
Network Service Availability and Continuity Management in

the Context of Network Function Virtualization

Siamak Azadiabad

A Thesis

In the Department

of

Computer Science and Software Engineering

 Presented in Partial Fulfilment of the Requirements

 for the Degree of

 Doctor of Philosophy (Computer Science) at

Concordia University

Montreal, Quebec, Canada

September 2022

© Siamak Azadiabad, 2022

ii

iii

Abstract

Network Service Availability and Continuity Management in the Context of

Network Function Virtualization

Siamak Azadiabad, Ph.D.

Concordia University, 2022

In legacy computer systems, network functions (e.g., routers, firewalls, etc.) have been provided

by specialized hardware appliances to realize Network Services (NS). In recent years, the rise of

Network Function Virtualization (NFV) has changed how we realize NSs. With NFV, commercial

off-the-shelf hardware and virtualization technologies are used to create Virtual Network Functions

(VNF). In the context of NFV, an NS is realized by interconnecting VNFs using Virtual Links (VL).

Service availability and continuity are among the important non-functional characteristics of

NSs. Availability is defined as the fraction of time the NS functionality is provided in a period.

Current work on NS availability, in the NFV context, focuses on determining the appropriate number

of redundant VNFs and their deployment in the virtualized environment, and the redundancy of

network paths. Such solutions are necessary but insufficient because redundancy does not guarantee

that the overall service outage time for an NS functionality remains below a certain threshold.

Moreover, service disruption which impacts the service continuity is not addressed in the current

work quantitatively. In addition, NSs and VNFs elasticity and the dynamicity of virtualized

infrastructures which can impact the availability of NS functionalities, are not considered in the

current state of the art.

iv

In this thesis, we propose a framework for NS availability and continuity management, which

consists of two approaches, one for design time and another for runtime adaptation. For this, we

define service disruption time for an NS functionality as the amount of time for which the service

data is lost due to service outages for a given period. We also define the service data disruption for

an NS functionality as the maximum amount of data lost due to a service outage. The design-time

approach includes analytical methods which take acceptable service disruption and availability

requirements of the tenant, a designed NS, and a given infrastructure as inputs to adjust the NS

design and map these requirements to constraints on low-level configuration parameters. Design-

time approach guarantees the service availability and continuity requirements will be met as long as

the availability characteristics of the infrastructure resources used by the NS constituents do not

change at runtime. However, changes in the supporting infrastructure may happen at runtime due to

multiple reasons like failover, upgrades, and aging. Therefore, we propose a runtime adaptation

approach that reacts to changes at runtime and adjusts the configuration parameters accordingly to

satisfy the same service availability and continuity requirements. The runtime approach uses

machine learning models, which are created at design time, to determine the required adjustments at

runtime.

To demonstrate the feasibility of the proposed solutions and to experiment with them, we

present a proof of concept, including prototypes of our approaches and their application in a small

NFV cloud environment created for validation purposes. We conduct multiple experiments for two

case studies with different service availability and continuity requirements. The results from the

conducted experiments show that our approaches can guarantee the fulfillment of the service

availability and continuity requirements.

v

Acknowledgments

I would like to thank my supervisors, Dr. Ferhat Khendek and Dr. Maria Toeroe, who have

helped me undertake this research. Without your guidance, support, and encouragement, I would not

have been able to complete this journey.

I would like to extend my thanks to the examining committee for their advice and valuable input

during the various stages of my Ph.D.

This research has been partially supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC), Ericsson, and Concordia University. I would like to thank them for

their financial support and for providing me the opportunity to pursue my dream.

And my biggest thanks to my family for all the support they have shown me through the years.

Above all, to my wife Zeynab for your love, support, understanding, and patience. Without you, I

could not have come this far. And to my beloved daughter Aurora, for starting to shine in the sky of

my life. We are waiting impatiently to welcome you into our family soon.

vi

Table of Content

List of Figures .. xiii

List of Tables .. xv

List of Abbreviations ... xviii

1. Introduction .. 1

1.1 Context ... 1

1.2 Thesis motivations .. 2

1.3 Contributions of the Thesis .. 6

1.4 Thesis Organization .. 9

2. Background .. 10

2.1 Network Function Virtualization Framework .. 10

2.1.1 NFV Management and Orchestration ... 11

2.1.2 NFV Infrastructure .. 12

2.1.3 Virtual Network Function ... 12

2.1.4 Element Manager .. 13

vii

2.1.5 Operation Support System/Business Support System .. 14

2.2 Network Service ... 14

2.3 Service Availability and Continuity ... 15

2.3.1 Service Availability ... 15

2.3.2 Service Continuity ... 17

2.4 Machine Learning ... 18

2.4.1 Supervised Machine Learning .. 18

2.4.2 Unsupervised Machine Learning .. 21

2.4.3 Reinforcement Machine Learning .. 22

2.5 OpenStack and Tacker .. 22

3. Related Work ... 23

3.1 Network Service Design to Fulfill Availability Requirements 23

3.1.1 Service Availability of Distributed Systems ... 23

3.1.2 Network Service Availability and Continuity in the Context of NFV 25

3.2 Runtime Monitoring and Adaptation of Network Services .. 28

3.2.1 Monitoring Resource Changes at Runtime ... 28

viii

3.2.2 Runtime Adaptation of Network Services .. 30

3.3 ETSI NFV Specifications and Reports ... 31

4. Design-time Approach ... 33

4.1 Service Disruption Definitions ... 33

4.2 Problem Statement and Analysis .. 34

4.2.1 Problem Statement .. 34

4.2.2 Assumptions .. 34

4.2.3 Problem Analysis .. 35

4.2.4 Formal Definition of the Problem ... 40

4.3 Overall View of the Design-time Approach ... 41

4.4 VNF Instance Availability and Failure Rate .. 43

4.4.1 VNF Instance Availability .. 43

4.4.2 VNF Instance Failure Rate .. 49

4.5 VNF Availability, Outage Time, and Service Disruption .. 58

4.5.1 VNF Availability ... 58

4.5.2 VNF Outage Time ... 59

ix

4.5.3 VNF Disruption Time ... 62

4.5.4 VNF Service Data Disruption ... 65

4.6 VL Availability and Redundancy ... 65

4.6.1 Expected Availability of VLs ... 65

4.6.2 VL Redundancy .. 66

4.7 NFP Service Outage, Service Disruption, and Resource Cost 67

4.7.1 NFP Outage Time ... 67

4.7.2 NFP Service Disruption Time ... 68

4.7.3 NFP Service Data Disruption .. 68

4.7.4 Cost Function .. 69

4.8 Network Service Availability and Continuity Requirements Mapping 71

4.8.1 Mapping Method ... 71

4.8.2 Time Complexity Analysis ... 80

4.8.3 Heuristic Algorithm .. 81

4.8.4 Experiments and Evaluation ... 84

4.9 Summary and Conclusion .. 89

x

5. Runtime Adaptation Approach .. 91

5.1 Problem Definition ... 91

5.1.1 Need for Runtime Adaptation ... 91

5.1.2 Determining Runtime Adjustments .. 93

5.2 Runtime Adaptation Framework .. 94

5.2.1 Configurable Parameters ... 94

5.2.2 Runtime Adaptation Procedure ... 98

5.2.3 Runtime Adaptation Module Placement ... 99

5.2.4 Notification and Adaptation Operation Flows .. 100

5.2.5 Compliance with the Standards ... 103

5.3 Machine Learning Models for Runtime Adaptation .. 105

5.3.1 Problem Formulation .. 105

5.3.2 Case Study ... 106

5.3.3 Deep Learning Models for the Sample Network Service 110

5.3.4 A Generic Method for Deep Learning Models Construction 116

5.4 Summary and Conclusion .. 119

xi

6. Prototypes, Testbed, and Experiments ... 121

6.1 Objectives of Experiments ... 121

6.2 Prototypes ... 122

6.2.1 Design-time Approach .. 122

6.2.2 Runtime Approach .. 125

6.3 Case Studies ... 127

6.3.1 Video Streaming Case Study .. 127

6.3.2 Web Service Case Study ... 134

6.4 Testbed ... 138

6.4.1 Element Manager .. 138

6.4.2 Fault Injector ... 139

6.4.3 Local Monitor and Log Collector ... 139

6.4.4 NFV Cloud .. 140

6.5 Limitations of Performed Experiments .. 142

6.5.1 Capacity and Performance of Resources .. 142

6.5.2 Tacker and OpenStack Limitations ... 143

xii

6.6 Test Scenarios and Experiments Results .. 143

6.6.1 Test Scenarios ... 144

6.6.2 Experiments Results and Analysis .. 146

6.7 Summary and Conclusion .. 152

7. Conclusion and Future Work ... 155

7.1 Conclusion .. 155

7.2 Future Work ... 157

8. Bibliography .. 159

9. Appendix I ... 171

xiii

List of Figures

Figure 1-1: Example of NS in the context of ETSI NFV ... 2

Figure 2-1: ETSI NFV reference architecture [1] ... 10

Figure 2-2: MTBF, MTTR, and MTTF [4] .. 15

Figure 2-3: Example of an ANN architecture [23] ... 19

Figure 2-4: Example of a DNN architecture [23] ... 20

Figure 4-1: Example of outage time and service disruption for an NS 38

Figure 4-2: Overall picture of the design-time approach .. 42

Figure 4-3: Placement of two instances of a VNFC ... 45

Figure 4-4: FTD of a system with two components ... 51

Figure 4-5: FTD of a system with three components which fails if all fail at the same time ... 52

Figure 4-6: FTD of a system with three components that fails if at least one of them fails 53

Figure 4-7: FDT of the VNFC in Figure 4-3-b ... 54

Figure 4-8: FDT of the VNFC in Figure 4-3-a ... 55

Figure 4-9: Flowchart of the requirements mapping method ... 74

xiv

Figure 4-10: Optimal and near-optimal SDT comparison .. 88

Figure 4-11: Optimal and near-optimal cost comparison ... 88

Figure 5-1: Notification flow for changes that impact VNFs ... 101

Figure 5-2: Notification flow for changes that impact NS-level VLs 101

Figure 5-3: Steps for configuration parameters adjustment .. 102

Figure 5-4: Notification and adjustment flows in the NFV reference architecture 103

Figure 5-5: Sample NS with three VNFs and four VLs [8] .. 106

Figure 5-6: VNFCs and IntVLs of the sample NS [8] .. 107

Figure 6-1: Main classes of the design-time approach prototype ... 124

Figure 6-2: A video streaming NS .. 128

Figure 6-3: A web service NS ... 134

Figure 6-4: NFV cloud realized using OpenStack and Tacker ... 141

xv

List of Tables

Table 4-1: VNFs and networking details for a sample NS ... 84

Table 4-2: Optimal configuration values, using complete search .. 85

Table 4-3: Near-optimal configuration values, using heuristic search 85

Table 4-4: VNFs and networking details for one scaling level of the NFP 86

Table 4-5: Optimal/near-optimal configuration values, using both implementations 87

Table 5-1: An NsDF to meet a certain performance expectation ... 95

Table 5-2: The updated NsDF (from Table 5-1) to meet an availability expectation 96

Table 5-3: The second NsDF for resources with lower availability ... 97

Table 5-4: Functional and non-functional requirements of the sample NS 107

Table 5-5: Sample NS scaling levels .. 108

Table 5-6: VNF scaling levels, VNFCs, and IntVLs of the VNFs of the sample NS 108

Table 5-7: Application-level information of each VNF of the sample NS 109

Table 5-8: Availability and failure rate of VNFC applications .. 109

Table 5-9: Hosting options available for the sample NS .. 110

xvi

Table 5-10: Networking options available for the sample NS .. 110

Table 5-11: Structure of the training data to determine HI, CpI, and SB together 111

Table 5-12: Training data structure for the first DL to determine the HI and CpI values 112

Table 5-13: Training data structure for the second DL to determine SB values 112

Table 5-14: Validation result of using chained DLs to predict new configuration values 115

Table 5-15: Validation results for single and chained DLs .. 116

Table 6-1: Scaling levels of the video streaming NS .. 128

Table 6-2: Application-level information of VNFs of the video streaming NS 131

Table 6-3: Availability and AFR of VNFC applications for video streaming NS 132

Table 6-4: Optimal configuration for ASDT=120s .. 133

Table 6-5: Optimal configuration for ASDT=180s .. 133

Table 6-6: NS scaling levels of the new NsDF when ASDT=120s .. 133

Table 6-7: NS scaling levels of the new NsDF when ASDT=180s .. 133

Table 6-8: Scaling levels of the web service NS .. 134

Table 6-9: Application-level information of VNFs of the web service NS 136

Table 6-10: Availability and AFR of VNFC applications for web service NS 136

xvii

Table 6-11: Optimal configuration for RA=0.9995 .. 137

Table 6-12: Optimal configuration for RA=0.999 .. 137

Table 6-13: NS scaling levels for the new NsDF when RA=0.9995 138

Table 6-14: NS scaling levels for the updated NsDF when RA=0.999 138

Table 6-15: Experiments for each requirement and case study .. 143

Table 6-16: Experiments result for ASDT=120s .. 147

Table 6-17: Maximum Possible SDT of Failures for experiments with ASDT=120s............ 148

Table 6-18: Experiments result for ASDT=180s .. 149

Table 6-19: Maximum Possible SDT of Failures for experiments with ASDT=180s............ 150

Table 6-20: Experiments result for RA=0.9995 ... 150

Table 6-21: Experiments result for RA=0.999 ... 151

Table 6-22: Maximum Possible Outage Time of Failure for experiments with RA=0.9995 . 151

Table 6-23: Maximum Possible Outage Time of Failure for experiments with RA=0.999 ... 152

Table A-I-1: Mathematical notations used in this thesis .. 171

xviii

List of Abbreviations

ADT Acceptable Down Time

AFR Average Failure Rate

AM Adaptation Module

ANN Artificial Neural Network

ASDD Acceptable Service Data Disruption

ASDT Acceptable Service Disruption Time

BSS Business Support System

BW Bandwidth

CND Checkpointing Network Delay

CpI Checkpointing Interval

DB Database

DL Deep Learning

DNN Deep Neural Network

EM Element Manager

ETSI European Telecommunications Standards Institute

FDT Failure Detection Time

FoT Failover Time

HI Health-check Interval

HV Hypervisor

HW Hardware

IntVL Internal VL

MANO (NFV) Management and Orchestration

HMR Health-check Monitoring Rate

ML Machine Learning

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair/Recover

NFP Network Forwarding Path

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NL Network Latency

NS Network Service

NSD Network Service Descriptor

NsDF Network Service Deployment Flavor

OSS Operations Support System

OT Outage Time

PC Personal Computer

RA Required Availability

PH Physical Host

RT Restart Time

xix

SB Standby

SDD Service Data Disruption

SDT Service Disruption Time

SRV Server

TBCC Time Between Consecutive Checkpoints

TBFLC Time Between a Failure and the Latest committed Checkpoint

TDT Total Down Time

ToT Takeover Time

VIM Virtualized Infrastructure Manager

VL Virtual Link

VlEA VL Expected Availability

VM Virtual Machine

VNF Virtual Network Function

VNFC Virtual Network Function Component

VNFD Virtual Network Function Descriptor

VnfDF Virtual Network Function Deployment Flavor

VnfEA Virtual Network Function Expected Availability

VNFFG Virtual Network Function Forwarding Graph

VNFM Virtual Network Function Manager

1

Chapter 1

1. Introduction

1.1 Context

In legacy computer systems, specialized hardware appliances have been used to provide

network functions (e.g., routers, switches, firewalls, load balancers, …) and realize Network

Services (NS). However, the rise of Network Function Virtualization (NFV) in recent years has

changed the way we can realize and manage NSs by using general-purpose servers and virtualization

technologies. With NFV, network functions are decoupled as software from hardware and can

exploit virtualized resources on commercial off-the-shelf servers [1]. This way, NFV utilizes the

advantages of virtualization and reduces capital and operational expenses, rapid service provisioning

and deployment, scalability and elasticity, and multi-tenancy for NS [1].

The European Telecommunications Standards Institute (ETSI), a standardization organization

in the Telecom industry, introduced a reference architecture for NFV [2]. An NS in the context of

ETSI NFV is realized by interconnecting Virtual Network Functions (VNF) using Virtual Links

(VL) [1]. The NFV framework manages the virtualization technologies to provide VNFs with virtual

resources [1]. The VNF definition includes both historically network functions (e.g., firewalls,

routers, etc.) and historically non-network functions, such as web servers and databases [3]. For

2

example, Figure 1-1 shows an NS realized by interconnecting three types of VNFs (i.e., firewall,

load balancer, and web server) to provide a web service functionality. VNFs and VLs in this figure

use the virtual computing, storage, and networking resources of the underlying infrastructure. In the

NFV context, a VNF (or VL) instance is instantiated based on a VNF (or VL) type. Also, it is

possible to have multiple instances of a VNF or a VL type in an NS. In Figure 1-1, there is one

instance of the firewall VNF, one instance of the load balancer VNF, two instances of the web server

VNF, and one instance of each VL. Note that a VL instance can interconnect more than two VNFs

(e.g., VL3).

Figure 1-1: Example of NS in the context of ETSI NFV

1.2 Thesis motivations

Service availability for a system is defined as the fraction of time the system provides its service

in a period [4]. It is usually expressed in terms of nines, e.g., 99.99%. Telecom NSs are expected to

deliver highly available functionalities (i.e., 99.999% of availability) [5]. In addition, some use cases

3

of 5G require even more stringent service availability. For example, remote motion control requires

ultra-high availability, which means the NS functionality should be available for at least 99.9999%

of the time [6]. Thus, Telecom NSs need to be designed to meet their availability requirements,

particularly when using general-purpose hardware, which is usually less reliable than specialized

hardware [7]. Current work on NS availability in the NFV context only focuses on determining the

appropriate number of redundant VNF instances, their placement in the virtualized environment, and

their interconnections. Such solutions are necessary to fulfill the availability requirements of NSs.

Still, they are insufficient since redundancy alone does not guarantee an acceptable overall service

outage time for an NS functionality. Moreover, the scalability of NSs and VNFs introduces new

challenges for NS availability in the NFV context since it can affect availability. This is not taken

into consideration in existing solutions. For example, in the current state of the art, VNFs are

considered monolithic applications. However, VNFs usually consists of internal components

(VNFC) and VLs (IntVL) and may have (internal) scaling feature. Different placement policies can

be applied to VNFCs which may result in different availability for the VNF. Therefore, the

availability of a VNF may be different for the different number of redundant instances of VNFCs

and IntVLs at different scaling levels of the VNF.

In addition, service continuity requirements are not addressed quantitatively in existing

solutions, since there is no quantitative definition for service disruption in the literature. However,

it is necessary to provide a quantitative definition so tenants can express the acceptable service

disruptions, and NS designers/administrators can measure and guarantee it. According to the

availability definition, the service is available as soon as a failed service is recovered. Therefore, in

the case of a stateful service, whether a service is restarted from its initial state, or is recovered from

a recently checkpointed state, the outage time (and the service availability) is the same. For example,

4

let us consider a video streaming NS. Assume while playing a movie, repeated failures happen every

hour, and after each failure, the service is recovered in one second. If the service recovers from the

last played frame before the failure, or if it recovers from the movie's beginning, the service outage

time is one second per hour for both cases. Thus, the service availability is the same for both cases;

however, the service disruption perceived by the end-user is different. From an end-user perspective,

for the former case, the service disruption is one second per hour, and after each failure recovery,

the user can continue watching the video from the last played frame eventually to its end. For the

latter, the service is disrupted for one hour and one second due to each failure. Also, after the first

failure, the video is restarted from the movie's beginning. As a result, the end-user will not ever

finish watching the complete movie if the length of the movie is more than one hour. Therefore,

when a failure happens for a stateful service, the service continuity (which is impacted by service

disruption) depends also on the state recovery in addition to the service recovery.

To address all aforementioned challenges and aspects of the problem, a comprehensive solution

is required to design NSs to fulfill service availability and continuity requirements. This design-time

solution uses the availability characteristics of the infrastructure. For example, to find the required

number of standby instances for a VNF, the availability of each VNF instance should be evaluated

first, which partially depends on the availability of host types.

At runtime, the characteristics of the resources may change because of the dynamicity of

virtualized infrastructure. For instance, a VNF can be migrated at runtime because of a failure and

for the purpose of resource optimization, or after a failover, a standby VNF can become active using

a different type of host with different availability, or the availability of resources changes over time

because of aging. As a result, the number of standbys determined at design time for the VNF may

5

need to be increased at runtime to keep the VNF availability as required. Therefore, if an NS design

satisfies certain service availability and continuity requirements at design time, it may not satisfy the

same requirements at runtime if there are changes at the resource level. Thus, there is a need for a

solution that reacts to these changes that affect the availability or continuity of NSs at runtime and

adjust the NS configuration accordingly to guarantee that the requirements are always fulfilled

throughout the lifetime of the NS.

The NS design/configuration created/refined by design-time and runtime solutions need to be

cost-efficient in terms of resources the NS uses. For example, to fulfill service availability and

continuity requirements, the minimum required redundancy should be imposed on VNFs to

minimize the computing cost. Also, the VLs redundancy and network resource usage should be the

minimum necessary. In other words, the design-time and runtime solutions should provide the

optimal configuration which fulfills the service availability and continuity requirements while

minimizing the resource costs.

The last challenge to be tackled for the service availability and continuity management of NSs

is the inherent complexity of large NSs. NSs in the NFV environment can be large in scale and

diversity of VNFs. Usually, the larger and the more complex an NS is, the more time-consuming is

the design process to satisfy all the functional and non-functional requirements. For a large NS and

several resource options (e.g., different networking or hosting options), finding a solution that not

only satisfies the service availability and continuity requirements but also minimizes the resource

cost is even more time-consuming. Therefore, the methods of both design-time and runtime solutions

should have a tolerable time complexity to be applicable for large NSs.

6

1.3 Contributions of the Thesis

This thesis aims at devising a framework for NS availability and continuity management.

Service availability already has a quantitative definition in existing work, but service disruption does

not. This thesis starts by providing a quantitative definition for service disruption to enable tenants

to express their service continuity (or acceptable service disruption) requirements and NS designers

to measure and translate them to deployment configurations.

The main contributions of this thesis are as follows:

• A design-time approach: this approach takes tenant availability and acceptable service

disruption requirements and a designed NS (which already satisfies the functional and

performance expectations) as input and maps these requirements into low-level configuration

parameters that affect the service availability and continuity and also adjusts the NS design.

The deployment configuration generated by the design-time methods guarantees the

fulfillment of the service availability and continuity requirements of the NS as long as, at

runtime, the availability characteristics of the resources used by the NS constituents remain

the same as estimated at design time. This approach also minimizes resource usage while

determining the optimal configuration. In addition, if there are multiple hosting types to host

VNFs and/or different networking options, this approach chooses the ones with lowest

resource cost that can fulfill the service availability and continuity requirements. This

solution required the following investigations and related contributions:

o Methods to calculate VNF instances availability and failure rate: VNF instances

availability and failure rate are needed for the design-time approach to evaluate the NS

availability and service disruption. Generally, a VNF instance is composed of internal

7

components and VLs. In addition, a VNF instance can have internal scaling and

redundancy for its components and internal VLs. In this thesis, we devise methods to

calculate the guaranteed minimum availability and maximum failure rate of a VNF

instance on a given infrastructure while taking into account the internal redundancy

and scaling of the VNF instance and policies affecting the VNF components and

internal VLs placement.

o A heuristic search to determine optimal configuration: determining the optimal

configuration while minimizing the cost of the resources in our design-time approach

has exponential time complexity. Therefore, in this research, we propose a heuristic

search that makes the approach affordable for large NSs. We show that the heuristic

search result is satisfactory in terms of execution time and accuracy.

• Runtime adaptation approach to maintain the satisfaction of the service availability

and continuity requirements: this approach reacts to the changes that can impact the

fulfillment of the service availability and continuity requirements or the cost-efficiency of

the configuration at runtime. This contribution consists of the following:

o A framework for runtime adaptation: this framework introduces an Adaptation

Module (AM) responsible for runtime adaptation management in the NFV architecture.

The AM re-evaluates the availability and service disruption of the managed NSs when

a change happens or if there was no change (including failures) for a long period,

determines the new values for configuration parameters accordingly (if needed), and

applies/requests the required reconfiguration (if needed). The proposed framework

adjusts the NS if the availability or service continuity of the NS deteriorates (e.g., due

to a change), or if the availability or service continuity of the NS is improved (e.g., if

8

there was no failure for a long period). For the latter, the adjustment reduces resource

costs (e.g., reduce the number of standby instances) if possible, while maintaining the

fulfillment of the service availability and continuity requirements.

o A method to create Machine Learning (ML) models for runtime adaptation: the

AM can use the analytical methods of the design-time approach to determine the new

values of the configuration parameters at runtime. However, the execution time, in this

case, may not be affordable in certain situations (e.g., a large NS with stringent service

availability and continuity requirements), even if the proposed heuristic search is used.

Therefore, this thesis proposes a method to create ML models for NSs at design time.

The ML models mimic the analytical methods, and the AM uses them at runtime to

predict the required reconfiguration with constant time complexity.

The design-time and runtime approaches have been implemented and experimented with for

validation purposes. We created an NFV cloud environment compatible with ETSI NFV reference

architecture. We developed different types of VNFs to create two different NSs for our experiments.

Our experiments show that:

• Optimal deployment configurations generated by the proposed design-time approach satisfy

all different service availability and continuity requirements for both case studies.

• The AM can interact with the modules in the ETSI NFV reference architecture, and the

runtime adaptation framework can reconfigure the NS.

• NSs adjusted using ML models satisfy service availability and continuity requirements for

both case studies and different test runs when the failure rate of resources changes randomly

at runtime.

9

1.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide the background

knowledge, including ETSI NFV reference architecture and its different entities. Also, concepts

about NS (in the context of ETSI NFV), service availability, service continuity, and ML used

throughout this thesis are explained in this chapter. In Chapter 3, we review related work. Chapter 4

introduces our service disruption definition and discusses our proposed design-time approach for

service availability and continuity requirements mapping into low-level configurable parameters.

Chapter 5 presents the runtime adaptation approach, including the runtime adaptation framework

and the ML model creation method. Chapter 6 discusses the testbed, case studies, prototypes

developed to experiment with our solutions, and the results. In Chapter 7, we conclude this thesis.

10

Chapter 2

2. Background

In this chapter, we lay out the background knowledge for the thesis by providing an overview

of ETSI NFV architecture, service availability and continuity, ML, and OpenStack and Tacker.

2.1 Network Function Virtualization Framework

ETSI NFV specification group introduced a reference architecture for NFV as depicted in

Figure 2-1 [1].

 Figure 2-1: ETSI NFV reference architecture [1]

11

This architecture includes the following main sets of entities:

• NFV Management and Orchestration (MANO)

• NFV Infrastructure (NFVI)

• VNFs

Operations Support Systems/Business Support Systems (OSS/BSS) and Element Managers

(EM) shown in Figure 2-1 are not part of the NFV architecture but interact with its entities.

2.1.1 NFV Management and Orchestration

MANO is responsible for providing NSs (i.e., their VNFs and VLs) with virtual resources and

managing the lifecycle of NSs and VNFs [8]. MANO includes three functional blocks as described

below.

2.1.1.1 NFV Orchestrator

NFV Orchestrator (NFVO) manages the lifecycle of NSs (e.g., instantiating, updating, and

terminating of NSs) [8]. It instantiates an NS based on an NS Deployment Flavor (NsDF) [9], and

each NsDF references an NS Descriptor (NSD) [9]. The NSD references the descriptors of the NS

constituents, e.g., VNF Descriptors (VNFD) and VL Descriptors (VLD). NFVO receives descriptors

and VNF images from the OSS and on-boards them [8]. In addition, NFVO keeps an inventory of

allocated virtual resources to NSs and validates and authorizes the resource requests from VNF

Managers (VNFM) [8].

12

2.1.1.2 VNF Manager

A VNF Manager (VNFM) is responsible for the lifecycle management of its managed VNF

instances, including requesting NFVO to grant NFVI resources, and instantiating, scaling,

monitoring, auto-healing, and terminating managed VNFs [8].

2.1.1.3 Virtualized Infrastructure Manager

Virtualized Infrastructure Manager (VIM) orchestrates the allocation, upgrade, release, and

reclamation of NFVI resources (i.e., compute, storage, and network resources) [8]. VIM also collects

performance and fault information of hardware, software, and virtual resources of the NFVI [8].

2.1.2 NFV Infrastructure

NFVI includes the hardware resources (i.e., general-purpose computing, networking, and

storage hardware) at the bottom and the virtual resources at the top that can be assigned to VNFs

and NSs. It also includes a virtualization layer (e.g., hypervisor) which supports the basic

management of virtual resources (create, delete, or resize virtual resources) [1].

2.1.3 Virtual Network Function

A VNF is a software implementation of a network function that can run on the NFVI and

consume virtual resources [1]. The VNFD of the VNF determines the VNF deployment and

operational requirements [10]. A VNF profile specifies the instantiation information for a specific

VNF Deployment Flavors (VnfDF) [9]. A VnfDF references a VNFD and indicates a particular

deployment of the VNF [11]. VNFs instantiated based on different VnfDFs/VNF profiles of the

same VNF may provide various functionalities and/or performance characteristics.

13

A VNF is composed of at least one VNFC and zero or more IntVLs [10, 12]. VNFCs are the

actual consumers of infrastructure resources [10, 12]. A VNF vendor designs and structures the VNF

with vendor specific VNFCs [12]. The VnfDF of a VNF defines the scaling levels of the deployment

flavor, which indicate the number of instances for each VNFC and IntVL of the VNF at the different

scaling levels [10]. The number of scaling levels is finite, and the number of instances for each

scaling level may be indicated explicitly or by a delta [10]. In the latter case, the initial number of

instances and the amount of change between consecutive scaling levels is indicated (i.e.,

aspectDeltaDetails attribute). The upper bound for the scaling steps is also set (i.e., maxScaleLevel

attribute) to limit the number of scaling levels [10].

The VnfDF may also include anti-affinity rules for the instances of the same or different VNFCs

[10]. Usually, anti-affinity rules are applied to instances of the same VNFC to place them on different

physical hosts to prevent the impact of simultaneous failure of multiple/all instances due to physical

host failure or upgrades [13]. Anti-affinity rules can also be specified for an IntVL to limit or prevent

physical network sharing by IntVL instances. Every anti-affinity rule includes a property that

determines the scope of the rule [10]. Possible scopes are NFVI-PoP (i.e., NFV Infrastructure Point

of Presence), ZoneGroup (i.e., multiple zones grouped together), Zone, and Node (i.e., physical host)

[10]. In this thesis, we only consider anti-affinity rules defined for VNFC/IntVL instances at the

Node scope, i.e., distribution across multiple nodes inside a Zone.

2.1.4 Element Manager

In the context of ETSI NFV, MANO manages the virtualization aspect of NSs and VNFs,

unaware of the functionality and application-level configuration of VNFs. However, an EM (not part

of the ETSI NFV architecture) in interaction with the OSS can manage different aspects of the

14

application and the functionality of its managed VNFs, including fault, configuration, accounting,

performance, and security [14].

2.1.5 Operation Support System/Business Support System

. In general, the OSS provides as input the descriptors of NSs and their constituents and is

capable of requesting from the NFVO to onboard, instantiate, alter, or terminate NSs. The OSS can

also manage VNF applications and their functionalities through EMs. The BSS includes billing and

customer management systems to support business management [14].

2.2 Network Service

An NS in the context of NFV is a composition of VNFs and/or other NSs that are interconnected

by VLs [11]. NSs are defined by their functional and non-functional characteristics. The deployment

template of an NS is described by an NSD [9]. An NS is instantiated based on an NS deployment

flavor (NsDF) [9]. Each NsDF references an NSD and specifies the deployment characteristics of

the deployment flavor, like NS scaling levels [9]. The NsDF indicates a list of VNF and VL profiles

used for instantiating an NS instance of the NsDF [9]. A VNF/VL profile specifies the instantiation

information of a VNF/VL type [9]. Each NS scaling level indicates the number of VNF and VL

instances for each VNF and VL profile of the NS. In the rest of this thesis, we refer to the VNF/VL

profile as VNF/VL, and VNF/VL instance stands for an instance instantiated according to a VNF/VL

profile.

The topology of an NS is described as a VNF Forwarding Graph (VNFFG) descriptor which

references VNF [9]. An NS may have zero or more VNFFGs. A VNFFG contains one or more

Network Forwarding Paths (NFP). An NFP defines an ordered list of connection points associated

15

with VNFs and VLs that form a sequence of network functions [9, 11]. Different NFPs may have

some VNFs and/or VLs in common, while not all VNFs and/or VLs of the NS may be involved in

every NFP.

2.3 Service Availability and Continuity

2.3.1 Service Availability

The availability is expressed as the fraction of time a system can deliver its service during a

given period [4]. When a system fails, it is repaired in an average time known as Mean Time To

Repair (MTTR). The average time between two consecutive failures is called Mean Time Between

Failures (MTBF). If Mean Time To Failure (MTTF) denotes the average time that system is available

after a repair up to the next failure, the MTBF is [4]:

 𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅 (1)

The relation between MTBF, MTTF, and MTTR in equation (1) is illustrated in Figure 2-2 [4].

In this figure, the service starts at 𝑇𝑠𝑡𝑎𝑟𝑡 and fails at 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒−1. Then, it’s repaired at 𝑇𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑−1, and

fails again at 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒−2.

Figure 2-2: MTBF, MTTR, and MTTF [4]

16

According to the availability definition, the availability of a system is calculated by equation

(2) [4].

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅
 (2)

2.3.1.1 Fault Tolerance

According to equation (2), the availability of a system with an average failure rate in a period

(i.e., in a given MTTF) can be adjusted by adjusting the MTTR. To repair the service of a software

system, when a component of the system is failed, the failure should be detected first. Then, the

failed component is repaired by restarting/reinitializing it. Therefore, MTTR depends on failure

detection and repair time. Failure repair time is not usually adjustable since restarting a component

takes the same average time. However, failure detection time can be tuned by changing the Health-

check Monitoring Rate (HMR). The more frequent health-check messages are sent, the faster a

failure is detected. However, increasing the HMR can burden the component with the execution of

the monitoring logic and consequently decrease its performance [15]. Therefore, software

components usually have a boundary for the maximum HMR. If the availability of a system with the

maximum HMR needs to be improved, fault tolerance is a known technique that can be employed

[4]. Fault tolerance relies on recovery instead of repair. To recover the failure of a component of a

software system, once the failure is detected, another (standby or active) component can take over

the responsibility of the failed component. Usually, failover time is less than the restart time.

Therefore, the availability of a system can be improved.

17

2.3.1.2 Redundancy

Redundancy is the key strategy of fault tolerance. There are five different redundancy models

for a component as follows [4]:

• No-redundancy: no standby instance of the component with the state information

protects active instances (spares may be present).

• 2N redundancy (a.k.a., 1+1 redundancy and hot-standby redundancy): each active

instance of the component is protected by one standby instance with synchronized state

information.

• N+M redundancy: N active instances of the component are protected by M standby

instances. Standby instances also have the state information. This model is more

resource-efficient than the 2N redundancy model since, usually, N is greater than M.

• N-Way redundancy: a redundant instance may provide a service as an active instance

while it is standby to protect other services.

• N-Way-Active redundancy (a.k.a., active-active redundancy): this is the load balancing

redundancy model. In this model, there is no standby instance assigned to active

instances. This redundancy model better suits for stateless applications.

2.3.2 Service Continuity

In addition to service availability, service continuity is another important characteristic of

Telecom NSs [16]. Service continuity is defined as providing uninterrupted/low-interrupted service

[17]. Thus, to improve the service continuity of a system, one way is to increase its availability (i.e.,

reduce the service outage time). In addition, for a stateful service (e.g., a video streaming service),

the service continuity also depends on the amount of service data loss (i.e., service data disruption)

when a failure happens. Checkpointing a system state is a technique that improves the state

preservation after a failure repair/recovery, improving service continuity [18, 19].

18

2.4 Machine Learning

ML is an artificial intelligence technique to enable computer systems to learn from experiences

[20]. Such a system can be used for decision making, behavior modeling, pattern recognition, etc.

Generally, there are three different ML approaches [21]: supervised, unsupervised, and

reinforcement learning. Each approach is appropriate to solve certain types of problems.

2.4.1 Supervised Machine Learning

The machine is given a training dataset for supervised ML to learn a model from [21]. Each

record of the dataset has two parts: data or input and label or output. The training dataset is also

called labeled data. A model is a function that predicts an output for a given input [21]. After learning

the model from the training dataset, the machine can map any given input (which may not be

previously present in the training dataset) to an output. Supervised ML models can solve

classification problems [21]. For example, an ML model can classify patients into recovered and

unrecovered groups based on their symptoms. In this case, the machine is called a classifier. The

output of a classifier is discrete with few known values (i.e., classes). Also, supervised ML models

can solve regression problems in which the output has a numerical value with natural ordering [21].

In this case, the machine is called a regressor. For example, a regressor can predict a land price

based on its area, location, and neighborhood conditions. The output value for this example can

(virtually) be any real number.

2.4.1.1 Artificial Neural Network and Deep Learning

Artificial Neural Network (ANN) is one of the most used and powerful algorithms to solve

classification and regression problems. An ANN is composed of multiple layers, including input,

19

hidden, and output. Each layer has one or more nodes/neurons. The number of nodes for the input

layer is equal to the features of the training data [22]. A node in the input layer sends through vectors

the corresponding feature value to some or all the nodes in the hidden layer. Each vector applies a

weight to the feature value [23]. The number of nodes for the hidden layer depends on the complexity

of the model the ANN should be trained for [22]. A node in the hidden layer applies a function to

the input values it receives through weighted vectors from the input layer nodes [23]. Similarly, the

hidden layer nodes send their outputs to nodes in the output layer. The number of nodes for the

output layer in the case of a classifier ANN is equal to the classes of the output [22]. In the case of

a regressor ANN, the number of nodes for the output layer is equal to the number of different types

of predictions the machine is needed to make. When an ANN is trained, the weight of each vector is

adjusted so that for any given input, the ANN can predict an output with an acceptable accuracy

[21]. Figure 2-3 shows an example of an ANN architecture with ten nodes in the input layer, eight

in the hidden layer, and four in the output layer [23].

Figure 2-3: Example of an ANN architecture [23]

20

An ANN with one hidden layer is also called a shallow ANN [23]. To solve problems with

higher level of complexity, we can create ANN models with more than one hidden layer. An ANN

with more than four hidden layers is usually called a Deep Neural Network (DNN) [23]. Also, ML

with a DNN is called Deep Learning (DL) [23]. Figure 2-4 shows an example of a DNN architecture

with six hidden layers [23]. Note that the number of nodes for different hidden layers can be

different.

Figure 2-4: Example of a DNN architecture [23]

21

The following steps are necessary to create a DL model [24]:

1. Data collection

2. Data Analysis

3. Model construction

4. Model validation

Training data can be collected from a real system or generated synthetically and then labeled

[25]. Data analysis includes selecting the data features that have the most effect on the target outputs

and preprocessing the data [24]. Scaling and normalization are the steps of data preprocessing.

Model construction includes selecting the hyper-parameters value and training the model [24]. The

number of hidden layers and nodes are examples of hyper-parameters. Once the model is created,

we should validate its accuracy. We can use some sample data (used or unused during the training

phase) to compare the model predictions with the labels of the sample data. If the result is

unsatisfactory, we may go to the first step and try to increase the model's accuracy by adding more

training data, selecting better features, and/or tuning hyper-parameters.

2.4.2 Unsupervised Machine Learning

Unsupervised learning does not use labeled data. Instead, it tries to find patterns/structures

inside a given set of data [21]. For example, unsupervised learning can categorize a collection of

books into different groups based on their genres [21]. In this case, the machine is not trained to

classify the books. Instead, it tries to find similarities between books and put similar ones into the

same group. Two main unsupervised ML techniques are clustering and Dimensionality reduction

[21]. The previous example of book categorization is a clustering technique. Dimensionality

22

reduction is used to alter data to provide a simpler view by eliminating the redundant or unimportant

features of the data [21]. For instance, this technique can be used for data visualization to reduce the

data dimension [21].

2.4.3 Reinforcement Machine Learning

 A reinforcement machine learns how to act/react in a dynamic environment to achieve a goal

by receiving feedback(s) for its actions from the environment [21]. Usually, a reinforcement machine

learns in a real/near-real environment, and it takes time to learn models compared with the two other

approaches. For example, a reinforcement machine can master playing chess to beat even top

players. The machine only needs to know the basic chess rules in the beginning. Then, it plays and

learns from the feedback received for its moves/strategies.

2.5 OpenStack and Tacker

OpenStack [26] and Tacker [27] can be used to create an NFV cloud environment compatible

with the ETSI NFV architecture. OpenStack is a set of open-source cloud management software to

manage and control large pools of computing, networking, and storage resources to create and

orchestrate virtual machines and their interconnectivity [26]. Therefore, it can manage the NFVI and

play the role of a VIM for the MANO. Tacker is a software module that adds the VNFM and the

NFVO functionalities to the OpenStack controller.

23

Chapter 3

3. Related Work

In this chapter, we review existing work related to the approaches proposed in this thesis, i.e.,

the design-time approach and runtime adaptation framework. We also review the ETSI NFV

specifications related to the reliability of VNFs/NSs. Accordingly, we organize this section into three

sub-sections, two for literature review and one for ETS NFV specifications review.

3.1 Network Service Design to Fulfill Availability Requirements

In this thesis, we are interested in the service availability and continuity management of NSs in

the context of NFV. However, in general, VNFs/NSs can be considered component-

based/distributed systems. Therefore, in this sub-section, we start by the review of the related work

in the general context of distributed systems.

3.1.1 Service Availability of Distributed Systems

Service availability has been expansively investigated for component-based/distributed

systems, and it has a quantitative definition which makes it a measurable characteristic [4, 28, 29,

30]. However, related work in distributed systems focuses on component/node redundancy and

protection. In the related work, parameters like failure detection and recovery times and elasticity

are not addressed or they are poorly taken into account.

24

 Fault tolerance is the key mechanism proposed/investigated in related work to improve the

availability of distributed systems [31, 32, 33, 34, 35, 36, 37]. Also, different redundancy

mechanisms (e.g., active-standby, active-active, etc.) for the components of distributed systems are

elaborated and compared in related work in terms of their benefits and applications [31, 32, 33, 34].

But no comprehensive solution is proposed to guarantee a certain availability (i.e., a maximum

affordable overall outage time in a period) which depends on the value of configuration parameters

like HMR [31, 32, 33, 34, 35, 36, 37].

Authors in [38] and [39] consider adjusting parameters like timers to guarantee a certain

availability. However, the solutions proposed in these articles are based on using a specific

availability manager framework. In addition, parameters like the elasticity of the distributed system

are not taken into consideration. The work in [38] proposes a method for the automatic generation

of configurations for component-based applications to deploy on top of an availability management

framework that manages the availability of the services provided by the applications. This method

takes as input the configuration requirements, the deployment infrastructure, and the software

description provided by the software vendor. The configuration requirements include the “workload”

to be protected and the redundancy model. The method automatically selects the software

components to provide the required services and organizes them according to the required

redundancy model to protect these services as required. A configuration is generated automatically.

The required availability is not expressed explicitly in [38] but only implicitly through the

“workload” and the redundancy model. The work in [39] improves the work in [38]. It takes a

required availability as input and improves the generation method with multiple configuration design

patterns and availability estimate methods. The configuration patterns aim at targeting better

configurations to meet the required availability, like the pattern for selecting an appropriate

25

redundancy model or the pattern for setting the most suitable recovery mechanism for a component.

The availability estimate methods aim at evaluating the availability as early as possible in the

generation process and eliminating configuration options that cannot meet the required availability.

Using the configuration patterns, the approach presented in this paper sets some configuration

attributes to limit the impact of a failure and therefore minimize service outage. For instance, it may

set the recommended recovery attribute of a component to failover instead of restart. The approach

in [39] does not determine the values for low-level configuration parameters like timers. These

parameters are set according to the vendors’ recommendations and are used in the availability

estimate methods as defined for the middleware.

3.1.2 Network Service Availability and Continuity in the Context of NFV

Related work on designing/redesigning NSs to fulfill an availability requirement mainly focuses

on protecting the VNF functionality, i.e., having enough standby instances for VNFs. There is no

existing comprehensive solution in state of the art to guarantee the service outage, which may also

depend on configuration parameters like HMR.

The authors in [40] propose an algorithm to determine the required number of standby instances

for the least reliable VNFs of the NSs and reduce the computing resource consumption

simultaneously. They show that solving this problem is NP-complete and propose a heuristic

algorithm as a solution. This solution is improved in [41] by taking infrastructure availability into

consideration. The work in [41] aims at minimizing the computing cost and reduces this cost by half

compared to [40]. In [42], the authors take resource constraints into account. They propose two

algorithms to guarantee that there is sufficient VNF redundancy to support the required availability

of the NS. This paper suggests protecting only the key VNFs for more efficient resource utilization.

26

The distribution problem of VNF replicas is addressed in [43]. This paper approaches the NS

availability problem by determining the number of required replicas for the VNFs and their

placement on the existing physical nodes. However, the work does not consider the availability of

computing nodes at the infrastructure layer. It only covers the application-level availability. In [44],

the authors take the geo-redundancy into consideration for VNFs placement and propose a solution

to find enough redundancy for VNFs while respecting hardware capacity and bandwidth constraints

for their placement. The goal of the works in [40, 41, 42, 43, 44] is to provide enough standby

instances for a VNF so that the probability of having healthy VNF instances is equal to or above the

expected availability from the VNF. However, configuration parameters like failover/recovery time

are not taken into consideration in these works.

The authors of [45] partially address the recovery time in their solution for NS availability.

However, this solution does not guarantee the total service outage time for an NS satisfying an

acceptable threshold. It relies on the microservice paradigm and benefits from the redundancy

mechanisms available in microservice-based architectures. This work proposes to apply the 1+1

redundancy to all VNFs and calculates the networking overhead imposed by the availability

mechanisms. However, assuming the 1+1 redundancy for all VNFs may not be resource-efficient

and/or enough in all cases to guarantee the expected availability from the VNF. The work proposes

a method of calculating the outage time during failover. All the calculations and proposed

architectures in this article are application specific, and most of them cannot be generalized and used

for other applications.

VNFs are building blocks of NSs, and the availability of NSs depends on the availability and

failure rate of VNFs. In the literature, the availability and failure rate of VNF instances are assumed

27

to be known/given to design NSs, since a VNF instance is considered to have only one VNFC placed

on a single host. However, this is not typically the case. A VNF may consist of more than one VNFC

and zero or more IntVLs. It may also have multiple scaling levels and different affinity/anti-affinity

policies for the placement of its VNFC and IntVL instances. Thus, the availability and failure rate

of a VNF instance depend (partially) on its components' placement and redundancy during runtime.

These are not taken into consideration in state of the art.

A set of related work address the effect of VNF redundancy and/or VNF instances placement

on VNF/NS availability [41, 43, 44, 46, 47, 48, 49, 50]. However, VNF instances are not considered

as (potentially) distributed applications. Article [41] proposes a method to improve the reliability of

NSs and minimize the resource cost by protecting the most important VNFs with redundancy

mechanisms instead of spending resources on the least reliable VNFs protection. It also suggests

most reliable hosts should be selected for the most important VNFs placement to optimize the overall

resource consumption. In [43], the authors tackle the problem of redundant VNFs distribution and

their placement on physical nodes to create independent redundant network paths (i.e., a chain of

VNFs and VLs) at the physical level to prevent single point of failures. Article [44] focuses on VNF

redundancy calculation while optimizing VNF licensing cost, server utilization, and network latency.

The authors in [46] aim at the problem of NS availability fulfillment by utilizing VNF redundancy

and minimizing the resource cost at the same time. They propose a solution to calculate the number

of required standby instances for a VNF based on the availability of each VNF instance. The solution

in [47] proposes an algorithm to calculate the redundancy for VNFs with lower availability in the

NS and minimize networking costs. This article also proposes an algorithm to determine the network

path redundancy to improve the NS reliability. Paper [48] proposes an algorithm for the placement

of VNFs of replicated network service chains to meet a required availability. [49] proposes a solution

28

for VNF redundancy and placement to increase NS resiliency against single-node failures and

minimize network latency simultaneously. Authors in [50] address the effect of placement of router

VNFs on the availability of the NS and propose a framework to create different reliable routes for

enterprise data centers. This framework determines the required redundancy for (router) VNFs and

their placement to increase the NS resiliency to failures and meet the required networking delay.

Neither of the abovementioned articles addresses the internal components of VNFs and the impact

of VNFCs and IntVLs placement policies on the availability of VNF instances since they assume

each VNF is a single entity placed on a single host. Also, the VNF elasticity (i.e., VNF internal

scaling) at runtime is not taken into consideration. In addition, the number of VNF instances is

assumed to remain the same during runtime (i.e., NS-level scaling is not addressed).

We are not aware of any related work that quantifies service continuity. Despite the lack of a

quantitative definition for service continuity in related work, state checkpointing is a well-known

technique used in the literature to improve service continuity. It is used with or without redundancy

[4, 51, 52, 53, 54]. However, without defining and quantifying service disruption, existing solutions

cannot measure and/or provide guarantees for service continuity.

3.2 Runtime Monitoring and Adaptation of Network Services

3.2.1 Monitoring Resource Changes at Runtime

One essential requirement to enable the runtime adaptation of NSs to maintain the fulfillment

of their required availability is monitoring the changes in resources assigned to the NS constituents.

Some related work has proposed a framework/solution to monitor VNFs/NSs, in the context of NFV,

for availability and/or performance purposes. However, some do not monitor all type of resources

29

and all required kinds of changes, and/or others are not fully compliant with ETST NFV reference

architecture. A fault management architecture and procedures are proposed for NFV-based mobile

networks in [55]. This specification proposes a procedure to notify the OSS about virtual resource

failures through the VIM, VNFM, and EM. The only changes monitored by this framework are

resource failures that affect VNFs. Other types of changes, including changes that affect VLs, are

not considered in this specification. In [56], the authors propose a framework to monitor resources,

aggregate events, notify the NFVO and the OSS about alerts, and provide a visual dashboard for 5G

networks. They propose to insert a monitoring layer between the infrastructure (i.e., NFVI) and the

orchestration layers. Their definition of the orchestration layer combines both the NFVO and the

OSS in the same layer which is not compliant with the current ETSI NFV specifications. The

proposed monitoring framework in [56] provides some advanced functionalities like visualization

and aggregation. However, where the proposed layer entities are placed in the NFV reference

architecture and how they interact with other NFV entities is not defined. In [57], the authors propose

a monitoring framework that adds features like anomaly detection and aggregation optimization to

the existing monitoring solutions of the VIM. The goal is to reduce the number of notifications sent

to the upper level, especially for large systems. Although the detailed capabilities of this solution are

not discussed in [57], it can be a potential candidate for adding availability constraints monitoring

capability to the VIM if it is considered and implemented for the NFV reference architecture. This

solution does not cover VNF application failures. Authors in [58] introduce the need for end-to-end

QoS monitoring and propose a top-down approach to add to the monitoring systems of the NFV.

Using the top-down approach, the OSS can monitor the end-to-end QoS of the NS and send alerts to

the NFVO when a failure happens. The NFVO alerts the VNFM and/or the VIM, and they take

healing actions if needed. The abovementioned monitoring solutions do not cover all changes needed

30

to be monitored to evaluate the availability of NSs at runtime to adjust the NS accordingly. For

example, these articles do not address changes like NS scaling, resource upgrades, and VLs

characteristics.

3.2.2 Runtime Adaptation of Network Services

To the best of our knowledge, there is no related work in the context of the work in this thesis

addressing the runtime adaptation of NSs to fulfill service availability and continuity requirements.

However, a set of related work addresses the adaptation of NSs to meet performance requirements

in case of degradation at runtime. The MANO itself supports VNF and NS level scaling at runtime

to adjust the number of instances according to the current workload or if it is asked for [10, 9]. The

goal of [59] is to evaluate the end-to-end network delay at runtime by an analytical model and predict

the optimal required resources by a reinforcement machine learning model to reduce the delay to an

acceptable threshold. The work in [60] proposes an architecture for the dynamic provisioning of

QoS-oriented VNFs for IoT systems. This architecture proposes an entity to manage NFV, software-

defined networks, and IoT middleware together. The proposed entity monitors the resource

consumption and the servers’ performance and orders the NFVO and/or the SDN controller to take

the necessary adaptation actions to keep the QoS of the IoT services as expected. Authors in [61]

address the problem of auto-scaling during runtime to meet the required performance of the NS in a

resource-efficient manner. They propose a DL solution (using DNN) to create a classifier to predict

the appropriate scaling level at runtime when there is a change in the traffic load. Each class of the

classifier represents a valid scaling level. To train the DNN, they generate a set of training data, i.e.,

corresponding labels are generated for a random set of input data. In [62], an ML approach is

proposed to determine the optimal number of VNF instances at runtime to fulfill the current

31

workload. This work benefits from supervised ML and proposes a method to generate a dataset to

train the machine. In addition, the approach in [62] determines the optimal placement for VNF

instances to meet the required performance in a cost-efficient manner. Solutions in [59, 60, 61, 62]

are specific to performance degradation compensation at runtime. They do not handle the case of

availability constraints violation which is the goal of the solution proposed in this thesis.

3.3 ETSI NFV Specifications and Reports

ETSI NFV has published a series of specifications/reports, known as the REL series, which

address the reliability and availability of VNFs/NSs and the MANO. NFV-REL 001 lists the

resiliency requirements of VNFs, defines service availability levels, and introduces a fault

correlation and recovery architecture [5]. NFV-REL 002 is a report which introduces a rollback

recovery architecture to support checkpointing at the virtualization level (i.e., virtual machine

checkpointing) [63]. NFV-REL 003 is another report which introduces the different protection

schemes for VNFs like active-active or active-standby redundancy models [7]. NFV-REL 004 is a

report on an active monitoring and failure detection framework for NFV architecture [64]. This

report proposes a framework and procedure for a potential monitoring agent interaction with NFV

components. Another specification is NFV-REL 006, which provides procedures to maintain the

availability of VNF functionality during upgrades [65]. NFV-REL 007 is a report which defines the

responsibilities of MANO functional blocks to support the requirements introduced in NFV-REL

001 and indicates the appropriate protection scheme (i.e., active-active or active-standby) for the

MANO components to improve the MANO availability [66]. Another REL publication is NFV-REL

010 [67]. This report covers the NFV resiliency concerns for network slice design. Also, it provides

the calculations to find the overall availability of redundant VNFs. The other REL publication is

32

NFV-REL 011 [68]. This report introduces multiple use cases for the MANO software modification

while preserving service availability and continuity. The most recently published REL report is

NFV-REL 012 [69]. It introduces some use cases for monitoring and recovery actions for the MANO

failures and overload.

The functional requirements of MANO, including the support for service availability at the

resource level, are introduced in NFV-IFA 010 specification [70]. According to this specification,

an availability requirement may be assigned to an NS, and the MANO should assign appropriate

virtualized resources to the NS constituents to meet the availability expectation. NFV-IFA 010 has

defined the responsibility of each functional block of the MANO to support service availability.

The NFV framework manages the virtualization aspect of VNFs and NSs, and it is unaware of

their functional/application-level characteristics. Therefore, all the abovementioned ETSI NFV

specifications and reports address the availability only at the resource level (e.g., hosting

availability). Configuration parameters like HMR at the VNF application level are not addressed in

these specifications/reports.

33

Chapter 4

4. Design-time Approach

In this chapter, first, we provide quantitative definitions for service disruption and explain the

problem we aim to solve. Then, we present our design-time approach.

4.1 Service Disruption Definitions

As discussed earlier in this thesis, service availability is an important characteristic of NSs,

defined as the fraction of a period that the service is provided [4]. Tenants can express the Required

Availability (RA) in terms of nines for NS functionalities (i.e., at the NS service level). For example,

six nines of RA (i.e., 99.9999%) for an NS functionality means that the overall outage time of the

NS functionality in a year is required not to be more than 31.5 seconds.

Service continuity is also another important characteristic of Telecom NSs. Service continuity

depends on service availability. However, for stateful services, service continuity also depends on

the service disruption caused by failures. As mentioned in Chapter 3, there is no quantitative

definition for service disruption in the current work. Therefore, to enable tenants to express their

acceptable service disruption requirements and NS designers to measure them, we propose the

following definitions:

• Service Disruption Time (SDT): we define the SDT for an NS functionality as the

amount of time for which the service state is lost due to all service outages in a period.

34

Tenants can express their Acceptable SDT (ASDT) for an NS functionality in terms of

seconds (e.g., 31.5 seconds per year, equal to 0.000001% of a year).

• Service Data Disruption (SDD): we define the SDD for an NS functionality as the

maximum amount of data lost due to one failure. In other words, it is the maximum

service data lost during the Time Between a Failure and the Latest committed

Checkpoint (TBFLC). Tenants can express the Acceptable SDD (ASDD) for an NS

functionality in terms of bits (e.g., 1024 b per failure).

4.2 Problem Statement and Analysis

4.2.1 Problem Statement

The design-time approach provides a solution that enhances an NS design by mapping service-

level availability and continuity (or acceptable disruption) requirements (i.e., RA, ASDT, and/or

ASDD) to constraint on low-level configuration parameters of the NS and calculate the number of

required standby instances for each VNF and VL so that the requirements can be met. This solution

also minimizes the cost of the resources while guaranteeing the fulfillment of the service availability

and continuity requirements.

4.2.2 Assumptions

As introduced in Chapter 2, VNFFG indicates the given topology of an, and it contains one or

more NFPs. If the NS provides more than one functionality, different availability and/or acceptable

service disruption requirements may be requested for the different functionalities. We assume that

each NS functionality is provided through a specific NFP of the NS.

35

We also assume availability is always part of the tenant requirements for each NS functionality.

Therefore, a tenant may ask for one of the following three kinds of requirements:

• RA,

• RA together with an ASDD per failure, or

• ASDT for a given period.

It is noteworthy that since the ASDT includes the outage time, the RA is also implied.

In this thesis, VNF/VL failure refers to the simultaneous failure of all active instances of the

VNF/VL (profile), causing an outage for the VNF functionality unless an instance failure is

explicitly mentioned. The outage of a VNF functionality means all serving (active) instances of the

VNF are terminated because of failure, or they are disconnected due to a VL failure (i.e., failure of

all active instances of the VL). An outage of a VNF functionality can cause a service outage for the

NS functionality in which the VNF is involved. In this thesis, we do not consider the case when only

some active instances of a VNF/VL fail together, that is, when the corresponding NS functionality

encounters a service degradation. Similarly, a VNF instance is assumed to be failed when all

(redundant) instances of at least one of its VNFCs or IntVLs fail simultaneously. At the VNF

functionality level, all the other cases are considered service degradation.

4.2.3 Problem Analysis

4.2.3.1 Impacting Factors

NS Scaling may change the number of VNF and/or VL instances and, as a result, alter the

availability of the VNF functionality and/or the VL. Thus, the NS scalability needs to be considered

36

to meet the RA, the ASDT, and/or the ASDD of an NS functionality. In other words, all scaling

levels of the NsDF should meet the requirements.

To meet an RA for an NS functionality, each VNF/VL in each NFP should satisfy a certain

availability. I.e., for each VNF/VL, its instance(s) together should satisfy this Expected Availability

(VnfEA/VlEA). Therefore, based on the requested RA of the NS functionality, an NS designer can

first determine the VnfEA applicable to each VNF functionality. Then, based on the availability of

a VNF instance, if the availability provided for the VNF functionality by the VNF instance(s) does

not satisfy the VnfEA, providing additional redundant VNF instances is a technique suggested by

[4, 7]. For example, for a stateful VNF, to protect a functionality for which N active VNF instances

are needed to serve the workload, an appropriate number of standby instances can guarantee that the

probability of having at least N healthy active instances at any given moment is equal to or greater

than the VnfEA. Similarly, if the availability of VL does not satisfy the VlEA, increasing the

redundancy of VL instances can improve the availability of the VL.

The required number of standby instances and the overall availability of the redundant VNF

instances are calculated using the availability of the VNF instances [44, 46]. Also, the failure rate of

a VNF (with redundant instances) depends on the failure rate of its instances. A VNF instance may

consist of multiple VNFCs and IntVLs and can have internal scaling. The number of instances of

VNFCs and/or IntVLs changes when the VNF instance scales in/out. Therefore, the availability and

failure rate of the composite VNF instance may also change. In addition, the degree of sharing of

physical hosts affects the availability and failure rate of VNFC instances since the availability of a

VNFC instance is derived from the availability of the VNFC application and the availability of the

underlying infrastructure. In turn, this affects the availability and the failure rate of the functionality

37

provided by the VNF instance. Thus, we need a solution to determine the availability and failure rate

of a VNF instance, which takes into account the impact of internal redundancy, elasticity, and

placement policies of the constituents of the VNF instance.

An adequate redundancy for a VNF cannot guarantee by itself that the availability of the VNF

functionality is equal to or greater than the VnfEA. To ensure a VnfEA, the overall outage time of

the VNF functionality should be kept below the acceptable outage time. For example, for a VNF

functionality provided by one active instance, if this instance fails, the failure detection and recovery

times determine the resulting outage time of the VNF functionality for one failure. Therefore, if the

detection and the recovery times together, for all the failures of a VNF with a known failure rate, are

longer than the acceptable outage time, the availability of the VNF functionality is less than the

VnfEA even if there are enough standby instances.

The availability metrics such as failure detection and recovery times of VNFs depend on and

are impacted by configuration parameters such as the HMR and the Failover Time (FoT). Whenever

a failover mechanism protects a functionality of a VNF, the setting of the failover configuration

parameters affects the availability of the VNF functionality and, consequently, affects the

availability of the corresponding NS functionality. So, to meet the RA for an NS functionality, in

addition to redundancy, it is also important to determine the appropriate values for these parameters,

provided they are configurable. For example, let us assume an NS functionality provided by one

stateful VNF with two instances. Figure 4-1 depicts this example. The service data rate of the NS

functionality is 60 Mbps. The VNF of this NS uses 1+1 redundancy to protect its VNF functionality.

To detect the failure of VNF instances, their health is monitored by health-check messages. Let also

assume that the active instance checkpoints its state periodically to an external Database (DB) to

38

enable the redundant instance to recover the VNF functionality from the last stored state. The state

of the active instance changes continuously. The active instance checkpoints its state every 80 ms,

and a health-check message is sent every 40 ms. In the beginning, 𝑉𝑁𝐹𝑖𝑛𝑠1 is active and 𝑉𝑁𝐹𝑖𝑛𝑠2 is

standby. 𝑉𝑁𝐹𝑖𝑛𝑠1 fails at 130. So, the next health-check message is not sent at 160 and 𝑉𝑁𝐹𝑖𝑛𝑠2

starts preparing to become active. It takes 20 ms for 𝑉𝑁𝐹𝑖𝑛𝑠2 to recover the state from the DB and

become active. Thus, the service outage (i.e., the outage of the NS functionality) is 50 ms. However,

the state recovered was checkpointed at 80, resulting in an SDT of 100 ms. In addition, the SDD,

that is, the service data lost during TBFLC is 3 Mb (i.e., 50 ms * 60 Mbps).

Figure 4-1: Example of outage time and service disruption for an NS

As shown in this example:

• HMR affects the service outage (and the service availability)

• HMR and TBFLC affect the SDT (and the service continuity)

39

• Service data rate and TBFLC affect the SDD (and the service continuity)

Therefore, if ASDT or ASDD is requested for an NS functionality, it is necessary to determine

the TBFLC of the VNFs. TBFLC depends on the checkpointing method and the Checkpointing

Interval (CpI) [71, 72] if the CpI is configurable for the VNF.

The TBFLC also depends on the network delay since the network delay affects the transmission

time of the checkpoint data from the active VNF instance to the DB (or the peer VNF instance). We

call this delay the Checkpointing Network Delay (CND). In addition, we assume that the average

checkpoint preparation and commitment times are known for each VNF functionality.

4.2.3.2 Cost-efficiency and Configuration Limitations

The faster we detect failures, the faster we can react to them to reduce the overall outage time

and the SDT. We can detect failures faster if we increase the HMR. If configurable, decreasing the

CND and/or CpI can reduce the SDT and SDD. For example, if there are multiple networks to choose

from, by selecting a network that provides lower CND, i.e., a network with lower latency and/or

higher bandwidth, we can improve the TBFLC. However, increasing the HMR can burden the VNF

with executing the monitoring logic and consequently decrease its performance [15]. In addition,

higher HMR imposes higher networking overhead as well. Selecting a lower value for a configurable

CpI to have more frequent state checkpointing has similar effects [71]. The need for guaranteeing a

certain performance of the VNF instance puts constraints on the maximum acceptable HMR and, for

a configurable CpI, the minimum CpI value. Thus, the NS designer must choose the HMR and CpI

configuration values within these boundaries. In addition, increasing the HMR, decreasing the CpI,

and selecting a network option with less CND increase the networking cost if we define the

40

networking cost based on the networking overhead and/or the network speed. So, there is a trade-off

between improving service availability, SDT, or SDD, and the networking cost. All these factors

should be considered for an appropriate set of configuration values.

To meet the service availability and continuity requirements, we may need to introduce

redundancy to ensure that when a VNF fails, there is a VNF instance to failover to. Having more

redundant instances (or standbys) can improve the protection of the VNF functionality. However, at

the same time, they increase the cost of computing resources. Thus, there is another trade-off

between improving the protection of the VNF functionality and the computing cost, which needs to

be considered for a potential solution.

4.2.4 Formal Definition of the Problem

For each NS functionality, if 𝑇𝐷𝑇𝑁𝐹𝑃 denotes the total downtime of the NS functionality in a

period of 𝑡, 𝑆𝐷𝐷𝑁𝐹𝑃 denotes the service data disruption of the NS functionality due to a failure,

𝑆𝐷𝑇𝑁𝐹𝑃 denotes the service disruption time of the NS functionality in a period of 𝑡, 𝐶𝑁(𝑁𝐹𝑃)

denotes the networking cost of the NFP, and 𝐶𝐶(𝑁𝑠𝐷𝐹) denotes the computing cost of the whole

NS, then:

• If the requirement for the NFP is RA, the proposed solution determines the optimal

configuration values which satisfy 𝑇𝐷𝑇𝑁𝐹𝑃 ≤ 𝑡 ∗ (1 − 𝑅𝐴) for all NS scaling levels and

minimize 𝐶𝑁(𝑁𝐹𝑃).

• If the requirement for the NFP is RA and ASDD, the proposed solution determines the

optimal configuration values which satisfy 𝑇𝐷𝑇𝑁𝐹𝑃 ≤ 𝑡 ∗ (1 − 𝑅𝐴) and 𝑆𝐷𝐷𝑁𝐹𝑃 ≤

𝐴𝑆𝐷𝐷 for all NS scaling levels and minimize 𝐶𝑁(𝑁𝐹𝑃).

41

• If the requirement for the NFP is ASDT, the proposed solution determines the optimal

configuration values which satisfy 𝑆𝐷𝑇𝑁𝐹𝑃 ≤ 𝐴𝑆𝐷𝑇 for all scaling levels and minimize

𝐶𝑁(𝑁𝐹𝑃).

In addition, for all these three cases, our solution determines the required number of standby

instances for all VNFs and VLs at all scaling levels of the NS and minimizes 𝐶𝐶(𝑁𝑠𝐷𝐹).

4.3 Overall View of the Design-time Approach

The design-time approach aims to map an NS's availability and continuity requirements to

configuration parameters and determine the required redundancy for VNFs and VLs to adjust the

input NsDF. Figure 4-2 shows the overall picture of the design-time approach. This approach

includes methods to calculate:

• Availability and failure rate of VNF instances

• Availability, outage time, and service disruption of VNFs

• Availability and redundancy of VLs

• Service outage, service disruption, and resource cost of NFPs

These methods feed the main method of the approach, as shown in Figure 4-2, which maps the

RA, ASDT, and/or ASDD requirements to low-level configuration parameters and generates the

outputs shown in this figure.

42

Figure 4-2: Overall picture of the design-time approach

An NS design may start by creating an NsDF that provides the requested functionalities but

may or may not meet all the non-functional requirements as proposed in [73]. Our approach takes as

input an NsDF meeting the functional and some non-functional requirements like capacity. But it

may not satisfy the tenant’s availability and service continuity requirements. The correspondence

between NS functionalities and NFPs is another input required for our approach if the tenant requests

different requirements for different NS functionalities. In addition, if ASDD is requested for an NS

functionality, the maximum data rate of the corresponding NFP is needed.

Another set of input information of the approach is the infrastructure characteristics. The

approach needs the knowledge of availability and failure rate of hosts since the availability

characteristics of a host affect the availability of the guest VNFCs. Moreover, the cost of each

hosting type is needed to find the optimal configuration in terms of the computing cost. In addition,

the different networking options and their latency and bandwidth should be known since the CND

43

depends on the network latency between the sender (i.e., active VNF) and receiver (i.e., a DB or a

peer VNF). Finally, the maximum possible availability of VLs that the infrastructure provider can

provide (i.e., the NFVI provider) needed to be given.

The approach also requires some information about VNFs. This includes the availability and

failure rate of VNFC applications, VNF scaling levels and anti-affinity policies (part of the VnfDF),

the upper boundary for HMR of VNFs, the lower boundary for CpI of VNFs, and the checkpointing

method and checkpointing characteristics (e.g., the average size of a checkpoint message) that each

VNF supports. The VNF vendor can usually provide all this information.

To satisfy an RA or ASDT, the design-time approach determines constraints on VNFs health-

check rate and VLs availability, indicates the required number of redundancies for VNFs and VLs,

and selects the hosting type for each VNF to constrain the hosting availability and failure rate. To

satisfy an ASDT or ASDD, methods of this approach determine the constraint on the VNFs

checkpointing interval and select the networking option to constrain the checkpointing network

delay.

In the following sub-sections of this chapter, we describe the proposed methods in detail.

4.4 VNF Instance Availability and Failure Rate

4.4.1 VNF Instance Availability

A VNF instance is available if at least one instance of each VNFC and IntVL is available.

Therefore, if 𝐴𝑉𝑁𝐹𝐶 denotes the availability of a VNFC (i.e., at least one instance of the VNFC is

44

available) and 𝐴𝐼𝑛𝑡𝑉𝐿 denotes the availability of an IntVL (i.e., at least one instance of the IntVL is

available), the availability of a VNF instance (𝐴𝑣𝑛𝑓) with 𝑛 VNFCs and 𝑚 IntVLs is:

 𝐴𝑣𝑛𝑓 = 𝛱𝑖=1
𝑛 𝐴𝑉𝑁𝐹𝐶𝑖 ∗ 𝛱𝑗=1

𝑚 𝐴𝐼𝑛𝑡𝑉𝐿𝑗 (3)

The 𝐴𝑉𝑁𝐹𝐶 and the 𝐴𝐼𝑛𝑡𝑉𝐿 depend on the number of their instances and their placement, which

are different at the different scaling levels. Therefore, we first discuss how these factors affect the

availability of the VNFC and the IntVL. Then, we propose a method of calculating the availability

of VNF instances.

4.4.1.1 Availability of VNFCs

The 𝐴𝑉𝑁𝐹𝐶 is derived from the availability of the VNFC instances (𝐴𝑣𝑛𝑓𝑐). The 𝐴𝑣𝑛𝑓𝑐 depends

on the availability of the application (𝐴𝑣𝑛𝑓𝑐−𝑎𝑝𝑝) and the availability of the underlying infrastructure.

With respect to the latter, if we assume one layer of virtualization (i.e., a bare-metal hypervisor), the

𝐴𝑣𝑛𝑓𝑐 depends on the availability of the virtual machine (𝐴𝑉𝑀), the availability of the underlying

hypervisor (𝐴𝐻𝑉), and the availability of the physical host (𝐴𝑃𝐻).

The 𝐴𝑉𝑁𝐹𝐶 also depends on the placement of its instances. For example, assuming a VNFC with

two instances, we have two cases of placement: in one, the VNFC instances share the same physical

host (Figure 4-3-a); in the other, each VNFC instance is placed on a different physical host (Figure

4-3-b).

45

Figure 4-3: Placement of two instances of a VNFC

The availability of the VNFC for this example in case of Figure 4-3-a is:

 𝐴𝑉𝑁𝐹𝐶 = 𝐴𝑃𝐻 ∗ 𝐴𝐻𝑉 ∗ (1 − (1 − 𝐴𝑉𝑀 ∗ 𝐴𝑣𝑛𝑓𝑐−𝑎𝑝𝑝)
2
) (4)

In other words, the VNFC is available if the physical host (PH) and the hypervisor (HV) are

both available and at least one of the VNFC application (vnfc app) instances and its corresponding

virtual machine (VM) are available. In equation (4), we assume that the VMs are of the same

type/flavor and have the same availability.

When each VNFC instance is placed on a different PH (Figure 4-3-b), the VNFC is available if

at least one of the VNFC application instances and its corresponding VM, HV, and PH are available.

Therefore, 𝐴𝑉𝑁𝐹𝐶 will be:

 𝐴𝑉𝑁𝐹𝐶 = 1 − (1 − 𝐴𝑃𝐻 ∗ 𝐴𝐻𝑉 ∗ 𝐴𝑉𝑀 ∗ 𝐴𝑣𝑛𝑓𝑐−𝑎𝑝𝑝)
2

 (5)

In equation (5), we assume that the PHs, HVs, and VMs are of the same type/flavor and have

the same availability.

46

Thus, to calculate the availability of the VNFCs, we need to consider the placement of its

instances, which is guided by the applicable anti-affinity rules. If no anti-affinity rule is applied to a

VNFC, in the worst case, all the instances can be placed on the same host. The availability of a

VNFC with 𝑛 instances in the worst-case is calculated according to equation (6) which is a

generalization of equation (4):

 𝐴𝑉𝑁𝐹𝐶 = 𝐴𝑃𝐻 ∗ 𝐴𝐻𝑉 ∗ (1 − (1 − 𝐴𝑉𝑀 ∗ 𝐴𝑣𝑛𝑓𝑐−𝐴𝑝𝑝)
𝑛
) (6)

In the case of an anti-affinity rule, in the best case, all VNFC instances are placed on different

hosts. In this case, the availability of the VNFC with 𝑛 instances is a generalization of equation (5),

as shown in equation (7):

 𝐴𝑉𝑁𝐹𝐶 = 1 − (1 − 𝐴𝑃𝐻 ∗ 𝐴𝐻𝑉 ∗ 𝐴𝑉𝑀 ∗ 𝐴𝑣𝑛𝑓𝑐−𝐴𝑝𝑝)
𝑛

 (7)

There are also cases where some (more than one but not all) instances of a VNFC share the

same host. An anti-affinity rule may allow a degree of host sharing (i.e., 𝑑). In addition, there may

be a boundary (i.e., 𝑏) for the number of collocated VMs on a host due to the capacity limitations

of hosts, even if there is no anti-affinity rule. To cover these different cases, we can define 𝑘 to

denote the effective constraint for the number of VNFC instances that can share a host. The value of

𝑘 for the different cases is:

𝑘 =

{

𝑛, if (no 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑏 ≥ 𝑛)

𝑏, if (no 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑏 < 𝑛)
1, if (an 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑑 is not present)

𝑏, if (an 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑑 ≥ 𝑏) 𝑎𝑛𝑑 (𝑏 < 𝑛)

𝑛, if (an 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑑 ≥ 𝑏) 𝑎𝑛𝑑 (𝑏 ≥ 𝑛)

𝑑, if (an 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑑 < 𝑏) and (𝑑 < 𝑛)

𝑛, if (an 𝑎𝑛𝑡𝑖_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 rule) and (𝑑 < 𝑏) and (𝑑 ≥ 𝑛)

(8)

47

In the worst case, the number of VNFC instances that can share the same host is 𝑘. Therefore,

we will have 𝑔 = ⌈𝑛 𝑘⁄ ⌉ groups of VNFC instances where each group is placed on a separate host.

If we assume that the instances are distributed evenly (e.g., in a round-robin manner) among 𝑔 hosts,

𝑛 − 𝑔 ∗ ⌊𝑛 𝑔⁄ ⌋ groups will have ⌈𝑛 𝑔⁄ ⌉ instances and 𝑔 ∗ (1 + ⌊𝑛 𝑔⁄ ⌋) − 𝑛 groups will have ⌊𝑛 𝑔⁄ ⌋

instances. Therefore, the availability of the VNFC is:

𝐴𝑉𝑁𝐹𝐶 = 1 − (1 − 𝐴𝑃𝐻 ∗ 𝐴𝐻𝑉 ∗ (1 − (1 − 𝐴𝑉𝑀 ∗ 𝐴𝑣𝑛𝑓𝑐−𝐴𝑝𝑝)
⌈𝑛 𝑔⁄ ⌉

))
𝑛−𝑔∗⌊𝑛 𝑔⁄ ⌋

 ∗

(1 − 𝐴𝑃𝐻 ∗ 𝐴𝐻𝑉 ∗ (1 − (1 − 𝐴𝑉𝑀 ∗ 𝐴𝑣𝑛𝑓𝑐−𝐴𝑝𝑝)
⌊𝑛 𝑔⁄ ⌋

))

𝑔∗(1+⌊𝑛 𝑔⁄ ⌋)−𝑛

(9)

In other words, the VNFC is available if at least one VNFC instance (i.e., VNFC application

and the VM) of one group and its corresponding HV and PH are available. Equation (9) supports all

cases of 𝑘 of equation (8) and generalizes Equations (6) and (7) as well (i.e., 𝑘 = 𝑛 and 𝑘 = 1).

4.4.1.2 Availability of Internal VLs

Like VNFCs, an IntVL may have more than one instance. The redundant instances may be used

for load balancing or high availability. Redundant instances of an IntVL connect to the VNFC

instances using the same virtual IP address. The virtual IP address's functionality (i.e., load balancing

or high availability) determines the usage of the connected IntVL instances [10]. Whether the

redundant instances of an IntVL are used for load balancing or high availability, the IntVL is

assumed to fail if all active instances fail simultaneously. A VnfDF may include anti-affinity rules

for IntVLs [10]. Assuming that an IntVL instance is an overlay network on top of the physical

network (no nested overlay networks), the availability of one IntVL instance is equal to the

48

availability of the network elements (i.e., physical links and nodes) that create the virtual link [74].

If no anti-affinity rule is applied to an IntVL, in the worst case, the availability of its instances may

not be independent. In fact, in the worst case, all instances of an IntVL can share partially or

completely the same physical network, and when one IntVL instance fails due to a failure at the

physical network layer, all instances may fail. Thus, in the worst case, where all redundant instances

of an IntVL share the same physical network, the availability of the IntVL (𝐴𝐼𝑛𝑡𝑉𝐿) is equal to the

availability of one of its instances (𝐴𝑖𝑛𝑡𝑣𝑙).

 𝐴𝐼𝑛𝑡𝑉𝐿 = 𝐴𝑖𝑛𝑡𝑣𝑙 (10)

If an anti-affinity rule is defined for an IntVL, the failures of its different instances are

independent since they do not share the same physical network. Therefore, for an IntVL with 𝑛

(redundant) instances, we have:

 𝐴𝐼𝑛𝑡𝑉𝐿 = 1 − (1 − 𝐴𝑖𝑛𝑡𝑣𝑙)
𝑛 (11)

4.4.1.3 A Method for Calculating the Availability of a VNF Instance

Equations (9) and (11) show that the availability of a VNF instance varies with the number of

instances, thus, according to the VNF scaling levels. Therefore, as the availability of a VNF instance,

we need to consider the lowest availability (𝐴𝑣𝑛𝑓−𝑚𝑖𝑛) among all scaling levels, which then can be

guaranteed. We propose the following method to determine the availability of a given VNF instance

deployed on a given infrastructure.

49

Method 1: VNF instance availability calculation method

Step 1: Set 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛 = 1

Step 2: For each VNF scaling level, perform steps 2-1 to 2-4

Step 2-1: Calculate the availability of each VNFC for this scaling level, using equation (9)

Step 2-2: Calculate the availability of each IntVL for this scaling level

• If no anti-affinity rule applies, use equation (10)

• Otherwise, use equation (11)

Step 2-3: Calculate the availability of the VNF instance (𝐴𝑣𝑛𝑓), using equation (3).

Step 2-4: If 𝐴𝑣𝑛𝑓 for this scaling level is lower than 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛, set 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛 = 𝐴𝑣𝑛𝑓

In Method 1, the final value of 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛 represents the guaranteed minimum availability of the

VNF instance.

4.4.2 VNF Instance Failure Rate

A VNF instance fails if all (redundant) instances of at least one of its VNFCs or IntVLs have

failed at the same time. Therefore, the failure rate of a VNF instance (𝜆𝑣𝑛𝑓) with 𝑛 VNFCs and 𝑚

IntVLs is the summation of the failure rates of its VNFCs (𝜆𝑉𝑁𝐹𝐶) and IntVLs (𝜆𝐼𝑛𝑡𝑉𝐿), as shown in

equation (10).

𝜆𝑣𝑛𝑓 =∑𝜆𝑉𝑁𝐹𝐶𝑖

𝑛

𝑖=1

+∑𝜆𝐼𝑛𝑡𝑉𝐿𝑗

𝑚

𝑗=1

 (12)

Like the availability of VNFCs and IntVLs, the 𝜆𝑉𝑁𝐹𝐶 and 𝜆𝐼𝑛𝑡𝑉𝐿 for each VNFC and IntVL

depend on the number of their instances at different scaling levels and their placement as determined

by their anti-affinity rules. Thus, we explore the factors that affect the VNFC and IntVL failure rates.

Then, we propose a method to calculate the guaranteed maximum for the failure rate of a VNF

instance considering all scaling levels.

50

4.4.2.1 Failure Rate of VNFCs

The failure rate of a VNFC depends on the failure rate of its instances, which in turn depends

on the failure rates of the VNFC application (𝜆𝑣𝑛𝑓𝑐−𝑎𝑝𝑝), the VM (𝜆𝑉𝑀), the underlying hypervisor

(𝜆𝐻𝑉), and the physical host (𝜆𝑃𝐻). The placement of VNFC instances also affects the failure rate of

the VNFC. For example, let us consider the two cases presented in Figure 4-3 and assume that the

failure rate of the VNFC application instances, the VMs, and the hypervisors is zero. Therefore, the

failure rate of the VNFC depends only on the failure rate of the physical host(s). So, when both

instances are placed on the same host (Figure 4-3-a), the VNFC fails if the physical host fails.

However, when the two instances are hosted on different physical hosts (Figure 4-3-b), the VNFC

fails only if both physical hosts fail simultaneously – which is less likely than the former case.

As mentioned earlier, if the instances of a VNFC are not anti-affine, in the worst case, all of

them may share the same host. Also, there may be a boundary (i.e., 𝑏) for the number of collocated

VMs on a host due to the capacity limitations of the hosts. In the case of anti-affinity, the instances

do not share physical hosts, or the degree of host sharing is constrained (i.e., 𝑑).

To calculate the failure rate of a VNFC based on the failure rate of the VNFC application, VM,

HV, and PH layers, and the placement of instances, we can use the relationship between reliability

(𝑅) and failure rate (𝜆). The reliability of a system (with exponential distribution function) is defined

as the probability of having a failure-free service during a given period [75]. The reliability of a

system (𝑅𝑆𝑦𝑠) for a period of 𝑡 is calculated using equation (13) [76].

𝑅𝑆𝑦𝑠 = e−𝜆𝑠𝑦𝑠∗𝑡 (13)

51

So, we can first calculate the reliability of a VNFC based on the reliability of its components at

the different layers and then calculate the failure rate of the VNFC using its reliability.

Fault Tree Diagrams (FTD) can be used to calculate the reliability of a software system with

multiple components [77]. Different algorithms/tools have been proposed in the literature to analyze

FTDs [77]. An FTD can be constructed from two basic gates, which connect input events (i.e.,

failures) to output events [77]:

• AND gate: output event happens if the input events occur together

• OR gate: output event happens if at least one input event occurs

For example, Figure 4-4-a depicts a system with two components (A and B) that fails if both

components fail simultaneously. Figure 4-4-b depicts a system that fails if any of its two components

fail. In this picture, 𝐹𝐴 denotes the failure event of component A, and 𝐹𝐵 denotes the failure event of

component B.

Figure 4-4: FTD of a system with two components

The reliability of a system with the FTD of Figure 4-4-a is calculated using the following

equation [76]:

52

 𝑅𝑆𝑦𝑠 = 𝑅𝐴 + 𝑅𝐵 − 𝑅𝐴 ∗ 𝑅𝐵 (14)

If 𝑛 > 2 events are connected to an AND gate, we can restructure the FTD, using 𝑛 − 1 number

of AND gates and calculate the reliability of two components/subsystems with each gate. For

example, if a system has three components (A, B, and C), it fails if all components fail at the same

time, as depicted in Figure 4-5-a. This FTD can be reconstructed with two gates, as shown in Figure

4-5-b. If we assume that the reliability of these three components is the same (𝑅𝑐𝑚𝑝 = 𝑅𝐴 = 𝑅𝐵 =

𝑅𝐶), applying equation (14) to the FTD of Figure 4-5-b, the reliability of the system will be:

 𝑅𝑆𝑦𝑠 = 3𝑅𝑐𝑚𝑝 − 3𝑅𝑐𝑚𝑝
2 + 𝑅𝑐𝑚𝑝

3 (15)

Figure 4-5: FTD of a system with three components which fails if all fail at the same time

Equation (15) can be rewritten as equation (16) and generalized to equation (17) for a system

with 𝑛 components that fails if all components fail at the same time.

𝑅𝑆𝑦𝑠 = (

3

1
)𝑅𝑐𝑚𝑝

1 − (
3

2
)𝑅𝑐𝑚𝑝

2 + (
3

3
)𝑅𝑐𝑚𝑝

3 (16)

53

𝑅𝑆𝑦𝑠 =∑ (−1)𝑖−1 ∗ (

𝑛

𝑖
) ∗ 𝑅𝑐𝑚𝑝

𝑖
𝑛

𝑖=1
 (17)

For a system with FTD of Figure 4-4-b, the reliability can be calculated using the following

equation [76]:

 𝑅𝑆𝑦𝑠 = 𝑅𝐴 ∗ 𝑅𝐵 (18)

If 𝑛 > 2 events are connected to an OR gate, we can reconstruct the FTD, using 𝑛 − 1 number

of OR gates and calculate the reliability of two components/subsystems with each gate. For example,

if a system with three components fails, if at least one component fails, as depicted in Figure 4-6-a,

the FTD can be reconstructed with two OR gates, as shown in Figure 4-6-b.

Figure 4-6: FTD of a system with three components that fails if at least one of them fails

Applying equation (18) to the FTD of Figure 4-6-b, the reliability of the system will be:

 𝑅𝑆𝑦𝑠 = (𝑅𝐴 ∗ 𝑅𝐵) ∗ 𝑅𝐶 (19)

To generalize equation (19), if a system with 𝑛 components fails due to one component failure,

the system reliability is the product of the reliability of its components, as shown in equation (20):

54

 𝑅𝑆𝑦𝑠 = 𝛱𝑖=1
𝑛 𝑅𝑐𝑚𝑝𝑖

 (20)

The FTD of the example in Figure 4-3-b is shown in Figure 4-7.

Figure 4-7: FDT of the VNFC in Figure 4-3-b

Using equations (17) and (20), the reliability of this VNFC is:

𝑅𝑉𝑁𝐹𝐶 =∑ (−1)𝑖−1 ∗ (
2

𝑖
) ∗ (𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗ 𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝑎𝑝𝑝)

𝑖
2

𝑖=1

 (21)

In general, for a VNFC with 𝑛 anti-affine instances without any degree of host sharing, the

reliability will be:

𝑅𝑉𝑁𝐹𝐶 =∑ (−1)𝑖−1 ∗ (

𝑛

𝑖
) ∗ (𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗ 𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝑎𝑝𝑝)

𝑖𝑛

𝑖=1
 (22)

The FTD of the VNFC presented in Figure 4-3-a is shown in Figure 4-8. Using equations (17)

and (20), the reliability of this VNFC is:

𝑅𝑉𝑁𝐹𝐶 = 𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗∑ (−1)𝑖−1 ∗ (
2

𝑖
) ∗ (𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝐴𝑝𝑝)

𝑖
2

𝑖=1

 (23)

55

Figure 4-8: FDT of the VNFC in Figure 4-3-a

Therefore, for a VNFC with 𝑛 instances that share the same host, the reliability is:

𝑅𝑉𝑁𝐹𝐶 = 𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗∑ (−1)𝑖−1 ∗ (

𝑛

𝑖
) ∗ (𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝐴𝑝𝑝)

𝑖𝑛

𝑖=1
 (24)

As mentioned earlier, if an anti-affinity rule allows a degree of host sharing (i.e., 𝑑) or if there

is a boundary (i.e., 𝑏) for the number of collocated VMs on a host, some degree of host sharing (i.e.,

𝑘) may be possible between the instances of the VNFC. We have shown that the value of 𝑘 can be

found using equation (8). Also, in the worst case, there are 𝑔 = ⌈𝑛 𝑘⁄ ⌉ groups of VNFC instances,

𝑛 − 𝑔 ∗ ⌊𝑛 𝑔⁄ ⌋ groups with ⌈𝑛 𝑔⁄ ⌉ instances and 𝑔 ∗ (1 + ⌊𝑛 𝑔⁄ ⌋) − 𝑛 groups with ⌊𝑛 𝑔⁄ ⌋ instances for

even/round-robin placement. Therefore, the reliability of a VNFC, in general, is:

56

𝑅𝑉𝑁𝐹𝐶 = (∑(−1)𝑧−1 ∗ (
𝑛 − 𝑔 ∗ ⌊𝑛 𝑔⁄ ⌋

𝑧
) ∗ (𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗∑ (−1)𝑖−1 ∗ (

⌈𝑛 𝑔⁄ ⌉

𝑖
) ∗ (𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝑝𝑝)

𝑖
⌈𝑛 𝑔⁄ ⌉

𝑖=1

)

𝑧

)

𝑛−𝑔∗⌊𝑛 𝑔⁄ ⌋

𝑧=1

+ (∑ (−1)𝑦−1 ∗ (
𝑔 ∗ (1 + ⌊𝑛 𝑔⁄ ⌋) − 𝑛

𝑦
) ∗ (𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗∑ (−1)𝑖−1 ∗ (

⌊𝑛 𝑔⁄ ⌋

𝑖
) ∗ (𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝑝𝑝)

𝑖
⌊𝑛 𝑔⁄ ⌋

𝑖=1

)

𝑦

)

𝑔∗(1+⌊𝑛 𝑔⁄ ⌋)−𝑛

𝑦=1

− (∑(−1)𝑧−1 ∗ (
𝑛 − 𝑔 ∗ ⌊𝑛 𝑔⁄ ⌋

𝑧
) ∗ (𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗∑ (−1)𝑖−1 ∗ (

⌈𝑛 𝑔⁄ ⌉

𝑖
) ∗ (𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝑝𝑝)

𝑖
⌈𝑛 𝑔⁄ ⌉

𝑖=1

)

𝑧

)

𝑛−𝑔∗⌊𝑛 𝑔⁄ ⌋

𝑧=1

∗ (∑ (−1)𝑦−1 ∗ (
𝑔 ∗ (1 + ⌊𝑛 𝑔⁄ ⌋) − 𝑛

𝑦
) ∗ (𝑅𝑃𝐻 ∗ 𝑅𝐻𝑉 ∗∑ (−1)𝑖−1 ∗ (

⌊𝑛 𝑔⁄ ⌋

𝑖
) ∗ (𝑅𝑉𝑀 ∗ 𝑅𝑣𝑛𝑓𝑐−𝑝𝑝)

𝑖
⌊𝑛 𝑔⁄ ⌋

𝑖=1

)

𝑦

)

𝑔∗(1+⌊𝑛 𝑔⁄ ⌋)−𝑛

𝑦=1

(25)

Equation (25) generalizes all the previously discussed cases for calculating the reliability of a

VNFC (𝑅𝑉𝑁𝐹𝐶). Using Equation (13) and (25), we can calculate the VNFC failure rate (𝜆𝑉𝑁𝐹𝐶),

which is:

𝜆𝑉𝑁𝐹𝐶 = −

ln𝑅𝑉𝑁𝐹𝐶
𝑡

 (26)

4.4.2.2 Failure Rate of Internal VLs

As mentioned earlier, an IntVL is assumed to fail if all its instances fail simultaneously. Like in

the case of the calculation of the failure rate of VNFCs, the failure rate of IntVLs can be calculated

based on their reliability. Assuming that an IntVL instance is an overlay network on top of the

physical network (not nested overlay networks), the reliability of one IntVL instance is equal to the

57

reliability of its undelaying physical network (i.e., physical links and nodes). Therefore, if no anti-

affinity rule is applied to an IntVL, in the worst case, any physical layer failure causing a failure for

an IntVL instance may lead to the failure of all IntVL instances that are sharing partially or

completely the same physical network. Thus, in the worst case, the reliability of the IntVL (𝑅𝐼𝑛𝑡𝑉𝐿)

is equal to the reliability of one of its instances (𝑅𝑖𝑛𝑡𝑣𝑙).

𝑅𝐼𝑛𝑡𝑉𝐿 = 𝑅𝑖𝑛𝑡𝑣𝑙 (27)

If an anti-affinity rule is defined for an IntVL, the reliability of its instances is independent.

Therefore, for an IntVL with 𝑛 redundant instances:

𝑅𝐼𝑛𝑡𝑉𝐿 =∑ (−1)𝑖−1 ∗ (

𝑛

𝑖
) ∗ 𝑅𝑖𝑛𝑡𝑣𝑙

𝑖
𝑛

𝑖=1

 (28)

In equations (27) and (28), we assume the same reliability for all instances of the IntVL.

Therefore, the failure rate of an IntVL (𝜆𝐼𝑛𝑡𝑉𝐿) is calculated as follows:

𝜆𝐼𝑛𝑡𝑉𝐿 = −

ln𝑅𝐼𝑛𝑡𝑉𝐿
𝑡

 (29)

4.4.2.3 A Method for Calculating the Failure Rate of a VNF Instance

The failure rate of a VNF instance at one scaling level can be calculated using equations (12),

(26), and (29). However, the number of VNFC and/or IntVL instances changes for the different VNF

scaling levels. As a result, the reliability of the VNF instance changes according to the VNF scaling.

Therefore, we define the failure rate of a VNF instance (𝜆𝑣𝑛𝑓−𝑚𝑎𝑥) as the maximum among the

failure rates of all its scaling levels, which then can be guaranteed.

58

We propose the following method to determine the failure rate of a given VNF instance. We

assume the reliability or failure rate of VNFC applications, VMs, HV, PH, and IntVLs are given.

Method 2: VNF instance failure rate calculation method

Step 1: Set 𝜆𝑣𝑛𝑓−𝑚𝑎𝑥 = 0

Step 2: For each VNF scaling level, perform steps 2-1 to 2-6

Step 2-1: Calculate the reliability of each VNFC for this scaling level using equation (25)

Step 2-2: Calculate the failure rate of each VNFC for this scaling level using equation (26)

Step 2-3: Calculate the reliability of each IntVL for this scaling level

• If no anti-affinity rule is applied, use equation (27)

• Otherwise, use equation (28)

Step 2-4: Calculate the failure rate of each IntVL for this scaling level using equation (29)

Step 2-5: Calculate the failure rate of the VNF instance (𝜆𝑣𝑛𝑓) for this scaling level using

equation (12)

Step 2-6: If 𝜆𝑣𝑛𝑓 for this scaling level is higher than 𝜆𝑣𝑛𝑓−𝑚𝑎𝑥, set 𝜆𝑣𝑛𝑓−𝑚𝑎𝑥 = 𝜆𝑣𝑛𝑓

In Method 2, the final value of 𝜆𝑣𝑛𝑓−𝑚𝑎𝑥 represents the guaranteed maximum failure rate of the

VNF instance.

4.5 VNF Availability, Outage Time, and Service Disruption

4.5.1 VNF Availability

The guaranteed minimum availability of a VNF instance (𝐴𝑣𝑛𝑓−𝑚𝑖𝑛) on a given host is

calculated using Method 1 (see Sub-Section 4.4.1.3). The availability of a VNF is derived from the

availability of its instances. Assuming a VNF with three active instances (i.e., N=3) and one standby

instance (i.e., M=1), where the availability of all instances is the same (i.e., all the instances use the

same hosting type):

 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛1 = 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛2 = 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛3 = 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛4 = 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛 (30)

The availability goal is met if no more than one instance fails for this VNF. As a result, the

availability of this VNF is:

59

𝐴𝑉𝑁𝐹 = (𝐴𝑣𝑛𝑓1 ∗ 𝐴𝑣𝑛𝑓2 ∗ 𝐴𝑣𝑛𝑓3 ∗ (1 − 𝐴𝑣𝑛𝑓4)) +

(𝐴𝑣𝑛𝑓1 ∗ 𝐴𝑣𝑛𝑓2 ∗ (1 − 𝐴𝑣𝑛𝑓3) ∗ 𝐴𝑣𝑛𝑓4) + (𝐴𝑣𝑛𝑓1 ∗ (1 − 𝐴𝑣𝑛𝑓2) ∗ 𝐴𝑣𝑛𝑓3 ∗ 𝐴𝑣𝑛𝑓4) +

((1 − 𝐴𝑣𝑛𝑓1) ∗ 𝐴𝑣𝑛𝑓2 ∗ 𝐴𝑣𝑛𝑓3 ∗ 𝐴𝑣𝑛𝑓4) + (𝐴𝑣𝑛𝑓1 ∗ 𝐴𝑣𝑛𝑓2 ∗ 𝐴𝑣𝑛𝑓3 ∗ 𝐴𝑣𝑛𝑓4)

(31)

Therefore, considering equation (30), 𝐴𝑉𝑁𝐹 is:

𝐴𝑉𝑁𝐹 = 4 ∗ 𝐴𝑣𝑛𝑓

3 ∗ (1 − 𝐴𝑣𝑛𝑓) + 𝐴𝑣𝑛𝑓
4 (32)

Equation (32) can be re-written as:

𝐴𝑉𝑁𝐹 = (

4

3
)𝐴𝑣𝑛𝑓

3 ∗ (1 − 𝐴𝑣𝑛𝑓)
1
+ (

4

4
)𝐴𝑣𝑛𝑓

4 ∗ (1 − 𝐴𝑣𝑛𝑓)
0
 (33)

. We can generalize equation (33) as equation (34) for a VNF with N active and M standby

instances, where any standby can replace any active instance of the VNF.

𝐴𝑉𝑁𝐹 =∑ (
𝑁 +𝑀

𝑁 + 𝑘
)𝐴𝑣𝑛𝑓−𝑚𝑖𝑛

𝑁+𝑘 ∗ (1 − 𝐴𝑣𝑛𝑓−𝑚𝑖𝑛)
𝑀−𝑘

𝑀

𝑘=0

𝑤ℎ𝑒𝑟𝑒 𝑁 ≥ 1 𝑎𝑛𝑑 𝑀 ≥ 0

(34)

4.5.2 VNF Outage Time

Redundancy is a key requirement for fault tolerance. However, even if there are enough standby

VNF instances, the outage time of the VNF functionality may be unacceptable with respect to the

expected availability if the failure detection and/or recovery times are too long. To meet the expected

availability, the outage time of the functionality needs to be not more than the acceptable outage

time. If all active instances of a VNF (N) fail at the same time, the VNF functionality is not provided,

60

and there is a service outage at the NS functionality level. If the maximum failure rate of the VNF

is 𝜆𝑉𝑁𝐹, and the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 denotes the mean time to repair/recover a VNF instance, then the Outage

Time of the VNF (𝑂𝑇𝑉𝑁𝐹) in a given period is:

 𝑂𝑇𝑉𝑁𝐹 = 𝜆𝑉𝑁𝐹 ∗ 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 (35)

The 𝜆𝑉𝑁𝐹 is derived from the failure rate of VNF instances. The guaranteed maximum failure

rate of a VNF instance (𝜆𝑣𝑛𝑓−𝑚𝑎𝑥) for a given infrastructure is calculated using Method 2 (see Sub-

Section 4.4.2.3). Using equation (13), the guaranteed reliability of the VNF instance for a period of

𝑡 is [76]:

𝑅𝑣𝑛𝑓(𝑡) = 𝑒

−𝜆𝑣𝑛𝑓−𝑚𝑎𝑥∗𝑡 (36)

Then, the reliability of N (active) instances (𝑅𝑉𝑁𝐹(𝑡)) is calculated using equation (37) [78].

𝑅𝑉𝑁𝐹(𝑡) = 1 − (1 − 𝑅𝑣𝑛𝑓(𝑡))

𝑁

 (37)

Therefore, the 𝜆𝑉𝑁𝐹 for a given period of 𝑡 would be:

𝜆𝑉𝑁𝐹 = −
𝑙𝑛 (1 − (1 − 𝑒−𝜆𝑣𝑛𝑓−𝑚𝑎𝑥∗𝑡)

𝑁
)

𝑡
 (38)

In equation (35), we have no control over the failure rate of the VNF. Thus, in case we need to

adjust the 𝑂𝑇𝑉𝑁𝐹, only the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 can be adjusted. If the recovery mechanism for a VNF is

failover and the active instances checkpoint to a peer, the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 is calculated as the summation

of its Failure Detection Time (𝐹𝐷𝑇𝑣𝑛𝑓), the Failover Time (𝐹𝑜𝑇𝑣𝑛𝑓), and the Takeover Time

(𝑇𝑜𝑇𝑣𝑛𝑓). FoT is the time needed to assign active role to a standby instance. When the active role is

assigned to an instance it takes ToT to prepare itself to start serving.

61

 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 = 𝐹𝐷𝑇𝑣𝑛𝑓 + 𝐹𝑜𝑇𝑣𝑛𝑓 + 𝑇𝑜𝑇𝑣𝑛𝑓 (39)

For the restart recovery mechanism, if the active instances checkpoint to their peers, the

𝑀𝑇𝑇𝑅𝑣𝑛𝑓 is calculated as the summation of its 𝐹𝐷𝑇𝑣𝑛𝑓, Restart Time (𝑅𝑇𝑣𝑛𝑓), and 𝑇𝑜𝑇𝑣𝑛𝑓. Note

that when an instance restarts and has the active role, it takes ToT for the instance to get ready to

serve.

 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 = 𝐹𝐷𝑇𝑣𝑛𝑓 + 𝑅𝑇𝑣𝑛𝑓 + 𝑇𝑜𝑇𝑣𝑛𝑓 (40)

For a VNF that checkpoints to a DB, the recovery time also depends on the time to retrieve a

checkpoint from the DB. We assume the network delay (i.e., CND) in transmitting a checkpoint is

equal when the checkpoint is sent to the DB or received from it. Therefore, for the failover

mechanism, the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 is:

 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 = 𝐹𝐷𝑇𝑣𝑛𝑓 + 𝐹𝑜𝑇𝑣𝑛𝑓 + 𝑇𝑜𝑇𝑣𝑛𝑓 + 𝐶𝑁𝐷𝑣𝑛𝑓 (41)

For the restart recovery, the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 is:

 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 = 𝐹𝐷𝑇𝑣𝑛𝑓 + 𝑅𝑇𝑣𝑛𝑓 + 𝑇𝑜𝑇𝑣𝑛𝑓 + 𝐶𝑁𝐷𝑣𝑛𝑓 (42)

In equations (39) to (42), we can assume that for every VNF, the average failover, takeover,

restart times are known. The 𝐶𝑁𝐷𝑣𝑛𝑓 is adjustable, and later we show how it is calculated. The

𝐹𝐷𝑇𝑣𝑛𝑓 is also adjustable by configuring the HMR. In the worst case, the FDT is the summation of

the Health-check Interval (𝐻𝐼 =
1

𝐻𝑀𝑅
) and a timeout [79]. So, 𝐹𝐷𝑇𝑣𝑛𝑓 in the worst case would be:

 𝐹𝐷𝑇𝑣𝑛𝑓 = 𝐻𝐼𝑣𝑛𝑓 + 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑣𝑛𝑓 (43)

62

The goal of the timeout is to reduce false-positive failure detections. If the timeout is

configurable, it should be greater than the network delay between the monitoring agent/peer and the

monitored application/node.

4.5.3 VNF Disruption Time

According to the definition of SDT, the disruption time of a VNF due to a single failure is the

summation of the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 and the 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓. Therefore, the SDT of a VNF for all failures in a

given period is:

 𝑆𝐷𝑇𝑉𝑁𝐹 = 𝜆𝑉𝑁𝐹 ∗ (𝑀𝑇𝑇𝑅𝑣𝑛𝑓 + 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓) (44)

In equation (44), the 𝑇𝐵𝐹𝐿𝐶 may be adjustable for some VNFs, if there are multiple networking

options to adjust the CND and/or if the CpI is configurable. The TBFLC for a VNF is calculated

differently for different kinds of CpI and checkpointing methods, as described below:

• Constant CpI: the active VNF instance checkpoints at fixed intervals. However, the

CpI value may or may not be configurable. If the interval is configurable, the CpI can

usually be chosen from a predefined set of discrete values.

• Variable CpI: the active VNF instance creates a checkpoint whenever its state changes.

Therefore, the CpI is not configurable.

• Synchronous checkpointing: there is no state change until the checkpoint is committed.

As a result, the next checkpoint preparation cannot start until the previous one is

committed [80, 81].

63

• Asynchronous checkpointing: the checkpointing operations are performed

independently from each other in this case, which means that the preparation of the next

checkpoint can start before the previous one has been committed. [80, 81].

In the case of variable CpI and synchronous checkpointing, the worst case happens when there

is a failure during checkpointing just before committing the checkpoint. Hence, the TBFLC is:

 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓𝑖𝑛 𝑡ℎ𝑒 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 = 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 + 𝐶𝑁𝐷 +

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡_𝑇𝑖𝑚𝑒
(45)

For synchronous checkpointing with constant CpI, the worst case is also when the failure

happens just before committing a checkpoint. Thus, the state is recovered from the previous

checkpoint, which was prepared at the beginning of the previous interval. Therefore, the TBFLC is:

 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓𝑖𝑛 𝑡ℎ𝑒 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 = 2 ∗ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑡_𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 + 2 ∗ 𝐶𝑁𝐷 +

2 ∗ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡_𝑇𝑖𝑚𝑒 + 𝐶𝑝𝐼
(46)

For asynchronous checkpointing with constant CpI, the worst case is when the latest checkpoint,

and maybe some other previously sent checkpoints still in transit, have not been committed yet when

the failure happens. Therefore, the state recovered is the state at the beginning of preparing the latest

committed checkpoint. Thus, the TBFLC is:

 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓𝑖𝑛 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 = 2 ∗ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑡_𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 + 𝐶𝑁𝐷 +

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡_𝑇𝑖𝑚𝑒 + 𝐶𝑝𝐼
(47)

For asynchronous checkpointing with variable CpI, the VNF instance is stateful during the

checkpoint preparation, transfer, and committing time. Thus, the TBFLC in the worst case is:

 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓𝑖𝑛 𝑡ℎ𝑒 𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 = 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 + 𝐶𝑁𝐷 +

 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡_𝑇𝑖𝑚𝑒
(48)

64

Equations (45) to (48) provide the calculation of TBFLC for one VNF instance. For a failed

VNF (i.e., all active instances fail simultaneously), in the worst case, the TBFLC of each instance is

the worst possible TBFLC. Therefore, in the worst case, the TBFLC of a VNF is equal to the worst-

case TBFLC of one VNF instance.

The networking delay in sending a message from a source to a destination is the summation of

the transmission delay and the propagation delay [82]. So, the 𝐶𝑁𝐷 is calculated by equation (49).

𝐶𝑁𝐷 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 + 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 (49)

In our case, the checkpointing source is the active VNF instance, the message is the checkpoint

data, and the destination is a DB or a peer VNF instance. At recovery, if the checkpoint is stored in

a DB, it becomes the source and the standby VNF instance the destination. The transmission delay

is derived from the checkpoint data size divided by the network bandwidth. The propagation delay

(also referred to as networking latency) depends on the distance between the source and the

destination, and the transmission speed of the network.

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 =

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 (50)

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 =

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑆𝑝𝑒𝑒𝑑
 (51)

According to [9], the bandwidth and propagation delay of VLs can be indicated for NSs. So, for

a known average checkpoint size, we can determine an appropriate bandwidth and/or ask for an

appropriate networking latency/propagation delay to adjust the CND. We also assume that the

failures of the VLs used only for checkpointing do not affect the functionalities of the NS. However,

when we determine the required redundancy for VLs (the calculation method will be presented later

65

in this chapter), we expect the same redundancy for checkpointing VLs to control the checkpoint

data loss and service disruption.

4.5.4 VNF Service Data Disruption

SDD of a VNF (𝑆𝐷𝐷𝑉𝑁𝐹) due to a failure, in the worst case, is the product of the VNF data rate

and the TBFLC of a VNF instance.

 𝑆𝐷𝐷𝑉𝑁𝐹 = (𝐷𝑎𝑡𝑎_𝑅𝑎𝑡𝑒𝑉𝑁𝐹) ∗ (𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓) (52)

In other words, after recovering from the last checkpoint, the data that was sent from the time

of this checkpoint up until the failure should be resent.

4.6 VL Availability and Redundancy

4.6.1 Expected Availability of VLs

The availability of the functionality delivered via an NFP (𝐴𝑁𝐹𝑃) is the product of the

availability of the VNFs, and the VLs should be in the NFP.

𝐴𝑁𝐹𝑃 = (𝑉𝑁𝐹𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ (𝑉𝐿𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (53)

If an RA is requested for the functionality provided through an NFP, the product of the

availability of the VNFs and the VLs should not be less than the required availability.

(𝑉𝑁𝐹𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ (𝑉𝐿𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ≥ 𝑅𝐴 (54)

Assuming VNFs and VLs contribute equally to fulfill the RA, the availability of VNFs should

satisfy inequation (55).

𝑉𝑁𝐹𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥ √𝑅𝐴 (55)

66

And the availability of VLs should satisfy inequation (56).

𝑉𝐿𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥ √𝑅𝐴 (56)

If the NFP includes 𝑋 types of VLs, the VlEA for each VL (expected availability of each VL)

should satisfy inequation (57).

𝑉𝑙𝐸𝐴 ≥ √𝑅𝐴

2∗𝑋
 (57)

If an ASDT in the period of 𝑡 is requested for the functionality provided through an NFP, the

SDT of the NFP is the summation of the outage times caused by VLs failures and the SDTs of its

VNFs. To meet this ASDT, if we assume equal contribution for VNFs and VLs to fulfill the ASDT,

then inequation (58) should be satisfied for VLs:

𝑉𝐿𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥ √𝑡 −
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2

𝑡
 (58)

Therefore, the VlEA should satisfy the following inequation:

𝑉𝑙𝐸𝐴 ≥ √𝑡 −
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2

𝑡

2∗𝑋

 (59)

4.6.2 VL Redundancy

The maximum availability of VL instances (𝐴𝑣𝑙−𝑚𝑎𝑥) provided by the NFVI is an input for the

design-time approach. The availability of VLs for an NS can be requested according to [9] in the

same way as the networking latency. If the 𝐴𝑣𝑙−𝑚𝑎𝑥 is not less than the VlEA for a VL, one VL

instance is enough for the VL to satisfy its expected availability, and VlEA is the constraint for the

67

VL availability. Otherwise, the VL requires redundancy. The availability of a VL (𝐴𝑉𝐿) with 𝑛

redundant instances is:

𝐴𝑉𝐿 = 1 − (1 − 𝐴𝑣𝑙−𝑚𝑎𝑥)

𝑛 (60)

Therefore, inequation (61) can be used to determine the number of instances (𝑚) to keep the

availability of the redundant VL instances (𝐴𝑉𝐿) greater than or equal to the 𝑉𝑙𝐸𝐴:

 𝑚 ≥ 𝑙𝑜𝑔(1−𝐴𝑣𝑙−𝑚𝑎𝑥)(1 − 𝑉𝑙𝐸𝐴) (61)

4.7 NFP Service Outage, Service Disruption, and Resource Cost

4.7.1 NFP Outage Time

To meet the RA for an NS functionality, we can calculate the Acceptable Downtime of the NFP

(𝐴𝐷𝑇𝑁𝐹𝑃), which is:

𝐴𝐷𝑇𝑁𝐹𝑃 = (𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑) ∗ (1 − 𝑅𝐴) (62)

Then, according to inequations (55) and (56), the Outage Time of all VNFs together (𝑂𝑇𝑉𝑁𝐹𝑠)

should be less than
𝐴𝐷𝑇𝑁𝐹𝑃

2
. As discussed earlier, the outage time of a VNF is calculated using

equation (35). Therefore, for an NFP with 𝑌 different VNFs, the outage time of the NFP due to VNFs

failures (𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠) is:

 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 = 𝑂𝑇𝑉𝑁𝐹𝑠 = ∑ 𝑂𝑇𝑖
𝑌
𝑖=1 (63)

68

Therefore, to meet the RA for an NS functionality, we should calculate the 𝐴𝐷𝑇𝑁𝐹𝑃 and adjust

the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 of the different VNFs to keep the 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 less than or equal to the
𝐴𝐷𝑇𝑁𝐹𝑃

2
. Also,

all VLs should meet their VlEA.

4.7.2 NFP Service Disruption Time

To meet an 𝐴𝑆𝐷𝑇𝑁𝐹𝑃, if we assume that VNFs and VLs contribute equally, then the SDTs of

VNFs should not be more than
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
. If an NFP includes 𝑌 different VNFs, using equation (44),

the overall SDT of the functionality provided through the NFP due to VNFs failures (𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠)

is:

 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 = ∑ 𝑆𝐷𝑇𝑖
𝑌
𝑖=1 (64)

For each VNF, depending on the checkpointing method, the worst-case TBFLC is used in

equation (44) to calculate the worst-case scenario for the NFP by equation (64). When the tenant

asks for the ASDT of an NS functionality, we should adjust the 𝑀𝑇𝑇𝑅𝑣𝑛𝑓 and 𝑇𝐵𝐹𝐿𝐶𝑣𝑛𝑓 of the

different VNFs so that the 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 is less than or equal to the
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
. Also, all VLs of the NFP

should meet the VlEA.

4.7.3 NFP Service Data Disruption

For an NFP with one or more VNFs, there is a ratio between each VNF data rate and the NFP

data rate [73].

𝐷𝑎𝑡𝑎_𝑅𝑎𝑡𝑒𝑁𝐹𝑃 = 𝐷𝑎𝑡𝑎_𝑅𝑎𝑡𝑒𝑉𝑁𝐹 ∗ 𝑅𝑎𝑡𝑖𝑜𝑉𝑁𝐹 (65)

Therefore, the SDD at the NFP level due to the failure of one 𝑉𝑁𝐹 is:

69

𝑆𝐷𝐷𝑁𝐹𝑃 = (𝑆𝐷𝐷𝑉𝑁𝐹) ∗ (𝑅𝑎𝑡𝑖𝑜𝑉𝑁𝐹) (66)

Thus, to satisfy the ASDD for the functionality provided through an NFP (i.e., to satisfy

𝑆𝐷𝐷𝑁𝐹𝑃 ≤ 𝐴𝑆𝐷𝐷) with 𝑌 different VNFs, we should adjust the 𝑇𝐵𝐹𝐿𝐶𝑖 of each 𝑉𝑁𝐹𝑖 of the NFP

to satisfy inequation (67).

 𝑇𝐵𝐹𝐿𝐶𝑖 ≤
𝐴𝑆𝐷𝐷

(𝐷𝑎𝑡𝑎_𝑅𝑎𝑡𝑒𝑖)∗(𝑅𝑎𝑡𝑖𝑜𝑖)
 , where 1 ≤ 𝑖 ≤ 𝑌 (67)

We expect the 𝐷𝑎𝑡𝑎_𝑅𝑎𝑡𝑒𝑉𝑁𝐹 and the 𝑅𝑎𝑡𝑖𝑜𝑉𝑁𝐹 as input for all VNFs for each NFP.

4.7.4 Cost Function

When the number of required standby instances for a VNF is calculated, the computing cost

should also be addressed. So, we should determine the minimum number of required instances for

each VNF at each scaling level that satisfies the VnfEA to avoid overprovisioning computing

resources for the VNF. It is possible to have multiple hosting types to choose from for VNF

placement. Different hosting types may have different availability (𝐴𝑃𝐻) and result in different

availability of the VNF instance (𝐴𝑣𝑛𝑓). Therefore, for different hosting types, we may end up with

a different required number of standby instances for a VNF. Also, different hosting types may have

a different cost. For example, placing a VNF on one hosting type with better availability may be

twice as expensive as placing the same VNF on a host with lower availability.

Therefore, we define a cost function to be able to choose a hosting option, which results in a

lower computing cost for the VNFs. We assume that all VNFs of the given NsDF will be placed on

the same hosting type. If 𝐶ℎ shows the cost for hosting one VNFC of an instance of 𝑉𝑁𝐹𝑖, the hosting

cost of one VNF instance for the average number of VNFC instances (𝑛̅) for all the VNF scaling

levels is:

70

𝐶ℎ(𝑣𝑛𝑓𝑖) = 𝑛̅ ∗ 𝐶ℎ (68)

Then, the computing cost of each 𝑉𝑁𝐹𝑖 (i.e., VNF profile) at the 𝑗𝑡ℎ scaling level of the NsDF

with 𝑁 active and 𝑀 standby instances is calculated by equation (69).

𝐶𝐶(𝑉𝑁𝐹𝑖,𝑗) = (𝑁𝑖,𝑗 +𝑀𝑖,𝑗) ∗ 𝐶ℎ(𝑣𝑛𝑓𝑖) (69)

Similarly, we can use the average number of VNF instances to calculate the overall computing

cost (𝐶𝐶(𝑉𝑁𝐹𝑖)) for each 𝑉𝑁𝐹𝑖 for all NS scaling levels.

𝐶𝐶(𝑉𝑁𝐹𝑖) = (𝑁𝑖 +𝑀𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅) ∗ 𝐶ℎ(𝑣𝑛𝑓𝑖) (70)

Therefore, for an NsDF with 𝑌 different VNFs, the overall computing cost would be:

𝐶𝐶(𝑁𝑠𝐷𝐹) = ∑ 𝐶𝐶(𝑉𝑁𝐹𝑖)

𝑌
𝑖=1 (71)

To minimize the networking cost, we define a cost function for NFPs, which is calculated

differently depending on the protection mechanisms configured (e.g., health-check monitoring,

checkpointing), which in turn depend on the tenant’s requirements. We consider the other portion of

the networking cost constant and out of our control.

The networking cost for 𝑉𝑁𝐹𝑖 of an NFP which has 𝑁𝑗 active instances at the 𝑗𝑡ℎ scaling level

is:

• If the requirement is to satisfy an RA

𝐶𝑁(𝑉𝑁𝐹𝑖,𝑗) = 𝑁𝑖,𝑗 ∗ (𝑀𝐻𝑅𝑖,𝑗) (72)

• If the tenant asks for an ASDT or ASDD

 𝐶𝑁(𝑉𝑁𝐹𝑖,𝑗) = 𝑁𝑖,𝑗 ∗ (α ∗ 𝑀𝐻𝑅𝑖,𝑗 + β ∗
1

𝐶𝑝𝐼𝑖,𝑗
+ γ ∗

1

𝐶𝑁𝑑𝑖,𝑗
) (73)

71

According to the cost function (73), regardless of whether the HMR increases, the CpI

decreases, or a faster network is selected, the networking cost for the VNF increases. To be able to

adjust the importance of these three configuration parameters, we use coefficients (i.e., α, β, and γ)

in the equation.

Accordingly, the total cost for the NFP at scaling level 𝑗 is:

𝐶𝑁(𝑁𝐹𝑃𝑗) =∑ 𝐶𝑁(𝑉𝑁𝐹𝑖,𝑗)

𝑦

𝑖=1
 (74)

4.8 Network Service Availability and Continuity Requirements Mapping

4.8.1 Mapping Method

A tenant may ask for different kinds of requirements for different NS functionalities. Also, the

required values may differ for functionalities with the same requirements. So, for each NS

functionality, there is a specific kind of requirement with a specific value to be met. The goal of our

mapping method is to satisfy the corresponding requirement for each NS functionality and minimize

the networking cost simultaneously; then to select the hosting option with the lowest computing cost

considering all the VNFs of the NsDF. Thus, first, we find for the VNFs the optimal HMR and CpI

values and networking options. Then, we determine the minimum required number of standby

instances for each VNF/VL that keeps the probability of having enough active VNF/VL instances

higher than VnfEA/VlEA. To minimize the computing resource cost, we repeat the whole process

using different hosting types and select the hosting option with the minimum total cost for the NsDF.

For some VNFs, the VNF instance availability may be enough to satisfy the VnfEA without

any standby instance(s) for some/all scaling levels. In such a case, the recovery method for the VNF

72

is restart recovery. Therefore, we need to use the MTTR of the restart in equations (39) to (42) for

each VNF and then apply the method of finding the optimal values/options for the HMR, the CpI,

and networking. However, in the beginning, we do not know yet whether the VNF instance

availability will satisfy the applicable VnfEA. One way to solve this problem is to perform the

method at each scaling level for equations (39)/(41) and (40)/(42) for all VNFs and choose the

solution which results in the highest number of VNFs without any standby instance. If an NFP has

𝑌 different VNFs, the time complexity of examining all combinations of MTTRs for all VNFs is:

Time Complexity = 𝑂(2𝑌) (75)

This exponential time complexity is not acceptable for a large 𝑌, i.e., a large number of VNFs.

In the context of our work, this problem can be avoided as follows: first, we calculate the VnfEA for

each VNF, assuming that that failover mechanism is used for the VNFs. Then, we calculate the

availability of each VNF with zero standby and compare it with the VnfEA. If the VNF without any

standby can satisfy the VnfEA, we mark the VNF. At the end of this process, we have some marked

and some unmarked VNFs, and we can determine the appropriate MTTR equation for each VNF;

equation (39) or (41) should be used for unmarked VNFs, and equation (40) or (42) is the appropriate

one for marked VNFs. We can do so because the method adjusts other configuration values (e.g.,

for HMR) to the difference between the two MTTRs. Next, we can calculate the number of standby

instances for the unmarked VNFs, and based on them, we can tackle the calculation of the computing

cost for the NsDF.

The steps of our proposed mapping method can be summarized as follows: steps 1, 2, and 3

create loops for different hosting types, for different scaling levels, and for the requested NS

functionalities. Steps 4 to 6 check whether the service availability and continuity requirements can

73

be met for the NS. The goal of performing steps 7 to 11 is to mark VNFs and set the appropriate

recovery method for each VNF at each scaling level for each hosting type. Step 12 creates a loop for

the requested NS functionalities, and steps 13 and 14 are performed in this loop for marked and

unmarked VNFs. Executing steps 12 to 15, we will find the optimal configuration values/options for

each marked and unmarked VNF of each NFP to satisfy the requirements. Steps 16 and 17 find the

required number of standbys for each unmarked VNF of the NsDF for each hosting type. Step 18

determines the required redundancy for VLs. Steps 19 and 20 find the hosting type with minimum

computing cost for all VNFs of the NsDF.

Figure 4-9 depicts the flowchart of the requirement mapping method.

74

Figure 4-9: Flowchart of the requirements mapping method

The followings are the explanation of the steps in the flowchart of Figure 4-9:

Start

Step 6:

Is Best_OT>ADT/2 (or

Best_SDT>ASDT/2)?

End

Yes

No

Step 7:

Find Optimum values/options for all

VNFs of the NFP

Step 3:

Any unchecked

NFP?

Yes

No Solution

Step 2:

Any unchecked

scaling level?

Step 5:

 Calculate the Best_OT (or

Best_SDT)

Step 14:

If ASDD is requested for an NFP, for each

VNF of the NFP, find the optimal values

for CpI and CND

Yes

Step 4:

Set failover as the recovery

mechanism for all VNFs of the NFP

Step 8:

Select the most stringent MHR for

VNFs shared between NFPs

No

Step 9:

Calculate the VnfEA for all VNFs

Step 10:

Mark any VNF, if its availability with

zero standby satisfies the VnfEA and

its best outage time for restart recovery

is not greater than the optimal OT

Step 11:

Set restart recovery for marked VNFs

and failover for unmarked VNFs

(/**Uncheck all NFPs**/)

Step 12:

Any unchecked

NFP?

Step 13:

Find the optimal values/options for all

VNFs of the NFP that satisfy requirements

Yes

Step 15:

Select the most stringent values/options for

VNFs shared between NFPs

Step 16:

Calculate the VnfEA for unmarked VNFs

Step 17:

Calculate the minimum number of required

standby instances for unmarked VNFs

No

Step 1:

Any unchecked

hosting type?

No

Step 19:

Calculate the computing cost

Step 20:

Select the hosting type with minimum computing cost and

the corresponding optimal configuration set as the solution

No

Yes

Step 18:

Calculate the minimum number of required

redundancy for VLs

75

• Step 1: For each hosting type, perform steps 2 to 19

• Step 2: For each scaling level, perform steps 3 to 18.

• Step 3: For each NFP (i.e., NS functionality), perform steps 4 to 7.

• Step 4: Set failover as the recovery mechanism for all VNFs of the NFP to use equation

(39) or (41) for all VNFs.

• Step 5: For an NFP, either the RA or the ASDT is requested. If the RA is requested,

calculate the
𝐴𝐷𝑇𝑁𝐹𝑃

2
 using equation (62). Then, calculate the best possible 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠

(𝐵𝑒𝑠𝑡_𝑂𝑇) for the NFP based on equation (63). The 𝐵𝑒𝑠𝑡_𝑂𝑇 can be found using the

maximum allowed value for 𝑀𝐻𝑅𝑖 of each 𝑉𝑁𝐹𝑖 of the NFP. If the ASDT is requested,

calculate the best possible 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 (𝐵𝑒𝑠𝑡_𝑆𝐷𝑇) for the NFP according to equation

(64). The 𝐵𝑒𝑠𝑡_𝑆𝐷𝑇 can be found using the maximum allowed value for 𝑀𝐻𝑅𝑖, the

minimum allowed value for 𝐶𝑝𝐼𝑖, and choosing the best available networking option for

all 𝑉𝑁𝐹𝑖 of the NFP.

• Step 6: If the RA is requested, compare the 𝐵𝑒𝑠𝑡_𝑂𝑇 with the
𝐴𝐷𝑇𝑁𝐹𝑃

2
. If 𝐵𝑒𝑠𝑡_𝑂𝑇 >

𝐴𝐷𝑇𝑁𝐹𝑃

2
, the RA for this NFP cannot be achieved with the given VNFs, and there is no

solution. If an ASDT is requested, compare the 𝐵𝑒𝑠𝑡_𝑆𝐷𝑇 with the 𝐴𝑆𝐷𝑇. If

𝐵𝑒𝑠𝑡_𝑆𝐷𝑇 >
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
, then the ASDT for this NFP cannot be achieved with the given

VNFs. Otherwise, go to the next step.

• Step 7: If the RA is requested and 𝐵𝑒𝑠𝑡_OT =
𝐴𝐷𝑇𝑁𝐹𝑃

2
, the best value of 𝑀𝐻𝑅𝑖 for each

𝑉𝑁𝐹𝑖 is the only acceptable configuration. If 𝐵𝑒𝑠𝑡_OT <
𝐴𝐷𝑇𝑁𝐹𝑃

2
, there may be multiple

values of 𝑀𝐻𝑅𝑖 that can satisfy the requirement. Then, find the optimal values for the

76

𝑀𝐻𝑅𝑖 for all 𝑉𝑁𝐹𝑖 of the NFP that minimize the cost for the scaling level (equation

(74)) and satisfies the requirement. If an ASDT is requested and 𝐵𝑒𝑠𝑡_𝑆𝐷𝑇 =
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
,

the best values/options for 𝑀𝐻𝑅𝑖, 𝐶𝑝𝐼𝑖, and networking for all 𝑉𝑁𝐹𝑖 are the only

acceptable configuration. If 𝐵𝑒𝑠𝑡_𝑆𝐷𝑇 <
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
, there may be multiple 𝑀𝐻𝑅𝑖 and

𝐶𝑝𝐼𝑖 values, and networking options that can satisfy the requirement. Then, find the

optimal values/options for the 𝑀𝐻𝑅𝑖, 𝐶𝑝𝐼𝑖 and networking for all 𝑉𝑁𝐹𝑖 of the NFP that

minimize the cost for the scaling level (equation (74)) and satisfies the requirement. To

find the optimal configuration to satisfy the RA, we calculate equations (63) and (74)

for all possible 𝑀𝐻𝑅𝑖 of all 𝑉𝑁𝐹𝑖 of the NFP, and we choose the configuration values

that result in the minimum cost while satisfying the
𝐴𝐷𝑇𝑁𝐹𝑃

2
. To find the optimal

configuration to satisfy an ASDT, we calculate equations (64) and (74) for all possible

combinations of the 𝑀𝐻𝑅𝑖, 𝐶𝑝𝐼𝑖 values and the networking options for all 𝑉𝑁𝐹𝑖 of the

NFP and we choose the configuration values that result in the lowest cost while

satisfying the
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
. Thus, to find the optimal configuration in this step, we examine

all possible combinations, that is, we perform a complete search.

• Step 8: For a VNF shared between multiple NFPs, we select the most stringent 𝑀𝐻𝑅𝑖

among the solutions found in step 7 for the different NFPs it is used.

• Step 9: Calculate for each 𝑉𝑁𝐹𝑖 of the NsDF the 𝑉𝑛𝑓𝐸𝐴𝑖 using equation (76) based on

the optimal value for its 𝑀𝐻𝑅𝑖 selected in steps 7 and 8:

 𝑉𝑛𝑓𝐸𝐴𝑖 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒+𝑂𝑇𝑖
=

1 𝑦𝑒𝑎𝑟− 𝑂𝑇𝑖

1 𝑦𝑒𝑎𝑟
 (76)

77

With the optimal value for 𝑀𝐻𝑅𝑖 and its relation to 𝐹𝐷𝑇𝑖 (i.e., equation (43)), we can

calculate the 𝑂𝑇𝑖 using equation (35). Since RA is defined for one year, the 𝑈𝑝𝑡𝑖𝑚𝑒 is

calculated as “𝑜𝑛𝑒 𝑦𝑒𝑎𝑟” minus 𝑂𝑇𝑖.

• Step 10: Calculate the availability of each 𝑉𝑁𝐹𝑖 using equation (34) with zero standby

instance (𝐴𝑉𝑁𝐹𝑖−0) and the best outage time of each 𝑉𝑁𝐹𝑖 for restart recovery mechanism

(𝑂𝑇𝑖−𝑏𝑒𝑠𝑡), using the best 𝑀𝐻𝑅𝑖. If 𝐴𝑉𝑁𝐹𝑖−0 ≥ 𝑉𝑛𝑓𝐸𝐴𝑖 and 𝑂𝑇𝑖−𝑏𝑒𝑠𝑡 ≤ 𝑂𝑇𝑖, mark the

VNF. If 𝑂𝑇𝑖−𝑏𝑒𝑠𝑡 is greater than the optimal 𝑂𝑇𝑖 found in step 9, the 𝑉𝑁𝐹𝑖 cannot meet

the same 𝑉𝑛𝑓𝐸𝐴𝑖 for restart recovery mechanism.

• Step 11: Set restart recovery (i.e., equation (40) or (42)) for marked VNFs and failover

(i.e., equation (39) or (41)) for unmarked VNFs.

• Step 12: For each NFP, perform steps 13 and 14.

• Step 13: Find the optimal values/options for the 𝑀𝐻𝑅𝑖, and – if ASDT is requested –

for the 𝐶𝑝𝐼𝑖 and networking for all 𝑉𝑁𝐹𝑖 of the NFP, with the selected recovery

mechanism in step 11 for each 𝑉𝑁𝐹𝑖. (The same process as step 7)

• Step 14: If ASDD is requested for the NS functionality, for each 𝑉𝑁𝐹𝑖 of the NFP, find

the optimal value for the 𝐶𝑝𝐼𝑖 and networking option that satisfy inequation (67). To do

so, we generate all possible TBFLCs for each 𝑉𝑁𝐹𝑖 using all possible 𝐶𝑝𝐼𝑖 values and

networking options for the VNF. Then we sort the TBFLCs of the VNF in descending

order. The first TBFLC which satisfies the inequation (67) is the optimal one, and the

corresponding 𝐶𝑝𝐼𝑖 and networking option is selected as optimal value and option for

the VNF.

78

• Step 15: For a VNF shared between multiple NFPs, we select the most stringent

configuration values/options among the solutions found in steps 13 and 14 for the

different NFPs.

• Step 16: Calculate for each unmarked 𝑉𝑁𝐹𝑖 of the NsDF the 𝑉𝑛𝑓𝐸𝐴𝑖 using equation

(76) based on the optimal value for its 𝑀𝐻𝑅𝑖 selected in steps 13 and 15.

• Step 17: Find for every unmarked 𝑉𝑁𝐹𝑖 using equation (34), the minimum number of

standbys (i.e., M) that satisfies 𝐴𝑉𝑁𝐹𝑖 ≥ Vnf𝐸𝐴𝑖.

• Step 18: Calculate the minimum number of VL redundancy for each VL of the NFP that

satisfies inequation (61).

• Step 19: Assuming we are given the computing cost of each hosting type, calculate the

computing cost of the NsDF using equation (71).

• Step 20: Select the hosting type with the minimum computing cost for the NsDF. Once

we select the hosting type, we adjust the given NsDF by adding to the number of active

instances the calculated number of standbys instances for the different scaling levels. In

addition, we store the corresponding set of configuration values/options found in steps

13 to 15 as the optimal configuration for the NsDF.

Steps 7, 13, 17, and 18 are the main steps of the method. The goal of steps 7 and 13 is to find

the optimal configuration for VNFs and minimize the networking cost if RA or ASDT is requested

for an NS functionality. The goal of steps 17 and 18 is to find the minimum required redundancy

which guarantees the required protection level for each unmarked VNF and VL of the NsDF at each

scaling level.

79

The values for the 𝑀𝐻𝑅𝑖 and the 𝐶𝑝𝐼𝑖 are discrete values, and there is a limited number of

available networking options for checkpointing. To find the optimal configuration in step 7 (and

respectively in step 13), we need to examine all possible combinations of the configuration

values/options for all VNFs of the NFP and select the ones that satisfy the requirement and minimize

the cost function of equation (74). First, we generate all possible 𝑂𝑇𝑉𝑁𝐹𝑖 (𝑆𝐷𝑇𝑉𝑁𝐹𝑖) for each 𝑉𝑁𝐹𝑖

of the NFP using equation (35) (and respectively equation (44)). Then, we sort the 𝑂𝑇𝑉𝑁𝐹𝑖 (or the

𝑆𝐷𝑇𝑉𝑁𝐹𝑖) and determine their acceptable lower and upper bounds for each 𝑉𝑁𝐹𝑖 as follows. The

lower bound for 𝑉𝑁𝐹𝑖 is determined by using the best configuration values in equation (35) (or in

(44)). The upper bound for 𝑉𝑁𝐹𝑖 can be found by using the best configuration values for all other

VNFs in equation (63) (or in (64)). That is, the upper bond is the maximum acceptable 𝑂𝑇𝑉𝑁𝐹𝑖

(𝑆𝐷𝑇𝑉𝑁𝐹𝑖) for the 𝑉𝑁𝐹𝑖 satisfying 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤
𝐴𝐷𝑇𝑁𝐹𝑃

2
 (or 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤

𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
), when the

𝑂𝑇𝑉𝑁𝐹 (or 𝑆𝐷𝑇𝑉𝑁𝐹) of all other VNFs are at their minimum. By this, we have the possible range of

𝑂𝑇𝑉𝑁𝐹𝑖 (or 𝑆𝐷𝑇𝑉𝑁𝐹𝑖) for each 𝑉𝑁𝐹𝑖 of the NFP. Every 𝑂𝑇𝑉𝑁𝐹𝑖 (or 𝑆𝐷𝑇𝑉𝑁𝐹𝑖) of each 𝑉𝑁𝐹𝑖 represents

a combination of configuration values (i.e., 𝑀𝐻𝑅𝑖, 𝐶𝑝𝐼𝑖, and 𝐶𝑁𝐷𝑖) for the 𝑉𝑁𝐹𝑖. So, to find the

optimal configuration, we examine all the possible 𝑂𝑇𝑉𝑁𝐹𝑖 (or 𝑆𝐷𝑇𝑉𝑁𝐹𝑖) of all VNFs of the NFP to

find a combination for different VNFs that satisfies 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤
𝐴𝐷𝑇𝑁𝐹𝑃

2
 or 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤

𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2

and minimizes the overall cost.

In step 17, we determine the number of standbys using equations (34) and (76), starting with

one (i.e., M = 1). We start from M=1 since, for unmarked VNFs, we should add at least one standby

instance. We increment the number of standbys until we satisfy 𝐴𝑉𝑁𝐹𝑖 ≥ Vnf𝐸𝐴𝑖.

80

4.8.2 Time Complexity Analysis

Steps 7 and 13 are the most time-consuming steps of our method. If the tenant asks for an ASDT,

three parameters (i.e., HMR (or HI), CpI, and CND) should be optimized. The HMR (or HI) is

usually configurable for VNFs, while the CpI may not be configurable for a VNF. Also, there may

be one or multiple networking options for checkpointing. We assume that the acceptable intervals

for the HI and the (configurable) CpI are integer values expressed in milliseconds. The upper bound

for the HI and the (configurable) CpI of VNFs are determined when we find the upper bound of the

𝑆𝐷𝑇𝑉𝑁𝐹𝑖 for each VNF, as explained earlier. Therefore, there is a limited set of possible HIs, one or

a limited number of possible CpIs, and one or a limited number of networking options for each VNF.

Let us assume that, on average, for a VNF there are:

• 𝐻𝑅𝑁 number of possible configuration values for the health-check rate

• 𝐶𝑃𝑁 number of possible configuration values for the checkpointing interval

• 𝑁𝑂𝑁 number of possible networking options for remote checkpointing

If there are 𝑌 number of different VNFs in an NFP, the time complexity for examining all

possible combinations (i.e., complete search) of configuration values in step 7 (and in step 13) would

be:

Time Complexity = 𝑂((𝐻𝑅𝑁 ∗ 𝐶𝑃𝑁 ∗ 𝑁𝑂𝑁)𝑌) (77)

If the tenant asks for an RA, the HI is the only parameter that should be optimized for all VNFs.

So, the time complexity for a complete search for this case is:

Time Complexity = 𝑂(𝐻𝑅𝑁𝑌) (78)

81

Therefore, the time complexity of the complete search at step 7 (and also at step 13) is

exponential in terms of the number of VNFs as in equations (77) and. Thus, for a large number of

VNFs, we may not be able to examine all possible combinations. Therefore next, we propose a

heuristic search, which finds a near-optimal configuration in a timely manner.

4.8.3 Heuristic Algorithm

We have implemented the proposed method using the complete search and applied it to a few

sample NSs to find the respective optimal configuration values. From these samples, we have

observed that the optimal configuration values for an NFP (i.e., NS functionality) always result in a

𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 (and 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠) very close to the
𝐴𝐷𝑇𝑁𝐹𝑃

2
 (and to the

𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
). This was expected

since when the mapping method finds the configuration, it should keep the 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 (and

𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠) as close as possible to the
𝐴𝐷𝑇𝑁𝐹𝑃

2
 (and to the

𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
) to minimize the networking

cost function.

Based on this observation, to satisfy the RA, instead of examining all possible HMR values for

each VNF, our heuristic algorithm examines only those values that satisfy the following condition:

0 ≤

𝐴𝐷𝑇𝑁𝐹𝑃

2
− 𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤ 𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤 (79)

If the ASDT is requested for an NS functionality, instead of examining all possible

configuration values/options, our heuristic algorithm examines only those values/options that satisfy

the following condition:

0 ≤

𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
− 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤ 𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤 (80)

82

We show later that the configuration found by this heuristic search can be a near-optimal

configuration.

Whether the RA or the ASDT is requested for an NFP, an appropriate 𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤 needs

to be chosen by the NS designer for our heuristic. Selecting a value closer to zero results in less

execution time, at the price of sacrificing the thoroughness of the search. The found solution always

satisfies the condition of inequation (79) for the RA (and (80) for the ASDT), but the

𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 (or the 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑆) of this configuration and its total cost may not be very close to the

𝑂𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 (or the 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑆) and the total cost of the optimal configuration. The reason is that

with a smaller search window, we reduce the number of combinations that step 7 (and 13) examines.

A bigger 𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤 results in a more thorough search but requires more execution time. So,

the NS designer can decide on the value of the 𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤 to adjust the execution time.

In the rest of this section, we present the heuristic search for the ASDT. The heuristic search for

the RA is almost the same. The only difference is that to meet the RA, we only examine the HMR

values of each VNF and do not consider the CpI values and the networking options.

For the heuristic search, we find the lower and upper bounds of the 𝑆𝐷𝑇𝑉𝑁𝐹𝑖 for each 𝑉𝑁𝐹𝑖 of

the NFP the same way as we do for the complete search. However, once the boundaries of the

𝑆𝐷𝑇𝑉𝑁𝐹𝑖 are found for each 𝑉𝑁𝐹𝑖, we do not explore all combinations of the 𝑆𝐷𝑇𝑉𝑁𝐹 values for the

different VNFs of the NFP. Instead, we consider only the combinations of 𝑆𝐷𝑇𝑉𝑁𝐹 values that fulfill

the condition of inequation (80).

The pseudo-code of the heuristic search is shown in Alg. 4-1. It examines recursively all the

combinations of 𝑆𝐷𝑇𝑉𝑁𝐹 values for all VNFs of an NFP, which means that it starts with a 𝑆𝐷𝑇𝑉𝑁𝐹

83

value of one VNF and adds the SDT values of other VNFs one by one. At each level of the recursion,

the set of possible 𝑆𝐷𝑇𝑉𝑁𝐹 (i.e., the 𝑅𝑒𝑑𝑢𝑐𝑒𝑑_𝑆𝐷𝑇𝑖) is reduced according to inequation (80). To

find the reduced set of possible 𝑆𝐷𝑇𝑉𝑁𝐹, we use a binary search as its execution time complexity is

low. The output of the algorithm is the near-optimal configuration for the NFP, which includes a

near-optimal configuration for each VNF of the NFP. The time complexity of the heuristic algorithm

is 𝑂(𝑌2) since the main function of the algorithm at line 9 runs for Y times and at each of the iterations,

the function is called again recursively at line 13 or 19 for Y-i times (i.e., in total, findConfiguration

function is called for
𝑌∗(𝑌−1)

2
 times).

Alg. 4-1: Heuristic Algorithm Pseudo-code

 1: for 𝑖 ∈ {1, … , 𝑌} do // Y is the number of VNFs

 2: 𝑆𝐷𝑇𝑖 ← ø;

 3: end for

 4: Generate all the possible 𝑆𝐷𝑇𝑉𝑁𝐹 for each 𝑉𝑁𝐹𝑖 separately;

 5: Sort 𝑆𝐷𝑇𝑉𝑁𝐹 for all VNFs in ascending order;

 6: Find the lower and upper bound of 𝑆𝐷𝑇𝑉𝑁𝐹 for each 𝑉𝑁𝐹𝑖;
 7: Create a set of acceptable 𝑆𝐷𝑇𝑉𝑁𝐹 for each 𝑉𝑁𝐹𝑖 separately (𝑆𝐷𝑇𝑖);
 8: i ← 1, optimalCost ← ∞, configuration ← ø;

 9: function findConfiguration(i,
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
)

10: if (i < Y) then

11: 𝑅𝑒𝑑𝑢𝑐𝑒𝑑_𝑆𝐷𝑇𝑖 ← 𝐴𝑙𝑙 𝑆𝐷𝑇𝑉𝑁𝐹 of 𝑆𝐷𝑇𝑖 that satisfy (𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
) ;

12: for 𝑆𝐷𝑇𝑉𝑁𝐹 ∈ 𝑅𝑒𝑑𝑢𝑐𝑒𝑑_𝑆𝐷𝑇𝑖 do

13: findConfiguration(i + 1,
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
 - 𝑆𝐷𝑇𝑉𝑁𝐹);

14: end for

15: end if

16: if (i == Y) then

17: 𝑅𝑒𝑑𝑢𝑐𝑒𝑑_𝑆𝐷𝑇𝑖 ← All 𝑆𝐷𝑇𝑉𝑁𝐹 of 𝑆𝐷𝑇𝑖 that satisfy (0 ≤
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
− 𝑆𝐷𝑇𝑁𝐹𝑃𝑉𝑁𝐹𝑠 ≤ 𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤);

18: for 𝑆𝐷𝑇𝑉𝑁𝐹 ∈ 𝑅𝑒𝑑𝑢𝑐𝑒𝑑_𝑆𝐷𝑇𝑖 do

19: findConfiguration(i + 1,
𝐴𝑆𝐷𝑇𝑁𝐹𝑃

2
 - 𝑆𝐷𝑇𝑉𝑁𝐹);

20: end for

21: end if

22: if (i > Y) then

23: cost ← cost of the selected configuration values;

24: if (cost < optimalCost) then

25: optimalCost ← cost;

26: configuration ← selected configuration values for all VNFs;

27: end if

28: end if

29: end function

84

4.8.4 Experiments and Evaluation

Here, we present the experiments conducted for the proposed method implemented with both

search strategies to compare their accuracies and execution times. The first implementation performs

a complete search by exploring all possible combinations of the configuration values/options in steps

7 and 13 to meet an ASDT. The other implementation uses our proposed heuristic search and

examines a limited set of configuration combinations as described earlier.

First, we consider a sample NS with one scaling level and one available hosting type. The NsDF

provides one functionality (i.e., it has only one NFP) for which the requested ASDT is 31536 ms per

year (i.e., 0.000001 of a year). The NFP has four VNFs (i.e., Y = 4) with configuration options shown

in Table 4-1. All VNFs checkpoint to a peer. We assume that VLs have no failure (100% available)

for this example since these experiments aim to compare the results of complete and heuristic

searches for steps 7 and 13 of our proposed method.

Table 4-1: VNFs and networking details for a sample NS

 N 𝑨𝑭𝑹𝑽𝑵𝑭 (Per year) Min. HI (ms) Min. CpI (ms) 𝑨𝒗𝒏𝒇 CND1 (ms) CND2 (ms) CND3 (ms)

𝑽𝑵𝑭𝟏 6 3 100 50 0.999 50 180 500

𝑽𝑵𝑭𝟐 10 2 50 10 0.99 150 200 3500

𝑽𝑵𝑭𝟑 5 3 150 50 0.9999 40 100 2000

𝑽𝑵𝑭𝟒 5 3 100 50 0.999 40 100 500

There are three available networking options for checkpointing with different CNDs. The

minimum 𝐻𝐼 (
1

𝑀𝐻𝑅
) and the CpI of each VNF are also given in Table 4-1. For 𝑉𝑁𝐹1, the health-

check interval is configurable with increments of 100 ms. For all other VNFs, the health-check

increment is 50 ms. Similarly, for 𝑉𝑁𝐹2 and 𝑉𝑁𝐹4, the CpI is configurable with increments of 200

85

ms. CpI is not configurable for 𝑉𝑁𝐹1 and 𝑉𝑁𝐹3. Failover time is 𝐹𝑜𝑇 = 10 ms for all VNFs. The

takeover time for 𝑉𝑁𝐹1 is 𝑇𝑜𝑇 = 15 ms and for the others is 𝑇𝑜𝑇 = 10 ms.

We applied the method with the complete and heuristic searches to this sample NS. The

𝑆𝑒𝑎𝑟𝑐ℎ_𝑊𝑖𝑛𝑑𝑜𝑤 for the heuristic algorithm was 1000 ms. For all the experiments, we used: α =

β = γ = 1. Table 4-2 shows the optimal configuration values and the number of required standbys

calculated using the complete search. The cost of this configuration would be 𝐶𝑁(𝑁𝐹𝑃) = 0.0841,

and the SDT of the NFP is calculated as 𝑆𝐷𝑇𝑁𝐹𝑃 = 31.30 seconds.

Table 4-2: Optimal configuration values, using complete search

 HI CPI Net. Delay M

𝑽𝑵𝑭𝟏 200 ms 50 ms 500 ms 2

𝑽𝑵𝑭𝟐 150 ms 210 ms 200 ms 4

𝑽𝑵𝑭𝟑 350 ms 50 ms 2000 ms 1

𝑽𝑵𝑭𝟒 300 ms 250 ms 100 ms 2

Table 4-3 shows the results of the method using the heuristic search. The cost for this

configuration is 𝐶(𝑁𝐹𝑃) = 0.0867 and the SDT of the NFP is 𝑆𝐷𝑇𝑁𝐹𝑃 = 31.45 seconds.

Table 4-3: Near-optimal configuration values, using heuristic search

 HI CPI Net. Delay M

𝑽𝑵𝑭𝟏 300 ms 50 ms 180 ms 2

𝑽𝑵𝑭𝟐 150 ms 210 ms 200 ms 4

𝑽𝑵𝑭𝟑 350 ms 50 ms 2000 ms 1

𝑽𝑵𝑭𝟒 250 ms 250 ms 100 ms 2

Comparing the output of the two implementations shows that the results with the complete and

heuristic searches are very close. The SDT with the heuristic search is only 0.5% different from the

86

SDT found by the complete search. The cost of the solution found with the heuristic search differs

only by 3.1% from the cost of the solution found with the complete search. The method with the

complete search results in slightly better cost and 𝑆𝐷𝑇.

We expected that with a higher number of VNFs, the execution time with the complete search

would increase exponentially. So, we experimented with the two implementations using different

numbers of VNFs in the NFP to benchmark the execution time and the accuracy of the heuristic

search. For this experiment, the VNFs and networking information are given in Table 4-4.

Table 4-4: VNFs and networking details for one scaling level of the NFP

 N 𝑨𝑭𝑹𝑽𝑵𝑭 (Per year) Min. HI (ms) Min. CpI (ms) 𝑨𝒗𝒏𝒇 CND1 (ms) CND2 (ms) CND3 (ms)

𝑽𝑵𝑭𝟏 4 2 100 20 0.99 30 100 300

𝑽𝑵𝑭𝟐 7 3 100 40 0.999 100 200 2000

𝑽𝑵𝑭𝟑 6 2 100 50 0.999 50 100 2000

𝑽𝑵𝑭𝟒 3 3 150 50 0.9999 100 500 3000

𝑽𝑵𝑭𝟓 7 2 100 40 0.999 50 180 500

𝑽𝑵𝑭𝟔 11 1 50 10 0.99 150 200 3500

𝑽𝑵𝑭𝟕 4 4 100 100 0.999 40 100 2000

𝑽𝑵𝑭𝟖 6 3 100 50 0.9999 40 100 2000

𝑽𝑵𝑭𝟗 6 1 100 40 0.9999 50 150 600

𝑽𝑵𝑭𝟏𝟎 8 2 50 30 0.999 10 200 3000

𝑽𝑵𝑭𝟏𝟏 5 2 50 20 0.999 40 100 2500

𝑽𝑵𝑭𝟏𝟐 6 1 50 50 0.999 40 150 2500

𝑽𝑵𝑭𝟏𝟑 7 2 50 20 0.99 30 100 500

𝑽𝑵𝑭𝟏𝟒 2 5 100 40 0.9 10 200 2000

𝑽𝑵𝑭𝟏𝟓 6 2 50 30 0.999 10 100 2000

𝑽𝑵𝑭𝟏𝟔 3 1 100 20 0.9999 10 200 1000

𝑽𝑵𝑭𝟏𝟕 7 1 50 10 0.999 20 200 500

𝑽𝑵𝑭𝟏𝟖 9 1 50 10 0.9999 10 180 1500

𝑽𝑵𝑭𝟏𝟗 4 2 50 10 0.999 30 100 2000

𝑽𝑵𝑭𝟐𝟎 10 1 50 10 0.9999 10 150 2000

87

Table 4-5 shows the execution times for each implementation, the number of explored

combinations, as well as their outputs for the cost and 𝑆𝐷𝑇 for the NFP.

Table 4-5: Optimal/near-optimal configuration values, using both implementations

Number of

VNFs (Y)

Algorithm Execution

time (ms)

Number of

combinations

Cost SDT

2
Complete 3 8,786 0.0613 30.9

Heuristic 1 135 0.0617 31.49

3
Complete 38 237775 0.0876 31.47

Heuristic 16 8,026 0.0881 31.52

4
Complete 332 12,392,801 0.0979 31.44

Heuristic 83 398952 0.0979 31.44

5
Complete 21,719 775,919,707 0.1339 31.3

Heuristic 871 6313688 0.1339 31.3

6
Complete N/A N/A N/A N/A

Heuristic 4,905 42,686,536 0.1593 31.5

7
Complete N/A N/A N/A N/A

Heuristic 16,034 75,285,642 0.1976 31.48

8
Complete N/A N/A N/A N/A

Heuristic 29,849 78,694,978 0.2528 31.41

12
Complete N/A N/A N/A N/A

Heuristic 196,268 368,862,956 0.6578 31.52

16
Complete N/A N/A N/A N/A

Heuristic 285,335 490,957,472 0.998 31.48

20
Complete N/A N/A N/A N/A

Heuristic 623,901 1,123,860,704 1.6422 31.52

As Table 4-5 shows, with the complete search, the execution time and the number of

combinations increase drastically as the number of VNFs for the NFP increases, and for 𝑌 ≥ 6, we

could not complete the execution anymore. However, the heuristic search is able to find a near-

optimal solution even for an NFP with 20 different VNFs. As shown in Table 4-4, the NFP with 20

VNFs includes 121 (active) VNF instances in total and can be considered a large NFP.

Figure 4-10 and Figure 4-11 compare the 𝑆𝐷𝑇s and the costs. The results are almost the same

for the two implementations for cases in which the complete search was able to find the optimal

solution. The SDT with the heuristic search differs on average by 0.52% from the SDT with the

88

complete search with a standard deviation of 0.81, while the cost calculated with the heuristic search

differs on average by 0.28% from the cost calculated with the complete search with a standard

deviation of 0.28.

Figure 4-10: Optimal and near-optimal SDT comparison

Figure 4-11: Optimal and near-optimal cost comparison

10

15

20

25

30

35

2 3 4 5 6 7 8 12 16 20

SD
T

(s
ec

o
n

d
)

Number of VNFs

Complete Search Heuristic Search

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000
1.4000
1.6000
1.8000

2 3 4 5 6 7 8 12 16 20

C
o

st

Number of VNFs

Complete Search Heuristic Search

89

In addition, Figure 4-10 shows that the heuristic search meets the ASDT requirement (i.e.,

ASDT = 31.536 s per year) for all NFPs of different sizes. Also, Figure 4-11 shows that the

networking cost increases as the number of VNFs increases because more VNFs should checkpoint

their states and send health-check messages. This was also an expected result according to equation

(74). It is noteworthy that although the cost growth due to the VNF number increase is inevitable,

our approach minimizes the cost as much as possible.

4.9 Summary and Conclusion

In this chapter, we defined the service disruption time and the service data disruption for an NS

functionality. Based on these definitions and the definition of availability, we stated the problem of

service availability and continuity requirements satisfaction for NSs. Through our analysis, we

showed that although redundancy is necessary to meet service availability and continuity

requirements, it is not enough. Therefore, we explored parameters affecting the outage time and

service disruption of VNFs and NSs.

We proposed an approach that includes a method of mapping the required availability,

acceptable service disruption time, and acceptable service data disruption expressed by a tenant for

different functionalities of the NS to configuration parameters. This method guarantees meeting

these tenant requirements and minimizes the cost of networking and computing resources at the same

time. This mapping method relies on several other methods we proposed to calculate the availability

and failure rate of VNF instances, availability and service disruption of VNFs, and NFPs availability,

service disruption, and resource cost. The proposed approach takes the availability characteristics of

the infrastructure resources and VNF applications for a given NsDF. Then it determines the optimal

health-check and checkpointing intervals of VNFs, calculates the required redundancy of VNFs and

90

VLs, and selects the optimal network and host options for the VNFs of the NS. This approach also

considers the elasticity of services in the NFV environment. This approach generates the

configuration parameters considering the worst-case scenarios for VNFs placement, VNFs failures,

and VLs availability. Thus, it guarantees the satisfaction of the service availability and continuity

requirements of the NS on the given infrastructure and for all the scaling levels of the VNFs and the

NS.

In this chapter, we also evaluated the time complexity of the complete search, which is used to

determine the optimal health-check and checkpointing intervals and minimize the networking cost.

We showed that the complete search has an exponential time complexity in terms of the number of

VNFs of the NS. Then, we proposed a heuristic search to make the approach applicable for large

NSs. The heuristic search finds a near-optimal solution and reduces the time complexity to quadratic

time. To compare the accuracy and the time complexity of the complete and the heuristic search, we

conducted experiments with an implementation of the design-time approach with these two search

strategies. The experiments showed that the proposed heuristic search reduces the execution time

significantly while its outputs are very close to those generated using the complete search. Thus,

making our method applicable for NSs with large numbers of VNFs.

91

Chapter 5

5. Runtime Adaptation Approach

In this chapter, we first define the problem we aim to solve. Next, we present our proposed

adaptation framework for adjusting NSs at runtime to maintain the fulfillment of service availability

and continuity requirements. We also present an ML model creation method that is used within the

adaptation framework.

5.1 Problem Definition

5.1.1 Need for Runtime Adaptation

As discussed in Chapter 4, the service availability and continuity of an NS depend (partially)

on the availability and failure rate of the utilized resources (e.g., hosts, storage, and network) and

the bandwidth and latency of the available networking options for VNFs checkpointing. When the

NS is designed to fulfill given service availability and continuity requirements, it can do so on

instantiation as long as these availability characteristics of the resources (availability constraints)

hold at runtime.

However, the resources provided to VNFs and VLs can change at runtime due to multiple

reasons, such as hardware/software upgrades, migration, and failovers. Although the NFVI is

expected to respect the availability constraints when a planned change (e.g., upgrade) is performed,

unpredictable changes may cause violation of the availability constraints at runtime. For example,

92

the NFVI usually includes multiple types/options of hosts and networks that VNFs and VLs can

utilize [83]. At runtime, the type of the host selected by the design-time approach for a VNF may

change if the VNF fails and gets respawned on a different type of host (e.g., if all computing

resources of the selected type are already consumed).

In addition, resource availability and failure rate are estimated at design time, which means the

actual availability and/or failure rate of resources may differ at runtime. For example, the failure rate

of a host changes over time and increases as the host ages. Therefore, the design-time configuration

generation process uses the estimate of an average value for host failure rate for the NS lifetime.

If the actual availability or failure rate of some resources at runtime differs from the estimated

value at design time, a violation of the availability constraints occurs. Therefore, the NS may no

longer fulfill its availability and/or continuity requirements at runtime with the configuration

generated at design time. Then, the NS should be adapted by adjusting its configuration parameters

to compensate for availability constraints violations.

Resource changes can also improve the availability of VNFs and/or VLs. For example, a

failover to resources of better characteristics may happen, or no failure may occur for a long time,

reducing the failure rate of resources below the estimated rate. In these cases, we may be able to

adjust the NS configuration so that the resource cost is decreased (e.g., reduce the number of standby

instances) while still fulfilling the service availability and continuity requirements.

Therefore, we need a runtime adaptation solution to reconfigure and adjust the NS during its

lifetime if:

93

• A change at runtime causes an availability constraint violation. In this case, the goal of

the adjustment is to compensate for these changes so that the service availability and

continuity requirements are always met.

• A change at runtime improves the availability of resources. In this case, we adjust the

NS to reduce resource costs (if possible).

5.1.2 Determining Runtime Adjustments

The analytical methods of the design-time approach can be used to determine the new values

for the configurable parameters of the NS when a resource characteristic changes at runtime.

However, the execution time of this approach to determine the optimal configuration values for

VNFs may not be tolerable at runtime, particularly for large NSs with stringent availability

requirements. As shown previously (see Sub-Section 4.8.4), this time increases as the number of

VNFs increases, even using the proposed heuristic (Alg. 4-1). For example, Table 4-5 shows that

the execution time to determine the optimal configuration for the largest NS of the experiment is

about 10 minutes if we use the heuristic search. Therefore, if we need to adjust the NS as soon as

the change is detected (e.g., ultra-high availability is required), the runtime adaptation needs

lightweight methods to determine the required adjustments for VNFs.

Calculating the availability and the number of required standby instances for VLs using the

analytical method of the design-time approach has constant time complexity. Therefore, this

analytical method can be used for runtime adaptation of NSs of any size.

94

5.2 Runtime Adaptation Framework

The runtime adaptation framework consists of a procedure supported by actors in the NFV

reference architecture and an Adaptation Module (AM). In this sub-section, we discuss this

procedure, the configurable parameters to adapt at runtime, and propose a placement for the AM in

the NFV reference architecture. We also discuss the roles of the actors in the NFV reference

architecture with respect to the runtime adaptation.

5.2.1 Configurable Parameters

 At runtime, we can adjust the health-check interval, the checkpointing interval, and the number

of standby instances to compensate for availability constraint violations or to reduce resource

consumption. As in Chapter 4, the assumption is that at the VNF application level, health-checks are

performed, and their intervals are configurable. Also, checkpointing is performed at the VNF

application level, but the checkpointing intervals may or may not be configurable. In addition, the

role of the VNF instances, i.e., whether an instance is active or standby, can be set at the VNF

application level, and accordingly, the external VL instances can also be active or standby. The

MANO functional blocks are not aware of these application-level parameters and roles.

Although the number of standby instances for the VNFs or VLs is not visible to the MANO, it

is aware of the total number of instances (i.e., the summation of all the active and standby instances).

The (total) number of instances of VNFs and VLs for each NS scaling level is (pre)defined in the

NsDF at design time [9]. At runtime, the number of VNF and VL instances of a running NS instance

can change by scaling according to these predefined numbers of the deployed NsDF or by switching

the NS instance to another more appropriate NsDF. In either case, the MANO only changes the

95

number of instances according to the applicable NsDF. The OSS or NFVO can trigger the NS scaling

or NsDF change. To provide the total number of instances in an NsDF for each scaling level, the

required number of active and standby instances are determined at the NS design time by the NS

designer.

For some availability constraint violations, scaling up in the same NsDF can provide the

required number of standby instances to compensate for the violation. The purpose of scaling, in this

case, is to increase the availability of the NS by adding more standby instances as opposed to increase

the number of active instances to increase the performance. For example, let us assume an NS with

two VNFs and three scaling levels as shown in Table 5-1. To meet the performance expectations at

different scaling levels, the number of required active instances of each VNF for this NS is set in the

NsDF, as shown in Table 5-1.

Table 5-1: An NsDF to meet a certain performance expectation

 VNF1 VNF2

Scaling Level 1 1 5

Scaling Level 2 2 8

Scaling Level 3 3 10

Furthermore, let us assume that to fulfill an availability expectation, the NS designer has

determined the number of required standby instances for each VNF at each scaling level, using the

analytical methods of the design-time approach. Therefore, the NsDF is updated (or a new one is

created) by adding the required number of standby instances, as shown in Table 5-2.

96

Table 5-2: The updated NsDF (from Table 5-1) to meet an availability expectation

 VNF1 VNF2

 Active Standby Total Active Standby Total

Scaling Level 1 1 1 2 5 2 7

Scaling Level 2 2 1 3 8 3 11

Scaling Level 3 3 2 5 10 4 14

For this example, if there are no runtime changes and adaptation at any scaling level, the number

of active and standby instances are always configured according to Table 5-2. Let us assume that the

NS is running at scaling level 2, and an availability constraint violation happens. To compensate for

this constraint violation, the AM may determine that the number of standby instances of VNF1

should be increased by one, while it should be increased by two for VNF2. Therefore, in total, VNF1

needs four instances, and VNF2 needs thirteen instances. In this case, scaling up to level 3 can

provide the required number of instances (and more) for both VNFs. Note that the role of VNF

instances can be set outside of the scope of the NFVO.

There are also cases where predefined scaling levels of an NsDF cannot provide the required

number of instances at runtime to compensate for availability constraints violations. For example,

consider the NS of the previous example at scaling level 2 again. Assume an availability constraint

violation happens, and the AM determines that four more standby instances should be added to

VNF2. So, in total, fifteen instances of VNF2 are needed. The current NsDF does not support this.

This could also be the case where the NS is in the highest scaling level, and we need to add more

standby instances, but there is no higher scaling level to switch to. For these cases, different NsDFs

can be designed at design time and onboarded for the given NS. These NsDFs differ in the number

of required (standby) instances for the same scaling levels of the NS and the underlying availability

constraints implied towards the virtual resources. For instance, the NS designer may create one more

97

NsDFs for the previous example, as shown in Table 5-3. Note that switching to this NsDF would

also solve the previous case. In fact, creating multiple NsDFs is a better solution since different

NsDFs can be created to support all the possible changes at runtime with the exact required number

of instances without resource overprovisioning.

For a given NS, the designer can provide multiple NsDFs to fulfill the same service availability

and continuity requirements, if needed. The NsDFs will have different numbers of (standby)

instances for the same scaling levels as illustrated in Table 5-2 and Table 5-3 by considering various

possible infrastructure resource characteristics. In other words, by considering different availability

constraints.

Table 5-3: The second NsDF for resources with lower availability

 VNF1 VNF2

 Active Standby Total Active Standby Total

Scaling Level 1 1 2 3 5 5 10

Scaling Level 2 2 2 4 8 6 14

Scaling Level 3 3 4 7 10 8 18

Runtime adjustment may also be possible to avoid overprovisioning resources while meeting

the same service availability and continuity requirements. Particularly when resources were assigned

to compensate for availability constraints violations, and they turn into excess as no failure occurs

for a prolonged time, thus, improving the availability of resources. For example, assume that the NS

of the previous example was switched to the NsDF of Table 5-3 to compensate for a change.

Subsequent change(s) improve(s) the NS availability so that switching back to the original NsDF of

Table 5-2 can fulfill again the requirements.

98

5.2.2 Runtime Adaptation Procedure

To perform the runtime adaptation, we need to perform the following steps:

• Step 1: Monitor changes (including resource changes, scaling, and failures) and

(potential) violations of availability constraints.

• Step 2: Notify the AM about a change or (potential) violation.

• Step 3: Determine new values for adjustable configuration parameters if there was a

change or there was no failure for a long period. Note that new values may be the same

as current values, meaning, there is no need for adjustment.

• Step 4: Perform the reconfiguration as needed.

Monitoring of changes and events is usually performed continuously across the whole system

in the NFV architecture. However, MANO does not monitor availability constraints violations since

this is not a functionality required by the current specifications. On the other hand, the AM is aware

of the availability constraints and can determine whether a reported change causes any violation.

Therefore, any detected change/state change of the resources should be reported to the AM. If

a change is reported of there was no change (including failures) for a period, the AM evaluates the

service availability and continuity of the NS. Then, the AM can determine the required adjustments

and apply the reconfiguration. To determine the new values for these configurable parameters when

a resource characteristic changes at runtime, the AM can use the analytical methods proposed for

the design-time approach while taking into account the current values for the infrastructure resource

characteristics. In this chapter, we also suggest other lightweight methods to determine the runtime

adjustments.

99

5.2.3 Runtime Adaptation Module Placement

As mentioned earlier, the AM can use the analytical methods of the design-time approach to

determine the required adjustments. Therefore, it needs the same inputs as the design-time approach,

such as the service availability and continuity requirements to be fulfilled, the current availability

and failure rate of different types of resources and VNFC applications. In addition, the AM should

know the number of active and standby instances of VNFs and VLs at different NS scaling levels.

To determine a good placement for the AM in the NFV reference architecture, we should first

define what this AM should be capable of. Steps 1 and 2 of the adaptation procedure (see Sub-

Section 5.2.2) are performed by the entities of the NFV architecture. To perform steps 3 and 4 of the

adaptation procedure, the AM should be able to perform the following activities.

• Activity 1: Analyze the NS availability and service disruption and determine any

required adjustments, whether there is an availability constraint violation or reducing

resource consumption is possible.

• Activity 2: Request for/perform NS scaling/NsDF change operations as needed. To do

so, the AM needs to be aware of the number of active and standby instances for each

scaling level for each NsDF. This information is generated at design time and can be

given to the AM at NS deployment.

• Activity 3: Request for/perform health-check and/or checkpointing interval

reconfiguration if needed. The application-level configuration of VNFs can be

performed through their EMs, and the MANO is unaware of these configurations.

• Activity 4: Configure active and standby roles of VNFs and VLs if needed. Like

Activity 3, role assignments can be performed through EMs.

100

The first and the second activities are at the NS level. Therefore, the NFVO and the OSS are

suitable candidates to perform these two activities. Between the NFVO and the OSS, the OSS is a

better candidate since the OSS is aware of the application-level configurations of VNFs and has

direct access to the EMs according to the NFV reference architecture. Therefore, we consider the

AM as part of or placed within the OSS.

5.2.4 Notification and Adaptation Operation Flows

Considering the first two steps of the four-step runtime adaptation procedure (see Sub-Section

5.2.2), the first step - monitoring changes in the NFVI resources - can be performed by the VIM

since it is responsible for managing the resources provided to VNFs and VLs. If a change is detected

by the VIM at the hardware or virtualization layers, it can also determine the impacted virtual

resources (i.e., VLs or the virtual resources assigned to VNFs).

For the second step, we need a notification flow from the VIM to the AM placed as part of the

OSS. For changes that impact virtual resources assigned to VNFs (e.g., VMs and VLs

interconnecting VNF components within a VNF instance), the notification flow is depicted in Figure

5-1. In this case, the VIM reports the change to the corresponding VNFM by sending a notification

if the VNFM has subscribed for such notifications. This notification includes the impacted

resource(s) and the change. Based on the impacted resource(s), the VNFM should identify the

VNF(s) impacted by the change and report them together with the change to the NFVO by sending

a notification. Then, the NFVO can determine the impacted NS(s) and report them and the change

to the AM, which in turn determines for each impacted NS if adjustments are necessary.

101

Figure 5-1: Notification flow for changes that impact VNFs

Figure 5-2 shows the notification flow for changes that impact VLs at the NS level. In this case,

the VIM reports the change and the impacted VLs directly to the NFVO, which in turn determines

the NS(s) impacted and notifies the AM.

Figure 5-2: Notification flow for changes that impact NS-level VLs

Failures of VNFs and their internal VLs can also be monitored and reported by the EM directly

to the AM. Also, hardware resource failures can be monitored by the OSS itself.

VIM VNFM NFVO Adaptation

Module

(OSS)
1- A change is

detected

3- Determine the

impacted VNFs

5- Determine the

impacted NSs

2- Detected change,

impacted VMs,

and/or internal VLs

4- The change and the

impacted VNFs

6- The change and the

impacted NSs

VIM NFVO Adaptation

Module

(OSS)1- A change is detected

3- Determine the impacted NSs

2- Detected change and

impacted VLs

4- The change and the

impacted NSs

102

In any case, the AM collects the information about failures and estimates the actual failure rate

of infrastructure resources, VNFs, and VLs. Thus, at any point in time, the AM is able to evaluate

whether the availability of an NS and/or its constituents is unchanged, deteriorated, or improved.

Once the AM detects a change, it determines the applicable new values for the adjustable

configuration parameters according to Step 3 of the adaptation procedure. It compares these new

values with current ones to identify any required adjustments. Then, according to Step 4 of the

adaptation procedure, if changing the scaling level or the NsDF is needed, the AM sends a request

to the NFVO, as shown in Figure 5-3. The NFVO applies the requested scaling level and/or

deployment flavor and reports the successful change to the OSS. Based on the new scaling level

and/or NsDF, new VNF and/or VL instances may be instantiated, which should have a standby role.

Accordingly, the AM requests the EM of each VNF to assign the standby role to the newly

instantiated VNFs and/or their newly instantiated external VLs. Once the roles are assigned, the AM

may request from the EMs to reconfigure the HI and CpI of their managed VNFs.

Figure 5-3: Steps for configuration parameters adjustment

EMNFVOAdaptation

Module (OSS)

1- Determine the

required adjustments

3- Activate the requested scaling level/NsDF

2- Scaling level and/or

NsDF change

5- Request to assign role of VNFs and VLs

4- Scaling level/NsDF

changed successfully

7- Roles assigned successfully

8- Reconfigure HI and CpI of managed VNFs

10- Reconfiguration performed successfully

6- Configure the role of

VNFs and VLs

9- Reconfigure HI and CpI

103

Figure 5-4 shows the notification and adjustment paths in the NFV reference architecture. Green

arrows indicate the path for change (including failure) notifications initiated by the VIM up to the

AM. Red arrows show the cases where the OSS monitors the hardware resource failures and the EM

monitors VNF and VL failures. Arrows in blue show the communications paths for the adjustment

of configuration parameters.

Figure 5-4: Notification and adjustment flows in the NFV reference architecture

5.2.5 Compliance with the Standards

The communication and messaging between different entities of the NFV architecture are

performed through the reference points shown in Figure 5-4. Resource monitoring, in general, is

104

considered in the ETSI NFVI specifications to be supported by the MANO, and the required

information elements for monitoring are also proposed in the specifications. So, the MANO can

monitor the resource changes and report them to the OSS. To do so, the VIM monitors the resource

changes and notifies the NFVO through the Or-Vi reference point and the VNFM through the Vi-

Vnfm reference point if they have subscribed for a notification [84, 85]. The information element

that carries the information of change notification is VirtualisedResourceChangeNotification. This

information element can report a state change, e.g., failure or upcoming upgrade.

To receive the change notifications impacting a VL, the NFVO should subscribe to the VIM.

The virtualisedResourceId and the virtualisedResourceGroupId attributes of

VirtualisedResourceChangeNotification information element indicate the impacted VL, and the

changedResourceData attribute of this information element provides the change information. In case

of a change impacting a VNF, the VIM notifies the VNFM (which should have subscribed for) about

the impacted virtual resources and the change. Similarly, the VIM can use the same information

element through the Vi-Vnfm reference point. Then, the VNFM determines the impacted VNFs and

notifies the NFVO about the impacted VNFs and the change if the NFVO has subscribed for them.

The AlarmNotification information element can be used to send an alarm from the VNFM to the

NFVO [86]. This information element has only one attribute (i.e., alarm), and this attribute involves

multiple sub-attributes, including the impacted VNF instance ID (i.e., managedObjectId) and alarm

details (i.e., faultDetails). When the VNFM or the VIM notifies the NFVO, it determines the

impacted NS(s) and notifies the AM, which is part of the OSS, if the OSS has subscribed for alarms

of the impacted NS(s). Similarly, the NFVO can use the AlarmNotification information element

through the Os-Ma reference point [87].

105

Sending a request from the OSS to the NFVO to change NS scaling level or switch the NsDF

is supported by the specifications as part of the NS lifecycle management [87]. The information

element which can be used for the NsDF switch is ChangeNsFlavourData. The communication

between the OSS and EMs is not within the scope of the NFV specifications. However, VNF

configurations requested by the AM are part of the activities supported by the OSS and EMs [14].

5.3 Machine Learning Models for Runtime Adaptation

For large NSs, at runtime we need to determine the required adjustments as quickly as possible

after an availability constraint violation. One good solution to replace the time-complex

algorithms/methods of the design-time approach is creating ML models to determine VNFs

adjustments. The AM can use a combination of a lightweight analytical method for VLs redundancy

adjustment and ML model(s) to determine the required adjustments for VNFs. Using an ML model

to make a prediction has constant time complexity, and usually, it takes only a few milliseconds.

In the following sub-sections, we discuss what ML approach can be used for our problem. Then,

we present a model creation method for a case study.

5.3.1 Problem Formulation

The first step of applying ML to networking problems is formulating the problem, which means

selecting the ML approach and algorithm that can solve the problem [24]. We need ML models to

predict numerical values (for VNFs configurations). The models should be able to determine the

adjustments at any point of the NS lifetime. Different ML approaches are introduced in Chapter 2.

Unsupervised ML cannot be used since the nature of our problem is not pattern recognition or data

structuring. Reinforcement ML also cannot be used because it requires a training phase at runtime.

106

However, we need a solution that can make a good prediction even if a failure happens immediately

after the NS is instantiated. Supervised ML can replace the heavy analytical methods of the design-

time approach with regression models. Supervised models can be constructed at design time and

used to predict numerical values as soon as the NS is instantiated. DNN is one of the most powerful

algorithms for solving regression problems and creating DL models [22, 23].

The details of our proposed DL models creation method for runtime adaptation are explained

on a case study. So, this case study is introduced first, followed by the description of constructing

the models.

5.3.2 Case Study

Figure 5-5 shows a sample NS with three VNFs and four VLs [8]. It has three network

forwarding paths (NFP), which can be mapped to three NS functionalities. VNF1 and VNF3 are

shared by all NFPs, while VNF2 serves only NFP1. All NFPs share VL1 and VL4. NFP1 and NFP2

share VL2, and VL3 is only used by NFP3.

Figure 5-5: Sample NS with three VNFs and four VLs [8]

107

Figure 5-6 shows the VNFCs and IntVLs for the sample NS of Figure 5-5 [8]. VNF1 and VNF3

each consist of only one VNFC. However, VNF2 has three VNFCs and one IntVL.

Figure 5-6: VNFCs and IntVLs of the sample NS [8]

We assume this example NS is designed to satisfy the following requirements for each of its

functionalities:

Table 5-4: Functional and non-functional requirements of the sample NS

 Maximum service

data rate

Service availability and continuity

requirements

Functionality1

(Mapped to NFP1)

1 Mbps ASDT = 31.55 seconds per year

Functionality2

(Mapped to NFP2)

10 Mbps RA = 0.999999 of a year

Functionality3

(Mapped to NFP3)
1 Mbps

RA = 0.99999 of a year

ASDD = 1 Mb per failure

108

This information is available as input for creating the DL models for the runtime adjustments

together with details of the NS, including the NFPs, VNFs, VLs, mapping of functionalities to NFPs,

NS scaling levels, and the maximum service data rate of each NFP. Some of this information is part

of the preliminary NsDF. The NS scaling levels of the NsDF are shown in Table 5-5.

Table 5-5: Sample NS scaling levels

 Number of

Instances for VNF1

Number of

Instances for VNF2

Number of

Instances for VNF3

Nsl1 1 4 5

Nsl2 2 7 8

Nsl3 3 10 12

Information about the VNFs is available in the form of the VnfDF and characterization of the

VNF application and its internal reliability features. As part of the VnfDFs, the VNFCs, IntVLs, and

VNF scaling levels of each VNF are as follows:

Table 5-6: VNF scaling levels, VNFCs, and IntVLs of the VNFs of the sample NS

 VNFCs IntVLs VNF scaling levels

VNF1 ✓ VNF1-VNFC1 --

✓ VNF1-SL1

➢ 2 * VNF1-VNFC1

✓ VNF1-SL2

➢ 3 * VNF1-VNFC1

VNF2

✓ VNF2-VNFC1

✓ VNF2-VNFC2

✓ VNF2-VNFC3

✓ VNF2-IntVL1

✓ VNF2-SL1

➢ 1 * VNF2-VNFC1

➢ 2 * VNF2-VNFC2

➢ 1 * VNF2-VNFC3

➢ 1* VNF2-IntVL1

✓ VNF2-SL2

➢ 2 * VNF2-VNFC1

➢ 3 * VNF2-VNFC2

➢ 3 * VNF2-VNFC3

➢ 1* VNF2-IntVL1

VNF3 ✓ VNF3-VNFC1 --

✓ VNF3-SL1

➢ 2 * VNF3-VNFC1

✓ VNF3-SL2

➢ 3 * VNF3-VNFC1

109

The application-level information of each VNF of the example NS is provided in Table 5-7.

Table 5-7: Application-level information of each VNF of the sample NS

 VNF1 VNF2 VNF3

Minimum health-check interval (ms) 20 50 20

Health-check interval increment step (ms) 20 50 20

Failover time (ms) 10 10 10

Takeover time (ms) 5 10 5

Checkpoint size (bit) 10,240 10,240 20,480

Checkpoint preparation time (ms) 5 15 10

Checkpoint commitment time (ms) 5 10 5

Checkpointing method is synchronous Yes Yes No

Checkpointing interval is constant Yes Yes Yes

Checkpointing interval is configurable Yes No Yes

Minimum checkpointing interval (ms) 20 50 20

Checkpointing interval increment step (ms) 20 N/A 10

For the VNFC applications of each VNF, the availability and Average Failure Rate (AFR) are:

Table 5-8: Availability and failure rate of VNFC applications

 VNFC Availability AFR

VNF1 VNF1-VNFC1 0.99999 1

VNF2

VNF2-VNFC1 0.9999 1.5

VNF2-VNFC2 0.9995 2

VNF2-VNFC3 0.9995 2

VNF3 VNF3-VNFC1 0.99999 1

The maximum availability and failure rate of VLs (including IntVLs) that the infrastructure can

provide are 0.9995 of availability and one failure per year. Finally, the infrastructure available for

the deployment is characterized by the different hosting options in Table 5-9 and the various network

options in Table 5-10.

110

Table 5-9: Hosting options available for the sample NS

 Availability AFR Cost coefficient

Host option 1 0.999 2 0.85

Host option 2 0.9995 1.5 0.9

Host option 3 0.9999 1 1

Table 5-10: Networking options available for the sample NS

 Latency (ms) Max bandwidth (bps)

Network option 1 3 20,971,520

Network option 2 10 15,728,640

Network option 3 50 15,728,640

5.3.3 Deep Learning Models for the Sample Network Service

In this sub-section, we illustrate the creation of DL models for the sample NS introduced previously.

In the next sub-section, we present a generic method for the creation of these models for any given

NS.

5.3.3.1 Training Dataset and Feature Selection

To train a DNN and create the DL model, we need a training dataset. Training data can be

collected from a real system or generated synthetically [25]. For our problem, DL models are needed

as soon as the NS is instantiated. So, they should be created at design time. Therefore, no data can

be collected from a running system since the NS is not deployed yet. However, we can generate the

training dataset using our design-time methods. In fact, our purpose of creating DL models is to

mimic the behavior of the design-time approach at runtime while taking into account the current

characteristics of the resources.

111

To generate the training dataset, random values can be generated for the constrained

characteristics of the infrastructure, that is, for the host availability and failure rates, the VL

availability, and the network latency and bandwidth. Then, for each set of values (i.e., input features

value), the corresponding adjustable configuration parameters values (i.e., outputs/labels) are

determined using the design-time approach to meet the service availability and continuity

requirements.

Once we have generated the training dataset, we should select the data features and preprocess

the data. Considering the input and output parameters of the design-time approach, the data structure

shown in Table 5-11 can be considered to determine the HI, the CpI, and the number of standby

instances (SB) for the VNFs of the example NS. These compose the output part of the data structure.

Input features considered for the training data structure are the NS scaling level, the AFR of each

VNF, the Network Latency (NL), and the Bandwidth (BW) of the network used for checkpointing

for each VNF. We do not include the availability of VNFs in this table because availability and AFR

convey the same information. The availability decreases if the AFR increases and vice versa. Having

correlated features does not improve the training and only slows it down. In addition, all other input

parameters of the design-time approach are constant at runtime (e.g., the service availability and

continuity requirements), and there is no need to include them in the input features. As an example,

one record of the training data is shown in Table 5-11.

Table 5-11: Structure of the training data to determine HI, CpI, and SB together

Features (Input) Output

NS

Level

VNF1

AFR

VNF2

AFR

VNF3

AFR

VNF1

NL

VNF2

NL

VNF3

NL

VNF1

BW

VNF2

BW

VNF3

BW

VNF1

HI

VNF2

HI

VNF3

HI

VNF1

CpI

VNF2

CpI

VNF3

CpI

VNF1

SB

VNF2

SB

VNF3

SB

Nsl1 1.85 12.5 3 3 50 50 22,649,242 15,728,640 15,728,640 660 600 1,780 700 50 490 2 3 1

112

As shown previously in the flowchart of Figure 4-9, to determine the number of standby

instances of a VNF, the HI of the VNF is first determined. Then, the VnfEA is calculated using the

VNFs failure rate and the HI. Finally, the number of standby instances is determined using the

VnfEA. In short, the number of standby instances of a VNF is determined based on the VNFs failure

rate and HI. But in the label structure of Table 5-11, both the HI and the SB are output parameters;

therefore, their dependency might not be learned properly by a DL model.

This logic of the analytical methods of the design-time approach is better reflected by

constructing two DL models. One model can determine the HI and CpI parameters using the data

structure of Table 5-12. Then, a second DL can determine the SB for each VNF using the data

structure shown in Table 5-13, where the input features are the AFRs of the VNFs together with the

HI values determined by the first DNN model. At runtime, these two DL models can be chained

through the HI values produced by the first model, which are used as input by the second model.

Table 5-12: Training data structure for the first DL to determine the HI and CpI values

Features (Input) Output

NS

Level

VNF1

AFR

VNF2

AFR

VNF3

AFR

VNF1

NL

VNF2

NL

VNF3

NL

VNF1

BW

VNF2

BW

VNF3

BW

VNF1

HI

VNF2

HI

VNF3

HI

VNF1

CpI

VNF2

CpI

VNF3

CpI

Nsl1 1.85 12.5 3 3 50 50 22,649,242 15,728,640 15,728,640 660 600 1,780 700 50 490

Table 5-13: Training data structure for the second DL to determine SB values

Features (Input) Output

NS

Level

VNF1

AFR

VNF2

AFR

VNF3

AFR

VNF1

HI

VNF2

HI

VNF3

HI

VNF1

SB

VNF2

SB

VNF3

SB

Nsl1 1.85 12.5 3 660 600 1,780 2 3 1

We expect that applying the domain knowledge and creating two DL models will result in more

accurate predictions since, this way, DL models learn the behavior of the design-time approach

113

better. We examine this in the following sub-section. Therefore, we generated a training dataset with

75000 records for the data structure of Table 5-11 and the data structures of Table 5-12 and Table

5-13. In the data generation, the following input feature changes were considered to simulate changes

in the infrastructure at runtime:

• Network delay and bandwidth

o To simulate switching to a different network option for single VNFs (as in case of a

single network interface failover) or all the VNFs using given options (as in case of

a router failover)

o To simulate link congestions and router overloads variations in the delay and

bandwidth (up to 50 %)

• Host availability and AFR

o To simulate failover/migration of single VNFCs or all the VNFCs to another type

o To simulate the change of AFR and availability (up to one 9 of availability) of single

VNFCs or all the VNFCs using the same host type

• VL availability and AFR (up to one 9 of availability) of VLs and IntVLs

For each input data, a random number of features were selected and changed according to the

above ranges. Once all the labels were generated using the design-time approach, the dataset was

pre-processed according to the general methodology, including encoding categorical data and data

scaling and normalization [23]. Then, all duplicates were removed to ensure no overlap between the

training and the validation sets. Finally, 10% of the remaining data was set aside for the model

validation.

114

5.3.3.2 Models Training and Validation

We used TensorFlow to create DL models [21]. TensorFlow is a free and open-source machine

learning library widely used for DL model construction [21]. First, we determined the hyper-

parameters value to train the DNNs. The goal of determining the hyper-parameters value is to

achieve fast learning while avoiding overfitting and underfitting [24]. We used the random search

method to determine the hyper-parameters value [88]. As a result, for DNNs of both data structures

introduced in the previous sub-section, we had:

• Number of hidden layers = 19

• Number of nodes for each hidden layer = 35

• Learning rate = 0.00003

• Regularization rate = 0.005

• Batch size = 256

The number of nodes in the output layer equals the output parameters of the data structure of

each DL model. In the case of the single-DL model, it is three times the number of VNFs in the NS.

In the case of the chained DL models, it is twice the number of VNFs for the first DL and the number

of VNFs in the NS for the second DL. The activation function selected for hidden layers was the

Rectified Linear Unit (ReLU) function, and the output layer used a linear function since the problem

is a regression [21]. The loss function was the mean squared error, while the optimizer is the ADAM

(adaptive moment estimation) algorithm [21].

115

We implemented a prototype of the chained-DL models in Python using the TensorFlow library.

The prototype was trained with the training portion (90%) of the dataset running for 20,000 epochs.

The trained prototype was checked using the validation portion (10%) of the dataset.

Table 5-14 shows the standard deviation for each output parameter predicted by the prototype

and the respective output value in the validation set (i.e., the optimal value determined by the

analytical models). Considering the average value of each output parameter in Table 5-14, the

corresponding standard deviation indicates a good prediction. Also, this table shows that DL models

could predict VNF2_CpI and VNF3_SB values with 100% accuracy. This usually happens if a

parameter's value is constant for all the records of the training (and validation) dataset. In this

example, the CpI of the VNF2 is not configurable (see Table 5-7). So, its value for all the records is

50 ms. Also, the number of standby instances for VNF1 for all the dataset records is the same (i.e.,

one instance) since the design time approach generated the same labels for different input values.

Table 5-14: Validation result of using chained DLs to predict new configuration values

Output Parameter Average Standard Deviation

VNF1_HI 1071.332 63.486

VNF1_CpI 882.395 26.925

VNF2_HI 698.098 35.447

VNF2_CpI 50.000 0.000

VNF3_HI 2564.516 119.640

VNF3_CpI 487.007 10.394

VNF1_SB 2.072 0.111

VNF2_SB 3.040 0.170

VNF3_SB 1.000 0.000

To compare the two proposed training data structures, we also generated a dataset with the

structure of Table 5-11 (i.e., a single DL model) and implemented a prototype using TensorFlow.

Again, 75 000 records were generated, 90% of which were used for training and 10% for validation.

116

The DNN was trained for 20,000 epochs. The validation results for the number of standbys are

shown in Table 5-15. As shown in this table, while the average values are the same for the two

solutions, the standard deviations are lower (better) for the chained models, as expected. Therefore,

in general, the single DL is more likely to result in service availability and continuity unsatisfaction

and/or more resource costs.

Table 5-15: Validation results for single and chained DLs

Average value

Standard deviation

 for single DNN for chained DNNs

VNF1 2.071905 0.35640833 0.11144095

VNF2 3.0402668 0.41133732 0.1699092

VNF3 1.0 0.13673876 0.0

5.3.4 A Generic Method for Deep Learning Models Construction

For each NS instance, specific runtime adjustment models are necessary as the models depend

on the NS design, the given infrastructure, and the service availability and continuity requirements.

The runtime adjustment models include two DL models for adjusting the configuration of the VNFs

if swift adaptation is required for a large NS. Otherwise, analytical models can be used instead.

In addition, runtime adjustment needs an analytical model for the redundancy adjustment of

VLs. Note that calculating the number of required standbys for VLs using the method of the design-

time approach has constant time complexity. Therefore, there is no need for an additional ML model

to replace it.

In the previous section, we discussed creating DL models for a sample NS. The following steps

can be followed to construct DL models for any given NS design to be deployed on a given

infrastructure to satisfy the given tenant’s availability and service continuity requirements.

117

1. Identify the input parameters (features) of the analytical methods that can change at runtime

and the range within which they can change.

o Input parameters are NS scaling level and AFR, NL, and BW of VNFs. But Some of

them may not change during runtime. For example, the bandwidth of a network link

can be guaranteed for the runtime (e.g., a dedicated physical network is used for the

link).

o If an input parameter does not change during runtime, its value is the same for all the

records of the training dataset. Therefore, it can be removed from the training data

structure.

2. Determine the configurable output parameters.

o Output parameters are HI, CpI, and SB of VNFs, but CpI may not be configurable

for a VNF.

o Unconfigurable output parameters should not be included in the training data

structure.

3. Generate two sets of input parameters with values randomly changing within their range.

o The first set includes the NS scaling level and AFR, NL, and BW of VNFs.

o The second set includes the NS scaling level and AFR and HI of VNFs.

4. Apply the generated sets of input parameters to their respective analytical methods to

generate the corresponding output parameters of the analytical models. In other words,

generate the labels to create the training set of each DL model.

o For the first set of input parameters, HI and CpI of VNFs are generated.

o For the second set of input parameters, SB for VNFs is generated.

118

o If the value of an output parameter is the same for all the records, it is better to be

removed from the data structure.

5. Preprocess the training sets (e.g., scaling, normalization, etc.) and eliminate duplicates.

6. Split each set into training and validation sets.

o Usually, 80-90% of the records are used for training, and the remaining 10-20% are

used for validation.

7. Determine the DNNs architecture (the number of hidden layers and their nodes).

o The random search method can be used.

8. Determine other hyper-parameters values, including the learning rate, regularization rate, and

batch size.

o The random search method can be used to determine the values.

o The activation function for hidden layers is the Rectified Linear Unit (ReLU) function

o The output layer uses a linear function.

o The loss function is the mean squared error

o The optimizer is the ADAM (adaptive moment estimation).

9. Train the two DNNs by the training datasets and save the respective DL models.

o If there is a divergence/very slow convergence while training a model, meaning the

learning loss during training is increasing/very slowly decreasing, the parameters in

steps 6 and 7 need to be tuned.

10. Apply the validation datasets to the respective trained DL models to validate the models.

o The result of a model is unsuccessful if the model predictions diverge unacceptably

from the values of output parameters in the validation dataset.

119

o In this case, the models need to be changed/refined, starting with changing the

parameter determined in steps 6 and 7.

5.4 Summary and Conclusion

In this chapter, we proposed a runtime adaptation framework for adjusting NS configuration at

runtime to maintain the satisfaction of the service availability and continuity requirements when a

change happens in resources used by the NS. This framework includes an adaptation module that is

part of the OSS and interacts with other entities of the NFV architecture. It receives change and

failure notifications from the MANO and the EM and determines the required adjustments. Then, it

requests for VNFs and the NS reconfiguration.

Resource changes may deteriorate the service availability and continuity of the NS at runtime.

The runtime adaptation framework reacts to these changes to compensate for availability constraints

violations. Also, resource changes may improve the service availability and continuity of the NS at

runtime. In these cases, the framework adjusts the NS to reduce resource consumption (if possible)

while fulfilling the service availability and continuity requirements.

A runtime adaptation procedure supported by change notification and adaptation operation

flows was also proposed in this chapter. We showed how functional blocks of the MANO, the EM,

and the OSS could work together to notify the adaptation module about the changes and failures and

reconfigure the NS. We showed that the proposed framework complies with the ETSI NFV

specifications.

In this chapter, we also proposed a method for constructing machine learning models for

runtime adaptation. The adaptation module can use these models to determine the required

120

adjustments at runtime instead of the analytical methods, especially for large NSs. We showed that

deep learning among others is the machine learning approach which can solve this problem. We also

proposed the data structure for training datasets through an analysis using a sample NS and a

prototype for model construction.

In the next chapter, we present a proof of concept, including prototypes of our design-time and

runtime approaches and their application in an NFV cloud environment to demonstrate the feasibility

of our solutions. We also present the result of multiple experiments performed with two case studies

and different service availability and continuity requirements.

121

Chapter 6

6. Prototypes, Testbed, and Experiments

We implemented prototypes of our approaches and performed experiments with two case

studies to demonstrate the feasibility of our solutions. In this chapter, we first introduce the

objectives of the experiments. We next present our prototypes, the case studies and the testbed

prepared for the experiments. We also present the test scenarios and discuss the results of the

experiments.

6.1 Objectives of Experiments

The main objectives of our experiments are:

1. Demonstrating the feasibility of the proposed solutions.

2. Evaluating whether the service availability and continuity requirements are satisfied for

the case studies when the design-time approach configures the NS and the availability

characteristics of resources at runtime do not deteriorate from values were estimated at

design time.

3. Evaluating whether the same service availability and continuity requirements for the NS

are fulfilled at runtime when availability constraint violations happen, and the runtime

adaptation approach is used to compensate for those violations.

122

As we will explain in this chapter, to evaluate the feasibility of our proposed solutions, we have

prepared prototypes of our approaches, built case studies (i.e., NSs), and created an NFV cloud

environment to perform experiments. To evaluate the fulfillment of the service availability and

continuity requirements of NSs using our design-time and runtime approaches, we have conducted

multiple experiments to compare the actual availability and service disruption of deployed NSs in a

given period with their required service availability and acceptable service disruption.

6.2 Prototypes

6.2.1 Design-time Approach

We developed a prototype of the design-time approach in Java. This prototype reads the input

parameters from a MySQL database. Input parameters include the following data:

• NS information

o List of the VNFs and VLs of the NS

o NS scaling levels

o NS functionality mappings to NFPs

o The service data rate of NFPs

o VNFs and VLs of each NFP

• Tenant requirements

o RA, ASDT, and/or ASDD for each NS functionality

o Period for which the requirements should be met

• VNFs information

o List of the VNFCs and IntVLs of VNFs

123

o VNFs scaling levels

o VNFC applications availability and failure rate

o Allowed degree of host sharing for VNFC instances (derived from anti-affinity

rules)

o Checkpointing method of each VNF (if stateful)

o Application-level property of each VNF (minimum HI, FoT, ToT, minimum

CpI, checkpoint message size, checkpoint preparation time, and checkpoint

commitment time)

• VLs availability

• Infrastructure information

o Availability, failure rate, and cost of each host type

o Latency and bandwidth of each network option (for VNFs checkpointing)

Figure 6-1 shows the main classes of the prototype. The properties of different classes of this

figure represent the abovementioned input parameters. According to Figure 6-1, an NS references

one or multiple NFPs, VNFs, and scaling levels. It also references zero or many VLs and one

infrastructure (which the NS will use). An NFP references one or multiple VNFs and zero or multiple

VLs. A VNF or a VL may be referenced by one or more NFPs. A VNF references one or multiple

VNFCs, checkpointing methods, VNF scaling levels, and zero or more VLs (i.e., IntVLs). The

infrastructure references one or more host types and network options.

Methods of the design-time approach are implemented as the methods of different classes of

Figure 6-1, including calculating the availability and failure rate of VNF instances, determining the

availability and service disruption of VNFs and NFPs, and finding the optimal configuration for the

124

NS. The outputs of these methods are stored in the MySQL database, including the optimal HI, CpI,

host type, and network option for VNFs, as well as the number of standby instances for VNFs and

VLs.

Figure 6-1: Main classes of the design-time approach prototype

125

As discussed in Chapter 5, a data generator is also needed at design time to create datasets for

training DL models of NSs. Therefore, a method is added to the NS class of the prototype of the

design-time approach (generateLabel() method in Figure 6-1). This method generates different input

values randomly for possible changes described in Sub-Section 5.3.3.1. Then, it reinitializes the NS

and the infrastructure with these input values and determines the value of the corresponding output

parameters (i.e., the optimal configuration).

Each set of input parameters includes random values for the availability and failure rate of hosts,

VNFCs, VLs, and IntVLs, and the bandwidth and latency of the network for the VNFs

checkpointing. The outputs are new values for HI and CpI of VNFs and the number of standby

instances for VNFs and VLs. The dataset generator stores each input set and its corresponding

outputs in the MySQL database.

6.2.2 Runtime Approach

Runtime approach prototype includes a program to create DL models and an implementation of

the AM.

6.2.2.1 Deep Learning Models Construction

The DL models are created at design time, but the purpose is to use them at runtime by the AM.

Therefore, the model creation is considered as part of the runtime approach. We have developed a

prototype of our proposed method for chained-DL model construction in Python. The TensorFlow

library is used in this prototype to train and save the models [21]. The random search method has

determined the hyper-parameters value [88]. For the DNNs of models of tested case studies, the

126

following hyper-parameters value resulted in a good learning rate and loss decrease during training

(as mentioned also in Sub-Section 5.3.3.2):

• Number of hidden layers = 19

• Number of nodes for each hidden layer = 35

• Learning rate = 0.00003

• Regularization rate = 0.005

• Batch size = 256

The number of nodes in the input and output layers of the models is determined separately for

each experiment since they depend on the NS, as explained in Sub-Section 5.3.3.2. For this

prototype, the activation function for hidden layers is the Rectified Linear Unit (ReLU) function,

and the linear function is used for the output layer [21]. The loss function is the mean squared error,

and the optimizer is the ADAM (adaptive moment estimation) algorithm [21].

DL models should be trained and constructed separately for each experiment since they are

specific to the NS, the availability and acceptable service disruption requirements, and the

availability characteristics of the infrastructure. For each experiment, the chained models are trained

with 90% of the dataset and validated with the remaining 10%.

6.2.2.2 Adaptation Module

Another prerequisite for the runtime adaptation is the AM. We have developed a prototype of

the AM in Python. In summary, this prototype performs the followings:

• Receive failure and change notifications from the MANO and EM

127

• Re-evaluate the availability and service disruption of the VNFs and the NS

o Some methods of the design-time approach are used for this purpose

• Determine the required adjustments

o DL models predict the adjustments

• Request for NS reconfiguration if needed

o Requests the MANO to scale the NS

o Requests the EM to reconfigure HI and CpI of the VNFs and configure the role

of VNFs and VLs instances

The AM communicates with the MANO through RESTful APIs. Also, the AM offers RESTful

APIs to the EM and the MANO so that they can send failure and change notifications to the AM.

6.3 Case Studies

This sub-section introduces two NSs prepared for our experiments

6.3.1 Video Streaming Case Study

6.3.1.1 Network Service

This NS provides a video streaming functionality. Figure 6-2 shows this NS, which has two

VNFs and one VL. The decoder VNF decodes a video and sends the stream to the multi-caster VNF.

The end users have to connect to a multi-caster IP address to receive the stream.

128

Figure 6-2: A video streaming NS

We assume this NS has two scaling levels to satisfy specific workloads. Table 6-1 shows the

required (active) instances of VNFs for each NS scaling level.

Table 6-1: Scaling levels of the video streaming NS

 Decoder VNF Multi-caster VNF

NS Level 1 1 2

NS Level 2 2 3

6.3.1.1 Tenant Requirement

For this case study, we chose ASDT for the type of tenant requirement. We consider two

different values of ASDT for two sets of tests. The value of the first ASDT is 120 seconds, i.e., the

service disruption time of the NS for each test should remain below 120 seconds. The value of the

second ASDT is 180 seconds. The period of each test (i.e., the NS lifetime) is 24 hours. For this

requirement, the goal of our experiments is to compare the actual SDT of the NS to the ASDT after

each test run.

6.3.1.2 Virtual Network Functions

We developed the decoder and multi-caster VNFs. Both have one VNFC and zero IntVL. Also,

each VNF has one VNF scaling level with one VNFC instance. We created VM images for the

129

VNFC of both VNFs, which use Ubuntu Server 20.04 as their operating system. Ubuntu is a

distribution of Linux available at [89].

The decoder VNF uses FFmpeg software to provide its functionality. FFmpeg is an open-source

software to record, convert, and stream video and audio [90]. FFmpeg uses multiple communication

protocols to send the video stream to one or more predefined receivers. In our experiments, the Real-

Time Messaging Protocol (RTMP) is used to send the stream by FFmpeg. Each instance of the

decoder VNF can send the stream to one or two multi-caster VNFs. Note that FFmpeg does not send

the stream directly to the end users because the list of end users is not predefined and can change

anytime.

The multi-caster VNF uses Nginx software to make the video stream available to the end users.

Nginx is an open-source software used as a (generic) proxy server [91]. We configure the Nginx to

receive a stream and multicast it in its IP address using RTMP. End users can use a video player

software that supports RTMP (e.g., VLC media player) to connect to an instance of the multi-caster

VNF and receive the video stream.

To add the capability of N+M redundancy model to both VNFs, we developed a Python program

called HA (High Availability). All instances of each VNF run this program, which is responsible

for:

• Health-check messaging between instances of the same VNF

o The HA program uses client/server TCP sockets to implement this functionality.

Each instance sends a health-check message to all other instances of the VNF

130

every HI (Health-check Interval). The value of HI is stored in a configuration

file and is reconfigurable at runtime.

• Assigning active or standby roles to VNF instances

o The number of active (N) and standby (M) instances of the VNF is stored in a

configuration file and is reconfigurable at runtime. When a VNF instance is

instantiated or restarted, it has the standby role by default. Then, its role may

change by the HA program running on the same instance, according to the value

of N in the configuration file and the current number of active instances. The HA

program creates and updates a list of active and standby instances. It also checks

the value of N and M every HI and acts accordingly if they change.

• Failover

o If standby instances do not receive a health-check message from an active

instance for HI+timeout, they consider it failed. Then, the HA program running

on the standby instance with the lowest IP address changes the role of the

instance to active.

• Assigning a virtual IP to each active instance of the multi-caster VNF and removing it

when an instance becomes standby

o The IP address of the active instances of the multi-caster VNF should be known

and accessible to the external network (e.g., for the end users). The primary IP

address of each VNF instance may change during the NS lifetime (e.g., due to a

failover). But a virtual IP is assigned as the secondary IP address to an active

VNF instance, and it is removed when the instance becomes standby so that

131

another active instance may use this IP (if a standby instance becomes active).

The external network knows the list of virtual IPs.

The decoder VNF also needs to support checkpointing mechanism since it is stateful. We have

developed a Python program for this purpose. This program:

• Uses cline/server TCP sockets to send the checkpoint from active instances to standby

instances

• Stores the checkpoint in a file when a standby instance receives it

• Restores the latest checkpoint if a standby instance becomes active

The checkpointing program reads the FFmpeg state (state of video decoding) every CpI

(Checkpointing Interval) and sends it to the standby instances. The value of CpI is stored in a

configuration file and is reconfigurable at runtime. The multi-caster VNF is not stateful and does not

need checkpointing.

Table 6-2 shows the application-level information of the decoder and multi-caster VNFs for this

case study.

Table 6-2: Application-level information of VNFs of the video streaming NS

 Decoder VNF Multi-caster VNF

Minimum health-check interval (ms) 500 500

Health-check interval increment step (ms) 200 200

Failover time (ms) 500 100

Takeover time (ms) 3000 2000

Checkpoint size (bit) 1024 N/A

Checkpoint preparation time (ms) 50 N/A

Checkpoint commitment time (ms) 5 N/A

Checkpointing method is synchronous Yes N/A

Checkpointing interval is constant Yes N/A

Checkpointing interval is configurable Yes N/A

Minimum checkpointing interval (ms) 1100 N/A

Checkpointing interval increment step (ms) 550 N/A

132

For the VNFC applications of each VNF, the availability and AFR are:

Table 6-3: Availability and AFR of VNFC applications for video streaming NS

 VNFC Availability AFR

Decoder VNF VNFC1 0.99995 0.5

Multi-caster VNF VNFC1 0.99995 0.5

6.3.1.3 Availability of Hosts and Networks

The infrastructure available for our experiments provides one type of host and one network

option. We use dedicated physical hosts to provide resources to the VNFs. We can impose a different

number of failures on the hosts for different test runs to change the availability and failure rate of

VNFs for each experiment. We assume that the estimated availability of the hosts at design time is

0.9999, and their AFR is 2 per 24 hours.

The physical network of the infrastructure is not dedicated to our experiments, and intentional

failure is not permitted. Therefore, we assume that the availability of the network is 100%.

6.3.1.4 Deployment Configuration of the Network Service

We have given the ASDT requirements and input parameters to the design time approach to

determine the optimal configuration for the NS instantiation. For the set of tests in which the

requirement is 120 seconds of ASDT, the optimal configuration is shown in Table 6-4.

133

Table 6-4: Optimal configuration for ASDT=120s

 NS Scaling Level HI (ms) CpI (ms) SB

Decoder VNF
NS Level1 5100 5500 1

NS Level 2 7700 7700 1

Multi-caster VNF
NS Level1 8700 N/A 1

NS Level 2 11700 N/A 2

For the set of tests where the requirement is ASDT=180s, the optimal configuration is:

Table 6-5: Optimal configuration for ASDT=180s

 NS Scaling Level HI (ms) CpI (ms) SB

Decoder VNF
NS Level1 8100 8800 1

NS Level 2 12300 11000 1

Multi-caster VNF
NS Level1 17900 N/A 1

NS Level 2 21100 N/A 1

We also created a new NsDF, which has three NS scaling levels compared to the scaling levels

of the original NsDF (see Table 6-1). Table 6-6 shows the number of VNF instances for each NS

scaling level of the new NsDF for the set of tests that ASDT=120s. Table 6-7 shows similar

information when ASDT=180s.

Table 6-6: NS scaling levels of the new NsDF when ASDT=120s

 Decoder VNF Multi-caster VNF

 Active Standby Total Active Standby Total

Scaling Level 1 1 1 2 2 1 3

Scaling Level 2 2 1 3 3 2 5

Scaling Level 3 2 2 4 3 3 6

Table 6-7: NS scaling levels of the new NsDF when ASDT=180s

 Decoder VNF Multi-caster VNF

 Active Standby Total Active Standby Total

Scaling Level 1 1 1 2 2 1 3

Scaling Level 2 2 1 3 3 1 4

Scaling Level 3 2 2 4 3 2 5

134

The NS is instantiated using the new NsDF to support the required number of standby instances

of VNFs during the NS lifetime.

6.3.2 Web Service Case Study

6.3.2.1 Network Service

The second case study is a web-based ad-post network service. This NS provides a web interface

for users to post their ads or search for published items on the website. Figure 6-3 shows this NS,

which has two VNFs and one VL. The webserver VNF provides the web interface, stores the posted

ad data in the database VNF, and searches for items in the database if a search request is received

from an end user.

Figure 6-3: A web service NS

Table 6-8 shows our assumption for the number of scaling levels of the NS to satisfy a certain

performance. This table also indicates the number of (active) instances of each VNF for each NS

scaling level.

Table 6-8: Scaling levels of the web service NS

 Database VNF Webserver VNF

NS Level 1 1 2

NS Level 2 2 3

135

6.3.2.2 Tenant Requirement

To experiment with a different type of tenant requirement, we consider satisfying RA for the

second case study. We assume two different values of RA for two different sets of experiments:

RA=0.9995 and RA=0.999. The period of each individual test for this case study is 24 hours. The

goal is to compare the actual availability of the NS to the RA after each test. Note that service

continuity is not part of the tenant requirements for this case study.

6.3.2.3 Virtual Network Functions

Similar to the first case study, we developed both VNFs of this case study and each has one

VNFC and zero IntVL. Also, each VNF has one VNF scaling level with one instance of the VNFC.

Ubuntu Server 20.04 is used to create a VM image for the VNFC of each VNF.

The database VNF uses MariaDB, a free and open-source relational database management

software [92]. The webserver VNF uses Apache software to provide its functionality [93]. The web

interface is developed in PHP and is accessible using a web browser.

To add the capability of N+M redundancy model to both VNFs, we use the same Python

program (i.e., HA) introduced in Sub-Section 6.3.1.2. The only difference is that in the case of web

service NS, the HA program assigns virtual IPs to the active instances of both VNFs. Because the

(secondary) IP address of the database VNF instances should be predefined for the webserver VNF

instances, and the external network should know the (secondary) IP address of the webserver VNF

instances.

Each database VNF instance can serve one or two webserver VNF instances, and each

webserver VNF instance has access to one database VNF. When there are multiple instances of the

136

database VNF, they need to synchronize their records in the MariaDB database. Galera is used to

create a cluster of MariaDB databases to support data synchronization between multiple instances

of the database VNF [94].

Table 6-9 shows the application-level information of the database and webserver VNFs for this

case study. Since ASDT or ASDD is not part of the tenant requirements, checkpointing characteristic

details of the VNFs are not used for the experiments. Therefore, they are not included in Table 6-9.

Table 6-9: Application-level information of VNFs of the web service NS

 Database VNF Webserver VNF

Minimum health-check interval (ms) 500 500

Health-check interval increment step (ms) 200 200

Failover time (ms) 100 100

Takeover time (ms) 100 100

For the VNFC applications of each VNF, the availability and AFR are:

Table 6-10: Availability and AFR of VNFC applications for web service NS

 VNFC Availability AFR

Database VNF VNFC1 0.99995 0.5

Webserver VNF VNFC1 0.9999 1

6.3.2.4 Availability of Hosts and Networks

For this case study, we use the same infrastructure used for the first case study. Therefore, we

have one type of host and one network option. Hosts are dedicated to our experiments, and we

assume that at design time, their estimated availability is 0.9999, and their AFR is 2. The network is

not dedicated to our experiments. Therefore, we cannot impose failures on it and assume the

availability of the network is 100%.

137

6.3.2.5 Deployment Configuration of the Network Service

We have given the requirement and input parameters to the design time approach to determine

the optimal configuration for the NS instantiation. For the set of tests in which the requirement is

RA=0.9995, the optimal configuration is shown in Table 6-11.

Table 6-11: Optimal configuration for RA=0.9995

 NS Scaling Level HI (ms) SB

Database VNF
NS Level1 3500 1

NS Level 2 4300 1

Webserver VNF
NS Level1 6500 1

NS Level 2 8300 2

For the set of tests where the requirement is RA=0.999, the optimal configuration is:

Table 6-12: Optimal configuration for RA=0.999

 NS Scaling Level HI (ms) SB

Database VNF
NS Level1 6100 1

NS Level 2 8900 1

Webserver VNF
NS Level1 11300 1

NS Level 2 17100 1

We also created a new NsDF with three NS scaling levels for the set of tests that RA=0.9995.

Table 6-13 shows the number of VNF instances for each NS scaling level of the new NsDF. For the

set of tests that RA=0.999, no more scaling levels needed to be added. However, the original NsDF

should be updated to add the required number of standby instances (see Table 6-12) to each NS

scaling level. Table 6-14 shows the number of VNF instances for this case.

138

Table 6-13: NS scaling levels for the new NsDF when RA=0.9995

 Database VNF Webserver VNF

 Active Standby Total Active Standby Total

Scaling Level 1 1 1 2 2 1 3

Scaling Level 2 2 1 3 3 2 5

Scaling Level 3 2 2 4 3 3 6

Table 6-14: NS scaling levels for the updated NsDF when RA=0.999

 Database VNF Webserver VNF

 Active Standby Total Active Standby Total

Scaling Level 1 1 1 2 2 1 3

Scaling Level 2 2 1 3 3 1 4

6.4 Testbed

To perform validation experiments, we need a testbed to instantiate and manage the NSs. The

testbed includes an EM, an NFV cloud, a fault injector, and log collectors. In this sub-section, we

introduce these components.

6.4.1 Element Manager

An EM is needed to configure VNF applications after instantiation and reconfigure them at

runtime. Therefore, we created an EM which is a VNF itself and has one VNFC. Ubuntu Server

20.04 is used to create a VM image for this VNFC, and the EM application is prototyped in Python.

The EM can (re)configure HI, CpI, and the number of active (N) and standby (M) instances stored

in the configuration file of VNF instances. Each VNF instance checks for the changes in the content

of this configuration file periodically and acts accordingly. The interval of this check is one HI by

default; however, it is reconfigurable. When the value of N or M is changed, it can cause changing

the role of VNF instances. The EM provides web APIs to the AM to be called for VNFs

139

(re)configuration. It also monitors VNF failures and notifies the AM. The monitoring capability of

the EM is based on Zabbix, an open-source software for monitoring network nodes, servers, and

applications [95].

6.4.2 Fault Injector

To test the runtime adaptation framework, we need to change the failure rate of hosts and VNFs

during runtime. A fault injector program is developed in Python, which can impose a predefined or

random number of failures on hosts and VNFs. The fault injector reboots the operating system of a

host to fail the host, or the operating system of the VNFC of a VNF instance to fail the VNF instance.

6.4.3 Local Monitor and Log Collector

The video streaming NS includes a decoder VNF and a multi-caster VNF. This NS continuously

plays a video for the test period (24 hours) except when one of its VNFs functionality encounters a

period of outage. A local monitoring program and a log collector are developed for each VNF of the

NS. The local monitoring program on the VNFC of a decoder VNF instance notifies the local log

collector on the VNFC of the same VNF instance when the FFmpeg application starts or stops

decoding and streaming the video. The log collector writes these events into a local file. We can

download the log file at any time and analyze the logs. The local monitoring program on the VNFC

of a multi-caster VNF instance monitors the Nginx service and notifies the local log collector if it

starts or stops.

Similar local monitoring program and local log collector are used for the VNFs of the web

service NS. In this case, the program monitors Apache service for webserver VNF instances and

MariaDB service for database VNF instances. We have also developed a traffic generator for this

140

case study which sends HTTP requests to the webserver VNF (with configurable intervals) to post

ads or search for items. The traffic generator also logs the success or failure of each request it sends.

The local monitoring program on the VNFC of a VNF instance also notifies the local log

collector when the operating system of the VNFC is rebooted.

6.4.4 NFV Cloud

We use OpenStack and Tacker to create a real NFV environment for our experiments.

Considering the ETSI NFV architecture, OpenStack can play the role of a VIM and manage the

NFVI. Tacker is a software module that adds the VNFM and the NFVO functionalities to the

OpenStack controller. The OpenStack modules used for our implementation are:

• Keystone: it is the identification, authentication, and authorization manager.

• Neutron: it is the network manager to create and manages virtual links.

• Glance: it manages a store for VM images for VNF components.

• Nova: it manages the life cycle of VM instances.

• Placement: it provides a resource inventory and helps Nova with instance scheduling

and resource optimization.

• Heat: it enables composite cloud applications orchestration using a declarative template.

• Ceilometer: it is a monitoring service to collect, normalize and transform event data

produced by other OpenStack services.

• Aodh: it triggers actions based on rules against event data collected by Ceilometer.

• Gnocchi: it provides a scalable means of storing data collected by Ceilometer.

• Mistral: it is a workflow manager and manages (defines and executes) multi-step tasks.

141

• Barbican: it is an encryption key management service.

Figure 6-4 shows the video streaming NS instantiated on our testbed created using OpenStack

and Tacker. As shown in this figure, the NFVI is deployed on four hardware servers (HW SRV), the

MANO runs on an additional hardware server, while the AM and the fault injector run on a personal

computer (PC) as part of the OSS.

The Yoga version of Tacker implements features of the NFVO and the VNFM described in the

ETSI NFV specifications for Release 2. Therefore, it is suitable to test our approaches and check if

all these modules work together for the intended purposes.

Figure 6-4: NFV cloud realized using OpenStack and Tacker

142

6.5 Limitations of Performed Experiments

Although the main ideas of the proposed approaches are tested through different experiments,

we faced some limitations in performing our tests as explained below.

6.5.1 Capacity and Performance of Resources

The hardware servers available for our experiments have four CPU cores each. Therefore, each

host can serve up to three VNF instances because each VNF instance and the host operating system

need at least one CPU core to provide the minimum performance. Also, four hardware servers are

available to host VNF instances. As a result, the maximum number of VNF instances for both VNFs

of each NS can be twelve. Thus, we cannot perform experiments with the existing infrastructure

resources for large NS instances.

The limited capacity of the hosts also constrains the performance of the VNFs. For example, an

active instance of the decoder VNF consumes almost 100% of one CPU core to decode the video.

This VNF instance also needs to execute health-checking and checkpointing, which are CPU

intensive for very low HI and CpI. Therefore, we cannot consider stringent values for service

availability and continuity requirements for our tests.

Despite the abovementioned limitations, it is worth mentioning that we have performed a

diverse and a good number of experiments to assess our approaches. As we will show in this chapter,

the results confirm the feasibility and applicability of our proposed solutions.

143

6.5.2 Tacker and OpenStack Limitations

The latest version of Tacker and OpenStack (i.e., Yoga) is used to implement the MANO

functional blocks. This version of Tacker implements features of the NFVO and the VNFM

described in Release 2 of ETSI NFV specifications. However, Release 4 of the specifications is

currently published.

The Yoga version of Tacker does not support NsDF change at runtime for a running NS. As

explained in Sub-Section 5.2.1, the runtime adaptation framework can change the number of standby

instances of VNFs by scaling the NS, changing the NsDF, or both at runtime. The Tacker supports

remote calls for NS scaling, but no Tacker API exists for NsDF change at runtime.

6.6 Test Scenarios and Experiments Results

As discussed earlier, we have two case studies, each with a different type of tenant requirement.

Also, we have two different values for each tenant requirement. We performed twenty tests in total

to cover all cases. Each test run lasted for 24 hours. Table 6-15 shows the number of experiments

for each requirement value and type for each case study.

 Table 6-15: Experiments for each requirement and case study

 Video Streaming Web Service

Requirement Type ASDT RA

Requirement Value 120s 180s 0.9995 0.999

Number of Tests for Design-time Approach 1 1 1 1

Number of Tests for Runtime Approach 4 4 4 4

To test the design-time approach, we keep the failure rate of resources at runtime equal to the

value used to determine the optimal configuration at design time. Therefore, performing one test per

144

requirement value is enough since the test condition will be the same if we repeat the test. To test

the runtime approach, we impose a random number of failures on the VNFs at runtime for each test

run. Therefore, we repeat the test for each requirement value four times to have a better picture of

the results.

In the rest of this sub-section, we introduce the test scenarios and present the results of the

experiments.

6.6.1 Test Scenarios

6.6.1.1 Design-time Approach

To test the design-time approach, we follow these steps for each test run:

1. Determine the optimal configuration for the NS

2. Update the NsDF (if needed) to include the total number of VNF instances (i.e., active

and standby instances)

3. Create a supplementary artifact for the AM that contains the optimal configuration (i.e.,

HI, CpI, and the number of active and standby instances of VNFs for NS scaling levels)

4. Deploy the updated NsDF and instantiate the NS using Tacker and OpenStack

5. Using the AM, initialize the NS with the optimal configuration

6. Run the NS and record the start time using the AM

7. Impose failures to VNFs using the Fault Injector (the failure rates at runtime are equal to

values expected at design time)

8. Collect logs for service outages and disruptions

9. Stop the NS after 24 hours using the AM (each test period is 24 hours)

145

10. According to the tenant requirement, calculate the actual availability or service disruption

of the NS using the logs

11. Evaluate the fulfillment of the tenant requirement

6.6.1.2 Runtime Adaptation Approach

To test the runtime time approach, we follow these steps for each test run:

1. Determine the optimal configuration for the NS

2. Generate training datasets for possible runtime changes

3. Create DL models for runtime adaptation (to be used by the AM) using our model

creation method

4. Update the NsDF (if needed) to add the number of standby instances and additional NS

scaling level(s) to the original NsDF

5. Create a supplementary artifact for the AM that contains the optimal configuration (i.e.,

HI, CpI, and the number of active and standby instances of VNFs for NS scaling levels)

6. Deploy the updated NsDF and instantiate the NS using Tacker and OpenStack

7. Using the AM, initialize the NS with the optimal configuration

8. Run the NS and record the start time using the AM

9. Impose failures to VNFs by the Fault Injector (random number of failures are imposed

for each test run)

10. Monitor the failures by the EM and notify the AM

11. Adapt the NS accordingly by the AM (the AM uses DL models to predict the required

adjustments)

12. Collect logs for service outages and disruptions

146

13. Stop the NS after 24 hours (each test period is 24 hours)

14. According to the tenant requirement, calculate the actual availability or service disruption

of the NS using the logs

15. Evaluate the fulfillment of the tenant requirement

6.6.2 Experiments Results and Analysis

In summary, the result of the experiments showed that the tenant requirement was fulfilled for

both case studies with different requirement values using our design-time approach. Also, where the

failure rate of VNFs increased at runtime, the service outage/disruption per failure was decreased as

a result of runtime adaptation framework adjustments. Therefore, the tenant’s availability and

continuity requirements were satisfied for all the test runs.

The details of experiments for each case study are explained in the rest of this sub-section.

6.6.2.1 Video Streaming Case Study

Table 6-16 shows the experiments result for five test runs in which the requirement is

ASDT=120s. The goal of the first test run (i.e., Test D1) is to assess the design-time approach, while

for others (i.e., Test R1 to R4), the goal is to test the runtime approach. Table 6-16 shows the SDT

of each failure of each VNF during the test period. Also, the total number of VNF failures, the

average SDT for one failure, and the overall SDT of the NS (the summation of the SDTs of the

VNFs) for each test run are shown in this table.

147

Table 6-16: Experiments result for ASDT=120s

The AFR of each VNF at design time for this case study was about three failures (calculated

based on the failure rates of resources and VNFC applications presented in Sub-Section 6.3.1, using

method of Sub-Section 4.4.2). For all the test runs, one failure was imposed to one VNF at a time.

For the first run (Test D1), we kept the failure rate of VNFs at runtime same as the estimated values

at design time. For other test runs (Test R1 to R4), a random number of failures were imposed on

VNFs at runtime to assess the result of runtime adaptation approach adjustments.

As shown in Table 6-16, the overall SDT of the NS for all test runs is below the accepted

threshold (i.e., ASDT=120s). This table shows that when the failure rate of VNFs increases at

runtime, the average SDT of a VNF failure is reduced due to NS adjustment performed by the

runtime adaptation framework. For example, the lowest average SDT in this table belongs to Test

R1, which has the highest number of VNF failures (10 failures in total for both VNFs).

A VNF failure can happen at any point between consecutive health-check intervals and

consecutive checkpointing intervals. As a result, we may have different service outage and

disruption times for different failures if we have the same HI and CpI configuration. In the best case,

 SDT of decoder VNF for each failure

(seconds)

SDT of multi-caster VNF for each

failure (seconds)

Total

number

of

failures

Average

SDT of one

failure

Overall

SDT

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

Design-time

Approach
Test D1 18.24 19.18 17.73 - - - 14.47 13.92 15.57 - - - 6 16.52 99.11

Runtime

Approach

Test R1 13.71 10.64 11.26 10.17 - - 9.55 8.73 9.12 7.54 7.06 6.03 10 9.38 93.81

Test R2 11.76 14.37 12.97 14.74 - - 8.56 6.56 7.58 - - - 7 10.93 76.54

Test R3 17.21 12.04 12.34 14.51 12.83 - 6.84 5.48 6.09 7.55 - - 9 10.54 94.89

Test R4 16.38 11.18 8.77 13.90 12.13 13.31 7.73 5.38 8.41 - - - 9 10.80 97.19

148

a failure happens when a health-check message is ready to send and after a checkpoint is sent. In the

worst case, a failure occurs after a health-check message is sent and a checkpoint is ready to send.

Our approaches guarantee the fulfillment of service availability and continuity requirements for the

worst-case scenario. The SDTs in Table 6-16 do not necessarily represent the worst-case service

disruption times because, in our experiments, failures happened at different points between

consecutive health-check intervals and checkpointing intervals.

However, if all the failures for our experiments happened after a health-check message was sent

and before a checkpoint was ready to send, we would have the maximum possible SDT for failures,

as shown in Table 6-17. The maximum possible SDT due to a failure is the summation of the current

HI, timeout, ToT, FoT, and the current CpI. Table 6-17 also shows the average value for the

maximum possible SDTs and the maximum possible overall SDT for each test run. Therefore, in the

worst case, the NS would encounter the maximum overall SDT shown in this table for each test run,

and still satisfy the ASDT.

Table 6-17: Maximum Possible SDT of Failures for experiments with ASDT=120s

Maximum possible SDT for decoder

VNF for each failure (seconds)

Maximum possible SDT for multi-

caster VNF for each failure

(seconds)

Total

number

of

failures

Average

max. SDT

of one

failure

Max.

overall

SDT
#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

Design-time

Approach
Test D1 21.90 21.90 21.90 - - - 16.80 16.80 16.80 - - - 6 19.35 116.10

Runtime

Approach

Test R1 14.60 13.00 14.20 12.60 - - 16.80 10.20 12.40 8.40 9.20 7.60 10 11.90 119.00

Test R2 14.50 17.55 21.00 23.75 - - 16.80 10.40 15.20 - - - 7 19.03 119.20

Test R3 21.90 14.40 14.40 17.05 17.00 - 9.65 8.10 8.10 8.10 - - 9 13.19 118.70

Test R4 21.90 15.10 9.40 15.70 15.75 15.40 10.00 7.10 9.10 - - - 9 13.27 119.45

149

It is worth mentioning that the maximum overall STD values in Table 6-17 are close to the

ASDT value (i.e., 120s) for all the test runs. This is because our approaches minimize the cost while

guaranteeing the satisfaction of the requirements for the worst-case scenario. In other words, they

determine the optimal configuration, as discussed in Chapter 4.

The result of test runs to satisfy ASDT=180s is shown in Table 6-18.

Table 6-18: Experiments result for ASDT=180s

Similarly, the first run evaluates the design-time approach, and the rest are for assessing the

runtime adaptation approach. Similar results can be seen in this table. The tenant requirement is

fulfilled for all the experiments, the NS adapted to the change in the failure rate of VNFs to adjust

their SDT, and the average SDT of a failure is decreased when the number of VNF failures is

increased.

Table 6-19 shows the maximum possible SDT for the experiments with the requirement of

ASDT=180s. This table shows that in the worst case, the maximum possible overall SDT for each

test run remains below the ASDT. In addition, the maximum possible overall SDT of each test run

is close to the value of the requirement since our approaches determine the optimal configuration.

 SDT of decoder VNF for each failure

(seconds)

SDT of multi-caster VNF for each

failure (seconds)

Total

number

of

failures

Average

SDT of

one

failure

Overall

SDT #1 #2 #3 #4 #5 #6 #7 #8 #1 #2 #3 #4 #5 #6 #7

Design-time

Approach
Test D1 24.37 23.72 21.99 - - - - - 18.08 19.37 15.88 - - - - 6 20.58 123.45

Runtime

Approach

Test R1 12.96 11.49 11.14 10.30 13.08 11.13 13.27 14.53 13.49 6.43 6.65 6.34 11.06 - - 13 10.91 141.87

Test R2 14.88 16.82 23.40 19.22 - - - - 15.17 8.58 9.18 7.18 7.59 - - 9 13.56 122.02

Test R3 21.21 14.22 14.32 15.05 12.15 14.72 - - 6.58 11.20 10.56 - - - - 9 13.33 120.01

Test R4 15.93 11.44 19.77 11.06 12.40 - - - 6.78 8.75 8.85 8.26 10.58 8.36 9.29 12 10.96 131.47

150

Table 6-19: Maximum Possible SDT of Failures for experiments with ASDT=180s

6.6.2.2 Web Service Case Study

For this NS, the tenant requirement is RA=0.9995 for one set of five test runs and RA=0.999

for another set of five test runs. Table 6-20 and Table 6-21 show the results for these two sets of

experiments. The first test run of each table tests the design-time approach, and others test the

runtime adaptation framework. These tables show that the tenant requirement is satisfied when the

failure rates do not change. Also, when the failure rate of VNFs changes at runtime, the adaptation

framework adjusts the NS and decreases the average outage time of a VNF failure as the total number

of failures increases.

Table 6-20: Experiments result for RA=0.9995

 Maximum possible SDT of decoder VNF

for each failure (seconds)

Maximum possible SDT of multi-

caster VNF for each failure (seconds)
Total

number

of

failures

Average

max.

SDT of

one

failure

Max.

overall

SDT

 #1 #2 #3 #4 #5 #6 #7 #8 #1 #2 #3 #4 #5 #6 #7

Design-time

Approach
Test D1 29.80 29.80 29.80 - - - - - 26.20 26.20 26.20 - - - - 6 28.00 168.00

Runtime

Approach

Test R1 14.50 13.40 13.20 15.00 17.10 12.90 13.90 16.20 26.20 8.00 8.00 8.20 13.20 - - 13 13.83 179.80

Test R2 17.20 20.50 29.15 30.10 - - - - 26.20 15.60 15.40 11.80 12.80 - - 9 19.86 178.75

Test R3 29.80 17.25 19.45 20.45 19.80 18.00 - - 13.40 16.80 18.60 - - - - 9 19.28 173.55

Test R4 29.80 14.80 24.05 13.55 15.20 - - - 8.80 11.20 12.20 12.80 13.40 12.40 11.20 12 14.95 179.40

 Outage time of database VNF

for each failure (seconds)

Outage time of webserver VNF for

each failure (seconds)
Total

number of

failures

Average

outage time

of one failure

NS

availability #1 #2 #3 #4 #5 #6 #7 #1 #2 #3 #4 #5 #6 #7 #8

Design-time

Approach
Test D1 4.5 4.0 5.0 - - - - 8.5 9.0 8.0 - - - - - 6 6.50 0.999549

Runtime

Approach

Test R1 3.0 2.0 1.0 1.5 1.5 2.0 1.5 3.5 3.5 3.0 2.5 2.5 3.0 3.5 3.5 15 2.50 0.999566

Test R2 3.5 3.0 3.0 2.5 3.5 2.5 - 7.2 3.1 4 3.9 - - - - 10 3.62 0.999581

Test R3 3.5 2.5 1.0 3.0 3.0 4.0 - 3.5 3.5 3.0 4.0 5.0 - - - 11 3.27 0.999583

Test R4 2.0 1.0 2.0 1.0 - - - 7.0 2.0 3.5 2.5 2.5 4.0 4.0 4.5 12 3.00 0.999583

151

Table 6-21: Experiments result for RA=0.999

The maximum possible outage time of each VNF failure for the experiments of this case study

is shown in Table 6-22 and Table 6-23. The maximum possible outage time due to a failure is the

summation of the current HI, timeout, ToT, and FoT. The minimum possible availability of the NS

is also shown in Table 6-22 and Table 6-23 for each test run. According to these tables, the optimal

configurations fulfill the RA for the worst-case scenario of each test run while minimizing the

networking costs.

Table 6-22: Maximum Possible Outage Time of Failure for experiments with RA=0.9995

 Outage time of database VNF for

each failure (seconds)

Outage time of webserver VNF for each

failure (seconds)

Total

number

of

failures

Average

outage time

of one

failure

NS

availability #1 #2 #3 #4 #5 #6 #7 #8 #1 #2 #3 #4 #5 #6 #7 #8 #9

Design-time

Approach
Test D1 8.0 7.0 8.5 - - - - - 14.5 14.0 15.5 - - - - - - 6 11.25 0.99922

Runtime

Approach

Test R1 5.5 5.0 4.5 5.5 4.5 5.5 - - 5.5 3.5 9.0 6.0 8.5 - - - - 11 5.73 0.99927

Test R2 3.5 5.5 2.5 1.0 3.0 3.5 3.5 1.0 11.0 3.5 3.5 3.5 3.0 4.0 3.0 4.5 3.5 17 3.71 0.99927

Test R3 5.5 9.0 5.0 6.5 3.0 - - - 9.5 12.5 11.0 - - - - - - 8 7.75 0.99928

Test R4 4.0 3.0 3.5 1.0 4.0 6.5 1.0 - 3.5 4.0 6.0 3.0 7.0 - - - - 12 3.88 0.99946

Maximum possible outage

time of database VNF for

each failure (seconds)

Maximum possible outage time of

webserver VNF for each failure

(seconds)

Total

number

of

failures

Average

outage time

of one failure

Minimum

NS

availability #1 #2 #3 #4 #5 #6 #7 #1 #2 #3 #4 #5 #6 #7 #8

Design-time

Approach
Test D1 5.0 5.0 5.0 - - - - 9.2 9.2 9.2 - - - - - 6 7.10 0.999507

Runtime

Approach

Test R1 5.0 2.4 1.2 1.6 1.6 2.2 1.6 3.8 3.8 3.6 3.0 2.6 3.2 3.6 3.6 15 2.85 0.999505

Test R2 3.8 3.4 3.4 2.8 4.0 3.0 - 9.2 4.0 4.8 4.4 - - - - 10 4.28 0.999505

Test R3 5.0 3.2 1.8 3.4 3.4 4.4 - 3.8 4.2 3.4 4.4 6.0 - - - 11 3.91 0.999502

Test R4 2.4 1.2 2.2 1.2 - - - 9.2 3.0 3.9 3.0 3.0 4.8 4.4 4.6 12 3.58 0.999503

152

Table 6-23: Maximum Possible Outage Time of Failure for experiments with RA=0.999

It is also noteworthy that the networking overhead of runtime adjustment on the VNFs for the

performed experiments was minimal and negligible because each adjustment needed one notification

message from the EM to the AM and one adjustment message from the AM to the EM. Note that

the health-check and checkpoint messaging are required for any system with service availability and

continuity requirements, regardless of what solution they use to fulfill these requirements. Therefore,

the monitoring, health-check, and checkpoint messaging overheads are not considered part of our

solutions' overhead. In addition, our solutions reduce the HI and CpI (wherever possible) to improve

resource efficiency.

6.7 Summary and Conclusion

In this chapter, we discussed the objectives of the experiments performed with prototypes of

our design-time and runtime adaptation approaches. This included assessing the feasibility of our

solutions in a realistic environment and evaluating the availability and service disruption of different

case studies when the NS is configured and managed by our approaches to fulfill availability and

acceptable service disruption requirements.

Maximum possible outage time of

database VNF for each failure

(seconds)

Maximum possible outage time of

webserver VNF for each failure (seconds)

Total

number

of

failures

Average

outage

time

of one

failure

Minimum

NS

availability #1 #2 #3 #4 #5 #6 #7 #8 #1 #2 #3 #4 #5 #6 #7 #8 #9

Design-time

Approach
Test D1 9.6 9.6 9.6 - - - - - 17.8 17.8 17.8 - - - - - - 6 13.70 0.99905

Runtime

Approach

Test R1 9.6 8.0 5.4 7.2 4.8 7.0 - - 6.4 6.4 11.4 7.0 9.6 - - - - 11 7.53 0.99904

Test R2 4.8 7.2 3.2 1.4 4.0 4.8 4.6 2.2 17.8 4.2 4.2 4.0 4.6 4.8 4.0 4.8 4.4 17 5.00 0.99902

Test R3 5.8 10.2 6.2 8.4 3.8 - - - 17.8 15.6 16.4 - - - - - - 8 10.53 0.99903

Test R4 9.6 5.4 6.2 1.8 5.8 9.0 3.2 - 7.4 6.0 7.8 5.6 9.4 - - - - 12 6.43 0.99911

153

Moreover, we introduced two case studies (i.e., NSs) that we prepared for our experiments. The

first case study provides video streaming functionality, while the second one provides web-based ad

posting functionality. We also presented different VNFs we developed for each NS to support the

NS functionality. To evaluate different tenant requirements satisfaction, we considered two ASDT

values for the first case study and two RA values for the second case study to be fulfilled for different

test runs.

The testbed created to perform our experiments and demonstrate the feasibility of our solutions

was also presented in this chapter. This testbed includes a VNF cloud environment realized by

OpenStack and Tacker, which can instantiate and run NSs, including our case studies. An EM was

also developed to manage the VNF applications and monitor their failures. In addition, the testbed

included a fault injector developed to impose failures on VNFs at runtime and log collectors

developed to gather information needed for analyzing the actual availability and service disruption

of NSs after each test run.

In total, twenty experiments were conducted (each experiment lasted 24 hours) to evaluate our

approaches. For some test runs, there was no change in the failure rate of VNFs at runtime since the

goal was to test our design-time approach. For other experiments, the failure rate of VNFs was

increased randomly during runtime to test the runtime adaptation approach.

The results of the experiments showed that the tenant requirement was satisfied for all the test

runs, and the requirement satisfaction was guaranteed for the worst-case scenario while minimizing

the resource cost. In addition, the networking overhead imposed by the runtime adaption framework

was minimal. Therefore, the results of the experiments demonstrated, to some extent the validity of

our proposed solutions. However, applying our solutions to other NSs of larger sizes in an industrial

154

environment with lower resource limitations will be necessary to complete the validation of our

approaches.

155

Chapter 7

7. Conclusion and Future Work

7.1 Conclusion

In this thesis, we devised a solution consisting of design-time and runtime approaches for

service availability and continuity management for network services in the context of NFV. We

introduced quantitative definitions for service disruption time and service data disruption to provide

measurable metrics for service disruption. We proposed a design-time approach to map the service

availability and continuity requirements of NSs to constraints on low-level configuration parameters.

We also proposed a runtime adaptation approach to adjust NSs at runtime to maintain the satisfaction

of the tenant’s availability and continuity requirements throughout the lifetime of the NS when the

availability and failure rate of resources and VNF applications deteriorate at runtime.

The design-time approach includes a requirement mapping method fed by other analytical

methods, which calculate the availability and failure rate of VNF instances, outage time and service

disruption of VNF profiles, redundancy of VNFs and VLs, and service outage and disruption of

NFPs. This approach takes as input the NS design, the tenant’s availability and acceptable service

disruption requirements, and the availability characteristics of the VNF applications and the

infrastructure resources. The design-time approach determines the optimal values for health-check

and checkpointing intervals of VNFs and the redundancy for VNFs and VLs. This approach

156

minimizes networking and computing costs while determining the optimal configuration. In

addition, if there are multiple host types to host VNFs and/or different networking options for VNFs

checkpointing, the most appropriate ones are selected to fulfill the service availability and continuity

requirements regarding resource costs. The design-time approach guarantees that the service

availability and continuity requirements of the NS can be satisfied as long as the availability

characteristics of the VNF applications and infrastructure resources are not deteriorated at runtime.

We also analyzed the time complexity of using a complete search method for the design-time

approach and showed that it is exponential. Therefore, we proposed a heuristic search method to

make our approach affordable. Performed simulations showed that the complete search method

cannot be used for NSs with more than six VNFs. In contrast, the proposed heuristic can determine

the near-optimal configuration for large NSs with quadratic time complexity.

The runtime approach includes an adaptation framework that collects change and failure events

of resources and VNFs at runtime and notifies an adaptation module. The adaptation module re-

evaluates the satisfaction of service availability and continuity requirements of the NS using some

of the analytical methods of the design-time approach. If needed, the adaptation module determines

required adjustments and requests for NS reconfiguration to compensate for any availability

constraint violation.

The adaptation module can use the analytical methods of the design-time approach to determine

the necessary adjustments at runtime. We showed that the execution time of these methods is not

tolerable for large NSs at runtime when quick adjustments are needed, even using our proposed

heuristic search. Therefore, we proposed a method to create deep learning models to replace the

time-complex analytical methods of the adaptation module. We showed that two chained deep

157

learning models could be used for this purpose, and we determined the structure of training datasets

(i.e., input features and output parameters).

We conducted several experiments with real NSs to demonstrate the feasibility of our proposed

solutions and show if they can configure the NSs to fulfill the tenant’s availability and continuity

requirements. We prototyped the design-time and runtime approaches and developed different VNFs

to create two NSs for the experiments. Moreover, we prepared a testbed, including an NFV cloud

infrastructure, an element manager, a fault injector, and log collectors. The results of the experiments

confirmed that our approaches guarantee the satisfaction of the service availability and continuity

requirements for the prepared case studies. They also showed to some extent, the validity of our

proposed solutions. However, creating larger NSs in an industrial infrastructure with more available

resources will be necessary to confirm the validity of our approaches.

7.2 Future Work

In this thesis, we devised a solution to configure and manage NSs to satisfy service availability

and continuity requirements in the presence of service outages. According to the definition of service

availability, an NS encounters an outage if its service is not provided. If the service is provided but

at a lower capacity than expected due to the failure of some VNF instances (not all instances of the

same type), we have service degradation. Future work can target service degradation management

of NSs, for example, to provide a solution to keep it below an acceptable threshold.

As mentioned earlier, we assumed that redundant instances of VNFCs, IntVLs, VNFs, and VLs

for an NS are placed in the same Zone. However, it is possible to spread redundant instances between

different NFVI-PoPs (NFV Infrastructure Point of Presence) and ZoneGroups (multiple zones

158

grouped together), if available. As potential future work, one can investigate the impact of multi-

layer redundancy on the availability of NSs.

In this thesis, we proposed solutions for NSs realized by VM-based VNFs. Recently,

containerized VNFs are also gaining attentions in the industry. Currently, there is no MANO

implementation to support all the required functionalities to manage containerized VNFs. However,

the ETSI NFV specification group has been working on updating the current specifications and

providing new ones regarding the containerized VNFs. Therefore, future work can also consider

investigating NS availability and service continuity where containerized VNFs realize the NS.

We created real NSs and testbed to perform our experiments. The results of the experiments

proved to some extent, the validity of our approaches. But the resource limitations constrained the

size of NSs created for the experiments. Validating the solutions proposed in the thesis in an

industrial infrastructure that can host larger NSs remains for future work.

159

8. Bibliography

[1] ETSI ISG NFV, "ETSI GS NFV 002 V1.2.1: Architectural Framework," December 2014.

[Online]. Available: https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-

Reports/NFV%20002v1.2.1%20-%20GS%20-

%20NFV%20Architectural%20Framework.pdf.

[2] ETSI, "Network Functions Virtualisation (NFV)," [Online]. Available:

https://www.etsi.org/technologies/nfv. [Accessed July 2022].

[3] AT&T, "VNF Guidelines for Network Cloud and OpenECOMP," February 2017. [Online].

Available:

https://wiki.onap.org/download/attachments/1015849/VNF%20Guidelines%20for%20Netwo

rk%20Cloud%20and%20OpenECOMP.pdf?api=v2. [Accessed July 2022].

[4] M. Toeroe and F. Tam, Service Availability: Principles and Practice, First ed., John Wiley &

Sons, 2012.

[5] ETSI ISG NFV, "ETSI GS NFV-REL 001 V1.1.1:Resiliency Requirements," January 2015.

[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-

REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf.

[6] Huawei Technologies, "Challenges of 5G Ultra Reliability," 2018. [Online]. Available:

http://cqr.committees.comsoc.org/files/2018/07/05-Dehan_Li-Challenges-of-5G-Ultra-

ReliabilityETR-052618.pdf. [Accessed July 2022].

160

[7] ETSI ISG NFV, "ETSI GS NFV-REL 003 V1.1.2:Reliability; Report on Models and Features

for End-to-End Reliability," July 2016. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/003/01.01.01_60/gs_nfv-

rel003v010101p.pdf.

[8] ETSI ISG NFV, "ETSI GR NFV-MAN 001 V1.2.1: Report on Management and

Orchestration Framework," December 2021. [Online]. Available:

https://www.etsi.org/deliver/etsi_gr/NFV-MAN/001_099/001/01.02.01_60/gr_NFV-

MAN001v010201p.pdf.

[9] ETSI ISG NFV, "ETSI GS NFV-IFA 014 V4.2.1: Network Service Templates Specification,"

May 2021. [Online]. Available: https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-

Reports/NFV-IFA%20014v4.2.1%20-%20GS%20-

%20Network%20Service%20Templates%20Spec.pdf.

[10] ETSI ISG NFV, "ETSI GS NFV-IFA 011 V4.2.1: VNF Descriptor and Packaging

Specification," May 2021. [Online]. Available:

https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-

IFA%20011v4.2.1%20-%20GS%20-%20VNF%20Packaging%20Spec.pdf.

[11] ETSI ISG NFV, "ETSI GS NFV 003 V1.5.1: Terminology for Main Concepts in NFV,"

January 2020. [Online]. Available:

https://www.etsi.org/deliver/etsi_gr/NFV/001_099/003/01.05.01_60/gr_NFV003v010501p.p

df.

[12] ETSI ISG NFV, "ETSI GS NFV-SWA 001: Virtual Network Functions Architecture,"

December 2014. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/NFV-

SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf.

[13] VMware, "vCloud Director User's Guide," March 2019. [Online]. Available:

https://docs.vmware.com/en/VMware-Cloud-Director/9.7/vcd_97_user_guide.pdf.

161

[14] J. Sathyan, Fundamentals of EMS, NMS and OSS/BSS, CRC Press, 2016.

[15] T. Zhang, G. Eakman, I. Lee and O. Sokolsky, "Overhead-Aware Deployment of Runtime

Monitors," in International Conference on Runtime Verification, 2019.

[16] C. Makaya, A. Dutta, S. Das, D. Chee, F. J. Lin, S. Komorita and H. Yokota, "Service

Continuity Support in Self-organizing IMS Networks," in 2nd International Conference on

Wireless Communication, Vehicular Technology, Information Theory and Aerospace &

Electronic Systems Technology (Wireless VITAE), Chennai, 2011.

[17] F. Sultan, K. Srinivasan, D. Iye and L. Iftode, "Migratory TCP: Connection Migration for

Service Continuity in the Internet," in 22nd International Conference on Distributed

Computing Systems, Vienna, 2002.

[18] B. Meroufel and G. Belalem, "Optimization of Checkpointing/Recovery Strategy in Cloud

Computing with Adaptive Storage Management," Concurrency and Computation: Practice

and Experience, vol. 30, no. 24, 2018.

[19] S. Marzouk, A. J. Maâlej, B. I. Rodriguez and M. Jmaiel, "Periodic Checkpointing for Strong

Mobility of Orchestrated Web Services," in 2009 Congress on Services - I, Los Angeles,

2009.

[20] M. I. Jordan and T. M. Mitchell, "Machine Learning: Trends, Perspectives, and Prospects,"

Science, vol. 349, no. 6245, pp. 255-260, 2015.

[21] N. Shukla, Machine Learning with TensorFlow, Shelter Island, NY: Manning Publications,

2018.

[22] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed and H. Arshad, "State-

of-the-art in Artificial Neural Network Applications: A Survey," Heliyon, vol. 4, no. 11,

2018.

162

[23] P. Rivas, Deep Learning for Beginners, Birmingham: Packt Publishing Ltd., 2020.

[24] M. Wang, Y. Cui, X. Wang, S. Xiao and J. Jiang, "Machine Learning for Networking:

Workflow, Advances and Opportunities," IEEE Network, vol. 32, no. 2, pp. 92 - 99, 2017.

[25] S. Nikolenko, Synthetic Data for Deep Learning, San Francisco: Springer, 2021.

[26] OpenStack, "Open Source Cloud Computing Infrastructure," May 2022. [Online]. Available:

https://www.openstack.org/. [Accessed May 2022].

[27] OpenStack, "Tacker," May 2022. [Online]. Available:

https://wiki.openstack.org/wiki/Tacker. [Accessed May 2022].

[28] E. Bauer and D. Adams, Reliability and Availability of Cloud Computing, John Wiley &

Sons, 2012.

[29] E. Bauer, R. Adams and D. Eustace, Beyond Redundancy: How Geographic Redundancy

Can Improve Service Availability and Reliability of Computer-based Systems, John Wiley &

Sons, 2012.

[30] T. Critchley, High Availability IT Services, CRC Press, 2015.

[31] M. v. Steen and A. S. Tanenbaum, Distributed Systems, Maarten van Steen, 2018.

[32] K. P. Birman, Reliable Distributed Systems: Technologies, Web Services, and Applications,

Springer, 2005.

[33] K. P. Birman, Guide to Reliable Distributed Systems: Building High-Assurance Applications

and Cloud-Hosted Services, Springer, 2012.

[34] W. Jia and W. Zhou, Distributed Network Systems: From Concepts to Implementations,

Springer, 2005.

163

[35] Y. Izrailevsky and C. Bell, "Cloud Reliability," IEEE Cloud Computing, vol. 5, no. 3, pp. 39

- 44, 2018.

[36] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya and R. Ranjan, "Emergent

Failures: Rethinking Cloud Reliability at Scale," IEEE Cloud Computing, vol. 5, no. 5, pp. 12

- 21, 2018.

[37] R. Achary and P. Raj, Cloud Reliability Engineering: Technologies and Tools, Boca Raton:

CRC Press, 2021.

[38] A. Kanso, F. Khendek, M. Toeroe and A. Hamou-Lhadj, "Automatic Configuration

Generation for Service High Availability with Load Balancing," Concurrency and

Computation: Practice & Experience, vol. 25, no. 2, p. 265–287, 2013.

[39] P. Pourali, M. Toeroe and F. Khendek, "Pattern Based Configuration Generation for Highly

Available COTS Components Based Systems," Information and Software Technology, vol.

74, pp. 143-159, 2016.

[40] F. Jingyuan, Y. Zilong, G. Chaowen, G. Xiujiao, R. Kui and Q. Chunming, "GREP:

Guaranteeing Reliability with Enhanced Protection in NFV," in ACM SIGCOMM Workshop

on Hot Topics in Middleboxes and Network Function Virtualization, London, 2015.

[41] W. Ding, H. Yu and S. Luo, "Enhancing the Reliability of Services in NFV with the Cost-

efficient Redundancy Scheme," in IEEE International Conference on Communications

(ICC), Paris, France, 2017.

[42] Q. Han, W. Zang and J. Lan, "Virtual Network Protection Strategy to Ensure the Reliability

of SFC in NFV," in 6th International Conference on Information Engineering, Dalian

Liaoning, 2017.

164

[43] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi and J. P. Jue,

"Guaranteed-Availability Network Function Virtualization with Network Protection and

VNF Replication," in GLOBECOM, Singapore, 2017.

[44] S. Sharma, A. Engelmann, A. Jukan and A. Gumaste, "VNF Availability and SFC Sizing

Model for Service Provider Networks," IEEE Access, vol. 8, pp. 119768 - 119784, 2020.

[45] T. Soenen, W. Tavernier, D. Colle and M. Pickavet, "Optimising Microservice-based

Reliable NFV Management & Orchestration Architectures," in International Workshop on

Resilient Networks Design and Modeling (RNDM), Alghero, Italy, 2017.

[46] J. Fan, C. Guan, Y. Zhao and C. Qiao, "Availability-aware Mapping of Service Function

Chains," in IEEE INFOCOM, Atlanta, GA, USA, 2017.

[47] L. Fang, X. Zhang, K. Sood, Y. Wang and S. Yu, "Reliability-aware Virtual Network

Function Placement in Carrier Networks," Journal of Network and Computer Applications,

vol. 154, 2020.

[48] G. Moualla, T. Turletti and D. Saucez, "An Availability-aware SFC Placement Algorithm for

Fat-Tree Data Centers," in 7th International Conference on Cloud Networking (CloudNet),

Tokyo, 2018.

[49] A. Hmaity, M. avi, F. Musumeci, M. Tornatore and A. Pattavina, "Virtual Network Function

Placement for Resilient Service Chain Provisioning," in 8th International Workshop on

Resilient Networks Design and Modeling (RNDM), Halmstad, Sweden, 2016.

[50] L. Qu, C. Assi, K. Shaban and M. J. Khabbaz, "A Reliability-Aware Network Service Chain

Provisioning With Delay Guarantees in NFV-Enabled Enterprise Datacenter Networks,"

IEEE Transactions on Network and Service Management, vol. 14, no. 3, pp. 554 - 568, 2017.

[51] K. Wolter, Stochastic Models for Fault Tolerance: Restart, Rejuvenation and Checkpointing,

Springer, 2010.

165

[52] M. Nabi, M. Toeroe and F. Khendek, "Availability in the Cloud: State of the Art," Network

and Computer Applications, vol. 60, pp. 54-67, 2016.

[53] I. P. Egwutuoha, D. Levy, B. Selic and S. Chen, "A Survey of Fault Tolerance Mechanisms

and Checkpoint/Restart Implementations for High Performance Computing Systems," The

Journal of Supercomputing, vol. 65, p. 1302–1326, 2013.

[54] M. Hasan and M. Singh Goraya, "Fault Tolerance in Cloud Computing Environment: A

Systematic Survey," Computers in Industry, vol. 99, pp. 156-172, 2018.

[55] 3GPP, "TS 28.516 V16.0.0; Fault Management (FM) for Mobile Networks that Include

Virtualized Network Functions," July 2020. [Online]. Available:

https://www.3gpp.org/ftp/Specs/archive/28_series/28.516/28516-g00.zip.

[56] I. Angelopoulos, E. Trouva and G. Xilouris, "A Monitoring Framework for 5G Service

Deployments," in IEEE 22nd International Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD), Lund, Sweden, 2017.

[57] G. Gardikis, I. Koutras, G. Mavroudis, S. Costicoglou, G. Xilouris, C. Sakkas and A. Kourtis,

"An Integrating Framework for Efficient NFV," in IEEE NetSoft Conference and Workshops

(NetSoft), Seoul, Korea, 2016.

[58] M. Xie, C. Banino-Rokkones, P. Grønsund and A. J. Gonzalez, "Service Assurance

Architecture in NFV," in IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN), Berlin, Germany , 2017.

[59] N. Yuan, W. He, J. Shen, X. Qiu, S. Guo and W. Li, "Delay-Aware NFV Resource

Allocation with Deep Reinforcement Learning," in IEEE/IFIP Network Operations and

Management Symposium (NOMS), Budapest, Hungary, 2020.

[60] C. A. Ouedraogo, E.-F. Bonfoh, S. Medjiah, C. Chassot and S. Yangui, "A Prototype for

Dynamic Provisioning of QoS-oriented Virtualized Network Functions in the Internet of

166

Things," in 4th IEEE Conference on Network Softwarization and Workshops (NetSoft),

Montreal, Canada, 2018.

[61] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore and B. Mukherjee, "Auto-Scaling Network

Service Chains Using Machine Learning and Negotiation Game," IEEE Transactions on

Network and Service Management, vol. 17, no. 3, pp. 1322 - 1336, 2020.

[62] S. Lange, H.-G. Kim, S.-Y. Jeong, H. Choi, J.-H. Yoo and J. W.-K. Hong, "Machine

Learning-based Prediction of VNF Deployment Decisions in Dynamic Networks," in 20th

Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan,

2019.

[63] ETSI ISG NFV, "ETSI GS NFV-REL 002 V1.1.1: Reliability; Report on Scalable

Architectures for Reliability Management," September 2015. [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/002/01.01.01_60/gs_nfv-

rel002v010101p.pdf.

[64] ETSI ISG NFV, "ETSI GS NFV-REL 004 V1.1.1: Assurance; Report on Active Monitoring

and Failure Detection," April 2016. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/004/01.01.01_60/gs_nfv-

rel004v010101p.pdf.

[65] ETSI ISG NFV, "ETSI GS NFV-REL 006 V3.1.1: Reliability; Maintaining Service

Availability and Continuity Upon Software Modification," February 2018. [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/006/03.01.01_60/gs_nfv-

rel006v030101p.pdf.

[66] ETSI ISG NFV, "ETSI GR NFV-REL 007 V1.1.1: Reliability; Report on the resilience of

NFV-MANO critical capabilities," September 2017. [Online]. Available:

https://www.etsi.org/deliver/etsi_gr/NFV-REL/001_099/007/01.01.01_60/gr_nfv-

rel007v010101p.pdf.

167

[67] ETSI ISG NFV, "ETSI GR NFV-REL 010 V3.1.1: Reliability; Report on NFV Resiliency for

the Support of Network Slicing," June 2019. [Online]. Available:

https://www.etsi.org/deliver/etsi_gr/NFV-REL/001_099/010/03.01.01_60/gr_NFV-

REL010v030101p.pdf.

[68] ETSI ISG NFV, "ETSI GR NFV-REL 011 V4.1.1: Network Functions Virtualisation (NFV)

Release 4; Management and Orchestration; Report on NFV-MANO software modification,"

November 2020. [Online]. Available: https://www.etsi.org/deliver/etsi_gr/NFV-

REL/001_099/011/04.01.01_60/gr_NFV-REL011v040101p.pdf.

[69] ETSI ISG NFV, "ETSI GR NFV-REL 012 V1.1.1: Report on Availability and Reliability

Under Failure and Overload Conditions in NFV-MANO," November 2021. [Online].

Available: https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-

REL%20012v1.1.1%20-%20GR%20-%20MANO%20robustness.pdf.

[70] ETSI ISG NFV, "ETSI GS NFV-IFA 010 V3.3.1:Management and Orchestration; Functional

requirements specification," September 2019. [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/03.03.01_60/gs_NFV-

IFA010v030301p.pdf.

[71] R. Gupta, H. Naik and P. Beckman, "Understanding Checkpointing Overheads on Massive-

ScaleSystems: Analysis of the IBM BlueGene/P System," High Performance Computing

Applications, vol. 25, pp. 180-192, 2010.

[72] S. Sadi and B. Yagoubi, "On the Optimum Checkpointing Interval Selection for Variable

Size Checkpoint Dumps," in CIIA, 2015.

[73] N. Nazarzadeoghaz, F. Khendek and M. Toeroe, "Automated Design of Network Services

from Network Service Requirements," in Innovation in Clouds, Internet and Networks and

Workshops (ICIN), Paris, 2020.

168

[74] S. Herker, W. Kiess, X. An and A. Kirstädter, "On the Trade-off Between Cost and

Availability of Cirtual Networks," in IFIP Networking Conference, Trondheim, Norway,

2014.

[75] A. Immonen and E. Niemelä, "Survey of Reliability and Availability Prediction Methods

from the Viewpoint of Software Architecture," Software & System Modeling, vol. 7, pp. 49-

65, 2008.

[76] I. Bazovsky, Reliability Theory and Practice, Dover Publications, 2004.

[77] E. Ruijters and M. Stoelinga, "Fault Tree Analysis: A Survey of the State-of-the-art in

Modeling, Analysis and Tools," Computer Science Review, Vols. 15-16, pp. 29-62, 2015.

[78] F. A. Tillman, C.-L. Hwang and W. Kuo, "Determining Component Reliability and

Redundancy for Optimum System Reliability," in IEEE Transactions on Reliability , 1997.

[79] B. Satzger, A. Pietzowski, W. Trumler and T. Ungerer, "A Lazy Monitoring Approach for

Heartbeat-Style Failure Detector," in Third International Conference on Availability,

Reliability and Security, Barcelona, 2008.

[80] K. Manoj, C. Abhishek and K. Vikas, "A Comparison between Different Checkpoint

Schemes with Advantages and Disadvantages," International Journal of Computer

Applications, pp. 36-39, 2014.

[81] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror and F. Cappello, "VeloC: Towards High

Performance Adaptive Asynchronous Checkpointing at Large Scale," in IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, 2019.

[82] X. Xiao, "Chapter 2 - What Is QoS?," in Technical, Commercial and Regulatory Challenges

of QoS, Massachusetts, Morgan Kaufmann, 2008, pp. 13-35.

169

[83] B. Chatras and F. F. Ozog, "Network Functions Virtualization: the Portability Challenge,"

IEEE Network, vol. 30, no. 4, pp. 4-8, 2016.

[84] ETSI GS NFV, "ETSI GS NFV-IFA 005 V3.4.1: Management and Orchestration; Or-Vi

reference point - Interface and Information Model Specification," June 2020. [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/005/03.04.01_60/gs_NFV-IFA005v030401p.pdf.

[85] ETSI GS NFV, "ETSI GS NFV-IFA 006 V3.4.1: Management and Orchestration; Vi-Vnfm

reference point - Interface and Information Model Specification," June 2020. [Online].

Available: https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-

IFA%20006v3.4.1%20-%20GS%20-%20Vi-Vnfm%20ref%20point%20Spec.pdf.

[86] ETSI GS NFV, "ETSI GS NFV-IFA 007 V3.4.1: Management and Orchestration; Or-Vnfm

reference point - Interface and Information Model Specification," June 2020. [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/007/03.04.01_60/gs_NFV-IFA007v030401p.pdf.

[87] ETSI GS NFV, "ETSI GS NFV-IFA 013 V3.4.1: Management and Orchestration; Os-Ma-

nfvo reference point - Interface and Information Model Specification," June 2020. [Online].

Available: https://www.etsi.org/deliver/etsi_gs/NFV-

IFA/001_099/013/03.04.01_60/gs_NFV-IFA013v030401p.pdf.

[88] J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization," Journal of

Machine Learning Research, vol. 13, pp. 281-305, 2012.

[89] Canonical Ltd., "Ubuntu," [Online]. Available: https://ubuntu.com. [Accessed August 2022].

[90] FFmpeg, "FFmpeg," [Online]. Available: https://ffmpeg.org/. [Accessed August 2022].

[91] F5, "F5 NGINX Sprint," [Online]. Available: https://www.nginx.com. [Accessed August

2022].

170

[92] MariaDB, "MariaDB," [Online]. Available: https://mariadb.com/. [Accessed August 2022].

[93] Apache Software Foundation, "Apache," [Online]. Available: https://apache.org/. [Accessed

August 2022].

[94] MariaDB, "What is MariaDB Galera Cluster?," [Online]. Available:

https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/. [Accessed August 2022].

[95] Zabbix, "Open Source Network Monitoring Solution," [Online]. Available:

https://www.zabbix.com/. [Accessed July 2022].

171

9. Appendix I

Table A-I-1: Mathematical notations used in this thesis

Symbol Description

𝐴𝑋 Availability of X

𝐴𝐷𝑇𝑋 Acceptable down time for X

𝐴𝑆𝐷𝐷𝑋 Acceptable service data disruption for X

𝐴𝑆𝐷𝑇𝑋 Acceptable service disruption time for X

𝐶𝐶(𝑋) Overall computing cost of X

𝐶ℎ(𝑋) Hosting cost of X

𝐶𝑁(𝑋) Networking cost of X

𝐶𝑁𝐷𝑋 Checkpointing network delay for X

𝐶𝑝𝐼𝑋 Checkpointing interval for X

𝐶𝑃𝑁 Number of possible configuration values for the checkpointing interval of a VNF

𝐹𝐷𝑇𝑋 Failure detection time for X

𝐹𝑜𝑇𝑋 Failover time for X

𝐻𝐼𝑋 Health-check Interval for X

𝐻𝑅𝑁 Number of possible configuration values for the health-check rate of a VNF

𝑀𝐻𝑅𝑋 Monitoring health-check rate for X

𝑀𝑇𝑇𝑅𝑋 Mean time to repair for X

𝑁𝑂𝑁 Number of possible networking options for remote checkpointing of a VNF

𝑂𝑇𝑋 Outage time of X

𝑅𝑋 Reliability of X

𝑅𝑇𝑋 Restart time for X

𝑆𝐷𝐷𝑋 Service data disruption of X

172

𝑆𝐷𝑇𝑋 Service data time of X

𝑡 Time period

𝑇𝐵𝐹𝐿𝐶𝑋 Time between a failure and the latest committed checkpoint for X

𝑇𝐷𝑇𝑋 Total down time of X

𝑇𝑜𝑇𝑋 Takeover time for X

𝑉𝑛𝑓𝐸𝐴𝑋 Expected availability for VNF X

𝜆𝑋 Failure rate of X

