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Abstract

Recursive Parameter Estimation of Non-Gaussian Hidden Markov Models for Occupancy

Estimation in Smart Buildings

Fatemeh Rezapoor Nikroo

A significant volume of data has been produced in this era. Therefore, accurately modeling these

data for further analysis and extraction of meaningful patterns is becoming a major concern in a

wide variety of real-life applications. Smart buildings are one of these areas urgently demanding

analysis of data. Managing the intelligent systems in smart homes, will reduce energy consumption

as well as enhance users’ comfort. In this context, Hidden Markov Model (HMM) as a learnable

finite stochastic model has consistently been a powerful tool for data modeling. Thus, we have been

motivated to propose occupancy estimation frameworks for smart buildings through HMM due to

the importance of indoor occupancy estimations in automating environmental settings. One of the

key factors in modeling data with HMM is the choice of the emission probability. In this thesis, we

have proposed novel HMMs extensions through Generalized Dirichlet (GD), Beta-Liouville (BL),

Inverted Dirichlet (ID), Generalized Inverted Dirichlet (GID), and Inverted Beta-Liouville (IBL)

distributions as emission probability distributions. These distributions have been investigated due

to their capabilities in modeling a variety of non-Gaussian data, overcoming the limited covariance

structures of other distributions such as the Dirichlet distribution. The next step after determining

the emission probability is estimating an optimized parameter of the distribution. Therefore, we

have developed a recursive parameter estimation based on maximum likelihood estimation approach

(MLE). Due to the linear complexity of the proposed recursive algorithm, the developed models can

successfully model real-time data, this allowed the models to be used in an extensive range of

practical applications.
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Chapter 1

Introduction

1.1 Introduction

Machine learning is a fast-growing field that has resulted in the development of tremendous applica-

tions. Leveraging machine learning in smart buildings has been studied extensively. Smart buildings

generate massive data which needs to be analyzed for further recommendation to optimize and solve

potential operational issues. The idea of smart buildings has been under considerable attention due

to the concern about global energy consumption. Building energy efficiency demand intelligent

solutions to overcome this problem. The goal of studies on smart buildings is both to reduce en-

ergy consumption as well as to enhance the comfort of occupants inside rooms D’Oca, Hong, and

Langevin (2018). Based on a recent survey GonzÂalez-Torres, PÂerez-Lombard, Coronel, Maestre,

and Yan (2022) buildings are responsible for one-third of global energy consumption. Among all

the factors affecting this ratio, HVAC systems (heating, ventilation, and air conditioning) play a

key role of 38% in building consumption GonzÂalez-Torres et al. (2022). However, apart from the

external factors of building equipment, occupants behavior which refers to the activities of users has

proven a significant influence on energy usage in smart rooms Jia and Srinivasan (2015). Given the

above explanations, a number of studies have been conducted to optimize energy consumption in

buildings Jia and Srinivasan (2015); Zamzami, Amayri, Bouguila, and Ploix (2019).

In this context, machine learning models are needed to model data from smart homes that can be
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further integrated into energy simulation software Jia and Srinivasan (2015) towards substantial en-

ergy use reductions and improvements in users’ comfort D’Oca et al. (2018). In this work, we have

mainly focused on occupancy estimation and prediction in smart buildings and propose HMM-based

occupancy models. We approach this problem using HMMs as a powerful statistical machine learn-

ing technique. The models have been developed to predict the number of occupants in a smart room

according to the information collected from sensors so that the energy performance in smart build-

ings can be managed. The collected data are seen as observation data that are needed to be modeled

and the number of occupants is seen as the hidden states in HMM. We have investigated distribu-

tions that are flexible in modeling non-Gaussian data and not limited to any restricted structures.

Thus, 5 different non-Gaussian distributions namely GD, BL, ID, GID, and IBL have been explored

as the emission probability of HMM which have been described in detail in the following chap-

ters. Due to the importance of learning the parameters of probabilistic models, we have developed

approaches for parameter estimation in our models to extract the optimum value for parameters to

accurately model the characterization of the observation data. We have formulated recursive param-

eter estimation algorithms to overcome the difficulties of processing batch datasets due to limited

computational resources, memory overload, and high demand for processing real-time data. De-

veloped models have been evaluated based on real-life data of occupancy detection from Machine

Learning Repository of University of California Irvine (UCI) and the other one is obtained from an

experiment which its testbed was an office in Grenoble Institute of Technology in France. Details

of these datasets are represented in the following chapters. For the evaluation of the performance of

the frameworks, 4 classification metrics have been considered as 1) accuracy, 2) precision, 3) recall

and 4) f-score. The definitions of these metrics are as follow Ali and Bouguila (2022):

accuracy =
TP + FN

TP + TN + FP + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

2



f − score =
2.precision.recall

precision+ recall

where TP , TN , FP andFN represent true-positive, true-negative, false-positive and false-negative,

respectively. TP denotes number of times the classifier predict the positive class as positive, while

TN shows the number of predictions where the classifier predict negative labels as negative. FN

and FP follow a similar analogy whereby the classifier incorrectly predict positive class as nega-

tive and negative class as positive, respectively. Precision quantifies the fraction of positive class

predictions to real positive while recall allows us to measures the missed positive predictions Ali

and Bouguila (2022) and f-score is considered as a harmonic mean of precision and recall.

1.2 Contributions

The main objective of this thesis is recursive parameter estimation of HMMs-based on various

underlying distributions which provide us with more flexibility in modeling a wide variety of data.

In this context, the contributions are listed as follows:

• Recursive Parameter Estimation of Generalized Dirichlet Hidden Markov Models: Ap-

plication to Occupancy Estimation in Smart Buildings

We propose a novel framework of recursive parameter estimation of Generalized Dirichlet

HMM. We have also presented the comparison of model performance between this method

and Dirichlet HMM on real-life data concerning occupancy estimation in smart rooms. This

contribution has been published in 2022 IEEE International Conference on Industry 4.0, Arti-

ficial Intelligence, and Communications Technology Rezapoor Nikroo, Amayri, and Bouguila

(2022b).

• Recursive Parameter Estimation of Beta-Liouville Hidden Markov Models We extend

our previous work considering Beta-Liouville distribution for modeling observation data in

HMM. In this contribution we have also compared the capability of Beta-Liouville HMM and

Dirichlet HMM in modeling real-life data. This contribution has been published in 2022 In-

ternational Conference on Electrical, Computer and Energy Technologies Rezapoor Nikroo,

3



Amayri, and Bouguila (2022a).

• HMMs Recursive Parameters Estimation for Semi-Bounded Data Modeling: Applica-

tion to Occupancy Estimation in Smart Buildings We further extend our previous works

to investigate the use of Inverted Dirichlet, Generalized Inverted Dirichlet, and Inverted Beta-

Liouville distributions as HMM emission probabilities for parameter estimation and parame-

ter optimization for semi-bounded data. This contribution has been submitted to International

Conference on Smart Cities and Green ICT Systems, 2023 Rezapoor Nikroo, Amayri, and

Bouguila (n.d.).

1.3 Thesis Overview

All the models that we have developed are explained in detail in each chapter as follows:

• In chapter 2, we introduce Generalized Dirichlet HMM and its recursive parameters estima-

tion. We demon- strate the effectiveness of our model in comparison with Dirichlet HMM

through both synthetic data and real-life data of occupancy estimation and occupancy detec-

tion in smart buildings.

• In chapter 3, the Beta-Liouville HMM has been investigated and compared with Dirichlet

HMM using real-life data of occupancy estimation and occupancy detection in smart build-

ings.

• In chapter 4, we explore the use of Inverted Dirichlet, Generalized Inverted Dirichlet and

Inverted Beta-Liouville distributions as the HMM underlying probability distributions to in-

vestigate the modeling capabilities of these models for positive vectors.

• In chapter 5, we conclude all of our contributions along with a discussion regarding the future

work propositions.

4



Chapter 2

Recursive Parameter Estimation of

Generalized Dirichlet Hidden Markov

Models: Application to Occupancy

Estimation in Smart Buildings

Hidden Markov model (HMM) is a powerful generative machine learning technique to model se-

quences. Therefore, analysing the characteristics of this model has been the topic of extensive

research. In this chapter we go through parameter estimation of HMM. We apply recursive tech-

nique in order to be able to handle real time data without suffering from extensive time complexity

and memory usage in calculation. In this context we investigate recursive parameter estimation of

generalized Dirichlet HMM via the expectation-maximization algorithm. The generalized Dirichlet

HMM is shown to be an interesting alternative to the Dirichlet HMM. Extensive simulations based

on synthetic and real data show the effectiveness of the recursive approach for parameter estimation.

5



2.1 Introduction

With the ever increasing amounts of data in electronic form, the need for automated methods for

data analysis continues to grow. The goal of machine learning is to develop methods that can au-

tomatically detect patterns in data, and then to use the uncovered patterns to predict future data or

other outcomes of interest P.Murphy (2012). Machine learning approaches for classification can

be roughly grouped into two main categories : 1) discriminative and 2) generative. These methods

depend primarily on the estimation criterion and/or structure of the classification method Jebara

(2012). Discriminative methods such as support vector machine focuses only on the conditional

relation Jebara (2012) and model the decision boundary between the classes. Generative meth-

ods such as Bayesian networks rely on full structured joint probability Jebara (2012) and explicitly

model the actual distribution of each class. The HMM is a generative probabilistic model of the

joint probability of a collection of random variables with both observations and states which can be

seen as stationary Markov distribution Xuan, Zhang, and Chai (2001). HMMs are widely used in

sequential analysis such as speech recognition, weather inference, natural language processing, bi-

ological sequences modeling, etc. Whilst talking about HMM, the underling structure of observable

data has an important role in performance of the model. In most studies the Gaussian distribution

or Gaussian mixtures have been pointed out while data in real-life applications, have often non-

Gaussian structures and are therefore more appropriate to be modeled by non-Gaussian probability

distribution Fan, Wang, and Bouguila (2021). Gaussian HMMs are used in computer vision Pyun,

Lim, Won, and Gray (2007), speech recognition Cui and Gong (2003), networking Mu and Wu

(2011) and so on. Dirichlet HMM has been proposed as an alternative to Gaussian HMM in sev-

eral applications such as handwriting recognition Biswas, Bhattacharya, and Parui (2012), anomaly

detection Dorj, Chen, and Pecht (2013), speech processing Zhang and Chan (2012), texture classi-

fication Epaillard, Bouguila, and Ziou (2014), etc. The Dirichlet distribution provides flexibility in

modeling data, but it has some drawbacks such as its restrictive negative covariance structure. The

generalized Dirichlet distribution has a more flexible covariance structure than Dirichlet distribution

Ali and Bouguila (2019a); Wong (2010). Thus, it is chosen as an underlying distribution of HMM

in this chapter.

6



Learning the parameters of a probabilistic model has been always a critical issue in machine learn-

ing. Traditionally learning is performed offline. However, if we have streaming data, we need to

perform online learning, so we can update our estimates as each new data point arrives rather than

waiting until ªthe endº Fan and Bouguila (2014); P.Murphy (2012). Therefore, in this chapter, with

the use of maximum likelihood as a parameter estimation approach, a novel recursive method is

proposed to estimate the parameters of generalized Dirichlet HMM. The method is evaluated with

both synthetic and real data.

In section 2, Dirichlet HMM, generalized Dirichlet HMM and their formulas are explained in de-

tails, section 3 presents the estimation algorithm that we have chosen, section 4 describes the recur-

sive model and the proposed algorithm, experimental results are shown in section 5 and in section 6

we make a conclusion and explain the possible future work.

2.2 Background

HMM was introduced in a series of statistical papers by Leonard E. Baum Baum and Petrie (1966)

and other authors and one of its first applications was in the domain of speech recognition Baker

(1975). However, it has been widely used in other fields such as information retrieval Miller, Leek,

and Schwartz (1999), topic identification Schwartz, Ima, Kubala, Nguyen, and Makhoul (1997), etc.

In the following section we discuss distribution of underling data, HMM and maximum likelihood

estimation as an approach to estimate the parameters in details.

2.2.1 Dirichlet Distribution

Dirichlet Distribution is a multivariate generalization of the Beta distribution. With the use of

Dirichlet distribution both symmetric and asymmetric data can be modeled. In fact, the Dirichlet

distribution can be skewed to the right or to the left or symmetric Bouguila, Ziou, and Vaillancourt

(2004).

Consider the random vector X = (x1, x2, ..., xK) which follows a Dirichlet distribution, the joint

density function is given by:

7



p(x1, x2, ..., xK) =
Γ(α0)

∏K
i=1

Γ(αi)

K
∏

i=1

xαi−1

i ,

where

K−1
∑

i=1

xi < 1 and xK = 1−

K−1
∑

i=1

xi where 0 < xi < 1, i = 1...K,

α0 =

K
∑

i=1

αi where αi > 0, i = 1...K.

The mean and variance of the Dirichlet distribution and the covariance between xi and xj are as

follows:

E(xi) =
αi

α0

,

V ar(xi) =
αi(α0 − αi)

α2
0
(α0 + 1)

,

Cov(xi, xj) =
−αiαj

α2
0
(α0 + 1)

.

Dirichlet distribution with the parameter vector α = (α1, α2, ..., αK) can be represented both as a

distribution on the hyper-plane DK = (x1, x2, ..., xK),
∑K

i=1
xi = 1 in IRK

+ or inside the simplex

DK = (x1, x2, ..., xK),
∑K−1

i=1
xi < 1 in IRK

+ .

8



2.2.2 Generalized Dirichlet Distribution

Due to the negative covariance structure of Dirichlet distribution and needs for modeling data with

more general covariance structure, generalization of Dirichlet distribution was proposed using the

concept of neutrality in statistics. Connor and Mosimann Connor and Mosimann (1969) introduced

the concept of neutrality as below:

Consider a random vector of proportions (P1, P2, ..., PK) and the random variablesZi, i = 1, 2, ...,K

where 0 ≤ Zi ≤ 1, the proportion P1 is said to be neutral if Z1 = P1 is independent of the vector

Z2 = P2/[1−P1], Z3 = P3/[1−P1], ..., ZK = PK/[1−P1]. Now suppose the random vectorX in

Dirichlet distribution is completely neutral, then the random variables Zi are mutually independent.

The density function of each Zi, i = 1, ...K − 1 is set to be a univariate beta distribution as follow:

[Beta(αi, βi)]
−1zαi−1

i (1− zi)
βi−1

where αi, βi > 0 and Beta(αi, βi) is the Beta function which is defined as follow:

Beta(αi, βi) =
Γ(αi)Γ(βi)

Γ(αi + βi)

Now by the transformation below the xi can be derived from Zi:

xi = Zi[

i−1
∏

m=1

(1− Zm)], i = 1, 2, ...,K − 1.

In this generalization covariance structure is changed to be more flexible due to the fact that the vec-

tor of random variables following the generalized Dirichlet distribution is not completely neutral.

SupposeX = (x1, x2, ..., xK) is a random vector following a generalized Dirichlet distribution with

parameters α and β: GD(α;β), where α = (α1, α2, ..., αK) and β = (β1, β2, ..., βK). The gen-

eralized Dirichlet distribution is defined by the following Boutemedjet, Ziou, and Bouguila (2007);

9



Epaillard and Bouguila (2014):

GD(X|α, β) =
K
∏

i=1

Γ (αi + βi)

Γ (αi) Γ (βi)
xαi−1

i (1−
i

∑

r=1

xr)
ηi , (1)

where

α ∈ IRK
+ , β ∈ IRK

+ , x ∈ IRK
+ ,

K
∑

i=1

xi < 1,

ηi = βi − (αi+1 + βi+1) i ∈ [1,K − 1],

ηK = βK − 1.

In case βi−1 = αi + βi for 2 ≤ i ≤ K we obtain the standard Dirichlet distribution.

Based on what Connor and Mosimann Connor and Mosimann (1969) described, the moments of the

generalized Dirichlet distribution are obtained as bellows:

Mj−1 =

j−1
∏

m=1

[(βm + 1)/(αm + βm + 1)]

E(xj) = (αj/[αj + βj ])

j−1
∏

m=1

[βm/(αm + βm)], j = 1, ...,K;

V ar(xj) = E(xj)[(αj + 1)/(αj + βj + 1)]Mj−1 − E(xi), j = 1, ...,K;

10



Figure 2.1: Graphical model representation of first-order HMM. The states with Si representing the

Markov hidden state and the states with Oi representing the observation according to each time step

ti, i = 1, 2, ..., T
.

Cov(xi, xj) = E(xj)[(αi)/[αi + βi + 1]Mi−1 − E(xi)], i = 1, ...,K − 1; j = i+ 1, ...,K.

2.2.3 Hidden Markov Models

HMM is based on augmenting the Markov model Jurafsky and Martin (2009). Markov model is a

stochastic process to represent the sequential data following a Markov property meaning that giving

the current knowledge and information, historical information has no impact on the future Jurafsky

and Martin (2009). The mathematical formulation of Markov property is as follows:

p(Xt + 1 = s|Xt = st, Xt − 1 = st − 1, ..., X0 = s0) = p(Xt + 1 = s|Xt = s) (2)

HMM is a statistical Markov model in which the system being modeled is assumed to be a Markov

process with unobserved states. Both Markov chain and HMM are based on the idea of random walk

in a directed graph, where probability of next step is defined by edge weight. However, in HMM

at each step a symbol from set of observations is generated based on the probability distribution of

that state. The output of Markov model is a sequence of visited states while in HMM the visited

states are hidden and just the sequence of symbols is observable. There are two stochastic processes

in HMM: 1) a Markov chain S1, S2, ..., ST which represents hidden states and 2) random variables

of O1, O2, ..., OT which are distributed according to the parametric distribution and are observable.

These random variables are independent but the parameters of their distribution depend on the state

of the Markov chain at that time. The graphical model of HMM is illustrated in Fig. 2.1.
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Parameters of HMM are defined as follows Vaičiulytė and Sakalauskas (2020):

(1) N : number of states in the model

(2) s = (S1, S2, ..., SN ) : set of hidden states

(3) π = (π1, π2, ..., πN ): set of initial probability distribution of states at time t = 1

(4) v = (V1, V2, ..., VM ) : set of observations where M is number of symbols

(5) o = (O1, O2, ..., OT ) : set of observed sequence

(6) AN∗N : matrix of transition probability in which ai,j indicates the probability of moving from

state i to state j at one time step

(7) B: bi(k) emission probability which is a probability function of observing symbol Vk in state

i

HMM is represented by three main parameters as λ = (π,A,B). The probabilities associated to

transition and observation are ai,j = p(St+1

j |St
i ) and bj(k) = p(V t

k |S
t
j).

2.3 Maximum Likelihood Estimation

Maximum likelihood estimation is a frequentist approach for estimating the parameters of a model

given observed data. Expectation-maximization (EM) is an iterative procedure to calculate the

parameters until the algorithm meets the convergence criterion. In this chapter, we propose an

EM algorithm to maximize the probability density function with respect to the set of parameters

to be estimated. In this approach as we consider a recursive estimation, the EM algorithm updates

the model after each new observation is introduced without loosing the previous knowledge. With

the use of this method we estimate the parameters in order to maximize the generalized Dirichlet

probability density function of each observation Nasfi, Amayri, and Bouguila (2020).
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2.4 Recursive Model

In this section, we present the approach to recursively estimate the generalized Dirichlet HMM

parameters by maximizing the log-likelihood function given as follows:

logGD(X|α, β) =
N
∑

i=1

log Γ (αi + βi)−
N
∑

i=1

log Γ (αi)−
N
∑

i=1

log Γ (βi)+
N
∑

i=1

(αi−1) log xi+
N
∑

i=1

ηi log(1−
i

∑

r=1

xr)

(3)

Now considering the HMM, log probability density of the observation according to each state of the

HMM is:

L(π;α, β) = log[
N
∑

q=1

πqGD(X|α, β)]

where πq is the probability of being in state q.

As mentioned above, the maximum of the log-likelihood function (3) should be calculated, then the

partial derivatives of the expression with respect to both αi and βi, 1 ≤ i ≤ K should be derived

as below:

∂ logGD(X|α, β)

∂αi
= ψ (αi + βi)− ψ (αi) + log(xi) (4)

∂ logGD(X|α, β)

∂βi
= ψ (αi + βi)− ψ (βi) + log(1−

i
∑

r=1

xr). (5)

ψ(x) is digamma function which is defined as the logarithmic derivative of the Gamma function.

Now the probability of the system being in specific state q at time frame t given the observation x

is:

π<q>
t logGD(xt|α

<q>, β<q>)
∑N

j=1
π<j>
t logGD(xt|α<j>, β<j>)

,
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where

1 ≤ q ≤ N and N is the number of states.

Therefore the total number of times there is a transition from state q is:

T
∑

t=1

π<q>
t logGD(xt|α

<q>, β<q>)
∑N

j=1
π<j>
t logGD(xt|α<j>, β<j>)

,

where

1 ≤ q ≤ N and N is the number of states.

Based on the explanation of full likelihood of each observation sequence at Vaičiulytė and Sakalauskas

(2020), the weighted averages is applied, therefore, the batch formula of α and β considering spe-

cific state q and according to Eqs. (4) and (5) are:

αi = ψ−1[ψ(αq
i + βqi ) +

1

T

∑T
t=1

log(xst )
π<q>
t logGD(xt|α

<q>, β<q>)
∑N

j=1
π<j>
t logGD(xt|α<j>, β<j>)

1

T

∑T
t=1

π<q>
t logGD(xt|α

<q>, β<q>)
∑N

j=1
π<j>
t logGD(xt|α<j>, β<j>)

],

βi = ψ−1[ψ(αq
i + βqi ) +

1

T

∑T
t=1

log(1−
∑i

r=1
xrt )

π<q>
t logGD(xt|α

<q>, β<q>)
∑N

j=1
π<j>
t logGD(xt|α<j>, β<j>)

1

T

∑T
t=1

π<q>
t logGD(xt|α

<q>, β<q>)
∑N

j=1
π<j>
t logGD(xt|α<j>, β<j>)

].

where

1 ≤ q ≤ N , 1 ≤ s, i ≤ K.

In the proposed recursive method, the parameters α and β are updated based on their estimated
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values in the previous observation at time t− 1. The updated equations we derived are as follows:

θqt = πqt logGD(xt|α
q, βq) , 1 ≤ q ≤ N, (6)

ω<q,s>
t = ω<q,s>

t−1
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θjt
− ω<q,s>

t−1
) , 1 ≤ q ≤ N , 1 ≤ s ≤ K, (7)

γqt = γqt−1
+

1

t
(

θqt
∑N

j=1
θjt

− γqt−1
) , 1 ≤ q ≤ N, (8)

α<q,s>
t = ψ−1[ψ(αq

i + βqi ) +
ω<q,s>
t

γqt
] , 1 ≤ s ≤ K, (9)

β<q,s>
t = ψ−1[ψ(αq

i + βqi ) + log(1−
s

∑

r=1

(exp(
ωq,r
t

γq,rt

))] , 1 ≤ q ≤ N , 1 ≤ s ≤ K. (10)

Here the proof of the formula of how retrieving ω and γ are provided respectively.

ω<q,s>
t = ω<q,s>

t−1
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θji
− ω<q,s>

t−1
)

=
1

t− 1

t−1
∑

i=1

log(xst )θ
q
i

∑N
j=1

θji
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θjt
−

1

t− 1

t−1
∑

i=1

log(xst )θ
q
i

∑N
j=1

θji
)

=
1

t

t
∑

i=1

log(xsi )θ
q
i

∑N
j=1

θji
,
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γqt = γqt−1
+

1

t
(

θqt
∑N

j=1
(θjt )

− γqt−1
)

=
1

t− 1

t−1
∑

i=1

θqi
∑N

j=1
θji

+
1

t
(

θqt
∑N

j=1
θjt

−
1

t− 1

t−1
∑

i=1

θqi
∑N

j=1
θji

)

=
1

t

t
∑

i=1

θqi
∑N

j=1
θji
.

The approach used to estimate the parameters of generalized Dirichlet HMM is presented in Algo-

rithm 1. The algorithm includes two main parts: 1) calculating the values of variables θ, ω and γ

according to the Eqs. (6)-(8) respectively and 2) updating the parameters α<q,s>
t and β<q,s>

t based

on Eqs. (9)-(10). At the beginning, we initialize the parameters α, β, transition probability and

initial probability of being in each state at time step t = 1, by random numbers and the goal was

to reach the best value for α and β such that our proposed model can well define the hidden states.

In this recursive classification algorithm, we receive the observation data in real time and update

the parameters α and β and repeat the process in an iteration loop until we meet the termination

criterion (the difference between the parameter values in iteration t and t−1 is less than a threshold

ϵ = 0.5). For this purpose, we split the data sets to training and testing data, for the training part

at each iteration, do the E-step and M-step explained in Algorithm 1 until the termination condition

is met. At this step we have the updated α and β ready to use for test data set in order to find the

hidden states which are considered as the labels. In the testing part, we use the Bayes rule to find

the closest state of each row of data. In fact, using the Bayes rule allows to calculate the probability

of assigning each state to the specific row of data and consider the highest probability as the most

probable hidden state for that observed data.

2.5 Experimental Results

In this section, validation of the proposed recursive parameter estimation of generalized Dirichlet

HMM using real and synthetic data sets is done. In addition, a comparison between Dirichlet HMM
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Algorithm 1 Recursive expectation maximization algorithm for generalized Dirichlet HMM pa-

rameter estimation

Result:α<q,s>

t and β<q,s>

t , 1 ≤ t ≤ T, 1 ≤ s ≤ K, 1 ≤ q ≤ N
Initialization: initial parameters α, β, first-probability of each state and transition-probability between states

Input: each row of data set; xt, 1 ≤ t ≤ T

1: while ϵ > αt − αt−1 and ϵ > βt − βt−1 do

2: Normalize input vector xt;
3: E-step

4: Calculate values of θqt , ω
<q,s>

t γqt ;

5: M-step:

6: Update values of α<q,s>

t , β<q,s>

t

7: end while

and generalized Dirichlet HMM is performed. In all the experiments mentioned bellow, the initial

probability of the states at time t = 1 is set equally the same for all the states, which means having n

states the probability of being in each state si, i = 1, 2, ..., n is 1

n
. The transition matrix indicating

the probability of moving from state si to state sj , i, j = 1, 2, ..., n are filled by random numbers. In

addition, the parameters α and β are assigned by random numbers for each states for each dimension

of the data. The termination criterion is set to ϵ = 0.5.

2.5.1 Synthetic Data

To evaluate the capability of our model we have generated data set arising from generalized Dirichlet

distribution. In this section we also provide a comparison between Dirichlet HMM and generalized

Dirichlet HMM. This data set has 5000 row of data with 5 dimensions in which the last dimension

indicates the hidden states. The first 4 features of each row of this data is considered as our obser-

vation data, then we apply the same method explained in Algorithm 1 on it. Based on the definition

of the Dirichlet in section 2.1 and generalized Dirichlet distribution in section 2.2, the input data

should fall in the range of (0, 1). To meet this condition for Dirichlet HMM we apply softmax

normalization formula as follows:

softmaxi(X) =
exi

∑K
j=1

exj

However; in case of generalized Dirichlet HMM, the sum of input data should be less than 1,

therefore, we first check if the summation of all the features is 1 or above, then add a random
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number in range of (0, 1) then apply softmax and at the end omit the added dimension. In this data

set we consider the same probability for the initial probability distribution of states and complete

the transition matrix randomly, but the same random values are considered for both Dirichlet HMM

and generalized Dirichlet HMM. The final estimated parameters are mentioned in Table 2.1. In

addition, in Table 2.2 we show the evaluation of both HMM models using this data set. The results

shown in Table 2.2 are the average of results over 20 runs using different initial values which were

assigned randomly.

Table 2.1: Parameter values for Dirichlet HMM and generalized Dirichlet HMM parameter estima-

tion algorithm for synthetic data (2-state and 4-dimensional).

Model Number of States Parameters

GD-HMM 2 α =

[

7.23828619 0.45192005 0.2373394 0.14765902
7.21223305 0.46147783 0.23963648 0.14796613

]

β =

[

15.64232241 0.95157966 0.55731075 0.40486111
15.99296918 0.98423038 0.56608161 0.40332316

]

D-HMM 2 α =

[

1.88495201 0.90703827 0.226631 0.69773528
0.58775399 0.62743067 0.58916982 0.46667091

]

Table 2.2: Accuracy, f-score, precision and recall in percent for Dirichlet HMM and generalized

Dirichlet HMM for synthetic data (2-state and 4-dimensional).

Model Accuracy F-score precision recall

GD-HMM 87.2 87.2 87.34 87.19

D-HMM 73.33 76.53 82.05 73.33

Based on the results shown in Table 2.2, the experimental results with synthetic data shows the

great capabilities of our model in estimating recursively the generalized Dirichlet HMM. Contrary

to the Dirichlet HMM for which 1100 of observations out of 1500 ones were correctly classified,

generalized Dirichlet HMM assigned correct labels (hidden state) to 1300 new observations out of

1500 ones.

2.5.2 Real Data: Occupancy Estimation in Smart Buildings

In this section results of implementation of generalized Dirichlet HMM on two different data sets

and its comparison with Dirichlet HMM are provided. Both data sets are related to occupancy
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detection and estimation. The main motivation is that occupancy detection and estimation can be

formalized using HMMs since states are not visible and only the outputs including environmental

manifestations such as CO2 level, temperature of the area are provided Nasfi et al. (2020). The

first data is Occupancy detection data set Candanedo and Feldheim (2016) which is used for binary

classification to compare the two models namely Dirichlet HMM and generalized Dirichlet HMM.

Estimated parameters of the Dirichlet HMM and generalized Dirichlet HMM using this data set are

shown in Table 2.3. Calculated classification measures are shown in Table 2.4. This data set has

been collected from data from sensors of light, temperature humidity and CO2 as a means to detect

occupancy Candanedo and Feldheim (2016). Here the hidden states are status of the room from the

aspect of being occupied or not and the observable states are the featureS explained below which

are presented as a time series:

• Temperature, in Celsius

• Relative Humidity,

• Light, in Lux

• CO2, in ppm

• Humidity Ratio, Derived quantity from temperature and relative humidity, in kgwater-vapor/kg-

air Occupancy, 0 or 1, 0 for not occupied, 1 for occupied status

To have a high-level view of the data set, its distribution according to each feature is displayed in

Fig. 2.2.

Table 2.3: Estimated parameters for Dirichlet HMM and generalized Dirichlet HMM for occupancy

detection data set.
Data set Model Number of States Parameters

occupancy detection GD-HMM 2 α =

[

0.18 0.18 0.51 3.02 0.08
0.20 0.94 0.10 0.92 0.19

]

β =

[

4.37 4.10 6.70 0.39 0.10
1.00 0.93 0.58 0.40 0.84

]

occupancy detection D-HMM 2 α =

[

0.17 0.17 0.47 3.26 0.16
0.19 0.20 0.76 6.86 0.18

]
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Figure 2.2: Visualization of occupancy detection data according to different features.

Table 2.4: Accuracy, f-score, precision and recall in percent for Dirichlet HMM and generalized

Dirichlet HMM applied for occupancy detection data set.

Data set Model Accuracy F-score precision recall

occupancy detection GD-HMM 87.52 85.55 88.56 87.52

occupancy detection D-HMM 85.74 83.10 86.62 85.74

The second data set that has been used to evaluate the developed model is office-occupancy data set

related to smart building energy management. Indoor occupancy estimation plays a key role in the

matter of automating environmental settings such as heating, ventilation, air conditioning Ebadat,

Bottegal, Varagnolo, Wahlberg, and Johansson (2015); Nasfi et al. (2020); Oldewurtel, Sturzeneg-

ger, and Morari (2013) and lightning Candanedo and Feldheim (2016); Nasfi et al. (2020) for smart

buildings. Studies showed that this occupancy-based control can in turn save one-third of major en-

ergy consumption in buildings Brooks and Barooah (2014); Erickson, Carreira-PerpiñÂan, and Cerpa

(2011); Fan and Bouguila (2012). Unlike the previous application, it is considered as a multi-class

classification as the test-bed was an office in Grenoble institute of Technology hosting four people

Amayri et al. (2016); Nasfi et al. (2020). This data set is described by four attributes which are

motion, power consumption, acoustic-pressure and door-opening. Table 2.5 provides the estimated

parameters of the Dirichlet HMM and generalized Dirichlet HMM. In this data set, the hidden states
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Figure 2.3: Visualization of office-occupancy data according to different features.

are the number of attendants in a room and the observable outputs are the attributes values which

are considered as environmental factors. The evaluation results are given in Table 2.6. The data

distributions with respect to the different attributes are provided in Fig. 2.3.

Table 2.5: Parameter values for Dirichlet HMM and generalized Dirichlet HMM parameters for

office occupancy data.
Data set Model Number of States Parameters

office-occupancy GD-HMM 5 α =













2.10944859 0.4042412 0.26285416 0.25798753
0.65930223 0.2819966 0.23687576 0.21738184
0.34578291 0.29602738 0.37051746 0.37653626
1.0549046 0.34915824 0.25426651 0.24120343
0.79072965 0.49744349 0.44195965 0.93721427













β =













4.28646559 0.86270771 0.56043227 0.49709727
0.79759607 0.66045755 0.75406526 0.56017985
0.60264184 0.42642526 0.48270544 0.37656921
1.82794749 0.73762174 0.57707716 0.47968072
0.98236563 0.96256723 0.25564419 0.35323547













office-occupancy D-HMM 5 α =













0.16214643 0.60979381 0.43810455 0.27603032
0.05219396 0.80801507 0.46464707 0.24227922
1.23935713 0.75480023 0.64659841 0.66507963
1.57103448 1.021154 0.84586044 0.8520257
1.76158057 1.05946864 0.91643249 0.96383339













Table 2.6: Accuracy, f-score, precision and recall in percent for Dirichlet HMM and generalized

Dirichlet HMM for office-occupancy data set.

data set Model Accuracy F-score precision recall

office-occupancy GD-HMM 75.92 73.26 78.69 75.92

office-occupancy D-HMM 71.76 60.94 52.96 71.76
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According to Table 2.4 and Table 2.6, it is clear that the generalized Dirichlet HMM provides

better estimation results which in turn provide more accurate hidden states for each observation.

The flexibility of generalized Dirichlet over Dirichlet distribution to model the emission probability

of HMM is also proven. In the occupancy detection data set, 216 observations analyzed in testing

part which 162 of them were classified correctly with generalized Dirichlet HMM, while we have

153 well classified observations using Dirichlet HMM.

2.6 Conclusion

In this chapter we introduced a novel approach for parameter estimation of the generalized Dirichlet

HMM and discuss its advantages over Dirichlet HMM. Due to the importance of real-time data pro-

cessing, real-time analytic has been more in demand, therefore, in the provided model a recursive

approach is applied to analyse the data in an online manner. In that case the memory overload and

the latency have decreased dramatically. Since the complexity of this recursive model is linear and

there is no need to extensive computational resources, it can be widely used in classifications tasks

based on a generalized Dirichlet HMM model. Adopting the generalized Dirichlet distribution as

an underlying data modeling for emission probability in HMM is encouraged by its capabilities in

terms of covariance which is considered as a limit while modeling data using Dirichlet distribu-

tion. To learn the parameters, a learning approach based on the generalized Dirichlet distribution

combined with HMM concepts was developed. Due to the nature of supervised problem in the

context of defining the hidden states for each observation, in the training task, estimated values of

parameters are updated as new data arrives during the process of model learning without a need to

store the previous results. In the testing part these estimated values are used to calculate the most

probable hidden states which can be the best match for each new observation of data using Bays

rule. We have proved the capacity of the generalized Dirichlet distribution over Dirichlet distri-

bution to model HMM-related tasks. The efficiency of generalized Dirichlet HMM in comparison

with Dirichlet HMM has been validated using synthetic data and real data. It is noteworthy that

our model is shown to be very effective in real-life application; estimating the occupancy of office

in the context of smart buildings. Future work will be devoted to investigate different initialization
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approaches in order to improve the model to be less biased to initialization step. As well as, com-

paring the performance of generalized Dirichlet with other Dirichlet related distributions such as

Beta-Liouville. In addition, when it comes to real data in case of smart buildings, experiments can

be done to investigate the effectiveness of different features on the final classification result in order

to reach more accurate results.
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Chapter 3

Recursive Parameter Estimation of

Beta-Liouville Hidden Markov Models

This chapter proposes a novel approach to recursively estimate the parameters of Beta-Liouville

Hidden Markov Model (HMM). With the rapidly increasing volume of data nowadays, the need

for analyzing such data is becoming more urgent. Classification is a a machine learning technique

for analyzing data. Therefore, in this chapter, we assume that a given data set can be described as

HMM sequences, then apply Beta-Liouville distribution as an emission probability of the HMM. By

estimating the parameters of the considered Beta-Liouville HMM using expectation maximization

algorithm, we build a machine learning model using Bayes rule to perform classification. Noting

that classical learning methods are computationally extensive, we propose an online learning frame-

work for real-time analysis using recursive parameter estimation approach. Both Dirichlet and Beta-

Liouville distributions are studied and compared in this research. The Beta-Liouville distribution

has proven to be more flexible in terms of data modeling. The effectiveness of the developed model

is shown by evaluating it on real data that concern occupancy estimation in smart buildings.

3.1 Introduction

Statistical models are becoming increasingly important as they describe meaningful data pattern

Bdiri, Bouguila, and Ziou (2016); Bouguila, Almakadmeh, and Boutemedjet (2012); Boutemedjet
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et al. (2007); Boutemedjet, Ziou, and Bouguila (2010); Fan and Bouguila (2013b, 2013c, 2015b);

Mashrgy, Bdiri, and Bouguila (2014); Oboh and Bouguila (2017). HMM is a statistical model that

considers Markov process and unobservable states. With the help of known parameters, hidden

states can be identified. HMMs can be viewed as dynamic probabilistic models that have been

used in numerous applications such as speech recognition Cui and Gong (2003), texture classifica-

tion Epaillard et al. (2014), speech processing Zhang and Chan (2012), and occupancy estimation

in smart buildings Ai, Fan, and Gao (2014); Guo, Amayri, Bouguila, and Fan (2021); Nasfi et al.

(2020). In this chapter we mainly focus on occupancy detection/estimation problem using HMMs.

In fact, the accurate determination of occupancy in buildings has been recently estimated to save

energy in the order of 30 to 42% Candanedo and Feldheim (2016). We developed a model to first

estimate the unknown parameters and second apply the learned model on new data for the classifi-

cation task. There are two types of learning methods; 1) batch learning and 2) recursive learning.

Limited computation resources such as memory and accessing just part of the data set in some cases

motivate us to derive recursive algorithm to be able to handle data. Recursive method refers to a sit-

uation of continuous model re-estimation and adaption based on a continuous data stream Gepperth

and Hammer (2016); Losing, Hammer, and Wersing (2018); Vaičiulytė and Sakalauskas (2020).

Recursive learning methods enable us to estimate the model parameters in real time Vaičiulytė and

Sakalauskas (2020).

One of the key parameters in HMM is the underlying distribution of observed data. Studies have

shown inaccurate data modeling when considering the Gaussian in case the data is clearly non-

Gaussian. Thus, we investigate two other distributions which have more flexible structures to

model compositional data (multivariate observations confined in a simplex) Bouguila and Ziou

(2010) using HMMs; Dirichlet and Beta-Liouville distributions Ali and Bouguila (2019b); Fan

and Bouguila (2013d). In analyzing compositional data, scientists have been handicapped by the

lack of known distributions to describe various patterns of variability. Aitchison Navarro-Lopez,

Linares-Mustaros, and Mulet-Forteza (2022) gives an excellent account of the difficulties in dealing

with compositional data and of the inadequacy of the Dirichlet distribution as a model Fang, Kotz,

and Wangng (2018). Therefore, we applied Beta-Liouville as an emission probability in our model

which provides a more general covariance in comparison with Dirichlet HMM which has restrictive
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negative covariance.

The chapter proceeds as follows. In section 2, we present the fundamental concepts of Dirichlet

distribution then Beta-Liouville distribution and the definition of HMM. In section 3, the proposed

estimation algorithm based on maximum likelihood is explained. In the next section, the recur-

sive algorithm of Beta-Liouville HMM is developed. In section 5, experimental results of applying

the model on occupancy estimation for smart buildings are presented. Finally, in section 6, the

conclusion is given.

3.2 Background

Hidden Markov models (HMMs), are used for statistical modelling of nonstationary stochastic pro-

cesses Jurafsky and Martin (2009). An HMM is essentially a Bayesian finite state process, with

a Markovian prior for modelling the transitions between the states, and a set of state pdfs for the

modelling of the random variations of the stochastic process within each state Fan and Bouguila

(2013a); Jurafsky and Martin (2009). In this section we provide the definition of two pdfs as the

emission probability of HMM and definition of HMM in details.

3.2.1 Dirichlet Distribution

The Dirichlet distribution Bouguila and Ziou (2005); Fan and Bouguila (2015a) is a continuous

multivariate probability distribution that is commonly used as a prior to the multinomial in Bayesian

statistics Bouguila (2011). Dirichlet distribution can be represented either as a distribution on the

hyperplane Bn = (y1, ..., yn) :
∑n

i=1
yi = 1 in IRn

+, or as a distribution inside the simplex An =

(y1, ..., yn−1) :
∑n

i=1
yi ≤ 1 in IRn−1

+ Fang et al. (2018). ConsiderX = (x1, x2, ..., xK) as a vector

following a Dirichlet distribution Dir(α) with parameter α = (α1, α2, ..., αK), the probability

density function has the following form:

p(x1, x2, ..., xK) =
Γ(δ)

∏K
i=1

Γ(αi)

K
∏

i=1

xαi−1

i (11)
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where
∑K−1

i=1
xi < 1, xK = 1−

∑K−1

i=1
xi, where 0 < xi < 1, i = 1...K, and δ =

∑K
i=1

αi, αi >

0, i = 1...K.

The mean and variance of the Dirichlet distribution and the covariance between xi and xj are as

follows:

E(xi) =
αi

δ
(12)

V ar(xi) =
αi(δ − αi)

δ2(δ + 1)
(13)

Cov(xi, xj) =
−αiαj

δ2(δ + 1)
(14)

3.2.2 Beta-Liouville Distribution

The Beta-Liouville is a parametric generalization of Dirichlet distribution which is a natural model

for analysing compositional data Fang et al. (2018); Navarro-Lopez et al. (2022). The Beta-Liouville

is a Liouville distribution in which Beta distribution is chosen as a generating density as it has flexi-

ble shape and can approximate nearly any arbitrary distribution Fan and Bouguila (2015b). We first

present the Liouville distribution and its general form, then describe how Beta-Liouville is extracted

from it.

Let’s assume that a random variable u is a generating variate, the density function f(.) of u is

called the generating density Fan and Bouguila (2013e); Fang et al. (2018). Therefore, we invari-

ably write X = (x1, x2, ..., xK) ∼ LK [f.;α1, α2, ..., αK ] whenever X = (x1, x2, ..., xK) has a

Liouville distribution Gupta and Richards (1987). The Liouville distribution has 2 kinds; if f(.)

has a noncompact support, we say that X = (x1, x2, ..., xK) has the Liouville distribution of first

kind Gupta and Richards (1987). If the support of f(.) is compact, then after scaling f(.) to be

supported on (0, 1) the variable range over the simplex is defined as (x1, x2, ..., xK) : xi > 0, i =

1, 2, ...,K;
∑K

i=1
xi < 1, then we say X = (x1, x2, ..., xK) has a Liouville distribution of the sec-

ond type Gupta and Richards (1987).
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Now the Liouville distribution with positive parameters (α1, α2, ..., αK) and generating density of

f(.) with parameter δ is defined as below Bouguila (2012); Epaillard and Bouguila (2016); Fan and

Bouguila (2013c); Fang et al. (2018):

p(X⃗|α1, ..., αK , θ) = f(u|δ)
Γ(

∑K
i=1

αi)

u
∑K

i=1
αi−1

K
∏

i=1

xαi−1

i

Γ(αi)
(15)

As defined in second kind Liouville distribution, the variables are described as follows: X⃗ =

(x1, ..., xK), u =
∑K

i=1
xi < 1, xi < 0, i = 1, ...,K. After a brief overview of what is Liouville

distribution, we go through Beta-Liouville. We choose Beta distribution Bouguila and Elguebaly

(2012); Manouchehri, Nguyen, and Bouguila (2019) as the generating density f(.) which means

that the generating variate u is distributed as a Beta Fang et al. (2018) with α and β as below:

f(u|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−1 (16)

By substituting the Eq. (6) into Eq. (5) we obtain the Beta-Liouville distribution as follows:

BL(X⃗|θ⃗) =
Γ(

∑K
i=1

αi)Γ(α+ β)

Γ(α)Γ(β)

K
∏

i=1

xαi−1

i

Γ(αi)

×(
K
∑

i=1

xi)
α−

∑K
i=1

αi(1−
K
∑

i=1

xi)
β−1

(17)

where θ⃗ = (α1, ..., αK , α, β) represents the distribution parameters which are all real and positive.

The mean and variance of the Beta-Liouville distribution and the covariance between xn and xm

are as follows Bouguila (2012):

E(xi) =
ααi

(α+ β)(
∑K

i−1
αi)

(18)

V ar(xi) =
ααi(α+ 1)(αi + 1)

(α+ β)(α+ β + 1)
∑K

i=1
αi + 1

− E(xi)
2(

α2
i

(
∑K

i=1
αi)2

) (19)
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Cov(xn, xm) =
αnαm

∑i
n=1

αn

(
α(α+ 1)

(α+ β)(α+ β + 1)(
∑K

i=1
αi + 1)

−
α2

(α+ β)2(
∑K

i=1
αi)

) (20)

3.2.3 Hidden Markov Models

In probability theory, Markov models are used to model sequences of stochastic variables follow-

ing the Markov property. According to the Markov property, Markov models assume that we can

predict the probability of some future unit without looking too far into the past Jurafsky and Martin

(2009). HMM is a doubly embedded stochastic process with an underlying stochastic process that

is not observable (it is hidden), but can only be observed through another set of stochastic processes

that produce the sequence of observations Rabiner (1989). N hidden states s = (S1, S2, ..., SN )

incarnate the underlying stochastic process that characterize an HMM Ali and Bouguila (2021).

The initial probability π indicates the probability of the system following HMM being in each state

at time step t = 0. There is also a transition matrix which shows the probability of transferring

between each two states at specific time t. The observable layer which is considered as the output

layer is a set of random variables o = (O1, O2, ..., OT ) which are distributed according to the para-

metric distribution. As a first-order HMM, there will be two assumptions. First, giving the current

knowledge and information, historical information has no impact on the future, so the probability

of a particular state is only depends on the previous state Jurafsky and Martin (2009) which can be

mathematically described as below:

p(St|St−1, St−2, ..., S1) = p(St|St−1)

Second, the probability of an output observation Ot, t = 1, 2, ..., T depends only on the current

state St, i = 1, 2, ..., T , not on any other states or any other observations, which can be described as

below:

p(Ot|S1, ..., ST , O1, ..., Ot, ..., OT ) = p(Ot|St)

The other important parameter related to HMM is emission probability, which indicates the prob-

ability of choosing one of the possible observations in current state as an output sequence. As
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described in Vaičiulytė and Sakalauskas (2020), parameters of HMM are briefly defined as follows:

(1) N : number of states in the model

(2) s = (S1, S2, ..., SN ) : set of hidden states

(3) π = (π1, π2, ..., πN ): set of initial probability distribution of states at time t = 1

(4) v = (V1, V2, ..., VM ) : set of observations where M is number of symbols

(5) o = (O1, O2, ..., OT ) : set of observed sequence

(6) AN∗N : matrix of transition probability in which ai,j indicates the probability of moving from

state i to state j at one time step

(7) B: bi(k) emission probability which is a probability function of observing symbol Vk in state

i

HMM is represented by three main parameters as λ = (π,A,B) Vaičiulytė and Sakalauskas

(2020). The probabilities associated to transition and observation are ai,j = p(St+1

j |St
i ) and

bj(k) = p(V t
k |S

t
j) respectively.

3.3 Maximum Likelihood Estimation

There are several methods to estimate the unknown parameters from generative models and one of

them is maximum likelihood estimation. It calculates the likelihood of conditional probability of

observed data given a probability distribution. So in this section, the model parameters are adjusted

to maximize the observation sequence given the model. Expectation Maximization (EM) is an

iterative approach to perform maximum likelihood estimation. The classic EM needs to receive all

data in advance for each iteration, so in the context of streaming data it will not work, therefore we

develop the recursive EM which estimates the parameters in real time Vaičiulytė and Sakalauskas

(2020). This method involves 2 main steps. The first one is called E-step and the second one is

M-step, these steps are repeated until the algorithm reach the convergence criteria. We will explain

these steps in detail in the next section after explanation of our recursive model.
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3.3.1 Recursive Model

To derive our recursive parameter estimation algorithm to maximize the likelihood of the Beta-

Liouville HMM, we need to consider the log likelihood of the Beta-Liouville function:

logBL(X⃗|θ⃗) = log Γ(

K
∑

i=1

αi) + log Γ(α+ β)− log Γ(α)− log Γ(β) + (β − 1) log(1−

K
∑

i=1

xi)

+(α−
K
∑

i=1

αi) log(
K
∑

i

xi) +
K
∑

i=1

(α− 1) log xi −
K
∑

i=1

log Γ(αi)

(21)

Now we calculate the log probability of observing each data according to each state of HMM as

follows:

L(π; θ⃗) = log[
N
∑

q=1

πqBL(X⃗|θ⃗)] (22)

πq is the probability of being in state q at specific time stamp. Our recursive equations to find the

parameters are derived using the batch mode, so we first go through directly finding the parameters

based on the fact that we access all the data in the beginning. Thus we need to take the partial

derivative of the Eq. (21) with respect to parameters θ⃗ = (α1, ..., αK , α, β) as bellow:

∂ logBL(X⃗|θ⃗)

∂αj
= ψ(

K
∑

i=1

αi)− log(
K
∑

i=1

xi) + log xj − ψ(αj) (23)

∂ logBL(X⃗|θ⃗)

∂α
= −ψ(α) + log(

K
∑

i=1

xi) + ψ(α+ β) (24)

∂ logBL(X⃗|θ⃗)

∂β
= −ψ(β) + log(1−

K
∑

i=1

xi) + ψ(α+ β) (25)
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ψ is the digamma function to describe the logarithmic derivative of the Gamma function.

Now the probability of the system following Beta-Liouville HMM being in specific state q at time

frame t given the observation x is:

π<q>
t logBL(xt|α< q >)

∑N
j=1

π<j>
t logBL(xt|α< j >)

where 1 ≤ q ≤ N , and N is the number of states. Therefore the total number of times there is a

transition from state q is:

T
∑

t=1

π<q>
t logBL(xt|α< q >)

∑N
j=1

π<j>
t logBL(xt|α< j >)

where 1 ≤ q ≤ N , and N is the number of states. Based on the explanation of full likelihood of

each observation sequence in Vaičiulytė and Sakalauskas (2020), the weighted averages is applied,

therefore, the batch formulas of θ⃗ = (α1, ..., αK , α, β) considering specific state q and according to

Eqs. (24), (25) and (26) are:

αi = ψ−1[ψ(
K
∑

i=1

(αq
i ))−

1

T

T
∑

t=1

π<q>
t logBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logBL(xt|θ⃗<j>)

+

1

T

∑T
t=1

log(xst )
π<q>
t logBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logBL(xt|θ⃗<j>)

1

T

∑T
t=1

π<q>
t logBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logBL(xt|θ⃗<j>)

] (26)

α = ψ−1[ψ(α+ β) +
1

T

T
∑

t=1

π<q>
t logBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logBL(xt|θ⃗<j>)

] (27)

β = ψ−1[ψ(α+ β) +

1

T

∑T
t=1

log(xst )
π<q>
t logBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logBL(xt|θ⃗<j>)

1

T

∑T
t=1

π<q>
t logBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logBL(xt|θ⃗<j>)

] (28)

where 1 ≤ q ≤ N , 1 ≤ s, i ≤ K. In the proposed recursive method, the parameters αi α and β

are updated based on their estimated values in the previous observation at time t − 1. The updated
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equations we derived are as follows:

θqt = πqt logBL(xt|θ⃗
<q>) , 1 ≤ q ≤ N (29)

ω<q,s>
t = ω<q,s>

t−1
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θjt
− ω<q,s>

t−1
) , 1 ≤ q ≤ N , 1 ≤ s ≤ K (30)

ν<q>
t = ν<q,s>

t−1
+

1

t
(
log(1−

∑K
i=1

xi)θ
q
t

∑N
j=1

θjt
− ν<q,s>

t−1
) , 1 ≤ q ≤ N , 1 ≤ s ≤ K (31)

γqt = γqt−1
+

1

t
(

θqt
∑N

j=1
θjt

− γqt−1
) , 1 ≤ q ≤ N (32)

α⃗<q,s>
t = ψ−1[ψ(

K
∑

i=1

(αq
i )− γqt +

ω<q,s>
t

γqt
] , 1 ≤ s ≤ K (33)

α<q>
t = ψ−1[ψ(

K
∑

i=1

(αq + βq) + γqt ] , 1 ≤ q ≤ N (34)

β<q>
t = ψ−1[ψ(

K
∑

i=1

(αq + βq)) +
ν<q>
t

ωq
t

] , 1 ≤ q ≤ N , 1 ≤ s ≤ K (35)

In the following, the proofs of the formulas of how retrieving ω, ν and γ are provided respectively.

ω<q,s>
t = ω<q,s>

t−1
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θji
− ω<q,s>

t−1
)

=
1

t− 1

t−1
∑

i=1

log(xst )θ
q
i

∑N
j=1

θji
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θjt
−

1

t− 1

t−1
∑

i=1

log(xst )θ
q
i

∑N
j=1

θji
)

=
1

t

t
∑

i=1

log(xsi )θ
q
i

∑N
j=1

θji

νt<q> = ν<q,s>
t−1

+
1

t
(
log(1−

∑K
i=1

xi)θ
q
t

∑N
j=1

θji
− ν<q,s>

t−1
)

=
1

t− 1

t−1
∑

i=1

log(1−
∑K

i=1
xi)θ

q
i

∑N
j=1

θji
+

1

t
(
log(1−

∑K
i=1

xi)θ
q
t

∑N
j=1

θjt

−
1

t− 1

t−1
∑

i=1

log(1−
∑K

i=1
xi)θ

q
i

∑N
j=1

θji
) =

1

t

t
∑

i=1

log(1−
∑K

i=1
xi)θ

q
i

∑N
j=1

θji
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γqt = γqt−1
+

1

t
(

θqt
∑N

j=1
(θjt )

− γqt−1
)

=
1

t− 1

t−1
∑

i=1

θqi
∑N

j=1
θji

+
1

t
(

θqt
∑N

j=1
θjt

−
1

t− 1

t−1
∑

i=1

θqi
∑N

j=1
θji

)

=
1

t

t
∑

i=1

θqi
∑N

j=1
θji

The approach used to estimate the parameters of Beta-Liouville HMM is presented in Algorithm 2.

The algorithm includes two main parts: 1) calculating the values of variables θ, ω, ν and γ according

to the Eqs. (29)-(32) respectively, and 2) updating the parameters α⃗<q,s>
t , α<q>

t and β<q>
t based

on Eqs. (33)-(35). At the beginning, we initialize the parameters α⃗, α, β, transition probability and

initial probability of being in each state at time step t = 1, by random numbers and the goal was to

reach the best value for α⃗, α and β such that our proposed model can well define the hidden states.

In this recursive classification algorithm, we receive the observation data in real time and update

the parameters α⃗, α and β and repeat the process in an iteration loop until we meet the termination

criterion (the difference between the parameter values in iteration t and t−1 is less than a threshold

ϵ = 0.66). For this purpose, we split the data sets into training and testing data, for the training part

at each iteration, do the E-step and M-step explained in Algorithm 2 until the termination condition

is met. At this step we have the updated α⃗, α and β ready to use for test data set in order to find the

hidden states which are considered as the labels. In the testing part, we use the Bayes rule to find

the closest state of each row of data. In fact, using the Bayes rule allows to calculate the probability

of assigning each state to the specific row of data and consider the highest probability as the most

probable hidden state for that observed data.

3.4 Experimental Results

In this section, we validate the proposed recursive parameter estimation of Beta-Liouville HMM

using real data sets. In addition, a comparison between Dirichlet HMM and Beta-Liouville HMM

is performed. In all the experiments mentioned bellow, the initial probability of the states at time

t = 1 is set equally the same for all the states, which means having n states the probability of being

in each state si, i = 1, 2, ..., n is 1

n
. The transition matrix indicating the probability of moving from
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Algorithm 2 Recursive expectation maximization algorithm for Beta-Liouville HMM parameter

estimation

Result:α⃗<q,s>

t , α<q>

t and β<q>

t , 1 ≤ t ≤ T, 1 ≤ s ≤ K, 1 ≤ q ≤ N
Initialization:initial parameters α⃗, α, β, first-probability of each state and transition-probability between

states

Input: each row of data set; xt, 1 ≤ t ≤ T

1: while ϵ >= α⃗t − α⃗t−1, ϵ >= αt − αt−1 and ϵ >= βt − βt−1 do

2: Normalize input vector xt;
3: E-step

4: Calculate values of θqt , ω
<q,s>

t , ν<q,s>

t , γqt ;

5: M-step:

6: Update values of α⃗<q,s>

t , α<q>

t , β<q>

t

7: end while

state si to state sj , i, j = 1, 2, ..., n are filled by random numbers. In addition, the parameters α and

β are assigned by random numbers for each states for each dimension of the data. The termination

criterion is set to ϵ = 0.66.

3.4.1 Real Data: Occupancy Estimation in Smart Buildings

In this section results of implementation of Beta-Liouville HMM on two different data sets and its

comparison with Dirichlet HMM are provided. Both data sets are related to occupancy detection and

estimation. The main motivation is that occupancy detection and estimation can be formalized using

HMMs since states are hidden and only the outputs including environmental manifestations such

as CO2 level, temperature of the area are provided Nasfi et al. (2020). The first data is Occupancy

detection data set Candanedo and Feldheim (2016) which is used for binary classification to compare

the two models namely Dirichlet HMM and Beta-Liouville HMM. This data set is obtained from

Machine Learning Repository of University of California Irvine (UCI). Each row of this data is

considered as an online input data for our recursive model. With the use of Beta-Liouville HMM,

we first estimate the hidden parameters according to the data then applying the Bayes rules to

classify the room as occupied or not. The features of this data set are environmental variables of a

room which are explained in details below. Estimated parameters of the Dirichlet HMM and Beta-

Liouville HMM using this data set are shown in Table 3.2. Classification measures are shown in

Table 3.1. This data set has been collected from sensors of light, temperature humidity and CO2 to

detect occupancy Candanedo and Feldheim (2016). Here the hidden states are status of the room
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from the aspect of being or not being occupied and the observable states are the features as below

which are indicated as a time series: 1) Temperature, in Celsius, 2) Relative Humidity, 3) Light, in

Lux, 4) CO2, in ppm, 5) Humidity Ratio, Derived quantity from temperature and relative humidity,

in kgwater-vapor/kg-air. This data set has 2 hidden states and 5 dimensions considered as 5 features

as explained above. To have a high-level view of the data set, its distribution according to each

feature is displayed in Fig. 2.2.

Table 3.1: Accuracy, f-score, precision and recall in percent for Dirichlet HMM and Beta-Liouville

HMM applied for occupancy detection data set.

Model Accuracy F-score Precision Recall

BL-HMM 78.98 69.71 62.39 78.98

D-HMM 75.74 63.10 66.62 75.74

Table 3.2: Estimated parameters for Dirichlet HMM and Beta-Liouville HMM for occupancy de-

tection data set.
Model Number of States Parameters

BL-HMM 2 α =
[

0.8245 1.5745
]

β =
[

0.4709 0.1912
]

δ =

[

0.1503 0.0017 0.5473 0.8021 0.3163
[0.1450 0.1459 0.3444 1.4569 0.1403

]

D-HMM 2 α =

[

0.5064 0.51725 0.6047 75.7309 0.4605
0.2574 0.2601 1.5703 18.0087 0.2432

]

As shown in Table 3.2, in terms of Beta-Liouville HMM, α and β have 2 different values according

to the number of states which is 2 as well, while parameter δ is described as a 2×4 matrix. Each row

indicates the values for each states respectively and each column is derived based on the features of

the data sets.

The second data set that has been used to evaluate the developed model is an office-occupancy data

set. Unlike the previous application, it is considered as a multi-class classification as the test-bed

was an office in Grenoble institute of Technology hosting four people Nasfi et al. (2020). This

data set is described by four attributes which are motion, power consumption, acoustic-pressure
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and door-opening. Table 3.3 provides the estimated parameters of the Dirichlet HMM and Beta-

Liouville HMM. In this data set, the hidden states are the number of attendants in a room and the

observable outputs are the attributes values which are considered as environmental factors. The

evaluation results are given in Table 3.4. This data set has 5 hidden states and 4 dimensions. The

data distributions with respect to the different attributes are provided in Fig. 2.3.

Table 3.3: Parameter values for Dirichlet HMM and Beta-Liouville HMM parameters for office

occupancy data.

Model Number of States Parameters

BL-HMM 5 α =
[

17.9097 0.9136 0.2120 0.1412 0.3679
]

β =
[

3.8418 0.3897 0.5251 0.7228 0.8409
]

δ =













1.8642 0.8634 0.6992 0.7066
0.9331 0.7037 0.6461 0.6487
0.6620 0.8044 0.1265 0.7309
0.2593 0.8164 0.8471 0.8665
0.9548 0.2715 0.8045 0.04926













D-HMM 5 α =













2.7746 0.8220 0.8797 1.0617
2.5784 0.3424 0.8706 0.8711
0.4348 0.8180 0.0873 0.0590
1.8384 0.9840 0.4037 0.3731
0.3054 0.9850 0.4771 0.5966













As shown in Table 3, in this data set due to the fact that the number of hidden states are 5 the

matrix indicating the parameter α has 5 rows and 4 columns as we have considered 4 features of

the data in our evaluation in terms of Dirichlet HMM. However, in Beta-Liouville HMM we have

3 parameters which are demonstrated in a matrix based on the number of states and number of

features. According to Table 3.1 and Table 3.4, it is clear that the Beta-Liouville HMM provides

better estimation results which in turn provide more accurate hidden states for each observation. The

Table 3.4: Accuracy, f-score, precision and recall in percent for Dirichlet HMM and Beta-Liouville

HMM for office-occupancy data set.

Model Accuracy F-score Precision Recall

BL-HMM 80.55 74.20 69.27 80.55

D-HMM 75.00 67.66 73.85 75.00
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flexibility of Beta-Liouville over Dirichlet distribution to model the emission probability of HMM

is also proven. In the occupancy detection data set, 216 observations analyzed in testing part which

172 of them were classified correctly with Beta-Liouville HMM, while we have 162 well classified

observations using Dirichlet HMM.

3.5 Conclusion

The goal of this work was to formulate recursive parameter estimation of Beta-Liouville HMM

to tackle the modeling of online data. In this chapter, we specifically focus on occupancy states

of rooms in smart buildings using real-world data. This model can be widely used in real-life

applications due to its 2 key characteristics; 1) recursive algorithm: the complexity of our model

is reduced to linear as compared with offline batch learning, thus, this model can be applied on

even large data sets without facing limited time and memory computations, 2) Beta-Liouville as an

underlying distribution: this distribution provides flexibility and accurate results for a wide range

of data sets. Future work could be devoted to applying different initialization methods in order to

investigate to what extent the initial values may affect the accuracy of parameter estimation at the

end. Furthermore, in the specific context of smart buildings occupancy estimation, experiments can

be done to evaluate the effectiveness of each features used by the integration of a feature selection

methodology within the proposed model.
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Chapter 4

HMMs Recursive Parameters

Estimation for Occupancy Estimation in

Smart Buildings

Optimizing energy consumption is one of the key factors in smart buildings developments. It is

crucial to estimate the number of occupants and detect their presence when it comes to energy

saving in smart buildings. In this chapter, we propose a Hidden Markov Models (HMM)-based

approach to estimate and detect the occupancy status in smart buildings. In order to dynamically

estimate the occupancy level, we develop a recursive estimation algorithm. The developed models

are evaluated using two different real data sets.

4.1 Introduction

The daily increase in energy consumption has led to global warming. Global energy demand has

continuously increased while building sector has had a major effect in this rapid growth in energy

consumption Kim et al. (2022). In this context, smart buildings promise automated systems to con-

trol energy consumption. Environmental control systems have been proved as a crucial factor in

smart buildings. Another decisive factor in energy consumption concerns the occupants themselves

Gaetani, Hoes, and Hensen (2016). Automatic occupancy detection and estimation approaches
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allow building energy systems to manage the energy consumed. While 35% of USA’s energy con-

sumption is attributed to the heating, cooling and ventilation (HVAC) systems Ali and Bouguila

(2022); Erickson, Carreira-Perpi, and Cerpa (2014), occupants’ behavior has also a major influence

on building energy consumption Jiang, Liu, and Yang (2004); Ploix, Amayri, and Bouguila (2021);

Sarkar, S.N., and Prasad (2016); Scott et al. (2011); Soltanaghaei and Whitehouse (2016).

Studies have shown that machine learning algorithms are crucial for smart buildings applications

Alawadi et al. (2020). For instance, machine learning models have been used to measure HVAC

actuation levels Ebadat, Bottegal, Varagnolo, Wahlberg, and Johansson (2013); Ploix et al. (2021).

Furthermore, a supervised learning model has been developed in Amayri et al. (2016) to estimate

the number of occupants based on sensorial data (e.g. motion detection, power consumption, CO2

concentration sensors, microphone, or door/window positions) Ploix et al. (2021).

Machine learning approaches can be grouped into 3 main categories: 1) generative models such as

mixture models and HMMs, 2) Discriminative models such as support vector machine (SVM) and

3) Heuristic-based models which combine the 2 previous families with heuristic information Ploix

et al. (2021). In this chapter we propose HMM-based occupancy models. A first crucial factor

when deploying a HMM model is the choice of probability density function Nguyen et al. (2019).

Thus, we investigate 3 distributions dedicated for semi-bounded data (i.e. positive vectors) which

are detailed in section 2. The second important factor is to estimate the unknown parameters which

is generally done using maximum likelihood estimation (MLE) within the expectation maximiza-

tion (EM) framework. Handling real-time data of smart buildings requires continuous processing

which is challenging Bouhamed, Amayri, and Bouguila (2022); Elkhoukhi, Bakhouya, Ouadghiri,

and Hanifi (2022). Therefore, one of the motivations of this chapter is to propose a novel architec-

ture to cope with real-time data. Online learning techniques provide solutions addressing real-time

occupancy estimation to build models that can be continuously updated Amayri, Ploix, Bouguil,

and Wurtz (2020). We introduce a recursive algorithm with linear time complexity to further detect

and/or estimate the number of occupants.

The rest of this chapter is organized as follows. Section 2, introduces the inverted Dirichlet HMM,

generalized inverted Dirichlet HMM and inverted Beta-Liovuille HMM, section 3 investigates the

recursive model and the proposed algorithm. Experimental results are presented in section 4 and in
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section 5 we concludes the chapter.

4.2 Background

In this section, we first discuss HMM in details, then describe the 3 probability density functions

dedicated to positive vectors which have been investigated in this chapter.

4.2.1 Hidden Markov Models

HMMs are powerful statistical models. The idea of HMM comes from a limit of Markov model

in modeling problems which output is the probabilistic function of the states Rabiner (1989). This

function called emission probability is described in details in the following sections. Indeed, we

assume more general distributions dedicated to positive vectors to model the output observable data

from HMM to have more flexible models. It is noteworthy to mention the denomination of Hidden

in HMM refers to the states not the parameters of the model Dymarski (2011). Markov chain is

referred to a time-varying random phenomenon Dymarski (2011) meeting the Markov property

which indicates that the conditional probability of the forthcoming state is just based on the current

state and not on historical information, which can be mathematically formulated as bellow:

p(Xt+1|Xt, Xt−1, ..., X1) = p(Xt+1|Xt) (36)

HMM elements are completely defined as follow, however, it is mainly represented by three param-

eters λ = (π,A,B) Vaičiulytė and Sakalauskas (2020).

1) The number of states N , each state is defined by Si such that S = 1, 2, ..., N .

2) Vector π = π1, π2, ..., πN indicate the probability of being in each state.

3) The number of possible observationsM for each state as V = V1, V2, ..., VM . In case of our work

that observations come from the distributions that we will define later, they are continuous thus, M

is infinite.

4) A is the state transition probability matrix such that ai,j , 1 ≤ i, j ≤ N is the probability of

moving to state j at time t+1 while the model was in state i at time t. The constraints for transition
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matrix should be met as bellow Dymarski (2011):

ai,j >= 0,
N
∑

j=1

ai,j = 1, 1 ≤ i, j ≤ N

5) B is the matrix showing the observation probability where bj(k) is the probability of observing

Vk in state Sj .

bj(k) = p(V t
k |S

t
j), 1 ≤ i, j ≤ N

The constraints for continuous observations are defined based on the specific probability distribution

considered:

bj(k) =

M
∑

m=1

cjmp(x|θ)

where θ represents the parameters of the defined distribution, cjm is weighting coefficient with

∑M
m=1

cjm = 1

bj(k) >= 0, 1 ≤ j ≤ N, 1 ≤ k ≤M,

M
∑

j=1

bj(k) = 1

4.2.2 Inverted Dirichlet Distribution

Consider X = (x1, x2, ..., xK) as a vector following the inverted Dirichlet distribution ID(α) with

parameter α = (α1, α2, ..., αK , αK+1), the probability density function has the following form

Bdiri and Bouguila (2013):

p(x1, x2, ..., xK) =
Γ(α0)

∏K+1

i=1
Γ(αi)

K
∏

i=1

xαi−1

i (1 +

K
∑

i=1

Xi)
−α0 ,
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where

α0 =
K+1
∑

i=1

αi,

xi > 0, i = 1...K

The mean and variance of the inverted Dirichlet distribution and the covariance between xi and xj

are as given in Bdiri and Bouguila (2012); Tiao and Cuttman (1965):

E(xi) =
αi

αK+1 − 1
(37)

V ar(xi) =
αi(αi + αK+1 − 1)

(αK+1 − 1)2(αk+1 − 2)
(38)

Cov(xi, xj) =
αiαj

(αK+1 − 1)2(αK+1 − 2)
(39)

4.2.3 Generalized Inverted Dirichlet Distribution

Inverted Dirichlet distribution assumes a positive correlation, therefore a generalization of it

is introduced to cope with this limitation in order to have the capability of modeling wider range

of real-life data Bourouis, Mashrgy, and Bouguila (2014). Consider X = (x1, x2, ..., xK) as a

vector following the Generalized Inverted Dirichlet distribution GID(α;β) with parameter α =

(α1, α2, ..., αK , αK) and β = (β1, β2, ..., βK). The probability density function has the following

form Bourouis et al. (2014); lingmnwah (1976):

p(x1, x2, ..., xK) =

K
∏

i=1

Γ (αi + βi)

Γ (αi) Γ (βi)

xαi−1

i

(1 +
∑i

m=1
xm)ηi

(40)

where
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ηi = βi + αi − βi+1 i = 1, 2, ...,K,

βK+1 = 0,

xi > 0, i = 1...K.

By substituting β1 = β2 = ... = βK−1 = 0 in Eq. (40), inverted Dirichlet distribution with

parameter α = (α1, α2, ..., αK , αK , βK) is obtained Bourouis et al. (2014); lingmnwah (1976).

4.2.4 Inverted Beta-Liouville Distribution

Inverted Beta-Liouville distribution (IBL) has been proved as an efficient way of modeling

positive vectors Bouguila (2014); Bouguila, Fan, and Amayri (2022); Bourouis et al. (2021); Fan

and Bouguila (2019). It overcomes the limit of the Inverted Dirichlet in the aspect of positive

covariance and presents less parameters as compared with generalized Inverted Dirichlet Bouguila

et al. (2022); Bourouis et al. (2021). IBL is in in the family of the Beta-Liouville distribution which

is a natural model for analyzing compositional data Fang et al. (2018). Consider r = λw/(1 − w)

which w is a Beta distribution with parameters α and β as the generating variate, thus r follows an

inverted Beta distribution with parameters β and λ. The generating density function is described as

bellow Fang et al. (2018):

f(u|θ) =
1

B(α, β)

λβuα−1

(λ+ u)α+β
(41)

where u > 0 and θ = (α, β, λ). The Liouville distribution with positive parameters (α1, α2, ..., αK)

and generating density of f(.) with parameter δ is defined as below Bouguila (2012); Fang et al.

(2018):
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p(X⃗|α1, ..., αK , δ) = f(u|δ)
Γ(

∑K
i=1

αi)

u

∑K
i=1

αi − 1

K
∏

i=1

xαi−1

i

Γ(αi)
(42)

Now by substituting Eq. (41) into Eq. (42) we have the probability density function for X⃗ as

follows:

p(x1, x2, ..., xK) =
Γ(α0)Γ(α+ β)

Γ(α)Γ(β)

λβ(
∑K

i=1
xi)

α−α0

(λ+
∑K

i=1
xi)α+β

K
∏

i=1

xαi−1

i

Γ(αi)
(43)

where θ = (α1, α2, ..., αK , α, β, λ) is the vector of parameters and

α0 =

K
∑

i=1

αi,

xi > 0, i = 1...K

This distribution can be converted to inverted Dirichlet distribution by equalizing α = α0 Fang et

al. (2018).

The mean and variance of the IBL distribution and the covariance between xn and xm are as follows

Hu, Fan, Du, and Bouguila (2019); Koochemeshkian, Zamzami, and Bouguila (2020):

E(xi) =
λααi

(β − 1)(
∑K

i−1
αi)

(44)

V ar(xi) =
λ2ααi(α+ 1)2

(β − 1)(β − 2)
∑K

i=1
αi

∑K
i=1

αi + 1
−

λ2α2α4
i

(β − 1)2(
∑K

i=1
αi)4

(45)

Cov(xn, xm) =
α1αm

∑K
i=1

αi

[
λ2αα+ 1

(β − 1)2(β − 2)(
∑K

i=1
xi)

−
λ2α2

(β − 1)2(
∑K

i=1
αi)

] (46)
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4.3 Recursive Model

In this section, the novel proposed models are described mathematically. As the first step to learn

the HMM parameters, we need to estimate the distribution parameters of the HMM Vaičiulytė and

Sakalauskas (2020). To achieve this goal we calculate the log likelihood of each probability density

function then maximize it. Each probability density function is explained in a different sub-section.

However, the whole process is the same. It is noteworthy that ψ used in equations below is the

Digamma function which is the logarithmic derivative of the Gamma function. The probability that

sequence x is observed while the system is at specific time t considering state q, which can be any

in range of q = 1, , 2, ..., N , is:

π<q>
t log distribution(xt|α< q >)

∑N
j=1

π<j>
t log distribution(xt|α< j >)

(47)

Now the summation over t in Eq. (47) indicates the probability of the model being in specific state

considering specific output sequence x is observed:

T
∑

t=1

π<q>
t log distribution(xt|α< q >)

∑N
j=1

π<j>
t log distribution(xt|α< j >)

(48)

where “distribution” refers to each distribution we have used in this chapter.

Here, we define some same variables which are used in the rest of the chapter for all the 3 distribu-

tions.

θqt = πqt log distribution(xt|θ⃗
<q>) (49)

ω<q,s>
t = ω<q,s>

t−1
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θjt
− ω<q,s>

t−1
) (50)
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γqt = γqt−1
+

1

t
(

θqt
∑N

j=1
θjt

− γqt−1
) (51)

where

1 ≤ q ≤ N , 1 ≤ s, i ≤ K

4.3.1 Inverted Dirichlet Distribution

The log likelihood function of inverted Dirichlet (ID) distribution is as follows:

log ID(X⃗|θ⃗) = log Γ(

K+1
∑

i=1

αi) +

K
∑

i=1

(αi − 1) log xi − (

K+1
∑

i=1

αi) log(1 +

K
∑

i=1

xi)−

K+1
∑

i=1

log Γ(αi)

(52)

To maximize the above equation, derivative of it with respect to each parameter is shown below:

∂ log ID(X⃗|θ⃗)

∂αj
=















ψ(
∑K+1

i=1
αi) + log xj − log(1 +

∑K
i=1

xj)− ψ(αj) if j = 1, 2, ...,K

ψ(
∑K+1

i=1
αi)− log(1 +

∑K
i=1

xj)− ψ(αj) if j = K+1

Now the batch formula to derive αi is as below:

αi = ψ−1[ψ(
K+1
∑

i=1

(αq
i )) +

1

T

∑T
t=1

log(xst )
π<q>
t log ID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log ID(xt|θ⃗<j>)

1

T

∑T
t=1

π<q>
t log ID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log ID(xt|θ⃗<j>)

−
1

T

T
∑

t=1

π<q>
t log ID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log ID(xt|θ⃗<j>)

], i = 1, 2, ...K (53)

αK+1 = ψ−1[ψ(

K+1
∑

i=1

(αq
i ))−

1

T

T
∑

t=1

π<q>
t log ID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log ID(xt|θ⃗<j>)

] (54)

47



where

1 ≤ q ≤ N , 1 ≤ s ≤ K

By defining middle variables in Eqs. (49), (50) and (51), we derive the recursive formulas to calcu-

late values of the parameters. We assume each observation occurs in specific time step t. Therefor,

in our recursive model, the parameters are updated as time goes until they meet the condition of

|θnew − θold| <= ϵ. Here the middle variables and the main parameters are explained:

α<q,s>
t = ψ−1[ψ(

K+1
∑

i=1

(αq
i )) +

ω<q>
t

γqt
− γqt ] (55)

α<q,K+1>
t = ψ−1[ψ(

K+1
∑

i=1

(αq
i )) +

ω<q>
t

γqt
− γqt ] (56)

where

1 ≤ q ≤ N , 1 ≤ s, i ≤ K

4.3.2 Generalized Inverted Dirichlet Distribution

The log likelihood function of generalized inverted Dirichlet (GID) distribution is as follows:

logGID(X⃗|θ⃗) =
K
∑

i=1

log(αi + βi) + (αi − 1) log xi − log Γ(αi)− log Γ(βi)− η log(1+
i

∑

m=1

xm)

(57)

To maximize the above equation, derivative of it with respect to each parameter is shown below:

∂ logGID(X⃗|θ⃗)

∂αj
= ψ(αj + βj) + log(xj)− ψ(αj)− log(1 +

j
∑

m=1

xm) (58)

∂ logGID(X⃗|θ⃗)

∂βj
= ψ(αj + βj)− ψ(βj)− log(1 +

j
∑

m=1

xm) (59)
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Now the batch formulas to derive αi and βi are as below:

αi = ψ−1[ψ(αi + βi) +

1

T

∑T
t=1

log(xst )
π<q>
t logGID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logGID(xt|θ⃗<j>)

1

T

∑T
t=1

π<q>
t logGID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logGID(xt|θ⃗<j>)

−
1

T

T
∑

t=1

π<q>
t logGID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logGID(xt|θ⃗<j>)

] (60)

βi = ψ−1[ψ(αi + βi)−
1

T

T
∑

t=1

π<q>
t logGID(xt|θ⃗

<q>)
∑N

j=1
π<j>
t logGID(xt|θ⃗<j>)

] (61)

where

1 ≤ q ≤ N , 1 ≤ s, i ≤ K

Based on the logic we explained in previous section, we obtain the following:

α<q,s>
t = ψ−1[ψ(α+ β) +

ω<q>
t

γqt
− γqt ] (62)

β<q,s>
t = ψ−1[ψ(α+ β)− γqt ] , 1 ≤ q ≤ N (63)

where

1 ≤ q ≤ N , 1 ≤ s ≤ K

4.3.3 Inverted Beta-Liouville Distribution

The log likelihood function of inverted Beta-Liouville (IBL) distribution is as follows:
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log IBL(X⃗|θ⃗) = log Γ(
K
∑

i=1

αi) + log Γ(α+ β)− log Γ(α)− log Γ(β) + β log λ+ (α−
K
∑

i=1

αi)

log(

K
∑

i=1

xi)− (α+ β) log(λ+

K
∑

i=1

xi) +

K
∑

i=1

(αi − 1) log xi −

K
∑

i=1

log Γ(αi)

(64)

To maximize the above equation, derivative of it with respect to each parameter is shown below:

∂ log IBL(X⃗|θ⃗)

∂αj
= ψ(

K
∑

i=1

αi) + log xj − ψ(αj)− log(
K
∑

i=1

xi) (65)

∂ log IBL(X⃗|θ⃗)

∂α
= ψ(α+ β)− ψ(α) + log(

K
∑

i=1

xi)− log(λ+
K
∑

i=1

xi) (66)

∂ log IBL(X⃗|θ⃗)

∂β
= ψ(α+ β)− ψ(β) + log λ− log(λ+

K
∑

i=1

xi) (67)

∂ log IBL(X⃗|θ⃗)

∂λ
=
β

λ
−

α+ β

λ+
∑K

i=1
xi

(68)

Now the batch formulas to derive αi, α, β, λ are as below:

αi = ψ−1[ψ(

K
∑

i=1

(αq
i )) +

1

T

∑T
t=1

log(xst )
π<q>
t log IBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log IBL(xt|θ⃗<j>)

1

T

∑T
t=1

π<q>
t log IBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log IBL(xt|θ⃗<j>)

−
1

T

T
∑

t=1

π<q>
t log IBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log IBL(xt|θ⃗<j>)

] (69)

α = ψ−1[ψ(α+ β) +
1

T

T
∑

t=1

π<q>
t log IBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log IBL(xt|θ⃗<j>)

] (70)

β = ψ−1[ψ(α+ β) + log λ−
1

T

T
∑

t=1

π<q>
t log IBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log IBL(xt|θ⃗<j>)

] (71)
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λ =
β

α

1

T

T
∑

t=1

π<q>
t log IBL(xt|θ⃗

<q>)
∑N

j=1
π<j>
t log IBL(xt|θ⃗<j>)

(72)

1 ≤ q ≤ N , 1 ≤ s, i ≤ K

Based on the middle variables defined earlier, above explanation of recursive logic and the batch

formula of IBL, the main parameters are described as below:

α<q,s>
t = ψ−1[ψ(

K+1
∑

i=1

(αq
i )) +

ω<q>
t

γqt
− γqt ] (73)

α<q,s>
t = ψ−1[ψ(α+ β) + γqt ] (74)

β<q,s>
t = ψ−1[ψ(α+ β) + log γ − γqt ] (75)

λ<q,s>
t =

β

α
γ (76)

where 1 ≤ q ≤ N , 1 ≤ s ≤ K. We present the recursive proof of the model equations:

ω<q,s>
t = ω<q,s>

t−1
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θji
− ω<q,s>

t−1
)

=
1

t− 1

t−1
∑

i=1

log(xst )θ
q
i

∑N
j=1

θji
+

1

t
(
log(xst )θ

q
t

∑N
j=1

θjt

−
1

t− 1

t−1
∑

i=1

log(xst )θ
q
i

∑N
j=1

θji
) =

1

t

t
∑

i=1

log(xsi )θ
q
i

∑N
j=1

θji
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γqt = γqt−1
+

1

t
(

θqt
∑N

j=1
(θjt )

− γqt−1
)

=
1

t− 1

t−1
∑

i=1

θqi
∑N

j=1
θji

+
1

t
(

θqt
∑N

j=1
θjt

−
1

t− 1

t−1
∑

i=1

θqi
∑N

j=1
θji

)

=
1

t

t
∑

i=1

θqi
∑N

j=1
θji

We briefly explain the algorithm for all of the models in Algorithm 3 which is based on the expectation-

maximization framework.

Please note that in Algorithm 3. the 3 following variables µ⃗1=(α1, α2, ..., αK , αK+1),

µ⃗2=(α1, α2, ..., αK , αK , β1, β2, ..., βK), µ⃗3=(α1, α2, ..., αK , α, β, λ) are representative of ID-HMM,

GID-HMM and IBL-HMM parameters respectively.

Algorithm 3 Recursive expectation maximization algorithm for ID-HMM, GID-HMM and IBL-

HMM parameter estimation

Result:µ⃗1, µ⃗2 and µ⃗3 with respect to this conditions, 1 ≤ t ≤ T, 1 ≤ s ≤ K, 1 ≤ q ≤ N
Initialization: µ⃗1, µ⃗2, µ⃗3, initial-probability of each state and transition-probability between states

Input: each row of dataset; xt, 1 ≤ t ≤ T

1: while µ⃗1t − µ⃗1t−1 < ϵ, µ⃗2t − µ⃗2t−1 < ϵ, µ⃗3t − µ⃗3t−1 < ϵ do

E-step

2: Calculate values of θqt , ω
<q,s>

t , γqt ;

M-step:

3: Update values of µ⃗1, µ⃗2, µ⃗3

4: end while

The algorithm starts with random initialization of the parameters of both HMM and distributions

we consider for data. Then, the algorithm goes through the loop for E-step and M-step until the

termination criterion is met which is based on monitoring the difference between the previous value

and update one of each parameter after each loop. This difference value is shown as ϵ and set to 0.6.

As we have mentioned before, in each loop the values are updated based on the new rows of data

feed to the model. We assume that each row of dataset occurs in a specific time, so that each time

the new data is obtained, parameters are updated.
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4.4 Experimental Results

In this section we present the validation of our proposed models using 2 different real datasets for

both binary and multiclass classification of occupants in smart buildings. Data that we have inves-

tigated, is collected during time. Thus, based on the logic of its application to estimate occupants

in a room, each row of data shows the conditions of the room with the number of people in specific

time, so we were able to train the model as each row of the data comes, to update the parameters. In

that case we have successfully overcame the problem of batch learning for intensive data. The main

motivation to evaluate our model on occupancy datasets is the fact that in smart buildings the goal

is to automate the systems related to HVAC (heating, ventilation, air condition) which offers less

energy wasting along with better comfort of residents for facilities management strategic decisions.

In smart buildings the sensors collecting environmental factors like the amount of CO2 concentra-

tion, temperature, relative humidity, etc are integrated in automation settings. Thus, we have the

collected information of sensors in hand allowing us to estimate the number of occupants. This is

the idea in HMM, by mapping the collected data as our observation and the number of occupants as

the hidden states. In all of the experiments, we define the initial probability of each states (matrix

π explained earlier) as 1

n
assuming n is the total number of states. Transition matrix along with

each distributions’ parameters are assigned randomly considering their limit according to the dis-

tribution definition. The termination criterion of the algorithm to avoid endless recursion is set to

ϵ = 0.6. To analyze our datasets collected over time, we assume each record occurred in new time

step. Therefore, in our recursive model, the parameters are updated as new record of data feed into

the model.

Binary classification dataset (occupancy detection dataset): The first data used to evaluate our

models is related to occupancy detection. This dataset is obtained from Machine Learning Repos-

itory of University of California Irvine (UCI). Fig. 2.2 describes the distribution of the features.

Dataset consists of 5 different features as below which are indicated in a time series:

• Temperature, in Celsius

• Relative Humidity,
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• Light, in Lux

• CO2, in ppm

• Humidity Ratio, Derived quantity from temperature and relative humidity, in kgwater-vapor/kg-

air

Table 4.1: Estimated parameters for ID-HMM, GID-HMM and IBL-HMM for occupancy detection

dataset.
Model Number of States Parameters

ID-HMM 2 α =

[

0.2389 0.2414 0.4244 12.47 0.2266 13.03
0.2346 0.2369 1.196 12.42 0.2227 13.34

]

GID-HMM 2 α =

[

8.723 8.706 8.708 8.876 8.633
8.786 8.603 8.610 8.778 8.586

]

β =

[

8.281 8.149 8.164 9.564 7.607
9.329 9.339 9.329 9.330 9.328

]

IBL-HMM 2 α⃗ =

[

0.9105 0.5656 0.0679 0.0322 0.5916
0.3517 0.3470 0.1467 0.1037 0.3807

]

α =
[

0.7223 2.478
]

β =
[

0.6733 0.5181
]

λ =
[

2.89 2.03
]

This dataset has two different parts for training and testing. We have used the training data to train

the model to estimate its parameters, then using the test data to evaluate the models.

Table 4.1 shows the number of hidden states for the occupancy detection dataset along with

the values of the model parameters. The values computed through the EM algorithm are explained

earlier. Model parameters, based on the distribution considered for emission probability in HMM,

follow different dimensions. Table 4.2 indicates the evaluation results of our model based on the 3

distributions we discussed which are computed on the testing dataset.

Multiclass classification dataset (occupancy estimation dataset): This dataset is used for occu-

pancy estimation in smart building as the goal was to estimate the number of occupants from 0 to

4. Thus, the number of hidden states in this sample will be 5. This dataset is obtained from an

experiment which testbed was an office in Grenoble Institute of Technology in France Nasfi et al.

(2020). This data was obtained from 30 sensors of motions, power consumption, acoustic pressure,
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Table 4.2: Accuracy, F-score, precision and recall in percent for Inverted Dirichlet HMM, Gener-

alized Inverted Dirichlet HMM and Inverted Beta-Liouville HMM applied for occupancy detection

dataset.

Model Accuracy F-score precision recall

ID-HMM 86.81 85.65 82.86 85.65

GID-HMM 86.90 87.55 89.22 86.90

IBL-HMM 84.00 79.85 86.58 84.00

Table 4.3: Estimated parameters for ID-HMM, GID-HMM and IBL-HMM for occupancy estima-

tion dataset.
Model Number of States Parameters

ID-HMM 5 α =













0.5860 0.0859 0.9971 0.5545 0.2836
0.5054 0.9837 0.2110 0.7645 0.9573
0.3307 0.1928 0.3457 0.2385 0.7199
0.4826 0.3005 0.1633 0.8344 0.9434
0.5469 0.4305 0.3090 0.0707 0.6270













GID-HMM 5 α =













7.361 6.149 4.917 4.447
2.146 2.493 2.591 2.592
4.498 5.912 6.943 6.747
1.057 1.062 1.369 1.134
8.013 6.171 1.003 5.850













β =













5.294 1.663 1.329 1.200
2.720 3.288 3.456 3.457
1.365 1.426 1.543 1.490
2.365 4.393 3.264 2.781
1.211 9.174 4.215 2.368













IBL-HMM 5 α⃗ =













15.25 40.16 39.95 39.33
0.1666 0.4702 0.7526 0.6555
0.3187 0.4525 0.718 0.6868
0.1185 0.1837 0.3916 0.2882
0.1212 0.1379 0.3014 0.2345













α =
[

0.6309 15.27 13.84 18.46 8.989
]

β =
[

0.1706 2.971 73.36 33.32 38.40
]

λ =
[

6.469 2.001 0.3127 2.343 1.790
]

and door position Amayri et al. (2020). In order to investigate the model we split the dataset into

training and testing data. We use the training data to estimate the parameters of our model then

apply the trained model on testing data for classification to estimate the number of occupants. Table
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Table 4.4: Accuracy, F-score, precision and recall in percent for Inverted Dirichlet HMM, Gener-

alized Inverted Dirichlet HMM and Inverted Beta-Liouville HMM applied for occupancy detection

dataset.

Model Accuracy F-score precision recall

ID-HMM 80.59 79.25 79.36 84.51

GID-HMM 78.24 85.27 82.87 88.02

IBL-HMM 74.53 86.86 87.93 89.94

4.3 represents the values of parameters for each model learned with occupancy estimation dataset,

while the evaluation metrics are shown in Table 4.4. The visualisation of the data is presented in

Fig. 2.3.

4.5 Conclusion

In this chapter, we introduce a novel approach for occupancy estimation in smart buildings through

HMMs. Considering the inverted Dirichlet, generalized inverted Dirichlet and inverted Beta-Liouville

distributions as underlying distributions describing the observation data in HMM. The models have

been successfully evaluated on real-data of occupancy estimation. The goal was to reach an accurate

prediction of number of occupants in a room which plays a key role in smart buildings technology

to reduce energy consumption. One of the main motivations to apply these distributions is their

flexibility. Therefore, they can be used in extensive range of applications. In addition, the devel-

oped models are based on a recursive approach, thus the time complexity of the algorithm reduces

to linear time as compared with batch processing which in turn causes a substantial decrease in

memory overload and computational resources. Future aspirations could be devoted to improve the

initialization methods. Additionally, due to the importance of prepossessing data in machine learn-

ing models, to further enhance the model accuracy, feature selection and data quality assessment

methods could be investigated.
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Chapter 5

Conclusion

In this thesis, we have studied HMMs and developed a number of models as novel methods of su-

pervised learning for the task of occupancy estimation in smart buildings. We tackle the challenges

of modeling positive vectors by applying several distributions as the emission probability of the

HMMs. Although HMMs have been studied in numerous research works but still the choice of

appropriate emission probabilities need to be addressed. In each chapter, we have considered var-

ious underlying distributions of HMM. Generally, we have developed statistical machine learning

models to formulate recursive parameter estimation of non-Gaussian HMMs to tackle the model-

ing of data obtained from smart buildings. We focused on estimation of the state of occupancy of

smart building’s rooms which is considered as the hidden states in our models. The goal of smart

buildings relies on estimating the number of occupants within it which corresponds to the nature

of HMM while satisfying two objectives; the users comfort and energy saving. The models can be

widely used in a variety of real-life applications according to their main characteristics of 1) recur-

sive algorithms and 2) flexibility of chosen emission probabilities. It is noteworthy to mention the

advantage of recursive algorithms in our models over iterative ones is the linear complexity which in

turn allows us to apply these models to analyse even larger datasets without facing memory overload

or computational resources.

In chapter 2, we introduced Generalized Dirichlet HMM and discuss its advantages over Dirichlet

HMM. Due to the lack of Dirichlet distribution in modeling various patterns of variability, we have

5 started by applying Generalized Dirichlet as an underlying distribution of HMM which overcomes
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the restrictive negative covariance of Dirichlet distribution.

In chapter 3, we formulated recursive parameter estimation of Beta-Liouville HMM and compare

our newly proposed model’s performance to Dirichlet HMM based on the more general covariance

of Beta-Liouville distribution in modeling data.

In chapter 4, we proposed 3 novel models of Inverted Dirichlet HMM, Generalized Inverted Dirich-

let HMM and Inverted Beta-Liouville HMM for recursive parameter estimation in HMM. These

models have been successfully evaluated using real-life datasets of smart buildings.

Future aspirations can be devoted to contributing to this work to further improve the accuracy of

each of the models by applying feature selection techniques on datasets. Another interesting venue

for future work is investigating the models’ capabilities for infinite real-life applications and modi-

fying them in order to be able to adopt infinite hidden states.
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Erickson, V. L., Carreira-PerpiñÂan, M. ÂA., & Cerpa, A. E. (2011). Observe: Occupancy-based sys-

tem for efficient reduction of hvac energy. In Proceedings of the 10th acm/ieee international

conference on information processing in sensor networks (pp. 258±269).

Fan, W., & Bouguila, N. (2012). Online variational finite dirichlet mixture model and its applica-

tions. In 2012 11th international conference on information science, signal processing and

their applications (isspa) (p. 448-453).

Fan, W., & Bouguila, N. (2013a). Infinite dirichlet mixture models learning via expectation propa-

gation. Adv. Data Anal. Classif., 7(4), 465±489.

Fan, W., & Bouguila, N. (2013b). Learning finite beta-liouville mixture models via variational

bayes for proportional data clustering. In F. Rossi (Ed.), IJCAI 2013, proceedings of the 23rd

international joint conference on artificial intelligence, beijing, china, august 3-9, 2013 (pp.

1323±1329). IJCAI/AAAI.

Fan, W., & Bouguila, N. (2013c). Online facial expression recognition based on finite beta-

liouville mixture models. In Tenth conference on computer and robot vision, CRV 2013,

regina, saskatchewan, canada, may 28-31, 2013 (pp. 37±44). IEEE Computer Society.

Fan, W., & Bouguila, N. (2013d). Online learning of a dirichlet process mixture of beta-liouville

distributions via variational inference. IEEE Transactions on Neural Networks and Learning

Systems, 24(11), 1850-1862.

Fan, W., & Bouguila, N. (2013e). Variational learning of finite beta-liouville mixture models using

component splitting. In The 2013 international joint conference on neural networks (ijcnn)

(p. 1-8).

Fan, W., & Bouguila, N. (2014). Online data clustering using variational learning of a hierarchi-

cal dirichlet process mixture of dirichlet distributions. In W. Han, M. Lee, A. Muliantara,

N. A. Sanjaya, B. Thalheim, & S. Zhou (Eds.), Database systems for advanced applications

- 19th international conference, DASFAA 2014, international workshops: Bdma, damen, SIM

- 3 - , uncrowd; bali, indonesia, april 21-24, 2014, revised selected papers (Vol. 8505, pp.

18±32). Springer.

Fan, W., & Bouguila, N. (2015a). Dynamic textures clustering using a hierarchical pitman-yor

process mixture of dirichlet distributions. In 2015 ieee international conference on image

63



processing (icip) (p. 296-300).

Fan, W., & Bouguila, N. (2015b, aug). Expectation propagation learning of a dirichlet process

mixture of beta-liouville distributions for proportional data clustering. Eng. Appl. Artif. Intell.,

43, 1-14.

Fan, W., & Bouguila, N. (2019). Nonparametric hierarchical bayesian models for positive data

clustering based on inverted dirichlet-based distributions. IEEE Access, 7, 83600-83614.

Fan, W., Wang, R., & Bouguila, N. (2021). Simultaneous positive sequential vectors modeling and

unsupervised feature selection via continuous hidden markov models. Pattern Recognition,

119, 108073.

Fang, K. T., Kotz, S., & Wangng, K. (2018). Symmetric multivariate and related distributions.

Chapman and Hall/CRC.

Gaetani, I., Hoes, P.-J., & Hensen, J. L. (2016). Occupant behavior in building energy simulation:

Towards a fit-for-purpose modeling strategy. Energy and Buildings, 121, 188±204.

Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms and applications. In European

symposium on artificial neural networks (esann).

GonzÂalez-Torres, M., PÂerez-Lombard, L., Coronel, J. F., Maestre, I. R., & Yan, D. (2022). A review

on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8,

626±637.

Guo, J., Amayri, M., Bouguila, N., & Fan, W. (2021). A hybrid of interactive learning and predictive

modeling for occupancy estimation in smart buildings. IEEE Trans. Consumer Electron.,

67(4), 285±293.

Gupta, R. D., & Richards, D. S. (1987). Multivariate liouville distributions. Journal of Multivariate

Analysis, 23(2), 233-256.

Hu, C., Fan, W., Du, J.-X., & Bouguila, N. (2019). A novel statistical approach for clustering

positive data based on finite inverted beta-liouville mixture models. Neurocomputing, 333,

110±123.

Jebara, T. (2012). Machine learning: discriminative and generative (Vol. 755). Springer Science

& Business Media.

64



Jia, M., & Srinivasan, R. S. (2015). Occupant behavior modeling for smart buildings: A critical re-

view of data acquisition technologies and modeling methodologies. In 2015 winter simulation

conference (wsc) (pp. 3345±3355).

Jiang, L., Liu, D.-Y., & Yang, B. (2004). Smart home research. In Proceedings of 2004 international

conference on machine learning and cybernetics (ieee cat. no.04ex826) (Vol. 2, p. 659-663

vol.2).

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: an introduction to natural

language processing, computational linguistics, and speech recognition, 2nd edition. Prentice

Hall, Pearson Education International.

Kim, D., Yoon, Y., Lee, J., Mago, P., Lee, K., & Cho, H. (2022, 06). Design and implementation of

smart buildings: A review of current research trend. Energies, 15, 4278.

Koochemeshkian, P., Zamzami, N., & Bouguila, N. (2020). Distribution-based regression models

for semi-bounded data analysis. In 2020 ieee international conference on systems, man, and

cybernetics (smc) (pp. 4073±4080).

lingmnwah, G. (1976). On the generalised inverted dirichlet distribution. Demonstratio Mathemat-

ica, 9(3), 119±130.

Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review and

comparison of state of the art algorithms. Neurocomputing, 275, 1261-1274.

Manouchehri, N., Nguyen, H., & Bouguila, N. (2019). Component splitting-based approach for

multivariate beta mixture models learning. In 2019 ieee global conference on signal and

information processing (globalsip) (p. 1-5).

Mashrgy, M. A., Bdiri, T., & Bouguila, N. (2014). Robust simultaneous positive data clustering and

unsupervised feature selection using generalized inverted dirichlet mixture models. Knowl.

Based Syst., 59, 182±195.

Miller, D. R., Leek, T., & Schwartz, R. M. (1999). A hidden markov model information retrieval

system. In Proceedings of the 22nd annual international acm sigir conference on research

and development in information retrieval (pp. 214±221).

Mu, X., & Wu, W. (2011). A parallelized network traffic classification based on hidden markov

65



model. In 2011 international conference on cyber-enabled distributed computing and knowl-

edge discovery (pp. 107±112).

Nasfi, R., Amayri, M., & Bouguila, N. (2020). A novel approach for modeling positive vectors with

inverted dirichlet-based hidden markov models. Knowledge-Based Systems, 192, 105335.

Navarro-Lopez, C., Linares-Mustaros, S., & Mulet-Forteza, C. (2022). ºthe statistical analysis of

compositional dataº by john aitchison (1986): A bibliometric overview. SAGE Open, 12(2),

21582440221093366.

Nguyen, H., Rahmanpour, M., Manouchehri, N., Maanicshah, K., Amayri, M., & Bouguila, N.

(2019). A statistical approach for unsupervised occupancy detection and estimation in smart

buildings. In 2019 ieee international smart cities conference (isc2) (pp. 414±419).

Oboh, B. S., & Bouguila, N. (2017). Unsupervised learning of finite mixtures using scaled dirichlet

distribution and its application to software modules categorization. In 2017 ieee international

conference on industrial technology (icit) (p. 1085-1090).

Oldewurtel, F., Sturzenegger, D., & Morari, M. (2013). Importance of occupancy information for

building climate control. Applied Energy, 101, 521-532.

Ploix, S., Amayri, M., & Bouguila, N. (2021). Towards energy smart homes algorithms, technolo-

gies, and applications: Algorithms, technologies, and applications.

P.Murphy, K. (2012). Machine learning: a probabilistic perspective. MIT press.

Pyun, K., Lim, J., Won, C. S., & Gray, R. M. (2007). Image segmentation using hidden markov

gauss mixture models. IEEE Transactions on Image Processing, 16(7), 1902±1911.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2), 257-286.

Rezapoor Nikroo, F., Amayri, M., & Bouguila, N. (n.d.). Hmms recursive parameters estima-

tion for semi-bounded data modeling: Application to occupancy estimation in smart build-

ings. In 2023 international conference on smart cities and green ict systems (smartgreens).

Manuscript submitted.

Rezapoor Nikroo, F., Amayri, M., & Bouguila, N. (2022a). Recursive parameter estimation of beta-

liouville hidden markov models. In 2022 international conference on electrical, computer and

energy technologies (icecet) (p. 1-7).

66



Rezapoor Nikroo, F., Amayri, M., & Bouguila, N. (2022b). Recursive parameter estimation of

generalized dirichlet hidden markov models: Application to occupancy estimation in smart

buildings. In 2022 ieee international conference on industry 4.0, artificial intelligence, and

communications technology (iaict) (pp. 90±96).

Sarkar, C., S.N., A. U. N., & Prasad, V. (2016, 02). iltc: Achieving individual comfort in shared

spaces..

Schwartz, R., Ima, T., Kubala, F., Nguyen, L., & Makhoul, J. (1997). A maximum likelihood model

for topic classification of broadcast news. In Fifth european conference on speech communi-

cation and technology, EUROSPEECH 1997, rhodes, greece, september 22-25, 1997. ISCA.

Scott, J., Brush, A., Krumm, J., Meyers, B., Hazas, M., Hodges, S., & Villar, N. (2011, 09). Preheat:

Controlling home heating using occupancy prediction. In (p. 281-290).

Soltanaghaei, E., & Whitehouse, K. (2016). Walksense: Classifying home occupancy states us-

ing walkway sensing. In (p. 167±176). New York, NY, USA: Association for Computing

Machinery.

Tiao, G. G., & Cuttman, I. (1965). The inverted dirichlet distribution with applications. Journal of

the American Statistical Association, 60(311), 793-805.
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