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Abstract

Automatic counting of mounds on UAV images using computer vision and machine
learning

Majid Nikougoftar Nategh

Site preparation by mounding is a commonly used silvicultural treatment that improves tree

growth conditions by mechanically creating planting microsites called mounds. Following site

preparation, an important planning step is to count the number of mounds, which provides for-

est managers with an estimate of the number of seedlings required for a given plantation block. In

the forest industry, counting the number of mounds is generally conducted through manual field sur-

veys by forestry workers, which is costly and prone to errors, especially for large areas. To address

this issue, we present a novel framework exploiting advances in Unmanned Aerial Vehicle (UAV)

imaging and computer vision to estimate the number of mounds on a planting block accurately. The

proposed framework comprises two main components. First, we exploit a visual recognition method

based on a deep learning algorithm for multiple object detection by pixel-based segmentation. This

enables a preliminary count of visible mounds and other frequently seen objects on the forest floor

(e.g., trees, debris, accumulation of water) to be used to characterize the planting block. Second,

since visual recognition could be limited by several perturbation factors (e.g., mound erosion, occlu-

sion), we employ a machine learning estimation function that predicts the final number of mounds

based on the local block properties extracted in the first stage. We evaluate the proposed framework

on a new UAV dataset representing numerous planting blocks with varying features. The proposed

method outperformed manual counting methods in terms of relative counting precision, indicating

that it has the potential to be advantageous and efficient under challenging situations.
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Chapter 1

Introduction

1.1 Context and research problem

In the domain of silviculture and tree regeneration, several significant limitations prevent opti-

mal survival and early tree plantation yields. These issues include vegetation competition, low soil

temperatures in the rooting zone, low soil aeration on wet sites, high water table, and nutrient in-

adequacy in the rooting zone of the outplants [1]. Positive reaction to alleviate such conditions that

restrict tree performance happens only when forestry managers successfully employ site preparation

techniques. The aims of these techniques are to modify soil conditions, reduce competing vegeta-

tion regrowth intensity [2] [1], and consequently create the appropriate microsites that are ready for

planting. In this context, a microsite is defined as a region of a site where the microtopography (the

shape of the ground surface), and surface soil components are uniforms [3].

Mechanical site preparation (MSP) has been promoted as a broad category of site preparation,

which uses machinery to prepare an area and its soil for tree seedlings [2]. Mounding, scarification,

and ripping/ploughing are three most frequent types of MSP currently used in this regard as shown

in figure 1.1. In North America, mechanical site preparation by mounding (see figure 1.2) is a

widely used technique due to the abiotic and biotic characteristics of North American terrains.

MSP refers to a silvicultural process of preparing a site to construct mounds for planting. The

mounds are elevated planting spots that are free of water logging and with little vegetation compe-

tition in the soil [2].
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A key issue after mounding is to precisely estimate the number of mounds created on each

planting block, which corresponds to the number of tree seedlings to be planted. Note that, planting

blocks are dynamic due to the influence of macro- and micro-climate factors (see figure 1.3). These

components lead to a continuous change in the characteristics of the microsites [4]. In this regard,

macroclimate refers to the large-scale atmospheric conditions. Sunlight (solar radiation), precipita-

tion, wind direction and speed, temperature, and humidity of the surrounding air contribute to the

macroclimate conditions [5]. The microclimate, in contrast, is the small-scale climate that is greatly

influenced by macroclimatic factors [4]. The microclimate can change significantly based on the

weather, topography, vegetation cover, and soil characteristics [6].

Figure 1.1: Schematic illustrations of mechanical site preparation methods.
Planting with no site preparation (top left), mounding with elevated planting spots (top right), disc
trenching in continuous rows (bottom left), and ploughing with relatively deep furrows in rows
(bottom right). Figure from [7].
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Figure 1.2: Examples of mounds that were constructed mechanically in the balsam fir-white birch
bioclimatic domain in Quebec, Canada.

However, when the planting block is mechanically prepared, the field displays noticeable irreg-

ularities between different planting microsites (mounds) within the block, as seen in figure 1.2. The

resulting mounds are also various in terms of appearance, size, and shape. In addition, complex

background, and terrain characteristics, such as overlapping and occlusion of mounds, presence

of tree and their shadows on surface of ground, water flow, and remnants of woody debris, create

challenges in accurate mound counting.

Manual counting is done to estimate the number of tree seedling to be planted in each block.

To do so, forest workers count mechanically created mounds on a section of the site, and use the

result to estimate a total number for the entire site, assuming that mound density remains constant

on each plantation block. This approach, however, requires forestry workers to go around the field

in order to count the visible mounds, which is time consuming, expensive, and prone to human

errors. Furthermore, mound density often varies on the same block depending on the characteristics

of each zone.

Motivated by recent advances in sensor technology used in drone platforms for data collection,

forestry managers also used visual interpretation of Unmanned Aerial Vehicle (UAV) images as an
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Figure 1.3: Dynamic factors that change the characteristics of microsites.
Figure from [4]

alternative to field manual counting. Image interpretation and analysis are thus performed by human

operators, in order to detect, identify, and count mounds on UAV orthomosaics. However, this

requires a skilled human interpreter, and due to perception variation among humans on the nature

of the objects, data quality, and scale from one site to the next, this method is often inefficient.

1.2 Research objectives

Even though most recent research on aerial sensing has concentrated on UAV-based applica-

tions, some critical problems, such as mound counting, were not addressed by taking advantage

of advances in Artificial Intelligence (AI) and UAV imagery. Therefore, this thesis aims to fully

leverage recent advances in AI and develop a computer vision framework on a UAV platform that

makes human work more accessible and efficient.

UAVs are also referred to as Remotely Piloted Aircraft (RPA) or, as the term has become more

widely used, drones [6]. UAVs have a number of advantages over piloted aircraft, satellite-based

imaging, ground-based sensing, and actuation systems in the forestry practices. Their advantages

4



include being compact, having minimal operational and maintenance costs, requiring less human

interaction, being less dangerous when in use, being autonomous, having better controlled imaging

with changeable zoom and angle of view, and having higher degrees of agility [8]. These devices

are now more widely available and have largely replaced satellites and aircraft in numerous data

collection tasks due to their relatively low cost and strong operational capacity. This has greatly

reduced the risk and time of manual fieldwork [9]. Using UAV imagery, the objectives of this thesis

are presented on two levels.

• General objective: The primary goal of our work is to automate counting the number of

mounds on planting blocks that have been prepared mechanically. Automating the task of

counting mounds reduces errors associated with manual counting, eliminates the need for

time-consuming and expensive field surveys, and increases precision by preventing the com-

plicated and inaccurate treatment of seedlings in the field, which may cause financial losses

and planting operation delays.

• Specific objectives: The secondary goals of this study are as follows:

1. Construct a dataset of high-resolution UAV images representing several plantation blocks

with different characteristics,

2. Develop a new method for estimating the number of mounds by exploiting advances in

computer vision, machine learning, and UAV imagery,

3. Evaluate the proposed method experimentally on our dataset using appropriate metrics.

1.3 Contributions

The main contributions of this thesis can be categorized into the two following aspects:

1. Contributions to the forest industry: This study uses UAV imagery combined with ad-

vanced computer vision and ML methods to address an important forestry management prob-

lem. Our work has the potential to improve fieldwork conditions and significantly reduce

time, money, and resource consumption for forest managers, by automatically estimating the

number of planting microsites.
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2. Contributions to the research community: This study stimulates the interest of the scien-

tific community and contributes to advancing knowledge in the field of object detection and

counting on crowded scenes. In this direction, the methods, and procedures resulting from

our work were accepted for publication at the IEEE International Conference on Machine

Learning and Applications (ICMLA) [10]. We anticipate that disseminating our methods and

results will contribute to advancing knowledge on solving real-world problems using machine

learning and computer vision methods.

1.4 Method overview

This thesis proposes a new computer vision method for fast and accurate counting of the number

of mounds on mechanically prepared planting blocks by integrating two approaches:

1. Local image segmentation using deep learning methods,

2. Patch-level correction by applying regression models.

We initially leverage a two-stage object detector method to perform classification and select

the classes of detected objects. To avoid training our model from scratch, we used transfer learn-

ing. Then, we applied Mask Region-based Convolution Neural Network (Mask-RCNN) [11] using

ResNet101 and Feature Pyramid Network (FPN) as the backbone of the network. This first predic-

tion step is essential for characterizing each image region by quantifying the presence of relevant

object instances.

Since mounds can be destroyed or occluded following their creation (e.g., due to erosion, pres-

ence of debris, and trees), we cannot rely only on visual detection performed during the first step

to estimate their number. Thus, the second step of our method consists of performing a patch-

level correction to obtain the final prediction of mound count based on preliminary object counts.

In other words, we performed patch-correction based on the visually detected objects of our local

segmentation model, to predict a final corrected number of mounds for each patch of a given block.

Finally, we evaluate our framework on a dataset of UAV orthmosaics with various block prop-

erties. The obtained results emphasize the importance of using both models sequentially.
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1.5 Thesis outline

This thesis is organized as follows. In Chapter 2, we review the most important studies and re-

lated works regarding visual object counting based on traditional machine learning and deep learn-

ing approaches. Chapter 3 introduces a detailed description of the proposed methodology. Chapter

4 presents experimental results. Finally, chapter 5 concludes the thesis.
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Chapter 2

Related Works

In the domain of UAV-based automated technologies, there have been numerous advancements

in recent decades. Recent developments in UAVs, including camera capabilities, flight control sys-

tems, and navigation systems, have enhanced the usage of UAV images in remote sensing applica-

tions [12].

The main advantages of UAVs are their capacity to launch and land vertically, and to measure

flight speed and altitude with little interference from the weather. In addition, they have high-

resolution cameras with adjustable angles, which enable them to produce their findings quickly and

precisely [12, 13, 14]. In recent years, UAV-based remote sensing and cutting-edge Artificial In-

telligence (AI), Machine Learning (ML), and Deep Learning (DL) approaches have been deployed

increasingly to a variety of applications in forestry and agriculture. This covers many applications

including counting crop seedlings [15], ornamental plant detection and counting [16], biomass es-

timation [17], citrus tree extraction [18], tree species classification [19], fire monitoring [20], and

animal counting [21]. Most of these applications are based on visual object counting, also known

as crowd counting or crowd density, which is a computer vision task that encompasses all issues

and challenges associated with estimating the number of times a specific object appears in an image

[22].

Early crowd counting approaches mostly leveraged image processing and computer vision tech-

niques [23, 24, 25]. These technologies have advanced to the point that individuals can now utilize
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computers to analyze image data and extract information from images. This has led to the emer-

gence of computer vision-based crowd density estimation [26] [27].

2.1 Traditional crowd counting approaches

Traditional Crowd counting methods are based on image processing, and regression learning

models. The basic concepts behind these techniques mainly comprise image acquisition, image

pre-processing, feature extraction, feature analysis, and classification, as well as the computation of

the final crowd density map [28]. The most important phase of the aforementioned techniques is the

extraction and analysis of image features.

In literature, crowd counting using traditional image processing techniques relies on hand-

crafted features and are divided into two conceptually distinct categories based on the extracted

feature category: direct detection approaches and indirect detection approaches. Figure 2.1 presents

the taxonomy of traditional crowd counting approaches.

Figure 2.1: Taxonomy of traditional crowd counting.
Figure from [26]

2.1.1 Direct approach for crowd counting

Direct detection method (also known as detection-based method) has been widely used in many

approaches [29, 30, 31, 32]. These approaches localize the position of each object in a single input

9



image, and the number of detections is subsequently used as the crowd count. Traditionally, low-

level features including Haar wavelets [30], Histograms of Oriented Gradients (HOG) [29], edgelet

[31], and shapelet [33] are used as region descriptors. Then a mainstream classifier such as Support

Vector Machine (SVM) [34], boosted trees [35] and random forests [36] is trained for classification.

Finally, the number of object instances that the classifier produces on a test image is considered as

the crowd count. Although detection-based methods have been effectively employed in low-density

crowds, their performance decreases substantially when applied in high-density crowds with small

and obscured objects, since they are based on low-level features.

The main advantage of the direct approach is the early performance of object detection in a

scene. In this method, perspective, different object densities, and partial occlusions have no impact

on the final count when objects are segmented accurately [26]. However, accurate object segmenta-

tion is only applicable in low crowd scenes, and this approach frequently yields inconsistent results

in crowded and occluded conditions.

Direct methods can be further classified into two groups: model-based and trajectory-clustering-

based approaches.

1. Model-based analysis

In the model-based approach, each object is segmented, detected, and then counted using a

model or appearance of object shape. The counting of crowds is performed using this method.

Rittscher et al. [37] introduced a method for crowd segmentation on a video series based on

the Expectation Maximization (EM) formulation. For all potential individuals, this method includes

shape parameters and managed feature allocations. The likelihood function, which is parameter-

ized on the shape and location of objects is used to divide the image features. Finally, another

EM formulation is applied in order to estimate the maximum joint likelihood. This system can

be used with a numerous camera configuration and has proven to be resistant to partial occlusion,

shadows, and clutter. However, this system is expensive, and has limited extensibility [38]. In a

probabilistic top-down segmentation method, Leibe et al. [39] proposed an algorithm for pedestrian

detection in congested scenes. To determine the probability of a person being present, they inte-

grated local information from sampling appearance features with global features. They employed
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Chamfer matching as global features and a scale-invariant modification of the Implicit Shape Model

(ISM) for local features in their method. The findings of their experiment demonstrate that, even in

challenging crowded scenes with significant overlapping, the method is able to reliably detect and

localize pedestrians. In [40], researchers expanded the initial pedestrian detection method proposed

by Viola et al. [41] and described a scanning window type detector using spatiotemporal informa-

tion. Three different types of filters were used in a batch processing analysis of a moderate number

of frames to capture moving objects: an appearance Haar-like filter, an absolute difference Haar-

like filter, and a shifted difference filter. In their work, eight distinct pedestrian detectors have been

developed using the AdaBoost learning method [42] for eight motion directions. A detection strat-

egy for crowd estimates using wavelet templates and vision-based approaches proposed by Lin et al

[43]. The feature areas of the head-like contour are first extracted using the Harr wavelet transform

(HWT), and then these features are classified using an SVM. The results are categorized into two

groups: head presence or head absence. The perspective transforming method is eventually applied

to estimate crowd density.

2. Trajectory clustering-based analysis

In trajectory-based technique, crowd counting is carried out after tracking of each independent

motion. For this purpose, tracking is performed using clustering interest points on objects that have

been tracked over time.

To identify the movements of individuals in crowds, Brostow and Cipolla [44] developed an

unsupervised Bayesian clustering method. In order to perform detection for each frame, the rela-

tionships between frames are disregarded. Their algorithm is based on the principle that two moving

points are probably a component of one entity. In order to depict moving separate entities, their sys-

tem tracks and probabilistically clusters low level features. The probabilistic criteria for clustering

are based on the trajectory coherence of the image space and the space-time proximity. Their ap-

proach uses a one-shot data association, which eliminates the need for a training stage for tracking

individuals. This strategy is robust and has the ability of locating people in crowded scenes. How-

ever, it frequently fails, for example when a person is camouflaged or in the presence of strong arm

movements in situations with rigid motion.
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Sidla et al. [45] proposed a video-based counting method based on motion detection to find

Region of Interest (ROI) and prediction of movement extracting shape information to count individ-

uals in extremely crowded situations. To this end, their algorithm identifies individuals by detecting

human head-shoulder regions that have been masked by ROI filter. The motion of the pedestrian is

then examined using the Kalman filter and Kanade Lucas Tomasi (KLT) tracking points to produce

the co-occurrence matrix feature vector for active shape models. Ultimately, a virtual gateway and

a trajectory-based heuristic are applied to count the number of persons. Although their approach is

reliable for tracking people, using trajectories to count individuals in a crowd scenario is challeng-

ing. Despite the fact that their method is effective for keeping track of people, using trajectories to

count people in a crowd situation is difficult.

An object detection method using coherent motion region detection was presented by Cheriyadat

et al. [46] for counting and locating people in occluded scenes. By tracking the low-level features

of the objects, they consider that a single moving object coincides with a single coherent motion

area. Then, a set of point tracks that represent a group of distinct coherent motion areas is provided

by the output. Additionally, in order to address the issue of overlapped moves that can result from

camera perspective, greedy approach was applied to pick the optimal disjoint set.

2.1.2 Indirect crowd counting approach

Object counting with indirect approach known as feature-based method or regression method.

This approach starts with taking the entire crowd as an object, extracting several local, global, and

texture features of the foreground image, and then establishing a mapping to the number of dense

crowds to estimate the number of crowds indirectly [47]. To this end, a regression function—such

as linear [48], Gaussian [49], or neural networks [50]—has been used to quantify crowds using a va-

riety of foreground pixel features, including foreground area [50], texture features [51], histograms

of edge orientation [49], and edge count [52]. Although these approaches have achieved significant

progress, most of them demonstrate a nearly linear relationship between foreground area and the

number of objects in the image. As a result, they are still inadequate for real-world applications,

particularly when occlusions and perspective problems are present.

The occlusions issue has been handled by the usage of additional features, such as histograms
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of edge orientations, and edge count. The effects of the perspective problem have been addressed

by a number of techniques, including the geometric factor [48], which assigns weight to pixels

based on their location, the Geometric Correction (GC) [53], which equalizes all scales of objects,

the perspective map [49], which gives weight to all extracted features, and the Inverse Perspective

Mapping (IPM) [54], which calculates the distance between groups of individuals.

Regression-based counting directly maps from the extracted features of images to the number

of objects, and because they ignore the object distribution information within the region, these

methods do not have the ability to explicitly detect and localize each object [55]. These methods

are not capable to capture semantic information since they rely on low-level features. Additionally,

these approaches have limitations in complex scenes such incorrect edge-like feature performance,

the difficulty of foreground and background subtraction, and lengthy feature extraction.

1. Pixel-based analysis

To estimate the crowd, pixel-based analysis focuses more on local features. Since most pixel-

based methods rely on low-level features, these techniques are used to estimate crowd density rather

than recognizing specific objects [26]. In pixel-based processing, the initial step is to eliminate the

background using a background subtraction technique on a reference image [56] or an automatic

background generator that creates an artificial background image [57]. Following that, using the

edge detection approach, features are extracted and fed into the back propagation neural network.

This method is more effective when there is a very small or low crowd. However, the method may

yield inaccurate results in scenarios with dense crowds due to severe occlusion [58].

Ma et al. [59] introduced a technique for estimating crowd density based on pixel counting.

They established a mathematical relationship for geometric correction and demonstrated that it can

be done directly on pixels in the foreground, independent of where they are in relation to one another

in the image. To this aim, they created a density map that assigned each pixel a weight based on

the area it covered on the ground plane. The sum of the weighted foreground pixels is then used to

determine crowd counts.

Yang et al. [60] adopted a sensor network from a side and top perspective to segment and esti-

mate the number of individuals in crowded scenes. To produce a top view of visual hull, numerous
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cameras were used in this technology in order to project the 3D silhouette cones. Dimensions even-

tually intersected to create two-dimensional information. Then, using the extracted silhouettes, a

geometric method is used to calculate bounds on the number and location of the individuals. They

also employed thresholding background subtraction to make silhouettes overestimates in order to

address the issue of the sensitivity of silhouette intersection to noise. This technique has the disad-

vantage that some objects could not be seen from all angles in crowded situations, making it difficult

to localize specific objects.

2. Texture-based analysis

Texture is one of the attributes of an image that gives detailed information about each region of

the image. Texture feature extraction has attracted considerable interest from several studies and is

used as a highly effective strategy in many image processing applications. Due to its examination

of a coarser grain and requirement for image patch analysis, texture extraction is more reliable than

pixel-based approaches [26]. This method is mainly used to estimate the number of objects in a

scene rather than counting them.

According to a theory by Marana et al. [61, 62, 63], images of dense crowds typically show fine

textures, while those of low-density crowds typically show coarse textures. They employed a Grey

Level Dependence Matrices (GLDM) [64] as a statistical technique to extract features related to

crowd density from images. With the aim of crowd estimation, four GLCM features were extracted:

contrast, homogeneity, entropy, and energy. Then, in order to classify crowds, these features were

used as neural network input. They developed five density classifications (very low, low, moder-

ate, high, and very high) using a Kohonens Self-Organizing Mapping (SOM) neural network [65].

However, this method takes more time to classify the crowds.

Multi-scale analysis and SVM were used in the texture extraction approach proposed by Xiao-

hua et al. [66]. They employed a 2D Discrete Wavelet Transform (DWT) to transform the crowd

image into multi-scale formats, which they then map to a multi-dimensional feature space. The

crowd density was then classified into low, moderate-low, moderate-high, and high-density lev-

els using a tree-structure SVM-based classifier. In terms of computational complexity, this hybrid

feature extraction method outperforms Marana et al., [61]. In addition, their study successfully
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classified crowds with a modest density at 95% accuracy.

Wu et al. [67] introduced a learning-based method with the ability of assessing textures locally

and globally and subsequently identify abnormal crowd density. To improve density estimation in

the crowded conditions, their technique generates a series of multi-resolution picture cells using a

perspective projection model.

Following that, texture feature-based density vectors are extracted for each input image cell by

performing GLDM [61]. An SVM training system uses these vectors, which have been scaled, to

connect the 15 textural features to the actual density. Finally, SVM categorizes the density esti-

mation distribution and assigns it to one of two categories: normal or abnormal. Even though the

proposed system proved to be effective on real crowd videos, this approach has the problem that each

time the initial setup of the system is altered, a new training procedure is required. Zhang and Li

[68] proposed Accumulating Mosaic Image Difference (AMID), an improved foreground detection

method, to capture complicated random motion patterns. They suggested the idea of intra-crowd

motions since random, minute movements are an essential component and one of the fundamental

characteristics of high-density crowds. Then, in order to accurately estimate crowd density, they

used the AMID feature to adequately describe these local intra-crowd motion patterns. They used

a perspective distortion correction model to apply a normalizing method to the acquired foreground

in their study. This model was used to determine the crowd density for the measured areas.

3. Feature points analysis

Albiol et al. [69] proposed an alternative indirect strategy rather than segmenting or making

an effort to identify persons in each frame. To this aim, they extracted moving corner points as

features by Harris algorithm [70] to estimate the number of moving objects. Given that this strategy

produced the best results, it has been widely used and developed by numerous researchers in local

or global level [26].

Dittrich et al. [71] described a method for crowd counting by merging data from numerous

cameras. By using the concept of multiple views and integrating information, they could overcome

the occlusion issue and improve the reliability of the counting result. Therefore, to determine the

motion vector of the objects in the scene, their system rectified corner points on the ground plane
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that are associated with them. Then, in order to estimate the counts of the objects in the scene,

weights are applied based on distance, and the mean number of points per objects is obtained.

To estimate crowd density, Conte et al. [72] improved the approach of Albiol, et. al. [69]

and proposed a robust real-time method to detect corner points, and the number of moving corner

points in a scene by considering the varied characteristics of different population densities. To

correct the perspective distortion, their strategy entails initially partitioning the entire scene into

smaller horizontal zones. In accordance with their distance from the camera, each zone has a unique

size. Then, the results of the counting are calculated for each zone individually. In their work,

they evaluated the window search, the three-step search, and the local-difference method as three

methodologies for classifying points. Window search and three step search use motion estimations

as their basis, whereas the local-difference approach concentrates on variations in color intensity.

Despite the fact that the three techniques have about identical accuracy for crowd count estimation,

their experimental results demonstrate that the local-difference classification algorithm is easier and

less computationally intensive.

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and ϵ-SVR regressor are two trainable es-

timators that were compared in the study by Acampora et al. [73] as the indirect crowd counting

approach. The method first applies a feature detector to identify the interest points, and then it uses

an estimated motion vector to filter out the static points. The authors concluded that the neuro-fuzzy

based estimator performs more effectively in scenarios with high crowd densities, while the ϵ-SVR

based estimator performs better in scenes with low crowd densities.

On the basis of interest point measurements and single feature regression, Fradi and Dugelay

[74] developed an indirect crowd counting approach. To improve accuracy, this preliminary study

employs perspective normalization at the pixel level rather than allocating one distance value to

each set of unique features. Further, Scale-invariant descriptor (SIFT) [75] performed to identify

the locations of interest points by measuring the maxima and minima of the difference between

Gaussians in scale space. It has been demonstrated that SIFT is resistant to affine, rotational, and

scale transformations. Additionally, a density-based clustering algorithm is employed to derive the

shape of a group of points by using the shape technique. This method achieved a high accuracy

rate, and experiments have demonstrated its capacity to preserve a linear relationship between the
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proposed feature and the estimated count even in the face of severe occlusion scenes and perspective

distortions.

Liang et al. [76] introduced a feature point-based method for tracking and counting crowd flows.

A three-frame difference method was used to enhance the SURF point detection procedure. In order

to identify the SURF feature points that genuinely belong to the moving crowd, which minimizes

time complexity, the binary image of the moving foreground is employed as a mask image. Then,

for further improvement, they modified the Density Based Spatial Clustering of Application with

Noise (DBSCAN) clustering algorithm [77] to cluster just the motion feature points. Finally, a

Support Vector Regression (SVR) machine is employed in conjunction with a Lucas Kanade local

optical flow algorithm [78] with Hessian matrix approach to predict the movement orientation and

count the crowds in flow.

2.2 Deep learning crowd counting approaches

Deep learning models have outperformed traditional machine learning approaches in recent

years in the field of crowd counting. To learn and classify crowd regions of an image, deep learning

algorithms rely on deep neural networks to extract semantic invariant features. Therefore, current

research has shifted its focus to developing CNN-based techniques, as CNNs provide a more robust

feature representation, compared to the hand-crafted features utilized in traditional approaches. The

success of CNN in crowd counting and crowd density estimations is also mainly due to its capac-

ity to learn nonlinear relationships between images and the number of objects in images or their

associated density maps.

For crowd counting in highly dense crowds, Wang et al. [79] developed the first end-to-end

deep CNN regression model. Following CNNs success in image classification, they proposed a

CNN model to count objects in the region of interest (ROI) in the image. In their architecture,

they modified the original AlexNet network [80] by replacing the final fully connected layer with

a single neuron to obtain an object count. Furthermore, training data augmented with additional

negative samples were used to eliminate false responses in the backdrop of the images. However, as

the crowd grows denser, the occlusion inside the crowd increase, which reduces the ability of basic
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CNNs to extract features in these conditions. Therefore, in order to address this issue, Shang et al.

[14] developed a CNN architecture in which the final crowd count outputs the entire image rather

than partitioning the image into patches. As a result, due to the shared computations on overlapping

regions achieved by integrating multiple stages of processing, the complexity is reduced. Although

developed CNNs have overcome the occlusion problem, most CNN-based approaches have many

parameters and demand a lot of computing resources, which restricts their practical uses. In em-

bedded systems with little memory, this aspect can be very problematic. Therefore, a variety of

approaches have been developed to address this issue. For instance, Ding et al. [81], proposed

a deep recursive network structure using Recursive Convolutional Network [82]. When the effect

is equal, their network structure dictates that the network parameters are less, making them more

suitable for use in real-time settings.

Deep learning approaches, in general, require a significant amount of data to be trained prop-

erly; otherwise, these techniques will fail to yield high accuracy. Nonetheless, labeled data might

be challenging to collect in many situations. Therefore, to address this issue, researchers use an

auxiliary task that sorts the unlabeled data in order to enhance the network performance when the

quantity of labeled data is sparse.

The CNN-based crowd counting methods are split into three categories based by the type of the

training dataset and output of the network: 1) Detection-based CNN approach, 2) Regression-based

CNN approach, 3) Fusion of detection and regression-based CNN approaches (see figure 2.2).

Figure 2.2: Taxonomy of deep learning crowd counting.
Figure from [26]
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2.2.1 Detection-based CNN approach

The detection-based approach initially trains the bounding box-annotated image dataset. Then,

the network accurately detects every object in the image throughout the test phase. This approach

is capable of precisely locating and counting all of the objects in an image.

An end-to-end training network architecture was proposed by Stewart et al. [83] for the case

where the detection object almost completely lacks overlap. They used GooLeNet, which provides

substantial location information, to convert each image into 1024-dimensional high-level feature

representation. Then, using an Long Short-Term Memory (LSTM) [84] network as a controller, a

series of predicted bounding boxes are generated in descending confidence from the representation

of these features. The LSTM stops if it is unable to confidently locate any detection box larger than

the predetermined threshold. Non-Maximum Suppression (NMS) was not used, because it only

processes the bounded box and ignores the image data. They stated that by employing recurrent

neural networks to prevent making numerous predictions of the same target, this system produced

promising results.

To capture context information and prevent missed detection, Li et al. [85] introduced the Head-

Net adaptive relational network. In their research, the features of the input image were extracted

using Resnet-101 as the feature extraction network. In order to learn individual stability, local

structured feature modules were used, while global adaptive modules were employed to encode

the pre-quantified intergroup conflict. The bounding box and confidence are then generated by the

network.

Detection-based CNN methods take advantage of the appearance features from still images or

motion vectors from videos [86]. Depending on whether the Region Proposal Network (RPN)

is used, the two most prevalent types of image object detectors based on deep neural networks

described in the literature are: 1) one-stage detector, and 2) two-stage detector.

The architecture of both one-stage and two-stage detectors including three distinct components

[87]: a backbone, a neck, and a head. The backbone is responsible for extracting representative fea-

tures that frequently use CNN-based networks or more recent ones such as ViT-FRCNN [88], ViT-

YOLO [89], and Swin transformer [90] that include transformer-based networks and self-attention
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mechanisms to achieve high performance [91]. The neck, which is almost an essential component,

is in charge of extracting multiscale features with the aim of improving the representation. Finally,

based on the sort of task, the heads can be classified as dense or sparse. Dense heads in one-stage

detectors serve primarily as predictors, whereas they serve as proposal box generators in two-stage

detectors. The sparse heads are exclusively employed in two-stage detectors to predict bounding

boxes.

1. Two-stage detector

The first type of detectors are two-stage detectors, such as Region-based Convolutional Neural

Network (R-CNN), a ground-breaking achievement in the field of object detection proposed by

Ross Girshick et al [92]. Two-stage detectors have a longer inference time because of the increased

number of regions and additional stages [91]. Basically, the RoI pooling layer acts as a separator

between the two stages of this type of object detectors. In the first stage, the RPN filters out the

anchor boxes to generate Region of Interests (ROIs) that propose possible object bounding boxes.

In the second stage, the RoIPooling (RoIPool) is used to extract features from each candidate box

in preparation for the classification and bounding-box regression tasks that follow [93] [87]. The

basic architecture of two-stage detectors is shown in figure 2.3.

Figure 2.3: Two-stage detector.
Figure from [91]

R-CNN [92], SPP-net [94], Fast R-CNN [95], Faster R-CNN [96], R-FCN [97], and Mask-

RCNN [11] are some of the most important examples of two-stage object detectors employing

region proposal framework.

As previously stated, R-CNN was introduced as a pioneering region-based CNN detector to

address the problem of object detection. Apart from taking advantage of the substantial capability
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of CNN architecture, R-CNN has the drawback of using fixed input image size. Following that,

established methods in general object detection were developed, which were accompanied by major

advances in deep learning methodologies and gradual improvements in processing capacity. There-

fore, in order to overcome the aforementioned issue of R-CNN, SPP-Net as a revolutionary CNN

architecture based on the theory of spatial pyramid matching, proposed by Zhang et al. [94]. Base

on this theory, SPP-Net adds a spatial pyramid pooling layer between convolutional layers and fully

connected layers. Although this approach can overcome the limitations of a fixed-size network, it

only modifies the weights of the fully connected layers throughout the process of fine-tuning [98].

Following the limitations of the SPP-net and R-CNN, Ross Girshick et al. [95] proposed Fast R-

CNN as an enhanced model that employs a RoI pooling layer to use a single fixed size feature map

for all the different-sized region proposals [93]. Later, Ren et al. [96] developed Faster R-CNN to

improve Fast R-CNN and R-CNN, both of which were based on traditional Selective Search Algo-

rithm (SRA). Significantly, they used RPN to generate the proposals in order to ameliorate the slow

speed and time of the two preceding networks. RFCN [97], enhanced the accuracy even further

through the employing of fully convolutional neural networks. Faster RCNN was then expanded to

create Mask R-CNN [11], which is mostly an instance segmentation algorithm and a more accurate

object detector in terms of detection.

2. One-stage detector

The second type of detectors are one-stage detector, which use a single DNN to perform both

localization and classification at the same time, and can predict bounding boxes and their corre-

sponding class labels straight from input images [99, 100]. Specifically, the one-stage detector

eliminates the requirement to create candidate boxes and instead relies on the network output object

classes and bounding boxes, which are both completed at the same time [98]. Figure 2.4 depicts the

basic construction of one-stage detectors.

The initial YOLO (You Only Look Once) proposed by Redmon et al. [101] and its derivatives

are the most extensively used one-stage object detectors, followed by Single Shot MultiBox Detector

(SSD) [102], Deconvolutional Single Shot Detector (DSSD) [103], and RetinaNet [104].

Historically, OverFeat was first proposed by Sermanet et al. [98] as a pioneered single-object
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Figure 2.4: One-stage detector.
Figure from [91]

localization approach built on a deep ConvNets-based integrated framework for classification, local-

ization, and detection. Later, YOLOv1 was a one-stage object detector based on a fast feedforward

convolutional network proposed by Redmon et al. [101] to predict object classes and locations di-

rectly. Although YOLOv1 stands out for its fast-detecting speed, its accuracy is comparatively low

and the localization is inaccurate [105]. Consequently, the first version was improved in various

areas, and YOLOv2 [106], also known as darknet-19 was proposed to replace it. The accuracy and

object localization issue of YOLOv2 improved significantly by adding batch normalization on all of

its 19 convolution layers, employing a high-resolution classifier and using convolution layers with

anchor boxes to predict bounding boxes instead of the fully connected layers [107]. YOLOv3 [108]

is the next sophisticated variant of YOLO that aims to improve on the accuracy of YOLOv2 and

it takes advantage of the concept of a feature pyramid to performs detections for large, medium,

and small objects at three scales (levels) [105]. After that, Bochkovskiy et al. [109] introduced

the 4th version of YOLO, which resulted in significant improvements in overall speed and accuracy.

YOLOv4 employs the PANet (Path Aggregation Network) to train and extract image features, which

is potentially faster and more accurate than YOLOv3 that uses FPN [110]. Following that, the fifth

generation of YOLO released by Jocher [111] which is more flexible and smaller than YOLOv4.

However, YOLOv4 and v5 use architectures similar to YOLO v3 and alter modern approaches to

make the network more efficient and ideal for single GPU training [112].

In addition to the YOLO series, a Single Shot MultiBox Detector (SSD) is also part of the

single-stage detection framework proposed by Liu et al. [102], which uses a single deep neural

network to detect objects in images. SSD as a feed-forward convolutional network obtains the

feature map and multi-object categories using VGG16 as the backbone network to detect objects
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efficiently and accurately [113]. The SSD-based method has the ability of extracting multi-level

features from images in an automated and efficient manner [114]. However, the major drawback of

SSD is that the context information in the low-level feature maps is insufficient, making this method

ineffective in detecting small objects [114, 115]. Deconvolutional Single Shot Detector (DSSD) is

a modified version of SSD with the addition of the prediction and deconvolution modules, as well

as the replacement of the backbone network VGG16 with a more powerful one (i.e., ResNet-101)

and an hourglass network structure [103]. Lin et al. [104] proposed RetinaNet that inherits the fast

speed of previous detectors while also adding the ability to decrease the impact of extreme class

imbalance by employing focal loss as a classification loss function. Despite improvements, the

accuracy of one-stage detectors is still inferior to that of two-stage detectors.

2.2.2 Regression-based CNN approach

Regression based methods are trained using a point-annotated image dataset or unsupervised

techniques. In the test phase, the network either generates a density map or outputs the total number

of objects in the image. Regression-based counting approaches are categorized into two groups:

1. Regression counting methods, where the number of objects is output directly from the image.

2. Regression density map methods, where counting and estimating the density of the crowds is

performed using a density map.

In situations with higher densities, regression-based CNN approaches based on generating den-

sity maps can provide better prediction outcomes than detection-based CNN methods. Regression-

based approaches (see figure 2.5) are further described in this section, according to the network

characteristics.

1. Multi-scale model

Due to the increasing complexity of counting datasets, many models may underperform when

dealing with significant changes in a high crowd density. As a result, an increasing number of

sophisticated scale-resistant models were developed with the primary goal of extracting the infor-

mation of various scales in the image using a multi-column structure, feature pyramid network,
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Figure 2.5: Regression-based crowd counting approaches according to network attributes.

or scaling to increase the robustness of scale aware [116]. To capture both high-level semantic

information and low-level features, Boominathan et al. [117] combined deep and shallow fully con-

volutional networks to address crowd scales as well as perspective variations. The deep network,

which uses the VGG network, is responsible for acquiring high dimensional information, whereas

the shallow network is used to catch smaller objects that are far from the camera. This approach

expands on the representational power of the VGG network after the filters for crowd counting are

appropriately coordinated. The estimation of each pixel’s density is distinct from image classifica-

tion, though, since the problem of image classification involves assigning a discrete category label

to each image. They obtained the density estimation at the pixel level and converted this network to

convolutional by removing the fully connected layers from the VGG layout. On the other hand, the

shallow network has three convolution layers and a convolution kernel size of 5×5. Then, the shal-

low and deep feature maps were combined. The density map is ultimately produced by sampling

the feature map to the size of the original image.

To capture multi-scale object properties, Zhang et al. [118] presented a multi-column CNN

(MCNN). In this structure, three networks are utilized to separately extract various crowd image

features, and a convolution layer then combines the features of the three scales. Since different
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branches have different receptive fields, various sizes of objects can be identified through this

framework. However, the inability of this system to predict real-time crowd counting, is one of

the limitations of this model.

By utilizing the concept of three subnetworks, Sam et al. [15] proposed a crowd counting model

based on switching CNNs. Their architecture consists of multiple MCNN regressors and a switch

classifier trained to select the optimal regressor. The input image is first divided into patches, and

each patch is then pre-trained into the corresponding subnetwork in each column. By minimizing

the training error in that column, the patches are split into three categories. A Switch-CNN is then

trained to classify each patch into the appropriate subnetwork using these image categories. The

accurate crowd estimation of the original image is finally comprised by the precise prediction of

each patch.

Onoro and Sastre [14] developed a scale invariant CNN model (HydraCNN). HydraCNN is

capable of estimating the density of objects in different crowded circumstances without explicit

scene information and perspective. In their work, the authors firstly introduced the Count CNN

(CCNN) architecture that incorporates the perspective information for geometric correction of the

input features. Then, they constructed a network of three heads and a body. Each head is a CCNN

architecture for learning features of a particular scale. Finally, the outputs of all the heads are

concatenated and fed to the body to estimate the final density map.

2. Context-aware model

Context-aware models integrate local and global contextual information into the CNN architec-

ture to enhance the accuracy of detection. Incorporating local and global information for crowd

counting is a complex task that has attracted several researchers.

Sheng et al. [119] proposed to integrate semantic information by learning locality aware feature

(LAF) sets to perform accurate crowd counting. The proposed architecture comprises three main

components. First, a CNN transforms the input raw pixel data into a dense attribute feature map,

where each dimension of a pixel feature corresponds to the probability strength of a semantic class.

Then, following the idea of spatial pyramids on neighboring patches, the LAF is introduced to

explore more spatial context and local information. Finally, the local descriptors from adjacent
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cells are encoded into image representations using the VLAD encoding method. Sam et al. [120]

implemented the idea of a top-down feedback network for crowd counting. Two CNN networks are

used simultaneously in this model. The first network uses a bottom-up approach with two columns

and various receptive fields to predict the crowd density map. The second network performs a

top-down approach to discover how to link low-dimensional CNN regression features with high-

dimensional context information.

The current approaches only address changes in crowd composition; they do not address fluc-

tuations in crowd size. To address size and rotation problem for the crowd counting task, Liu et al.

[121] suggested a Deep Recurrent Spatial-Aware Network (DRSAN). The learnable spatial change

module and the regional optimization approach are initially used to address the issue of rotation

variations. Global Feature Extraction (GFE) and Recurrent Spatial-Aware Refinement (RSAR) are

the two components of the network. The global features of the input image are extracted using the

GFE module. To create high-quality density maps, RSAR is applied. The RSAR module consists of

two parts that are performed alternately: 1) Spatial Transformer Network (STN), which locates the

regions of interest in the crowd density map, and 2) local refinement network, which uses residual

learning to optimize the density map.

3. Auxiliary-task model

One or more crowd counting tasks are provided to the network in this model as auxiliary tasks

that can train simultaneously [116]. Marsden [122] employed ResnetCrowd, a Resnet-18 based

architecture [123], as an auxiliary task to simultaneously perform crowd counting, violence detec-

tion, and crowd density level classification. Before ResnetCrowd, there was no method that could

perform all three of these tasks at the same time. The main module of the network is consisting

of the first five convolutional layers from Resnet18, the interleaved batch normalization and skip

connections. After the first convolutional layer of Resnet18, the authors eliminated the maximum

pooling layer but kept the larger feature map for crowd counting at pixel-level. They generated the

crowd density map after initially counting pixel-level objects using the counting heatmap convolu-

tion layer. The feature maps produced by the feature extraction network were combined and added

to the full connection layer of the various task.
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Zhao et al. [124] used a two-phase training approach to divide the crowd counting problem into

two sub-tasks: crowd density map prediction and crowd speed map. A CNN was applied to learn

features from the video stream using line-of-interest (LOI) at the exit and entry. In order to estimate

crowd density, Zhao et al. [125] established three heterogeneous attributes: geometric, semantic,

and quantitative. These attributes were then used as multiple auxiliary tasks to produce more robust

features and enhance the performance of the crowd counting task. Liu et al. [126] introduced the

Recurrent Attentive Zooming Network (RAZNet) to simultaneously count and locate crowds. The

RAZNet features a dedicated branch for region proposals that can be used to locate dense areas,

recursively detect the region of the blurred image, and repeatedly zoom into proposed regions.

4. Models dealing with the lack of labeled data

There are various situations where there is relatively little labelled data when performing crowd

counts. Models that address the lack of labelled data problem are described in this section. There

are three types of models in this category: semi-supervised, weakly-supervised, and self-supervised.

1. Semi-supervised model

The semi-supervised Generative Adversarial Networks (GANs) were expanded from the clas-

sification problem to regression for dense crowd counting by Olmschenk et al. [127] in their

suggested model for crowd counting. In order to determine whether the input sample is real

or fake, they adopted a semi-supervised dual objective GAN structure that demands the dis-

criminator to produce two distinct outputs: the expected regression value and a tag. When

supervised regression and unsupervised classification are combined, the discriminator is com-

pelled to learn more reliable aspects of the crowd image. Consequently, this approach per-

forms superbly even with limited labelled data.
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2. Weakly-supervised model

Sam et al. [128] proposed an almost unsupervised method for crowd counting that makes

use of sparse characteristics. Most of the parameters in their work are trained using a Grid

Winner-Take-All (GWTA) autoencoder to extract features from unlabeled images, and only a

little portion of the parameters (0.1%) are fine-tuned using a supervision method on location-

level annotated data. Lei et al. [129] trained the crowd-counting network using multiple

auxiliary tasks. The authors also added a stronger regularization to predict the density of

images that were annotated weakly.

3. Self-supervised model

There are issues with overfitting in many crowd counting algorithms since the size of the

available crowd counting dataset is so small. To overcome the aforementioned issue, Liu et al.

[130] presented an approach that leverages more unlabeled data during training. To this end,

they suggested two methods of gathering datasets: 1) keyword query, which searches images

with their corresponding keywords, and 2) query by-example image retrieval, which generates

ranked datasets from the existing dataset and filters out the irrelevant images. The generated

datasets were then combined with ground-truth labeled crowd scenes through the use of three

embedding approaches: ranking plus fine-tuning, alternating-task training, and multi-task

training. Three different training strategies were tested in this study, with alternative-task

training producing the lowest mean square error and multi-task training producing the lowest

average absolute error.

5. Domain adaptation model

Domain adaptation methods can be used to count crowds in any object domain. Crowd counting

in high density situations, for instance, is one of these domains due to the varied environments

present in real scenes. Wang et al. [131] observed that the data collector in addition to its particular

methodology can be used to address the problem of crowd estimation in high density scenarios.

Data collector was developed first in order to generate synthesized data. The generated data was

then labeled automatically using a data labeler. Along with the data collector, the authors employed
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two schemes to improve counting performance. First, a large-scale synthetic crowd counting dataset

is used to train the network, and the labelled dataset is subsequently used to fine-tune it. Second,

a domain adaptation framework is performed for crowd counting without using a lot of annotated

data.

6. Perspective map model

Every position in the image has a perspective map that shows the perspective distortion. These

methods enable the network to produce density maps by incorporating perspective maps.

In order to enable the network to execute perspective normalization and enhance its robustness

to changes in scene scale and perspective, Zhang et al. [132] presented a method that generates

density maps based on perspective information. A Perspective-Aware CNN (PACNN) model was

suggested by Shi et al. [133] that employed perspective maps to predict density maps. Perspec-

tive maps provide scale change information within an image which is crucial for the detection of

smaller objects. They initially produced a ground-truth perspective map, which they used to develop

perspective-aware weighting layers to adaptively integrate the multi-scale information to predict the

density map. To address the issue of scale variation in scenes caused by perspective effects, Yan

et al. [134] proposed a Perspective-Guided Convolution Neural Network (PGCNet). The smooth

spatial variation of feature maps is guided by the perspective information using PGCNet. PGCNet

introduces a perspective estimate branch that can be trained in either supervised or weakly super-

vised settings.

7. Attention mechanism model

Attention models enhance the network with attention mechanisms to increase the accuracy of

crowd counts. In order to select the most pertinent piece of data for visual analysis, these models

train an intermediate attention map.

In addition to improving the performance of crowd counting, Sindagi and Patel [135] developed

the Hierarchical Attention-based Crowd Counting Network (HA-CCN), which uses attention pro-

cesses at multiple levels to enhance important network features that have significant effect on the

crowd counting task. They initially pretrained CNN-based networks using Global Attention Models
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(GAM), which concentrate more on high-level information and selectively boost essential features,

and Spatial Attention Models (SAM), which increase low-level characteristics in the network. The

density map was then estimated using an image-level labelled dataset that was classified based on

degree of crowdedness.

Liu et al. [136] proposed an Attention-injective Deformable Convolutional Network (AD-

CrowdNet). To address the issue of diminishing the counting accuracy in noisy and high-density

situations, they incorporated an attention mechanism and multi-scale deformable convolution to

ADCrowdNet. The Attention Map Generator (AMG) and the Density Map Estimator (DME) are

two connection networks that are part of the ADCrowdNet framework. In a crowded situation,

AMG first determines the parts of the crowd area and then determines the corresponding degree of

crowding. The DME creates a high mass density diagram using the crowd area that the AMG has

detected.

8. Network architecture search model

Currently, the hand-crafted density estimation network forms the basis of the majority of crowd

counting and crowd density estimate approaches using CNN. Therefore, the multi-scale properties

in this category are typically employed to handle scale changes and extract the multi-scale features

of the fundamental network.

Hu et al. [137] developed an end-to-end automatic search Multi-Scale Network (MAS). In order

to automatically construct a crowd counting model, the authors also employed Neural Architecture

Search (NAS). A multi-scale encoder-decoder network is effectively searched by NAS-Count. Each

unit that makes up the encoder-decoder network has the ability to automatically extract and combine

multi-scale features. On four difficult datasets, NAS-Count outperforms time-consuming manual

design tasks by automatically developing the multi-scale model in less than one GPU.

2.2.3 Fusion of detection and regression-based CNN approaches

Detection-based methods outperform regression-based methods when there is little to no crowd

density. At the same time, regression-based methods outperform detection-based methods when

there is a high density of crowds. Therefore, finding a middle path between count by detection and
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regression is the best method to strike a balance and adopt a model that can perform well in both

situations.

Liu et al. [138] proposed the DecideNet model to adaptively leverage detection and regression-

based count estimations in order to take advantage of these two methods. DecideNet has the ability

to adaptively modify the weights of the detection and regression techniques in response to variations

in crowd density. There are three modules in DecideNet: 1) RegNet, which calculates the network

density map using the regression-based approach; 2) DetNet, which precisely locates each object

in the scene using the detection-based method; and 3) QualityNet, which gives weights to two

networks.

Sam et al. [86] introduced the LSC-CNN (Locate, Size and Count) dense detection architecture

for counting crowds, which only uses the dataset of point annotation. LSC-CNN has the ability

of locating the size and position of each object in the scene. In order to improve object recogni-

tion accuracy in the scene and produce correct predictions at various resolutions, LSC-CNN utilizes

a multi-column architecture with top-down feature modulation. LSC-CNN has three main mod-

ules including feature extraction, Top-down Feature Modulator (TFM), and Grid Winner-Take-All

(GWTA). Feature extraction module sends the features retrieved from images of various resolutions

into the TFM module. The TFM module combines multi-scale feature graphs, predicts bounding

boxes, and uses NMS to choose the most useful detection among several resolutions. The GWTA

module is used to handle data imbalance during training phase. The authors concluded that their

model outperforms at crowd counting than the current regression method. The experimental re-

sults also showed that their framework performs better at placement and has all the benefits of the

detection system.

2.3 Discussion

In our application context, the studied plantation blocks may have diverse characteristics and in-

clude several objects, such as trees, debris, and water accumulation. These objects can be considered

as indicators for planting block conditions, which are generally related to the final mound density.

Therefore, we aim to employ object detection algorithms to detect multiple objects in each patch of
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the planting block, which would be useful to indicate the properties of each block region represented

by an image patch. Object detection techniques combine the functions of object localization with

image classification. Using object detection, we take an image as input and produce one or more

bounding boxes with associated class labels. These methods can handle multi-class localization and

classification and objects with multiple occurrences. Even though object detection techniques have

been proven to be effective for detecting objects in crowded scenes [91], bounding box detection

is generally insufficient when detailed information about object boundaries is needed. In addition,

more information on object regions would improve our application’s precision in quantifying their

presence.

Further development of object detection is image segmentation, which marks the existence of

an object using pixel-wise masks created for each object in the image. This approach provides

greater granularity than bounding box generation. Instead of drawing bounding boxes, segmentation

identifies the pixels of an object. This granularity enables us to obtain detailed information about the

objects included in the image at pixel level. In our approach, this information would be useful for

calculating the presence ratio of each object type. Thus, we believe that using instance segmentation

would be an appropriate choice in our application context.

In this direction, we formulate our first prediction stage as an object detection task by employing

instance segmentation prior to counting. More specifically, this is done by applying a two-stage

detector. As previously mentioned in the section on detection-based CNN technique (section 2.2.1),

one-stage detectors predict the classes and locations of objects by concurrently performing object

localization and classification. Therefore, the detection process is fast but less precise. On the

other hand, two-stage detectors first propose Regions of Interest (ROIs), and then they employ

classification to select the classes of detected objects [99]. As a result, two-stage detectors provide

more accurate localization and classification in comparison to one-stage detectors, that give faster

real-time detection [93] [99].

Among the different two-stage approaches, Mask-RCNN has the ability of detecting multiple

objects, as it adds a branch to predict segmentation masks at the pixel level parallelly to the existing

branches in Faster R-CNN for classification and bounding box regression [139]. The mask branch

provides extra information for object detection while just slightly increasing the computational cost
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in conjunction with other tasks.

Following instance segmentation, we perform a patch-level global prediction, which is inspired

by the indirect counting approach. More specifically, the second stage of our method will be based

on regression analysis as a predictive technique. This analysis uses the information extracted from

the previous step by Mask-RCNN to correct the number of mounds that have been detected, and

then provide a precise final count. In our work, there is a considerable appearance variability at the

scene level, where objects of interest could be unseen due to several perturbation factors, including

occlusion by woody debris, water accumulation, mound erosion, and destruction. Thus, applying

both models simultaneously would be more efficient than merely employing a visual object detector.
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Chapter 3

Methodology

3.1 Motivations

We aim to develop an automated framework to precisely estimate the number of mounds on

each planting block represented by an orthomosaic. For each planting block, we capture a batch of

images using UAV, to produce a high resolution orthomosaic. We divided each orthomosaic into

fixed cell sizes due to the high resolution of images, and used them as the input for our framework,

as shown in figure 3.1.

Visual inspection of different blocks (see figure 3.2) shows that the number of mounds is varying

from one patch to another. In fact, this variation is due to many factors, such as mechanical site

specificities, environmental factors (dry, wet, and snow), and presence of other objects, such as

debris and trees (e.g., mound occlusion by debris, and appearance change due to tree shadows).

To handle such difficult factors, a sequential two-step paradigm is adopted in our system design.

Firstly, we propose to detect and segment objects using instance segmentation, in order to localize

mounds and quantify the presence of other relevant objects in patches. This step allows us to deter-

mine the properties of each patch, which may vary among regions within the same block. Secondly,

we employ patch-level correction to obtain a final number of mounds. System training is performed

according to these two steps, as illustrated in figure 3.3.

Once the entire system is trained, the two models are used to perform mound counting on a

new orthomosaic. That is, local image segmentation is applied as a preliminary stage to segment
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Figure 3.1: Orthomosaic of one planting block captured and reconstructed (left) along with the
example of one extracted patch (right).

(a) (b) (c)

Figure 3.2: Examples of challenges for three patches from different orthomosaics.
(a) Presence of tree shadow causing partial occlusion of mounds. (b) Water accumulation due to
heavy rain. (c) Mounds with similar texture to the surrounding areas (background) in dry terrain.
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Figure 3.3: Pipeline of the system training for two stages.

and recognize objects on each patch of a planting block. The results of this step, which include the

number of visually detected mounds and the ratio of other objects (e.g., trees, debris and water), are

then fed as input features to the second model for a final patch-level correction.

As stated above and explained further, due to the presence of multiple objects and the limitations

of occluded mounds, the efficacy of merely performing local object detection method degrades.

Therefore, our two-stage strategy is important for achieving accurate and precise counting under

our application constraints. The procedure of analyzing a new patch of an orthomosaic to predict

mound counting is depicted in figure 3.4. The details of each stage of our framework are presented

in the following sub-sections.

3.2 Local image segmentation

The first step of our method is to perform local instance segmentation to identify and segment

multiple objects in each patch. The main motivation for this step is that different plantation blocks

have different properties, and mound density highly depends on block characteristics. In this regard,
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Figure 3.4: The procedure for evaluating a new patch using our framework.

quantifying the presence of mounds and other objects is considered as an indicator of the properties

for a given bock. In order to accomplish this, local object instance segmentation is used to detect

distinct objects belonging to the same category and to assign a unique instance label to the associated

pixels.

Instance object segmentation combines object detection, which outputs bounding box coordi-

nates, and semantic segmentation, which outputs segmentation masks. In this work, we use Mask

R-CNN [11] as an instance segmentation to detect mounds and segment all objects in the image for

its state-of-the-art (SOTA) performance.

3.2.1 CNN architecture

Mask R-CNN is a cutting-edge instance segmentation technique that adds a segmentation mask

generating branch to its predecessor, Faster-RCNN [96], to accomplish proper object detection and

pixellevel instance segmentation. We employ Mask R-CNN because it is a two-stage object detector

that takes advantage of anchor boxes. Anchor boxes enable this method to detect multiple objects
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in different scales, which improves the efficiency of the method and provides more accurate local-

ization and classification. Mask R-CNN comprises two stages to produce a final mask segmentation

of objects. The first stage scans over the image and generates the proposals, and the second stage

predicts the class and box offset and produces a binary mask in parallel [11]. In these two stages,

the Mask-RCNN architecture employs three modules: backbone, Region Proposal Network (RPN),

and ROI as shown in figure 3.5.

The feature maps are constructed in the first stage by extracting image features of various scales

using the backbone network such as ResNet (deep residual networks) [123], which is also known

as the feature extraction network. After that, the obtained feature map is sent to the RPN that

generates proposals. The RPN has two branches: the first predicts the bounding box, while the

second uses SoftMax to do binary classification of foreground and background, with the foreground

class implying the presence of a target object in the box. Then non-maximum suppression (NMS)

algorithm is used to generate the final proposals (ROIs). Note that the RoIs proposed at this point

are obtained from the anchor approach [96]. In the second stage, the corresponding target features

of the shared feature maps are extracted by mapping ROIs to feature layers. The RoIAlign is used to

modify the feature map to a fixed-size feature map. Finally, the task of mask prediction is completed

through FCN branch, and object classification and bounding box regression are completed by two

branches of Fully Connected (FC) layers.

3.2.2 Training strategy

In general, deep learning approaches require a significant amount of data to be trained properly;

otherwise, these techniques could fail to yield high accuracy. Therefore, due to the lack of training

data and the purpose of applying Mask-RCNN as a deep learning-based approach, we apply transfer

learning. We trained all of the layers including the RPN, classifier and mask head of our model

network using pre-trained weights from the Common Objects in Context (COCO) [140] dataset. In

addition to transfer learning, we used data augmentation process to address the issue of the limited

number of real-world mounds to improve the recognition rate of our model. In this way, a range of

some augmentation techniques were used to increase the diversity of the original training dataset.

Once Mask-RCNN is trained through the adaptation of the preceding methodologies, it is fitted
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to new datasets using a multi-loss function throughout the learning step. As shown in Eq. (3.1), the

goal is to optimize model parameters by minimizing a multi-tasking loss function that incorporates

a three-module combination loss: classification, localization, and segmentation.

L = Lcls + Lbox + Lmask, (3.1)

In this equation, Lcls represents the loss of classification, Lbox represents the loss of prediction

bounding box, and Lmask represents the loss of mask.

Based on the Mask-RCNN network, the mask branch contains a Km2-dimensional output for

each identified ROI that encodes K binary masks with a resolution of m × m, representing K

number of classes [11]. Thus, Lmask is defined as the average binary cross-entropy loss on the k-th

mask, which is calculated using per-pixel sigmoid on maskk, as defined below:

Lmask = Sigmoid(maskk). (3.2)

Local segmentation is done based on annotated patches of planting blocks for the whole terrain.

The number of mounds and the ratio of the other three objects in each patch are then used as input

to the local count correction.

3.3 Patch-level correction

The purpose of this stage is to accurately predict the number of mounds in a given orthomosaic

representing a planting block. In our first stage, local object detection and segmentation is used

to detect visible mounds. However, the number of visible mounds in an orthomosaic rarely corre-

sponds to the actual number of planted seedlings, due to multiple factors, such as occlusion caused

by woody debris or tree from neighboring zone (see figure 3.6 (a) and (b)), and destroyed mounds

by water flow (see figure 3.6 (c)).

Therefore, the number of detected mounds in a patch is generally underestimated when relying

only on detection techniques. To reduce this error, we use regression algorithms based on Mask-

RCNN results from the previous stage. The objective of regression analysis in this context is to
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Figure 3.5: Architecture of Mask-RCNN.

Figure 3.6: Examples of mound occlusion and destruction.
(a) Occlusion due to the presence of woody debris. (b) Presence of tree from neighbor zone. (c)
Destroyed mounds by water flow due to heavy rain.
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learn a function X → Y from N sample images as follows:

X =
{
xji

}
, j ∈ (1, 4), i = 1, 2, . . . ,N

Y = {yi} , i = 1, 2, . . . ,N

(3.3)

where x1 represents the number of detected mounds during the first stage and x2, x3, and x4 rep-

resent the ratios of trees, water, and debris respectively, and Y is defined as the final number of

mounds from the ground-truth.

Regression methods, including linear, Support Vector Regression (SVR), lasso, and Multilayer

Perceptron (MLP), were investigated and performed to find the more accurate predictor with a high

Relative Counting Precision (RCP). We finally adopted SVR as a predictive regression technique

to correct the mounds count on patches of any given block. To obtain the final mounds count, we

used the image segmentation results of the first stage, which contains the number of mounds, and

the ratio of trees, debris, and water.

SVR is an expanded version of the Support Vector Machine (SVM) model that adds an ϵ-

insensitive error function to provide it with the ability to perform regression [141]. It gives the

freedom to find the proper hyperplane in higher dimensions to regress the data and customize con-

trolled errors in a reasonable range. SVR is efficient for nonlinear modeling because it reduces

model complexity and prediction errors using a kernel function [142]. Additionally, SVR has proven

to manage dimensionality effectively in the small dataset [143].

To describe the function of the model, S = {(x1, y1) , (x2, y2) , . . . (xl, yl)} is taken to be the

set of training data in the next n input space, where xi ∈ Rn. The purpose is to represent the original

non-linear data in a high-dimensional space. Thus, a mapping function is applied to regress sample

data in the higher-dimensional feature space. The regression function of f(x) is described as:

f(x) = ωφ(x) + b (3.4)

where ω is the weight vector; φ is the nonlinear mapping function, and b is the offset. The convex

optimization problem described in Eq. (3.5 and 3.6) can be used to represent the entire issue:
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Minimize
1

2
∥w∥2 +C

1∑
i=0

(ξ + ξ∗) (3.5)

Subjectedto


yi − ⟨w, xi⟩ − b ≤ ϵi + ξ

⟨w, xi⟩+ b− yi ≤ ϵi + ξ∗

ξi, ξ
∗
i ≥ 0i = 1, · · · , l

(3.6)

where ξ and ξ∗ are the slack variables represent the positive and negative errors at the ith point,

respectively, the constant C represents the penalty coefficient, and ϵ is the deviation between the

estimated value and the target value.

To determine the final total number of mounds for each block, we used the outcomes of the

algorithms predictions for each patch as follow:

Countfinal (Blocki) =
M∑
j=1

(pj) (3.7)

where pj represents the j-th patch for a given Block(i).
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Chapter 4

Experiments

4.1 Dataset construction

The study area of this work is located in the south of the province of Quebec, Canada, as

shown in figure 4.1. The aerial images were collected by flying over private forest sites. Using an

excavator with a 45 cm-wide bucket, mounds with heights of about 50 cm and diameters of 80 cm

were constructed. In each mound, a fast-growing hybrid poplar clone seedling was intended to be

planted.

The aerial RGB images were taken with the DJI Matrice 100 quadcopter equipped with a vertical

high-resolution Zenmuse X3 Visual (R, G, B) sensor. Images were captured with a high overlap

percentage to maximize orthomosaic reconstruction quality at 120 meters. Using Pix4D software,

orthomosaic reconstruction was carried out.

We employed 20 orthomosaics—reconstructed from UAV images of various zones—with vary-

ing characteristics as input data. We divided our images into two distinct groups as follows:

• Group 1: consists of 4 training orthomosaics manually annotated for the local image seg-

mentation. Three orthomosaics were used for training, and the fourth was used to test the

segmentation method.

• Group 2: includes 18 testing orthomosaics used to evaluate the performance for the entire

framework.
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Figure 4.1: Geographic zone of the study. The yellow regions show the study area south of Quebec,
Sherbrooke city.

Because the sensor produced images with a high resolution of 23610 × 18151, we adopted a

patch-based approach to trim orthomosaic and create non-overlapped patches with regular and sta-

ble pixel sizes of 608 × 608. Moreover, since a given plantation block may have various properties

for different regions, dividing the orthomosaic into patches is important in order to determine the

properties of each region separately. As a result, 1352 patches were employed to train the model.

The data was then processed before being fed into the local instance segmentation method for train-

ing. The region of interest was carefully investigated. The ground-truth of mounds and other objects,

including trees, water, and woody debris, was manually annotated using the open-source VGG Im-

age Annotator (VIA) tool [144]. The JSON file generated by the VIA tool contains information on

the masks as a set of rectangles (for mound) and polygon points (for water, debris, and tree). We

handled bounding boxes uniformly independent of the source dataset by computing the bounding

boxes using masks rather than the bounding box coordinates supplied by the source datasets. Figure

4.2 illustrates a patch with manually annotated objects cropped to fixed cell size.
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(a) (b)

Figure 4.2: Manually annotated objects. (a) Example of one orthomosaic and a sample patch
cropped to a fixed dimension. (b) Manually annotated objects (mound, tree, water, debris).

4.2 System training and testing settings

The proposed method was implemented using Python on a PC (CPU i7-12700KF @ 3.61 GHz,

12 cores) equipped with a GPU NVIDIA GeForce RTX 3060. We trained the Mask-RCNN as the

segmentation method on each orthomosaic constructed from UAV images. To train the model, we

set the batch size to 1 and the learning rate to 0.001, with a decay of 0.001. The momentum is set

to 0.9, and the number of epochs is fixed to 150 for pixel-wise detector training. Transfer learn-

ing for Mask-RCNN is performed on the weights of the pre-trained model of the COCO dataset

[140]. Throughout the segmentation process, we set a confidence threshold of 0.5 to identify possi-

ble mounds without increasing the number of false positives. After model training, the results of the

Mask-RCNN, which included the number of mounds, the ratio of trees, debris, and water buildup,

were supplemented with the ground-truth number of mounds and then fed to the regression predic-

tion method. The linear kernel function was used to train the SVR with the regularization parameter

C of 1.0 and the epsilon tube of 0.5.
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4.3 Evaluation metrics

The performance of the visual object instance detection and segmentation module is evaluated

through mean Average Precision (mAP), which is calculated using the confusion matrix and the

following sub metrics of precision (P) and recall (R):

P =
TP

TP + FP
(4.1)

R =
TP

TP + FN
(4.2)

where TP indicates the number of True Positives, FP indicates the number of False Positives, and

FN indicates the number of False Negatives.

The area under the Precision-Recall curve is represented by Average Precision (AP) that is

calculated for each class using the Intersection over Union () as a metric for measuring the overlap

between ground-truth and the predicted mask as below:

AP =
n−1∑
i=0

(Ri+1 −Ri)Pinterp (Ri+1) , (4.3)

where Pinterp(R) is the precision interpolated at a certain recall level.

Given that AP x
i is the average precision for a given IOU threshold of x and class i, mAP for N

number of classes is defined by:

mAP =

∑N
i=1AP x

i

N
(4.4)

In our forestry application, the main objective is to predict the number of mounds on each plan-

tation block, regardless of their positions or distribution. Therefore, we used the relative counting

precision metric, which is the most critical success indicator of our method, to measure the overall

system performance by evaluating the regression predictors and obtaining a final counting estimate,

as shown below:
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RCP = 1−
∣∣∣∣#predicted mound−#gt

#gt

∣∣∣∣ (4.5)

where #predicted-mound represents the predicted number of mounds and #gt represents the number

of mounds from the ground-truth.

4.4 Experimental results

The process of counting mounds on a new planting block comprised two steps:

1. Applying the local image segmentation model to detect visible mounds and quantify the pres-

ence of trees, debris and water.

2. Performing patch-level correction using a regression function.

Note that we only trained our local image segmentation using three annotated orthomosaics

from Group 1. To ensure that the models work properly and verify the performance of our proposed

method, we used 18 orthomosaics from Group 2 that had not been utilized in the training processes.

Table 4.1 shows the global quantitative results of testing data for evaluating the segmentation

algorithm using mAP metric for all patches of the fourth dataset of group 1. According to the table

4.1, the global mAP at 50% and 75% for all 61 patches are 52% and 16%, respectively.

Table 4.1: Quantitative result of global mAP

Total Number of Patches Global mAP 50 Global mAP 75
60 52% 16%

Figure 4.3 depicts one sample patch and its corresponding qualitative result. The number of

mounds and the ratio of other detected and segmented objects were then used as input features in

the second step of the pre-trained regression algorithm to produce the final mound counting.

Table 4.2 shows the quantitative results of our proposed approach. According to the findings, the

RCP of the local image segmentation method is 93%, which indicates that our instance segmentation

method has the ability to detect and segment the planting microsites efficiently. However, we could
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(a) (b)

Figure 4.3: Qualitative result of one sample patch and its corresponding.
(a) Example of one patch. (b) Corresponding qualitative result.

significantly improve the average detection precision of counting mounds by applying patch-level

correction methods. From table 4.2, this improvement reached 96% by performing SVR. Compared

with other regression methods, SVR yields the greatest results since it employs a kernel function to

concurrently minimize prediction errors and model complexity.

Generally, the total ground-truth number of mounds for all 18 blocks is 125054. The local

segmentation-based method proved its capability to correctly detect and segment 115968 mounds

with an RCP of 93%. However, the mounds were rectified at the patch level with an RCP of 96%

utilizing SVR as a regression analysis approach at the second stage, representing an increase of 3%

for the 18 planting blocks examined in this work. The results confirm that regression methods in

the second stage could at least improve the estimated number of mounds by 1% compared to simply

using Mask-RCNN as the pixel-wise detection approach.

The corrected number of mounds in blocks 02, 05, and 14 is 96%, according to the RCP result

of the SVR technique. However, the results of patch-level correction for blocks 03, 09, 10, 12, 13,

15, 16, and 17 outperformed an average precision of 96%.
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Table 4.2: Quantitative results of our proposed approach. GroundTruth refers to the final number
of plant seedlings planted in a block. Local segmentation-based count is the number of mounds
detected and segmented using local image segmentation method. Count is the number of locally
corrected mounds and RCP corresponds to the relative counting precision. Average precision mea-
sure represents the average over all precision values, but the overall result indicates the counting
precision when the entire number of mounds in the dataset is taken into account.

Local Patch-level corrected count
Orthomosaic GroundTruth segmentation-based count Linear SVR Lasso MLP

Count RCP Count RCPa Count RCP Count RCP Count RCP
Block 01 16450 14458 88% 15820 96% 15180 92% 15504 94% 15828 96%
Block 02 2650 2609 98% 2816 94% 2760 96% 2851 92% 2780 95%
Block 03 750 712 95% 724 97% 737 98% 771 97% 728 97%
Block 04 800 784 98% 851 94% 844 94% 891 89% 837 95%
Block 05 2350 2233 95% 2495 94% 2436 96% 2562 91% 2462 95%
Block 06 1700 1513 89% 1623 95% 1600 94% 1683 99% 1621 95%
Block 07 2050 1853 90% 1868 91% 1879 92% 1933 94% 1864 91%
Block 08 3950 3443 87% 3676 93% 3571 90% 3649 92% 3629 92%
Block 09 6847 6632 97% 7041 97% 6915 99% 7091 96% 6923 99%
Block 10 30200 28301 94% 28973 96% 29145 97% 30107 99.7% 28733 95%
Block 11 2950 2742 93% 2778 94% 2797 95% 2894 98% 2765 94%
Block 12 25450 24251 95% 2765 96% 25447 99.99% 25994 98% 25848 98%
Block 13 7400 6658 90% 7825 94% 7551 98% 8079 91% 7824 94%
Block 14 5250 5009 95% 5620 93% 5468 96% 5751 90% 5563 94%
Block 15 3557 3424 96% 3636 98% 3653 97% 3842 92% 3643 98%
Block 16 5150 4320 84% 5362 96% 5032 98% 5418 95% 5331 96%
Block 17 4900 4759 97% 5164 95% 5025 97% 5236 93% 5128 95%
Block 18 2650 2267 86% 2478 94% 2492 94% 2670 99.2% 2471 93%

Overall result 125054 115968 93% 101515 81% 122532 98% 126926 99% 123978 99%
Average precision 93% 95% 96% 94% 95%
a Highlighted numbers in red correspond to best precision results, and numbers in blue represent second-best results.

Although the experimental results show the efficiency of our strategy, this thesis is subject to

several challenges. Based on the results of local-segmentation mound counting, the RCP for blocks

01, 06, 08, 16, and 18 are less than 90% compared to the other ones, which are equal to or greater

than 90%. This can be caused by the fact that the new plantation block may exhibit many unseen

properties when we test our object-pixel-wise instance detector. This could include mound shapes

and block characteristics that the detector was not exposed to during training. The performance

of the segmentation-based count is substantially impacted by occlusion, destruction, and image

acquisition in addition to the model being exposed to unseen characteristics. In addition, table

4.2 indicates that while our framework was able to improve the final results by applying SVR, the

outcomes for some blocks are lower than others. As can be seen from block 08, our correction

method could only correct 128 more mounds than the local approach, bringing the total number of

mounds from 3443 up to 3571, which happened due to the challenging situations on the captured

images of the related blocks. For instance, because the images of block 08 were taken under dry

conditions, the texture of mounds is similar to surrounding regions, which makes object detection
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very challenging.

Despite the aforementioned difficulties, the overall results demonstrate that using the two stages

consecutively results in an average improvement of 3%. Additionally, our framework achieved an

average RCP of 96%, and thus outperforms the manual method whose RCP is around 85%.

4.5 Limiting factors: discussion

From table 4.2, the RCP results of the segmentation-based count method are less than 90%

for certain blocks (01, 06, 08, 16, and 18). As previously mentioned in the experimental results

(section 4.4), we employed a new plantation block for the testing phase that was entirely excluded

from the training dataset. Thus, the results of the object counting may be underestimated since the

new planting block has several characteristics that are different from those in the input dataset used

for training. Additionally, other key factors including occlusion, destruction, and image acquisition

significantly impact detection performance.

Occlusion: Occlusion is considered as one of the most common issues that reduce the available

visual information. In an image, occlusion happens when one object obscures a portion of another.

The occluded areas are determined based on the camera’s position in relation to the scene. As shown

in figure 4.4, the presence of woody debris on the forest floor may cause occlusion. Additionally,

trees or shadows cast by nearby zones may cover mounds that are positioned on block borders.

Mound destruction: The tracks of the excavator, which are only employed for scalping on sites

with steep slopes, heavy slash, high stumps, or if a range of site preparation treatments is necessary,

may induce mound destruction during the mechanical preparation of a planting block as shown in

figure 4.5. The constructed mounds may also be deteriorated and eroded during the event of strong

rainstorms following mechanical preparation. This happened due to the fact that intense silviculture

frequently places planting blocks along hillsides, which favors water flow.

Image capture factors: The image capture process is a crucial phase that can have a substantial

impact on the appearance of the object of interest as well as the image quality. This is mostly

caused by a number of weather-related flight disruption factors, such as camera movements in windy

weather and changes in lighting, as show in figure 4.6. For instance, altering the height or quickly
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moving a drone in windy conditions can greatly reduce the quality of the images that are captured.

Flying at high altitude makes it possible to streamline image acquisition and orthomosaic generation

while flying at low altitude increases the level of detail in photos. Consequently, a wise compromise

needs to be made. Furthermore, the presence or lack of sun glint reflection results in a poor-quality

image as well, which makes it difficult to discern between mounds and background topography, and

in some situations, leads in object scale variation.

(a) (b)

Figure 4.4: Illustrative instances of occlusion.
(a) Occlusion caused by woody debris or rock fragments.
(b) Occlusion caused by the presence of trees and shadows from neighboring zone.
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(a) (b)

Figure 4.5: Illustrations of destroyed mounds.
(a) Mounds that were destroyed during mechanical preparation by the excavator. (b) Mound de-
struction due to heavy rain.

(a) (b) (c)

Figure 4.6: Examples of visual impacts by image acquisition conditions.
(a) Blurred image. (b) Bright image due to the sun glint reflection. (c) Dark image due to the lack
of luminosity.
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Chapter 5

Conclusion

Mechanical site preparation by mounding is an important step in silviculture and tree regen-

eration, which promotes the survival and early growth of newly planted seedlings and raises the

productivity of agricultural fields. The highest level of agricultural land productivity also boosts

the productivity of forestry companies. The precision of planning processes, including methods

for gathering and interpreting field data, is crucial to achieve this goal. Despite the increasing us-

age of new technologies, existing planning techniques still involve human manual operations that

are frequently expensive, time-consuming, and prone to errors. These problems stand out when

planting activities are planned, and an estimation of the number of mounds on each mechanically

prepared block is required. In particular, mound counting is of great significance in forestry, since

their number can vary substantially depending on site characteristics.

To automate the process of counting mounds, we proposed a new computer vision framework

for supporting forestry managers. Our framework is based on UAV imagery and machine learning

approaches. Indeed, we developed an automated approach to detect and segment mounds and then

estimate their precise number.

The proposed system adopts an hybrid approach by integrating a local image segmentation

method with patch-level count correction. The objective is to predict the number of tree seedlings

to be planted. To this aim, local image segmentation is used first to quantify the presence of ob-

jects, including the number of visible mounds and the ratio of other objects (e.g., trees, debris, and
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water). Since the visual detection and segmentation approach is subject to recognition errors un-

der challenging situations, our main objective cannot be accomplished by merely using local image

segmentation. Therefore, we apply regression analysis in the second stage to correct the number of

the mound at the patch-level by using information extracted at the pixel-level from the first stage.

The experimental results demonstrate that our approach is effective in dealing with a variety of

difficult conditions involving environmental factors and the existence of multiple objects on planta-

tion blocks. That is, the local segmentation approach leverages visual mounds from aerial images to

predict a preliminary count, which is subsequently corrected by the patch-level correction method.

According to our qualitative and quantitative performance assessments, our approach outperforms

the manual counting method, commonly used in forestry in terms of precision, while significantly

reducing the financial cost of planning planting operations.

During this experiment, we dealt with some limitations related to image data and the mechanism

of annotating objects in each patches. As we previously mentioned, certain disturbance factors, such

as occlusion, mound destruction, as well as image acquisition problems may impact the detection

process. We also observed that the overall performance depends on the amount and the quality of

annotations. Therefore, the main direction for future work is to consider situations where images

are weakly annotated in order to expand the training dataset.
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