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Abstract

Problems Related to Classical and Universal List Broadcasting

MohammadSaber GholamiNajarkola, Ph.D.

Concordia University, 2022

Broadcasting is a fundamental problem in the information dissemination area. In classical

broadcasting, a message must be sent from one network member to all other members as rapidly

as feasible. Although it has been demonstrated that this problem is NP-Hard for arbitrary graphs,

it has several applications in various fields. As a result, the universal lists model, replicating real-

world restrictions like the memory limits of nodes in large networks, is introduced as a branch of

this problem in the literature. In the universal lists model, each node is equipped with a fixed list

and has to follow the list regardless of the originator. In this study, we focus on both classical and

universal lists broadcasting.

Classical broadcasting is solvable for a few families of networks, such as trees, unicyclic graphs,

tree of cycles, and tree of cliques. In this study, we begin by presenting an optimal algorithm that

finds the broadcast time of any vertex in a Fully Connected Tree (FCTn) in O(|V | log logn) time.

An FCTn is formed by attaching arbitrary trees to vertices of a complete graph of size n where |V |

is the total number of vertices in the graph. Then, we replace the complete graph with a Hypercube

Hk and propose a new heuristic for the Hypercube of Trees (HTk). Not only does this heuristic have

the same approximation ratio as the best-known algorithm, but our numerical results also show its

superiority in most experiments. Our heuristic is able to outperform the current upper bound in up

to 90% of the situations, resulting in an average speedup of 30%. Most importantly, our results

illustrate that it can maintain its performance even if the network size grows, making the proposed

heuristic practically useful.

Afterward, we focus on broadcasting with universal lists, in which once a vertex is informed,

it must follow its corresponding list, regardless of the originator and the neighbor from which it
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received the message. The problem of broadcasting with universal lists could be categorized into

two sub-models: non-adaptive and adaptive. In the latter model, a sender will skip the vertices on

its list from which it has received the message, while those vertices will not be skipped in the first

model. In this study, we will present another sub-model called fully adaptive. Not only does this

model benefit from a significantly better space complexity compared to the classical model, but, as

will be proved, it is faster than the two other sub-models. Since the suggested model fits real-world

network architectures, we will design optimal broadcast algorithms for well-known interconnection

networks such as trees, grids, and cube-connected cycles. We also present an upper bound for tori

under the same model. Then we focus on designing broadcast graphs (bg)’s under this model. A

bg is a graph with minimum possible broadcast time from any originator. Additionally, a minimum

broadcast graph (mbg) is a bg with the minimum possible number of edges. We propose mbg’s on

n vertices for n ≤ 10 and sparse bg’s for 11 ≤ n ≤ 14 under the fully-adaptive model. Afterward,

we introduce the first infinite families of bg’s under this model, and we prove that hypercubes are

mbg under this model.

Later, we establish the optimal broadcast time of k−ary trees and binomial trees under the non-

adaptive model and provide an upper bound for complete bipartite graphs. We also improved a

general upper bound for trees under the same model. We then suggest several general upper bounds

for the universal lists by comparing them with the messy broadcasting model.

Finally, we propose the first heuristic for this problem, namely HUB-GA: a Heuristic for Uni-

versal lists Broadcasting with Genetic Algorithm. We undertake various numerical experiments on

frequently used interconnection networks in the literature, graphs with clique-like structures, and

synthetic instances in order to cover many possibilities of industrial topologies. We also compare

our results with state-of-the-art methods for classical broadcasting, which is proved to be the fastest

model among all. Although the universal list model utilizes less memory than the classical model,

our algorithm finds the same broadcast time as the classical model in diverse situations.
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Chapter 1

Introduction

High-performance interconnection networks connect compute nodes on a cluster computer so

that they can communicate with each other. A cluster computer comprises multiple compute nodes,

each having several processing elements. The design of such networks is decisive, specifically in

High-Performance Computing (HPC) systems (Lee, Hong, & Li, 2021; Rocher-Gonzalez, Escudero-

Sahuquillo, Garcı́a, & Quiles, 2017). Moreover, an interconnection network is utilized whenever

synchronization among the processing elements or exchange of intermediate results is required.

More importantly, the interconnection network topology and the routing scheme determine the over-

all network performance and the entire system (Al Faisal, Rahman, & Inoguchi, 2017). In particular,

low latency, high bandwidth, and memory-efficient communication between the compute nodes are

necessary for HPC applications to scale appropriately on multiple machines. Therefore, studying

interconnection networks and, specifically, the algorithms that move the data around the processing

units are pivotal in the performance of such applications (Rocher-Gonzalez et al., 2017), particularly

with limited memory.

A vital problem in information dissemination is broadcasting, which refers to distributing a

piece of information in a communication network. In particular, a message held initially by a single

network member must be promptly transmitted to all network members. This is achieved by placing

a series of calls over the network’s communication links while respecting the following limitations:

A call involves precisely two network members and is executed in a single unit of time. Although a

node can only pass the message to one of its neighbors at a time, a vertex may receive the message
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from multiple senders at each time unit. The applications of this problem include, but are not limited

to, local computer networks (Metcalfe & Boggs, 1976), malware diffusion (Karyotis & Khouzani,

2016), multiprocessor systems (Chen, Shin, & Kandlur, 1990), and parallelism (Varvarigos & Bert-

sekas, 1995). Besides, the time it takes to transmit a message between two communication sites or

the message delay is one factor affecting a network’s performance (Hasson & Sipper, 2004).

A network is modeled with an undirected graph G = (V,E), where V is a set of vertices

representing the network members, and E is a set of bidirectional communication links between

the members of the network. It is generally assumed that G is a connected graph. The broadcast

time of a vertex v ∈ V (G) under the classical model is denoted by Bcl(v,G) and is defined to

be the minimum number of time units required for a message to be transmitted to all members of

V , originating from v. By definition, the broadcast time of the graph G under the classical model

is the maximum broadcast time of any vertex v in G, and it is denoted by Bcl(G): Bcl(G) =

max{Bcl(v,G)|v ∈ V (G)}. Not only is it NP-Hard to find Bcl(G) and Bcl(v,G) for arbitrary

graphs and originators (Garey & Johnson, 1983), it is proved that this problem remains NP-Hard in

more restricted families of networks (Dinneen, 1994; Jakoby, Reischuk, & Schindelhauer, 1998).

Achieving optimal broadcasting in a network requires deep knowledge of network topology. To

illustrate, not only do network members need to be aware of their neighbors’ states, but they should

also know the origin of the message, which is memory-inefficient. Hence, several settings of this

problem have been defined in the literature to simulate real-world networks, i.e., messy broadcasting

and the universal list model. In the first model, when a node is informed, it randomly selects one

of its neighbors and sends the message to that node (Ahlswede, Haroutunian, & Khachatrian, 1994;

Harutyunyan & Liestman, 1998). In the latter model, network vertices are equipped with a universal

list of their neighbors. When a vertex receives the message, it follows its list and passes the message

to the vertices of its list (Diks & Pelc, 1996). Nevertheless, in both models, a member needs local

knowledge of their neighbors.

In this study, we focus on both classical and universal lists broadcasting. The contributions of

this manuscript are as follows:

• In Chapter 3, we present an algorithm for classical broadcasting in Fully-Connected Trees

(FCTn), which are constructed by attaching arbitrary trees to a complete graph of size n. We
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also prove that the algorithm is optimal.

• In Chapter 4, we replace the complete graph with a Hypercube of dimension k and propose a

novel heuristic for classical broadcasting in a Hypercube of Trees HTk.

• Starting from Chapter 5, we study the universal lists broadcasting. We first propose a new

sub-model for broadcasting with universal lists while giving some insight into its applications

in real-world networks. We then provide the exact broadcast time of Trees, Grids, and Cube-

Connected Cycles under our newly introduced fully adaptive model. We also present an

additive approximation algorithm for Tori.

• In Chapter 6, we study non-adaptive broadcasting with universal lists by proposing the exact

value of broadcast time for complete k−ary trees and binomial trees. Then we provide an

upper bound for complete bipartite graphs and improve the general upper bounds for trees.

• In Chapter 7, we study the problem of broadcast graphs under the fully-adaptive model, which

are the cheapest networks in which broadcasting could be finished as soon as possible. To

this aim, we give the exact value of broadcast functions for 3 ≤ n ≤ 10, upper bounds for

11 ≤ n ≤ 14, and some general upper bounds on broadcast function by giving a constructive

method. We introduce Hypercube as the first infinite family of minimum broadcast graphs

under the fully adaptive model.

• Lastly, in Chapter 8, we propose the first heuristic for universal lists broadcasting. Out heuris-

tic is based on the well-known Genetic Algorithm, and we study its performance in various

networks by conducting several experiments.
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Chapter 2

Literature Review and Preliminaries

Broadcasting is a problem in which a sender, usually called the originator, has a piece of in-

formation in a network and wishes to inform all network members of this message. This is achieved

by placing a series of calls over the network’s communications links while respecting the following

conditions (Hedetniemi, Hedetniemi, & Liestman, 1988):

(1) Each call involves exactly two members,

(2) Each call needs precisely one unit of time,

(3) A vertex can participate in only one call in each unit of time,

(4) And a vertex can only make a call toward its adjacent vertices.

The process ends when all members are informed. This problem could be categorized into different

settings if being looked at from various perspectives:

• Directions of the edges: telegraph communication model vs. telephone communication

model.

• Number of neighboring processors: 1-port communication model (Fraigniaud & Lazard,

1994), k-port communication model (Harutyunyan & Liestman, 2001b), link bound model

(Fraigniaud & Lazard, 1994).
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• Time taken to send a message between two nodes: constant model vs. linear model

(Beauquier, Perennes, & Delmas, 2001).

• Communication setup with neighbors: Vertex disjoint path (Farley, 2004), Edge disjoint

path (Farley, 2004), (i, j) mode (Even & Monien, 1989), Radio broadcasting (Alon, Bar-Noy,

Linial, & Peleg, 1991), Universal lists broadcasting (Diks & Pelc, 1996), Messy broadcasting

(Ahlswede et al., 1994), Multiple message broadcasting (Bar-Noy & Kipnis, 1994), Fault-

tolerant broadcasting (Ahlswede, Gargano, Haroutunian, & Khachatrian, 1996).

In this study, we follow the definitions of the 1-port, constant time model (Fraigniaud & Lazard,

1994), in which a node can communicate with 1 neighbor at a time, and the transmitting time is

constant. Robledo et al. argued that one-to-one communication is experimentally faster than a

setup in which a sender may update all its neighbors simultaneously (Robledo, Rodrı́guez-Bocca,

& Romero, 2020). The main focus of this study is on the classical model of broadcasting, universal

lists broadcasting, and messy broadcasting, which are discussed subsequently.

2.1 Classical broadcasting

For a vertex v ∈ V (G), we denote by Bcl(v,G) the classical broadcast time of that vertex in the

graph, which is the minimum time steps required to finish the broadcast process, originating from v.

The broadcast time of the graph, Bcl(G), is the maximum broadcast time of all possible originators:

Bcl(G) = max
v∈V (G)

{Bcl(v,G)} (1)

The problem of finding Bcl(v,G) and Bcl(G) are both NP-Hard for arbitrary graphs and originators

(Garey & Johnson, 1983; Slater, Cockayne, & Hedetniemi, 1981). Besides, the problem remains

NP-Hard in more restricted families such as bounded degree graphs (Dinneen, 1994) and regular

planar graphs (Jakoby et al., 1998; Middendorf, 1993). The formal definition of the decision version

of this problem is as follows:

Minimum Broadcast Time (MBT) from (Garey & Johnson, 1983), Problem [ND49]:
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Given a graph G = (V,E) with a subset V0 ⊆ V , and a positive integer K. Can

a message be “broadcast” from the base set V0 to all other vertices in time K, i.e., is

there a sequence V0, E1, V1, E2, V2, · · · , EK , VK such that each Vi ⊆ V , each Ei ⊆ E,

VK = V , and, for 1 ≤ i ≤ K, (1) each edge in Ei has exactly one endpoint in Vi−1, (2)

no two edges in Ei share a common endpoint, and (3) Vi = Vi−1 ∪ {v : {u, v} ∈ Ei}?

When |V0| = 1, it is the case when broadcasting starts from a single originator, which remains

NP-Complete (Garey & Johnson, 1983). The NP-Completeness proof of the decision version is pre-

sented in (Slater et al., 1981), and a reduction from the three-dimension matching (3DM) problem

has been utilized for the proof. Also, this problem cannot be approximated in polynomial time for

an arbitrary graph within a ratio of 3− ϵ for any ϵ > 0 unless P = NP (Elkin & Kortsarz, 2005).

The broadcast scheme1 of the classical model is the series of calls placed in the network. This

could be interpreted as an ordering of the neighbors of each vertex (Diks & Pelc, 1996). Consider

vertex u as the originator. Once a vertex v receives the source message, it will utilize its list, denoted

by luv , and pass the information to its uninformed neighbors following the order of its list. A valid

broadcast scheme contains the lists so that every network member is equipped with the message

after placing all calls. However, the vital issue with the classical model is that those lists differ for

various originators. Therefore, each vertex must maintain several lists depending on the originator

and adapt its behavior accordingly. In particular, a vertex v has to maintain up to |V | different lists,

denoted by luv , ∀u ∈ V (G). Two principal problems are defined in this area:

• Broadcast time problem: in which the goal is to find the broadcast time of a vertex or a

graph.

• Network design problem: where the goal is to design a network in which broadcasting could

be finished as quickly as possible from any originator.

These problems are discussed in 2.1.1 and 2.1.2, respectively.

1or broadcast algorithm
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2.1.1 Minimum broadcast time problem

As mentioned before, the MBT problem is a classical NP-Complete problem. Therefore, three

directions are followed by researchers to tackle this problem:

(1) Exact algorithms solve the problem optimally using different techniques such as linear pro-

gramming or solve it optimally for a particular family of graphs in a reasonable amount of

time.

(2) Approximation algorithms provide a worst-case performance guarantee in both computa-

tional time, and solution quality,

(3) Heuristics typically focus on the average empirical behavior of the algorithms.

In the rest of this section, some studies related to each of these are discussed. Also, since there

are several papers dealing with finding the broadcast time of graphs, we mention a few survey

papers from which the reader can trace back all the previous works (Fraigniaud & Lazard, 1994;

Harutyunyan, Liestman, Peters, & Richards, 2013; Hedetniemi et al., 1988; Hromkovič, Klasing,

Monien, & Peine, 1996).

Exact algorithms

Firstly, some researchers designed exact approaches by formulating an optimization version of

this problem. This includes a Dynamic Programming algorithm suggested in (Scheuermann & Wu,

1984) and the ILP models proposed in (de Sousa et al., 2018) and (Ivanova, 2019). Currently, the

ILP method offered in (de Sousa et al., 2018) is believed to be the best exact method. These methods

can only effectively solve this problem for networks with up to 50 nodes in a reasonable amount of

time, making them unsuitable for use in real-world networks.

Secondly, some researchers tried to solve the problem optimally for a particular family of net-

works. Slater et al. (Slater et al., 1981) made the first step in this category and offered a linear

algorithm for trees. Other researches include grid and tori (Farley & Hedetniemi, 1978), Cube Con-

nected Cycle (Liestman & Peters, 1988), and Shuffle Exchange (Hromkovič, Jeschke, & Monien,

1993). Later on, more algorithms for non-trivial topologies such as unicyclic graphs (Harutyunyan
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& Maraachlian, 2007, 2008) and Tree of Cycles (Harutyunyan & Maraachlian, 2009b) were devel-

oped, to name a few. Also, there is an O(n4k+5) broadcast algorithm for partial k-trees (Dessmark,

Lingas, Olsson, & Yamamoto, 1998).

Several papers have studied the exact broadcast time of a specific class of graphs or investigated

the lower and upper bounds of the broadcast time (Ahlswede et al., 1996, 1994; Averbuch, Peeri, &

Roditty, 2017; Comellas, Harutyunyan, & Liestman, 2003; Comellas & Hell, 2003; Farley, 2004;

Harutyunyan, 2000, 2006; Harutyunyan & Liestman, 2001a, 2001b; Harutyunyan & Maraachlian,

2009b).

Approximation algorithms

Various studies provide approximation algorithms for specifying the broadcast time of a partic-

ular vertex in an arbitrary network. One of the first research in this area gives an additive (
√
|V |)-

approximation algorithm for finding the broadcast time of any graph (Kortsarz & Peleg, 1995).

These results were improved by Ravi, (Ravi, 1994) who proposed a ( log2 |V |
log log |V |)-approximation al-

gorithm.

Besides, Bar-Noy et al. (Bar-Noy, Guha, Naor, & Schieber, 1998) worked on the multicasting

problem in which the aim is to inform a subset T of vertices. They gave a O(log |T |)-approximation

for multicasting which could be trivially generalized to a (log |V |)-approximation algorithm for

broadcasting. However, they used linear programming, which is computationally expensive. Elkin

et al. (Elkin & Kortsarz, 2005) introduced an algorithm with a (log |V |) approximation ratio to over-

come this drawback. These bounds were soon improved by themselves in (Elkin & Kortsarz, 2006)

in which a ( log |T |
log log |T |)-approximation algorithm for multicasting (or a ( log |V |

log log |V |)-approximation

solution for broadcasting) is proposed. This algorithm is the best approximation known for this

problem.

Various papers also designed approximation algorithms for a specific family of networks, such

as k-path graphs (Bhabak & Harutyunyan, 2019), k-cycle graphs (Bhabak & Harutyunyan, 2015),

graphs with known broadcast time of the base graph (Bhabak & Harutyunyan, 2022), and Harary

graphs and graphs similar to Harary graphs (Bhabak, Harutyunyan, & Kropf, 2017; Bhabak, Haru-

tyunyan, & Tanna, 2014), to name a few.
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Heuristics

The authors of (Elkin & Kortsarz, 2005) proposed a heuristic algorithm considering directed

graphs. In (Beier & Sibeyn, 2000) two heuristics, called matching heuristic and coloring

heuristic, are presented. They also present the Round-Heuristic, which has a running

time of O(Rnm log n) where R is the number of rounds taken for broadcasting, n is the number of

vertices, and m is the number of edges in the graph.

The Tree-based approach is presented in (Harutyunyan & Shao, 2006), which reduces the

complexity of each round to O(m). In (Harutyunyan & Wang, 2010), the NTBA is introduced that

applies Random Heuristic and Semi-Random Heuristic algorithms which decrease the total time

complexity to O(m). Their results show that NTBA performs better than the previous approaches in

the real-world network models.

We refer the reader to (Albin, Kottegoda, & Poggi-Corradini, 2020; Fraigniaud & Vial, 1997,

1999; Harutyunyan & Jimborean, 2014; Ravi, 1994; Scheuermann & Wu, 1984) for more results in

this category.

2.1.2 Broadcast graphs

A graph G on n vertices is called a broadcast graph (bg) if Bcl(G) = ⌈log n⌉. A bg with the

minimum number of edges is called a minimum broadcast graph (mbg). The minimum number

of edges is called the broadcast function and denoted by B(cl)(n). Studying mbg’s, as well as

lower/upper bounds on the value of the broadcast function, has attracted a lot of attention from

researchers since an mbg represents the cheapest graph (in terms of the number of edges), where

broadcasting can be accomplished in the minimum possible time.

This problem was proposed in (Farley, Hedetniemi, Mitchell, & Proskurowski, 1979), where the

authors also determined the value of B(cl)(n) for n ≤ 15 and n = 2k while introducing hypercubes

as the first infinite family of mbg’s. Later, Knödel graph (Knödel, 1975) was proved to be the second

infinite family of mbg’s for n = 2k − 2 (Dinneen, Fellows, & Faber, 1991; Khachatrian & Harutou-

nian, 1990). Finally, Park and Chwa proposed recursive circulant graphs as a non-isomorphic alter-

native to hypercubes for mbg’s on n = 2k vertices (Park & Chwa, 1994).
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Except for the three mentioned families, there is no other infinite family of mbg’s. The value

of B(cl)(n) is also known for n = 17 (Mitchell & Hedetniemi, 1980), n = 18, 19 (Bermond, Hell,

Liestman, & Peters, 1992; Xiao & Wang, 1988), n = 20, 21, 22 (Maheo & Saclé, 1994), n = 26

(Saclé, 1996; Zhou & Zhang, 2001), n = 27, 28, 29 (Saclé, 1996), n = 30, 31 (Bermond et al.,

1992), n = 58, 61 (Saclé, 1996), n = 63 (Labahn, 1994), n = 127 (Harutyunyan, 2008), and

n = 1023, 4095 (Shao, 2006). Although the last four mentioned values of n are all in the form of

n = 2k − 1, there is no infinite family of mbg’s for the general case. Also, note that the value of

B(cl)(n) is not known for some small values of n such as 23, 24, and 25.

Due to the difficulty of this problem, there are two general directions to follow:

• Upper bounds on broadcast function: This is achieved by constructing sparse bg’s. For

example, in (Farley, 1979), two or three bg’s are combined to create a bigger bg which

shows an upper bound of B(cl)(n) ≤ n
2 ⌈log n⌉. Later, Chau and Liestman generalized this

idea by using up to 7 smaller bg’s (Chau & Liestman, 1985). A tight asymptotic bound of

B(cl)(n) ∈ Θ(L(n).n) is given in (Grigni & Peleg, 1991), where they proved that L(n)−1
2 n ≤

B(cl)(n) ≤ (L(n)+2)n, in which L(n) is the number of consecutive leading 1’s in the binary

representation of n−1. Furthermore, the compounding method utilizes the vertex cover of the

graph (Khachatrian & Harutounian, 1990) or the solid vertex cover of the graph (Bermond,

Fraigniaud, & Peters, 1995). More recently, compounding binomial trees with hypercubes

improved the upper bound on B(cl)(n) for many values of n (Averbuch, Shabtai, & Roditty,

2014; Harutyunyan & Li, 2017).

• Lower bounds on broadcast function: proposing lower bounds on the broadcast function is

more challenging since most lower bound proofs are based only on vertex degree. In (Gargano

& Vaccaro, 1989), a lower bound of B(cl)(n) ≥ n
2 (⌊log n⌋−log(1+2⌈logn⌉−n)) is suggested

for any n. Another lower bound of B(cl)(n) ≥ n
2 (m−p−1) is provided in (König & Lazard,

1994), where m is the length of the binary representation of n and p is the index of the

leftmost 0 bit. Additionally, some lower bounds for special values of n are proposed in the

literature, such as B(cl)(n) ≥ m2(2m−1)
2(m+1) for n = 2m − 1 (Labahn, 1994). Also, some other

lower bounds on B(cl)(2m − 3), B(cl)(2m − 4), B(cl)(2m − 5), and B(cl)(2m − 6) are given
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in (Saclé, 1996).

To the best of our knowledge, this problem has only been studied for classical broadcasting and

the k−broadcasting model (Harutyunyan & Liestman, 2001a).

2.2 Broadcasting with universal lists

In classical broadcasting, a call is only initiated from an informed vertex to an uninformed

vertex, which requires comprehensive knowledge of the whole network for every vertex. In other

words, once informed, a vertex sends the message to some of its uninformed neighbors in a partic-

ular order. This ordering, however, is different for each originator, as mentioned before. Thus, each

vertex has to know the originator to choose the corresponding list and adapt its behavior. It also

should maintain a significantly extensive list according to different originators. This is inefficient in

real-world networks due to the increased message bits and the need for larger local memory (Diks

& Pelc, 1996; J.-H. Kim & Chwa, 2005).

To handle the above-mentioned drawbacks, another variant of broadcasting is introduced (Diks

& Pelc, 1996; Rosenthal & Scheuermann, 1987). Suppose every network member is given a uni-

versal list, and it has to follow the list regardless of the originator. So, when a vertex v receives the

message, it should transmit the message to its neighbors following the ordering given in its list lv.

In this model, we drop the superscript in the notation of lv as the list is universal for all originators.

There are two sub-models defined using universal lists:

(1) Non-adaptive: Once a vertex v receives the message, it will re-transmit it to all the vertices on

its list, even if v has received it from some vertices of its list. The broadcast time of a graph

G following this model is denoted by Bna(G).

(2) Adaptive: Once informed, a vertex v will send the message to its neighbors according to its

list, but it will skip the neighbors from which it has received the message. The broadcast time

of a graph G following this model is denoted by Ba(G).

Considering graph G = (V,E) in which |V | = n, a broadcast scheme for non-adaptive or

adaptive models can be viewed as a matrix σn×∆, where row i of σ corresponds to an ordering of the
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neighbors of vertex vi. Assuming this vertex has degree di, the cells σ[i][di+1], σ[i][di+2], · · · , σ[i][∆]

will be NULL. By definition: ∆ = max{di : 1 ≤ i ≤ n}. We denote all possible schemes for a

graph G by Σ(G). When it is clear from the context, we may omit the subscript (G).

Let M be one of the two models using universal lists (M ∈ {na, a}) and fix a graph G. For any

broadcast scheme σ ∈ Σ, we denote by Bσ
M (v,G) the time steps needed to inform all the vertices

in G from the source v while following the scheme σ under model M . Moreover, the broadcast

time of a graph G under model M with scheme σ, Bσ
M (G), is defined as the maximum Bσ

M (v,G)

over all possible originators v ∈ V (G). Lastly, BM (G) is the minimum Bσ
M (G) over all possible

schemes σ ∈ Σ:

Bσ
M (G) = max

v∈V (G)
{Bσ

M (v,G)}

BM (G) = min
σ∈Σ

{Bσ
M (G)}

(2)

This problem was first discussed indirectly by Slater et al. (Slater et al., 1981). They proved

that for any tree T , Bcl(T ) = Ba(T ). However, the first formal definition of the problem of

broadcasting with universal lists was given in (Rosenthal & Scheuermann, 1987), where the authors

suggested an algorithm for constructing optimal broadcast schemes for trees under the adaptive

model. Afterward, Diks and Pelc (Diks & Pelc, 1996) distinguished between non-adaptive and

adaptive models and designed optimal broadcast schemes for cycles and grids under both models.

They also gave upper bounds for tori and complete graphs for adaptive and non-adaptive models.

The upper bounds for tori were improved in (Harutyunyan & Taslakian, 2004).

Later, Kim and Chwa (J.-H. Kim & Chwa, 2005) designed non-adaptive broadcast schemes for

paths and grids. They also developed upper bounds for complete graphs and hypercubes under

non-adaptive models. Finally, the lower and upper bounds for trees under the non-adaptive model

have tightened in (Harutyunyan, Liestman, Makino, & Shermer, 2011) as well as the upper bounds

on general graphs. The authors of (Harutyunyan et al., 2011) also proposed a polynomial-time

algorithm for finding Bna(T ) for any tree T .
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2.3 Messy broadcasting

This model, introduced in (Ahlswede et al., 1994), is similar to the universal list model, but

the network nodes have even more limited memory. In messy broadcasting, every informed vertex

randomly chooses a neighbor and sends the message. Thus, the goal is to study the worst behavior

of the network members. There are three sub-models defined for messy broadcasting:

(1) Model M1: Each vertex knows the state of its neighbors, informed or uninformed. Therefore,

once a vertex gets informed, it only has to send the message to its uninformed neighbors in

some arbitrary order.

(2) Model M2: Each vertex knows from which vertices it has received the message and considers

those as informed vertices. Thus, once vertex v gets informed, it will randomly send the

message to the neighbors who have not sent it to v before.

(3) Model M3: Each vertex only knows to which vertices it has sent the message and will consider

them as informed neighbors; all other neighbors are regarded as uninformed for this vertex.

Therefore, a vertex will send the message to all of its neighbors in an arbitrary order once it

gets informed.

The broadcast time of a vertex v under model Mi is denoted by ti(v), for i = 1, 2, 3, and it is

defined as the maximum number of time units required to complete broadcasting originating from

vertex v over all possible broadcast schemes. Also, the broadcast time of the graph G under model

Mi is denoted by ti(G), for i = 1, 2, 3, and is the maximum broadcast time of any vertex v of G.

The exact value of ti(G) for complete graphs, paths, cycles, and complete d-ary trees are known

for i = 1, 2, 3 (Harutyunyan & Liestman, 1998). Also, in (Comellas et al., 2003), multidimensional

directed tori and complete bipartite graphs are studied. Moreover, the average-case messy broad-

casting time of various networks such as stars, paths, cycles, complete d-ary trees, and hypercubes

are studied in (C. Li, Hart, Henry, & Neufeld, 2008).

13



2.4 Comparison among broadcasting models

In summary, the differences among these three broadcasting models are as follows: In the clas-

sical model, being the quickest among all, there exists an omniscient who knows the network’s

exact situation at every single unit of time. Therefore, it will guide network members to broadcast

as efficiently as possible while adapting their behavior according to the originator. This omniscient

may be considered as a network manager who is provided with sufficient memory for each node

and allows them to change their behavior depending on the originator.

In the universal list model, however, the network manager cannot behave as prodigal as in the

previous model since the memory is limited regarding each member. Therefore, the behavior of

all members, a.k.a, the universal lists, are to be set beforehand, and then, the broadcasting will be

performed according to the lists. Indeed, the network manager tries to minimize the broadcast time

of the network as much as possible.

In contrast, in messy broadcasting, no one monitors the network situation, and the members

will act randomly. Hence, the worst behavior of the network with respect to the broadcast time is of

interest.

2.5 Commonly used topologies

This section presents the details of some network topologies used throughout this study.

2.5.1 Path Pn

A path Pn is a graph on n vertices, V = {1, · · · , n}, and the following set of edges: E =

{(i, i+ 1)|1 ≤ i < n}. Pn has n− 1 edges, diameter of n− 1 and a maximum degree of 2. Also,

Bcl(Pn) = n− 1. Figure 2.1 portrays P5.

1 2 3 4 5

Figure 2.1: Path with n = 5
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2.5.2 Cycle Cn

A cycle Cn is a graph on n vertices, V = {1, · · · , n}, and the following set of edges: E =

{(i, i + 1)|1 ≤ i < n} ∪ {(1, n)}. Cn has n edges, diameter of ⌊n2 ⌋ and a maximum degree of 2.

Also, Bcl(Cn) = ⌈n2 ⌉. Figure 2.2 portrays C5.

1

2

3 4

5

Figure 2.2: Cycle with n = 5

2.5.3 Star Sn

A star Sn is a graph on n vertices, V = {1, · · · , n}, and the following set of edges: E =

{(i, n)|1 ≤ i < n}. Sn has n − 1 edges, a diameter of 2, and a maximum degree of n − 1. Also,

Bcl(Sn) = n− 1. Figure 2.3 portrays S6.

1

2

3 4

5
6

Figure 2.3: Star with n = 6

2.5.4 Complete graph Kn

A complete graph, a.k.a clique, Kn is a graph on n vertices, V = {1, · · · , n}, and all possible

edges. Kn has n(n−1)
2 edges, a diameter of 1, and a maximum degree of n − 1. Also, Bcl(Kn) =

⌈log n⌉. Figure 2.4 portrays K5.
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1

2

3 4

5

Figure 2.4: Complete graph with n = 5

2.5.5 Complete bipartite graph Km×n

A complete bipartite graph consists of two separate partitions; partition M with m nodes and

partition N with n nodes. A vertex in a partition is connected to all vertices in the other partition

but is not connected to any other vertex in the same partition. Subsequently, the degree of a node in

partition M equals n, whereas a node in partition N has exactly m neighbors. A complete bipartite

graph consists of m+ n vertices and m× n edges. Figure 2.5 shows K4×3
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Figure 2.5: Complete bipartite graph with m = 4, n = 3

2.5.6 Complete k−ary tree Tk,h

A k-ary tree is a rooted tree in which the number of children of each internal vertex is k. The

degree of the root is k, the degree of other internal vertices is k + 1, and the degree of a leaf is 1. A

complete k-ary tree, Tk,h, is a rooted k-ary tree in which all leaves are at the same level h. Tk,h has

kh+1−1
k−1 vertices, diameter of 2h, and maximum degree of k + 1. Figure 2.6 portrays T4,2.
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Figure 2.6: k−ary tree with k = 4, h = 2

2.5.7 Binomial tree Td

A binomial tree of dimension d, Td, has a recursive definition. T0 is the root of a tree with one

node, and Td consists of two copies of Td−1 in which an edge connects the root vertices. One of the

root vertices is randomly chosen as the new root of Td. A Td has 2d vertices, a diameter of 2d− 1,

and a maximal degree of d. Figure 2.7 shows T4, which consists of two copies of T3.

T3

T ′
3

Figure 2.7: Binomial tree with d = 4

2.5.8 Grid Gm×n

A two-dimensional Grid, Gm×n, is a planar graph whose vertices are assigned integer coordi-

nates (x, y). Two vertices are neighbors if they agree in one coordinate and differ by one in the

other. Gm×n has m columns and n rows, i.e. 1 ≤ x ≤ m and 1 ≤ y ≤ n. It is proved that

Bcl(Gm×n) = m + n − 2 (Farley & Hedetniemi, 1978). The diameter of Gm×n is also equal to

m+ n− 2. Figure 2.8 shows G4×3.
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Figure 2.8: Grid with m = 4, n = 3

2.5.9 Tori Tm×n

A torus Tm×n is a grid with m columns and n rows equipped with wraparound edges. For

instance, a vertex on the first column and ith row is also connected to the vertex on the last column

and ith row. Also, Bcl(Tm×n) = ⌊m2 ⌋ + ⌊n2 ⌋, if m and n are even, and ⌊m2 ⌋ + ⌊n2 ⌋ + 1 otherwise

(Farley & Hedetniemi, 1978). Figure 2.9 portrays T4×3.

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

(4, 1)

(4, 2)

(4, 3)

Figure 2.9: Torus with m = 4, n = 3

2.5.10 Hypercube Hd

The Hypercube Hd of dimension d has the following set of vertices: VHd
= {0, 1}d, in which

{0, 1}d denotes the set of binary strings with length d. Therefore, a vertex v ∈ VHd
could be

represented by α = a0a1 · · · ad−1, where ai ∈ {0, 1}, 0 ≤ i ≤ d− 1. The edges of Hd are denoted

by EHd
and it is formed as follows: A vertex α = a0a1 · · · ad−1 ∈ {0, 1}d is connected to α(i)

for each i ∈ {0, 1, · · · , d − 1}, where α(i) = a0a1 · · · ai−1āiai+1 · · · ad−1. Note that ā represents

the binary complement of a. We call α(i) the ith dimensional neighbour of α. Hd has 2d vertices,

d · 2d−1 edges, diameter d, and the broadcast time of d under the classical model is achieved as

follows: The originator learns the message at time 0. Each vertex α gets informed at time t ≤ d− 1
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and will call its neighbours α(t), · · · , α(d− 1) at time t+1, t+2, · · · , d, respectively. Figure 2.10

shows H3.

000 001

010 011

100 101

110 111

Figure 2.10: Hypercube with d = 3

2.5.11 Cube-Connected Cycle CCCd

The Cube Connected Cycle CCCd of dimension d is formed by replacing every vertex of a

d−dimensional Hypercube (Hd) with a cycle of length d. In particular, the set of vertices of a

CCCd is as follows: VCCCd
= {0, 1}d×{0, 1, · · · , d−1}, in which {0, 1}d denotes the set of binary

strings with length d. Thus, a vertex v ∈ VCCCd
is represented by a pair v = ⟨α, i⟩, α ∈ {0, 1}d,

and i ∈ {0, 1, · · · , d − 1}, α = a0a1 · · · ad−1, where ai ∈ {0, 1}, 0 ≤ i ≤ d − 1. The edges of

CCCd are of three types: For each i ∈ {0, 1, · · · , d − 1} and each α = a0a1 · · · ad−1 ∈ {0, 1}d,

the vertex ⟨α, i⟩ is connected with a Forward port: ⟨α, i+ 1 (mod d)⟩, a Backward port: ⟨α, i− 1

(mod d)⟩, and a Lateral port: ⟨α(i), i⟩, where α(i) = a0a1 · · · ai−1āiai+1 · · · ad−1. Note that ā

represents the binary complement of a. We call α(i) the ith dimensional neighbour of α. A CCCd

has d · 2d vertices, 3d · 2d−1 edges, diameter of ⌊5d2 ⌋ − 2 for any d > 3, and a broadcast time of

⌈5d2 ⌉ − 1 under the classical model. Figure 2.11 shows CCC3.

2.5.12 Shuffle Exchange SEd

The Shuffle-Exchange network SEd of dimension d has the following set of vertices: VSEd
=

{0, 1}d, which denotes the set of binary strings with length d. The edges of SEd are of two types:

shuffle edges (αa, aα), and exchange edges (αa, αā), where α ∈ {0, 1}k−1, a, ā ∈ {0, 1}, a ̸= ā.
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Figure 2.11: Cube-Connected Cycle with d = 3

The SEd has 2d vertices, a diameter of 2d−1, and a maximum degree of 3. Also, Bcl(SEd) = 2d−1

(Hromkovič et al., 1993). Figure 2.12 shows SE3.
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Figure 2.12: Shuffle Exchange network with d = 3

2.5.13 DeBruijn DBd

The DeBruijn network DBd of dimension d has the following set of vertices: VDBd
= {0, 1}d,

which denotes the set of binary strings with length d. The edges of DBd are of two types: shuffle

edges (αa, aα), and shuffle-exchange edges (aα, αā), where α ∈ {0, 1}k−1, a, ā ∈ {0, 1}, a ̸= ā.

The BDd has 2d vertices, a diameter of m, and a maximum degree of 4. The value of the classical

broadcast time of BDd is not known. The tightest bounds known are as follows: 1.3171d ≤

Bcl(BDd) ≤ 3
2(d+ 1) (Bermond & Peyrat, 1988; Klasing, Monien, Peine, & Stöhr, 1994). Figure

2.13 shows BD3.
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Figure 2.13: DeBruijn network with d = 3

2.5.14 Harary graph Hk,n

A Harary graph is defined by Frank Harary as follows (Harary, 1962):

(1) k is even: Let k = 2r. Then, H2r,n is constructed as follows: Given two positive integers n

and 2r with 2r ≤ n, draw an n−gon and label its points with 0, 1, · · · , n− 1. If |i− j| ≡ m

mod n, add an edge between i and j, where 1 ≤ m ≤ r. Figure 2.14 shows H4,12.
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Figure 2.14: Harary graph with k = 4, n = 12

(2) k is odd, n is even: Let k = 2r+1. Then, H2r+1,n is constructed by drawing H2r,n and then

adding edges by joining vertex i to vertex i+ n
2 for 0 ≤ i ≤ n

2 −1. Figure 2.15 shows H5,12.

(3) k and n are odd: Let k = 2r + 1. Then, H2r+1,n is constructed by drawing H2r,n and then

adding edges by joining vertex 0 to vertices n−1
2 and n+1

2 and vertex i to vertex i + n+1
2 for

0 < i < n−1
2 . Figure 2.16 shows H5,13.

In all cases, n is sufficiently greater than k. Hk,n is a k-connected graph on n vertices with a degree
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Figure 2.15: Harary graph with k = 5, n = 12
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Figure 2.16: Harary graph with k = 5, n = 13

of at least k and ⌈kn2 ⌉ edges. The problem of broadcasting in this family of networks and graphs

similar to Harary graphs are studied in (Bhabak et al., 2017, 2014).

22



Chapter 3

Optimal Broadcasting in Fully

Connected Trees

3.1 Introduction

This chapter presents an optimal algorithm for Fully Connected Trees (FCTn). A Complete

graph Kn is a graph with n vertices and all possible edges. A tree T is a connected acyclic graph in

which there exists exactly one path between any two vertices. An FCTn is constructed using these

two families:

Notation 3.1.1. The vertices and the edges of a complete graph Kn are denoted by VKn = {1, 2, 3,

· · · , n}, and EKn = {(i, j)|i ̸= j and i, j ≤ n}, respectively.

Notation 3.1.2. Consider n trees with their corresponding roots. We denote the trees by Ti =

(Vi, Ei) where 1 ≤ i ≤ n, and the roots by: {1, 2, 3, · · · , n}. The set of vertices and edges of all

trees are denoted by VT and ET , respectively:

VT =

n⋃
i=1

Vi

ET =

n⋃
i=1

Ei

(3)
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id(i)

Figure 3.1: A Fully Connected Tree FCTn

Definition 3.1.1. Consider a complete graph Kn in a way that each vertex is the root of a tree, the

resulting graph is called a Fully Connected Tree of size n or FCTn = (V,E) in which V = VT

and E = ET ∪ EKn .

Definition 3.1.2. The members of the set V ∩ VKn are called root vertices, while the vertices in

V \VKn are referred to as tree vertices.

Notation 3.1.3. Each tree Ti consists of d(i) sub-trees rooted at i1, · · · , id(i) where d(i) is the

number of children of vertex i in the tree Ti i.e. d(i) = di − n− 1, where di is the degree of vertex

i. These sub-trees are called Ti1 , · · · , Tid(i) such that Bcl(i1, Ti1) ≥ · · · ≥ Bcl(id(i), Tid(i)).

These definitions and notations are shown in Figure 4.1.

The result of this chapter is an extension of the conference paper (Harutyunyan & Maraachlian,

2009a), which briefly presented a O(|V | log |V |) algorithm for finding the broadcast time of a Fully
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Connected Tree without giving proof of correctness. The main contribution of this chapter is as

follows. We propose the algorithm’s details that find the exact broadcast time of a vertex in an

FCTn. This enables us to give a non-trivial proof of the correctness of the algorithm, which was

not given in (Harutyunyan & Maraachlian, 2009a). We also improve the complexity and obtain

a O(|V | log log n) time algorithm to calculate the broadcast time of an arbitrary originator in an

FCTn.

The remainder of this chapter is organized as follows: In the next Section, we present a broadcast

algorithm for fully connected trees where the originator is a root vertex. We also prove the algo-

rithm’s correctness and analyze its complexity. In Section 3.3, we consider the broadcast problem

where the originator is a tree vertex.

3.2 A Broadcast Algorithm for Root Vertices

This section considers the broadcast problem in an FCTn when the originator is a root vertex.

We first establish lower and upper bounds on the broadcast time:

Lemma 3.2.1. The broadcast time of an arbitrary root vertex u in an FCTn is bounded as follows

(1 ≤ i ≤ n):

max
{
⌈log n⌉,max{Bcl(i, Ti)}

}︸ ︷︷ ︸
lb

≤ Bcl(u, FCTn) ≤ ⌈log n⌉+max{Bcl(i, Ti)}︸ ︷︷ ︸
ub

(4)

Proof. For the upper bound (ub), a trivial algorithm for broadcasting in an FCTn suggests complet-

ing the broadcasting within the complete graph in the first ⌈log n⌉ time units. Afterward, all root

vertices may start the broadcasting within their trees simultaneously, which will not take more than

max{Bcl(i, Ti)} time units. Hence, Bcl(u, FCTn) ≤ ⌈log n⌉+max{Bcl(i, Ti)}.

To prove the lower bound (lb), note that any algorithm for this problem must broadcast in

the complete graph and all the trees. Regardless of the algorithm’s procedure, it has to spend at

least ⌈log n⌉ time units for the complete graph while informing all trees is impossible in less than

max{Bcl(i, Ti)} time units. Thus, Any broadcast algorithm has to respect those bounds, resulting

in a lower bound of Bcl(u, FCTn) ≥ max
{
⌈log n⌉,max{Bcl(i, Ti)}

}
.
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3.2.1 Broadcast Algorithm

We reduce the problem of finding the broadcast time of a root vertex u in an FCTn to a problem

in which the aim is to study the feasibility of finishing the broadcasting in an FCTn in τ time units

starting from a particular root vertex, such as u. Based on Lemma 3.2.1, this problem must be

solved only when lb ≤ τ ≤ ub. Otherwise, if τ < lb, it is impossible to find a broadcast scheme,

and when τ > ub, a trivial algorithm works. Having proposed an algorithm for the aforementioned

problem, we solve the main problem with another algorithm that utilizes a method similar to the

binary search for the interval of Equation (4). These algorithms are called BSearch and BRτ , which

will be discussed in detail.

BRτ takes a Fully Connected Tree FCTn, an originator u, and a candidate broadcast time τ .

It is supposed to return TRUE if br(u, FCTn) ≤ τ , and FALSE otherwise. In other words, only if

BRτ finds a broadcast scheme that completes the message distribution in the input FCTn within

τ time units will it return TRUE. If the output of BRτ for a particular τ is FALSE, it means that

Bcl(u, FCTn) > τ . So, we need to invoke the algorithm for a larger value of τ in order to succeed.

However, in the case of TRUE output, one can conclude that Bcl(u, FCTn) ≤ τ . In order to argue

the exact broadcast time, not only should BRτ return TRUE for τ , but it must also output FALSE

for τ − 1.

Instead of going over all the possible values of Equation (4) as the candidate broadcast time τ ,

BSearch is deployed. It follows a similar procedure to binary search to reduce the size of the range

iteratively. A pseudo-code for BSearch is provided in the Algorithm 1. We start from the mid-point

of lb and ub. If a broadcast scheme is founded, the search will continue on the lower half with the

updated upper bound; otherwise, we will search the other half while updating the lower bound. The

initial call for this algorithm is BSearch(FCTn, u, lb, ub) where lb and ub come from Equation (4).

BRτ that is invoked throughout Algorithm 1 is described hereafter.

The first step of BRτ is to assign weights to every root vertex of the fully connected tree, w(i, t),

and calculate mij ’s (1 ≤ i ≤ n, 1 ≤ j ≤ d(i)) (Line 1 in Algorithm 2). These weights are the labels

that the algorithm in (Slater et al., 1981) assigns to the vertices of a tree. If vertex i does not have any

uninformed children in Ti, then its weight is zero because i can do nothing to speed up the broadcast
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Algorithm 1 The modified Binary Search algorithm BSearch(FCTn, u, lb, ub)

Input: FCTn = (V,E), originator u, lower bound lb, and upper bound ub.
Output: Broadcast time τ such that τ = Bcl(u, FCTn)

1: t = lb+ ⌊ub−lb
2 ⌋;

2: if lb == ub then
3: if BRτ (FCTn, u, lb) then
4: return lb
5: end if
6: end if
7: if lb+ 1 == ub then
8: if BRτ (FCTn, u, lb) then
9: return lb

10: end if
11: if !BRτ (FCTn, u, lb) and BRτ (FCTn, u, ub) then
12: return ub
13: end if
14: end if
15: if BRτ (FCTn, u, t) then
16: return BSearch(FCTn, u, lb, t)
17: else
18: return BSearch(FCTn, u, t, ub)
19: end if

process in Ti. Whereas, if i has one or more uninformed children, its weight will equal the time

needed to complete the broadcasting in its sub-trees. The weight of each root vertex i is initialized

to the broadcast time, so for t = 0; w(i, t) = Bcl(i, Ti). Additionally, mij is the time needed to

finish the broadcasting in Tij originating at tree vertex ij , mij = Bcl(ij , Tij ). Note that using the al-

gorithm provided in (Slater et al., 1981) for a root vertex i, its children i1, · · · , id(i) will be arranged

in a way that mi1 ≥ · · · ≥ mid(i) . Thus, for t ≥ 1, w(i, t) could be calculated by its corresponding

mij labels utilizing the logic provided in (Slater et al., 1981): w(i, t) = max1≤j≤d(i)(j + mij ).

Also, the set of informed vertices (VI) and uninformed vertices (VU ) are initialized at the beginning

of the algorithm. Lastly, assuming u is the originator, lu is set to NULL (Line 2 in Algorithm 2).

Another label that is defined for a root vertex i is li, which is the remaining time for an un-

informed root vertex i until it must get informed; otherwise, it will not be able to inform its tree

vertices in τ time units. This label is assigned to: li = τ − t − w(i, t) − 1. The logic behind this

definition is simple: the total remaining time is τ − t. However, it will take w(i, t) time units to
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complete the broadcasting in Ti. Besides, since in a complete graph, the distance between any pair

of vertices is 1, it will take exactly a single unit of time to send the message to i, regardless of prior

knowledge about the set of informed vertices. We set ∀i ∈ VI : li=NULL. But the value of li will

be updated for all uninformed root vertices at each time unit based on the definition. Clearly, an

uninformed root vertex with a smaller value of li has a higher priority and must be informed before

other uninformed root vertices. It should be mentioned that for any i ∈ VU if li < 0 at any time

unit, i cannot complete broadcasting in τ time units within its tree Ti.

At each time unit t, 0 ≤ t ≤ τ , all vertices of the FCTn are considered for performing the most

appropriate action. If at some point, a root vertex notices that τ is not enough for completing the

broadcasting in the graph, the algorithm terminates and outputs FALSE. If that does not happen, we

will continue the message-passing process, and each informed vertex will communicate to one of its

uninformed neighbors. This process will continue as long as all vertices of the FCTn are informed

or a vertex interrupts the execution with a FALSE output.

During each time unit t, if the considered vertex v is an uninformed root vertex, we only update

the value of lv (Line 6 in Algorithm 2). On the other hand, if v is already informed, the algorithm

has to decide on the action that v must take. If v is a tree vertex, the optimal decision is to follow

the well-known broadcast algorithm in trees (Slater et al., 1981) (Lines 29-31 of Algorithm 2).

However, when v is a root vertex, there are two options to choose from: Either to send the message

to its tree Tv or to contribute to the complete graph Kn and send the message to an uninformed root

vertex. In the following, we discuss how to choose between these two options:

(1) If w(v, t) = 0, it means that vertex v does not have uninformed children in Tv. In this case, v

should inform an uninformed root vertex with the lowest value of li, if such vertex exists,

(2) If w(v, t) > 0, v should choose between the two mentioned options. This is done by compar-

ing the time needed to inform the uninformed tree attached to it, w(v, t), with the remaining

time τ − t:

• If w(v, t) < τ − t, it means that v still has more than enough time to complete the

broadcasting within its tree. Therefore, it informs another uninformed root vertex with

the smallest value of li if such vertex exists (Lines 13-14 of Algorithm 2). If not, v
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Algorithm 2 The broadcast algorithm BRτ (FCTn, u, τ)

Input: FCTn = (V,E), originator u, candidate broadcast time τ .
Output: FALSE if τ cannot be the broadcast time, TRUE if broadcasting can be accomplished

in at most τ time units.
1: Initialize: the labels w(i, t) and mij for all root vertices;
2: Initialize: VI = {u}, VU = V \VI , lu =NULL;
3: for each t such that 0 ≤ t ≤ τ − 1 do
4: for each v ∈ VU do
5: if v is a root vertex then
6: update lv as follows: lv = τ − t− w(v, t)− 1;
7: end if
8: end for
9: for each v ∈ VI do

10: if v is a root vertex then
11: if w(v, t) < τ − t then
12: if there exists at least one uninformed root vertex then
13: v informs vertex j at time t such that j has the smallest value of lα in VU ;
14: lj=NULL, VI = VI ∪ {j}, VU = VU\{j};
15: else
16: v stays idle;
17: end if
18: else
19: if w(v, t) = τ − t then
20: v informs one of its children which has the highest value of mvj in the
21: tree rooted at Tv, 1 ≤ j ≤ d(v);
22: mvj=NULL, VI = VI ∪ {vj}, VU = VU\{vj};
23: update w(v, t) = max1≤k≤d(v){k +mvk};
24: else
25: return FALSE;
26: end if
27: end if
28: else
29: v informs a tree vertex vT in the uninformed sub-tree rooted at v based on the
30: well-known broadcasting algorithm in trees;
31: VI = VI ∪ {vT }, VU = VU\{vT };
32: end if
33: end for
34: end for
35: return TRUE;

remains idle until time unit t′ for which τ − t′ = w(v, t′) (Line 16 of Algorithm 2).

• If w(v, t) = τ − t then v has to inform one of its children within its tree Tv according to
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the broadcast algorithm in trees. This vertex must have the highest value of mvj in all

sub-trees rooted at v, 1 ≤ j ≤ d(v) (Lines 20-23 of Algorithm 2).

• Finally, if w(v, t) > τ − t, it means that τ cannot be the broadcast time since v is not

able to finish the broadcasting even within its tree Tv. So, the algorithm returns FALSE

(Line 25 of Algorithm 2).

The details of algorithm BRτ are presented in Algorithm 2. It is worth mentioning that when

several root vertices have the same value of li, the algorithm randomly chooses a vertex to proceed.

It means that either there are several optimal broadcast schemes or broadcasting cannot be finished

with the given τ . Lastly, we describe the operations carried out by BRτ with a small example.

Consider a fully connected tree with 5 trees, Ti where 1 ≤ i ≤ 5. The originator is vertex 1, the

root of the tree T1, and the candidate broadcast time is given as τ = 6.

Figure 6.1 represents the graph and the whole series of calls made throughout the time t = 1

till t = 6. In the following, it is described how the algorithm initiates each call. In the beginning,

since w(1, 0) = τ − t = 6, vertex 1 cannot do anything but inform one of its children based on

the broadcasting algorithm in trees. Afterward, the labels are updated, as can be seen in Table 7.1.

The changes of the labels compared to that of t = 0 are shown with crossed lines. Firstly, at this

time unit, m11 will be set to NULL since the root of T11 is already informed. Then, w(1, t) will be

updated. Moreover, li should be recalculated for all the root vertices in VU .

At time t = 2, vertex 1 has to decide on its next call. Since w(1, t) < τ − t, this vertex does

not need to continue broadcasting within its tree for now. However, it must choose one of the root

vertices with the smallest value of li. Based on Table 7.1, it selects vertex 2 for continuing the

process. After this call, the labels must be updated again. The only changes are as follows: l2 will

be set to NULL since vertex 2 is already informed. Also, l3, l4, and l5 decrease by 1 and are set to

1,3 and 0, respectively. The rest of the table remains the same.

At time t = 3, vertices 1 and 2 should decide on their next call. Since w(1, t) < τ − t, vertex 1

continues to broadcast within the complete graph. It chooses 5 since it has the minimum value of li.

But w(2, t) = τ − t, so vertex 2 will broadcast within its tree. This process will continue until all

the vertices of the mentioned graph are informed within τ = 6 time units (See Figure 6.1). Hence,
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Figure 3.2: A fully connected tree FCT5 with 5 trees Ti rooted at i, 1 ≤ i ≤ 5, and the originator
vertex 1. The series of calls are shown with colorful arrows.

Labels after t = 1

root vertex i w(i, t) mi1 mi2 mi3 mi4 li
1 �6 2 �5 - 1 - - -
2 4 0 0 0 0 �1 0
3 2 0 0 - - �3 2
4 0 - - - - �5 4
5 3 2 1 0 - �2 1

Table 3.1: The labels for the example graph after t = 1

it is concluded that Bcl(1, FCT5) ≤ 6. To argue whether Bcl(1, FCT5) = 6 or not, Algorithm 1

has to run on the lower and upper bound of the broadcast time of the example graph. Since time

τ = 6 matches the lb for this graph, one may conclude that Bcl(1, FCT5) = 6.

It should be noted that the way the algorithm is presented in (Harutyunyan & Maraachlian,

2009a) fails to inform all the vertices of this example in 6 time units starting from 1. This is because

a root vertex i will not stop broadcasting within Ti unless all of its children in Ti are informed. It

means that for the graph illustrated in Figure 6.1, vertex 1 will initiate two calls to its children in the

first and the second time units since w(1, 0) = τ − t. At time t = 3, however, since w(2, t) > τ − t,

the algorithm concludes that the time τ = 6 is not enough for broadcasting in FCT5 and returns

FALSE.

The same pattern will happen for FCTn’s, which have a huge sub-tree with a large broadcast

time rooted at i1, and many small sub-trees rooted at ij’s (1 < j ≤ d(i)). The algorithm in
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(Harutyunyan & Maraachlian, 2009a) will complete the broadcasting in Ti, while it is not necessary

to inform all ij’s at the first d(i) time units, since w(i, t) could decrease significantly as soon as i1

is informed (as an example, note that in Table 7.1, w(1, t) decreases from 6 to 2 with only one call

within T1). The optimal decision for vertex i is to inform i1 at time t = 1, and afterward, it could

forget about i2, · · · , id(i) for some time units and come back to its sub-trees only when necessary.

3.2.2 Proof of Correctness

This section proves the correctness of the =broadcast algorithm presented earlier. We do so by

establishing two statements: first, if BRτ (FCTn, u, τ) outputs TRUE, there is a broadcast scheme

in which all the vertices of the FCTn are informed within τ time units, and the algorithm finds this

scheme (Theorem 3.2.1). Secondly, if the algorithm outputs FALSE, it is impossible to inform all

vertices of FCTn within τ time units using any other broadcast scheme originating from vertex u

(Theorem 3.2.2). From Theorems 3.2.1 and 3.2.2, one can conclude the correctness of the proposed

algorithm.

Theorem 3.2.1. If Algorithm 2, BRτ (FCTn, u, τ), outputs TRUE, then, Bcl(u, FCTn) ≤ τ .

Proof. It is enough to show that when Algorithm 2 outputs TRUE, then ∀i : 1 ≤ i ≤ n, vertex

i receives the message at time t′i where w(i, t′i) ≤ τ − t′i. It immediately follows that all the root

vertices have received the message when it is enough for them to inform all of their tree vertices

within the remaining time τ − t′i.

In Algorithm 2, the output is TRUE when the FALSE condition has not happened during 0 ≤

t ≤ τ −1. In other words, when a root vertex i is not in a situation where w(i, t) > τ − t (following

the pseudo-code of Algorithm 2 at line 25). Thus, it is easy to see that when BRτ outputs TRUE, it

gives a broadcast scheme in which all the root vertices are provided with enough time to complete

the broadcasting within their corresponding sub-trees. When all the root vertices are informed, and

they have enough remaining time to inform all their children, it is concluded that the broadcasting

is completed in the FCTn. Therefore, the broadcast scheme generated by Algorithm 2 is a valid

broadcast scheme for the originator u in the input graph FCTn.

Now, it will be proved that if the proposed algorithm outputs FALSE, no other algorithm can

32



complete the broadcasting within τ time units.

Assume an infinitely large complete graph is given for studying the broadcasting from one of its

vertices. Denote the set of informed vertices at time t by Nt. The goal is to calculate the number of

informed vertices at time t+∆ with two conditions:

(1) There are α different vertices (out of Nt) that will stay idle for one time unit. In other words,

these vertices will not inform a new vertex in the complete graph during one time unit.

(2) The idle time unit can be anytime in the time interval [t, t+∆] where ∆ is any positive integer.

Lemma 3.2.2. The number of informed vertices at time t + ∆ will be maximized if all of the α

vertices choose to remain idle at time t+∆.

Proof. First, assume one vertex is idle at time t + r, where r ∈ [0,∆] during broadcasting. Then,

the total number of informed vertices at time t+∆ and before is calculated as shown in Table 3.2.

Note that the number of informed vertices will double during time units t, · · · , t + ∆, except for

time t+ r.

time number of informed vertices
t |Nt|

t+ 1 2|Nt|
t+ 2 22|Nt|
· · · · · ·

t+ r − 1 2r−1|Nt|
t+ r 2r−1|Nt|+ 2r−1|Nt| − 1 = 2r|Nt| − 1

t+ r + 1 2(2r|Nt| − 1) = 2r+1|Nt| − 2
· · · · · ·

t+ r + i 2i(2r|Nt| − 1) = 2r+i|Nt| − 2i

· · · · · ·
t+∆− 1 2∆−1−r(2r|Nt| − 1) = 2∆−1|Nt| − 2∆−1−r

t+∆ 2∆|Nt| − 2∆−r

Table 3.2: The changes in the number of informed vertices following Lemma 3.2.2.

Now the general case is considered, when the α vertices decide to stay idle at the time units

t + t′1, · · · , t + t′α, where 0 ≤ t′j ≤ ∆ for j = 1, · · · , α. Then the number of informed vertices at

time t +∆ is |Nt+∆| = 2∆|Nt| − 2∆−t′1 − · · · − 2∆−t′α . Observe that |Nt+∆| will be maximized
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when t′j = ∆ for all 1 ≤ j ≤ α, which is equal to 2∆|Nt| − α. Therefore, the number of informed

vertices will be maximized if all of those α vertices choose to remain idle at the last time unit.

It is worth pointing out the relevance of Lemma 3.2.2 to the problem of broadcasting in fully

connected trees. The idle time unit of a vertex in the above lemma could correspond to a root vertex

either spending one time unit informing a tree vertex or remaining idle. Consequently, Lemma

3.2.2 will be used for showing that it is necessary for a root vertex to avoid broadcasting within its

sub-tree or even staying idle any time sooner than t = τ −w(i, t). In other words, as long as a root

vertex i is able to delay the start of broadcasting within its subtree Ti, it must do it and continue the

broadcasting in the complete graph.

Lemma 3.2.3. Consider an arbitrary FCTn and fix the originator u. Assume that Bcl(u, FCTn) =

τ . If under broadcast scheme Sτ , a root vertex i informs a tree vertex ij at time t1, then under any

other scheme S in the same graph achieving broadcast time τ , it is necessary to inform vertex ij by

the time t1.

Proof. Denote the broadcast time of originator u in FCTn under broadcast scheme S by BclS (u, FCTn).

Based on the proposed algorithm, an informed root vertex i has 2 options in each time unit t1: if

w(i, t1) < τ − t1 then it informs another root vertex, while if w(i, t1) = τ − t1, the root vertex i

informs a tree vertex with the maximum value of mij . This tree vertex is denoted by ij . Let ij be in-

formed at time t′ under broadcast scheme S. The goal is to show that when w(i, t1) = τ− t1, vertex

ij must have been informed by the time t′ ≤ t1 in any other scheme S with BclS (u, FCTn) ≤ τ .

By contradiction, suppose that t′ > t1, meaning that vertex i initiates a call to inform vertex ij

under broadcast scheme S at time t′ > t1. Firstly, note that since the proposed algorithm chooses

the tree vertex with the maximum value of mij at each time unit, it is concluded that the sub-tree

Tij has the biggest weight among all sub-trees with uninformed root vertices in Ti. Hence, for

decreasing the value of w(i, t) for any t, one needs to initiate a call from i to ij . Furthermore, at

time t1, w(i, t1) = τ − t1. Clearly, for any t > t1, τ − t1, or the remaining time, decreases, while

w(i, t1), or the time needed to finish broadcasting within Ti remains the same unless a call is made

from i to ij . This is because vertex ij was not informed by the time t1. Thus, broadcasting cannot

finish in τ time units under the broadcast scheme S , or BclS (u, FCTn) > τ . This contradicts the
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assumption.

Therefore, it is concluded that when at time t1 a call is initiated from a root vertex to a tree vertex

in Sτ , any broadcast scheme S must have informed that particular vertex not later than t1.

Definition 3.2.1. The set of informed root vertices by the time t under the broadcast scheme S is

denoted by Vt(S).

Lemma 3.2.4. Assume Bcl(u, FCTn) = τ . Let Sopt be an optimum broadcast scheme different

than Sτ . Then, at any time t, |Vt(Sτ )| ≥ |Vt(Sopt)|.

Proof. This lemma will be proved by induction on t. For the base case, one can easily argue that

|V0(Sτ )| ≥ |V0(Sopt)| since at time t = 0 only the originator is informed in both schemes. Now,

assume |Vi(Sτ )| ≥ |Vi(Sopt)|, it should be proved that |Vi+1(Sτ )| ≥ |Vi+1(Sopt)|. The set Vi(Sτ )

could be broken down into three disjoint sets:

(1) V Kn
i (Sτ ): the set of informed root vertices that have to inform another root vertex at time i

following scheme Sτ .

(2) V T
i (Sτ ): the set of informed root vertices that have to inform a tree vertex at time i following

scheme Sτ . The set of tree vertices that are informed by a call from the members of V T
i (Sτ )

will be denoted by V T ′
i (Sτ ). Observe that all the vertices in V T ′

i (Sτ ) are tree vertices, hence,

there is exactly one vertex in V T
i (Sτ ) that initiated a call to inform each particular vertex of

V T ′
i (Sτ ). Therefore, |V T

i (Sτ )| = |V T ′
i (Sτ )|.

(3) V idle
i (Sτ ): the set of informed root vertices that remained idle at time i following scheme Sτ .

The definitions are shown in Figure (3.3). In this figure, vertices j, m, and p form V T
i (S) as

they broadcast within their corresponding trees, and the vertices that are informed by a call from the

members of V T
i (S) are those which belong to V T ′

i (S). Vertices 1 and n belong to V Kn
i (S) since

they contribute to the complete graph. Vertices k and f remain idle, so they form V idle
i (S).

Using the same notation, Vi(Sopt) could be broken down into three disjoint sets: V Kn
i (Sopt),

V T
i (Sopt), and V idle

i (Sopt). The cardinality of the aforementioned sets is as follows:
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Figure 3.3: A Fully Connected Tree FCTn, and a series of calls at time i under an arbitrary broad-
cast scheme S.

|Vi(Sτ )| = |V Kn
i (Sτ )|+ |V T

i (Sτ )|+ |V idle
i (Sτ )|,

|Vi(Sopt)| = |V Kn
i (Sopt)|+ |V T

i (Sopt)|+ |V idle
i (Sopt)|.

(5)

At time i + 1 under Sτ , the vertices of V Kn
i (Sτ ) will double, and the rest of the informed root

vertices will remain informed. Thus:

|Vi+1(Sτ )| = |V T
i (Sτ )|+ |V idle

i (Sτ )|+ 2× |V Kn
i (Sτ )|

based on (5)−−−−−−→

|Vi+1(Sτ )| = |V T
i (Sτ )|+ |V idle

i (Sτ )|+ 2×
(
|Vi(Sτ )| − |V T

i (Sτ )| − |V idle
i (Sτ )|

)
−→

|Vi+1(Sτ )| = 2× |Vi(Sτ )| − |V T
i (Sτ )| − |V idle

i (Sτ )|

(6)

Similarly, the number of informed root vertices at time i+1 under Sopt is calculated as follows:

|Vi+1(Sopt)| = 2× |Vi(Sopt)| − |V T
i (Sopt)| − |V idle

i (Sopt)| (7)
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Now we calculate the difference between the number of informed root vertices in both schemes

at time i+ 1:

|Vi+1(Sτ )| − |Vi+1(Sopt)| =

2×
(
|Vi(Sτ )| − |Vi(Sopt)|︸ ︷︷ ︸

(1)

)
+
(
|V T

i (Sopt)| − |V T
i (Sτ )|︸ ︷︷ ︸

(2)

)
+

(
|V idle

i (Sopt)| − |V idle
i (Sτ )|︸ ︷︷ ︸

(3)

)
(8)

In Equation (8), term (1) is non-negative based on the inductive hypothesis. We must show that

terms (2) and (3) are non-negative. By Lemma 3.2.3, all the vertices of V T ′
i (Sτ ) must be informed

by any other broadcast scheme (including Sopt) by the time t′ where t′ ≤ i. Two cases may arise:

(1) All of the vertices in V T
i (Sτ ) broadcast within their trees under Sopt at time t′ = i: it

immediately follows that V T
i (Sτ ) ⊆ V T

i (Sopt), and, |V T
i (Sopt)| ≥ |V T

i (Sτ )|.

(2) Some (or all) of the vertices in V T
i (Sτ ) have completed the broadcasting within their

trees in Sopt at time t′ < i: in our broadcast algorithm, we force all root vertices to broad-

cast within their trees at the latest possible time, or when τ − t = w(i, t). Based on the

aforementioned argument, any optimal broadcast scheme, including Sopt, has to follow the

same pattern; otherwise, it will not be an optimized scheme. Hence, none of the vertices in

V T
i (Sτ ) are allowed to complete the broadcasting within their trees in a time t′ < i. There-

fore, by Lemma 3.2.2, Sopt cannot be an optimal scheme which contradicts the hypothesis of

this lemma.

From these cases it is concluded that |V T
i (Sopt)| ≥ |V T

i (Sτ )|, so the second term in Equation (8)

is also non-negative. Lastly, observe that using a similar argument, |V idle
i (Sopt)| ≥ |V idle

i (Sτ )| due

to Lemma 3.2.2. Therefore, the third term in Equation (8) is non-negative as well. Consequently,

|Vi+1(Sτ )| − |Vi+1(Sopt)| ≥ 0 or |Vi+1(Sτ )| ≥ |Vi+1(Sopt)|.

Theorem 3.2.2. Given a graph FCTn, an originator u, and a time τ , if BRτ (FCTn, u, τ) returns

FALSE then Bcl(u, FCTn) > τ .

Proof. Assume by contradiction that there exists a scheme S such that all the vertices of FCTn

are informed within τ time units. Since BRτ (FCTn, u, τ) returned FALSE, then following our
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algorithm BRτ , there was a root vertex j which got informed at time t and w(j, t) > t − τ . Since

our algorithm informs root vertices with the highest weights first, we are guaranteed that at any

time, including time t − 1, the set of informed root vertices of the broadcast scheme Sτ , denoted

by Vt−1(Sτ ), all have weights greater than or equal to w(j, t). Since S is a broadcast scheme with

broadcast time τ , all the vertices in Vt−1(Sτ ) should be informed at time t− 1 and should be part of

the set Vt−1(S) because all of these vertices have weights greater than the remaining time. Therefore

we conclude that Vt−1(Sτ ) ⊆ Vt−1(S).

On the other hand, S, being a broadcast scheme, should have informed vertex j at time t− 1 or

earlier, since it has a weight greater than τ − t, or w(j, t− 1) > τ − t. Therefore we can conclude

that Vt−1(Sτ ) ⊂ Vt−1(S) and |Vt−1(Sτ )| < |Vt−1(S)| which contradicts Lemma 3.2.4. Therefore,

it is concluded that such a scheme S cannot exist if BRτ (FCTn, u, τ) returns FALSE.

3.2.3 Complexity Analysis

This section will study the complexity of the algorithms proposed in this chapter. Firstly, note

that BSearch(FCTn, u, lb, ub) does a binary search for the broadcast time in the range of Equation

(4) in Lemma 3.2.1. The complexity of a binary search algorithm is O(logN) where N is the

number of values in the range that is being searched in. In our algorithm N = ub − lb. Secondly,

every time verifying if a certain value in the range is less than, greater than, or equal to the desired

value, the BRτ (FCTn, u, τ) has to be executed. Hence, the complexity of Algorithm 1 is:

O(Algorithm 2)×O(log(ub− lb)) (9)

We need to calculate each part now. First observe that from Lemma 3.2.1:

ub− lb = ⌈log n⌉+max{Bcl(i, Ti)} −max
{
⌈log n⌉,max{Bcl(i, Ti)}

}
−→

ub− lb = min
{
⌈log n⌉,max{Bcl(i, Ti)}

}
≤ ⌈log n⌉

(10)

Therefore, ub− lb ∈ O(log n), where n is the number of vertices in the complete graph Kn.

Now, assume that |V | is the number of vertices of the graph FCTn. BRτ (FCTn, u, τ) can
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calculate its decision in a linear time because every root vertex has to calculate its weight and com-

pare it with the remaining time. Once the weights are calculated at the beginning of the algorithm,

updating the weights at every new time unit can be done in a constant time. Also, initializing the

weights at the beginning of the algorithm is a linear operation in terms of the number of vertices in

the graph because the tree broadcast algorithm runs in linear (Slater et al., 1981). Also, note that

every root vertex has to calculate its weight and compare it with the remaining time. The number

of times the weight of a root vertex changes is equal to the number of children a root vertex has in

the tree attached to it. Therefore, the number of comparisons needed before one of the root vertices

makes a decision is, at most, the total number of vertices that the root vertices have. This number is

a linear function of the total number of vertices. Therefore, it is concluded that Algorithm 2 has a

complexity of O(|V |).

This implies that BSearch(FCTn, u, lb, ub) has a complexity of O(|V | log log n).

3.3 A Broadcast Algorithm for Tree Vertices

This section aims to provide an algorithm for finding the broadcast time of FCTn when the

originator is a tree vertex.

3.3.1 Broadcast Algorithm

Assume the originator is vertex v, an arbitrary tree vertex. There is a unique path connecting v

to the closest root vertex. We denote this path by P and the root vertex by i. The neighbor vertex

of i on path P is also denoted by ij which is the root of sub-tree Tij . Indeed, vertex v is located on

Tij . Besides, imagine vertex v has k neighbors, denoted by u1, · · · , uk, and one of these vertices is

on path P and is denoted by ui. Furthermore, we denote by T ′
i vertex i and all its sub-trees rooted

at im,m ̸= j, 1 ≤ m ≤ d(i). Clearly, Ti = T ′
i ∪ Tij . Figure 3.4 illustrates these definitions.

We first build a new Fully Connected Tree, FCT ′
n, by replacing Ti by T ′

i . In other words, the

tree Tij is removed from FCTn. Then, the algorithms provided in the previous section are used

to broadcast in FCT ′
n starting from vertex i. This gives a broadcast tree T ′, which are the calls

made during broadcasting from vertex i in the graph FCT ′
n. Now, a tree T is constructed by joining
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Figure 3.4: The position of vertex i and the sub-trees rooted at i. The originator, v, is located in
Tij . We denote the rest of the sub-trees rooted at im : m ̸= j, 1 ≤ m ≤ d(i) as T ′

i , in a way that
Ti = Tij ∪ T ′

i .

T ′ and Tij using the bridge (i, ij). The last step is to broadcast from vertex v in tree T using the

well-known algorithm for broadcasting in trees (Slater et al., 1981) and output the broadcast time.

The details of this algorithm are provided in Algorithm 3.

3.3.2 Proof of Correctness

Theorem 3.3.1. Algorithm 3 generates the optimal broadcast time for a tree vertex in an arbitrary

FCTn.

Proof. The correctness of Algorithm 3 could be proved using the following theorem from (Haru-

tyunyan & Maraachlian, 2009b):

Theorem 4 of (Harutyunyan & Maraachlian, 2009b): Consider a graph H with a

bridge (v1, v2) which divides H into two components H1 and H2. Let the graph H ′

be constructed from H such that the broadcast tree of the originator v2 in H2 sub-

stitutes the graph H2. For any originator vo in H1 the broadcast time Bcl(vo, H) =

Bcl(vo, H
′).
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Algorithm 3 The broadcast algorithm BRT (FCTn, v)

Input: FCTn = (V,E), originator v.
Output: Bcl(v, FCTn)

1: P = The path connecting v to a root vertex in FCTn;
2: i = The root vertex, ij = The neighbor of i on P ;
3: Construct FCT ′

n = (V ′, E′) as follows V ′ = V \V (Tij ) and E′ = E\E(Tij )\{(i, ij)};
4: Calculate lb and ub based on Equation (4) for FCT ′

n;
5: Solve BSearch(FCT ′

n, i, lb, ub);
6: T ′ = Broadcast tree obtained by the previous step;
7: Construct T = (V T , ET ) as follows: V T = V (T ′) ∪ V (Tij ) and ET = E(T ′) ∪ E(Tij ) ∪

{(i, ij)};
8: Solve the broadcast problem for T based on the well-known broadcast algorithm for trees;
9: return Bcl(v, T )

variables in (Harutyunyan & Maraachlian, 2009b) variable in Algorithm 3
v0 v
v1 ij
v2 i
H FCTn

H1 Tij

H2 FCT ′
n

H ′ T

Table 3.3: Mapping between the notations of Theorem 4 of (Harutyunyan & Maraachlian, 2009b)
and that of Algorithm 3

The mapping between the notations in the aforementioned theorem and our algorithm is shown

in Table 3.3. We only need to point out that the edge connecting vertices i and ij is indeed a bridge

since the vertices in Tij are connected to FCTn only by this edge. Thus, removing (ij , i) will

increase the number of connected components. Based on Theorems 3.2.1 and 3.2.2, we are able to

optimally broadcast within FCT ′
n starting from vertex i which gives the broadcast tree T ′. Joining

two trees, T ′ and Tij , will result in another tree T for which we know the optimal broadcast scheme

(Slater et al., 1981).
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3.3.3 Complexity Analysis

One can notice that the problem of broadcasting from a tree vertex could be reduced to two

sub-problems: broadcast from a root vertex in FCT ′
n as well as broadcast within tree T . The first

part takes O(|V | log logn) using BSearch, while the second one could be done in O(|V |) where

|V | is the number of nodes of the original graph FCTn. Other steps of Algorithm 3 are also upper

bounded by O(|V |). Hence, the complexity of Algorithm 3 is O(|V | log log n).
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Chapter 4

A Broadcasting Heuristic for Hypercube

of Trees

In this chapter, we focus on broadcasting in a useful architecture, namely the Hypercube of

Trees which is constructed by attaching arbitrary trees to the vertices of a hypercube. To this aim,

we propose a novel heuristic, and our numerical results show its superiority in comparison with the

current upper bound for the same problem in the majority of cases.

The remainder of this chapter is structured as follows: in the following section, the problem

is formally defined. In Section 4.2, we propose the heuristic when the originator is a root vertex.

We also argue shortly why the problem will act similarly if the originator is a tree vertex. The

performance of the heuristic is evaluated in Section 4.3 under multiple circumstances.

4.1 Preliminaries, Motivation, and Literature Review

A hypercube Hk(V,E) of dimension k is a graph with 2k vertices in which each vertex corre-

sponds to a binary number of length k. Two vertices u, v ∈ V are connected by an edge iff their

binary representation differs by precisely 1 bit. Hypercubes are among the most valuable structures

in network architectures since, as opposed to their small number of edges, the broadcasting could

be completed within ⌈log n⌉ time units (n is the number of nodes). Due to its importance, it has
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been used for many real-world applications, including distributing personalized data (Ho & Johns-

son, 1986) and simultaneous exchange of different packets between processors (Bertsekas, Özveren,

Stamoulis, Tseng, & Tsitsiklis, 1991). Intuitively, hypercubes contain, or nearly contain, all meshes

of trees, binary trees, and, more generally, every network yet discovered for parallel computing

as subgraphs (Leighton, 2014). Also, they could be enhanced to some extended platforms to se-

curely and quickly broadcast a message (Yang, Chan, & Chang, 2011). The hypercube could also

be upgraded to a hypercube of trees, HTk, in which each vertex is the root of a tree:

Definition 4.1.1. Consider 2k trees denoted by Ti(Vi, Ei) rooted at vertex i where 0 ≤ i ≤ 2k − 1.

A Hypercube of Trees HTk(V,E) is a graph in which V = V0 ∪ · · · ∪ V2k−1 and E = E0 ∪ · · · ∪

E2k−1 ∪ EHk
where EHk

= {(i, j)|binary representations of i and j differ in exactly 1 bit}.

The rationale of this design is that hypercubes benefit from a proper balance between diameter

and the average degree of nodes. Ideally, an acceptable interconnection network must have a small

diameter (for fast communication) and a small average of nodes’ degree so that scaling up would

not be impossible (Ostrouchov, 1987). Trees are another interconnection scheme that retains these

vital features (Ostrouchov, 1987). So, a hypercube of trees will comply with the above-mentioned

characteristics.

Definition 4.1.2. The roots of the trees in a HTk are called root vertices, and we call the rest of the

vertices as tree vertices. A root vertex i has d(i) children where each one of them is the root of a

sub tree Tij where 0 ≤ i ≤ 2k − 1, 1 ≤ j ≤ d(i), d(i) = di − k, and di is the degree of vertex i.

We also assume that Bcl(i1, Ti1) ≥ · · · ≥ Bcl(id(i), Tid(i)).

Fig. 4.1 shows Definition 4.1.1 and 4.1.2 for k = 3. In this paper, we work on the broadcasting

problem for a hypercube of trees. The best upper bound for this problem is presented in, (Bhabak

& Harutyunyan, 2014) which is a 2-approximation algorithm, regardless of the originator. It also

provides the exact broadcast time of a similar graph that contains only one tree. Their algorithm

will serve as a baseline for the novel heuristic provided in this study. The numerical results illustrate

that our heuristic is able to accelerate the process of broadcasting from a particular vertex in up to

90% of the experiments and achieve a speed-up of almost 30%.
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Figure 4.1: HT3, A hypercube of trees with dimension 3

4.2 The proposed heuristic

The main idea of our heuristic is to identify the most “critical” root vertex at each time unit and

to inform this vertex as soon as possible. However, there could be more than one path between an

informed root vertex and that “critical” vertex in the hypercube. Thus, a greedy approach is utilized

to choose the most appropriate one in which the middle vertices probably have more significant

trees.

We reduce the problem of finding the broadcast time of a vertex in a given hypercube to a

problem in which the aim is to study the feasibility of finishing the broadcasting from a particular

vertex in τ time units. If the algorithm finds a broadcasting scheme, it will return TRUE; otherwise,

the output will be FALSE. Then, we show how to tackle the original problem using a secondary

algorithm.

It is assumed that the broadcast schemes for trees Ti, 0 ≤ i ≤ 2k − 1 are available prior to the
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execution of the heuristic. This assumption is quite realistic because the broadcast scheme of any

tree could be calculated in linear time using the algorithm provided in (Slater et al., 1981). Thus,

the first step of the algorithm could be executed in parallel for all Ti’s linearly. The broadcast time

of a tree Ti originating from the root vertex i is denoted by Bcl(i, Ti). Moreover, the algorithm

discussed in (Slater et al., 1981) also gives the broadcast time of the sub-trees rooted at ij , which

will be denoted by Bcl(ij , Tij ) in the rest of this chapter.

It is easy to show that the broadcast time of a root vertex u in an HTk is bounded as follows:

max
{
k, max

0≤i≤2k−1
{Bcl(i, Ti)}

}
︸ ︷︷ ︸

lb

≤ Bcl(u,HTk) ≤ k + max
0≤i≤2k−1

{Bcl(i, Ti)}︸ ︷︷ ︸
ub

(11)

The lower bound (lb) is trivial, and we refer the reader to the algorithm provided in (Bhabak

& Harutyunyan, 2014) for the upper bound (ub). In our heuristic, we set Bcl(u,HTk) = ub at the

first step (Algorithm 4, line 1). Then, a binary search is performed on the range of Equation (11).

For each τ in this range, if the output of the heuristic is TRUE, the value of Bcl(u,HTk) will be

updated, and the search will continue on the lower half. However, if the algorithm outputs FALSE

for a given τ , the search will be performed on the upper half. The procedure of this algorithm

is similar to Algorithm 1, and it is provided in Algorithm 4. The initial call for this algorithm is

BSearch(HTk.i, lb, ub) where i is the originator and lb and ub come from Equation (11).

In the rest of this section, the heuristic used in Algorithm 4 will be discussed, which could be

applied to the root vertices, and in order to do so, some notations and definitions must be discussed

first.

Notation 4.2.1. The set of informed root vertices of HTk is denoted by VI , while VU is the set of

uninformed root vertices. We denote the set of root vertices by VHk
where VHk

= VI ∪ VU .

Notation 4.2.2. For j ∈ VU , remj is the remaining time that other informed root vertices can

avoid j and take care of any other uninformed root vertex, and it is calculated as follows: remj =

τ − t − Bcl(j, Tj) − dist(j, VI) in which τ is the candidate broadcast time, t is current time, and

dist(j, VI) is the length of the shortest path from j to the closest informed root vertex. Moreover,

for j ∈ VI , we set remj = NULL.
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Algorithm 4 The modified Binary Search algorithm BSearch(HTk, i, lb, ub)

Input: HTk = (V,E), originator i, lower bound lb, and the upper bound ub.
Output: An improved broadcast time for Bcl(i,HTk) denoted by b.

1: b = ub;
2: if lb > ub then
3: return ub
4: end if
5: mid = lb+ ⌊ub−lb

2 ⌋;
6: if br(HTk, i,mid) then
7: update b = mid;
8: return BSearch(HTk, i, lb,mid− 1)
9: else

10: return BSearch(HTk, i,mid+ 1, ub)
11: end if
12: return b

The rationale for calculating remj is straightforward; the total remaining time is τ − t. Further-

more, vertex j needs Bcl(j, Tj) time units to complete the broadcasting within Tj once informed.

Besides, it takes at least dist(j, VI) time units for vertex j to be informed by any informed root

vertex. It should be noted that the distance of two vertices in a hypercube could be calculated in

constant time by counting the number of different bits in their corresponding binary numbers.

Definition 4.2.1. For a path P in a hypercube connecting two root vertices i and j, the overall

deadline of the path is defined as follows:

dP =
∑
m∈P

remm (12)

Definition 4.2.2. For a path P in a hypercube connecting two root vertices i and j, the critical

deadline of the path is defined as follows:

cP = min
m∈P

{remm} (13)

By definition, among all paths existing between two root vertices i and j, the smaller cP and

dP for a path P , the higher the priority of the P , since the middle vertices lying on P have less

remaining time until they must be considered by informed vertices. These definitions will serve as a
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heuristic for the proposed algorithm when the algorithm is obligated to choose among several paths.

We denote a path P chosen by our heuristic by selected path.

Definition 4.2.3. A root vertex i is covered if either i ∈ VI or i is located on a selected path:

covered(i) = TRUE. Otherwise, covered(i) = FALSE.

Definition 4.2.4. A path P is said to be valid if none of the vertices lying on P are covered, that is,

the validity of a path P (when |P | > 2) connecting vertex i to vertex k, and then, vertex k to vertex

j (with probably multiple steps) is calculated as follows:

valid( P
i−→k−→···−→j

) = ¬covered(k) ∧ · · · ∧ ¬covered(j) (14)

Additionally, the validity of any path with a length of two is equal to the negation of the destination’s

covered value.

The main idea of the algorithm is as follows: for an informed root vertex i, there are two

possible scenarios; whether this vertex has enough time to contribute to the hypercube and inform

other uninformed root vertices, or it must start the broadcasting within its tree Ti. The decision for

these two options is made by comparing the current value of Bcl(i, Ti) and the remaining time τ−t.

When Bcl(i, Ti) = τ − t, the root vertex i has to start broadcasting within its tree; thus, the

provided heuristic will follow the algorithm given in (Slater et al., 1981) for broadcasting in a tree

optimally. On the other hand, when Bcl(i, Ti) < τ − t, the root vertex i has at least 1 time unit left

to continue broadcasting in the hypercube. Two questions must be answered in such a case:

(1) How i chooses a root vertex j to send the message toward that vertex?

(2) Which path should i take toward j?

For the first question, we select a vertex j with the minimum value of remj among the members

of the following set:

VU\{m|covered(m) = True} (15)

Among the uninformed root vertices, the ones already covered by other vertices are not considered

a good choice because, although they are not informed at the current time, another root vertex is
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already on its way to inform them. Hence, they cannot be selected again by another root vertex. For

selecting the destination, a root vertex with the minimum value of remj is selected from the set in

Equation (15). It has less time to the moment that it must be informed compared to other candidate

vertices. Also, ties are broken randomly.

To answer the second question, we deployed the following heuristic: among all valid paths

between i and j with the minimum value of cP , choose the one with the minimum value of dP .

Again, ties are broken randomly. The rationale of our heuristic is that a path P is a good candidate

if the most “critical” uncovered root vertex, which has the smallest value of cP is located on it.

This “critical” vertex must be informed as quickly as possible; otherwise, the algorithm will fail.

However, that critical vertex could lie on many valid paths. Among those, the one that has the

smallest value of dP is desirable since all the middle vertices on P are relatively critical.

Once a path P is selected, the source (i) knows how the message should be sent toward the

target (j). Moreover, all the vertices on the path know their next call once informed.

Definition 4.2.5. A root vertex is called busy if it is located on a selected path. An informed-busy-

root vertex will follow the path that it is supposed to go along with.

Definition 4.2.6. An informed root vertex is called stuck if all its neighbors in the hypercube are

either covered or informed.

A pseudo-code for the heuristic is provided in Algorithm 5. As can be seen, important decisions

are to be made when Bcl(i, Ti) < τ − t for an informed root vertex. In this case, the root vertex

is checked to be busy or stuck. If i is busy, it lies on a selected path and must perform the call it is

supposed to obey (Line 9 of Algorithm 5). Besides, if the root vertex is stuck, there is nothing it can

do to accelerate the process (Line 13 of Algorithm 5). However, if none of those situations are valid

for i, it must find another uninformed root vertex j from the set of Equation (15). But, there may be

no valid path from vertex i to the vertex with the minimum value of remj . Thus, vertex i cannot be

responsible for that vertex (Lines 15-16 of Algorithm 5).

Once a destination is chosen, among all valid paths leading to vertex j, one is selected (P ) based

on the heuristic (Lines 17-19 of Algorithm 5). Now, not only does vertex i know its next call, but all

the vertices lying on P are also aware of their call once they get informed. Therefore, they will be
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Algorithm 5 The broadcast algorithm BRτ (HTk, i, τ)

Input: HTk = (V,E), originator i, candidate broadcast time τ .
Output: FALSE if τ cannot be the broadcast time, TRUE if broadcasting can be accomplished

in at most τ time units.
1: Initialize VI = {i}, VU = VHk

− VI , covered(u ∈ VU ) = FALSE, covered(i) = TRUE,
remi = NULL;

2: for each t such that 0 ≤ t ≤ τ − 1 do
3: for each u ∈ VU do
4: update remu = τ − t−Bcl(u, Tu)− dist(u, VI)
5: end for
6: for each i ∈ VI do
7: if Bcl(i, Ti) < τ − t then
8: if busy(i) then
9: i informs v following its path;VI = VI ∪ {v}, VU = VU − {v};

10: continue;
11: end if
12: if i is stuck then
13: continue;
14: end if
15: Choose j with the minimum value of remj from the set of Equation (15) in a way
16: that there is at least one valid path from i to j;
17: Denote the valid paths by V P = {p1, · · · , pr};
18: MC = {p ∈ V P |cp = minp′∈V P {cp′}};
19: selected = {p ∈ MC|dp = minp′∈MC{dp′}};
20: if |selected| > 1 then
21: Select one randomly;
22: end if
23: For all mid-vertices on the selected path, set covered(mid− ver) = TRUE,
24: busy(mid− ver) = TRUE;
25: i informs v which is the first vertex on the selected path;
26: VI = VI ∪ {v}, VU = VU − {v};
27: else
28: if Bcl(i, Ti) = τ − t then
29: Follow the broadcast scheme in trees;
30: update Bcl(i, Ti) with regard to a sub tree Tij which has been informed;
31: else
32: return FALSE;
33: end if
34: end if
35: end for
36: end for
37: return TRUE;
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labeled as covered and busy vertices (lines 23-24). Lastly, vertex i performs its call (line 25), and

the newly informed root vertex will be added to VI (line 26).

In cases when the remaining time equals the broadcast time of a root vertex i within its tree,

vertex i has no choice but to perform at least one call in its biggest subtree. Possibly, its broadcast

time could decrease substantially by only one call. It happens when there is a huge subtree (such

as Ti1), while other subtrees are relatively small. Therefore, making one call could free vertex i for

a few time units. This procedure will be done when Bcl(ri, Ti) is updated (lines 28-30). Lastly, if

the remaining time is smaller than the time needed for vertex i to finish in Ti, the algorithm returns

FALSE since there is a vertex that cannot finish the broadcasting even in its tree (line 32).

Lastly, we shortly argue that the problem will remain almost the same when the originator is not

a root vertex. Assume the originator is vertex u, located in the subtree Tij . Thus, u also belongs

to the tree Ti, and the closest root vertex to u is i. Finding Bcl(u,HTk) could be divided into two

simpler subproblems. First, we calculate Bcl(i,HT ′
k) using the proposed heuristic where HT ′

k is

the same graph with HTk, only the tree Tij is removed. This gives a broadcast tree rooted at vertex

i in HT ′
k. Denote this tree by T .

Secondly, using Theorem 4 of (Harutyunyan & Maraachlian, 2009b), one can argue that Bcl(u,HTk)

could be calculated easily by replacing HT ′
k with the tree obtained from the first step (or T ). In other

words, we merge T with Tij and find the broadcast time of u in the resulting tree. Therefore, the

problem will be reduced to a more straightforward problem of finding the broadcast time of a vertex

in a tree which is solvable using the algorithm in (Slater et al., 1981).

4.3 Evaluation

In this section, the performance of the proposed heuristic is examined under multiple circum-

stances. Also, it should be noted that the performance of our heuristic is upper bounded by that of

(Bhabak & Harutyunyan, 2014), which is a 2-approximation since we never find a broadcast time

worse than ub (in Equation (11)). However, the numerical results illustrate the superiority of our

heuristic in most cases by a wide margin.
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4.3.1 Experimental setup

To evaluate the performance of the heuristic, we compare our results with the algorithm provided

in (Bhabak & Harutyunyan, 2014). In order to do so, in each experiment, a hypercube is generated

with dimension k. Then, a random procedure is followed for attaching trees to root vertices. Once

the HTk is constructed, the performances of both algorithms are compared in terms of the time units

required to finish the broadcasting from a randomly chosen originator. The numerical results are

averaged over 1000 executions for each k. Furthermore, all simulations of this study are performed

on an Intel Core i7 CPU with a 2.7 GHz frequency. We also used Python for the simulation due to

its reputation and also great speed and simplicity. Generating numerical results for small values of

k takes a few seconds, while it needs up to a minute for larger graphs.

For generating trees, random samples from a Gaussian distribution (Patel & Read, 1996) are

drawn. A random sample will then be rounded to an integer. We have used the randomly generated

integer for two purposes: Firstly, a random integer is generated, illustrating the number of children

a particular root vertex i has. Also, for each child, ij , another random number is generated, which

demonstrates the broadcast time of the sub-tree Tij , or Bcl(ij , Tij ). The probability density function

for the Gaussian distribution is as follows (Patel & Read, 1996):

p(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (16)

µ is the mean, and σ is the standard derivation. By definition, this function is more likely to

return samples lying close to the mean rather than those far away (See Fig. 4.2). We convert a

negative number generated by a Gaussian function to zero. Once the random trees are generated,

the broadcast time of the root vertex i is calculated using the equation provided in (Slater et al.,

1981):

Bcl(i, Ti) = max
1≤j≤d(i)

{j +Bcl(ij , Tij )} (17)

We report the average number of vertices of HTk for each k as a prominent element of the

performance of our heuristics. Our numerical results reveal that a HTk could have millions of
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Figure 4.2: Three Gaussian distribution curves

vertices in cases where k is a small number, such as 8. It should be noted that having more than a

million nodes in random graphs is quite natural. Note that a subtree with a broadcast time of t could

have up to 2t vertices if it has a form of a binomial tree of size t.

We measure performance improvement as follows:

gain =
Bcl[2−app]

(i, Ti)−Bcl(i, Ti)

Bcl[2−app]
(i, Ti)

(18)

In which Bcl[2−app]
(i, Ti) is the 2-approximation broadcast time of the algorithm provided in (Bhabak

& Harutyunyan, 2014), and the other term is the broadcast time calculated by our heuristic. The

average gain is the value of Equation (18) that is averaged over all experiments for a particular k.

Lastly, the success rate will be reported as the fraction of the experiments in which gain > 0, or in

other words, the cases when our heuristic outperforms that of (Bhabak & Harutyunyan, 2014):

success rate =
number of cases where Bcl(ri, Ti) < Bcl[2−app]

(ri, Ti)

total number of experiments
(19)

4.3.2 Numerical results

We performed two experiments to study the performance of the proposed heuristic that are

discussed hereafter.
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Experiment 1

The performance of the heuristic is evaluated concerning the size of the hypercube (k) under

three distinct circumstances (See Fig. 4.2). For Ex1.1, µ = 3 and σ = 1, meaning that each root

vertex is more likely to have a number of children that lies in the interval of [2, 4], each of which

has a random broadcast time that follows the same distribution. In other words, the broadcast time

of root vertices will be very similar in most cases. The results of this experiment are shown in Table

4.1. As k grows, the performance of the heuristic drops, leading to almost the same performance as

(Bhabak & Harutyunyan, 2014) when k = 7, 8. We will discuss the reason behind this phenomenon

soon. However, It seems that our heuristic is able to outperform its counterpart when the value of k

is not high. For example, outperforming (Bhabak & Harutyunyan, 2014) in 30% of the experiments

when k = 3 leads to an average speedup of almost 7.5%.

In Ex1.2, µ and σ are both set to 3, and the interval is [0, 6]. In other words, each root vertex

will probably have 0-6 subtrees, each having a broadcast time of 0-6. Table 4.2 illustrates the results

of Ex 1.2. Although the size of HTk’s is greater than that of Ex1.1, the algorithm’s performance is

much better since a success rate of almost 55-75% is observed, leading to a speed-up of 10-25%.

In the last experiment, we set µ = 5, and σ = 5 having an interval of [0, 10]. Hence, in

the last experiment, the root vertices are more likely to have different broadcast times within their

trees. Table 4.3 gives the performance of our heuristic in Ex1.3. A solid performance, even in large

graphs, is observed for our heuristic in this case, where in almost 90% of the experiments, we can

outperform the current upper bound for this problem, leading to a 25-30% speed-up on average.

Comparing the results of Ex1.1, Ex1.2, and Ex1.3, we first argue that the performance of our

Table 4.1: Numerical Results for Ex1.1: µ = 3, σ = 1

k average |V | success rate average gain
3 115.86 29.79% 7.55%
4 233.55 28.49% 5.84%
5 466.09 21.3% 3.71%
6 932.49 5.7% 0.85%
7 1862.98 1.3% 0.16%
8 3729.59 0.2% 0.02%
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Table 4.2: Numerical Results for Ex1.2: µ = 3, σ = 3

k average |V | success rate average gain
3 614.28 73.5% 24.45%
4 1189.54 78.6% 23.31%
5 2481.77 74.5% 19.81%
6 5008.22 69.2% 15.55%
7 10003.63 63.2% 12.5%
8 19927.99 54.7% 9.76%

heuristic is independent of the value of k, and subsequently, |V |. It is also claimed that our heuristic

will be genuinely effective when the value of σ is high, regardless of the value of µ. To test this

claim, we designed the following experiment.

Experiment 2

To test the effect of µ and σ, two more experiments have been conducted in which the value of

k is set to 5. In Ex2.1, σ is set to 2, but µ increases gradually from 0 to 5, with a 0.2 step. The aim

of Ex2.2, on the other hand, is to fix µ to 2, while σ grows from 0 to 5, gently. More clearly, in

Ex2.1, the size of HTk grows by attaching larger trees to each root vertex, but Bcl(i, Ti) is likely to

be very close for all root vertices. However, Ex2.2 invests in situations where the margin among the

broadcast times of root vertices widens. The results of these experiments in terms of success rate

and the average gain are represented in Figs. 4.3a and 4.3b, respectively.

As far as Fig. 4.3a is concerned, the Success rate experiences a gradual decline when the value

of µ increases, but it could still beat the best upper bound in at least 50% of the experiments,

Table 4.3: Numerical Results for Ex1.3: µ = 5, σ = 5

k average |V | success rate average gain
3 185255.48 81.20% 28.65%
4 280823.85 86.00% 28.82%
5 704372.23 88.10% 27.35%
6 1313690.28 89.30% 26.70%
7 3532669.06 90.50% 25.85%
8 5245921.21 90.10% 24.10%
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Figure 4.3: The performance of the algorithm when the value of µ or σ increases

having gained up to 20% in comparison with ub. It shows that the proposed algorithm can perform

impressively when the value of µ grows, and as an immediate consequence, the size of the graph

multiplies. Accordingly, we argue that the performance of the proposed heuristic could be irrelevant

to the graph’s size to a certain extent.

Additionally, as seen in Fig. 4.3b, the proposed heuristic can achieve a remarkable quality when

the value of σ increases. Hence, the broadcast time of trees or Bcl(i, Ti) are more likely to differ

in comparison with the cases when σ is close to 0, and thus, Bcl(i, Ti) is probably the same for all

root vertices. This is because in the first case, HTk will likely have a huge tree rooted at vertex j,

many medium-size ones, and some small trees. Unlike the current upper bound, our heuristic can

successfully detect this situation and act in a way that the originator is obligated to choose vertex

j and send the message toward this vertex to enable it to initiate the broadcasting within its tree as

soon as possible. In the meantime, other root vertices will be informed one by one. Still, since their

broadcast time probably differs from that of j, there is no harm in informing them with a delay of

1 or 2 time units, as our numerical results also support this idea and show at least an 80% success

rate when σ ≥ 3.

On the other hand, when σ is small, all root vertices will have very close broadcast time. In this

case, one may easily argue that the optimal decision is quite similar to the current upper bound: to
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inform the root vertices in k time units and then finish the broadcasting in trees. The reason is that

when a root vertex starts to inform its tree at time t < k, it will not accelerate the whole process

because, in the long run, the bottleneck would be the last root vertex that has been informed, and

the optimal decision is to avoid delaying the process of informing the root vertices. Therefore, there

is not much gap for our heuristic to work with, and it is no surprise that it cannot outperform the

current upper bound in this case. This will also justify the results of Ex1.1, where the proposed

heuristic is not successful, especially when k grows (note that the value of σ is very small in that

experiment). All in all, our results illustrate that the heuristic proposed in this study can outperform

the current upper bound for the problem of broadcasting in a hypercube of trees in many cases.

Also, when the gap between the upper bound and the optimal solution shrinks, our heuristic will

perform as adequately as the best-known upper bound.
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Chapter 5

Fully-adaptive Model for Broadcasting

with Universal Lists

An ordered list of neighbors is assigned to each node via a broadcasting algorithm, which speci-

fies the order in which messages are transmitted to neighbors at each node. The list assigned to each

node in classical broadcasting varies depending on the source. Therefore, each node must have a

large local memory to keep the lists corresponding to various sources and be aware of the source to

select the appropriate list to perform broadcasting from each potential source. Because each mes-

sage should carry the name of its source of origin, this increases the number of message bits sent

throughout the network and necessitates significant local memory at each node (Diks & Pelc, 1996;

J.-H. Kim & Chwa, 2005).

Another variant of broadcasting is introduced in the literature to handle the above-mentioned

drawbacks. A vertex v of a network is given a universal list, denoted by lv. When a vertex

receives the message, it should transmit it to its neighbors with respect to the fixed ordering given

in the list, regardless of the originator. Two sub-models are defined using universal lists:

• Non-adaptive: Once a vertex v receives the message, it will re-transmit it to all the vertices

on lv, even if v has received it from that particular vertex. The broadcast time of a graph G

following this model is denoted by Bna(G).

We say a call from v to u at time t is unnecessary if u is informed at any time t′ < t. The
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definition of the non-adaptive model implies many unnecessary calls in which the message is

returned to the sender. This would make this model the slowest among all while having the

best space complexity since the list is the only thing that should be maintained.

• Adaptive: Once informed, a vertex v will send the message to its neighbors according to lv,

but it will skip the neighbors from which it has received the message. The broadcast time of

a graph G following this model is denoted by Ba(G).

Although the number of unnecessary calls drops in the adaptive model compared to the non-

adaptive model, many calls might still be unnecessary. For instance, a vertex v may transmit

the message to one of its neighbors u, which is already informed by its other neighbors. Each

vertex also needs extra storage to keep track of the nodes from which the message has been

received. This will accelerate the broadcasting process under this model compared to the

non-adaptive model but will increase memory usage.

In this chapter, we propose the third sub-model for the problem of broadcasting with universal

lists, which is faster than adaptive and uses less memory than the classical model. To this aim, in

Section 5.1 we present the details of the newly introduced Fully-adaptive model. Later, the broadcast

time of several graphs under this model is given in Section 5.2.

5.1 Fully-adaptive Model

To achieve a reasonable balance between the speed of broadcasting and space complexity, we

define the Fully Adaptive model, another sub-model for broadcasting with universal lists. This

model is faster than adaptive and more efficient than the classical model in terms of space complex-

ity. In the fully-adaptive model, each vertex v ∈ V (G) is equipped with a list lv. Denote the degree

of vertex v by dv. The size of lv is at most the number of neighbors of v: |lv| ≤ dv. Once vertex v

is informed, it will follow its list and pass the message to the first vertex on lv, which is not already

informed. In other words, not only does the sender skip all those neighbors from which it received

the message, but it should also skip all other informed vertices. Thus, as in the classical model, no

unnecessary call is made following the fully-adaptive model. Following this model, we denote the

broadcast time of a graph G by Bfa(G).
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Theorem 5.1.1. Bcl(G) ≤ Bfa(G) ≤ Ba(G) ≤ Bna(G), for any connected graph G.

Proof. We only need to prove Bcl(G) ≤ Bfa(G) and Bfa(G) ≤ Ba(G). The correctness of the

last inequality is established in (Diks & Pelc, 1996).

(1) Bcl(G) ≤ Bfa(G): Note that a broadcast scheme for any variant of broadcasting could be

viewed as a spanning tree T , rooted at the originator. An edge (u, v) ∈ T corresponds to time

t when u made a call to inform v, or vice versa. By definition, any spanning tree under the

fully-adaptive model is a valid spanning tree and hence, a broadcast scheme for the classical

model. Thus, Bcl(G) ≤ Bfa(G).

(2) Bfa(G) ≤ Ba(G): Consider any broadcast scheme for an arbitrary graph G under the adap-

tive model. Under the fully-adaptive model using the same list, in addition to the vertices that

a particular vertex has received the message from, it will also skip all other vertices that are

already informed, thus: Bfa(G) ≤ Ba(G).

Later in Theorem 5.2.1, we will prove that for any tree T , Bcl(T ) = Bfa(T ) = Ba(T ). So, the

bounds presented in Theorem 5.1.1 are tight and cannot be improved.

Following Theorem 5.1.1, Table 5.1 compares all 4 models. In the fully-adaptive model, a

node only requires local knowledge over its neighbors and not the whole network as it does in

the classical model. Moreover, a universal list is maintained throughout the process, requiring less

space than keeping a list per originator, which is the case in the classical model. Therefore, the fully-

adaptive model is more efficient than the classical model regarding space complexity. Moreover, in

the adaptive model, a vertex has to know the neighbors from which it has received the message,

while in the non-adaptive model, even this information is not kept in the memory. Thus, the non-

adaptive model is the most efficient in terms of space complexity. However, considering the speed of

broadcasting and by looking at Theorem 5.1.1, it is clear that the non-adaptive model is the slowest

among all. In summary, one may look at the fully-adaptive model as a model that tries to behave

similarly to the classical model using a universal list.

In terms of space complexity, in the non-adaptive model, the list is the only data structure that

should be maintained that needs at most
∑

1≤i≤n di space. In the adaptive model, in addition to the
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Table 5.1: The Comparison Among Different Variants of Broadcasting

No. Model Symbol In a call u → v, the receiver ... No. of unnecessary calls Required Space Speed
1 Non-adaptive Bna(G) Could be any neighbor Many

∑
1≤i≤n di Very Slow

2 Adaptive Ba(G) Is a neighbor which hasn’t sent to u yet Few 2×
∑

1≤i≤n di Slow
3 Fully Adaptive Bfa(G) Is always uninformed 0 2×

∑
1≤i≤n di Moderate

4 Classical Bcl(G) Is always uninformed 0 n×
∑

1≤i≤n di Very Fast

above lists, each vertex vi should maintain a set of size di in order to keep track of the vertices that

have sent the message to vertex vi. Therefore, the required space is at most 2 ×
∑

1≤i≤n di. This

is the same for the fully-adaptive model, but those sets store the informed neighbors, which should

be updated after each time unit. On the other hand, in the classical model, firstly, those lists differ

according to every possible originator. Thus, the required space is n ×
∑

1≤i≤n di. Secondly, the

message bits increase since the identity of the originator should be carried on with the message. In

summary, in universal lists models, the space complexity is O(|E|), while in the classical model,

it requires O(|V | · |E|). Hence, the choice of a suitable model heavily depends on the available

resources and the requirements of the network.

Considering a graph G = (V,E), a broadcast scheme for the non-adaptive, adaptive, or fully-

adaptive model can be viewed as a matrix σn×∆, where row i of σ corresponds to an ordering of the

neighbors of vertex vi. Assuming this vertex has degree di, the cells σ[i][di+1], σ[i][di+2], · · · , σ[i][∆]

will be NULL. By definition: ∆ = max{di : 1 ≤ i ≤ n}. We denote the set of all possible schemes

by Σ. In this study, we assume that row i of σ contains all neighbors of vi in some order unless

mentioned otherwise.

Let M be one of the three models using universal lists (M ∈ {na, a, fa}) and fix a graph G.

For any broadcast scheme σ ∈ Σ, we denote by Bσ
M (v,G) the time steps needed to inform all

the vertices in G from the source v while following the scheme σ under model M . Moreover, the

broadcast time of a graph G under model M with scheme σ is defined as the maximum Bσ
M (v,G)

over all possible originators v ∈ V (G): Bσ
M (G) = maxv∈V {Bσ

M (v,G)}. Lastly, BM (G) is the

minimum Bσ
M (G) over all possible schemes σ ∈ Σ: BM (G) = minσ∈Σ{Bσ

M (G)}.

For instance, Table 5.2 shows a broadcast scheme σ for the graph given in Figure 5.1-a. Consider

vertex v1 as the originator. The broadcast scheme of the graph is shown in Figures 5.1-b, 5.1-c, and

5.1-d for fully-adaptive, adaptive, and non-adaptive models, respectively.
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Figure 5.1: a) A Graph G, b) Broadcast scheme of G under fully-adaptive model: Bσ
fa(v1, G) = 4,

c) Broadcast scheme of G under adaptive model: Bσ
a (v1, G) = 5, d) Broadcast scheme of G under

non-adaptive model: Bσ
na(v1, G) = 6

5.1.1 Assumptions, Architecture, and Applications

Now we will present some insights regarding the implementation of the fully-adaptive model in

real-world networks:

Assumptions: Consider a non-faulty network in which the links among entities are established.

The originator could be regarded as a server that tries to distribute a unique and heavy-weight

message to all clients. Also, clients will relay the message and send it to each other. Further suppose

the message consists of a header and a payload. The header only contains critical information, such

as SYN and ACK, in the 3-way handshake procedure of TCP protocol (Ohsita, Ata, & Murata,

2004), while the payload contains the actual data.

Architecture: In the described situation, it makes sense to avoid unnecessary calls from a sender

to an informed receiver. Thus, both adaptive and non-adaptive models result in a notable delay. Also,

considering a massive network, equipping entities with unlimited memory seems to be unrealistic
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(Vissicchio, Vanbever, Cittadini, Xie, & Bonaventure, 2017), as it is the case in the classical model.

Consequently, the proposed fully-adaptive model could be deployed, but the network architecture

must allow the members to be aware of their neighbors’ states at any given time. To this aim, two

approaches may be used: Push model or Pull model. In the first one, once a member gets informed, it

will update its state for all its neighbors via a lightweight message. However, in the latter approach,

once an entity wants to send a message to one of its neighbors, it will send a special request to

know the state of its neighbor. The neighbor will respond as either informed or uninformed. Both

messages are lightweight. Afterward, the actual heavy data, a.k.a payload, should be transmitted.

Even though both architectures could be used for the proposed model, the Push model fits it better

since it will only result in a single additional and lightweight message per neighbor. In contrast, in

the Pull model, each neighbor will be asked for an update which is accompanied by a response.

Applications: As a potential application of the proposed model, we refer to the network update

procedure in Software Defined Networks (SDNs). In order to keep the network in an efficient

and working state, the network operator has to perform several tasks, such as changing routing

policies, adjusting links’ weights, and modifying traffic engineering schemes (D. Li, Wang, Zhu, &

Xia, 2017). These heavy tasks, usually known as “network updates”, are highly influential on the

performance of the networks and could affect the quality of service (QoS) (D. Li et al., 2017; Sezer

et al., 2013). Besides, the desire for user-controlled management of forwarding in network nodes

led to the emergence of SDNs (Sezer et al., 2013). The separation of control and data plane in SDNs

has enabled researchers to suggest new solutions to network update problems. In particular, the data

plane only forwards packets, while the routing and load balancing decisions for SDN switches are

Table 5.2: An ordering of the vertices of the graph presented in Figure 5.1,a

Sender Ordering of receivers
v1 v2 Null Null Null
v2 v3 v4 v1 Null
v3 v2 v6 v5 Null
v4 v2 v6 v8 v7
v5 v3 Null Null Null
v6 v3 v7 v4 Null
v7 v6 v4 Null Null
v8 v4 Null Null Null
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made in a logically centralized controller (Scott-Hayward, O’Callaghan, & Sezer, 2013). However,

as mentioned in (D. Li et al., 2017), SDN switches forward packets based on their own forwarding

tables, and operators need to design and optimize the update mechanisms carefully. This study

focuses on this particular application. As a network manager, we propose optimal or near-optimal

broadcast schemes for some common interconnection networks, such as Trees, Grids, Tori, and

Cube Connected Cycles, under the fully-adaptive model.

5.2 Results on the Fully-adaptive Model

This section presents optimal broadcast schemes for trees, grids, and cube-connected cycles

under the fully-adaptive model. We also provide an upper bound for tori. These results show

that despite a significant reduction in memory usage in the fully-adaptive model compared to the

classical model, Bcl(G) = Bfa(G), or their values are very close.

5.2.1 Trees T

We begin by proving a general statement for trees.

Theorem 5.2.1. For any tree T , Bcl(T ) = Bfa(T ) = Ba(T ).

Proof. From Theorem 5.1.1, observe that Bcl(T ) ≤ Bfa(T ) ≤ Ba(T ). Moreover, as mentioned in

(Slater et al., 1981) and (Diks & Pelc, 1996), Bcl(T ) = Ba(T ) for any tree T . The result follows.

Note that an optimal broadcast scheme for a tree T under the classical model (Slater et al., 1981)

will be a valid and optimal broadcast scheme for the same tree under the fully-adaptive model.

5.2.2 Grids Gm×n

It is proved that Bcl(Gm×n) = Ba(Gm×n) = m + n − 2 (Diks & Pelc, 1996; Farley &

Hedetniemi, 1978). Based on Theorem 5.1.1, we infer the following:

Corollary 5.2.1. Bfa(Gm×n) = m+ n− 2.

We need to point out that the broadcast scheme presented in (Diks & Pelc, 1996) for Grids under

the adaptive model will also be a valid broadcast scheme under the fully-adaptive model. However,
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we will give another more straightforward and optimal broadcast scheme σ under the fully-adaptive

model. The ordering of a vertex (x, y) in σ is denoted by l(x,y), and it consists of (at most) its four

neighbors in the following order:

(1) The above neighbor or (x, y + 1),

(2) The below neighbor or (x, y − 1),

(3) The right neighbor or (x+ 1, y),

(4) The left neighbor or (x− 1, y),

Consider an arbitrary originator (x, y) in a grid Gm×n. This vertex will start broadcasting within

its column, and this will be finished in at most n− 1 time units following σ. Note that every vertex

will prioritize its above and below neighbors first, and the message will be broadcast in column x.

Now that all the vertices in column x are informed, they will simultaneously pass the message to

the vertices on their rows. This process will not take more than m− 1 time units. Therefore, for an

arbitrary originator ∀x, y; 1 ≤ x ≤ m, 1 ≤ y ≤ n: Bσ
fa

(
(x, y), Gm×n

)
≤ m+ n− 2.

5.2.3 Tori Tm×n

In what follows, we will study Bfa(Tm×n). Also, the known results for this graph under M ∈

{cl, a, na} are presented in Table 7.2.

Theorem 5.2.2. The broadcast time of a torus network under the fully-adaptive model is as follows:

Bfa(Tm×n) = ⌊n2 ⌋+ ⌊m2 ⌋, if n and m are even,

Bfa(Tm×n) = ⌊n2 ⌋+ ⌊m2 ⌋+ 1, if only one of m and n is even,

⌊n2 ⌋+ ⌊m2 ⌋+ 1 ≤ Bfa(Tm×n) ≤ ⌊n2 ⌋+ ⌊m2 ⌋+ 2, if m and n are odd.

Proof. Observe that Bcl(Tm×n) = ⌊n2 ⌋ + ⌊m2 ⌋ if both n and m are even, and ⌊n2 ⌋ + ⌊m2 ⌋ + 1

otherwise (Farley & Hedetniemi, 1978). We will prove that these lower bounds are achievable

under the fully-adaptive model unless both m and n are odd. To this aim, we will describe a simple

broadcast scheme, σ, that achieves the above-mentioned bounds.

Similar to the broadcast scheme described for a grid, a vertex prioritizes its neighbors as follows:

the above neighbor - the below neighbor - the right neighbor - and the left neighbor. Therefore,
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the ordering of a vertex (x, y) in σ is as follows: l(x,y) =< (x, (y + 1) mod n), (x, (y − 1)

mod n), ((x + 1) mod m, y), ((x − 1) mod m, y) >. Hereafter, we will show how to achieve

the upper bound in each case.

1. When both n and m are even: Assume the originator is vertex (x, y). The message will be

transmitted to its column in the first n
2 time units since one may look at each column as a cycle of

length n. Afterward, during the next m
2 time units, all the vertices in column x will simultaneously

inform their neighbor from right and left. Therefore, in this case, Bσ
fa(Tm×n) ≤ n

2 + m
2 .

2. When n is odd, and m is even, or vice versa: Without loss of generality, assume that n is

odd and m is even. The analysis of the other case is very similar. Likewise to the previous case,

if the originator is vertex (x, y), the vertices on column x will be informed in not more than n+1
2

time units. Note that in a cycle of odd length, the actual broadcast time is n+1
2 . Afterward, an

informed vertex in row i will take care of all the vertices in row i, and this process will be done in

parallel for all informed vertices on row i, 1 ≤ i ≤ n. This process will be finished in m
2 time units.

Subsequently, in this case, Bσ
fa(Tm×n) ≤ n+1

2 + m
2 = ⌊n2 ⌋+ ⌊m2 ⌋+ 1.

3. When both n and m are odd: In this case, the same broadcast scheme, σ, will result in

1 step delay compared to the optimal time. The analysis is similar to the previous cases: In the

first n+1
2 time units, the vertices on column x will be informed, and in the next m+1

2 time units

the message will spread throughout the whole network. Therefore, Bσ
fa(Tm×n) ≤ n+1

2 + m+1
2 =

⌊n2 ⌋+ ⌊m2 ⌋+ 2.

5.2.4 Cube Connected Cycles CCCd

In this section, we study the fully-adaptive broadcast time of CCCd. We follow the definitions

and notations described earlier in section 2.5.11 for a CCCd.

Theorem 5.2.3. Bfa(CCCd) = ⌈5d2 ⌉ − 1.

Proof. Since Bcl(CCCd) = ⌈5d2 ⌉ − 1, therefore, Bfa(CCCd) ≥ ⌈5d2 ⌉ − 1. Hereafter, we will

present a broadcast scheme σ for which Bσ
fa(CCCd) ≤ ⌈5d2 ⌉ − 1.

The construction of the broadcast scheme σ is as follows: for each vertex, we will prioritize

the lateral port against the backward and forward ports. In particular, consider a vertex v ∈ VCCCd
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which is represented by the pair ⟨α, i⟩, α ∈ {0, 1}d and i ∈ {0, 1, · · · , d− 1}. The ordering of this

vertex in σ is as follows: v :< ⟨α(i), i⟩, ⟨α, i− 1 (mod d)⟩, ⟨α, i+ 1 (mod d)⟩ >.

Now we will describe the process of achieving the upper bound on the broadcast time of a

CCCd under the fully-adaptive model using σ in two phases:

Phase 1: By time t = 2d − 1, there will be at least one informed vertex in each cycle. Soon

in Theorem 7.1.2, we will prove that Bfa(Hd) = d. Thus, broadcasting within the embedded

Hypercube will not take more than d time units. However, This process is delayed for d − 1 time

units in a CCCd since each vertex has to use its backward port first to find an uninformed vertex

v′ whose lateral port is connected to an uninformed vertex. In other words, this phase is a similar

process to broadcasting within Hd with the difference that each call to the other dimension in the

Hd is replaced with two calls in CCCd. Hence, during the first 2d − 1 time units, there will be at

least one informed vertex in each cycle (the call at time 2d is unnecessary for this condition).

Phase 2: There are 2d cycles of length d in a CCCd. Note that broadcasting within a cycle

of length d will not take more than ⌈d2⌉ time units. Therefore, using σ for an arbitrary CCCd, the

broadcasting will be finished for all cycles in parallel in the next ⌈d2⌉ time units. So, all vertices of

the CCCd will be informed in 2d− 1 + ⌈d2⌉ = ⌈5d2 ⌉ − 1 time units.

It should be noted that, as it will be discussed shortly, there exists an infinitely large family of

networks G, for which Bcl(G) < Bfa(G). However, as seen in Theorem 5.2.3, this is not the case

for CCCd since we could achieve the same broadcast time under the fully adaptive model as that

of classical. In particular, there is no additional call under the fully-adaptive model compared to the

classical model for this family of interconnection networks using the suggested universal lists. To

illustrate, the only situation in which a call is “wasted” under the fully-adaptive model compared to

the classical model is when m informed vertices, denoted by v1, v2, · · · , vm, make m calls toward an

uninformed vertex u at the same time t, simultaneously. We will shortly discuss why this situation

will not happen using our broadcast scheme σ in a CCCd under the fully-adaptive model.

Consider an uninformed vertex u ∈ VCCCd
which is represented by < α, i >. This vertex has

a degree of 3. We denote the neighbours of vertex u by v1, v2, and v3. Without loss of generality,

assume that vertices v1 and v2 are located on the same cycle as u, while v3 is on another cycle, α(i).
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u
< α, i >

v1 < α, i + 1 (mod d) >

v2 < α, i − 1 (mod d) >

v3
< α(i), i >

v′1
< α, i + 2 (mod d) >

v′2

< α, i − 2 (mod d) >

v′′1 < α(i + 1), i + 1 (mod d) >

v′′2 < α(i − 1), i − 1 (mod d) >

v′3

< α(i), i + 1 (mod d) >

Figure 5.2: The relative location of an uninformed vertex u in an arbitrary CCCd.

Therefore, we denote vertex v1 by < α, i + 1 (mod d) >, vertex v2 by < α, i − 1 (mod d) >,

and vertex v3 by < α(i), i >. It should be mentioned that these three vertices are also connected to

two other vertices, denoted by v′1, v
′′
1 , v

′
2, v

′′
2 , v

′
3, and v′′3 . The location of these vertices is portrayed

in Figure 5.2.

Since in our broadcast scheme, σ, we prioritize the lateral port against the backward and forward

ports, the broadcast scheme is as follows: σ = ⟨· · · , v1 :< v′′1 , u, v
′
1 >, v2 :< v′′2 , v

′
2, u >, v3 :<

u, · · · >, u :< v3, v2, v1 >, · · · ⟩.

Also, note that since u is not informed, vertices v1, v2, and v3 must have received the message

from any of their neighbors at time t − 1, but u. Denote the vertices that have sent the message

to these vertices by v
(t−1)
1 , v(t−1)

2 , and v
(t−1)
3 . We are interested in locating these vertices in the

CCCd. Note that vertex v′3 must have made a call toward vertex v3 at time t − 1: v
(t−1)
3 = v′3.

Thus, based on σ, vertex v3 will send the message to vertex u at time t. Hereafter, we want to argue

that neither v1 nor v2 will make a call toward u at time t.

In the ordering of vertex v2, vertex u is the last node. So, v2 will not send the message to vertex
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Figure 5.3: a) A graph G with Bcl(G) < Bfa(G), b) An example with n = 6.

u, unless all of its neighbors are already informed, in which case that call is not considered to be

“wasted” anymore (it will not delay the process). However, if vertex v1 had received the message

from vertex v′′1 at time t− 1, it will skip this vertex on its list and make a call toward vertex u, while

one of its neighbors, v′1, might still be uninformed. We want to show that v(t−1)
1 ̸= v′′1 .

For the sake of contradiction, assume that vertex v′′1 had sent the message to vertex v1 at time

t− 1. Note that our broadcast scheme, σ, is symmetric for all vertices of CCCd since once a vertex

gets informed, it will first use its lateral port and then its backward and forward ports. Therefore, if

vertex v′′1 made a call toward vertex v1 at time t − 1, it implies that vertex v′′3 has sent the message

to vertex v′3 at time t− 1. This contradicts with our assumption regarding vertex v3 being informed

at time t− 1. Therefore, v(t−1)
1 ̸= v′′1 .

In conclusion, following our broadcast scheme σ for an arbitrary CCCd under the fully-adaptive

model, a call is not “wasted” compared to the classical model unless all neighbors of some vertices

v1, · · · , vm are informed. In that case, they might all call the same vertex u simultaneously, but this

will not delay the process as vertices vi, 1 ≤ i ≤ m, had no other choice but to remain idle.

5.2.5 Graphs with Bcl(G) < Bfa(G)

Based on the results presented so far, one might suspect that the broadcast times of a graph

under classical and fully-adaptive models are always the same. In this section, we will provide an

infinitely large family of graphs, G, for which Bcl(G) < Bfa(G).
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Proposition 5.2.1. There exist arbitrarily large graphs G with Bcl(G) < Bfa(G).

Proof. The graph G is constructed by merging two cycles C2n−1 and C ′
2n−1 in one vertex (Figure

5.3-a). We will present some insights on the broadcast time of this graph using the example provided

in Figure 5.3-b, in which the value of n is set to 6. Extending this result to the general case will be

trivial. Denote the graph of Figure 5.3-b by G. Considering the classical model of broadcasting,

observe that Bcl(G) = Bcl(v ∈ {x1, x2, y1, y2}, G) = 11. We will show that there is no universal

list σ for which Bσ
fa(G) = 11.

We will prove this by contradiction. Suppose a scheme σ exists for which broadcasting under

the fully-adaptive model finishes within 11 time units starting from any originator. It implies that

Bσ
fa(v ∈ {x1, x2, y1, y2}, G) ≤ 11. Now consider the list of vertex u under σ, or lu. W.l.o.g

suppose that lu starts with u1: lu =< u1, · · · >. Take x2 as the originator. Following any scheme,

u will not be informed sooner than time 5. At time 6, it will pass the message to vertex u1. Starting

from time 7, it will start broadcasting within C ′
11 which will take at least ⌈112 ⌉ = 6 time units, so

Bσ
fa(x2, G) > 11, which contradicts the assumption. Therefore, there is no universal list σ for

which Bσ
fa(G) = 11. More generally, For the graph given in Figure 5.3-a, Bcl(G) = 2n− 1, while

Bfa(G) > 2n− 1.
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Chapter 6

Non-adaptive Broadcasting

This chapter will continue studying the problem of broadcasting with universal lists by focusing

on the non-adaptive model in Section 6.1. We first provide the exact broadcast time of k−ary trees

and binomial trees under the non-adaptive model. Then, we give an upper bound for the Complete

Bipartite graph. Finally, we improve the general upper bound for trees that were initially presented

in (Harutyunyan et al., 2011).

Later in Section 6.2, we study the relation between the universal lists model and messy broad-

casting. This enables us to prove several general upper bounds for all models of universal lists for

arbitrary graphs.

6.1 Results on the non-adaptive model

6.1.1 Complete k-ary trees Tk,h

Observe that for any tree T , ⌈3×diam(T )−1
2 ⌉ ≤ Bna(T ) ≤ Bcl(T ) + ⌈diam(T )

2 ⌉ (Harutyunyan et

al., 2011). Thus, since Bcl(Tk,h) = Ba(Tk,h) = kh+ h− 1 and diam(Tk,h) = 2h (Hedetniemi et

al., 1988), the following is established for an arbitrary k−ary tree:

Observation 6.1.1. For any k−ary tree Tk,h, the broadcast time under the non-adaptive model is

bounded as follows:

⌈6h− 1

2
⌉ ≤ Bna(Tk,h) ≤ kh+ 2h− 1 (20)
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r1,0
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Figure 6.1: Tk,h+1, An arbitrary k−ary tree with height h + 1. Observe that all nodes of this tree
except for the leaves form a k−ary tree with height h.

Now, we will show that the upper bound of Equation (20) is tight. Denote a vertex of a Tk,h by

rk′,h′ in which k′ is a number associated with the vertices at level h′, from left to right: 1 ≤ k′ ≤

k, 0 ≤ h′ ≤ h. Using this notation, the root of a Tk,h tree is denoted by r1,0. This vertex has k

children, namely r1,1, r2,1, · · · , rk,1, from left to right. Also, the vertices at level h, or the leaves of

Tk,h, are denoted by r1,h, r2,h, · · · , rkh,h (See Fig. 6.1).

Theorem 6.1.1. For any complete k−ary tree, Bna(Tk,h) = kh+ 2h− 1.

Proof. Note that the broadcast scheme σ achieving the upper bound of Equation (20) could be

realized by prioritizing the parent of each internal vertex against its children from left to right.

Indeed, the list of a leaf node consists of its parent only, whereas the root sends the message to its

children from left to right. According to Observation 6.1.1, it is essential to prove the lower bound:

Bna(Tk,h) ≥ kh+ 2h− 1. We will do so by induction on h, the height of Tk,h.

For the base case, when h = 1, consider an arbitrary Tk,1, in which the root r1,0 has k children
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r1,1, r2,1, · · · , rk,1, which is a star with the center being the root vertex r1,0. It follows from (Diks

& Pelc, 1996) that: Bna(Tk,1) ≥ k + 1 = k · 1 + 2 · 1 − 1. For the induction hypothesis, assume

Bna(Tk,h) ≥ kh + 2h − 1 for an arbitrary h. Now, it must be proved that Bna(Tk,h+1) ≥ k(h +

1) + 2(h + 1) − 1 = kh + 2h + k + 1. To this aim, we will prove under any scheme σ, ∃v :

Bna(v, Tk,h+1) ≥ kh+ 2h+ k + 1. Based on the ordering of the vertices at level h under σ, there

are two possible cases:

(1) All the vertices at level h first inform their parent, then their children in some order:

(2) There is at least a vertex (such as ri,h) which informs some of its children, then its parent, and

afterward, the rest of its children, if any.

Consider vertex r1,h+1 as the originator. At time t = 1 this vertex informs vertex r1,h under

any scheme σ as that is the only choice. Since Bna(Tk,h) ≥ kh + 2h − 1, there exists a vertex at

level h which receives the message at the last time unit, or at t = kh + 2h. Denote this vertex by

ri,h. Observe that until time unit t = kh + 2h, at least all vertices of the first h level in Tk,h+1 are

informed in addition to the originator r1,h+1. However, the children of vertex ri,h, or rj,h+1,∀j :

(i − 1)k + 1 ≤ j ≤ ik cannot be informed since their parent was informed at the last time unit.

Depending on the ordering of vertex ri,h under the arbitrary scheme σ, two cases may arise:

(1) If vertex ri,h first sends the message back to its parent, and then to all of its children in

some order: In this case, at time t = kh+ 2h+ 1, vertex ri,h re-sends the message to vertex

r⌈ i
k
⌉,h−1. Then, at the next k time units, ri,h will send the message to its children. By the time

t = kh+ 2h+ k + 1, the last child will be informed. It implies that: Bna(r1,h+1, Tk,h+1) ≥

kh+ 2h+ k + 1(∗).

(2) If vertex ri,h sends the message to some of its children, then its parent, and lastly to the rest of

its children in some order: in this case, denote the first child that received the message from

vertex ri,h by vertex ri1,h+1. Now, we will consider ri1,h+1 to be the originator.

At time t = 1, ri1,h+1 informs vertex ri,h since this is its only choice. Then at time t = 2,

vertex ri,h sends the message back to vertex ri1,h+1, according to its broadcast scheme. at

time t ≥ 3, ri,h may send the message to its parent and start the broadcast process within
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the subtree Tk,h. Therefore, there exists a vertex, say rj,h, that will be informed at time

t ≥ 3+ kh+2h− 1 = kh+2h+2. This vertex has k children that must be informed under

any broadcast scheme, including σ. This process will be finished at time t ≥ kh+2h+k+2.

Subsequently, Bna(ri1,h+1, Tk,h+1) ≥ kh+ 2h+ k + 2(∗∗).

From (∗) and (∗∗), Bna(Tk,h+1) ≥ kh+ 2h+ k + 1. Therefore, for any k−ary tree, Bna(Tk,h) =

kh+ 2h− 1.

6.1.2 Binomial Tree Td

The broadcast time of a binomial tree under the non-adaptive model could be proved using the

following proposition:

Proposition 6.1.1. For any binomial tree, Bna(Td) = 3d− 2.

Proof. Note that Bcl(Td) = diam(Td) = 2d−1. By applying the general lower bound for the trees

we get Bna(Td) ≥ ⌈3×(2d−1)−1
2 ⌉ = 3d − 2. Furthermore, applying the first upper bound proposed

in (Diks & Pelc, 1996), observe that: Bna(Td) ≤ Bcl(Td) + ⌊Bcl(Td)
2 ⌋ = 3d− 2, whether d is even

or odd.

6.1.3 Complete Bipartite graph Km×n

Although there are several real-world applications for this family of networks, from graph search

in quantum computing (Rhodes & Wong, 2019) to enhancing task distribution (M.-s. Li, Xue, &

Liu, 2019), to the best of our knowledge, there is a lack of a comprehensive study for this network

considering the broadcasting problem, even under the classical model. Subsequently, in this part,

we begin by proving the broadcast time of Km×n under the classical model. Afterward, we will

present a non-trivial upper bound for Km×n under the non-adaptive model.

Theorem 6.1.2. For any complete bipartite graph Km×n,

Bcl(Km×n) = ⌈log n⌉+ 1 +max{⌈m− 2⌈logn⌉

n
⌉, 0} (21)
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Proof. We begin by proving the lower bound. Observe that Equation (21) could be simplified to

Bcl(Km×n) = ⌈log n⌉ + 1 when n = m. For this particular case, note that the classical broadcast

time of any graph with |V | vertices is lower bounded by ⌈log |V |⌉. Since when m = n for a

complete bipartite graph, |V | = 2n, the lower bound is true.

For the case when m > n, regardless of the broadcast scheme, at time t = 1, there cannot be

more than one informed vertex in both partitions. At each time unit, an informed vertex in a partition

may inform a new vertex in the other partition. So, the number of informed vertices doubles each

time. Therefore, at least ⌈log n⌉+1 time units are required to inform n vertices in both partitions. In

other words, during the first ⌈log n⌉+ 1 time units, we will have at most 2⌈logn⌉ informed vertices

in partition M , while all n vertices in partition N are informed. Hence, there could be at most

m − 2⌈logn⌉ uninformed vertices in partition M . In each time unit, at most n vertices will make a

call to inform one of these uninformed vertices, so at least ⌈m−2⌈logn⌉

n ⌉ time units are necessary to

inform the vertices in partition M completely. The lower bound for the case m > n follows.

For the upper bound, we will provide an algorithm A that achieves this bound. For the case

m = n, algorithm A begins with informing one vertex in the other partition at the first time unit.

Then, during the next ⌈log n⌉ time units, each informed vertex will make a call to inform a new

vertex in the other partition. Therefore, all vertices in both partitions are informed in ⌈log n⌉ + 1

time units.

For the case when m > n, at time t = 1, a call will be made from the partition containing the

originator to the other partition. Also, during the next ⌈log n⌉ time units, we will make a call from

an informed vertex to another uninformed vertex in the other partition. Note that if n ̸= 2i, then

some of the vertices in partition M will remain idle at time ⌈log n⌉+1. At time t = ⌈log n⌉+1 all

vertices of partition N are informed, and in the other partition there will be no more than m−2⌈logn⌉

uninformed vertices. Starting from time unit t = ⌈log n⌉ + 2 until the last time unit, informed

vertices of partition M will be idle, while all vertices from partition N will make a call to inform

one vertex in the other partition. Since there were m − 2⌈logn⌉ uninformed vertices, this process

will not take more than ⌈m−2⌈logn⌉

n ⌉ time steps. The upper bound follows.
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Hereafter, an upper bound for the broadcast time of a complete bipartite graph under the non-

adaptive model is suggested. Our upper bound proof follows the idea of the broadcast scheme

presented in (Diks & Pelc, 1996) for Complete graphs.

Theorem 6.1.3. For any complete bipartite graph Km×n,

Bna(Km×n) ≤ ⌈log n⌉+1+max{⌈m− 2⌈logn⌉

n
⌉, 0}+3×⌈

√
⌈log n⌉+ 1 +max{⌈m− 2⌈logn⌉

n
⌉, 0}⌉

(22)

Proof. Let t1 = ⌈log n⌉ + 1 + max{⌈m−2⌈logn⌉

n ⌉, 0}. We will present a broadcast scheme σ in

which the non-adaptive broadcasting finishes within t1 + 3⌈
√
t1⌉ time units.

Suppose m ≥ n. Fix a node v in the graph. Take an optimal broadcast scheme originating from

node v under the classical model, and denote it by σ′. The ordering of an arbitrary vertex u in σ′ is

denoted by l′u. Further suppose vertex v sends the message to vertex r at the first time unit. Observe

that the partition of vertices v and r will not be the same. Now we will construct a broadcast scheme

σ for the non-adaptive model using σ′:

(1) for vertex v: lv = l′v.

(2) for each vertex u ̸= v, if u is not in the same partition as v:

(a) if |l′u| ≥ ⌈
√
t1⌉: lu is the same as l′u, but vertex v is added at position ⌈

√
t1⌉.

(b) if |l′u| < ⌈
√
t1⌉: lu is the same with l′u, and vertex v is added at the end of the ordering.

(3) for each vertex u ̸= v, if u is in the same partition as v:

(a) if |l′u| ≥ ⌈
√
t1⌉: lu is the same as l′u, but vertex r is added at position ⌈

√
t1⌉.

(b) if |l′u| < ⌈
√
t1⌉: lu is the same with l′u, and vertex r is added at the end of the ordering.

First we will prove that Bσ
na(v,Km×n) ≤ t1 + ⌈

√
t1⌉. Denote the broadcast tree obtained from

the classical model originating from v by T . Consider any path p on T and denote the vertices on

this path by P = v0, v1, · · · , vk. Clearly, v0 = v. Denote by ti the position of vertex vi+1 on the

list of vertex vi under the classical model, or l′vi . Note that σ′ is an optimal scheme. Therefore, the
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sum of the position of a vertex on the previous vertex’s list cannot surpass the optimal broadcast

time because the last call from vk−1 to vk must be made not later than time t1. Thus,
∑k−1

i=0 ti ≤ t1.

Now we discuss the same process but using σ as the broadcast scheme under the non-adaptive

model. The calls that were made on path P will not be delayed more than one time unit for each

of them since we only added one vertex (either v or r) for constructing scheme σ. If a call from vi

to vi+1 is delayed for one time unit, we will set a variable δi to 1, and otherwise to 0. Observe that

all vertices of the Km×n will be informed when the originator is vertex v in at most
∑k−1

i=0 (ti + δi)

time units.

For calculating δi, note that there could not be more than ⌈
√
t1⌉ calls that are delayed in a path

P by one time unit. In the worst case, all calls are delayed by one time unit. It means that in all

the calls placed in P , vi must inform vi+1 not sooner than time ⌈
√
t1⌉ (otherwise, the call will not

be delayed). Even in this worst case, the number of calls on P cannot exceed ⌈
√
t1⌉ (since the

whole process is finished in t1 time units under the classical model). Hence,
∑k−1

i=0 δi ≤ ⌈
√
t1⌉. It

is concluded that
∑k−1

i=0 (ti + δi) ≤ t1 + ⌈
√
t1⌉. Thus, Bσ

na(v,Km×n) ≤ t1 + ⌈
√
t1⌉. (∗)

Lastly, two types of originators must be considered:

• If the originator is a vertex u ̸= v, and u is not in the same partition as v: note that based on

the position of vertex v on lu, vertex v will be informed by some vertex at time ⌈
√
t1⌉, the

latest. From that moment, we will follow the same procedure as mentioned above. Therefore,

∀u ̸= v, if the partition of u and v are different : Bσ
na(u,Km×n) ≤ t1 + 2× ⌈

√
t1⌉. (∗∗)

• If the originator is a vertex u ̸= v, and u is in the same partition as v: note that based

on the position of vertex r on lu, vertex r will be informed by some vertex at time ⌈
√
t1⌉,

the latest. Also, using lr, vertex v will be informed at most ⌈
√
t1⌉ time units later. From

that moment, we will follow the same procedure as mentioned above. Therefore, ∀u ̸=

v, if the partition of u and v are the same : Bσ
na(u,Km×n) ≤ t1 + 3× ⌈

√
t1⌉. (∗ ∗ ∗)

From (∗), (∗∗), and (∗ ∗ ∗), Equation (22) is valid for the case when m ≥ n.

It is worth mentioning that Bfa(Km×n) and Ba(Km×n) are also bounded by the same values

as Equation (22), due to Theorem 5.1.1.

77



6.1.4 A general Upper bound for Trees

An upper bound on the broadcast time for an arbitrary tree under the non-adaptive model is

presented in (Harutyunyan et al., 2011) as follows: Bna(T ) ≤ Bcl(T )+⌈diam(T )
2 ⌉, where diam(T )

is the diameter of the tree T . We will improve this upper bound by 1 when the diameter is an odd

number. Our upper bound also improves the upper bound presented in (Diks & Pelc, 1996).

Theorem 6.1.4. Bna(T ) ≤ Bcl(T ) + ⌊diam(T )
2 ⌋.

Proof. The proof is similar to the proof in (Harutyunyan et al., 2011). When diam(T ) is an even

number, the statement is trivially concluded from Theorem 3.2. of (Harutyunyan et al., 2011). In

what follows, the diameter is considered to be an odd number.

The broadcast center of a graph is the set of vertices with the minimum broadcast time. Denote

one of the broadcast centers of T by u. Further suppose T is rooted at vertex u. Let σ′ be an optimal

broadcast scheme originating from u in T under the classical model. Also, l′v denotes the ordering

of vertex v under broadcast scheme σ′. We will construct another broadcast scheme σ for the non-

adaptive model with: Bσ
na(T ) ≤ Bcl(T ) + ⌊diam(T )

2 ⌋. Let lu = l′u. For a vertex v other than u, we

will construct lv by prepending the parent of v to the list l′v. In other words, once a vertex v gets

informed, it will call its parent first and then proceeds to its children in an ordering identical to σ′.

Now fix an arbitrary originator v. There exists (at least) one vertex that receives the message

at the last time unit under the broadcast scheme σ originating from v. Denote this vertex by x.

Let bσna(v, x) denote the time steps required for a message to reach x once v is informed under the

broadcast scheme σ. By definition of vertex x, Bσ
na(v, T ) = bσna(v, x).

Let y be the first common ancestor of v and x in the tree T rooted at u. Also, let Ty be the

subtree rooted at y. Further, suppose the distance of two vertices v1 and v2 is denoted by d(v1, v2).

Observe that:

Bσ
na(v, T ) = bσna(v, x) = d(v, y) + 1 +Bcl(y, Ty) + d(y, x)− 1 (23)

It takes d(v, y) time steps for the message to reach to y from originator v. Afterward, vertex y will

send the message to its parent following our broadcast scheme σ. Then y will follow the broadcast

scheme identical to the classical model and inform its subtree within the next Bcl(y, Ty) time units.
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However, the vertices on the path connecting y to x will delay this process by sending to their parent

first. This delays the process d(y, x)− 1 time units since x, being the last vertex that gets informed,

will not send the message back to its parent.

Note that d(v, y) + d(y, x) ≤ diam(T ) for any three vertices v, y, and x, when y is on the path

connecting v to x. Moreover, observe that min{d(v, y), d(y, x)} ≤ ⌊diam(T )
2 ⌋ when diameter is

an odd number. Without loss of generality, assume that d(v, y) ≤ d(y, x). Therefore, d(v, y) ≤

⌊diam(T )
2 ⌋:

Bσ
na(v, T ) ≤ ⌊diam(T )

2
⌋+Bcl(y, Ty) + d(y, x) (24)

Note that for any vertex y and the broadcast center u: Bcl(y, Ty) ≤ Bcl(u, T ) = bcl(T ), where

bcl(T ) is the minimum broadcast time of any vertex in tree T . Also, since the unique path connecting

u to x must travel through y: d(y, x) ≤ d(u, x). Thus,

Bσ
na(v, T ) ≤ ⌊diam(T )

2
⌋+ bcl(T ) + d(u, x)

= ⌊diam(T )

2
⌋+Bcl(x, T )

(25)

The last step follows from Slater et. al (Slater et al., 1981): “for a central vertex u and an

arbitrary vertex x in a tree T : Bcl(x, T ) = d(x, u) + bcl(T )”. Lastly, since Bcl(x, T ) ≤ Bcl(T ) for

any vertex x, and the originator v was chosen randomly:

Bna(T ) ≤ ⌊diam(T )

2
⌋+Bcl(T ) (26)

By this analysis, we managed to save one time unit, hence, achieving a tight upper bound:

consider a binomial tree Td, where Bcl(Td) = diam(Td) = 2d − 1. According to Theorem 6.1.4,

Bna(Td) ≤ ⌊2d−1
1 ⌋ + 2d − 1 = 3d − 2. However, by Proposition 6.1.1, we know that this is the

optimal value.

Not only does this result improve Theorem 3.2. of (Harutyunyan et al., 2011), but it will also
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achieve a tighter bound compared to Theorem 2.1. of (Diks & Pelc, 1996), in which the authors

proved that Bna(T ) ≤ ⌊Bcl(T )
2 ⌋+Bcl(T )

1. The following theorem summarizes the best bounds for

the broadcast time of a tree under the non-adaptive model:

Theorem 6.1.5. For a Tree T :

max

{
Bcl(T )+1, ⌈3.diam(T )− 1

2
⌉

}
≤ Bna(T ) ≤ min

{
Bcl(T )+⌊diam(T )

2
⌋, bcl(T )+diam(T )

}
(27)

Each of these bounds is tight for some trees. For instance:

• For Star Sn: Bna(Sn) = Bcl(Sn) + 1,

• For Path Pn: Bna(Pn) = ⌈3·diam(Pn)−1
2 ⌉,

• For Binomial tree Td: Bna(Td) = Bcl(Td) + ⌊diam(Td)
2 ⌋,

• For Fork graph2 Fn,n
2
−1: Bna(Fn,n

2
−1) = bcl(Fn,n

2
−1) + diam(Fn,n

2
−1).

6.2 Comparison of universal list and messy broadcasting

We start with a primary result:

Lemma 6.2.1. For any graph G:

Bfa(G) ≤ t1(G).

Ba(G) ≤ t2(G).

Bna(G) ≤ t3(G).

Proof. We begin by proving the first statement. For graph G, consider an arbitrary broadcast scheme

σ under the fully-adaptive model. Fix the originator u, and then start broadcasting from u using σ.

Once performing the broadcasting, if a vertex v skips v′ on its list at time t, it means that vertex

v′ was informed by time unit t − 1. Now we may use the same scheme σ for broadcasting under

1Note that diam(T ) ≤ Bcl(T ) for any tree T .
2A Fork graph Fn,k consists of n nodes: A Path of n− k vertices and k pendant vertices that are attached at one end

point of the path.
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model M1. Note that any vertex such as v will skip its neighbor v′ at time t since v′ must have been

informed at any time t′ < t following σ.

In other words, assume that the broadcast time of graph G under the fully-adaptive model using

σ is denoted by Bσ
fa(G). Note that the value of Bσ

fa(G) is a lower bound on t1(G), since t1(G)

is the maximum value among all possible broadcast schemes. Thus, Bσ
fa(G) ≤ t1(G). Since

Bfa(G) ≤ Bσ
fa(G), the result follows.

The proofs of the second and the third statements go in the same direction. To illustrate, the

value realized by following an arbitrary broadcast scheme σ under the adaptive model is always a

valid candidate for model M2: Ba(G) ≤ Bσ
a (G) ≤ t2(G). Observe that the nature of the vertices

that are to be skipped under the adaptive model is the same as that of model M2. The same is also

true for the non-adaptive model and messy model M3: Bna(G) ≤ Bσ
na(G) ≤ t3(G).

We will also give some graphs for which the inequalities of Lemma 6.2.1 are on their boundaries.

For the equality case, consider path Pn on n vertices. It is proved that Bfa(Pn) = Ba(Pn) = n−1.

Also, from (Harutyunyan & Liestman, 1998) we know that t1(Pn) = t2(Pn) = n − 1. Also,

consider Star Sn for non-adaptive model where Bna(Sn) = n (Diks & Pelc, 1996). The same value

is achieved under model M3 : t3(Sn) = n. This shows that the upper bounds of Lemma 6.2.1

cannot be improved in general. Besides, one may suspect that the values of Lemma 6.2.1 are always

equal. As a counter-example, consider complete graph Kn on n vertices. From (Harutyunyan &

Liestman, 1998) one may notice that t1(Kn) = t2(Kn) = t3(Kn) = n− 1. However, a non-trivial

upper bound presented in (Diks & Pelc, 1996) suggests that Bfa(Kn) ≤ Ba(Kn) ≤ Bna(Kn) ≤

⌈log n⌉+ 2⌈
√
log n⌉.

Additionally, we argue that there is no relation between model M2 and the non-adaptive model

or between model M1 and the adaptive model. As an example regarding the first case, consider Path

Pn and the Complete graph Kn for which: Bna(Kn) ≤ ⌈log n⌉ + 2⌈
√
log n⌉ < n − 1 = t2(Kn)

and Bna(Pn) = ⌈3n2 ⌉− 2 > n− 1 = t2(Pn) (Diks & Pelc, 1996). We also conjecture that the same

is true for the second case, though we are not able to find a simple graph G with Ba(G) > t1(G).

Using Lemma 6.2.1, several upper bounds on BM (G) for M ∈ {fa, a, na} could be achieved

for any connected graph G with n vertices and m edges, diameter diam(G), and the maximum
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degree of ∆:

Corollary 6.2.1. Bna(G) ≤ 2m− 1, and Bfa(G) ≤ Ba(G) ≤ m.

Corollary 6.2.2. Bna(G) ≤ diam(G) ·∆, and Bfa(G) ≤ Ba(G) ≤ diam(G) · (∆− 1) + 1.

The truth of Corollary 6.2.1 can be realized by noticing that an edge could be used at most twice

under the non-adaptive model, once in each direction. However, once the last vertex is informed, the

process will stop, and it will not call back using the same edge. For the fully-adaptive and adaptive

model, on the other hand, an edge (u, v) may be utilized at most once, either for sending from u to v

or vice versa. The result follows. Besides, the truth of Corollary 6.2.2 could be realized by utilizing

Corollary 2.1 of (Harutyunyan & Liestman, 1998) which proves the same inequality on ti(G) for

i = 1, 2, 3.
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Chapter 7

Broadcast Graphs under the

Fully-adaptive Model

In this chapter, we propose several graphs for the universal list model for which broadcasting

could be finished as quickly as theoretically possible from any originator in Section 7.1. Addition-

ally, we prove that a hypercube Hd is a graph with minimum possible edges for any value of 2k to

achieve the minimum broadcast time. Also, in Section,7.2, we summarize the results presented in

the last three chapters.

7.1 Broadcast graphs under the fully-adaptive model

A broadcast graph (bg) is a graph G = (V,E) in which broadcasting could be completed

within the minimum possible time starting from any originator. In the classical model, the minimum

possible time is ⌈log n⌉ for a graph on n vertices; thus, for an arbitrary broadcast graph G: ∀u ∈

V (G) : Bcl(u,G) = ⌈log n⌉. Additionally, a minimum broadcast graph (mbg) is the bg with the

minimum possible number of edges. We denote by B(M)(n) the broadcast function for an arbitrary

value of n under model M ∈ {cl, fa}, which is the number of edges associated with the mbg

for n. Finding mbg’s for different values of n is quite vital since they represent the networks with

minimum cost in which broadcasting could be performed as quickly as possible from any originator.
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Although this problem is well studied under M = cl for several values of n, there is no com-

parative study under universal lists models. Despite the considerable effort, an mbg is known only

for very few n under the classical model. In particular, Hypercubes Hk (Farley et al., 1979) and

Knödel graphs Wk,2k (Hedetniemi et al., 1988; Knödel, 1975) are mbg’s for n = 2k, while the latter

family is also an mbg for n = 2k − 2 (Dinneen et al., 1991; Khachatrian & Harutounian, 1990).

The value of B(cl)(n) is also known for small values of n ≤ 32 except for n = 23, 24, 25 (Barsky,

Grigoryan, & Harutyunyan, 2014; Bermond et al., 1992; Farley et al., 1979; Maheo & Saclé, 1994;

Saclé, 1996).

7.1.1 mbg’s for some values of n ≤ 16

In what follows, the mbg’s under the fully-adaptive model for all values of n ≤ 10 are presented.

Moreover, we provide upper bounds on the value of B(fa)(n) for 11 ≤ n ≤ 14. We first prove a

lower bound on the value of B(fa)(n):

Lemma 7.1.1. If there is a graph G on n vertices for which Bfa(G) = ⌈log n⌉, then B(cl)(n) ≤

B(fa)(n).

Proof. Consider an arbitrary graph G1 with n1 vertices and m1 edges under fully-adaptive model

such that Bfa(G1) = ⌈log n1⌉. Then, G1 is a broadcast graph. Observe that for any graph G with

n vertices, ⌈log n⌉ ≤ Bcl(G) ≤ Bfa(G). Therefore, Bcl(G1) = ⌈log n1⌉, and G1 is a broadcast

graph under the classical model as well. Thus, m1 is an upper bound for B(cl)(n1). The result

follows.

The broadcast time of a Cycle Cn under the fully-adaptive model is ⌈n2 ⌉. This value is as low

as ⌈log n⌉ for n ≤ 6. Consequently, since Cn is also an mbg under the classical model and due to

Lemma 7.1.1, the following corollary is concluded:

Corollary 7.1.1. Cycle Cn is mbg under the fully-adaptive model for 4 ≤ n ≤ 6.

Hereafter, we will prove that the mbg’s for classical broadcasting, presented in (Farley et al.,

1979), are also mbg’s for the fully-adaptive model for n = 7, 9, and 10. Figure 7.1,a-c illustrate the

mbg’s for these values under the fully-adaptive model, which are identical to that of the classical
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Figure 7.1: a-c)mbg’s on 7,9, and 10 vertices under the fully-adaptive model. d-g) bg’s on 11,12,13
and 14 vertices under the fully-adaptive model.

model. The universal lists achieving a broadcast time of ⌈log n⌉ under the fully-adaptive model for

the mbg’s on n vertices presented in Figure 7.1 are as follows:

• σ7 = {1 :< 6, 2 >, 2 :< 3, 1 >, 3 :< 4, 2, 7 >, 4 :< 3, 5 >, 5 :< 6, 4 >, 6 :< 1, 5, 7 >, 7 :<

3, 6 >},

• σ9 = {1 :< 6, 2 >, 2 :< 3, 1 >, 3 :< 4, 2, 9 >, 4 :< 3, 5 >, 5 :< 6, 4 >, 6 :< 1, 5, 7 >, 7 :<

6, 8 >, 8 :< 7, 9 >, 9 :< 3, 8 >},

• σ10 = {1 :< 2, 8 >, 2 :< 1, 3, 6 >, 3 :< 2, 4 >, 4 :< 5, 10, 3 >, 5 :< 4, 6 >, 6 :< 2, 5, 7 >

, 7 :< 8, 6 >, 8 :< 9, 1, 7 >, 9 :< 8, 10 >, 10 :< 9, 4 >}.

This problem becomes more difficult for n ≥ 11 under the fully-adaptive model. For instance,

our exhaustive search on more than 4000 broadcast schemes on mbg’s with n = 11, · · · , 15 vertices

did not result in a broadcast scheme that achieves Bσ
fa(G) = 4. However, by adding a few more

edges to the mbg’s on the classical model, an upper bound on the value of B(fa)(n) is obtained for

11 ≤ n ≤ 14. These bg’s are presented in Figure 7.1,d-g, respectively, while the broadcast schemes

achieving time 4 are presented in what follows. Table 7.1 summarizes the results of this section.
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Table 7.1: The known values of B(fa)(n) for n < 15

n a3a a4a a5a a6a a7a a8a a9a a10a a11a a12a a13a a14a

Lower bound on B(fa)(n) 2 4 5 6 8 12 10 12 13 15 18 21
Upper bound on B(fa)(n) 2 4 5 6 8 12 10 12 15 17 23 23

• σ11 = {1 :< 7, 8, 2, 10 >, 2 :< 6, 3, 1 >, 3 :< 4, 2 >, 4 :< 3, 5, 9 >, 5 :< 11, 4, 6 >, 6 :<

5, 2, 7 >, 7 :< 6, 1 >, 8 :< 9, 11, 1 >, 9 :< 8, 4 >, 10 :< 11, 1 >, 11 :< 5, 10, 8 >},

• σ12 = {1 :< 2, 12, 7 >, 2 :< 8, 3, 1 >, 3 :< 2, 9, 4 >, 4 :< 3, 5 >, 5 :< 11, 6, 4 >, 6 :<

12, 7, 5 >, 7 :< 6, 1, 8 >, 8 :< 2, 9, 7 >, 9 :< 8, 3, 10 >, 10 :< 11, 9 >, 11 :< 12, 5, 10 >

, 12 :< 6, 1, 11 >},

• σ13 = {1 :< 2, 6, 8 >, 2 :< 1, 3, 9 >, 3 :< 2, 4, 7, 10 >, 4 :< 3, 5, 11 >, 5 :< 4, 6, 12 >

, 6 :< 5, 1, 7, 13 >, 7 :< 9, 6, 11, 3, 13 >, 8 :< 13, 9, 1 >, 9 :< 8, 10, 2, 7 >, 10 :<

9, 11, 3 >, 11 :< 10, 12, 4, 7 >, 12 :< 11, 13, 5 >, 13 :< 12, 8, 6, 7 >},

• σ14 = {1 :< 6, 2, 8 >, 2 :< 3, 1, 9 >, 3 :< 4, 2, 7, 10 >, 4 :< 3, 5, 11 >, 5 :< 6, 4, 12 >

, 6 :< 1, 5, 7, 13 >, 7 :< 3, 6, 14 >, 8 :< 13, 9, 1 >, 9 :< 10, 8, 2 >, 10 :< 11, 9, 14, 3 >

, 11 :< 10, 12, 4 >, 12 :< 13, 11, 5 >, 13 :< 8, 12, 14, 6 >, 14 :< 10, 13, 7 >}.

7.1.2 General construction of bg’s

In what follows, we present a general construction for creating the first infinite families of

broadcast graphs under the fully-adaptive model for n = 6× 2k, 7× 2k, 9× 2k, and 10× 2k.

Lemma 7.1.2. Consider a graph G = (V,E) with n vertices, m edges, and Bfa(G) = τ . It is

always possible to construct a graph G′ = (V ′, E′) with 2n vertices, 2m+n edges, and Bfa(G
′) =

τ + 1.

Proof. First, make two copies of G and denote them by G1 = (V1, E1) and G2 = (V2, E2). Also,

assume that |V1| = |V2| = n, and |E1| = |E2| = m. Let V1 = {x1, x2, · · · , xn} and V2 =

{y1, y2, · · · , yn}, where yi is the image of xi; i = 1, · · · , n. The vertices of G′ consist of the union

of those graphs: V ′ = V1 ∪ V2. Also, the edges of G′ comprise of the set of edges of G1 and G2 as

86



well as n additional inter-layer edges: E′ = E1 ∪ E2 ∪ Einter, such that: Einter = {(xi, yi)|∀i : 1 ≤

i ≤ n}. Figure 7.2 portrays this construction.

Denote the broadcast scheme of graph G under the fully-adaptive model by σ such that Bσ
fa(G) =

τ . We are interested in making a broadcast scheme σ′ for G′ in a way that Bσ′
fa(G

′) = τ + 1. The

vertices of G′ will preserve their broadcast scheme in G and append their corresponding vertex as

the last vertex on their ordering. In other words, the ordering of vertex xi, 1 ≤ i ≤ n is as follows:

xi :< within G1, yi >. Similarly, ∀i; 1 ≤ i ≤ n : yi :< within G2, xi >. These orderings imply

that once a vertex gets informed, it will follow the broadcasting within its subgraph, either G1 or

G2, and on its last call, it will inform its corresponding vertex. Suppose vertex u is the originator in

graph G′, which is located in partition p ∈ {1, 2}. Broadcasting from originator u in G′ under the

fully-adaptive model could be done in two phases:

• Phase 1: During the first τ time units, all vertices in partition p will be informed following

σ′ since each vertex will follow the same procedure as it had to follow within the smaller

sub-graph Gp.

• Phase 2: At time τ + 1, every vertex of partition p will make a call to their corresponding

vertex in the other partition simultaneously.

Note that a vertex can finish its first phase sooner than time τ and send the message to its cor-

responding vertex at a time t′ < τ . However, this will not slow down the broadcasting process.

Therefore, Bσ′
fa(G

′) = τ + 1.

We will use the following notation for expressing the result of Lemma 7.1.2:

Notation 7.1.1. (G,n,m, τ) −→ (G′, 2n, 2m+ n, τ + 1).

In which the arguments are the graph, the number of vertices, the number of edges, and the

broadcast time of the graph under the fully adaptive model, respectively. Thereafter, using Notation

7.1.1, we will argue the following corollaries:

Corollary 7.1.2. For any positive k: (G,n,m, τ) −→ (G′, 2kn, 2km+ k2k−1n, τ + k).
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Figure 7.2: Construction of graph G′

Proof. The truth of this Corollary could be realized by repeating the procedure of Notation 7.1.1

for k times. Observe that the number of vertices doubles each time. Also, the number of edges by

repeating this procedure for k times, mk, could be understood by solving the following recursion:

mk = 2mk−1 + nk−1, in which mk−1 refers to the number of edges by applying the construction

for k−1 times, and nk−1 denotes the number of nodes by applying the construction for k−1 times.

The base case of this recursion is m0 = m and n0 = n.

Corollary 7.1.3. For any positive k, (G,n,m, ⌈log n⌉) −→ (G′, 2kn, 2km+ k2k−1n, ⌈log n⌉+ k).

Proof. This could be realized by replacing τ with ⌈log n⌉ in Corollary 7.1.2. Note that using this

construction for a broadcast graph G on n vertices, the obtained graph G′ remains a bg on n · 2k

vertices.

An upper bound for the number of edges of a graph on 2kn vertices could be realized by con-

sidering a complete graph on 2kn vertices which have 2kn×(2kn−1)
2 = 2k−1(2kn2 − n) vertices.

However, the graph G′ presented in Corollary 7.1.3 has 2k−1(2m + kn) edges. Therefore, for in-

finitely large values of n, as long as m ∈ o(n2), the construction for the graph G′ will create a

sufficiently sparse graph compared to the complete graph. This makes this construction efficient in

terms of the cost associated with creating edges for a fixed value of n. Using Corollary 7.1.3, we

will introduce some broadcast graphs for several values of n.

Proposition 7.1.1. For any positive k:

(G, 6, 6, 3) −→ (G′, 6 · 2k, 6 · 2k + 6k2k−1, 3 + k),
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(G, 7, 8, 3) −→ (G′, 7 · 2k, 8 · 2k + 7k2k−1, 3 + k),

(G, 9, 10, 4) −→ (G′, 9 · 2k, 10 · 2k + 9k2k−1, 4 + k),

(G, 10, 12, 4) −→ (G′, 10 · 2k, 12 · 2k + 10k2k−1, 4 + k).

Proof. The proof of this Proposition directly follows from Corollary 7.1.3 and mbg’s on n = 6, 7, 9,

and 10 vertices presented earlier in Figure 7.1.

The following Theorem summarizes the presented results:

Theorem 7.1.1. For any integer k = ⌈log n⌉ ≥ 4:

B(fa)(n) = B(fa)(2k−1 + 2k−4) ≤ n⌈logn⌉
2 − 8n

9 ,

B(fa)(n) = B(fa)(2k−1 + 2k−3) ≤ n⌈logn⌉
2 − 4n

5 ,

B(fa)(n) = B(fa)(2k−1 + 2k−2) ≤ n⌈logn⌉
2 − n

2 ,

B(fa)(n) = B(fa)(2k−1 + 2k−2 + 2k−3) ≤ n⌈logn⌉
2 − 5n

14 .

Lastly, we prove the broadcast time of the hypercube under the fully-adaptive model.

Theorem 7.1.2. Bfa(Hd) = d

Proof. The proof will directly follow from Corollary 7.1.3 by choosing G as a graph on two ver-

tices with one edge connecting them and repeating the procedure for d − 1 times: (H2, 2, 1, 1) −→

(Hd, 2
d, d · 2d−1, d). The ordering of a vertex α = a0a1 · · · ad−1 with fully-adaptive broadcast time

of d is as follows: α :< α(d − 1), · · · , α(1), α(0) >, where α(i) is the ith dimensional neighbour

of α.

Since there exists a broadcast scheme for any hypercube on 2d vertices that achieves Bfa(Hd) =

d, and using Lemma 7.1.1, one can conclude the following:

Corollary 7.1.4. Hypercube Hd is an mbg on 2d vertices under M = fa, and B(fa)(2k) = k ·2k−1

for any k ≥ 1.

7.2 Comparing broadcast time of various graphs

In Table 7.2, we summarize the known results for all graphs described earlier in Section 2.5.

Some points should be highlighted regarding this table:
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• The value of Bfa(Pn) and Ba(Pn) are established by using Theorem 5.2.1. The same is true

for Star Sn under fully-adaptive and adaptive models.

• Any broadcast scheme yields the obvious lower bound of Bfa(Cn) = Ba(Cn) = ⌈n2 ⌉. Thus,

we do not provide rigorous proof.

• The upper bound on Bfa(Kn) and Ba(Kn) is concluded from Theorem 5.1.1 and the upper

bound provided in (Diks & Pelc, 1996).

• The value of Bcl(Km×n) is established in Theorem 6.1.2, while the upper bounds of this

graph on universal lists are presented in Theorem 6.1.3.

• For complete k−ary tree, the classical broadcast time is reported in (Harutyunyan & Liest-

man, 1998) (with a different notation than us). The fully-adaptive and adaptive broadcast

time is concluded based on Theorem 5.2.1. We also provided the non-trivial proof that gives

Bna(Tk,h) in Theorem 6.1.1. The same is true for the Binomial tree, where we provided the

proof for Bna(Td) in Proposition 6.1.1.

• The value of Bfa(Gm×n) is established in Corollary 5.2.1. Also, the upper bound on Bfa(Tm×n)

is discussed in Theorem 5.2.2.

• The value of Bfa(Hd) was studied in Theorem 7.1.2, while the upper bounds on non-adaptive

and adaptive models for this graph are established based on the results given in (Harutyunyan

& Liestman, 1998) and by using Lemma 6.2.1. For Cube Connected Cycle, we proved the

fully-adaptive time in Theorem 5.2.3, whereas the non-adaptive and adaptive upper bounds

are concluded from (Harutyunyan & Liestman, 1998) and Lemma 6.2.1.

• Also, the upper bounds on the universal lists broadcast time of Shuffle Exchange and De

Bruijn networks are concluded from (Harutyunyan & Liestman, 1998) and by using Lemma

6.2.1.

• Finally, we could not find any results regarding the Harary networks, even for the classical

model. However, we refer to (Bhabak & Harutyunyan, 2014) for a log k−2
2 −additive approx-

imation algorithm for Hk,n.
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Table 7.2: Broadcast time of well-known networks under models M = {cl, fa, a, na}.

Graph G Bcl(G) Bfa(G) Ba(G) Bna(G)

Path Pn n− 1, folklore n− 1 n− 1 ⌈3n2 ⌉ − 2, (Diks &
Pelc, 1996)

Cycle Cn ⌈n2 ⌉, folklore ⌈n2 ⌉ ⌈n2 ⌉ ⌊2n3 ⌋, (Diks & Pelc,
1996)

Star Sn n− 1, folklore n− 1 n− 1 n, (Diks & Pelc,
1996)

Complete graph Kn ⌈log n⌉, folklore ≤ ⌈log n⌉ +
2⌈
√
log n⌉

≤ ⌈log n⌉ +
2⌈
√
log n⌉, (Diks &

Pelc, 1996)

≤ ⌈log n⌉ +
2⌈
√
log n⌉, (Diks &

Pelc, 1996)
Complete Bipartite
Km×n

t1 = ⌈log n⌉ + 1 +

max{⌈m−2⌈logn⌉

n ⌉, 0}
≤ t1 + 3⌈

√
t1⌉ ≤ t1 + 3⌈

√
t1⌉ ≤ t1 + 3⌈

√
t1⌉

Complete k−ary
tree Tk,h

kh+ h− 1,
(Harutyunyan & Li-
estman, 1998)

kh+ h− 1 kh+ h− 1 kh+ 2h− 1

Binomial tree Td 2d− 1, folklore 2d− 1 2d− 1 3d− 2

Grid Gm×n m+ n− 2,
(Farley & Hedet-
niemi, 1978)

m+ n− 2 m+ n− 2,
(Diks & Pelc, 1996)

m+ n− 1,
(Diks & Pelc, 1996)

Tori Tm×n ⌊n2 ⌋+⌊m2 ⌋, if m and
n are even
⌊n2 ⌋ + ⌊m2 ⌋ + 1,
otherwise (Farley &
Hedetniemi, 1978)

⌊n2 ⌋+⌊m2 ⌋, if m and
n are even
⌊n2 ⌋ + ⌊m2 ⌋ + 1, if
only one of m and n
is even
≤ ⌊n2 ⌋ + ⌊m2 ⌋ + 2,
otherwise

≤ ⌊n2 ⌋+ ⌊m2 ⌋+ 3,
(Diks & Pelc, 1996)

≤ ⌊n2 ⌋+ ⌊m2 ⌋+ 5,
(Harutyunyan &
Taslakian, 2004)

Hypercube Hd d, folklore d ≤ d(d−1)
2 + 1 ≤ d(d+1)

2 + 1

Cube Connected
Cycle CCCd

⌈5d2 ⌉− 1, (Liestman
& Peters, 1988)

⌈5d2 ⌉ − 1 ≤ 2⌈5d2 ⌉ − 1 ≤ 3⌈5d2 ⌉ − 3

Shuffle Exchange
SEd

2d− 1, (Hromkovič
et al., 1993)

≤ 4d− 1 ≤ 4d− 1 ≤ 6d− 3

De Bruijn DBd ≤ 3
2(d + 1),

(Bermond &
Peyrat, 1988)
≥ 1.3171d, (Klas-
ing et al., 1994)

≤ 3d+ 1 ≤ 3d+ 1 ≤ 4d

Harary graph Hk,n ? ? ? ?
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Chapter 8

HUB-GA: A Heuristic for Universal lists

Broadcasting using Genetic Algorithm

The problem of broadcasting with universal lists has several applications and could be applied

to different networks, such as Software Defined Networks (SDNs). The SDN environment and its

related algorithms have attracted both academia and industrial communities in recent years (Al-

Jawad, Comşa, Shah, Gemikonakli, & Trestian, 2021; Binh & Duong, 2021; D. Li et al., 2017). For

instance, the problem of broadcasting with universal lists has immediate applications in the update

procedure of SDNs, which has shown to be highly effective on the performance of the networks and

their QoS (D. Li et al., 2017; Sezer et al., 2013).

The emergence of Machine Learning has revolutionized research in almost all areas. In this

chapter, we focus on the problem of broadcasting with universal lists and propose a reinforcement

learning-based algorithm for this problem. Although there are several studies for this problem, our

work differs from all in that we present the first heuristic for this problem. Our heuristic is based

on the Genetic Algorithm, which is demonstrated to be genuinely useful for finding near-optimal

solutions for problems with huge search spaces. The experimental results conducted in this chapter

reveal that our approach is quite efficient while being tested under divergent circumstances.

The rest of this chapter is arranged as follows: In Section 8.1, the preliminaries of this work

are studied, and we motivate the reader by providing an example. The related works concerning the
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genetic algorithm are discussed in Section 8.2. We propose our methodology in Section 8.3, and the

numerical results are reported in Section 8.4.

8.1 Motivation and an Example

In universal lists broadcasting, once a vertex receives the message, it transmits it to its neigh-

bors with respect to the fixed ordering given in the list. There are three sub-models defined using

universal lists:

• Non-adaptive model: Once a vertex u receives the message, it will re-transmit it to all the

vertices on its list, even if u has received it from some of its neighbors. The broadcast time of

a graph G following this model is denoted by Bna(G).

• Adaptive model: Once informed, a vertex u will send the message to its neighbors according

to its list, but it will skip the neighbors from which it has received the message. The broadcast

time of a graph G following this model is denoted by Ba(G).

• Fully adaptive model: Once a vertex u gets informed, it will send the message to its neigh-

bors according to its list, but it will skip all informed neighbors. The broadcast time of a

graph G following this model is denoted by Bfa(G).

There could be many unnecessary calls under the non-adaptive model, in which the message is

returned to the sender. This model is the slowest among all while having the best space complex-

ity, as the list is the only thing that should be maintained. Although the number of unnecessary

calls drops in the adaptive model compared to the non-adaptive model, many calls might still be

unnecessary since only the senders are avoided under this model. Hence, a vertex u may transmit

the message to one of its neighbors v, which is already informed but has not yet transmitted the

message to u. Furthermore, each vertex requires additional storage to keep track of the nodes from

which it has received the message. Lastly, a vertex skips all of its informed neighbors in the Fully-

adaptive model. This accelerates the broadcast process compared to the adaptive model. Similar

to the classical model, no unnecessary call is made following this model. The space complexity,
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however, increases compared with the adaptive model since a vertex has to be aware of the state of

its neighbors. Earlier, we proved that:

Bcl(G) ≤ Bfa(G) ≤ Ba(G) ≤ Bna(G) (28)

The relations in Equation (28) are reversed considering the required space. In summary, the choice

of a suitable model heavily depends on the available resources and the requirements of the network.

Consider graph G = (V,E). A broadcast scheme for the non-adaptive, adaptive, or fully adap-

tive model can be viewed as a matrix σn×∆, where row i of σ corresponds to an ordering of the

neighbors of vertex vi. Assuming this vertex has degree di, the cells σ[i][di+1], σ[i][di+2], · · · , σ[i][∆]

will be Null, where ∆ = max{di : 1 ≤ i ≤ n}. Also, denote all possible schemes for a graph G

by Σ(G). When it is clear from the context, we may omit the subscript (G).

Let M be one of the three models using universal lists (M ∈ {na, a, fa}) and fix a graph G.

For any broadcast scheme σ ∈ Σ, Bσ
M (u,G) is the time steps needed to inform all the vertices in G

from the source u while following the scheme σ under model M . Moreover, the broadcast time of

a graph G under model M with scheme σ is defined as the maximum Bσ
M (u,G) over all possible

originators. Finally, BM (G) is the minimum Bσ
M (G) over all possible schemes:

Bσ
M (G) = max

u∈V
{Bσ

M (u,G)}

BM (G) = min
σ∈Σ

{Bσ
M (G)}

(29)

8.1.1 An example

Table 8.1 Shows an arbitrary σ for the graph given in Figure 8.1-a. Suppose vertex 3 is the orig-

inator. Now, the broadcast processes starting from this vertex under all three models are described:

• Fully-adaptive: At time t = 1, vertex 3 sends the message to vertex 2 according to its list.

At time t = 2, vertex 3 sends the message to vertex 4, and vertex 2 (by skipping the informed

vertex 3) will send the message to vertex 1. At time t = 3, the remaining vertices on the list

of vertices 1 and 2 are already informed; thus, vertices 1 and 2 will remain idle. Also, vertex
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3 will skip vertex 1 (since it is informed) and send the message to vertex 5, whereas vertex 4

will skip vertices 3 and 2 from its list and send the message to vertex 6. Since all 6 vertices

are informed, Bσ
fa(G, 3) = 3. See Figure 8.1-b.

• Adaptive: The broadcast process is the same for time units t = 1, 2. However, at time t = 3,

vertex 1 sends the message to vertex 3, while vertex 2 sends the message to vertex 4 because

vertex 2 has not received the message from vertex 4. Also, vertex 3 sends the message to

vertex 1 for the same reason, whereas vertex 4 is the only vertex that informs an already

uninformed vertex 6. Since vertex 5 is still uninformed, the process must continue for another

time unit t = 4, in which vertex 3 and 6 hit the same target (vertex 5) which ends the process:

Bσ
a (G, 3) = 4. See Figure 8.1-c.

• Non-adaptive: This model is the slowest model yet the easiest to follow because no vertex is

being skipped. Therefore, once a vertex gets informed at time t, it will send the message to

its neighbors at time t+ 1, t+ 2, · · · , following its list given in σ. For instance, since vertex

3 is the originator who has the message at time t = 0, it will pass the message to vertices 2,

4, 1, and 5 at time units t = 1, 2, 3, 4, respectively. Also, since vertex 2 is informed at time

t = 1, it will send the message to vertex 3,1, and 4 during time units t = 2, 3, 4, respectively.

Following this process for other vertices is the same, therefore is omitted. Eventually, this

process ends at time unit 5: Bσ
na(G, 3) = 5. See Figure 8.1-d.

Two interesting points could be emphasized from this example: Firstly, while a broadcast

scheme σ might be optimal for a particular model, it could be inefficient under another model.

For instance, Table 8.1 is optimal under model fa and vertex 3 as the originator, whereas it is not

optimal under model na and the same originator. Secondly, a broadcast scheme could be tailored

for a certain originator, whereas it is not efficient once other vertices are selected as the message

originator. For example, following Table 8.1 from vertex 6 as the originator, the fully-adaptive

broadcasting will be finished in four time units even though it is possible to come up with another

scheme that reduces this time to 3. The tough task is to design a scheme σ′ that yields a broad-

cast time of 3 from not only vertex 6 but all vertices of this graph under the fully-adaptive model.

This broadcast scheme is given in Table 8.2. Following this optimal scheme Bσ′
fa(G) = 3. Also,
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(c) Adaptive model

Figure 8.1: a) Graph G, b) Broadcast Scheme of G Under Fully Adaptive Model: Bσ
fa(G, 3) = 3, c)

Broadcast Scheme of G Under Adaptive Model: Bσ
a (G, 3) = 4, d) Broadcast Scheme of G Under

Non-Adaptive Model: Bσ
na(G, 3) = 5

Table 8.3 gives an optimal broadcast scheme under the adaptive model with Bσ′
a (G) = 3, whereas

Table 8.4 is an optimal scheme under the non-adaptive model with Bσ′
na(G) = 4 (achieving the

non-adaptive broadcast time of 3 for this graph is impossible).

Table 8.1: An Ordering of Vertices for the Graph of Figure 8.1

Sender Ordering of receivers
1 3 2 NULL NULL
2 3 1 4 NULL
3 2 4 1 5
4 3 2 6 NULL
5 6 3 NULL NULL
6 5 4 NULL NULL

It is evident that guessing an optimal scheme out of many possible solutions is nearly impossible,

even for a small graph. Besides, our results demonstrate that simple heuristics, such as sorting the

lists based on the degree, are also ineffective. In this study, we propose a heuristic based on the

96



Table 8.2: An optimal broadcast scheme for the Graph given in Figure 8.1 under fully-adaptive
model

Sender Ordering of receivers
1 2 3 NULL NULL
2 1 4 3 NULL
3 4 1 2 5
4 6 3 2 NULL
5 6 3 NULL NULL
6 4 5 NULL NULL

Table 8.3: An optimal broadcast scheme for the Graph given in Figure 8.1 under adaptive model

Sender Ordering of receivers
1 3 2 NULL NULL
2 4 3 1 NULL
3 5 1 2 4
4 2 3 6 NULL
5 3 6 NULL NULL
6 5 4 NULL NULL

Genetic algorithm that tackles this problem.

8.2 Related works on Genetic Algorithm

Genetic Algorithm (GA) has attracted an enormous amount of attention from researchers after

being proposed by J. H. Holland (Holland, 1992). The studies in this domain could be divided into

several categories.

Enhancing the algorithm: Several researchers have tried to enhance the GA itself by propos-

ing different approaches for various operations of GA, such as Crossover (Louis & Rawlins, 1991;

Semenkin & Semenkina, 2012; Tsutsui, Yamamura, & Higuchi, 1999), Mutation (Ahn & Ramakr-

ishna, 2003), Selection (Fang & Li, 2010; Goldberg, 1990; Hutter, 2002; Ishibuchi & Yamamoto,

2004; R. Kumar, 2012; Miller & Goldberg, 1995), or the Stopping Criteria (Safe, Carballido, Pon-

zoni, & Brignole, 2004). For survey papers, we refer to (Goldberg & Deb, 1991; Grefenstette, 1993;

Katoch, Chauhan, & Kumar, 2021; Mirjalili, 2019; Srinivas & Patnaik, 1994; Zbigniew, 1996).

Graph-related problems: GA helped researchers to develop heuristics for different problems.

As far as graph-related problems are concerned, the graph coloring problem and some solutions
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Table 8.4: An optimal broadcast scheme for the Graph given in Figure 8.1 under non-adaptive model

Sender Ordering of receivers
1 2 3 NULL NULL
2 4 3 1 NULL
3 1 5 2 4
4 3 6 2 NULL
5 6 3 NULL NULL
6 4 5 NULL NULL

working with GA are discussed in (Assi, Halawi, & Haraty, 2018; Marappan & Sethumadhavan,

2018), while some algorithms for the graph partitioning with GA are proposed in (Maini, Mehro-

tra, Mohan, & Ranka, 1994; Talbi & Bessiere, 1991). Several algorithms for Max-cut (Y.-H. Kim,

Yoon, & Geem, 2019), Max clique (Marchiori, 1998; Pinto, Ribeiro, Rosseti, & Plastino, 2018), and

Max-Cut clique (Fortez, Robledo, Romero, & Viera, 2020) problems are proposed in the literature.

Palmer and Kershenbaum (Palmer & Kershenbaum, 1994) came up with a novel idea for represent-

ing trees in GA and showed that the proposed encoding could be effective for several problems.

Routing: As mentioned in (Lambora, Gupta, & Chopra, 2019), GA has been used in various

network routing protocols. In particular, in (Selvanathan & Tee, 2003), a GA approach for the

shortest path problem under two different settings has been proposed. Also in (Shanmugasundaram,

Sushita, Kumar, & Ganesh, 2019), the network design problem with the goal of optimizing vehicle

travel distance has been studied with GA, while Unmanned aerial vehicle (UAV) networks (Wen et

al., 2022), and energy-efficient resource allocation (Jiao & Joe, 2016) have been studied using GA.

Digital Data Service (DDS), which is a famous communication service, is studied in (C.-H. Chu,

Premkumar, & Chou, 2000) where the authors proposed a GA for the Steiner-tree problem that is

tightly connected to the design of DDS networks.

In (Muruganantham & El-Ocla, 2020) the performance of several routing algorithms in Wireless

Sensor Networks (WSNs) are compared, such as GA, Dijkstra algorithm, Ad hoc On-Demand Dis-

tance Vector (AODV), GA-based AODV Routing (GA-AODV), grade diffusion (GD) algorithm,

directed diffusion algorithm and GA combined with the GD algorithm. They have also studied

the performance of those algorithms in the presence of faulty nodes and found out that combining

GA with other algorithms is usually useful. In (Mazaideh & Levendovszky, 2021), efficient data
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transmission through WSNs with multiple objective genetic algorithm is studied by proposing a

compressive sensing-based algorithm. Multicast routing problem and an algorithm based on GA

is suggested in (Sun & Li, 2006). A dynamic source routing protocol in Mobile ad hoc network

(MANET) is suggested in (D.-g. Zhang, Liu, Liu, Zhang, & Cui, 2018), which utilizes genetic

algorithm-bacterial foraging optimization (GA-BFO). The routing problem in MANETs is also dis-

cussed in (Bhardwaj & El-Ocla, 2020) using GA, considering energy consumption as one of the

foremost vital limitations in MANETs. Furthermore, the effectiveness of GA-based routing solu-

tions in Vehicular Ad-hoc networks (VANETs) is discussed in (A. Kumar, Dadheech, Kumari, &

Singh, 2019). Also, QoS routing using GA in VANETs (G. Zhang, Wu, Duan, & Huang, 2018) and

WSNs with applications in smart grids (Baroudi, Bin-Yahya, Alshammari, & Yaqoub, 2019) is a

well-studied problem in the literature.

In (Bhola, Soni, & Cheema, 2020), the goal is to enhance energy efficiency with the lifespan of

sensor nodes. They proposed an energy-effective routing protocol, low energy adaptive clustering

hierarchy (LEACH) in addition to an optimization GA. The authors of (Wang, Zhang, Yang, &

Vajdi, 2018) proposed a GA for routing in WSNs with the aim of minimizing energy consumption.

The problem of routing in energy harvesting-wireless sensor networks (EH-WSN) has been studied

in (Wu & Liu, 2013) using GA. Prolonging the lifetime of nodes by reducing energy consumption

in WSNs is studied in (Rezaeipanah, Nazari, & Ahmadi, 2019) where GA has been used for the

routing algorithm.

Broadcasting: In the area of broadcasting, Hoelting et al. proposed a GA for the problem of

Minimum Broadcast Time (MBT) (Hoelting, Schoenefeld, & Wainwright, 1996). They tested their

algorithm for random graphs on 10 to 500 nodes, as well as three contrived sets of networks on 40,

80, and 120 nodes. They compared their results with the Approximation Matching (AM) algorithm

presented in (Scheuermann & Wu, 1984), and claimed that their algorithm outperforms AM, partic-

ularly considering the contrived networks. Moreover, Hasson and Sipper (Hasson & Sipper, 2004)

proposed ACS: an Ant Colony System for the MBT problem. They compared the performance of

their algorithm with that of (Hoelting et al., 1996) and AM (Scheuermann & Wu, 1984) for random

graphs on 15 to 250 nodes and edge probability in the range of (0.05 − 0.1). In most cases, the

achieved broadcast time was better or the same, while the running time was enhanced compared to
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both algorithms.

More recently, Lima et al. (Lima, Aquino, Nogueira, & Pinheiro, 2022) proposed a metaheuris-

tic algorithm for the MBT problem with GA, namely BRKGA. They suggested various versions of

their algorithm while combining it with different decoders, such as First Receive First Send (FRFS)

or an Integer Linear Programming (ILP) method. They compared their results with various meth-

ods such as Tree Block (de Sousa et al., 2018), NTBA (Harutyunyan & Wang, 2010), NEWH

(Harutyunyan & Jimborean, 2014), and ACS (Hasson & Sipper, 2004) for several graph families of

up to 1024 nodes. Their results show that BRKGA is able to outperform all counterpart heuristics for

the MBT problem, while it can also be an alternative for larger networks where the exact methods

cannot be applied. Finally, we should point out that the goal of (Hasson & Sipper, 2004; Hoelting et

al., 1996; Lima et al., 2022) is to minimize the classical broadcast time of a particular vertex under

the classical model, not to optimize the broadcast time of all network members at the same time.

8.3 Methodology

In this section, we propose a novel solution to the problem of broadcasting with universal lists.

We look at this problem as follows: Assuming Σ as the search space, our goal is to find a σ ∈ Σ that

minimizes an objective function, i.e., the broadcast time. In the following proposition, it is argued

that the size of the search space skyrockets as the graph size grows. Subsequently, a thorough

exploration of state space is impossible.

Proposition 8.3.1. For a graph G on n vertices, where the degree of vertex i is di, the size of search

space for the problem of broadcasting with universal list is as follows:

|Σ(G)| =
n∏

i=1

di∑
j=0

(

(
di
j

)
× j!) (30)

Proof. Note that, as mentioned in (Diks & Pelc, 1996), a solution to the problem of broadcasting

with universal lists may include some neighbors of a particular vertex, not all of them, necessarily.

For a vertex i with di neighbors, a valid universal list may contain any number of its neighbors
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ranging from 0 to di. If it includes j neighbors, there are
(
di
j

)
different ways to select those neigh-

bors, while in each case, the selected neighbors may be arranged in j! different ways. Also, this is

true for each vertex 1, 2, · · · , n.

Observe that the function given in Equation (30) grows at least as fast as Ω
(
(δ!)n

)
when δ is

the minimum degree of the graph, that is, |Σ(G)| is at least exponential. The complexity of the same

function and its importance are studied in (Morosan, 2006) under the classical model. All in all,

since the search space size is exponential, evolutionary computing could be useful in finding an

optimal solution out of many possible solutions with a high probability (Zbigniew, 1996). Genetic

algorithm is a particular class of evolutionary algorithms that is effective in finding optimal solutions

for complex problems in various domains such as biology, engineering, computer science, and social

science.

Genetic Algorithm (GA), introduced by J. H. Holland (Holland, 1992), is an optimization algo-

rithm. It is a population-based search algorithm (Katoch et al., 2021) that uses the idea of survival of

the fittest (Zbigniew, 1996), originally inspired by the Darwinian theory of evolution (Grefenstette,

1993). In this algorithm, every solution to the problem at hand corresponds to a chromosome, while

every parameter is a gene (Mirjalili, 2019). The fitness of each individual is evaluated with a fitness

function. To improve the quality of solutions, the best solutions are selected for reproduction using

two primary operations of GA: Crossover and Mutation. GA tries to find a suitable solution by

repeating this process over multiple generations.

In this study, we propose HUB-GA: a Heuristic for Universal list model of Broadcasting with

Genetic Algorithm. The general routine of HUB-GA is given in Algorithm 6, whereas Figure 8.2

portrays how this framework is tailored according to our problem. Note that the most crucial task

for developing a GA heuristic for a problem is to encode the problem properties into chromosomes

and genes (Selvanathan & Tee, 2003; Sun & Li, 2006). In the rest of this section, the detail of the

proposed algorithm is explained for the problem at hand.
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Algorithm 6 HUB-GA
1: Generate random population;
2: Calculate fitness score;
3: while not converged do
4: Crossover;
5: Mutation;
6: Calculate fitness score;
7: Acceptance;
8: end while
9: return The best chromosome

8.3.1 Genes, Chromosomes, and Population

Consider a graph G with n vertices and denote the degree of vertex i by di. An arbitrary

ordering of the neighbors of vertex i represents a gene i, g(i), with size at most di. A chromosome

is a collection of n genes: g(1), g(2), · · · , g(n), each corresponding to an ordering for a particular

vertex. Table 8.1 portrays an arbitrary chromosome for the graph given in Figure 8.1-a, where row i

of the matrix corresponds to gene g(i). Using our notation, a chromosome is a matrix σ with n rows

(or n genes) and ∆ columns. We need to stress that a chromosome is different from an adjacency

list of the graph. This is because a gene does not necessarily include all neighbors of a particular

vertex, as opposed to the adjacency list.

In GA, a chromosome is a possible solution for the problem, meaning that any σ ∈ Σ may be

an optimal broadcast scheme. However, guessing the correct solution out of too many possible so-

lutions is nearly impossible. Subsequently, the first step of HUB-GA is generating several solutions

randomly, called the first population. The main goal of the initialization step is to distribute the so-

lutions in the search space as evenly as possible to increase the diversity of the population and have

a better chance of finding promising regions (Mirjalili, 2019). Consequently, the bigger the size

of the first generation, the higher the chance of finding a near-optimal solution in early iterations.

The computational cost, however, surges as the size of the population grows. Therefore, choosing a

reasonable size for the first population is a trade-off between cost and accuracy. Later in Experiment

1, we study the effect of population size, or |p|, on the performance of our algorithm.

Finally, choosing a suitable encoding for genes, chromosomes, and population is crucial since
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they have to abide by some fundamental rules. For instance, a gene has to be mutable. Therefore,

having modified the content of a gene, another valid solution must be generated. Moreover, creating

new and unseen solutions must be possible using two different chromosomes. Also, as mentioned

in (Palmer & Kershenbaum, 1994), it should be easy to go back and forth between the graph’s

encoding and the graph itself in a more conventional form suitable for evaluating the fitness function

(the encoding/decoding process). Lastly, the encoding should possess locality; small changes in the

encoding should result in small changes in the fitness score (Palmer & Kershenbaum, 1994). This

will help GA to function more effectively. This study’s novel encoding allows us to respect these

ground rules without violating the problem’s definitions.

8.3.2 Fitness Function

The key element of any GA-based heuristic for a problem is the definition of its fitness function.

The fitness function, f(σ), evaluates the fitness of a chromosome σ, and it must be designed in a

way that it evaluates the optimal solution as the best one. The ultimate objective of GA is to find a

chromosome σ which minimizes/maximizes a predefined fitness function f(σ). We have considered

two fitness functions in this study. In both cases, a better chromosome has a smaller fitness score.

Hence, the ultimate objective is to minimize the fitness function.

Broadcast time

For the first case, the fitness function is considered to be the broadcast time of the graph using

σ as the universal list:

f1(σ) = max
u∈V (G)

{Bσ
M (u,G)} = Bσ

M (G) (31)

To evaluate f1(σ), the broadcast process is simulated starting from every originator u, using

σ as the universal list under a model M . No need to mention that this is done in parallel for

each originator. Then, the maximum broadcast time over every originator is considered as f1(σ).

Therefore, in this case, the aim is to minimize the maximum broadcast time. Eventually, we expect

to find a scheme in which, starting from any originator, the broadcast time is quite short. Ideally,

f1(σ) approaches BM (G), since BM (G) = minσ∈Σ{Bσ
M (G)}.
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Figure 8.2: A schema of our methodology
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The reason for defining this function is quite apparent. In recent years, finding the broadcast

time of a particular family of graphs has been an ongoing research question (Bhabak & Haru-

tyunyan, 2022; Slater et al., 1981), particularly under the universal list model (Diks & Pelc, 1996;

Harutyunyan et al., 2011; Harutyunyan & Taslakian, 2004; J.-H. Kim & Chwa, 2005; Rosenthal

& Scheuermann, 1987). Using the proposed algorithm, we can tackle this problem in two ways:

Firstly, our algorithm generates the actual broadcast scheme that minimizes its fitness function. The

scheme could be used as a foundation for proposing general upper bounds on the broadcast time of

a particular family of graphs. Secondly, the results provided by this algorithm could question the

reachability of some lower bounds. For instance, based on our experimental results, we conjecture

that the broadcast time of a Complete Graph Kn on n vertices under the fully-adaptive model should

be strictly greater than that of the classical model. This idea could even be proved by generating all

possible schemes for a particular Kn and calculating their f1 fitness score, which is out of the scope

of this study. On the other hand, by using f1 as the fitness function, the network manager will be

able to minimize the maximum broadcast time of any network entity. This has shown to be help-

ful in different applications such as wireless sensor networks (Shang, Wan, & Hu, 2010), industry

4.0 (Hocaoğlu & Genç, 2019), video packet distribution in vehicular ad-hoc networks (Salkuyeh &

Abolhassani, 2018), robotics (Bucantanschi, Hoffmann, Hutson, & Kretchmar, 2007), satellite link

topology (X. Chu & Chen, 2018), and age of information performance (Liu, Huang, Li, & Ji, 2021).

Average broadcast time

In the second case, the average broadcast time of the network is used for the fitness function:

f2(σ) =

∑
u∈V (G)B

σ
M (u,G)

n
(32)

In which n is the number of vertices of graph G. Evaluating f2(σ) is quite similar to that of

f1(σ), except that instead of taking the maximum broadcast time of each originator, we use the

average broadcast time. Using this fitness score, we aim to find a scheme σ for which the behavior

of all originators is fairly optimal in terms of broadcasting under model M .
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The second function’s definition fits this study’s environment even better. To illustrate, by mak-

ing a slight change in a chromosome σ, the value associated with f2(σ) is also expected to change

as opposed to f1(σ), which is likely to remain the same. Previously referred to as locality, this vital

feature could help create a more discoverable search space. Subsequently, the GA is anticipated to

perform better in minimizing f2 in general.

As an application concerning f2, consider a communication network containing a clique and

several paths attached to its nodes. In this network, the furthest nodes from the clique cannot inform

all members quickly, regardless of the scheme. Using f1 for this network means paying attention

only to those at the furthest distance from the clique members. Consequently, the broadcast time of

several vertices will not be minimized, even though it could be essential for the network provider.

Using f2, on the other hand, will result in a scheme in which the behavior of every originator is

objectively optimal.

8.3.3 Crossover

There are two basic GA operators; the first one is Crossover, where two chromosomes are

selected as the parents (selection phase), and then two children (called offsprings) are generated by

crossover. Each of these steps is described hereafter.

In nature, the fittest individuals are more likely to get food and mate (Mirjalili, 2019). Inspired

by this fact, the GA gives a higher chance to fitter chromosomes to be selected as the parents.

There are several solutions proposed for this phase, a.k.a. selection. For instance, one solution

is to use the Roulette Wheel method (Goldberg & Deb, 1991), where the chance of selecting a

chromosome is proportional to its fitness score. Other well-known selection operations include, but

are not limited to, Boltzmann selection (Goldberg, 1990), Rank selection (R. Kumar, 2012), Fuzzy

selection (Ishibuchi & Yamamoto, 2004), and Fitness uniform selection (Hutter, 2002).

In this study, we used the famous K−way Tournament selection method (Miller & Goldberg,

1995). In this method, K individuals are selected from the population randomly. Then, the fittest

chromosome, according to its fitness function, will be chosen for the role of the first parent. The

same procedure is repeated for selecting the second parent. This method is genuinely valuable,

mainly when the fitness score is a minimization function. Moreover, this method is very efficient
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for parallel computing (Fang & Li, 2010). In this chapter, K is fixed to 4 as a commonly used value

(Fang & Li, 2010; Miller & Goldberg, 1995).

Once parent 1 (p1) and parent 2 (p2) are selected, a random integer is chosen from the range

[1, n) as the crossover point, denoted by cp. Afterward, two new off-springs (c1 and c2) are gener-

ated as follows:

c1 = g(1)(p1), · · · , g(cp)(p1), g(cp+1)(p2), · · · , g(n)(p2)

c2 = g(1)(p2), · · · , g(cp)(p2), g(cp+1)(p1), · · · , g(n)(p1)
(33)

In which g(i)(pj) is the ith gene of parent j. Indeed, the first child contains the first cp genes of

p1, while other genes come from p2. This will be the other way around for the second child. This

method is called single-point crossover, one of the most common methods in addition to the double-

point method (Srinivas & Patnaik, 1994). To name a few other methods, Three parents crossover

(Tsutsui et al., 1999), Uniform crossover (Semenkin & Semenkina, 2012), and Masked crossover

(Louis & Rawlins, 1991) could be noted.

We keep making new off-springs until the initial size of the population is doubled. Note that

off-springs still are valid solutions since no new vertex is added to the neighborhood of a sender.

However, their fitness function still needed to be calculated in the next iteration.

8.3.4 Mutation

The second operator of GA is mutation, in which a gene of an offspring is changed randomly

with a small probability. Mutation preserves population diversity by introducing another level of

randomness (Mirjalili, 2019). Also, this operator prevents the solutions from becoming similar and

increases the probability of avoiding local solutions in the GA (Mirjalili, 2019).

In our algorithm, the ordering of a gene is shuffled when it is supposed to go over mutation.

Although mutation prevents GA from falling into a local optimum, there is a big chance of losing

the best chromosome. Therefore, we performed two actions for mutation:

(1) Decreasing mutation probability: The chance of performing mutation reduces over time.
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This is because, in early iterations, the goal is to explore the state space as much as possi-

ble, which is achieved by mutation. However, during last iterations, the algorithm probably

converged with a relatively good solution. Therefore, mutation cannot be useful anymore.

(2) Elitism: When a gene of a chromosome is changed by mutation, the best solution is likely

to be lost. Using Elitism (Ahn & Ramakrishna, 2003), a copy of the original individual is

maintained before changing it. This copy will be carried out to the next generation, being

treated as a normal chromosome. The goal is to prevent such solutions (elites) from being

degraded. This method may accelerate the convergence of GA dramatically (Ahn & Ramakr-

ishna, 2003). Also, as mentioned in (Mirjalili, 2019), the reliability of GA heavily depends

on the process of maintaining the best solutions in each generation. Using Elitism, the chance

of maintaining such solutions gets higher.

In our implementation, at early iterations, each gene could go over mutation with a 1% chance,

and this number decreases smoothly over time. When a mutation is supposed to happen, a copy of

the original chromosome is kept in the population.

Figure 8.3 shows the three main operators of HUB-GA, i.e. Selection, Crossover, and Mutation.

In this Figure, Parent 1 (p1) and Parent 2 (p2) are the same chromosomes as the ones given in Table

8.1 and Table 8.2 for the Graph displayed in Figure 8.1-a. Assume p1 and p2 are selected through

a 4-Way tournament among other candidates. By performing crossover with cp = 2 on p1 and p2,

two new offsprings, c1 and c2, are generated. Each gene of c1 and c2 may go through mutation with

a small probability, resulting in a random shuffle in g(3) of c1.

8.3.5 Acceptance

Having generated several off-springs using crossover and mutation, the population size esca-

lates. One possible solution to keep the current generation manageable with limited resources is to

retain the original population size by allowing a fixed number of chromosomes to survive into the

next generation.

In order to do so, we used a 4-way tournament as described earlier in section 8.3.3. Thus, as

long as the size of the next generation has not reached the original size, four random chromosomes
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Figure 8.3: The process of Selection, Crossover, and Mutation in HUB-GA

are selected from the current generation, and the one with a better fitness score will survive into the

next generation. This method gives a higher chance to the fittest individuals to survive, while any

chromosome could be carried out to the next generation.

8.3.6 Stopping criterion

Several conditions are discussed in the literature regarding the best time to terminate the execu-

tion of GA (Safe et al., 2004; Zbigniew, 1996). Each criterion has advantages and disadvantages.

For instance, the most trivial way is to stop exploring when a fixed number of generations have been

generated or a predefined time limit is exceeded. Although the idea is simple and easy to implement,

choosing a number for this purpose is not straightforward. Another well-known solution is to stop

the execution when the lower bound of the problem is met. Utilizing this condition could be quite

effective in many problems. In the case of broadcasting, however, there are two obstacles. Firstly,

calculating the lower bound on BM (G) could be as difficult as guessing Bcl(G) (See Eq. (28)),

which is an NP-Hard problem (Garey & Johnson, 1983). Secondly, to the best of our knowledge,

there is no solution to evaluate the lower bound’s reachability for a particular graph. Therefore, if

the lower bound is unachievable, the GA never terminates.

In this study, we employed an adaptive stopping criteria. The execution of HUB-GA terminates

if, after St iterations, the fitness score of the fittest individual does not change. Thus, the algorithm

can avoid unnecessary reproductions once a local (and possibly global) optimum has been reached.
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Nonetheless, choosing the parameter St remains a confusing puzzle. Therefore, in Experiment 1,

we studied the impact of changing parameter St, a.k.a the stability variable, on the performance of

our algorithm. Once the stopping criterion is met, the best chromosome (solution) from the current

generation and its fitness score are returned as the final answer.

8.3.7 Remarks

The advantages of our method are as follows:

(1) The first heuristic for this problem: As mentioned in Section 8.2, there are several heuristics

for classical broadcasting (Beier & Sibeyn, 2000; Harutyunyan & Shao, 2006), even some

researchers consider GA (Hoelting et al., 1996; Lima et al., 2022), or other evolutionary

algorithms (Hasson & Sipper, 2004). However, to the best of our knowledge, there is no

similar study on the problem of broadcasting with universal lists.

(2) Working for arbitrary graphs: the proposed framework takes an arbitrary graph as the input

and finds a nearly optimal broadcast scheme for that particular graph. This is a tremendous

advantage since all upper bounds provided in the literature are tailored for a specific family

of networks (Diks & Pelc, 1996; Harutyunyan et al., 2011; Harutyunyan & Taslakian, 2004;

J.-H. Kim & Chwa, 2005).

(3) Working for any model under universal lists: our heuristic could minimize its objective

function (either f1 or f2) under all three models: non-adaptive, adaptive, or fully adaptive.

To the best of our knowledge, this novelty separates HUB-GA from several related works

considering a specific model; either classical (Bar-Noy et al., 1998; Beier & Sibeyn, 2000;

Bhabak & Harutyunyan, 2022; Harutyunyan & Shao, 2006; Hasson & Sipper, 2004; Hoelting

et al., 1996; Kortsarz & Peleg, 1995; Lima et al., 2022; Ravi, 1994), non-adaptive (Diks &

Pelc, 1996; Harutyunyan et al., 2011; Harutyunyan & Taslakian, 2004; J.-H. Kim & Chwa,

2005), or adaptive (Diks & Pelc, 1996; Rosenthal & Scheuermann, 1987).

(4) Possibility of defining various fitness scores: the proposed framework can accept any fitness

score defined by the user. For instance, to minimize the broadcast time of a particular vertex
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u under model M , the user can define f3(σ) = Bσ
M (u,G). Moreover, more complex fitness

functions such as f4(σ) = f1(σ) × f2(σ) could be defined according to the requirements of

the network manager. This useful feature is not considered in other related works, such as

(Hasson & Sipper, 2004; Hoelting et al., 1996; Lima et al., 2022; Sun & Li, 2006).

(5) Efficiency: the proposed framework is quite efficient in terms of run time. Our numerical

results show that it could find optimal (or near-optimal) solutions for graphs with hundreds of

nodes in a few seconds. Considering the limited resources used in this study, we believe this

work is scalable to a reasonable extent for real-world applications.

(6) Providing the broadcast scheme: As opposed to several studies which propose closed for-

mula upper bounds for some graphs alongside a descriptive broadcast scheme (Diks & Pelc,

1996; Harutyunyan et al., 2011; Harutyunyan & Taslakian, 2004; J.-H. Kim & Chwa, 2005;

Rosenthal & Scheuermann, 1987), our method generates the actual broadcast scheme. This

is quite useful for real-world scenarios. Also note that the generated schemes could be used

to prove many theoretical aspects related to this problem. Moreover, the process of encod-

ing/decoding of chromosomes does not require any knowledge on the topic, in contrast with

other related works such as the one suggested in (Hoelting et al., 1996; Lima et al., 2022; Sun

& Li, 2006).

8.4 Experimental Results

To show the efficiency of the proposed method, we have conducted several computer simula-

tions. Table 8.5 shows the aims and scopes of each experiment.

8.4.1 Experiment 1

This experiment studies the impact of our algorithm’s parameters on its performance. There are

two major parameters in our algorithm:

• Population size |p|: As the size of the initial population increases, the chance of finding a

better solution in early iterations gets higher. However, the computational cost associated
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Table 8.5: Aims and scopes of the experiments

Experiment What? Why? How? Graph(s)
Experiment 1 Parameter Tuning To see the impact

of changing HUB-GA
parameters on its per-
formance.

For a graph G, we
change parameters
|p| and St, while
reporting f1(σ) and
f2(σ) and the run
time.

Karate club network
(Zachary, 1977)

Experiment 2 Performance com-
parison vs. Classical
model

To see whether the
found broadcast time
under universal lists
model approaches its
optimal value or not.

By calculat-
ing the ratio of
BM (G)/Bcl(G) for
different intercon-
nection networks.

Well-known inter-
connection networks
for which the value
of Bcl(G) is known.

Experiment 3 Performance com-
parison vs. degree-
based heuristics

To see whether
HUB-GA outper-
forms other degree-
based heuristics or
not.

By comparing the
performance of
our heuristic with
three heuristics for
clique-like structure
graphs.

Clique-like graphs:
Ring of cliques
(Kamiński, Prałat,
& Théberge, 2021),
and Windmill graph
(Bermond, 1979)

Experiment 4 Performance com-
parison vs. state-of-
the-art heuristics

To see whether
HUB-GA gets close
to other heuris-
tics for classical
broadcasting or not.

By comparing the
performance of our
heuristic with two
lower bounds and six
upper bounds.

Interconnection Net-
works and Complex
networks with small-
world model (Rossi
& Ahmed, 2015)

with the algorithm increases as well. Therefore, choosing the initial size of the population

plays a vital role in the algorithm’s performance.

• Stability St: The stopping criterion of the proposed algorithm is its stability over the last St

iterations; that is, if the fitness score of the fittest individual does not change over St genera-

tions, the algorithm stops and returns the best solution. Choosing an appropriate number for

St is a trade-off; the higher the value of St, the higher the chance of finding optimal solutions,

and the longer it takes for the algorithm to terminate.

The Karate club network (Zachary, 1977) has been selected for this experiment with 34 nodes

and 78 edges (See Figure 8.4). Then, we run our algorithm under all three models (na, a, fa) while

changing those parameters. The parameter |p| increases from 10 to 500, while we let St change

from 1 to 15. The performance of the algorithm will be measured based on 4 criteria: The broadcast

time (f1), the run time required for calculating f1, the average broadcast time (f2), and the run time

required for calculating f2. The results of this experiment are reported in Figures 8.5 and 8.6.

Several exciting points could be drawn by analyzing the results given in Figure 8.5. Firstly, by
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Figure 8.4: Karate club network (Zachary, 1977), used in Experiment 1

(a) Broadcast time (f1) (b) Run time for calculating f1

(c) Average broadcast time (f2) (d) Run time for calculating f2

Figure 8.5: Results of Experiment 1: Impact of Population Size (|p|)

increasing the population size, the chance of minimizing fitness functions (either f1 or f2) improves.

But the slope of this improvement lessens for higher values of |p|. In other words, increasing the
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(a) Broadcast time (f1) (b) Run time for calculating f1

(c) Average broadcast time (f2) (d) Run time for calculating f2

Figure 8.6: Results of Experiment 1: Impact of Stability variable (St)

population size to a certain value, such as 200, could benefit the algorithm. Still, higher values of

|p| seem almost ineffective, while they need more processing time. For instance, we compare the

performance of the fa model when |p| increases from 200 to 500 considering f2: although the run

time increases by %140, the fitness score improves only by %4. These numbers are %434 and %3.5

under the adaptive and %146 and %3.6 under the non-adaptive model, respectively. Therefore,

based on this experiment, we set the value of |p| to 200 for the rest of this study.

Secondly, by comparing Figures 8.5 (a) and (c), it is clear that the average broadcast time (f2)

could be improved more, provided the fact that the algorithm has enough resources (time and com-

putational power). Decreasing the broadcast time (f1) looks pretty challenging, particularly once

f1 has reached a local minimum. This is due to the nature of the search space associated with f1 and
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f2. For f1, the search space has drastic steps, usually not very close to each other (since a very small

change in σ might not affect f1(σ) sometimes). However, fitness function f2 has a search space with

many small steps since by a slight modification in σ, f2(σ) is expected to change slightly as well.

Thirdly, with a quick look at Figures 8.5 (b) and (d), it is concluded that the Fully-adaptive model

is the quickest model among all. This idea has been proved before in Theorem 5.1.1. Broadcasting

under this model is also affected less than two other models when changing |p|.

Also, we need to explain the reason for high fluctuations in Figures 8.5 (b) and (d): according

to the randomness of HUB-GA, it is possible that during early generations, a fit chromosome is

constructed and it will survive to future generations. Therefore, the final answer could be found

quickly. On the other hand, if this chromosome is not generated in early iterations, it could take

several generations to construct it from several good solutions. So, regardless of the population

size, the run time of GA fluctuates. Though the range of this fluctuation widens as |p| grows,

according to Figures 8.5 (b) and (d).

The next parameter of our algorithm is St, whose effect on the performance of HUB-GA is

reported in Figure 8.6. Similar to the population size, as St grows, the chance of finding a solution

with a smaller broadcast time (f1 or f2) increases. However, increasing St to large values, such

as 10 or higher, does not seem to have a notable effect on the performance of the algorithm while

it requires more processing time. Consequently, based on the results of this experiment, we select

a value of St = 5 throughout the rest of this study. Also, note that by looking at the line charts

provided in Figure 8.6, the fully-adaptive model is the quickest.

8.4.2 Experiment 2

This experiment aims to compare the GA heuristic for the universal list model with known

bounds on the classical model for commonly used interconnection networks. Therefore, we measure

the ratio of Bσ
M (G)

Bcl(G) for several graphs. Ultimately, the found broadcast time under universal list

models should approach the desired value. For instance, consider line graph Pn on n vertices under

the non-adaptive model. Recall that Bcl(Pn) = n − 1, and Bna(Pn) = ⌈3n2 ⌉ − 2 (Diks & Pelc,

1996). If our algorithm finds the optimal scheme, as n approaches infinity, the ratio is supposed to

approach 1.5: limn→∞
Bna(Pn)
Bcl(Pn)

= limn→∞
⌈ 3n

2
⌉−2

n−1 = 1.5. This ratio could be calculated easily for
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Table 8.6: Results of Experiment 2

Graph G size
Bσ

fa(G)

Bcl(G)
Bσ

a (G)
Bcl(G)

Bσ
na(G)

Bcl(G)

Path Pn 2 ≤ n ≤ 1000 1.00* 1.00* 1.49*
Cycle Cn 3 ≤ n ≤ 1000 1.00* 1.00* 1.32*
Star Sn 2 ≤ n ≤ 1000 1.00* 1.00* 1.01*
Complete Graph Kn 3 ≤ n ≤ 50 1.14 1.39 1.42
Grid Gn×m 2 ≤ n,m ≤ 10 1.07 1.08 1.35
Tori Tn×m 2 ≤ n,m ≤ 10 1.09 1.24 1.55
Hypercube Hd 2 ≤ d ≤ 9 1.06 1.41* 1.68*
Cube Connected Cycle CCCd 2 ≤ d ≤ 7 1.14 1.18* 1.52*
Shuffle Exchange SEd 3 ≤ d ≤ 9 1.06* 1.09* 1.44*
De Bruijn DBd 3 ≤ d ≤ 9 1.09* 1.18* 1.51*

other graphs based on the results reported in Table 7.2.

To this aim, for a graph G on n vertices (or dimension d, where n is a function of dimension

d), we run our heuristic under all three models (na, a, fa), then compare the achieved value with

the known value of Bcl(G). We repeat this process for several instances of that graph and report

the average of the ratio as the result. Note that for this experiment, we need to use some graphs

for which the exact value of classical broadcast time is known; thus, the ratio could be calculated.

The only exception is the De Bruijn graph DBd for which the exact value of Bcl(G) is unknown.

Hence, we compare our results with the best lower bound suggested in (Klasing et al., 1994). The

results of this experiment are reported in Table 8.6. An asterisk means that our algorithm has been

able to find the optimal scheme or a scheme better than the current upper bound for a given graph.

Table 8.6 shows that HUB-GA is able to achieve the optimal result for Path, Star, and Cycle

under all three models since the ratio approaches the optimal value. For Grid and Tori, however,

the values are close to optimal. The reason is that an optimal broadcast scheme for these networks

is symmetric for all nodes. Finding a completely symmetric scheme for a large graph could be

difficult for the GA due to its randomness. Also, in four well-known interconnection networks,

Hd, CCCd, DBd, and SEd, our algorithm outperforms the best upper bound reported in Table

7.2, except for the fully-adaptive model for Hd and CCCd, for which we proved the exact values

of broadcast time earlier. Besides, the achieved broadcast time for all these networks is mostly

between 1 to 1.5 times its classical time, which is very promising. A trivial upper bound for the
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non-adaptive broadcast time of an arbitrary graph is suggested in Theorem 2.2. of (Diks & Pelc,

1996) as follows: Bna(G) ≤ 3 ·Bcl(G), for any graph G.

The results of the complete graphs are discussed hereafter. Firstly, note that the known bound

for a complete graph is as follows:

⌈log n⌉ = Bcl(Kn) ≤ Bfa(Kn) ≤ Ba(Kn) ≤ Bna(Kn) ≤ ⌈log n⌉+ 2⌈
√
log n⌉ (34)

Where the lower bound comes from the trivial lower bound on broadcast time, and the upper bound

is presented in (Diks & Pelc, 1996). According to Table 8.6, the result of each model differs from

other models. Hence, in equation (34), the inequalities are more likely to become strictly less than,

particularly for the fully-adaptive model. Based on this result, we make the following conjecture:

Conjecture 8.4.1. For a sufficiently large n, the broadcast time of a complete graph Kn is bounded

as follows:

⌈log n⌉ = Bcl(Kn) < Bfa(Kn) < Ba(Kn) ≤ Bna(Kn) ≤ ⌈log n⌉+ 2⌈
√
log n⌉ (35)

To experimentally validate this conjecture, we designed another experiment in which the per-

formance of our GA is compared with the lower and upper bounds of Equation (34) for a complete

graph Kn on size 3 ≤ n ≤ 150. The results of this experiment are illustrated in Figure 8.7. First,

observe that these results correspond to the bounds of Equation (34). Secondly, based on this result,

the smallest value of n for which ⌈log n⌉ = Bcl(Kn) < Bfa(Kn) is n = 8 where Bσ
fa(K8) = 4,

while Bcl(K8) = 3. To prove that Bfa(K8) > 3 (which also proves the first inequality of Equation

(35)), one solution is to examine all possible broadcast schemes for a complete graph K8 under the

fully-adaptive model. If no scheme σ could be found that yields Bσ
fa(K8) = 3, the proof is com-

pleted. However, by considering Equation (30), there are almost 2.08e40 unique broadcast schemes

for K8, which is impossible to be generated without a careful constructive method. Thirdly, the truth

of the second inequality could be realized by observing the growth rate of Bfa(Kn) and comparing

it with that of Ba(Kn) in Figure 8.7.
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Figure 8.7: Comparing the performance of HUB-GA with the known bounds on the broadcast time
of a complete graph Kn of size 3 ≤ n ≤ 150.

We need to stress the importance of Conjecture 8.4.1: if it is true, it implies that the definition of

broadcast graphs (bg’s) are different under the universal list models. A bg on n vertices is a graph

for which broadcasting could be finished in ⌈log n⌉ time units starting from any originator. In the

classical model, the most trivial bg on n vertices is Kn in which ∀u ∈ V (Kn) : Bcl(u,Kn) =

⌈log n⌉. If Conjecture 8.4.1 is true, it means that: 1) complete graphs are not immediate bg’s under

the universal lists model, 2) for an arbitrary value of n, the existence of a graph on n vertices

for which the ⌈log n⌉ time could be obtained under the universal list model is questionable. We

studied this problem in Chapter 7, where the Hypercube Hd was introduced as the first infinite

family of mbg’s under the fully-adaptive model for any n = 2d. We also proposed different bg’s

for the following values of n: n = 2k−1 + 2k−2, n = 2k−1 + 2k−3, n = 2k−1 + 2k−4, and

n = 2k−1 + 2k−2 + 2k−3 for any integer k = ⌈log n⌉ ≥ 4. However, the puzzling question

discussed in this study concerning arbitrary values of n still remains open.
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a) b)

Figure 8.8: a) Ring of Clique RC3,5, b) Windmill graph W5,3

8.4.3 Experiment 3

Observe that for a fixed value of n, the function discussed in Equation (30), i.e., the size of the

search space of this problem, reaches its maximum when the degree of each node maximizes, or a

complete graph on n vertices. In fact, as opposed to the classical model in which Bcl(Kn) is known,

there is no optimal bound for these networks under universal list models. Besides, as mentioned in

(Harutyunyan & Maraachlian, 2008), the broadcast problem becomes more complicated when there

are several intersecting cycles. In the previous experiment, we studied this problem for complete

graphs Kn. Subsequently, this experiment aims to analyze the performance of HUB-GA for graphs

with clique-like subgraphs.

To this aim, two different graphs are considered: the Ring of cliques (Kamiński et al., 2021)

and the Windmill graph (Bermond, 1979). A Ring of Clique RCn,m consists of n cliques of size

m that are connected to each other on a cycle. It has n · m vertices and n · m·(m−1)
2 + n edges.

Also, a Windmill graph Wk,n is a graph of n cliques each of size k that are all joined at one vertex.

Alternatively, one may generate n cliques of size k − 1 and add one node to this graph which is

connected to all other vertices. A Wk,n has n · (k − 1) + 1 vertices and nk(k−1)
2 edges. Figure 8.8

portrays RC3,5 and W5,3.

The classical broadcast time of these networks is not known. Therefore, we cannot make a

similar experiment as the previous experiment. Instead, we compare the performance of HUB-GA

with three heuristics:
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• Ran. Seq.: The ordering of a vertex is uniformly random.

• Inc. Deg.: Neighbors of a vertex are sorted in ascending order based on their degree.

• Dec. Deg.: Neighbors of a vertex are sorted in descending order based on their degree.

The idea of degree-based heuristics is claimed to be efficient under the classical model, such as

the AM algorithm provided in (Scheuermann & Wu, 1984). Besides, not only the worst behavior of

random broadcasting in a network, a.k.a messy broadcasting, has received a lot of attention from

researchers (Ahlswede et al., 1994; Comellas et al., 2003; Harutyunyan & Liestman, 1998), but also

the average-case random broadcasting time of various networks are studied in (C. Li et al., 2008).

For each heuristic, we report three numbers: Min which is the minimum broadcast time of any

vertex in the network using the scheme provided by a heuristic: minu∈V (G){Bσ
M (u,G)}, Avg or

the average broadcast time of all vertices of the graph following that scheme:
∑

u∈V (G){Bσ
M (u,G)}

n ,

and Max which is the broadcast time of the worst originator in the graph following a particular

scheme: maxu∈V (G){Bσ
M (u,G)}. Note that Max corresponds to fitness function f1, whereas Avg

corresponds to f2. The results of this experiment are reported in Table 8.7 for RCn,m and Table 8.8

for Wk,n, where 3 ≤ n,m, k ≤ 6. As the performance of the Ran. Seq. is random in each run;

we average its result over five runs.

By looking at the results expressed in Table 8.7, HUB-GA outperforms all other heuristics in

terms of Min, Avg, and Max broadcast time in almost all cases. Moreover, among three competitor

heuristics, Dec. Deg. is the most successful one for this particular graph family, while Inc.

Deg. is even worse than pure random ordering. The reason is that by using Dec. Deg. a vertex

will send the message to join vertices first since they have the highest degree in the graph (Figure

8.8-a, there are 6 join vertices). Then, it will send the message to its other neighbors randomly.

This is an efficient ordering, which could be optimal with a careful ordering of other neighbors. On

the other hand, the Inc. Deg. heuristic is the least successful one since a vertex prioritizes its

non-joint neighbors, which is not optimal behavior.

Lastly, the margin between the performance of the GA and Dec. Deg. heuristic is wider

under the non-adaptive model compared to the fully-adaptive model. The underlying reason is

interesting: consider a random scheme for non-adaptive broadcasting in a complete graph, and
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Table 8.7: Results of Experiment 3 for RCn,m, where 3 ≤ n,m ≤ 6

RCn,m |V | |E|
Non-adaptive model

Min Avg Max
n m Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 9 12 5 5 6 5 6.22 6.11 6.77 5.33 7.4 7 7 6
4 3 12 16 6.6 7 9 6 8.38 7.91 9.41 6.83 10.4 9 10 8
5 3 15 20 8.4 8 10 7 9.93 9 10.86 8.33 12 10 12 10
6 3 18 24 10.2 9 12 9 12.04 10.44 13.77 9.66 13.8 12 15 10
3 4 12 21 6.2 6 9 5 8.06 7.08 9.5 5.83 9.6 8 10 7
4 4 16 28 8.4 7 12 7 10.33 8.81 13.56 7.81 12.6 10 15 9
5 4 20 35 10.8 8 15 8 13.05 10.2 16.1 9.45 15.8 12 17 12
6 4 24 42 12.2 10 18 10 14.91 11.79 19.95 11.29 17.8 14 22 13
3 5 15 33 7.2 7 12 6 9.78 7.93 12.4 7.2 11.8 9 14 9
4 5 20 44 8.8 8 16 7 12.37 9.9 17.75 8.65 15.4 11 19 11
5 5 25 55 11.6 9 21 8 14.55 11.12 21.84 10.04 17.6 13 23 12
6 5 30 66 14 11 24 11 17.91 12.73 26.86 12.13 21.8 14 29 14
3 6 18 48 8.8 8 15 6 10.94 8.77 15.77 7.55 13 10 17 9
4 6 24 64 11 9 20 7 14.52 10.29 21.83 9.2 17.8 12 24 11
5 6 30 80 14 11 25 9 17.22 12 26.53 10.8 20 13 27 13
6 6 36 96 16.4 11 30 11 20.59 13.66 33.05 12.44 23.8 16 36 14

RCn,m |V | |E|
Adaptive model

Min Avg Max
n m Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 9 12 4.4 4 5 4 4.8 4.33 5 4.33 5 5 5 5
4 3 12 16 5.6 5 6 5 6.4 5.33 6.66 5.33 7 6 7 6
5 3 15 20 6.8 6 8 6 7.58 6.33 8 6.33 8 7 8 7
6 3 18 24 8 7 9 7 8.86 7.33 9.38 7.61 10 8 10 8
3 4 12 21 5.6 5 6 4 6.13 5.41 6.83 5.08 6.8 6 7 6
4 4 16 28 7 6 9 5 8.36 6.5 9.12 6.25 9.4 7 10 7
5 4 20 35 8.4 7 11 6 9.77 7.25 11 7.25 10.8 8 11 8
6 4 24 42 10.4 8 12 8 12.15 8.29 12.91 8.41 13.6 9 13 9
3 5 15 33 6.6 5 8 5 7.71 6 8.13 5.6 8.6 7 9 6
4 5 20 44 7.8 6 11 6 9.45 7.35 11.35 6.8 11 8 12 8
5 5 25 55 9.8 7 12 7 11.52 7.64 12.4 7.96 13.2 8 13 9
6 5 30 66 12 8 14 8 13.97 9.16 15.26 9.03 15.8 10 17 10
3 6 18 48 6.8 6 9 6 8.46 7.05 9.55 6.44 9.6 8 10 7
4 6 24 64 9 7 13 6 11.12 7.69 13.04 7.45 13 8 14 8
5 6 30 80 11 8 14 8 13.15 8.93 14.5 8.86 14.8 10 15 10
6 6 36 96 13.8 9 17 8 15.66 9.83 18 9.8 17.6 11 19 11

RCn,m |V | |E|
Fully-adaptive model

Min Avg Max
n m Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 9 12 4.4 4 5 4 4.86 4.33 5 4.33 5 5 5 5
4 3 12 16 5.8 5 6 5 6.25 5.33 6.41 5.33 7 6 7 6
5 3 15 20 6.6 6 8 6 7.53 6.33 8 6.33 8 7 8 7
6 3 18 24 8 7 9 7 8.73 7.33 9.44 7.33 9.2 8 10 8
3 4 12 21 5.4 4 6 5 5.9 5 6.66 5 6.6 6 7 5
4 4 16 28 6.6 5 8 5 7.82 5.87 8.81 5.5 9 7 10 6
5 4 20 35 8.2 6 11 6 9.36 7.1 11 7.05 10.4 8 11 8
6 4 24 42 10.2 7 13 7 11.23 8.25 13.29 8.16 13 9 14 9
3 5 15 33 6 5 7 5 6.7 5.6 7.86 5.73 7.2 6 9 6
4 5 20 44 7.6 6 9 6 9.05 6.66 9.9 6.65 10.2 7 11 7
5 5 25 55 9.4 7 12 7 10.7 7.92 13.04 7.8 12.2 9 14 9
6 5 30 66 11 8 14 8 12.54 8.6 15.03 9.16 14 9 16 10
3 6 18 48 6.8 6 8 5 7.76 6.66 9.27 5.88 8.6 7 10 7
4 6 24 64 8.6 7 12 7 10.17 7.95 12.83 7.5 11.6 9 14 8
5 6 30 80 10.4 7 13 8 11.66 8.26 14.03 9.1 13 9 15 10
6 6 36 96 11.8 8 16 9 13.71 9.25 17.16 10.27 15.4 10 19 11
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denote the non-adaptive broadcast time achieved by this scheme by tranna . Also, denote the optimal

broadcast time for the same graph under the same model by toptna . Moreover, denote by tranfa the

fully-adaptive broadcast time of a random scheme for the same graph, whereas toptfa is the optimal

fully-adaptive broadcast time. We argue that the value of tranfa − toptfa is more likely to be less

than tranna − toptna with infinite number of same experiments. This is because, in the fully-adaptive

model, an inefficient behavior is to hit the same receiver by several senders. However, in the non-

adaptive model, the message is likely to be sent back and forth between senders and receivers,

resulting in a wider gap between the optimal scheme and a randomly selected ordering. Based on

this observation, we expect the results of HUB-GA to have a wider margin with all three heuristics

under the non-adaptive model compared to the fully-adaptive model in which the performance of

all four heuristics could get much closer. The numerical results of this experiment reported in Table

8.7 also correspond to this observation.

Table 8.8 gives the results of the same experiment for Windmill graph Wk,n, where 3 ≤ k, n ≤

6. In Wk,n, there are two types of vertices: Join vertex (with a degree of k(n−1)), and other vertices

(with a degree of n − 1). Therefore, in competitor heuristics, the join vertex will choose a random

ordering for its neighbors since all neighbors have the same degree. However, other vertices behave

differently in two degree-based heuristics: in the Inc. Deg. heuristic, they will first distribute

the message within their clique and then will send it to the join vertex, whereas this ordering is

reversed in the Dec. Deg. heuristic. Therefore, we expect Dec. Deg. to perform slightly

better than Inc. Deg.

The results in Table 8.8 correspond to our expectations, in which Dec. Deg. outperforms

Inc. Deg. and Ran. Seq. heuristics under all three models. Interestingly, a random or-

dering of the vertices seems more effective than the Inc. Deg. heuristic. This is due to the

missing call toward the join vertex during early stages under the increasing degree heuristic. All

in all, the performance of HUB-GA is better than all three heuristics, particularly under the non-

adaptive model, for the same reason discussed earlier.

Also, Figures 8.9 and 8.10 compare the results of HUB-GA with three heuristics for these two

families of graphs. The comparison metric is the performance improvement which is calculated as

follows for model M when comparing the performance of HUB-GA against heuristic H:
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Table 8.8: Results of Experiment 3 for Wk,n, where 3 ≤ k, n ≤ 6

Wk,n |V | |E|
Non-adaptive model

Min Avg Max
k n Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 7 9 4.4 5 4 4 5.94 5.57 5.42 4.71 7 6 6 6
4 3 9 12 5.8 7 8 5 7.2 8.44 9.33 5.88 7.8 9 10 7
5 3 11 15 7.6 9 8 6 8.96 9.72 9.63 6.81 10 10 10 8
6 3 13 18 8.8 10 10 7 11.49 11.61 11.53 7.92 12.4 12 12 9
3 4 10 18 5.6 6 7 4 7.72 7.3 8.8 5.1 9.2 8 10 6
4 4 13 24 6.2 6 6 5 9.12 7.46 8.53 6.07 11 8 9 7
5 4 16 30 8 8 9 6 11.23 10.37 11.25 7.31 13 11 12 8
6 4 19 36 11.6 10 11 8 14.53 14.15 15.89 8.84 16.2 15 17 10
3 5 13 30 6.4 7 9 5 9.33 9.69 11.46 6.07 11.4 11 13 8
4 5 17 40 6.8 7 9 6 9.95 10 11.82 7.11 12.4 11 13 9
5 5 21 50 10.4 9 8 7 14.45 10.57 11.61 8.14 16.8 11 12 9
6 5 25 60 11 11 11 8 14.4 13.48 14.52 9.08 16.6 14 15 11
3 6 16 45 6.6 8 7 5 9.51 8.62 11.37 6.37 11.8 9 12 8
4 6 21 60 9.4 10 9 6 12.49 10.95 13.76 7.33 14.6 11 14 9
5 6 26 75 11.6 12 12 7 15.6 14.38 16.42 8.53 18.2 15 17 10
6 6 31 90 13.2 16 18 9 17.54 21 22.87 9.93 19.6 22 24 11

Wk,n |V | |E|
Adaptive model

Min Avg Max
k n Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 7 9 4.2 4 4 4 4.82 4.28 4.85 4.28 5.4 5 5 5
4 3 9 12 5.8 6 7 5 6.35 6.77 7.44 5.22 7.2 7 8 6
5 3 11 15 6.6 6 7 6 7.92 7 7.72 6.18 9 8 8 7
6 3 13 18 8 8 9 7 8.7 8.69 9.46 7.15 9.4 10 10 8
3 4 10 18 5.2 5 7 4 6.65 6.2 7.6 4.7 7.8 7 8 5
4 4 13 24 6.6 6 7 5 7.5 6.92 8.38 5.38 8.6 8 9 6
5 4 16 30 8 7 9 6 9.62 9.5 11.12 7 11 11 12 8
6 4 19 36 9.2 7 8 7 10.41 7.78 9.89 7.21 11.6 8 10 8
3 5 13 30 6.2 6 8 5 7.53 7.23 9.3 5.69 8.6 8 10 7
4 5 17 40 6.8 8 10 6 8.71 9.76 12.17 6.47 10.2 11 14 7
5 5 21 50 8.6 8 9 7 10.11 9 11.33 7.66 11.6 10 13 9
6 5 25 60 10.6 10 11 8 12.31 11.2 13.2 8.4 14.2 12 15 9
3 6 16 45 6.2 5 6 5 8.01 7 8.68 5.68 9.6 8 10 6
4 6 21 60 8.6 8 10 6 10.72 9.19 12 6.9 12.2 10 13 8
5 6 26 75 9.2 9 11 7 11.36 10.84 13.76 7.88 13 12 15 9
6 6 31 90 10.6 12 13 8 12.58 12.93 15.16 8.61 14.4 14 17 10

Wk,n |V | |E|
Fully-adaptive model

Min Avg Max
k n Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA Ran.Seq. Dec.Deg. Inc.Deg. HUB-GA
3 3 7 9 4.2 4 4 4 4.91 4.14 4.85 4.14 5.6 5 5 5
4 3 9 12 5.4 5 6 5 6.06 6.11 6.88 5.11 7 7 8 6
5 3 11 15 6.4 6 6 6 6.96 6.09 6.9 6.09 7.6 7 7 7
6 3 13 18 8 8 9 7 8.9 8.766 9.61 7.07 9.8 10 10 8
3 4 10 18 5.2 5 6 4 6.21 5.6 6.9 4.4 7.2 7 8 5
4 4 13 24 6 6 7 5 7.3 6.92 8.38 5.23 8.6 8 9 6
5 4 16 30 6.4 6 8 6 8 7.68 9.31 6.18 9.4 9 10 7
6 4 19 36 8.2 8 9 7 9.69 8.78 10.42 7.21 11 10 11 8
3 5 13 30 5.6 5 6 5 6.89 6.15 7.92 5.3 8.2 7 9 6
4 5 17 40 7.2 6 7 6 8.43 7.17 9.05 6.23 9.8 8 10 7
5 5 21 50 7.4 7 8 7 8.91 8.04 10.14 7.28 10.2 9 11 8
6 5 25 60 9 8 9 8 10.87 9.16 11.4 8.12 12.6 10 12 9
3 6 16 45 6.2 7 7 5 7.45 7.18 9.5 5.56 8.6 8 10 7
4 6 21 60 7.6 7 8 6 9.53 8.28 10.76 6.52 11 9 12 7
5 6 26 75 9.8 11 13 7 11.51 12.15 14.73 7.34 13.4 14 16 8
6 6 31 90 10 11 12 8 12.19 11.67 14.35 8.58 13.6 13 16 10
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Figure 8.9: Comparison of the performance of the HUB-GA and other heuristics in terms of Average
broadcast time - Ring of cliques

improvementHM =
Avg(BH

M (G))− Avg(BHUB-GA
M (G))

Avg(BHUB-GA
M (G))

(36)

In which M ∈ {na, a, fa} and H∈ {Ran.Seq., Dec.Deg., Inc.Deg.}.

As can be seen, HUB-GA is able to speed up the broadcast process up to almost %60 compared

to degree-based heuristics for both networks. The main reason for high fluctuations in Fig. 8.9 and

8.10 are as follows:

(1) Randomness of HUB-GA: As mentioned earlier, GA is a random search algorithm that starts

with generating several random solutions for the problem at its first step. Although GA is

expected to approach a nearly-optimal solution in the long run, it is possible that it does not

find it in some situations. Therefore, the performance of HUB-GA is random. However, our

extensive experiments show that our heuristic is quite effective in dealing with real-world data

sets.

(2) Randomness of other heuristics: When the performance of HUB-GA is compared with
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Figure 8.10: Comparison of the performance of the HUB-GA and other heuristics in terms of Aver-
age broadcast time - Windmill graph

Ran.Seq. the fluctuations are wider. This is due to the pure randomness of Ran.Seq.

heuristic. Even though we took the average results of Ran.Seq. over 5 runs, it still exhibits

its random nature which leads to high fluctuations.

(3) Random ordering of deterministic heuristics: Consider other deterministic heuristics, Dec.Deg.

or Inc.Deg.. In both heuristics, the ties are broken randomly. In graphs with several ver-

tices with the same degree (such as the Windmill graph), these heuristics are almost random,

with the only difference being the position of the joint vertex. This fact justifies more drastic

fluctuations in Fig. 8.10 (Windmill graph) compared to Fig. 8.9 (Ring of cliques).

(4) x-axis: In Fig. 8.9 and 8.10, the x-axis is the experiment number. According to Table 8.7

and 8.8, the experiment number does not have a monotonic relation with either |V | or |E|.

However, we decided to choose the experiment number as the x-axis (and for instance, not

sort the experiments based on |E|) to avoid confusion. We believe this is the best way to

represent our findings.
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8.4.4 Experiment 4

This experiment compares our heuristic with some state-of-the-art heuristics in the literature.

Since the instances used in previous works, such as (Hasson & Sipper, 2004; Hoelting et al., 1996;

Scheuermann & Wu, 1984) are no longer available, we used two types of networks:

(1) Interconnection Networks (44 instances): We replicated several instances from (de Sousa

et al., 2018; Harutyunyan & Jimborean, 2014; Harutyunyan & Wang, 2010; Hasson & Sipper,

2004; Lima et al., 2022). These networks include 8 instances of Hypercube Hd, 5 instances

of Cube Connected Cycle CCCd, 7 instances of De Bruijn DBd, 8 instances of Shuffle

Exchange SEd
1, and 16 instances of Harary graph Hk,n

2.

(2) Connected Complex Networks (30 instances): well-established instances of connected

complex networks from Network Repository3 (Rossi & Ahmed, 2015). We consider var-

ious instances based on small-world networks with 100 nodes to address various industry

scenarios (Freitas, Aquino, Ramos, Frery, & Rosso, 2019; Lima et al., 2022). Note that the

small-world model could be used to represent communication networks in real-world appli-

cations, as suggested by (Cabral, Aquino, Frery, Rosso, & Ramı́rez, 2013; Guidoni, Mini, &

Loureiro, 2010; Lima et al., 2022).

For each instance we report |V | (the number of vertices), |E| (the number of edges), and edge

density of the graph 2|E|
|V |(|V |−1) . As mentioned before, our heuristic is the first of its kind in the

literature for broadcasting with the universal lists model. Thus, we can only compare our heuristic

with similar results under the classical model. We compared our results with two lower bounds:

• TLB: The trivial lower bound on the classical broadcast time of any graph G on n vertices:

Bcl(G) ≥ ⌈log n⌉.

• LBB (Lima et al., 2022): The lower bound on the classical model suggested in (Lima et al.,

2022), namely LBB-BFS. The goal here is to find the maximum shortest path between any

1Data available here: https://github.com/sabergholami/
2Data available here: https://github.com/alfredolimams/
3Data available here: https://networkrepository.com/rand.php/
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receiver and the originator (vertex v) by performing a BFS algorithm. Then, a lower bound

on the value of Bcl(v,G) is found, which is also a valid lower bound on the Bcl(G).

Also, we compare our results with six upper bounds reported in the literature:

• TreeBlock (de Sousa et al., 2018, 2020): the constructive heuristic proposed in (de Sousa

et al., 2018), with a more detailed version presented in (de Sousa et al., 2020) considering

various network families. TreeBlock works based on detecting cut-points of graph G and

breaking the problem down into several smaller problems in trees that are formed from the

cut-points.

• NTBA (Harutyunyan & Wang, 2010): This algorithm works based on forming a layer graph

from the original graph by performing a BFS. Then, it traverses the layer graph and produces

a broadcast scheme for the originator.

• NEWH (Harutyunyan & Jimborean, 2014): This algorithm builds upon the idea of NTBA

but applies a new non-random strategy to generate a spanning tree for broadcasting. The

advantage of this algorithm is that almost half of vertices are informed by the shortest path

from the originator, while the rest are informed by a path at most 3 hops longer.

• ILP (de Sousa et al., 2018; Lima et al., 2022): Consider exact algorithms on the clas-

sical broadcast problem. In addition to the dynamic programming algorithm presented in

(Scheuermann & Wu, 1984), the most successful approach is the Linear Programming model

of de Sousa et al. (de Sousa et al., 2018). The ILP algorithm (Lima et al., 2022) works based

on the algorithm suggested in (de Sousa et al., 2018), with the difference of having possibly

more than one originator. It is an Integer Linear Programming algorithm for the classical

broadcast problem, solved by IBM Cplex 12.9.

• ACS (Hasson & Sipper, 2004): The Ant Colony System algorithm proposed by Hasson and

Sipper (Hasson & Sipper, 2004). Note that the results reported by the authors of (Hasson &

Sipper, 2004) illustrate that ACS outperforms the algorithm by Hoelting et al. (Hoelting et

al., 1996). Thus, we did not consider their algorithm.
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• BRKGA (Lima et al., 2022): The Biased Random Key Genetic Algorithm proposed in (Lima

et al., 2022) with the First Receive First Send decoder. Considering the results reported in

the corresponding study, this could be considered the most successful and recent heuristic for

the classical broadcast problem. BRKGA FRFS is believed to outperform several well-known

heuristics for the classical broadcast problem such as Tree Block (de Sousa et al., 2018,

2020), NTBA (Harutyunyan & Wang, 2010), and NEWH (Harutyunyan & Jimborean, 2014).

The numerical results of this experiment are reported in Tables 8.9 and 8.10. The results of

all lower and upper bounds are reproduced from their original paper, respectively. A hyphen in

Tables 8.9 and 8.10 indicates that we do not have the result for an instance or the method could not

produce a feasible solution. Also, if the result of a particular algorithm is not reported in the original

paper for a sample, we used the result reported in (Lima et al., 2022), as they re-implemented all

algorithms.

We need to point out that the value achieved by all upper bounds is for Bcl(v,G) for a particular

v as the originator (for most instances, v = {1} as the originator). Recall that ∀v : Bcl(v,G) ≤

Bcl(G). Also, from Equation (28), it is clear that the value of Bσ
M (G) is lower bounded by Bcl(G)

for M = {fa, a, na}. Thus, the values achieved by HUB-GA are not supposed to outperform the

six upper bounds. In fact, it could be impossible to achieve those values in some cases in which the

originator is not the worst originator. Finally, in all competitor heuristics, the goal is to minimize

the broadcast time of a vertex in a given graph. This somewhat contrasts with the nature of the

universal list model, in which the goal is to optimize the behavior of all nodes simultaneously with

one universal list. However, we performed this experiment to see whether Bσ
M (G) could get close

to Bcl(v,G) or not.

Our numerical results demonstrate that as opposed to the significant memory reduction in the

universal list model compared to the classical model and the need for only local knowledge for

nodes, the universal list broadcast time of all instances considered in this study is very close to that

of classical; mostly between 1 to 3 time units difference.

For most instances reported in Table 8.9, HUB-GA finds a sufficiently close broadcast time under

all three models (M = {fa, a, na}) compared to the best upper bound reported in the literature.

This gap is even smaller for Harary networks Hk,n and Shuffle Exchange graphs SEd, where the
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Table 8.9: Results of Experiment 4 for interconnection networks

Instance |V | |E| Density
LB on Bcl(v,G) UB on Bcl(v,G) HUB-GA
TLB LBB TreeBlock NTBA NEWH ILP ACS BRKGA Bσ

fa(G) Bσ
a (G) Bσ

na(G)

H2 4 4 0.6667 2 - - - - - - - 2 2 2
H3 8 12 0.4285 3 - - - - - - - 3 4 4
H4 16 32 0.2667 4 - - - - 4 - - 4 5 6
H5 32 80 0.1613 5 5 5 5 5 5 5 5 5 7 9
H6 64 192 0.0952 6 6 6 7 6 6 6 6 7 9 11
H7 128 448 0.0551 7 7 7 9 7 7 7 7 8 11 14
H8 256 1024 0.0314 8 8 8 11 8 8 8 9 9 13 16
H9 512 2304 0.0176 9 9 9 14 9 9 9 10 10 15 18
CCC2 8 12 0.4285 3 - - - - - - - 4 4 5
CCC3 24 36 0.1304 5 6 - 6 7 6 6 6 8 8 10
CCC4 64 94 0.0476 6 8 - 7 9 9 9 9 11 11 15
CCC5 160 240 0.0189 8 10 - 11 12 11 12 11 14 15 19
CCC6 384 576 0.0078 9 13 - 14 14 13 14 13 17 18 24
DB3 8 16 0.5714 3 - - 4 4 - - - 4 4 5
DB4 16 32 0.2583 4 4 4 5 5 - 5 5 6 6 7
DB5 32 64 0.1270 5 5 7 7 7 - 6 6 7 8 10
DB6 64 128 0.0630 6 6 8 8 8 - 8 8 9 10 13
DB7 128 256 0.0314 7 7 12 10 10 - 10 9 11 12 16
DB8 256 512 0.0157 8 8 12 12 12 - 12 11 13 14 19
DB9 512 1024 0.0078 9 9 14 13 13 - 14 13 15 17 22
SE2 4 5 0.8334 2 - - - - - - - 3 3 4
SE3 8 12 0.4285 3 - - 5 5 - - - 5 5 6
SE4 16 21 0.1750 4 7 - 7 7 7 7 7 7 7 9
SE5 32 46 0.0927 5 9 - 9 9 9 9 9 9 10 13
SE6 64 93 0.0461 6 11 - 11 11 11 11 11 12 12 16
SE7 128 190 0.0234 7 13 - 13 13 13 13 13 15 15 20
SE8 256 381 0.0117 8 15 - 15 15 15 15 15 17 17 25
SE9 512 766 0.0059 9 17 - 18 18 17 17 18 20 21 28
H10,30 30 150 0.3448 5 3 6 - - 5 5 5 7 9 9
H11,50 50 275 0.2245 6 3 7 - - 6 6 6 8 10 11
H20,50 50 500 0.4082 6 3 8 - - 6 6 6 8 10 11
H21,50 50 525 0.4286 6 2 7 - - 6 6 6 7 10 10
H2,100 100 100 0.0202 7 50 50 - - 50 50 50 50 50 67
H2,17 17 17 0.1250 4 8 9 - - 9 9 9 9 9 11
H2,30 30 30 0.0690 5 15 15 - - 15 15 15 15 15 20
H2,50 50 50 0.0408 6 25 25 - - 25 25 25 25 25 29
H3,17 17 26 0.1912 4 4 5 - - 5 5 5 6 6 8
H3,30 30 45 0.1034 5 8 9 - - 9 9 9 9 9 12
H3,50 50 75 0.0612 6 13 14 - - 14 14 14 14 15 17
H5,17 17 43 0.3162 4 3 5 - - 5 5 5 5 6 7
H6,17 17 51 0.3750 4 3 5 - - 5 5 5 6 6 7
H7,17 17 60 0.4412 4 2 5 - - 5 5 5 5 6 6
H8,30 30 120 0.2759 5 4 6 - - 5 6 5 8 9 10
H9,30 30 135 0.3103 5 3 6 - - 5 5 5 7 8 9
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Table 8.10: Results of Experiment 4 for connected complex networks

Instance |V | |E| Density
LB on Bcl(v,G) UB on Bcl(v,G) HUB-GA
TLB LBB TreeBlock NTBA NEWH ILP ACS BRKGA Bσ

fa(G) Bσ
a (G) Bσ

na(G)

SW-100-3-0d1-trial1 100 100 0.0202 7 61 - - - 61 61 61 68 68 104
SW-100-3-0d2-trial1 100 100 0.0202 7 31 - - - 31 31 31 40 40 60
SW-100-3-0d2-trial3 100 100 0.0202 7 31 - - - 31 31 31 49 49 74
SW-100-4-0d1-trial1 100 200 0.0404 7 7 - - - 9 10 9 14 14 19
SW-100-4-0d1-trial2 100 200 0.0404 7 7 - - - 8 9 8 13 14 18
SW-100-4-0d1-trial3 100 200 0.0404 7 9 - - - 10 11 10 15 16 20
SW-100-4-0d2-trial1 100 200 0.0404 7 7 - - - 8 9 8 12 13 17
SW-100-4-0d2-trial2 100 200 0.0404 7 7 - - - 8 9 9 12 13 16
SW-100-4-0d2-trial3 100 200 0.0404 7 7 - - - 9 9 9 12 13 17
SW-100-4-0d3-trial1 100 200 0.0404 7 6 - - - 8 9 8 12 13 16
SW-100-4-0d3-trial2 100 200 0.0404 7 6 - - - 8 8 8 11 12 15
SW-100-4-0d3-trial3 100 200 0.0404 7 7 - - - 8 9 8 11 12 15
SW-100-5-0d1-trial1 100 200 0.0404 7 8 - - - 9 10 9 14 15 19
SW-100-5-0d1-trial2 100 200 0.0404 7 9 - - - 10 11 10 15 15 22
SW-100-5-0d1-trial3 100 200 0.0404 7 11 - - - 12 13 12 15 16 21
SW-100-5-0d2-trial1 100 200 0.0404 7 8 - - - 9 10 10 13 14 17
SW-100-5-0d2-trial2 100 200 0.0404 7 9 - - - 9 10 10 12 13 17
SW-100-5-0d2-trial3 100 200 0.0404 7 7 - - - 8 9 9 12 13 18
SW-100-5-0d3-trial1 100 200 0.0404 7 6 - - - 8 8 8 11 12 15
SW-100-5-0d3-trial2 100 200 0.0404 7 6 - - - 8 8 8 11 12 16
SW-100-5-0d3-trial3 100 200 0.0404 7 6 - - - 8 8 8 11 12 15
SW-100-6-0d1-trial1 100 300 0.0606 7 5 - - - 7 8 8 12 13 16
SW-100-6-0d1-trial2 100 300 0.0606 7 6 - - - 8 9 8 12 13 16
SW-100-6-0d1-trial3 100 300 0.0606 7 6 - - - 7 8 8 12 14 17
SW-100-6-0d2-trial1 100 300 0.0606 7 6 - - - 7 8 7 11 13 15
SW-100-6-0d2-trial2 100 300 0.0606 7 4 - - - 7 8 7 10 12 14
SW-100-6-0d2-trial3 100 300 0.0606 7 4 - - - 7 8 7 10 12 15
SW-100-6-0d3-trial1 100 300 0.0606 7 4 - - - 7 8 7 10 11 14
SW-100-6-0d3-trial2 100 300 0.0606 7 5 - - - 7 8 7 10 11 13
SW-100-6-0d3-trial3 100 300 0.0606 7 5 - - - 7 8 7 10 11 14
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fully-adaptive and adaptive broadcast time is even equal to the classical upper bounds in several

instances. For complex networks in Table 8.10, HUB-GA is able to decrease its objective function

to 10, 11, and 14 for various instances under fully-adaptive, adaptive, and non-adaptive models,

respectively. The value of classical broadcasting is mostly close to 8 in those instances. This result

is promising because, with a careful design of the broadcast scheme under the universal list model,

the best-known upper bounds reported in the literature for the classical model are achievable.
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Chapter 9

Conclusion and Future work

9.1 Conclusion

A fundamental problem in the information dissemination area is broadcasting, in which a sender,

usually called the originator, wishes to transmit a message to all network members using the

communication links. At any given time, any informed network member can pass the message to

one of its uninformed neighbors with a call. A member may receive the message from multiple

senders at the same time. Finding the minimum broadcast time of a network has been proved to

be NP-Hard; therefore, various broadcasting models are defined in the literature that simulates real-

world situations. Broadcasting with Universal lists is one in which each vertex is equipped with a

list that it must follow regardless of the originator. In this study, we focused on both classical and

universal lists broadcasting.

In Chapter 3, we defined a graph structure: Fully Connected Trees FCTn. An FCTn is made

up of trees such that the roots of the trees form a complete graph of size n. We presented a

O(|V | log logn) algorithm to calculate the exact broadcast time of any vertex in an arbitrary FCTn.

We also presented the details of the proof of correctness for our algorithm. Then in Chapter 4, we

replaced the complete graph with a hypercube and proposed a heuristic for broadcasting in a hy-

percube of trees. The heuristic benefits from a 2-approximation ratio, which makes it theoretically

significant. Besides, our numerical results indicate that the heuristic is able to outperform the best-

known algorithm for the same problem in up to 90% of the experiments while speeding up the
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process up to 30%. Interestingly, the performance of the heuristic could be improved even if the

size of the hypercube surges.

In Chapter 5, we proposed a new model, namely fully adaptive, for the problem of broadcasting

with universal lists and studied its various applications in real-world networks. This model benefits

from a more efficient memory complexity than the classical model. Moreover, the fully-adaptive

model accelerates the broadcast process compared to adaptive and non-adaptive models. We de-

signed optimal broadcast schemes for Grids and Cube Connected Cycles under the Fully-adaptive

model. We also proved that the broadcast time of any tree under the fully-adaptive model is equal

to that of the classical model. We provided an additive approximation algorithm for Tori under

this newly introduced model. Finally, we introduced an infinitely large graph for which the clas-

sical broadcast time is strictly less than that of fully adaptive. In Chapter 6, we focused on the

non-adaptive model of broadcasting with universal lists and proved the optimal broadcast time of

complete k−ary trees and binomial trees under this model. Then we presented an upper bound

for a complete bipartite graph and improved the general upper bound on the broadcast time of ar-

bitrary trees. By comparing universal lists and messy broadcasting models, we proposed general

upper bounds on the broadcast time of a graph G under the universal lists model. We showed that

the bounds could not be improved in general. In Chapter 7, we studied broadcast graphs (bg)’s

and minimum broadcast graphs (mbg)’s under the fully-adaptive model. In particular, we presented

mbg’s on n vertices for n ≤ 10 and sparse bg’s for 11 ≤ n ≤ 14. We also suggested four infinite

families of broadcast graphs under the fully-adaptive model using a general construction. Lastly,

we proved that Hypercube Hd is an mbg for any value of n = 2d under the fully-adaptive model.

Finally, in Chapter 8, we proposed HUB-GA: a Heuristic for the problem of Universal lists

Broadcasting that uses Genetic Algorithm. Our numerical results have demonstrated that our algo-

rithm is able to find optimal or near-optimal broadcast time for several well-known interconnection

networks. It also outperforms degree-based heuristics for various networks with clique-like sub-

graphs, in which the problem’s search space is almost maximized. As opposed to the significant

memory reduction in the universal list model compared to the classical model, our result is very

close to the state-of-the-art heuristics for the classical broadcast problem for interconnection net-

works and several instances of synthetic networks.
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9.2 Future Work

In what follows, we shed some light on possible future works for each Chapter of this study:

• For Chapter 3, studying FCTn is a step toward studying graphs containing subgraphs with

well-known graph topologies. In an FCTn, the subgraphs were trees and one complete graph.

More complicated graph structures can be obtained by having different subgraphs. We believe

these results can be helpful when studying the broadcast problem in more complex graph

structures and can also be useful in designing approximation algorithms if an exact algorithm

cannot be obtained. Another future work will be to close the gap between the obvious lower

bound Ω(|V |) and the current algorithm O(|V | log logn).

• Considering Chapter 4, studying the performance of the heuristic in real-world data sets would

be interesting. Besides, the approximability of this problem could be analyzed by trying to

either come up with an additive approximation or proving the NP-Hardness of this problem.

Additionally, one may replace the hypercube with any other class of graphs in which the

broadcast scheme and broadcast time are known. Some examples include Grids, Tori, Cube-

Connected Cycles, and Shuffle Exchange graphs.

• For Chapter 5, since we introduced a new model, we leave open several exciting research

questions. For instance, the broadcast time of various fundamental families of networks, such

as Shuffle Exchange, DeBruijn, and Harary graphs, is still unknown under the fully-adaptive

model. We believe the current upper bound is not tight for complete graphs and can be

improved. Also, studying the widest margin between a graph’s classical and fully-adaptive

broadcast time on n vertices could be an interesting theoretical question. Finally, a significant

breakthrough in this area is to design an efficient approximation/heuristic algorithm to find

Bfa(G) for general graphs or prove that it is NP-Hard.

• For Chapter 6, the non-adaptive broadcast time of several interconnection networks is still

unknown, or the current upper bound is not tight. Examples include Hypercubes, Cube Con-

nected Cycles, DeBruijn, Shuffle Exchange, and Harary graphs. We think the general lower

bounds on trees could be improved by carefully considering the degrees of diametral vertices.
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• For Chapter 7, the problem of finding mbg’s and bg’s for greater values of n under the fully-

adaptive model is still widely open. The answer to the following question is also interesting:

“is there any value of n, for which B(cl)(n) < B(fa)(n)?” We conjecture that Knödel graph

KG2k−2 might be an mbg under the fully-adaptive model for n = 2k − 2. Besides, bg’s

are not even defined for the adaptive and non-adaptive models where the achievability of the

obvious lower bound of ⌈log n⌉ is questionable. Thus, by formalizing this problem for these

setups, the problem of finding bg’s and mbg’s for these two models could gain attention in

the future.

• For Chapter 8, one immediate direction is the improvement of HUB-GA using various tech-

niques of genetic algorithms. Also, the proposed algorithm still needs to be examined for

diverse real-world networks. Moreover, other evolutionary algorithms, such as ant colony

and particle swarm optimization, could be utilized instead of the Genetic Algorithm. Finally,

the idea used in our approach could be extended to classical broadcasting to minimize the

broadcast time of the graph, not a particular vertex. In that case, it could be the first heuris-

tic that minimizes the broadcast time of the graph while giving the actual broadcast scheme

under the classical model.

9.3 Publications

This Ph.D. degree resulted in the following scientific productions:

(1) Chapter 3: (Gholami, Harutyunyan, & Maraachlian, 2022).

(2) Chapter 4: (Gholami & Harutyunyan, 2021).

(3) Chapter 5: (Gholami & Harutyunyan, 2022b).

(4) Chapter 6: (Gholami & Harutyunyan, 2022d).

(5) Chapter 7: (Gholami & Harutyunyan, 2022a).

(6) Chapter 8: (Gholami & Harutyunyan, 2022c).
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(7) In collaboration with other researchers: (Bakhtar, Gholami, & Harutyunyan, 2020).

(8) In collaboration with other researchers: (Gholami, Saghiri, Vahidipour, & Meybodi, 2021).
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