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Abstract

Optimization in Dynamical Systems:
Theory and Application

Masoud Roudneshin, Ph.D.

Concordia University, 2022

In this dissertation, we study optimization methods in interconnected systems and

investigate their applications in robotics, energy harvesting, and mean-field linear quadratic

multi-agent systems. We first focus on parallel robots. Parallel Robots have numerous

applications in motion simulation systems and high-precision instruments. Specifically,

we investigate the forward kinematics (FK) of parallel robots and formulate it as an error

minimization problem. Following this formulation, we develop an optimization algorithm

to solve FK and provide a theoretical analysis of the convergence of the proposed algorithm.

Then, we investigate the energy optimization (maximization) in a specific class of micro-

energy harvesters (MEH). These types of energy harvesters are known to extract the largest

amount of power from the kinetic energy of the human body, making them an appropriate

choice for wearable technology in healthcare applications. Employing machine learning

tools and using the existing models for the MEH’s kinematics, we propose three methods

for energy maximization. Next, we study optimal control in a mean-field linear quadratic

system. Mean-field systems have critical applications in approximating very large-scale

systems’ behavior. Specifically, we establish results on the convergence of policy gradient

(PG) methods to the optimal solution in a mean-field linear quadratic game. We finally

consider the risk-constrained control of agents in a mean-field linear quadratic setting.

Simulations validate the theoretical findings and their effectiveness.
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Chapter 1

Introduction

In this dissertation, we study some optimization problems in dynamical systems. The

main theme in all the following chapters is the optimization (maximization or minimization)

of a cost function.

In Part I (Chapter 2), we focus on the application of optimization in robotics. We

study the forward kinematics (FK) of a parallel robot where the objective is to find the

end-effector configuration given the joint space values (either joint length or joint angles).

Unlike the inverse kinematics of parallel robots which usually find a closed-form solution,

FK may be solved through solution of a series of nonlinear equations. In practice, FK

is a trade-off between precision and computational effort. Existing approaches can be

categorized as analytical and numerical methods. In analytical methods, the problem is

reduced to solving a polynomial function involving multiple sines and cosines products

and seeking closed-form solutions [1,3–6]. However, solving a high-order polynomial may

be impractical and inefficient for real-time applications. On the other hand, the Newton-

Raphson method is often employed in numerical approaches to solve the problem [7–19].

This class of algorithms involves computing the Jacobian matrix of the manipulator and

its inverse at each iteration. However, such methods require a significant computational

resource which may be infeasible for real-time applications. As an alternative approach,

we formulate FK as an error minimization problem and establish analytical results on the

convergence of the solution to the sub-optimal values for a special class of parallel robots.
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In addition, our results indicate that the required computational effort of our proposed

method is even lower in comparison to the state-of-the-art methods.

In Part II (Chapters 3-5), we investigate energy harvesting (EH) in a micro energy

harvester known as Coulomb force parametric generator (CFPG) [33, 34]. CFPGs can be

attached to some parts of the human body to harvest energy from the kinetic motions

during daily life activities. To maximize the harvested energy, we are interested to adjust

a parameter (electrostatic force F ) inside CFPG. Adjustment of the electrostatic force is

dependent on the intensity of the external acceleration of the CFPG’s frame. Therefore,

this problem may be categorized as an online optimization problem [23, 24]. Despite the

rich literature in online optimization, the existing methods are mostly tailored for prob-

lems enjoying special structures (convex loss functions) and relatively smooth dynamics.

However, a CFPG architecture has a nonlinear dynamics and non-convex cost function,

which makes the application of the existing theories almost impossible. In addition, one

factor in choosing algorithms in EH is their relatively low amounts of computational com-

plexity. In Chapters 3-5, we study different methods using tools form optimization and

machine learning to find a sub-optimal solution for the EH problem in CFPG micro energy

harvesters.

In part III (Chapter 6), we study optimization in nonzero-sum deep structured linear

quadratic systems. We consider players having linear dynamics interacting with each other

through a set of weighted averages of all players. Specifically, we are interested in finding

the optimal policy of the players minimizing the cumulative infinite horizon cost of each

player using model-based and model-free policy gradient (PG) methods. This problem

finds significance in the theory of machine learning in explaining the learning process of

an agent interacting with a dynamical system. Speaking of sample-based (model-free)

methods, we are interested to find bounds on the number of required samples to attain a

guaranteed level of performance. Although the work in [51] proves the non-convexity of

the optimization in policy space and the fact that policy optimization does not generally

converge in game setting [53], we prove that the proposed model-based and model-free

policy gradient descent and natural policy gradient descent algorithms globally converge
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to the sub-game perfect Nash equilibrium.

There are three main features that unify the problems studied in this dissertation:

(1) We consider dynamical systems whose state can be modeled as a differential or

algebraic equation.

(2) The objective of all the problems is to minimize (or maximize) a non-negative cost

function as a performance measure for these systems.

(3) We use analogous mathematical tools from optimization and control theory for the

analysis of these systems.

Finally, some real-world applications were the main thrust of studying the three prob-

lems in this dissertation.

• Problem 1 was motivated by a project carried out at Touche Technologies to address

some of the existing challenges in robotic motion simulation systems.

• Problem 2 was part of a project supported by the National Institute of Standards

and Technology (NIST), which aimed at improving the energy efficiency of wearable

medical devices.

• Problem 3 is studied to better understand the behavior of learning algorithms in multi-

agent systems. This research was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC).
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Part I

Robotics
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Chapter 2

On Forward Kinematics of a 3SPR

Parallel Manipulator

This chapter presents a new numerical method to solve the forward kinematics (FK)

of a parallel manipulator with a three-limb spherical-prismatic-revolute (3SPR) structure.

Unlike the existing numerical approaches that require the manipulator’s Jacobian matrix

and its inverse at each iteration, the proposed algorithm requires much less complex com-

putations to estimate the FK parameters. A cost function is introduced that measures the

difference between actual FK values and its estimates. At each iteration, the problem is han-

dled in two steps. First, the estimates of the platform orientation from the heave estimates

are obtained. Then, the heave estimates are updated along the gradient direction of the pro-

posed cost function. To evaluate the performance of the proposed algorithm, we compare

results with those of a Jacobian-based (JB) approach for a 3SPR parallel manipulator.

2.1 Introduction

The forward kinematics (FK) problem has attracted researchers in various engineering

fields and has fundamental applications in robotics. The problem is in finding the manipu-

lator’s workspace configuration with a given set of joint lengths or angles. The requirement

to solve, in real-time, a set of nonlinear equations that contain products of trigonometric

5



functions makes the FK problem a challenging one for parallel manipulators [1–3, 6–8].

There is a vast body of recent literature on methods to solve FK for parallel manipulators

[1–19]. These approaches can be categorized as analytical and numerical methods. In

analytical methods, the problem is reduced to solving a polynomial function involving

multiple sine and cosine products and seeking closed-form solutions [1, 3–6]. In most

cases, a post-processing step is required to identify the feasible answer among various

solutions of the polynomial. However, solving a high-order polynomial may be impractical

and inefficient for real-time applications.

On the other hand, the Newton-Raphson method is often employed in numerical ap-

proaches to solve the problem [7–19]. This class of algorithms involves computing the

Jacobian matrix of the manipulator and its inverse at each iteration. However, such meth-

ods require a significant computational resource which may be infeasible for real-time

applications. Furthermore, the algorithm is sensitive to the initial value that may harm the

convergence to the actual solution.

For a 3SPR architecture, passive degrees-of-freedom (DoFs) are a function of active

DoFs and possess very small amplitudes compared to the dimensions of the manipulator.

The corresponding equations include complex algebraic relations that need to be solved,

adding to the problem’s computational complexity. The present chapter focuses on a 3SPR

parallel manipulator with a three DoF architecture to develop a new numerical approach

for solving the FK problem. The algorithm is computationally efficient as it neglects the

passive DoFs at the cost of some estimation error. In the proposed method, instead of

formulating the problem as a non-convex problem, FK is solved in three steps. First, it

is shown that the additional error introduced by neglecting the passive DoFs is upper

bounded by the maximum amplitude of the passive DoFs. Then, it is demonstrated that

the orientation of the manipulator can be estimated using the translational movements of

the manipulator along the z-axis, called heave. It is also shown that estimation errors in the

orientation are functions of the heave estimation error and the maximum amplitude of the

passive DoFs. Next, using some results from the inverse kinematics (IK) problem, which

is much easier to solve, a cost function is proposed that indirectly measures the distance

6



between the actual and estimated FK values. Finally, an algorithm is developed to solve for

FK, and its convergence to the actual value of heave is analytically investigated.

The rest of the chapter is organized as follows. In Section II, the kinematics of a

3SPR parallel manipulator is reviewed. The proposed methodology and main results are

presented in Section III. In Section IV, the theoretical results are validated by simulation.

The chapter is concluded in Section V.

2.2 Kinematics Review of 3SPR Manipulator

In this section, the architecture of the parallel manipulator is elaborated. Then, inverse

and forward kinematics problems are discussed.

2.2.1 Manipulator Architecture

Throughout the chapter, R, R+ and N refer to the sets of real, positive real, and natural

numbers, respectively. Given any n ∈ N, Nn denotes the finite set {1, . . . , n}. For any

vector v ∈ R3×1, the expression of the vector in frame {F} is denoted by F v. Let also
F vx, F vy, and F vz denote the elements of v in x, y and z directions of frame {F}. Fig. 2.1

depicts the generic architecture of a 3SPR parallel manipulator. As seen in the figure,

the manipulator’s base is a triangle with vertices A1, A2 and A3. An inertial frame {I} is

attached to the manipulator’s base. The moving platform is defined by a triangle B1B2B3,

which is the same size as triangleA1A2A3. A moving coordinate frame {M} is also attached

to the moving platform.

The three verticesA1, A2 andA3 are fixed at the point of attachment of spherical joints to

the ground. Similarly, vertices B1, B2 and B3 are the revolute joints attached to the moving

platform. The origin O′ of the moving platform is obtained by finding the intersection of

the orthogonal lines to the axes of the revolute joints. The inertial frame originO is obtained

analogously with respect to the triangle A1A2A3. Each spherical joint on the inertial frame

is attached to the revolute joints on the moving frame by a prismatic joint. Let Iai ∈ R3×1

and Ibi ∈ R3×1 denote the position vector of Ai and Bi, i ∈ N3, with respect to the inertial

7



frame, respectively. Also, let a1 = [d1, 0, 0]
⊺, a2 = [−d2, d3, 0]⊺ and a3 = [−d2,−d3, 0]⊺,

where d1, d2, d3 ∈ R+. Denote l1, l2 and l3 as the length of each prismatic actuator and

l = [l1, l2, l3]
⊺ ∈ R3×1 as the vector of prismatic actuators’ lengths.

The parallel 3SPR architecture provides three degrees of freedom (DoF) for the manip-

ulator. Denote Z, α and β as the translational motion along the z-axis (heave), rotational

motion around the x-axis (roll), and the rotational motion around the y-axis (pitch), respec-

tively. Also, denote X , Y and γ as the small translation of the moving platform along the

x and y axes and the small rotation around the z-axis (yaw), respectively. The set of small

motions (X,Y, γ) is generally known as parasitic motions [7].

2.2.2 Inverse Kinematics

Denote R = Rz(γ)Ry(β)Rx(α) as the X-Y-Z rotation matrix of the moving platform with

respect to the fixed frame, and P = [X,Y, Z]⊺ as the coordinate of the moving platform

with respect to the fixed frame. The position of each revolute joint in {I} can be expressed

as
Ibi = P +R×Mbi i ∈ N3 (1)

or equivalently
Ibi =

Iai + liŝi i ∈ N3 (2)

where ŝi denotes the unit vector of the ith prismatic joint expressed in {I}. It results from

(1) and (2) that

li = |P +R×Mbi − Iai| i ∈ N3 (3)

In other words, if the space of prismatic values is denoted by θ = (l1, l2, l3) and the feasible

workspace values by Θ = (Z,α, β), the inverse kinematics equation (3) defines a mapping

Φ from the workspace to joint space represented by

Φ : R3 → R3, θ = Φ(Θ) (4)

Remark 1. In a 3SPR manipulator, to solve the IK problem for exact joint lengths, the parasitic
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motions must be computed as a function of the configuration Θ.

2.2.3 General Form of Parasitic Motions

LetT denote the transformation matrix from the inertial frame to the moving frame such

that T =
[ R P

[0, 0, 0] 1

]
. Recall that the coordinates of the spherical joints with respect to

{M} can be expressed by using T−1 that leads to

Mai = R⊺ × (−P + Iai) (5)

Since the revolute joints constrain the relative motion of spherical joints with respect to

{M}, it always holds that

May1 = 0, May2 = m(Max2),
May3 = −m(Max3) (6)

where m =
M by2
M bx2

= −
M by3
M bx3

. The closed-form solutions for these motions can be obtained

from (5) and (6). For the yaw angle γ =
(d1d2+d22) sinα sinβ

(d1d2+d22) cosα+d23 cosβ
. The expression for the X and

Y are page-long algebraic equations which are provided in Appendix.

Remark 2. One must account for the required extra computations imposed by considering parasitic

motions to obtain exact solutions for both the inverse and forward kinematics.

Consider d1 = 1150 mm, d2 = 500 mm and d3 = 390 mm that exemplify typical dimensions

of a 3SPR parallel manipulator as a motion platform. Fig. 2.2 illustrates the distribution of

the ratios of X
Z and Y

Z for this manipulator. It is observed that these amplitude ratios are

relatively small in comparison to the heave for different configurations. Hence, one way to

solve the FK may be to consider a simplified form of the kinematic equation at the cost of

some error. Therefore, the following problem is defined.

Problem 1 (Forward kinematics of a 3SPR manipulator). For a given length of prismatic

actuators l1, l2 and l3, develop an algorithm to estimate the manipulator workspace configuration

(Z,α, β).
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Figure 2.1: Architecture of a 3SPR manipulator

Figure 2.2: Distribution of the parasitic motion to heave ratios for a typical motion platform
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2.3 Main Results

In this section, we tackle Problem 1 using a novel technique.

2.3.1 A Simplified IK Formulation

Consider the general form of the IK equation in (3) again. By neglecting the X and

Y components of the motion, a simplified form of the IK can be introduced as θ̃ = Φ̃(Θ)

which has the extended form l̃i = |P̃ +R×Mbi − Iai|, i ∈ N3

where l̃i denotes an approximate value of prismatic joint length for the ith limb, and

P̃ = [0, 0, Z]⊺ is the simplified position of the manipulator. The following lemma establishes

an upper bound on the error between the actual value li and the approximate value of the

joint length l̃i.

Lemma 1. Let µ = max{|X|, |Y |}; then |li − l̃i| ≤
√
2µ.

Proof. By expanding (3) and using the triangle inequality, one has

|li − l̃i| ≤ |P − P̃ | =
√
X2 + Y 2 ≤

√
2µ2 =

√
2µ. (7)

2.3.2 Roll & Pitch Estimation from the Heave Estimates

In this step, the objective is to estimate the roll and the pitch angles from the geometry

of the manipulator based on a given heave value. From (3), for i = 1, it holds that

l21 = (X − d1 + d1 cos(β))
2 + (Z − d1 sin(β))

2 + Y 2,

and with some simplifications, one has

(2d1X + 2d21) cos(β) + 2d1Z sin(β) = 2d21 + P ⊺P − l21.
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Solving for β yields β = λ± ω, where

λ = arcsin
( 2d1Z√

(2d1X + 2d21)
2 + (2d1Z)2

)
,

ω = arccos
( 2d21 + P ⊺P − l21√

(2d1X + 2d21)
2 + (2d1Z)2

)
.

(8)

By considering the zero pitch condition (β = 0) for a zero heave (Z = 0), the solution with

the plus sign is ruled out and therefore β = λ − ω. Neglecting the effects of movement in

the X and Y directions, the pitch angle can be estimated as

β̂ = λ̂− ω̂ (9)

in which λ̂ = arcsin
(

2d1Ẑ√
(2d21)

2+(2d1Ẑ)2

)
and ω̂ = arccos

(
2d21+(Ẑ2)−l21√
(2d21)

2+(2d1Ẑ)2

)
where Ẑ denotes

the estimated heave.

To solve for the roll angle, consider the IK equation for the two rear limbs and subtract

(3) with i = 3 from (3) with i = 2 to obtain

l22 − l23 = −4d3
(
Y cos(α)− Y + Z cos(β) sin(α)

+X sin(α) sin(β) + d2 sin(α) sin(β)
)
,

which can be rewritten as

Y cos(α) +
(
Z cos(β) + (X + d2) sin(β)

)
sin(α) =

l23 − l22
4d3

+ Y.

As a result α = γ ± κ, where

γ = arcsin

( (
Z cos(β) + (X + d2) sin(β)

)
√

Y 2 +
(
Z cos(β̂) + (X + d2) sin(β)

)2
)

κ = arccos

( l23−l22
4d3

+ Y√
Y 2 +

(
Z cos(β) + (X + d2) sin(β)

)2
)
.

(10)

12



Given the zero roll condition (α = 0) for a zero heave (Z = 0), the solution with the plus

sign is ruled out and α = γ−κ. Let the translational displacement along the X and Y axes

be neglected. Then, the roll angle can also be estimated as

α̂ = γ̂ − κ̂ =
π

2
− κ̂ (11)

where κ̂ = arccos

(
l23−l22
4d3√(

Ẑ cos(β̂)+(d2) sin(β̂)

)2

)
.

Definition 1. Define R̂ as the estimated rotation matrix from (9) and (11). Let ez = Z − Ẑ denote

the heave estimation error. Let also Ψ1 and Ψ2 represent the pitch and roll angles as functions of the

heave and translational motion along the X and Y axes. Furthermore, define ρ = max∥P − P̃∥

and the region D = {P |∥P − P̃∥ ≤ ρ}.

Lemma 2. Let P ∈ D; it holds that

|α− α̂| ≤ L1(
√
2µ+ ez),

|β − β̂| ≤ L2(
√
2µ+ ez),

(12)

where L1 = max |∇Ψ1| and L2 = max |∇Ψ2|.

Proof. Since Ψ1(X,Y, Z) is continuously differentiable in the bounded region D, it has a

bounded Lipschitz constant within that region, denoted by L1, which yields

|α− α̂| ≤ L1|(X,Y, Z)− (0, 0, Ẑ)|

= L1
√

X2 + Y 2 + (Z − Ẑ)2 ≤ L1(
√
2µ+ ez)

(13)

where the above relation results from the triangle inequality. Using the same line of

argument, an upper bound for the roll estimate error can also be established.

2.3.3 Optimal Estimation of Heave

Consider the IK mapping in (4). LetΘ and Θ̂denote the actual and estimated workspace

configurations, respectively. It follows that if Θ̂ = Θ, then θ̂ = θ. One way to formulate this

13



observation is the following distance function

Λ1(Θ̂) = (θ − Φ(Θ̂))⊺(θ − Φ(Θ̂)),

where Λ1(Θ̂) = 0 if and only if Θ̂ = Θ. Considering the computational effort for obtaining

Φ, if one employs Φ̃ from Φ̃ instead, the following cost function is constructed

Λ2(Θ̂) = (θ − Φ̃(Θ̂))⊺(θ − Φ̃(Θ̂)). (14)

Remark 3. Assume that for a given set of joint lengths l, the roll and pitch angles are estimated by

employing (9) and (11). Then, Λ2 can be parametrized as a single variable function of heave, denoted

as Λ3(Z). A sub-optimal value of the heave can be obtained along the gradient of this function with

respect to Z.

Remark 4. By estimating the values of the roll and pitch angles, an approximate direction of the

gradient can be used to update the heave estimates as

Ẑk+1 = Ẑk − η

(̂
∂Λ

∂Z

)
, (15)

where η is a proper update step size defined later.

Considering Remarks 3 and 4, Algorithm 1 is proposed to solve for the FK problem.

Lemma 3. It always holds that ∥∥∥ ∂l̃i
∂Z

∥∥∥ ≤ 1, i ∈ N3. (16)

Proof. It follows from (3) that

l̃i =

√
(P̃ + (R− I)ai)⊺(P̃ + (R− I)ai) (17)

and it holds that ∂l̃i
∂Z = [0 0 1](P̃+(R−I)ai)√

(P̃+(R−I)ai)⊺(P̃+(R−I)ai)
. The proof follows on noting that for any

vector v,
∥∥∥ [0 0 1]v√

v⊺v

∥∥∥ ≤ 1.

Lemma 4. It holds that
∣∣∣∂Λ3
∂Z

∣∣∣ ≤ ∥l̃ − l∥1.

14



Algorithm 1 Forward kinematics estimation
Input: θ = (l1, l2, l3), step size η and N iterations
Output: Forward kinematics estimate Θ̂ = (Ẑ, α̂, β̂)

1: Initialize iteration counter k ← 0
2: Initialize Ẑk ← Ẑ0

3: Calculate β̂k from (9)
4: Calculate α̂k from (11)
5: Calculate Ẑk+1 from (15)
6: while k < N do
7: Ẑk ← Ẑk+1

8: Calculate β̂k from (9)
9: Calculate α̂k from (11)

10: Calculate Ẑk+1 from (15)
11: k ← k + 1
12: end while

Proof. From (14) and Remark 3 the cost function is described as Λ3(Z) = 1
2

∑3
i=1(li − l̃i)

2.

Therefore
∂Λ3

∂Z
=

3∑
i=1

(li − l̃i)
∂l̃i
∂Z

. (18)

The proof follows from Lemma 3 and the definition of L1 norm.

Remark 5. Recall that the discrepancy between l̃i and li, i ∈ N3, is due to the parasitic motions X

and Y . In addition, parasitic motions affect the discrepancy between the estimated and exact rotation

matrices R̂−R. Denote by ϵ1i, ϵ2i, ϵ3i and ϵ4i the scaled compound effect of these errors as follows

ϵ1i =
[0 0 1]

(
[X Y 0] + (R̂−R)ai

)
l̃i + li

,

ϵ2i =
a⊺i (R̂− I)⊺(R̂− I)ai − a⊺i (R− I)⊺(R− I)ai

l̃i + li
,

ϵ3i =
2[0 0 Z](R̂−R)ai

l̃i + li
,

ϵ4i =
X2 + Y 2 + 2[X Y 0](R̂−R)ai

l̃i + li
.

Next, the general form of the partial derivative of the cost function with respect to the

optimal heave is presented.
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Lemma 5. The partial derivative of the cost function with respect to the heave can be expressed as

∂Λ3

∂Z
=

3∑
i=1

((1 + ϵ1i)(Ẑ − Z) + ϵ2i + ϵ3i + ϵ4i)
∂l̃i
∂Z

. (19)

Proof. From (18), one has ∂Λ3
∂Z =

∑3
i=1(l̃

2
i − li

2) 1
li+l̃i

∂l̃i
∂Z . The proof follows now from (3) and

(17).

Definition 2. For a given step size η, define

δ = (1− η
3∑

i=1

(1 + ϵ1i)
∂l̃i
∂Z

).

Also, define

c1 =

3∑
i=1

|1 + ϵ1i| c2 =

3∑
i=1

|ϵ2i|+ |ϵ3i|+ |ϵ4i|.

Theorem 1. Let Z and Ẑ0 denote the actual heave and its initial estimate, respectively. Using

Algorithm 1 with the step size η < 1
c1

, the heave estimate error after N iterations is upper-bounded

as described below ∣∣ẐN − Z
∣∣ ≤ max

{∣∣c2
c1

∣∣}+ δN−1
∣∣Ẑ0 − Z

∣∣.
Proof. From (15) and (19), it holds that

ẐN − Z = (ẐN−1 − Z)

− η

3∑
i=1

((1 + ϵ1i)(ẐN−1 − Z) + ϵ2i + ϵ3i + ϵ4i)
∂l̃i
∂Z

≤
∣∣δ(ẐN−1 − Z)

∣∣+ ηc2,

(20)

where the last inequality results from (16) and the triangle inequality. If η < 1
c1

, then δ < 1.
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Let (20) be expanded as

∣∣ẐN − Z
∣∣ ≤ δ

∣∣ẐN−1 − Z
∣∣+ ∣∣ηc2∣∣ ≤ δ2

∣∣ẐN−2 − Z
∣∣+ (1 + δ)

∣∣ηc2∣∣
...

≤ δN−1
∣∣Ẑ0 − Z

∣∣+ ∞∑
i=0

δi
∣∣ηc2∣∣ = δN−1

∣∣Ẑ0 − Z
∣∣+ ∣∣ηc2∣∣

1− δ

= δN−1
∣∣Ẑ0 − Z

∣∣+ ∣∣c2
c1

∣∣.
(21)

This completes the proof.

Remark 6. If the manipulator’s motion is sufficiently smooth such that |ϵ1i| ≪ 1, |ϵ2i| ≪ 1,

|ϵ3i| ≪ 1 and |ϵ4i| ≪ 1, then Theorem 1 implies that the heave can be estimated sufficiently

accurately with the maximum residual error of max
{∣∣ c2

c1

∣∣}.

Remark 7. The proposed method may be generalized to other parallel manipulators if two necessary

conditions are met: (i) The ratio of the parasitic motion to the independent DoFs is small enough to

simplify the kinematic equations with negligible error, and (ii) for a given set of joint lengths (angles),

all independent DoFs can be formulated as a function of only one DoF. Our preliminary findings

indicate that the proposed method can be extended to other commercial parallel manipulators like

H4 [21] and Stewart-Gough platform [22].

2.3.4 Computational Complexity of the Forward Kinematics

In this part, we compare the computational complexity of the JB method with that of

the proposed method. For the IK mapping in (4), a first-order approximation at the nth

time instant may be written as

θn = Φ(Θn) = Φ(Θn−1 +∆Θ) ≈ Φ(Θn−1) +
∂Φ

∂Θ
∆Θ,

where J = ∂Φ
∂Θ is known as the Jacobian in IK problem. Also, recall that

Φ(Θn−1) = θn−1,
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therefore

θn − θn−1 = ∆θ ≈ J∆Θ. (22)

Hence, to solve FK, starting from an initial configuration, the workspace variables can be

approximated by first computing the elements of the Jacobian J and then solving (22) for

∆Θ.

For solving FK with the proposed method, the estimates of the pitch (9) and the roll

angle (11) should be computed at every iteration. Then, the heave estimate must be

updated using (15). For the current 3SPR manipulator, Table I reports the required number

of elementary arithmetic operations for both methods (these values are obtained using

MATLAB®’s built-in function named socFunctionAnalyzer). It is observed that the required

arithmetic operations for the JB method are approximately thirty times larger than those

for one iteration of the proposed method. The relatively large algebraic expression of the

parasitic motions explains the observed discrepancy between the required computation of

the JB and the proposed method.

Remark 8. There is no guarantee of obtaining a solution for the FK of parallel manipulators using

an analytical approach. We could not find an analytical solution using standard symbolic software

packages for the manipulator we experimented with. Therefore, we only focus on comparing the

proposed approach with the Jacobian-based method.

2.4 Simulations

We run simulations for a 3SPR parallel manipulator with dimensions described in 2.2.3,

where the allowable ranges for DoF parameters are Z ∈ [0, 100] mm, α ∈ [−3.5◦, 3.5◦] and

β ∈ [−1.5◦, 1.5◦]. To assess the performance of the proposed algorithm under different

motion conditions, we consider a combined parabolic, ramp and sinusoidal trajectory. Let

u(t−τ) denote the unit step function delayed by τ and assume that the heave, pitch and roll

angles are time-varying functions described by Z = (50 + 1.6t2)(u(t)− u(t− 2.5)) + (85−

10t)(u(t− 2.5)− u(t− 5)) + 15 sin(π2 t− 3π), α = 0.4t(u(t)− u(t− 5)) + 2 cos(0.4πt)u(t− 5)
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Figure 2.3: Estimation of the FK variables by employing the proposed algorithm with six
iterations and the JB method with fpitch = 0.2 Hz
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Figure 2.4: Estimation of the FK variables by employing the proposed algorithm with six
iterations and the JB method with fpitch = 1 Hz

and β = (−0.4t + 1)(1 − u(t − 2.5)) + sin(2πfpitcht)u(t − 5) for 20 seconds. At each time

instant, the estimated heave of each method from the previous instant is used as the initial

value for the current instant. For the JB method, we run simulations by taking into account

the full information of the parasitic motions. For the proposed method, we select a step

size of η = 0.08. Figs. 2.3 and 2.4 compare the estimated DoF parameters for six iterations

of the proposed method with that of the JB method using fpitch = 0.2 Hz and fpitch =

1 Hz, respectively. It is observed that for the ramp and parabolic portions of the trajectory,

both methods track the generated motion with satisfactory precision. For the sinusoidal

portion of the trajectory with the frequency fpitch = 0.2 Hz in the pitch channel, on the

other hand, the JB method estimates the DoF parameters with negligible error, as observed

in Fig. 2.3. However, Fig. 2.4 shows that for a frequency as high as fpitch = 1 Hz, the

estimates obtained by the JB method exhibit considerable error, while those obtained by

the proposed method display much smaller errors. This larger estimation error is partly

due to the first-order approximation of the inverse kinematics function in the JB method
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Figure 2.5: Comparison of the estimation error for six and thirty iterations of the proposed
algorithm
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Table 2.1: Required number of elementary arithmetic operations for the JB and the proposed
methods

± ×/ Total
JB method 1953 11087 13040

Proposed method (One Iteration) 205 199 404

(i.e., neglecting higher order terms). Note that the first-order approximation error is larger

for rapid motions. Finally, Fig. 2.5 illustrates the estimation error of the proposed method

for the same trajectory for six and thirty iterations. It is observed that the estimation error is

smaller for larger numbers of iterations, as expected. For 30 iterations, the estimation error

has a maximum value of 0.05 mm, 5 × 10−4 degrees and 5 × 10−4 degrees in heave, roll

and the pitch channels, respectively. Compared to the motion amplitude, the normalized

maximum error is 0.16, 0.025, and 0.05 percent in the heave, roll and the pitch channels,

respectively.

Remark 9. In simulations, we observe that both the JB method and the proposed method perform

similarly for ramp and parabolic trajectories. However, we observe that the performance of the

JB method starts to deviate form the reference trajectory after some time. Note that for most

industrial applications, the motion trajectory of the robot is generated from a limited set of well-

known functions which usually do not contain high-frequency components. This effective trajectory

generation strategy is the main reason for the popularity of the JB method in industrial applications.

2.5 Conclusions

This chapter investigated the FK estimation of a 3SPR parallel manipulator by using a

novel numerical method. The proposed algorithm is computationally more efficient than

the Jacobian-based approaches. Furthermore, analytical results are established to evaluate

the performance of the proposed algorithm in terms of accuracy, and simulations support

the theoretical findings. As a future research direction, one can extend the algorithm to a

more general class of parallel manipulators.
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Appendix

Algebraic Expression of Parasitic Motions

The parasitic motion along the x axis is a fractional expression X = Px
Qx

where

Qx = cosα cosβ×(
d42 cos

2 α+ d43 cos
2 β + d21d

2
2 cos

2 α+ d42 sin
2 α sin2 β

+ 2d1d
3
2 cos

2 α+ d21d
2
2 sin

2 α sin2 β + 2d22d
2
3 cosα cosβ

+ 2d1d
3
2 sin

2 α sin2 β + 2d1d2d
2
3 cosα cosβ

)
.

and

Px = d52 cos
4 α+ d21d

3
2 cos

4 α− d52 cos
3 α cosβ + d52 sin

4 α sin4 β + 2d1d
4
2 cos

4 α

− 2d32d
2
3 cos

2 α cos2 β + d21d
3
2 sin

4 α sin4 β − 21d
4
2 cos

3 α cosβ − d2d
4
3 cosα cos3 β

+ Zd42 cos
3 α sinβ + 2d52 cos

2 α sin2 α sin2 β − d21d
3
2 cos

3 α cosβ + d2d
4
3 cos

2 α cos2 β

+ 2d32d
2
3 cos

3 α cosβ + 2d1d
4
2 sin

4 α sin4 β + 4d1d
4
2 cos

2 α sin2 α sin2 β

− d52 cosα cosβ sin2 α sin2 β + 2d1d
2
2d

2
3 cos

3 α cosβ + Zd21d
2
2 cos

3 α sinβ

+ Zd43 cosα cos2 β sinβ + 2d21d
3
2 cos

2 α sin2 α sin2 β

− d32d
2
3 cos

2 β sin2 α sin2 β − 2d1d
2
2d

2
3 cos

2 α cos2 β + (d42 + d1d
3
2)Z cosα sin2 α sin3 β

+ 2Zd1d
3
2 cos

3 α sinβ + Zd21d
2
2 cosα sin2 α sin3 β + Zd22d

2
3 cosβ sin2 α sin3 β

+ Zd22d
2
3 cos

3 β sin2 α sinβ + Zd42 cosα cos2 β sin2 α sinβ

− 2d1d
4
2 cosα cosβ sin2 α sin2 β − 2d1d

2
2d

2
3 cos

2 β sin2 α sin2 β − d21d2d
2
3 cos

2 β sin2 α sin2 β

+ (2d32d
2
3 − d21d

3
2) cosα cosβ sin2 α sin2 β + 2Zd22d

2
3 cos

2 α cosβ sinβ

+ Zd21d
2
2 cosα cos2 β sin2 α sinβ + 2d1d

2
2d

2
3 cosα cosβ sin2 α sin2 β

+ Zd1d2d
2
3 cosβ sin2 α sin3 β + Zd1d2d

2
3 cos

3 β sin2 α sinβ

+ 2Zd1d
3
2 cosα cos2 β sin2 α sinβ + 2Zd1d2d

2
3 cos

2 α cosβ sinβ.
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The parasitic motion along the y axis is a fractional expression Y =
Py

Qy
where

Qy = cosα×(
d42 cos

2 α+ d43 cos
2 β + d21d

2
2 cos

2 α+ d42 sin
2 α sin2 β

+ 2d1d
3
2 cos

2 α+ d21d
2
2 sin

2 α sin2 β + 2d22d
2
3 cosα cosβ

+ 2d1d
3
2 sin

2 α sin2 β + 2d1d2d
2
3 cosα cosβ

)
.

and

Py = d32d
2
3 sin

3 α sin3 β + Zd43 cos
3 β sinα

+ Zd42 cos
2 α cosβ sinα+ Zd43 cosβ sinα sin2 β

− d1d
4
3 cos

2 β sinα sinβ − d2d
4
3 cos

2 β sinα sinβ

+ d1d
2
2d

2
3 sin

3 α sin3 β + d32d
2
3 cos

2 α sinα sinβ

+ Zd22d
2
3 cosα sinα sin2 β + d1d

2
2d

2
3 cos

2 α sinα sinβ

− d32d
2
3 cosα cosβ sinα sinβ + 2Zd1d

3
2 cos

2 α cosβ sinα

+ d2d
4
3 cosα cosβ sinα sinβ + Zd21d

2
2 cos

2 α cosβ sinα

+ 2Zd22d
2
3 cosα cos2 β sinα+ Zd1d2d

2
3 cosα sinα sin2 β

− 2d1d
2
2d

2
3 cosα cosβ sinα sinβ − d21d2d

2
3 cosα cosβ sinα sinβ

+ 2Zd1d2d
2
3 cosα cos2 β sinα.
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Part II

Energy Harvesting
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Chapter 3

Maximizing Harvested Energy in

Coulomb force parametric generators

Miniaturized wearable or implantable medical sensors (or actuators) are important

components of the Internet of Things (IoT) in healthcare applications. However, their lim-

ited source of power is becoming a bottleneck for pervasive use of these devices, specially,

as their functionality increases. Kinetic-based micro energy-harvesters can generate power

through the natural human body motion. Therefore, they can be an attractive solution to

supplement the source of power in medical wearables or implants. The architecture based

on the Coulomb force parametric generator (CFPG) is the most viable micro-harvester solu-

tion for generating power from the human motion. This chapter proposes several methods

to adaptively estimate the desirable electrostatic force in a CFPG using the input accelera-

tion waveform. Through extensive simulations, the performance of the proposed methods

in maximizing the output power of the micro-harvester is evaluated.

3.1 Introduction

Energy harvesting (EH) is the process of capturing energy from the ambient envi-

ronment and converting it into electrical energy. Different sources for energy harvesting

include solar, wind, thermal and kinetic energy. Micro energy harvesters (MEH) refer to a
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class of miniaturized EH devices that can generate electrical power for small-scale sensors

and actuators as critical components of the Internet-of-Things (IoT) technology [25, 26].

By reducing the frequency of battery replacement or recharge, MEH offers a prolonged

operational lifetime or possibly self-sustainability for the IoT sensors and actuators. Inte-

gration and co-design of MEH with the sensor architecture has the potential to accelerate

the development of green technology that positively impacts the environment. Kinetic-

based MEH is considered to be a promising technology for small wearable or implantable

devices [26–32]. As the nature of their applications necessitates, these small devices are typ-

ically expected to operate for long periods of time without interruptions. This is especially

the case for medical implants. Large batteries or frequent recharge might not be practical

or feasible for these devices, particularly when connectivity to IoT-Health infrastructure

further increases their energy consumption. There are three general methodologies to

convert kinetic energy into electrical energy: i) magnetic induction, ii) piezoelectric, and

iii) electrostatic. Compared to the first two methods, the electrostatic-based conversion

is much more effective in micro scales [33]. Therefore, this approach allows for further

miniaturization of the harvester’s size, making it more favorable for very small wearable

or implantable medical sensors.

Coulomb force parametric generator (CFPG) is a kinetic-based MEH that can best har-

vest energy from low-frequency nonstationary movements [33–36]. As such, it is considered

to be the most suitable architecture for wearables or implants that are placed on or inside

the human body. The core component of a CFPG includes a proof mass that can move

between two plates. An internal electrostatic force maintained by a transducer holds the

proof mass to one of the plates. The proof mass stays attached to the plate until the input

acceleration due to the movement of the human body overcomes this holding force. Then,

the proof mass is detached and moves toward the other plate. Energy is generated only if

the proof mass makes a full flight (i.e., reaching the other plate) against the direction of the

electrostatic holding force. If the proof mass fails to make a full flight, the amount of the

extracted energy during its flight is dissipated when it returns to its initial position. After

each full flight, the direction of the holding force applied to the proof mass reverses, and
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the energy harvesting process continues accordingly.

Typically, the magnitude of the holding force is kept constant during this process.

However, the authors in [37–39] demonstrated that judicious adjustment of the holding

force could significantly increase the output harvested power. The possibility of this

adjustment to harvest the maximum amount of energy is especially important for wearable

and implantable devices where a limited supply of energy is a critical bottleneck to their

usability as well as increasing future functionality.

The authors in [37] investigated the output harvested power of a CFPG for different

constant values of the holding force and daily activities. Through statistical analysis of the

acceleration waveform generated by the human body movement, an upper bound on the

harvested power of a CFPG device was obtained in [38]. The authors in [39] introduced

a mathematical model for a more accurate estimation of the generated power by a CFPG.

In addition, they formulated an adaptive optimization problem for adjusting the holding

force with respect to the input acceleration waveform. The solution to this optimization

problem is a mapping from the acceleration data in a given time interval to the optimal

value of the holding force that should be used for the following time interval. As such,

this type of adaptive adjustment of the holding force can be classified as an online (or

dynamic) optimization problem. The underlying assumption in the proposed optimization

is the temporal correlation in the acceleration waveform generated by the human body

movement for sufficiently short time intervals. The authors in [40], [42] proposed several

methodologies including machine learning approaches to solve this optimization problem

and compared the harvested power for a limited number of acceleration waveforms.

In this thesis, we propose three methodologies to estimate the optimal value of the

electrostatic holding force. First, by formulating a regularized optimization problem, we

extend the linear estimator method proposed in [41], [42] to enhance its generalizability

to unobserved acceleration data and reduce overfitting with respect to the training data.

Then, we investigate the applicability of a multi-armed bandit algorithm to estimate the

holding force using the history of the previously applied forces. Finally, by considering
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Figure 3.1: The generic model of the core component in a CFPG

the physical constraints of the proof mass, we propose an adaptive algorithm that esti-

mates the holding force without the need for prior training with acceleration data. One

important feature of the proposed adaptive methods is their relatively lower computational

complexity compared to current methodologies in the literature discussed earlier. Reduced

complexity directly impacts the net gain in the harvested energy compared to a constant

holding force. The results presented in this thesis are based on a more comprehensive

acceleration dataset obtained through physical measurements from different human body

movements. This will ensure the maximization of the harvested energy regardless of the

placement of the CFPG on the human body.

The rest of this chapter is organized as follows. In Section II, the problem formulation

is described. Human acceleration data acquisition and calibration is discussed in Section

III. In Section IV, the impact of the range and resolution of the electrostatic force as well

as the length of the adaptation interval on the output power are studied. The proposed

methods are presented in Sections V followed by a comparative performance evaluation in

Section VI. Finally, conclusions and future directions are discussed in Section VII.

3.2 Problem Formulation

In this section, mathematical model of the CFPG and an optimization problem for its

output power maximization is provided.
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3.2.1 CFPG Mathematical Model

Fig. 3.1 depicts the generic model of the core component of a CFPG where a proof mass

is able to move between two plates against the electrostatic holding force denoted by F .

The proof mass is attached to either of the plates when the micro-generator is stationary or

the external acceleration is not large enough. For sufficiently large external accelerations,

the proof mass detaches from one plate and moves towards the other plate. Once the

proof mass completes a full journey between the two plates with separation of 2Zl, the

work done against the electrostatic force is converted to electric energy. When the proof

mass reaches the other plate, the direction of the holding force reverses and the energy

conversion process continues.

Let the relative position of the proof mass with respect to the device’s frame be denoted

by z(t). Also, denote y(t) as the device motion with respect to the inertial frame. The

following nonlinear differential equation models the dynamics of a CFPG as presented

in [39]

mÿ(t) = −mz̈(t) + F × R(z(t)), (23)

where m denotes the mass, ÿ(t) denotes the acceleration with respect to the inertial frame,

z̈(t) is the relative acceleration of the proof mass with respect to the frame, and F denotes

the electrostatic force (also referred to as the holding force). The reversal of the holding

force direction after a full flight of the proof mass is represented by a Relay-Hysteresis

function R(.) (see Fig. 3.2). The instantaneous power generated by the proof mass is given

by

P (t) = F × ż(t) (24)

where ż(t) is the relative velocity of the proof mass with respect to the frame.

Remark 10. As long as the proof mass moves in the opposite direction of the holding force, the

instantaneous generated power has a positive value. If the proof mass cannot make a full flight, the

motion direction reverses and the instantaneous power will turn negative. If the proof mass returns
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Figure 3.2: Relay-Hysteresis function

to the starting plate, its motion results in a zero-average harvested power.

The average power generated in a CFPG is affected by several factors: the input acceler-

ation, the distance between the two plates, the value of the proof mass, and the magnitude

of the electrostatic force. In this thesis, assuming a constant size and geometry for the

CFPG component shown in Fig. 3.1, the effect of the holding force on the generated power

for various input acceleration will be investigated.

3.2.2 Output Power Optimization

Assume that the holding force can be adjusted every ∆i seconds. Then, at each time

interval, the objective is to estimate the optimal holding force value which maximizes the

average harvested power, i.e.,

argmax
F i+1,∆i ,∆i

[
1∑N

i=1∆i

×
N∑
i=1

∫ ti

ti−∆i

P (t)dt

]
, (25)

where ∆i is the optimal length of the ith decision interval, F i+1,∆i is the optimal constant

electrostatic force in the (i + 1)th interval (as a function of ∆i), N denotes the number of

decision intervals and P (t) is the instantaneous output power. Assume, for simplicity, that

the length of the decision interval is fixed and denoted by ∆. Then, equation (25) can be
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written as

argmax
F i+1,∆

[
1

N∆
×

N∑
i=1

∫ t0+i∆

t0+(i−1)∆
P (t)dt

]
. (26)

For a fixed decision interval ∆, the optimal electrostatic force is a function of the

acceleration waveform at the ith interval [t0+(i−1)∆, t0+ i∆]. Hence, one way to estimate

the holding force F i+1,∆ is to employ a parametrized policy πθ such that

F i+1,∆ = πθ(ÿ
i), (27)

where θ denotes a vector of parameters for the policy, and ÿi ∈ RM denotes a vector of M

acceleration samples in the ith interval in (27).

It should be emphasized that the optimization problem (26) can be categorized as an

online optimization as knowledge of the future acceleration data is not required for the

solution. In other words, F i+1,∆ is estimated from the information in the ith interval (i.e.,

past acceleration data). For a known acceleration waveform, the maximum amount of

the average harvested power can be obtained by an offline exhaustive search. Although

this method cannot be utilized in practice, it provides an upper bound on the maximum

harvested power for the given acceleration waveform. For each decision interval i, the

optimal value of the holding force can be obtained by the following offline optimization

problem

FOpt,i = argmax
F i,∆∈F

[
1

N∆
×

N∑
i=1

∫ t0+i∆

t0+(i−1)∆
P (t)dt

]
, (28)

where FOpt,i denotes the optimal solution at reach decision interval. We have used this

method to assess the effectiveness of the proposed methods.

In practice, the range and resolution of the values of the estimated electrostatic forces

that solve the online (or offline) optimization problems (26) (or (28)) are limited. Here,

we consider that these values are selected from a finite set F (hereafter referred to as the

decision set) defined by

F = {Fi|Fmin ≤ Fi ≤ Fmax, Fi − Fi−1 = δF }, (29)
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where Fmin, Fmax and δF denote the minimum, maximum and the increments for the

holding force values. Impact of the decision set and interval on the harvested power will

be studied in Section 3.4.1.

3.3 Acceleration Data Acquisition

To evaluate our proposed power maximization methodologies and obtain a realistic

measure of the harvested energy, we conducted various physical experiments to acquire

human acceleration data. The following subsections describes data acquisition and calibra-

tion processes that we have used to prepare a sufficiently diverse dataset of human motion

acceleration.

3.3.1 Data Acquisition

To collect acceleration data from the human body motions, the X16-mini triaxial ac-

celerometer made by Gulf Coast Data Concepts, LLC1 has been used in this study. The

dimensions of this device are 51×25×13mm3. It is small enough to be comfortably placed

at various locations on the body and collect data. Body acceleration data is measured

along three orthogonal axes. The measurement samples are time-stamped and stored in

the device for later retrieval. The sampling rate of the device can be selected to be 12, 25,

50, 100, 200, 400, or 800Hz. Data are collected from various daily physical activities such as

walking, jogging, sit-ups, roping, weight exercises and general random movements of hand

and shoulder2. Data from each activity are collected for 5 minutes with the accelerometer

attached on the volunteers’ wrist, biceps, leg and chest. To account for changes in the fre-

quency and amplitude of the acceleration waveform, we conducted data collection for three

levels of slow, moderate, and intense activities. Fig. 3.3 shows a sample twenty-second ac-

celeration waveform for walking in slow, moderate and fast modes with the accelerometer

1Commercial products mentioned in this thesis are merely intended to foster research and understanding.
Such identification does not imply recommendation or endorsement by the National Institute of Standards
and Technology.

2The experiments were conducted according to the research ethics regulations under the approval number
30013664 at Concordia University and ITL-2021-0273 at NIST.
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Figure 3.3: Comparison of acceleration waveform for walking in three modes of slow,
moderate and fast with the accelerometer attached to the wrist

attached to the wrist.

Remark 11. For analysis and performance evaluation of the proposed methodologies in this thesis,

we have chosen the acceleration data in the z axis; however, similar results were observed using data

from other axes as well.

3.3.2 Accelerometer Calibration

The raw acceleration data are usually subject to various types of noise and bias. Here,

we describe a method to calibrate the measurement data from the accelerometer in order

to improve its accuracy. When the accelerometer is stationary, the gravity could impact the

measurements. The axis that is perpendicular to the ground senses the constant value of

1g (due to earth gravity) while the other two axes should measure a value of zero. Fig. 3.4

depicts the results of our experiment to assess measurement errors. In consecutive time

intervals, the static accelerometer is rolled in such way that first the z axis (and then y and

finally x) is perpendicular to the ground in order to sense the full impact of the gravity in

the direction of each axis. In this way, we can observe the combined effects of bias, scaling
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Figure 3.4: The acceleration data while the triaxial accelerometer is static

and cross-axis coupling on the accelerometer data. To account for scale factors and bias,

the following model for tri-axial accelerometer is utilized [43]

ã = Λa + µ, (30)

where a, ã ∈ R3 denote, respectively, the actual and the measured acceleration vectors

along three axes. The matrix Λ ∈ R3 represents the scaling and cross-axis coupling effects,

and µ ∈ R3 is the bias vector. To obtain the exact acceleration vector, (30) is rewritten as

a = Λ−1(ã− µ). (31)

It is desired to calibrate the accelerometer and find the matrix Λ and bias vector µ.
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Table 3.1: Calibration parameters for the accelerometer
Λ11 1.0428 Λ22 1.0072 µ1 -0.1314
Λ12 0.0043 Λ23 -0.0069 µ2 -0.3268
Λ13 -0.0210 Λ33 0.8230 µ3 1.3532

Considering symmetry in the cross-axis coupling effects, let (30) be rewritten as

ã = AX, (32)

where A ∈ R3×9 is a matrix consisting of the elements of the actual acceleration measure-

ments a and

X = [Λ11 Λ12 Λ13 Λ22 Λ23 Λ33 µ1 µ2 µ3]
⊺, (33)

One way to obtain the calibration matrix is to collect multiple acceleration measurements

for the accelerometer in a stationary mode. Considering S acceleration samples, equation

(32) can be expressed in the augmented form as

Ã = ΓX, (34)

where Γ = [A⊺
1, ...,A

⊺
S ]

⊺ and Ã = [ã⊺
1, ..., ã

⊺
S ]

⊺. For the accelerometer utilized in this study,

the calibration parameters were obtained by solving a least-squares problem and the result

is reported in Table I.

3.4 Optimal Parameter Selection

In this section, we study the impact of the decision set and the decision interval on the

harvested power of the micro-generator.
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3.4.1 Impact of the Decision Set

Consider the decision set as defined in (29) with Fmin= 1 mN, Fmax ∈ {10, 20, 30} mN

and δF ∈ {0.1, 0.25, 0.5, 1}mN. These values will result in twelve different candidate deci-

sion sets. Fig. 3.5 demonstrates the harvested power resulting from each of the candidate

decision sets using the offline optimization (28) averaged over acceleration data from var-

ious activities discussed in the previous section. As observed, the decision set with the

largest range and smallest discretization steps offer approximately 13.9% more harvested

energy compared to the set with the smallest range and largest discretization steps (which

is approximately thirty times smaller in size). The increase in the harvested energy is

achieved at the cost of additional computational complexity to estimate the holding force

from larger decision sets. Hence, for lower computational cost, the candidate decision set

with the smallest range and largest discretization step is selected to evaluate the perfor-

mance of our proposed adaptive algorithms, i.e. F = {1, ..., 10} mN. For the simplicity of

notation, we also represent the decision set as F = {Fk}10k=1, where Fk = k mN, k ∈ N10.

3.4.2 Impact of the Decision Interval

The length of the decision interval is another parameter that can affect the average

harvested power in (26) and (28). To get a better understanding of this impact, Fig. 3.6

shows the average harvested power for different values of ∆ and the acceleration waveform

resulting from the random movement of the hand. The average power in Fig. 3.6 has been

obtained using the offline optimization (28). For comparison, the average power using

several constant values of the electrostatic force (i.e., F = 3, 5 and 10 mN) have also been

plotted. As ∆ increases, the result of the adaptive optimization (28) converges to the

optimal constant electrostatic force, which is expected. For the example in Fig. 3.6, this

optimal value is 2 mN. The harvested power for this constant holding force will be almost

identical to the power generated through offline optimization (28) for ∆ > 2000 s.

As expected, the smaller values of the decision interval result in higher harvested

power. For example, compared to the optimal constant holding force, a gain of about 130%
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Figure 3.5: Comparison of harvested energy for different maximum holding forces and
discretization steps

is observed for ∆ = 0.5 s. It should be noted that the value of the optimal constant holding

force cannot be obtained without prior knowledge of the whole acceleration waveform.

When other constant values are used for the holding force, the possible gain in the harvested

power can be much more. For example, a gain of about 400% is observed in Fig. 3.6 when F

= 10 mN and∆ = 0.5 s. For very small values of the decision interval (∆ < 0.5 s), a reduction

in the harvested power is observed in Fig. 3.6. However, this is mainly due to the limitation

in the number, range, and resolution of the elements in the decision set. Without such

limitations, the increasing trend of the harvested power with decreasing decision interval

would have continued.

Although, choosing smaller decision intervals might seem advantageous, one should

consider that smaller intervals are equivalent to more frequent updates of the electrostatic

force, requiring more frequent execution of the adaptive optimization algorithm. This

will result in more power consumption by the adaptive methodology, reducing the overall

output power of the micro-harvester. The trade-off between smaller decision interval to
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harvest more power and the decrease in the overall output power due to the consumed

energy by the adaptive algorithm module requires further investigation and is outside

the scope of this thesis. The specific technology that is used to implement the adaptive

methodology is one of the factors that can impact this trade-off. Recent technologies such as

neuromorphic processors could be a good candidate to implement the proposed adaptive

algorithms with ultra-low power consumption [31, 32].

The proper choice of the decision interval also depends on the location of the wearable

sensor with integrated micro-harvester on the body as well as the nature of the acceler-

ation data and the time spent on the specific daily activities. Selection of this interval is

more difficult for activities that involve non-repetitive motions. Consider the acceleration

waveform generated by random movements of the hand shown in Fig. 3.7. The spectral

content of this waveform and its cumulative energy in the frequency domain is also shown

in Figs. 3.8(a), (b). We conjecture that there is a relationship between the spectral content of

the acceleration waveform and the optimal length of the decision interval. Shorter decision

intervals could allow an adaptive algorithm to capitalize on high frequency components of

the acceleration waveform and harvest more energy, while longer decision intervals limit

the algorithm’s ability to harvest energy from lower frequencies.

As observed in Fig. 3.8, almost 80% of the acceleration waveform energy is included

within [0 0.5] Hz interval, which corresponds to a decision interval of two seconds. Con-

sidering the trade-offs mentioned earlier and studying other acceleration waveforms in our

dataset, we have selected ∆ = 2 s to evaluate and compare the performance of the adaptive

methodologies described in the following sections.

3.5 Adaptive Methodologies

In this section, we describe our proposed methodologies that can adaptively estimate

the electrostatic force to maximize the harvested power.
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Figure 3.6: Comparison of the harvested power for different decision intervals with F opt

and constant holding force F = 3, 5, 10 mN

Figure 3.7: Acceleration waveform generated by random movements of the hand when the
accelerometer is placed on the wrist
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Figure 3.8: (a) Frequency spectrum of the acceleration waveform in Fig. 3.7, (b) Corre-
sponding cumulative waveform energy versus frequency

41



3.5.1 Linear Estimation of the Holding Force

Consider that the holding force is estimated by a linear mapping from the absolute

value of the acceleration data samples during the ith interval as

F Lin,i = θ⊺|ÿ|i−1, (35)

where F̂ Lin,i denotes the estimated holding force for the ith interval, and ÿi−1 ∈ RM is the

acceleration vector from the (i−1)th interval, and |.| denotes the absolute value operator. In

addition, θ ∈ RM is the vector of the linear estimator’s parameters. To find the estimation

parameters for the electrostatic force F̂ Lin,i, the average distance between the estimated

and actual values of the holding force should be minimized. Therefore, the following

minimization problem is formulated

minimize
θ

∥Fopt − Flin∥ = ∥Fopt − θ⊺Ÿ∥, (36)

whereFopt =
{
F opt,i

}N

i=1
andFlin =

{
F̂ Lin,i

}N

i=1
denote the vectors of the optimal (training

label) and estimated holding forces, respectively. The right side of the above equation can

be expressed as ∥Fopt − θ⊺Ÿ∥, where Ÿ ∈ RM×N is the matrix of input training data,

containing absolute values of M acceleration measurements for N decision intervals.

Considering the L2-norm in (36), the approach can be simplified to a least-squares

problem. For limited acceleration data, we can find the closed-form solution in a com-

putationally efficient manner. In practice, Ÿ is a tall matrix that can be constructed by

down-sampling the measurement dataset for each decision interval. The solution of the

least-squares problem in this case is given by

θ = (Ÿ⊺Ÿ)−1Ÿ⊺Fopt (37)

If the input samples in the least-squares problem are not selected sufficiently distinct

from each other, Ÿ⊺Ÿ in (37) may be close to being singular, causing numerical problems.
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In addition, the formulation in (36) may lead to overfitting and relatively large norms for

the estimator θ. In the case of overfitting, the linear estimator fits well to the training

acceleration data but performs poorly for unseen acceleration waveforms.

To keep the size of the estimator’s parameters sufficiently small and to avoid possible

overfitting, we can add a regularization term to (36) as follows

minimize
θ

∥Fopt − Flin∥ = ∥Fopt − θ⊺Ÿ∥+ λ∥θ∥, (38)

where λ is the regularization constant introducing a trade-off between the minimization of

the estimation error and that of the L2-norm of the estimator vector.

The optimization in (38) is equivalent to solving a maximum likelihood problem with

a priori that the parameters are sampled from a zero-mean Gaussian distribution, also

known as maximum a posteriori (MAP) estimation [50]. Using Bayesian linear regression

(BLR), one can have a broader view of the concept of parameter prior. In addition, instead

of seeking a point-estimate of θ, BLR can evaluate the holding force estimation perfor-

mance for a distribution of linear estimator functions. Here we assume that the estimator

parameters are drawn from a Gaussian distribution, i.e.

p(θ) = N (m0, S0),

where m0 and S0 denote the mean and variance of the distribution. Also, the estimated

holding forces are assumed to be drawn from a Gaussian distribution such that

p(F̂ Lin,i||ÿ|i−1,θ) = N (θ⊺|ÿ|i−1, σ2),

where σ2 denotes the measurement noise variance. Given this assumption, information

about the distribution of the estimator parameters can be updated. This posterior over the

parameters is obtained using the Bayes theorem as

p(θ|Ÿ,Fopt) =
p(Fopt|Ÿ,θ)p(θ)

p(Fopt|Ÿ)
.
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The following theorem provides the general form of the posterior over the parameters.

Theorem 2 (Theorem 9.1 in [50]). Given Assumption 1, the parameter posterior can be computed

as

p(θ|Ÿ,Fopt) = N (θ|mN , SN ),

SN = (S−1
0 + σ−2Ÿ⊺Ÿ),

mN = SN (S−1
0 m0 + σ−2Ÿ⊺Fopt).

Having found the updated estimator parameters, the predictive distribution (posterior)

for an unseen acceleration data can be obtained as

p(F̂ lin,∗|Ÿ,Fopt, ÿ∗) =

∫
p(F̂ lin,∗|ÿ∗,θ)p(θ|Ÿ,Fopt)dθ

= N (F̂ lin,∗||ÿ∗|⊺θ, |ÿ∗|⊺SN |ÿ|∗ + σ2).

(39)

Remark 12. As discussed in Section 3.2.2, the parameterized policy πθ utilizes the acceleration

sample vector ÿi to estimate the electrostatic holding force. The acceleration vector ÿi contains

acceleration samples with either positive or negative signs. If the signed values of the acceleration

data are employed to learn the parameters of the estimation mapping πθ, the learning parameters may

not necessarily converge to a stationary value. This leads to large errors in the estimated values of

the holding force. Hence, for the Linear Estimation approach, the magnitude of acceleration samples

is utilized.

3.5.2 Estimation with a Multi-Armed Bandit Approach

Given the real-time data processing in the adaptive estimator, one can use multi-armed

bandit (MAB) approach as in [45]. Let FMAB,i ∈ F denote the estimated holding force at

the ith decision interval by this approach. The knowledge about the power distribution

resulting from a specific holding force is updated after each decision interval. Denote

P i(FMAB,i) as the harvested power at the ith decision interval as a function of a specific

value of the holding force. The expected harvested power for the each holding force value
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is defined as

P̄ = E[P i(FMAB,i)], (40)

where the expectation in (40) is taken with respect to all decision intervals. The optimal

policy is to always select the holding force with the largest expected reward. To this end, this

approach initially selects different holding forces to observe and explore their associated

harvested power. With sufficient observations, the near-optimal holding force is selected

by exploiting the previously collected information. Therefore, one key aspect of such

approach is the trade-off between exploration and exploitation. A variety of algorithms

are developed in literature to tackle problems in MAB [46,47].

For our energy harvesting maximization problem, MAB algorithms with low compu-

tational effort are more favorable. Therefore, in this thesis we select the upper confidence

bound (UCB) algorithm (shown as Algorithm 1 below) for estimating the holding force.

Algorithm 2 Estimation of the holding force with UCB
Input: The decision set F = {Fk}10k=1, the number of decision intervals N , the confidence

value c, the set of the average collected power of all actions {P̄k}10k=1, and the set of the
number of playing all actions {Nk}10k=1

Output: Estimated holding force FMAB,i

1: Initialize {P̄p}10p=1 = 0

2: Initialize {Nk}10k=1 = 0
3: for i = 1, ..., 10 do
4: Select the ith action FMAB,i = Fi

5: Evaluate the the harvested power P i(FMAB,i)
6: P̄ i = Ei(FMAB,i)
7: Ni ← Ni + 1
8: end for
9: for i = 11, ..., N do

10: FMAB,i = argmax P̄k + c
√

log(i)
Nk

11: Evaluate the the harvested power P i(FMAB,i)
12: P̄ i = Ei(FMAB,i)
13: Ni ← Ni + 1
14: end for
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Algorithm 3 Min-Max-Based Algorithm
Input: Acceleration samples ÿ, decision interval length∆, acceleration sampling frequency

fs, the decision set F , force margin Fmarg, total CFPG execution time T , proof mass m
Output: FMM,i

1: zCross, list of zero-crossing acceleration samples
2: Initially empty lists of acceleration A+ and A−

3: k and i (acceleration sample and decision interval counters, respectively)
4: F 1,∆ ← minF
5: k ← 2
6: while t[k] < T do
7: if ÿ[k]ÿ[k − 1] < 0 then
8: Append k to zCross
9: end if

10: indx1← zCross(end− 1), indx2← zCross(end)
11: if ÿ[indx1 : indx2] is a positive array then
12: append max(abs(ÿ[indx1 : indx2])) to A+

13: else
14: append max(abs(ÿ[indx1 : indx2])) to A−

15: end if
16: if mod(k,fs∆) = 0 then
17: i← i+ 1
18: F i,∆+ ← argminF∈F |F − (mĀ+ − Fmarg)|
19: F i,∆− ← argminF∈F |F − (mĀ− − Fmarg)|
20: FMM,i = min{F i,∆+

, F i,∆−}
21: Empty A+ and A−

22: end if
23: k ← k + 1
24: end while
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3.5.3 Min-Max-Based Adaptive Approach

Considering the optimization problem (26), let ÿi+max and ÿi−max denote the maximum

absolute value of the positive and negative lobes of the acceleration waveform during

the ith decision interval, respectively. To harvest energy from the acceleration waveform

during the ith decision interval, the optimal value of the electrostatic force must satisfy the

following condition
F i,∆

m
< min{ÿi+max, ÿ

i−
max}. (41)

The above inequality implicitly indicates that the electrostatic force must be sufficiently

small to make a full flight between the two plates of the CFPG. In other words, the following

condition should be taken into account

∫ tf

ti

∫ t

ti

z̈dτdt ≥ 2Zl. (42)

where z̈ = F i,∆

m − ÿi and ti and tf denote the initial and final times of the flight, respec-

tively. Motivated by this observation, Algorithm 2 is proposed to estimate the value of the

electrostatic force (i.e., FMM).

To solve optimization problem (26), Algorithm 2 detects the zero-crossings of the ac-

celeration waveform. Then, between each two zero-crossings, the maximum value of the

acceleration waveform is obtained. These values are collected inA+ andA− as two lists cor-

responding to positive and negative portions of the acceleration waveform. Let Ā+ and Ā−

denote the average of each list. To account for the full-flight condition in (42), we consider

a force margin Fmarg. Then, the holding forces associated with the posive and negative

portions of the acceleration waveform are estimated as mĀ+ − Fmarg and mĀ− − Fmarg,

respectively. Finally, condition (41) gives the electrostatic force as the minimum of the two

estimated holding forces and the acceleration lists A+ and A− are reset to empty values.
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Figure 3.9: Acceleration waveforms as test data collected from (a) a human arm performing
random motions, (b) human chest during sit-ups , and (c) a human leg during jogging

3.6 Performance Results

In this section, the performance of the proposed methodologies are assessed using the

mathematical model (23) and experimental data. A CFPG with a proof mass of m = 1 g

and plates separation of 2Zl = 1 mm are considered in our evaluations. From the analysis

in Subsections 3.4.1 and 3.4.2, we consider the decision set {1, ..., 10} mN and interval

∆ = 2 s. For the linear estimator, the acceleration data is down-sampled to 4 Hz, implying

that θ ∈ R8 for a two-second decision interval. To learn the parameters of the linear

estimator, we select 90% of the collected data for training and the rest is used for validation.

For the MAB method described by Algorithm I, we consider a confidence factor of c = 0.2.

Also, the force margin in Algorithm II is set to Fmarg = 0.5 mN. We first provide the

performance results for three scenarios with the accelerometer attached to different parts

of the human body while doing different activities. These scenarios are accelerometer on

the: human arm while doing random motions (scenario I), human chest while doing sit-ups

(scenario II), and human leg during jogging (scenario III). The corresponding acceleration
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waveforms are shown in Fig. 3.9.

Fig. 3.10 displays the harvested power for each scenario and the adaptive methodolo-

gies. For comparison, the average harvested power when a constant holding force is used

is also shown for each scenario (i.e., the red bar). As observed, the linear estimator has the

best performance for scenario I. However, Algorithm 2 provides more harvested power for

scenarios II and III. One reason for the inferior performance of the linear estimator in these

two scenarios is the relatively large asymmetry in their corresponding acceleration wave-

forms (especially in scenario III). In particular, it does not take into account the magnitude

of the acceleration data in selecting the holding force, as shown in (41). Compared to the

average harvested power using a constant electrostatic force, the best adaptive approach in

scenarios I, II and III offers a gain of about 300%, 400% and 200%, respectively.

Next, we evaluate the performance of the proposed adaptive approaches for a combi-

nation of different human activities over a longer period of time. Consider a mix of various

human activities as described in Subsection 3.3.1 producing an acceleration waveform with

a duration of 4000 s. Fig. 3.11 displays the harvested energy as a result of using our pro-

posed adaptive methodologies on this waveform. For comparison, the average harvested

energy using three different constant holding forces is also shown in the Fig. 3.11. Con-

sidering the CFPG parameter values as well as the decision set and interval constraints,

the upper bound on the harvestable energy (achievable through offline optimization (28))

is also plotted. As observed, among the adaptive approaches, the min-max algorithm

performs best, with over 10% more harvested energy compared to the linear estimator.

The improvement is due to the fact that this algorithm considers the asymmetry of the

acceleration waveform for selecting the proper electrostatic holding force. The min-max

adaptive methodology on average generates over 100% more energy compared to the case

when a constant holding force is used. This is a promising gain, especially for low-power

wearable (or implantable) medical sensors or actuators.
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Figure 3.10: Comparison of the harvested power using the proposed adaptive methodolo-
gies and constant electromagnetic force: (a) scenario I; (b) scenario II, and (c) scenario III

Figure 3.11: Comparison of the harvested energy using the proposed adaptive methodolo-
gies for a mixed acceleration waveform corresponding to different human activities with a
duration of 4000 s.
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3.7 Conclusions

In this chapter, three different adaptive approaches were proposed to increase the

harvested power in the Coulomb force parametric generators: the linear estimation method,

the multi-armed bandit approach and the min-max technique. The exact performance of the

proposed methodologies depends on the nature of the acceleration waveform. However,

in almost all practical scenarios and on average, there is a noticeable improvement in

the harvested kinetic power from the human body motion compared to the case when a

constant electrostatic force is used. The additional harvested power could easily supply

the required resource to run a low-complexity adaptive algorithm as part of the CFPG

architecture. The Min-Max algorithm proposed here could be a good candidate that not

only incurs very low implementation complexity but also results in a significant gain in the

harvested power in most scenarios.

Knowledge of the exact location of the medical sensor on or inside the body could

provide more specific information about the characteristics of the acceleration waveform

that an embedded micro-harvester would experience. This information can help to further

optimize the adaptive approach with the proper choice of the decision set. Also, the

relationship between the best adaptation interval and the spectral content of the acceleration

waveform requires additional exploration in future studies.
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Chapter 4

An Asymmetric Adaptive Approach

to Enhance Output Power in

Kinetic-Based Microgenerators

Following the previous chapter on CFPG micro-energy harvesters, in this chapter,

we formulate the energy maximization problem in a new framework. We consider an

asymmetric adaptive approach to estimate the electrostatic force in a CFPG using the

acceleration waveform. Simulations using human motion measurements show that the

proposed approach achieves considerable gain in the harvested energy compared to the

previously studied symmetric adaptive methodologies.

4.1 Introduction

In Chapter 3, we studied output energy maximization in CFPGs using (26). Although

the formulation in (26) provides some insight into the problem of optimal tuning of the

electrostatic force, it obtains the same value of F in both flight directions of the proof mass.

Observations show that such formulation cannot extract energy from specific acceleration

waveforms efficiently ( see Fig. 4.1). It is observed that the acceleration waveform has

assymetric positive an negative lobes. Obviously the proof mass can make a full flight
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Figure 4.1: A twenty-second sample acceleration collected from an accelerometer attached
to a human leg during jogging

with smaller values of the holding force in the negative lobe of the acceleration. How-

ever, relatively larger acceleration waveform in the positive lobe allows the use of larger F .

Therefore, for a constant decision interval ∆, choosing a pair of holding force values associ-

ated with upward and downward flight directions can extract higher amounts of harvested

energy. Next, we introduce a new asymmetric adaptive strategy for the electrostatic force.

4.2 Proposed Methodology

A necessary condition for harvesting energy in a CFPG is a full flight of the proof mass

from one plate to the other. From the dynamics of a CFPG in (23), this condition is met

when the input acceleration ÿ changes sign and is sufficiently large to overcome the holding

force. In particular, a full flight is achieved if the relative acceleration of the proof mass z̈(t)

satisfies the following condition,

∫ tf

ti

∫ t

ti

z̈(τ)dτdt ≥ 2Zl, (43)

where ti and tf denote the initial and final times of the flight, respectively.

By observing the asymmetry in the acceleration signal shown in Fig. 4.2, we can conclude

that using unequal holding forces for different directions of the proof mass flights could
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lead to higher generated power. As such, we propose the following optimization problem

argmax
F i,∆

dn ,F i,∆
up

[
1

N∆
×

N∑
i=1

∫ t0+i∆

t0+(i−1)∆
P (t)dt

]
, (44)

where (F i,∆
dn , F i,∆

up ) denotes the optimal pair of the downward and upward holding forces

at the ith interval. To solve the optimization problem in (44), we propose Algorithm 1

described in the next section to estimate the optimal values of the holding force.

Algorithm 4 Online estimation of the holding force
Input: Acceleration samples ÿ, decision interval length∆, acceleration sampling frequency

fs, holding force permissible set F , force margin Fmarg, total simulation time T , proof
mass m

Output: (F i,∆
dn , F i,∆

up )
1: zCross, list of zero-crossing acceleration samples
2: Initially empty lists of acceleration A+ and A−

3: k and i, acceleration sample and decision interval counter
4: F 1,∆

dn ← minF and F 1,∆
up ← minF

5: k ← 2
6: while t[k] < T do
7: if ÿ[k]ÿ[k − 1] < 0 then
8: Append k to zCross
9: end if

10: indx1← zCross(end− 1), indx2← zCross(end)
11: if ÿ[indx1 : indx2] is a positive array then
12: append max(abs(ÿ[indx1 : indx2])) to A+

13: else
14: append max(abs(ÿ[indx1 : indx2])) to A−

15: end if
16: if mod(k,fs∆) = 0 then
17: i← i+ 1
18: F i,∆

dn ← argminF∈F |F − (mĀ+ − Fmarg)|
19: F i,∆

up ← argminF∈F |F − (mĀ− − Fmarg)|
20: Empty A+ and A−

21: end if
22: k ← k + 1
23: end while
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Figure 4.2: Scenario I: (a) Acceleration waveform, and (b) the resulting harvested energy
for a sample acceleration collected from an accelerometer attached to a human leg during
jogging
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Figure 4.3: Scenario II: (a) Acceleration waveform, and (b) the resulting harvested energy
for a sample acceleration collected from an accelerometer attached to a human arm per-
forming random motions
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4.3 Simulations

It is assumed that (F i,∆
dn , F i,∆

up ) belong to a set of predefined values of holding forces

denoted by F . To solve (44), Algorithm 1 uses observations of the acceleration waveform

for a fixed decision interval ∆ and applies the estimated holding forces to the next decision

time interval. First, the algorithm detects the zero-crossings of the acceleration waveform.

Then, between each two zero-crossings, the maximum value of the acceleration waveform

is obtained. These values are collected inA+ andA− as two lists corresponding to positive

and negative portions of the acceleration waveform. Let Ā+ and Ā− denote the average

of each list. As an initial guess, (F i,∆
dn , F i,∆

up ) may be approximated by (mĀ−,mĀ+) for the

next decision interval. However, such a simple guess leads to overestimated holding force

that do not let the proof mass detach from the CFPG plates to make a full flight. To account

for such effect, we consider a force margin Fmarg, i.e. the holding forces are estimated as

(mĀ− − Fmarg,mĀ+ − Fmarg).

We run simulations for a CFPG with m = 1 g and Zl = 1 mm. We consider

F = {0.5, 1, ..., 10} mN and Fmarg = 0.5 mN and ∆ = 2 s. We report performance of

the proposed algorithm for two scenarios. Figs. 4.2 and 4.3 depict 120-second sample

acceleration waveforms collected from an accelerometer attached to a human leg while

jogging (scenario I), and a human arm while making random moves (scenario II). In both

scenarios, we compare the harvested energy using our proposed algorithm with 1) the case

where the optimal asymmetric electrostatic force (F opt) in Equation (44) is calculated using

exhaustive search, and 2) the cases where the symmetric electrostatic force is estimated by

the linear regression (FLS) and the deep learning approach (FDL) in [42]. For scenario I, we

observe that the proposed algorithm, FLS, and FDL harvest 89 %, 20.1 %, and 20.3 % of the

maximum achievable energy which is obtained under (F opt), respectively. For scenario II,

the percentages of harvested energy under the proposed algorithm, FLS, and FDL are 62 %,

53 %, and 49 %, respectively.
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4.4 Conclusions

In this chapter, a new approach for maximization of the harvested power in a CFPG

has been proposed and studied. The performance of the approach was investigated for

different acceleration waveforms. The results indicate that exploiting asymmetry in the

acceleration waveform could lead to significant gain in the harvested energy. An important

feature of the proposed approach is its low computational complexity for implementation

in the next generation of CFPGs.
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Part III

Linear Quadratic Mean-Field Systems
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Chapter 5

Reinforcement Learning in

Nonzero-sum Linear Quadratic Deep

Structured Games: Global

Convergence of Policy Optimization

We study model-based and model-free policy optimization in a class of nonzero-sum

stochastic dynamic games called linear quadratic (LQ) deep structured games. In such

games, players interact with each other through a set of weighted averages (linear regres-

sions) of the states and actions. In this chapter, we focus our attention to homogeneous

weights; however, for the special case of infinite population, the obtained results extend

to asymptotically vanishing weights wherein the players learn the sequential weighted

mean-field equilibrium. Despite the non-convexity of the optimization in policy space and

the fact that policy optimization does not generally converge in game setting, we prove

that the proposed model-based and model-free policy gradient descent and natural policy

gradient descent algorithms globally converge to the sub-game perfect Nash equilibrium.

To the best of our knowledge, this is the first result that provides a global convergence

proof of policy optimization in a nonzero-sum LQ game. One of the salient features of the
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proposed algorithms is that their parameter space is independent of the number of players,

and when the dimension of state space is significantly larger than that of the action space,

they provide a more efficient way of computation compared to those algorithms that plan

and learn in the action space. Finally, some simulations are provided to numerically verify

the obtained theoretical results.

5.1 Introduction

In recent years, there has been a growing interest in the application of reinforcement

learning (RL) algorithms in networked control systems. One of the most popular reinforce-

ment learning (RL) algorithms in practice is policy gradient, due to its stability and fast

convergence. However, from the theoretical point of view, there is not much known about

it. Recently, it is shown in [51] that a single-agent linear quadratic (LQ) optimal control

problem enjoys the global convergence, despite the fact that the optimization problem is

not convex in the policy space. A similar result is obtained for zero-sum LQ games in [52].

On the other hand, a nonzero-sum LQ game is more challenging than the above problems,

where the existing results on the global (or even local) convergence of the policy gradient

methods are generally not encouraging [53]. Specifically, the authors in [53] consider the

general form of a mean-field problem and argue that it has no solution. However, in this

chapter, we show that under certain conditions on the system (i.e., evolution of the agents’

states in linear mean-field dynamics), there exists a solution for the mean-field problem.

Specifically, we show that under this structure, the problem can be addressed by solving

two Riccati equations with the same dimension as the individual players’ state space, in-

dependent of the number of players. Hence, the computational complexity does not grow

with the number of players for this specific structure.

Inspired by recent developments in deep structured teams and games [55,56,58,68,82],

we study a class of LQ games wherein the effect of other players on any individual player

is characterized by a linear regression of the states and actions of all players. The closest

field of research to deep structured games is mean-field games [59]. In a classical LQ
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mean-field game, one often has: (a) homogeneous individual weights (i.e., players are

equally important); (b) the number of players n is asymptotically large with independent

primitive random variables (to be able to predict the trajectory of the mean-field using the

strong law of large numbers); (c) the coupling is through the mean of the states, where the

control coupling (called extended coupling) is more challenging; (d) the proof technique

revolves around the fact that the effect of a single player on others is negligible, reducing

the game to a coupled forward-backward optimal control problem; (e) the solution concept

is Nash equilibrium; (f) given some fixed-point conditions across the time horizon, the

forward-backward equation admits a solution leading to an approximate Nash in the

finite-population game; (g) they are often not practical for long-horizon and reinforcement

learning applications wherein the common practice is to adopt a weaker solution concept

called stationary Nash equilibrium (where the trajectory of the mean-field is stationary),

and (h) since the results are asymptotic, the models are limited to those that are uniformly

bounded in n. In contrast to mean-field game, LQ deep structured game often has: (a’)

heterogeneous individual weights that are not necessarily homogeneous; (b’) the number of

players is arbitrary (not necessarily very large) with possibly correlated primitive random

variables; (c’) the coupling is through the weighted mean of the states and actions; (d’)

the proof technique revolves around a gauge transformation initially proposed in [60] (not

based on the negligible effect); (e’) the solution concept is sequential Nash; (f’) the solution

is exact (not an approximate one) for any arbitrary number of players and it is identified

by Riccati equations; (g’) since the solution concept is sequential, it is well suited for

long-horizon and reinforcement learning, and (h’) since the results are also valid for finite-

population game, the dynamics and cost are not necessarily limited to uniformly bounded

functions with respect to n. It is shown in [55] that the classical LQ mean-field game with

the tracking cost formulation is a special case of deep structured games under standard

conditions, where the mean-field equilibrium coincides with the sequential mean-field

equilibrium. It is to be noted that the LQ mean-field-type game [61–63] is a single-agent

control problem (i.e., it is not a non-cooperative game), which resembles a team problem
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with social welfare cost function.1 In particular, it may be viewed as a special case of

risk-neutral LQ mean-field teams introduced in [60], showcased in [64–68], and extended

to deep structured LQ teams in [55]. The interested reader is referred to [55, Section VI]

for more details on similarities and differences between mean-field games, mean-field-type

games and mean-field teams.

The rest of the chapter is organized as follows. In Section 5.2, the problem of LQ deep

structured game is formulated. In Section 5.3, the global convergence of model-based

and model-free policy gradient descent and natural policy gradient descent algorithms are

presented. In Section 5.4, some numerical examples are provided to validate the theoretical

results. The chapter is concluded in Section 5.5.

5.2 Problem Formulation

Throughout the chapter, R, R>0 and N refer to the sets of real, positive real and natural

numbers, respectively. Given any n ∈ N, Nn, x1:n and In×n denote the finite set {1, . . . , n},

vector (x1, . . . , xn) and the n×n identity matrix, respectively. ∥ · ∥ is the spectral norm of a

matrix, ∥ · ∥F is the Frobenius norm of a matrix, Tr(·) is the trace of a matrix, σmin(·) is the

minimum singular value of a matrix, ρ(·) is the spectral radius of a matrix, and diag(Λ1,Λ2)

is the block diagonal matrix [Λ1 0; 0 Λ2]. For vectors x, y and z, vec(x, y, z) = [x⊺, y⊺, z⊺]⊺

is a column vector. The superscript−i refers to all players except the i-th player. In addition,

poly(·) denotes polynomial function.

Consider a nonzero-sum stochastic dynamic game with n ∈ N players. Let xit ∈ Rdx ,

uit ∈ Rdu and wi
t ∈ Rdx denote the state, action and local noise of player i ∈ Nn at time t ∈ N,

where dx, du ∈ N. Define the weighted averages:

x̄t :=
1

n

n∑
i=1

αi
nx

i
t, ūt :=

1

n

n∑
i=1

αi
nu

i
t, (45)

where αi
n ∈ R is the influence factor (weight) of player i among its peers. From [55, 82], we

1When the mean field is replaced by the expectation of the state of the genetic player, the resultant problem
is called mean-field-type game.
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refer to the above linear regressions as deep state and deep action in the sequel. To ease the

presentation, the weights are normalized as follows:
∑n

i=1 α
i
n = 1.

The initial states {x11, . . . , xn1} are random with finite covariance matrices. The evolution

of the state of player i ∈ Nn at time t ∈ N is given by:

xit+1 = Axit +Buit + Āx̄t + B̄ūt + wi
t, (46)

where {wi
t}∞t=1 is an i.i.d. zero-mean noise process with a finite covariance matrix. The

primitive random variables {{xi1}ni=1, {wi
1}ni=1, {wi

2}ni=1, . . .} are defined on a common prob-

ability space and are mutually independent across time. The above random variables can

be non-Gaussian and correlated (not necessarily independent) across players. The cost of

player i ∈ Nn at time t ∈ N is given by:

cit =(xit)
⊺Qxit + 2(xit)

⊺Sxx̄t + (x̄t)
⊺Q̄x̄t

+ (uit)
⊺Ruit + 2(uit)

⊺Suūt + (ūt)
⊺R̄ūt,

(47)

where Q,Sx, Q̄, R, Su and R̄ are symmetric matrices with appropriate dimensions.

From [55, 82], an information structure called deep state sharing (DSS) is considered

wherein each player i ∈ Nn at any time t ∈ N observes its local state xit and the deep

state x̄t, i.e., uit = git(x
i
1:t, x̄1:t), where git is a measurable function adapted to the filteration

of the underlying primitive random variables of {xi1:t, x̄1:t}. When the number of players is

very large, one can use no-sharing (NS) information structure wherein each player observes

only its local state. However, such a fully decentralized information structure comes at

a price that one must predict the trajectory of the deep state in time (which introduces

the computational complexity in time horizon in terms of storage and computation). For

example, if the dynamics of the deep state (i.e., A + Ā and B + B̄) is known (which is

not applicable for model-free applications), the deep state can be predicted a head of time

when primitive random variables are mutually independent by the strong law of large

numbers. Alternatively, one can assume to have access to an external simulator for the

dynamics of the deep state (which is basically DSS structure). In this chapter, we focus on
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DSS information structure wherein there is no loss of optimality in restricting attention to

stationary strategies despite the fact that the deep state is not stationary. The interested

reader is referred to [82] for the convergence analysis of NS (approximate) solution to the

DSS solution, as n→∞.

Define gi
n := {git}∞t=1 and gn := {g1, . . . ,gn}. The admissible set of actions are square

integrable such that E
[∑∞

t=1 γ
t−1(uit)

⊺uit
]
< ∞. Given a discount factor γ ∈ (0, 1), the

cost-to-go for any player i ∈ Nn is described by:

J i
n,γ(g

i
n,g

−i
n )t0 = (1− γ)E

[ ∞∑
t=t0

γt−1cit
]
, t0 ∈ N. (48)

Problem 2. Suppose that the weights are homogeneous, i.e. αi
n = 1

n , i ∈ Nn. When a sequential

Nash strategy g∗
n exists, develop model-based and model-free gradient descent and natural policy

gradient descent procedures under DSS information structure such that for any player i ∈ Nn at

any stage of the game t0 ∈ N, and any arbitrary strategy gi:

J i
n,γ(g

∗,i
n ,g∗,−i

n )
t0
≤ J i

n,γ(g
i,g∗,−i

n )
t0
. (49)

Remark 13. It is to be noted that Problem 2 holds for arbitrary number of players n, where

the solution depends on n. Since the infinite-population solution is easier for analysis and

may be viewed as a special case, one can generalize the homogeneous weights αi
n = 1

n

to heterogeneous weights αi
n = βi

n , where βi ∈ [−βmax, βmax], βmax ∈ R>0, i ∈ Nn. The

resultant solution is called sequential weighted mean-field equilibrium (SWMFE) in [82]. The

SWMFE constructs an approximate solution at any stage of the game t0 ∈ N such that

J i
n,γ(g

∗,i
∞ ,g∗,−i

∞ )t0 ≤ J i
n,γ(g

i,g∗,−i
∞ )

t0
+ ε(n), where limn→∞ ε(n) = 0. For more details,

see [55, Theorem 4].

5.2.1 Main challenges and contributions

There are several challenges to solve Problem 2. The first one is the curse of dimensionality,

where the computational complexity of the solution increases with the number of players.
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The second one is the imperfect information structure, where players do not have perfect

information about the states of other players. The third challenge is that the resultant

optimization problem is non-convex in the policy space, see a counterexample in [51]. The

forth one lies in the fact that policy optimization is not even locally convergent in a game

with continuous spaces, in general; see a counterexample in [53]. The main contribution

of this chapter is to present an analytical proof for the global convergence of model-based

and model-free policy gradient algorithms. In contrast to the model-based solution in [55]

(whose number of unknowns increases quadratically with dx), the number of unknown

parameters in the proposed algorithms increases linearly with dx and du. To the best of

our knowledge, this is the first result on the global convergence of policy optimization in

nonzero-sum LQ games.

5.3 Main Results

In this section, we first present a model-based algorithm introduced in [82] that requires

2dx×2dx parameters to construct the solution. Then, we propose two model-based gradient

algorithms and prove their global convergence to the above solution, where their planning

space is the policy space (that requires 2du× dx parameters to identify the solution). Based

on the proposed gradient methods, we develop two model-free (reinforcement learning)

algorithms and establish their global convergence to the model-based solution.

From [82], we use a gauge transformation to define the following variables for any

player i ∈ Nn at any time t ∈ N: xi
t := vec(xit − x̄t, x̄t), ui

t := vec(uit − ūt, ūt) and wi
t :=

vec(wi
t − w̄t, w̄t), where w̄t := 1

n

∑n
i=1w

i
t. In addition, we define the following matrices:

A := diag(A,A+ Ā), B := diag(B,B + B̄), and

Q :=

 Q Q+ Sx

Q+ Sx Q+ 2Sx + Q̄

 , R :=

 R R+ Su

R+ Su R+ 2Su + R̄

 . (50)
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We now express the per-step cost of each player in (47) as:

cit = (xi
t)
⊺Qxi

t + (ui
t)
⊺Rui

t. (51)

To formulate the solution, we present a non-standard algebraic Riccati equation, introduced

in [82], as follows:

M(θ) = Q+ θ⊺Rθ + γ(A−Bθ)⊺M(θ)(A−Bθ), (52)

where θ := diag(θ(n), θ̄(n)), θ(n) := (Fn)
−1Kn, θ̄(n) := (F̄n)

−1K̄n, and matrices Fn, F̄n, Kn

and K̄n are given by:

Fn = (1− 1

n
)
[
R+ γB⊺M1,1(θ)B

]
+

1

n

[
R+ Su + γ(B + B̄)⊺M1,2(θ)B

]
,

F̄n = (1− 1

n
)
[
R+ Su + γB⊺M2,1(θ)(B + B̄)

]
+

1

n

[
R+ 2Su + R̄+ γ(B + B̄)⊺M2,2(θ)(B + B̄)

]
,

Kn = (1− 1

n
)γB⊺M1,1(θ)A+

γ

n
(B + B̄)⊺M1,2(θ)A,

K̄n=(1−1

n
)γB⊺M2,1(θ)(A+Ā)+

γ

n
(B+B̄)⊺M2,2(θ)(A+Ā). (53)

Assumption 1. Suppose equations (52) and (53) admit a unique stable solution, which is also

the limit of the finite-horizon solution. In addition, let Fn and F̄n be invertible matrices, and

(1− 1
n)Fn + 1

n F̄n be a positive definite matrix.

We now provide two sufficient conditions for Assumption 1 ensuring the existence of

a stationary solution. Let G denote the mapping from M to θ displayed in (53) (where

θ = G(M)), and L denote the mapping from θ to M expressed in (52) (where M = L(θ)).

Thus, M = L(G(M)) is a fixed-point equation to be solved by fixed-point methods.

Assumption 2. Let the mapping L(G(·)) be a contraction, implying that equations (52) and (53)

admit a unique fixed-point solution. In addition, let Fn and F̄n be invertible matrices, and (1 −
1
n)Fn + 1

n F̄n be a positive definite matrix.
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Assumption 3 (Infinite-population decoupled Riccati equations). Let Q and Q+Sx be pos-

itive semi-definite, R and R+Su be positive definite, and Ā and B̄ be zero. Suppose (A,B)

is stabilizable, and (A,Q1/2) and (A, (Q+ Sx)1/2) are detectable. When n is asymptotically

large, the non-standard Riccati equation (52) decomposes into two decoupled standard

Riccati equations; see [82, Proposition 2].

Theorem 3 (Model-based solution using non-standard Riccati equation [55]). Let Assump-

tion 1 hold. There exists a stationary subgame perfect Nash equilibrium such that for any player

i ∈ Nn at any time t ∈ NT ,

u∗,it = −θ∗(n)xit − (θ̄∗(n)− θ∗(n))x̄t, (54)

where the gains are obtained from (53). In addition, the optimal cost of player i ∈ Nn from the

initial time t0 = 1 is given by: J i
n,γ(θ

∗) = (1 − γ) Tr(M(θ∗)Σi
x) + γ Tr(M(θ∗)Σi

w), where

Σi
x := E

[
(vec(∆xi1), x̄1)(vec(∆xi1), x̄1)

⊺
]

and Σi
w := E

[
vec(∆wi

t), w̄t) vec(∆wi
t), w̄t)

⊺
]
.

5.3.1 Model-based solution using policy optimization

From Theorem 3, there is no loss of optimality in restricting attention to linear identical

stationary strategies of the form θ = diag(θ, θ̄). Therefore, we select one arbitrary player i

as a learner and other players as imitators (that are passive during the learning process).

More precisely, at each time instant, player i uses a gradient algorithm to update its strategy

whereas other players employ the updated strategy to determine their next actions. In

this chapter, we discard the process of selecting the learner, but in order to have a fair

implementation, the learner may be chosen randomly at each iteration.2 For simplicity of

presentation, we omit the superscript i and the subscription of the cost function. Hence,

the strategy of the learner can be described by: ut = −θxt,ut ∈ R2du ,xt ∈ R2dx , t ∈ N.

2For the special case of infinite population, it is also possible that all players become learners, i.e., they
simultaneously learn the strategies as long as their exploration noises are i.i.d. In such a case, the infinite-
population deep state reduces to weighted mean-field and remains unchanged.
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Lemma 6. The following holds at the initial time t0 = 1:

[∇θJ(θ),∇θ̄J(θ)] = 2PnEθΣθ, (55)

where 
Pn := [(1− 1

n)Idu×du ,
1
nIdu×du ],

Eθ := (R+ γB⊺M(θ)B)θ − γB⊺M(θ)A,

Σθ := E
[
(1− γ)

∑∞
t=1 γ

t−1xtx
⊺
t

]
.

(56)

Proof. To compute the best-response of the learner, we fix the strategies of other players,

and then find the gradient of the cost function with respect to θ and θ̄. Suppose player

i ∈ Nn uses the strategy uit = θixit + (θ̄i − θi)x̄t. Therefore, one has:

ui
t =

(1− 1
n)θ

i (1− 1
n)θ̄

i

1
nθ

i 1
n θ̄

i

xi
t +
∑
j ̸=i

− 1
nθ

j − 1
n θ̄

j

1
nθ

j 1
n θ̄

j

xj
t . (57)

From (48) and (51), Jxi
1
(θ) = E

[
(xi

1)
⊺Qxi

1+(ui
1)

⊺Rui
1

]
+γJxi

2
(θ)= E

[
(xi

1)
⊺Qxi

1+(ui
1)

⊺Rui
1

]
+

γE
[
(xi

2)
⊺M(θ)xi

2

]
. Taking the derivatives with respect to θi and θ̄i, and then making

θi = θj = θ and θ̄i = θ̄j = θ̄, leads to:



∇θJx1(θ) = 2
(
(1− 1

n)(R
1,1 + γB1,1⊺M1,1(θ)B1,1)

+ 1
n(R

2,1 + γB2,1⊺M2,1(θ)B2,1)
)
θE
[
∆x1∆x⊺1

]
+2
(
(1− 1

n)(R
1,2 + γB1,2⊺M1,2(θ)B1,2) + 1

n(R
2,2

+γB2,2⊺M2,2(θ)B2,2)
)
θ̄E
[
x̄1∆x⊺1

]
+ γ∇θJx2(θ),

∇θ̄Jx1(θ) = 2
(
(1− 1

n)(R
1,1 + γB1,1⊺M1,1(θ)B1,1)

+ 1
n(R

2,1 + γB2,1⊺M2,1(θ)B2,1)
)
θE
[
∆x1x̄

⊺
1

]
+2
(
(1− 1

n)(R
1,2 + γB1,2⊺M1,2(θ)B1,2)

+ 1
n(R

2,2+γB2,2⊺M2,2(θ)B2,2)
)
θ̄E
[
x̄1x̄

⊺
1

]
+γ∇θ̄Jx2(θ).

(58)
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The the rest of the proof follows from the recursive application of (58) and equations (52), (53)

and (56).

In this chapter, we consider two gradient-based methods.

• Policy gradient descent:

θk+1 = θk − η diag(∇θJ(θk),∇θ̄J(θk)). (59)

• Natural policy gradient descent:

θk+1 = θk − η diag(∇θJ(θk),∇θ̄J(θk))Σ
−1
θ . (60)

To prove our convergence results, we impose extra standard assumptions, described

below.

Assumption 4. The initial policy is stable. A policy θ is said to be stable if ρ(A−Bθ) < 1.

Assumption 5. Given the learner, E
[
x1(x1)

⊺
]

is positive definite. For the special case of i.i.d.

initial states, E
[
xi
1(x

i
1)

⊺
]
= diag((1 − 1

n)cov(x1), 1
ncov(x1) + E

[
x1
]
E
[
x1
]⊺
) is positive definite if

cov(xi1) =: cov(x1) and E
[
xi1
]
E
[
xi1
]⊺

=: E
[
x1
]
E
[
x1
]⊺, i ∈ Nn, are positive definite.

Assumption 6. For finite-population model, Q and R are positive definite matrices. For the

infinite-population case satisfying Assumption 3, Q and Q+ S are positive definite.

Assumptions 4–6 are standard conditions in the literature of LQ reinforcement learn-

ing [51, 69], which ensure that for any stable θ, J(θ) is properly bounded and Σθ ≽

E
[
x1(x1)

⊺
]

is positive definite. We now show that the best-response optimization at the

learner satisfies the Polyak-Lojasiewicz (PL) condition [70, 71], which is a relaxation of the

notion of strong convexity. Let µ := σmin(E
[
x1x

⊺
1

]
).

Lemma 7 (PL condition). Let Assumptions 1, 4, 5 and 6 hold. Let also θ∗ be the Nash policy in

Theorem 3. There exists a positive constant L1(θ
∗) such that

J(θ)− J(θ∗) ≤ L1(θ
∗)∥[∇θJ(θ),∇θ̄J(θ)]∥2F , (61)
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where L1(θ
∗) = n2∥Σθ∗∥

4µ2σmin(R)
. For the special case of infinite population (i.e. n = ∞) with i.i.d.

initial states under Assumptions 3, 4, 5 and 6, one has

L1(θ
∗) =

∥Σ1,1
θ∗ ∥

4σmin(cov(x1))2σmin(R)
+

∥Σ2,2
θ∗ ∥

4σmin(E[x1]E[x1]⊺)2σmin(R+ Su)
.

Proof. Let P̃n := diag((1− 1
n)Idu×du ,

1
nIdu×du). We express (55) in terms of the square matrix

P̃n such that ∆Jθ(θ) =: ∆J1
θ (θ) + ∆J2

θ (θ) and ∆Jθ̄(θ) =: ∆J1
θ̄
(θ) + ∆J2

θ̄
(θ), where

∇θJ̃ :=

∆J1
θ (θ) ∆Jθ̄(θ)

∆J2
θ (θ) ∆Jθ̄(θ)

 = 2P̃nEθΣθ. (62)

Following [?, Lemma 10] and after some algebraic manipulations, we can derive the fol-

lowing inequality for sequences {x∗
t }∞t=1 and {u∗

t }∞t=1 generated by the Nash policy θ∗.

In particular, from (55), Σθ ≽ E
[
(x1x

⊺
1)
]
, and the fact that P̃n is positive definite for any

finite n, it results that:

J(θ)− J(θ∗) ≤ (1− γ)E
∞∑
t=1

γt−1Tr(x∗
tx

∗
t
⊺E⊺

θ(R+ γB⊺MθB)−1Eθ)

= Tr(Σθ∗E⊺
θ(R+ γB⊺MθB)−1Eθ) ≤

∥Σθ∗∥
σmin(R)

Tr(E⊺
θEθ)

=
∥Σθ∗∥

4σmin(R)
Tr(Σθ

−1∇θJ̃
⊺P−2

n ∇θJ̃Σθ
−1)

≤ 0.25µ−2∥Σθ∗∥
σmin(P̃n)2σmin(R)

∥[∇θJ(θ),∇θ̄J(θ)]∥2F .

For n = ∞, P̃n is not invertible; however, equation (52) under Assumption 3 decomposes

into two decoupled standard Riccati equations with matrices (A,B,Q,R) and (A,B,Q +

Sx, R + Su). By following the approach proposed in [51, Lemma 11], it is straightforward

to show that the cost difference in this case is upper bounded by:

∥Σ1,1
θ∗ ∥

4σmin(cov(x1))2σmin(R)
∥∇θJ(θ)∥2F +

∥Σ2,2
θ∗ ∥

4σmin(E[x1]E[x1]⊺)2σmin(R+ Su)
∥∇θ̄J(θ)∥2F .
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In the following lemmas, we show that the cost function and its gradient are locally

Lipschitz functions.

Lemma 8 (Locally Lipschitz cost function). For any θ′ satisfying the inequality ∥θ′ − θ∥F <

ε(θ), there exists a positive constant L2(θ) such that |J(θ′)− J(θ)| ≤ L2(θ)∥θ′− θ∥F , where the

explicit expressions of ε(θ) and L2(θ) can be obtained in a similar manner as [69, Lemma 15].

Proof. Using the extended form of the gains θ, the form of the solution can be reduced to a

single-agent setting. Then, the proof follows like that of [51, Lemma 15] .

Lemma 9 (Locally Lipschitz gradient). For any θ′ satisfying the inequality ∥θ′ − θ∥F < ε(θ),

there exists a positive constant L3(θ) such that

∥[∇Jθ(θ′),∇Jθ̄(θ′)]− [∇Jθ(θ),∇Jθ̄(θ)]∥F ≤ L3(θ)∥θ′ − θ∥F , (63)

where the explicit expressions of ε(θ) and L3(θ) can be obtained in a similar manner as [69, Lemma

16].

Proof. Using the extended form of the gains θ, the form of the solution can be reduced to a

single-agent setting. Then, the proof follows like that of [51, Lemma 16] .

Theorem 4 (Global convergence via model-based gradient). Let Assumptions 1, 4, 5 and 6 hold.

For a sufficiently small fixed step size η chosen as η = poly
(µσmin(Q)

J(θ1)
, 1√

γ∥A∥ ,
1√

γ∥B∥ ,
1

∥R∥ , σmin(R)
)
,

and for a sufficiently large number of iterations K such that

K ≥ ∥Σθ∗∥
µ

log
J(θ1)− J(θ∗)

ε
poly

( J(θ1)

µσmin(Q)
,
√
γ∥A∥,√γ∥B∥, ∥R∥, 1

σmin(R)

)
,

the gradient descent algorithm (59) leads to the following bound: J(θK)−J(θ∗) ≤ ε. In particular,

for a fixed step size η = 1

∥P⊺
nPn∥(∥R∥+ γ∥B∥2J(θ1)

µ
)

and for a sufficiently large number of iterations K,

i.e.,

K ≥ ∥Σθ∗∥∥P⊺
nPn∥

µ

( ∥R∥
σmin(R)

+
γ∥B∥2J(θ1)

µσmin(R)

)
log

J(θ1)− J(θ∗)

ε
,

the natural policy gradient descent algorithm (60) enjoys the bound: J(θK)− J(θ∗) ≤ ε.
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Proof. Following the proof technique in [51, Theorem 7], we choose a sufficiently small step

size η such that the value of the cost decreases at each iteration. More precisely, for the

natural policy gradient descent at iteration K,

J(θK+1)− J(θ∗) ≤ (1− µσmin(R)

∥P⊺
nPn∥(∥R∥+γ∥B∥2J(θ1)

µ )∥Σθ∗∥
)(J(θK)− J(θ∗))

= (1− η
µσmin(R)

∥Σθ∗∥
)(J(θK)− J(θ∗)).

The above recursion is contractive for the specified η.

5.3.2 Model-free solution using policy optimization

It is desired now to develop a model-free RL algorithm.

Lemma 10 (Finite-horizon approximation). For any θ with finite J(θ), define J̃T (θ) := (1 −

γ)E[
∑T

t=1 γ
t−1ct] and Σ̃θ = (1− γ)E[

∑T
t=1 γ

t−1xtx
⊺
t ]. Let ε(T ) := dx(J(θ))2

(1−γ)Tµσ2
min(Q)

and ε̄(T ) :=

ε(T )(∥Q∥+∥R∥∥θ∥2), then ∥Σ̃θ −Σθ∥ ≤ ε(T ) and |J̃T (θ)− J(θ)| ≤ ε̄(T ).

Proof. The proof is omitted due to space limitation.

Let Sr be a set of uniformly distributed points with norm r > 0 (e.g., the surface of

a sphere). In addition, let Br denote the set of all uniformly distributed points whose

norms are at most r (e.g., all points within the sphere). For a matrix θ̃ = diag(θ̃, ˜̄θ), these

distributions are defined over the Frobenius norm ball. Hence, Jr(θ) = Eθ̃∼Br
[J(θ + θ̃)].

Since the expectation can be expressed as an integral function, one can use Stokes’ formula

to compute the gradient of Jr(θ) with only query access to the function values.

Lemma 11 (Zeroth-order optimization). For a smoothing factor r > 0, [∇θJ(θ),∇θ̄J(θ)] =

2dxdu
r2

Eθ̃∼Sr
[J(θ + θ̃)[θ̃, ˜̄θ]].

Proof. The proof follows directly from the zeroth-order optimization approach [72, Lemma

1].

Lemma 12. Let θ̃1, . . . , θ̃L, L ∈ N, be i.i.d. samples drawn uniformly from Sr. There exists

ε(L) := poly(1/L) > 0, such that [∇̃L
θ J(θ), ∇̃L

θ̄
J(θ)] = 2dxdu

r2L

∑L
l=1 J(θ + θ̃l)[θ̃,

˜̄θ] converges
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to [∇θJ(θ),∇θ̄J(θ)] in the Frobenius norm with a probability greater than 1 − (2dxduε(L) )
−2dxdu .

From Lemma 10, there exists ε(L, T ) := poly(1/L, 1/T ) > 0 such that [∇̃L,T
θ J(θ), ∇̃L,T

θ̄
J(θ)] =

2dxdu(1−γ)
r2L

∑L
l=1[
∑T

t=1 γ
t−1(ct)][θ̃l,

˜̄θl] is ε(L, T ) close to [∇θJ(θ),∇θ̄J(θ)] with a probability

greater than 1− ( 2dxdu
ε(L,T ))

−2dxdu in the Frobenius norm.

Theorem 5 (Global convergence via model-free gradient). Let Assumptions 1, 4, 5 and 6

hold. For a sufficiently large horizon T and samples L, model-free gradient descent and natural

policy gradient decent with the empirical gradient in Lemma 12 and covariance matrix in Lemma 10

converge to the model-based solutions in Theorem 4. In particular, the gradient descent algorithm

converges with a probability greater than 1− ( 2dxdu
ε(L,T ))

−2dxdu , where ε(L, T ) = poly(1/L, 1/T ).

Proof. From [51, Theorem 31] and Theorem 4, one has the following inequality at iteration

K ∈ N for a sufficiently small step size η ≤ ηmax,

J(θK+1)− J(θ∗) ≤ (1− ηη−1
max)(J(θK)− J(θ∗)).

At iteration K, denote by ∇̃K the empirical gradient and by θ̂K+1 = θK − η∇̃K the update

with the empirical gradient. From Lemma 8, |J(θ̂K+1) − J(θK+1)| ≤ 1
2ηη

−1
maxε(L, T ),

when ∥θ̂K+1 − θK+1∥≤ 1
2ηη

−1
maxε(L, T )(1/L2(θK+1)), upon noting that θ̂K+1 − θK+1 =

η(∇K − ∇̃K) and ∥∇K − ∇̃K∥≤ 1
2η

−1
maxε(L, T )(1/L2(θK+1)). According to the Bernstein

inequality, the above inequality holds with a probability greater than 1 − ( 2dxdu
ε(L,T ))

−2dxdu .

Therefore, from Lemmas 9 and 12, the distance between the empirical gradient and the exact

one monotonically decreases as the number of samples and rollouts increases, provided

that the smoothing factor r is sufficiently small. Consequently, one arrives at

J(θ̂K+1)− J(θ∗) ≤ (1− 1

2
ηη−1

max)(J(θK)− J(θ∗)),

when J(θK)− J(θ∗) ≤ ε(L, T ). This recursion is contractive; i.e., the rest of the proof will

be similar to that of Theorem 4.
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Figure 5.1: Convergence of the model-based gradient descent and natural policy gradient
descent algorithms in Example 1.

5.4 Simulations

In this section, simulations are conducted to demonstrate the global convergence of the

proposed gradient methods. To compute the Nash policy, plotted in dashed lines in the

figures, we use the solution of equation (52).

Example 1. Consider a dynamic game with the following parameters: η = 0.1, n = 100,

T = 100, L = 3, A = 0.7, B = 0.4, Ā = 0, B̄ = 0, Q = 1, R = 1, Sx = 4, Su = 0, Q̄ = 0,

R̄ = 0, Σx = 1 and Σw = 0.4. It is observed in Figure 5.1 that natural policy gradient

descent reaches the Nash strategy faster than the gradient descent.

Example 2. Let the system parameters be η = 0.04, T = 10, r = 0.09, L = 1500,

A = 1, B = 0.5, Ā = 0, B̄ = 0, Q = 1, R = 1, Sx = 2, Su = 0, Q̄ = 1, R̄ = 0, r = 0.09,

Σx = 0.05 and Σw = 0.01. The model-free policy gradient algorithm was run on a 2.7 GHz

Intel Core i5 processor for 10 random seeds. After 6000 iterations, which took roughly 10

hours, both θ and θ̄ reached their optimal values as depicted in Figure 5.2.

Example 3. In this example, let the system parameters be η = 0.1, T = 100, L = 3,

A = 0.8, B = 0.2, Ā = 0, B̄ = 0, Q = 1, R = 1, Sx = 2, Su = 0, Q̄ = 4, R̄ = 0, Σx = 1 and

Σw = 0.1. To investigate the effect of the number of players, we considered five different

values for n ∈ {2, 5, 10, 20, 100}. It is shown in Figure 5.3 that the policies converge to a

limit as the number of players increases, which is known as the mean-field limit.
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Figure 5.2: Convergence of the proposed model-free algorithm in Example 2.
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Figure 5.3: The effect of the number of players on the policy in Example 3.

5.5 Conclusions

In this chapter, we investigated model-based and model-free gradient descent and nat-

ural policy gradient descent algorithms for LQ deep structured games with homogeneous

weights. It was shown theoretically and verified by simulations, that the gradient-based

methods enjoy the global convergence to the sequential Nash solution. One of the main

features of the proposed solutions is that their planning space is independent of the number
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of players. The obtained results naturally extend to asymptotically vanishing weights and

other variants of policy gradient algorithms such as REINFORCE and actor-critic methods.
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Chapter 6

Risk-Constrained Control of

Mean-Field Linear Quadratic Systems

The risk-neutral LQR controller is optimal for stochastic linear dynamical systems.

However, the classical optimal controller performs inefficiently in the presence of low-

probability yet statistically significant (risky) events. The present research focuses on

infinite-horizon risk-constrained linear quadratic regulators in a mean-field setting. We

address the risk constraint by bounding the cumulative one-stage variance of the state

penalty of all players. It is shown that the optimal controller is affine in the state of each

player with an additive term that controls the risk constraint. In addition, we propose a

solution independent of the number of players. Finally, simulations are presented to apply

the results to a microgrid system to verify the theoretical findings.

6.1 Introduction

The performance evaluation of dynamical systems in the optimal control framework has

long been studied in the literature. Specifically, in the linear quadratic regulator (LQR) with

noisy inputs, the focus is on minimizing the expected cumulative time-average quadratic

cost, also known as a risk-neutral setting [73]. However, such a risk-neutral framework

often exhibits unsatisfactory performance in real-world control systems. For instance, there
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exists a rich body of research to address risk in different areas, including robotics [74, 75],

financial systems [76,77], power grids [78,79], and multi-agent networks [58,80]. Moreover,

neglecting the effect of low-probability severe external events may lead to catastrophic

consequences in dynamic systems, like crashing in a flock of UAVs or an autonomous

vehicle hitting other vehicles and pedestrians.

There has been an increasing interest in the research community recently in the risk

assessment of dynamical systems by deriving closed-form solutions for a single-agent

setting [83, 84]. Specifically, by solving a set of Riccati and fixed-point equations, one can

obtain an affine form of the policy to meet the system’s constraints. However, in the control

of a large number of agents, such a method may not provide sufficient efficacy.

This research considers the problem of exchangeable agents (players) in a mean-field

setting. In such a setting, all agents have similar dynamics, and the players’ states evolve

as a linear function of their previous states and the overall average state. Using the results

in mean-field theory, we show that the required Riccati equation (whose size increases

with the number of players) can be decomposed into two Riccati equations with the same

dimension as the agents’ states. Furthermore, we propose a primal-dual algorithm to solve

the problem iteratively.

The rest of this chapter is organized as follows. In Section II, we present some prelim-

inaries and formulate the problem. The solution to the optimization problem is derived

in Section III, followed by simulations to validate the results in Section IV. Finally, some

concluding remarks and directions for future research are given in Section V.

6.2 Problem Formulation

Throughout this chapter, R, R>0 and N represent the sets of real, positive real and natural

numbers, respectively. Given any n ∈ N, Nn, and In×n denote the finite set {1, . . . , n}, and

the n×n identity matrix, respectively. ∥ ·∥ is the spectral norm of a matrix, Tr(·) is the trace

of a matrix, τmin(·) is the minimum singular value of a matrix, ρ(·) is the spectral radius

of a matrix, and diag(Λ1,Λ2) is the block diagonal matrix [Λ1 0; 0 Λ2], and diag(Λ)ki=1
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denotes a bloack-diagonal matrix with k times repetition of the matrix Λ. For vectors x, y

and z, vec(x, y, z) = [x⊺, y⊺, z⊺]⊺ is a column vector, x1:t denotes the vector (x1, ..., xt) and

the operator ⊗ denotes the Kronecker product between two matrices of appropriate size.

Also, the rectified linear function is denoted by the operator [x]+ = max{0, x}.

6.2.1 General Form of the Problem

Given n ∈ N players, let xit ∈ Rdx , uit ∈ Rdu and wi
t ∈ Rdx denote, respectively, the

state, action and local noise of player i ∈ Nn at time t ∈ N, where dx, du ∈ N. Define the

mean-state of the players as x̄t := 1
n

∑n
i=1 x

i
t. The initial states {x10, . . . , xn0} are random

with finite covariance matrices. The evolution of the state of any player i ∈ Nn at time t ∈ N

is given by:

xit+1 = Axit +Buit + Āx̄t + B̄ūt + wi
t, (64)

where {wi
t}∞t=0 is an independent and identically distributed (i.i.d.) zero-mean noise process

with a finite covariance matrix.

The per-step cost of all players at time t ∈ N is given by:

ct = (x̄t)
⊺Q̄x̄t + (ūt)

⊺R̄ūt +
1

n

n∑
i=1

(xit)
⊺Qxit + (uit)

⊺Ruit, (65)

where Q, Q̄, R, and R̄ are symmetric matrices with appropriate dimensions.

Definition 3. Let hit = {xi0, ui0, ..., xit−1, u
i
t−1, x

i
t} denote the history trajectory of player i ∈ Nn.

Then, the per-step risk factor for the ith player is defined as

dit =
(
(xit)

⊺Qxit − E
[
(xi

t)
⊺Qxi

t|hit
])2

. (66)

Assumption 7. It is assumed hereafter that the pair (A,B) is stabilizable, the pair (A,Q
1
2 ) is

detectable, and matrices Q and R are positive semi-definite and positive definite, respectively.

Assumption 8. The local noises w1
t , ..., w

n
t have the same distribution.

Assumption 9. The noise wi
t for every player i ∈ Nn has a finite fourth-order moment, i.e.,
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E∥wi
t∥4 <∞.

In this chapter, we consider the infinite-horizon risk-constrained LQR for a team of co-

operative players to minimize a common cost. Also, it is desired to constrain the cumulative

per-step risk of all players. This leads to the following constrained optimization problem

minimize J = lim sup
T→∞

1

T
E

[ T∑
t=0

ct

]
(67a)

s.t. (64) and (67b)

Jc =
1

n

n∑
i=1

lim sup
T→∞

1

T
E

[ T∑
t=0

dit

]
≤ Γ, ∀i ∈ Nn, (67c)

where Γ > 0 is a predefined risk tolerance of the user.

Remark 14. From [81, 82], when player i ∈ Nn at any time t ∈ N observes its local state xit

and the mean state x̄t, i.e. {xi1:t, x̄1:t}, an information structure called deep state sharing (DSS) is

considered.

Definition 4. Let the control input of player i ∈ Nn at time t be denoted by uit = ϕi
t(x

i
1:t, x̄1:t).

Define Φi := {ϕi
t}∞t=1 and Φn := {Φ1, . . . ,Φn} as the control strategy of player i and that of all

players, respectively.

We now present the main problem of this chapter.

Problem 3. Consider the risk-constrained mean-field LQR problem in (67). Given the system

dynamics (64), find an optimal control strategy Φ∗ such that for any arbitrary control law Φ, the

cost function (67a) under the constraints (67b) and (67c) satisfies the following inequality

J(Φ∗) ≤ J(Φ).

6.3 Main Results

In this section, we propose a step by step solution to the optimization problem (67).
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6.3.1 Problem Reformulation

Define a new transformed state x̃it = xit − x̄t for player i ∈ Nn. Define also the mean

control input of all players as ūt := 1
n

∑n
i=1 u

i
t, and the transformed control input of player

i ∈ Nn as ũit = uit − ūt. It follows from [82] that

x̃it+1 = Ax̃it +Bũit + w̃i
t

x̄t+1 = Ax̄t + Būt + w̄t,

(68)

where A = A+ Ā, B = B + B̄, w̄t :=
1
n

∑n
i=1w

i
t and w̃i

t = wi
t − w̄t.

Next, define the first and second-order moments (mean and covariance) of each player’s

local noise as m1 = E[wi
t] and M2 = E[(wi

t −mi
1)(w

i
t −mi

1)
⊺], respectively. Furthermore, let

the next two higher order moments of the local noise be defined as

M3 = E[(wi
t −mi

1)(w
i
t −mi

1)
⊺Q(wi

t −mi
1)],

M4 = E[(wi
t −mi

1)
⊺Q(wi

t −mi
1)− Tr(M2Q)]2.

(69)

Also, for future reference, define m1 = E[w̃i
t] and M1 = E[(w̃i

t − M1)(w̃
i
t − m1)

⊺].

Lemma 13. The risk-constrained optimization problem in (67) can be reformulated as

minimize J = lim sup
T→∞

1

T
E

[ T∑
t=0

cit

]
s.t. (68) and,

J̃c = Jc̄ +

n∑
i=1

J̃ i
c ≤ Λ, ∀i ∈ Nn,

(70)

where

J i
c̃ = lim

T→∞

1

T
E

[ T∑
t=0

4

n
(x̃it)

⊺QM2Qx̃it

]
,

Jc̄ = lim sup
T→∞

1

T
E

[ T∑
t=0

4(x̄t)
⊺QM2Qx̄t + 4(x̄t)

⊺QM3

]
,
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and Λ = Γ−m4 + Tr(M2Q)2.

Proof. Using the result in [83], the constraint in (67c) can be reformulated as

Jc =
1

n

n∑
i=1

lim sup
T→∞

1

T
E

T∑
t=0

4(xit)
⊺QM2Qxit + 4(xit)

⊺QM3.

The proof follows immediately by rewriting the above equation as xit = x̃it + x̄t, and on

noting that
∑n

i=1 x̃
i
t = 0.

6.3.2 Primal-Dual Approach

To solve the constrained optimization problem (70), we use λ ≥ 0 as the Lagrange

multiplier. The Lagrangian can then be expressed as

L(Φ, λ) = J + λ(J̃c − Λ). (71)

Definition 5. Define the matrices Qc = 4
nQM2Q, Qc̄ = 4QM2Q, Qλ = 1

nQ + λQc, and

Qλ̄ = Q+ Q̄+ λQc̄.

Lemma 14. The Lagrangian in (71) can be reformulated as

L(Φ, λ) = L̄+
n∑

i=1

Li, (72)

where

Li = lim sup
T→∞

1

T
E

[
(x̃it)

⊺(Qλ)x̃
i
t + (ũit)

⊺ 1

n
Rũit

]
,

L̄ = lim sup
T→∞

1

T
E

[
x̄⊺t (Qλ̄)x̄t + Sλx̄t + ū⊺t (R+ R̄)ūt

]
.

Proof. The result follows directly from Lemma 13, the definition of the per-step cost in (65),

and on noting that
∑n

i=1 x̃
i
t = 0 and

∑n
i=1 ũ

i
t = 0.

To solve for the optimal value of the Lagrangian L∗ in (71), we find the general form of

the policies for a constant multiplier.
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Theorem 6. For a fixed multiplier λ, the optimal policy for each player is affine, such that

uit = −θ(λ)xit − (θ̄(λ)− θ(λ))x̄t + τ(λ) + τ̄(λ), (73)

in which

θ = −(R+B⊺PB)−1B⊺PA,

θ̄ = −(R+ B⊺PB)−1B⊺PA,
(74)

and

τ = −1

2
(R+B⊺PB)−1B⊺(2Pm1 + g),

τ̄ = −1

2
(R+ B⊺PB)−1B⊺(2Pm1 + g),

(75)

where P , P , g and g are obtained by solving the following recursive equations

P = QλA
⊺PA−A⊺PB(R+B⊺PB)−1B⊺PA,

P = Qλ̄A⊺PA−A⊺PB(R+ B⊺PB)−1B⊺PA,

g⊺ = (2m⊺
1P + g⊺)(A−Bθ),

g⊺ = (2m⊺
1P + g⊺)(A− Bθ̄) + 4λ(QM3)

⊺.

(76)

Proof. Define the generalized state and action of all agents in an augmented form as xt =

[vec(x̃it)ni=1, x̄t] and ut = [vec(ũit)ni=1, ūt], respectively. Then, it follows that

xt+1 = Axt +But,

where

A = diag(diag(A)ni=1, Ā), B = diag(diag(B)ni=1, B̄).

Define the finite-horizon Lagrangian as the value function VT and note that the results in
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Theorem 2 of [83] imply that the Lagrangian has a quadratic form as

VT = x⊺
tPxt + gxt + zt.

Instead of solving for the optimal policy in the larger state-space of xt, from Lemma 14, the

value function can also be decomposed into a set of smaller value functions such that

VT = V̄T +

n∑
i=1

Ṽ i
T .

Since the Lagrangians L̄ and L̃i have complete square forms, the minimization can be

carried out over the smaller state space of x̃it and x̄t. Therefore, by employing dynamic

programming, we have the following two recursive optimality equations

Ṽ i
T = min

ũt

(
(x̃it)

⊺Qλx̃
i
t +

1

n
(ũit)

⊺Rũit + V̄ i
T+1

)
,

V̄T = min
ūt

(x̄⊺tQλ̄x̄t + ū⊺t (R+ R̄)ūt + V̄T+1).

The proof follows by taking the derivative with respect to ũit and ūt and using backward

dynamic programming.

Remark 15 (Strong Duality). Using the results established in Theorem 2 of [84] and [85], there

exists an optimal multiplier λ∗ such that the policy

uit = −θ(λ∗)xit − (θ̄(λ∗)− θ(λ∗))x̄t + τ(λ∗) + τ̄(λ∗) (77)

is the optimal solution to (70).

6.3.3 Solution of the Dual Problem with Subgradients

Since there is no optimality gap in the optimization problem (67), we can alternatively

solve the following dual problem

max
λ≥0

D(λ) = max
λ≥0

min
u
L(u, λ) (78)
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which is also concave in λ. Let d denote the subgradient. Then, from the results in [86, 87]

and the subgradient of D(λ) can be expressed as

d = J̃c(θ, θ̄, λ)− Λ. (79)

The following Theorem provides the explicit form of the constraints for deriving the sub-

gradient vector.

Theorem 7. Consider the stabilizing control input given by (73). Then,

J i
c̃ = Tr

[
Pc̃

(
M2 + (Bτ + m1)(Bτ + m1)

⊺)]
+ g⊺c̃ (Bτ + m1),

Jc̄ = Tr
[
Pc̄(Bτ̄ +m1)(Bτ̄ +m1)

⊺
]
+ g⊺c̄ (Bτ̄ +m1),

where Pc̄ and Pc are the positive definite solutions of the following Lyapunov equations

Pc̃ =
4

n
QM2Q+ (A−Bθ)⊺Pc̃(A−Bθ),

Pc̄ = 4QM2Q+ (A− Bθ̄)⊺Pc̄(A− Bθ̄),
(80)

where

g⊺c̃ = 2
[
(Bτ + m1)

⊺Pc̃(A−Bθ)
](
I −A+Bθ

)−1
,

g⊺c̄ = 2
[
(Bτ̄ +m1)

⊺Pc̄(A− Bθ̄) + 2M⊺
3Q
](
I −A+ Bθ̄

)−1
.

Proof. Define the relative value functions

V i
c̃ = E

[ ∞∑
t=0

4

n
(x̃it)

⊺QM2Qx̃it − J i
c̃

]
,

Vc̄ = E

[ ∞∑
t=0

4(x̄t)
⊺QM2Qx̄t + 4(x̄t)

⊺QM3 − Jc̄

]
.

(81)

Using backward dynamic programming, it can be shown that such value functions have

a quadratic form, i.e. V i
c̃ = (x̃it)

⊺Pc̃x̃
i
t + g⊺c̃ x̃

i
t + zc̃ and V i

c̄ = x̄⊺tPc̄x̄t + g⊺c̄ x̄t + zc̄. Using the
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Bellman equation, for V i
c̃ one has

V i
c̃ =(x̃it)

⊺Pc̃x̃
i
t + g⊺c̃ x̃

i
t + zc̃

=
4

n
(x̃it)

⊺QM2Qx̃it − J i
c̃ + E[g⊺c̃

(
(A−Bθ)x̃it +Bτ + w̃i

t

)
] + zc̃

+ E[(A−Bθ)x̃it +Bτ + w̃i
t]
⊺Pc̃[(A−Bθ)x̃it +Bτ + w̃i

t]

=(x̃it)
⊺
[
4

n
QM2Q+ (A−Bθ)⊺Pc̃(A−Bθ)

]
(x̃it)[

2(Bτ +m1)
⊺Pc̃(A−Bθ) + g⊺c̃ (A−Bθ)

]
(x̃it)− J i

c̃ + zc̃+

Tr
[
Pc̃(M2 + (Bτ + m1)(M2 + (Bτ + m1)

⊺
]
+ g⊺c̃ (Bτ + m1),

Then, it follows that

J i
c̃ = Tr

[
Pc̃(M2 + (Bτ + m1)(M2 + (Bτ + m1)

⊺
]
+ g⊺c̃ (Bτ + m1).

Using a similar argument, Vc̄ can be written as

Vc̄ =x̄⊺tPc̄x̄t + g⊺c̄ x̄t

=4x̄⊺tQM2Qx̄t + 4M⊺
3Qx̄t − Jc̄ + E[g⊺c̄

(
(A− Bθ̄)x̄t + Bτ + w̄t

)
]

+ E[(A− Bθ̄)x̄t + Bτ + w̄t]
⊺Pc̄[(A− Bθ̄))x̄t + Bτ + w̄t] + zc̄

=x̄⊺t

[
QM2Q+ (A− Bθ̄)⊺Pc̃(A− Bθ̄)

]
x̄t[

2(Bτ +m1)
⊺Pc̃(A− Bθ̄) + 4M⊺

3Q+ g⊺c̄ (A− Bθ̄)
]
x̄t

+ Tr
[
Pc̄(Bτ +m1)(Bτ +m1)

⊺
]
+ g⊺c̃ (Bτ +m1)− Jc̄ + zc̄,

and it results that

Jc̄ = Tr
[
Pc̄(Bτ̄ +m1)(Bτ̄ +m1)

⊺
]
+ g⊺c̄ (Bτ̄ +m1).
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From Theorem 7, we can compute J̃c = Jc̄ +
∑n

i=1 J̃
i
c and then find the subgradi-

ents, accordingly. Algorithm 1 describes the proposed primal-dual method to solve the

optimization problem in (67).

Algorithm 5 Primal-Dual Algorithm for Risk-Constrained Mean-field LQR
Input: Initial λ0, step size η

1: Iteration counter k
2: for k = 1, 2, ... do
3: Obtain ut = argminL(ut,λk) from Theorem 6
4: Compute dk from Theorem 7
5: Update the multiplier λk+1 = [λk + ηk.dk]+
6: end for

Remark 16. Since the policy in (73) is stabilizable, the subgradients and multipliers vectors have

upper bounds.

Remark 17. Since the subgradients and multipliers are upper bounded, using an argument anal-

ogous to that in Theorem 3 in [84], Algorithm 1 converges to the optimal policy after a sufficient

numbers of iterations.

6.4 Simulations

We validate the proposed methods using numerical simulations on a low-inertia mi-

crogrid (MG) system. Consider the load frequency problem (LFC) with risk constraints on

the frequency and the mean state of all the agents. The MGs exchange information with

each other through the mean-state of the system.
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Parameter Symbol Value Units

Damping Factor D 16.66 MW/Hz

Speed Droop R 1.2×10−3 Hz/MW

Turbine Static Gain Kt 1 MW/MW

Turbine Time Constant Tt 0.3 s

Area Static Gain Kp 0.06 Hz/MW

Area Time Constant Tp 24 s

Tie-line Coefficient Ktie 1090 MW/Hz

Consider microgrids in n areas. Let ∆Ptie,i and ∆fa denote the power inflow and the

frequency deviation corresponding to the ith microgrid. We assume that this power flow

is proportional to the discrepancy of the frequency deviation of each area and the mean

frequency deviation of all areas, i.e.

∆Ptie,i =

∫
Ktie,i(∆fi −∆f̄)dt

In addition, the control signal of the ith area is the sum of two terms below

∆utot,i = ∆Pf,i +∆PC,i,

where ∆Pf,i = − 1
Ri
∆fi, and ∆PC,i denotes the automatic generation control (AGC). These

two controls specify the output power of the microgrid at the ith area denoted by ∆PG,i.

The other state variable is the area control error (ACE) denoted by zi := β∆fi+∆Ptie,i with

the bias factor βi = Di +
1
Ri

.

The overall state of each microgrid is

xi = [∆fi,∆PG,i,∆Ptie,i,

∫
zi].

The dynamics of the system is

xit+1 = Axit + Āx̄t +Buit,
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Figure 6.1: Constraint violation with iterations for the microgrid problem

where

A =



− 1
Tp

Kp

Tp
−Kp

Tp
0

− Kt
RTt

− 1
Tt

0 0

0 0 0 1

β 0 1 0



Ā =



0 0 0 0

0 0 0 0

Ktie 0 0 0

β 0 0 0



B =



0

0

Kt
Tt

0


We use the parameters in Table I from [88]. Also, we select Q = diag(800, 80, 80, 4000)

and R = 100. Fig. 6.1 illustrates constraint violation as defined in [84]. It is observed that

as the number of iterations grows, the constraint violation tends to zero. In other words,

the algorithm obtains the optimal control law that minimizes the common cost function of

players while the constraints are satisfied.
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6.5 Conclusions

We proposed a computationally-efficient method to tackle the problem of risk-constrained

control of mean-field linear quadratic systems. The method only requires the solution of

two Riccati equations and is independent of the number of players. This is a feature that

is essential in controlling a multi-agent system of large size. The application of policy

gradient methods as an alternative approach and considering individual constraints for

the players are two interesting topics for the extension of the current research.
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Chapter 7

Conclusions & Future Research

Directions

We now summarize the main contributions of this dissertation and present some ideas

for future research in the area.

7.1 Conclusions

This dissertation studied optimization problems in interconnected systems with various

applications. Although these problems are seemingly different, they can all be tackled by

some control and optimization principles.

In the first part, we investigated the forward kinematics of a parallel robot. We showed

that for certain geometries and specific types of parallel robots, one could estimate all

workspace parameters as a function of only one parameter and the joint space variables

(joint angles or lengths). The estimation errors are upper bounded as functions of the

robot’s geometry. Then, we formulated forward kinematics as an error minimization

problem. Finally, for a given configuration, we proved that a gradient descent approach

always estimates the forward kinematics parameters with sufficient accuracy.

In the second part, we studied methods for output power maximization of Coulomb

force parametric generators (CFPGs) as another dynamical system. CFPGs are a special
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class of micro-energy harvesters, for which we introduce several electrostatic force estima-

tors. Bearing in mind the constraint on the computational complexity of the estimators, we

considered several solutions ranging from machine learning and optimization methods to

an approach based on the kinematics of a CFPG. Finally, we ran simulations to validate their

performance by the acceleration data recorded from volunteers to emulate daily human

activities.

In the third part, we studied mean-field linear quadratic systems as a special class

of multi-agent networks. First, we considered a game setting and rigorously proved the

convergence of the policy gradient (PG) methods. Then, we focused on a cooperative setting

with constraints on the cumulative per-step state variance of all players and introduced a

primal-dual approach that converges to the optimal solution of the problem.

We highlight the following contributions in this dissertation:

(1) Trade-off between the computational complexity and accuracy of an optimization

algorithm: In some applications such as wearable and medical implants, the available

computational resources are limited. As a compromise, we present an approximate

solution with relatively low computational complexity, while an acceptable accuracy

is ensured.

(2) In some applications an approximate solution may serve the purpose. For instance,

regarding the problem on forward kinematics of parallel manipulators, we consider

a simplified form of the kinematics at the cost of some bounded estimation error.

(3) Imposing certain conditions on the structure of an optimization problem can simplify

the solution. Regarding control of multi-agent systems, we note that the mean-field

dynamics can be used to find the optimal control by solving two Riccati equations of

a reduced order. This is important as it helps to find a solution whose complexity

does not grow with the number of players.

(4) Regarding the energy harvesting problem, we We argue that each of the proposed

methods can be the optimal solution for a specific acceleration waveform.
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7.2 Future Research Directions

The optimization topics studied in this dissertation all have the potential to introduce

new research directions in both theory and practice.

Regarding the research on the FK of parallel robots, the proposed methodology may be

extended to other types of parallel robots. Specifically, in some applications, the robot is

designed such that one of the FK parameters can be directly estimated from the joint space

variables. Furthermore, in some robotics settings, there are constraints on the range of the

FK parameters, allowing for the linearization of the kinematic constraints with minor and

bounded estimation errors. Therefore, it may be possible to obtain estimates of the other FK

parameters as a function of the joint variables and the previously estimated FK parameter.

Such a methodology can have applications in motion systems, where high accuracy FK

estimations with relatively low computational burden are required.

As for the research on energy maximization of CFPGs, there are several possible ways

to improve the results. Given the non-stationary nature of the acceleration signals, one can

employ contextual multi-armed bandit methods that may provide more accurate estimates

of the electrostatic force in a CFPG by considering the acceleration data. Furthermore, given

an acceleration profile, one can use an adaptive decision interval length (as a secondary

optimization variable) for enhanced amounts of output power.

The research on the control of mean-field linear quadratic systems may also be further

expanded in a more general framework. As for the cooperative setting, one can study

the convergence of PG methods with the cumulative state variance of all players. Finally,

considering a game setting with risk constraints may be a theoretical prospect for future

research.
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