownership responsibilities and fewer costs to

satisfy their mobility needs. In addition, car-sharing systems provide users with a

range of vehicles, which allows them to match vehicles to trip purposes. Despite its

1https://www.car2go.com
2https://www.wundermobility.com
3https://www.turo.com
4https://www.zipcar.com
5https://www.communauto.com
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rather earlier origins, only the past decade has seen significant growth in large-scale

car-sharing businesses in Europe and North America [138, 150, 139, 81, 20], which

can be mainly attributed to the proliferation of the mobile Internet.

For car-sharing services, typically, a customer pays a modest fixed charge plus

a usage fee each time they use a vehicle. Vehicles are usually deployed in a lot lo-

cated in a neighborhood or at a transit station. A customer can reserve a vehicle

through a phone call or the Internet. Once approved, the reserved vehicle is assigned

to the customer who picks it up at an appointed time and leaves it at a specific car-

sharing location, which may be the same as the pick-up point (one-way car-sharing

systems [154]) or anywhere in a specified zone (free-floating car-sharing systems). If

the demand is exactly known in advance, vehicles will be accordingly dispatched to

the car-sharing stations where the demands are expected. However, it is rarely the

case that the demand and supply are perfectly matched. Hence, vehicle relocation

operation is necessary to be taken into consideration. In this context, we are inter-

ested in answering the following two questions, what is the most appropriate initial

inventory level for each car-sharing station, and how to relocate the vehicles between

stations to minimize the vehicle relocation cost (maximize the overall profit) while

balancing the supply-demand ratios across stations.

Recently, combining machine learning (ML) / deep learning(DL) [78] with op-

timization techniques becomes the trend in operations research community [6, 77],

which is known as data-driven optimization. You et al. attempt to leverage the

advantages of ML / DL to make optimization models more realistic in the chemical

industry [111, 130]. In light of the results from recent work using data-driven opti-

mization technique [79], we propose an innovative data-driven approach to address

the car-sharing relocation problem under demand uncertainty. Specifically, we study

a one-way station-based car-sharing relocation problem with multiple stations under

customer demand uncertainty. This problem contains two levels of operational deci-

sions which are formulated as a two-stage decision-making problem where both active

relocation operations (first-stage decision-making) and passive relocation operations

(second-stage decision-making) are considered. The major contributions of this work

are summarized as follows.

• We propose a novel data-driven stochastic programming framework that seam-

lessly integrates parameter learning and optimization under uncertainty.
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• We address the car-sharing allocation and vehicle relocation problem by formu-

lating a two-stage stochastic programming model, which is solved by combing

sample average approximation and L-shaped decomposition algorithm effec-

tively and efficiently.

• We validate our proposed approach on the New York taxi data sets from July

2016 to June 2019 to show the advantages and merits of our method.

• We discuss the framework extension and shed light on some other potential

applications.

The remainder of the paper is organized as follows. The related literature is dis-

cussed in section 3.2. In section 3.3, we provide the problem statement and formulate

the problem using a two-stage stochastic programming technique. The data-driven

methodology is described in detail in section 3.4. Experimental validations are dis-

cussed in section 3.5. Finally, we conclude our work and shed light on the contribu-

tions in section 3.6.

3.2 Related Work

Three levels of decision-making, namely, strategic level, tactical level and operational

level are involved in the management of car-sharing [16]. Strategic decisions include

determining the station locations, the capacity of stations, and fleet size. Tactical

decisions mainly focus on the management policies that govern the service in the

medium term, such as reservation and pricing policies. Operational decisions include

placing initial inventories at each location and relocating vehicles across the network

to accommodate the realized customer demands. In this chapter, we propose a data-

driven two-stage stochastic programming model to support vehicle relocation decision-

making and initial inventory placing decisions.

Within the realm of city transportation, vehicle relocation problems are exten-

sively studied in the literature. The recent summary of study can be found in [63],

[107]. For the contribution purpose, in the context of car-sharing relocation, we

categorize the problems addressed in the literature into deterministic modeling and

stochastic modeling methods based on their problem settings in terms of handling

uncertainties.
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Due to the tractability of the mathematical model, the deterministic modeling

method is widely applied in a major stream of work, where no uncertainty is consid-

ered in the problem environment. For example, Nourinejad et al. [113] address vehicle

relocation and staff rebalancing by integrating two multi-traveling salesman formu-

lations, where a decomposition strategy is deployed to find the heuristic solution.

To compute profit maximizing relocation solutions for operating hours of car-sharing

services, Gambella et al. [39] develop two model-based heuristic algorithms to solve

the relocation model on large-scale systems where the near-optimal solutions can be

achieved. In [33], the one-way car-sharing vehicle relocation problem is formalized

as a constrained non-linear mixed-integer programming problem. Using the model

decomposition technique, the sub-problems are solved by branch-and-bound and gra-

dient approaches, respectively. Boldrini et al. [13] investigate the relocation of the

shared stackable vehicle from the view of queue theory. The queuing network is con-

structed in their work to study the evolution of vehicle rebalancing under general

user-based relocation policies. Considering a free-floating electric car-sharing system,

the operator-based vehicle repositioning problem is addressed to minimize relocation

drivers’ walking time [75]. Wang et al. [160] explore a framework for the relocation

operations of the one-way electric car-sharing system without reservation information,

where vehicle relocation and staff rebalancing are optimized in two phases. A more

recent work [168] studies the vehicle imbalance issue, which is close to our problem.

An integrated model to determine the optimal requested served, relocation, and route

planning to minimize the daily operational cost is proposed. Besides the conventional

vehicle, an electric vehicle assignment and relocation problem is addressed in [178]

where a novel space-time-battery network flow model is constructed to determine the

optimal solutions.

Although deterministic models are able to formulate the car-sharing relocation

problem in a tractable way, they do not consider the uncertainties in the problem

environments, which hinders their applicability to real-world settings. Therefore, in

another major stream of the current study, stochastic programming is introduced

to address the problem in the uncertain environment. Among others, customer de-

mand is considered as the main source of uncertainty in the car-sharing relocation

literature. Most of the work fall in one-stage or multiple-stage stochastic program-

ming. For example, a systematic approach for planning and operating a one-way
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vehicle-sharing system under demand uncertainty is proposed in [32]. A stochastic

model is formulated to minimize overall cost while achieving a certain level of ser-

vice. Simulation-based methods, particle swarm optimization algorithm, and optimal

computing budget allocation approach are devised to solve the SP model. In [163],

the vehicle rebalancing problem is formulated in a more general shared mobility way,

in which randomly-appearing customers rent generic shared vehicles and the system

operator uses generic rebalancing vehicles to rebalance the system. In particular,

the Poisson arrival process is used to parameterize the probability distribution of de-

mand. Like most of the existing works, the demand arrival process at each of the

stations at each time step is assumed as Poisson distribution. Hua et al. [59] propose

a framework to deploy a one-way electric vehicle sharing system considering demand

uncertainty. A multistage stochastic model is proposed to address the critical chal-

lenge of time-varying uncertain demand. A more recent work [61] studies a one-way

electric car-sharing system (ECS) with unbalanced vehicle distributions and high re-

location costs problems. A data-driven optimization model with the consideration

of demand uncertainty is proposed to construct the ECS relocation problem in this

work, which combines a probability expectation model and a linear programming

problem with real-time data as input. The customer demands are assumed to follow

Poisson distribution, which allows a comprehensive consideration of all possible future

demands.

The above works assume that the uncertain parameters (demand uncertainty, in

most cases) follow a specific probability distribution. For example, Poisson distribu-

tion in many cases. However, this may not be practical in many real applications

since real data is too complex to be estimated by parametric approaches. Unlike the

existing works, we propose a learning-based stochastic programming model to formu-

late the problem by integrating the non-parametric learning approach - KDE and the

stochastic programming modeling technique. The description of the problem is pro-

vided in the following Section 3.3, and the learning-based approach will be discussed

in Section 3.4.
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Figure 2: The workflow of the studied car-sharing system

3.3 The One-Way Station-Based Car-Sharing Re-

location Problem

In this section, we present the one-way, station-based car-sharing relocation problem.

Specifically, we display the system overview and discuss the problem setting in Sec-

tion 3.3.1. In Section 3.3.2, we elaborate on how the system operates for the vehicle’s

active and passive relocation during operating hours. Finally, in Section 3.3.3, the

problem is formulated as a two-stage SP model to maximize the profit by reducing

the holding and moving costs combined. For the sake of clarity, we refer readers to

Table 3 and Table 4 for the acronyms and notations, respectively.

3.3.1 System Overview

We consider a one-way car-sharing system with a set of stations and a fleet of cars

serving a predefined urban area. As illustrated in Fig. 1, this system takes a rolling-

horizon approach by periodically making a time window say, [T1, T2] available for

customers to pick up their reserved cars from the stations. This time window is also

called the operating time window in our work. Before the operating time window,

i.e., during the night, initial car inventories are placed in each of the stations by the

service operator. For the customers, since we consider a ”last-minute reservation”

car-sharing system [15] that means reserving vehicles for a period of time in the near

future, they need to submit their requests within a prescribed time period shortly

before the operating time window, i.e., [T0, T1].

The service operator thus has two levels of operational decisions to make for

each of the operating time windows, namely initial inventory placing and relocation

planning. Before the operating time window, the service operator needs to decide

31



the initial inventories in each station and fill the inventory accordingly. Then, at

the beginning of the operating time window (at time T1), all customer requests are

collected. The operator needs to make a relocation plan to minimize the gap between

customer requests and the number of cars in each station. The staff in the car-sharing

firm will be dispatched to the car-sharing stations to finish the relocation operations.

Relocation is necessary since the first operational decision is made before time point

T1, in which the customer requests are unknown to the service operator. Once all

the requests are collected at time T1, relocation decisions are made to deal with the

shortage of inventoried cars at stations and relieve the disequilibrium of the supply-

demand ratios across the stations according to the Value of Disequilibrium of Supply-

Demand Ratios (VDSDR). This is defined in Definition 1. VDSDR is introduced

to describe the equilibrium of the supply-demand ratios between the service regions.

During the relocation phase, the vehicles will be moved from the station with a high

supply-demand ratio) to the station with a low supply-demand ratio to balance the

car-sharing service system. By adopting vehicle relocation operations, the supply-

demand gaps in the regions could be reduced, although not all customer requests

may be satisfied. Notice that the customer requests are collected during the first

operating time window [T0, T1]. Hence, the exact customer demand at each region

is unknown before time T1; while after time T1, the request collection is finished.

Therefore, the real customer demand in each region is known to the service operator.

In this sense, the vehicle relocation operations can be treated as a two-stage decision-

making problem which will be discussed in the following section.

Definition 1. Value of Disequilibrium of Supply-Demand Ratios (VDSDR) is defined

as the absolute difference of supply-demand ratios between two car-sharing stations.

3.3.2 Problem Statement

The two operational decisions form a two-stage stochastic decision-making problem

since the initial inventory decision (first-stage solution) has to be made before the

customer demands realize, and the relocation decisions (second-stage solution) are

made after the customer demands realize. We assume that random customer demands

ω are from the infinite demand sample space Ω with the associated probability π(ω).

Let R be the set of stations. For a station i ∈ R, holding cost hi incurs when placing
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a vehicle at that station. We assume that the holding cost follows a constant daily

rate for the sake of simplicity. Vehicle moving between two stations i, j ∈ R incurs

a relocation cost, denoted by ti,j which involves personnel cost, fuel cost, and other

overheads. Let xi be the first-stage decision variable which denotes the number of

cars to be placed at location i before operating hours. Let yi,j(ω) be the second-stage

decision variable which is the number of cars moving from station j to station i under

demand scenario ω. Let di(ω) represent the random customer demand at station i

under scenario ω, C be the number of available vehicles, and ri be the daily revenue

rate of using a car initially placed in station i. In the proposed optimization model,

these parameters are carefully calibrated based on the real business data and will

be discussed in Section 3.5.1. With the problem settings and notations, the studied

car-sharing relocation problem is formulated as a two-stage stochastic programming

model discussed in the following subsection.

3.3.3 Model Formulation

With the objective of maximizing expected profits given the demand PDF π(ω), the

operator’s decision-making problem can be modeled as two-stage stochastic program-

ming as follows:

max

∫
ω∈Ω

(∑
i∈R

min

{
xi +

∑
j∈R

yi,j(ω)−
∑
j∈R

yj,i(ω), di(ω)

}
ri

−
∑
i∈R

(
hixi +

∑
j∈R

ti,jyi,j(ω)

))
π(ω)dω (1)

s.t.
∑
i∈R

xi 6 C, (1a)

∑
j∈R

yj,i(ω) ≤ max {0, xi − di(ω)} ∀i ∈ R, ,∀ω ∈ Ω (1b)
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∣∣∣∣∣min

{
1,

(
xi +

∑
j∈R

yi,j(ω)−
∑
j∈R

yj,i(ω)

)/
di(ω)

}
−

min

{
1,

(
xk +

∑
j∈R

yk,j(ω)−
∑
j∈R

yj,k(ω)

)/
dk(ω)

}∣∣∣∣∣ 6 β ∀i, k ∈ R, i 6= k, (1c)

x ∈ Z|R|+ , (1d)

y(ω) ∈ Z|R|×|R|+ . (1e)

The objective function (1) is to maximize the overall profit, which is denoted

by the difference between revenue and overall cost (the summation of holding cost

and moving/transferring cost). Constraint (1a) enforces that the overall number of

vehicles placed at the car-sharing stations cannot exceed the number of available

vehicles. Constraints (1b) imply two-fold meanings. Specifically, if the number of

allocated cars at station i is higher than the customer demand at station i, then the

number of vehicles that move out under scenario ω must be less than the difference

of the number of cars at this station and customer demand of this station under

scenario ω. Otherwise, no cars move out from station i under scenario ω. Constraints

(1c) ensure that the VDSDR must be less than the predefined numeric value β under

scenario ω. This group of constraints is introduced to control the balance of the car-

sharing system. Notice that the parameter β greatly impacts the relocation operation.

To be specific, a small value of β will lead the car-sharing system more balanced, which

indicates that more vehicles will be moved between the car-sharing stations, and a

large value of β will lead the car-sharing system less balanced, which implies that

fewer vehicles will be moved between the car-sharing stations. Constraints (1d) and

(1e) specify the types of decision variables.
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3.4 The Non-Parametric Learning-Based Stochas-

tic Programming Framework

In this section, we present the proposed learning-based framework that consists of

three major components, the customer demand PDF learning approach Kernel Den-

sity Estimation (KDE) [46], the two-stage stochastic programming model, and Sam-

ple Average Approximation (SAA) & L-shaped algorithms. Specifically, KDE is in

charge of extracting the demand probability distribution from historical data, the

stochastic programming model focuses on problem modeling, and SAA & L-shaped

decomposition algorithms aim at model reformulation & decomposition.

3.4.1 Extraction of Demand Probability Distribution

Demand estimation uses machine learning algorithms to estimate demand PDFs based

on historical demand data. For the problem addressed in this chapter, we select the

unsupervised learning algorithm - KDE to extract the daily demand PDF of each sta-

tion. In contrast with the parametric methods that assume a distribution type, KDE

is a typical non-parametric approach that can obtain PDF without specifying the

distribution in advance. In fact, KDE can coverage to any PDF asymptotically [125]

which is capable of extracting the exact distribution for any given data set. In the

problem settings, we assume that the daily customer demand at each car-sharing

region is independent and identically distributed (i.i.d.), and the demand follows a

specific probability distribution. If we denote the mapping f : Rl −→ R as the

PDF of customer daily demand at a station, given a set of N i.i.d. daily demands

d1, d2, ..., dN , then the KDE for f can be obtained by the following formula:

fKDE(d) =
1

N

N∑
i=1

l∏
j=1

K

(
dj − dji
hj

)
(2)

where K(·) is the kernel function, hj is the bandwidth for the jth dimension of data,

and l is the dimension of the data. Notice that KDE is subject to the curse of

dimensionality. Therefore, this nonparametric approach cannot perform well under

high-dimensional data. In this work, l = 1 since only customer demands need to be

estimated. We select Gaussian kernel function K(·) : Rl −→ R as the kernel in our
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estimation, which is given below.

K(x) =
1

(2π)l/2
exp

{
−‖x‖

2

2

}
(3)

Finally, given a set of N daily demands, the PDF of d estimated by KDE using

the Gaussian kernel function is displayed below.

fKDE(d) =
1

N

N∑
i=1

1

(2πh2)1/2
exp

{
−(d− di)2

2h2

}
(4)

3.4.2 Model Reformulation

The demand PDF estimated by KDE turns out to be a continuous probability dis-

tribution, implying that there are infinite scenarios in the SP model that lead to

computational intractability. To improve this, we deploy the SAA method as the

sampling strategy to tackle the problem. After that, the two-stage SP model be-

comes a Deterministic Equivalent Model (DEM) shown in the following. The model

then can be decomposed and solved by any off-the-shelf commercial solvers.

max N−1
∑
s∈N

(∑
i∈R

min

{
xi +

∑
j∈R

ysi,j −
∑
j∈R

ysj,i, d
s
i

}
ri −

∑
i∈R

∑
j∈R

ti,jy
s
i,j

)
−
∑
i∈R

hixi

(5)

where N is the number of scenarios.

Since the objective function is non-linear, and constraint (1b) is a non-linear

constraint, we introduce the following auxiliary variables and adopt Big-M method to

linearize the DEM model.

f si = min

{
xi +

∑
j∈R

ysi,j −
∑
j∈R

ysj,i, d
s
i

}
(6)

gsi = max {0, xi − dsi} (7)

zsi = min

{
1,

(
xi +

∑
j∈R

ysi,j −
∑
j∈R

ysj,i

)
/dsi

}
(8)
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Finally, the two-stage SP model becomes the following large-scale deterministic

model.

max N−1
∑
s∈S

(∑
i∈R

rif
s
i −

∑
i∈R

∑
j∈R

ti,jy
s
i,j

)
−
∑
i∈R

hixi (9)

s.t. f si ≤ xi +
∑
j∈R

ysi,j −
∑
j∈R

ysj,i ∀i ∈ R, ∀s ∈ S, (9a)

f si ≤ dsi ∀i ∈ R,∀s ∈ S, (9b)

f si ≥ xi +
∑
j∈R

ysi,j −
∑
j∈R

ysj,i −Musi ∀i ∈ R,∀s ∈ S, (9c)

f si ≥ dsi −M(1− usi ) ∀i ∈ R,∀s ∈ S, (9d)

∑
i∈R

xi 6 C, (9e)

gsi ≥ xi − dsi ∀i ∈ R,∀s ∈ S, (9f)

gsi ≥
∑
j∈R

ysj,i ∀i ∈ R,∀s ∈ S, (9g)

gsi ≤ xi − dsi +Mvsi ∀i ∈ R,∀s ∈ S, (9h)

gsi ≤
∑
j∈R

ysj,i +M(1− vsi ) ∀i ∈ R,∀s ∈ S, (9i)
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∣∣∣∣∣zsi − zsk
∣∣∣∣∣ ≤ β ∀i, k ∈ R, i 6= k, ∀s ∈ S, (9j)

zsi ≤

(
xi +

∑
j∈R

ysi,j −
∑
j∈R

ysj,i

)/
dsi ∀i ∈ R,∀s ∈ S, (9k)

zsi ≤ 1 ∀i ∈ R,∀s ∈ S, (9l)

zsi ≥

(
xi +

∑
j∈R

ysi,j −
∑
j∈R

ysj,i

)/
dsi −Mwsi ∀i ∈ R,∀s ∈ S, (9m)

zsi ≥ 1−M(1− wsi ) ∀i ∈ R,∀s ∈ S, (9n)

x ∈ Z|R|+ , (9o)

y ∈ Z|R|×|R|×|S|+ , (9p)

z ∈ R|R|×|S|+ , (9q)

f ∈ Z|R|×|S|+ , (9r)

g ∈ Z|R|×|S|+ , (9s)

u, v, w ∈ {0, 1}|R|×|S|. (9t)
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3.4.3 Model Decomposition

Depending on the number of samples chosen in SAA, the reformulated two-stage

SP model leads to a large-scale optimization model. In this work, the L-shaped

decomposition algorithm [152] is introduced to solve the reformulated model. In

particular, the large-scale optimization model is decomposed into a master problem

(MP)

max

(
−
∑
i∈R

hixi + θ

)
(10)

s.t.
∑
i∈R

xi 6 C, (10a)

θ 6 Q(y) (10b)

and a group of subproblems (SUBP)

Q(y) = max N−1
∑
s∈N

(∑
i∈R

rif
s
i −

∑
i∈R

∑
j∈R

ti,jy
s
i,j

)
(11)

s.t. constraints from (9a) to (9n) except (9e) and (9o)

TheMP and SUBP (in the dual form) are solved iteratively to compute the solu-

tions. During each iteration,MP is solved, and the resulting values are adjusted and

assigned to SUBP . The complete algorithm can be summarized as in Algorithm 1,

where UB and LB denote the upper and lower bound of the solution, respectively. ξ

is a small factional number.

3.5 Numerical Experiment

We evaluate the performance of the proposed approach through a group of numerical

experiments using the daily demands derived from New York City taxi trip data
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Algorithm 1 L-shaped Decomposition for the Proposed Two-Stage SP Model

Input: MP ,SUBP , ξ

Output: the first-stage optimal solution x∗

1: UB ← +∞,LB ← −∞;

2: while UB−LBUB ≥ ξ do

3: solve SUBP

4: if SUBP is infeasible then

5: the original model is infeasible

6: else

7: add the optimal or feasible cuts to MP

8: LB ← max
{
LB , value of SUBP − hT x̄

}
9: end if

10: solve the MP model to obtain x∗

11: UB ← min {UB , value of MP}

12: end while

13: return x∗
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sets 6. KDE and two other parametric approaches, including Laplace and Poisson

are used to derive demand probability distributions for the SP model. We compare

KDE with these parametric methods in terms of how they impact the revenue and

moving costs of initial inventory placing and relocation after demand is revealed. The

performance of a deterministic model using average demand as inputs without using

SP is also added to the comparison. Finally, we explore and show the two-stage

decision-making under different approaches based on a daily record.

3.5.1 Experiment Setup

The SAA, KDE, L-shaped, and parametric density estimation methods are imple-

mented using Python 3.7. The mathematical models are solved by Gurobi 7 9.0

academic version. The time limit of SP model solving is set to 600 seconds. The pa-

rameters α, ξ and N in SAA are set to 5%, 1% and 200, respectively. All experiments

are run on a PC with Intel i7, 16GB RAM, Windows 10. There are two types of

renting rates in the real car-sharing business, namely, hourly rate and daily rate. As

we do not know how long the individual customer will use the vehicle, for the sake of

simplicity, we set the daily rate to $90, which is the same as Car2GO New York city

daily rate 8 9. However, the value of this parameter should be set according to the

customer’s trip duration. The daily holding cost of a car is set to be $40 10. The vehi-

cle relocation cost is estimated as the cost of taking a taxi between the two locations

in question, roughly $3.2 per kilometer plus initial charge $2.5 11 where the fuel and

personnel costs are included. The gaussian kernel function is selected as the KDE

kernel. Notice that a small bandwidth value will lead to KDE overfitting; a large one

will lead to underfitting. To avoid this, the value of bandwidth h is determined by

the demand data cross-validation in the following experiment.

6https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, visited April 13th, 2021
7https://www.gurobi.com/academia/academic-program-and-licenses/, visited April 13th, 2021
8https://www.zipcar.com/pricing, visited April 13th, 2021
9https://www.enterprisecarshare.ca/ca/en/home.html, visited April 13th, 2021

10https://www.cbtnews.com/dealers-experts-discuss-inventory-holding-cost-erosion, visited April
13th, 2021

11https://www1.nyc.gov/site/tlc/passengers/taxi-fare.page, visited April 13th, 2021
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Figure 3: The locations of 20 designated car-sharing stations in NYC

3.5.2 Demand Data

We derive the daily demand data for 20 car-sharing stations in New York City from

New York City taxi trip data sets. We acknowledge that, in reality, the volume

of taxi trip demand is much larger than that of the car-sharing services customer

demand. However, the characteristics of the demands in terms of station and time

can be similar, which provides confidence when evaluating the performance of the

proposed approach using taxi demand data. In addition, we have simulated three

different demand volume scenarios to see how the approach performs as the volume

of car-sharing evolves. Three years’ daily taxi trip records data from July 2016 to

June 2019 is split into training sub-sets (from July 2016 to December 2018, 919 days

in total) and testing sub-sets (from January 2019 to June 2019, 181 days in total).

Each sub-set contains trip records for a month. There are, on average, around 800,000

records in one sub-set. In the data records, drop-off and pick-up points fall into 259

taxi zones. For the top 20 zones in terms of average daily demand, we assume that

there exists one car-sharing station in the center of each zone. The locations of the

designated stations are plotted on the map in Figure 3.

In the data sets, the whole of New York City is divided into 259 different loca-

tions. The location division information details can be found in NYC Taxi and Limo

Commission 12. The main task of data processing is to aggregate the trip records into

demands, which are aggregated by days. For the sake of simplicity, in this work, we

12https://data.world/nyc-taxi-limo/taxi-zone-lookup, visited April 13th, 2021
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selected 20 locations with the highest demands as car-sharing stations.

3.5.3 Experiment Scenarios and Comparison Results of Profit

and Cost

We compare the relocation costs resulting from the stochastic programming model

using KDE (labeled as KDE-SP) and three parametric distributions (labeled as

Gaussian-SP, Laplace-SP, and Poisson-SP, respectively). In addition, we compare

the results of the stochastic models with that of a deterministic model, which uses a

fixed daily average as customer demand. The testing data sets have an average daily

demand of 15,000 per day, based on which we construct three different demand vol-

ume scenarios. The first scenario assumes that all taxi trip demand will be converted

to car-sharing demand sometime in the future. So in this scenario, the average car-

sharing demand is 15,000 per day. The second scenario assumes two-thirds of the taxi

trip demand will be converted, resulting in an average 10,000 per day demand. The

last scenario assumes one-third of the taxi trip demand will be converted, leading to

an average 5,000 per day demand. For each of the scenarios, the fleet size is set to the

average daily demand. The SP model with three estimation methods and the deter-

ministic model are evaluated under the three demand scenarios. Parameters used by

parametric methods including the predicted mean demand µ̂G and demand deviation

σ̂2 in Gaussian distribution N (µ̂G, σ̂
2), the predicted demand intensity λ̂ in Pois-

son distribution P(λ̂), median demand µ̂L and mean absolute deviation of demand

b̂ in Laplace distribution L(µ̂L, b̂) are estimated by maximum likelihood estimation

method taking the training data sets as inputs.

In addition to the demand scenarios, the parameters β for VDSDR are also incor-

porated in the experiment validations. Specifically, we consider the following three

scenarios, namely, small VDSDR (β = 0.1), medium VDSDR (β = 0.2) and large

VDSDR (β = 0.3). Comparisons of average daily combined holding with relocation

costs and profit between KDE-SP, Gaussian-SP, Laplace-SP, Poisson-SP, and the de-

terministic model under all three demand scenarios and three VDSDR scenarios are

shown in Table 5, 6 and 7.

It is observed that KDE-SP produces the best results among the four approaches

compared. It has the lowest combined holding with relocation costs and the highest

profit. The trends under the three scenarios are fairly consistent. However, the costs
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and profits depend on the daily rate and operating costs which can be different across

stations in a larger service area. In addition, they are also subject to change due to

management and marketing decisions. We argue that the total number of cars moved

and the relocation rate (percentage of the initial inventory relocated) can serve as a

more objective measure for evaluating the performance of the proposed approach.

3.5.4 Analysis of Fleet Size Impact on Relocation Rate

The fleet size has a great impact on the relocation results. We consider three differ-

ent fleet size scenarios. In the first scenario, we assume the number of the vehicle is

20% lower than the average customer demand; in the second scenario, we assume the

number of the vehicle is equal to average customer demand (the scenarios used in the

previous subsection), and in the last scenario, we assume the number of the vehicle

is 20% higher than the average customer demand. Since the vehicle relocation is the

second-stage (also known as wait-and-see) decision-making in our problem setting, we

first compute the first-stage (also known as here-and-now) solutions of the two-stage

optimization models according to the different customer demand distribution predic-

tions, the second-stage solutions are then computed by utilizing the real customer

demands. The comparison of number of cars moved and relocation rate is shown in

Table 8, 9 and 10.

It is observed that KDE-SP consistently outperforms other methods in terms of

relocation rate. It reduces on average 80%, 70%, and 40% of relocation rate compared

with the deterministic model under three different fleet size scenarios, respectively.

Compared with Poisson distribution, which is commonly used in the car-sharing relo-

cation literature, KDE-SP reduces on average 50%, 43%, and 30% of relocation rate

under three different fleet size scenarios, respectively. It can be observed that the

trends are consistent through the three demand and VDSDR scenarios, with KDE-

SP at the lowest. In particular, VDSDR and vehicle relocation rate are in negative

correlation. Intuitively, a small VDSDR indicates that the supply-demand ratios be-

tween two stations are quite close, which implies more vehicles are moved between

stations to eliminate the disequilibrium of supply-demand ratios. Therefore, a small

VDSDR leads to more vehicles moving, and vice versa. Additionally, the small fleet

size will lead the relocation rates higher than the large fleet sizes, which can be ob-

served from the comparison results.
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3.5.5 Comparisons of Value of Stochastic Solution

In order to explore the performance of KDE-SP, Gaussian-SP, Laplace-SP, and Poisson-

SP, we introduce the metric of Value of Stochastic Solution (VSS) [11, 31] to compare

the results. VSS allows us to obtain the goodness of the expected solution value when

the expected values are replaced by the random values for the input variables. And

a large VSS indicates that a high cost incurs when ignoring uncertainty in choosing

the decision. The metric of VSS can be expressed as follows.

V SS = RP − EEV (12)

then the VSS can be obtained from solving Recourse Problem (RP) which is

defined in (9) and Expectation of Expected Value (EEV) Problem which is expressed

in below.

max N−1
∑
s∈N

(∑
i∈R

rif
s
i −

∑
i∈R

∑
j∈R

ti,jy
s
i,j

)
−
∑
i∈R

hix̄i (13)

s.t. constraints from (9a) to (9n) except (9e) and (9o)

In the EEV model, x is replaced by x̄ in the constraints in which x̄ denotes

the first-stage solution yielded from the Mean Value Problem (MVP). MVP is the

deterministic model that uses the average daily demand as the input.

The results of VSS comparison are shown in Fig. 4, 5, and 6. The results reveal

that KDE returns the largest VSS values among the four approaches, while Poisson

returns the smallest VSS values with the same trend across the three demand sce-

narios. The reason that KDE outperforms the other three parametric approaches in

terms of VSS is that KDE is capable of capturing more accurate uncertainty informa-

tion in the demand historical data. Furthermore, it is reported that the VSS values

and vehicle relocation rates are in negative correlation according to the validation

results. Additionally, it reveals that the parameter β impacts the VSS with a positive

correlation.

45





3.6 Summary

In this chapter, we apply the proposed learning-based data-driven optimization frame-

work to address the one-way station-based car-sharing relocation problem consider-

ing customer demand uncertainty. The framework organically integrates the non-

parametric approach - kernel density estimation and two-stage stochastic program-

ming model along with the Monte Carlo sampling technique and decomposition algo-

rithm that can be considered as a data-driven stochastic optimization framework. By

leveraging the historical demand data from New York taxi trip records, the validation

results show that our non-parametric stochastic optimization approach outperforms

the parametric approaches in terms of daily average cost, vehicle relocation rate, and

value of stochastic solution. In particular, KDE-SP is much superior to Poisson-SP,

which is widely adopted in the existing literature, which implies that our proposed

approach can better hedge against demand uncertainty. In addition, not limited to

the one-way car-sharing relocation problem, the methodology provides an efficient

framework for the general data-driven share MoD applications.

Last but not least, we assume there is only one car-sharing service company

in the given car-sharing service area. However, when multiple car-sharing systems

are involved, they could compete with each other which could result in a less opti-

mal/economic market.
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Table 3: List of acronym in Chapter 3

Acronyms Description

SP Stochastic Programming

PDF Probability Density Function

KDE Kernel Density Estimation

SAA Sample Average Approximation

DEM Deterministic Equivalent Model

MVP Mean Value Problem

VSS Value of Stochastic Solution

EEV Expectation of Expected Value

RP Recourse Problem

VDSDR Value of Disequilibrium of Supply-Demand Ratio
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Table 4: Notation table for mathematical model in Chapter 3

Indices Description

i, j The index of car-sharing stations

s The index of sampled scenarios

Sets Description

R A set of car-sharing stations indexed by i and j

S A set of scenarios indexed by s

Parameters Description

hi ∈ R+ Holding cost at station i

dsi ∈ Z+ Customer demand at station i

ti,j ∈ R+ Moving cost from station j to station i

ri ∈ R+ The revenue incurring at station i

C ∈ Z+ The number of available vehicles (fleet size)

ω The event in the sample space Ω

di(ω) Random demands which denote the number of cars picked up by

customers at station i under scenario ω

β ∈ [0, 1] The upper bound of VDSDR

Variables Description

xi The number of vehicles that are dispatched to station i

ysi,j The number of vehicles that move from station i to station j under

scenario s
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Table 5: Comparison of daily average costs and profit across three demand scenarios
(β = 0.1, Unit in $)

Scenario KDE-SP Gaussian-SP Laplace-SP Poisson-SP Deterministic

5K

Costs 202,427 202,469 202,614 202,759 209,286

Profit 225,718 225,666 225,567 225,286 219,031

10K

Costs 404,798 405,228 405,754 406,549 418,617

Profit 451,086 450,882 450,637 449,948 438,016

15K

Costs 607,057 607,718 608,787 610,400 627,913

Profit 678,801 678,141 677,036 675,187 657,945

Table 6: Comparison of daily average costs and profit across three demand scenarios
(β = 0.2, Unit in $)

Scenario KDE-SP Gaussian-SP Laplace-SP Poisson-SP Deterministic

5K

Costs 202,098 202,264 202,391 202,634 208,834

Profit 226,215 226,053 225,881 225,682 219,483

10K

Costs 404,494 404,748 405,332 405,922 417,774

Profit 451,925 451,803 451,289 450,552 438,858

15K

Costs 606,802 607,081 608,354 609,384 626,708

Profit 679,056 678,687 677,414 676,077 659,150

Table 7: Comparison of daily average costs and profit across three demand scenarios
(β = 0.3, Unit in $)

Scenario KDE-SP Gaussian-SP Laplace-SP Poisson-SP Deterministic

5K

Costs 201,784 202,011 202,079 202,456 208,595

Profit 226,397 226,236 226,175 225,861 219,721

10K

Costs 404,210 404,271 404,554 405,310 417,302

Profit 452,423 452,171 451,943 451,233 439,331

15K

Costs 606,275 606,597 607,408 609,290 626,017

Profit 679,492 678,945 678,450 676,423 659,842
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Table 8: Comparison of the daily average number of cars moved and respective relo-
cation Rate (β = 0.1). The daily average number of cars moved is on the left, and
changes compared to KDE-SP (in percentage) are on the right in italics. The same
is below.

Scenario KDE-SP Gaussian-SP Laplace-SP Poisson-SP Deterministic

4K(-20%)

#of cars moved 228.4 256.1 312.2 396.1 1148.4

Relocation rate 5.7% 6.4% (+12.1% ) 7.8% (+36.7% ) 9.9% (+73.4% ) 28.1% (+402.8% )

5K

#of cars moved 260.5 264.1 286.1 315.5 785.6

Relocation rate 5.2% 5.3% (+1.4% ) 5.7% (+9.8% ) 6.3% (+21.1% ) 15.7% (+201.5% )

6K(+20%)

#of cars moved 134.2 144.2 174.1 186.7 217.2

Relocation rate 2.2% 2.4% (+7.5% ) 2.9% (+29.7% ) 3.1% (+39.1% ) 3.6% (+61.8% )

8K(-20%)

#of cars moved 423.5 488.1 608.5 784.2 2352.0

Relocation rate 5.3% 6.1% (+15.3% ) 7.6% (+43.7% ) 9.8% (+85.2% ) 29.4% (+455.4% )

10K

#of cars moved 512.8 517.4 554.8 784.3 1569.4

Relocation rate 5.1% 5.2% (+1.0% ) 5.5% (+8.2% ) 7.8% (+52.9% ) 15.7% (+206% )

12K(+20%)

#of cars moved 273.5 288.1 336.3 396.1 432.4

Relocation rate 2.3% 2.4% (+5.3% ) 2.8% (+22.9% ) 3.3% (+44.8% ) 3.6% (+58.1% )

12K(-20%)

#of cars moved 657.9 756.4 924.5 1212.1 3515.5

Relocation rate 5.5% 6.3% (+15.0% ) 7.7% (+40.5% ) 10.1% (+84.2% ) 29.3% (+434.4% )

15K

#of cars moved 708.6 764.9 864.8 1234.5 2362.9

Relocation rate 4.7% 5.1% (+7.9% ) 5.8% (+22.0% ) 8.2% (+74.2% ) 15.8% (+233.4% )

18K(+20%)

#of cars moved 464.9 486.9 522.1 576.5 650.2

Relocation rate 2.6% 2.7% (+4.7% ) 2.9% (+12.3% ) 3.2% (+24.0% ) 3.6% (+39.9% )
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Table 9: Comparison of the daily average number of cars moved and respective relo-
cation rate (β = 0.2)

Scenario KDE-SP Gaussian-SP Laplace-SP Poisson-SP Deterministic

4K(-20%)

#of cars moved 204.1 240.1 (+17.6% ) 296.3(+45.2% ) 364.2(+78.4% ) 967.1(+373.8% )

Relocation rate 5.1% 6.0% 7.4% 9.1% 24.2%

5K

#of cars moved 231.2 239.8(+3.7% ) 246.6(+6.7% ) 309.5(+33.9% ) 763.4(+230.1% )

Relocation rate 4.6% 4.8% 4.9% 6.2% 15.3%

6K(+20%)

#of cars moved 131.0 144.5(+10.3% ) 168.6(+28.7% ) 180.3(+37.6% ) 214.5(+63.7% )

Relocation rate 2.2% 2.4% 2.8% 3.0% 3.6%

8K(-20%)

#of cars moved 401.5 464.1 (+15.6% ) 552.3 (+37.6% ) 688.2(+71.4% ) 1935.1(+381.9% )

Relocation rate 5.0% 5.8% 6.9% 8.6% 24.2%

10K

#of cars moved 476.8 486.2(+2.0% ) 509.8(+6.9% ) 741.1(+55.4% ) 1530.3(+221.0% )

Relocation rate 4.8% 4.9% 5.1% 7.4% 15.3%

12K(+20%)

#of cars moved 263.2 276.5(+5.1% ) 324.5 (+23.3% ) 372.3 (+41.5% ) 428.0(+62.6% )

Relocation rate 2.2% 2.3% 2.7% 3.1% 3.6%

12K(-20%)

#of cars moved 588.3 684.2(+16.3% ) 828.4(+40.8% ) 1068.9(+81.7% ) 2911.8(+394.9% )

Relocation rate 4.9% 5.7% 6.9% 8.9% 24.3%

15K

#of cars moved 696.4 754.4(+8.3% ) 837.7(+20.6% ) 1168.5(+67.8% ) 2293.5(+229.3% )

Relocation rate 4.6% 5.0% 5.6% 7.8% 15.3%

18K(+20%)

#of cars moved 405.2 450.4(+11.2% ) 486.9(+20.2% ) 540.1(+33.3% ) 644.8(+59.1% )

Relocation rate 2.3% 2.5% 2.7% 3.0% 3.6%
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Table 10: Comparison of the daily average number of cars moved and respective
relocation rate (β = 0.3)

Scenario KDE-SP Gaussian-SP Laplace-SP Poisson-SP Deterministic

4K(-20%)

#of cars moved 196.0 216.1 (+10.3% ) 264.4(+34.9% ) 316.7(+61.5% ) 871.3(+344.5% )

Relocation rate 4.9% 5.4% 6.6% 7.9% 21.8%

5K

#of cars moved 220.6 224.5(+1.8% ) 240.3(+8.9% ) 289.9(+31.4% ) 732.9(+232.2% )

Relocation rate 4.4% 4.5% 4.8% 5.8% 14.7%

6K(+20%)

#of cars moved 129.6 138.9(+7.2% ) 162.3(+25.2% ) 174.5(+34.6% ) 213.4(+64.7% )

Relocation rate 2.2% 2.3% 2.7% 2.9% 3.6%

8K(-20%)

#of cars moved 391.7 424.6(+8.4% ) 536.7(+37.0% ) 624.5(+59.4% ) 1749.3(+346.6% )

Relocation rate 4.9% 5.3% 6.7% 7.8% 21.9%

10K

#of cars moved 450.2 464.0(+3.1% ) 472.2(+4.9% ) 707.1(+57.1% ) 1470.8(+226.7% )

Relocation rate 4.5% 4.6% 4.7% 7.1% 14.7%

12K(+20%)

#of cars moved 249.4 264.1(+5.9% ) 312.9(+25.5% ) 348.6(+39.8% ) 426.8(+71.1% )

Relocation rate 2.1% 2.2% 2.6% 2.9% 3.6%

12K(-20%)

#of cars moved 565.1 636.7(+26.7% ) 792.8 (+40.3% ) 972.3 (+72.1% ) 2611.2(+362.1% )

Relocation rate 4.7% 5.3% 6.6% 8.1% 21.8%

15K

#of cars moved 659.4 751.6(+13.9% ) 791.7(+20.1% ) 1134.7(+72.1% ) 2207.6(+234.7% )

Relocation rate 4.4% 5.0% 5.3% 7.7% 14.7%

18K(+20%)

#of cars moved 385.2 397.1(+3.1% ) 468.7(+21.7% ) 505.3 (+31.2% ) 642.5(+66.8% )

Relocation rate 2.1% 2.2% 2.6% 2.8% 3.6%
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Chapter 4

Mixture Density Networks

Enabled Stochastic Optimization

for Idle Vehicle Proactive

Guidance in Ride-Hailing Systems

4.1 Introduction

Ride-hailing services in connection with intelligent transportation systems (ITSs) have

reshaped urban transportation modes. Ride-hailing platforms such as Lyft, Uber,

and Didi can facilitate both drivers and riders by matching their services and needs.

However, the supply-demand imbalance remains a ubiquitous problem. During peak

hours, many rider requests could not be satisfied due to the lack of vehicles in their

service regions, while idle vehicles might be cruising around and seeking riders in some

other regions. This may lead to low service quality and poor customer experiences

such as low rider serving rate and long rider waiting time. For these reasons, idle

vehicle guidance operation has been considered a key issue in many studies. As

discussed in [158, 42], through an efficient idle vehicle guidance strategy, ride-hailing

platforms can reduce the idle vehicle driving distance and the riders’ waiting time

while increasing the riders’ serving rate.

Two types of idle vehicle guidance operations have been studied in the literature

on ride-hailing platforms: (1) proactive guidance strategy, where idle vehicles are
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dispatched to relevant regions in anticipation of rider demand. Moving the vehicle

in advance can help reduce the riders’ waiting time. However, some riders may not

be served if realized demand in their region outnumbers the available vehicles in the

same region. In this sense, the quality of proactive guidance strategy is largely driven

by the accuracy of the rider demand prediction. (2) reactive guidance strategy, where

idle vehicles will be relocated in accordance with realized rider demand. This can

assure that all riders’ requests will be satisfied. However, the riders’ waiting time will

be at stake as idle vehicles may not be in their immediate proximity. Since the rider

waiting time is a critical factor that measures the performance of the ride-hailing

platform. To reduce the rider waiting time while improving the quality of ride-hailing

service, in this work, we focus on the proactive idle vehicle guidance strategy.

In this work, we propose a data-driven stochastic optimization framework to pro-

vide proactive idle vehicle guidance. Since the idle vehicles are guided before rider

demand realization, the rider demand prediction is crucial in proactive guidance op-

eration. Specifically, the accurate demand prediction provides information that bal-

ances the supply and demand for the ride-hailing regions. However, most work tries to

forecast the demand information while ignoring the uncertainty. In fact, the system

performance may lead to a sub-optimal solution without considering uncertainty [31].

To address this issue, we estimate rider demand distribution through historical rider

demand data and use the results for a proactive guidance strategy. The contribution

of this paper is two-fold:

(1) we extend MDNs [12] by integrating Gated Recurrent Units (GRUs) [30],

which enables the MDN to capture various spatial-temporal features in estimating

rider demand distributions;

(2) we integrate the extended MDN with a stochastic optimization process to

minimize the vehicle guidance-related costs including under-supply cost, over-supply

cost, and driver idle travel cost.

The rest of this chapter is organized as follows. In Section 4.2, we review related

works. The problem statement, including system overview and problem formulation,

is discussed in Section 4.3. Section 4.4 presents our proposed approach in detail, fol-

lowed by the numerical simulations to validate the effectiveness of our work. Finally,

we conclude our work and highlight the contributions in Section 4.6.
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4.2 Related Work

An essential challenge and issue for ride-hailing systems is the vehicle guidance (also

known as dispatch, rebalance or reposition in literature) operation. Intensive work has

been conducted to study idle vehicle guidance operations in the ride-hailing platform.

The existing work can be categorized into proactive guidance and reactive guidance

operations based on the guidance strategy.

For the proactive guidance strategy, idle vehicles are guided to ride-hailing service

regions where high rider demands are expected before the real rider demands are real-

ized. For example, Guo et al. [51] propose an online ride-hailing dispatch framework

that is based on spatiotemporal thermos guidance to address the real-time service

vehicle dispatching problem. A concept named spatiotemporal thermos is defined to

represent the demand density of ride-hailing regions. In addition, the random forest

regression machine learning method is utilized for spatiotemporal thermos forecast-

ing. A data-driven recommendation system that exploits the benefits of vehicular

social networks for ride-hailing services is designed in [156] where Long Short-Term

Memory is utilized to forecast the demands. Chen et al. [24] propose a hierarchi-

cal framework for vehicle dispatch in ride-sharing systems. The higher hierarchy

aims at optimizing idle mileage by rebalancing vehicles across regions towards cur-

rent and predicted rider demands. While the lower hierarchy is to minimize the total

mileage delay as well as serve rider requests as many as possible. Miao et al. [103]

develop a data-driven taxi dispatch framework under demand uncertainty that is

spatial-temporally correlated using robust optimization modeling techniques. In this

work, vacant vehicles are dispatched toward predicted rider demand that varies in

an uncertain demand set constructed on spatial-temporally correlated data sets. The

objective is to minimize the total idle travel distance under the worst-case demand

scenario while maintaining service fairness across the whole city. Later, they extend

the work [104] using distributionally robust optimization [118] modeling technique

where the vehicle balancing cost is minimized with the ambiguity of rider demand

probability distribution is taken into consideration. In addition, rather than adopting

the specific distribution, the rider demand probability distribution varies in an ambi-

guity set which is constructed based on spatial-temporal operation records. A model

predictive control-based method for large-scale taxi dispatching problems is proposed
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in [69]. The problem is formulated via a network flow optimization model to mini-

mize the total preposition cost while serving as many rider requests as possible. Two

objectives are converted into a minimum cost maximum flow problem. Besides the

conventional vehicle, an autonomous taxi dispatching problem under hybrid request

modes where the rider can request immediate or reserved ride-hailing services is stud-

ied in [34]. The hybrid rider requests are processed by a centralized dispatcher that

plans short-term routes and a decentralized dispatcher that plans long-term routes.

The idle vehicles will be rebalanced depending on the predicted requests.

For the reactive guidance strategy, idle vehicles are guided to each ride-hailing ser-

vice region after the real rider demands are known. For example, Yi et al. [171] pro-

pose a general framework that integrates vehicle repositioning and charging decision-

making for autonomous electric vehicle ride-hailing fleets. The system dynamically

allocates vehicles for rider requests while managing idle vehicles to either reposition

or charge. Alonso et al. [3] present an optimization method for vehicle routing and

assignment considering future demand. The optimal assignment of vehicles to trips

is computed via an integer programming model, and then the idle vehicles are rebal-

anced towards regions with deficit supply via a linear programming model. A special

type of ride-hailing in a hilly topology zone is studied in [144] where the vacant ve-

hicles are guided by taxi-calling signals. A sequential binary logistic region model

is proposed to determine the factors influencing the drivers’ dispatch decisions. In

addition, a discrete choice model is proposed to simulate the driver’s travel behav-

ior calibrated by survey data. [92] develops a simulation framework to integrate the

mode choice and operations of the MoD services where the demand of travel model

is considered as a function of service level, and the supply-side MoD parameters are

derived from real data using Bayesian optimization. Two major tasks are involved

in the operation of MoD services in this work: matching rider requests to vehicles

and idle vehicles rebalancing to regions with potential future demand. It is assumed

that more rider requests will appear in the adjacent areas. The rebalance operation

is formulated as a linear programming model by minimizing the rebalance cost.

There exist several issues in the related work in the following aspects. (1) Few

works consider the time-series characteristics in the rider demand historical data, al-

though some of them utilize the spatial-temporal features, (2) uncertainty is rarely

involved in the decision-making. In Miao’s work, the worst-case scenario is taken

57



into account; nevertheless, the solution from robust and distributionally robust opti-

mization may be too conservative for the ride-hailing system. On the other hand, we

focus on optimizing the system performance over the possible predicted rider demand

scenarios where the above modeling techniques are not suitable for our problem set-

tings, (3) some work adopts machine / deep learning approaches to forecast model

optimization parameters (rider demand in most cases). However, they all predict a

scalar (single value) as the output which cannot be applied to the stochastic program-

ming model. Unlike the existing works which adopt single values as the prediction

results, we propose a novel neural network that combines recurrent neural network

GRU and MDN as the rider demand distribution predictor. Further, the stochas-

tic programming model is integrated with the time-series rider demand predictor.

In fact, a few researchers have attempted to integrate various types of deep neural

networks with MDNs for different purposes. For example, graph mixture density net-

works (GMDNs) that combine graph representation learning and MDNs to address

conditional density estimation problems based on graph-structured data are proposed

in [189, 36]. A general framework that combines Generative Adversarial Networks

(GANs) and MDNs for inverse modeling is designed in [169]. A recent work that

is similar to [169] is proposed in [74] named Adversarial Mixture Density Networks

(AMDNs) for an imitation learning task, where two opposite types of distributions

for the same input are generated. A Bayesian mixture density networks (BMDNs)

by integrating Bayesian neural networks (BNNs) and MDN is presented to forecast

the individual claims [73] and probabilistic electric load [19]. A hierarchical mixture

density networks (HMDNs) by combining convolutional neural networks (CNNs) and

MDN to address the occlusion-aware hand pose estimation issue is developed in [170].

4.3 Idle Vehicle Proactive Guidance Problem

In this section, we discuss the idle vehicle proactive guidance issue in detail. We first

describe the system overview and problem settings followed by presenting a one-stage

stochastic programming model.
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4.3.1 System Overview

We consider a fairly general ride-hailing service platform that consists of a set of ve-

hicles scattered in several ride-hailing regions, a set of riders, and a central decision-

maker. Specifically, vehicles are equipped with sensors that the central decision-maker

can monitor by providing vehicle information, including real-time GPS locations and

occupancy status (idle or occupied). In addition, riders send ride-hailing service re-

quests to the ride-hailing platform by providing their current GPS locations. Further,

for the ride-hailing platform, one day time is discrete into a group of fixed times (e.g.,

10mins) called batching window. At the beginning of each batching window, the sys-

tem starts collecting rider requests. Meanwhile, the idle vehicles are guided to the

region point of interests (POIs) instructed by the solutions that are computed from

the optimization model. At the end of each batching window, the real rider demand

in each region is determined by the number of service requests, and this information

will be stored in the data center to forecast the rider demands for the next batching

window. Meanwhile, the guided vehicles will set out from region POIs to serve rid-

ers. The system will continue to operate in this rolling horizon way. Notice that the

idle vehicles are guided in advance before the real rider demands are known. There-

fore, the guidance strategy discussed in this work is idle vehicle proactive guidance

operation.

4.3.2 Mathematical Optimization Model

We assume the ride-hailing platform operates during a day that is discreated into a

group of batching windows (also known as time slot)1 with fixed size ∆T (e.g., 10

minutes). To facilitate the vehicle allocations, the ride-hailing service zone is divided

into a group of disjoint ride-hailing service regions denoted asM. Let V t denote the

set of idle vehicles in batching window t. The binary variable xtv,m = 1 if idle vehicle

v is guided to the POI in region m at time t, and xtv,m = 0 otherwise. For the other

parameters in the optimization model, we refer readers to Table 11 for the sake of

clarity.

At the beginning of each batching window, a certain number of idle vehicles are

guided to the ride-hailing regions’ POIs with minimum guidance distance to meet the

1We use ”batching window” and ”time slot” interchangeably in this chapter
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Table 11: Notation table for the stochastic programming model in Chapter 4

Indices Description

m,n The index of ride-hailing regions

v The index of open drivers

s The index of sampled scenarios

t The index of batching windows

Sets Description

M A set of ride-hailing service regions indexed by m and n

V t A set of idle vehicles at time slot t indexed by v

S A set of scenarios indexed by s

T A set of batching windows indexed by t

Parameters Description

d̂s,tm ∈ Z+ Predicted rider demand in region m

at time slot t under scenario s

dt−1
m ∈ Z+ the number of unserved rider at region m in previous time slot

gv,m ∈ R+ Gudiance distance between

Ct ∈ Z+ The number of idle vehicles in time slot t

α Guidance cost coefficient

β Over supply cost coefficient

γ Under supply cost coefficient

λ Vehicle’s travel speed

ξ Difference of supply-demand ratio gap between the ride-hailing regions

θ The supply-demand ratio, used to control the fleet size

∆T The size of time slot

H A large positive number for ’if’ constraints

Variables Description

xtv,m The number of idle vehicles that are guided to service region m at time t
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rider requests in the future. This proactive guidance operation incurs the idle vehicle

guidance cost, which can be formulated in the equation (14),

α
∑
v∈Vt

∑
m∈M

gv,mx
t
v,m (14)

where gv,m denotes the distance between idle vehicle v’s GPS location and the GPS

location of region POI m, α is introduced to represent the idle travel cost per mile.

In addition, over-supply costs will incur when the number of guided vehicles ex-

ceeds the rider demand (including predicted rider demands for the current batching

window and the unserved riders from the previous batching window). Likewise, the

under-supply costs will incur when the number of guided vehicles is less than the rider

demand. The sum of the over-supply costs and the under-supply costs is defined in

equation (15),

∑
m∈M

Ed̂t,sm ∼P

[
β ·max

{
0,

(∑
v∈Vt

xtv,m − d̂t,sm − dt−1
m

)}

+γ ·max

{
0,

(
dt−1
m + d̂t,sm −

∑
v∈Vt

xtv,m

)}] (15)

where d̂t,sm and dt−1
m denote the predicted rider demand at region m in time slot t

under scenario s and the number of unserved riders at region m in time slot t − 1,

respectively. Notice that the stochastic programming model will degenerate to the

deterministic model if only one scenario is involved. β and γ are introduced to denote

the redundant cost per vehicle and profit loss per requested order, respectively. Since

there are a set of rider demand scenarios (drawn from rider demand distribution) in

the stochastic programming model, the above formula is the expected total cost over

the rider demand distribution.

A group of constraints must be satisfied according to our problem settings. A

certain level of supply-demand ratios (θ) and the supply-demand ratio gap (ξ) between

ride-hailing regions must be considered. The supply-demand ratio constraints are

denoted by:

(θ − ξ)(d̂t,sm + dt−1
m ) ≤

∑
v∈V

xtv,m ≤ θ(d̂t,sm + dt−1
m ) ∀m ∈M, ∀s ∈ S (16)

In addition, an idle vehicle could be guided to one region POI at most, which are
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represented by: ∑
m∈M

xtv,m ≤ 1 ∀v ∈ V (17)

Further, an idle vehicle, if guided, can be only guided to the region POI that

the driver can reach the POI within the duration of batching window. This time

constraints are captured by:

gv,m/γ ≤ ∆T +H(1− xtv,m) ∀v ∈ V ,∀m ∈M (18)

where H is a large positive number to linearize the “if” constraints [119]. γ is the

idle vehicle’s travel speed assumed to be a constant in this work. Therefore, gv,m/γ

is the guidance time between the GPS location of vehicle v to the GPS location of

region POI m.

Besides, the total number of guided vehicles must be less than the fleet size under

a certain supply-demand ratio, which leads to the following constraint:∑
v∈V

∑
m∈M

xtv,m ≤ θCt (19)

Given the objective function and constraints, the holistic optimization model for

idle vehicle proactive guidance problem is summarized as follows.

minimize (14) + (15)

subject to (16), (17), (18), (19)

xv,m ∈ {0, 1} ∀v ∈ V ,∀m ∈M (20)

As discussed above, the objective is to minimize the overall ride-hailing system

cost to satisfy the rider’s requests.

4.4 XMDN-SO Framework

In this section, we discuss the proposed MDN-enabled data-driven stochastic opti-

mization approach. Firstly, we briefly introduce the mechanism of mixture density
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networks. Next, we elaborate on the mechanism of our proposed deep neural networks

- XMDN. Finally, we explore the feature engineering for XMDN.

4.4.1 Mixture Density Networks

The basic idea of MDN is to use the outputs of a neural network to parameterize a

Gaussian mixture distribution. Therefore, the conventional MDN can be considered

as a combination of a neural network and a Gaussian mixture model (GMM). Unlike

the regular neural network that only outputs a deterministic value as the prediction,

MDN can capture the model stochastic behaviors. Hence, MDN can be used in

prediction applications where the output contains multiple possible outcomes, which

can be seamlessly integrated with a stochastic programming model. Motivated by

this, in this work, rather than direct predicting the number of rider requests, we

utilize MDN to output the parameters of a mixture model. The parameters contain

three parts: the mixed coefficient (also known as weight), mean, and variance of

each Gaussian kernel. The semi-parametric approach GMM is adopted to store the

predicted probability distribution. Specifically, for any given input X, GMM provides

a general form to formulate an arbitrary conditional density function which is shown

in Eq.(21).

p(y
∣∣X, θ) =

K∑
i=1

πiNi(X) (y | µi(X), σi(X)) (21)

where θ = (π, µ, σ), and K is the number of Gaussian distributions (also known as

components in literature). Generally, GMM can be considered as a group of Gaussian

distributions with different weights, where the i−th Gaussian is determined by weight

πi, means µi and covariance matrix Σi (variance for σi univariate Gaussian). Then

the predicted probability distribution can be represented using GMM by adjusting

the parameter θ. Notice that the sum of Gaussian component weights must be equal

to 1 because each weight is computed by the following softmax function, which is

shown in Eq.(22).

πi = softmax(h)i =
eh

π
i∑n

k=1 e
hπk

(22)

where hπi denotes the outputs of the hidden layer prior to the layer stores GMM
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components. Meanwhile, the corresponding µi and σ2
i are computed from Eq.(23)

and (24), respectively.

µi = hµi (23)

σi = exp (hσi ) (24)

Unlike the regular neural network that adopts mean squared error (MSE) as the

deterministic loss function, the MDN loss function is defined as the following negative

logarithm likelihood function where w denotes the set of parameters in the neural

networks. Then the parameters of GMM can be calibrated by the input data X

and w where w is adjusted by minimizing the loss function equal to maximizing the

conditional log-likelihood in Eq.(25).

E(w) = −
N∑
n=1

ln

{
K∑
k=1

πk (Xn, w)N
(
t | µk (Xn, w) , σ2

k (Xn, w)
)}

(25)

4.4.2 The XMDN for demand probabilistic forecasting

The number of rider requests in each region heavily relies on many factors, which

will naturally lead to uncertainty in the demand prediction. By utilizing the time

sequence data, the typical time-series prediction approaches can forecast a scalar

(single value) as the outcome. However, these prediction methods ignore uncertainty,

which is critical for decision-making under uncertainty [31]. Therefore, instead of

predicting a deterministic demand value, we devise a novel deep neural network that

combines the recurrent neural network for time-series prediction - Gated Recurrent

Units (GRUs) [30], and Mixture Density Network (MDN) [12] named XMDN to

forecast the rider demand distributions by leveraging the rider demand time-series

historical data.

Motivated by the mechanism in the existing work, we extend GRUs by concatenat-

ing MDNs to forecast the rider demand distributions. The sequence learning model

is created based on the GRUs and MDNs. GRUs can encode the useful information

of the past in single or multiple layers. The input of each layer is the output of the

previous layer concatenated with the network input. Each GRU layer predicts its

output based on its current input and internal state where the following group of

64



Figure 7: The structure of XMDN

equations is satisfied [30].

zt = sigm (Wzxt + Uzht−1 + bz)

rt = sigm (Wrxt + Urht−1 + br)

ĥt = tanh (Whxt + Uh (rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � ĥt

(26)

where zt, rt, ĥt, ht represent the updated gate vector, the reset gated vector, the

candidate activation vector, and the output vector, respectively .

Then the outputs of the GRU hidden layer ht will be used to compute the param-

eters of GMM from the Eq. (22), (23), and (24) above. Finally, the concatenation of

outputs of all layers will be used to predict the output of the network, which will be

compared with y. After the model is trained, we can make a prediction for time-step

t+1 by inputting the rider demand at time step t. We use the outputs, which are the

mixture density parameters, to parameterize a Gaussian mixture distribution. The

prediction process can be repeated in a loop to predict rider demand for multiple time

steps. The structure of XMDN is illustrated in Fig. (7).

In addition, one of the issues for MDNs is that the number of Gaussian compo-

nents is a hyper-parameter, if not selected appropriately, will lead to the over-fitting
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problem [115]. In this work, besides the dropout operations in XMDN, we intro-

duce L2 regularization to avoid the over-fitting issue. To this end, we design the loss

function of XMDN in Eq.(27).

E(wGRU) = −
N∑
n=1

ln

{
K∑
k=1

πk (Xn, wGRU)N
(
t | µk (Xn, wGRU) , σ2

k (Xn, wGRU)
)}

+
1

2
||wGRU ||2

(27)

where the parameter wGRU denotes the set of weights and bias in the GRU deep

neural networks.

4.4.3 Feature Engineering for XMDN

For each time point t, the input data X involves two parts: the rider demand dt and

features that affect the rider demand ft. In this work, the features are extracted from

real data sets, including region id, day of the month, month of the year, day of the

week, the hour of the day, and minute of the hour. Then the input information X at

time t is characterized as Xt =< dt, ft >.

The input information for XMDN is illustrated in Fig. 8. The first K-sequence

rider demand [X0, X1, · · · , Xk−1] which is at the time point [t0, t1, · · · , tk−1] is used as

the input vector X, the rider demand dk at the time point tk is used as the output y

for the deep neural network. By the same way, the second K-sequence rider demand

uses [X1, X2, · · · , Xk] which is at the time point [t1, t2, · · · , tk] as the input vector X,

the rider demand dk+1 at the time point tk+1 is used as the output y for the deep

neural network.

4.5 Numerical Experiment

We compare the performance of our proposed approach with several competitors in

this section. Firstly, we describe the numerical validation environment, followed by

several performance metrics and competitors. Next, we discuss the data process-

ing and feature engineering for the deep learning models. Finally, we evaluate the

proposed approach by comparing the performance with other competitors.
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Figure 8: The data structure for the input layer

Figure 9: The eight selected ride-hailing regions in Manhattan

67



4.5.1 Experiment Setup

Both batching matching and history average are coded in Python 3.8, and the math-

ematical optimization models are solved by Gurobi 9.1 2. The experiments are run

on a PC with Intel Core i7 CPU, 32 GB RAM, Windows 10. The deep learning mod-

els (GRU and XMDN) are coded in Python 3.8 and TensorFlow 2.4 under NVIDIA

GeForce RTX 2080 GPU, 16 GB RAM, and Ubuntu 18.04.

For GRU models, the training time of each epoch is around 275 seconds, and the

average training time of the GRU model is approximately 3.5 hours. For XMDN

models, the training time of each epoch is around 358 seconds, and the average train-

ing time of the XMDN model is approximately 4.7 hours. After the training process,

the deep learning models can predict the rider demand (using GRU) and rider de-

mand distribution (using XMDN) by utilizing the time-series sequence data from the

testing set where the computational time for prediction is only a few seconds. In ad-

dition, the optimization model can be solved by Gurobi within 2 minutes. Therefore,

the overall time is far less than the batching window size, which indicates that our

proposed framework can be applied to the dynamic ride-hailing platform.

4.5.2 Performance Competitors and Evaluation Metrics

We adopt the following three data-driven optimization models as the guidance ap-

proaches (1) our proposed approach XMDN-SO; (2) the integration of GRU and

deterministic optimization model that is labeled as GRU-DM; and (3) the integra-

tion of historical average (HA) and deterministic optimization model that is labeled

as HA-DM. In addition, the non-guidance mechanism is also introduced to compare

the results.

Meanwhile, we select the following metrics for the performance comparison.

• Over-Supply Cost (OSC), Under-Supply Cost (USC), and Total Cost (TC).

The metric involves two types of costs, namely, over-supply cost, which can be

computed by the driver’s idle driving distance, and under-supply cost, which can

be computed by the profit of service orders. The results can be computed from

formula (15) by replacing the predicted rider demand with the real demand.

2https://www.gurobi.com/academia/academic-program-and-licenses/

68



• Rider’s Serving Rate (SR). For ride-hailing service region k, the metric is defined

as the proportion of served (satisfied) riders. Namely, the rider’s serving rate

at region k is

SRk = min{1, sk
dk
} (28)

, where sk and dk denote the number of (guided) idle vehicles at region k and

the number of requests (real rider demand) at region k, respectively.

• Rider’s Waiting Time (WT). WT is computed in different ways depending on

the approaches. To be specific, for guidance approaches (i.e., XMDN-SO, GRU-

DM, and HA-DM), WT involves three parts, namely, (1) the time duration

between the end of the current batching window and the rider’s request time

(WT1), (2) the driver’s travel time from POI (from driver’s GPS for no guidance

scenario) to rider’s pickup coordinate (WT2), and (3) 10 minutes if the rider

cannot be picked up in the current batching window 3 (WT3).

WT = WT1 +WT2 +WT3 (29)

In addition, we assume that riders are picked up using the first-come-first-serve

(FCFS) protocol. Also, for the no guidance scenario, riders are picked up by

their nearest drivers 4.

• Idle Vehicle Guidance Cost (GC). The results can be computed from formula (14).

In this study, we are interested in how the open driver distribution impacts the

guidance cost. We investigate this metric on different idle vehicle distributions,

which will be discussed in the performance evaluation subsection.

3In this case, the riders must wait until the next batching window for service, we assume the
riders do not cancel their requests if they are not served in the current batching window, a similar
assumption is discussed in [114]

4Since FCFS protocol is adopted, rider A whose request time is before rider B will be picked up
by a driver even if the distance between the driver and rider B is nearer than the distance between
the driver and rider A
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4.5.3 Data Processing

We use the New York yellow taxi trip record 5 from January 2014 to June 2016 for the

experiment validations. Since there is no region information in this data set, for the

sake of guidance operation, we divide the ride-hailing service area in Manhattan into

eight ride-hailing service regions, which are plotted in Fig. 9. Additionally, we set the

central location of each region as the point of interest (POI) to which the drivers are

guided to. The coordinates of eight POI are shown in Table 12. In the raw data sets,

the number of trip records (trip records with pickup latitude and longitude) that fall

into the eight regions is approximate 0.2 billion. We aggregate the trip records (by

using the rider’s pickup region) during a batching window 6 as the rider demand for

each region. After the rider demand aggregation, we split the entire data set into a

training set (from January 2014 to December 2015) with approximately 20 million

rows and a testing set (from January 2016 to June 2016) with around 5 million rows

for the deep learning models training and testing.

4.5.4 Feature Engineering and Rider Demand Prediction

We consider the following features extracted from the data set in this work: rider

demand, region id, day of the month, month, day of the week, the hour of the day,

and minute of the hour. The rider demand is used as the predicted target, while

the rest of the features are used to observe how they affect the target. We adopt

XGBoost [22] to determine the feature importance for the deep learning predictor

whose metric is based on impurity value. The result of the feature importance is

illustrated in Fig. 10. We can observe that the region id and hour of the day are

the most important features for the selected data set. The feature of region id and

hour of the day takes over 50% and 30%, respectively, which implies that the features

significantly impact the rider demand prediction. Finally, we quantify the features as

follows.

• Region ID. Integer ranges in [1, 8] that is associated with the region ID we set.

5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
6The batching window size is set to 10 minutes in the experiment. Hence there are 144 time slots

for a day. The batching window size could be changed to apply the ride-hailing service, which does
not change the deep learning and optimization models
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• Month. Integer ranges in [1, 12] that is associated with the month from January

to December.

• Day of Month (DoM). Integer ranges in [1, 31].

• Day of Week (DoW). Integer ranges in [1, 7] that is associated with day from

Monday to Sunday.

• Hour of Day (HoD). Integer ranges in [0, 23] that is associated with the daily

hour.

• Minute of Hour (MoH). Integer ranges in [0, 5] that denotes the time slot [HH:00

- HH:09], [HH:10 - HH:19], [HH:20 - HH:29], [HH:30 - HH:39], [HH:40 - HH:49],

and [HH:50 - HH:59], respectively where HH denotes daily hours range in [0,

23].

Next, we consider eight GRU and XMDN deep learning models with different fea-

ture combinations. The first deep learning model (labeled as model A) only considers

the rider demand, and the last deep learning model (labeled as model H) considers all

the features. In contrast, the rest of the deep learning models consider every single

feature. The deep learning models with different feature combinations are shown in

Table 15. Since the structure of the deep neural network may have a great impact

on the prediction results [45], we set the identical structure of the input layer and

hidden layers for both GRU and XMDN. For the output layer, GRU is set to 1, while

XMDN is set to 15 (The number of Gaussian components for GMM is 5). Further,

we use the early stopping strategy with 5 patience to control the converge of the deep

learning models. The rest parameters of GRU and XMDN are shown in Table 14.

Further, we validate the performance of the deep learning models in the table

on the testing set (from January 2016 to June 2016. By analyzing the aggregated

rider demand, we found that the regions can be divided into three types in terms of

the level of rider demand, which can be identified from Fig. 12. The high demand

regions (2,3 and 4) with rider demand around 400 per time slot; the medium demand

region (5) with rider demand around 280 per time slot; the low demand regions

(1,6,7 and 8) with rider demand below 100 per time slot. The comparison results are

shown in Fig. 11. It is observed that model H, with all the features outperforms the

rest of the models in terms of root mean square error (RMSE) and mean absolute
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sets. The other one is that we assume a given duration (e.g., 5 minutes prior to

the current batching window) that the drivers who finish the ride-hailing service are

idle drivers. We label this scenario as real data sets. The parameter setting of the

optimization models is described in Table 16.

Validation results on synthetic data sets

In this scenario, we assume that the coordinates of the idle vehicles are randomly

generated across the eight ride-hailing service regions. In addition, the number of idle

vehicles (fleet size) in the current time slot is determined by the real rider demands

from the previous time slot. We set the supply-demand ratio parameter θ to 0.95,

0.9, and 1.05 to evaluate the experimental results under different fleet size levels. We

are more interested in how much benefit can the ride-hailing platform obtain from

proactive vehicle guidance. Since idle vehicles may distribute across regions under

any patterns, we consider the following three special scenarios.

• We name Positively-Correlated idle vehicle distribution labeled as PC by the

following definition.

Definition 2. positively-correlated idle vehicle distribution

Given a set of region index K = {1, 2, · · · , k}, a set of idle vehicles distributed

across regions {si}i∈K, and a set of demands across regions {dj}j∈K. We for-

mulate such a tuple sequence as follows

· · · , < si− , dj− >,< si, dj >,< si+ , dj+ >, · · · (30)

such that · · · , si− ≤ si ≤ si+ , · · · and · · · , dj− ≤ dj ≤ dj+ , · · · . We call it

positively-correlated idle vehicle distribution if ∀i, j ∈ K i = j.

Intuitively, PC is introduced to describe such a scenario that the idle vehicles are

’ideally’ distributed across regions that indicate more idle vehicles are cruising

around the higher demand regions, and vice versa. In this sense, vehicle proac-

tive guidance operation is unnecessary since the number of idle vehicles can

meet the demand for each region. However, this ideal scenario seldom happens

in realistic applications [17].
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• We name Negatively-Correlated idle vehicle distribution that is labeled as NC

by the following definition.

Definition 3. negatively-correlated idle vehicle distribution

Using the same notation, we formulate such a tuple sequence as follows

· · · , < si− , dj− >,< si, dj >,< si+ , dj+ >, · · · (31)

such that · · · , si− ≤ si ≤ si+ , · · · and · · · , dj− ≥ dj ≥ dj+ , · · · . We call it

negatively-correlated idle vehicle distribution if ∀i, j ∈ K i = j.

In contrast to PC, NC is introduced to describe such a ’worst-case’ scenario that

the idle vehicles are cruising around the ’wrong’ regions. In this case, vehicle

proactive guidance operations are quite necessary to alleviate the imbalance of

supply and demand.

• The idle vehicles are randomly generated, followed by uniform distribution

across the eight ride-hailing regions. We call this scenario Uniform idle vehicle

distribution that is labeled as U.

Given the idle vehicle distribution scenarios above, we come to compare the vali-

dation results. Firstly, as shown in Fig. (13), (14), (15), (16), (17), (18), and Table 17,

we observe that the over-supply cost increases and the under-supply cost decreases

as the fleet size grows (θ ranges from 0.95 to 1.05). Because more rider requests will

be satisfied as the number of idle vehicles increases which leads to more over-supply

cost and less under-supply cost. In addition, XMDN-SO outperforms the rest of the

data-driven competitors GRU-DM and HA-DM in terms of the total cost, with the

average total cost reduction by 17.5% and 63.8% on weekdays, 21.4% and 62.1% on

the weekends under θ = 0.95; 17.2% and 70.5% on the weekday, 23.2% and 68.8% on

the weekend under θ = 1.0; 23.7% and 64.4% on weekday, 31.9% and 63.7% under

θ = 1.05. This implies that our proposed rider demand predictor is able to forecast

more accurate results than GRU which can also be observed in Fig. 11.

Secondly, as shown in Fig. (19), (20), (21), and Table 17, XMDN-SO is approx-

imate 2% and 17% higher than GRU-DM and HA-DM in terms of average serving

rate by average. Additionally, without guidance operation, the serving rate under

positively-correlated distribution (labeled as NG-PC) is much higher than the one
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