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Abstract

A GIPSY Runtime System with a Kubernetes Underlay for the

OpenTDIP Forensic Computing Backend

Seyed Pouria Zahraei

In this research work, we propose an underlay based on Kubernetes to enhance the

scalable fault tolerance of the General Intensional Programming System's distributed

run-time demand-driven backend to gather digital evidence from GitHub repositories

and encode them in Forensic Lucid for further analysis in the integrated OpenTDIP

environment.

We developed a solution so that forensic investigators could use GitHub to gather

a dataset to investigate program �aws and vulnerabilities related to security from

GitHub projects written in di�erent programming languages. For this purpose,

we design and implement a JSON demand-driven encoder to perform a Forensic

Lucid conversion pipeline (data extraction, format conversion, and �le compilation).

In order to distribute the execution, we utilized the GIPSY distributed computing

system.

We also integrated Kubernetes with GIPSY distributed computing system in

order to improve the con�guring, starting up and registering GIPSY nodes, so that

GIPSY nodes could get registered automatically without any manual con�guration.

In addition, provide a mechanism to have a scalable fault-tolerant system so that

when a GIPSY node dies, it will handle reallocation, con�guration and registration

of the GIPSY nodes automatically.
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Chapter 1

Introduction

The Forensic Lucid forensic knowledge representation and reasoning language [8] is

designed to automatically compute the reasoning a forensic proof with digital evidence

and for event reconstruction. It can be used, for example, to build a formal case

description proving or disproving a hypothesis that, in the history of GitHub commits

of a certain piece of software, a speci�c known security defect was introduced that

resulted in a compromise. Even though Forensic Lucid can declare this formal

concept, it requires that the evidence be encoded in a manner that a Forensic

Lucid program can understand. Thus, we require automatic extraction features

from a GitHub repository and their translation (encoding, conversion) into Forensic

Lucid format.

In this research work, we aim to show how Forensic Lucid can be used

to distribute the computation of a forensic investigation involving evidential data

extraction from a GitHub repository and translating them into Forensic Lucid

evidential statements. As the evidential data can be quite large, performing such

a task requires extensive computation. Therefore, in order to extract and translate

the evidential data automatically, we use the GIPSY [9] system as a demand-driven

distributed computing platform to proceed with the extraction and transformation

of the evidential data and, at the same time, use it in order to evaluate the

Forensic Lucid programs (compile) in the context of the overall Open Trusted

Digital Investigation Platform (OpenTDIP) (see Figure 1), which covers all aspects
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of digital forensic computing, from evidence management, a chain of custody using a

blockchain, formal methods, and event reconstruction.

Figure 1: Overall OpenTDIP Deployment Architecture [1]

In Figure 1 the high-level architecture depicts components related to the human

factors and human-computer interaction on the left-hand side using applications such

as DigiEVISS [1,10] or Ftkplipse [11,12]. On the right-hand-side is the computation

engine of the General Intensional Programming System (GIPSY) to compile and

evaluate Forensic Lucid expression using its distributed runtime of the General

Eduction Engine (GEE, covered later). The two sides are joined by the distributed

scalable storage for the digital evidence and demand-driven computation.

However, deploying the existing GIPSY distributed system is relatively complex

at scale, considering manual con�guration and starting up the GIPSY system

components, the compilation time for the GIPSY program that involves dozens

of dependencies. Moreover, if a part of the distributed system crashes, it

requires restarting the node, which currently should be done manually, which takes

considerable time. This leads us to demonstrate how Forensic Lucid's execution

engine can integrate with the use of the industry-standard Kubernetes [6] distributed
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processing orchestration features such as the automatic and e�cient deployment of

the GIPSY distributed system and a scalable fault-tolerance mechanism.

1.1 Research Domain

In order to describe the domain of this research work, �rst, we discuss the two main

concepts involved in our research � Forensic Computing and Cluster Computing.

1.1.1 Forensic Computing

By de�nition in the dictionary, forensics refers to the action of scientists who evaluate

evidence to assist law enforcement in solving crimes. Digital Forensics is de�ned as

a procedure of digital criminal investigations, including digital data stored on various

computer devices as evidence for examination, which can be used by the court of

law [4].

Nowadays, computers are used in forensic computing to analyze evidence that can

be used in court to �nd an answer to legal questions. In order to analyze the evidence

on digital devices, we need a computer and speci�c software, where evidence can exist

in any type of storage or electronic device. In order to analyze evidence adequately,

sometimes we need to collect a large amount of data and �lter this data using some

explicit keywords and analyze the data to deliver a piece of adequate evidence, which

can help us discover more detailed information about an illegal act. The preservation,

identi�cation, extraction, documentation, and interpretation of computer data are

all part of computer forensics [13�15]. There are di�erent kinds of methodologies

in forensic computing. The basic methodology consists of gathering evidence from

any sort of resources, authenticating the evidence and analyzing the evidence by

reconstructing a sequence of events that eventually proves or disproves a hypothesis [4,

15]. Digital Forensic investigation is required when data is too large or complex to

gather manually and when the proof is too complex to manage manually.
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1.1.2 Cluster Computing

Nowadays, the volume of the data to be analyzed is drastically increasing. Thus,

the popularity of cluster computing is expanding with the growing demand for more

powerful applications. With cluster computing, we are able to solve the load issue by

combining various processors. Cluster computing is a combination of parallel, high-

performance, distributed, and high-availability computing, which consists of a variety

of multiple standalone computers (nodes) that are connected together and perform

as a single computational unit [2, 16,17].

As we can observe in Figure 2, a typical cluster consists of multiple standalone

computers, such as PCs, powerful workstations, or SMPs (Symmetric multiprocessing

or shared-memory multiprocessing) which are connected together through a high-

speed network/switch [2]. There are other components, which play an essential role in

the cluster architecture, such as Network Interface Hardware, which is responsible for

the communication and transferring of the data packages between the nodes through a

high performance network/switch, cluster middleware (Single System Image (SSI) and

System Availability Infrastructure), which is software on the top of nodes and allows

users to manage the cluster as a single unit, parallel programming environments,

and sequential, parallel or distributed applications [17]. This architecture can help

us solve problems requiring high speed, such as when we need to perform analysis

and interpretation on a large amount of data. Cluster computing provides us with a

high-performance, highly available and scalable computational platform.

The domain of our research is thus to employ cluster computing tools to enhance

the evidence gathering and preparation for analysis in forensic investigations.
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Figure 2: Cluster Computing Architecture [2]

1.2 Motivation

1.2.1 Essential Background

In this section, we discuss the motivation of the research. However, before we dive

into the subject, we provide a brief background. Nonetheless, in Chapter 2, we will

discuss it more in detail.

We start by giving a brief background about Forensic Lucid. Forensic

Lucid [8, 18�21] is a forensic case speci�cation language for automatic evidence

composition used to formally represent and reason about digital crime incidents.

Forensic Lucid is designed to describe forensic evidence in digital crime incidents

as a context of intensional evaluations [4]. Its evaluation engine is based on the

outcome of backtracing and, if a backtrace is found, to o�er the path for the related

event reconstructions. The results of the evaluation of Forensic Lucid expressions

are true or false, i.e., �guilty� or �not guilty�, which can be done by one or multiple

backtraces [4]. Forensic Lucid is based on Lucid, which is an intensional and

multidimensional data�ow programming language [22�26]. For instance, in MAC

spoofer, forensic evidence is gathered from the log �les containing the network activity

for the MAC spoofer to encode in Forensic Lucidformat and later reasoning [27].
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The General Intensional Programming System (GIPSY) is a multi-

language programming compiler and execution engine framework for compiling all

types of Lucid dialects, including Forensic Lucid [28,29]. Using GIPSY, Forensic

Lucid programs can be compiled and executed as a distributed system using a

demand-driven data�ow model. In addition, GIPSY has MARFCATDGT and

MARFCATDWT [30], that can feed the machine learning with weak or vulnerable

code data in order to provide additional evidence to an investigation.

GIPSY consists of the General Intensional Programming Language Compiler

(GIPC), General Eduction Engine (GEE), Intensional Run-time Programming

Environment (RIPE), which are the primary components for compiling and

executing Lucid programs, such as Forensic Lucid programs. Together they

are employed to validate if the encoded Forensic Lucid program corresponds to

the observation sequences via the semantic connection between distinct evidential

statement objects [4].

Since the GIPSY can compile the Forensic Lucid code, the GIPSY runtime

system is also used to distribute the computation of the investigation at the same

time. Having such a system capable of compiling and executing the Forensic Lucid

program can be advantageous since, without using the GIPSY runtime system, we

need to provide a proper compiler.

As we can observe in Figure 3, the architecture of GIPSY program execution

consists of three runtime components: the Demand Generator Tier (DGT), Demand

Worker Tier (DWT) and Demand Store Tier (DST). A GIPSY node is a registered

computer hosting one or more GIPSY tiers, where the registration of GIPSY nodes is

triggered by GIPSYManager Tier (GMT) instance, and each of these tiers works as an

independent computational unit performing speci�c duties. Each instance manually

uses a corresponding con�guration �le to do the registration and future con�gurations,

which will be discussed more in detail in the next Chapter [3,4,9,29,31]. The execution

architecture of GIPSY is demand-driven and the tiers generate the demands and

migrate to other tiers using the Demand Store Tier (DST) [32].
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Figure 3: General Intensional Programming System Node [3]

1.2.2 Motivational Scenarios

Below we describe possible scenarios that can help us describe the solution that we

will propose in the research work and illustrate some of the requirements that need

to be met.

1.2.2.1 Investigating Bugs or Vulnerabilities related to breaches

In this scenario a forensic investigator wishes to encode evidential statements

in the form of a Forensic Lucid program by constructing observation sequences

via the semantic connection between distinct evidential statements found on a

organization [33].

1. The forensic investigator primarily gathers vulnerable applications installed

as a possible vector of entry correlated with the exact published Common

Vulnerabilities and Exposures (CVE) and con�rm with the MARFCAT-based,

[30] analysis.

7



2. The forensic investigator gather data from source code of announced vulnerable

applications as a witness statements, which are later encoded in the form of a

Forensic Lucid observation sequence [4].

3. A set of testimonies that have been collected are encoded and de�ned as an

evidential statement (es) and during the veri�cation process, es are developed

into the local knowledge base for the forensic case [4].

4. For evidential statements, theories in Forensic Lucid are de�ned and encoded

to describe the evidence more in detail, and the theories are encoded as

observation sequences os. They are added to es after being assessed against

the forensic evidence acquired in es, and using an evaluating system we can

automatically verify that theories agree with the evidence, which means the

theory has an explanation for the evidential context and the theory probably

explains the chain of events that led to the incident [4].

The process that we described above will be accomplished by employing the

GIPSY system as we explained in Section 1.2.1 in the GIPSY node architecture.

In the next chapter, we will discuss how it can be done more in detail.

1.2.2.2 Management of GIPSY Instances

In this section, we would like to discuss the scalable fault tolerance and deployment

of the GIPSY computational network.

1. As discussed in Section 1.2.1, deploying GIPSY program and adding a new

GIPSY node to the cluster requires quite a time-consuming procedure. Setting

up a GIPSY network or adding a GIPSY node to the network requires providing

the needed con�guration �les to each physical machine so that GIPSY node

can use it to connect to the network, cloning the project from the repository,

compiling the whole project, run the GIPSY node program and enter the proper

command in order to join the GIPSY node to the network. However, we are

looking for a mechanism to facilitate the steps that we mentioned above and
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administrate all GIPSY network components on a master computer, regardless

of the GIPSY node's physical location.

2. Running a GIPSY program requires some packages and tools, such as the JVM,

xterm, as well as dozens of packages and libraries. We need an approach to

automate the deployment of such dependencies for each machine to deploy the

GIPSY program independently of operating systems and hardware platforms.

3. If a GIPSY node dies in the network, we need manually take the procedure as

we explained above to join a new GIPSY node to the network. Therefore, we

need a mechanism to automatically handle the fault tolerance for the GIPSY

nodes in a way to avoid to have to manually restart a faild node.

The e�ort required to re-invent now existing open solutions there is hard to justify.

Therefore, in order to achieve all the features mentioned above, we propose to employ

container orchestration embedded into the existing GIPSY runtime architecture.

1.2.3 Requirements

Following the scenarios described in Section 1.2.2.1 and Section 1.2.2.2 we provide

the list of requirements, which will allow us to de�ne all the required parts of our

solution. Here we provide a set of functional and non-functional requirements, in

which functional requirements describe the behaviour and components of the system

and non-functional requirements describe quality attributes and user expectations.

1. The system shall have JSON demand-driven encoder:

We shall design and implement a demand-driven JSON encoder in order to

extract data from GitHub repositories, convert them to Forensic Lucid

format and compile Forensic Lucid �les [7].

2. The system shall employ the GIPSY distributed computing system

for forensic computing pipeline:

9



In order to execute the JSON demand-driven encoder, we shall utilize the

GIPSY distributed computing system to spread the computation of the Forensic

computing pipeline.

3. The system shall return the results quickly if we execute the JSON

encoder for the second attempt on the same data:

There shall be a mechanism where if we execute the JSON encoder multiple

times for an identical set of repositories data, we shall receive the same results

relatively fast without another extraction, conversion or compilation after the

�rst execution.

4. The system shall have an e�ciently deployable GIPSY distributed

system:

We shall have a mechanism where the GIPSY node can start on any type

of operating system without installing all the dependencies, and it can start

without requiring repetitive startup procedures for every machine as we

mentioned in Section 1.2.2.2.

5. The system shall have a scalable fault tolerance mechanism:

If a physical network node which contains one or multiple GIPSY nodes dies,

it shall be able to detect and reallocate the GIPSY nodes to the next available

physical network node automatically. This way, the systems administrator does

not need to repeat the starting up of a GIPSY node procedure on another

machine.

6. The system shall have a shared �le system:

In order to avoid moving some required con�guration �les and metadata between

GIPSY nodes, we shall have a �le system that is shared and simultaneously

mounted on multiple GIPSY nodes.
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1.3 Thesis Objectives

In this section, we discuss the goals and objectives of our research work. As we

provided some scenarios in Section 1.2.2.1 and Section 1.2.2.2 and discussed the

requirements in Section 1.2.3, we would like to provide an adjustable robust and

scalable solution to oversee the forensic investigation using the GIPSY system and

manage the processes utilizing container orchestration. Bellow is a brief list of

objectives of this research work:

� To facilitate forensic investigator's task to e�ciently exploit

the collection/encoding of digital evidence, e.g., GitHub repository, for forensic

investigation by employing the Forensic Lucid programming language.

� Design and implement node instances by utilizing container orchestration in

order to have a quickly deployable, scalable fault tolerance system.

Finally, we need to evaluate and analyze to what extent we were able to satisfy

what we have mentioned in the requirements section in Section 1.2.3 and make

sure that we were able to meet what we have mentioned in the scenario section

in Section 1.2.2.1 and Section 1.2.2.2.

1.4 Scope of the Thesis

In this research work, our goal is to achieve all the requirements that have been

mentioned in Section 1.2.3. We attempted to show how the Forensic Lucid dataset

can be collected for a follow-up computation of Forensic Investigation with evidence

from GitHub repositories. We also demonstrate how the execution engine can

integrate the use of the Kubernetes distributed processing orchestration features such

as automatically scalable fault tolerance and easily manageable. Below is the list of

some problems or elements related that are outside the scope of our research and

development work:
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� Primarily we performed the data extraction on the GitHub repositories by

retrieving the dataset from the GitHub's application programming interface

(API). However, we could expand our analysis datasets to other sources. There

are other applications that we could conduct a forensic investigation on their

dataset (e.g., Twitter, etc).

� As we discussed in Section 1.2.1, in this research work, we came up with a

solution to employ a container orchestration tool in order to scale and manage

the deployment of the GIPSY distributed network. There are various container

orchestration tools, such as Kubernetes, OpenShift, Docker Swarm, etc. Yet, in

this research work, we only utilize the Kubernetes tool.

� If a GIPSY container dies, we can handle the fault tolerance automatically.

However, we cannot control the failure of a GIPSY tier in the container. In our

architecture, Kubernetes will not be aware of the failure of the GIPSY tier inside

the container, and it only controls the health of GIPSY container (pod [6]) in

the cluster.

1.5 Thesis Contributions

In this section, we discuss the contributions that have been made through the research

work. We ful�ll what we have discussed in the Section 1.2.3 and Section 1.3 as well

as some associated support tasks, which we discuss in the list below:

� We complete the design and implementation of a JSON demand-driven encoder

to run a Forensic Lucid conversion pipeline (data extraction, converting to

Forensic Lucid format, compiling the Forensic Lucid �les).

� Using GIPSY's GEE runtime system, we provide an e�cient solution that

inherently persistently stores the resulting values of the computed demands.

This e�ectively results in a distributed system that persistently stores the results

computed by each node/tier. In this way, if a node/tier fails, it can be restarted

later with minimal loss of the information that it had processed earlier.
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� We provide a GIPSY container in order to automatically manage all the

dependencies when deploying a GIPSY network.

� We establish and con�gure one of the well-known container orchestration tools

(Kubernetes) in order to manage tiers and nodes for the GIPSY system.

� We design and implement the GIPSY tiers and nodes so that they can deal

with fault-tolerance in a more scalable way, i.e., that each time a fault happens,

the time taken for recovering from the fault is minimized, leading to scalable

fault tolerance. Along the same line, the components are much more easily

deployable so that adding a new one in the cluster would be only by changing

the con�guration �le in the Kubernetes cluster, thus reducing their deployment

time.

� We deploy the Network File System (NFS) server to share the �le system

between di�erent GIPSY containers by mounting the NFS volume to each

GIPSY container.

� We evaluated our cluster's fault-tolerant, and e�ciency after employing

container orchestration.

1.6 Summary

In this chapter, we began by discussing the domain of our research work in Section 1.1.

Thereafter we provided our motivation in Section 1.2, in which we discussed some

motivation scenarios for this work. Afterwards, we provided some functional and

non-functional requirements extracted from the motivation section in Section 1.2.3.

Then we described the thesis objectives in Section 1.3. Later, we speci�ed the scope

of our research work in Section 1.4. Finally, we provided the contributions of our

research work in Section 1.5.
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Chapter 2

Background

2.1 Forensic Lucid

Following what we described as Forensic Lucid in Section 1.2.1, in this section,

we discuss Forensic Lucid more in detail. We explain what the reader needs to

comprehend from the perspective of this research work about Forensic Lucid.

So far, the reader is aware of some essential aspects of Forensic Lucid, such

as Forensic Lucid is a Lucid-based program used to represent a data-�ow [4]

program. It is used for cases when forensic investigators attempt to reason encoded

evidential statements, as described in Section 1.2.1. For instance, in the scenario in

Section 1.2.2.1, forensic investigators attempt to gather a dataset from the GitHub

repository by fetching, converting to Forensic Lucid and compiling the Forensic Lucid

�les so that later could perform the investigation regarding any security vulnerabilities

in a project.

Before we go more deeply into the design of the Forensic Lucid, we would like to

provide two basic de�nitions that are used in this context. At �rst, we start by de�ning

the observation sequence, which is a list of observations arranged chronologically.

These observation sequences represent a continuous witnessed story [4].

os = (observation1, observation2, observation3, ...) (1)
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Second, an evidential statement is a set of observation sequences, which is not

necessarily arranged chronologically [4].

es = (os1, os2, os3, ...) (2)

Below we provide a required speci�cation template of a Forensic Lucid

program, which after identifying forensically interesting data, for instance, as we

discussed in Section 1.2.2.1, will be able semantically and syntactically check by the

GIPC that we described in Section 1.2.1 [4].

where

evidential statement system_es = { ... };

// T is a theory of what has transpired

observation sequence T = { ... };

end

Listing 2.1: Simple Forensic Lucid

An evidential statement es is a dictionary of the evidential observation sequences

and is the highest level dimension in Lucid parlance. The es is in the form of

<dimension: tag> pairs, where dimensions are identi�ed by their identi�ers, and

their tags are de�ned as nested values [4].

2.2 GIPSY

As we discussed in Section 1.2.1, GIPSY is a multi-language programming platform

designed to compile and execute all dialects of the Lucid family of programming

languages.

The core components of the GIPSY's design (GIPC, GEE and RIPE) are

responsible for supporting multiple compilers and, as a result, get a binary output,

which is a compiled Lucid program and can then in turn be executed by the GISPY

execution engine [4].

The GIPC is a compiler framework that enables syntax and semantic analysis,
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Figure 4: High-level Structure of GIPSY's GEER Flow Overview [4]

and translation of any Lucid variant. It is built on the idea of the Generic Intensional

Programming Language (GIPL), which serves as the fundamental run-time language

into which all other varieties of the Lucid language may be transformed and then

executed. The Generic Eduction Engine Resources (GEER) is a dictionary of run-

time resources compiled from a GIPL program that had previously been generated

from the original program using semantic translation rules de�ning how the original

Lucid program can be translated into the GIPL. Under the framework of GIPSY there

are a number of compilers, and the corresponding run-time environment is present

under the eduction execution engine (GEE) [4, 7].

GEE is the component where the Demand Migration System (DMS) and multitier

architecture as a whole are dependent on the demand-driven tagged token data�ow

distributed computation model [4, 34, 35]. Every tier in the architecture of this

distributed system can have any number of instances where demands are distributed

without knowledge of the processing or storage locations of the demands. Any

tier or node failure can happen without having a fatal e�ect on the system while

computation is taking place, nodes and tiers can be added or removed without any

noticeable lag, nodes and tiers can impact how each GIPSY program is performed

at runtime, meaning a speci�c node or tier may have di�erent programs requiring its

computational resources [4].
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The Demand Migration System (DMS) can be realized as an instance of the

Demand Migration Framework (DMF) [4, 35�38]. One such particular DMS that we

used for the purpose of this particular research uses Jini (Apache River) to transport

and store their results' demands, and a JavaSpaces repository serves as a temporary

data storage for the most commonly demanded computations and their outputs. The

DMF is an architecture that is based on the demand store and consists of transport

agents (TAs) that implement a speci�c protocol to store and deliver demands across

di�erent nodes and tiers. The evaluation process starts with a demand generator that

creates demands according to the problem speci�cation (generally as represented by

a Lucid program, e.g., Forensic Lucid), which are sent to the demand store. Form

there, any other generator or worker connected to this store can pick up these demands

and continue the processing further. Eventually, some of the demands will be calls to

procedures (i.e., procedural demands), which is a speci�c kind of demand that can be

processed by workers to perform processing on a higher granularity level by relying

on a procedural programming language for their execution, e.g., Java, C++, etc.

Once demands have been picked up and processed, i.e., their corresponding values

have been calculated, they are put back in the store with their value embedded in the

demand and are tagged as processed demands, at which point their original generator

will be able to fetch them and continue its processing, until all demands have been

�nally processed.

Figure 5 represents a use case diagram where nodes and tiers start in a GIPSY

distributing system.

In this diagram, General Manager Tier (GMT) allows the GIPSY nodes and

tiers to register and allocate them to the GIPSY network instances under its

management. In order to decide if additional tiers nodes need to be produced, the

GMT communicates with the allocated tiers and then, when necessary, GMT sends

GIPSY nodes system commands to generate new tier instances. Users may use any

GMT to register a node, which alerts all the other GMTs to its existence and makes

the node accessible to host new GIPSY tiers upon request from any GMT [4].
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Figure 5: GMT Use Case Diagram [4]

The GIPSY program execution is divided into three jobs and delegated to di�erent

tiers in a multitier architecture where each tier is an abstract, generalized object

representing a computing unit that interacts with other tiers utilizing demands to

work together to execute a program as a whole. Therefore, the GIPSY multi-tier

architecture is entirely demand-driven [3, 4, 31].

A GIPSY node is a physical or virtual computer registered via GMT instance and

is ready to host one or more GIPSY tiers and is being controlled by GMT remotely [4].

In accordance with the program declarations and de�nitions stored in one of

the GIPSY tiers, the Demand Generator Tier (DGT) creates demands and can be

transferred to other Demand Generator tiers or Demand Worker tier instances to be

processed further and for any Lucid program it can handle requests for, DGT hosts a

set of tiers. The Demand Generator tier can make system demands asking for more

tiers to be added to its GEER Pool thanks to a demand-driven method and allow

DST instances to process requests for more programs running on the GIPSY networks
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they are a part of [4].

The Demand Worker Tier (DWT) processes demands written in a procedural

language or functions. Same as DGT the Demand Worker tier can make system

demands through a demand-driven mechanism to add more GEERs to its GEER

pool, gradually increasing its processing knowledge capability [4].

The Demand Store Tier (DST) serves as a tier middleware to move demands

between tiers. It also o�ers persistent storage for demands and the values generated

by those demands, improving processing performance by preventing the need to

compute each demand's value each time it is regenerated after being processed. The

Demand Store tier is made to include a peer-to-peer architecture when necessary

and a way to join all of the Demand Store tier instances in a speci�c GIPSY

network instance in order to prevent experiencing an execution slowdown in large

computations. Therefore demands or the results of the demands will be stored on

any available DST instance [3, 4, 28, 31,39,40].

2.3 Container Orchestration

Before diving into the de�nition of Container Orchestration, we need to describe some

main terms related to Container Orchestration.

� Container: A container is a standardized software component that

encapsulates code and all of its dependencies to ensure that an application

will run in di�erent computer environments [41,42].

� Container image: A container image is a standalone software package that

contains all the components and instructions required to operate a program [41,

42].

One of the most well-known container platforms is Docker. Docker provides the

ability to package and run applications and ship them as a container image. Figure 6

illustrates the architecture of Docker, which is based on client-server architecture. In

this architecture, any requests from the user end go to the Docker daemon, which
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is responsible for the actions on the images, containers, volumes, etc . This daemon

listens for Docker API REST requests that are sent via a network interface, then

handles the action on Docker objects. The Docker client o�ers a command line

interface (CLI) via which you may request the Docker daemon to perform some

actions. For instance, in order to run a container on a Docker host, using Docker

commands, initially will pull the container image from the public Docker registry

(Docker Hub), which stores Docker images [5].

Figure 6: Docker Architecture [5]

Container Orchestration is the automatic process of provisioning, deployment,

networking, scaling, availability, and lifecycle management of containers [41, 43].

Following, we cover one of the well-known Container Orchestration systems and

discuss its architecture and bene�ts.

2.4 Kubernetes

We start by giving a brief background about Kubernetes. Kubernetes is an

open-source container-based distributed system orchestrator which helps to deploy

a highly available, reliable, and easily manageable distributed system automatically.
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Kubernetes APIs are being used to o�er many services via the network [6]. These

APIs are frequently given through a distributed system, with the many components

that implement the API running on separate machines connected by a network

and coordinating their operations through network communication. Because we

increasingly rely on these APIs for various areas, they must be extremely dependable.

Even if a section of the system crashes or ceases operating, their failure should

not lead to the general failure of the entire system, and their recovery process

should be as seamless and as lossless as possible. They must also ensure availability

during software rollouts. Along with the increasing number of service requests, they

must ensure scalability to expand service response and keep up with ever-increasing

demand without requiring a fundamental restructure of the distributed system that

implements the services [41].

There are various advantages to using containers and container APIs like

Kubernetes. Some of the fundamental reasons to take advantage of Kubernetes are

such as [41]:

� High availability � Kubernetes provides a self-healing technology for its

managed microservice-based applications. When a Kubernetes' host fails, it

can resume failed containers and replace or reschedule them [44] to eventually

resume the computation. Forensic computation potentially involves the the

computing of a very large amount of data extracted for a large number of

di�erent data sources. An integrated forensic computing system is thus prone

to experience failure in extracting data from any of these diverse sources, and

the failure of one source should not impact the processing of other sources.

Given that many such failure are likely to happen, it is primordial to have

an automated mechanism to somehow automatically resume processing from a

failed node execution. Hence high availability is a key factor for an integrated

forensic computing system.

� Scalability � Kubernetes provides scalability by separating components from

one another using speci�ed APIs and service load balancers. APIs and load
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balancers keep each component of the system separate. Load balancers o�er

a bu�er between operating instances of each service, whereas APIs provide a

bu�er between the implementer and the user. This design makes it easy to scale

and increase the size of the program without having to alter or recon�gure any

of the other layers. Additionally, when it comes to scaling the services, since

the containers are immutable and the con�gurations are declarative, scaling up

the services is only a matter of modifying the con�guration �le [6, 41]. Given

the potential extreme volume of data that may need to be processed by an

integrated forensic processing system, scalability is an essential characteristic

for its useful and viable implementation.

� Abstraction � Kubernetes provides abstraction features, which allow the

applications to be moved across any environment after deploying and managing

it. When developers build their applications, moving the applications across

various environments happens merely by moving the declarative con�guration

to adapt to the di�erent context [6, 41]. Given that an integrated forensic

computing system is by de�nition extracting data from sources that vary widely

in their context and con�guration, it is essential that its various computation

nodes be abstractly de�ned and executable in di�erent contexts.

� E�ciency � Kubernetes o�ers several valuable features for resource

management. In addition, one of the bene�ts of abstraction in Kubernetes is

that since there would be no need to think about the machines, applications may

coexist on the same machines without any issues; thus, several user applications

can be merged into fewer machines [45] [41].

Using Kubernetes you can automate many tasks related to the management

of the applications using Kubernetes since it comes with built-in commands that

will take care of these tasks. Kubernetes handles all the computation, networking,

and storage. Therefore, developers focus on the applications rather than the

underlying environment and only interact with Kubernetes API . Kubernetes also has

a mechanism that when a container fails, Kubernetes restarts the container and only
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makes the service available to users after con�rming that it is operating. Kubernetes

continually monitors the health of your services [6,41]. In the following, we begin by

illustrating the architecture of the Kubernetes.

2.4.1 Kubernetes Architecture

Before we illustrate the architecture of the Kubernetes, we begin by providing some

fundamental components.

� Pods are the smallest units in the Kubernetes cluster, which can be created

and managed by developers. It contains one or multiple containers with shared

storage and network resources. The pod packages all containers, storage assets,

and a temporary network identity as a single unit. A pod's IP address and port

space are shared by the containers in it [6].

� Deployment is another abstraction on the top of pods in Kubernetes, which is

used to create or modify instances of the pods. It can scale up and scale down

the number of replicas of pods [6].

� Services are an abstraction that de�nes a set of pods and a policy that provides

the IP address and DNS name to access the pods. By creating and deleting pods,

each gets its IP address, therefore, it would be challenging to communicate with

the pods via their IP address. To avoid this problem, Kubernetes allows us to

assign a label to the pods and select them according to their service labels. This

way, once a pod is deleted and recreated, it has the same label [6].

� Volume: In order to preserve the data produced by the container and for

scenarios like sharing �le systems among containers or backing up the data,

Docker has a volume object, which mounts these �le systems on the Docker

container, and they are preserved on the host machine. Containers virtualize

an operating system, allowing us to run multiple containers on a single machine

and a shared operating system [6].
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� Persistent Volumes (PV): PV is an API that abstracts the implementation of

physical storage for the pod's usage, whose lifecycle is independent of the pods.

They can last longer, even they can get accessible after a container restarts [6].

� A Persistent Volume Claim (PVC): It is a request from a user for PV

storage, which speci�es the level of resources, size and access modes for the

storage. PVCs use up PV resources [6].

� Network File System (NFS): It is a shared �lesystem volume which allows

to mount an NFS share into a pod. The data of this volume is kept intact, so

when a pod is destroyed, the data in the NFS will not be deleted. It also allows

data to be pre-loaded and shared between pods [6].

A Kubernetes cluster consists of a control plane (master) node and multiple worker

nodes. For high availability, Kubernetes as multiple worker nodes. The control plane

runs on a cluster machine and has all Kubernetes objects. The control plan manages

the object states and any modi�cation on the cluster. It decides on the cluster's big

picture [6, 41].

Figure 7: Kubernetes Architecture [6]
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2.4.1.1 Control Plane

The control plane consists of multiple essential components [6]:

� kube-apiserver: Responsible for exposing the Kubernetes API, which

supports REST operations and acts as a front-end for all components to

communicate with the clusters' shared state.

� etcd: Consists of a key-value store, which is used for keeping the cluster

con�guration. It is also used for storing the state of the cluster, and we can

monitor the modi�cations on the cluster.

� kube-scheduler: Responsible for assigning a created pod to a node, which is

designated based on some parameters such as resource provisions, etc.

� kube-controller-manager: Responsible for managing various controllers in

Kubernetes. These controllers are non-terminating control loops that monitor

the cluster's condition and request or make modi�cations in the cluster.

Examples of existing controllers: Node Controller, which is responsible for

detecting when nodes go down, Replica Controller, which is responsible for

monitoring the state of replica sets and if a pod dies, will reproduce another

one, etc.

2.4.1.2 Worker Node

As we mentioned above, each worker node runs Kubernetes workloads and hosts one

or multiple pods inside of it. Below are the essential components of each node [6]:

� kubelet: It is responsible for the running pods in the Kubernetes nodes and

monitors the health of containers.

� kube-proxy: It is a network proxy that runs on each node and is responsible

for maintaining network rules on each node, enabling communication across the

network from network sessions both inside and outside of your cluster to your

pods.
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� Container runtime: It is the software component that is used for running

containers. It is responsible for pulling down container images, managing the

lifecycle of containers, and isolating its resources for containers.

2.4.1.3 Kubernetes Objects

Kubernetes objects objects are used to represent the state of the Kubernetes cluster.

These objects inform us what containers are running on which nodes, the resources

available for the containers, IP endpoints for a container group, the number of replicas

of a container, policies for the container's behavior, etc. These objects are �record of

intent�, by creating the object, Kubernetes attempts to ensure that the cluster is in

the desired state by comparing it with the current state of the Kubernetes cluster.

Creating, modifying or deleting the Kubernetes objects are achievable via Kubernetes

API using the Kubernetes command-line tool (kubectl). Kubernetes object consists

of two essential object �elds, object spec and object status. Object spec is the desired

state, which describes the attributes of the object and object status is the current

state of the object, representing the updated Kubernetes system. In order to create a

Kubernetes object, you need to describe the system's desired state, which is possible

by providing the object state. Mostly the object information is provided to kubectl

in the .yaml �le, where kubectl converts the .yaml �le to a JSON �le to send as an

API request to Kubernetes API [6].

Below is an example .yaml �le, which describes required �elds and objects that

need to be speci�ed when we create a deployment. The required �elds consist of [6]:

� apiVersion: It is the Kubernetes API version that you are utilizing to construct

this object.

� kind: It indicates the type of object you wish to create ( pod, deployment,

service, etc.).

� metadata: It is the data that helps us to determine the object (name, etc.).

� spec: It describes the desired state of the object. Depending on the object
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type, the spec �le may also vary.

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

spec:

selector:

matchLabels:

app: nginx

replicas: 2 # tells deployment to run 2 pods matching the template

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.14.2

ports:

- containerPort: 80

Listing 2.2: Simple deployment

In our research, we take advantage of all mentioned features in order to have a

scalable fault-tolerant and easily manageable system as we mentioned in our scenario

in Section 1.2.2.2.

2.5 Summary

In this chapter, we began by providing a background related to Forensic Lucid, in

Section 2.1. Thereafter, we discussed the GIPSY distributed system in Section 2.2

and described the components of the GIPSY distributed system in more detail.

Afterwards, we brie�y discussed containers, container images, a software platform

(Docker) that we use in order to manage the containers, and Container Orchestration

in Section 2.3. Finally, we described Kubernetes, discussed its architecture and

presented the features we employ in our research in Section 2.4.
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Chapter 3

Methodology

3.1 Solution Overview

In this section, we �rst discuss our solution to achieve the requirements that we

mentioned in the Section 1.2.3 regarding the GitHub demand-driven JSON to Forensic

Lucid Encoder Formalization in GIPSY thereafter, we explain the reason for choosing

our solution related to the Kubernetes cluster for the GIPSY system and di�erent

methods that we used for designing and implementing our proposed solution.

3.1.1 GitHub JSON to Forensic Lucid Encoder

Figure 8: Forensic computing pipeline

The JSON to Forensic Lucid encoder is a Java program created to transform a

JSON string into a Forensic Lucid program which is then provided to the GIPSY

system for compilation.

28



In order to implement di�erent JSON parsers for various sources such as Twitter,

GitHub, etc., a IJsonParser interface has been developed so that we can, according

to the di�erent applications, implement a corresponding JSON parser [7, 33]. For

instance, in order to create a JSON parser, as we discussed in the Section 1.2.2.1, we

can implement IJsonParser corresponding to the GitHub JSON structure.

In Figure 8, we illustrate the pipeline for Forensic Computing, which consists

of multiple primary steps such as fetching data in JSON format from the GitHub

API repository, converting all JSON �les to Forensic Lucid program, compile the

Forensic Lucid �les using the hypothesis formulation that is provided by the forensic

investigator and �nally execute them and returning the results.

Figure 9: Data extraction form GitHub repository

Figure 9 illustrates the fetching process from the GitHub repository. At �rst, the

Java client sends a REST API request by providing a token to the GitHub server

in order to authenticate, and after successful authentication, the Java client sends

another REST API request to the GitHub server for the speci�c project from the

GitHub repository. The GitHub server responds with a JSON response. Once the

Java client receives the JSON response from GitHub, the Java client will pass the

response to extract the relevant details and keep all the processed data in storage.
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By creating observation sequences using the semantic connections between various

evidential statement objects on a GitHub repository, which describe reported security

vulnerabilities in a project code, a forensic investigator can encode evidential

statements in the form of a Forensic Lucid program, see Requirement 1.

In Figure 10 one can observe the use case diagram for the JSON to Forensic Lucid

Encoder.

Figure 10: JSON to FORENSIC LUCID Encoder Use Case Diagram [7]

3.1.2 Integrating Kubernetes and GIPSY distributing system

With what we described in Section 2.2 the GIPSY architecture, we would like to take

advantage of Kubernetes to have a distributed system that can be automatic scalable
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fault tolerant and easily manageable.

Figure 11: Kubernetes Integration with GIPSY

As we illustrate in the Figure 11, we have one Control Plane and multiple Worker

nodes in our architecture. Control Plane consists of essential components as we

described in the Section 2.4. In order to work with the cluster, Developer will transmit

its request to the Kubernetes API Server, which is running on the Control Plane node
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and will take care of the requests by communicating with Kubelet. Each Worker node

contains Container Runtime, Kubelet, Kube-proxy and multiple pods, which we will

describe in more detail. In this paperwork, we utilized Docker as a Container Runtime

platform.

In order to make this integration work, we containerized the GIPSY program with

Docker so a GIPSY tier can operate inside each pod. By deploying each tier inside

a pod, we can quickly bringing the cluster up and down by adding a new pod or

removing a pod from the Kubernetes cluster. This modi�cation would not a�ect

other GIPSY tier pods' performance.

Figure 12: GIPSY Tier Pods

In Figure 12 one can observe that each pod consists of a Network Namespace,
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GIPSY tier Container (GMT, DGT, DWT, DST) and additional supporting

containers if needed. In our architecture, as an additional supporting container,

we have a Jini Container to transport and store their results' demands for the DGT

pod. In addition, we added an NFS Server to our cluster to help us with sharing

the con�guration �les in the initializing state of the cluster and in future to have a

backup from DST, which we will discuss more in detail in the future work section.

As depicted in Figure 13, for each GIPSY pod, a PersistentVolumeClaim (PVC)

with a speci�c amount of storage and with certain access modes is created, and the

PersistentVolume is attached to the NFS server. Kube-controller-manager (control

loops that watch the state of the cluster) look for new PVCs, �nd a matching PV (if

possible), and bind them together. Once the claim is bound, each pod has access to

the shared storage resources.

Figure 13: NFS
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3.2 Evaluation Methodology

In this section, we continue by providing the reader with methods we follow in this

research work to evaluate that our solution truly solves the problems we mentioned

in Section 1.2.2 and that our solution meets the requirements we mentioned in the

Section 1.2.3.

We proposed the following experiments to evaluate our solution in practice:

� In order to evaluate our JSON demand-driven encoder and verify

Requirement 1, we collect various publicly announced computer security �aws

that were committed in the GitHub repositories and test our program using

the list of the commits URLs that we gather for di�erent repositories. We use

the GIPSY distributed computing system to spread the pipeline's execution.

Therefore, we allocate a DGT, a DST and multiple DWTs to run the

experiments.

� Then, in order to evaluate the integration of the GIPSY and Kubernetes, we

�rst set up the NFS server on the control plane node and the worker nodes and

deploy persistent volume (PV) and persistent volume claim (PVC) to mount to

the shared storage directory so that each GIPSY pod has access to the shared

�les and directories, see Requirement 6.

� Subsequently, on the control plane node we create a .yaml �le corresponding to

each pod for GIPSY nodes and the number of replicas for the workers. Then

by running the Kubernetes command line and applying each con�guration �le,

we have a GMT pod and multiple regular pods automatically registered. Later,

the GIPSY tiers will be assigned to each regular pod, see Requirement 4.

� Once the GIPSY node is registered in the cluster (at �rst, we run one pod per

GIPSY node), again on the control plane node, we begin to allocate the GIPSY

tiers, and we test the JSON demand-driven encoder on the Kubernetes cluster

by providing the same list of the commits URLs as we collected before. We run

various experiments for JSON demand-driven encoder in the Kubernetes cluster
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by bringing up and down the number of GIPSY pods to verify the performance

of the Kubernetes cluster depending on the number of GIPSY pods. Then we

attempt to register various numbers of GIPSY nodes in one pod and run the

same experiments for the JSON demand-driven encoder.

� Finally, to verify the fault tolerance using Kubernetes integration

(Requirement 5), we attempt to switch o� one of the worker nodes and prove

if Kubernetes re-allocate the running GIPSY pods to the next available worker

node and verify if GIPSY nodes inside the pods get registered automatically.

3.3 Summary

In this chapter, we o�ered the reader an overview of our approaches to accomplish

our objectives and meet our varied requirements. We will go into more detail about

how to create and develop our solution in the following chapter, as well as how to put

it into practice.
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Chapter 4

System Design and Implementation

In this chapter, we discuss our solution's design and implementation in more detail.

Chapter 3 described the theories and methods that we employed in our solution to

have a GitHub demand-driven JSON to Forensic Lucid Encoder Formalization in

GIPSY and integrating Kubernetes with GIPSY in order to distribute the execution.

In the following, we will discuss the classes and architecture of our JSON to Forensic

Lucid Encoder implementation. Afterward, we will represent how we implement and

establish the Kubernetes integration with the GIPSY distributing system alongside

UML class and sequence diagrams..

4.1 GitHub JSON to Forensic Lucid Encoder

Before diving into the encoder, we need to get familiar with the JSON (JavaScript

Object Notation). JSON is a language-independent and data interchange text format

which is used for storing and transmitting data and makes it easy for the server and

applications to write and read data. Over the last years, many di�erent web service

APIs have utilized JSON as a data format [7]. Below we present a sample of a speci�c

JSON data �le that is passed to the encoder.

{

"sha": "156c1bd163fbc735d07a98970a504408d5a6a9e3",

"node_id": "MDY6Q29tbWl0Mzg1NjkyNzAwOjE1NmMxYmQxNjNmYmM3MzVkMDdhOTg5NzBhNTA0NDA4ZDVhNmE5ZTM=",

"commit": {
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"author": {...},

"committer": {...},

"message": "...",

"tree": {...},

"url": ...

"comment_count": 0,

"verification": {...}

},

"url": "...",

"html_url": "...",

"comments_url": ".../comments",

"author": {... },

"committer": {...}

}

Listing 4.1: JSON data format sample

GitHub APIs allow end-users to fetch or extract data from any repository on

GitHub easily. Using an authorized access token, users of GitHub APIs may

communicate with GitHub and retrieve the needed data. In order to access

repositories that are not accessible to the general public, users can additionally

authenticate with regard to the username using the GitHub REST API [46]. In

this research work, we put more of an emphasis on the Commits API, which gives

you access to commit comments and statuses as well as a list, view, and comparison

of all the commits in a repository.

As depicted in Figure 14, the conversion is a linear data�ow graph that consists of

three steps, who each are associated with their own kind of demand to be processed:

(1) the extraction of the data, which is provided by the forensic investigator in the

format of a list of commit URLs for one or di�erent repositories, from the GitHub

repository (fetch demands) in JSON format; (2) the transformation of the extracted

JSON data into Forensic Lucid code (convert demands); and (3) the compilation

of the Forensic Lucid code (compile demands). The conversion pipeline involves at

least one of the three GIPSY tiers (DGT, DWT and DST) that will generate and/or

process these demands.

In our architecture, each demand can be in a PENDING or COMPLETED

state, in which PENDING indicates that the demand requires to be processed and
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COMPLETED indicate that the demand's processing is complete. The DGT is

responsible for the generation of the demands in the order that is represented in

the data�ow graph of the transformation pipeline. Once the demands get into the

DST, they are put in the pending state. The DWT (which there can be several

execution instances of) is responsible for the execution of these demands, and to put

back their corresponding results into the demand itself, at which point the demand

is put in the processed state.

Figure 14: Conversion Pipeline

The pipeline starts by the demand generator (DGT) to generate fetch demands

for the processing of speci�c GitHub queries according to kind of URLs that forensic

investigator provides, which in this case are a list of commit URLs. Once the DGT

has created the fetch demands, a DWT begins to perform the fetching, and DGT

waits for these demands to be processed. After a DWT �nishes the fetching process,

it proceeds to generate a convert demand to generate the Forensic Lucid code

that corresponds to the JSON GitHub fetch results. Later, a DWT by receiving the

converting demands, proceeds to convert the the JSON �les to Forensic Lucid code

and generates a corresponding compile demand to generate an executable version of

this Forensic Lucid code, see Requirement 1.

Figure 15 illustrates the sequence diagram for the JSON to Forensic Lucid

Encoder.
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Figure 15: Sequence Diagram for GitHub JSON to Forensic Lucid Encoder

In this diagram, the JSONCONVERTERDGT is the demand generator (DGT),

JSONCONVERTERDWT is our worker (DWT), and DST, as we discussed in the

Section 1.2.1, is Demand Store tier, where the demand generator and worker store the

demands and the results. The user provides a list of URLs of the GitHub repositories

that are forensically-interesting. The demand generator will watch for user requests

for the JSON parser and builds a fetch demand index with a status of the demand

in the DST and pass it to the worker. DGT uses the URLs as a demand signature
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in order to avoid re-generating the same demand, so next time for the same demand

from the user, the DGT notices the existence of the same demand signature and

instead of creating new demand, since it has the results already in the DST, it merely

returns the results, see Requirement 3.

Once the demand is stored in the DST, the worker will retrieve the serialized object

from the DST, meaning the worker should select the appropriate JSON parser, which

in this case is Git, and its job will be to parse the JSON �le, fetching the data from

GitHub repository, creating a Java object with the JSON structure, send the object

back as a CTX �le, which includes the list of JSON �le as well as the Forensic

Lucid observation structure, and include a demand to let the next available workers

know that the serialized object has been computed.

These data are fetched from the �commit� endpoint on the GitHub repository. As

you can observe, it consists of an evidential statement es, and es has an observation

sequence (commit), which consists of multiple observations such as SHA and commit

object, and commit object consists of data that are forensically interesting for us.

OResult

where

evidential statement es = {o_sequence};

observation sequence o_sequence = {o_commit_1,o_commit_2,...};

observation o_commit_1 = {commit, author, committer, parents, stats , files,...};

commit = {[author : {[name : "..."], [email : "..."], [date : "..."]}], ...};

author = {[login : "..."], [id : ...], [node_id : "..."], ...};

committer = {[login : "..."], [id : 17151892], [node_id : "..."], ...};

parents = {[[sha : "..."], [url : "..."], [html_url : "..."]]};

stats = {null};

files = {null};

observation o_commit_2 = {commit, author, committer, parents, stats , files,...};

commit = {[author : {[name : "..."], [email : "..."], [date : "..."]}], ...};

author = {[login : "..."], [id : ...], [node_id : "..."], ...};

committer = {[login : "..."], [id : 17151892], [node_id : "..."], ...};

parents = {[[sha : "..."], [url : "..."], [html_url : "..."]]};

stats = {null};

files = {null};

...
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end

Listing 4.2: Simple Forensic Lucid from GitHub repository

Once the worker �nishes the job, it will send back the results and attach a new

demand type of conversion demand to convert the JSON �les to Forensic Lucid. DWT

will create a Java object with the CTX �le containing the list of JSON �les and store

the demand in the DST.

Then the next available worker will perform the same procedure as it did in

fetching the JSON �les, it will convert all the JSON �les to Forensic Lucid format

and create a list of IPL �les corresponding to the JSON �les and store back the list

of the IPL �les as a result and attach the new demand type of compile demand to

compile all the Forensic Lucid IPL �les. DWT will create a Java object with the

CTX �le containing the list of IPL �les and store the demand in the DST.

Once the DWT grabs the compilation demand from the DST, it will begin to

compile the Forensic Lucid �les and return the output of the compilation as results

to the DST including the list of JSON �les, IPL �les and GIPSY �les. Eventually,

DGT will pass the �nal results to the user, see Requirement 2.

The system sequence diagram for JSON to Forensic Lucid encoder is illustrated

in Figure 16.

4.1.1 Context File Item

As we discussed before, the CTXFileItem object contains the Forensic Lucid

observation structure and JSON �le contents, which is used to store in the DST.

The class diagram in Figure 17 illustrates the content of this object.

� stringParserType - It represents the type of JSON parser.

� time - It represents the creation time of the CTXFileItem object.

� url - It represents the GitHub repository URL we seek to fetch the data in

order to perform the conversion.
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Figure 16: System Sequence Diagram for JSON-to-FORENSIC LUCID Encoder [7]

� urlSince - It eliminates all commits made before the speci�ed date.

� urlUntil - In contrast to �urlSince� this excludes any commits made after the

speci�ed date.

� jsonDir - It represents the directory to the list of JSON �les after the fetching

demand is processed.

� IplDir - It represents the directory to the list of IPL �les that is stored after

the conversion demand is processed.

� jsonFiles - It represents the list of JSON �les in the ArrayList of String

type that is stored after the fetching demand is processed.

� iplFiles - It represents the list of IPL �les in the ArrayList of String type

that is stored after the Conversion demand is processed.
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� gipsyFiles - It represents the list of GIPSY �les in the ArrayList of String

type that is stored after the Compile demand is processed.

Figure 17: CTX Class Diagram

4.1.2 GIPSY Demands

The three primary demand type classes, as depicted in Figure ??, are

JsonDemand (fetching step), JsonConverterDemand (converting step) and
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FlucidCompileDemand (compiling step).

� time - It represents the time of generated demand.

� jsonParserType - The JsonParserType class contains an enumeration of all

the available JSON parsers (Facebook, Twitter, etc.), which in this case is git.

� ctxFile - As depicted in Figure 17, it contains the context �le item value.

Figure 18: GIPSY Converter Framework Demand Type
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4.1.3 JSON to Forensic Lucid Encoder

As discussed in Section 4.1, JSONCONVERTERDGT is our demand generator Java

program that is responsible for generating and storing the fetching demand into DST,

and JSONCONVERTERDWT is the worker Java program that is responsible for processing

the demands.

Below, we describe the functionality of various methods that are implemented for

JSONCONVERTERDGT.

� init() - This method performs the initialization before the demand generator

starts, such as specifying the environment's directory where we wish to store

the resource, etc. Create a TA instance

� startTier() - This method is responsible for starting the tier instance,

creating a TA instance and middle-ware DemandDispatcher instance.

� stopTier() - As the name suggests, this method is responsible for terminating

the tier instances.

� execute() - After de�ning the type of the parser, which in this case is git, this

method calls a corresponding function to start the demand generator.

� generateJsonConversionDemand() - This method is responsible for starting

the demand generator. It reads the list of URLs which the user provides, creates

a fetch demand, including a CTX object �le, stores the demand to the DST and

waits for the results when the demand status is labelled as completed.

Below, we represent the functionality of various methods implemented for

JSONCONVERTERDWT.

� init() - This method performs the initialization before the workers start, such

as specifying the environment's directory.

� startTier() - Like the demand generator, this method is responsible for

starting the tier instance and creating a TA instance.
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� stopTier() - This method is responsible for terminating the tier instances.

� execute() - This method is responsible for de�ning the type of the parser,

providing con�guration �les and calling the function for starting the demand

worker.

� process() - This method starts the demand worker and waits for a

demand. Once it receives a demand, it veri�es the demand type

(JsonDemand, JsonConvertDemand, FlucidCompileDemand) and perform

the conversion pipeline by passing the type of demand and the CTX

�le to the parseJsonFile() function. In this pipeline, in the case

of receiving the demand type of JsonDemand, the demand worker, after

receiving the results from parseJsonFile(), will create a demand type of

JsonConvertDemand, label the demand as PENDING, attach the results of

the fetching and store it back in the DST. Accordingly, after receiving the

demand type of JsonConvertDemand, it will generate a demand type of

FlucidCompileDemand, attach the results of the converting and store it back

in the DST. Finally, once the demand worker receives the demand type of

FlucidCompileDemand, it will label the demand as COMPLETED and store the

�nal results back to the DST.

� parseJsonFile() - As explained above, once this function obtains the CTX

�le and the type of demand, it will begin to perform the conversion pipeline by

passing the arguments to the ParserGitAPI.

Figure 20 illustrates the class diagram for the ParserGitAPI. This class is

designed to parse the demands that the demand worker sends including the CTX

�le and the type of the demand as an argument.

� parse() -This method is responsible for the received from the demand worker.

It calls the proper method corresponding to the type of demand and returns

the send back to the demand worker.
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Figure 19: JsonConverterDWT and JsonConverterDGT Class Diagram

� fetch() - As the name suggests, this method is responsible for fetching the

data from GitHub API. It utilizes the check_git_limit() method, which is

implemented in order to check the rate limit status for the authenticated user

by providing a token.
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� convert_json_ipl() - As the name suggests, this method is responsible for

getting the list of JSON �les using the directory that the demand worker delivers

and converting it to the Forensic Lucid format.

Figure 20: ParserGitAPI Class Diagram

4.1.4 GitHub Generic JSON

As depicted in Listing 4.1, we described the format of the JSON, which is received

after we send a request to fetch the list of commits from GitHub API for a particular

repository. Using GSON, which is an open source Java library provided by Google,

the JSON �le and its structure will be taken and mapped to respective java objects.

In this research work implementation, the JSON �le has a Java object representation

called Commit, which contains multiple entries; thus, ArrayList of Commit is

created. The method fromJson(), a GSON instance, is called, and it parses JSON

string into java Commit object, which is illustrated in Figure 21.

4.2 Integrating Kubernetes and GIPSY Distributed

Computing System

Following what we stated in Chapter 3, in this section, we deliver each component

of our cluster's architecture and characterize con�guration �les in detail in order to
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Figure 21: GitGenericJson Class Diagram
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integrate Kubernetes with the GIPSY system to distribute the execution of JSON to

the Forensic Lucid Encoder.

4.2.1 Containerization GIPSY

As we discussed in the Chapter 3, each pod in the GIPSY Kubernetes cluster consists

of a GIPSY tier (GMT, DST, DGT or DWT). Therefore, we containerized each of

these GIPSY tiers using the Docker platform. In order to build a Docker image, we

need to create a Docker�le, a text document containing all the commands that a user

usually calls on the command line to create an image. After creating the Docker�le,

we can build the image and push our container to the Docker hub repository.

This Doker�le in Listing 4.3 consists of some essential commands such as FROM,

RUN, WORKDIR and ENTRYPOINT:

� The FROM keyword inform the Docker to use a base image, which in this

example is the Ubuntu image repository.

� The RUN keyword tells the Docker to execute some instructions when building

the image.

� The WORKDIR keyword speci�es the working directory of the Docker

container.

� The ENTRYPOINT keyword allows specifying a command along with the

parameters when a container is started from a Docker image.

FROM ubuntu:18.04

SHELL ["/bin/bash", "-c"]

# Add dependencies

RUN apt-get update && \

apt-get install --yes build-essential && \

apt-get install --yes git && \

apt-get install --yes openjdk-8-jdk && \

apt-get install --yes xterm && \

apt-get install --yes iputils-ping && \
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apt-get install --yes vim && \

apt-get install --yes net-tools && \

apt-get install --yes xauth && \

apt-get install --yes sudo && \

apt-get clean

# Setup user + sudo

RUN useradd -m gipsy && (echo gipsy:gipsy | chpasswd)

RUN adduser gipsy sudo

RUN echo ’%sudo ALL=(ALL) NOPASSWD:ALL’ >> /etc/sudoers

USER gipsy

# Setup GIPSY repository

WORKDIR /home/gipsy

# build.sh prepares this on the host from the repo

COPY gipsy-src-json-encoder .

# Inside the container you’d need your own ssh keys

# to interact with git or use HTTPS

ENTRYPOINT ["/bin/bash"]

Listing 4.3: GIPSY Docker�le

4.2.2 Con�guration and Setting up Kubernetes

In this section, we continue to discuss the con�guration and how we set up Kubernetes

in order to integrate it with GIPSY, as demonstrated in Figure 11. In order to

install the Kubernetes corresponding to Figure 11, we have di�erent machines (virtual

machine or physical machine), one of which we will be using as a Control Plane node

and the others as a Worker nodes.

In order to build Kubernetes clusters on these machines, we employ Kubeadm

Tool. kubeadm ensures that essential e�ort has been taken to have a Kubernetes

cluster up and running [6]. Kubeadm will automatically handle the installation

and con�guration of Kubernetes components such as the API server and Controller

Manager.

Another required tool is kubelet, which is a node agent that controls node-level
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processes that is installed on each node. It handles pod speci�cations de�ned in

YAML or JSON format, takes the pod speci�cations, and determines whether the

pods are operating healthily. In addition, in order to communicate via API Server

with the Kubernetes cluster, Kubernetes provides us with the kubectl tool, which

is a command line tool (CLI).

Below are the steps that need to be taken in order to achieve our goal [6].

� Install and activate Docker on Control Plane and Worker nodes.

$ sudo apt update

$ sudo apt install docker.io

$ sudo systemctl start docker

$ sudo systemctl enable docker

� Install Kubernetes on all of the nodes.

� Updating the apt package index and installing packages needed to use the

Kubernetes apt repository.

$ sudo apt-get update

$ sudo apt install apt-transport-https curl

� Download the Google Cloud public signing key and add the Kubernetes

apt repository.

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add

$ sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"

� Eventually, update apt package index, install kubelet, kubeadm, kubectl

and kubernetes-cni.

$ sudo apt update

$ sudo apt install kubeadm kubelet kubectl kubernetes-cni

� If memory swapping is enabled on the host machine since the Kubernetes

scheduler is responsible for selecting the most available node, it can a�ect

Kubernetes' performance. Therefore, we need to disable Swap Memory.
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$ sudo swapoff -a

$ sudo nano /etc/fstab #Inside this file, comment out the /swapfile line.

� In order to run Kubeadm, we executed the following commands on the Control

Plane node:

kubernetes-master:~$ sudo kubeadm init

kubernetes-master:~$ mkdir -p $HOME/.kube

kubernetes-master:~$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

kubernetes-master:~$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

� Deploy a pod network on the Control Plane node:

$ kubectl apply -f https://.../kube-flannel.yml

$ kubectl apply -f https://.../kube-flannel-rbac.yml

$ kubectl get pods --all-namespaces

� Eventually, in order to join each Worker node to the cluster, we had to run the

following command:

$ sudo kubeadm join xxx.xxx.xxx.xxx:xxxx \

--token ... --discovery-token-ca-cert-hash \

sha256:...

4.2.3 Deploying GIPSY System in Kubernetes

In Section 4.2.2, we discussed some essential con�gurations that needed to be done in

order to run a Kubernetes Cluster. We continue with describing the con�gurations we

applied to deploy the GUPSY pods on Kubernetes Cluster, as discussed in Figure 11.

� Deploying NFS

There are some con�guration �les which are essential in order to start each tier

(GMT, DST, DGT, DWT). For instance, RegDSTTA.config is a con�guration

�le consisting of URI, hostname, and some unique id which is generated after
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starting the GMT. In order to share these types of data across the network, we

should use the Network File System (NFS).

After installing the NFS on the machines, we need to provide the PV and PVC

to mount the NFS volume to each pod, see Requirement 6.

� By creating the following �le, we de�ne a PV. This yaml contains the

PV's name, which is used in pod de�nitions, storage space allocated to

this volume, accessModes labels that are used to pair a PV with a PVC,

the volume reclaim policy Retain that is used to ensure the volume will

be preserved after the pod's termination, de�ning the volume type being

used (NFS) and indicate the NFS mount path and the IP address of NFS

server.

apiVersion: v1

kind: PersistentVolume

metadata:

name: nfs-www

spec:

storageClassName: ""

capacity:

storage: 100Mi

accessModes:

- ReadWriteMany

persistentVolumeReclaimPolicy: Retain

mountOptions:

- hard

- nfsvers=4.1

nfs:

path: /srv/nfs/kubernetes

server: 132.205.40.48

readOnly: false

� After creating Persistent Volume, we need to create the Persistent Volume

Claim (PVC) to bind between a pod and Persistent Volume.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: nfs-www-pvc
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spec:

storageClassName: ""

volumeName: nfs-www

accessModes:

- ReadWriteMany

volumeMode: Filesystem

resources:

requests:

storage: 100Mi

� Deploying GIPSY

As mentioned in the Figure 12, the GMT pod consists of a GMT container and

a Jini container in order to transport and store the results of demands for the

DGT pod.

This yaml �le contains a service con�guration that provides the IP address and

DNS name to access the pods and the pod con�guration.

Inside the pod con�guration, we deploy one container to run the GMT and

another to run the Jini. In the GMT con�guration, we specify the name

of the container, the name of the image that we are going to pull, de�ne

volumeMounts which contains the NFS volume name and the directory of the

required con�guration �les and directories that we wish to share and store

and express command in order to run when creating the pods. Specifying a

command will override the default command provided by the container image.

The command ./start.sh is used to run the Jini. In the GMT pod, we

run the ./startJSONCONVERTERGMTNode.sh using gmtd, a GMT daemon, to

avoid the GMT Console. Once the GMT pod is created, we will be able to

start and allocate DST, DWT and DGT to each regular node (DGT, DST and

DWT).

apiVersion: v1

kind: Service

metadata:

name: gmt-svc

spec: ...
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---

apiVersion: v1

kind: Pod

metadata:

name: gipsy-gmt

labels:

name: gipsy-gmt

spec:

hostname: gmt

subdomain: gmt-svc

containers:

- image: s4lab/gipsy-json-u18:02-18.04

name: gipsy-json-gmt

volumeMounts:

- name: nfs-vol

mountPath: /home/gipsy/gipsy-src-json-encoder/configs/gmtc.sh

subPath: gmtc.sh

- name: nfs-vol

mountPath: /home/gipsy/gipsy-src-json-encoder/bin/multitier/RegDSTTA.config

subPath: RegDSTTA.config

command: ["/bin/bash","-c",

"cd /home/gipsy/gipsy-src-json-encoder/configs

&& ./gmtc.sh -c

&& cd /home/gipsy/gipsy-src-json-encoder/bin/multitier

&& ./startJSONCONVERTERGMTNode.sh -n gmtd"]

- name: gipsy-jini

image: s4lab/gipsy-json-u18:02-18.04

command: ["/bin/bash","-c","cd gipsy-src-json-encoder/bin/jini && ./start.sh"]

volumes:

- name: nfs-vol

persistentVolumeClaim:

claimName: nfs-www-pvc

� When the GMT pod is up and running, we will be able to run the GIPSY

tiers (DST, DWT, DGT) pods. Since we can have numerous Workers and

DSTs, we use deployment in the following yaml �le. By de�ning deployment,

we will be able to scale the GIPSY cluster up and down as demanded. In

this con�guration �le, replicas de�ne the number of pods that we wish to

deploy, we specify the container image, mount the NFS volume to the pod in

order to use the generated con�guration �le by GMT and de�ne the command

to run when creating the pods. ./starJSONCONVERTERRegularNode.sh -r
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will register a GIPSY regular node in the cluster.

---

apiVersion: apps/v1

kind: Deployment

metadata:

name: gipsy-regularNode

spec:

replicas: 1

selector:

matchLabels:

app: gipsy-regularNode

template:

metadata:

labels:

app: gipsy-regularNode

spec:

hostname: regularNode

subdomain: gmt-svc

containers:

- name: gipsy-json-regularNode

image: s4lab/gipsy-json-u18:02-18.04

volumeMounts:

- name: nfs-vol

mountPath: /home/gipsy/gipsy-src-json-encoder/configs/gmtc.sh

subPath: gmtc.sh

- name: nfs-vol

mountPath: /home/gipsy/bin/multitier/res/iplFiles

subPath: iplFiles

- name: nfs-vol

mountPath: /home/gipsy/bin/multitier/res/jsonFiles

subPath: jsonFiles

- name: nfs-vol

mountPath: /home/gipsy/gipsy-src-json-encoder/bin/multitier/RegDSTTA.config

subPath: RegDSTTA.config

command: ["/bin/bash","-c","cd gipsy-src-json-encoder/bin/multitier

&& ./starJSONCONVERTERRegularNode.sh -r"]

stdin: true

tty: true

volumes:

- name: nfs-vol

persistentVolumeClaim:

claimName: nfs-www-pvc

By entering the kubeclt apply -f <name_of_yaml_file> for both .yaml
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con�guration �les that we de�ned above for the GMT node and the regular node,

the pods start running in the cluster. The administrator only needs to enter the

kubectl command on the Control Plane node, and no other actions are required to

register the GIPSY nodes, see Requirement 4.

Once the nodes are registered in the cluster, we can begin by allocating each

pod to a particular GIPSY tier (DST, DWT, DGT). kubectl exec enables us to

establish connections to the containers in the cluster, execute /bin/sh inside the

gipsy-gmt pod's container, and pass the input and output streams from the terminal

to the container's process. Following is the command in order to connect to the GMT

pod.

kubectl exec -it gipsy-gmt /bin/sh

Once the connection has been established with the GMT container, we will be

able to allocate each of the regular nodes to a GIPSY tier (DST, DWT or DGT) by

specifying the index of the node and Index of the DST and the number of instances

that we wish to run. Following are the commands in order to allocate and start the

GIPSY tiers.

./gmtc.sh allocate NodeIndex DST JiniDST.config [number of instances to start]

./gmtc.sh allocate NodeIndex DWT JsonConverterDWT.config DSTIndexAtGMT [number of instances to start]

./gmtc.sh allocate NodeIndex DGT JsonConverterDGT.config DSTIndexAtGMT [number of instances to start]

As we mentioned above, we have deployment con�gurations for all pods and shared

the RegDSTTA.config �le for registering any new GIPSY node. Kube-controller-

manager, which is responsible for monitoring the status of replica sets, veri�es the

number of pods available. If a node dies, Kubernetes will create another GIPSY pod

on the next available node. Since all the GIPSY node con�gurations are available for

registration, each new GIPSY node running in a pod will automatically get registered,

see Requirement 5.
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4.3 Summary

This chapter focused on the design and implementation, including classes, their

de�nitions, and corresponding UML diagrams related to our research work. We �rst

discussed the implementation part of our GitHub JSON to Forensic Lucid Encoder,

then described the implementation part of the Kubernetes and GIPSY integration

in more detail. In the next chapter we continue by evaluating and analyzing the

requirements described on the Chapter 1.
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Chapter 5

Evaluation

In Chapter 3 and Chapter 4, we explained how we managed to implement a

GIPSY demand-driven pipeline that allows us to pull evidence-based data from the

GitHub repositories and translate it such that the Forensic Lucid can execute it

by designing and implementing a JSON demand-driven encoder and distribute its

computation by employing GIPSY distributed computing system. In addition, we

provide our solution regarding integrating the GIPSY with Kubernetes in order to

achieve the requirements as we mentioned in Section 1.2.3.

In this chapter, we follow-up from our evaluation methodology described in

Section 3.2 and describe in more detail the evaluation methodology that we employed

to demonstrate that our solution actually meets the requirements that we had stated

in the �rst place in Section 1.2.3. In doing so, we provide the results of our evaluation

by using speci�c experiments to provide an objective way to demonstrate that some

of the requirements are e�ectively met.

In our evaluation experimentation, we perform two classes of experiments. At

�rst we conduct data extraction from the GitHub repository and translate them

to the Forensic Lucid format using JSON demand-driven encoder and GIPSY

distributed computing system without employing the Kubernetes infrastructure.

Then we perform the same evaluation experiments by integrating Kubernetes with

GIPSYdistributed system. In the following sections, we will discuss these two

experiments in more detail.
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5.1 Evaluation Environment

Before we dive into the evaluation, we �rst describe the environment where we perform

our experiments. We provide information regarding the CPU, Memory size, GPU,

operating system, etc. As we illustrated in the Figure 11, for our experiments, we

use three physical machines/nodes. The hardware speci�cations for all machines are

depicted in Table 1. In addition, in Table 2 we describe the tools and applications

that we employ in our research, where depending on the role of each machine

(Master/Worker), we installed corresponding tools and applications.

Con�guration Component Speci�cations

Control Plane Node

Memory 8 GB
Processor Intel Core i5-760 CPU @2.80GHz × 4
Graphics NVIDIA Quadro FX 580 (512 MB) × 2
OS Ubuntu 20.04.3 LTS x86-64

Worker Node 1

Memory 4 GB
Processor Intel Core i5-2400 CPU @ 3.10GHz × 4
Graphics NVIDIA Quadro 600 (1 GB)
OS Ubuntu 18.04.6 LTS x86-64

Worker Node 2

Memory 4 GB
Processor Intel Core i5-2400 CPU @ 3.10GHz × 4
Graphics NVIDIA Quadro 600 (1 GB)
OS Ubuntu 20.04.3 LTS x86-64

Table 1: Hardware environment for the tests.

Name Version
Docker v20.10.7

Kubernetes v1.23.3
NFS v4

Table 2: Tools and applications versions.

5.2 Evaluation of the GISPY JSON Demand-Driven

Encoder

For gathering a dataset, as we mentioned in Section 3.2, we mainly aim for the

cybersecurity vulnerabilities that exist publicly and fetch them from the GitHub

commit API since it contains various practical information such as commit messages,
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comments and patches, which show the changes made to the �les. A system called

Common Vulnerabilities and Exposures (CVE) o�ers a way for the public to exchange

knowledge about cybersecurity vulnerabilities and exposures [30]. CVE vulnerability

data is accessible at www.cvedetails.com.

Below is a sample list of URLs we selected from the CVE website for some popular

projects. We extracted the commit URLs from these discovered vulnerabilities and

used them as input to run our proposed pipeline to encode as evidence.

� https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr

� https://github.com/pjsip/pjproject/security/advisories/GHSA-rwgw-vwxg-q799

� https://github.com/pypa/pipenv/security/advisories/GHSA-qc9x-gjcv-465w

� https://github.com/grafana/grafana/security/advisories/GHSA-c3q8-26ph-9g2q

� https://github.com/solidusio/solidus/security/advisories/GHSA-qxmr-qxh6-2cc9

� https://github.com/github/codeql-action/security/advisories/GHSA-g36v-2xff-pv5m

� https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5

� https://github.com/netty/netty/security/advisories/GHSA-f256-j965-7f32

� https://github.com/swagger-api/swagger-codegen/security/advisories/GHSA-pc22-3g76-gm6j

� https://github.com/http4s/blaze/security/advisories/GHSA-xmw9-q7x9-j5qc

In order to run the experiment, we �rst run and register the GMT node in one of

the worker machine and in order to distribute the computation, in Worker Node 1 and

Worker Node 2 machine, we start and register the regular nodes, to which later we

will assign the GIPSY tiers. Figure 22 illustrates that all ten nodes are successfully

registered into the GIPSY network.

We continue with allocating the DST to the registered GIPSY nodes, then allocate

DWTs. Finally, to start the experiments, allocate the DGT using the commands we

illustrate in Listing 4.2.3. Once the DGT starts running, DGT will create a demand

for each of the URLs we mentioned above, assign each URL as a demand signature,

and put it in the DST. Once the demands are stored in the DWT, the DWTs begin

to perform the process that we described in Figure 15.
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Figure 22: GMT Logs

Once the execution is accomplished, the DGT will show as an output the list

of JSON �le names, IPL �le names and the compiled output for each demand. In

addition, we collect our dataset containing 1000 JSON�les, see Appendix A, 1000

IPL Forensic Lucid �les, see Appendix B and corresponding compiled Forensic Lucid

�les.

Once the results are accomplished, DGT and DWTs wait for new demands to

be processed, and DST holds the previous demand and its results. Therefore, we

continue experiments by providing the same URLs to generate the demands as we

did previously. Since we use the URLs as a demand signature and DST stored it

already, the DGT merely returns the results.

This essentially constitutes the requirements as described in Section 3.2:

� Requirement 1: The system shall have JSON demand-driven encoder

� Requirement 2: The system shall have employ GPSY distributed

computing system for the forensic computing pipeline
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� Requirement 3: The system shall return the results quickly if we

execute the JSON encoder for the second attempt on the same data

We follow our experiments by �nding a relation between the number of workers

(DWTs) and the number of URLs. We vary the number of DWTs and perform the

same experiments as we did above for the same URLs.

Figure 23: Execution time depending on the number of DWTs (workers)

Figure 23 depicts the total execution time for each amount of workers. As we can

observe in the �gure, the performance signi�cantly improves once we employ more

than �ve DWTs. However, the execution time remains constant once there are ten

workers, which is equal to the number of URLs.

5.3 Evaluation of Integration of Kubernetes in the

GIPSY Distributed Execution System

In this section, we attempt to perform the same experiments we conducted in

Section 5.2, except this time, we attempt to achieve the same results by integrating

the distributed processing orchestration features of Kubernetes. Before we begin

to perfom the integration, we begin with deploying the GIPSY network without

Kubernetes infrastructure and estimate the time it takes to con�gure and register
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the GIPSY GMT and regular nodes (ten nodes in this test).

Figure 24: Kubernetes Nodes

Figure 24 illustrates three nodes registered in Kubernetes, consisting of one

Control Plane node and two Workers nodes, where all the administration will happen

in the Control Plane node, and our GIPSY pods will run on two Worker nodes.

Now we begin with registering GIPSY pods in the Kubernetes cluster by applying

the .yaml con�guration �les we provide in Section 4.2.3. By de�ning the number of

replicas in the .yaml con�guration �le, which in this experiment is ten, we specify

the number of regular pods we wish to register. Once we apply the con�guration

�le using the Kubernetes command line, all the GIPSY nodes inside each pod will

automatically get registered.

Since we use the NFS in order to share the required con�guration �les, which are

produced by the GMT pod, all the regular pods have access to that con�guration �le

in order to get registered to GIPSY network.

Figure 25: GIPSY nodes registration using Kubernetes infrastructure

Figure 25 illustrates that all the GIPSY pods are up and running, and the GIPSY

nodes inside each GIPSY pod are registered successfully to the GIPSY network.

It also demonstrates how Kubernetes distribute the GIPSY pods depending on the

resource availability of the machines. If we take a look at the logs of the gipsy-gmt

pod, we see the same output as in Figure 22.

Table 3 depicts the comparison of the estimated time for registration of ten
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Type Time
without integrating k8s 5 minutes
with integrating k8s 50 seconds

Table 3: Estimated time for con�guring and registring 10 GIPSYnodes

GIPSY nodes. As we can observe from these results, registering GIPSY nodes using

Kubernetes resulted in dramatic reduction of deployment time. However, in this

estimation, we did not count the compilation time, which for each time would take

approximately 9 minutes, which is signi�cantly time-consuming considering if we

would like to run multiple nodes.

Once GIPSY nodes inside the pods registered to the GIPSY network, we followed

experiments with allocating the DGT, DWTs and DST the same as we did in

Section 5.2. Except we need to run the allocation commands inside the GMT pod as

we mentioned in Listing 4.2.3. Eventually, when the DWTs �nish the execution, the

collected dataset is the same as Section 5.2, which can be veri�ed in the NFS shared

directories.

Figure 26: Execution time Comparison

In Figure 26, we compare our experiments with and without Kubernetes

infrastructure. Same as Section 5.2 we perform testing for di�erent numbers of DWT
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pods to estimate the execution's performance depending on the number of GIPSY

pods.

Type Fetching Converting Compiling Total
without integrating k8s 1m 21s 6.5s 0.8s 1m 31s
with integrating k8s 1m 21s 6.5s 0.7s 1m 31s

Table 4: Comparison the Execution Time of Fetching, Converting and Compiling
(Minute:Second)

As we can observe, the performance of Kubernetes remains almost the same

. However, the testing results depend on the fetching, converting and compiling

time can vary. Therefore, we came up with the following experiment in order to

estimate the execution time for fetching, converting and compiling separately. Table 4

demonstrates the average estimation of each step in our experiment.

Figure 27: Kubernetes nodes status after swtiching o� a node

Finally, for our last experiment, we assume that all GIPSY pods, as described in

Figure 25 are up and running. In order to demonstrate the scalable fault tolerance,

we switch o� one of the worker nodes in order to verify how Kubernetes manage the

GIPSY pods that were running on the dead node. Figure 27 depicts the Kubernetes

nodes' status after switching a worker node, which turned to NotReady.

Once the Kubernetes node is dead, after approximately 5 minutes, it will change

the status of the running pods on the dead node to Terminating. The reason is that

if the node can restart in 5 minutes, the pods will be able to resume working. In this

case, this time pass, and consequently, Kubernetes starts to create the same amount

of pods on the next available node, as it is illustrated in Figure 28.

In Figure 29, we describe that once the pods got re-created, the GIPSY nodes

automatically get registered in the GIPSY network.

With what we described, we accomplished the requirements as mentioned in

Section 3.2:
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Figure 28: Pods status after swtiching o� a node

Figure 29: Automation of GIPSY nodes registration

� Requirement 4: The system shall have an e�ciently deployable

GIPSY distributed system

� Requirement 5: The system shall have a scalable fault tolerance

mechanism
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� Requirement 6: The system shall have a shared �le system

5.4 Summary

In this chapter, we described various evaluation results of our solution to the problem

stated in Chapter 1. In doing so, we have demonstrated that we have e�ectively

ful�lled all the requirements that we mentioned in Section 1.2.3. In the next chapter,

we will continue with our conclusion, describe the limitations we faced through our

research and discuss future work.
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Chapter 6

Conclusion and Future Work

In Chapter 1, we described the problem and provided the related motivation scenarios

in Section 1.2.2 and described requirements in Section 1.2.3. In Chapter 2 we followed

by representing the background and described the tools and methods that we used

in this research work. Then in Chapter 3 we presented to the reader our solution

regarding GitHub demand-driven JSON to Forensic Lucid Encoder Formalization

in GIPSY and provided our solution related to integrating the Kubernetes cluster

with GIPSY distributed computing system, and we provided the methods that we

employed in our research to evaluate and verify if our solution solves the problems.

Next, in Chapter 4 we described our solution's design and implementation. Then,

in Chapter 5, we evaluated the ful�lment of the requirements by conducting various

experiments. Eventually, in this chapter we follow by describing our conclusion for

our research in Section 6.1 and representing some limitations and several portions of

the work that we deliver for the future in Section 6.2.

6.1 Conclusion

In this section, we conclude our research based on the conducted experiments and

the results that we achieved in Chapter 5. Below we address the ful�llment of the

problems/requirements that we stated in Chapter 1.

� In our research, we devised a solution so that forensic investigators could use
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GitHub to use detected vulnerabilities listed in the Common Vulnerabilities

and Exposures (CVE), which is a list of publicly disclosed computer security

�aws, and gather a dataset in order to perform an investigation on program

weaknesses and vulnerabilities related to security, software engineering from

GitHub projects written in various programming languages. We designed

and implemented JSON demand-driven encoder and we de�ned our classes to

perform the Forensic Lucid conversion pipeline (data extraction, converting

to Forensic Lucid format, and compiling the Forensic Lucid �les). In

order to distribute the execution, we took advantage of the GIPSY distributed

system. Therefore we de�ned the required classes for distributing the pipeline

execution of the JSON demand-driven encoder using the GIPSY distributed

computing system, see Requirement 1.

� In the Forensic Lucid conversion pipeline, we de�ned each URLS as a demand

signature to store it in the DST, which stays the same throughout the whole

process of the pipeline, and once the conversion is �nished, the demand signature

alongside the results will be stored in the DST. By employing this approach, the

pipeline does not require execution for the same demand in the DST. Therefore,

if the forensic investigator requests a demand that already exists in the DST,

the output would be fast since the demand results have already been stored in

the DST after the �rst execution, see Requirement 3.

� By integrating the distributed processing orchestration features of Kubernetes

with GIPSY, we improved the GIPSY in such a way that con�guring, starting up

and registering GIPSY nodes would happen automatically without any manual

con�gurations. We also described that the execution time of the JSON demand-

driven encoder using Kubernetes is slightly more. However, by employing the

Kubernetes there would be no need for the compilation each time and installing

all dependencies in order to start the GIPSY, which saves a signi�cant amount

of time, see Requirement 4.

� By integrating the Kubernetes, if a GIPSY node dies, all the pods will be
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recreated on the next available machine and automatically will get registered

to the GIPSY network. Therefore, there would be no need to recon�gure and

startup everything manually. Thus we were able to have a scalable fault-tolerant

system, see Requirement 5.

� We were able to share the directories for the initial con�guration and the dataset

�les among the pods, by employing NFS so that each pod has access to the same

directory, see Requirement 6.

6.2 Limitations and Future Work

At the moment, despite the fact that we achieved all the requirements and were able

to provide solutions for our stated problem, we faced some limitations, which require

work in the near future. Some of the limitations and future works are listed below:

� At the moment, we were able to collect a Forensic Lucid dataset from the

GitHub repositories in order to conduct future investigations. However, we did

not provide any hypothesis to analyze the evidential data. This can be done in

future work to conduct forensic analysis and attempt to prove a hypothesis.

� In order to perform the data extraction for the GitHub API, there is a 5,000

request per hour limit for the authorized user by a user or a personal token.

Therefore, our evaluation experiments were limited to not a signi�cant amount

of data to fetch. In our experiments, we gathered 1000 data element, which

requires 1000 requests for each time execution. At the moment, the system has

already been implemented so that once it reaches the limit of 5000 requests, it

will wait until the limit rests and resume the fetching. In order to have a more

accurate analysis would be better to fetch a much more important amount of

data.

� In our research, we only conducted the data extraction from GitHub

repositories. We did not attempt to perform the same computation for the other
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open resources such as BitBucket, or other sources such as social media, e.g.,

Twitter, etc. It would be interesting to have the same conversion pipeline for

other resources that could then be used as evidential statements to be processed

by Forensic Lucid to prove or disprove much more diversi�ed forensic cases.

� There are various container orchestration tools, such as OpenShift, Docker

Swarm, etc., to integrate with GIPSY, which we did not attempt to employ.

� Although we were able to design and implement a system that GIPSY node

can automatically get con�gured and startup, we need to allocate the GIPSY

tiers manually. Since in order to allocate a GIPSY node, we need to specify the

node index as we described in Listing 4.2.3, and the index varies for each node

registration, at the moment, it is not possible to allocate them automatically.

In addition, in case a node dies, we have a scalable fault-tolerant mechanism,

which will automatically con�gure and register the GIPSY nodes. However,

as we mentioned, the allocation in this scenario should happen manually by

de�ning the index of each registered GIPSY node inside the newly recreated

pod. The next step is �nding a solution to perform the tier allocation process

automatically.

We published our project to the Docker Hub repository as a set of Docker images,

which can be found in: https://hub.docker.com/r/s4lab/gipsy-json-u18/

tags. In the links below, we are releasing GitHub repositories, to which our work

will be published in the future soon.

� S4L GIPSY Research and Development: https://github.com/gipsy-dev

� OpenTDIP: https://github.com/opentdip

6.3 Summary

In this chapter, we concluded our research by providing the list of achieved

experiments and the results that we conducted in this research in Section 6.1. Finally,
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we provided the limitation and future work for this research in Section 6.2. In

addition, we submitted for publication a part of our research work for the 15th

International Symposium on Foundations & Practice of Security (FPS2022) [47].
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Appendix A

Example JSON File

[{

"sha": "fc9ac5879be3cd93bb04f95341dbf4d165743b01",

"node_id": "C_kwDOArmXAtoAKGZjOWFjNTg3OWJlM2NkOTNiYjA0Zjk1MzQxZGJmNGQxNjU3NDNiMDE",

"commit": {

"tree": {"sha": "b4b9610692287a800788946535e048e16332e9a4","url": "https://api.github.com...

"comment_count": 0,

"verification": {"verified": false,"reason": "unsigned","signature": null,"payload": null}},

"url": "https://api.github.com/repos/tensorflow/tensorflow/commits/fc9ac5879be3cd93bb04f9...

"html_url": "https://github.com/tensorflow/tensorflow/commits/fc9ac5879be3cd93bb04f95341db...

"comments_url": "https://api.github.com/repos/tensorflow/tensorflow/commits/fc9ac5879be3cd...

"author": {"login": "cky9301","id": 8674768,"node_id": "MDQ6VXNlcjg2NzQ3Njg=","avatar_url":...

"committer": {"login": "tensorflower-gardener","id": 17151892,"node_id": "MDQ6VXNlcjE3MTUx...

"parents": [{"sha": "61c4c19fa8a1c8125a85f0dbeba0d267be1eb6cb","url": "https://api.github...

"stats": {"total": 17,"additions": 8,"deletions": 9},

"files": [

{"sha": "11eeb05498a09d9e25b535203c06ac981917b883","filename": "tensorflow/...

{"sha": "cff040345e3ccbab1931aa31f87ccb6102d6fbc6","filename": "tensorflow/...

},

{

"sha": "fb568f9e292d853e6dfcd426f8047288a040506e",

"node_id": "C_kwDOArmXAtoAKGZiNTY4ZjllMjkyZDg1M2U2ZGZjZDQyNmY4MDQ3Mjg4YTA0MDUwNmU",

"commit": {

"tree": {"sha": "4cc1395d1b1914b63600462184030a900dd002a3","url": "https://api.github.com...

"comment_count": 0,

"verification": {"verified": true,"reason": "valid","signature": "-----BEGIN PGP SIGNATUR...

"url": "https://api.github.com/repos/tensorflow/tensorflow/commits/fb568f9e292d853e6dfcd426f8...

"html_url": "https://github.com/tensorflow/tensorflow/commits/fb568f9e292d853e6dfcd426f8047288...

"comments_url": "https://api.github.com/repos/tensorflow/tensorflow/commits/fb568f9e292d853e6...

"author": { "login": "Sadeedpv", "id": 96517901, "node_id": "U_kgDOBcC_DQ", "avat...

82



"committer": { "login": "web-flow", "id": 19864447, "node_id": "MDQ6VXNlcjE5ODY0NDQ3...

"parents": [ { "sha": "94e3230e762b2541a7e4274e49b3a65d3826ead3", "url": "https:...

"stats": { "total": 4, "additions": 2, "deletions": 2 },

"files": [ { "sha": "5fd486276d9a4bcf319a0c2108f657311849fa07", "filename": "SEC...

}]

Listing A.1: Fetched JSON �le from GitHub repository
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Appendix B

Example Forensic Lucid File

OResult

where

evidential statement es = {o_sequence};

observation sequence o_sequence = {o_commit_fcb01, o_commit_fb6e};

observation o_commit_fcb01 = {commit, author, committer, parents, stats, files};

commit = {[tree : {[sha : "b4b9610692287a800788946535e048e16332e9a4"], [url: "https://...

author = {[login : "cky9301"], [id : 8674768], [node_id : "MDQ6VXNlcjg2NzQ3Njg="], [av...

committer = {[login : "tensorflower-gardener"], [id : 17151892], [node_id : "MDQ6VXNlc...

parents = {[[sha : "61c4c19fa8a1c8125a85f0dbeba0d267be1eb6cb"], [url : "https://api.gi...

stats = {[total : 17], [additions : 8], [deletions : 9]};

files = {[[sha : "11eeb05498a09d9e25b535203c06ac981917b883"], [filename : "tensorflow/...

observation o_commit_fb6e = {commit, author, committer, parents, stats, files};

commit = {[tree : {[sha : "4cc1395d1b1914b63600462184030a900dd002a3"], [url: "https://...

author = {[login : "Sadeedpv"], [id : 96517901], [node_id : "U_kgDOBcC_DQ"], [avatar_...

committer = {[login : "web-flow"], [id : 19864447], [node_id : "MDQ6VXNlcjE5ODY0NDQ3"...

parents = {[[sha : "94e3230e762b2541a7e4274e49b3a65d3826ead3"], [url : "https://api.g...

stats = {[total : 4], [additions : 2], [deletions : 2]};

files = {[[sha : "5fd486276d9a4bcf319a0c2108f657311849fa07"], [filename : "SECURITY.m...

OResult = es;

end

Listing B.1: Converted Forensic Lucid File
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