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Abstract

The evolving field of sports analytics is still in the early stages of its adoption. Moreover,

soccer analytics utilizing tracking data is even further limited. This research is motivated by

Liverpool’s integration of a department for throw-in research, assisting them in winning a

league title. This research project makes use of the (generously provided) German national

soccer team (DFB) tracking and event data which includes all player movement during a

game, and more specifically, movement before and after a throw-in. The probability of

a throw-in being completed (according to two mutually exclusive definitions) is estimated

using various metrics developed using the aforementioned tracking and event data. Binary

classification models are used to estimate the completion probability of a given throw-in.

The model can be applied to many practical questions centered around throw-in success

along with providing use to soccer match analysts.
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Chapter 1

Introduction

Big data and analytics have become an integral part of society with applications in the

fields of finance, engineering and health. The sports industry is a 440 Billion dollar industry

[1] so it was only natural that those participating in this field would seek any possible

opportunity to improve their team’s success (which in turn would increase their revenue).

The development of the box score by Henry Chadwick, the father of baseball, dates back

to 1859 [2] while there are records of scorecards in cricket going back to 1746 [3]. The

economics of baseball were first analyzed by Simon Rottenberg [4] and George Lindsay [5]

in their respective Operations Research papers and Stefan Szymanski in his article in the

Kinesiology Review stated that “baseball is a game well suited for operations analysis, and is

already well provided with statistical records of past performances of individuals” [6]. Books

published by Bill James in the 1980s are some of the first examples of using player statistics

to look at their potential predictive power [6]. These books were largely credited with the

creation of the field of sabermetrics, defined in 1980 by James as “the search for objective

knowledge about baseball” [7].

In 2003, as Michael Lewis published Moneyball: The Art of Winning an Unfair Game, the

1



Chapter 1 Introduction

role of data in decision making in sports was forever changed. Put broadly, the book was

about identifying the inefficiencies that baseball was creating and trusting the objectivity

that the data provided. The book details the story of the 2002 Oakland Athletics, which,

shocked the baseball world. After winning 91 games in 2000 and 102 games in 2001, they

had just lost their top three players to free agency and were expected to be the bottom of the

league in 2002. Instead, Oakland Athletics won 20 consecutive games, setting an American

League record and winning the AL West with a record of 103 wins and 59 losses. They later

lost in the first round of the playoffs, but the season was a surprise nonetheless.

Although sports analytics was an area of research already at this time, this phenomenon

propelled teams of all different sports to further fund and utilize a data analytics department.

Soccer of course was involved with this movement and over the past two decades it has made

immense improvements.

However for all the research and improvements that was being made, one key aspect seemed

to be forgotten, set pieces1, and more specifically, throw-ins. T his dramatically changed

however after Liverpool’s shocking 2019-2020 season. Thomas Grønnemark, was hired during

the off season of the previous season as a throw-in coach and was integral to their 2019-2020

Premier League title. "A season later , Liverpool improved their throw-in retention under

pressure percentage from 45.4% to 68.4% and had risen from 18th in these standings to first

in the Premier League."2 Furthermore "Liverpool scored 14 of their 85 Premier League goals

from throw-in situations in their title-winning 2019-20 campaign", which is an astounding

16% of all their goals that season. The topic of throw-ins has not received extensive attention

in the literature, and additional research on the topic is well needed.

An exception is the recent paper from Stone, Smith, and Barry [8], which analyzes 16,154
1Set piece in soccer is any time the ball is returned to open play; penalties, corners, free-kicks and

throw-ins.
2https://www.espn.com/soccer/liverpool-engliverpool/story/4172876/meet-liverpools-secret-weapon-

throw-in-coach-thomas-gronnemark
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throw-ins from the 2018-2019 Premier League Season; a remarkable 8.8% of throw-ins led to

a shot at goal. In comparison to the 16% rate scored by Liverpool, this is a stark difference.

In one year of training Liverpool was able to see large improvements and fast results. This

is an indication that more professional teams should be adopting the practice of analyzing

throw-ins.

In this thesis, soccer research and more specifically throw-in success is analysed with the

goal of creating a model which can produce an expected completion percentage for a given

throw-in. This topic is one with little academic research and this paper aims to fill it.

Throw-in success is modeled using binary classification models in order to estimate com-

pletion percentage to any potential receiver for a given throw-in. The research begins by

discussing the data and all of its intricacies in Chapter 2. In this chapter all of the model

features were described, from raw data and the development process to create them into

data that can be fed into the models described in Chapter 3. Along with the classification

models, the model performance metrics that are used in this research paper are explained

in this chapter. Chapter 4 discusses each of the respective model results along with further

discussion. Finally, Chapter 5 discuses all of the practical applications of this work and how

it can help some current inefficiencies in soccer throw-in strategies. The results show that

the model provides an encouraging framework of achieving the goal of a universal throw-in

metric. Therefore, any given throw-in may be evaluated, providing a meaningful tool to

soccer teams, in the footsteps of xG (expected goal) or xPass (expected pass) models.
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Chapter 2

Data

2.1 Overview of Soccer Data

Technology from within the sports world is constantly improving and one of the biggest

innovations is the integration of technology called Computer Vision. Computer vision is the

simulation of human vision that is meant to train the computer to understand and inter-

pret vision of the world using several algorithms and applications that support this science

[9]. The main use of computer vision, as applied to soccer data, is player detection and

tracking throughout the match. The use of their movement is invaluable when developing

soccer research. Unlike many other sports, many raw statistics occur due to the infrequent

nature of scoring in the match (as opposed to American football, basketball or hockey for

example). Without these raw statistics, soccer research has turned to in-depth topics using

this tracking data such as lineup chemistry or counter-attack effectiveness. Player detec-

tion and tracking are fundamental elements required for creating such tasks which provide

a better understanding of the match. Player detection and tracking are quite difficult asks

due to many difficulties in accumulating the actual data given the many occurrences dur-
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ing the match such as, similar appearance of players, complex interactions, unconstrained

outdoor environment, changing background, varying number of players with unpredictable

movements, abrupt camera motion and zoom, calibration inaccuracy due to the low textured

field and edited broadcast video, noise, lack of pixel resolution especially on small distant

players, clutter and motion blur [10].

As is the case with most professional soccer competitions (at the club and country level),

teams collect positional and event data in a pre-defined and consistent format [11]. Player

tracking systems in soccer were first used in the late 90s and have been constantly improving

with developments in camera and image processing [12]. Positional data, also known as

tracking or movement data [13], provides the positions of all players, referees, and the ball

in a (X,Y) coordinate system on the field with a frequency of 25 Hz. The positions of all 22

players and the ball are accurately gathered by an optical tracking system, which captures

high-resolution video footage from different camera perspectives [11]. A data vendor, named

TRACAB [14], achieves real-time and high precision tracking thanks to advanced camera

configuration, hardware developed and stereo vision technology[10]. The tracking data which

is received contains the (X,Y) coordinate of all 22 players and the ball every 0.04 seconds.

Event data is manually obtained by operators who are at each match and are recording such

data. Event data for soccer includes every action that occurs in the match such as a pass,

dribble, foul or throw-in.

2.2 Data Used

The data for this research project was generously provided by the German Football Associ-

ation, also known as the DFB. Tracking and event data for each international match that

the German National Soccer team participates in, from U16 to the Senior team for both

men and women are recorded. The event data was collected according to the official DFB
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match-data catalog1, and the optical tracking data was provided by the above mentioned

TRACAB system2.

2.2.1 Data Processing

The tracking data that the DFB provides (from the TRACAB [14] vendor) is invaluable due

to the difficulty of developing and acquiring it. One of the initial challenges at the start

of this research project was to identify how the data can be utilized to its fullest potential

and to extract all pertinent and useful information from it to run future models. Although

throw-ins may occur at similar spots of the field, the interactions of the two teams can

be different between these throw-ins and therefore the power of the tracking data can be

examined and used in analyses. This can be explicitly seen in Figure 2.1. In both throw-ins,

the blue team throws to number 20, however the defensive coverages (and offensive positions)

are vastly different in the two throw-ins. This information is not covered in event data and

consequently not taken into consideration when building models and analyses purely from

such data. Over 6000 throw-ins, coming from all levels of international competition were

evaluated for this project given by the DFB.

2.2.2 Raw Data

Before discussing how the features are developed using the raw data given by the DFB, the

actual format of the data provided will be discussed in order to provide some clarity for the

subsequent steps and sections. The exact format for all the event data provided is shown

in the Appendix in Tables A.1 and A.2 along with explanations for each of the variables.

The tracking data which was explained above in Section 2.1 is a tuple of 8 attributes for the
1https://s.bundesliga.com/assets/doc/10000/2189_original.pdf
2https://chyronhego.com/wp-content/uploads/2019/01/TRACAB-PI-sheet.pdf
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Figure 2.1 – Player positions of two throw-ins from roughly the same location - but very
different environments. The player positions and the interaction between the throwing team
and defending team are vastly different. In both cases, the blue team is playing from left to
right.

player data and a tuple of 9 attributes for the ball data. The tracking data for the player

tuple consists of the tracking data index, TeamID, PlayerID, distance covered (from frame

to frame), minute of the match, half of the match (first 45 minutes vs second 45 minutes

of match time) and the X, Y coordinates. The ball data tuple consists of the tracking data

index, ball possession (which team is in possession of the ball for that frame), ball status (in

or out of bounds), distance covered (from frame to frame), minute of the match, half of the

match (first 45 minutes vs second 45 minutes of match time), X, Y and Z coordinate3.

2.2.3 Feature Creation

Features4 are created through a transformation of the raw data explained above, using both

tracking and event data. The idea for what features to use was a combination of providing

those used in the Expected Goals (xG, [11]) model along with inituitevely thinking of others

(such as Pressure and Time to Take a Throw-in). Before being able to apply the predictive

analysis algorithms developed, raw data had to be transformed into a matrix format con-
3Defined as the third-dimensional coordinate, i.e. the distance above the playing field.
4A model feature is a quantity taking the entire information at a time point and summarizing it into a

single quantitative variable.
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taining the calculated features along with the considered response variables5. Each column

of the tabular matrix corresponds to a feature along with the response variables, with each

row corresponding to one instance (one throw-in). A description of all features can be found

in Table 2.1. To make full use of the synchronization of the data sources, the features are

based on both event and tracking data. The features are independent in creation, although

dependencies can be found as shown in Appendix A.4, Figure A.22. Scatter plots for each

combination of features is shown, and it is clear that dependancies do exist between the

features.

Feature Value Description

Distance to the potential receiver Numerical The Euclidean distance from the position
of the thrower to the position of the po-
tential receiver (in meters).

Angle to the potential receiver Numerical The angle defined on a 0-180◦ scale, nor-
malized from the thrower to the potential
receiver. Figure 2.2 illustrates.

Match Time Numerical Time of the match when the throw occurs.
Score difference Numerical Score difference from the offensive (throw-

ing) team’s perspective at the time of the
throw.

Time to take the throw-in Numerical Time taken from the ball going out of
bounds to the throw-in.

Receiver movement Numerical Total distance travelled by the potential
receiver from time of the throw to time of
reception.

Location on the field Numerical X-Coordinate of the throw.
Pressure on the potential receiver Numerical Pressure on the potential receiver accord-

ing to [15]. Described in detail below.

Table 2.1 – Features derived from tracking and event data used to train the models developed.

The calculations for receiver movement, and more specifically pressure, are described in

further detail below. Receiver movement and pressure utilize tracking data. The tracking

data provides the Euclidean distance each player (and the ball) travels from one frame6 to
5The response variables will be explained in more detail in the following section.
6A frame is defined as the moment in time that the positional data is recorded - occurring every 0.04
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Figure 2.2 – Dimensions and orientation of the field for all the data used in this project. All
data is automatically normalized for the attacking team to be playing from left to right (as
shown with the direction of play arrow).

the next. This distance was calculated by taking the difference between the location at the

time of the throw-in to the time of reception for the predicted or known receiver.

The pressure metric used in this research project is derived from the logic written in the paper

by Andrienko et al. [15]. The methodology which he developed can be used to estimate the

pressure exerted at any point on the field. As applied, in this research project the pressure

exerted on the potential receivers from a throw-in is of interest. The ideology of pressure is

important as it leads to the strategic concept in soccer analysis which has come to be known

as pressing. Pressing is defined as a tactic created by the defending team in which they

intend to pressure the opponent which possesses the ball. The goal of using this tactic is

to win the ball, or at least, deprive the opponent of the opportunities to develop an attack.

Effective pressing has been key to the success of several high-level football clubs, such as

FC Barcelona, Borussia Dortmund, and Atletico Madrid. [15]. Given these factors, when

considering this technique from the offensive (throw-in team’s perspective) one would be

seconds.
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inclined to want little pressure on our potential receiver as possible to increase the expected

completion rate.

Following the framework of Andrienko et al. [15], define a pressure target as an area on the

field of interest in which the pressure being produced will be measured. This can be anywhere

on the field with most common studies looking at the ball or players as the pressure target.

Consider the direction from the pressure target towards the goal that is attacked or towards

an attacking team player as the threat direction7. Let V threat be the vector originating from

the pressure target towards the threat direction (threat defined as the opposing team’s net

direction), which can be simplified as the x-axis. Consider V TP to be the vector from the

pressure target towards any potential pressers. In Figure 2.3, this is the vector from the

receiver (the red X) to all the defenders (blue dots). In addition, the pressure target (the

receiver) is easily visualized along with the threat direction, which is the direction towards

the opposing net (left to right).

The calculation relies on two main formulas. The first equation creates a distance limit (L),

which approximates an oval shape in polar coordinates (θ,L) - creating a pressure zone. The

boundary of the pressure zone is a parametric curve with two parameters: front distance and

back distance. Dfront is the limit for exerting pressure when the presser is in front of the

pressure target (i.e. when θ(V threat, V TP ) = 0) and Dback is the limit in the case when the

presser is behind the pressure target (i.e. when θ(V threat, V TP ) = ±180). Andrienko et al.

[15] chose values of Dback = 3m and Dfront = 9m after consulting with soccer experts and

running various tests with computer scientists. The soccer experts are former professional

soccer players (not named) from various European soccer leagues. The distance limit for the

pressure algorithm is given by:

L = Dback +
(Dfront −Dback)(z

3 + 0.3z)

1.3
(2.1)

7The threat direction is always to the right, due to normalization explained in Figure 2.2.
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where z = 1+cosθ
2

.

The maximal theoretically possible pressure (100%) is when the presser is exactly in the

location of the pressure target. For any point within the above mentioned pressure zone, the

pressure is estimated as:

Pr = (1− d/L)q ∗ 100% (2.2)

where d is the distance of the point to the pressure target and L is the distance limit

determined by Formula 2.1. The exponent q regulates the speed of the distance decay, i.e.,

how fast the pressure decreases with distance. Andrienko [15] deems q = 1.75 optimal after

various tests, as explained in his paper.

As a result, the final pressure value which is assigned to each of the potential receivers (and

subsequently used to power all of the models), is the sum of all of pressers pressure value

(Equation 2.2) in the receivers given zone. Figure 2.3 illustrates how the pressure metric is

obtained for a single receiver - this algorithm is then computed for each receiver (all the red

circles in the figure).

As the pressure metric is cumulative8, as given by Equation 2.2, there is no theoretical

maximum value of the metric (expected to have values greater than 1).

2.2.4 Defining a Success

Although the TRACAB [14] data provides a column of data for the binary outcome of each

throw-in, many issues arose when taking a closer look at what constituted a truly successful

throw-in. Event data (mentioned above in Section 2.2) has an Evaluation column which is

manually entered by a match operator after each event in the match. A match operator

is an employee of the data provider who is physically located at the match and manually
8The summation of all of pressure applied by pressers in the receivers area.
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Figure 2.3 – Illustrations of the image pressure framework described, following [15]. The top
figure is taken directly from [15] showing a pressure bubble. The upper right image is an
example of a throw-in from the data set analysed for this research, using pressure values from
the algorithm created. The bottom image is the throw-in from which the pressure values are
calculated, showing the amount of pressure each defender is providing for this throw-in.
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marking each event as a success or failure and verifying time occurrences of them. The

Evaluation column identifies as three different classifications: Successfully Complete, Success

and Unsuccessful. The Success classification is assigned when a foul occurs, but the throw-in

team maintains possession and/or thrown to the unintended receiver. Problems were found

when watching throw-ins from the data (using match footage, which the DFB provided)

and realizing some of the throw-ins deemed successful should not have been. The main

issue emerged when realizing that for throw-ins in which a lot of chaos9 occurs and no clear

possession is made, the match operator designates the success based on first touch.

This is an issue as first touch does not necessarily mean sustained possession of any kind,

which is ultimately the objective from your throw-in (maintaining possession means more

chances to score and less chances to concede). This is not universal and not always the case

however, and this will be explored in more depth below. This issue was brought up to the

DFB and it was suggested to modify the way throw-in success was being classified due to

the reasoning mentioned above.

The suggestion was based on the research from Stone [8] with two clearly defined types of

success: first touch and threshold retention. Successful first touch is defined as: A player

from the same team which throws the ball into play makes first contact with the ball post

throw-in without an opposition player making contact. Successful threshold retention is

defined as: The ball is retained in possession10 for 7 seconds from the point in which the ball

is thrown.

Taking Stone et al. [8] research into consideration, two different success labels were created

for the analyses. They are considered first touch and threshold retention success following

the same definitions outlined above. The results will be further discussed as the two defini-
9Such as the ball bouncing off players or a lot of fighting for the ball

10The time (seconds) from the throw-in action to the end of possession. A possession is defined as a passage
of play during which one team is largely in control of the ball. This may involve that team temporarily being
dispossessed, but a new possession will only start if the opposing team is then able to demonstrate that they
are fully in control of the ball.
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tions are compelling as they create practical applications for the coaches/players in different

scenarios. For example, in the offensive half (close to the opposing net), maintaining posses-

sion seven seconds into the future is not a huge concern as one is most likely shooting on net

within that time. On the contrary, throwing the ball to the defensive half and maintaining

possession is critical as it is the mirror image of the scenario previously mentioned. If one

loses the throw-in, chances are the opposing team will be making a dangerous play on your

net in the following events. The success rates for the 6119 throw-ins using this method were,

83.8% for first touch success (5128 instances) versus 65.6% for threshold retention success

(4012 instances).

2.2.5 Threshold Time Selection

This section will explore the approach used to quantify a successful possesion along with the

subsequent reasoning as to why the 7 seconds was used as an objective stopping point. Stone

et al. [8] also used 7 seconds, thus it was an interesting threshold to use in that comparison

can be drawn with the research of that paper.

The methodology began by using the tracking data for each throw-in and checking how many

frames the throwing team maintained possession. This can be done using the tracking data

(explained in 2.2.2). Within the data is a column at each frame which indicates the team in

possesion. Looking at this possession column at each frame after the throw, the length of

time one maintains (or loses) possession can be checked by looking at when the possession

column remains the same (or changes to the other team).

As previously mentioned in Section 2.2.3, the features were built on two games worth of

tracking data and this method of selecting the threshold time was created using those same

two games. A frame (as explained in Section 2.2.3) is defined as the moment in time that

the positional data is recorded - occurring every 0.04 seconds. The figure below plots the

14



Chapter 2 Data

Figure 2.4 – Frame by frame success rates post throw-in. Game 1 contained 43 throw-ins
and Game 2 contained 35 throw-ins.

percentage of the time that the throwing team maintains possession from the instance of the

throw-in to 250 frames after the throw-in is thrown (10 seconds).

At each of the 250 frames, the 78 total throw-ins are evaluated to see how often the throwing

team maintains possession and the success rate plotted on Figure 2.4 is the average over

all throw-ins of that individual frame position. The results stemming from this ideology

in Figure 2.4 was encouraging as the pattern for the two games follow a similar trend. A

clear decreasing trend occurs until about 150 frames at such point the success rates seem to

stabilize and past 200 frames it is close to 50% until the end of the plot.

Intuitively, along with watching game film, an explanation as what is occuring can be ex-

plained. After a certain amount of time once the chaos of a throw-in occurs, either one team

or the other possesses the ball and thus the success rate of the plot stabilizes. The selection

an exact frame (time) to end the threshold will never be perfect but given the plot results

along with the rationale which explains it, 7 seconds provides a concrete threshold selection.
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2.2.6 Data Cleansing

All the features mentioned in the previous section were individually engineered using the

event and tracking data provided by the DFB. Several issues arose throughout this process.

One of the more difficult issues being identifying data errors from the provider and providing

solutions to rectify them.

The first issue in this process was to correctly identify when (what frame) a throw-in was

received and the subsequent timing by the receiver of the ball. As mentioned in the above

section, the receiver is known when a throw is deemed SuccessfullyComplete, however for

Successful and Unsuccessful throw-ins an issue arises as to not knowing who (or when or

where) the receiver is at the time of reception.

For the Unsuccessful throw-ins, the method applied in this project is to verify where the

ball is two (2) seconds in the future and to use the closest player nearest to the ball as the

receiver. Using this method, the frame along with the player location were found. This

method was only necessary for the throw-ins with an incorrect receiver or none at all. For

the throw-ins with the correctly tagged receivers, the closest receiver to the defender at the

time of reception was found and used as our intended receiver (and subsequent feature values

derived from it).

Similar to the first issue, a second issue was deemed to require correcting, which is that the

distance value (for the throw-in location to receiver) from the data provider was also often

incorrect. In many instances, the data provider was incorrectly determining the receiver’s

distance11 and, as a result the distance metric was developed to correct this issue. The

distance metric calculated using the developed algorithm discussed above is used to determine

who the intended receiver was (as opposed to using the provider’s).
11Mainly due to the issue mentioned in the paragraph above, where the Successful and Unsuccessful

throw-ins were tagging the incorrect receivers.
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One match was also removed from the data set as it was deemed completely faulty due to an

issue with the data provider. Various other exclusions were also applied to the data due to

these mislabeling issues. When the distance feature value was calculated to be over 40 meters,

they were individually inspected using the match footage to obtain a better understanding of

the sequence of events for the given throw-in. Most of these scenarios were due to the event

not being a throw-in but rather a goal kick12, thus being mislabeled by the data provider

and correctly being removed from the data set.

12A goal kick in soccer is when the goalkeeper is given the ball to kick out of the goal area due to the
other team having kicked it over the touch line on either side of the net.
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Model Development

3.1 Machine Learning Classification Theory

The objective of this chapter is to use supervised learning algorithms to create a predictive

throw-in completion model, utilizing both event and tracking data. Supervised learning

algorithms are tasks which map each observation of the predictor measurement(s) xi, i =

1 . . . n to an associated response measurement yi [16]. In statistical literature, the inputs are

often named the predictors or also more commonly known as the independent variables. The

outputs are named the responses or also more commonly known as, the dependent variables

[17]. The objective is to fit a model that relates the data responses to the predictors, with

the aim of accurately predicting responses for future observations.

Variables can be characterized as either quantitative or qualitative. Quantitative variables

take on numerical values, while qualitative variables take on values in one of many different

classes or categories. The distinction in type of variable being examined has led to two

different types of problems for supervised learning: regression, when predicting quantitative

outputs, and classification, when predicting qualitative outputs [17]. Care must be taken
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when making the not so simple distinction between Least Squares Linear Regression which

is used with a quantitative response and, Logistic Regression which is typically used with

a qualitative (two-class, or binary) response [16]. In certain situations, statistical methods

such as K-nearest neighbors and boosting, can be used used for either quantitative or qual-

itative variables. Binary classification is the specific case when there are only two classes or

categories such as the commonly used variables “success” or “failure” (numerically inputting

the values 0 for failure and 1 for success). In summary, statistical models assume the relation

between the response yi and explanatory variables {Xi,1, . . . , X1,p} is characterized by some

function f .

Quantitative relationship example:

Yi = f(Xi,1, . . . , Xi,p) + εi (3.1)

where we have p explanatory variables and some εi noise term.

Qualitative relationship example:

P[Gi = g|Xi,1, . . . , X1,p] = f(Xi,1, . . . , X1,p) (3.2)

where Gi represents a categorical output (class label, defined as g in the above example).

3.1.1 Linear Models and Least Squares

Linear models are one of the most important aspects of statistics due to their many and

powerful uses. Consider a regression setting, given a vector of quantitative inputs X =

{X1, . . . , Xp}, which we predict the output of Y using the following model:
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Ŷ = β̂0 +

p∑
i=1

Xiβ̂i = XT β̂ (3.3)

where {β0, . . . , βp} are the coefficients of the linear model. The model in vector form is

an inner product of the transposed input matrix (XT ) times each of the corresponding

coefficients (β). If we consider Ŷ as a function over the p-dimensional input space, f(X) =

XTβ is linear. Our coefficient parameters (β0, . . . , βp) can be chosen by a method known as

the method of least squares. In this approach, coefficients are selected which minimize the

residual sum of squares1:

(β0, . . . , βp) ∈ argmin
(β0,...,βp)∈RP

1

n

n∑
i=1

(yi − ŷi)2 (3.4)

where ŷi follows Equation 3.3 above. The solution to the OLS Equation 3.4 is given by

β̂ = (XTX)−1XTy, where the fitted value at the ith input xi is ŷi = xTi β̂i. Linear regression

provides a smooth, (and as the name suggests, linear) fit, yet issues can arise. The linear

regression model is sometimes too inflexible to accurately represent the pattern between the

response and predictor variables.

To gain flexibility, a common approach is to create a transformation of the predictors set.

This can be completed by using a parametric approximation to our function f (of our input

vector X) referred to as Linear Basis Expansion:

fθ(x) =
K∑
k=1

hk(x)θk. (3.5)

The functions hk transform the input vector X. There are many possibilities for this function

such as polynomial expansion for univariate predictors (hk = xk) or trigonometric expan-

sion using hk = sin(x). General Linear Models (GLM) aim at fixing the issue mentioned
1Also known as OLS - ordinary least square.
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above which the linear regression model presents, that is, a better fitting relationship be-

tween predictors and expected responses. GLMs rely on the assumption that the responses

{Y1, . . . , Yn} are conditionally independent given the predictors {X1, . . . , Xn}. In addition,

it relies on the link function g being differentiable, defined as:

g(E[Yi|Xi]) = XT
i β. (3.6)

3.1.2 Logistic Regression

A logistic regression model is a GLM using a logistic link function, as this model is used

for two-class (binary) problems. Consider a general linear model, similar to Equation 3.3

with predictors {X1, . . . , Xn} and predictor coefficients {β0, . . . , βp}. For a two-class data

representation, the most common model used for posterior probabilities are (similar to 3.2):

P[G = 0|X = x] =
exp(β0 + βTx)

1 + exp(β0 + βTx)
,

P[G = 1|X = x] =
1

1 + exp(β0 + βTx)
,

(3.7)

where P[G = 0|X = x] defines the probability of a failure and P[G = 1|X = x] defines

the probability of a success, given predictor values of x. Using a logit transformation; or

function, which is the quantile function associated with the logistic distribution, defined as:

logit(p) = log
p

1− p
(3.8)

to the above two equations one can see that:

log
P[G = 0|X = x]

P[G = 1|X = x]
= β0 + βTx. (3.9)
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Figure 3.1 – Sigmoid function used as the link function for a logistic regression.

The decision boundary is the set of points for which the log-odds are zero, as defined by a

hyperplane {x|β0 + βTx = 0}[17]. There are at least two popular methods which use logits:

Linear Discriminant Analysis and Linear Logistic Regression, with this research paper fo-

cusing on the latter. Figure 3.1 illustrates the link function which is used to map the linear

combination between the predictors to a probability of landing in each given class (for this

paper being Successful/Unsuccessful throw-in). Logistic Regression models are typically fit

using maximum likelihood methods, using the conditional likelihood of G (a given class) given

X [17]. Fitting the model using the conventional approach based on maximum likelihood

relies on two assumptions. First, that all data points are independent but not necessar-

ily identically distributed since predictor X distributions might differ across observations.

Second, given predictor Xi, the value of the corresponding response Yi for observation i,

conditional on predictors, is assumed to be Bernoulli distributed with parameter p. Refer to

the following equation below of the probability mass function of this Bernoulli distribution:

f(gi; p) =


p, if gi = 1

1 - p, if gi = 0
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where gi is the i−th observation. Consider P[G = 0|X = x] = 1−p and P[G = 1|X = x] = p

from Equation 3.7, the log-likelihood for N observations is:

l(θ) =
N∑
i=1

log pgi(xi; β). (3.10)

The above maximum likelihood equation can be solved using the Newton–Raphson algorithm

[17] to estimate our set of predictor coefficients {β0, . . . , βp}.

3.1.3 Random Forest Model

Random forests are a common ensemble machine learning method which combines binary

regression decision trees to create predictions. Random forests are a combination of tree pre-

dictors such that each tree will differ from each other as to stochasticity in their construction,

with further details provided below.

Consider a binary classification problem with a discrete response Y with predictors {X1, X2},

each taking values in the unit interval. The top left panel of Figure 3.2 shows a partition of

the feature space by lines that are parallel to the coordinate axes. In each partition element,

Y is modeled with a different constant. Recursive binary partitions, as per the image on

the top right of Figure 3.2, beginning with a split into two regions, and then modelling the

response by the mean of Y in each region. The variable and split-point is chosen to achieve

the best fit. Then one or both regions are split into two more regions, and this process is

continued until some stopping rule is applied [17]. In the top right of Figure 3.2, this process

occurred five times, occurring into five regions R1, R2, . . . R5. The regression model which

predicts the response Y with some constant, cm in region Rm:

f̂(X) =
5∑

m=1

cmI{(X1, X2) ∈ Rm}. (3.11)
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Figure 3.2 – Partitions of a two-dimensional feature space by recursive binary splitting.
Taken from [17].

where I is the indicator function. This algorithm of the model can be visualized by the

binary tree in the bottom left of Figure 3.2. The bottom right of Figure 3.2 is a perspective

plot of the regression surface from this model. The structure of our decision (regression) tree

follows this ideology.

The classification decision tree algorithm needs to automatically decide on the splitting

variables and corresponding split points. Consider an extension of the above Equation 3.11,

such that there is a partition into M regions, R1, R2, . . . RM , and the response is modelled

by a constant cm in each region:

T (x) = f(x) =
M∑
m=1

cmI{x ∈ Rm} (3.12)

Each tree is also defined with the above equation. The optimal ĉm is the average of the

24



Chapter 3 Model Development

corresponding responses yi in the given region:

ĉm = ave(yi|xi ∈ Rm) (3.13)

For this analysis, a binary classification setting is used in which the responses are either 0 or

1 and the average represents the proportion of successes. Computing and finding the best

binary partition is difficult and therefore a greedy algorithm is used to compute the splits

for the nodes of the tree. Recursively splitting is applied on the observations resulting into

two regions on a given variable xj. The equation below defines the splitting variable j, the

split point s, and the pair of half-planes:

R1(j, s) = {X|Xj ≤ s}, R2(j, s) = {X|Xj > s} (3.14)

As this analysis is given for a classification context, the variables j and s are selected as

those that yield that smallest value for the Gini Impurity Index, defined below:

Gini =
∑
m

πm

K∑
k=1

p̂mk(1− p̂mk) (3.15)

The Gini Impurity Index is a measure of total variance across the K classes. p̂mk represents

the proportion of training observations in the m-th region that are from the k-th class

(correctly classified) and and
∑

m πm is the proportion of observations sorted into region m.

The Gini index takes on a small value if all the proportions are close to zero or one - which

is why it is referred to as a measure of node purity [17]. Given that this analysis involves

looking at a binary setting, only two classes are considered for Equation 3.15 (K = 2).

This creates the framework for the random forest algorithm, an aggregation of binary decision

trees to form a single learner (classifier) by averaging the majority vote of the individual

trees. Random forests use a technique to reduce correlation between each of the individual
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trees. Having many similar decision trees creates predictions that will be highly correlated.

Random forests aim at correcting this problem with the decorrelation of its predictions.

The algorithm process is as follows: for each tree in the forest, a (bootstrapped) sample is

chosen. At each node of the tree, instead of examining all possible feature-splits, a subset of

the features f ⊆ F are randomly selected such that F is the set of all possible features. The

node then splits on the best feature in f (as opposed to F ). The algorithm is defined below.

Algorithm 1 Random Forest Algorithm
Require: n, Number of predictors
Require: N , Number of trees in forest
Require: S = (x1, y1), . . . , (xn, yn), the training set.
for i = 1, . . . , N do
Si ← A bootstrap sample from S
hi ← Grow (learn) tree hi
H ← H ∪ hi

end for
Output the ensemble of trees {hi}N1
To make a prediction at a new point x:
return f̂Mrf (x) = 1

N

∑N
i=1 hi(x)

Growing the tree (in the for loop) for Algorithm 1 means recursively repeating the following

steps for each terminal node of the tree, until the minimum node size is reached.

1. Randomly select some subset of the n features.

2. Pick the best variable/split-point among this set.

3. Split the node into two daughter nodes.

3.1.4 Boosted Models

Boosting is another powerful tool in statistics which extends to both classification and re-

gression problems. The general concept of boosting is to mix (or combine) classifiers with
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the goal of creating a strong bond or committee to create better predictions. For this re-

search paper it will be explained using a boosted decision tree. Boosting decision trees works

by sequentially growing each tree, each grown using information from the previously grown

trees. Boosting does not involve bootstrap sampling. Instead, each tree is fit on previous

residuals which is model errors from the previous iteration of the data set [17]. Given a

current model (in this case, the singular decision tree), a decision tree is fit to the residuals

from the model. This new decision tree is added into the function to update our residuals, by

fitting subsequent trees to the residuals to improve our overall classifier. All subsequent trees

are trained following this pattern and our final predictions are made using an aggregation

of all the trees [17]. Two methods will be described in this section, the forward stage-wise

boosting and gradient boosting. The forward stagewise boosting (in a regression context)

algorithm below further illustrates how it works.

Algorithm 2 Forward Stagewise Boosting (Regression Tree) Algorithm
Require: X, Feature matrix
Require: N , Number of trees in forest
Require: d, Maximum number of splits for each tree (maximum depth)
Require: y, Vector of target values
Define: f̂(x) = 0
Define: ra = ya for all a in the training set
for i = 1, . . . , N do
Fit a tree f̂ i with at most d splits, to the training data, (X, r)
Update f̂ by adding in a shrunken version of the new tree:
f̂(x)← f̂(x) + λf̂ i(x)
Update the residuals:
ra ← ra − λf̂ i(x)

end for
Output the boosted model prediction:
return f̂(x) =

∑N
i=1 λf̂

i(x)

As mentioned previously for Equation 3.12, a constant cm is assigned to each node (Rm,m =

1, . . .M) of the decision tree and the predictive rule is:

x ∈ Rm → f(x) = cm (3.16)

27



Chapter 3 Model Development

Following Equation 3.12 with a slight modification, each tree of a boosted decision tree can

be defined as:

T (x; Θ) =
M∑
m=1

cmI(x ∈ Rm) (3.17)

where Θm = {Rm, cm} is the set of hyper-parameters for region m. Looking at each region

such that Θ = {Rm, cm}Mm=1, the optimal Θ̂, is found using the Area Under Curve score (AUC

and, explained in Section 3.2.1). The parameters are found by minimizing the empirical risk,

looked at each region in Rm:

Θ̂ ∈ argmin
Θ

M∑
m=1

∑
xa∈Rm

L(ya, cm) (3.18)

where the loss function, L is defined as logit log-loss defined above, Equation 3.8. Using the

above equations, a boosted tree model can be defined as a sum of such trees:

fN(x) =
N∑
i=1

T (x; Θi) (3.19)

and for each stage (i) of the sequential Algorithm 2, the optimal hyper-parameters Θi are

solved:

Θ̂i ∈ argmin
Θi

M∑
a=1

L(ya, fi−1(xa) + T (xa; Θi)) (3.20)

for the region set and constants Θi = {Rm, cm}M1 of the next tree, given the current model

(from Equation 3.19) fi−1(x). T (xa; Θi) is defined as the classification tree from Equation

3.17. The optimal constants (set of parameters) cm in each region is defined as:

ĉm ∈ argmin
c

∑
xa∈Rm

L(ya, fi−1(xa) + c) (3.21)

The numerical optimization is the sum of component vectors - with each data point being a
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value of the approximating function:

fN =
N∑
i=0

hi, hi ∈ RM (3.22)

where hi is defined as the initial set of hyper parameters:

hi = T (x; Θi) (3.23)

beginning with f0 = h0 as an initial guess and sequentially updating the approximating

function based on the sum of the previously induced updates. This method of stage-wise

boosting (Algorithm 2) is a greedy strategy. The algorithm at each step looks for the solution

tree in which creates the largest reduction in Equation 3.20, given the current model fi−1,

it fits fi−1(xa).

An alternative method is to use the negative gradient (gradient boosting) approach. Consider

a tree T (x; Θi) at the i−th iteration, whose predictions are closest to the negative gradient of

the loss function below, Equation 3.24. For classification the loss function is the multinomial

deviance, however for binary classification (K = 2), simplifies to binomial deviance (cross-

entropy) [17]. The binomial deviance is given by:

L(y, f(x)) = −
K∑
k=1

I(y = Gk)log(pk(x)) (3.24)

such that probabilities are produced by the logistic model:

pk(x) =
efk(x)∑K
k=1 e

fk(x)
(3.25)

As this is a binary classification task (K=2), the above equation penalizes incorrect predic-

tions only linearly in their degree of incorrectness and furthermore only one tree is needed
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at each iteration. The tree Tk is fit to its respective negative gradient vector gk, given by:

−gk = −[
∂L(ya, fk(xa))

∂fk(xa)
]f(xa)=fi−1(xa) (3.26)

This new equation will replace the previously described Equation 3.20. The algorithm below

illustrates the gradient boosting algorithm which has just been described. It can be modified

for various loss criterion’s. Algorithm 2 only uses three tuning parameters: N, d and λ.

Algorithm 3 Gradient Boosting Algorithm
Require: X, Feature matrix
Require: N , Number of trees in forest
Require: M , Size of each tree in forest
Require: y, Target value of residual values
Require: k, Classes Evaluated (2)
Ensure: f0(x) = argminc

∑M
a=1 L(ya, c)

for i = 1, . . . , N do
for k = 1, 2 do
for a = 1, . . . , M do
Compute raik = −[∂L(ya,fk(xa))

∂fk(xa)
]f=fi−1

end for
Fit a tree to the computed target raik creating the regions Rm; m = 1, . . . , M
for m = 1, . . . , M do
Compute cm = argminc

∑
xa∈Rm

L(ya, fk,i−1(xa) + c)
end for
Update fk,i(x) = fk,i−1(x) +

∑M
m=1 cmI(x ∈ Rm)

end for
end for
Output the overall boosted model, 2 different (coupled) tree expansion summed over all trees:
return f̂(x) = fkN(x), k = 1, 2

Algorithm 3 includes one more, M , the size of each tree within the forest.

There are many more parameters (defined as hyper-parameters) which can be explored of

which their results are examined in further sections below. Hyper-parameter tuning was

performed using a grid search, designed by a set of fixed parameter values which are essential

in providing optimal accuracy based on n - fold cross-validation. The model is trained on

each combination of hyper-parameters, selecting the combination which achieves the best
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Hyper-parameter Description

Learning rate Also known as η. After each boosting
step, obtained directly from the weights
of new features, and η shrinks the feature
weights to make the boosting process more
conservative.

Maximum Depth The maximum depth of a tree.
Minimum child weight Minimum number of samples that a node

can represent to be split further.
Subsample Denotes the fraction of observations to be

randomly sampled for each tree.
Column sample by tree The fraction of features (randomly se-

lected) that will be used to train each tree.
Number of estimators The number of trees in the model.

Gamma The minimum loss reduction required to
make a split.

Table 3.1 – Hyper-parameters used for the boosted decision tree model.

validation score. All the hyper-parameters used along with their descriptions are shown

below in Table 3.1.

3.2 Model Evaluation

3.2.1 Area Under the Curve

For model evaluation various metrics and techniques were used. The area under the receiver

operating characteristic curve (AUROC)2 was used as the main metric due to its universal

use. The Area Under the Curve (AUC) score is a method to quantify the discriminatory

performance of a two-class classifier [18], which for this research paper is whether a throw-

in is Successful or Unsuccessful. The ROC graph is created by plotting the true positive
2Also known as the ROC curve or AUC score.
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Figure 3.3 – ROC Curve.

rate against the false positive rate, using various classification thresholds. A score of 0.5

for the AUC signifies no predictive power from the model (essentially guessing) whereas a

score of 1 signifies the classifier fully discriminates between successes and failures. Figure

3.3 illustrates a ROC curve example showing models with a score of 0.5 with the dotted

line and a models score between 0 and 1. The performance can be further looked at using

a Confusion Matrix, which is used as a method to visualize the classifiers performance.

The matrix looks at how often the two classes are being correctly classified by looking at

true/false positives and true/false negatives. Figure 3.4 illustrates a confusion matrix. To

create the confusion matrix, a probability threshold is fixed for classification. The example

uses positive/negative as the two cases, whereas for this paper the two corresponding classes

are a Successful/Unsuccessful throw-ins.

There are many performance metrics which can be taken from the confusion matrix, but the

two most commonly used and analysed are the precision and recall :

precision =
TP

TP + FN
(3.27)

recall =
TP

TP + FP
(3.28)

F = 2 ∗ precision ∗ recall
precision+ recall

(3.29)
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Figure 3.4 – Confusion Matrix. Taken from [19]

where a true positive (TP) is when the model correctly predicts the positive class and, a

true negative (TN) is an outcome where the model correctly predicts the negative class. A

false positive (FP) is an outcome when the model incorrectly predicts the positive class and,

a false negative (FN) is an outcome when the model incorrectly predicts the negative class.

Precision, Recall and Specificity (True Negative Rate) metrics illustrate other facets of per-

formance than just the AUC score. Specifically, measuring accuracy instead of discriminatory

power which is important in the results section due to the imbalanced nature of the data.

As specificity is the true negative rate, it will help show how well Successful/Unsuccessful

are identified, which is important as there is close to a five to one Successful/Unsuccessful

ratio. In addition, there is interest in the recall values as it measures what percentage of

Unsuccessful throw-ins can be detected. In other words, given an Unsuccessful throw, can

the model developed correctly determine that it is Unsuccessful. The F1-Score 3.29 is a

measure that combines the previously mentioned precision and recall and is used a measure

of a test’s accuracy.
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3.2.2 Shapley Additive Explanations

To better understand the importance of the various features within the models, Shapley

values were calculated. SHAP assigns each feature an importance value for a particular

prediction. This metric provides a perspective on variable importance that is different from

the traditional feature importance (F-score). Traditional feature importance is based on

the decrease in model performance, where SHAP is based on the magnitude of feature

attributions.

Suppose there is a linear model prediction similar to that of Equation 3.3. The contribution

φj of the j-th feature on the prediction f̂(x) is:

φj(f̂) = βjxj − E(βjXj) = βixj − βjE(Xj) (3.30)

Where E(βjXj) is the mean effect estimate for feature j. The contribution is the difference

between the feature affect minus the expected affect - giving us an estimate of how much

each feature contributed to the prediction. Summing up all the feature contributions for one

instance results in the following:

p∑
j=1

φj(f̂) =

p∑
j=1

(βjxj − E(βjXj)) = (β0 +

p∑
j=1

βjxj)− (β0 +

p∑
j=1

E(βjXj)) = f̂(x)− E(f̂(X))

(3.31)

The above formula shows the predicted value for the data point xj minus the mean predicted

value. This creates the framework for the Shapley ideology. The Shapley value of a particular

feature of your model is its contribution to the prediction, weighted and summed over all

possible feature value combinations3. Define φj(π) as the Shapley value of a particular
3https://christophm.github.io/interpretable-ml-book/shap.html
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feature j. Define π as the prediction function mapping predictors to a predicted value for

features in S, where S is a subset of the features used in the model and p is the number of

features.

φj(π) =
∑

S⊆{1,...,p}\j

|S|!(p− |S| − 1)!

p!
(π(S ∪ {j})− π(S)) (3.32)

To estimate the Shapley value, all possible combinations of feature possibilities must be

explored. The value of an individual feature value is the average change in the prediction

that the current combination room receives when the feature value joins.

Strumbelj and Kononenko [20] propose an approximation (to estimating the Shapley value)

using Monte-Carlo sampling. The approximation algorithm begins by selecting a data point

x, a feature j and the number of iterations M . At each iteration we sample a random data

point z. Using observations x and z, two new data points are created, x−j and x+j. The

new data point x+j is the combination of x and z (randomly ordered) with the j-th entry

being substituted by the value xj (taken from x). Similarly, the new data point x−j is the

combination of x and z (randomly ordered) with the j-th entry being substituted by the

value zj (taken from z). The difference of the prediction of these two data sets is computed

for this m-th iteration and defined as:

φ̂mj = (f̂(xm+j) + f̂(xm−j)) (3.33)

looking at every difference, summing through each iteration and taking the average is defined

as:

φ̂j(x) =
1

M
(f̂(xm+j) + f̂(xm−j)) (3.34)

Repeating this procedure for each feature is completed to get each of their individual Shapley

values. The algorithm is shown explicitly below (Algorithm 4).
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Algorithm 4 Approximate Shapley estimation for single feature value.
Require: M , Number of iterations
Require: x, Instance of interest
Require: j, Feature index
Require: X, Data matrix
Require: f̂ , Machine learning prediction model
for m = 1, . . . , M do
Draw (randomly) z from X
Choose a random permutation O of the feature values
x0 ← (x(1), . . . , x(j), . . . , x(p))
z0 ← (z(1), . . . , z(j), . . . , z(p))
x+j ← (x(1), . . . , x(j−1), x(j), z(j+1), . . . , z(p))
x−j ← (x(1), . . . , x(j−1), z(j), z(j+1), . . . , z(p))

∆m(xj)← f̂(x+j)− f̂(x−j)
end for
return φj(x) = 1

M

∑M
m=1 ∆m

j (xj)

36



Chapter 4

Results

4.1 Data Visualization

Before performing any analyses, it is important to obtain a better understanding of the data

set and the features that were created. A box plot is a commonly used method of displaying

the distribution of data based on five metrics: minimum, maximum, median, first and third

quartiles. A box is shown which is defined as the Inter Quartile Range (IQR) - spanning

from the first and third quartiles. A Box plot for each of the features described in Section

2.2.1 are shown in Section A.3 of the Appendix.

The density plots shown are also useful as they help illustrate the distribution of the features,

which will power the models developed. The density plots (along with the box plots) have

been split to show various scenarios: the complete data set, Successful/Unsuccessful throw-

ins for the first touch definition and Successful/Unsuccessful throw-ins for our threshold

retention definition. Within each of the box plots are a small triangle which represents the

mean value for the particular set of throw-ins. This inclusion to the plot is meaningful as it

serves as a quick way to see if the data set in question is creating the inference one would
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Figure 4.1 – High angle throw illustration. Angle to the receiver measured at 141.19◦ with
a Pressure value of 0. Taken from a Germany vs. Belgium U-21 European Qualifiers game,
played on 17/11/2019.

assume. For example, for the Pressure feature (Figure A.8), all the unsuccessful throws have

a lower mean value in comparison to the Successful throw-ins. Although this was assumed,

the logic is well-founded as the lower the amount of pressure on a potential receiver, the more

likely it is completed. Some other assumptions that were made when creating the features

were also confirmed. The angle feature as explained in Section 2 is calculated on a 0◦ to 180◦

scale, normalized from the thrower to the potential receiver with the throwing team always

playing from left to right. Given the nature of this feature, the throw-ins with a low angle

are forward throw-ins and the throw-ins with a high angle are backward throw-ins.

Low angle throw-ins (Figure 4.2) are generally being thrown to receivers which have defenders

in close proximity1 and thus it can likewise be assumed that given this high pressure, the

throw-in completion rate is low. On the contrary, high angle throw-ins (Figure 4.1) are

generally being thrown to open receivers (little to no pressure) and thus would expect a high

throw-in completion rate.

Figure A.13 illustrates the box plots for angles and it can be seen that the mean value for the

Successful throw-ins is higher than the mean value for the Unsuccessful throws, confirming

our initial beliefs. Figures 4.1 and 4.2 show examples of these two types of throw-ins. Figure

4.1 is a Successful throw with an angle to the receiver of 141.19◦ and one can easily see it is
1As you are throwing in the direction of the opposing team.
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Figure 4.2 – Low angle throw illustration. Angle to the receiver measured at 33.09◦ with a
Pressure value of 0.531. Taken from a Germany vs. Wales U-21 European Qualifiers game,
played on 17/11/2020.

completed with no defenders in sight (and correspondingly a Pressure value of 0). On the

other hand, Figure 4.2 shows an Unsuccessful throw with an angle to the receiver of 33.09◦

and corresponding Pressure value of 0.531. This picture illustrates what a vast majority of

throw-ins with a low angle value look like, especially in the opposing team’s side of the field.

The Time2Throw variable is another feature that when looking at the box plot, one can

have a high level of confidence in a hypothesis of how it would react in terms of Successful

and Unsuccessful throw-ins. Naturally, it can be assumed that faster throw-ins would lead

to greater success as the faster a throw-in is taken, the less time the opposing team has to

create coverage and defend the throw properly. Looking at Figure A.11, it can be seen that

Successful throw-ins have a mean time of around 13 seconds, while Unsuccessful throw-ins

have a significant increase in mean time to approximately 16-17 seconds.

The Pressure feature showed the biggest discrepancy in the mean value of the throw-in data

set between Successful and Unsuccessful throw-ins. This confirmed the prior hypothesis

mentioned in Section 2.2.3 of lower Pressure equates to higher success rates and higher

Pressure equates to lower success rates. Figure A.8 provides mean Pressure values for

Successful throw-ins of approximately 0.4, while the Unsuccessful throw-ins provide mean

Pressure values of 0.78 and 1.03.
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The Distance feature however provided some intriguing results which will be discussed further

when implementing this feature into the models mentioned in Section 3. One would naturally

assume that shorter throw-ins lead to higher success as the ball must travel a shorter distance

and therefore less things can go wrong. However, looking at Figure A.6, it can be seen that

this is the case for the first touch definition but not for the threshold definition. This can be

explained by the two definitions of Success; first touch success just needs to hit the receiver

to be Successful while the threshold success needs a player to maintain possession (which is

inherently much more difficult). Not only is it more difficult to do, but also much can occur

within 7 seconds. Effectively, one can not predict what will happen 7 seconds into the future

but, immediately into the future (which first touch success looks at), reasonable predictions

and assumptions can be made.

Another way to get a better understanding of the data set is to look at the correlation values

between all features along with the two responses. Interest lies on what features impact

throw-in Success along with which features interact with each other (and to what extent

they do, if any at all).

With values of -0.38 and -0.29 for the Pressure correlation to first touch success and threshold

success respectively, the hypothesis can be confirmed that lower Pressure on the receiver leads

to higher success rates. Another interesting observation from Figure 4.3 is the Distance

feature, with negative correlation to first touch success but a slightly positive correlation to

threshold success. This will be explored further below when powering our model with the

features and looking at practical applications but the initial assumptions as to why this is

occurring is the same reason mentioned above. The reasoning being that it is hard to predict

what will occur 7 seconds in the future (along with all other possible events occurring during

that period), but predicting the immediate future is more feasible.

Another interesting takeaway from Figure 4.3 is the Time2Throw feature, which has a neg-
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Figure 4.3 – Correlation plot of all the features described in Chapter 2 along with the two
response variables, first touch and possession success definitions.

ative correlation value to both of the success definitions. This directly matches what was

previously discussed for this feature with its box plot (Figure A.11) mean values being lower

for Successful throw-ins versus higher mean values for Unsuccessful throw-ins.

The last feature considered is themovement feature. Intuitively, it would be fair to think that

more movement leads to greater success, as the goal of creating movement during a throw-in

is to reduce the Pressure being received from the defender to receive the ball. When looking

at the box plot for movement, the distribution is very similar for all of the scenarios along

with the mean values of each of the data sets. Similarly, on the correlation plot, Figure 4.3,

the correlation values for the two success definitions are 0.05 and -0.097 respectively.

These values are surprising, as it can be considered intuitive that they would provide a

greater impact. This feature and possible adjustments to the implementations of it will be

further discussed below with the goal of adjusting it to create more value.
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The feature is engineered to be forward looking as it looks at a certain point in the future

(the time of reception) and calculates how much distance the receiver will cover to the time

of the throw-in. It is possible that throughout that time there is an instance in which the

throw-in can be completed with greater success. This feature has a great deal of potential

and will be explored further in future work, with the main goal of looking at the movement

feature values throughout the time of the throw-in and seeing if there are possibly more

optimal times to complete the throw-in.

4.2 Model Results

The model results explored in this section will follow the same order as the theory was

presented in Chapter 3. All analyses performed for this Chapter are performed on the data

set previously mentioned in Chapter 2.2.4, a total of 6119 throw-ins across various Germany

National Team soccer games. For all the analyses below, both success definitions will be

explored to draw insight from the results. For the three models which will be discussed, a

train/validation along with a test set was used. A completely random 80/20 split of the

overall data set was made, where the 80 percent was used for training/validation and the

final 20 percent was used for testing.

4.2.1 Logistic Regression Results

The analysis looked at all combinations of features to see which combination provided the

best results, in terms of highest out-of-sample AUC score, as explained in Section 3.2.1. Each

combination of features was trained and then tested implementing 5-fold cross-validation,

using a standard logistic regression. The results presented in Tables 4.1 and 4.2, which

respectively show in-sample and out-of-sample results, are using the feature combination
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Feature Coefficient T-Value P-Value

Distance 0.042/-0.008 9.261/-1.381 0.000/0.167
Angle 0.06/0.013 8.575/13.02 0.000/0.000

Game Time 0.03/0.01 2.877/6.981 0.004/0.000
Score difference 0.06/0.05 2.982/2.047 0.003/0.041

Time to take the throw-in -0.009/0.004 -3.634/1.199 0.000/0.231
Receiver movement 0.002/0.219 0.212/15.314 0.832/0.000

X-Coordinate -0.001/-0.005 -0.624/-2.813 0.533/0.005
Pressure -1/-1.64 -16.126/-20.392 0.000/0.000

Table 4.1 – Logistic Regression Model Coefficients for In-Sample Training. AUC score of
0.701 for thresholdand 0.830 for first touch. Log-likelihood value of -2952.1 for threshold
definition and log-likelihood value of -1901.7 for first touch success. The black values used
the 7 second threshold definition of success and the red values used the first touch definition
for success.

which yielded the highest AUC score when looking at all combinations. It was found that

the combination of using all eight predictors provided the highest AUC score for both Success

definitions using in-sample model training.

Both in-sampling and out-of-sampling results are shown in Tables 4.1 and 4.2 below. Along

with the AUC score of these models, the log-likelihood value, the coefficient value, t-value and

p-value are also shown. The T-value is the t-statistic which measures the ratio of predicted

value of a parameter from its hypothesized value to its standard error. The formula is shown

below.

tβ̂ =
β̂ − β0

S.E.(β̂)
(4.1)

where β0 is a known value for the parameter, β̂ is the estimated value of the parameter β

and S.E is the standard error for the estimated parameter.

The following coefficients were obtained for the combination of best predictors, which were

retained for the final model and used for all further analyses below. The black value is the

values using the 7 second threshold definition of Success and the red value is the first touch
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Feature Coefficient T-Value P-Value

Distance 0.026/-0.02 3.065/-2.180 0.002/0.03
Angle 0.006/0.014 4.375/6.98 0.000/0.000

Game Time 0.004/0.012 2.336/3.827 0.02/0.000
Score difference 0.001/0.008 2.326/1.37 0.02/0.172

Time to take the throw-in -0.005/0.001 -0.906/1.69 0.365/0.091
Receiver movement 0.008/0.245 0.438/8.3 0.661/0.000

X-Coordinate -0.0003/-0.006 -0.081/-1.496 0.935/0.135
Pressure -0.982/-1.92 -7.95/-10.823 0.000/0.000

Table 4.2 – Logistic Regression Model Coefficients for Out-of-Sample Training. AUC score
of 0.697 for threshold and 0.821 for first touch. Log-likelihood value of -747.79 for threshold
definition and log-likelihood value of -446.97 for first touch success. The black values used
the 7 second threshold definition of success and the red values used the first touch definition
for success.

definition for Success.

Similar to the results from the box-plot and density distributions shown above, the predictor

coefficients can be observed. For example, the one predictor which allows to make the

easiest inference from the coefficient is Pressure as its coefficient is always negative for all

the scenarios. The p-value for Pressure for all the scenarios are also less than 0.05 indicating

it is providing significance to the model. The other feature with near 0 p-value for both

Success definitions is angle. The resulting box plot for this feature (Figure A.13), was

expected given the reasoning mentioned in Section 4.1 (in regard to the nature of low or

high angles throw-ins).

When looking at p-values of strictly less than 0.05 (not close to 0), features Distance and

Game Time become significant for out-of-sample performance. For in-sample performance,

along with Pressure and Angle, the features Game Time, Score Difference, Time to throw-in

were also significant for both Success definitions.

The AUC scores are glaringly different for both of the Success definitions with values for
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Figure 4.4 – Logistic Regression model ROC curves. The AUC score for threshold success
in-sample is 0.701. The AUC score for first touch success in-sample is 0.830. The AUC
score for threshold success out-of-sample is 0.697. The AUC score for first touch success
out-of-sample is 0.821.

the first touch success being in the 0.8’s and the threshold success hovering around 0.7.

Intuitively, this leads back to the prior discussion in which most of the features that fed are

given at a frozen moment in time, not 7 seconds into the future, with the result being that

predictive power of that time is nowhere near as great.

Figure 4.4 displays the ROC curves for both in-sampling and out-of-sampling testing using

the logistic regression model. There are several observations to take from Figure 4.4. Both

Success definitions are shown on the plot, where it becomes clear the greater predictive power

which the first touch definition provides.

The most significant outcome from Figure 4.4 is the small discrepancy between in-sampling

and out-of-sampling AUC scores. For threshold success the discrepancy is 0.04 and for first

touch success the discrepancy is 0.09. Both the success definitions have a higher in-sample

AUC score compared to the out-of-sample score. Given how small the discrepancies are

for this model, they can be considered negligible. The more important and encouraging

sign is that given these small discrepancies, the results indicate that the model is learning

meaningful manner and is then able to apply its knowledge to new unforeseen data. This

most likely indicates the absence of substantial overfitting. This generalization can be made
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Figure 4.5 – Random Forest model AUROC curves. The AUC score for threshold success
in-sample is 0.688. The AUC score for first touch success in-sample is 0.832. The AUC
score for threshold success out-of-sample is 0.698. The AUC score for first touch success
out-of-sample is 0.845.

due to the nature of the data which includes throw-ins from various age groups, leagues and

genders.

4.2.2 Random Forest Results

Random forest model results are now explored and discussed following the same sequence as

above. Each combination of features was trained and then tested implementing 5-fold cross-

validation, using a random forest model. Both out-of-sample and in-sample model results

will be shown along with feature variable importance scores and Shapley scores which was

described in Section 3.2.2. Figure 4.5 is the ROC curve for both in-sampling and out-of-

sampling results using our random forest model. A constant number of trees value of 75 was

used for both definitions.

The AUC values for the random forest model follows a similar pattern with the logistic

regression model (Figure 4.4) given that the ratio2 from in-sample and out-of-sample are not

drastically different. The actual AUC scores are similar for both Success definitions in the

out-of-sample and in-sample testing. Figures 4.7 and 4.6 display the variable importance
2Ratio defined as the in-sample over out-of-sample AUC scores.
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Figure 4.6 – Random Forest Feature Importance Variable for threshold success.

Figure 4.7 – Random Forest Feature Importance Variable for first touch success.

using the random forest model with a constant number of trees parameter of 75, for first

touch success and threshold success definitions respectively. Variable importance can be

used for both random forests and gradient boosted decision trees. At each split in each tree,

the improvement in the split-criterion is the importance measure attributed to the splitting

variable, and is accumulated over all the trees in the forest separately for each variable [17].

The biggest observation from the feature importance plots shown on Figures 4.6 and 4.7 is the

impact which the Pressure variable provides. For both definitions, it provides the greatest

impact, more specifically it was used most often to split a node for the trees. Another

interesting observation is the drastic difference for the Distance feature for the two Success

definitions. For first touch success (Figure 4.7) it ranks as the clear second in importance

but for threshold success it is third last in importance (Figure 4.6).
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Figure 4.8 – Shapley Values for threshold success.

The main deduction from the two feature importance plots is the leading presence which the

Pressure feature presents to the model. This stems back to the discussion throughout this

analysis of the difficulty to develop predictions so far out in the future. If there is little to

no pressure while in possession, it is likely that possession will be maintained for a decent

time period regardless of the seven other feature values. The score differential feature also

ranks last for both definitions, which was expected with little correlation to the Success

definitions. This will be explored more in depth in the practical applications section once

certain throw-ins are isolated. For certain scenarios this feature starts to provide value. Aside

from those three feature observations, all the other features ranked were fluid throughout

the two definitions as they all ranked close in value and thus hard to extract any meaningful

remarks.

Figure 4.8 and 4.9 illustrates the Shapley values for the threshold and first touch success

definitions respectively. Each of the model feature values are further split into the two

response variables and how much impact they individually provide. It is taken from Equation

3.31 and looking at both classes’ impact on the model, with the two classes being Successful

and Unsuccessful throw-ins (Class 1 and Class 0 respectively).

Similar observations to those mentioned for the traditional feature importance figures can
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Figure 4.9 – Shapley Values for first touch success.

be made for the Shapley feature importance plots. Once again, Pressure remains the most

valuable feature with approximately an equal impact stemming from each of the two classes.

Similar to the traditional feature importance shown above, the Distance feature has drasti-

cally different rank of importance (or model impact in this case) between the two definitions.

The Time to Throw feature remains in the top three for both definitions like the previous

feature importance figures. It is also relevant and encouraging to see that both classes are

affecting the model features at about the same ratio (red to blue on the figures), and none

are substantially slanted to one class.

4.2.3 Boosted Decision Tree Regression Model

Boosted decision tree model results are now explored and discussed following the same se-

quence as above. The model construction was explained in Section 3.1.4, along with the

algorithm and hyper-parameters used for these analyses.

Before any parameter tuning was completed, the model was evaluated using ad-hoc hyper-

parameters3 to decide which combination of features to use like the two above methods with
3Used a vanilla set of parameters, a number of estimator value of 10 and max tree depth value of 3.
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Hyper-parameter First-Touch Value Threshold Value

Learning rate 0.1 0.05
Maximum Depth 5 3

Minimum child weight 10 40
Subsample 0.8 0.9

Column sample by tree 0.8 0.9
Number of estimators 40 35

Gamma 0.08 0.02

Table 4.3 – Optimal hyper-parameter values selected from the grid search for each of the
two success definitions.

logistic regression and random forest. The features were chosen from the in-sample tests

conduced on the 80 percent of date (train/validation data sets). The combination of all 8

features provided the best AUC score for both success definitions. The AUC scores using

the ad-hoc parameters was 0.701 for threshold and 0.824 for the first touch success.

Once the combination of features was chosen for both definitions, our hyper-parameters

(from Table) 3.1 were tuned using a grid search with in-sample AUC score as the evaluation

metric (to maintain consistency with the other analyses of this paper). The grid search is

done using 5-folds and the parameters which were inputted for the grid search were chosen

through various trials of different values and analysing the AUC scores and log-loss curves

of the individual hyper-parameters. After many trials and errors with various parameters,

50625 fits were evaluated to choose the optimal hyper-parameter values, one for each of the

Success definitions. The set of hyper-parameters chosen from the grid search are illustrated

in Table 4.3.

Once the optimal hyper-parameters have been found using the grid search previously de-

scribed, an out-of-sample model evaluation using the remaining 20% of the data set can be

conducted, which has been set aside from the training and validation sets. The ROC graph

for both Success definitions is shown in Figure 4.10, along with the AUC scores achieved for
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Figure 4.10 – Boosted decision tree model (XGB) AUROC curves. The AUC score for
threshold success in-sample is 0.731. The AUC score for first touch success in-sample is
0.898. The AUC score for threshold success out-of-sample is 0.701. The AUC score for first
touch success out-of-sample is 0.842.

both out-of-sample and in-sample model evaluation.

The AUC scores achieved for each of the two definitions follow the same pattern where

higher values were achieved with first touch success versus threshold. Another similarity is

the ratio from out-of-sample to in-sample AUC scores, although the in-sample scores for

both definitions are higher, there is not a drastic drop-off to new out-of-sample data. This is

an encouraging sign as the AUC scores are higher than logistic regression for both in-sample

and out-of-sample definitions and the ratio between the two was maintained, which appears

to not be just a scenario of being able to over fit the data.

It has also become quite clear and evident that after testing three different models using

these two definitions for success and constantly achieving better scores using first touch as

supposed to threshold that one is more predictive then the other, given the current set of

features used for this analysis. It does not mean that using it is necessarily better, but given

the tests that currently have been done, the first touch success is more easily predictable.

In the next section, when evaluating practical uses it will be shown that there is a time and

place for both to be evaluated and used, thus to conclude it is not as if the threshold success

provides no value.
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Figure 4.11 – Boosted Decision Tree Feature Importance Variable for threshold success with
tuned hyper parameters.

Figure 4.12 – Boosted Decision Tree Feature Importance Variable for first touch success with
tuned hyper parameters.
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Figure 4.13 – Boosted Decision Tree Feature Importance Variable for threshold success with
ad-hoc hyper parameters.

Figure 4.14 – Boosted Decision Tree Feature Importance Variable for first touch success with
ad-hoc hyper parameters.

Some interesting observations can be made from these figures in terms of inference on the

model features and the impact they have made through the variable importance metric.

Another interesting remark is that once again the feature Distance ranks highly on the first

touch success (Figure 4.12) but not for threshold success (Figure 4.11). This comes back to

the recurring theme that it is hard to predict what is happening in the future but logically

completing (touching the ball) in the immediate future, a low Distance value to the throw is

crucial. Figure 4.15 and 4.16 illustrates the mean absolute value of Shapley for the threshold

and first touch success definitions respectively from our tuned boosted decision tree model.

Many of the same observations can be made from these values, such as the clarity that

Pressure is the most impactful model feature. The Distance feature again follows the same
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Figure 4.15 – Boosted Decision Tree Shapley Values for threshold success with tuned hyper
parameters.

pattern of being highly ranked for the first touch success but gets lost in the shuffle for the

threshold success. Another familiar pattern is that the score differential model feature is

clearly the least impactful throughout all of the models explored.

The reason why Figures 4.15 and 4.16 illustrate just a blue bar as opposed to figures 4.8

and 4.9 separating by class is all due to how the packages are configured. Figures 4.15 and

4.16 which use XGBoost are created using predictions which explain the output margin of

the trees which is related to the probability of the positive class (Successful class). However,

Figures 4.8 and 4.9 use the RandomForestClassifier which is treating the binary prediction

as predicting two classes (the probability of the positive class and the probability of the

negative class).

The Shapley Figures 4.15 and 4.16 can be manipulated to dig further into the feature value

on model output. Each data point for each of the feature values can be plotted as a function

of their Shapley value (impact on the model output). The Shapley figures which have been

previously shown (Figures 4.15 and 4.16) are created by taking the mean value for each of

the features from Figures 4.17 and 4.18.
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Figure 4.16 – Boosted Decision Tree Shapley Values for first touch success with tuned hyper
parameters.

Along with the figure, the numerical mean Shapley value is shown for each of the factors

(the value which creates the blue bars for Figures 4.15 and 4.16). For example, the Shapley

value of 0.41 for the Pressure feature for Figure 4.17 is how the first blue bar on Figure 4.15

is created.

The Shapley values calculated for Figures 4.17 and 4.18 are shown rounded up to two sig-

nificant figures. As a result when dots are shown on the same Shapley value, it means that

after being rounded, multiple observations have the same value.

This type of figure is interesting to inspect as one can directly investigate which values of

feature values impact the model more and which are redundant. For example, inspecting the

time feature, some comparisons can be made using these figures which cannot be seen just

using the mean Shapley values. The time feature for Figure 4.17 has a mean Shapley value

of 0.01 and the values seem to cluster around 0 regardless of the feature value. However

for the same feature but looking at the first touch figure, Figure 4.18, which has a mean

Shapley value very close to threshold (0.06 vs 0.01) the cluster of feature value is very spread

out. Spread out in the sense that the low feature value (blue dots - beginning of the game)

seem to provide the positive Shapley value and the high feature value (red dots - ending of
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Figure 4.17 – Boosted Decision Tree Shapley Values for threshold success with tuned hyper
parameters. Shapley value for each prediction is individually plotted as a function of the
feature value. Each observation can be deconstructed into their respective model impact
using Shapley feature values.

Figure 4.18 – Boosted Decision Tree Shapley Values for first touch success with tuned hyper
parameters. Each predictions Shapley value individually plotted as a function of the feature
value. Each observation can be deconstructed into their respective model impact using
Shapley feature values.
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the game) seem to provide the negative Shapley value. Showing why one does not at the

average, but rather average the absolute Shapley contributions.

The color clusters for each of the individual features illustrate the inferences that have been

mentioned throughout this analysis. For example, looking at the Pressure feature, we see

that for both of the two success definitions that the positive Shapley values occur at low

feature values (blue dots - low Pressure value) and the negative Shapley values occur at the

high feature values (red dots - high Pressure value). Confirming our beliefs throughout this

section which there is tangible proof that lower Pressure is a necessity to higher completion

rates, regardless of how you define a Successful throw-in completion.

The movement feature exhibits interesting patterns for the first touch model, Figure 4.18.

This will be discussed further in the next section or later work. The movement feature was

made with the intent that more movement is made with the goal of creating less Pressure

from the defenders near you and more space, thus creating an easier throw. This is shown to

be correct as the positive Shapley value clusters occur with higher feature values (red dots

- high values of movement) as opposed to the lower Shapley values clustering with lower

feature values (blue dots - low values of movement).

Appendix A.2 delves further into the Shapley framework, specifically looking at two par-

ticular throw-ins, one which both definitions are deemed successful and one which both

definitions are deemed unsuccessful. Individual predictions of the two throw-ins can be

further inspected to see how each feature is individually impacting the model predictions

made.
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Figure 4.19 – Confusion matrix for the logistic regression model. The top row is the threshold
success and the bottom row is first touch success. The left-hand column is in-sample and
the right-hand column is out-of-sample testing.

4.2.4 Extended Results

Next we will evaluate all of the models results through a confusion matrix and classification

report (which provides precision/recall values), which were introduced in Section 3.2.1 (Fig-

ure 3.4). This framework is used again to inspect the precision and recall values, Equations

3.27 and 3.28 respectively. These numbers are important to look at because they evaluate

how well the model is performing within the two classes (Successful and Unsuccessful throw-

ins). Precision and recall values are evaluated for each of Logistic Regression, Decision Tree

and the Gradient Boosted Decision Tree models.

Figure 4.19 illustrates the confusion matrices for the Logistic Regression model using both

in-sample and out-of-sample testing for both of success definitions. Before analysing and

drawing inference from the matrices presented it is important to look at the classification

reports for the frameworks presented in Figures 4.19, 4.20 and 4.21. Table 4.4 illustrates the
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Figure 4.20 – Confusion matrix for the random forest model. The top row is the threshold
success and the bottom row is first touch success. The left-hand column is in-sample and
the right-hand column is out-of-sample testing.

Figure 4.21 – Confusion matrix for the gradient-boosted decision tree model. The top row
is the threshold success and the bottom row is first touch success. The left-hand column is
in-sample and the right-hand column is out-of-sample testing.

59



Chapter 4 Results

Model Precision Recall F1-score

Logistic Regression 0.82/0.63 0.85/0.66 0.82/0.62

Random Forest 0.80/0.64 0.83/0.66 0.80/0.63

XGBoost 0.81/0.62 0.84/0.65 0.81/0.60

Table 4.4 – Classification report key metrics. Out-of-sample values are shown for each of the
three models. First Touch in black and Threshold Retention in red.

classification report. Each of the tables portray all of the possible scenarios, models and def-

initions explored throughout the results section. The main metrics which the tables provides

are the precision, recall and f1-score. The support column is the number of occurrences for

that given column of that class (Successful/Unsuccessful throw-in).

A throw-in classified with an expected completion probability over 50% is classified as a true

positive and a throw-in with an expected completion probability below 50% is defined as

a true negative. A recall value (Equation 3.28) is effectively the ability to find all positive

samples and a recall value of 1 is achieved if each throw-in is calculated to have an expected

completion probability over 50%. The precision (Equation 3.27) is the ability of our model

not to label a negative sample as positive. The F1-Score 3.29 generates the harmonic mean

(weighted average) of the precision and recall scores. It is an important metric to look at,

specifically for this case due to the uneven distribution of classes (Successful and Unsuccessful

throw-ins).

The first observation when looking at Table 4.4 is the overall value difference for the two

success definitions for each metric. There are a few factors as to why this is occurring, mainly

the disproportionate number of occurrences in each of the two classes. For threshold success

there is close to double the number of Successful throw-ins to Unsuccessful throw-ins in the

training and test set. The first touch success has about five times the number of Successful

throw-ins to Unsuccessful throw-ins in both the training and test sets. Although it does not

explain everything, it does explain the large discrepancy in recall values.
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Two methods will be explored to look at methods to improve this issue through threshold

tuning (exploring various classification thresholds differing from 0.50). The intersection point

is of interest as the generalized 50% relies on the assumption that the two classes are roughly

the same size (and of equal importance). However, for data sets with class imbalance4, the

default threshold can result in poor performance. Thus one can choose a new threshold to

try and minimize classification error.

The first method is to analyse the precision and recall values along different threshold values.

This curve looks at the trade-off between precision and recall for different classification

thresholds. High AUC scores represents both high recall and high precision but high precision

relates to a low false positive rate and a high recall relates to a low false negative rate. Figures

4.22, 4.23 and 4.24 look at the precision-recall trade-off curves for the three models explored.

Although the intersection point for each of the precision-recall graphs is different, they are

rarely close to the 0.50 threshold which has been used. The methodology is not infallible by

any means, however it does provide objective reasoning to a new threshold which one can

analyse.

The second method to utilize threshold tuning is by optimizing along the AUC curve. Op-

timizing in terms of the threshold which provides the values of False Positive Rate (FPR)

and True Positive Rate (TPR) that results in the upper-left corner of the curve. This point

on the curve is the combination which minimizes the distance to the top left of the curve

(which equates to a perfect AUC score of 1). This point satisfies threshold p, such that

TPR(p) = 1 − FPR(p). Therefore, the optimal threshold, is that which optimizes the

following:

p̂ = argmin
p
|TPR(p) + FPR(p)− 1| (4.2)

This is illustrated by plotting Equation 4.2 against various classification thresholds and

verifying where the minimum occurs resulting in p̂. Figures 4.25, 4.26 and 4.27 illustrates
4This data set does with a 8-1 ratio for first touch success and a 6-1 ratio for threshold success
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Figure 4.22 – Precision-recall trade-off graph for the logistic regression model. The top row
is the threshold success and the bottom row is first touch success. The left-hand column is
in-sample and the right-hand column is out-of-sample testing.

Figure 4.23 – Precision-recall trade-off graph for the random forest model. The top row is
the threshold success and the bottom row is first touch success. The left-hand column is
in-sample and the right-hand column is out-of-sample testing.
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Figure 4.24 – Precision-recall trade-off graph for the gradient-boosted decision tree model.
The top row is the threshold success and the bottom row is first touch success. The left-hand
column is in-sample and the right-hand column is out-of-sample testing.

the above equation for the three models explored.

As previously mentioned, using different thresholds from the traditional 50% is an interesting

technique of creating new insights with logical reasoning for the predictions developed. The

optimal thresholds found using this framework is once again not close to 0.50 for any of

the scenarios, especially for the first touch success with values often close to 0.80. Using

these new thresholds for the two methods presented, we can replace the 0.5 value which was

previously used when analysing the precision and recall values in Table 4.4.
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Figure 4.25 – Optimizing AUC graph for the logistic regression model. The top row is the
threshold success and the bottom row is first touch success. The left-hand column is in-
sample and the right-hand column is out-of-sample testing. The optimal threshold following
the order respectively from top-left to bottom right is 0.643, 0.643, 0.836, 0.835.
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Figure 4.26 – Optimizing AUC graph for the random forest model. The top row is the
threshold success and the bottom row is first touch success. The left-hand column is in-
sample and the right-hand column is out-of-sample testing. The optimal threshold following
the order respectively from top-left to bottom right is 0.626, 0.64, 0.826, 0.84.
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Figure 4.27 – Optimizing AUC graph for the gradient-boosted decision tree model. The top
row is the threshold success and the bottom row is first touch success. The left-hand column
is in-sample and the right-hand column is out-of-sample testing. The optimal threshold
following the order respectively from top-left to bottom right is 0.576, 0.578, 0.794, 0.825.
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Practical Applications and Discussion

The goal of this thesis is to analyse and research a specific aspect of soccer, the throw-in,

with the objective of searching for methods which can improve the completion rate of taking

a throw-in. The analysis up to this point has been mathematically focused but yet it is

important not to lose sight of the fact that this type of research can help a team improve

on the field. After all, the sport of soccer is played on the field and not on spreadsheets.

This section was created with the goal of taking the research above and manufacturing it

into applicable resources for teams to take to the field.

5.1 Segmentation Analysis over Clustered Throw-Ins

The two graphics below are important to analyse, as they provide a visual representation of

how the two definitions differ throughout the pitch. The idea was taken from Stone et al. [8]

whose paper was focused on the impact that throw-ins have on individuals and team success

as a whole. Before going in-depth into throw-in research, one can plot the success rates for

various lengths, directions and areas of the pitch which Stone et al. [8] also plotted in his
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paper - but we will use the DFB data throughout this analysis. Following the ideology of

Stone, the meanings of each type of throw are defined below in Table 5.1. For this exercise,

the definitions of Successful combines both SuccessfullyComplete and Successful from the

definitions mentioned in Section 2.2.4.

Using the definitions explained in Table 5.1, the success rates are then explored in the

following figures. The figures below are taken directly from Stone et al. [8] which draws

throw-in data from the 2018–2019 Premier League season as well as the results from this

analysis using the data given by the DFB to draw inference and comparisons.

Overall, at a first glance when comparing the two numbers one can see that the success

rates are quite similar for the two definitions at each location. It is important to note that

the attacking direction for Stone is right to left as opposed to this thesis being left to right,

resulting in the locations of all the success rates being flipped. Comparing the two first

contact success rate figures (Figure 5.1 and 5.3) one can see that the general pattern of

success rates reducing from short to low throws occur along with the lowest success rates

occurring on long throws in the offensive direction.

Similar trends are followed for the possession retention success definition in Figures 5.2

and 5.4. The lowest success rates occur at the forward throws for both the attacking and

defensive zone. The results match Stones for all areas of the field. One of the more interesting

developments which was found by both Stones research and this research paper is that the

attacking half’s success rate is actually higher than the defending half for the long throws.

5.2 Impact of Time-to-Throw-In on Success Rates

Although the feature values have been examined above in Chapter 4, it was done at a macro

level for correlation plot and inspected deeper in relation to model results. This section
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Category Operational Definition

First Contact Successful : A player from the same team which throws the ball into play
makes first contact with the ball post throw-in without an opposition
player making contact.
Unsuccessful : A player from the opposition team which throws the ball
into play makes first contact with the ball post throw-in.
Success percentage: Calculated by dividing the number of successful
first contacts in a category (i.e. short) by the total number of actions
(Successful + Unsuccessful) performed in that category and multiplying
by 100.

Possession retention Successful : The ball is retained in possession (as defined in Section
2.2.4) for 7 seconds from the point in which the ball is thrown.
Unsuccessful : The ball possession is lost (as defined in Section 2.2.4)
with in 7 seconds from the point in which the ball is thrown.
Success percentage: Calculated by dividing the number of successful
possessions retained in a category (i.e. short) by the total number of
actions (excluding those this did not achieve a successful first contact)
performed in that category and multiplying by 100.

Throw-in length Short : The ball was thrown a distance between 0–10 yards (0–9.1 m).
Medium: The ball was thrown a distance between 10–20 yards (9.1–18.2
m).
Long : The ball was thrown a distance of 20 yards or longer (> 18.2 m).

Throw-in direction Forward : The ball is thrown between 0–60◦ in reference to the sideline
towards the offensive goal.
Lateral : The ball is thrown between 60◦–120◦ in reference to the side-
line.
Backward : The ball is thrown between 120◦–180◦ in reference to the
sideline towards the defensive goal.

Table 5.1 – Operational definitions for throw-in lengths, directions and outcome variables.
Based on the definitions from Stone et al. [8].
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Figure 5.1 – First contact success rate (percentage) based on pitch location, throw-in direc-
tion and throw-in length taken directly from Stone et al. [8]. Number of occurrences shown
below success rates.

Figure 5.2 – Possession retained success based on pitch location, throw-in direction and
throw-in length. Percentage success, absolute values and mean time in possession. Taken
directly from Stone et al. [8]. Number of occurrences shown below success rates.

70



Chapter 5 Practical Applications and Discussion

Figure 5.3 – First contact success rate based on pitch location, throw-in direction and throw-
in length using data for this paper. Number of occurrences shown below success rates.

Figure 5.4 – Possession retained success rate based on pitch location, throw-in direction and
throw-in length using data for this paper. Number of occurrences shown below success rates.
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Figure 5.5 – Binning throw-ins every 5 seconds by their time to take a throw-in, using first
touch success definition. The number of throw-ins for each bin is shown on the right.

will further dig into the feature results as it relates to the two success definitions and how

inferences can be made from it. In previous sections it was hypothesized that certain feature

values would lead to higher or lower success rates and this section will aim to debunk those

assumptions.

The first assumption which will be inspected is regarding the feature Time to throw-in and

whether faster throw-ins are wanted and if there is a certain value which is best. The two

figures below (Figures 5.5 and 5.6) look at the throw-in completion rate for the two success

definitions, categorized by every 5 seconds after the throw-in is thrown. Each of the two

figures follow a clear descending completion percentage by bin, except for Figure 5.6 which

has a sudden jump in completion percentage at 30-35 seconds. Although the decrease is

not monumental, it does point to throw-ins being completed quicker being optimal for the

threshold. This can be due to how they are being defined, regardless of a threshold, one

can "easily" throw to a receiver and hit him thus becoming a first touch success. However,

throwing to a receiver which leads to a successful threshold completion, 7 seconds later,

requires much more variables which first touch does not.
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Figure 5.6 – Binning throw-ins every 5 seconds by their time to take a throw-in, using
threshold success definition. The number of throw-ins for each bin is shown on the right.

Figure 5.7 – Evaluating Attacking throw-ins (towards the opposing teams net). Split data
set to compare the DFB (Germany) and the competitor’s throw-in completion percentage at
each length and direction (definitions from Table 5.1). Evaluated using first touch success.
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Figure 5.8 – Evaluating Defensive throw-ins (towards the throwing teams net). Split data
set to compare the DFB (Germany) and the competitor’s throw-in completion percentage at
each length and direction (definitions from Table 5.1). Evaluated using first touch success.

Figure 5.9 – Evaluating Attacking throw-ins (towards the opposing teams net). Split data
set to compare the DFB (Germany) and the competitor’s throw-in completion percentage
at each length and direction (definitions from Table 5.1). Evaluated using threshold success.
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Figure 5.10 – Evaluating Defensive throw-ins (towards the throwing teams net). Split data
set to compare the DFB (Germany) and the competitors throw-in completion percentage at
each length and direction (definitions from Table 5.1). Evaluated using threshold success.

5.3 Comparison of the DFB and the Competition

This section is written with the intent of evaluating the performance of the DFB versus the

competition along with providing insight into throw-in analysis to further assist the team. To

summarize how the DFB is performing for throw-ins in each section of the field, the following

tables are presented. Table 5.2 illustrates the areas of over performance by the DFB and

Table 5.3 illustrates the areas of under performance. These are taken from the threshold

retention success values (Figure 5.4) but the same trends hold for first touch success values.

It is clear the DFB is outperforming the competition for many throw-in types (for both

success definitions as well). Further work can investigate evaluating more throw-ins and

further separating by age, competition and gender to get a better idea of talent evaluation.

75



Chapter 5 Practical Applications and Discussion

Location DFB/Non-DFB Sample Size

Long/Forward/Offensive 0.71/0.51 24/222
Long/Forward/Defensive 0.56/0.48 54/428
Short/Forward/Defensive 0.75/0.50 21/131

Short/Backwards/Defensive 0.80/0.66 18/77
Medium/Lateral/Offensive 0.78/0.58 168/495
Medium/Lateral/Defensive 0.72/0.59 69/244

Table 5.2 – Over performing throw-ins.

Location DFB/Non-DFB Sample Size

Short/Forward/Offensive 0.50/0.57 40/157

Table 5.3 – Under performing throw-ins.

5.3.1 xThrow-in in Practice

Below are examples of the model in practice. Looking at all the feature values for each of

the potential receivers and using the model to evaluate the predicted completion percentage,

according to the two response definitions.

These two throws were not chosen randomly, the first throw was deemed successful according

to both first touch and threshold retention and similarly the second throw was deemed

unsuccessful according to the two definitions. This provides a visual component which teams

can use to evaluate scenarios throughout a game to see the probabilities they are facing for

the given throw-in. The general takeaway is the predicted probabilities are higher for first

touch as opposed to threshold retention (which is of course expected).

The primary reason for the selection of these two throw-ins is to illustrate the impact of

pressure on the expected probability for the receiver in each of the respective throws. The

pressure value for Figure 5.11 is 1.23 and the pressure value for Figure 5.12 is 1.22 (in

effect the same). The predicted probabilities using first touch success is 0.903 and 0.548

versus the predicted probabilities using threshold success being 0.509 and 0.478. This (along
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Figure 5.11 – Example of Throw-in Predictions created for all the potential receivers using
the XGBoost model. Both Definitions were deemed Successful.

Figure 5.12 – Example of Throw-in Predictions created for all the potential receivers using
the XGBoost model. Both Definitions were deemed Unsuccessful.
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Figure 5.13 – Segmented Field Regions (cut into 4 equal regions along the length of the
field).

with material shown below) illustrates the main objective of this section which is, given the

pressure value is high, one is flipping a coin on whether possession retention is maintained

(regardless of the other feature values).

5.3.2 Segmentation Analysis Exploration

To form an opinion if feature values present more importance for different areas of the field,

the field was segmented. The field was divided into four sections along the length of the

field. Figure 5.13 illustrates the four sections along with the names which will be referenced

further on.

Using the XGBoost model (Gradient Boosting Decision Tree) with the same hyper param-

eters as above (Table 3.1) the feature importance was evaluated for all four sections (using

both success definitions). Figure 5.14 illustrates the segmented results using first touch

success and Figure 5.15 illustrates the segmented results using threshold retention success.

The first observation is the overwhelming importance of the pressure feature no matter the
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Figure 5.14 – Using First Touch Success the top left is DD, top right is D0, bottom left
is AD and bottom right is AO.

Figure 5.15 – Using Threshold Retention Success the top left is DD, top right is D0,
bottom left is AD and bottom right is AO.
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Figure 5.16 – Heat Map of Receiver Movement. Soccer field cut up into 2 by 3 (meter) quad-
rants where the average Receiver Movement experienced in that quadrant is illustrated.

success definition or area of the field, it remains the most important. This discrepancy is

most pronounced for the possession retention success where it is effectively all that matters.

This leads to the ideology that unless scoring or taking on unnecessary risk is truly needed

for the throw, it is optimal to take the easier throw-in (low pressure).

The second important observation from the figures is the importance of receiver movement,

specifically at the Attacking Offensive (AO) zone for first touch success (bottom right plot

of Figure 5.14). As previously mentioned, the importance values are so small for threshold

retention (Figure 5.15) it is hard deduce inferences. One can see with a feature importance

value of 0.25 for receiver movement in the Attacking Offensive (AO) zone, it nearly doubles

the receiver movement feature value in the other three areas. This is expected as you are

closest to the opposing net and therefore it is the area of most importance for creating

opportunities to score. Creating receiver movement will lead to better opportunities, as

throw-ins into the opposing box generally lead to a shot, header, or passes possibly resulting

to a dangerous opportunity.

To evaluate how much receiver movement players are creating within the data set, Figure
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Success Definition Top-1 Rate Top-3 Rate Top-5 Rate

First Touch 0.213 0.299 0.367

Possession Retention 0.133 0.170 0.271

Table 5.4 – Model accuracy of defining safest receiver. Percent of time the highest (along
with within Top-3 and Top-5) predicted completion percentage is actually thrown to accord-
ing to the XGBoost model.

5.16 was developed. The figure is a heat map for receiver movement, with green color il-

lustrating a higher receiver movement value as opposed to a pink color illustrating a low

receiver movement value. According to the Shapley feature importance figure for the at-

tacking offensive zone (furthest right region of Figure 5.16) in order to optimize completion

rates, receiver movement is of upmost importance. This is not occurring however on this

figure, as if it would, there would be far more green quadrants closer to the opposing net.

This is a clear area which teams can improve upon to optimize throw-in completion (and

following dangerous opportunities on goal). Appendix A.3 further discusses Figure 5.16.

The plot is cut up into successful throw-ins and unsuccessful throw-ins (using the first touch

definition). Due to the data imbalance one cannot make definite conclusions, but most of

the receiver movement is occurring for the successful throw-ins leading to the hypothesis of

greater receiver movement leading to success.

To get an idea of how often the receiver which the model predicts to be the safest receiver

is actually thrown to, Table 5.4 was developed. Safest is defined as the highest predicted

completion percentage according to the XGBoost model. Both success definitions are anal-

ysed along with how often the ball is thrown to a receiver in the top 3 and top 5 highest

predicted completion percentages.

The results from Table 5.4 illustrates one of the themes throughout this analysis, that it is

easier to predict first touch success. A clear trend is shown of being approximately 10% more

accurate at identifying the receiver using first touch as opposed to possession retention. To
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Success Definition Top-1 SD Top-3 SD Top-5 SD

First Touch 0.078/-0.004 0.093/-0.021 0.096/-0.035

Possession Retention 0.038/0.001 0.1141/-0.007 0.1247/-0.03

Table 5.5 – In accordance with Table 5.4, the average Score Difference for each of these bins
is illustrated. Black means the average Score Difference is within range and Red means the
average Score Difference is not within range. A positive number indicates the throwing team
is leading and a negative number means the team is trailing.

form an idea of assessing risk within these throw-ins, Table 5.5 was developed.

Assessing risk, from the perspective that the model (in its current state) produces an expected

completion percentage of a throw-in, but it does not provide an answer as to which teammate

one should direct the throw-in to create a high-percentage goal opportunity (risk/reward

payoff). The black number is the average score difference given that the safe receiver was

able to be identified in that range (from Table 5.4) and the red number is the average score

difference given that the safe receiver was not able to be identified in that range.

The results provide an interesting and expected story. For both success definitions, when

the identified receiver (or top 3 and top 5) is in accordance to being the one thrown to

(black number), it is with an average positive score difference. On the contrary, when the

model is not able to identify the safe receiver (red number) it is with a average negative

score difference. This leans into the idea that when in a position of power (i.e. leading

the match) and no risk needs to be taken, the model predicts and identifies (with relatively

good accuracy) the receiver as no risk is needed. Alternatively, when trailing the match,

and therefore taking the easier throw-in will not net the team any possible future gains

(dangerous opportunity on net) the model is not able to identify to whom the ball is thrown

to. The discrepancy from in versus out of range (black vs red color) is most pronounced for

possession retention, which is expected given the feature importance of pressure at all areas

of the field (Figure 5.15). Due to low pressure on leading throws (black color) the throw is

easily completed and possession kept (signifying a successful possesion retention).
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Conclusion

The objective of this thesis was to delve into the research of the throw-in aspect of a soccer

match to provide possible improvements soccer teams can make in the future. Throw-in mod-

els were developed to produce an expected probability for any given throw-in, with the idea

that teams can evaluate various scenarios within a soccer match to evaluate given historical

precedence the likelihood a throw-in is completed (according to two definitions of comple-

tion). Binary classification models were powered through novel tracking data (explained in

Section 2.2.2) with two methods for creating the definition of a successful throw-in: first

touch success and possession retention success (explained in Section 2.2.4). Three classifi-

cation models were used to evaluate 6119 throw-ins of which 83.8% were a successful first

touch success (5128 instances) and 65.6% were a successful threshold retention success (4012

instances). The binary classifiers used were Logistic Regression, Random Forest and Boosted

Decision Tree.

In Chapter 4, all the results for each of the models were discussed with the general consensus

after examining metrics such as AUC score, Precision, Recall and log-likelihood values that

predictions are more accurate for a first touch success as opposed to a threshold retention
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response. This does not mean that a threshold retention response variable is not valuable

to future research, it simply means given the current feature values it performed worse.

Throughout the 7 seconds from the point of the ball being thrown to the threshold being

met, much unforeseen (or predicted) randomness occurs. This response variable is of more

importance to teams as maintaining possession means that one has the opportunity to score,

and more importantly, the other team does not. Future work can explore ways to further

utilize and analyse possession retention by improved features and unforeseen models.

Using a first touch response variable did create satisfactory predictions with noteworthy

accuracy, giving the model a strong framework at predicting throw-in completion percentage.

Figure 5.11 and 5.12 provide illustrations of real-life applications which teams and coaching

personnel can use to evaluate throw-ins.

Throughout the various studies and analyses, it is clear that given the current definition of a

throw-in success, pressure is practically all that matters in completion. Whether it be direct

low pressure values or utilizing receiver movement to create low pressure. Furthermore,

maintaining possession can be completely dictated by pressure. If the pressure value for a

given receiver is high, you are flipping a coin on predicting if possession retention is kept.

The method proposed in this thesis aims at creating a generalized model for throw-ins, in

the footsteps of xPass (expected passes) and xG (expected goals) models presented by Anzer

and Bauer [11]. This goal was met with encouraging success at predicting throw-in success,

the next step will be incorporating a risk/reward function. This will hopefully answer the

question: Who should I throw to (given the game context)? Not where can I throw it to

optimize completion.
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Appendix A

A.1 Event Data

Column Description

General Information Competition Competition the throw-ins were collected in

(available before Match Day Day the match was executed

the throw-in is thrown) Match ID ID of the match

Game Title Match title

X-Coordinate, x- and y-coordinate of where the

Y-Coordinate throw-in leaves the thrower’s hands

Minute Minute when the throw is played

Match Clock Minute and second of the throw

Frame Frame number respective to the

time of the throw

Reception Frame Frame number respective to the time

of reception of the throw

Player ID1 ID of the player taking the throw

Player ID2 ID of the receiver of the throw

(whether it be the intended receiver or not)
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Intended Receiver ID ID of the intended receiver of the throw

Player1 Team ID ID of the team taking the throw

Player2 Team ID ID of the team of the player

who receives the ball

Intended receiver team ID ID of the team of the player which

the throw was intended for

Club 1 Club abbreviation for the team

taking the throw, I.e. three letter code

Club 2 Club abbreviation for the team

of which the player receives the throw,

I.e. three letter code

Player 1 shirt number Shirt number of the thrower of the ball

Player 2 shirt number Shirt number of the receiver of the ball

Score difference Score difference at the time point of the

throw-in between the team taking the

throw and the defending team

Column Description

Information on Evaluation Indicates success of a ball played:

the throw •SuccessfullyComplete: If team of player receiving

outcome (from the the ball and that of player playing ball are identical

offensive perspective) •Unsuccessful : If player receiving the ball

is on opposing team of player receiving the ball

•Successful : If the team playing the

ball stays in possesion despite no player having

received the ball (e.g., if a player of the team
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playing the ball is fouled before he can

successfully receive the ball).

Going Right True if throw is played on right pitch side

Subtype •Cross : long throw into the penalty box

•Pass : short, played throw

X Reception x-coordinate where the throw-in was received

Coordinate by the discovered true receiver

Y Reception y-coordinate where the throw-in was received

Coordinate by the discovered true receiver

X Intended x-coordinate of the location where the

Receiver Coordinate intended receiver was standing at the time of throw

Y Intended y-coordinate of the location where the

Receiver Coordinate intended receiver was standing at the time of throw

Throw time Seconds after ball goes out of bounds too thrown

Pressure on Receiver Indicates the amount of pressure exerted

on the receiver of the ball

Summed Movement Using our tracking data, we see how players

(in meters) from frame to frame. The distance

is calculated as the summed movement

from the throw-in frame to the

frame of reception.

Angle to ball The angle measured on a 0 to 180 degree scale

180 degree scale (normalized). Angle taken from

the thrower to all potential receivers.

Distance of throw Euclidean distance of how far the throw

is from the location
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Figure A.1 – Construction of Shapley value for a single prediction using threshold success -
which was deemed Successful according to threshold success.

A.2 Shapley Individual Throw-In Predictions

To further analyse these Shapley framework, an individual prediction can be further in-

spected to see how each feature is individually impacting the prediction our model makes.

First, a Successful throw-in (for both definitions) is inspected below in Figures A.1 and A.2.

The figure illustrates all of the feature values for that individual throw-in along the vertical

axis, E[f(X)] is the mean prediction from the out-of-sample test set using the respective

success definitions and f(x) on the top right of the figures is the prediction made for this

individual throw. This plot is directly illustrating Equation 3.31, φi(f̂) is the contribution

of the i− th feature on the individual prediction (for example the value +0.11 for Pressure

in Figure A.1), f̂(x) (0.98 for Figure A.1) is the prediction and E[f̂(x)] (0.836 for Figure

A.1) is the mean prediction for the respective test sample (in this case looking at first touch

success). The predicted value on the top right according to the Shapley framework (0.98 for

Figure A.1) is created by taking the expected prediction value (0.836 for Figure A.1) and

adding all of the feature contributions (red/blue numbers).
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Figure A.2 – Construction of Shapley value for a single prediction using first touch success
- which was deemed Successful according to first touch success.

This throw-in was chosen to inspect for a few reasons. First, it was a success for both

definitions, and second, the Pressure value was 0 for both of them. With a Pressure value

of 0, one can see how much value it provides to the prediction compared to all of the other

feature values for both of the success definitions. Given the current set of features, if the

Pressure value is 0, one can speculate with great certainty that the throw was most likely

completed - unless some very unlikely scenario occurred. It is of note to see that the time to

throw feature provides the second most value, but it is so small and relatively random that

it is hard to draw any major conclusions from this.

Next, an example in which both of the two success definitions are deemed Unsuccessful will

be examined using this same Shapley framework. Figures A.3 and A.4 portray the same

Unsuccessful throw for threshold and first touch success definitions respectively using the

previously mentioned Shapley Equation 3.31. One can see that the throw was incomplete

(Unsuccessful) but the predicted probability (for both definitions) are still reasonable and

not dramatically close to 0 with values of 0.527 and 0.458 for threshold and first touch success

definitions respectively. The conundrum with the Distance feature is presented here and it is
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Figure A.3 – Construction of Shapley value for a single prediction using threshold success -
which was deemed Unsuccessful according to threshold success.

Figure A.4 – Construction of Shapley value for a single prediction using first touch success
- which was deemed Unsuccessful according to first touch success.
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Figure A.5 – Heat Map of Receiver Movement split in Successful Throw-Ins (Top) and
Unsuccessful Throw-Ins (Bottom).

interesting to inspect. Looking at Figure A.4 we see that Distance provides the second most

impact (albeit negative) versus Figure A.3 where it provides no impact, a stark difference.

Besides those two features, it is hard to draw many conclusions beyond the varying impact

Distance has from the two definitions and how dramatic the impact Pressure provides to the

model - whether it be positively or negatively.
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A.3 Plots

To further investigate receiver movement, the heat map methodology was used once again

by developing one strictly for successful throw-ins and unsuccessful throw-ins (using the

first touch definition). This further illustrates the point that the vast majority of receiver

movement is occurring for the successful throw-ins (top of Figure A.5) as opposed to lower (or

no) receiver movement occurring for unsuccessful throw-ins (bottom of Figure A.5). This

leads to the natural progression that the more movement created, which is completed to

evade defenders (and lower pressure), the more likely the throw-in is to be completed. The

idea behind receiver movement is related to pressure, it used as a tactic to evade the defender

to an area not crowded which creates low pressure and thus higher throw-in completion rates.

Figure A.6 – Distance Box Plot

A.4 Scatter Plot of Feature Combinations
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Figure A.7 – Movement Box Plot

Figure A.8 – Pressure Box Plot
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Figure A.9 – Score Difference Box Plot

Figure A.10 – Time Box Plot
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Figure A.11 – Time to Throw Box Plot

Figure A.12 – X-Coordinate Box Plot
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Figure A.13 – Angles Box Plot

Figure A.14 – Distance Density Plot
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Figure A.15 – Movement Density Plot

Figure A.16 – Pressure Density Plot
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Figure A.17 – Score Difference Density Plot

Figure A.18 – Time Density Plot
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Figure A.19 – Time to Throw Density Plot

Figure A.20 – X-Coordinate Density Plot
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Figure A.21 – Angles Plot
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Figure A.22 – Scatter Plot of Feature Combinations
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