
Towards Providing Automated Supports to Developers on Making

Logging Decisions and Log Analysis

Zhenhao Li

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

September 2022

© Zhenhao Li, 2022

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Zhenhao Li

Entitled: Towards Providing Automated Supports to Developers on Making

Logging Decisions and Log Analysis
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair
Dr. Ahmed Kishk

External Examiner
Dr. Zhenchang Xing

Examiner
Dr. Abdelwahab Hamou-Lhadj

Examiner
Dr. Yann-Gael Gueheneuc

Examiner
Dr. Eugene Belilovsky

Supervisor
Dr. Tse-Hsun Chen, Dr. Weiyi Shang

Approved by
Dr. Leila Kosseim, Graduate Program Director

2022
Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Towards Providing Automated Supports to Developers on Making Logging
Decisions and Log Analysis

Zhenhao Li, Ph.D.

Concordia University, 2022

Due to the lack of practical guidelines on how to write logging statements and large volume of

logs routinely generated by software products, how to make proper logging decisions and efficiently

analyze the logs are challenging in practice. In this thesis, we focus on these two main challenges

and propose a series of approaches to address the problem and help developers on logging practices

in two aspects: (1) assist in making logging decisions and (2) assist in log analysis.

For logging decisions, we tackle the challenge by providing suggestions on writing logging state-

ments. We first provide suggestions for logging locations. We find that our models are effective in

suggesting logging locations at the block level. We then study the verbosity levels in the logging

statements. We propose a deep learning based approach that can leverage the ordinal nature of log

levels to make suggestions on choosing log levels. Our approach outperforms the baseline approaches

and are effective at suggesting log levels. Finally, we investigate practitioners’ expectation on the

readability of log messages by conducting a series of semi-structured interviews with industrial prac-

titioners. We derive three aspects that are related to the readability of log messages. We also explore

the potential of automatically classifying the readability of log messages and find that both deep

learning and machine learning approaches is effective at such classifications.

For log analysis, we focus on studying log abstraction, which is a crucial step for automated log

analysis. We find that different categories of dynamic variables in logs record valuable information

that can be important for different tasks, such information is abstracted by prior log abstraction

techniques. We propose a deep learning based log abstraction approach, which can identify different

categories of dynamic variables and abstract specified categories. Our approach outperforms state-

of-the-art log abstraction techniques on general log abstraction and also achieves promising results

on variable-aware log abstraction. We also find that variable-aware log abstraction can help improve

the performance of log-based anomaly detection.

iii

Statement of Originality

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my thesis

may be made electronically available to the public.

iv

Acknowledgements

Foremost, I would like to express my greatest gratitude to my supervisors Dr. Tse-Hsun Chen

and Dr. Weiyi Shang for their patient guidance and encouragement on my research and life. Without

their supervision and invaluable support, nothing of this thesis and my research life would have been

possible.

Apart from my supervisors, I would like to sincerely thank my thesis examiners, Dr. Hamou-

Lhadj, Dr. Guéhéneuc, Dr. Belilovsky, and Dr. Xing for their extremely valuable and constructive

suggestions.

I am very lucky to have lively communications and fruitful discussions with all the members of

SPEAR and SENSE. I learned so much from all of you, it is my honor and pleasure to work with

you all.

Last but not least, I would like to express my special thanks to my parents. Words can hardly

express my gratitude and feelings towards you. Your unconditional support sustains me thus far

and keeps me going.

v

Related Publications

Zhenhao Li, “Towards Providing Automated Supports to Developers on Writing Logging State-

ments”, in IEEE/ACM 42nd International Conference on Software Engineering: Companion Pro-

ceedings (ICSE-DS 2020), Seoul, Korea, July 6-11, 2020, pp. 198–201. This work is discussed in

Chapter 1.

Zhenhao Li, Tse-Hsun (Peter) Chen, and Weiyi Shang, “Where Shall We log? Studying and

Suggesting Logging Locations in Code Blocks,” in IEEE/ACM 35th International Conference on

Automated Software Engineering (ASE 2020), Melbourne, Australia, September 21-25, 2020, pp.

361–372. This work is discussed in Chapter 3.

Zhenhao Li, “Studying and Suggesting Logging Locations in Code Blocks”, in IEEE/ACM 42nd In-

ternational Conference on Software Engineering: Companion Proceedings (ICSE-SRC 2020), Seoul,

Korea, July 6-11, 2020, pp. 125–127. This work is discussed in Chapter 3.

Zhenhao Li, Heng Li, Tse-Hsun (Peter) Chen, and Weiyi Shang, “DeepLV: Suggesting Log Levels

Using Ordinal Based Neural Networks”, in IEEE/ACM 43rd International Conference on Software

Engineering (ICSE 2021), Madrid, Spain, May 25-28, 2021, pp. 1461–1472. This work is discussed

in Chapter 4.

Zhenhao Li, Tse-Hsun (Peter) Chen, and Weiyi Shang, “Studying Practitioners’ Expectation on

the Readability of Log Messages”, under review1. This work is discussed in Chapter 5.

Zhenhao Li, Tse-Hsun (Peter) Chen, and Weiyi Shang, “Studying and Exploring Variable-aware

Log Abstraction”, under review1. This work is discussed in Chapter 6.
1These works are currently under the double-blind review process in a conference, we re-phrased the titles to be

different from the submissions and omitted the authors other than the student and his supervisors (the student is the
first author for both of the submissions).

vi

The following publication is not directly related to the materials presented in this thesis but it is

the result of a work conducted in parallel to the research presented in the thesis

Zhenhao Li, Tse-Hsun (Peter) Chen, Jinqiu Yang, and Weiyi Shang, “Studying Duplicate Logging

Statements and Their Relationships with Code Clones”, IEEE Transactions on Software Engineering

(TSE), pp. 2476-2494, 2021.

vii

Contents

List of Figures xii

List of Tables xiv

I Introduction, Background, and Literature Review 1

1 Introduction 2

1.1 Introduction . 2

1.2 Research Hypothesis . 3

1.3 Thesis Overview and Contributions . 5

1.3.1 Chapter 2: Background and Literature Review 5

1.3.2 Chapter 3: Studying and Suggesting Logging Locations in Code Blocks . . . 5

1.3.3 Chapter 4: Suggesting Log Levels Using Ordinal Based Neural Networks . . . 5

1.3.4 Chapter 5: Studying Practitioners’ Expectation on the Readability of Log

Messages . 6

1.3.5 Chapter 6: Studying and Exploring Variable-Aware Log Abstraction 6

1.3.6 Chapter 7: Conclusion and Future Work . 6

1.4 Thesis Organization . 6

2 Background and Literature Review 8

2.1 Background . 8

2.2 Literature Review . 10

2.2.1 Paper Selection . 10

2.2.2 Empirical studies on logging practices . 10

2.2.3 Improving logging practices . 11

2.2.4 Research on log abstraction. 14

viii

II Assist in Making Logging Decisions 15

3 Studying and Suggesting Logging Locations in Code Blocks 16

3.1 Introduction . 17

3.2 Background and Related Work . 18

3.3 Studying the Characteristics of Logging Location in Code Blocks 20

3.4 Automatically Suggesting Logging Locations at the Code Block Level 25

3.4.1 Extracting Block Features . 25

3.4.2 Deep Learning Framework and Implementation 28

3.5 Evaluation . 30

3.5.1 Evaluation Metrics . 30

3.5.2 Case Study Results . 31

3.6 Discussion . 38

3.7 Threats to Validity . 39

3.8 Conclusion . 40

4 Suggesting Log Levels Using Ordinal Based Neural Networks 41

4.1 Introduction . 42

4.2 Preliminary study on log levels . 44

4.2.1 An Overview of the Studied Systems . 44

4.2.2 Investigating Log-level-related Issues . 45

4.2.3 Manually Studying the Characteristics of Log Levels 45

4.3 Automatically Suggesting Log Levels . 50

4.3.1 Feature Extraction . 50

4.3.2 Deep Learning Framework and Implementation 52

4.4 Evaluation . 54

4.4.1 Evaluation Metrics . 54

4.4.2 Case Study Results . 55

4.5 Threats to Validity . 62

4.6 Related Work . 62

4.7 Conclusion . 63

5 Studying Practitioners’ Expectation on the Readability of Log Messages 64

5.1 Introduction . 64

5.2 Related Work . 66

5.3 Research Methodology . 67

ix

5.3.1 Stage 1: Interviews . 68

5.3.2 Stage 2: Manual Investigation . 69

5.3.3 Stage 3: Survey . 70

5.3.4 Stage 4: Automatic Classification . 71

5.4 Results . 72

5.4.1 RQ1: What are Practitioners’ Expectation on the Readability of Log Messages

and How to Improve It? . 72

5.4.2 RQ2: How is the Readability of Log Messages in large-scale Open Source

Software Systems? . 81

5.4.3 RQ3: What is the Potential of Automatically Classifying the Readability of

Log Messages? . 84

5.5 Implications . 84

5.6 Threats to Validity . 86

5.7 Conclusion . 87

III Assist in Log Analysis 88

6 Studying and Exploring Variable-Aware Log Abstraction 89

6.1 Introduction . 90

6.2 Related Works . 92

6.3 Motivating Examples . 93

6.4 Studying the Dynamic Variables in Logs . 94

6.4.1 Manually Studying and Characterizing the Dynamic Variables in Logs 94

6.4.2 A Survey on Log Analysis and Dynamic Variables 97

6.5 An automated Approach for Variable-aware Log Abstraction 100

6.5.1 Data Annotation . 101

6.5.2 Deep Learning Framework and Implementation 101

6.6 Evaluation of VALB . 104

6.6.1 Experimental Setup. 104

6.6.2 Research Questions . 104

6.7 Discussion . 109

6.8 Threats to Validity . 111

6.9 Conclusion . 112

x

IV Conclusion and Future Work 113

7 Conclusion and Future Work 114

7.1 Thesis Contribution . 114

7.2 Future work . 115

Bibliography 117

xi

List of Figures

1 An overall view of this thesis. 4

2 An example of the process from a logging statement to a parsed log template. . . . 9

3 An example of how we label code blocks and extract the tokens for generating the

features. We illustrate the tokens extracted from Code Block B0. 27

4 The overall architecture of our approach. 28

5 Venn diagrams of TP, TN, FP and FN of the three block features. Each number

represents the percentage of the corresponding intersecting set out of the union set. . 34

6 The (a) Balanced Accuracy, (b) Precision, (c) Recall, and (d) F1 of the models trained

from three block features when applied on different types of blocks. 35

7 An example of the syntactic, log message, and combined features we extracted for

each logging statement . 51

8 Overall framework of our approach . 52

9 The accuracy of our approach on each log level . 58

10 Overview of our research methodology and corresponding research questions. 67

11 Survey participants’ rating for the importance of the three aspects. 73

12 Survey participants’ rating for each improvement practice. 81

13 Percentage of log messages with adequate or inadequate readability for different

lengths. Length refers to the number of words of a log message. 83

14 An example of the log abstraction process. 90

15 An example of log parsing before analyzing the sequences of logs. The dynamic

variables in the raw logs and abstracted variables in the parsed log templates are

marked in red. 93

16 An example of our log annotation process. Static words are annotated with O, object

ID is annotated with B-OID, and object name is annotated with B-OBN. 101

17 Overall diagram of our framework. Areas surrounded by dashed lines on the right

illustrate the detailed structure for the character-level representation. 102

xii

18 Average variable-aware accuracy of models fine-tuned with different number of logs

in the target data set comparing with the original results in RQ2-A. 109

19 F1 score achieved by different anomaly detection techniques using sequences of log

templates without variables (Original), and using sequences of log templates with

corresponding category of variables. 111

xiii

List of Tables

1 An overview of the studied systems. 21

2 The results of suggesting logging locations using syntactic (Syn.), semantic (Sem.),

and fused (Fus.) block features. 31

3 The results of cross-system logging locations suggestion using syntactic block features. 37

4 An overview of the studied systems and their log level distributions (%) 44

5 The distribution of the categories of logging locations and log messages for each log

level . 46

6 A comparison between the vectors of log levels that are ordinally-encoded and one-hot

encoded . 54

7 The results of suggesting logging levels using syntactic context (Syn), log message

(Msg), and a combination of both (Comb), compared with Ordinal Regression (OR)

and One-hot Encoding Neurual Network (OEN) . 56

8 The distribution of incorrectly suggested log levels for each actual log level (the first

column) . 58

9 The results of comparing enlarging training data (RQ3-A) on syntactic (S-enlarge.)

and combined feature (C-enlarge.) and cross-project prediction (RQ3-B) on syntactic

(S-cross.) and combined feature (C-cross.) with the within project prediction in RQ1 60

10 An overview of the studied systems. LOC: Lines of code, NOL: Number of logging

statements. 69

11 Percentage (%) of log messages in each system that have adequate readability for all

the three aspects, or inadequate in each of the aspect. 82

12 Balanced Accuracy (%) of different approaches on classifying the readability for each

aspect. 85

13 Precision, Recall, and F1 score (%) of Classifying each aspect of readability using

Bi-LSTM. 85

14 An overview of the log abstraction benchmark data sets. NOL: Number of log tem-

plates, TWV (%): Percentage of log templates with variables, NOV: number of variables 96

xiv

15 The manually-derived categories of dynamic variables with their corresponding abbre-

viations (Abbrev.). Dynamic variable in the example is marked in bold and underline

. 96

16 The survey results of “Opinions on the Categories of Dynamic Variables in Logs”.

UI: usually important, CBI: can be important in some situations, UNI: usually not

important. 97

17 List of questions and results for “Follow-up Questions on Dynamic Variables and Log

Analysis”, the answers are in a scale from 1 (very low extent) to 5 (very high extent). 99

18 Accuracy (%) of VALB on general log abstraction compared with other log parsers and

the baseline (Base). bold numbers: higher than 90, star mark (*): highest accuracy

in each row. 107

19 Variable-aware Accuracy (%) of VALB and the baseline (Base) discussed in RQ2, and

Fine-tuning models with 50 logs from the target data set (F-50) discussed in RQ3. . 107

20 The results of identifying different categories of dynamic variables by our approach

(VALB) and the baseline (Base). 108

xv

Part I

Introduction, Background, and

Literature Review

1

Chapter 1

Introduction

1.1 Introduction

Logging is a common practice in software development and is widely used in large-scale systems to

record system execution behaviors. Developers use the generated logs to assist in various tasks, such

as debugging [156, 43], program comprehension [123], and performance analysis [24, 153]. Developers

write logging statements (e.g., logger.info(“Got successful response {} from URL {}”, response, url);)

to generate logs. In the example above, the logging statement is at the info level, which is the level

for recording execution information. The static text messages include “Got successful response” and

“from URL ”, and the dynamic messages record the values for variables response and url.

Unlike general code, which can be verified through a series of testing practices, currently there are

no frameworks or systematic approaches for verifying the the logging statements. Thus, developers

usually rely on their intuition and experience to compose, review, and update logging statements,

which makes the logging decision a challenging task. Developers need to revisit the logging state-

ments (e.g., change log message or move the logging statement to another place in the source code)

to correctly record execution behaviors [19, 157, 75]. Even though logs are often the most important

source of information for debugging and maintaining large-scale software systems, there exists no in-

dustrial standard on how to write logging statements or help developers make logging decisions [43].

Therefore, making proper logging decisions is a very challenging task [157, 122]. Writing logging

statements improperly may result in ambiguous or inefficient logs that mask important run-time

information.

Hence, C1 : Making proper logging decisions is challenging for developers. For example,

it is difficult to decide where to write logging statements (i.e., where-to-log). Although logs pro-

vide rich information for system diagnosis, logs come with a cost. Adding too much logging may

2

cause significant performance overhead (e.g., affect disk I/O, bandwidth, CPU, and memory con-

sumption) [36, 153]. Inserting too many logging statements might also result in generating too

many trivial logs, which may be redundant or useless; thus, masking real problems [43]. Prior stud-

ies [168, 75] only provide limited suggestions on logging locations (e.g., only at the method-level or

for specific code snippets such as exception handling code). A finer-grained suggestion is needed to

assist developers in making logging decisions.

Apart from the logging locations, it is also difficult to log sufficient information that might be

useful for the downstream tasks (i.e., what-to-log) and also succinctly and accurately record execution

behaviors in a good manner (i.e., how-to-log). Developers rely on log messages to record and un-

derstand system execution [123, 157]. However, the lack of guidelines on writing logging statements

often results in insufficient or even incorrect information recorded in the logs generated [158, 18](e.g.,

outdated static messages or incorrect dynamic variables). Prior studies [158, 18, 51] often focus on

improving existing logging statements by recording additional dynamic variables or fixing typos in

log messages. However, these studies do not help developers mitigate the uncertainty while compos-

ing the contents of logging statements from scratch. Writing unambiguous and informative logging

statements still remains a challenging task.

On top of the challenges in writing logging statements, how to efficiently analyze the generated

logs is also an important yet challenging task in practice. On the one hand, software systems

regularly generate a large amount of logs in a daily routine, the huge volume of logs makes it

difficult to manually analyze the logs. On the other hand, the descriptive texts in logs often have

various format and in free form, which further increases the difficulty of log analysis. Hence, C2 :

How to efficiently analyze logs remains challenging in practice.

Motivated by the importance of logs and the above-mentioned challenges, in this thesis, we

present studies and propose approaches to provide automated supports to developers on making

logging decisions and log analysis. We tackle the above challenges in logging practices from two

aspects, respectively: A1 : Assist in making logging decisions, and A2 : Assist in log analysis.

We then propose a series of approaches on these two aspects to address the challenges and provide

supports to developers.

1.2 Research Hypothesis

Thesis Statement: Making logging decisions remains challenging yet crucial task for devel-

opers. Due to the large volume of logs, log abstraction is a crucial first step for log analysis.

By mining software development data and leveraging practitioners’ knowledge, we can provide

systematic supports to developers on making logging decisions and log analysis.

3

 C1: Difficult to make proper logging decisions

Aspects the

Thesis Works on

Research

Outcomes

O2:

Suggesting Log

levels using
ordinal based

neural networks

O3:

Studying

practitioners'
expectation on

the readability of
log messages

Challenges in

Logging Practices

O1:

Studying and
suggesting

logging locations
in code blocks

O4:

Studying and

exploring
variable-aware
log abstraction

C2: Difficult to efficiently analyze the logs

A1: Assist in making logging decisions A2: Assist in log analysis

Figure 1: An overall view of this thesis.

As shown in Figure 1, we tackle the two challenges that developers are facing in two aspects by

mining software development data and leveraging practitioners’ knowledge. Below, we describe the

two aspects and the corresponding studies for each aspect.

A1: Assist in making logging decisions. Proper logging decision has a great impact on system

maintenance [43]. We propose three approaches to address the first challenge (C1). O1): We

conduct a comprehensive study to uncover guidelines on logging locations (i.e., where do developers

log) by analyzing logging statements and their surrounding code, and propose an automated ap-

proach to provide suggestions for where to write logging statements at the code block level. O2):

We propose an automated approach to suggest the verbosity level for a given logging statement.

O3): We investigate practitioners’ expectation on the readability of log messages by conducting a

multi-method study including interview, manual study, online survey, and automated classification.

A2: Assist in log analysis. Log abstraction is a crucial step for automated log analysis. We

propose one approach to address the second challenge (C2) we discussed above. O4): We conduct

a comprehensive study to investigate what roles do dynamic variables play in log analysis and

propose a deep learning based log abstraction approach, which can identify different categories of

dynamic variables and abstract specified categories. Because the dynamic variables in logs are usually

completely abstracted by prior log abstraction techniques. These abstracted dynamic variables may

also contain important information that is useful based on the given tasks.

4

1.3 Thesis Overview and Contributions

This section presents an overview of the thesis and the contributions, including a brief summary

of each chapter.

1.3.1 Chapter 2: Background and Literature Review

In this chapter, we first present the background related to this thesis. We then present the related

works of our research, including empirical studies on logging practices, improving logging practices,

and research on log abstraction. We also discuss the limitations of prior studies and the points that

this thesis may complement the corresponding research.

1.3.2 Chapter 3: Studying and Suggesting Logging Locations in Code

Blocks

In this chapter, we tackle the challenge by first conducting a comprehensive manual study on

the characteristics of logging locations in seven open-source systems. We uncover six categories

of logging locations and find that developers usually insert logging statements to record execution

information in certain types of code blocks. Based on the observed patterns, we propose a deep

learning approach to automatically suggest logging locations at the block level. We model the

source code at the code block level using syntactic and semantic information. We find that our

approach is effective in suggesting logging locations at the block level. Our cross-system logging

suggestion results also reveal that there might be an implicit logging guideline across systems.

1.3.3 Chapter 4: Suggesting Log Levels Using Ordinal Based Neural Net-

works

In this chapter, we tackle the challenge by first conducting a preliminary manual study on the

characteristics of log levels. We find that the syntactic context of the logging statement and the

message to be logged are related to the decision of log levels, and log levels that are further apart

(e.g., trace and error) tend to have more differences in their characteristics. We propose a deep-

learning based approach that can leverage the ordinal nature of log levels to make suggestions on

choosing log levels, by using the syntactic context and message features of the logging statements

extracted from the source code. Through an evaluation on nine large-scale open source projects, we

find that our approach outperforms the state-of-the-art baseline approaches and our study highlights

the potentials in suggesting log levels to help developers make informed logging decisions.

5

1.3.4 Chapter 5: Studying Practitioners’ Expectation on the Readability

of Log Messages

In this chapter, we investigate practitioners’ expectation on the readability of log messages by

conducting a series of interviews with industrial practitioners. We derive three aspects related to

the readability of log messages along with several improvement practices for each aspect. Our find-

ings receive encouraging feedback from subsequent online questionnaire surveys. We also find that a

considerable proportion of the log messages in large-scale open-source systems have inadequate read-

ability. Therefore, we further explore the potential of automatically classifying the readability of log

messages and find that both deep learning and machine learning approaches can effectively perform

such classifications. The findings of our study provide a systematic understanding of the readability

of log messages and shed light for future studies on providing comprehensive and automated supports

for practitioners’ logging practices.

1.3.5 Chapter 6: Studying and Exploring Variable-Aware Log Abstrac-

tion

Through an empirical study and a survey with industrial practitioners, we find that different

categories of dynamic variables in logs can be important for different tasks, and the distinction of

dynamic variables in the process of log abstraction may help log analysis. We then propose a deep

learning based approach that can identify the category of dynamic variables in the process of log

abstraction. Our approach outperforms state-of-the-art log abstraction techniques on general log

abstraction (i.e., abstracts all the identified dynamic variables), and also achieves promising results

on variable-aware log abstraction (i.e., also identifies the category of dynamic variables). Through an

exploratory study, we also find that variable-aware log abstraction can help improve the performance

of log-based anomaly detection.

1.3.6 Chapter 7: Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis and discuss several potential

directions for future work.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the background and literature

review of this thesis. Chapter 3 presents our study on logging locations at the code block level.

Chapter 4 describes our study on suggesting the logging level using ordinal based neural networks.

6

Chapter 5 discusses our study on the readability of log messages. Chapter 6 presents our study on

investigating the dynamic variables in log abstractions. Chapter 7 concludes the thesis and discuss

the potential directions for future work.

7

Chapter 2

Background and Literature Review

In this chapter, we first present the background related to our research proposal. We then review

the literature related to this thesis, including empirical studies on logging practices, improving

logging practices, and research on log abstraction.

2.1 Background

Background of Logging and Log Analysis. Developers insert logging statements into the

source code to record the run-time behavior of the software systems. Typically, a logging statement

consists of a verbosity level (e.g., trace, debug, info, warn, error), static words, and parameters to

record dynamic run-time information. When the logging statement is executed, a corresponding log

message (i.e., log) will be generated. Developers can then collect and use the generated logs to assist

in a variety of tasks. However, due to the semi-structured format of logs, it is usually difficult to

directly use the raw logs to conduct log analysis. Therefore, one of the first and most important

steps of automated log analysis is log abstraction [25, 54], which parses the raw logs into a more

structured format (i.e., log event).

Figure 2 shows an example of the process from a logging statement to log abstraction. First,

developers insert logging statements into the code during the process of software development or

maintenance. The logging statement in the example consists of a verbosity level (i.e., info level),

some static words (i.e., “Upper limit on the thread pool size is ”), and a parameter to record dynamic

run-time information (i.e., this.limitOnPoolSize). The logging statement then generates a log mes-

sage when it is executed during system running. The generated log is composed of a message header

(e.g., timestamp) that can be configured via the logging library, the static words that always remain

constant, and the dynamic variables that may vary depending on the run-time behaviors. Developers

8

LOG.info("Upper limit on the thread pool size is " + this.limitOnPoolSize);

/* An example logging statement from:
hadoop-mapreduce-project/…/launcher/ContainerLauncherImpl.java */

Logging Statement

2015-10-18 18:01:53,713 INFO [main]
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImpl:
Upper limit on the thread pool size is 500

Generated Log

Log Event

Log template:

Timestamp:

Logger:

Dynamic Variable(s):

2015-10-18 18:01:53,713

Verbosity Level: INFO
[main] org.apache.hadoop.mapreduce.v2.app.launcher.
ContainerLauncherImpl
Upper limit on the thread pool size is <*>

500

Figure 2: An example of the process from a logging statement to a parsed log template.

may then use the generated logs to assist in various tasks, such as failure diagnosis [158]. However,

software systems routinely generate a very large number of logs (e.g., tens of gigabytes), and devel-

opers usually have to rely on their intuitions and experiences to write the logging statements in an

ad-hoc manner [19], which results in the unstructured nature of the generated logs.

Due to the large size of routinely generated logs, it is still challenging and difficult to directly use

or manually analyze the logs in practice. Hence, log abstraction techniques (also called log parsers)

are used to automatically identify the static parts and the dynamic parts from the raw logs to output

the logs in a structured format (i.e., log events). The static parts form the log template, the dynamic

variable is abstracted as a mark of placeholder in the log template. The sequences of log template

can then be analyzed in an automated manner for various tasks (e.g., anomaly detection [162]).

Prior studies propose various log abstraction techniques using different algorithms or method-

ologies. For example, some prior studies [135, 103, 136, 33] use frequent pattern mining to identify

the words that occur frequently in logs. The frequent words are more likely to be part of a log

template (i.e., static words), and the less frequent words are more likely to be values of a dynamic

variable. Some other studies apply clustering algorithms to cluster logs that are textually simi-

lar [42, 130, 101, 124, 49]. Logs that are clustered in the same group are considered to have the

same log template. There are also some prior studies that use different heuristics to identify the

9

static and dynamic parts of logs (e.g., Drain [54], AEL [64], and IPLoM [90]). Nevertheless, prior

studies only focus on abstracting all the dynamic parts of logs and output the static words, without

considering the potentially useful information that is recorded in the dynamic variables.

2.2 Literature Review

2.2.1 Paper Selection

We mainly review the papers related to this thesis in three aspects: 1) empirical studies on

logging practices; 2) improving logging practices; 3) research on log abstraction. We select research

papers related to the above aspects from renowned research venues that publish log-related studies

(e.g., ICSE, FSE, ASE, TSE, TOSEM, EMSE, ICSME).

The research papers related to empirical studies on logging practices mainly study the charac-

teristics of logging practices in different languages (e.g., C/C++, Java) of platforms (e.g., F-Droid,

Linux). Such findings may help developers better understand the logging practices in the corre-

sponding domain. There are also many research papers work on improving logging practices. In

particular, such works can be summarized into three sub-aspects based on the goal of improvement:

1) Where to insert the logging statements (i.e., Where-to-log); 2) What information to include in

the logging statements (i.e., What-to-log); and 3) How to develop and maintain high quality logging

code (i.e., How-to-log). Log abstraction is an important first step towards automated log analysis.

We also summarize the state-of-the-art research works related to log abstraction.

2.2.2 Empirical studies on logging practices

There are several studies on characterizing the logging practices in software systems. Yuan et

al. [157] conducted a quantitative characteristics study on log messages in large-scale open source

C/C++ systems.

Chen et al. [17] replicated the study by Yuan et al. [157] on Java open-source projects. Both

of their studies found that log message is crucial for system understanding and maintenance, and

developers often change log messages to help debugging.

Zeng et al. [159] investigated the logging practices in Android applications. Their findings show

that logs are essential for debugging and maintenance purposes in different domains and platforms.

They find that the a large portion of the logging statements are used for debugging purposes in

those applications, but such debugging logging statements are usually still generated in the released

version of the apps, which may cause potential performance overhead.

Patel et al. [110] studied the logging practices in Linux kernel, they particularly focus on three

10

main aspects related to the logging practices: the pervasiveness of logging in Linux, the types of

changes made to logging statements, and the rationale behind these changes. For the pervasiveness

of logging in Linux, they find that logging statements account for a small portion of the total code

(3.73%) but distribute in more than 70% of the Linux files. For the types of changes made on logging

and the rationale behind, they find that a majority of the changes in logging statements are made

for improving the precision and consistency of the logs, such as fixing language issues and modify

log levels.

Hassani et al. [51] identified seven root-causes of the log-related issues from log-related bug

reports. They found that inappropriate log messages and missing log statements are the most

common issues.

Fu et al. [43] studied where do Microsoft developers add logging statements in the code and

summarized a few logging strategies. They found that developers often add logging statements to

check the returned value of a method.

Prior studies identify the importance of logs and motivate future studies to assist developers in

writing logging statements. The outcome of this research proposal will help developers make better

logging decisions; hence, reduce the cost of maintaining logging statements and help developers

record more accurate logging information.

2.2.3 Improving logging practices

The related work on improving logging practices can be summarized into three sub-aspects: 1)

Where to insert the logging statements (i.e., Where-to-log); 2) What information to include in the

logging statements What-to-log; and 3) How to develop and maintain high quality logging code

How-to-log. Below, we summarize the related work of each aspect.

Where-to-log. The great value of logs results from proper logging decisions that are made by

practitioners during software development. The decisions of where to insert logging statements are

often made in order to balance the benefit and cost from logs. On one hand, inserting too few logging

statements may increase the maintenance difficulty due to the lack of important system execution

information for debugging and analysis. On the other hand, inserting too many logging statements

may result in system overhead (e.g., CPU and storage consumption), and may also hide the truly

crucial system event due to the excessive amount of redundant logs. In order to avoid the problem of

logging too little or logging too much, practitioners need to make more informed decisions on where

to insert logging statements. However, such a crucial task of making logging decisions remains

challenging due to the lack of concrete logging specification and guidelines. Practitioners have to

rely on their intuitions and experiences to compose, review, update and even fix logging statements

in an ad-hoc manner.

11

Zhu et al. [168] provided a tool for suggesting log placement, specifically, in exception handling

code blocks using machine learning techniques. Zhao et al. [165] proposed a tool that determines how

to optimally record system execution without exceeding a pre-defined value of logging performance

overhead.

Fu et al. [43] conduct a systematical study to investigate how do developers in Microsoft make

the decisions on logging locations. They find that around half of the logging statements record

unexpected situations, and the other half record normal execution information in both the the two

systems.

Li et al. [75] proposed an approach that can suggest whether a method should be logged or

not when code changes are committed. They further investigate the most influential factors in their

random forest classifiers to better understand the reasons for log changes. They find that the change

measures are the most influencial factors for the changes of log addition, product measures are the

most influencial factors for the changes of log

What-to-log. A logging statement has three main components: static message, dynamic variables,

and a verbosity level. The static messages and dynamic variables describe the specific runtime be-

haviours and provides valuable information for the downstream tasks using logs. Elaborate message

can facilitate the process of quality assurance and failure diagnosis. However, confusing message may

decrease the efficiency of log analysis or even mislead the effort of developers to a wrong direction.

Due to the lack of concrete guidelines on logging practice, it is difficult to compose the messages

with good quality.

He et al. [53] conducted a comprehensive study to investigate the natural language descriptions

in logging statements (i.e., how do developers write the static messages). They conduct the study

on 10 Java projects and 7 C# projects. They find that that static messages in logging statements

are locally endemic, and the static messages are locally specific in a few source files. Motivated by

the findings, this paper further explores the potential of automatically generating static messages

in logging statements by proposing a retrieval-based approach. Their approach achieves reasonable

BLEU and ROUGH scores and highlights the research opportunies on future researches for towards

automatically generating static messages with high reliability and accuracy.

Apart from static messages, Yuan et al. [158] proposed an approach that can automatically

insert additional variables into logging statements to enhance the error diagnostic information. Liu

et al. [87] proposed a deep learning framework to suggest the variables that should be recorded in

logging statements.

Moreover, when developers are writing a logging statement, they should typically specify a

verbosity level for the logging statement to indicate the extent of severity of this log message. For

common logging libraries such as SLF4j [7], the verbosity levels include trace, debug, info, warn, and

12

error, while trace is the most verbose level and error usually indicates severe system events. When

the logging statement is executed at runtime, the verbosity level will be attached to the header of

the log message to give developers a insight of whether this message needs instant attention or not.

Developers can set the verbosity level to be printed at runtime. For example, if developers set the

level as info, then only the logging statements with info level and more severe levels (i.e., warn,

and error) will generete logs. However, it is challenging for developers to choose a proper log level

for the logging statements. On one hand, choosing a relatively non-severe log level (e.g., trace) for

an critical event can hide important runtime information and make it difficult to diagnose runtime

failures. On the other hand, choosing a relatively severe log level (e.g., error) for a trivial event can

confuse end users and increase the overhead of log management and analysis. Too many false alarms

may also become a burden for developers during the process of debugging and failure diagnosis.

Despite the importance of log levels, there exists no practical guidelines on what log levels to choose

while logging statements.

Li et al. [74] proposed an approach that leverages ordinal regression models to suggest log levels

for a logging statement and achieves a Brier score of 0.44 to 0.66 and an AUC score of 0.75 to 0.81

in the studies projects and outperforms the baseline approaches.

How-to-log. Since there are no well-established logging gudelines available, developers have to

rely on their experience and intuition to compose or revise logging statements, which may result in

“bad” logging statements that generate confusing logs. Moreover, unlike general code, of which the

quality can be verified via software testing, currently there are no exising frameworks for verifying

the quality of the logging statements. How to write “good” logging statements is still challenging for

practitioners.

Chen et al. [18] conducted a study by characterizing and detecting the anti-patterns in the logging

code. They found that developers commonly make some mistakes when writing logging statements

(e.g., logging objects whose values may or null). They concluded five categories of logging anti-

patterns from code changes, and implemented a tool to detect the anti-patterns. They further

proposed an automated tool that can detect the above anti-patterns in the logging statements.

This tool leverages static analysis to analyze the source code and define different rules for each

anti-pattern.

Hassani et al. [51] identified seven root-causes of the log-related issues from log-related bug

reports and found that inappropriate log messages and missing log statements are the most common

issues.

Li et al. [81] studies duplicate logging statements which are logging statements with identical

static messages. They uncover five patterns of duplicate logging code smells and implement a tool

to detect such code smells. They report the detected instances to developers and they are fixed by

13

the developers.

Prior studies mainly focus on improving existing logging statements by adding additional vari-

ables or detecting logging anti-patterns. We study both of the logging contents and logging locations

in the purpose of providing suggestions and guidelines on making logging decisions. Our research

outcome will provide benefits to enhance existing logging statements and suggest better logging

locations.

2.2.4 Research on log abstraction.

There are many prior studies that propose log abstraction techniques (i.e., log parsers) to assist

in log analysis. Some prior studies use frequent pattern mining (e.g., SLCT [135], LFA [103],

LogCluster [136], Logram [33]) to identify the static words that occur frequently in logs.

Some studies leverage clustering algorithms to cluster similar logs (e.g., LKE [42], LogSig [130],

SHISO [101], LenMa [124], and LogMine [49]), since logs in the same cluster then tend to have the

same log template.

There are also some prior studies that use heuristics or a combined approach to identify the

static and dynamic parts of logs. For example, Drain [54] uses a fixed-depth tree to maintain log

groups with the same log template. AEL [64] compares the occurrences between the static words

and the dynamic words to separate logs into different groups. IPLoM [90] leverages an iterative

partitioning strategy to partition logs into different groups. ULP [121] combines string matching

and local frequency analysis to parse large log files, their evaluation results show that ULP can

effectively and efficiently parse large log files.

Zhu et al. [169] conducted a comprehensive study to survey the state-of-the-art log parsers and

evaluate their performance on log parsing. Specifically, this paper collects 13 existing log parsers

using different categories of methodologies. This paper summarizes the characteristics of those log

parsers from six aspects: mode (i.e., online or offline), efficiency, coverage (i.e., the capability to

parse all the logs), preprocessing (i.e., requires manual pre-processing), open-source, and industrial

use. They further evaluate the performance of the 13 log parsers on 16 benchmark data sets in

three aspects: accuracy, robustness, and efficiency. Based on their results, they find that Drain [54]

achieves the best overall accuracy among the 13 log parsers.

In addition to prior log abstraction techniques that aim to identify and abstract the dynamic

parts in logs, the outcome of our research proposal can also distinguish different categories of dynamic

variables. Developers can specify the categories to keep their values based on the tasks and needs.

14

Part II

Assist in Making Logging Decisions

15

Chapter 3

Studying and Suggesting Logging

Locations in Code Blocks

Developers write logging statements to generate logs and record system execution behaviors to

assist in debugging and software maintenance. However, deciding where to insert logging statements

is a crucial yet challenging task. On one hand, logging too little may increase the maintenance dif-

ficulty due to missing important system execution information. On the other hand, logging too

much may introduce excessive logs that mask the real problems and cause significant performance

overhead. Prior studies provide recommendations on logging locations, but such recommendations

are only for limited situations (e.g., exception logging) or at a coarse-grained level (e.g., method

level). Thus, properly helping developers decide finer-grained logging locations for different situa-

tions remains an unsolved challenge. In this chapter, we tackle the challenge by first conducting

a comprehensive manual study on the characteristics of logging locations in seven open-source sys-

tems. We uncover six categories of logging locations and find that developers usually insert logging

statements to record execution information in various types of code blocks. Based on the observed

patterns, we then propose a deep learning framework to automatically suggest logging locations at

the block level. We model the source code at the code block level using the syntactic and semantic

information. We find that: 1) our models achieve an average of 80.1% balanced accuracy when sug-

gesting logging locations in blocks; 2) our cross-system logging suggestion results reveal that there

might be an implicit logging guideline across systems. Our results show that we may accurately

provide finer-grained suggestions on logging locations, and such suggestions may be shared across

systems.

16

3.1 Introduction

Logs play an important role in maintaining software systems and diagnosing issues that happen

during runtime. Developers rely on logs for various maintenance activities, such as debugging [158,

156, 43], testing [21, 24, 84, 25], and system comprehension [105, 104]. Developers insert logging

statements in the source code with different verbosity levels (e.g., trace, debug, info, warn, error,

and fatal) to record system execution information and values of dynamic variables. For example, in

the logging statement: log.warn(“Invalid groupingKey:”, + key), the static text message is “Invalid

groupingKey:”, and the dynamic message is the value of the variable key. The logging statement

is at the warn level, which is the level for recording information that may potentially cause system

oddities [4].

The great value of logs results from proper logging decisions that are made by practitioners during

software development [73]. The logging decisions are often made in order to balance the benefit and

cost from logs [73]. On one hand, inserting too few logging statements may increase the maintenance

difficulty due to missing important system execution information for debugging and analysis [168].

On the other hand, inserting too many logging statements may increase system performance overhead

and produce excessive trivial logs which increase the difficulty of log analysis [73, 152, 168]. However,

such a crucial task of making logging decisions remains challenging due to the lack of concrete

logging specification and guidelines [43]. As a result, developers have to rely on their intuitions and

experiences to compose, review, update and even fix logging statements in an ad-hoc manner [19,

157, 75, 51].

To address the challenge of making logging decisions, prior studies [168, 43, 72, 36, 153] provide

automated recommendations on logging locations. However, there exist two main limitations in

prior research: 1) Such recommendations are often only for a very limited number of situations.

Approaches from prior research may only provide suggestions for exception handling blocks and

method return values [43, 168]. 2) The logging locations are recommended at a coarse-grained level,

e.g., method level [72]; while practitioners still need to decide the specific location to place a logging

statement inside a method. As a result, in many cases, practitioners often still face challenges when

making decisions on logging locations, despite the advance from recent research outcomes.

In this chapter, we conduct a study to uncover guidelines and provide suggestions on logging

locations (i.e., where do developers log) at a finer-grained level (i.e., block level) by analyzing logging

statements and their surrounding code. Through a manual study on the logging statements from

seven open source systems, we find that the decisions of logging location are often influenced by

both the syntactic and semantic information in the source code. Moreover, the logging statements

often record execution information related to the block in which they reside. Driven by our manual

study results, we extract syntactic (e.g., nodes in abstract syntax trees) and semantic (e.g., variable

17

names) information from the source code and propose an automated deep learning based approach

to suggest logging locations at the block level. We find that our deep learning models outperform

the baseline, and the syntactic block feature achieves the best results (an average balanced accuracy

of 80.1%) compared to semantic and fused (a fusion of syntactic and semantic) features. Moreover,

syntactic information of blocks may be leveraged to provide general logging guidelines across different

software systems. In summary, this study makes the following contributions:

• We uncover six categories of logging locations, which are exception logging in catch blocks,

branch logging in blocks associated with decision-making statements, program iteration log-

ging, logging the start or the end of a method, and function logging in domain-specific methods.

We also discuss the common types of information that is recorded in each category.

• We propose a deep learning based approach to suggesting logging locations at the block level by

leveraging syntactic, semantic and fused block features extracted from the source code. We find

that models trained using the syntactic features have the highest balanced accuracy (80.1%)

among the three types of features. Although there are some differences in the suggestion results

among the three features, syntactic features can capture around 80% of all the suggested true

positives. Our finding shows that most logging decisions may be related to the syntactic

structure of the code.

• The cross-system suggestion results achieve an average balanced accuracy of 67.3%. We also

find that there is a moderate to substantial agreement among the cross-system models trained

using the syntactic features, which shows that developers of different systems may follow certain

implicit guidelines on deciding logging locations.

Chapter Organization Section 3.2 discusses the background and related work of our study. Sec-

tion 3.3 describes the setup of our manual study and the categories of logging locations we find.

Section 3.4 discusses how do we extract block-level features and describes our deep-learning based

approach. Section 3.5 presents the evaluation metrics and the results by answering two research

questions. Section 3.6 discusses the False Positives and False Negatives in our suggestion results.

Section 3.7 discusses the threats to validity of our study. Section 3.8 concludes the chapter.

3.2 Background and Related Work

Developers insert logging statements into the source code to record system runtime information

and use the generated logs to assist in software debugging and maintenance. For example, as shown

in the simplified code snippet from Zookeeper below, the logging statement is at the error level,

18

contains the static message “Missing count node for stat” , and records the dynamic value of the

variable statNode.

DataNode node = nodes.get(statNode);

if (node == null) {

// should not happen

LOG.error("Missing count node for stat {}",

statNode);

return;

}

The logging statement is closely related to the specific value of the DataNode object and records

an unexpected execution behavior in an if block when the value of the node is null. Helping

developers decide where to log is an on-going research problem. Fu et al. [43] studied where do

Microsoft developers add logging statements in their projects written in C# and focused on studying

the characeristics of logging in some specific code snippets (i.e., catch blocks and return value checks).

They found that developers often add logging statements to check the returned value of a method

and record exceptions. Zhu et al. [168] further extended the work by providing a tool for suggesting

log placement in the two above-mentioned cases. Li et al. [72, 75] provide suggestions on whether a

method or commit requires a logging statement. In short, prior studies either only target a limited

number of logging locations or provide a coarse-grained suggestion. Therefore, in this chapter,

we explore the potential of providing a finer-grained support on deciding general logging locations

through a manual study (Section 3.3) and propose an automated deep-learning based approach to

suggest logging locations at the code block level (Section 3.4).

Below, we further discuss the related works of this chapter.

Studies on Logging Practices. There are several studies on characterizing the logging practices

in software systems. Yuan et al. [157], Chen et al. [17], and Zeng et al. [159] conducted quantitative

characteristics studies on log messages in large-scale open source C/C++, Java systems, and mobile

applications. Chen et al. [20] studied the logging utilities, and Zhi et al. [166] studied the logging

configurations in Java. They found that logs are essential for debugging and maintenance.

Given the importance of logs, other studies try to help developers improve logging practices. Chen

et al. [18] found that developers commonly make some mistakes when writing logging statements

(e.g., logging objects whose values may be null) and concluded five categories of logging anti-patterns

from code changes. Hassani et al. [51] identified seven root-causes of the log-related issues from log-

related bug reports and found that inappropriate log messages and missing log statements are the

most common issues. Li et al. [81] uncovered potential problems with logging statements that have

the same text message and developed an automated tool to detect the problems. Yuan et al. [158]

19

proposed an approach that can automatically insert additional variables into logging statements to

enhance the error diagnostic information. Li et al. [74] propose the use of prediction models to

suggest the log level of a newly added logging statement. Liu et al. [87] proposed a deep learning

framework to suggest the variables that should be recorded in logging statements.

Different from prior studies, we focus on studying logging locations in the purpose of providing

suggestions and guidelines on the decisions of logging locations. The findings and approaches in this

study can complement prior studies in providing more comprehensive logging supports to developers.

Applying Deep Learning in Software Engineering Tasks. Due to the advances in deep

learning, recent research starts to investigate source code representation and apply deep learning

models in software engineering tasks. Zhang et al. [160] proposed an AST-based neural network for

source code representation. They evaluated their approach on several software engineering tasks,

such as source code classification and code clone detection, and the results outperformed existing

approaches. Tufano et al. [133] evaluated different representation of source code (e.g., abstract

syntax tree and control flow graph) and their effect on applying deep learning models in SE tasks.

Hu et al. [60] proposed a deep learning based approach to automatically generate comments for Java

methods. Nghi et al. [106] applied deep learning models to identify the programming language used

in an algorithm. Different from prior studies, we focus on extracting source code features to suggest

which blocks need to be logged. We conduct a comprehensive manual study on the characteristics

of logging locations and propose a deep learning based approach to provide automated suggestions.

3.3 Studying the Characteristics of Logging Location in Code

Blocks

To better understand developers’ logging decisions and provide more concrete logging suggestions,

in this section, we manually inspect the logging statements and their surrounding code. We examine

if there exist finer-grained (e.g., at code block levels) implicit or explicit common characteristics of

the locations where developers insert logging statements.

Studied Systems. We conduct a manual study on seven large-scale open source Java systems:

Cassandra, Elasticsearch, Flink, HBase, Kafka, Wicket, and ZooKeeper. Table 1 shows an overview

of the systems. The studied systems cover different domains (e.g., message broker, search engine, and

database), have high quality logging code, and are commonly used in prior log-related studies [72,

18, 19, 81]. The size of the studied systems ranges from 97K to 1.5M LOC, and they contain from

0.4K to 5.5K logging statements.

20

Table 1: An overview of the studied systems.

System Version LOC NOL #LB #NLB %LB

Cassandra 3.11.4 432K 1.3K 1.0K 25.0K 3.8%

ElasticSearch 7.4.0 1.50M 2.5K 1.9K 54.0K 3.4%

Flink 1.8.2 177K 2.5K 2.4K 27.5K 8.0%

HBase 2.2.1 1.26M 5.5K 4.1K 81.1K 4.8%

Kafka 2.3.0 267K 1.5K 1.0K 9.0K 10.0%

Wicket 8.6.1 216K 0.4K 0.3K 9.1K 3.2%

Zookeeper 3.5.6 97K 1.2K 0.9K 5.2K 14.8%
Note: LOC refers to the lines of code, NOL refers to the number of logging statements, #LB and #NLB refers to the number of logged and

non-logged blocks respectively, %LB refers to the percentage of logged blocks over all the blocks.

Manual Study Setup. Our goal is to manually inspect the logging statements and their sur-

rounding code to study the characteristics of logging locations. To prepare the data for our manual

study, we extract the logging statements from the source code by implementing a static code parser.

Our parser identifies every logging statement that invokes common logging libraries (e.g., Log4j [4]

and SLF4J [7]) in the code. Then, for each logging statement, we extract its static message and

dynamic variables, its verbosity level, its location (i.e., the file and method that contains the logging

statement), and its surrounding code (i.e., the method that contains the logging statement). After

getting all the logging statements and the extracted information, we randomly sample 375 out of

14.9K logging statements based on a 95% confidence level and 5% confidence interval [13]. For each

sampled logging statement, we study its structural information and data flow of the surrounding

code, in order to see the potential factors taking part in the decision of inserting the logging state-

ments in a block. Specifically, we follow an open coding-like process similar to prior studies [81],

and involve in the following three phases to conduct the manual study:

Phase I : We study 100 randomly sampled logging statements and their extracted information,

and record the characteristics of their data flow, structural, and semantic information (e.g., the

dependency of variables, control flow, and the business logic of the code). We further derive a draft

list of categories of logging locations based on the information recorded. Then we follow the draft list

to label the 100 samples collaboratively. During this phase, the categories are revised and refined.

Phase II : We independently assign the categories derived in Phase I to the rest of the 375

sampled logging statements. There is no new category derived in this phase.

Phase III : We compare the assigned categories in Phase II. Any disagreement of the cate-

gorization is discussed until reaching a consensus. No new categories are introduced during the

discussion. The results in this phase have a Cohen’s Kappa of 0.86, which is a substantial-level of

agreement [126].

Categories of Logging Locations. In our manual study, we uncover six categories of logging

21

locations that are associated with four different types of blocks (i.e., try-catch, branching, looping,

and method declaration). In particular, we find that three categories are associated with try-

catch, branching, and looping blocks; and three categories are associated with method declaration

blocks that record method execution information. Below, we discuss each category in detail with an

example.

Category 1 (Try-Catch Block): Exception information logging in catch blocks (122/375, 32.5%). Ex-

ceptions are widely used to capture errors. Developers rely on logs for debugging and error diagnos-

tics when exceptions occur [155, 43]. The code snippet below shows an example of logging statements

in this category. Similar to a prior study [43], we find that a large number of sampled logging state-

ments reside in catch blocks. Most of them are at error (52/122, 42.6%) or warn (46/122, 37.7%)

level. The logging statements often record messages or execution information related to the prior

try block.

try {

listener.onCache(shardId, fieldName, fieldData);

} catch (Exception e) {

logger.error("Failed to call listener on atomic

field data loading", e);

}

Category 2 (Branching Block): Branch logging in blocks associated with decision-making statements

(139/375, 37.1%). We find that many sampled logging statements reside in blocks associated with

decision-making statements [5] (e.g., if-else and switch) to record the execution information in differ-

ent branches. The variable or the invoked method in the condition of the decision-making statement

(e.g., the arguments in the if statement) are processed or defined in the prior code. Among the

logging statements in this category, around half of them (68/139, 48.9%) record the occurrence of an

unexpected execution behavior (e.g., an error or a failure) with a warn level or above (e.g. error), as

shown in the code snippet below. The remaining cases record the occurrence of a normal execution

behavior with an info, debug, or trace level for system comprehension or debugging purposes.

final TaskId id = partitionsToTaskId.get(tp);

...

if (id != null) {

taskIds.add(id);

} else {

log.error("Failed to lookup taskId for partition

{}", tp);

}

22

Category 3 (Looping Block): Program iteration logging (25/375, 6.7%). We find that some sampled

logging statements reside in blocks that are associated with looping statements [5, 148] (e.g., code

blocks that are associated with for, while, and do-while statements). These logging statements often

record the execution state during iterating (e.g., recording the ith execution inside a for block) or

variables that are processed or defined in prior blocks. We also find that no logging statements

under this category are at error or fatal level. All logging statements are at the level of info (13/25,

52.0%), debug (6/25, 24.0%), or trace (6/25, 24.0%). In short, developers are more likely to add

logging statements in such blocks for debugging and recording program execution.

IndexStatistics[] stats = getIndexStatistics(total);

...

for (IndexStatistics s : stats) {

LOG.info(" Object size " + s.itemSize() + " used="

+ s.usedCount());

}

Category 4 (Method Declaration Block): Logging the start of a method (33/375, 8.8%). We find

that some sampled logging statements reside at the beginning of a method, mostly for recording

the program execution state or debugging purposes. These logging statements record the start of

the method execution (e.g., “Start to build the program from JAR file.”) at the info (21/33, 63.6%),

debug (8/33, 24.3%), or trace (4/33, 12.1%) level. Different from other categories, we do not find

the location of logging statements in this category depend on prior code in the method. However,

we find that these logging statements record the execution of some methods of which the process

is important to know and with some specific semantics in the code (e.g., recovery(), perform(), and

queue()), as shown in the code snippet below.

public void perform() throws Exception

{

LOG.info(String.format("Performing action: Rolling

batch restarting {} of region servers",

(int)(ratio * 100)));

List<ServerName> selectedServers = selectServers();

Queue<ServerName> serversToBeKilled = new

LinkedList<>(selectedServers);

...

//code for performing server-killing related tasks

...

}

23

Category 5 (Method Declaration Block): Logging the end of a method (27/375, 7.2%). In this

category, the logging statements reside at the end of a method, recording the successful method

execution (e.g., “Removed job graph from ZooKeeper” , as shown in the code snippet below). We

find that most of them (22/27, 81.5%) are at the info level, and the rest are in debug (3/27, 11.1%),

trace (1/27, 3.7%) and warn (1/27, 3.7%) level, which may show that such logs are mostly for

debugging and recording program execution. The logging statement may record variable values that

are declared or modified in prior blocks when the method execution finishes. Similar to Category 5,

we find that the logging statements in this category might reside in semantically similar methods of

which the execution is important to be recorded (e.g., shutdown(), delete(), and remove()).

public void removeJobGraph(JobID jobId) throws

Exception

{

checkNotNull(jobId, "Job ID");

String path = getPathForJob(jobId);

...

addedJobGraphs.remove(jobId);

//code for removing ZooKeeper job graph

...

LOG.info("Removed job graph {} from ZooKeeper.",

jobId);

}

Category 6 (Method Declaration Block): Function logging in domain-specific methods (29/375, 7.7%).

We find that developers sometimes insert logging statements in some domain-specific methods (e.g.,

handling a specific request) to record the execution of this method. We also find that these methods

are usually very short (i.e., within 10 lines of code). As shown in the example below, in the method

handleResponse() in Elasticsearch’s JoinHelper.java, there are only a few lines of functional code

statements but has a logging statement recording the execution behavior of this method. Among

the logging statements in this category, 21/29 (72.4%) are at the info level or below (i.e., debug

or trace level) to record the methods handling normal requests, and the rest 8/29 (27.6%) logging

statements are at the warn or error level to record the methods handling abnormal situations (e.g.,

onFailure()). We also find that these short methods might be semantically similar based on our

manual observation (e.g., share many common words such as handle and execute).

public void handleResponse(Empty response) {

pendingOutgoingJoins.remove(dedupKey);

logger.debug("successfully joined {} with {}",

destination, joinRequest);

24

lastFailedJoinAttempt.set(null);

}

In summary, our findings show that there may be an implicit logging guideline that developers

follow in the studied systems. Both syntactic and semantic information are important considera-

tions in such logging guidelines. In particular, we find that 76.3% (286/375, combining Category 1,

Category 2 and Category 3) of the sampled logging statements are related to recording information

in blocks associated with syntactic information of the source code (e.g., try-catch, branching, or

looping blocks). These logging statements also often record information (e.g., variable values or

execution states) that is related to prior blocks. We find that 23.7% (89/375, combining Category

4, Category 5 and Category 6) of the sampled logging statements may be inserted based on the se-

mantic information (i.e., business logic) of the method inside the method declaration block. These

logging statements often record the start and end of method execution, or record the execution of

some domain-specific methods (e.g., request handling or task execution).

By uncovering six categories of logging locations, we find that both syntactic and semantic

information are important considerations in such logging guidelines. 76% of the sampled logging

statements are related to recording exception, branching, and program iteration; while 24% are

related to recording the start, end, or execution of certain methods.

3.4 Automatically Suggesting Logging Locations at the Code

Block Level

As we find in Section 3.3, developers usually insert logging statements to record the behavior or

state of the program in blocks (e.g., exception handling in catch blocks or branch logging in if/else

blocks). We also find that some logging locations may be related to the semantics of a method (e.g.,

recording the start of a certain method execution). Hence, such syntactic and semantic information

may compose implicit logging guidelines that developers follow when deciding on logging locations.

In this section, we seek to explore the potential of automatically suggesting logging locations

at the block level. Such an automated approach might further assist developers in making logging

decisions and improving logging practice. Below, we describe our approaches that extract block

features and build a deep learning model to suggesting logging locations.

3.4.1 Extracting Block Features

Identifying Logged Blocks. Our goal is to provide suggestions on deciding blocks that require

logging statements. We choose to provide a suggestion at the block level because as we find in

25

Section 3.3 that many logging statements are recording the behaviour or state of the program in

blocks. In addition, blocks provide a finer-grand suggestion which may be more actionable compared

to coarse-grand suggestions (e.g., method or file level) [144, 143]. We analyze the source code by

parsing the abstract syntax tree (AST) of every method in the studied systems. Then, we identify

the AST nodes in a method that represent blocks, such as the block nodes that are associated with

if, for, and catch. Hence, each method may contain multiple blocks. For the block nodes that we

identified, we then label them as either logged block or non-logged block by analyzing if the block

contains at least one logging statement. Specifically, only the block that directly contains a logging

statement is labelled as a logged block. For example, as shown in Figure 3, block B0 (line 3 - 6)

is labelled as a logged block because there is a logging statement in line 4. Block B1 is labelled as

a non-logged block, because the logging statement in line 4 is not directly contained by block B1.

Table 1 shows the statistics of blocks in the studied systems. #LB refers to the number of logged

blocks, #NLB refers to the number of non-logged blocks, and %LB is the percentage of logged blocks

over all the blocks. Note that there might be multiple logging statements in a block, so the number

of logged block is smaller than the number of logging statements in each system. In general, we

find that only a small portion, i.e., 3.2% to 14.8% of the blocks contain logging statements. Hence,

accurately suggesting logging locations at the block level is a challenging task.

As we find in Section 3.3, the locations of logging statements may be influenced by either the

syntactic, semantic, or both types of information in source code. In order to obtain the features for

training deep learning models and to further study the effectiveness of these features in suggesting

logging locations, we then extract the syntactic, semantic, and fused block-level features when we

are analyzing the source code of each block.

Extracting Block Features. In our manual study, we find that logging statements often have

dependencies with the preceding code in the same method. For example, the arguments in the if

statement are processed or defined in the prior code (as shown in Section 3.3). As also found in

prior studies [43, 53], developers may insert logging statements based on the execution flow prior to

the logging point.

Therefore, for each identified block, we analyze the source code from the start of the method, in

which the code block is located, to the end of the block. This could also reflect developers’ sequential

workflow by suggesting whether or not a block needs a logging statement when developers finish

implementing the block [40]. For example, in Figure 3, for block B0, we consider the code statements

from line 1 to line 6. Similarly, for block B1, we consider the code statements from line 1 to line 8.

Specifically, for each code block in a studied system, we find all the AST nodes from the start of the

method to the end of this block. Then for each AST node, we record its type (e.g., MethodInvocation,

VariableDeclaration, or CatchClause), the associated semantic information (e.g., the name of the

26

Figure 3: An example of how we label code blocks and extract the tokens for generating the features.

We illustrate the tokens extracted from Code Block B0.

variable declared in the VariableDeclaration node) as well as the location (i.e., class and method,

and the start line and end line). We then extract three types of code block features using the

above-mentioned information from these AST nodes.

Below, we discuss the approaches that we use to extract syntactic, semantic, and fused block

features, respectively.

Syntactic Block Features: We extract the syntactic features that represent the structural infor-

mation from the AST nodes in code blocks. We capture the syntactic information by extracting the

AST nodes that are related to the control flow of the code. We exclude AST nodes, such as Simple-

Name (i.e., identifier name) and SimpleType (i.e., identifier type), which do not contain structural

information of the code. For each block, we count the occurrence of each AST node in the block

and all preceding code in the same method. At the end of the syntactic feature extraction, for each

block, we obtain a vector that represents the occurrence of each structural AST node in the block

and its preceding code. We call each element in the vector as a token. Figure 3 shows an example

of the syntactic features for the B0 block, where we extract the AST nodes from the feature scope.

Semantic Block Features: We extract the semantic features from the textual information inside

the code blocks. Prior studies found that information such as variable names may capture the

semantic information of the code [168, 27, 26, 61]. Therefore, we process variable names and invoked

methods in the block as plain text. For each block, we consider all the semantic information in the

27

Source Code

[[

[[

......

1
0
1
...
...
0

1
0
0
...
...
0

Code Block Features
(Integer Representation)

Word Embedding Layer

......

RNN Layer
(LSTM)

RNN
Cell

RNN
Cell

RNN
Cell

......

RNN
Cell

Dropout Layer

......

Output Layer

Figure 4: The overall architecture of our approach.

block and in the preceding code in the same method. Note that we exclude all reserved keywords

in the programming languages, such as if, else, and for, to avoid capturing structural information.

We follow common source code preprocessing techniques: splitting the words using camel case,

converting all words to lower case, and applying stemming [87, 27]. Figure 3 shows an example of

the semantic block features of the B0 block.

Fused Block Features: Developers may add logging statements based on both the syntactic and

semantic of the code. Therefore, in addition to building separate models using the above-mentioned

syntactic and semantic features, we also combine both types of information together (i.e., fused

features). To obtain fused features of code blocks, we build an unified corpus containing both

syntactic and semantic information of the source code by following a prior study [76]. Specifically,

we merge the syntactic and semantic features in a block together, while keeping the original orders

of those AST nodes in the source code. Then, for each fused code block, we obtain the vector

representation similar to the process discussed in other types of features. Figure 3 shows an example

of the fused code block features of the B0 block.

3.4.2 Deep Learning Framework and Implementation

We formulate the process of suggesting logging locations as a binary classification problem. Given

a block, we apply deep learning models to suggest whether or not the block should contain a logging

statement. In this subsection, we discuss the overall architecture and implementation of our deep

learning model.

Overall Architecture. Figure 4 shows the overall architecture of our approach. We first map

our input vectors (i.e., syntactic, semantic, and fused features) through an embedded layer. The

embedded layer learns the relationship and similarity among the vectors in each block feature and

processes each vector based on integer encoding to probabilistically distributed representations. We

28

then employ a recurrent neural network (RNN) layer to model the relationship between the logging

decision of a block and the vectors returned from the embedding layer. Finally, the output layer

of our deep learning model is a one-dimension dense layer with the sigmoid activation function to

suggest whether a block should be logged or not. Below, we discuss the details of each layer.

Embedding Layer. After extracting the syntactic, semantic, and fused features (i.e., in the forms

of vectors, as illustrated in Figure 3), we feed them to the embedding layer. The embedding layer

captures the linear relationships among tokens in the input vector, and outputs a set of new vectors,

called word embeddings [134, 100]. Compared to simple integer encoding or one-hot encoding which

does not consider the relationship among the tokens, word embeddings can learn the similarities

among tokens and return probabilistically distributed representations of the words (e.g., run and

execute might be similar in vector space).

RNN Layer. Since source code provides instruction on system execution, there are dependencies

between consecutive lines of source code. For example, as we discussed in our manual study, the

condition variable in IfStatement may have dependency on prior source code, because the variable is

defined or processed priorly. Hence, we follow prior studies [29, 46, 106, 160] and model source code

as sequential data (i.e., we consider the order of the source code tokens in the data). We include

a layer of Long Short Term Memory (LSTM) in the deep learning model, which is a variant of

RNN that includes a memory cell and gate mechanisms in the recurrent unit to preserve long term

dependencies of the code [59, 69, 47, 39].

Output Layer. After the previous layers, the block features are still high-dimensional vectors.

In order to make a binary suggestion of whether a block is logged or non-logged, we use a one-

dimensional dense layer with sigmoid activation function as the output layer of our approach. This

layer takes all outputs from the previous layer to its unique neuron, then the neuron provides the

final suggestion (i.e., logged or non-logged) of this block.

Implementation and Training We use Keras [3] to implement our deep learning model. For the

embedding layer, we adopt Skip-gram from Word2vec [2] and set the dimension to 100 [87] to obtain

the word embeddings of each type of the three features separately. For the RNN layer, we set the

dimension of hidden states as 128 and attach a dropout layer with a 0.2 dropout rate in order to

reduce the potential impact of overfitting and immoderate reliance on the trained system [128, 58,

161]. We train our model for 100 epochs on each studied system and set the batch size to 24. Because

there is a noticeable imbalance between the number of logged blocks and non-logged blocks (overall

only 3.2% to 14.8% blocks are logged blocks, as shown in Section 3.4), for each studied system and

each type of code block features, we apply stratified random sampling [113] (i.e., ensure the random

sample has the same distribution of classes as the original data) to split the block features into

29

training set (60%), validation set (20%) and testing set (20%) [160, 87]. Note that we remove

the log-related statements when we are generating the features to avoid biases in the

suggestion results. Finally, we upsample the logged block features in the training set after the

splitting process to mitigate the impact of data imbalance [112, 11].

3.5 Evaluation

In this section, we evaluate our approach by introducing the evaluation metrics and answering

two research questions.

3.5.1 Evaluation Metrics

Given the features of a code block as inputs, our deep learning model suggests if this block

is logged or non-logged. To evaluate the performance of our model, we use Balanced Accuracy,

Precision, Recall, and F-measure as our evaluation metrics.

Balanced Accuracy. Balanced accuracy is widely used by prior studies to evaluate model perfor-

mance on imbalanced data [168, 75]. It calculates the average of True Positive Rate (i.e., how many

suggested logged blocks are correct) and True Negative Rate (i.e., how many suggested non-logged

blocks are correct). Balanced accuracy is computed as:

BalancedAccuracy = (
TP

TP + FN
+

TN

TN + FP
)/2

where TP, TN, FP and FN refer to True Positive, True Negative, False Positive (i.e., suggested as

a logged block but is actually a non-logged block) and False Negative (i.e., suggested as a non-logged

block but is actually a logged block), respectively. A high balanced accuracy means both the majority

class (i.e., non-logged block) and minority class (i.e., logged block) are accurately suggested.

Precision. In our study, precision represents the ability of our approach to correctly suggest logged

blocks (i.e., how many logged blocks suggested by our model are correct). Specifically, precision is

defined as:

Precision =
TP

TP + FP

Note that only positive labels (i.e., logged block) are considered for this metric (i.e., the performance

on non-logged data does not affect our calculation of precision). Hence, a high precision means that

most of the suggested logged blocks are indeed logged.

Recall. Recall represents the ability of finding logged blocks from the data set (i.e., how many logged

blocks can be suggested by our approach). It is computed as:

30

Table 2: The results of suggesting logging locations using syntactic (Syn.), semantic (Sem.), and

fused (Fus.) block features.

Balanced Accuracy Precision Recall F1

Systems Syn. Sem. Fus. RG. Syn. Sem. Fus. RG. Syn. Sem. Fus. RG. Syn. Sem. Fus. RG.

Cassandra 83.0 65.8 65.2 49.8 51.7 37.1 31.8 3.0 56.6 33.7 33.2 3.5 54.0 35.3 32.5 3.2

Elasticsearch 81.9 67.7 69.9 50.1 52.0 29.7 24.3 3.6 55.6 38.6 44.7 3.7 52.9 33.6 31.5 3.6

Flink 83.0 74.2 75.0 50.0 58.9 36.0 37.6 5.6 70.9 54.4 55.6 8.7 64.3 43.3 44.9 6.8

HBase 80.5 69.7 72.9 49.9 56.1 45.2 43.2 4.8 63.4 41.9 49.1 5.0 59.5 43.5 45.9 4.9

Kafka 74.4 68.3 67.5 50.1 41.5 30.8 37.4 9.5 58.2 48.5 49.0 11.0 47.3 37.7 42.5 10.2

Wicket 84.7 76.6 72.2 50.0 45.7 28.1 26.9 3.7 72.3 58.5 49.2 3.2 56.0 37.9 34.8 3.4

Zookeeper 72.9 64.6 70.5 49.8 48.3 39.6 47.5 12.8 55.6 39.2 50.3 16.8 51.7 39.4 48.9 14.5

Average 80.1 69.6 70.5 50.0 50.6 35.2 35.6 6.1 61.8 45.0 47.3 7.4 55.1 38.7 40.2 6.7
Note: RG. represents the result of the baseline. For each system and for each evaluation metric, the block feature that

yields the best performance is marked in bold. All the numbers represent percentage.

Recall =
TP

TP + FN

Same as precision, only positive labels are considered for this metric. A higher recall means that we

can identify more code blocks that need to be logged.

F1 Score. F1 score is a metric that considers both precision and recall. It is computed as:

F1 = 2 ∗ (Precision ∗Recall

Precision+Recall
)

F1 score balances the use of precision and recall and provides a more realistic measure of the

performance by using both of them. A high F1 score means that we can both accurately and

sufficiently suggest logged blocks.

3.5.2 Case Study Results

In this subsection, we present the results for our research questions (RQs). For each RQ, we

describe the motivation, approach, and results and discussions.

RQ1: How effective are different block features when suggesting logging locations?

Motivation. Deciding where to log is a challenging practice [43, 168, 75]. As we find in our

manual study, there exist some common characteristics of where developers insert logging statements.

Logging location might be related to either the syntactic information, semantic information of the

code, or both. In this RQ, we investigate the performance of our deep learning models and how each

block feature performs in suggesting logging location. Our finding may help validate our manual

31

study results that there may be an implicit logging guideline that developers follow, and identify the

important features in suggesting logging location. Specifically, we split this RQ into three sub-RQs:

RQ1.1: What is the performance of the three block features when suggesting logged blocks?

RQ1.2: Do different block features capture different information?

RQ1.3: What are the suggestion accuracies for different categories of logged blocks?

Approach. We train our deep learning framework on the training data by following the process

discussed in Section 3.4. We conduct our experiments on the same systems that we used in our

manual analysis. For each studied system, we train three models using different types of block

features (i.e., syntactic, semantic, and fused). Finally, we evaluate the model performance on the

testing set using the above-mentioned evaluation metrics. Note that we pre-determined the training

(60%), validation (20%), and testing (20%) data set before extracting the block features. Hence, we

use the same set of code blocks for each system when evaluating the syntactic, semantic and fused

blocks features.

RQ 1.1: What is the performance of the three block features when suggesting logged blocks? To

evaluate the effectiveness of our models, we compare the results of the models trained using three

block features with a baseline. Since there is no prior study that suggests logging locations at

the block level, we use Random Guess (RG) as our baseline, which is commonly used by prior

studies [146, 145, 137, 81, 45, 28, 87]. Given a block in a studied system, Random Guess suggests

whether this block should be a logged block or non-logged block based on the proportion of logged

block in this system. For example, 10% of the code blocks in Kafka are logged block as shown in

Table 1. Then, for each code block being tested, there is a 10% chance for Random Guess to suggest

it as a logged block and a 90% chance to suggest it as an non-logged block. We repeat the Random

Guess 30 times (as suggested by previous studies [45, 28]) for each system to reduce the biases. We

report the average values of the four evaluation metrics computed based on the 30 times of iterations

as the result of Random Guess.

RQ 1.2: Do different code block features capture different information? To further investigate if

different block features capture different information in the source code, we examine the overlap and

differences of the results generated from the models trained by using three block features. For each

type of block feature, we collect the prediction results on the testing data of seven studied systems,

analyze the True Positives, True Negatives, False Positives, and False Negatives, and compute the

percentage of overlap among the syntactic, semantic and fused block features.

RQ 1.3: What are the suggestion accuracies for different categories of logged blocks? Since three

code block features may capture different information in the source code, they might have varied

performance when predicting different categories of logged blocks. Hence, we further evaluate the

performance of the three block features on the different categories of logging statements (Section 3.3).

32

We report the suggestion results based on the type of blocks that the logging statement is associated

with (i.e., try-catch block, branching block, looping block, and method declaration block).

Results and Discussions.

RQ 1.1. Table 2 presents the results of the models built using the Syntactic (Syn.), Semantic (Sem.)

and Fused (Fus.) code block features, and the baseline Random Guess (RG.). Overall, for all

the evaluation metrics, models trained by using the block features outperform the baseline. The

precision of RG ranges from 3.0% to 12.8%, recall ranges from 3.2% to 16.8%, and the balanced

accuracy ranges from 49.8% to 50.1%. Note that RG makes suggestion based on the distribution of

training data, the distribution of logged and non-logged blocks in the testing data is the same as the

original data (as shown in Table 1). Therefore, given sufficient trails, the balanced accuracy of RG

will be close to 50%. We find that models trained using the syntactic block features have the best

performance compared to other block features across all studied systems. In particular, the balanced

accuracy of semantic and fused features ranges from 64.6% to 76.6%, while for syntactic feature it

is over 72.9% on all the studied systems (with an average of 80.1%). The average precision ranges

from 24.3% to 47.5% when using semantic and fused block features, and the average recall ranges

from 33.2% to 58.5%. In comparison, the average precision and recall on syntactic feature are 50.6%

and 61.8%, respectively. The results show that syntactic information might play an important role

in logging decisions and may be leveraged to suggest logging locations.

RQ 1.2. Figure 5 shows the percentage overlap on (a) True Positive, (b) True Negative, (c) False

Positive, and (d) False Negative among the models trained using syntactic, semantic, and fused

block features. Note that Red, Green, and Blue circle represents the suggestion results of syntactic,

semantic, and fused block features, respectively. Each number represents the percentage of the

corresponding intersecting data set (e.g., for TP, 42.0% represents the common set of True Positive

among Syn., Sem. and Fus.) out of the entire set (e.g., for TP, the entire data set is the set that

combines the TP from syntactic, semantic and fused altogether across all studied systems). There

is a 42.0% overlap in TP among the three features, while syntactic covers most of the TPs (79.9%

out of all the TPs) compared to semantic (62.3%) and fused (66.5%) block features. Only 20.1% of

the TPs are missed by syntactic but captured by two other block features. For TNs (i.e., correctly

suggest as non-logged block), almost all (93.9%) are overlapping among the three block features.

The results show that there is a high level of agreement among the models when suggesting the non-

logged blocks. For FPs, there is no considerable overlap among the three features (13.3%). For FNs,

syntactic has the lowest number of FNs (63.2% of the FNs are covered by syntactic, compared to

80.2% covered by semantic and 76.2% covered by combined feature). The results show that different

block features might capture different information from source code. As semantic and fused block

features still capture TPs that are missed by syntactic block feature (20.1%), future work could

33

(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 5: Venn diagrams of TP, TN, FP and FN of the three block features. Each number represents

the percentage of the corresponding intersecting set out of the union set.

34

(a) Balanced Accuracy (b) Precision

(c) Recall (d) F1

Figure 6: The (a) Balanced Accuracy, (b) Precision, (c) Recall, and (d) F1 of the models trained

from three block features when applied on different types of blocks.

35

further investigate how to better combine the two sources of information to provide a sufficient and

accurate suggestion. Moreover, we manually investigate a sample of FPs and FNs. We identify their

characteristics and find that many of them are not indeed FPs and FNs (details in Section 3.6).

RQ 1.3. Figure 6 shows the (a) Balanced Accuracy, (b) Precision, (c) Recall, and (d) F1 of the

models when suggesting on different types of blocks associated with the categories in Section 3.3.

Overall, the three block features have a similar trend for the results on different types of blocks.

Syntactic features have the best results for all types of blocks on all the evaluation metrics. Among

the four types of blocks, logging statements associated with try-catch blocks have the best results

on all the evaluation metrics (85.8% balanced accuracy, 75.2% precision, 79.1% recall and 77.2% F1

for syntactic). As also found in prior studies [43, 168], logging statements in such blocks may be

better defined. We also find that logging statements associated with branching blocks have a good

overall suggestion result. In contrast, the results of suggesting logging statements associated with

looping and method declaration blocks are relatively lower (balanced accuracy ranges from 63.2% to

69.0%, and F1 ranges from 22.1% to 23.8%). Although the three block features have a similar trend

of results on different types of blocks, syntactic features are better than the other two for suggesting

logging locations on all the studied types of blocks. Moreover, our study shows that there is a clearer

pattern of inserting logging statements in try-catch and branching blocks (i.e., higher precision and

recall). Practitioners may prioritize reviewing and deciding the given logging suggestions in such

blocks. In addition, future research may investigate other sources of information in order to better

assist in making logging decisions for looping and method declaration blocks.

All the trained models noticeably outperform the baseline. Among the three types of block

features, models trained using syntactic block features achieve the best results on all the evalua-

tion metrics. The results show that syntactic information might be leveraged to suggest logging

locations.

RQ2: Are the trained models transferable to other systems?

Motivation. When working on a new system, developers may encounter difficulties when deciding

logging locations. Different from matured systems with a long period of development and mainte-

nance history, developers working on new systems may not have sufficient knowledge on deciding

where to log. Therefore, in this RQ, we investigate whether different systems share similar implicit

guidelines of logging locations. Our findings may provide evidence on the existence of common log-

ging characteristics across systems and help future research derive a universal logging guideline. In

particular, we study two sub-RQs:

RQ2.1: What is the effectiveness of cross-system logging suggestion?

RQ2.2: What is the level of suggestion agreement on cross-system models?

Approach. In this RQ, we study if logged blocks share similar syntactic block features by doing a

36

Table 3: The results of cross-system logging locations suggestion using syntactic block features.

Balanced Accuracy Precision Recall F1 Fleiss’ Kappa

Systems Within Cross Ratio Within Cross Ratio Within Cross Ratio Within Cross Ratio logged non-logged

Cassandra 83.0 67.8 (σ3.0) 81.7 51.7 37.5 (σ9.1) 72.6 56.6 41.9 (σ7.8) 74.1 54.0 39.1 (σ7.3) 72.5 0.47 (Mod.) 0.90 (Sub.)

Elasticsearch 81.9 65.5 (σ4.5) 80.0 52.0 36.2 (σ11.5) 69.7 55.6 42.0 (σ5.2) 75.6 52.9 37.8 (σ7.0) 71.5 0.45 (Mod.) 0.90 (Sub.)

Flink 83.0 70.2 (σ3.0) 84.6 58.9 30.5 (σ8.8) 51.8 70.9 49.2 (σ9.1) 69.4 64.3 36.7 (σ7.6) 57.1 0.46 (Mod.) 0.91 (Sub.)

HBase 80.5 67.5 (σ2.3) 83.9 56.1 37.5 (σ4.8) 66.9 63.4 41.8 (σ6.7) 66.0 59.5 40.5 (σ4.6) 68.1 0.49 (Mod.) 0.92 (Sub.)

Kafka 74.4 65.7 (σ4.1) 88.4 41.5 32.0 (σ4.2) 77.2 58.2 42.5 (σ6.8) 73.1 47.3 36.2 (σ3.9) 76.6 0.42 (Mod.) 0.88 (Sub.)

Wicket 84.7 67.8 (σ3.3) 80.1 45.7 40.3 (σ5.2) 88.2 72.3 42.1 (σ8.0) 58.3 56.0 40.8 (σ4.7) 72.9 0.43 (Mod.) 0.85 (Sub.)

Zookeeper 72.9 66.8 (σ2.7) 91.7 48.3 33.6 (σ6.2) 69.6 55.6 44.8 (σ5.6) 80.6 51.7 38.3 (σ5.8) 74.1 0.37 (Fair) 0.81 (Sub.)

Average 80.1 67.3 84.0 50.6 35.4 70.0 61.8 43.5 70.4 55.1 38.6 70.0 0.44 (Mod.) 0.88 (Sub.)

Note: Within shows the results of within-system suggestion. Cross shows the average results and

the standard deviation (σ) when applying the models trained using other systems.

cross-system transferable learning. Namely, we study if a model that is trained using the syntactic

features from one system can be used to suggest logging location in another system. We choose to

study syntactic block features because they are extracted from the AST nodes in the source code,

which are common across all Java systems, and they have the best performance compared to the

other two block features as shown in RQ1. Moreover, since the syntactic block features capture the

underlying code structure [61], a high cross-system suggestion accuracy may show the potential of

deriving a logging guideline based on code structure in future studies.

RQ 2.1: What is the effectiveness of cross-system logging suggestion? For each studied system, we

build a model using the syntactic block features and apply the model on each of the other systems.

For example, we train a model using the syntactic block features in Cassandra, and apply the

model on six other studied systems. Finally, we compute and report the average balanced accuracy,

precision, recall, and F-measure of the cross-system logging suggestion.

RQ 2.2: What is the level of suggestion agreement on cross-system models? To study whether the

models trained using different systems capture similar information (i.e., the relationship between the

syntactic features and logging location), we analyze the agreement level of cross-system suggestion

results. We separately examine the suggestion agreement of the cross-system models on logged blocks

and non-logged blocks. Namely, for each studied system, we apply the models trained using other

systems, and study the suggestion results of the cross-system models on the true logged blocks and

the true non-logged blocks, respectively. In particular, we compute Fleiss’s Kappa to study the

agreement among the suggestion results from cross-system models [41]. Fleiss’s Kappa computes

the inter-rater agreement among a fixed set of raters (i.e., suggestion results from different cross-

system models). A higher level of agreement may show that the syntactic block features have very

similar relationships with logged or non-logged blocks across all studied systems.

Results and Discussions.

37

RQ 2.1. Table 3 shows the results of our cross-system suggestions using syntactic block features. In

general, we find that the results of cross-system suggestions are lower than within-system suggestions

using syntactic block features. However, the results are still comparable to within-system suggestions

using semantics and fused block features. For balanced accuracy, the cross-system suggestions

achieve over 80% (i.e., Ratio column in Table 3) of the corresponding within-system suggestion

using syntactic block features. On average, the balanced accuracy ranges from 65.5% to 70.2%, with

standard deviations range from 2.3 to 4.5. For precision, recall, and F1, the cross-system suggestions

achieve 51.8% to 88.2% ratio of the within-system suggestion results. In short, even though we find

that the results of cross-system suggestion are slightly lower than those of within-system, we may

still achieve a reasonable performance. Similar to RQ1, we also manually study a sample of FPs and

FNs from the results of RQ2 (details in Section 3.6).

RQ 2.2. Table 3 also shows the Fleiss’s Kappa [41] for each studied system. For logged blocks, the

agreements are moderate in six studied systems. The agreement level is fair in Zookeeper, but the

value is also close to the threshold of a moderate agreement (i.e., 0.41 [41]). Our results show that the

models trained using the syntactic block features may share certain underlying properties. Namely,

there are some commonalities in the code structure on how developers decide logging locations

across the studied systems. For non-logged blocks, the agreements are substantial across all studied

systems. In short, our findings show that developers are rather consistent on deciding which blocks

do not need logging statements. Although there are some inconsistencies across the studied systems,

we may still apply cross-system models to help suggest logging locations in other systems.

We find that cross-system logging location suggestion achieves a reasonable performance com-

pared to within-system suggestion (i.e., 84% of the within-system balanced accuracy). We also

find that the cross-system models have moderate agreements on logged blocks and substantial

agreements on non-logged blocks. Our results show that developers in different systems may

follow certain implicit guidelines on deciding logging locations.

3.6 Discussion

As shown in the RQs, our models can provide promising results of suggesting logging locations.

To further inspire future studies and better assist practitioners, we conduct a manual study to

understand the FPs and FNs in the suggestion results. For each studied system in RQ1 and for

each of the three models (i.e., Syntactic, Semantic, and Fused, simplified as Syn., Sem. and Fus.),

we select the top-five FPs and FNs for our manual study, ranked by their suggested probabilities of

being logged and non-logged, respectively (a total of 105 FPs and 105 FNs). For the cross-system

models in RQ2, we also select the top-five FPs and FNs from each system (a total of 35 FPs and 35

FNs).

38

False Positives. For Syn. in RQ1, we find that 25/35 of the studied FPs are actually TP. The

code block either contains some other types of print statements to record the execution information

(e.g., System.out.print()), or contains only one child block and has no other code statements, and

the child block contains a logging statement. For Sem., Fus., and cross-system models, we also find

15/35, 16/35, and 18/35 cases that belong to this category, respectively. For the remaining studied

FPs, the suggestions are made when the code block is at the beginning of a method (9 cases for

Syn., 12 for Sem., 10 for Fus., 16 for cross-system models), or in complex code with multiple nested

blocks (1 case for Syn., 8 for Sem., 9 for Fus., 1 for cross-system models).

False Negatives. We find that 15/35 of the studied Syn. FNs may not truly be FN. Similar to the

situation in FP that a code block only contains a logged child block and has no other code statements,

the child block is suggested as a non-logged block and thus becomes an FN. For Sem., Fused. and

cross-system models, we find 7/35, 6/35, and 15/35 cases that belong to this category. We also

find that for 4/35, 3/35, 3/35 and 5/35 of the studied FNs from Syn., Sem., Fus. and cross-system

models, they are blocks that have many very similar sibling blocks nearby (e.g., many similar if

blocks having similar structures), while only the FN cases here contain logging statements. For the

remaining studied FNs, similar to what we find in FPs, they locate at the beginning of a method (15

cases for Syn, 18 for Sem., 14 for Fus., 14 for cross-system models), or in complicated code structure

with multiple nested code blocks (1 case for Syn., 7 for Sem., 12 for Fus., 1 for cross-system models).

Our findings show that the actual performance of our model may be even better due to the

diverse nature of how developers write logging code. We also find that it may be more difficult to

suggest a logging statement at the beginning of a method due to the lack of prior information in the

code block.

3.7 Threats to Validity

Construct Validity. Our approach presumes that the training data has high-quality source code

and follow good logging practice. However, there exist no industrial standards guiding developers

to write logging statements. In this study, we choose seven large-scale, well-maintained systems

with different sizes, across various domains to conduct the study. They are commonly used in prior

log-related studies and are considered as following good logging practice [72, 18, 19, 81]. We evaluate

our models on the test data set of each studied system. Different test data set might lead to very

different results. To mitigate the fluctuation caused by different test data set, we apply stratified

random sampling by following prior studies [113, 160, 87] to split the data set and ensure each

randomly sampled data set has the same distribution of labels as the original data.

Internal Validity. We conduct manual studies to investigate the characteristics and uncover the

39

categories of logging locations. To avoid biases, we examine the data independently. For most of

the cases, we reach an agreement. Any disagreement is discussed until a consensus is reached with

a substantial-level agreement (Cohen’s Kappa 0.86) [126]. Involving third-party logging experts to

verify our results might further reduce this threat. Different parameters used in the neural networks

might affect the effectiveness of the trained models. We follow prior studies [87, 160] to set the

parameters for our deep learning models. The models trained using our approach might not be

optimal on some of the evaluation metrics (e.g., an average F1 score of 66.7 on syntactic code block

features). Future study may further improve the performance of our approach and provide a more

comprehensive perspective of the suggestion results by surveying software engineering practitioners.

We use word embeddings [134, 100], which is widely used by prior studies [87, 160] as the distributed

representations of source code. Future study may consider other code representation approaches to

examine the performance on suggesting logging locations.

External Validity. We conducted our study only on seven large-scale open source systems. How-

ever, we selected the studied systems in various domains and sizes (from 97K to 1.5M LOC as

shown in Table 1) in order to improve the representativeness of our studied systems. Our studied

systems are all implemented in Java. The results and models may not be transferable to systems

in other programming languages. Future studies should validate the generalizability of our findings

and the transferability of our models in systems that are implemented written in other programming

languages.

3.8 Conclusion

In this chapter, we aim to tackle the challenges that developers might encounter when deciding

logging locations by first conducting a comprehensive manual study. We uncover six categories

of logging locations and find that developers usually insert logging statements to record execution

information that happens in various types of code blocks. We propose a deep learning based approach

to provide finer-grained (i.e., at the code block level) suggestions on logging locations. Our approach

achieves promising results on suggesting logging locations in both within-project and cross-project

predictions. Our results highlight the potential of providing finer-grained suggestions on logging

locations by leveraging syntactic information in the source code, and such suggestions may be shared

across systems. Future studies could explore a more advanced way of combining syntactic and

semantic information in the source code, in order to provide better suggestions on logging locations.

40

Chapter 4

Suggesting Log Levels Using Ordinal

Based Neural Networks

Developers write logging statements to generate logs that provide valuable runtime information

for debugging and maintenance of software systems. Log level is an important component of a

logging statement, which enables developers to control the information to be generated at system

runtime. However, due to the complexity of software systems and their runtime behaviors, deciding

a proper log level for a logging statement is a challenging task. For example, choosing a higher level

(e.g., error) for a trivial event may confuse end users and increase system maintenance overhead,

while choosing a lower level (e.g., trace) for a critical event may prevent the important execution

information to be conveyed opportunely. In this study, we tackle the challenge by first conducting a

preliminary manual study on the characteristics of log levels. We find that the syntactic context of

the logging statement and the message to be logged might be related to the decision of log levels, and

log levels that are further apart in order (e.g., trace and error) tend to have more differences in their

characteristics. Based on this, we then propose a deep-learning based approach that can leverage

the ordinal nature of log levels to make suggestions on choosing log levels, by using the syntactic

context and message features of the logging statements extracted from the source code. Through an

evaluation on nine large-scale open source projects, we find that: 1) our approach outperforms the

state-of-the-art baseline approaches; 2) we can further improve the performance of our approach by

enlarging the training data obtained from other systems; 3) our approach also achieves promising

results on cross-system suggestions that are even better than the baseline approaches on within-

system suggestions. Our study highlights the potentials in suggesting log levels to help developers

make informed logging decisions.

41

4.1 Introduction

Software logs have been widely used in practice for various maintenance activities, such as test-

ing [21, 24, 84, 22, 79], failure diagnosis [167, 158, 156, 119], and program comprehension [105, 104].

Developers insert logging statements in the source code with different verbosity levels (e.g., trace,

debug, info, warn, error, and fatal) to record system execution information and values of dynamic

variables. For example, in the logging statement: LOG.info(“stopping server ”, + serverName),

the static text message is “stopping server ” , and the dynamic message is the value of the variable

serverName. The logging statement is at the info level, which is the level for recording informational

messages that highlight the progress of the application at a coarse-grained level [4].

Log levels enable developers to only print important log messages (e.g., error or warning informa-

tion) at runtime while suppressing less important messages (e.g., debug messages). It is important

for developers to choose the right log levels for their logging statements. On one hand, choosing a

lower log level (e.g., debug) for a critical event can hide important runtime information and make it

difficult to diagnose runtime failures [156]. On the other hand, choosing a higher level (e.g., warn) for

a trivial event can confuse end users and increase the overhead of log management and analysis [73].

However, it is usually challenging for developers to choose a proper log level for the logging state-

ments [157, 108, 73, 74]. Prior studies shows that developers may not have sufficient understanding

of the runtime behaviors of their systems and the purposes of different log levels [108, 73], leading

to suboptimial choices of log levels. In particular, prior work [157, 73, 74] observes that developers

spend significant efforts in modifying the levels of existing logging statements, as it is challenging

for them to make the right decisions in the first place.

In this study, we conduct a study to help developers make informed decisions on deciding proper

log levels. Through a preliminary manual study on the logging statements from nine open source

systems, we find that the decisions of log levels might be related to the locations of the logging

statements and the messages to be recorded, and log levels that are further apart in order (e.g., trace

and error) tend to have more differences in their characteristics of locations and messages. We then

extract syntactic context features (to represent the location information) of the logging statements

as well as their log messages, and propose a deep-learning based approach to automatically suggest

log levels. Unlike other multi-class classification tasks which consider the classes as independent,

log levels have an ordinal nature, i.e., the levels preserve an order among each other. Therefore, we

ordinally encode the log levels to capture their ordinal nature.

We evaluate our approach on nine large-scale open source systems and compare the results with

two baseline approaches: a state-of-the-art ordinal regression approach from a prior study [74]; and

a deep-learning based approach with standard one-hot encoding. We find that, our models trained

using the syntactic context feature achieve an average AUC of 80.8, outperforming our models

42

trained using the log message feature (i.e., with an average AUC of 71.5) in suggesting log levels.

Combining both features in our approach would lead to the best performance (i.e., with an average

AUC of 83.7). Trained from either the syntactic context feature (i.e., without log message feature)

or the combined feature (i.e., with log message feature), our approach outperforms both baseline

approaches in all the studied systems. By further studying the results of our approach, we find that

the syntactic context and combined features have a similar capability of distinguishing different log

levels; while the log message feature may only be useful for specific levels such as error and warn.

Finally, we evaluate the benefit and applicability of using data from other systems to enlarge the

training data. We find that by carefully choosing the training dataset from other systems, the results

of our approach can be further improved. In addition, our approach can achieve encouraging results

on cross-system suggestions (e.g., on average 93.8% of the accuracy of within-system suggestions),

which still outperform the baseline approaches on within-system suggestions.

The contributions of this study are as follows:

• We propose an automated deep-learning based approach that leverages the ordinal nature of

log levels to make suggestions on choosing log levels. Our approach outperforms the existing

state-of-the-art approaches in suggesting log levels.

• Our approach have encouraging cross-system suggestion results, which can benefit the systems

without long development histories.

• Our manual study results can be leveraged as guidelines in future research on suggesting and

improving log levels.

In short, our findings highlight the potentials of leveraging the characteristics of logging state-

ments in suggesting log levels that can help developers make informed logging decisions. Our results

also reveal the challenges and future research directions in assisting developers with logging.

Chapter Organization. Section 4.2 discusses the setup and results of manually studying the

characteristics of log levels. Section 4.3 describes our deep learning approach on suggesting log

levels. Section 4.4 presents the evaluation results of our approach by answering three research

questions. Section 4.5 discusses the threats to the validity of our study. Section 4.6 summarizes the

related work. Section 4.7 concludes the chapter.

43

Table 4: An overview of the studied systems and their log level distributions (%)

System Version LOC NOL Trace Debug Info Warn Error Fatal

Cassandra 3.11.4 432K 1.3K 16.7% 10.9% 15.8% 16.8% 39.8% 0.0%

ElasticSearch 7.4.0 1.50M 2.5K 28.5% 32.4% 10.0% 19.2% 9.9% 0.0%

Flink 1.8.2 177K 2.5K 1.0% 30.8% 26.6% 23.7% 17.9% 0.0%

HBase 2.2.1 1.26M 5.5K 7.4% 17.3% 17.1% 24.4% 33.8% 0.0%

JMeter 5.3.0 143K 1.9K 0.7% 29.9% 16.9% 26.5% 26.0% 0.0%

Kafka 2.3.0 267K 1.5K 12.9% 28.5% 20.4% 15.3% 22.9% 0.0%

Karaf 4.2.9 133K 0.8K 0.9% 21.9% 23.1% 30.0% 23.6% 0.5%

Wicket 8.6.1 216K 0.4K 2.2% 39.3% 7.6% 28.5% 22.4% 0.0%

Zookeeper 3.5.6 97K 1.2K 2.2% 18.3% 19.3% 35.3% 24.9% 0.0%

Average —— 469K 2.0K 8.0% 25.5% 17.5% 24.5% 24.4% 0.1%
Note: LOC refers to the lines of code, NOL refers to the number of logging statements.

4.2 Preliminary study on log levels

4.2.1 An Overview of the Studied Systems

Studied Systems. We conduct the study on nine large-scale open source Java systems. Table 4

shows an overview of the systems. The studied systems are in various sizes (LOC from 97K to 1.5M,

and NOL from 0.4K to 5.5K), have high quality logging code, are commonly used in prior log-related

studies [18, 19, 81, 72], and cover various domains (e.g., database systems and search engines).

Log Level Distribution. Table 4 shows the distribution of the log levels in the studied systems.

We find that many logging statements are used to show potential issues during system execution

(i.e., on average 24.5% are at the warn level and 24.4% are at the error level). Note that, in modern

logging frameworks such as SLF4J, fatal level is removed due to its redundancy with other log levels

such as error [8]. As we found in the studied systems, only Karaf contains some logging statements

with fatal level and the number is very small (only 0.5%). Therefore, we focus our study on the

other log levels. We find that there is also a large proportion of the logging statements that are used

for debugging (i.e., 25.5% for debug). As mentioned by the instruction of SLF4J, the trace level is

not recommended since it has a high overlap with the debug level [8]. Hence, it may be the reason

that some systems have noticeably fewer logging statements at the trace level. In general, there are

fewer logging statements that show the general system execution (i.e., 17.5% are at the info level).

Our preliminary findings show that the studied systems have a different distribution of log levels,

and the levels are not evenly distributed. Therefore, suggesting log levels accurately either within

the same or cross systems is a challenging task.

44

4.2.2 Investigating Log-level-related Issues

We collect the most recently resolved issue reports (from Jan. 2020 to Jul. 2020) in the bug

tracking systems of our studied systems, and identify the log-related issue reports by examining if

there are changes or patches on logging statements (106 issue reports in total). We then manually

examine the changes and the discussions in those issue reports. We find that a large portion (45/106,

42.5%) of the issue reports have changes or discussions on log levels. Specifically, for 23/45 (51.1%)

of the log-level-related issue reports, developers suggested changes of log levels on existing logging

statements. For 22/45 (48.9%) of the log-level-related issue reports, developers suggested adding

new logging statements and mentioned the reasons of the log levels of those newly added logging

statements based on their execution point and the messages. In short, the proper choice of log levels

is important and is actively considered by developers in both processes of improving existing logging

statements and composing new ones. Both the locations and the messages of the logging statements

might be important for deciding log levels.

4.2.3 Manually Studying the Characteristics of Log Levels

Prior work [157, 73, 74] found that developers spend significant efforts modifying the levels of

existing logging statements that were inserted previously, and they tend to evaluate the impact of

their logging statements and adjust their log levels over time [73]. Motivated by the prior studies

and our investigation on log-level-related issue reports, we conduct a manual study to investigate the

characteristics of different log levels, in order to better provide supports for developers on deciding

log levels. In particular, we study the message and location of a logging statement to investigate

if a log level is implicitly or explicitly related to the context information or the log message of the

logging statement.

Manual Study Process. To prepare the data for our manual study, we first extract the logging

statements from the source code using static analysis. We identify the method invocation statements

that invoke common logging libraries (e.g., Log4j [4] and SLF4J [8]). Then, for each identified logging

statement, we extract its log message (including static message and dynamic variables), verbosity

level, and the method that contains the logging statement. In total, we extract 17.6K logging

statements from the nine studied systems. Then, we randomly sample 376 out of 17.6K logging

statements based on a 95% confidence level and a 5% confidence interval [13]. We apply stratified

sampling to ensure the distribution of logging statements from different systems and their log levels

in the sampled data is the same as the complete data [113]. Our manual study contains the following

three phases:

Phase I : We leverage the categories of logging locations and messages that were derived in

45

Table 5: The distribution of the categories of logging locations and log messages for each log level

Category Trace Debug Info Warn Error

Location

CT 2/39 (5.2%) 4/88 (4.6%) 12/70 (17.2%) 37/89 (41.6%) 52/90 (57.8%)

LB 14/39 (35.9%) 33/88 (37.5%) 29/70 (41.4%) 50/89 (56.2%) 31/90 (34.5%)

LP 3/39 (7.7%) 4/88 (4.6%) 1/70 (1.4%) 0/89 (0.0%) 0/90 (0.0%)

MT 10/39 (25.6%) 14/88 (15.8%) 6/70 (8.6%) 1/89 (1.1%) 3/90 (3.3%)

OP 10/39 (25.6%) 33/88 (37.5%) 22/70 (31.4%) 1/89 (1.1%) 4/90 (4.4%)

Message

OD 24/39 (61.5%) 42/88 (47.7%) 49/70 (70.0%) 27/89 (30.3%) 1/90 (1.1%)

VD 15/39 (38.5%) 37/88 (42.1%) 6/70 (8.6%) 7/89 (7.9%) 1/90 (1.1%)

ND 0/39 (0.0%) 9/88 (10.2%) 15/70 (21.4%) 55/89 (61.8%) 88/90 (97.8%)

prior studies [43, 53]. We use the categories to categorize 100 randomly sampled logging statements

collaboratively. During this phase, the categories of logging locations and log messages are revised

and refined. In the end, we reused and revised three categories of logging locations and three

categories of log messages. We also derived two new categories of logging locations in this phase.

Phase II : We independently categorized the rest of the sampled logging statements (276 logging

statements) by using the categories derived in Phase I.

Phase III : We compared the results from Phase II. Any disagreement of the categorization was

discussed until reaching a consensus. No new categories were introduced during the discussion.

The results in this phase have a substantial-level of agreement [126] for both of the categorizations

of logging location and log message (Cohen’s Kappa of 0.82 and 0.88 for logging location and log

message, respectively).

Manual Study Results. Table 5 shows the distribution of the categories of logging locations and

log messages for different log levels. Each row represents the number of logging statements that

belong to each category, and each column represents the number of logging statements with each log

level. The percentage in each cell shows the ratio between the logging statements out of the total

sampled logging statements with the corresponding log level. Below, we discuss the results by each

category.

Categories of Logging Locations v.s. Log Levels

Location 1: Catch Clause (CT). Catch clause is used for capturing the exceptions raised during the

execution. As shown in the code snippet below, developers often log the exception information (e.g.,

the context information of the execution point) in catch clauses [43]. In our manual study, we find

46

that a large portion of the sampled warn (37/89, 41.6%) and error (52/90, 57.8%) logging statements

are in this category. However, there are still a non-negligible number of logging statements that have

different log levels. The percentage for the other three levels ranges from 4.6% (4/88 at the debug

level) to 17.2% (12/70 at the info level).

/* Location Category 1: Catch Block (CT) */

} catch (Exception ex) {

LOG.error("Failed to stop infoServer", ex);

}

Location 2: Logic Branch (LB). Logic branch is the code statement that leads to different system

execution paths (e.g., if-else and switch) [43]. Developers may insert logging statements in the logic

branches to help identify the execution path, or record the information in some critical branches. As

shown in the code snippet below, developers added a warn logging statement to record an unexpected

branch execution. We find that the distribution of the five log levels for the logging statements in

LB are similar. Each log level has many logging statements in this category, the percentage ranges

from 34.5% (31/90 at the error level) to 56.2% (50/89 at the warn level).

/* Location Category 2: Logic Branch (LB) */

if (logFileReader == null) {

LOG.warn("Nothing to split in WAL={}", logPath);

return true;

} else {

Location 3: Looping Block (LP). Logging statements in looping blocks (e.g., for and while) may

record the execution state during iterating (e.g., recording the ith execution inside a for block) or

recording variable values as shown in the code snippet below. We do not find any logging statements

at the warn or error level that belong to this category. The logging statements that belong to this

category generally have three log levels: 7.7% (3/39) at the trace level, 4.6% (4/88) at the debug

level, and 1.4% (1/70) at the info level.

/* Location Category 3: Looping Block (LP) */

while (active) {

logger.trace("checking jobs [{}]",

clock.instant().atZone(ZoneOffset.UTC));

checkJobs();

Location 4: Method Start or End (MT). Logging statements might reside at the beginning or the

end of a method, mostly for recording the program execution state or debugging purposes. For

example, the code snippet below logs the event execution time whenever the method is executed.

We find that 25.6% (10/39) of the logging statements are at the trace level, 15.8% (14/88) are at

47

the debug level, and 8.6% (6/70) are at the info level. However, logging statements with warn and

error level only have a small portion: 1/89 (1.1%) and 3/90 (3.3%), respectively.

/* Location Category 4: Method Start or End (MT) */

public void onEventTime(long timerTimestamp) {

logger.trace("onEventTime @ {}", timerTimestamp);

Location 5: Observation Point (OP). We categorize the rest logging locations that do not belong

to any of the above-mentioned categories as Observation Point [43]. Logging statements in this

category may have various characteristics of logging locations, such as locating before the entry

point or after the exit point of a code block to record the execution status (as shown in the code

snippet below). We find that a large portion of logging statements that belong to this category

(from 25.6% to 37.5%) is at the trace, debug, and info level; while only 1.1% (1/89) and 4.4% 4/90

are at the warn and error level, respectively.

/* Location Category 5: Observation Point (OP) */

final BinaryInMemorySortBuffer buffer =

currWriteBuffer.buffer;

LOG.debug("Retrieved empty read buffer " +

currWriteBuffer.id + ".");

long occupancy = buffer.getOccupancy();

if (!buffer.write(current)) {

Categories of Log Messages v.s. Log Levels

Message 1: Operation Description (OD). Log messages in this category summarize the actions or

intentions of its surrounding code [53]. Logging statements with this kind of log message could be

placed before, inside, or after the execution point to record the status of an upcoming, ongoing, or a

completed operation. As shown in the example below, an info logging statement logs the closing of

a connection. We find that most of the info logging statements (49/70, 70.0%) are in this category.

There are also a large portion of trace (24/39, 61.5%) and debug (42/88, 47.7%) logging statements

in this category. For warn and error level, 30.3% (27/89) and 1.1% (1/90) of the logging statements

belong to this category.

/* Message Category 1: Operation Descripion (OD) */

connectionTracker.closeAll();

logger.info("Stop listening for CQL clients");

Message 2: Variable Description (VD). Variable description records the value of a variable during

execution [53]. As shown in the example below, a trace logging statement is placed after defining the

48

variable parameterMap to record its value. We find that many logging statements at the trace (15/39,

38.5%) and debug (37/88, 42.1%) level belong to this category. For other levels, the percentage is

noticeably smaller (from 1.1% at the error level to 8.6% at the info level).

/* Message Category 2: Variable Description (VD) */

Map<String, List<String>> parameterMap =

request.getParameterMap();

LOG.trace("parameterMap: {}", parameterMap);

if (parameterMap != null) {

Message 3: Negative Execution Behavior Description (ND). During the system runtime, some un-

expected execution behaviors may happen (e.g., an exception, or a failure). Logging statements

are often inserted into these unexpected execution points to record the related information. Hence,

developers can then be aware of the problem and fix the issue. We consider log messages as this

category if they describe an unsuccessful attempt or an unexpected situation, with some specific neg-

ative words (e.g., fail, exception, unable). We find that most of the error (88/90, 97.8%) and a large

number of warn (55/89, 61.8%) logging statements are in this category. For info and debug level,

there are 21.4% (15/70) and 10.2% (9/88) of the logging statements in this category, respectively.

We do not find logging statements at the trace level that belong to this category.

/* Message Category 3: Negative Execution Behavior

Description (ND) */

if (tokensIndex.isAvailable() == false) {

logger.warn("failed to get access token [{}]",

tokenId);

listener.onResponse(null);

} else {

Summary of the Manual Study Findings

As we found in our manual study, the information of logging locations and log messages may be

related to the decision of log levels. For example, we find that developers are more likely to set the

log level to warn or error if the logging statement resides in catch blocks (category CT). Moreover, if

the logging statements reside at the beginning or end of a method (category MT), the log levels are

more likely to be trace or debug. Similarly, logging statements with certain types of log messages,

such as the category VD (variable description), are more often set to trace or debug level. Log levels

that are further apart in order (e.g., trace and error) tend to have more different characteristics

to distinguish. Our findings shed light on the relationship between log levels and the categories of

49

logging location and log messages, as well as the ordinal nature of log levels, that may be further

leveraged to assist developers in determining log levels.

We find that log levels that are further apart in order tend to have more different characteristics

of logging locations and log messages. Locations and messages of logging statements, as well as

the ordinal nature of log levels might be leveraged to help decide log levels.

4.3 Automatically Suggesting Log Levels

Inspired by our manual study findings, in this section, we propose an approach that automatically

suggests log levels. We formulate the process of suggesting log levels as a multi-class classification

problem. Given the information of an existing or a potential new logging statement (i.e., the struc-

tural information, or the log message, or both), we apply deep learning models to suggest which

level to use. Below, we discuss how we extract the features and the framework of our deep learning

approach for suggesting log levels.

4.3.1 Feature Extraction

For each logging statement, we extract three types of features: syntactic context features (sim-

plified as Syn in the rest of chapter), log message features (Msg), and combined features of syntactic

context and log messages (Comb).

Syntactic Context Features. We extract the syntactic context feature that represents the location

information of a logging statement. Specifically, we parse the Abstract Syntax Tree (AST) of the

source code and extract the AST nodes that are related to the control flow of the code to capture

the structural information (e.g., IfStatement and CatchClause). We exclude the AST nodes that

do not contain structural information of the code, such as SimpleName (i.e., identifier name) and

SimpleType (i.e., identifier type). We also exclude AST nodes that are related to log guards (e.g.,

if(isTraceEnabled)). For each logging statement, we count the occurrence of each AST node

from the start of the method, to the end of the basic block in which the logging statement resides.

We analyze the AST nodes from the beginning of a method since the nodes represent the syntactic

context of the logging statement (e.g., the logical flow of the method). As we found in Section 4.2,

such syntactic context have a certain relationships with log levels. We choose to extract the features

based on basic blocks since they represent a sequence of code statements where there is no branching

in between (i.e., no other structural information that can affect the decision of the level of a logging

statement in the block). Finally, we obtain a set of tokens (i.e., AST nodes) for each logging

statement that represents the syntactic feature of the logging statement. Figure 7 shows an example

of the syntactic context feature that we extract for the logging statement on line 4.

50

public void notifyCheckPointComplete (long cp) {

boolean success = false;

if (isRunning) {
LOG.debug(“Notification of complete check point {}”, cp);

For (StreamOperator operator: opChain.getOperators()) {

1

2

3
4
5

6

}

process(operator);

7

…

� Scope of Basic Block

� Syntactic Context Feature Scope of Logging Statement

B0

B1

B2

Syntactic: [MethodDeclar(1), VarDeclar(2), BooleanLiteral(2), IfStm(3), LogStm(4), MethodInvoc(5)]

Message:

Combined:

[notif, complet, check, point]

[MethodDeclar(1), VarDeclar(2), BooleanLiteral(2), IfStm(3), LogStm(4), #MsgStart#,
 notif, complet, check, point, #MsgEnd#, MethodInvoc(5)]

Note 1: the number following syntactic token is only for indicating the line number in this example,
 it does not appear in the actual feature

Note 2: ‘#MsgStart#’ and ‘#MsgEnd#’ are the tokens inserted into Combined features, in order to help the
 model distinguish the message tokens from syntactic tokens

getStatus(cp);

8

Figure 7: An example of the syntactic, log message, and combined features we extracted for each

logging statement

Log Message Features. We extract the log message features from the textual information inside

the logging statements. We exclude the dynamic variables, since many variable names in logging

statements are not composed of natural language words [87] (e.g., variable cp in the logging statement

in Figure 7, which is abbreviated from “check point”). For the static message in each logging

statement, we first split the words using space and camel cases. We then follow common text pre-

processing techniques [27]: remove the punctuation, convert the words into lower case, filter the

common English words [1] and apply stemming [115] on the filtered words [61, 87, 72]. At the end

of this process, we obtain a set of log message tokens, which represents its log message feature, for

each logging statement.

Combined Features. As we found in Section 4.2, both the logging locations and log messages

may have a certain relationship with the log levels, as they capture different aspects of a logging

statement. Therefore, we combine both the syntactic information and the log message, by following

an approach that is similar to prior studies [71, 131]. For each logging statement, we add the log

message feature to the syntactic feature and preserve their actual order in the source code (i.e., the

log message feature is added to the place that the logging statement appears in the source code).

We then add a special token at the beginning and the end of the log message feature to help the

model distinguish it with syntactic information. Finally, we obtain a set of tokens for each logging

51

Source	Code

{ {[1 0 0 0 ...]
[0 0 1 0 ...]...

Feature	Vectors
(Interger	Representation)

Embedding	Layer

......

RNN	Layer	(Bi-LSTM)

Output	Layer
(Ordinal	Representation)

Layer	Unit

RNN	Cell

......

Figure 8: Overall framework of our approach

statement that represents the combined feature of the logging statement. Figure 7 shows an example

of how do we combine the syntactic context feature and log message feature for the logging statement

in line 4.

Ordinally Encoding Log Levels. One-hot encoding is widely used by prior studies for multi-class

classification problems [87, 102, 138]. However, log levels, by nature, have an ordinal relationship.

For example, if the system is configured to run and record debug logs, the system would also enable

logging statements that are at the info, warn, and error levels and record logs in those levels.

Therefore, we ordinally encode the log levels to preserve such ordinal relationship when suggesting log

levels. Table 6 shows the comparison between the vectors of each log level that are ordinally encoded

and encoded by standard one-hot encoding. Our encoding preserves the ordinal characteristics of

log levels, where when a system is configured to record a certain log level (e.g., info), the system

would also record all logs that have a higher log level (e.g., warn and error).

4.3.2 Deep Learning Framework and Implementation

Overall Architecture. Figure 8 shows the overall architecture of our approach. The deep

learning framework contains an embedding layer, an RNN layer, and an output layer. Given the

syntactic features, log message features, or combined features of logging statements, the embedding

layer learns the relationship among the input vectors and transform each vector to a distributed

52

representation based on probability. We then use a recurrent neural network (RNN) layer to learn

the relationship between the log level and the embedded vectors returned from the embedding layer.

After that, the output layer gives an ordinal vector as the suggestion result. Finally, we map the

ordinal vector returned from the output layer to a real log level as the final result. Below, we discuss

the details of each component of our approach.

Embedding Layer. Our extracted features (i.e., Syn, Msg, and Comb) are represented in the form

of vectors. Each dimension represents the unique tokens of the corresponding feature (e.g., the types

of AST node in Syn), and each element represents the number of occurrences of the token for each

logging statement. We then feed the feature vectors into the embedding layer. The embedding

layer captures the linear relationships among the tokens in the feature vectors, and outputs the

probabilistic representations of the vectors (i.e., word embeddings [100]). In other words, word

embeddings learn the similarities among the tokens to create a more concise representation of the

features [134, 76, 57].

RNN Layer. We model the source code and log message as sequential data (i.e., the order of the

tokens that appear in the source code is preserved) by following prior studies [46, 29, 160, 106]. We

employ a layer of Bidirectional Long Short Term Memory (Bi-LSTM) in the deep learning model,

which is widely used by prior studies to process source code and natural language [61, 149]. Bi-

LSTM is a variant of RNN that concatenates the outputs of two RNNs, one processing the sequence

of input vector from the beginning to the end, the other one from the end to the beginning. Each

RNN is composed of recurrent units including a memory cell and gate mechanisms to preserve long

term dependencies of the given input. While training the model, we encode the log level of a logging

statement into its ordinal representation (as discussed in Subsection 4.3.1).

Output Layer. We then use a five-dimension dense layer as the output layer. Specifically, the

output layer takes the high-dimensional output vectors from the previous layer (i.e., the RNN layer)

to the five neurons in this layer. Each of the five neuron represents one number in our ordinally

encoded vector of log level. Then each neuron gives the result of the corresponding number (i.e., the

probability of this digit to be 1) in the vector. After that, we accept the output vector and map the

vector into an actual log level as the final suggestion result. For example, if the returned vector from

the output layer is [1.0, 0.8, 0.6, 0.3, 0.1], we check each probability value from the start to the end

of the vector. If a probability is larger than 0.5, the number is mapped to 1. If a probability that

is smaller than 0.5 is encountered, the rest numbers will be mapped to 0. In the above-mentioned

example, the output vector will be mapped to [1, 1, 1, 0, 0], as discussed in Subsection 4.3.1, which

is an info level.

Implementation and Training We use Keras [3] to implement our deep learning framework. We

53

Table 6: A comparison between the vectors of log levels that are ordinally-encoded and one-hot

encoded

Ordinally Encoded One-hot Encoded

Trace [1, 0, 0, 0, 0] [1, 0, 0, 0, 0]

Debug [1, 1, 0, 0, 0] [0, 1, 0, 0, 0]

Info [1, 1, 1, 0, 0] [0, 0, 1, 0, 0]

Warn [1, 1, 1, 1, 0] [0, 0, 0, 1, 0]

Error [1, 1, 1, 1, 1] [0, 0, 0, 0, 1]

use Skip-gram from Word2vec [2] in the embedding layer and set the dimension to 100 by following

prior work [87]. We obtain the word embeddings for each type of features (i.e., syntactic context,

log message, and combined features) separately. For the RNN layer, we set the number of units

(i.e., the dimension of hidden states) as 128 and attach a dropout layer with a 0.2 dropout rate,

in order to reduce the potential impact of overfitting on the trained system [128, 58, 161]. For

each training process, we set the number of epochs as 100 and the batch size as 24 [87]. Since

the model learns and predicts on each digit of the ordinally encoded vector, we use sigmoid as the

activation function and use binary cross entropy as the loss function. Note that the distribution of

log levels is noticeably different (e.g., on average, only 8.0% of the logging statements are in trace

while 24.4% of the logging statement are in error level), as discussed in Section 4.2. Hence, we apply

stratified random sampling [113] while splitting the training, validation, and testing data to ensure

the sampled data set has the same distribution of log levels as the original data.

4.4 Evaluation

4.4.1 Evaluation Metrics

We use Accuracy and Area Under the Curve (AUC), which are widely used by prior multi-

class classification studies, to evaluate our approach [74, 87]. According to the ordinal nature of

log levels, we also propose a new metric, Average Ordinal Distance Score (AOD), to measure the

average distance between the actual level and the suggested level.

Accuracy. Similar to the usage in prior classification studies [160, 87], Accuracy in our study is

the percentage of correctly suggested log levels out of all the suggestion results. A higher accuracy

means a model can correctly suggest the log levels for more logging statements. As a reference, the

accuracy of a 5-category random guess is around 20%.

Area Under the Curve (AUC). AUC is the area under the ROC (receiver operating characteris-

tic) curve that plots the true positive rate against the false positive rate, which evaluates the ability

54

of a model in discriminating different classes. AUC ranges between 0 and 1: a high value for the AUC

indicates a high discriminative ability of a model; an AUC lower than 0.5 indicates a performance

that is not better than random guessing. Following prior work [74], we use a multiple-class version

of the AUC defined by Hand et al. [50]. The AUC gives us the insight about how well the model

can discriminate different log levels, e.g., how likely a model is able to predict an actual info level

as info (i.e., true positive), rather than predict an actual debug level as info (i.e., false positive).

Average Ordinal Distance Score (AOD). The prior two metrics consider different log levels

as independent classes (i.e., the ordinal nature of log levels, as discussed in Section 4.3, is not

considered). Hence, we propose Average Ordinal Distance Score (AOD) which measures the average

distance between the actual log level and the suggested log level for each logging statement. It is

computed as:

AOD =

∑N
i=1 (1−Dis(ai, si)/MaxDis(ai))

N
,

where N is the total number of logging statements in the results. For each logging statement and

its suggested log level, Dis(a, s) is the distance between the actual log level ai and the suggested log

level si (e.g., the distance between error and info is 2). MaxDis(a) is the maximum possible distance

of the actual log level ai. For example, the maximum possible distance for trace is 4 (i.e., from trace

to error), for info is 2 (i.e., from info to trace or error). A higher AOD indicates suggested log levels

are closer to their actual log levels.

4.4.2 Case Study Results

RQ1: How effective is our approach in suggesting log levels?

Motivation. As we found in the manual study, the decision of log level may be related to the

syntactic information in the code and the log message. In this RQ, we want to evaluate the perfor-

mance of our deep learning models trained using each of the three features (i.e., syntactic context,

log message, and combined, as described in Section 4.3.1).

Approach. We first apply stratified random sampling [113] to split the input data into training set

(60%), validation set (20%), testing set (20%) [160, 87], and ensure each of the sampled datasets has

the same distribution of log levels as the original data. We compare our approach with two baselines

described below. We then train our deep learning framework and the two baselines on the training

data using each of the three features. Below, we describe the two baselines in details.

Baseline 1: Ordinal Regression (OR) model. We use machine learning based ordinal regression (OR)

models [96] to suggest log levels by following a prior study [74]. OR considers the orders of the log

levels (e.g., error is more severe than info) when training the model and predicting the log level

given a new logging statement. In this work, we migrate the OR approach to our problem context:

55

Table 7: The results of suggesting logging levels using syntactic context (Syn), log message (Msg),

and a combination of both (Comb), compared with Ordinal Regression (OR) and One-hot Encoding

Neurual Network (OEN)

Accuracy AUC AOD

Systems Syn Msg Comb OR OEN Syn Msg Comb OR OEN Syn Msg Comb OR OEN

Cassandra 53.7 52.6 60.6 43.2 39.9 78.8 77.0 84.2 75.6 70.9 78.9 77.9 80.5 70.3 65.6

Elasticsearch 51.9 40.4 57.7 49.8 37.8 77.9 66.4 81.3 75.8 72.6 77.6 69.1 80.2 76.8 41.7

Flink 52.5 35.5 65.2 50.1 42.0 78.2 69.9 85.1 74.1 73.5 78.7 72.4 83.8 78.5 43.9

HBase 55.9 50.7 60.3 51.0 49.5 83.1 74.3 84.2 79.4 78.3 81.4 72.8 81.7 78.9 62.7

JMeter 55.1 52.1 62.3 53.9 47.2 83.5 79.3 83.9 80.7 76.5 82.3 77.2 80.9 78.9 56.2

Kafka 50.7 38.5 51.8 42.3 41.8 78.7 71.5 79.5 74.1 69.2 76.9 68.6 77.5 72.2 59.4

Karaf 56.5 30.3 67.2 49.0 30.3 84.3 67.2 85.6 83.2 68.1 80.6 67.2 81.6 76.8 30.9

Wicket 57.3 28.1 63.8 46.1 39.0 83.1 61.6 85.0 80.7 76.4 78.9 62.1 79.3 67.8 54.5

Zookeeper 52.8 50.1 60.9 41.3 35.1 79.6 76.1 84.8 79.1 69.2 78.8 73.0 82.0 77.0 36.8

Average 54.0 42.0 61.1 47.4 40.3 80.8 71.5 83.7 78.8 72.7 79.3 71.1 80.8 75.2 50.2
Note: The number that is higher than both of the baselines is marked in bold, the best result is

marked in italic-bold.

suggesting the log level of each logging statement in the static code. We consider all the metrics

used in the prior work [74] except those related to code changes, as the code change related metrics

are irrelevant in our context: we suggest the log level of each logging statement in the static code.

Besides, prior work finds that the influence of the metrics related to the code changes is negligible [74].

Baseline 2: One-hot Encoding RNN (OEN). As discussed in Section 4.3, the standard one-hot en-

coding treats all the classes as independent classes without considering the ordinal relation among

them. In order to understand the effectiveness of our encoding on log levels, we would like to com-

pare the performance of the models using our ordinally encoded log level vectors with the models

using standard one-hot encoded log level vectors. Different from our approach that uses sigmoid as

the activation function and binary cross entropy as the loss function to predict the value of each

number in the ordinally encoded vector (as discussed in Section 4.3), to adopt standard one-hot

encoding, we change the activation function to softmax and the loss function to categorical cross

entropy [102, 138]. Hence, the goal of the baseline model is to predict the one-hot encoded vector

(as shown in Table 6) which can be mapped back to a log level. Similar to our approach, we train

the baseline on the Syn, Sem, and Comb features, respectively.

Results and Discussions.

Our approach can effectively suggest log levels for the studied systems. Our best models

(i.e., using the combined feature) achieve an average AUC of 83.7. Table 7 presents the

56

results of our models trained using the syntactic feature (Syn), the log message feature (Msg), and

the combined feature (Comb). Table 7 shows that the models trained using the Syn feature perform

better than the models using the Msg feature in terms of all the three evaluation metrics. Specifically,

the average accuracy, AUC, and AOD of the models trained using the Syn feature are 54.0, 80.8,

and 79.3, respectively; while the average accuracy, AUC, and AOD of the models trained using the

Msg feature are only 42.0, 71.5, and 71.1. More importantly, for all the three evaluation metrics, the

models trained using the Comb feature have better results than the models trained only using Syn

or Msg. Specifically, on average, the accuracy, AUC, and AOD of the models trained using Comb

are 61.1, 83.7, and 80.8, respectively. Our results show that the Syn and Msg features both provide

valuable information that can complement each other in our models.

Our approach outperforms the two baseline approaches (OR and OEN). For the baselines,

due to the limitation of space, we only discuss the results of the models trained using the comb

feature, which lead to the best results among the three features. For the the results of two baselines,

the average accuracy are 47.4 for OR and 40.3 for OEN, the average AUC are 78.8 for OR and 72.7

for OEN, and the average AOD are 75.2 and 50.2, respectively. For every system, our models using

Syn or Comb features always outperform the two baselines in the three evaluation metrics (as shown

in Table 7). The results demonstrate the higher capability of our neural networks with ordinally

encoded log levels than the ordinal regression and the standard one-hot encoding in suggesting log

levels.

Our approach outperforms the two baseline approaches in suggesting log levels. In particular,

our approach achieves the best performance when both the syntactic and log message features

are considered.

RQ2: What is the performance of our approach on different log levels?

Motivation. In RQ1, we find that our approach can effectively suggest the log level of a logging

statement, and that the models trained using the syntactic, message, and combined information

show different performance. However, for the logging statements with different log levels, choosing

an inappropriate log level may have different costs. For example, choosing the error level for an

info message may be worse (i.e., cause user confusion [73]) than choosing the info level for a debug

message. Besides, different stakeholders may be more interested in certain log levels. For example,

operators may be most interested in the warn and error levels which need their immediate actions;

while developers doing debugging activities may be most interested in the debug level. Therefore,

in this RQ, we further investigate the performance of our approach in providing suggestion for each

log level.

Approach. We first analyze the overall performance of our models for each log level. We group the

logging statements in our test datasets by their actual log level. Then, for each group of actual log

57

Figure 9: The accuracy of our approach on each log level

Table 8: The distribution of incorrectly suggested log levels for each actual log level (the first column)

Syntactic Context Log Message Combined

Trace Debug Info Warn Error Trace Debug Info Warn Error Trace Debug Info Warn Error

Trace — 53.8 25.4 16.7 4.1 — 47.6 30.1 20.7 1.6 — 52.4 21.1 18.7 7.8

Debug 5.4 — 53.7 33.6 7.3 7.3 — 48.1 41.7 2.9 7.5 — 43.6 32.6 16.3

Info 3.6 38.8 — 48.9 8.7 6.6 37.9 — 52.2 3.3 8.6 43.0 — 38.1 10.3

Warn 1.6 27.8 28.7 — 41.9 3.2 36.4 22.4 — 38.0 4.1 20.5 27.0 — 48.4

Error 0.9 7.7 20.7 70.7 — 0.4 8.2 12.9 78.5 — 3.9 12.3 10.4 73.4 —
Note: For each feature and each actual log level, the highest percentage of incorrectly suggested log level is marked in bold.

level, we measure the accuracy of our approach for suggesting the log levels. We then investigate

how our models mis-classify each log level by computing the distribution of the incorrectly suggested

log levels. In this RQ, we train the models and analyze the results of the three features (i.e., Syn,

Msg, or Comb), respectively.

Results and Discussions.

The syntactic and combined features show more consistent performance than the log

message feature among suggesting different log levels. For each log level and each feature, we

present the results by showing the average accuracy of the models trained using different systems.

Figure 9 shows the accuracy of the trained models using syntactic context feature (red bar), log

message feature (blue bar), and combined features (purple bar) for each log level. Overall, the

syntactic context and combined features have a similar trend on the results for different levels,

58

while log message features have a notable difference. The log message feature has a relatively high

accuracy on suggesting the warn and error levels, but has a very low accuracy on other levels (ranges

from 8.9% to 16.8%). The potential reason might be that, warn and error level might contain some

specific words that can be used to distinguish them from other levels. As we found in Section 4.2,

61.8% and 97.8% of the log messages at warn and error level describe negative execution behaviors.

However, syntactic and combined feature also achieve relatively good results on these two levels

(range from 58.8% to 59.6% for warn level, and from 52.5% to 77.4% for error level). Both the

syntactic and combined features also have reasonable results on suggesting debug and info levels

(range from 42.6 to 55.3 accuracy).

Most of the incorrectly suggested log levels provided by our approach are close to their

actual log levels. Table 8 presents the distribution of incorrectly suggested log levels for each actual

log level (the first column, marked in bold). All the numbers are the percentage of an incorrectly

suggested log level over all the incorrect suggestions for each actual log level. Overall, there is only

a small portion of logging statements that are incorrectly suggested as trace level (range from 0.4%

to 8.6% across all the three features). In comparison, most of the incorrect suggestions on error

logging statements are suggested as warn level (over 70% for all the three features). Reversely, many

warn logging statements are incorrectly suggested as error level (which is also the most common

incorrectly suggested log level). We find that for each feature and each actual log level, the most

common incorrect suggestions are one of their neighbouring log levels (i.e., the closest log levels). In

particular, some log levels (e.g., warn and error levels) might be hard to distinguish. Future studies

could conduct in-depth investigations on more characteristics of different log levels and help provide

a more accurate suggestion correspondingly.

The syntactic context and combined features show more consistent capability in making sugges-

tion among different log levels, while the log message feature may only provide helpful suggestion

on specific levels (e.g., warn and error). Many of the incorrectly suggested log levels are close to

their actual log levels. Future work could investigate opportunities that leverage the character-

istics of different log levels to distinguish log levels that are close in order.

RQ3: How is the generalizability of our approach?

Motivation. The success of deep neural networks often requires a large dataset in order to provide

sufficient information for training [48, 132]. However, as presented in Section 4.2, the amount of

logging statements in the studied systems ranges from 0.4K to 5.5K, i.e., small datasets compared to

other areas, such as computer vision, where these deep neural networks are extensively leveraged [34].

Moreover, different from mature systems with a long period of development and maintenance history,

new software systems may not have enough existing logging statements to train a deep neural

network. Enlarging the training data from other source is often used to address the challenge of

59

Table 9: The results of comparing enlarging training data (RQ3-A) on syntactic (S-enlarge.) and

combined feature (C-enlarge.) and cross-project prediction (RQ3-B) on syntactic (S-cross.) and

combined feature (C-cross.) with the within project prediction in RQ1

Accuracy AUC AOD

Systems S-enlarge C-enlarge S-cross C-cross S-enlarge C-enlarge S-cross C-cross S-enlarge C-enlarge S-cross C-cross

Cassandra 58.5 (+4.8) 63.5 (+2.9) 45.9 (85.5%) 58.9 (97.2%) 79.7 (+0.9) 84.9 (+0.7) 74.6 (94.7%) 82.7 (98.2%) 82.1 (+3.3) 85.2 (+4.7) 76.3 (96.7%) 80.1 (99.5%)

Elasticsearch 41.7 (-10.2) 49.1 (-8.6) 47.3 (91.1%) 55.7 (96.5%) 75.2 (-2.7) 76.9 (-4.4) 75.1 (96.4%) 80.2 (98.6%) 73.3 (-4.3) 78.1 (-2.2) 77.5 (99.8%) 78.4 (97.8%)

Flink 54.4 (+1.9) 66.1 (+0.9) 45.2 (86.1%) 63.7 (97.7%) 81.5 (+3.3) 85.5 (+0.4) 74.4 (95.1%) 83.5 (98.1%) 78.8 (+0.1) 83.9 (+0.1) 76.8 (97.6%) 82.3 (98.2%)

HBase 57.3 (+1.4) 64.0 (+3.7) 40.3 (72.1%) 55.2 (91.5%) 84.2 (+1.1) 85.3 (+0.9) 72.5 (87.2%) 80.2 (95.2%) 82.0 (+0.6) 84.1 (+2.4) 73.9 (90.8%) 76.7 (93.9%)

JMeter 56.5 (+1.4) 63.7 (+1.4) 44.3 (80.4%) 53.6 (86.0%) 84.0 (+0.5) 84.6 (+0.7) 73.8 (88.4%) 76.8 (91.5%) 82.9 (+0.6) 83.8 (+2.9) 75.6 (91.9%) 76.3 (94.3%)

Kafka 51.1 (+0.4) 52.8 (+1.0) 45.7 (90.1%) 50.8 (98.1%) 79.3 (+0.6) 80.2 (+0.7) 74.8 (95.0%) 76.8 (96.6%) 77.5 (+0.6) 78.9 (+1.4) 75.2 (97.8%) 75.9 (97.9%)

Karaf 57.9 (+1.4) 68.9 (+1.7) 45.3 (80.2%) 62.1 (92.4%) 85.1 (+0.8) 86.2 (+0.6) 74.7 (88.6%) 83.8 (97.9%) 82.6 (+2.0) 83.5 (+1.9) 77.1 (95.7%) 81.2 (99.5%)

Wicket 58.9 (+1.6) 65.9 (+2.1) 45.1 (78.7%) 58.3 (91.4%) 83.8 (+0.7) 86.1 (+1.1) 74.6 (89.8%) 81.0 (95.3%) 80.0 (+1.1) 84.3 (+5.0) 76.7 (97.2%) 78.8 (99.4%)

Zookeeper 54.5 (+1.7) 61.8 (+0.9) 45.0 (85.2%) 57.8 (94.9%) 80.3 (+0.7) 85.6 (+0.8) 73.5 (92.3%) 79.7 (94.0%) 79.9 (+1.1) 83.3 (+1.3) 76.1 (96.6%) 79.8 (97.3%)

Average 54.5 (+0.5) 61.8 (+0.7) 44.9 (83.1%) 57.3 (93.8%) 81.5 (+0.7) 83.9 (+0.2) 74.2 (91.8%) 80.5 (96.2%) 79.9 (+0.6) 82.8 (+2.0) 76.1 (96.0%) 78.8 (97.5%)

Note: The +/- number after each data in the columns of B-enlarge and C-enlarge indicates the improve or decrease compared

with within-system prediction in RQ1. The percentage in the columns of B-cross and C-cross represents the ratio against the

results of within-system prediction in RQ1.

limited dataset [154]. In particular, one may use data from other projects to complement the existing

dataset to train a better model. In this RQ, we investigate whether our approach is still generalizable

when training and testing on different data sets. In particular, we study two sub-RQs:

RQ3-A: Can we improve the performance of our approach by including more training data from

other studied systems?

RQ3-B: How accurate is our approach in cross-system suggestions?

Approach. We choose to use of the Syn and Comb features of our approach, since both outperform

the baselines, as discussed in RQ1. Below, we describe the approach of each sub-RQ.

RQ3-A: We enlarge the dataset by combing the data from all the studied systems. For each system,

we follow stratified sampling to split the data into training data (60%), validation data (20%),

and testing data (20%). We then merge the training data from all studied systems and train a

deep learning model, while using the 20% validation data set (combined from every studied system)

to validate the model during the training process. Finally, we apply the model trained using the

enlarged dataset separately on the testing data of each studied system.

RQ3-B: For each target system, we combine the data from the remaining eight systems together and

apply stratified sampling to split 80% of the data combined from the eight systems as training data,

and 20% as validation data. We then use the complete data of the target system as the testing data

and apply the model trained using the combined data from the other eight studied systems.

Results and Discussions.

RQ3-A: Our approach can benefit from the enlarged training data from other systems.

Table 9 shows the results of enlarging the training set using the syntactic context features (S-enlarge)

and the combined features (C-enlarge). The +/- number after each data indicates the improve or

60

decrease compared to within-system suggestion in RQ1. Overall, for both of the two features, the

performance is improved in eight of the studied systems on all of the evaluation metrics. Specifically,

for syntactic context features (i.e., S-enlarge in Table 9), the improvement of accuracy ranges from 0.4

in Kafka to 4.8 in Cassandra. The average AUC and AOD also improve by 0.7 and 0.6, respectively.

For combined features (i.e., C-enlarge in Table 9), the improvement of accuracy ranges from 0.9 in

Flink and Zookeeper, to 3.7 in HBase. The average AUC and AOD also improve by 0.2 and 2.0,

respectively. On the other hand, the performance in Elasticsearch is decreased after enlarging the

training data from other systems (accuracy decreases by 10.2 on S-enlarge, and by 8.6 on C-enlarge).

As shown in Table 4, Elasticsearch has considerably different log level distribution compared to

other systems. In particular, there exist considerably more trace level logging statements than other

systems (28.5% versus 5.5%); while much fewer error level logging statements (9.9% versus 26%).

Hence, the data from other systems may not be able to complement the data from Elasticsearch

in the model training. Our finding shows that, while enlarging the training data may improve

suggestion performance, practitioners should carefully and tactically choose the data when enlarging

the training set.

RQ3-B: Our approach achieves encouraging results in cross-system log level suggestions.

Table 9 shows the results of cross-system suggestions using the syntactic context features (S-cross)

and the combined features (C-cross). The percentage following each number represents the ratio

of the corresponding evaluation metric against the results of within-system prediction in RQ1. For

example, the accuracy of C-cross in Cassandra is 58.9. Compared with the original within-system

accuracy of Comb in Cassandra, i.e., 60.6, the accuracy ratio of C-cross against Comb in Cassandra

is 97.2% (58.9/60.6).

Overall, the cross-system suggestions achieve 83.1% accuracy on average for S-cross compared to

Syn in RQ1, and achieve 93.8% accuracy on average for C-cross compared to Comb in RQ1. We also

find that the results of cross-system suggestions on combined features are still higher than the results

of the two baselines in RQ1. In other words, even with cross-system suggestions, our approach can

still outperform the two baseline approaches that are trained and tested with data from the same

system.

By enlarging the training set, the performance of our approach can be improved in eight out

of nine studied systems. Our approach also has an encouraging performance for cross-system

log level suggestions, which still outperforms the within-system suggestions by the baseline ap-

proaches.

61

4.5 Threats to Validity

Construct Validity. To mitigate the fluctuation caused by different testing data set, we follow

prior studies to split the training, validation, and testing data [160, 87] and apply stratified random

sampling [113, 160, 87] to ensure each randomly sampled data set has the same distribution of log

levels as the original data. Our approach presumes that the training data has high-quality source

code and follows good logging practice. However, there is no “golden rule” for how to write logging

statements, which may affect the stability of logging statements [65, 162]. To mitigate this threat,

we choose nine well-maintained, large-scale systems across various domains, with different sizes to

conduct our study. They are commonly used in prior log-related studies and are considered as

following good logging practice [18, 19, 81, 73, 72].

Internal Validity. Different hyper-parameters used in the neural networks might affect the effec-

tiveness of the trained models. We follow the advanced practices from prior studies [160, 87, 63] to

set the hyper-parameters for our deep learning framework. We conduct manual studies to investi-

gate whether log level is implicitly or explicitly related to log message or the structural information

of the logging statement. To avoid biases, we examine the data independently. For most of the

cases, we reach an agreement. Any disagreement is discussed until a consensus is reached with a

substantial-level agreement (Cohen’s Kappa of 0.82 and 0.88 for logging location and log message,

respectively) [126]. Involving third-party logging experts to verify our manual study results may

further mitigate this threat.

External Validity. Our studied systems are all implemented in Java, the results and models may

not be transferable to systems in other programming languages. We conducted our study on nine

large-scale open source systems only. However, we selected the studied systems that are across

various domains, different sizes, and different amount of logging statements in order to improve the

representativeness of our studied systems. Future studies should validate the generalizability of our

findings and the transferability of our models in systems that are implemented in other programming

languages.

4.6 Related Work

Studies on Logging Practices. Chen et al. [17] and Yuan et al. [157] conducted quantitative

studies on logging statements in large-scale open source C/C++ and Java systems, respectively.

They found that logs are essential for debugging and maintenance purposes. Fu et al. [43] studied

the logging practices in Microsoft software systems. They investigated what categories of code

blocks (e.g., catch blocks) are logged. Li et al. [73] summarized the benefits and costs of logging

62

through a qualitative study. Zhi et al. [166] studied how logging configurations are used in practice

with respect to logging management, storage, and formatting. In this study, we focus on studying

the characteristics of log levels, specifically, their explicit or implicit relationship with the syntactic

context or message of a logging statement. The findings of our study could complement prior studies

in providing more comprehensive logging supports to developers.

Improving Logging Practices. Given the importance of logging, some studies try to help de-

velopers improve logging practices. Yuan et al. [158] proposed an approach that can automatically

insert additional variables into logging statements to enhance the error diagnostic information. Zhu

et al. [168] proposed an automated tool for suggesting logging locations. Li et al. [80, 78] proposed

a deep learning framework for suggesting logging locations at the code block level. Liu et al. [87]

proposed a deep learning framework to suggest the variables that should be recorded in logging

statements. Chen et al. [18] found that developers commonly make some mistakes when writing

logging statements (e.g., logging objects whose values may be null) and concluded five categories of

logging anti-patterns from code changes. Li et al. [81, 77, 82] uncovered potential problems with

logging statements that have the same text message and developed an automated tool to detect the

problems. Hassani et al. [51] identified seven root-causes of the log-related issues from log-related

bug reports and found that inappropriate log messages and missing log statements are the most

common issues. Different from prior studies, we focus on suggesting log levels by using features

extracted from the source code. We conduct a manual study on the characteristics of log levels and

propose a deep learning based approach to provide automated suggestions.

4.7 Conclusion

Deciding proper log levels for logging statements is a challenging task. In this chapter, we tackle

the challenges in two steps. First, we conduct a manual study on the characteristics of log levels.

We find that the syntactic context of logging statements and their messages, as well as the ordinal

nature of log levels might be leveraged to help determine proper log levels. We then propose a deep-

learning based approach to automatically suggest log levels for logging statements. Our approach

ordinally encodes log levels and leverages the syntactic context information and the log message

information of each logging statement to provide log level suggestions. Our approach outperforms

the baseline approaches and are effective at suggesting log levels in both within-system and cross-

system scenarios. Our results also highlight future research opportunities on improving logging

decisions, for example, by leveraging the characteristics of different log levels to help distinguish

similar log levels. Practitioners may also benefit from our findings to make better logging decisions.

63

Chapter 5

Studying Practitioners’ Expectation

on the Readability of Log Messages

Developers write logging statements to generate logs that provide run-time information for var-

ious tasks. The readability of log messages in the logging statements (i.e., the descriptive text) is

crucial to the value of the generated logs. Immature log messages may slow down or even obstruct

the process of log analysis. Despite the importance of log messages, there is still a lack of standards

on what constitutes good readability in log messages and how to write them. In this chapter, we

conduct a series of interviews with 17 industrial practitioners to investigate their expectations on

the readability of log messages. Through the interviews, we derive three aspects related to the read-

ability of log messages, including Structure, Information, and Wording, along with several specific

practices to improve each aspect. We validate our findings through a series of online questionnaire

surveys and receive positive feedback from the participants. We then manually investigate the read-

ability of log messages in large-scale open source systems and find that a considerable percentage

(38.1%) of the log messages have inadequate readability. Motivated by such observation, we further

explore the potential of automatically classifying the readability of log messages using deep learning

and machine learning approaches. We find that deep learning approach achieves the best results

with a balanced accuracy of 84.4% on average. Our study provides comprehensive guidelines for

composing log messages to further improve practitioners’ logging practices.

5.1 Introduction

Developers can leverage the valuable information in logs to assist in many tasks, such as program

comprehension [89, 104], anomaly detection [162, 150], and failure diagnosis [167, 91, 158, 84, 119,

64

118]. The value of logs highly relies on the quality of log messages (i.e., the part of "Successfully

updated remote job [{}]" in the example above). Developers leverage the information in log messages

as clues for debugging and failure diagnosis, unclear log messages may confuse developers and further

slow down or even obstruct the process of log analysis [73]. For example, if the log message is only

“Shutting down.”, it is still difficult to know what is shutting down.

Prior studies provide some supports on composing logging statements. For example, where to

insert logging statements [168, 43, 80, 16, 75], how to choose the verbosity level [74, 83, 86], and

generate logging statements by learning from existing data [94, 37]. However, to the best of our

knowledge, there is a lack of practical standards or systematic investigation on what are “good”

log messages that record valuable information and are easy to comprehend. Therefore, how to

compose log messages with “good” readability that can clearly and sufficiently record system run-

time behaviors is still an on-going challenge. The reliability of automated recommendations learned

from log messages with inadequate readability might also be decreased.

We conduct a comprehensive study to investigate practitioners’ expectation on the readability

of log messages and seek possible improvements: 1) We first conduct a series of semi-structured

interviews with 17 industrial practitioners from 11 companies worldwide to gain insights on their

perspectives of log messages’ readability; 2) We manually study the readability of log messages in

nine large-scale open source software systems; 3) We validate our findings from the interviews and

manual studies through an online questionnaire survey with 56 participants; 4) We further explore

the potential of automatically classifying the readability of log messages using deep learning and

machine learning approaches.

In particular, we study the following three research questions:

RQ1: What are practitioners’ expectation on the readability of log messages and how

to improve it?

By analyzing the interview records, we derive three aspects that are related to the readability

of log messages, including Structure , Information , and Wording . For each aspect, we also

derive several specific practices that can improve readability. Our survey participants acknowledge

the importance of these aspects and the effectiveness of improvement practices. Among the three

aspects, Information is considered as the most important aspect: 87.5% of the participants consider

it is “Very important” and 12.5% consider it is “Important”.

RQ2: How is the readability of log messages in large-scale open source software sys-

tems?

We use the data set of logging statements provided by a prior study [83] to manually investigate

the readability of log messages based on the three aspects discussed in RQ1. We find that 61.9% of the

log messages on average have adequate readability in all three aspects, meaning that a large portion

65

of the log messages (i.e., 38.1%) in these systems have inadequacy in terms of their readability.

RQ3: What is the potential of automatically classifying the readability of log messages?

We explore the potential of automatically classifying whether a log message has readability issue or

not using several deep learning and machine learning approaches (e.g., Bi-LSTM, Random Forest,

Decision Tree). We find that Bi-LSTM achieves the best results in classifying each of the three

aspects of readability, with an average balanced accuracy of 84.4%.

The contributions of this study are as follows:

• We are the first study that investigates the readability of log messages by conducting interviews

with industrial practitioners. We derive three aspects that are related to the readability of log

messages and several corresponding practices to improve the readability for each aspect.

• We find that a large portion of the log messages in large-scale open source systems actually

have inadequate readability.

• We explore the potential of automatically classifying the log messages whose readability might

need improvement and achieve encouraging results.

Chapter Organization. Section 5.2 summarizes the related work. Section 5.3 describes the

research methodology of our study. Section 5.4 presents the results by answering three research

questions. Section 5.5 discusses the implications of our study to practitioners and researchers.

Section 5.6 discusses the threats to validity of our study. Section 5.7 concludes the chapter.

5.2 Related Work

Empirical Studies on Logging Practices. Yuan et al. [157] studied the logging practices in

C/C++ applications and found that developers often improve log messages as after-thoughts. Chen

et al. [17] further studied the logging practices in Java applications and pointed out the similarities

and differences of logging practices compared to C/C++ applications. Zeng et al. [159] and Patel

et al. [110] investigated the logging practices in Android applications and Linux kernel, respectively.

Their findings show that logs are essential for debugging and maintenance purposes in different

domains and platforms. Other prior studies focused on assisting developers in making logging

decisions. For example, Fu et al. and Li et al. [43, 80] investigated where logging statements were

placed to identify the common categories of logging locations. Zhu et al. [168] proposed an automated

tool for suggesting logging locations. Several prior studies [74, 83, 86] proposed automated approach

to help developers select the appropriate verbosity level. These studies focus on empirically studying

logging practices or provide supports for deciding the logging locations or verbosity levels. In our

66

!"#$%&'()*#
+', -#../,#.

&()0#1%
2#.(34.

&4/,#%5
6(4'7/48*%93/..8:8*/48'$

!"#$%&'()*+*+,-.'/0%.12.)*(*+,-%
,-%*3.%'.(4(5+6+*7%,8%6,9%:.//(9./%
(-4%*3.%+:2',;.:.-*%2'()*+)./

&4/,#%;
<$4#)08#=

93/..8:8*/48'$
2#.(34.

!"<$%!.(4(5+6+*7%,8%6,9%:.//(9./%
+-%6('9.=/)(6.%,2.-%/,>').%
/,8*?('.%/7/*.:/

!"@$%A>*,:(*+)(667%)6(//+87+-9%
*3.%'.(4(5+6+*7%,8%6,9%:.//(9./

&4/,#%>
-/$(/3%<$0#.48,/48'$

6."#*4.%':%2#/?/@83841

-/$(/331%+/@#33#?%
2#.(34.

<7")'0#7#$4%A)/*48*#.
B

&4/,#%C
&()0#1

Figure 10: Overview of our research methodology and corresponding research questions.

study, we investigate practitioners’ expectation on the readability of log messages, which complement

prior studies on improving logging practices.

Studies on Log Messages in Logging Statements. He et al. [53] empirically studied the n-gram

patterns of log messages and proposed an information retrieval based approach that generates log

messages from similar code snippets. Ding et al. [37] formed the process of log message generation

as neutral machine translations and achieved promising results in such generations. Mastropaolo

et al. [94] proposed a deep learning based approach that can generate complete logging statements,

including log messages for Java methods. Despite the extensive studies on log messages in logging

statements, the readability of those log messages has not been investigated thoroughly. In this

study, we systematically study the readability of log messages and derive three aspects related to

the readability. For each aspect, we also derive several improvement practices based on our interviews

with industrial practitioners.

5.3 Research Methodology

Our research methodology consists of four stages, as shown in Figure 10. Stage 1: Semi-structured

interviews [92, 66, 139] with practitioners from industry on their experiences in reading log messages,

their perspective on the readability of log messages and how to improve it. Stage 2: Manual

investigation on how prevalent are log messages that may need improvement based on the aspects of

67

readability derived from the interview results. Stage 3: A questionnaire survey [67, 10, 109, 147] for

confirming the aspects of log message’s readability with the corresponding improvement practices

that are summarized from the interview, and verifying the manual investigation results in the prior

stage. Stage 4: Study of the potential of automatically classifying the readability of log messages.

5.3.1 Stage 1: Interviews

In our interviews with industrial practitioners, we investigate their perspective on the readability

of log messages and their expectation on the specific practices that can improve the readability.

Interview Process. We first developed an interview guideline by brainstorming a set of open-

ended questions. We then followed the guideline and conducts a series of individual interviews using

online video-conferencing tools with 17 software practitioners. Before the start of each interview,

we first sent the introduction part of the guideline to the interviewee to let them know the back-

ground information of our study, ensure that they are aware of the interview being recorded, and

emphasize that we will protect participants’ identities. Each interview takes 30-40 minutes, and is

semi-structured with three parts of questions.

Part 1: We asked some questions about the interviewees’ background information (e.g., years of

experiences, role of responsibility, and programming languages used in daily job).

Part 2: We asked open-ended questions about their experiences in reading and analyzing log messages

(e.g., “What kind of information provided by the log messages is important to you?”, “Have you ever

seen some log messages that are confusing or not helpful?”).

Part 3: We asked the interviewees about their expectations on log messages with good readability,

and what practices can practitioners do to improve the readability of log messages.

At the end of each interview, we thank the interviewee and verify there is no sensitive information

mentioned in the recorded interview.

Interviewees. The interviewees are full-time employees working in software engineering related

roles from 11 companies worldwide that are leading in their domains (the 17 interviewees are de-

noted as I-1 to I-17 when discussing their answers). The domain of those companies includes software

development, telecommunications, electronics, investment management, and digital currency man-

agement. The role of interviewees includes developers, software architects, algorithm engineers, data

analysts, and test engineers. We only invite interviewees who indicate that they have experience

and knowledge in logging. Their years of experience in software development and maintenance is

7.5 on average, ranging from 4 to 18 years.

Data Analysis. After we completed all the interviews, we transcribed the interview record and

performed open coding to generate an initial set of codes from the transcripts. We then verified

68

Table 10: An overview of the studied systems. LOC: Lines of code, NOL: Number of logging state-

ments.

System LOC NOL Sample

Cassandra 432K 1,316 298

ElasticSearch 1.50M 2,619 337

Flink 177K 2,455 333

HBase 1.26M 5,524 360

JMeter 143K 1,848 319

Kafka 267K 1,563 308

Karaf 133K 706 251

Wicket 216K 413 201

Zookeeper 97K 1,245 295

Total 4.2M 17,689 2,702

the codes and provided suggestions for improvement. We further removed the codes that are not

related to the readability of log messages (e.g., some interviewees mention that the timestamp of logs

should have a consistent time zone setting, which is not related to the composition of log messages).

We then perform open card sorting [127] on the generated codes to analyze the thematic similarity.

Specifically, we independently analyze the codes and sort the generated codes into potential themes

that indicate the expected practices on the readability of log messages. We use Cohen’s Kappa [97]

to measure the agreement. Overall, we have a Cohen’s Kappa value of 0.76, which indicates a

substantial agreement. We then discuss the disagreements until a consensus is reached. Eventually,

we derive three aspects that are related to the readability of the log message, including Structure,

Information, and Wording. Each aspect corresponds to several specific improvement practices

that can be used to improve the readability. Some of the improvement practices are corrective

practices, which are to improve the inadequacy of readability in log messages. Some are enhancing

practices, developers may decide whether to apply them or not based on the situations and needs.

We discuss each aspect and the corresponding practices in the results of RQ1 (Section 5.4).

5.3.2 Stage 2: Manual Investigation

In this stage, we manually investigate the readability of log messages in real-world open-source

systems based on the aspects derived from the interviews.

Data Preparation. To investigate the readability of log messages in widely used large-scale soft-

ware systems, we conduct our manual study on the data set of logging statements discussed in

69

Chapter 4. Table 10 presents the details of the data set. The data set includes a total of 17.7K

logging statements collected from nine large-scale open source Java systems. The number of log-

ging statements in each system ranges from 413 in Wicket to 5,524 in HBase. For each system,

we randomly sample a set of logging statements to conduct the manual investigation based on 95%

confidence level and 5% confidence interval [13]. We randomly sample 2,702 logging statements from

the nine systems. The sample size of each system varies from 201 in Wicket to 360 in HBase.

Manual Investigation Process. We examine the sampled logging statements (i.e., 2,702 logging

statements in total) with their surrounding code snippets. For each sampled logging statement,

we independently label whether the readability of its log message is adequate for each of the three

aspects (i.e., Structure, Information, and Wording). When the labeling is finished, we then compare

their results and discuss each disagreement until reaching a consensus. We have a Cohen’s Kappa [97]

value of 0.83 in this process, which indicates a substantial agreement.

5.3.3 Stage 3: Survey

To quantify the findings derived from our interviews and verify the manually investigated results,

we conduct an online questionnaire survey with a larger number of participants.

Survey Design. The survey has five parts: Part 1 to Part 4 include multiple-choice questions, and

Part 5 includes an open-ended question.

Part 1: We ask some background information related to the role and experience of the participants.

Part 2: We ask the participants for their perspective on the three aspects of readability derived

from our prior interviews. We illustrate each aspect by providing two real-world examples which

are against and for the readability in the corresponding aspect. The participants then choose their

consideration on the importance of the aspect to the readability of log messages from “Very impor-

tant”, “Important”, “Neutral”, “Unimportant”, and “Very unimportant”. At the end of this part, we

further ask the participant for their overall perspective on the three aspects.

Part 3: We ask the participant for their perspective on the practices that can improve the readability

of log messages from the corresponding aspect. We illustrate each practice by using a set of examples.

We then provide a statement indicating the effectiveness of each practice and ask the participant to

choose their agreement level on the statement following a 5-point Likert scale (i.e., “Strongly agree”,

“Agree”, “Neutral”, “Disagree”, and “Strongly disagree”).

Part 4: We randomly select seven logging statements from our manual investigation results (i.e.,

Stage 2, Section 5.3.2) and ask the participants to examine their readability. The participant can

choose whether the log message of each logging statement is good or bad in terms of each of the

three derived readability aspects. The main purpose of this part is to verify our manually labelled

log messages in Stage 2.

70

Part 5: We ask if the participants have other comments or ideas regarding the readability of log

messages.

In each multiple-choice question, we also provide an additional option “Not sure” if the participant

cannot understand the question or does not have a clear answer. We also provide a comment field

for each question where the participants are free to leave their comments related to the question.

In Part 4, each participant has different randomly selected logging statements to examine their

readability. Due to the randomness of this part, we use online document platform (e.g., Google

Doc) to design the surveys. Specifically, we prepare a series of survey documents in which Part

4 has unique logging statements and other parts have identical questions. Each participant has a

unique link to the survey where the participants can directly write their answers.

We conduct a pilot survey with a small number of practitioners first to collect their feedback on

the overall design of our survey. We make minor modifications to refine the description of questions

based on their feedback and have a final version of the survey. We then distribute our final version

of the survey to the participants. We exclude the responses collected from the pilot survey when we

analyze and present the survey results.

Participants. We contact professionals in leading IT companies from our networks and ask their

help to disseminate our survey to their colleagues. In total, we send out 80 surveys and receive 56

responses from the participants. Their years of experiences vary from 1 to 17 years, with an average

of 5.4 years. The top two roles of the participants are developer (25 participants) and algorithm

engineer (13 participants).

Data Analysis. We discard all the answers that select “Not sure”. For the answers in Part 2 and

Part 3, we report the percentage of each selected option. For the answers in Part 4, we analyze the

results labelled by the participants and compare with our manual study results in Stage 2 to examine

the agreement level. We discuss the comments and feedback that we receive from the participants

in Section 5.4.

5.3.4 Stage 4: Automatic Classification

As the first step to help improve the quality of log messages, in this stage, we seek to explore

the potential of automatically classifying the readability of log messages. Specifically, for each

aspect of readability (i.e., Structure, Information, and Wording), we classify whether a log message’s

readability is adequate or not in such aspect.

Data Preparation. We use the manually labelled log messages in Stage 2 to train the models for

automatic classification. For each log message, we tokenize it by space and attach its verbosity level

(e.g., info or error) as the input feature, and use the labelled results as the target to predict.

71

There are two steps for verifying the manually labelled log messages: 1) We independently label

the log messages and discuss any disagreement until a consensus is reached. The Cohen’s Kappa

value of this process is 0.83, which is a substantial agreement; 2) In our survey discussed in Stage 3,

we also ask the participants to label seven randomly sampled log messages. We receive 392 labelled

log messages from the 56 participants. We further exclude the results of log messages with answers

that are “Not sure”. We then have 366 available log messages labelled by the survey participants,

which is larger than the statistically significant sample size of 337, computed from the 2,702 log

messages based on a 95% confidence level and a 5% confidence interval [13]. In this process, we find

that a large number of the log messages labelled by the participants (81%) are exactly consistent

with ours (i.e., the labels of all the three aspects are the same), which indicates that the results of

manual investigation have high agreement with the survey participants.

Classification Process. Deep learning and machine learning approaches are widely used in the

tasks of Software Engineering [142, 93, 58, 35]. We use one deep learning and four machine learn-

ing approaches to explore the potential of automatic classification. For deep learning, we use Bi-

LSTM [120]; for machine learning, we use Logistic Regression [98], Decision Tree [116], Random

Forest [15], and SVM [114]. We use Keras [3] and Scikit-learn [6] to implement the deep learning

approach and machine learning approaches, respectively. As a majority of the log messages may

have adequate readability, we use a state-of-the-art oversampling technique on the training data,

namely ADASYN [52], to mitigate the potential impact of imbalanced data. For the vectorization

of input features, we use Skip-gram from Word2vec [2] to train the word embeddings and transform

the input features into numeric vectors. We then use each approach to train the models and evaluate

their performance.

5.4 Results

5.4.1 RQ1: What are Practitioners’ Expectation on the Readability of

Log Messages and How to Improve It?

In this RQ, we discuss the three aspects that are related to the readability of the log message

derived from our interviews with practitioners, including Structure, Information, and Wording. For

each aspect, we discuss: 1) Real-world example log messages that are against and for the corre-

sponding aspect, respectively; 2) Discussion of the interview and survey results; 3) Practices that

can improve the readability. Some of the practices are “corrective practices” , which are practices

to improve the inadequacy of readability in log messages. Some of the practices are “enhancing

practices”, where developers can decide whether to apply them or not based on the situations and

72

Figure 11: Survey participants’ rating for the importance of the three aspects.

needs.

Aspect 1 - Structure

Description. Format and organization of words and variables that a log message presents its

information.

Discussion. Below, we discuss the interview results and survey results related to the aspect of

Structure, respectively.

Interview Results. Among the 17 participants, 9 participants mention that Structure is important

to the readability of log messages. For example, interviewee I-8 expects that the log message should

be “well structured so it is easy to read by human” . Interviewee I-3 also mentions that:

“Log message with good readability should have clear structure. For example, log messages that

clearly separates variables could be easier to read. Don’t present variables closely that are hard to

judge boundaries.”

Survey Results. In our survey, we ask the participants for their perspective on the importance of

each aspect. Figure 11 presents the percentage of each rate of importance given by the survey

participants. We exclude three answers which are “Not sure” in all the three aspects and compute

the percentage based on the remaining answers. Overall, more than half of the participants (55.3%)

consider that Structure is “Very important” to the readability of log messages, and 39.3% of the

participants consider it is “Important”. Some survey participants also comment their perspective on

73

this aspect. For example, one participant mentions that:

“The aspect of Structure affects how the message is formulated. Better formulated log messages are

always easier to read than unformulated ones” .

Improvement Practices. We derive three practices related to the aspect of Structure, including

one corrective practice (i.e., practices to improve the inadequacy of readability in log messages) and

two enhancing practices (i.e., practices that developers can apply them based on the situations and

needs). Below, we discuss each practice with corresponding examples.

SP1 (Corrective Practices): Have clear boundaries and distinctions among items.

Different items in the log messages (e.g., variables) should have clear boundaries and descriptions

to be easily distinguished. As shown in the example below, the four variables in Example 1 are

presented one by one which might be difficult to understand the meaning of each variable. Example

2 shows the log message that adopts this corrective practice, where each variable is added with a

description of its meaning. In our interviews, 5 out of the 17 participants mention that this practice

can improve the readability of log message.

//Example 1 - WITHOUT this practice

LOG.debug("Reading from {} {} {} {}",

tableDesc.getTableName(),

region.getRegionNameAsString(),

column.getNameAsString(),

Bytes.toStringBinary(startKey));

//Example 2 - WITH this practice

LOG.debug("Reading from table: {}, region: {},

column: {}, key: {}",

tableDesc.getTableName(),

region.getRegionNameAsString(),

column.getNameAsString(),

Bytes.toStringBinary(startKey));

SP2 (Enhancing Practices): Use an easy-to-parse structure if needed and possible.

Five interviewees mention that developers could consider formatting the log message that is easy

to be automatically parsed by scripts for further analysis. For example, the code snippet shown

below uses a comma (“,”) to separate each part. The ideal situation is to have log messages that are

both human-readable and machine-readable.

//Example - WITH this practice

74

logger.info("Summary of the change, term: {},

version: {}, reason: {}",

newClusterState.term(),

newClusterState.version(), task.source);

SP3 (Enhancing Practices): Use parameterized logging to present the variables.

Two interviewees mention that the log message in the logging statement with parameterized

logging is easier to revisit and revise. Moreover, though not related to readability, parameterized

logging has better performance compared to simply concatenating the strings (according to the

documentation of Log4j2 [12]).

//Example 1 - WITHOUT this practice

LOG.error("Exception when formatting: ’" + dateStr

+ "’ from: ’" + fromFormat + "’ to: ’" +

toFormat + "’", e);

//Example 2 - WITH this practice

logger.info("Exception when formatting: ’{}’ from

’{}’ to ’{}’ ", dateStr, fromFormat, toFormat,

e);

Aspect 2 - Information

Description. Semantic information conveyed by the log message to record system execution be-

haviors.

Discussion. Below, we discuss the interview results and survey results related to the aspect of

Information, respectively.

Interview Results. All of our 17 interviewees consider that the actual information that a log message

conveys is important to its readability. For example, interviewee I-9 mentions that:

“The context of the log is important. When diagnosing the log, I would like to know how it happened.

Like is it caused by an incorrect path or failed creation of files. It’s also useful to know what is

the consequence. Such as the consequence of the missing file. Will the system use the default

configuration file or handle it with a different procedure.”

Survey Results. As shown in Figure 11, most of the participants (87.5%) consider that Information

is “Very important” to the readability of log messages, and the remaining participants consider

it is “Important”. The results show that the participants highly acknowledge the importance of

Information to the readability of log messages. For example, a survey participant comments that:

75

“With more accurate information, the information aspect helps readers to better understand the

message communicated by developers” .

Improvement Practices. From our interviews, we derive three practices related to the aspect of

Information, including two corrective practices and one enhancing practice. Below, we discuss each

practice with corresponding examples.

IP1 (Corrective Practices): Provide proper context for the run-time behaviors.

As shown in the examples below, the system execution behavior is the interruption of a current

thread. In Example 1, the log message is just “Interrupted”, while it’s unclear what is interrupted.

In Example 2, some context information of the execution behavior (i.e., the current thread) is added

to the log message. It would be even better to include the thread ID if available.

//Example 1 - WITHOUT this practice

Thread.currentThread().interrupt();

LOG.info("Interrupted");

//Example 2 - WITH this practice

Thread.currentThread().interrupt();

LOG.info("The current thread is interrupted");

//(also add thread ID if available)

In our interviews, the participants suggest some context information that can be added into the

log messages. We summarize the information into the following categories:

• Intention of this log message (clearly show whether it needs instant attention or not).

• Traceable information (e.g., thread and application ID).

• Clear “main character” of what happened from or what happened to.

• What is happening at the time.

• What is the consequence of this event.

• Possible reason of an unexpected event.

Note that it is not necessary to always include all of the context information every time, but our

interviewees mention that the log messages should at least provide useful information and important

events should include as sufficient context information as possible.

IP2 (Corrective Practices): Write a self-explanatory log message that is independent of other log

messages.

76

Six interviewees mention that log message should be self-explanatory and not depend on other

log messages. As shown in Example 1 below, the log message in debug level is “Full exception”.

However, these two info and debug logging statements may not always be generated closely together

(i.e., other logs may be generated in between). If other logging statements appear before the debug

one, it can be confusing to only see “Full exception” without the prior message. Hence, in Example 2,

complete information is added to the debug level log to make it self-explanatory and avoid potential

confusion.

//Example 1 - WITHOUT this practice

} catch (final AmazonClientException e) {

logger.info("Exception while retrieving instance

list from AWS API: {}", e.getMessage());

logger.debug("Full exception:", e); //depending on

the prior info log

//Example 2 - WITH this practice

} catch (final AmazonClientException e) {

logger.info("Exception while retrieving instance

list from AWS API: {}", e.getMessage());

logger.debug("Exception while retrieving instance

list from AWS API, full exception: ", e);

//provides complete information that does not

depend on other log messages

IP3 (Enhancing Practices): Minimize noise, emphasize the key information.

Four interviewees mention that they want to concisely see the key information without too much

noise. As shown in Example 1, the log message gives the instruction first and only mentions the

error code and error message at the end. In Example 2, we simplify the log message to emphasize

the error code and error message. Developers could consider adding another log message or use

another way to provide additional instructions if needed.

//Example 1 - WITHOUT this practice

77

LOG.warn("An HTTP error response in WebSocket

communication would not be processed by the

browser! If you need to send the error code

and message to the client then configure

custom WebSocketResponse via

WebSocketSettings#newWebSocketResponse()

factory method and override #sendError()

method to write them in an appropriate format

for your application. The ignored error code

is ’{}’ and the message: ’{}’.", sc, msg);

//Example2 - WITH this practice

LOG.warn("An HTTP error response in WebSocket

communication would not be processed by the

browser. Ignored error code: ’{}’, message:

’{}’. ", sc, msg);

/*mention the key information first, can add

another log, or use another way to write the

additional instruction if it’s necessary*/

Aspect 3 - Wording

Description. Lexical usage of words and punctuation in the log message.

Discussion. Below, we discuss the interview results and survey results related to the aspect of

Wording, respectively.

Interview Results. Among the 17 participants, 7 participants mention that Wording is important to

the readability of log messages. Some interviewees describe the scenarios where the wording affects

the readability of log messages. For example, interviewees I-1 and I-13 mention that:

“Similar to writing source code, we should have consistent naming conventions for the words of log

messages too. Otherwise it might be confusing to the users” .

“I’ve read some logs that have weird names included, hard to understand their meaning. Like are

they identifiers or the abbreviations of anything” .

Survey Results. As shown in Figure 11, 50.0% of the participants consider that Wording is “Impor-

tant” to the readability of log messages, and 26.8% of the participants consider it’s “Very important”.

There are also 17.9% of the participants consider the importance of Wording is “Neutral”. The survey

results show that participants generally acknowledge the importance of Wording, but the priority is

lower than Information and Structure. Some participants also provide comments to this aspect, for

78

example:

“Wording is important, but to a certain extend. Like tiny lexical mistakes can be acceptable.”

“If the log message uses very emotional wording, I will obviously pay more attention to it and unhappy

to see if it’s just a trivial event” .

Improvement Practices. We derive five practices related to the aspect of Wording, including three

corrective practices and two enhancing practices. Below, we discuss each practice with corresponding

examples.

WP1 (Corrective Practices): Use standard English words (e.g., avoid typos, incomplete words).

Four interviewees mention that we should avoid typos and incomplete words when writing the

log messages. As shown in the example below, the word “preform” is a typo and should be “perform”.

...

//Example - WITHOUT this practice

LOG.debug("Failed to preform reroute after cluster

settings were updated."); //"preform" is a

typo and should be "perform"

...

WP2 (Corrective Practices): Follow the convention of written language (e.g., capitalization, tense of

verbs, not too colloquial).

Three interviewees mention that log messages are better to follow the convention of written

language. As shown in the example below, we do not “exists” is incorrect and should be “exist”.

//Example - WITHOUT this practice

LOG.debug("Pinging a master {} but we do not

exists on it, act as if its master failure");

//we do not "exists" should be "exist"

WP3 (Corrective Practices): Try to use impartial and neutral wording (e.g., avoid being too emo-

tional or abusing capitalization).

Three interviewees mention that the emotion of log messages should try to be neutral and ob-

jective. The examples shown below are both log messages with improper emotional wording. In

Example 1, the log message is oral and emotional, which does not help with understanding the log

message. Example 2 abuses the capitalization for a non-critical system event (i.e., info level).

//Example 1 - WITHOUT this practice

LOG.error("!!!!!Uh-oh, didn’t find any action

handlers!!!!!");

//Example 2 - WITHOUT this practice

79

LOG.info("Added to offline, CURRENTLY NEVER

CLEARED!!!");

WP4 (Enhancing Practices): Be careful on using abbreviations and acronyms.

Four interviewees mention that proper usage of abbreviations and acronyms is important. De-

velopers should ensure that users can understand the meaning of abbreviations and acronyms before

writing them into the log message. As shown in the example, the abbreviation “TGT” is not a

well-known word. Probably only users with corresponding domain knowledge can understand the

meaning.

//Example

LOG.warn("No TGT found: will try again at {}");

WP5 (Enhancing Practices): Consistent on the wording of domain-specific terms.

Six interviewees mention that the use of domain-specific terms should be consistent, otherwise it

might be confusing for the users to understand their meaning. As shown in the example, “Incident

ID” and “IncID” refer to the same thing. If possible, developers should consider keeping a consistent

convention on the wording of domain terms to mitigate potential confusion.

//Example - WITHOUT this practice

LOG.info("Incident ID {}: a new incident is

reported.", incID);

...

LOG.info("IncID {}: the incident is closed.",

incID);

Overall Perspectives on the Aspects and Improvement Practices

In our survey, we also asked the participants for their overall perspectives on the three aspects

above. Particularly, we asked if these three aspects can reflect the readability of log messages.

Participants can choose from “Very positive”, “Positive”, “Neutral”, “Negative”, “Very negative”, and

“Not sure”. Overall, 51.8% of the participants’ responses are “Very positive”, and the remaining

responses are “Positive”. The results show that our survey participants acknowledge that the three

aspects can reflect the readability of log messages.

We also ask the survey participants for their agreement on the effectiveness for each improvement

practice. For example in Information Practice 1 (IP1), we provide a statement: “This practice can

improve the readability of log messages from the aspect of Information” . Participants can choose their

agreement level based on a 5-point Likert scale (i.e., “Strongly agree”, “Agree”, “Neutral”, “Disagree”,

“Strongly disagree”), and an additional option of “Not sure”. We exclude the answers that are “Not

80

Figure 12: Survey participants’ rating for each improvement practice.

sure” (1.3% of the total answers) and present the distribution of results in Figure 12. We find that

for all the improvement practices, most of the responses have positive ratings (i.e., “Strongly agree”

and “Agree”). Among the improvement practices for each aspect, Information Practices have the

highest percentage of positive ratings, with an average of 97.7% for the effectiveness.

By analyzing the interview records, we derive three aspects that are related to the readability

of log messages, including Structure , Information , and Wording . For each aspect, we also

derive several specific practices can be used to improve the readability in such aspect. Our survey

participants acknowledge the importance of these aspects. Among the three aspects, Information is

considered as the most important aspect: 87.5% of the participants consider it is “Very important”

and 12.5% consider it is “Important”.

We derive three aspects that are related to the readability of log messages and several practices to

improve each aspect. Among the three aspects, Information is considered as the most important

aspect: All of our survey participants consider it is either “Very important” or “Important”.

5.4.2 RQ2: How is the Readability of Log Messages in large-scale Open

Source Software Systems?

In this RQ, we present the results of our manual investigation on the readability of 2,702 logging

statements sampled from nine large-scale open source systems, following the process discussed in

Stage 2 of Section 5.3. We analyze the manual investigation results and present the results for: 1)

81

Table 11: Percentage (%) of log messages in each system that have adequate readability for all the

three aspects, or inadequate in each of the aspect.

Adequate
Inadequate

Data set Structure Information Wording

Cassandra 60.1 16.7 23.2 26.2

Elasticsearch 46.9 14.5 22.8 49.9

Flink 76.3 12.3 17.7 14.7

HBase 55.6 25.0 24.7 30.0

JMeter 52.0 27.0 30.7 36.4

Kafka 67.5 23.7 15.9 11.0

Karaf 75.7 12.0 16.7 21.1

Wicket 70.1 12.9 17.9 24.9

Zookeeper 60.0 15.6 23.1 34.6

Overall 61.9 18.2 21.7 28.1

Readability for log messages in different systems; 2) Readability for different lengths of log messages.

Readability for Log Messages in Different Systems. Table 11 presents the percentage of log

messages in each data set that have adequate readability for all the three aspects (i.e., the column of

Adequate), or inadequate in each of the aspect (i.e., Structure, Information, and Wording under the

column of Inadequate). The row of Overall shows the overall percentage computed from all the data

combined together. We find that the percentage of log messages with adequate readability varies in

different systems, from 46.9% in Elasticsearch to 76.3% in Flink. We also find that the distribution

of aspects is different for log messages with inadequate readability among the systems. For example,

49.9% of the log messages in Elasticsearch have inadequate readability in the aspect of Wording,

while for Structure and Information the percentages are 14.5% and 22.8%, respectively.

Readability for Log Messages with Different Lengths. Figure 13 presents the percentage of

log messages with adequate or inadequate readability for different lengths. We compute the length

of a log message based on its number of words. Adequate refers to the percentage of log messages

that have adequate readability in all the three aspects, Inadeq-S, Inadeq-I, and Inadeq-W refer to

log messages that have inadequate readability in the aspect of Structure, Information, and Wording,

respectively. We find that when the log messages are very short (i.e., length⩽2), only 7.4% of the log

messages have adequate readability in all the three aspects, with a very high percentage of Inadeq-I

(89.4%). In contrast, log messages whose length is within the range between 6 to 10 words have the

highest percentage with adequate readability (80.6%). When the log messages have more than 10

82

Figure 13: Percentage of log messages with adequate or inadequate readability for different lengths.

Length refers to the number of words of a log message.

words, we then find that the readability has a downward trend as the length increases. For example,

we find that the percentage of Adequate drops from 76.2% (log messages with number of words

between 25 and 34) to 62.5% when the log messages have more than 35 words. Overall, the results

show that the length of a log message might be an indicator of its readability, especially when the

length is very short.

Moreover, we also ask the interviewees for their expectations on the length of log messages in

the interviews. In total, 6 out of the 17 interviewees expect that the log message should be neither

too short nor too long, 4 interviewees consider that the log message should not be too short and 2

interviewees consider it should not be too long. There are also 5 interviewees do not have a specific

expectation on the length itself, but the log message should provide clear and useful information.

We find that our results in this RQ confirm the expectations from the interviewees. Compared

to extremely short or long, log messages with a proper length tend to be more readable and are

preferred by the practitioners.

We find that only 61.9% of the log messages in our studied data set have adequate readability

in all the three aspects, meaning that a large portion of the log messages (i.e., 38.1%) in these

systems have inadequacy in terms of their readability.

83

5.4.3 RQ3: What is the Potential of Automatically Classifying the Read-

ability of Log Messages?

We take a preliminary step to help developers improve log message by classifying whether a

message has readability issue or not. In this RQ, we present the results of automatic classification

for the readability of log messages. We use the 2,702 manually labelled log messages to train and test

the models using each approach discussed in Section 5.3. We then perform a stratified 10-fold cross

validation to estimate the performance of each approach and report the average results. Specifically,

we randomly split the data set into ten subsets, with stratified random sampling [113] to ensure the

same distribution of readability for each subset. The validation has ten rounds in total. For each

round of validation, we use one subset for testing, and the remaining subsets for training.

We first examine the balanced accuracy of each approach on classifying the three aspects of

readability. Balanced accuracy is widely used by prior studies to evaluate the performance of binary

classification on imbalanced data [168, 80, 75]. As shown in Table 12, we find that Bi-LSTM achieves

the best balanced accuracy in all the three aspects of readability, with an average of 84.4%. The

machine learning approaches achieve a balanced accuracy from 65.0% by Logistic Regression to

80.2% by Random Forest. Overall, we find that deep learning and machine learning approaches can

both achieve promising classification results. Among them, Bi-LSTM achieves the best balanced

accuracy.

We further examine the performance of Bi-LSTM on classifying the adequacy and inadequacy

of each aspect. Table 13 shows the Precision, Recall, and F1 score of classifying each aspect of

readability using Bi-LSTM. When Adequate readability in each aspect is considered as the positive

class, Bi-LSTM achieves an average precision, recall, and F1 score of 93.1%, and 89.8%, and 91.4%,

respectively. When Inadequate readability in each aspect is considered as the positive class, the

average precision, recall, and F1 score are 71.5%, and 79.0%, and 75.1%, respectively. Overall, we

find that Bi-LSTM can effectively classify each aspect of the readability.

Deep learning and machine learning approaches can both achieve promising results in the classi-

fication. Among the approaches, Bi-LSTM can effectively classify each aspect of the readability

and achieve the best balanced accuracy.

5.5 Implications

We discuss the implications of our study for practitioners and researchers, respectively.

Implication for Practitioners. Due to the lack of well-defined guidelines on writing the log

message, it is a challenging task to write log messages with good readability that can clearly and

sufficiently record system run-time behaviors. Moreover, it is also difficult to decide what are log

84

Table 12: Balanced Accuracy (%) of different approaches on classifying the readability for each

aspect.

Structure Information Wording Average

Bi-LSTM 86.6 90.4 76.3 84.4

Random Forest 80.2 88.1 72.6 80.3

Decision Tree 78.8 86.5 73.2 79.5

Logistic Regression 65.0 78.3 60.1 67.8

SVM 67.9 85.3 72.4 75.2

Table 13: Precision, Recall, and F1 score (%) of Classifying each aspect of readability using Bi-

LSTM.

Metric Structure Information Wording Average

Adequate

Precision 95.4 96.2 87.8 93.1

Recall 93.7 94.3 81.5 89.8

F1 94.5 95.2 84.6 91.4

Inadequate

Precision 73.6 81.0 60.0 71.5

Recall 79.6 86.4 71.1 79.0

F1 76.5 83.6 65.1 75.1

85

messages with “good readability”. In our study, we conduct a series of interviews with industrial

practitioners and derive three aspects that are related to the readability of log messages (i.e., Struc-

ture, Information, and Wording). For each aspect, we also discuss several specific practices that may

improve the readability in such aspect. Practitioners can consider to refer our findings to have a

clearer comprehension of the readability when composing and revising the log messages.

We also explore the potential of automatically classifying the readability of log messages. We find

that several widely used deep learning approaches and machine learning approaches (e.g., Bi-LSTM,

Random Forest, and Decision Tree) are effective in such classifications. Practitioners can leverage

the automated approach to examine the readability of log messages they compose and obtain a

suggestion of whether any aspects of the readability can be improved.

Implication for Researchers. In RQ2, we find that 61.9% of the studied log messages in large-

scale open source systems have adequate readability. Therefore, there is still a large portion of the

log messages with in adequate readability. Some prior studies work on automatically generating

log messages using existing source code and log messages [53, 37]. However, we observe that these

studies directly use the log messages to train and evaluate the models without a verification on

the quality of those log messages. As a consequence, log messages with poor readability may be

generated and thus decrease the reliability of such approaches. Future studies may leverage the

findings in our study to examine the readability of log messages and prompt automated generation

using more well-verified log messages.

5.6 Threats to Validity

Internal Validity. We manually label the readability of log messages for each aspect. To mitigate

the potential subjectivity, we label the log messages independently, and discuss each disagreement

until a consensus is reached. The Cohen’s Kappa value in this process is 0.83, which shows a substan-

tial agreement. In our survey discussed in Stage 3, we also ask the participants to label 7 randomly

sampled log messages. We receive 366 valid log messages labelled by the survey participants, which

is larger than the statistically significant sample size of 337, computed from the 2,702 log messages

based on a 95% confidence level and a 5% confidence interval [13]. We find that 81% of the log

messages labelled by the participants are exactly consistent with ours.

External Validity. We derive three aspects of readability and the corresponding improvement

practices from the interviews. The logging practices might vary in different companies and thus the

interview results may be different. To mitigate such threat, we invite participants from a variety of

large companies to participate in our study, and the domain of their companies range from software

development to digital currency management. These participants represent a variety of roles and

86

level of software development and maintenance expertise.

5.7 Conclusion

Due to lack of guidelines on writing log messages, it is unclear on how to systematically write log

messages with readability that succinctly and sufficiently record system execution behaviors. In this

chapter, we investigate practitioners’ expectation on the readability of log messages by conducting

a series of interviews with industrial practitioners. We derive three aspects related to the readabil-

ity of log messages along with several improvement practices for each aspect. Our findings receive

encouraging feedback from subsequent online questionnaire surveys. We also find that a consider-

able proportion of the log messages in large-scale open source systems have inadequate readability.

Therefore, we further explore the potential of automatically classifying the readability of log mes-

sages and find that both deep learning and machine learning approaches can effectively perform such

classifications. The findings of our study provide a systematic understanding of the readability of

log messages and shed light for future studies on providing comprehensive and automated supports

for practitioners’ logging practices.

87

Part III

Assist in Log Analysis

88

Chapter 6

Studying and Exploring

Variable-Aware Log Abstraction

Due to the sheer size of software logs, developers rely on automated techniques for log analysis.

One of the first and most important steps of automated log analysis is log abstraction, which parses

the raw logs into a structured format. Prior log abstraction techniques aim to identify and abstract all

the dynamic variables in logs and output a static log template for automated log analysis. However,

these abstracted dynamic variables may also contain important information that is useful to different

tasks in log analysis. In this chapter, we investigate the characteristics of dynamic variables and

their importance in practice, and explore the potential of a variable-aware log abstraction technique.

Through manual investigations and surveys with practitioners, we find that different categories of

dynamic variables record various information that can be important depending on the given tasks,

the distinction of dynamic variables in log abstraction can further assist in log analysis. We then

propose a deep learning based log abstraction approach, named VALB, which can identify different

categories of dynamic variables and preserve the value of specified categories of dynamic variables

along with the log templates (i.e., variable-aware log abstraction). Through the evaluation on a

widely used log abstraction benchmark, we find that VALB outperforms other state-of-the-art log

abstraction techniques on general log abstraction (i.e., when abstracting all the dynamic variables)

and also achieves a high variable-aware log abstraction accuracy that further identifies the category

of the dynamic variables. Our study highlights the potential of leveraging the important information

recorded in the dynamic variables to further improve the process of log analysis.

89

2015-10-18 18:01:53,713 INFO [main]

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImpl:

Upper limit on the thread pool size is 500

Raw Log

Abstracted Log

Log template:

Timestamp:

Logger:

Dynamic Variable(s):

2015-10-18 18:01:53,713

Verbosity Level: INFO
[main] org.apache.hadoop.mapreduce.v2.app.launcher.

ContainerLauncherImpl
Upper limit on the thread pool size is <*>

500

Figure 14: An example of the log abstraction process.

6.1 Introduction

Logs play an important role in software systems to record system execution behaviors. Practition-

ers leverage logs to assist in various tasks in the process of software development and maintenance,

such as failure diagnosis [158, 167, 119, 129, 163], program comprehension [99, 105, 104, 68, 31, 44],

and anomaly detection [125, 150, 162, 164]. Although logs contain rich system run-time informa-

tion, there are challenges associated with log analysis [151]. For example, modern software systems

generate a large number of logs on a daily basis, resulting in tens of gigabytes or even terabytes of

data [169, 33, 88]. Therefore, developers usually rely on automated techniques for log analysis.

To effectively facilitate automated log analysis, log abstraction (also called log parsing) tech-

niques [125, 169, 33, 54, 64] are used to process the raw logs into a more structured format. Fig-

ure 14 shows an example of the log abstraction process. The raw log in the example is composed of

a message header (e.g., timestamp) that can be configured via the logging library, the static words

that remain constant, and the dynamic variables that may vary depending on the run-time behav-

iors. The goal of log abstraction techniques is to identify the static log templates and abstract the

dynamic variables from the raw logs and output the log templates. The sequence of log templates

can then be leveraged for further log analysis (e.g., anomaly detection [55, 164]).

Prior studies propose various log abstraction techniques using different algorithms [169], such as

frequent pattern mining (e.g., Logram [33] and LFA [103]), clustering algorithms (e.g., SHISO [101]

and Lenma [124]), heuristics (e.g., Drain [54], AEL [64], and IPLoM [90]), and combined approaches

(e.g., ULP [121]). Their common goal is to abstract all dynamic parts of logs and output the

90

remaining static words. However, the recorded dynamic values can provide valuable information to

assist log understanding and analysis. In this study, we aim to understand the characteristics of

dynamic variables and their importance in log analysis. We then seek to propose a log abstraction

approach that can selectively abstract dynamic variables that belong to specific categories based on

the needs.

We first empirically study the dynamic variables in logs. We manually study a widely used log

abstraction benchmark data set [169] to uncover the characteristics of dynamic variables in logs and

uncover 10 categories of dynamic variables. We then have a questionnaire survey in a world-leading

software company (Company X) to investigate how do practitioners in the industry consider the

usage and importance of dynamic variables in logs. Through our empirical study and survey, we

find that different categories of dynamic variables record valuable information that can be important

for different tasks. In our survey with industry practitioners, we also find that the practitioners

acknowledge the importance of dynamic variables in logs, and a log abstraction technique that can

preserve the categories of dynamic variables as specified may further help log analysis.

Motivated by our findings and practitioners’ feedback, we then propose VALB, which is a

Variable-Aware Log aBstraction approach that can identify the static and dynamic parts in logs

(as the prior log abstraction techniques do), and also further identify the categories of dynamic

variables. Practitioners can specify the categories of dynamic variables based on their

needs, and the values of such dynamic variables will be preserved along with the log

templates. Overall, VALB achieves an average accuracy of 96.1% for general log abstraction, which

is better than other state-of-the-art log abstraction techniques (average accuracy ranges from 74.5%

to 82.5%). VALB also achieves an average accuracy of 95.5% for variable-aware log abstraction that

further considers the correctness of identifying different categories of dynamic variables. Moreover,

we find that the models of VALB are still efficient on a new system by re-using the models trained

from other systems and fine-tune the models with a small amount of logs in the new system.

The contributions of this study are as follows:

• We investigate the characteristics and importance of dynamic variables in logs, which are

omitted by prior log abstraction techniques. We find that different categories of dynamic

variables record valuable information that can be important for different tasks, point out the

need of a variable-aware log abstraction technique.

• We propose a deep learning approach, VALB, which is the first log abstraction approach

that can further identify the categories of dynamic variables in the process of log abstraction.

VALB achieve promising results in variable-aware log abstraction and also outperforms prior

state-of-the-art techniques in general log abstraction.

91

• We explore the potential of variable-aware log abstraction on assisting in log-based downstream

tasks and find that variable-aware log abstraction can be leveraged to improve the performance

of anomaly detection.

In short, our study uncovers the importance of dynamic variables and highlights future research

opportunities on studying the potential of leveraging dynamic variables in logs to further assist in

log analysis.

Chapter Organization. Section 6.2 summarizes the related works. Section 6.3 discusses the moti-

vating examples of our study. Section 6.4 presents our empirical study on dynamic variables in logs.

Section 6.5 describes the data preparation and the deep learning framework of VALB. Section 6.6

evaluates VALB by proposing and answering three research questions. Section 6.7 discusses the

potential of variable-aware log abstractions on assisting in log-based downstream tasks. Section 6.8

discusses the threats to the validity of our study. Section 6.9 concludes the chapter.

6.2 Related Works

Research on Log Abstraction. There are many prior studies that propose log abstraction tech-

niques to assist in log analysis. Some prior studies use frequent pattern mining (e.g., SLCT [135],

LFA [103], LogCluster [136], Logram [33]) to identify the static words that occur frequently in logs.

Some studies leverage clustering algorithms to cluster similar logs (e.g., LKE [42], LogSig [130],

SHISO [101], LenMa [124], and LogMine [49]), since logs in the same cluster then tend to have the

same log template. Some prior studies use heuristics or combined approaches to identify the static

and dynamic parts of logs [54, 64, 90, 121]. For example, Drain [54] uses a fixed-depth tree to main-

tain log groups with the same log template. IPLoM [90] leverages an iterative partitioning strategy

to partition logs into different groups. ULP [121] combines string matching and local frequency

analysis to parse large log files. In addition to prior log abstraction techniques that aim to identify

and abstract all the dynamic parts in logs, our approach can also distinguish different categories

of dynamic variables. Developers can specify the categories variables to keep their values based on

needs.

Deep Learning in Log-related Studies. Recent studies apply deep learning techniques to ad-

dress log-related problems. Specifically, those studies are related to logging (i.e., writing logging

statements) and log analysis (e.g., anomaly detection). For logging, Liu et al. [87] and Li et al. [83]

proposed deep learning based approaches to suggest the variables and verbosity level for logging

statements, respectively. For log analysis, Zhang et al. [162] proposed an attention-based Bi-LSTM

framework to detect log sequences that have anomalies. Yang et al. [150] used probabilistic label

92

2017-05-16_13:55:31 2931 INFO nova.compute.manager
[instance: 96abccce-8d1f] Took 19.96 seconds to spawn the instance on the hypervisor.

Sequence of Raw Logs

2017-05-16_13:55:31 2931 INFO nova.compute.manager
[instance: 96abccce-8d1f] VM Resumed (Lifecycle Event)

2017-05-16_13:55:31 2931 INFO nova.compute.manager
[instance: 96abccce-8d1f] Took 20.71 seconds to build instance.

1

2

3

[instance: <*>] Took <*> seconds to spawn the instance on the hypervisor.

Parsed Sequence of Log Templates

[instance: <*>] VM Resumed (Lifecycle Event)

[instance: <*>] Took <*> seconds to build instance.

1
2
3

Figure 15: An example of log parsing before analyzing the sequences of logs. The dynamic variables

in the raw logs and abstracted variables in the parsed log templates are marked in red.

estimation and proposed a semi-supervised anomaly detection framework. Different from prior stud-

ies working on logging or log analysis, our study uses deep learning techniques in the process of log

abstraction.

6.3 Motivating Examples

Log abstraction has shown to be a crucial first step towards further log analysis [169, 125].

Prior log abstraction techniques aim at abstracting all the dynamic variables and output a static

log template [169]. However, during our collaboration with Company X, which is a world-leading

software company, practitioners mention that such log abstraction process will result in the loss of

important information recorded by dynamic variables. They consider that different categories of

dynamic variables record different information, which can be important to specific tasks.

We take anomaly detection as an example. Anomaly detection tools [150, 162] analyze the

sequences of log templates generated from log abstraction techniques to detect system anomalies.

Since the dynamic variables have already been abstracted, the input log templates only contain the

information of static words in logs. Figure 15 shows an example of the process of log abstraction

on a sequence of logs. Due to Company X’s policy, we take the example logs from OpenStack, an

open-source anomaly detection data set provided by the LogPAI project [56]. The data sets provide

sequences of logs that are generated from normal and abnormal (e.g., system crash) system execution

behaviors. In the example shown in Figure 15, the raw logs record a series of run-time information

of an instance (i.e., a node) “96abccce-8d1f”. The dynamic variables (i.e., instance ID and seconds

93

taken by an action) are then abstracted as wildcards in the output sequences of log templates.

The anomaly detection approach then learns from the sequences of log templates in the training

data, and predicts whether a given log sequence indicates a normal or abnormal run-time behavior.

However, the dynamic variables may also play an important role in distinguishing normal and

abnormal system behaviors. For example, in the log template “[instance: *] Took * seconds to

spawn the instance on the hypervisor” , the average value of “seconds” in normal log sequences is

19.78, while the average value in abnormal sequences is 53.87. For the other log template “[instance:

*] Took * seconds to build instance.” , the average values of “seconds” are 20.63 and 39.21 in normal

and abnormal log sequences, respectively. This indicates that this anomaly might be a performance

issue due to network latency.

Therefore, apart from the static parts in the logs sequences, dynamic variables may also con-

tain important information for log analysis, yet such information is usually abstracted by prior log

abstraction techniques. An investigation of the characteristics of dynamic variables and their im-

portance in practice may further help improve log abstraction techniques and to better assist in log

analysis.

6.4 Studying the Dynamic Variables in Logs

Motivated by practitioners’ awareness of the importance of dynamic variables, in this section,

we study the dynamic variables in logs. We first conduct a manual study on a widely used log data

set [56] to study the characteristics of the dynamic variables and categorize the information they

record. We then conduct a questionnaire survey [67, 66] in a world-leading software company to

investigate how do practitioners consider the role that dynamic variables play in log analysis.

6.4.1 Manually Studying and Characterizing the Dynamic Variables in

Logs

Studied Data Sets. We use the log data sets and benchmarks provided by LogPAI [56] to study

the characteristics of dynamic variables in logs. LogPAI includes 16 data sets of logs generated from

both open-source and commercial systems across various domains, and is widely used in prior log

analysis studies [162, 150]. Each data set also provides a subset of 2,000 logs with manually derived

log templates as the ground truth for evaluating the accuracy of log abstraction techniques. The

manually derived log templates are commonly used in prior log abstraction studies for evaluating

log abstraction accuracy [169, 33, 54]. We call this subset of data sets log abstraction benchmark

data sets in the rest of this chapter.

In our manual analysis, we study the above mentioned log abstraction benchmark data sets (i.e.,

94

16 data sets in total, 2000 logs per data set, each log is manually labeled with its corresponding log

template for the evaluation of log abstraction). Table 14 presents the details of the log abstraction

benchmark data sets, including the number of log templates (NOL), number of log templates that

have abstracted dynamic variables with the percentage among the total number of log templates

(TWV (%)), and the number of abstracted dynamic variables (NOV). The number of log templates

ranges from 6 (Apache) to 341 (Mac), and the number of abstracted dynamic variables ranges from

8 (Apache) to 595 (Mac). We also find that, in each data set, more than half of the log templates

have abstracted dynamic variables (i.e., not pure static messages).

Manual Investigation on Dynamic Variables. In order to investigate what kind of information

do those dynamic variables record and their potential importance, we manually study the logs in

the log abstraction benchmark data sets to uncover the characteristics of dynamic variables in logs.

Our study involves the following steps:

Step 1 : We go through all the log templates that have abstracted dynamic variables in the data

sets (992 log templates in total). For the abstracted dynamic variables in each log template, we

check its corresponding original logs and note down what kind of information is recorded by each

dynamic variable.

Step 2 : We independently re-visit the notes in Step 1 and derive a list of categories that can

describe the characteristics of the dynamic variables [14]. We then discuss the derived results. The

categories are refined and revised during the discussion in this step.

Step 3 : We use the categories derived in Step 2 to label every dynamic variable in the data sets

(2,188 dynamic variables in total) independently. The results have a Cohen’s Kappa of 0.79, which

is a substantial level of agreement [126]. We discuss the disagreements until a consensus is reached.

We then compute the number of dynamic variables that belongs to each category.

Categories of Dynamic Variables. In our manual investigation, we uncover 10 categories of

dynamic variables. Table 15 presents each category with its abbreviation (Abbrev.), description,

example, and the number of variables that belong to this category. The dynamic variables in the

example are marked in bold and underline.

Overall, we find that Object ID (OID), Location Indicator (LOI), Object Amount (OBA), and

Object Name (OBN) have a relatively higher presence in our studied dynamic variables (255 to 739,

out of 2,188). Among them, Object ID (OID) records the identification information of an object,

such as a session ID or user ID. Location Indicator (LOI) shows the location information of an

object. It can be path information, a URI, or an IP address. Object Name (OBN) shows the name

of an object (e.g., domain name, task name, job name), and Object Amount (OBA) records the

amount of an object (e.g., number of errors, number of nodes).

Time or Duration of an Action (TDA) and Computing Resources (CRS) also have over 100

95

Table 14: An overview of the log abstraction benchmark data sets. NOL: Number of log templates,

TWV (%): Percentage of log templates with variables, NOV: number of variables

Name NOL TWV (%) NOV

Android 166 107 (64.5%) 320

Apache 6 6 (100.0%) 8

BGL 120 106 (88.3%) 269

Hadoop 114 90 (78.9%) 160

HDFS 14 14 (100.0%) 36

HealthAPP 75 44 (58.7%) 74

HPC 46 27 (58.7%) 52

Linux 118 67 (56.8%) 117

Mac 341 268 (78.6%) 595

OpenSSH 27 23 (85.2%) 56

OpenStack 43 42 (97.7%) 91

Proxifier 8 8 (100.0%) 23

Spark 36 24 (66.7%) 39

Thunderbird 149 97 (65.1%) 202

Windows 50 31 (62.0%) 66

Zookeeper 50 38 (76.0%) 80

Total 1363 992 (72.8%) 2188

Table 15: The manually-derived categories of dynamic variables with their corresponding abbrevia-

tions (Abbrev.). Dynamic variable in the example is marked in bold and underline

Name Abbrev. Description Example

Object ID OID Identification information of an object. Added attempt 1445144423722 to list of failed maps.

Location Indicator LOI Location information of an object. Adding path spec: /mapreduce.

Object Name OBN Name of an object. ServerFileSystem domain root10-local is full.

Type Indicator TID Type information of an object or an action. Using configuration type 1.

Switch Indicator SID Status of a switch variable. Saw change in network reachability (isReachable= 2).

Time/Duration of an Action TDA Time or duration of an action. Scheduled snapshot period at 10 second(s).

Computing Resources CRS Information of computing resource. Combo kernel: 126MB LOWMEM available.

Object Amount OBA Amount of an object. Total of 23 ddr error(s) detected and corrected.

Status Code STC Status code of an object or an action. mod-jk child workerEnv in error state 7.

Other Parameters OTP Other information other than the above categories. calvisitor kernel: payload Data 0700 to list of failed maps.

96

Table 16: The survey results of “Opinions on the Categories of Dynamic Variables in Logs”. UI:

usually important, CBI: can be important in some situations, UNI: usually not important.

Name UI CBI UNI

Object ID (OID) 45.5% 40.9% 13.6%

Location Indicator (LOI) 50.0% 40.9% 9.1%

Object Name (OBN) 59.1% 31.8% 9.1%

Type Indicator (TID) 63.6% 27.3% 9.1%

Switch Indicator (SID) 54.5% 27.3% 18.2%

Time/Duration of an Action (TDA) 31.8% 63.6% 4.6%

Computing Resources (CRS) 45.5% 36.4% 18.1%

Object Amount (OBA) 40.9% 40.9% 18.2%

Status Code (STC) 68.2% 31.8% 0.0%

Other Parameters (OTP) 9.1% 63.6% 27.3%

Average 46.8% 40.5% 12.7%

dynamic variables in our studied data sets. TDA shows the time that an action happens or the

duration of an action, and CRS shows how many computing resources are in use or left (e.g., memory

or disk space). For the remaining four categories (i.e., Type Indicator (TID), Switch Indicator (SID),

Status Code (STC), and Other Parameters (OTP)), they have relatively fewer numbers among the

studied dynamic variables. However, they can also be important in some situations. For example,

Status Code (STC) can show the code for some crucial events (e.g., an error code), which is usually

important for error diagnosis.

6.4.2 A Survey on Log Analysis and Dynamic Variables

In our manual study, we find that different categories of dynamic variables in logs record various

system run-time behaviors and uncover 10 categories of dynamic variables. In order to investigate

how do developers in the industry consider the usage of dynamic variables in logs when doing log

analysis, we conduct a questionnaire survey in Company X. Specifically, we conduct the survey in

several production teams in Company X with more than one hundred full-time engineers in total.

We first have a pilot survey with three engineers to collect their feedback and adjust the design of

the survey accordingly. The final version of the survey has 17 questions, divided into four parts. We

then distribute the survey link to the group chat of those teams. We receive 22 responses in total,

the participants are engineers from various production teams such as cloud computing and social

network services. We discuss each part of survey questions in detail.

97

Experience of the Participants (Q1). We ask the participants how many years of experience

do they have in software development and maintenance. On average, the participants have 6 years

of experience.

Opinions on the Categories of Dynamic Variables in Logs (Q2–Q11). We provide the

participants all the 10 categories of dynamic variables that we uncovered with a corresponding

example and ask the participants to consider the importance of each category in practice. Table 16

present the results of the participants’ opinions on the categories of dynamic variables. For each

category, participants can select if the category is “Usually important (UI)”, “Can be important in

some situations (CBI)”, or “Usually not important (UNI)”. The highest number for each category is

marked in bold.

Overall, most of the participants consider the dynamic variables are usually important, or can

be important in some situations. For all the 10 categories, from 27.3% to 63.6% of the participants

consider that they can be important in some situations. For 5 out of the 10 categories (LOI, OBN,

TID, SID, and STC), more than half of the participants consider that they are usually important.

The results show that developers acknowledge the importance of dynamic variables in logs, while

some variables are usually important and some are important depending on the situations.

Follow-up Questions on Dynamic Variables and Log Analysis (Q12-Q16). In this part, we

ask the participants five multiple-choice questions related to the dynamic variables in logs and log

analysis. For each question, participants can choose one score from 1 to 5, where 1 represents for

“Very low extent”, and 5 represents for "Very high extent". Table 17 presents the survey questions

and results. The column of Avg. and Med. shows the average and median score, respectively.

Overall, the average and median scores for Q12 - Q16 are all above 4.0. The results of Q12

(an average of 4.5 and a median of 5.0) show that the participants acknowledge the importance

of dynamic variables in log analysis. The results of Q14 (an average of 4.2 and a median of 4.0)

then show that developers believe further distinguishing the categories of dynamic variables may

further help log analysis. Based on the results of Q13 (an average and a median of 4.0), the

participants consider that our derived categories can represent the dynamic variables to a high

extent. Combining the results of Q15 and the percentage of CBI in Table 16, participants consider

that different categories of dynamic variables may play different roles in log analysis, depending on

the specific tasks or requirements. In Q16, most of the participants consider that it will be more

helpful if the log abstraction technique can further identify and keep some certain categories of

dynamic variables during the log abstraction process.

Additional Comments from the Participants (Q17). We provide an open-ended question to

ask the participants if they would like to share some experience or leave some comments related to

log analysis.

98

Table 17: List of questions and results for “Follow-up Questions on Dynamic Variables and Log

Analysis”, the answers are in a scale from 1 (very low extent) to 5 (very high extent).

Question Avg. Med.

Q12 To what extent do you think the dynamic variables are important for log

analysis?

4.5 5.0

Q13 For the 10 categories of dynamic variables, to what extent do you think they

can represent the dynamic variables in practice? (The larger the number,

the higher the representativeness of the categories)

4.0 4.0

Q14 To what extent do you think that distinguishing the dynamic variables into

categories can further help log analysis?

4.2 4.0

Q15 To what extent do you think that, for different specific tasks/requirements,

different categories of dynamic variables may have different importance?

4.5 5.0

Q16 Existing log abstraction technique is used to abstract the dynamic variables

of logs and assist in automatic log analysis. If there is an alternative log

abstraction tool that can further keep certain categories of dynamic vari-

ables (as specified by the user) and abstract the rest, to what extent do you

think this alternative tool can be helpful in log analysis?

4.5 5.0

99

Some participants provide comments indicating the importance of dynamic variables in logs. For

example, two participants commented that:

“In practice, we would like to pay attention to the specific parameter in a log, while sometimes we

can just use the log template to pinpoint the issue. So this may be related to the specific issue. It

should be interesting to study the relationship between issues and parameters or templates.”

“Determining whether a variable is important or not really depends on the task. For example, if we

want to find something related to a detected failure, the error code or the identifiable information

will be very important.”

There are also some participants who provide examples related to how can dynamic variables

help log analysis. More details will be discussed in Section 6.7. Overall, developers consider that

dynamic variables are important, and their importance is related to what information they record

and the specific tasks.

We find that different categories of dynamic variables record valuable information that can be

important depending on the tasks. We also find that practitioners in our survey consider the

distinction of dynamic variables in the process of log abstraction can further help log analysis.

6.5 An automated Approach for Variable-aware Log Abstrac-

tion

Motivated by our empirical findings and practitioners’ feedback, in this section, we propose a deep

learning based log abstraction approach, called VALB, which is a Variable-Aware Log aBstraction

technique. Given a set of logs, VALB can identify the static words (i.e., log templates), dynamic

variables, and the categories of dynamic variables. Hence, VALB can be used as a general log parser

when developers decide to abstract all the categories of dynamic variables. Moreover, as we found

in the result of our survey, practitioners consider that different categories of dynamic variables can

have different importance depending on the tasks. Therefore, VALB also allows developers to decide

which categories of variables they want to keep and preserve the values of such dynamic variables.

We formulate our variable-aware log abstraction process as a sequence tagging problem, which is

widely studied in the natural language processing area [32, 62]. A typical usage of sequence tagging

in NLP is named entity recognition (e.g., given a sentence, to recognize which word is a person,

which word is an organization, etc.). In our study, for a given log message, VALB aims to identify

which words are static words, which words are dynamic variables and what are their corresponding

categories. Below, we discuss how we annotate the dynamic variables and static words in logs, and

the deep learning framework and implementation of VALB.

100

Example of Data Annotation
Starting executor ID 5 on host meso-07

Starting executor ID on host meso-075

O O O B-OID O O B-OBN

Figure 16: An example of our log annotation process. Static words are annotated with O, object ID

is annotated with B-OID, and object name is annotated with B-OBN.

6.5.1 Data Annotation

VALB is based on supervised deep learning. In order to train the model that can identify the

dynamic variables, their corresponding category, and static words in logs, we need to prepare the

annotated training data. The training data consists of a specific amount of logs, and each word in

the log is annotated with its category. For each word in the log, we use the IOB (inside-outside-

beginning) annotation format [117] to annotate it with the categories that we found in Section 6.4.

This format uses “B-” as the prefix of the beginning word of a named entity and uses “I-” as the

prefix for the following word (if the following word exists). For the outside word of a named entity,

it uses “O” as the annotation. In our study, for each dynamic variable, we use the aforementioned

prefix as well as the abbreviation illustrated in Table 15 to annotate the category of each dynamic

variable. For each static word, we annotate it as “O”.

Figure 16 shows the annotation process of a simplified log from the Spark data set. In the exam-

ple, the log message is “Starting executor ID 5 on host meso-07” . The words “Starting”, “executor”,

“ID”, “on”, and “host” are static words, so we annotate them as “O”. For the word “5”, it belongs to

the category of Object ID, so we annotate it as “B-OID”. Similarly, we annotate the word “meso-07”

as “B-OBN” (i.e., Object Name).

6.5.2 Deep Learning Framework and Implementation

Overall Architecture. Figure 17 shows the overall architecture of our deep learning frame-

work. We first feed the log vectors into an embedding layer. Due to the variety of words in logs

(e.g., numbers, normal words, and compound words), we use a combination of word embedding

and character-level representation as our embedding layer. The embedding layer learns the rela-

tionship among the words and characters in logs and transfers the log vectors into probabilistic

101

Figure 17: Overall diagram of our framework. Areas surrounded by dashed lines on the right

illustrate the detailed structure for the character-level representation.

representations. We then use a Bi-LSTM (Bidirectional Long Short-Term Memory) layer to model

the dependencies among the words in logs. Finally, we use a CRF (Conditional Random Fields)

layer to model the relationships among the annotations of categories (e.g., which annotations are

likely to appear together) and output the annotation of each word. We then analyze the annotation

results and input logs to output the variable-aware log templates as the final results.

Embedding Layer. In the embedding layer, we use the concatenation of word embedding and

character-level representation to transfers the log vector into probabilistic representations.

Word Embedding. For each log in the data set, the word embedding layer captures the relationship

among the words in the log and transfers the log into probabilistic representations (i.e., probabilistic

vector). Similar words tend to have a close distance in the vector space [133, 85, 140]. In our study,

we use the GloVe embeddings [111] which are trained from six billion words collected from Wikipedia

and the web.

Character-level Representation. Unlike static words that are always constant, the dynamic variables

in logs can have various values based on different system behaviors. Moreover, many of the dy-

namic variables are numeric words (e.g., the category Object Amount in Section 6.4). The simple

numbers from 0 to 9 can almost have unlimited potential of creating “new words” depending on

various run-time information. This may result in very large size of the vocabulary and the OOV

(out-of-vocabulary) problem while applying the models [87]. Hence, we also include character-level

102

representation together with the word embedding layer. The combined embedding layer can catch

the relationships among both the words as well as the characters [38, 30]. We train the word embed-

ding from the words in logs and then use CNN (Convolutional Neural Network) with max pooling

to capture the relationship among the characters in words and build the character-level representa-

tion [23, 107]. We then concatenate the word embedding vector and character-level representation

together and feed the combined embedding vector into the next layer.

Bi-LSTM Layer. Recurrent Neural Network is powerful at capturing the dependencies in se-

quential data [149, 95]. Log is a series of words that have sequential dependencies among the words.

Similar to sentences in natural language, the words in a log may also have dependencies on past (i.e.,

words on the left) or future words (i.e., words on the right). Hence, we use Bi-LSTM (Bidirectional

Long Short-Term Memory) [62, 106], a variant of RNN to capture the long term dependencies in

the words from both directions. We then feed the output vectors in this layer that contains the

dependency information in logs to the next layer.

CRF Layer. In sequence tagging tasks, the CRF (Conditional Random Fields) layer leverages the

past and future tag in a sentence to predict the current tag [70]. It can learn the relationships and

dependencies among the resulted annotations (e.g., which annotations are likely to appear together,

and which annotations are not). In our deep learning framework, the CRF layer uses the vectors

from the Bi-LSTM layer and leverages the category annotations of the past and the future words to

predict the annotation (i.e., variable category) of the current word. For each line of log, the CRF

layer outputs the category of each word in the log as the final result. We then analyze the results

from CRF layer and output the static words (i.e., annotated as “O”) and categories of dynamic

variables as the result of variable-aware log templates (as shown in “Example Result” of Figure 17).

The result also includes the value of each dynamic variable, developers can specify the categories

and preserve their values.

Implementation and Hyper-parameters. We use Tensorflow [9] to implement our deep learning

framework. To mitigate the impact of overfitting, we apply the dropout method for embedding layer

and RNN layer, with a dropout rate of 0.2 [128, 58, 141]. For the embedding layer, we set the

dimension as 300, filter size as 50, and kernel size as 3 for character-level embedding and CNN, and

set the dimension as 100 for word embedding [160, 62, 87]. For the RNN layer, we set the hidden

units as 128 [87]. For the training process, we set the number of epoch as 30 and the batch size as

8 [161, 58, 83].

103

6.6 Evaluation of VALB

In this section, we first discuss the experimental setup to evaluate VALB. We then propose three

research questions and discuss the results.

6.6.1 Experimental Setup.

Data Preparation: We continue to use the log abstraction benchmark data sets provided by the

LogPAI project [56] (as discussed in Section 6.4), which is widely used by prior log abstraction

studies as the evaluation benchmarks [169, 33, 54], to train and evaluate the models. Specifically, we

annotate all the 2,000 logs in each of the 16 data sets following the process discussed in Section 6.5.

For each data set, we randomly split the 2,000 logs into training (20%), validation (20%), and testing

data sets (60%). The intention of choosing a small size of training and validation data set is that,

we want to investigate if training on a small data set can also achieve promising results. If so, the

effort of preparing the training data sets can then be mitigated.

Baseline: Since there is no prior work on abstracting specific categories of dynamic variables in

logs, we use the framework of VALB that excludes the char-level representations (i.e., only using

regular word embedding) as the baseline approach. The purpose is to examine how character-level

representation can help to model the diverse lexical usage of dynamic variables.

6.6.2 Research Questions

We discuss the results by answering three research questions. In RQ1, we use VALB as a general

log parser that abstracts all the dynamic variables and compare the accuracy with other state-of-

the-art log parsers. In RQ2, we examine the accuracy of VALB on variable-aware log abstraction

that further identifies the category of dynamic variables. In RQ3, we investigate whether the trained

models of VALB can be easily adopted to a new project.

RQ1: What is the Accuracy of VALB on General Log Abstraction?

Motivation. Prior log abstraction techniques aim at identifying the dynamic parts in the logs

and completely abstract them [169]. Similar to prior works, VALB can also be used for general log

abstraction if we only identify the dynamic variables and do not consider their categories. In this

RQ, we investigate the accuracy of VALB when we use it for general log abstraction and compare

it with other state-of-the-arts.

Approach. For each data set, we train and validate the model using the training and validation

data sets and evaluate the accuracy on the testing data set. When we are training and evaluating

the models, we first transfer the annotations of all the categories of dynamic variables to a single

annotation that indicates the word is a variable, regardless of their categories. Given a log, VALB

104

can thus identify which words are static words and which words are dynamic variables, and output

log templates without dynamic variables as what prior log abstraction works do.

For the accuracy of log abstraction, there are mainly two definitions: 1) a log is considered as

correctly parsed if its event template corresponds to the same group of log messages in the ground

truth [169, 54]; 2) a log is considered correctly parsed if and only if all of its static words and

dynamic variables are correctly identified [33] (the category of dynamic variable is not considered).

The first definition of accuracy does not examine if each word is correctly parsed. Therefore, we use

the second definition of accuracy to examine the performance of VALB and other works on general

log abstraction. The result of accuracy is computed as the ratio of correctly parsed logs against

all the parsed logs. We refer to this accuracy as general accuracy in the rest of chapter. We use

VALB as a general log parser (i.e., abstracting all the identified dynamic variables) and compare

the accuracy with the top-3 state-of-the-art log parsers that have the highest accuracy reported in

a prior study [33] (i.e., Logram [33], Drain [54], and AEL [64]) as well as our baseline approach.

Results and Discussions. Table 18 presents the general accuracy of our approach (VALB), the

baseline (Base), and the other state-of-the-art log parsers. Each number indicates the ratio of the

correctly parsed logs. The accuracy that is higher than 90.0% is marked in bold, and the highest

accuracy among all the log parsers is marked with a star mark (*). Overall, VALB achieves the best

accuracy in 15 out of the 16 data sets and the highest average accuracy across the data sets (96.1%).

For the data set that VALB does not achieve the best accuracy, the accuracy of VALB is also close

to the highest approach (e.g., VALB achieves an accuracy of 97.0% in HDFS, which is slightly lower

than the highest accuracy of 99.9% achieved by AEL and Drain).

VALB achieves a high accuracy in general log abstraction that abstracts all the identified dynamic

variables (96.1% on average) , which outperforms other state-of-the-arts.

RQ2: What is the Accuracy of VALB on Variable-aware Log Abstraction?

Motivation. In our empirical study and survey, we find that practitioners acknowledge the impor-

tance of dynamic variables, and different categories of dynamic variables may have different usages

depending on the tasks or scenarios. The findings point out the need of a variable-aware log abstrac-

tion technique that can preserve the value of specific categories of dynamic variables in the process of

log abstraction. In this RQ, we evaluate the accuracy of VALB on variable-aware log abstraction, as

well as the performance on identifying each category of dynamic variables. We study two sub-RQs:

RQ2-A: What is the accuracy of VALB on variable-aware log abstraction that can identify the static

and dynamic parts in logs, and also further identify the categories of dynamic variables?

RQ2-B: What is the performance of VALB on identifying different categories of dynamic variables

in logs?

Approach. Below, we discuss the approach of each sub-RQ.

105

RQ2-A: Apart from identifying static and dynamic parts in logs (i.e., general log abstraction),

VALB can also identify the categories of dynamic variables (i.e., variable-aware log abstraction). To

compute the accuracy of variable-aware log abstraction, we consider a log is correctly parsed when:

1) the static and dynamic parts are correctly identified and 2) all the categories of dynamic variables

in a log are also correctly identified. We refer to this accuracy as variable-aware accuracy in the rest

of this chapter. For each data set, we train and validate the model using the training and validation

data sets and evaluate the variable-aware accuracy on the testing data set. Note that since prior log

abstraction approaches cannot distinguish the categories of dynamic variables, we only compare the

variable-aware accuracy of VALB with the baseline approach.

RQ2-B: In this sub-RQ, we further investigate the performance of VALB on identifying each category

of dynamic variables. Specifically, we combine the results of all the 16 data sets in RQ2-A and

compute an overall precision, recall, and F1 score for each of the 10 categories of the dynamic

variables. These metrics are widely used by prior studies on sequence tagging [32, 62]. For each

category, precision represents the ability of correctly identifying this category of dynamic variables

(i.e., true positive divided by the sum of true positive and false positive); recall represents the ability

of how many words in the log that belong to this category can be identified (i.e., true positive divided

by the sum of true positive and false negative); and F1 score evaluates if the approach can both

accurately and sufficiently identify the words that belong to this category. We also repeat the same

process for the baseline and compare the baseline’s performance with VALB.

Results and Discussions. We present and discuss the results of the two sub-RQs, respectively.

RQ2-A: Table 19 presents the variable-aware accuracy of VALB and the baseline approach. Overall,

VALB achieves a high variable-aware accuracy ranging from 86.2% in Mac to 100.0% in Proxifier,

which is also close to the general accuracy as discussed in RQ2-A. The average variable-aware

accuracy of VALB is 95.5%, which is higher than the baseline (i.e., 86.2%). The results show

that apart from general general log abstraction, VALB can also efficiently identify the categories of

dynamic variables in the logs to perform a variable-aware log abstraction. Practitioners can specify

the categories of dynamic variables based on their needs, and the values of such dynamic variables

will be preserved along with the log templates for further log analysis.

RQ2-B: Table 20 shows the results of identifying different categories of dynamic variables using

our approach (VALB) and the baseline (Base). We present the average results on identifying each

category of dynamic variables from all the data sets to concisely show the overall performance.

Each number represents for the average number computed from all the data sets. The Average line

shows the arithmetic mean value of the corresponding column. Overall, VALB achieves over 90%

in precision, recall, and F1 score for all the categories of dynamic variables and performs better

than the baseline. VALB achieves an average precision of 96.2%, an average recall of 96.5%, and an

106

Table 18: Accuracy (%) of VALB on general log abstraction compared with other log parsers and

the baseline (Base). bold numbers: higher than 90, star mark (*): highest accuracy in each row.

Dataset AEL Drain Logram Base VALB

Android 86.7 93.3 84.8 79.8 93.5*

Apache 69.3 69.3 69.9 91.0 100.0*

BGL 81.8 82.2 74.0 83.0 91.3*

Hadoop 53.9 54.5 96.5 92.6 97.7*

HDFS 99.9* 99.9* 98.1 91.1 97.0

HealthAPP 61.5 60.9 96.9 75.8 99.3*

HPC 99.0 92.9 95.9 90.8 99.2*

Linux 24.1 25.0 46.0 93.8 96.5*

Mac 57.9 51.5 66.6 67.2 86.6*

OpenSSH 24.7 50.7 54.5 95.8 98.2*

OpenStack 71.8 53.8 84.7 92.0 93.8*

Proxifier 96.8 97.3 95.1 100.0* 100.0*

Spark 96.5 90.2 90.3 91.2 99.3*

Thunderbird 78.2 80.3 76.1 83.4 88.1*

Windows 98.3 98.3 95.7 91.3 99.2*

Zookeeper 92.2 96.2 95.5 92.1 98.3*

Average 74.5 74.8 82.5 88.2 96.1*

Table 19: Variable-aware Accuracy (%) of VALB and the baseline (Base) discussed in RQ2, and

Fine-tuning models with 50 logs from the target data set (F-50) discussed in RQ3.

RQ2 RQ3

Dataset Base VALB F-50

Android 76.0 91.6 82.3

Apache 90.5 99.3 97.0

BGL 82.0 89.6 86.7

Hadoop 91.8 96.8 90.1

HDFS 88.9 96.5 95.0

HealthAPP 75.1 98.8 92.9

HPC 86.6 99.0 95.8

Linux 91.6 95.9 91.0

Mac 63.8 86.2 78.0

OpenSSH 90.1 97.6 91.5

OpenStack 89.5 93.2 88.9

Proxifier 100.0 100.0 100.0

Spark 90.7 99.1 92.3

Thunderbird 80.6 87.8 82.3

Windows 90.4 99.0 96.7

Zookeeper 91.7 98.1 95.4

Average 86.2 95.5 91.0

107

Table 20: The results of identifying different categories of dynamic variables by our approach (VALB)

and the baseline (Base).

Precision (%) Recall (%) F1 (%)

Category VALB Base VALB Base VALB Base

Object ID 96.5 89.2 95.9 93.1 96.2 91.1

Location Indicator 97.1 95.2 96.3 91.3 96.7 93.2

Object Name 99.8 95.5 98.3 95.8 99.0 95.6

Type Indicator 92.8 74.1 95.9 67.2 94.3 70.5

Switch Indicator 96.7 87.3 98.2 83.8 97.4 85.5

T. or D. of an Action 99.7 92.1 98.0 97.8 98.8 94.9

Computing Resources 98.7 91.2 97.3 91.7 98.0 91.4

Object Amount 92.5 77.5 96.9 87.8 94.6 82.3

Status Code 97.2 91.5 95.2 87.3 96.2 89.3

Other Parameters 91.1 72.9 93.0 82.2 92.0 77.2

Average 96.2 86.6 96.5 87.8 96.3 87.1

average F1 score of 96.3%; while the baseline achieves 86.6%, 87.8%, and 87.1%, respectively. VALB

also has over 99% precision for Object Name (99.8%) and Time or Duration of an Action (99.7%).

VALB can effectively identify the categories of dynamic variables and achieves a high accuracy in

variable-aware accuracy (95.5% on average), which outperforms the baseline approach without

char-level representations (86.2% on average).

RQ3: Can the models of VALB be easily leveraged in a new project?

Motivation. Given that VALB is a supervised approach, the effectiveness of the models may rely

on the training data. In this RQ, we would like to investigate how generalizable are the models of

VALB. Specifically, we study how effective is VALB when the models are trained from other data

and fine-tuned with a small size of data in the target data set.

Approach. We apply fine-tuning on existing models to investigate if VALB can be easily adopted

to a new project with mitigated effort on data preparation. Specifically, for each target data set

in the 16 data sets, we combine the training and validation data from the remaining 15 data sets

and train a model. We then use a small size of logs (5, 10, 30, 50, and 100) from the training

and validation data sets, respectively, from the target data set to fine-tune the model. We further

use the fine-tuned model on the target testing data set to examine the variable-aware accuracy and

compute an average number by combining the results of all the 16 target data sets together to show

an overall trend for different size of fine-tuning logs.

Results and Discussions. Figure 18 shows the average variable-aware accuracy of models fine-

tuned with different number of logs in the target data set (i.e., F-5, F-10, F-30, F-50, and F-50),

108

Figure 18: Average variable-aware accuracy of models fine-tuned with different number of logs in

the target data set comparing with the original results in RQ2-A.

models without fine tuning (i.e., F-0), and the original results discussed in RQ2-A (i.e., Original).

Overall, the average accuracy increases as the growth of the size of fine-tuning logs in the target data

set, from 51.1% without fine-tuning logs to 92.2% with 100 fine-tuning logs. It is worth noting that

the average variable-aware accuracy is fairly high when the models are fine-tuned with 50 logs in

the target data set (i.e., 91.0% for F-50) and comparable to the original results discussed in RQ2-A.

In the last column of Table 19, we further present the detailed variable-aware accuracy of F-50 for

each data set. We find that the fine-tuned models using 50 logs from the target data set (F-50) also

achieve a high variable-aware accuracy with an average variable-aware accuracy of 91.0%, which is

close to the average accuracy of the original results (i.e., 95.5%). Hence, after using the pre-trained

models and a small data set of the target project, the models of VALB can be easily adopted to

other projects.

VALB achieves a high variable-aware accuracy using the models fine-tuned with a small amount

of data in the target system, and thus can be easily leveraged in a new project.

6.7 Discussion

Exploring the potential of variable-aware log abstraction on assisting in log-based down-

stream tasks. As discussed in Section 6.3, dynamic variables may also contain important informa-

tion for log analysis tasks, and such information can be preserved using variable-aware log abstraction

109

of VALB. Hence, we further explore how can variable-aware log abstraction help the downstream

tasks in log analysis. We conduct our exploration on the log-based anomaly detection benchmark

provided by LogPAI [55, 56], which is widely used by other log-based anomaly detection stud-

ies [150, 162]. We use the HDFS data set provided by the benchmark to examine the performance

of general log abstraction and variable-aware log abstraction on anomaly detection. HDFS data

set contains over 11M log messages generated by running Hadoop-based MapReduce jobs on more

than 2,000 Amazon’s EC2 nodes for 38.7 hours. After grouping the logs with their block ID, there

are 575,062 log sequences in total. Around 2.9% of the log sequences indicate anomalies, which are

manually labeled by domain experts. We find that the logs in HDFS data set has four categories of

dynamic variables: Object ID (OID), Location Indicator (LOI), Computing Resources (CRS), and

Object Amount (OBA).

We use the anomaly detection techniques provided by the benchmark [55] with top-5 F1-scores

(i.e., Decision Tree, SVM, LR, IM, and Clustering). For each technique, we use log sequences

without dynamic variables as what prior log abstraction studies do (i.e., Original), with the value

of each category of dynamic variable (i.e., OID, LOI, CRS, and OBA), and with all the values of

dynamic variables (i.e., All) as the input data, respectively, to examine their performance on anomaly

detection. Note that we further exclude the results of Decision Tree since the Precision, Recall, and

F1-score are already nearly perfect (99.8%) for Original, and the results are very similar when using

log sequences with each category of dynamic variables (from 99.7% to 99.9%).

Figure 19 presents the F1 scores achieved by each anomaly detection technique (excluding De-

cision Tree) using sequences of log templates without variables (i.e., Original), and using sequences

of log templates with corresponding category of variables. As we find that the overall trends of

Precision and Recall are similar to F1-score, we only present the results of F1-score to have a more

concise view. Overall, we find that CRS (i.e., when using the log sequences with dynamic variables of

which the category is Computing Resources) achieves the highest F1-score for each of the anomaly

detection technique. For other category of variables, there is a fluctuation on the results compared

with Original. In short, we find that log sequences with specific categories of dynamic variables (e.g.,

CRS in this experiment) can improve the performance of log-based anomaly detection.

Apart from anomaly detection, some participants in our survey (as discussed in Section 6.4) also

mention some scenarios that dynamic variables in logs can assist in different tasks. For example,

one participant comments that:

“Dynamic variables in the log are very important for parameter tuning works. Especially when the

number of parameters is large, using dynamic variables in logs can help to track the performance of

each parameter and easy to repeat the best performance.”

The participant mentions that dynamic variables that record the hyper-parameters (e.g., the

110

Figure 19: F1 score achieved by different anomaly detection techniques using sequences of log

templates without variables (Original), and using sequences of log templates with corresponding

category of variables.

number of epochs can be represented by the category of Object Amount in Section 6.4) can assist in

parameter tuning works. Moreover, one participant also mentions that:

“Some types of variable can be very important for trouble shooting, like the status code. However, it’s

time-consuming to design regular expressions to grep such variables in each case. It will be helpful

to identify such variables without ad-hoc efforts every time. ”

Overall, practitioners acknowledge the importance of dynamic variables in practice, and such

importance usually depends on the specific tasks. Our study explores the potential of variable-aware

log abstraction on assisting in log analysis and sheds light on better leveraging the information in

dynamic variables to improve log analysis for future studies.

6.8 Threats to Validity

Construct Validity. Our approach is based on supervised deep learning, the process of annotation

on training and validation data may require extra effort in practice. However, as we discussed in

Section 6.6, our approach can achieve promising results when training on small data sets and test on

large data sets. Moreover, as we discussed in Section 6.7, our approach can also achieve encouraging

results on the model trained from other projects and fine-tuned on a very small data set (e.g., 50

logs) of the target project. Hence, developers may not need significant time on manually labeling

111

the data.

External Validity. We conduct our study on open source log data sets provided by LogPAI [56]

project. Conducting the study on different log data sets may have different results. For example,

new categories of dynamic variables may be derived from other data sets. However, the data sets

in LogPAI are across various domains and are widely studied by prior log-related studies [33, 162,

54, 150]. Moreover, the categories of dynamic variables are flexible to be updated by leveraging

developers’ data annotations.

6.9 Conclusion

Log abstraction is an important first step for automated log analysis. Prior log abstraction

studies aim to completely abstract the dynamic variables in logs, without considering the great

values that dynamic variables may have. Through an empirical study and a survey with industrial

practitioners, we find that different categories of the dynamic variables in logs can be important

for different tasks, and the distinction of dynamic variables in the process of log abstraction may

further help log analysis. We then propose a deep learning based approach, VALB, which can further

identify the category of dynamic variables in the process of log abstraction. VALB outperforms state-

of-the-art log abstraction techniques on general log abstraction, and also achieves promising results

on variable-aware log abstraction. Future studies may investigate the relationship between different

categories of dynamic variables and their role in different tasks, in order to better leverage the

information recorded in the dynamic variables and further help log analysis.

112

Part IV

Conclusion and Future Work

113

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis as conclusions and discuss the

potential directions of future work.

7.1 Thesis Contribution

Due to the lack of practical guidelines on logging and log analysis, the process of making logging

decisions and log analysis remain challenging. In this thesis, we conduct studies to address the

problem and help developers on logging practices in two aspects: 1) assist in making logging decisions,

and 2) assist in log analysis.

For assist in making logging decisions, we have three research outcomes to improve the logging

practice including suggesting logging locations, recommending log levels, and provide a systematic

comprehension of the readability of log messages. We achieve promising results in the suggestions

of logging locations and verbosity levels over the baseline approaches. The findings of our study on

log messages provide a systematic understanding of the readability of log messages.

For assist in log analysis, we have one research outcome to study the dynamic variables in the

process of log abstraction, which is usually omitted by prior log abstraction studies. We find that

different dynamic variables may also be important based on the tasks and needs and explore the

potential of a variable-aware log abstraction. . We propose a deep learning based approach that

can identify the category of dynamic variables in the process of log abstraction. Our approach

outperforms state-of-the-art log abstraction techniques on general log abstraction, and also achieves

promising results on variable-aware log abstraction.

In conclusion, we summarize the contributions of this thesis as follows:

• We empirically study the characteristics of logging locations at the block level and propose

114

a deep learning based approach to suggest whether a code block needs to insert a logging

statement (Chapter 3).

• We propose an automated deep-learning based approach that leverages the ordinal nature of

log levels to make suggestions on choosing log levels. Our approach outperforms the existing

state-of-the-art approaches in suggesting log levels (Chapter 4).

• We are the first study that investigates the readability of log messages by conducting interviews

with industrial practitioners. We derive three aspects that are related to the readability of

log messages and several corresponding practices to improve the readability for each aspect

(Chapter 5).

• We investigate the characteristics and importance of dynamic variables in logs, which are

omitted by prior log abstraction techniques. We find that different categories of dynamic

variables record valuable information that can be important for different tasks, point out

the need of a variable-aware log abstraction technique. We then propose a deep learning

based log abstraction approach that can further identify the categories of dynamic variables

in the process of log abstraction (i.e., variable-aware log abstraction). Our approach achieves

promising results in variable-aware log abstraction and also outperforms prior state-of-the-art

techniques in general log abstraction (Chapter 6).

7.2 Future work

This thesis makes an important step towards the goal of improving logging practices and log

analysis. There are still many open challenges and research opportunities that may complement this

thesis and further provide a logging guideline for developers to improve the quality of logging code.

We discuss some potential directions for future work.

Providing Complete Logging Suggestions. Prior studies on improving logging practices mainly

focus on one aspect of the logging challenges (i.e., where-to-log, what-to-log, and how-to-log) and

provide partial supports for developers. In this thesis, we also explore the potential of providing

automated supports for practitioners by conducting several studies on particularly improving one of

the aspects above. In the future, we may investigate the potential of a complete logging suggestion

technique, including the logging location, the messages, as well as the log level.

Providing Benchmarks for Techniques on Improving Logging Practices. Prior studies

provide benchmarks for log abstraction and anomaly detection. For example, the LogPAI project

shares 16 data sets of logs generated from both open-source and commercial systems across various

domains, each data set also provides a subset of 2,000 logs with manually derived log templates

115

as ground truth for evaluating the accuracy of log abstraction techniques [169]. Moreover, LogPAI

provides benchmarks for evaluating log-based anomaly detection techniques [55, 56], including two

data sets and the implementations of several anomaly detection techniques. In future studies, we may

provide benchmarks for the techniques on improving logging practices, such as suggesting logging

locations, recommending log levels, and even complete logging statements.

Examining the Quality of Logging in Large Scale Software Systems. In this thesis, we take

a preliminary step on investigating the readability of log messages in nine large-scale software systems

and we find that a non-negligible portion of the log messages may not have adequate readability.

Given that the effectiveness of models for automated suggestions and recommendations rely on the

quality of training data, in the future, we may further investigate the general quality of existing

logging code in large-scale software systems and study its impact on the effectiveness of the trained

models. If the models are trained from data with mostly “good” data, then the models may very

likely provide “good” suggestions as well. Therefore, we can further study how to filter and curate

the training data to have more reliable and effective models.

Providing Automated Supports to Other Tasks of Log Analysis. In our thesis, we study

dynamic variables in the process of log abstraction and find that variable-aware log abstractions can

help the tasks of log-based anomaly detection. Logs are widely used in a various of tasks throughout

the stages of software development and maintenance, including debugging, testing, requirement

verification, performance tracking, and program comprehension. In future studies, we may seek to

provide supports for other log-based tasks in practice such as failure diagnosis and log searching.

116

Bibliography

[1] Corpus of contemporary american english. https://www.english-corpora.org/coca/. Last

checked Aug. 2020.

[2] gensim Word2vec embeddings. https://radimrehurek.com/gensim/models/word2vec.

html. Last checked Feb. 2020.

[3] Keras: The python deep learning library. https://keras.io/. Last checked Aug. 2022.

[4] Log4j. http://logging.apache.org/log4j/2.x/.

[5] Oracle java documentation. https://docs.oracle.com/javase/tutorial/java/

nutsandbolts/flow.html. Last checked Mar. 2020.

[6] scikit-learn: Machine learning in python. https://scikit-learn.org. Last checked Aug.

2022.

[7] Simple logging facade for Java (SLF4J). http://www.slf4j.org. Last checked Feb. 2018.

[8] Simple logging facade for java (slf4j). http://www.slf4j.org/faq.html. Last checked Aug.

2020.

[9] Tensorflow: An end-to-end open source machine learning platform. https://www.

tensorflow.org/. Last checked Aug. 2021.

[10] Reem Alsuhaibani, Christian Newman, Michael Decker, Michael Collard, and Jonathan

Maletic. On the naming of methods: A survey of professional developers. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE), pages 587–599, 2021.

[11] Harald Altinger, Steffen Herbold, Friederike Schneemann, Jens Grabowski, and Franz Wotawa.

Performance tuning for automotive software fault prediction. In IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt,

Austria, February 20-24, 2017, pages 526–530, 2017.

117

https://www.english-corpora.org/coca/
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://keras.io/
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html
https://scikit-learn.org
http://www.slf4j.org
http://www.slf4j.org/faq.html
https://www.tensorflow.org/
https://www.tensorflow.org/

[12] Apache. log4j2. https://logging.apache.org/log4j/2.x/manual/messages.html, 2022.

Last accessed August 2022.

[13] S. Boslaugh and P.A. Watters. Statistics in a Nutshell: A Desktop Quick Reference. In a

Nutshell (O’Reilly). O’Reilly Media, 2008.

[14] Geoffrey Bowker and Susan Leigh Star. Sorting things out. Classification and its consequences,

4, 1999.

[15] Leo Breiman. Random forests. Machine learning, pages 5–32, 2001.

[16] Jeanderson Cândido, Jan Haesen, Maurício Aniche, and Arie van Deursen. An exploratory

study of log placement recommendation in an enterprise system. In 2021 IEEE/ACM 18th

International Conference on Mining Software Repositories (MSR), pages 143–154, 2021.

[17] Boyuan Chen and Zhen Ming (Jack) Jiang. Characterizing logging practices in java-based

open source software projects – a replication study in apache software foundation. Empirical

Software Engineering, pages 330–374, 2017.

[18] Boyuan Chen and Zhen Ming (Jack) Jiang. Characterizing and detecting anti-patterns in the

logging code. In Proceedings of the 39th International Conference on Software Engineering,

ICSE ’17, pages 71–81, 2017.

[19] Boyuan Chen and Zhen Ming (Jack) Jiang. Extracting and studying the logging-code-issue-

introducing changes in java-based large-scale open source software systems. Empirical Software

Engineering, 24(4):2285–2322, Aug 2019.

[20] Boyuan Chen and Zhen Ming (Jack) Jiang. Studying the use of java logging utilities in the

wild. In Proceedings of the 42nd International Conference on Software Engineering,, ICSE

2020, pages 1–12, 2020.

[21] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming (Jack) Jiang. An automated

approach to estimating code coverage measures via execution logs. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, pages

305–316, 2018.

[22] Jinfu Chen, Weiyi Shang, Ahmed E. Hassan, Yong Wang, and Jiangbin Lin. An experience

report of generating load tests using log-recovered workloads at varying granularities of user

behaviour. In 34th IEEE/ACM International Conference on Automated Software Engineering,

ASE 2019, pages 669–681, 2019.

118

https://logging.apache.org/log4j/2.x/manual/messages.html

[23] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu Kang, Feng

Gao, Zhangwei Xu, Yingnong Dang, et al. How incidental are the incidents? characterizing

and prioritizing incidents for large-scale online service systems. In Proceedings of the 35th

IEEE/ACM International Conference on Automated Software Engineering, pages 373–384,

2020.

[24] Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder

Flora. Cacheoptimizer: Helping developers configure caching frameworks for hibernate-based

database-centric web applications. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, pages 666–677, 2016.

[25] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. Analytics-driven load testing: An industrial experience report

on load testing of large-scale systems. In Proceedings of the 39th International Conference on

Software Engineering: Software Engineering in Practice Track, ICSE-SEIP ’17, pages 243–252,

2017.

[26] Tse-Hsun Chen, S. W. Thomas, Meiyappan Nagappan, and A.E. Hassan. Explaining software

defects using topic models. In Proceedings of the 9th Working Conference on Mining Software

Repositories, MSR ’12, 2012.

[27] Tse-Hsun Chen, Stephen W. Thomas, and Ahmed E. Hassan. A survey on the use of topic

models when mining software repositories. Empirical Software Engineering, 21(5):1843–1919,

2016.

[28] Tse-Hsun Chen, Shang Weiyi, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. Detecting performance anti-patterns for applications developed using object-

relational mapping. In Proceedings of the 36th International Conference on Software Engineer-

ing (ICSE), pages 1001–1012, 2014.

[29] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and

Martin Monperrus. Sequencer: Sequence-to-sequence learning for end-to-end program repair.

CoRR, abs/1901.01808, 2019.

[30] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-cnns.

Transactions of the Association for Computational Linguistics, pages 357–370, 2016.

[31] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C Gall. The making of cloud applica-

tions: An empirical study on software development for the cloud. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, pages 393–403, 2015.

119

[32] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel

Kuksa. Natural language processing (almost) from scratch. Journal of machine learning

research, pages 2493–2537, 2011.

[33] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. Logram: Efficient

log parsing using n-gram dictionaries. IEEE Transactions on Software Engineering, 2020.

[34] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR 2009), pages 248–255, 2009.

[35] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and Andrea

De Lucia. Detecting code smells using machine learning techniques: are we there yet? In 2018

ieee 25th international conference on software analysis, evolution and reengineering (saner),

pages 612–621, 2018.

[36] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang Fu, Dongmei

Zhang, and Tao Xie. Log2: A cost-aware logging mechanism for performance diagnosis. In

2015 USENIX Annual Technical Conference, USENIX ATC ’15,, pages 139–150, 2015.

[37] Zishuo Ding, Heng Li, and Weiyi Shang. Logentext: Automatically generating logging texts us-

ing neural machine translation. In 2022 IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 349–360, 2022.

[38] Cicero Dos Santos and Bianca Zadrozny. Learning character-level representations for part-of-

speech tagging. In International Conference on Machine Learning, pages 1818–1826. PMLR,

2014.

[39] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. A quantitative analysis

framework for recurrent neural network. In 34th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2019, pages 1062–1065, 2019.

[40] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving software. In

29th International Conference on Software Engineering (ICSE 2007), pages 158–167, 2007.

[41] Joseph L. Fleiss. Measuring nominal scale agreement among many raters. Psychological

Bulletin, 76(5):378–382, 1971.

[42] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly detection in distributed

systems through unstructured log analysis. In 2009 ninth IEEE international conference on

data mining, pages 149–158, 2009.

120

[43] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei Zhang,

and Tao Xie. Where do developers log? an empirical study on logging practices in industry.

In Proceedings of the 36th International Conference on Software Engineering, ICSE-SEIP ’14,

pages 24–33, 2014.

[44] Daniele Gadler, Michael Mairegger, Andrea Janes, and Barbara Russo. Mining logs to model

the use of a system. In 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), pages 334–343, 2017.

[45] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java performance

evaluation. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA, pages 57–76, 2007.

[46] X. Gu, H. Zhang, and S. Kim. Deep code search. In 2018 IEEE/ACM 40th International

Conference on Software Engineering, ICSE 2018, pages 933–944, 2018.

[47] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu, Jianjun

Zhao, and Xiaohong Li. An empirical study towards characterizing deep learning development

and deployment across different frameworks and platforms. In 34th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2019, pages 810–822, 2019.

[48] Huong Ha and Hongyu Zhang. Deepperf: performance prediction for configurable software

with deep sparse neural network. In Proceedings of the 41st International Conference on

Software Engineering, ICSE 2019, pages 1095–1106, 2019.

[49] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and Abdullah

Mueen. Logmine: Fast pattern recognition for log analytics. In Proceedings of the 25th ACM

International on Conference on Information and Knowledge Management, pages 1573–1582.

[50] David J Hand and Robert J Till. A simple generalisation of the area under the ROC curve for

multiple class classification problems. Machine learning, 45(2):171–186, 2001.

[51] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. Studying and detecting

log-related issues. Empirical Software Engineering, 2018.

[52] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling

approach for imbalanced learning. In 2008 IEEE international joint conference on neural

networks (IEEE world congress on computational intelligence), pages 1322–1328. IEEE, 2008.

[53] Pinjia He, Zhuangbin Chen, Shilin He, and Michael R. Lyu. Characterizing the natural lan-

guage descriptions in software logging statements. In Proceedings of the 33rd IEEE interna-

tional conference on Automated software engineering, pages 1–11, 2018.

121

[54] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log parsing ap-

proach with fixed depth tree. In 2017 IEEE international conference on web services (ICWS),

pages 33–40, 2017.

[55] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report: System log analysis

for anomaly detection. In 2016 IEEE 27th international symposium on software reliability

engineering (ISSRE), pages 207–218. IEEE, 2016.

[56] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. Loghub: A large collection of system

log datasets towards automated log analytics. CoRR, 2020.

[57] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo. Patchnet: Hierarchical deep

learning-based stable patch identification for the linux kernel. IEEE Transactions on Software

Engineering, 2019.

[58] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi. Deepjit:

an end-to-end deep learning framework for just-in-time defect prediction. In Proceedings of

the 16th International Conference on Mining Software Repositories, MSR 2019, pages 34–45,

2019.

[59] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.

[60] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In Proceedings

of the 26th Conference on Program Comprehension, ICPC 2018, pages 200–210, 2018.

[61] Yuan Huang, Xinyu Hu, Nan Jia, Xiangping Chen, Yingfei Xiong, and Zibin Zheng. Learning

code context information to predict comment locations. IEEE Trans. Reliability, 69(1):88–105,

2020.

[62] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging.

CoRR, abs/1508.01991, 2015.

[63] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating commit mes-

sages from diffs using neural machine translation. In Proceedings of the 32nd IEEE/ACM In-

ternational Conference on Automated Software Engineering, ASE 2017, pages 135–146, 2017.

[64] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. An automated

approach for abstracting execution logs to execution events. J. Softw. Maintenance Res. Pract.,

20(4):249–267, 2008.

122

[65] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, Mark D. Syer, and Ahmed E. Hassan. Ex-

amining the stability of logging statements. Empir. Softw. Eng., 23(1):290–333, 2018.

[66] Eirini Kalliamvakou, Christian Bird, Thomas Zimmermann, Andrew Begel, Robert DeLine,

and Daniel M German. What makes a great manager of software engineers? IEEE Transactions

on Software Engineering, pages 87–106, 2017.

[67] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and

Daniela Damian. The promises and perils of mining github. In Proceedings of the 11th working

conference on mining software repositories, pages 92–101, 2014.

[68] Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel. History repeats itself more easily

when you log it: Versioning for mashups. In 2011 IEEE symposium on visual languages and

human-centric computing (VL/HCC), pages 69–72, 2011.

[69] Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues,

Graham Neubig, and Bogdan Vasilescu. DIRE: A neural approach to decompiled identifier

naming. In 34th IEEE/ACM International Conference on Automated Software Engineering,

ASE 2019, pages 628–639, 2019.

[70] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the

Eighteenth International Conference on Machine Learning (ICML 2001), Williams College,

Williamstown, MA, USA, June 28 - July 1, 2001, pages 282–289, 2001.

[71] Bei Li, Hui Liu, Ziyang Wang, Yufan Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and

Changliang Li. Does multi-encoder help? A case study on context-aware neural machine

translation. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, ACL 2020, Online, July 5-10, 2020, pages 3512–3518, 2020.

[72] Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E. Hassan. Studying software

logging using topic models. Empirical Software Engineering, Jan 2018.

[73] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E. Hassan. A qualitative

study of the benefits and costs of logging from developers’ perspectives. IEEE Transactions

on Software Engineering, pages 1–17, 2020.

[74] Heng Li, Weiyi Shang, and Ahmed E. Hassan. Which log level should developers choose for a

new logging statement? Empirical Software Engineering, 22(4):1684–1716, Aug 2017.

[75] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. Towards just-in-time suggestions for

log changes. Empirical Software Engineering, 22(4):1831–1865, 2017.

123

[76] Xiaochen Li, He Jiang, Yasutaka Kamei, and Xin Chen. Bridging semantic gaps between

natural languages and apis with word embedding. IEEE Transactions on Software Engineering,

2020.

[77] Zhenhao Li. Characterizing and detecting duplicate logging code smells. In Proceedings of the

41st International Conference on Software Engineering: Companion Proceedings, ICSE 2019,

pages 147–149, 2019.

[78] Zhenhao Li. Studying and suggesting logging locations in code blocks. In ICSE ’20: 42nd

International Conference on Software Engineering, Companion Volume, pages 125–127, 2020.

[79] Zhenhao Li. Towards providing automated supports to developers on writing logging state-

ments. In ICSE ’20: 42nd International Conference on Software Engineering, Companion

Volume, pages 198–201, 2020.

[80] Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. Where shall we log? studying and suggesting

logging locations in code blocks. In 35th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2020, pages 361–372, 2020.

[81] Zhenhao Li, Tse-Hsun (Peter) Chen, Jinqiu Yang, and Weiyi Shang. DLFinder: characterizing

and detecting duplicate logging code smells. In Proceedings of the 41st International Conference

on Software Engineering, ICSE 2019, pages 152–163, 2019.

[82] Zhenhao Li, Tse-Hsun (Peter) Chen, Jinqiu Yang, and Weiyi Shang. Studying duplicate

logging statements and their relationships with code clones. IEEE Transactions on Software

Engineering, pages 1–19, 2021.

[83] Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. Deeplv: Suggesting log levels

using ordinal based neural networks. In 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), pages 1461–1472. IEEE, 2021.

[84] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. Log clustering

based problem identification for online service systems. In Proceedings of the 38th International

Conference on Software Engineering Companion, ICSE ’16, pages 102–111, 2016.

[85] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based pre-trained language

model for code completion. In Proceedings of the 35th IEEE/ACM International Conference

on Automated Software Engineering, pages 473–485, 2020.

[86] Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang. Tell: log level suggestions

via modeling multi-level code block information. In Sukyoung Ryu and Yannis Smaragdakis,

124

editors, ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis, pages 27–38, 2022.

[87] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Which variables should i log? IEEE

Transactions on Software Engineering, 2019. Early Access.

[88] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela F. Cio-

carlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha. Kernel-supported

cost-effective audit logging for causality tracking. In 2018 USENIX Annual Technical Confer-

ence, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 241–254, 2018.

[89] Shiqing Ma, Xiangyu Zhang, Dongyan Xu, et al. Protracer: Towards practical provenance

tracing by alternating between logging and tainting. In NDSS, volume 2, page 4, 2016.

[90] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. Clustering event

logs using iterative partitioning. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1255–1264, 2009.

[91] Leonardo Mariani and Fabrizio Pastore. Automated identification of failure causes in system

logs. In 2008 19th International Symposium on Software Reliability Engineering (ISSRE),

pages 117–126, 2008.

[92] Zainab Masood, Rashina Hoda, and Kelly Blincoe. What drives and sustains self-assignment

in agile teams. IEEE Transactions on Software Engineering, 2021.

[93] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino, Denys Poshy-

vanyk, Rocco Oliveto, and Gabriele Bavota. Using transfer learning for code-related tasks.

IEEE Transactions on Software Engineering, 2022.

[94] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. Using deep learning to generate

complete log statements. In Proceedings of the 44th International Conference on Software

Engineering, ICSE ’22, page 2279–2290, 2022.

[95] Alejandro Mazuera-Rozo, Anamaria Mojica-Hanke, Mario Linares-Vásquez, and Gabriele

Bavota. Shallow or deep? an empirical study on detecting vulnerabilities using deep learn-

ing. In 29th IEEE/ACM International Conference on Program Comprehension, ICPC 2021,

Madrid, Spain, May 20-21, 2021, pages 276–287. IEEE, 2021.

[96] Peter McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society:

Series B (Methodological), 42(2):109–127, 1980.

125

[97] Mary L. McHugh. Interrater reliability: the kappa statistic. Biochemia Medica, 22(3):276–282,

2012.

[98] Scott Menard. Applied logistic regression analysis. Number 106. Sage, 2002.

[99] Salma Messaoudi, Donghwan Shin, Annibale Panichella, Domenico Bianculli, and Lionel

Briand. Log-based slicing for system-level test cases. In 2021 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA), 2021.

[100] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. In 1st International Conference on Learning Representations,

ICLR 2013, 2013.

[101] Masayoshi Mizutani. Incremental mining of system log format. In 2013 IEEE International

Conference on Services Computing, pages 595–602, 2013.

[102] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over

tree structures for programming language processing. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, pages 1287–1293, 2016.

[103] Meiyappan Nagappan and Mladen A Vouk. Abstracting log lines to log event types for mining

software system logs. In 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR 2010), pages 114–117, 2010.

[104] Meiyappan Nagappan, Kesheng Wu, and Mladen A. Vouk. Efficiently extracting operational

profiles from execution logs using suffix arrays. In ISSRE’09: Proceedings of the 20th IEEE

International Conference on Software Reliability Engineering, pages 41–50, 2009.

[105] Karthik Nagaraj, Charles Edwin Killian, and Jennifer Neville. Structured comparative analysis

of systems logs to diagnose performance problems. In Proceedings of the 9th USENIX Sympo-

sium on Networked Systems Design and Implementation, NSDI ’12, pages 353–366, 2012.

[106] Bui D. Q. Nghi, Yijun Yu, and Lingxiao Jiang. Bilateral dependency neural networks for

cross-language algorithm classification. In 26th IEEE International Conference on Software

Analysis, Evolution and Reengineering, SANER 2019, pages 422–433, 2019.

[107] Amin Nikanjam, Houssem Ben Braiek, Mohammad Mehdi Morovati, and Foutse Khomh.

Automatic fault detection for deep learning programs using graph transformations. TOSEM,

2021.

[108] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in log analysis.

Commun. ACM, 55(2):55–61, February 2012.

126

[109] Jevgenija Pantiuchina, Bin Lin, Fiorella Zampetti, Massimiliano Di Penta, Michele Lanza,

and Gabriele Bavota. Why do developers reject refactorings in open-source projects? ACM

Transactions on Software Engineering and Methodology (TOSEM), pages 1–23, 2021.

[110] Keyur Patel, João Faccin, Abdelwahab Hamou-Lhadj, and Ingrid Nunes. The sense of logging

in the linux kernel. Empirical Software Engineering, pages 1–47, 2022.

[111] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors

for word representation. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of

SIGDAT, a Special Interest Group of the ACL, pages 1532–1543. ACL, 2014.

[112] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan Bachrach,

Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai

Wong, Yoav Zibin, Michael D. Ernst, and Martin C. Rinard. Automatically patching errors

in deployed software. In Proceedings of the 22nd ACM Symposium on Operating Systems

Principles 2009, SOSP 2009, pages 87–102, 2009.

[113] Heidar Pirzadeh, Sara Shanian, Abdelwahab Hamou-Lhadj, and Ali Mehrabian. The concept

of stratified sampling of execution traces. In The 19th IEEE International Conference on

Program Comprehension, ICPC 2011, pages 225–226, 2011.

[114] John Platt et al. Probabilistic outputs for support vector machines and comparisons to regu-

larized likelihood methods. Advances in large margin classifiers, pages 61–74, 1999.

[115] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[116] J. Ross Quinlan. Induction of decision trees. Machine learning, pages 81–106, 1986.

[117] Lance A Ramshaw and Mitchell P Marcus. Text chunking using transformation-based learning.

In Natural language processing using very large corpora, pages 157–176. 1999.

[118] Barbara Russo, Giancarlo Succi, and Witold Pedrycz. Mining system logs to learn error

predictors: a case study of a telemetry system. Empirical Software Engineering, pages 879–

927, 2015.

[119] Daan Schipper, Maurício Finavaro Aniche, and Arie van Deursen. Tracing back log data to its

log statement: from research to practice. In Proceedings of the 16th International Conference

on Mining Software Repositories, MSR 2019, pages 545–549, 2019.

[120] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transac-

tions on Signal Processing, pages 2673–2681, 1997.

127

[121] Issam Sedki, Abdelwahab Hamou-Lhadj, Otmane Ait-Mohamed, and Mohammed A Shehab.

An effective approach for parsing large log files. 2022.

[122] Weiyi Shang, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, Michael W. Godfrey, Mo-

hamed Nasser, and Parminder Flora. An exploratory study of the evolution of communicated

information about the execution of large software systems. Journal of Software: Evolution and

Process, 26(1):3–26, 2014.

[123] Weiyi Shang, Meiyappan Nagappan, Ahmed E. Hassan, and Zhen Ming Jiang. Understand-

ing log lines using development knowledge. In Proceedings of the 2014 IEEE International

Conference on Software Maintenance and Evolution, ICSME ’14, pages 21–30, 2014.

[124] Keiichi Shima. Length matters: Clustering system log messages using length of words. arXiv

preprint arXiv:1611.03213, 2016.

[125] Donghwan Shin, Zanis Ali Khan, Domenico Bianculli, and Lionel Briand. A theoretical frame-

work for understanding the relationship between log parsing and anomaly detection. In The

21st International Conference on Runtime Verification.

[126] Julilus Sim and Chris C. Wright. The kappa statistic in reliability studies: Use, interpretation,

and sample size requirements. Physical Therapy, 85(3):257–268, March 2005.

[127] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[128] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.

Res., 15(1):1929–1958, 2014.

[129] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong Su. Why

my app crashes understanding and benchmarking framework-specific exceptions of android

apps. IEEE Transactions on Software Engineering, 2020.

[130] Liang Tang, Tao Li, and Chang-Shing Perng. Logsig: Generating system events from raw

textual logs. In Proceedings of the 20th ACM international conference on Information and

knowledge management, pages 785–794.

[131] Jörg Tiedemann and Yves Scherrer. Neural machine translation with extended context. In

Proceedings of the Third Workshop on Discourse in Machine Translation, DiscoMT@EMNLP

2017, Copenhagen, Denmark, September 8, 2017, pages 82–92, 2017.

128

[132] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshy-

vanyk. On learning meaningful code changes via neural machine translation. In Proceedings

of the 41st International Conference on Software Engineering, ICSE 2019, pages 25–36, 2019.

[133] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and

Denys Poshyvanyk. Deep learning similarities from different representations of source code.

In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR),

pages 542–553, 2018.

[134] Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of

semantics. J. Artif. Intell. Res., 37:141–188, 2010.

[135] Risto Vaarandi. A data clustering algorithm for mining patterns from event logs. In Proceedings

of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003)(IEEE Cat. No.

03EX764), pages 119–126, 2003.

[136] Risto Vaarandi and Mauno Pihelgas. Logcluster-a data clustering and pattern mining algo-

rithm for event logs. In 2015 11th International conference on network and service management

(CNSM), pages 1–7, 2015.

[137] Harold Valdivia Garcia and Emad Shihab. Characterizing and predicting blocking bugs in

open source projects. In Proceedings of the 11th Working Conference on Mining Software

Repositories, MSR 2014, pages 72–81, 2014.

[138] Mario Linares Vásquez, Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. On using

machine learning to automatically classify software applications into domain categories. Empir.

Softw. Eng., 19(3):582–618, 2014.

[139] Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. How does machine learning change

software development practices? IEEE Transactions on Software Engineering, pages 1857–

1871, 2019.

[140] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy. Context-

aware retrieval-based deep commit message generation. ACM Trans. Softw. Eng. Methodol.,

30(4):56:1–56:30, 2021.

[141] Mohammad Wardat, Wei Le, and Hridesh Rajan. Deeplocalize: Fault localization for deep

neural networks. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE

2021, Madrid, Spain, 22-30 May 2021, pages 251–262. IEEE, 2021.

129

[142] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys Poshyvanyk.

A systematic literature review on the use of deep learning in software engineering research.

ACM Transactions on Software Engineering and Methodology (TOSEM), pages 1–58, 2022.

[143] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. Locus: locating bugs from software changes.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software En-

gineering, ASE 2016, pages 262–273, 2016.

[144] Ming Wen, Rongxin Wu, Yepang Liu, Yongqiang Tian, Xuan Xie, Shing-Chi Cheung, and

Zhendong Su. Exploring and exploiting the correlations between bug-inducing and bug-fixing

commits. In Proceedings of the ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE

2019, pages 326–337, 2019.

[145] Xin Xia, David Lo, Emad Shihab, Xinyu Wang, and Xiaohu Yang. Elblocker: Predicting

blocking bugs with ensemble imbalance learning. Information & Software Technology, 61:93–

106, 2015.

[146] Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu Wang. Predicting crashing re-

leases of mobile applications. In Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, ESEM 2016, pages 29:1–29:10, 2016.

[147] Xin Xia, Zhiyuan Wan, Pavneet Singh Kochhar, and David Lo. How practitioners perceive

coding proficiency. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pages 924–935, 2019.

[148] Xiaofei Xie, Bihuan Chen, Liang Zou, Yang Liu, Wei Le, and Xiaohong Li. Automatic loop

summarization via path dependency analysis. IEEE Trans. Software Eng., 45(6):537–557,

2019.

[149] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. Classifying relations via

long short term memory networks along shortest dependency paths. In Proceedings of the

2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, pages

1785–1794, 2015.

[150] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, and Wenbin

Zhang. Plelog: Semi-supervised log-based anomaly detection via probabilistic label estima-

tion. In 43rd IEEE/ACM International Conference on Software Engineering: Companion

Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28, 2021, pages 230–231, 2021.

130

[151] Nan Yang, Pieter J. L. Cuijpers, Ramon R. H. Schiffelers, Johan Lukkien, and Alexander

Serebrenik. An interview study of how developers use execution logs in embedded software

engineering. In 43rd IEEE/ACM International Conference on Software Engineering: Software

Engineering in Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021, pages 61–70,

2021.

[152] Kundi Yao, Guilherme B. de Pádua, Weiyi Shang, Catalin Sporea, Andrei Toma, and Sarah

Sajedi. Log4perf: suggesting and updating logging locations for web-based systems perfor-

mance monitoring. Empirical Software Engineering, 25(1), 2020.

[153] Kundi Yao, Guilherme B. de Pádua, Weiyi Shang, Steve Sporea, Andrei Toma, and Sarah

Sajedi. Log4perf: Suggesting logging locations for web-based systems’ performance monitoring.

In Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering,

ICPE ’18, pages 21–30, 2018.

[154] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features

in deep neural networks? In Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 3320–3328, 2014.

[155] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,

Pranay U. Jain, and Michael Stumm. Simple testing can prevent most critical failures: An

analysis of production failures in distributed data-intensive systems. In Proceedings of the

11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, pages

249–265, 2014.

[156] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy.

Sherlog: Error diagnosis by connecting clues from run-time logs. In Proceedings of the 15th

International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 143–154, 2010.

[157] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices in open-

source software. In ICSE 2012: Proceedings of the 2012 International Conference on Software

Engineering, pages 102–112, 2012.

[158] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. Improving software

diagnosability via log enhancement. In ASPLOS ’11: Proceedings of the 16th international

conference on Architectural support for programming languages and operating systems, pages

3–14. ACM, 2011.

131

[159] Yi Zeng, Jinfu Chen, Weiyi iShang, and Tse-Hsun (Peter) Chen. Studying the characteristics

of logging practices in mobile apps: a case study on f-droid. Empirical Software Engineering,

pages 1–41, 2019.

[160] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel

neural source code representation based on abstract syntax tree. In Proceedings of the 41st

International Conference on Software Engineering, ICSE 2019, pages 783–794, 2019.

[161] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael R. Lyu, and Miryung Kim. An empirical study

of common challenges in developing deep learning applications. In 30th IEEE International

Symposium on Software Reliability Engineering, ISSRE 2019, pages 104–115, 2019.

[162] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie,

Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Randolph Yao, Jian-Guang

Lou, Murali Chintalapati, Furao Shen, and Dongmei Zhang. Robust log-based anomaly detec-

tion on unstable log data. In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2019, page 807–817, 2019.

[163] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li, Yingnong

Dang, Qingwei Lin, Murali Chintalapati, Saravanakumar Rajmohan, and Dongmei Zhang.

Onion: identifying incident-indicating logs for cloud systems. In ESEC/FSE ’21: 29th ACM

Joint European Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering, Athens, Greece, August 23-28, 2021, pages 1253–1263.

[164] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong Wu, Zhen

Feng, Xidao Wen, Wenchi Zhang, Kaixin Sui, and Dan Pei. An empirical investigation of

practical log anomaly detection for online service systems. In ESEC/FSE ’21: 29th ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, Athens, Greece, August 23-28, 2021, pages 1404–1415, 2021.

[165] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan Zhou. Log20:

Fully automated optimal placement of log printing statements under specified overhead thresh-

old. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, pages

565–581, 2017.

[166] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. An exploratory

study of logging configuration practice in java. In 2019 IEEE International Conference on

Software Maintenance and Evolution, ICSME 2019, pages 459–469, 2019.

132

[167] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He.

Latent error prediction and fault localization for microservice applications by learning from

system trace logs. In Proceedings of the ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT

FSE 2019, pages 683–694, 2019.

[168] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang.

Learning to log: Helping developers make informed logging decisions. In Proceedings of the

37th International Conference on Software Engineering, ICSE ’15, pages 415–425, 2015.

[169] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R. Lyu.

Tools and benchmarks for automated log parsing. In Proceedings of the 41st International

Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019,

Montreal, QC, Canada, May 25-31, 2019, pages 121–130. IEEE / ACM, 2019.

133

	List of Figures
	List of Tables
	I Introduction, Background, and Literature Review
	Introduction
	Introduction
	Research Hypothesis
	Thesis Overview and Contributions
	Chapter 2: Background and Literature Review
	Chapter 3: Studying and Suggesting Logging Locations in Code Blocks
	Chapter 4: Suggesting Log Levels Using Ordinal Based Neural Networks
	Chapter 5: Studying Practitioners' Expectation on the Readability of Log Messages
	Chapter 6: Studying and Exploring Variable-Aware Log Abstraction
	Chapter 7: Conclusion and Future Work

	Thesis Organization

	Background and Literature Review
	Background
	Literature Review
	Paper Selection
	Empirical studies on logging practices
	Improving logging practices
	Research on log abstraction.

	II Assist in Making Logging Decisions
	Studying and Suggesting Logging Locations in Code Blocks
	Introduction
	Background and Related Work
	Studying the Characteristics of Logging Location in Code Blocks
	Automatically Suggesting Logging Locations at the Code Block Level
	Extracting Block Features
	Deep Learning Framework and Implementation

	Evaluation
	Evaluation Metrics
	Case Study Results

	Discussion
	Threats to Validity
	Conclusion

	Suggesting Log Levels Using Ordinal Based Neural Networks
	Introduction
	Preliminary study on log levels
	An Overview of the Studied Systems
	Investigating Log-level-related Issues
	Manually Studying the Characteristics of Log Levels

	Automatically Suggesting Log Levels
	Feature Extraction
	Deep Learning Framework and Implementation

	Evaluation
	Evaluation Metrics
	Case Study Results

	Threats to Validity
	Related Work
	Conclusion

	Studying Practitioners' Expectation on the Readability of Log Messages
	Introduction
	Related Work
	Research Methodology
	Stage 1: Interviews
	Stage 2: Manual Investigation
	Stage 3: Survey
	Stage 4: Automatic Classification

	Results
	RQ1: What are Practitioners' Expectation on the Readability of Log Messages and How to Improve It?
	RQ2: How is the Readability of Log Messages in large-scale Open Source Software Systems?
	RQ3: What is the Potential of Automatically Classifying the Readability of Log Messages?

	Implications
	Threats to Validity
	Conclusion

	III Assist in Log Analysis
	Studying and Exploring Variable-Aware Log Abstraction
	Introduction
	Related Works
	Motivating Examples
	Studying the Dynamic Variables in Logs
	Manually Studying and Characterizing the Dynamic Variables in Logs
	A Survey on Log Analysis and Dynamic Variables

	An automated Approach for Variable-aware Log Abstraction
	Data Annotation
	Deep Learning Framework and Implementation

	Evaluation of VALB
	Experimental Setup.
	Research Questions

	Discussion
	Threats to Validity
	Conclusion

	IV Conclusion and Future Work
	Conclusion and Future Work
	Thesis Contribution
	Future work

	Bibliography

