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Abstract

Quantifying Cognitive Workload and Mental Capacity from EEG Signals under Complex
Cognitive Activities

Mengting Zhao, Ph.D.

Concordia University, 2023

The objective of the present research is to quantify the changes in cognitive workload and men-

tal capacity from EEG signals when people are conducting complex cognitive activities. Design

activities are good examples of complex cognitive activities that require simultaneous involvements

of multiple cognitive functions including problem understanding, analyzing, evaluating, and creat-

ing. As one of the fundamental human activities, design activities are where a designer’s mental

effort is applied to create product descriptions (design solutions) from an initial design problem,

which involves looping and jumping among design problems, design knowledge, and design solu-

tions. Using design activities as a starting point, the present study conducted a series of theoretical

analyses and literature reviews to identify the opportunities and challenges for applying EEG to

quantify designers’ cognitive changes, including cognitive workload and mental capacity. The re-

search objectives were formulated based on my pilot studies in applying and extending the stress

model, leading to the methodology of the present research. A new framework (tEEG framework)

has been proposed to address the identified challenges as a result of our past research attempts and

theoretical analyses, which also serves as the foundation for the present research. Afterward, the

proposed tEEG framework was applied for quantitatively monitoring changes in people’s cognitive

workload and mental capacity within and beyond the context of design, where mental capacity was

considered as the umbrella of numerous cognitive factors including cognitive control. Finally, my

future research goal is to apply the quantification results on cognitive workload and mental capacity

to improving human mental effort under complex cognitive activities, which corresponds to the sec-

ond research objective of the present research. Along this direction, the present research proposes
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a quantitative approach to elaborate the impact of cognitive workload and mental capacity on men-

tal effort that has been verified by simulation results. My future research will continue to test the

approach in cognitive experiments including the ongoing N-back study, aiming to bridge the gap

between most existing cognitive studies and their applications in real life.
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Chapter 1

Introduction

Agreements have been achieved upon the importance of recognizing and understanding the changes

in human factors such as emotion, fatigue, stress, and mental workload to achieve a good system

productivity, system safety, and team performance as far as there is human involvement (Borgh-

ini, Astolfi, Vecchiato, Mattia, & Babiloni, 2014; Jaimes & Sebe, 2007; Love, Edwards, & Irani,

2010; Reddy, Thota, & Dharun, 2018; Reeves & Nass, 1996). Changes in any human factor will

lead to variations in human beings’ performance, which may result in unexpected decreases in the

quality and quantity of the whole system if appropriate adaptation is not made. As a result, con-

siderable efforts have been made to quantify human participants’ cognitive factors, and to equip

computers and machines with the ability to recognize and respond properly to human beings’ time-

varying cognitive states. Such computers and machines are described as intelligent, smart, adaptive,

human-like, or emotional in emerging research areas like adaptive HCI (Bissoli, Lavino-Junior,

Sime, Encarnação, & Bastos-Filho, 2019; Spezialetti, Placidi, & Rossi, 2020) and intelligent vehi-

cle control (Horng, Chen, Chang, & Fan, 2004; Kar, Bhagat, & Routray, 2010; Zhang & Zhang,

2006).

What makes the quantification of certain cognitive factors even more difficult when human par-

ticipants are conducting complex cognitive activities? Complex cognitive activities describe the

activities that require multiple cognitive functions, especially high-level cognitive functions like

reasoning and creating, to be involved simultaneously. That is, several cognitive functions can be
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simultaneously involved in one complex cognitive activity, and one cognitive function may con-

tribute to different complex cognitive activities. Basic cognitive functions never appear in isolation

and interact heavily with each other. Design activities, as a typical example of complex cognitive

activities, are used here to illustrate the difficulties in investigating the changes and complex re-

lationships between different cognitive functions. Considering the co-evolutionary and recursive

nature of a design process (Zeng, 2002, 2004), any changes in the environment will bring changes

to the design behaviors, design solutions, as well as the environment as the design process evolves.

Consequently, the causal relationships between stimuli and cognitive responses are extremely com-

plex under such circumstances which could also explain the limited findings on the uncontrollable

design activities (Abraham, 2013; Dietrich & Kanso, 2010; T. A. Nguyen & Zeng, 2014; Rieuf,

Bouchard, Meyrueis, & Omhover, 2017).

Therefore, the investigations presented in this thesis cover theoretical analysis, framework de-

velopment, experiment design, experimental data analysis to address the challenges in quantifying

cognitive factors under complex cognitive activities. EEG-based analysis is applied in this paper

as EEG signals are naturally less vulnerable to subjective factors and have less dependency on

knowledge and experience compared to protocol analysis which has been widely applied in study-

ing design phenomena. Meanwhile, the differences and difficulties of applying EEG to complex

cognitive activities in comparison to most existing EEG studies should be well considered and ad-

dressed before conducting further investigations. Despite this, there is limited information in the

literature along this line, and no appropriate protocol exists for quantifying cognitive factors from

EEG signals under complex cognitive situations. Among the numerous cognitive factors, the present

research further narrows the research focus on the quantification of cognitive workload and mental

capacity. Mental capacity is considered as the umbrella of multiple cognitive factors as indicated

in the stress-effort model (T. A. Nguyen & Zeng, 2012, 2017), where the influencing impact of

cognitive workload on mental stress is also identified.
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1.1 Research questions

Aiming to apply EEG techniques for the quantification of cognitive workload and mental capacity

under complex cognitive activities, four research questions have been synthesized through reviewing

the literature.

(1) What are the complex cognitive activities under discussion and what are their charac-

teristics?

In this research, we adopted Bloom’s taxonomy (L. W. Anderson & Krathwohl, 2001; Bloom,

Engelhart, Furst, Hill, & Krathwohl, 1956) that recognized analysing and creating as the high-

est level of human cognitive states in describing complex cognitive activities. Cognitive ac-

tivities that are considered complex require the simultaneous use of many cognitive functions,

including the aforementioned high-level cognitive functions as well as lower-level cognitive

functions according to Bloom’s taxonomy, such as remembering, understanding, applying,

and analyzing. Design activities are considered as representative examples of complex cog-

nitive activities in this research as design activities require designers to understand the task

and then to retrieve, search and digest the relevant and right knowledge for accomplishing the

task by using the identified knowledge. Furthermore, learning processes and problem-solving

under complex conditions are also examples of complex cognitive processes.

(2) What makes EEG a suitable tool for monitoring cognitive changes under design and

other complex cognitive activities?

From the literature, EEG appears to be a suitable tool for investigating the temporal changes

in human brains without adding unnecessary workload or interference when compared to self-

reported measures and most event-related measures. A sound understanding of the complex

stimulus-response relationships under complex cognitive activities is crucial to the reliability

and quality of cognitive studies. In the context of design, EEG signals are naturally less

vulnerable to subjective factors and have less dependency on knowledge and experience than

protocol analysis that has been successfully applied in existing design studies.

(3) Why is the research focus narrowed to cognitive workload and mental capacity instead
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of other cognitive factors?

There are two reasons for focusing the research on cognitive workload and mental capacity.

The first reason lies in the importance of those two factors, whereas the other reason is their

close relationship with mental effort according to the stress-effort model (T. A. Nguyen &

Zeng, 2012). First, cognitive workload has been considered an important part of human

mental states that needs to be closely monitored due to its close relationship with performance

and other cognitive factors, while mental capacity describes one’s overall mental readiness in

dealing with the confronted task which could be seen as the umbrella of numerous cognitive

factors. Second, the stress-effort model (T. A. Nguyen & Zeng, 2012) proposed by Nguyen

and Zeng serves as the foundation of the present research, where cognitive workload and

mental capacity are the two key influencing factors of mental stress. A better understanding

of how those two factors vary under complex cognitive activities could contribute to further

improvements in the overall efficiency of human-human or human-robot systems.

(4) What are the challenges of conducting EEG-based cognitive studies under complex cog-

nitive activities and how to address them?

The critical challenge lies in how to find the hidden and complex stimulus-response relation-

ships during complex cognitive activities, which calls for a new experimental paradigm for

EEG-based cognitive studies. Taking design as the starting point, the challenges in conduct-

ing EEG-based cognitive design studies lie in: 1) design is a complex activity that consists of

numerous basic cognitive activities; 2) complex relationships between designer, product, and

environment add to the difficulty in experiment design and control; and 3) design process is

continuous and unrepeatable.

A task-related EEG framework (tEEG framework) has been proposed to address the chal-

lenges, which can be applied to any complex cognitive task, though it was originally pro-

posed for studying design phenomena. The framework focuses on investigating a complex

design process by performing task-level analysis of different subtasks or subprocesses, which

is enabled by loosely controlled experiments and a series of decompositions. Loosely con-

trolled experiments are proposed to target the uncontrollable part of design activities whereas
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additional processing/analysis is requisite to alleviate the dangers of informal “reverse in-

ference” (Poldrack, 2006, 2011). As a result, clustering-based segmentation is proposed as a

bridge from loosely controlled experiments to task-level analysis. The task-related framework

consists of three main parts: data collection from loosely controlled experiments, clustering-

based segmentation of unstructured design protocol, and EEG-based segment analysis.

1.2 Research objectives and contributions

The present research has two objectives for conducting EEG-based analysis to monitor the changes

in cognitive workload and mental capacity under complex cognitive activities.

(1) To quantify cognitive workload and mental capacity from EEG signals when human

participants are conducting complex cognitive activities.

(2) To apply the quantification results on cognitive workload and mental capacity to im-

prove human participants’ mental effort during complex cognitive activities.

In order to achieve the first objective, it is crucial to have a thorough understanding of the

challenges that need to be addressed in EEG-based cognitive studies under complex cognitive ac-

tivities. A new research framework is needed for applying EEG to investigate complex cognitive

activities based on our literature review and a series of analyses on design and EEG techniques.

And quantification results regarding cognitive workload and mental capacity in applying our pro-

posed framework to design activities and learning activities are presented in Chapter 5. The second

objective focuses on how to improve human participants’ mental effort under complex cognitive

activities with the quantitative feedback on cognitive workload and mental capacity obtained from

EEG-based analysis. Our efforts in achieving the second objective would contribute to filling the

gap between most existing EEG-based quantitative studies and their applications in interpreting

real-life phenomena.

The first objective is a necessary prerequisite to the second objective, which has been achieved

in the present research with a proposed research framework and two experimental applications. On

the contrary, the second objective is more a direction of my future research and the current research
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only covers the theoretical model and model verification based on simulation results. Further inves-

tigations along this direction will continue to test the quantitative model with experimental evidence,

which would also add to the meaningfulness of the deliverable from the first objective and inspire

applications of the proposed tEEG framework under different domains.

The contributions of the present research lie in the following aspects:

• A new research framework conducting EEG-based cognitive studies in the context of

design as well as other complex cognitive activities

We proposed a theoretical framework derived from our past research attempts and a series

of theoretical analyses to guide scholars in determining how to use EEG to quantify design-

ers’ cognitive and affective states. With the research challenges well addressed, the tEEG

framework takes better advantage of the emerging EEG techniques and facilitates further in-

vestigation into the uncontrollable parts of design activities. Moreover, it is possible to apply

the tEEG framework to other complex cognitive activities, which has already been applied to a

skill acquisition process 5.2. In the present research, the proposed tEEG framework has been

successfully applied for quantifying trainees’ cognitive workload and cognitive control while

they learn and practice flight maneuvers, which may also shed light on future applications in

different engineering and industrial areas.

• Applications of the tEEG framework under or beyond the context of design in monitor-

ing human participants’ cognitive workload and mental capacity.

In the context of design, the tEEG framework has been applied to monitor designers’ cognitive

workload and cognitive control in a loosely controlled design experiment. We also believe that

online application of the proposed tEEG framework could contribute to an adaptive computer

aided design (CAD) system where designers can respond adaptively to their cognitive and

affective states during a conceptual design process. In addition, the application discussed

in 5.1 was the pioneering work in applying EEG microstate analysis to design activities,

which noted that loosely controlled experiments proposed in the tEEG framework may be

well supported by EEG microstate analysis, which appears to be an effective approach to

facilitating ecologically valid neurocognitive studies.
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Moreover, the framework can also be applied to a variety of complex cognitive activities other

than design, such as monitoring trainees’ cognitive workload and mental capacity during a

training process (Section 5.2). The quantification results from this beyond design application

will contribute to improving the precision and reliability of objective assessment of human

participants’ cognitive states toward the confronted task. Consequently, the effectiveness and

efficiency of the training process could be enhanced by the availability of neurophysiological

feedback and reliable objective assessments for skilled performance.

• The capacity zone is proposed as a quantitative approach to allocate a “good” workload

to human participants so that they can meet the deadline with a successful completion

of the assigned task.

Built upon the stress model (T. A. Nguyen & Zeng, 2012), the proposed capacity zone pro-

vides a quantitative representation of the relationship between cognitive workload and mental

effort that could be easily adapted for real-life practices. The applications of the proposed

approach could improve the overall working efficiency through customizing the workload

allocation strategies according to different individuals’ capacity zones and providing timely

interventions when they are found working beyond their capacity zone. Furthermore, the on-

going exploration on an N-back dataset aims to quantify different individuals’ mental capacity

and to detect when it reaches its limit, which could complement the theoretical approach with

experimental evidence and also contribute to the determination of capacity zone.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents a literature review on the key

concepts and the state of the art of related methods and techniques. Chapter 3 presents the research

objectives that have been formulated based on the pilot studies in extending and applying the stress

model. Chapter 4 introduces the research methodology along with a new research framework (tEEG

framework). Chapter 5 covers the research findings obtained from a series of theoretical analyses,

simulation results, and experimental evidence. Chapter 6 concludes this thesis and discusses my

future research directions.
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Chapter 2

Literature Review

2.1 Design as a complex cognitive activity

Design, as a basic human activity, is to create a new product to its environment. From this per-

spective, design activities are a set of interactions among and between designer (D), product (S) and

environment (E) (Zeng, 2004). The environment represents all of the objects in this world other

than the product itself. A product comes from the environment, serves the environment and changes

the environment (Zeng, 2015). From the original design problem, a designer generates tentative

solutions; the tentative solutions will not only improve designer’s understanding but also help refor-

mulate the design problem; with the new understanding, the designer adjusts the solutions to fit the

newly redefined problem; the adjustment, in turn, triggers new problems. The idea of the evolving

environment is also reflected in situatedness, “which emphasizes that the agent’s view of a world

changes depending on what the agent does” (Gero & Kannengiesser, 2004). Such a recursive pro-

cess continues until the designer decides that a solution is satisfactory. The process described above

implies the nature of design thinking, which is co-evolutionary and follows the recursive logic of

design (Dong, 2005; Dorst & Cross, 2001; Gero & Kannengiesser, 2004; Hatchuel & Weil, 2009;

Maher & Tang, 2003; T. A. Nguyen & Zeng, 2012; Roozenburg, 1993; Zeng & Gu, 1999). Design,

which can be seen as a designer’s mental effort to create product descriptions (design solution) from

an initial design problem, involves looping and jumping among design problem, design knowledge,

and design solutions. During such a recursive design process, the environment evolves (Zeng, 2002,
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2004; Zeng & Gu, 1999) as illustrated in Figure 2.1. Each state of the evolution is a result of a pri-

mary design process cycle including defining problem, searching for knowledge, finding possible

solutions, evaluating the solutions, and making decisions (Eekels, 2001; Gero, 1990; T. A. Nguyen

& Zeng, 2012). A product will become a part of the environment (E) once it is taken as a design

solution.

Figure 2.1: Design evolution process

Design activities could be considered as complex cognitive activities given the involvement of

multiple complex cognitive functions. A lot of research has been endeavoring to model design as

a rational problem-solving process (Simon, 1969), a “reflective conversation with the situation”

(Schön, 2017), or a process involving both cognitive and affective components (T. A. Nguyen

& Zeng, 2012). Despite the different interpretation and emphasis of each model, agreement has

been achieved on the fact that design activities are supported by several cognitive functions such

as reasoning and creating. According to Bloom’s taxonomy (L. W. Anderson & Krathwohl, 2001),

analysing and creating that have been recognized as the highest level of human cognitive states.

Along this direction, design activities are good examples of complex cognitive activities that re-

quire designers to understand the task and then to retrieve, search and digest the relevant and right

knowledge for accomplishing the task by using the identified knowledge (Zhao et al., 2020). In ad-

dition, both of the two identified influencing factors of mental stress (T. A. Nguyen & Zeng, 2012),

namely knowledge and skills, are closely related to cognitive states like reasoning, memory, syn-

thesis and so forth (Brun, Le Masson, & Weil, 2016; Fagin, Halpern, Moses, & Vardi, 2004; Gick

& Holyoak, 1983; Thorndyke, 1977). Further design studies indicated that individual’s knowledge

could help in the solution generation, whereas the utilization of inappropriate knowledge may cause
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design fixations (Crilly, 2015; Jansson & Smith, 1991; Viswanathan, Atilola, Esposito, & Linsey,

2014), which is somehow considered as a disadvantage of cognitive control in (Chrysikou, 2018;

Chrysikou & Weisberg, 2005; Thompson-Schill, Ramscar, & Chrysikou, 2009). Existing research

studies have reported considerable findings on designer’s attention, memory, knowledge, reason-

ing, and problem solving (Balters & Steinert, 2017; Poldrack, 2011; Sylcott, Cagan, & Tabibnia,

2011), which could contribute to further investigation into the nature and mechanism of the de-

sign process. This effort generally falls into the realms of psychology and design. According to

Bloom’s taxonomy (Bloom et al., 1956), different cognitive aspects involved in a learning process

include remembering, understanding, applying, analyzing, evaluating, and creating (Conklin, 2005;

Krathwohl, 2002).

Protocol analysis has been widely applied to investigate designers’ cognitive changes, which

can be understood as a series of means to extract “reliable information about what people are think-

ing while they work on a task” (J. Austin & Delaney, 1998). Protocol analysis has been widely used

by scholars to segment a complex design process into simpler processes (Dorst & Dijkhuis, 1995;

Gero & Tang, 2001; Neill, Gero, & Warren, 1998). Verbal protocol analysis has been used as a

tool for different objectives. In design domain, it has been used to study the designer’s perception.

Verbal protocol analysis has been used to compare the architects’ perception and students’ percep-

tion based on their own freehand sketches (Suwa & Tversky, 1997). The authors found that the

architects think more deeply than students about the topic. Meanwhile, Suwa et al. used design pro-

tocol to code designer’s cognitive actions in order to learn human design process (Suwa, Purcell, &

Gero, 1998). In educational domain, researchers have used verbal protocol analysis to study human

writing and reading process (Afflerbach & Johnston, 1984). However, scholars have challenged the

effectiveness of verbal protocol analysis (Russo, Johnson, & Stephens, 1989; Smagorinsky, 1989).

One frequently asked question is “do subjects really have the ability to describe the processes they

perform?” (Ericsson & Simon, 1980). Concerns have been raised in terms of two different ways of

collecting verbal protocol, namely concurrent verbal protocol and retrospective protocol. Chiu and

Shu pointed out the limitation of verbal protocols with design experiments in which they mainly

concerned about the data validity from several aspects (Chiu & Shu, 2010). For example, the ap-

plication of concurrent verbal protocol may alter the design process because of changes in design
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environment and emergent subtasks. Meanwhile, Gero and Tang compared the concurrent verbal

protocol and retrospective verbal protocol in (Gero & Tang, 2001). Moreover, protocol segmenta-

tion and coding are usually done manually by domain experts and the results can be influenced by

the experts’ subjective opinions. The results of protocol analysis can be wrong as “even experts

may make errors or are unable to correctly recall all of their behaviors and reasoning steps” (Pfeifer,

Rothenfluh, Stolze, & Steiner, 1992). Hence, concerns about verbal protocol analysis can be sum-

marized as follows: 1) it is sensitive to subjective factors; 2) there is no common standard to follow;

and 3) such knowledge-based analysis is incomplete in most cases due to the limited knowledge of

human beings.

2.2 Cognitive workload under complex cognitive activities

As one of the most discussed human factors, cognitive workload has attracted considerable research

attention (Young, Brookhuis, Wickens, & Hancock, 2015), whereas there is no agreed definition of

cognitive workload. Instead, researchers have been using different terms like cognitive workload,

mental workload, perceived workload, operator workload, or as simple as workload to interchange-

ably describe the similar concept. Cognitive workload and mental workload emphasize the utiliza-

tion of brain resources required by the task, which has been widely used in fields like neurocogni-

tion (Ghani, Signal, Niazi, & Taylor, 2020; T. A. Nguyen & Zeng, 2012, 2017) and human behavior

studies (Wästlund, Norlander, & Archer, 2008; Wiebe, Roberts, & Behrend, 2010). Perceived work-

load, on the contrary, emphasizes the subjective perception of the task demands (Gabriel, Ramallo,

& Cervantes, 2016) and is one of the influencing factors of a stress model (T. A. Nguyen & Zeng,

2012). In addition, HCI researchers use operator workload to describe human operator’s workload

to distinguish it from the computer related features (Borghetti, Giametta, & Rusnock, 2017; Liu

& Nam, 2018; Prewett, Johnson, Saboe, Elliott, & Coovert, 2010). However, operator workload

can be the human operator’s cognitive workload, mental workload, or perceived workload as all of

them represent human beings’ workload. In this paper, cognitive workload is used to describe the

utilization of brain resources under varied demands based on the confronted task (Baldwin, 2012;

Ghani et al., 2020) without distinguishing it from mental workload.
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Cognitive workload has been considered as an important part of human mental states that needs

to be closely monitored due to its close relationship with performances and other cognitive fac-

tors (Dehais et al., 2019; Prewett et al., 2010; Sweller, 2010). High cognitive workload has been

reported to be associated with increased human errors(Brown, 2016; Niederée, Jipp, Teegen, & Voll-

rath, 2012), vigilance decrement(Al-Shargie et al., 2019; Kamzanova, Kustubayeva, & Matthews,

2014), and bad performance(Wickens, 2002; Zahabi et al., 2021). Moreover, despite the positive

relationship between increased task demands and cognitive workload, research findings also indi-

cated decreasing cognitive workload under repetitive vigilance tasks (Grier et al., 2003; Helton et

al., 2005; Manly, Robertson, Galloway, & Hawkins, 1999; Robertson, Manly, Andrade, Badde-

ley, & Yiend, 1997) where participants may “withdraw attentional effort over time and approach

their assignment in a thoughtless, routinized manner” (Warm, Parasuraman, & Matthews, 2008).

Mario et al. found that human beings could better “understand and actively manage their behaviour

during tasks” if provided with the feedback of their mental workload, extracted from functional

Near Infra-Red Spectroscopy (fNIRS) data (Maior, Wilson, & Sharples, 2018). Moreover, an adap-

tive workload allocation framework was proposed in a recent research for multi-human multi-robot

(MH-MR) systems based on robots’ performance conditions and human beings’ stress conditions

(Mina, Kannan, Jo, & Min, 2020). The framework could reduce the workload for “robots with de-

teriorated human and/or robot condition” and to allocate the surplus workload to “robots with better

human and/or robot condition” (Mina et al., 2020). Researchers have reported a positive correla-

tion between cognitive workload and task demands (Jia & Zeng, 2021; Shaw et al., 2019; Wickens,

2008). Referring to the stress model (T. A. Nguyen & Zeng, 2012), increases in cognitive workload

may lead to increased mental stress which could then be reflected in variations in performance and

vice versa.

Cognitive workload could be measured through subjective methods or objective methods (Charles

& Nixon, 2019; Heard, Harriott, & Adams, 2018). Subjective measurements use questionnaires (i.e.

NASA Task Load Index (NASA-TLX) (Hart & Staveland, 1988)) to collect human participants’

feelings and self-ratings on the given tasks. On the contrary, objective measurements use perfor-

mance and physiological signals (see (Charles & Nixon, 2019) for a comprehensive review) such

as Electroencephalogram (EEG) and Electrocardiogam (ECG). One of the most extensively applied
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EEG indices for cognitive workload is alpha power (Fink, Grabner, Neuper, & Neubauer, 2005),

which has been reported to decrease with increasing cognitive workload (Gevins & Smith, 2003;

Kamzanova et al., 2014; Keil, Mussweiler, & Epstude, 2006; Stipacek, Grabner, Neuper, Fink, &

Neubauer, 2003). Researchers have also identified the brain areas associated with significant al-

pha decreases include the fronto-central and parietal regions (Fairclough, Venables, & Tattersall,

2005; Slobounov, Fukada, Simon, Rearick, & Ray, 2000). Moreover, numerous EEG studies have

observed increases in frontal midline theta power under increasing cognitive workload (Jensen &

Tesche, 2002; Klimesch, 1999; Pavlov & Kotchoubey, 2017; Raghavachari et al., 2001). More-

over, there are a few EEG indicator derived from the spectral power that have been reported to be

related to variations in cognitive workload, such as the ERS/ERD, task load index (TLI), and en-

gagement index (EI). TLI is defined as the ratior between frontal midline theta and parietal alpha

(Kamzanova et al., 2014), event related synchronization (ERS) represents the cortical activation

(Pfurtscheller, 1992), whereas event related desynchronization (ERD) represents inhibitory activi-

ties (Pfurtscheller, 1977).

2.3 Mental capacity under complex cognitive activities

Mental capacity describes the general intelligence which was once described as a metaphorical

form of common mental energy underlying all cognitive processes by Spearman (Spearman, 1961).

Besides mental capacity, researchers have also used varied terms, such as cognitive ability, cog-

nitive capability, and mental capability, to distinguish such general intelligence from any specific

cognitive function. Along the same line, mental capacity could be considered as the highest or-

der factor in cognitive ability hierarchy (Johnson, Bouchard Jr, Krueger, McGue, & Gottesman,

2004; Johnson, te Nijenhuis, & Bouchard Jr, 2008; Lubinski, 2004), which involves the ability to

“reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn

from experience” (Gottfredson, 1997). Moreover, mental capacity was described as one’s overall

mental readiness in dealing with the confronted task in the stress model (T. A. Nguyen & Zeng,

2012), involving knowledge, skills, and affect. Along this direction, the present paper considers

mental capacity as the umbrella of numerous cognitive factors other than cognitive workload and
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mental stress, which is negatively associated with mental stress as illustrated in the stress model

(T. A. Nguyen & Zeng, 2012).

Mental capacity has been related to varied types of performance in the literature with evidences

from different domains (Kulikowski, 2021). For example, employees’ mental capacity was consid-

ered as a predictor of their job performance (Ree, Earles, & Teachout, 1994; Salgado et al., 2003;

F. L. Schmidt & Hunter, 2004). In addition, researchers have also observed positive correlations be-

tween mental capacity and academic performance (Kuncel, Hezlett, & Ones, 2004), socioeconomic

success (Strenze, 2007), leadership (Judge, Colbert, & Ilies, 2004), as well as success in military

settings (Duckworth et al., 2019). However, there is only a limited number of research that directly

focused on the limit of mental capacity where burnout was sometimes considered as the sign of ex-

cess mental capacity (Kulikowski, 2021). Instead, considerable research efforts have been made to

investigate certain cognitive functions (Bonnefond & Jensen, 2015; Borghini et al., 2014; Donoso,

Collins, & Koechlin, 2014; Hanslmayr et al., 2007), which could contribute to a better understand-

ing of mental capacity according to the aforementioned definition of mental capacity and the stress

model (T. A. Nguyen & Zeng, 2012).

Among the varied cognitive functions, working memory capacity have attracted most research

attention. Working memory capacity (WMC) describes the limited capacity of a person’s working

memory, which could stay relatively stable across different cognitive activities but differs from one

individual to another (Kane & Engle, 2003). High working memory capacity (WMC) has been

related to better performance at processing task-relevant information while being less distracted

by task-irrelevant information (Kane, Bleckley, Conway, & Engle, 2001; Kane & Engle, 2003).

Furthermore, recent studies have related WMC to specific factors of executive control, including

inhibition, shifting, and updating (Miyake et al., 2000). Empirical evidences indicated positive

correlations between WMC and each of the two factors of of executive control, namely inhibition

and shifting (Keye, Wilhelm, Oberauer, & Van Ravenzwaaij, 2009; Oberauer, Süß, Wilhelm, &

Sander, 2007; Oberauer, Süß, Wilhelm, & Wittman, 2003; Unsworth, Brewer, & Spillers, 2009).

However, the relationship between WMC and the updating factor seems to be more complex due

the difficulty in isolating WMC and updating during working memory updating tasks (Miyake et al.,

2000; Wilhelm, Hildebrandt, & Oberauer, 2013). The commonly applied working memory updating
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tasks include the n-back tasks, the running-memory task, and the memory-updating task, which

are considered as good measures of WMC that “involve rapid updating of temporary bindings”

(Wilhelm et al., 2013).

In addition, cognitive control also belongs to one’s mental capacity which plays an important

role in supporting the high cognitive functions involved in complex cognitive activities. Cogni-

tive control describes the ability to coordinate mental resources to goal-directed performance while

suppressing goal-irrelevant distractions (Hasher, Zacks, & May, 1999; Koechlin, Ody, & Kounei-

her, 2003). However, cognitive control has not been as well investigated as cognitive workload in

the literature. The study of Roberts and colleagues (Roberts, Anderson, & Husain, 2010) reported

the associated differences in frontal and parietal white matter under different cognitive control lev-

els that were measured by two behavioral paradigms, namely Eriksen Flanker (Eriksen & Eriksen,

1974) and change of plan tasks (Nachev, Rees, Parton, Kennard, & Husain, 2005). In the study

(Borghini et al., 2017) (Borghini et al., 2017), EEG spectral features were analyzed in responding

to different cognitive control levels that were represented by the difficulty levels of three kinds of

events, namely Skill, Rule, and Knowledge based the SRK model proposed by Rasmussen (Ras-

mussen, 1983). In general, those studies either used behavioral performance for cognitive control

assessment (Lopez, Previc, Fischer, Heitz, & Engle, 2012; Roberts et al., 2010) or treated cogni-

tive control as an independent variable (Borghini et al., 2017; Krall, Menzies, & Davies, 2016).

However, the former measured cognitive control in an indirect way which could lead to a reduced

reliability, while the latter may interfere with the original tasks with the inserted events.

2.4 Failure to meet the deadline as a consequence of the mismatch

between cognitive workload and mental capacity

Failing to meet the deadline could lead to direct and indirect damages not only to the involved

individuals themselves, but also to the entire project, team, or system (Chetto & Chetto, 1989;

Richardson, Sieh, & Elkateeb, 2001). Examples of direct and immediate personal consequences

of failing to meet the deadline include blame from the director, salary reduction, and loss of job.

Austin described such concern as concern for career that the individuals may worry about giving a
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bad impression in the eyes of directors confessing that “he is behind schedule and his fellow agent

does not” in his agency model (R. D. Austin, 2001). In addition, failure in meeting the deadline

could lead to more severe consequences like entire system failure, costly damage to the employing

company, and even some catastrophic consequences (G. C. Buttazzo & Sensini, 1999; Richardson

et al., 2001; Stavrinides & Karatza, 2018). The failure of completing a certain task within the time

limit may result in damage to the equipment as well as danger to the health and life of human opera-

tors in many real-life systems (Chetto & Chetto, 1989). Consider the situation when the patient and

the emergency physician are waiting for the results from lab tests, where any delay may lead to fur-

ther damage to the patient’s health and life. Stress-related failures could be considered as part of the

consequences of missing the deadline, which are particularly emphasized under high-risk environ-

ments, of which a typical example is aviation where the stress-related failures of decision making

attributed to nearly half of fatal aviation accidents (McClernon, McCauley, O’Connor, & Warm,

2011; Wiegmann & Shappell, 1997). Meanwhile, gender differences in coping with time pres-

sure have been considered as one of the important factors (Gneezy, Niederle, & Rustichini, 2003;

Niederle & Vesterlund, 2007; Shurchkov, 2012) that make “women, even if as educated as men,

continue to be heavily under-represented in many professions involving risky and high-pressure ac-

tivities” (De Paola & Gioia, 2016). For those reasons, talking about the experience of struggling to

complete a given task before the deadline could be difficult for some people as it reminds them of

some unpleasant memories.

The key cause for the failures in meeting the deadline lies in the mismatch between workload

and the individual’s mental capacity, where mental stress plays a crucial role. Researchers have

related increased stress, sometimes denoted as time pressure, to the situations when the individu-

als realize that they cannot complete the tasks before the deadline (R. D. Austin, 2001; Margheim,

Kelley, Pattison, et al., 2005; Miletić & van Maanen, 2019). When required to complete a lot of

work within a short period of time, human participants may feel stressed out from the beginning

and end up with a failure. Increased physiological stress, as the reason behind the changes in indi-

vidual’s behaviours toward the confronted task under time pressure, was shown in the literature to

increase risk taking (Buckert, Schwieren, Kudielka, & Fiebach, 2014; Putman, Antypa, Crysovergi,

& van der Does, 2010; Starcke, Wolf, Markowitsch, & Brand, 2008) and inhibits strategic thinking
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(Leder, Häusser, & Mojzisch, 2013). Researchers have observed a reduced decision quality as a re-

sult of time constrain in a decision-making process (Ahituv, Igbaria, & Sella, 1998; Sutter, Kocher,

& Strauß, 2003), which could result in bad performance, burnout, and even some mental health

problems like procrastination and depression (Hinds, Roberts, & Jones, 2004; Malone, 2018; Vesin,

Mangaroska, & Giannakos, 2018; Whittaker, 2005; Yuksel et al., 2016). For example, the results

on an experimental beauty-contest game showed a decrease in the quality of decision-making was

observed as a result of time constrain (Kocher & Sutter, 2006). However, it is not an expected situ-

ation for companies and employers when their employees were given a very long time to complete

a small amount of workload, which would lead to damage to the overall productivity and profit no

matter they succeed or not at their tasks. In addition, we have also observed the cases where human

participants were given a very long time limit to complete a small amount of workload but they still

fail to accomplish the task. Under such circumstances, they may feel bored, make mistakes (Ryu &

Myung, 2005), and merely do anything for a long time as meeting the deadline seems too easy for

them until the moment when they realize the deadline is just ahead but the work hasn’t been com-

pleted. Such phenomenon could be explained from the motivation point of view that the employees

or learners will tend to cope cognitively and allocate less effort when given too little workload be-

cause they may “feel that the situation is negative and stable” (LePine, LePine, & Jackson, 2004).

Although the mismatch between cognitive workload and mental capacity may not always reflect a

lack of personal capability, it should be avoided with any possible effort.

Existing approaches to address the mismatch between cognitive workload and mental capacity

can be categorized into the following directions, namely developing optimal workload allocation

(Chen, Sekiyama, Cannella, & Fukuda, 2013; Parasuraman, Barnes, Cosenzo, & Mulgund, 2007),

developing adaptive scheduling strategies (G. Buttazzo & Abeni, 2002; G. C. Buttazzo & Sensini,

1999; Vanheusden, Van Gils, Caris, Ramaekers, & Braekers, 2020), cognitive skills training (An-

ton, Bean, Hammonds, & Stefanidis, 2017; Radüntz, 2020), and optimizing stress management

strategies (McClernon et al., 2011; Meichenbaum, 1985). The aforementioned approaches either

aimed to adjust cognitive workload through optimal workload allocation and adaptive scheduling

strategies, or to improve mental capacity through cognitive skill straining and stress management

improvement. Considering the complexity in quantifying mental capacity, adjusting the workload
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allocation based on each individual’s mental capacity seems to be a promising and more direct way

to help people in meeting a predefined deadline. Different from the existing research on workload

allocation among several machines or computers (G. Buttazzo & Abeni, 2002; Verma, Cherkasova,

Kumar, & Campbell, 2012; Y. Wang, Wu, Yuan, Liu, & Li, 2019), this research focuses on assigning

varied amount of workload among different human participants. An optimal workload allocation

was proposed for a multi-human multi-robot system (Malvankar-Mehta & Mehta, 2015), where

human participants’ performance and current cognitive workload were considered for workload al-

location but individual difference in workload thresholds was not included. Similarly, a workplace

design and task allocation system was presented in (Tsarouchi et al., 2017) based on multiple cri-

teria defined upon user’s requirements where both human and robot resources were modelled in a

unified approach. Moreover, an adaptive workload allocation framework was proposed in a recent

research for multi-human multi-robot (MH-MR) systems based on robots’ performance conditions

and human beings’ stress conditions (Mina et al., 2020). The framework could reduce the workload

for “robots with deteriorated human and/or robot condition” and to allocate the surplus workload

to “robots with better human and/or robot condition” (Mina et al., 2020). However, there is limited

information about what is or how to distinguish “good” workload from “bad” workload that could

serve as the criteria for adaptive workload allocation.

2.5 Applying EEG techniques to complex cognitive activities

EEG, abbreviation for electroencephalogram, is the record of the fluctuation of brain waves gener-

ated by the neurons circuit. EEG signals directly measure “the dynamic, synchronous polarization

of spatially aligned neurons in extended gray matter networks, with postsynaptic excitatory or in-

hibitory potentials being the main sources of the signal” (Michel & Koenig, 2018). The signals

measured in voltage can be seen as a result of “the process of current flow through the tissues

between the electrical generator and the recording electrode, which is called volume conduction”

(Olejniczak, 2006). The two most important effects of volume conduction imply that: 1) an elec-

trode at a given scalp location detects neuronal activity in simultaneously activated areas that far or

near the electrode; 2) a single source activity affects simultaneously all scalp electrodes leading to
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high correlation among multichannel EEG signals. This implication gives rise to an inverse problem

in the EEG source localization that localizes the electrical activity in the brain according to EEG

topographies. The inverse problem is that an EEG topography can be explained by different distri-

butions of neuronal generators. However, the differences in EEG topographies might result from

different distributions of activated neuronal generators.

As for the collection of EEG signals, EEG data can be collected through electrodes distributed

on the scalp and the scalp EEG is an important tool for clinical usage (Niedermeyer and Lopes da

Silva, 2005). The human cerebral cortex, i.e. the outermost layer of the brain, is divided into four

lobes: frontal lobe, temporal lobe, occipital lobe, and parietal lobe. Parietal lobe and frontal lobe are

separated by the central sulcus. EEG signals are recorded by electrodes which are positioned at spe-

cific locations following international standards such as 10/20, 10/10 and 10/5 placement systems

(Chatrian, Lettich, & Nelson, 1985; Jasper, 1958; Oostenveld & Praamstra, 2001). EEG is collected

at sampling rate between 250 Hz and 500 Hz, even up to several kHz by the nowadays human EEG

recording system (Weiergräber, Papazoglou, Broich, & Müller, 2016). Due to its high temporal

resolution, time-based and frequency-based EEG features have been applied to detect mental and

functional abnormalities, as well as cognitive and affective states under external or internal stim-

uli (Acharya, Sree, Swapna, Martis, & Suri, 2013; Pidgeon et al., 2016). The time-based EEG

features reflect the scalp potential of neuronal generators at a given moment in time. This informa-

tion provides a possibility to study the temporal dynamics of whole-brain neuronal networks. The

frequency-based EEG features reflect the rhythmic oscillations of neuronal generators in specific

frequency bands. This information offers a possibility to investigate the characteristics of brain

waves.

The collected EEG data imply information of the participants’ cognitive and affective states as

EEG signals relate regional brain activities to different cognitive and affective states (Delplanque,

Silvert, Hot, Rigoulot, & Sequeira, 2006). Some EEG research was conducted based on the assump-

tion that the frontal area plays an important role in the reflection of the valence level (Harmon-Jones

& Allen, 1998; L. A. Schmidt & Trainor, 2001). The human parietal lobe was believed to be

closely related to human perception, decision making and speech comprehension (Bisley & Gold-

berg, 2010). The occipital lobe is known to process visual information, which is related to object
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detection and recognition (Dijkerman & De Haan, 2007; Malach et al., 1995). Studies also indi-

cated that the two hemispheres of a brain are specialized for different tasks (Rhodes, 1985; Sergent

& Bindra, 1981). “The right hemisphere mediates tasks requiring global, holistic processing such

as facial effect recognition” whereas the left hemisphere is specified for detailed analysis (Holt et

al., 2006). Nie et al. concluded from their experimental analysis that the EEG features related to

emotional states “are mainly on the right occipital lobe and parietal lobe in alpha band, central site

in beta band, left frontal lobe and right temporal lobe in gamma band” (Nie, Wang, Shi, & Lu,

2011). As a result, there are researchers trying to look at what’s happening inside designer’s brain

during the design process.

Different methods have been applied to segment EEG data in time, frequency and time-frequency

domains. In time-frequency domain, non-stationary EEG signals are broken down into pseudo-

stationary segments during which statistical properties do not vary with time. Firstly, EEG signals

need to be transformed from the time domain to time-frequency domain. Short-term fast Fourier

transform (STFT) and wavelet transform (WT) are widely used to transform signals from the time

to time-frequency domain. Secondly, several EEG features can be extracted in frequency domain,

such as power, nonlinear energy operator (NEO) (Agarwal & Gotman, 1999) and generalized like-

lihood ratio (GLR) (Appel & Brandt, 1983). Thirdly, segmentation boundaries can be detected by

comparing differences in EEG features between reference and sliding test window. If the sliding

test window passes over a segment boundary, the differences would increase significantly leading

to greater than a predefined threshold. If the sliding test window passes within a segment boundary,

the sliding test and reference window would continually move based on different strategies (Wong

& Abdulla, 2006). Alternatively, segmentation boundaries can be detected by clustering EEG fea-

tures in overlap reference windows (Barlow, Creutzfeldt, Michael, Houchin, & Epelbaum, 1981;

P. Nguyen, Nguyen, & Zeng, 2019).

In time domain, microstate analysis is used to identify successive short time periods during

which the distribution of the scalp potential filed remains semi-stable. The changes of distribution

of the scalp potential filed imply different activation of global network activity in the brain. Pascual-

Marqui and his colleagues proposed a clustering-based method to identify the most dominant spa-

tial components in the EEG topography series (Pascual-Marqui, Michel, & Lehmann, 1995). This
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method was based on the k-means approach that clusters the scalp potential filed topographies into

representative cluster centroids in terms of spatial correlations. The optimal number of cluster cen-

troids is determined by cross-validation criterion (CV), which optimally explains the variance in

each cluster. Murray and colleagues proposed an Atomize and Agglomerate Hierarchical Cluster-

ing (AAHC) to identify representative cluster centroids in a bottom-up manner (Murray, Brunet,

& Michel, 2008). In contrast with the k-means approach that its results vary across runs due to

a random selection of data points as seed clusters, the AAHC is a deterministic approach that its

results are independent with the repetition of runs. Alternatively, other methods in factor analysis

were applied to determine representative cluster centroids, including principal component analysis

(PCA) (Pourtois, Delplanque, Michel, & Vuilleumier, 2008) and independent component analysis

(ICA) (Makeig, Debener, Onton, & Delorme, 2004).

Once the EEG data are segmented, different features could extracted for further analysis varying

from time domain to (time-) frequency domain, from scalar to matrix (like microstate). Scholars

usually extract one or several features in order to recognize certain cognitive states or to compare

the performance of different features regarding a specific research problem. The commonly ap-

plied EEG features and their corresponding cognitive findings are listed in Table 2.1 according to

my literature review. Based on the extracted features, classification and other analysis algorithms

could be applied to recognize cognitive factors, such as Support Vector Machine (SVM), K-Nearest

Neighbours algorithm (K-NN), Linear Discriminant Analysis (LDA), as well as their derived algo-

rithms and other analysis algorithms (Altman, 1992; Cortes & Vapnik, 1995). Numerous analysis

methods have been applied to recognize cognitive and affective states from features in time domain,

frequency domain, and time-frequency domain as summarized in Table 2.2.

Furthermore, physiological measures (such as EEG, fNIRS, ECG) have been applied to study

pilots’ cognitive changes, among which EEG has attracted the most research interest (Borghini et

al., 2017; Causse, Chua, & Rémy, 2019; Jaquess et al., 2018). EEG is a suitable tool for investigat-

ing the temporal changes in trainees’ brains without affecting the original process with additional

workload or interference, leading to considerable research efforts along this direction. For ex-

ample, research findings related alpha desynchronization to the demands on attentional resources

(Başar, Başar-Eroglu, Karakaş, & Schürmann, 2001; Klimesch, 1999). Researchers observed the
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decreases in alpha power with increasing cognitive workload (Gevins & Smith, 2003; Kamzanova

et al., 2014; Stipacek et al., 2003) and identified the brain areas with significant alpha decreases

such as such as the fronto-central and the parietal regions (Fairclough et al., 2005; Slobounov et

al., 2000). Meanwhile, theta oscillations may support working memory (Jensen & Lisman, 1998;

Raghavachari et al., 2001; Roux & Uhlhaas, 2014; Tesche & Karhu, 2000), cognitive control (Ca-

vanagh & Frank, 2014), and rhythmic shifts of spatial attention (Fiebelkorn & Kastner, 2019) as

reviewed by (Herweg, Solomon, & Kahana, 2020). Increases in EEG theta power were reported to

be positively related to successful information encoding and memory retrieval during memory tasks

(Addante, Watrous, Yonelinas, Ekstrom, & Ranganath, 2011; Guderian & Düzel, 2005; Staudigl &

Hanslmayr, 2013). Research findings also related increases in theta activity to increased top-down

control for attention allocation and information processing (Bosseler et al., 2013; Nyhus & Curran,

2010), but also identified the activation of certain brain areas that were involved during tasks requir-

ing cognitive control, among which the active involvement of medial prefrontal cortex (mPFC) was

highlighted (Veen & Carter, 2006). In particular, increases in the frontal midline theta was observed

under under tasks with higher demands on cognitive control (Cavanagh, Cohen, & Allen, 2009;

M. X. Cohen, Ridderinkhof, Haupt, Elger, & Fell, 2008; Eisma, Rawls, Long, Mach, & Lamm,

2021).

EEG-based analysis is therefore introduced to design studies EEG signals are naturally less vul-

nerable to subjective factors and have less dependency on knowledge and experience compared to

protocol analysis. Research efforts have been made to investigate designers’ cognitive changes us-

ing EEG techniques two decades (Göker, 1997; W.-L. Hu, Booth, & Reid, 2015; Liu & Nam, 2018;

T. A. Nguyen & Zeng, 2010, 2014; Vieira et al., 2019). The results presented in (Göker, 1997)

indicate that the activated brain areas are different for novices and experts during design problem

solving. A preliminary study was conducted by (T. A. Nguyen & Zeng, 2010) which uses EEG to

identify the regularities underlying a design process. The EEG results in (Hinterberger, Zlabinger,

& Blaser, 2014) show the neurophysiological discriminability of three mental locations (intraper-

sonal, extrapersonal, perspective taking) and two attentional foci (self, object). A physiological

study (T. A. Nguyen & Zeng, 2014) is conducted to investigate the relationship between designer’s

mental effort (cognitive aspect) and mental stress. Hu et al. provided psychophysiological evidence
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for the role of warm-ups activities reducing inhibition during concept generation based on their

analysis of EEG and galvanic skin response (GSR) (W.-L. Hu et al., 2015). In (Liang et al., 2017),

EEG signals were analyzed to investigate the difference between expert designers’ visual attention

and association processes. By comparing the time-related neural responses, the EEG results show

differences of the mechanical engineers’ neurocognition in designing and problem-solving (Vieira

et al., 2019). The use of EEG and other biometric measures in experimental design research were

reviewed and discussed in (Borgianni & Maccioni, 2020).
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Table 2.1: Mapping between EEG features and cognitive findings

EEG features Cognitive findings Research and authors
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Table 2.2: Classification methods in recognizing cognitive and affective states from EEG

Methods Features Affective work Cognitive work
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Chapter 3

Pilot Study: Formulation of Research

Objectives

Starting from the stress-effort model (T. A. Nguyen & Zeng, 2012), the influencing effect of cogni-

tive workload and mental capacity on mental effort has been identified and presented quantitatively

based on a series of theoretical analyses in this research. Borrowed the concept of stress from the

strength of materials, Nguyen and Zeng proposed a stress-effort model for the investigation on how

creativity occurs in design phenomena (T. A. Nguyen & Zeng, 2012). This model took the axiomatic

theory of design modeling (ATDM) (Zeng, 2002) as its formal tool and two postulates as its first

principles. This model has already been applied to conduct in-depth investigations into a few typi-

cal phenomena within and beyond the context of design, such as sketching (T. A. Nguyen & Zeng,

2012), impact of human emotions in engineering (Zhao et al., 2018), and information collection in

design (Zhao & Zeng, 2019).

3.1 The stress-effort model for design creativity

The stress-effort model was developed to address the research question how creativity occurs in

design phenomena (T. A. Nguyen & Zeng, 2012). In this model, four factors were identified af-

fecting designers’ mental effort and the occurrence of creativity during the design process, namely

perceived workload, knowledge, skills, and affect. The authors first analyzed designers’ activities
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and their characteristics within a design process, where the recursive nature of design process was

highlighted. A design problem could be seen as an initial design state. The goal of solving such

a problem was to achieve a new design state by applying appropriate design solutions which were

generated from demanded design knowledge to this specific design problem. Once a new design

state was defined, a new set of design knowledge would be determined considering its dependence

on the design problem. Afterward, the relations between different design states were discussed

where the design process was believed to have underlying nonlinear dynamics and possible to have

chaotic motions. This led to the first postulate, denoted as the postulate of nonlinear design dynam-

ics. This postulate indicated that the design process could be solved by environment-based design

(EBD) (Zeng, 2004). It was also mentioned in this postulate that design reasoning was sensitive to

initial conditions, based on which three routes leading to design creativity were then derived. Those

three routes could be briefly described as formulating design problem differently, extending design

knowledge, and changing the environment decomposition.

Starting from those identified three routes, the descriptive design model EBD was once again

applied to find the factors that might cause initial conditions to change. The authors found that

it was through mental capacity that the designers contributed to the changes in initial conditions.

According to their analysis, there was great degree of uncertainty and unpredictability in the design

evolution process. Such uncertainty and unpredictability will trigger mental stresses. This led to the

postulate of the stress-creativity relation which indicated that designers’ creativity was related with

their mental stress following an inverted U shaped curve, by adapting findings from psychology

(Yerkes & Dodson, 1908).

Finally, four major affecting factors were identified including the workload and the three factors

affecting mental capacity as illustrated in Eq.(3). Among the four factors influencing mental stress,

knowledge K(t), skills S(t), and affect A(t) constitute a person’s mental capacity, the level of which

reflects how well the person is at the current work. As mentioned in (T. A. Nguyen & Zeng, 2012),

knowledge K(t) is influenced by knowledge and experience related to the given workload. Skills

S(t) refer to a person’s thinking styles, thinking strategies or reasoning ability. The level of affect

A(t) could determine how much of the person’s knowledge and skills can be effectively used in

accomplishing the workload.
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σ(t) =
W (t)

(K(t) + S(t))A(t)
, A(t) ∈ (0, 1) (1)

where σ(t) denotes a person’s stress at time t, which is determined by four influencing factors

including workload W(t), knowledge K(t), skills S(t), and affect A(t). Please note that Eq. (3)

represents a qualitative relation.

3.2 Applying stress-effort model for phenomena interpretation

Though firstly proposed for studying design phenomena, the stress model can be applied to any task

as long as there is human participation (Yang, Yang, Quan, & Zeng, 2021). This section covers

two studies that applied and extended the stress-effort model to interpret the typical phenomena

including the influence of human emotions in engineering (Zhao et al., 2018) and the effect of

information collection strategies on stress (Zhao & Zeng, 2019).

3.2.1 Role of emotion in engineering

This section aims to apply the mental stress to explaining how emotion affects performance in the

existing literature on engineering (T. A. Nguyen & Zeng, 2012). A wide variety of research topics

on emotional engineering has demonstrated that emotional engineering has attracted a lot of atten-

tion recently, and more researchers have realized the importance of emotion in engineering. Some

of the efforts are focused on the application of emotion to different phases within a product lifecy-

cle, namely conceive stage, design stage, realize stage, and service stage; other efforts are directed

at proposing emotion-based approaches like Kano model (Sauerwein, Bailom, Matzler, & Hinter-

huber, 1996) and Kansei engineering (Nagamachi, 1995), where related psychological mechanisms

(e.g., the expectation effect theory, categorization of emotion in psychology) are explained. All of

the above-mentioned research considered emotion as an imperative element in the process of prod-

uct design that aims to help customers to achieve better performance in product use. Still, there is a

need to build up a strong causal connection between emotion and engineering.

First, the influence of emotion on engineering was discussed based on a brief literature review

of emotional engineering (Zhao et al., 2018). Different stages within the entire product lifecycle
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are discussed separately hoping to acquire a good understanding of how emotion participates in

engineering. Given that a product lifecycle can be divided into four major phases including con-

ceive, design, realize, and service, a literature review of emotional engineering is developed in the

order chronologically corresponding to lifecycle phases. In addition, a lack of theoretical support

for emotion-performance relation in existing research works on emotional engineering is identified

through our review. Further efforts are required to address this theoretical deficiency so that the

influence of emotion to engineering can be better understood. Therefore, two application examples

in emotional engineering are presented below to illustrate how the stress model (T. A. Nguyen &

Zeng, 2012) could be applied for phenomena interpretation for filling the gap between emotion and

performance in engineering.

• Example 1: applying stress model to a TV rating system

The BROAFERENCE rating system (Aoki & Kowalik, 2011) was considered as an example,

where emotional parameters were extracted by utilizing FACS for facial expressions observed

by cameras. The FACS system defined forty-six atomic action units, whereas the current

proposed rating system considered only a restricted number of action units which indicated

happiness and surprise.

In order to apply the stress model to it, the studied performance of users here is their willing-

ness to watch a TV program. The required knowledge is little under such circumstance, and

identified skills are changing channels, volume adjustment, and other possible TV operations

in which every individual seems quite skilled. Then we can start by quantifying the work-

load as the duration of the program. With those mentioned variables controlled, a relative

clear emotion-performance relation is established. For the quantification of emotion, we can

distribute different weights to different action units within FACS, and among them AU2 and

AU12 get the highest scores. Any possible facial expression could be described by a combina-

tion of some of those units. As Nguyen and Zeng once explained the influence of emotion as

“affect will determine how much one’s knowledge and skills can be effectively used,” larger

numbers represent better exertion of knowledge and skills resulting in less stress. In addition,

TV programs are never too short so that the common goal is to make the stressful audience
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less stressful. In other words, we can assume that we are working on the right side of the

inverse U shaped relation between stress and performance where less stress indicates better

performance.

The improvements are obvious after applying the stress model. The former results of BROAFER-

ENCE are capable to tell good quality from bad quality of TV programs. However, their re-

sults are too vague and the reason was not explained for why AU2 and AU12 represent good

quality. Combined with the model, the rating results now can be used to rank different TV

programs. This means more information could be figured out such as how every TV program

is selling and if it is well made in audience’s opinion. Theoretical support is also given to cor-

relate their calculated emotional parameters to audience performance, i.e., their willingness

to continue watching a TV program.

• Example 2: applying stress model to PET bottle design

Another example is the PET bottle design (Widiyati & Aoyama, 2013), where the expected

performance is that customers purchase such PET bottle and perhaps recommend it to others

afterward. In addition, customer’s knowledge and skills related to the usage of the PET bot-

tle are easy to control mainly for two reasons. Firstly, the requirements for knowledge and

skills in this case are so little that we can assume customers’ knowledge and skill levels as

constant. Secondly, the changing part is restricted to the shape of the bottle resulting in rela-

tive stable product functionality. Moreover, the second reason can also be used in explaining

why workload is treated unvaried given that changes in product functionality will increase

or decrease the required skills and the workload as well. So we can easily keep those three

variables within the stress model stable and leave emotion the only varying factor. Now we

should concentrate on the quantification of customers’ emotion. This time we should take the

whole inverse U shaped curve into consideration which is different from that in the example

of TV rating system. That is to say, finding the optimal stress level becomes more complicated

than dealing with the relation following a monotonic function. In the authors’ original work,

weight adjustment of each criterion was performed by multiplying the adjustment coefficient

with each Kano category where Kano model was integrated. With the purpose of introducing
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the stress model, we could make use of the criteria obtained from Kansei words analysis.

Extreme scores are distributed to each pair of Kansei words under the assumption that the

optimum appears as a compromise. For instance, we can fix Masculine at 1 and Feminine at

5 for the Masculine–Feminine pair, and among the numerous methods of finding the optimal

value we start by finding the median value for simplicity. Those calculated optimal values

will replace the original Kansei points and participate in later steps.

The surprising result is that we find a way to integrate the stress model together with Kano

model in the PET bottle design. According to our discussion in (Zhao et al., 2018), those two

models emphasize on different aspects: Kano model focuses on relating emotional factors to

different characteristics and elements of a product; stress model, on the other side, establishes

the relation between human emotion and his own performance which helps in explaining why

certain emotions should be considered regarding a target performance. In the meanwhile, the

design workload is not much elevated because what we utilize for emotion quantification has

existed already. Therefore, with all those efforts we aim to provide an improved methodology

with the complete relation considered which occurs during product-user communication.

To sum up, the presented examples of using stress-effort model to interpret the effect of emo-

tion in engineering applications not only supported the model’s expanded applicability beyond the

context of design but also could inspire future potential applications in different fields. In order to

realize and facilitate future applications of the stress-effort model in engineering and other fields,

the need for a quantitative representation of the stress model as well as the quantification of the

related factors was also pointed out in this study.

3.2.2 Influence of information collection strategies on stress

The studied phenomenon, information collection, is an essential part within a decision making pro-

cess, which is not limited to a design process. This research tested it with a design experiment,

aiming to investigate how designers’ mental stress would vary when different information collec-

tion strategy is applied. As a continuous analysis of (X. Wang, Nguyen, Zeng, et al., 2015), we

assumed that designers would naturally apply depth-first strategy or breadth-first strategy during
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information search. Designers’ stress was then quantified from HRV data and was compared under

two strategies to see if “designer’s mental stress in breadth-first dominant process is higher than that

in depth-first dominant process”.

Information collection strategies are believed to be related to the quality of decisions as one’s

choice of searching strategies differed from time to time during the entire decision-making pro-

cess (Cook, 1993). Similar studies have supported this claim by analysing the influence of infor-

mation collection strategies on consumer’s shopping choices, student’s performance in school, as

well as human performance in other cases (Eysenbach & Köhler, 2002; Scott & O’Sullivan, 2005;

Wilczynski & Haynes, 2004). When it comes to design activities, information collection may also

affect the design quality and designer’s performance through changing the structure of information

and the way how information is searched and organized (Bardwell, 1991; X. Wang et al., 2015).

The information identified will subsequently reformulate the design problem. According to the

Environment-Based Design (EBD) (Zeng, 2004), searching for information during a design process

is to search for environment components and their relationships, where the environment includes

existing knowledge about customers, technologies, and other relevant product related components.

From this point of view, the application of different information collection strategies corresponds to

the order in which different objects are studied.

As a continued work from the analysis presented in (X. Wang et al., 2015), the present research

started with a comparison between the three information collection strategies, namely depth-first,

breadth-first and hybrid. Information is collected from the top layer to the end along each branch

before moving to another branch under depth-first strategy as illustrated in Figure 3.1. However, the

information at the same level within different branches will be collected before moving to a deeper

level when breadth-first strategy is applied. Then the hybrid strategy can be seen as a compromise of

both depth-first and breadth-first strategies. It can be seen from Figure 3.1 that several possible states

or factors are explored regarding the current object when breadth-first strategy is applied whereas

only the current object is studied with depth-first strategy. Reif argues that depth-first strategy is

inherently sequential which means that the nodes from other branches are temporarily “forgotten”

in (Reif, 1985). More branches of information can lead to more workload due to the different natures

of the branches. From this point of view, designers seem to have less workload under depth-first
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process than breadth-first process by ”forgetting” about other branches. However, as designers go

deeper with a certain branch under depth-first strategy the target information becomes more and

more specific which is difficult both to find and to understand. An increase in workload may be

expected as designers continue with depth-first strategy.

(a) Depth-first strategy (b) Breadth-first strategy

Figure 3.1: Depth-first and breadth-first information collection strategies

In the meantime, within a depth-first process detailed information about the studied object will

be collected which belongs to a certain domain. Depth-first process is more domain-specific than

breadth-first process and designer’s domain knowledge is more likely to be activated during such a

process. On the contrary, within a breadth-first process the successively studied objects are usually

from the same level which tend to be less related to each other as with depth-first process. As

those objects may belong to different fields and a wide range of knowledge is needed, designers are

more likely to feel the shortage of knowledge with breadth-first process. It seems that more domain

dependent knowledge will be activated with depth-first process than that with breadth-first process.

We may infer how designer’s mental stress changes under breadth-first process and under depth-

first process by integrating the aforementioned analysis into Eq. (1). With reduced workload and

more activated domain knowledge, designer’s mental stress may be lower when depth-first instead

of breadth-first strategy is applied. This seems in accord with our sentiment that the depth-first

approach can enhance the designer’s mastering of the global picture of the design and thus reduce

the feeling of uncertainty, which is closely related to stress. Furthermore, as participants were

not given any instructions about information collection strategy we assume that designers would
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naturally adopt hybrid strategy. Design is a recursive process (T. A. Nguyen & Zeng, 2012; Zeng

& Cheng, 1991) where solutions to a sub-design problem may depend on those for another sub-

problem. Any new pieces of design information (either of design problem, design solutions, and

design knowledge) would reframe the problem, which could generate a new tree for search. As

a result, though some designers may prefer either depth-first or breadth-first strategy, they would

have to turn to the other strategy either because the current design needs information from another

sub-design problem or because they cannot move deeper or wider with the available information.

From this point of view, any application examples can be relatively seen as hybrid processes if the

boundaries are defined as far as possible from the studied node. However, such hybrid processes

may still have a dominant strategy, depth-first or breadth-first, as people may have a preference on

one of them. And our previous analysis on these two information collection strategies may also

apply for hybrid cases dominated by those two strategies. Therefore, the research hypothesis is

formulated as follows:

• Designer’s mental stress in breadth-first dominant process is higher than that in

depth-first dominant process.

Based on the aforementioned research hypothesis, a dataset that was collected from a de-

sign experiment conducted at Concordia University was considered here to test the hypothesis

(T. A. Nguyen, Xu, Zeng, et al., 2013). This pilot study was conducted based on the data col-

lected from six subjects with engineering background aged from 25 to 35. The participants’ design

behaviours were recorded by a tablet screen recorder and four cameras whereas their HRV data were

recorded by an HRV monitor-Polar RS800G3. The experiment protocol was approved by Human

Research Ethics and Compliance, Concordia University. During the experiment, each participant

was assigned the same design task so that the workload was the same for all participants in the

beginning of the design. Besides, participants were given unlimited time to develop their design

solutions and they were clearly told that their solutions would not be marked. The objective is to

reduce the possibility that participants experience extreme emotions (affect) during the entire pro-

cess. Participants were using their comfortable approaches during the experiment as we did not

specify the strategy, who appeared to be in a relative calm state during the experiment based on
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their facial expressions in the recorded videos. In addition, we assume that all participants have the

design skills needed in the case, and that skills and emotions are not going to experience noticeable

changes during a short period of time as skills gaining usually requires a relative long training pro-

cess. Therefore, skills are treated as a stable parameter in our analysis. To sum up, participants have

the same initial workload and their skills stay stable during the experiment.

The collected data were firstly segmented based on the results of protocol analysis on the

recorded design behaviours. Besides observable actions shown in the screen recording video, par-

ticipants’ answers during the interview stage were also used to calibrate the segmentation result.

Afterward, several criteria were developed for recognizing the applied dominant strategy based on

our analysis mentioned above and the analysis of the three different information collection strate-

gies. When breadth-first dominant strategy is applied, objects at the same level, which may belong

to different branches, are studied. In the meantime, some closely related information may be col-

lected repetitively while subjects investigate objects from the same branch at different stages of

their design process. However, in a depth-first dominant process subjects may include more details

in their solutions, which is enabled by the increase of certain domain knowledge. From another per-

spective, more efforts and time are required from the subjects whose solutions include more details

than those with less detailed solutions. According to our discussions about relative hybrid process,

we may use efforts and time as an indicator of one’s preference to depth-first strategy. Therefore,

the criteria used in our analysis to recognize the applied information collection strategy are as fol-

lowing: A sample is identified as a depth-first dominant process if it satisfies the following two

conditions simultaneously: 1) there is little jumping between different branches; and 2) details are

added for certain items. Otherwise, the sample is recognized as a breadth-first dominant process.

Therefore, the information strategy identification results are listed with the number of segments for

each participant in Table 3.1.

Table 3.1: Dominant information collection strategy identification and segments

Participants 1 2 3 4 5 6
Dominant strategy DF DF BF DF BF BF

Number of segments 142 54 211 139 235 216

In the meanwhile, the collected HRV data were computed and clustered for the quantification
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of subject’s mental stress during design processes. The collected HRV data were analyzed by the

HRVAS software (Ramshur, 2010) and the LF/HF ratio was calculated from the computed the Dis-

crete Wavelet Transform (DWT) coefficients. According to the literature, a group of features ex-

tracted from the collected Heart Rate Variability (HRV) have been considered as useful indicators,

such as the mean of RR intervals (mRR), and power spectra in very low (VLF), low (LF), and high

(HF) frequency ranges, are believed to be affected by mental stress (Hjortskov et al., 2004; Kumar,

Weippert, Vilbrandt, Kreuzfeld, & Stoll, 2007; Salahuddin, Cho, Jeong, & Kim, 2007). The LF/HF

ratio derived from the mentioned features, which is sometimes noted as Sympathovagal Balance

index (SVI), was applied to indicate the participants’ mental stress level by scholars (Boonnithi

& Phongsuphap, 2011; Healey & Picard, 2005; Karthikeyan, Murugappan, & Yaacob, 2011). The

LF/HF ratio for a given segment was computed by dividing the accumulated results by the time

length of the segment. Afterward, K-means was applied to the normalized LF/HF ratios to cluster

the segment LF/HF ratios across subjects with K varing from 2 to 12. Finally, a weighted average

stress value was computed for each participant based on the obtained stress distribution.

In conclusion, as a continuous work of the analysis in (X. Wang et al., 2015), the hypothesis was

derived by descriptively analyzing how the related factors would change under different information

collection strategies using the stress model. The results obtained from the pilot analysis on HRV

data indicate that higher mental stress is more likely to happen to designers under a breadth-first

dominant process than a depth-first dominant one. Further studies are needed to provide more

evidence for the tested research hypothesis with a larger sample size as the current analysis only

covered the data collected from six participants. Meanwhile, the protocol analysis applied during

the segmentation step relies heavily on subjective factors such as expert knowledge and emotions,

and is also time-consuming, which would be a promising direction for my future research. Along

this direction, integrating EEG-based analysis into our analysis appears to be a promising candidate.

3.3 Formulated research objectives

The necessity for a quantitative representation of the stress model as well as the quantification of

the involved cognitive factors like cognitive workload and mental capacity can be identified in the
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aforementioned application examples of the stress model. In general, those pilot studies in applying

stress-effort model for phenomenon interpretation are somehow limited to a descriptive level. Al-

though the pilot study on the effect of information collection strategies quantitatively analyzed the

HRV data to test the hypothesis, the stress-effort model was also applied in a descriptive manner

for the hypothesis development by analyzing the possible variations of different factors. As a result,

the aforementioned applications on phenomena interpretation revealed the need for a quantitative

representation of the stress model.

As we seek to establish a general quantitative system that will simplify the applications of the

stress model in quantitative cognitive studies, we should first consider the quantification of the

influencing factors of mental stress, namely cognitive workload and mental capacity. Moreover, a

quantitative representation of the stress model may serve as a bridge between the quantification of

certain cognitive factors and mental effort, which could enrich most existing and future cognitive

studies. Once both of the two cognitive factors are quantified with a few features extracted from

the collected EEG data, further investigations could be conducted to investigate the relationships

between those cognitive factors as well as their effect on stress as well as mental effort. As a result,

my future research will focus on the effect of the quantified cognitive workload and mental capacity

on mental effort under complex cognitive activities. The research findings would enable real-life

applications that are adaptive to individual differences and time-varying cognitive states in order to

achieve high efficiency.

In summary, two research questions arise from the aforementioned efforts in applying and ex-

tending the stress model for phenomena interpretation:

(1) How to quantify cognitive workload and mental capacity that have been identified in the

stress model?

(2) How to quantitatively describe the effect of variations in those cognitive factors on one’s

mental effort?

The above-mentioned questions correspond to the two objectives of this research as mentioned

in Chapter 1 under Section 1.2. Meanwhile, a research methodology has been developed to address
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these questions, on the basis of which the present study is structured. The two research objectives

are:

(1) To quantify cognitive workload and mental capacity from EEG signals when human

participants are conducting complex cognitive activities.

(2) To apply the quantification results on cognitive workload and mental capacity to im-

prove human participants’ mental effort during complex cognitive activities.
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Chapter 4

Research Methodology: A tEEG

Framework for Conducting Loosely

Controlled EEG Experimental Studies

The research methodology is developed based on the two research objectives identified in Chapter

3. As a result, the research methodology consists of three main stages, among which the necessity

for the first stage comes from the lack of investigations into the uncontrolled part of complex cogni-

tive activities and the challenges and opportunities in integrating EEG techniques such research. In

particular, the first stage is to develop a new research framework to address the challenges identified

by synthesizing the knowledge on design and EEG techniques through literature review, conducting

theoretical analysis, and combining preliminary results. Upon the proposition of the framework, the

second stage is to apply the framework, denoted as tEEG framework, to investigate some typical

cognitive phenomena. We followed the tEEG framework when designing experiments and analyz-

ing data for the target research question. Not only would the obtained results provide evidence of

performance improvements with quantified cognitive workload and mental capacity, but they would

also serve as examples of how to apply the tEEG framework outside of the context of design. After-

ward, the third stage proposes and tests a quantitative approach for ensuring high mental effort with

the quantitative feedback on participants’ cognitive workload and mental capacity. Starting from
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the stress model (T. A. Nguyen & Zeng, 2012), a quantitative representation of the workload-effort

relationship was developed and was then tested with simulation results. Furthermore, an ongoing

study aims to test the proposed quantitative approach with experimental evidence where we de-

signed a cognitive experiment based on the N-back WM paradigm. In summary, the first two stages

have been completed, which aim at the first objective by quantifying changes of cognitive workload

and mental capacity from EEG data under complex cognitive activities, whereas the third stage is a

continuous work of my current research that targets at the second objective.

4.1 Proposing a new research framework for EEG-based cognitive de-

sign studies: The tEEG framework

A task-related research framework, tEEG framework, is proposed aiming to guide scholars’ research

on EEG-based cognitive and affective studies in the context of design. A theoretical analysis of

the design process is conducted in the first place to show that it is necessary and promising to

look into designers’ cognitive and affective states for further investigation of the design process.

Afterward, several difficulties with EEG-based design studies are summarized by reviewing and

analysing current EEG applications in design research. Therefore, the tEEG framework is presented

to address these difficulties.

4.1.1 Challenges with EEG-based cognitive design studies

In order to take full advantage of EEG techniques, an overall understanding of the existing EEG

studies is not only important but also necessary for any other analysis. Most of the existing EEG-

based neuro-cognitive research relies strongly on event-related techniques (Friedman & Johnson Jr,

2000; Kutas & Federmeier, 2011). In particular, event-related potential (ERP) method has been

widely applied in investigations of simple cognitive activities through well-controlled experiments.

Event-related potential (ERP) is the brain’s potential generated in response to an event or a stimulus.

The ERP waveform, as shown in Figure 4.1, is computed by averaging EEG signals time-locked

to an event across multiple trials. The underlying assumption is that the fundamental cognitive

response to an event is invariant. Therefore, by averaging EEG signals across multiple trials, the
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noises and artifacts in the signals could be canceled. An ERP waveform consists of negative (labeled

as N) and positive (labeled as P) amplitudes. These are ERP components and are denoted by the

direction of the polarity (either P or N) followed by the latency of the occurrence or the position

of the component. For instance, P300 is a positive component occurring at 300 milliseconds, and

N1 is the first negative component in the ERP. ERP components characterize the brain’s potential

in reaction to the event. ERP method can be used to investigate the invariant nature of cognitive

response but may not applicable to most real-life applications where complex cognitive activities

are involved.

Figure 4.1: ERP waveform generated from averaging across events

In addition, the characteristics of design activities need to be carefully considered when conduct-

ing EEG-based design studies. Design research differs from current EEG studies in that 1) design

is a complex activity that consists of numerous basic cognitive activities; 2) complex relationships

between designer, product and environment contribute to the increase of difficulty in experiment

design and control; and 3) design process is continuous and unrepeatable. As a result, EEG-based

design research is embedded with difficulties summarized in the following:

• Task driven and delayed responses: The initial design task will drive the reformulation of

the design problem, which is the stimulus for a design, throughout the entire design process;

thus, the stimuli for design activities keep changing and are not always observable. Behavioral

responses to a stimulus may be delayed in that a designer may not show what comes into

his/her mind right away. For example, a solution that a designer brought forth at certain

moment may have been generated any time before that moment. Therefore, finding a causal

stimulus-response relationship under such circumstances is not a straightforward effort.
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• Complex relationships: Design activities are so complicated that there may not be a direct

causal relationship between a stimulus and its response, especially if one intends to examine

primitive cognitive activities. When investigating the effect of knowledge on design perfor-

mance, it is expected that the designer’s perception of workload, skills, and affect would

remain stable, based on the stress model. As discussed above, this ideal condition is unreal-

istic since artificial controls will change the outcome of a real design even if the control were

practicable.

• Continuousness and nonrepetitiveness of design activity: According to the previous dis-

cussion in the paper about the evolution of the design process, design activities cannot be

repeated because of their inherent recursive logic. The impossibility of repetition makes

event-related potential (ERP) analysis unsuitable for full-scale design studies. Design activi-

ties, in whole and in part, are not time-locked and thus cannot be reduced to ERP analysis.

The difficulties identified above also lead to the key challenge of conducting EEG-based cogni-

tive design studies, that is to find the hidden stimulus-response relationships during the design pro-

cess. If we describe the design process as the entire process from a design problem to the generation

of a final design solution, it inputs the initial design problem and outputs the design solution. Such

a process consists of a series of sub-processes resulting from the dynamic evolving characteristic of

design process (Zeng & Gu, 1999) as illustrated in Figure 4.2. Each synthesis process describes the

process in which a designer tries to conceive a solution to the current design problem. Once a design

solution is produced, the designer is able to redefine the design problem and to retrieve the related

design evaluation knowledge. This process is denoted as evaluation (Figure 4.2) and the new design

problem becomes the input for another synthesis process with more detailed product descriptions

(solution) and designer’s updated design knowledge. Therefore, a design process is constantly fed

with evolving input, which is a design problem formulation, resulting in evolving design solutions

as the output (Figure 4.2). The input and output variables of a design process belong respectively to

sets ”X” and ”Y” where each xi represents a certain design problem whose corresponding design

solution (selected from multiple candidates) is denoted as yi. Additionally, control variables belong

to the set ”C” while designer’s behavior and biometrics belong to the set ”Z”

42



Figure 4.2: Design process representation

The equations below show how such a complex process is mathematically formulated:

−→y = f1(
−→x ),−→z = f2(f1,

−→c ),

yj = g1(yq), where j ̸= q, 1 ≤ j ≤ m, 1 ≤ q ≤ m

(2)

where −→x = {x1, x2, ..., xn} represents input variables, −→y = {y1, y2, ..., ym} represents output vari-

ables, −→c = {c1, c2, ..., ck} represents control variables, −→z = {z1, z2, ..., zp} represents behavioral

and biometric data, f1 describes the mapping from input (−→x ) to output variables (−→y ), which is a de-

sign process. Meanwhile, the design process f1 together with other factors (−→c ) may cause changes

in designer’s behaviors and biometric data (−→z ), which is represented by f2. Certain relationships

between different output variables may be related to each other by relations represented by g1. The

numbers of variables of input, output, control variables and other changes are denoted as n, m, p,

and k respectively, which are independent from each other.

Eq. (2) presents a general experimental design research framework that structures unstructured

data from design activities, which aims to identify the hidden stimulus-response relationships. This
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calls for a new experimental paradigm for EEG studies of design cognition.

4.1.2 The proposed tEEG framework

A task-related framework is proposed for investigating the cognitive and affective activities during

design processes with the mentioned challenges addressed. As depicted in Figure 4.3, the overall

design process inputs the initial design problem and outputs the final design solutions if viewed

from a high level perspective. The data collected during loosely controlled experiments include de-

signer’s behaviors, biometric data and design solutions based on the target design problem. Loosely

controlled experiments are designed and conducted regarding the studied research topic where par-

ticipants’ design activities could happen. Secondly, clustering-based segmentation can be used to

identify the hidden structured stimulus-response data pairs from the unstructured data. Several sub-

processes can be extracted from a complex design after this step. Last but not least, each individual

segment can be analyzed using the traditional hypothesis test method. It is during this step that some

of the existing results and techniques on EEG-based cognitive and affective states may be adopted

and integrated.

Loosely controlled experiments are proposed for design studies which should be less controlled

compared to traditional ERP experiments based on our previous discussions of design process. The

surrounding environment of a product consists of everything other than the product itself and the

designer. Additional controls will bring changes to the environment resulting in different design

solutions as those controls change the environment in which the product is to be designed (Dong,

2005; Dorst & Cross, 2001; Maher & Tang, 2003; T. A. Nguyen & Zeng, 2012). This means that

loosely controlled experiments will be conducted without control of certain extraneous variables.

Typical of such experiments is that they can last much longer than traditional ERP experiments,

during which various cognitive activities may take place. Meanwhile, loosely controlled experi-

ments are proposed to target the uncontrollable part of design activities while current EEG-based

design studies mainly investigate basic and clear stimulus-response relationships under experiments

with better controls. The consistency of the nature of loosely controlled experiments and that of

complex design scenarios indicates more possibilities and new directions for design studies. Fi-

nally, different loosely controlled experiments can be designed depending on the complexity of the
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Figure 4.3: The proposed tEEG framework

studied scenario and the cognitive/affective aspect of interest. That is to say, designers need to have

an overall understanding of the research topic and be aware of the characteristics of this kind of ex-

periment when designing a loosely controlled experiment. A basic principle of experiment design

for studying design activities is to ensure the emergence of regularities related to the phenomena

under observation while applying minimum controls.

Since a design experiment consists of numerous stages and processes of solving different sub-

tasks and evolves over time, designer’s cognitive and affective states should also vary from time

to time. Different cognitive, affective, and behavioral states may be dominant at different stages

so that the recognition results should reflect the designer’s cognitive and affective states in a basic

design activity. Consequently, cognitive and affective states can be identified for each individual

sub-process instead of the entire process, either by segmenting the object of study into primitive
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ones or by segmenting the duration into shorter ones or by both. Each segment will have a clear

stimulus-response relationship that can be effectively tested by using existing hypothesis test meth-

ods. Afterwards, appropriate analysis methods should be applied to different sub-tasks and/or at a

shorter duration for their corresponding hypothesis tests. Clustering algorithms could be integrated

to find the relative “structured” groups from the unstructured data. Clustering aims to separate an

unlabeled data set into several clusters by capturing the hidden similarity and dissimilarity within

the data (Jain, 2010; Jain, Murty, & Flynn, 1999; R. Xu & Wunsch, 2005). In terms of the aforemen-

tioned concerns, the influence of subjective factors can be attenuated by taking into consideration

the data-driven analysis results that are obtained by applying clustering algorithms to the collected

data. Besides, a common standard could be developed to apply clustering algorithms for segment-

ing unstructured data. Clustering, as an unsupervised classification method, has less dependency on

knowledge and experience compared to protocol analysis as it deals with unlabeled data. Within

the proposed tEEG framework, EEG data are the main source of the unstructured data on which

clustering algorithms are performed. Thus, clustering-based segmentation is proposed to process

unstructured data collected during loosely controlled experiments. Additionally to the advantages

of clustering-based segmentation regarding the three concerns of traditional protocol analysis, the

incorporation of EEG data during data segmentation may improve the accuracy of (protocol analysis

based) segmentation results.

As illustrated in Figure 4.3, the last step is conducting segment analysis where the extracted

primitive tasks will thereafter be tested by a series of corresponding hypotheses. Each individually

extracted segment is analyzed following the traditional hypothesis test method considering that

each segmented sub-process may be dominated by a stimulus-response relationship. The purpose

of EEG-based segment analysis is to identify causal relations in the segmented design process. The

captured causal relations can be used to infer cognitive and affective states that have been widely

tested in the field of cognition and psychology during the design process. It is during this step that

some of the existing results and techniques on EEG-based cognitive and affective states may be

adopted and integrated.
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4.2 Applying tEEG framework within and beyond design for quanti-

fying cognitive factors

Experimental applications have been conducted to quantify different cognitive factors not only un-

der design activities, but also for other complex cognitive activities beyond the context of design.

Within the context of design, there are four experimental applications that apply the tEEG frame-

work to investigate designers’ cognitive factors and their relationships. Among those four design

applications, three of them have already been completed before the proposition of tEEG framework

(Zhao et al., 2020), which will be discussed in the paper. The other design application (Jia & Zeng,

2021) investigates designers’ cognitive workload and cognitive control during different design ac-

tivities when they work on six different design problems, which will be carefully discussed in this

paper under Section 5. As for the beyond design application, the tEEG framework has been applied

to a flight simulator-based training experiment designed to simulate different flight scenarios while

pilot trainees (participants) were asked to perform basic elements of lateral and vertical navigation.

For example, the study (T. A. Nguyen & Zeng, 2014) published on Computer-Aided Design

was discussed in (Zhao et al., 2020) as the first example of tEEG framework application. This study

aims to investigate the relationship between designer’s mental effort (mental capacity aspect) and

mental stress. One potential contribution of this study is for the development of the next genera-

tion of computer-aided design (CAD) systems where the interactions between designers and design

tools should be well considered. The results show that designers’ mental effort reduces at high

levels of stress (among the studied three stress levels), indicating that workflow and interfaces of

computer aided conceptual design tools should be designed so as not to add unnecessary mental

stress. Another application example is the study that used EEG signals to test different hypotheses

on the cognitive and quantitative aspects of design process (P. Nguyen, Nguyen, & Zeng, 2018).

The quantified cognitive factors include mental stress, fatigue which is closely related to one’s men-

tal capacity, and creativity which could be seen as part of one’s performance. There is a loose

connection between cognitive states and the design process as undertaken by a subject that can be

interpreted from a physiological perspective using for example EEG signals. EEG signals can mea-

sure cognitive states although these cognitive states labelled as fatigue, mental stress or creativity
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may no longer retain the same semiological content as their natural language counterparts and take

a more operational and experimental meaning.

4.2.1 A step-by-step guide for tEEG framework applications

In general, the proposed tEEG framework consists of three parts including data collection from

loosely controlled experiments, clustering-based segmentation, and EEG-based segment analysis.

For each of these three parts, related algorithms and techniques are summarized from existing liter-

ature covering a broad spectrum of fields and resources. We propose loosely controlled experiments

to investigate uncontrollable parts and complex relationships within design processes. Afterwards,

clustering-based segmentation is proposed to find structured sub-datasets from the unstructured

dataset collected during loosely controlled experiments. As a result, a complex design process

is segmented into different primitive activities that can be studied using traditional hypothesis tests.

Lastly, during the segment analysis step the extracted segments are examined one by one, which

can be viewed as several hypothesis tests. In the meantime, tEEG framework makes existing EEG

techniques and analysis methods applicable for EEG-based design studies.

Collecting data during loosely controlled experiment

Despite the difference in experiment design, EEG data collection under loosely controlled design

experiments will be similar to that under current EEG studies. EEG data will be collected throughout

the experiment while subjects are asked to solve a design problem. Moreover, behavioral data will

also be collected which will be used in clustering-based segmentation as illustrated in Figure 4.3. In

the meantime, only ambient noises will be filtered from EEG data and artifacts are kept for further

analysis, which is different from the data filtering step in current EEG studies. Those artifacts

can be used for clustering-based segmentation given that the so-called artifacts may be an indirect

reflection of participants’ cognitive/affective activities.

Conducting clustering-based segmentation

Combining the theoretical analysis and our previous attempts, the procedure of the proposed clustering-

based segmentation can be explained as follows:
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(1) Conduct protocol analysis and apply clustering algorithms on EEG data simultaneously;

(2) Use the part with high confidence from the protocol analysis results as the criteria to assess

the reliability of the applied clustering algorithm. If the reliability is not satisfying, a different

clustering algorithm can be applied until the clustering analysis results can be accepted; and

(3) The segments obtained based on clustering analysis are labelled by the protocol analysis

results.

Performing segment analysis

It is during this step that feature extraction, feature selection, classification and statistical analysis

will be performed as has been done in most existing EEG studies. Every extracted feature has its

specific aspect of information for which some information will be lost. For example, frequency

domain features can hardly describe temporal (time) information. Furthermore, information is or-

ganized in different ways and representation forms differ from one feature to another. As a result,

a comprehensive understanding of various features is essential as each feature represents a different

way of information selection and organization. Table 4.1 and Table 2.1 list the applied EEG fea-

tures and their corresponding affective and cognitive findings reviewed in the development of tEEG

framework, hoping to assist scholars in choosing appropriate EEG features in their tEEG framework

applications.

4.2.2 Evaluation under different contexts

In the context of design and other complex cognitive activities, the crucial challenge for evaluating

the indices of cognitive factors extracted from physiological data lies in the lack of ground truth,

which could be related to the complex relationships involved in complex cognitive activities as well

as our limited knowledge of the functions of human brain. Taking design as an example, the re-

cursive and complex process makes it merely possible for researchers to concentrate on a specific

stimulus-response relationship with other potential influencing factors well controlled. Several cog-

nitive functions can be simultaneously involved in one complex cognitive activity, whereas one cog-

nitive function may contribute to multiple complex activities in different ways. Existing research
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findings cannot provide sufficient evidence about how one cognitive function supports a specific

complex task and how it interacts with other cognitive functions. As a result, the evaluation of a

certain method or feature in quantifying one specific cognitive factor could be challenging and may

combine different evaluation methods, which is exactly what has been done in the present research.

In order to evaluate the effectiveness and reliability of a loosely controlled experiment, classical

features like spectral power were applied for comparisons with the validated findings available in

the literature. Before applying any advanced features or applying a relative popular feature to a new

phenomenon, aligning our findings with other validated evidence was considered as the first step in

evaluating the performance and quality of our analysis. In the meantime, a consistent conclusion

obtained through multiple features that have been proved to be related to the same cognitive func-

tion could add to the reliability of our analysis, which serves as another evaluation step. Moreover,

the results extracted from EEG-based analysis could further be evaluated through comparisons with

subjective ratings and performance evaluations depending on the availability under varied circum-

stances. However, subjective ratings are not necessarily the ground truth, as they may be inaccurate

in reflecting the real changes in cognition (T. A. Nguyen & Zeng, 2017), which is just one metric

considered in the analysis. Performance evaluations could be a more reliable measure in compari-

son to subjective ratings, even though the evaluation conclusion obtained from correlation analysis

is built upon one or a series of well accepted assumptions between cognitive functions and per-

formance when the research question is more about cognitive functions instead of performance

dimensions. Therefore, the present research combined the aforementioned evaluation methods to

achieve a convergent conclusion.

4.3 From stress model to a quantitative representation of human workload-

effort relationship

A quantitative representation is developed based on the original stress model (T. A. Nguyen &

Zeng, 2012) for describing the impact of stress and cognitive factors like workload and mental ca-

pacity on mental effort. As the third stage within the research methodology, this section presents

a quantitative representation of human workload-effort relationship, which could be further tested
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with simulations and experiments. The simulation results lead to a quantitative approach for en-

suring high work efficiency and successfully meeting the deadline, denoted as the capacity zone

model. Moreover, a cognitive experiment was designed using an N-back WM paradigm to provide

experimental evidence to the proposed capacity zone. The simulation results and the preliminary

results obtained on the N-back dataset are discussed in Chapter 5 under Section 5.3 and Section 5.4

respectively.

Aiming to develop a quantitative description of the relationship between cognitive factors and

mental effort, the important role of mental stress in mediating the influence of cognitive workload

and other cognitive factors on mental effort should be well considered in the first place. Therefore,

the stress-effort model (T. A. Nguyen & Zeng, 2012, 2017) was introduced into our analysis. The

stress-effort model not only described an inverted U shaped relationship between designer’s men-

tal stress and mental effort but also identified a group of cognitive factors that could positively or

negatively influence one’s mental stress. Starting from the stress-effort model, we quantitatively

represented the relationship between cognitive workload and mental effort, which then directly led

to the human workload-efficiency relationship based on a series of simplifications. Afterward, we

modeled the ideal workload-efficiency relationship corresponding to the case when the influence

from human beings’ limited capacity and other human factors could be ignored. By adding the

ideal modeling line to the original human workload-efficiency curve, two intersections were gener-

ated which result in three different zones identified on the workload-efficiency curve. Thereafter,

time-course simulations were conducted to capture the changes in human work efficiency under dif-

ferent zones considering possible variations in workload assignment and the factors, which will be

discussed in the Results section. Note that we distinguish the cognitive workload that is perceived

by the human participants from the actual amount of workload assigned to them. It is the former that

affects a person’s mental stress and is closely related to other human factors (Young et al., 2015),

whereas manipulating the latter could affect the initial value of the former.

4.3.1 The stress-effort model

The stress-effort model concentrated on the relationship between mental stress and mental effort

as well as the influencing factors on mental stress (T. A. Nguyen & Zeng, 2012). Inspired by the
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Yerkes-Dodson Law from psychology (Yerkes & Dodson, 1908), the stress-effort model described

an inverted U shaped relationship between mental stress and mental effort. Moreover, four factors

have been identified as influencing factors of designers’ mental stress which could thus affect the

occurrence of creativity during the design process. The authors first analyzed designers’ activities

and their characteristics within a design process, where the recursive nature of design process was

highlighted. A design problem could be seen as an initial design state. The goal of solving such

a problem was to achieve a new design state by applying appropriate design solutions which were

generated from demanded design knowledge to this specific design problem. Once a new design

state was defined, a new set of design knowledge would be determined considering its dependence

on the design problem. Afterward, the relations between different design states were discussed

where the design process was believed to have underlying nonlinear dynamics and possible to have

chaotic motions. This led to the first postulate, denoted as the postulate of nonlinear design dynam-

ics. This postulate indicated that the design process could be solved by environment-based design

(EBD) (Zeng, 2004). It was also mentioned in this postulate that design reasoning was sensitive to

initial conditions, based on which three routes leading to design creativity were then derived. Those

three routes could be briefly described as formulating design problem differently, extending design

knowledge, and changing the environment decomposition.

Starting from those identified three routes, the descriptive design model EBD was once again

applied to find the factors that might cause initial conditions to change. The authors found that

it was through mental capacity that the designers contributed to the changes in initial conditions.

According to their analysis, there was great degree of uncertainty and unpredictability in the design

evolution process. Such uncertainty and unpredictability will trigger mental stresses. This led

to the postulate on the relationship between mental stress and mental effort which indicated that

designers’ mental effort was related to their mental stress following an inverted U shaped curve and

also identified the four influencing factors of mental stress as described in Eq. (3) (T. A. Nguyen &

Zeng, 2012, 2017).

σ(t) =
W (t)

(K(t) + S(t))A(t)
, A(t) ∈ (0, 1) , (3)
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where σ(t) denotes a person’s stress at time t, which is determined by four influencing factors

including workload W(t), knowledge K(t), skills S(t), and affect A(t). Please note that Eq. (3)

represents a qualitative relation.

The aforementioned influencing factors of mental stress include perceived workload W(t), knowl-

edge K(t), skills S(t), and affect A(t), among which knowledge K(t), skills S(t), and affect A(t) con-

stitute a person’s mental capacity. The level of mental capacity reflects how well the person is at

the current work. As described in the stress-effort model (T. A. Nguyen & Zeng, 2012), knowledge

K(t) is influenced by knowledge and experience related to the given workload. Skills S(t) refer to

a person’s thinking styles, thinking strategies or reasoning ability. The level of affect A(t) could

determine how much of the person’s knowledge and skills can be effectively used in accomplishing

the workload. Continuous efforts have been made to investigate the relationships between mental

stress and the potential factors (Jia & Zeng, 2021; P. Nguyen et al., 2018; T. A. Nguyen & Zeng,

2014, 2017; Petkar, Dande, Yadav, Zeng, & Nguyen, 2009; Tang, Zeng, et al., 2009; Zhu, Yao, &

Zeng, 2007), which lay a solid foundation for the present research. The stress-effort model, though

firstly proposed for studying design phenomena, can be applied to any task that is involved with

human participation (Yang et al., 2021).

4.3.2 From stress-effort model to a quantitative representation of human workload-

effort relationship

With the mathematical representation of stress-effort model described in Eq. (3), it is assumed in the

current study that a person’s knowledge K(t), skills S(t), and affect A(t) will stay stable throughout

a short-term task completion process, which could thus be considered as constants. Under such

simplification, Eq.(3) can be written as:

σ(t) =
W (t)

(K + S)A
=

W (t)

β
, (4)

where β is defined as a person’s mental capacity for a given task, which is determined by the

person’s knowledge K, skills S, and affect A. A larger value of β represents a better mental status

regarding the given workload, and vice versa. As we can see from Eq. (4), the smaller β becomes,
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the more sensitive the person’s stress to workload becomes.

The raised-cosine function, one of the bell-shaped functions, was then applied to model the

inverted U-shaped relationship between mental stress and mental effort in this study as illustrated

in Eq. (5). The application of raised-cosine function does not indicate any unsuitability of other

bell-shaped functions for modeling the stress-effort relationship. Instead, it is possible to try alter-

native functions for the stress-effort modeling as no additional requirements are needed to limit the

application of other bell-shaped functions.

E(t) = f(σ(t)) =
1
2 [1 + cos (

σ(t)− 1
2
σmax

1
2
σmax

π)], if 0 ≤ σ(t) ≤ σmax ,

0, otherwise ,

(5)

where E(t) denotes a person’s mental effort at time t and σmax represents the maximum stress

the person can tolerate. We assume that the optimal stress level for human beings to achieve their

maximum efficiency is half of the stress limit σmax that they can tolerate. The present function is

symmetric around 1
2σmax as f(σ(t) + 1

2σmax) = f(−σ(t) + 1
2σmax) and a person’s mental effort

achieves its maximum at 1
2σmax. Starting from this maximum effort level, the mental effort will

gradually decrease to zero when the stress increases to σmax or decreases to 0. Note that although

we assume a symmetric function for simplicity, the analysis and simulation results still hold even if

the function is not symmetric.

By integrating the aforementioned Eq. (4) into the stress-effort relationship, Eq. (5) can be

written as below:

E(t) =
1
2 [1 + cos (

W (t)− 1
2
βσmax

1
2
βσmax

π)], if 0 ≤W (t) ≤ βσmax ,

0, otherwise.

(6)

A visualization of the modeling result is presented in Figure 4.4, where the cognitive workload
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changes from 0 to 200 with ϵmax = 100, σmax = 200, and β = 1.0.
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Figure 4.4: Human workload-effort relationship
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Table 4.1: Mapping between EEG features and affective findings

EEG features Affective findings Research and authors
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Chapter 5

Quantification of Phenomena under

Complex Cognitive Activities: Results

and Discussions

5.1 An application of tEEG framework within design: A loosely con-

trolled design experiment

This study aims to quantify designers’ cognitive workload and mental capacity when they are con-

ducting design activities. As an application of the tEEG framework, it involves a loosely controlled

design experiment consisting of six runs corresponding to six different design problems: design a

birthday cake, design a recycle bin, design a toothbrush, design a wheelchair, design a workspace,

and design a drinking fountain. Each run consists of five successive design activities: problem

understanding, idea generation, rating idea generation, idea evaluation, and rating idea evaluation.

By dividing a design process into the five design activities mentioned above, we aimed to reduce

the difficulty in investigating such a complex design process and adding certain ’structure’ to the

unstructured data. Such segmentation is the main control applied in the experiment, meaning that

despite the task description showing on the screen from the beginning of each design activity, any ad-

ditional control including time limit, oral instructions, or ’think-aloud’ related control, was avoided
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during the experiment. In the meantime, the presented experiment is loosely controlled in that par-

ticipants were provided with unlimited response times during each design activity and were given

sufficient freedom to complete the given task as they chose without interruption or interference. In

this manner, the characteristics of the design process can be better modeled, as sufficient time and

freedom are essential to allow participants to explore possible solutions naturally and recursively

complete the given task. The two rests are placed at the beginning and end of this experiment. As

this section will mainly cover the parts related to EEG microstate analysis, more information could

be found in (Jia et al., 2021).

First, we simulated design creation using loosely controlled settings in a series of open-ended

creation tasks, such as understanding problems, generating ideas, evaluating ideas, and self-rating

them. In a loosely controlled setting, considerable freedom is provided regarding response time

(self-paced) and response action (integrating the thinking and drawing phases) while maintaining

certain levels of control. The effectiveness of loosely controlled settings was also demonstrated in a

recent creativity study (Jia & Zeng, 2021). To align our findings with other validated evidence, we

investigated the regional contribution of brain oscillations in the classical frequency bands (delta,

theta, alpha, and beta) to the different open-ended creation tasks through TRP analysis. In terms

of data analysis, however, loosely controlled settings add new challenges. Several cognitive func-

tions can be simultaneously involved in one open-ended creation task, and one cognitive function

may contribute to different open-ended creation tasks. Basic cognitive functions never appear in

isolation and interact heavily with each other. Consequently, causal relationships between stimuli

and responses are extremely complex under loosely controlled settings. To facilitate the loosely

controlled experimental setting, we used EEG microstate analysis to segment the unstructured EEG

signals into a set of microstates. Each microstate reflects activity in large-scale brain networks

whose induced scalp potential fields remain quasi-stable during successive short time periods.

5.1.1 Participants

A total of 42 participants took part in this experiment, who were graduate students in the Gina Cody

School of Engineering and Computer Science, Concordia University. A gift card of CAD100 was

given as compensation to the best design. Three participants were excluded from data analysis since
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they have not completed all the experiments. Eleven participants were excluded from data analysis

due to technical errors such as missing markers. One participant was excluded from data analysis

due to large electrode impedances and poor data quality. The final samples included 27 participants

(8 women, 19 men) aged from 24 to 39. All participants had normal or corrected-to-normal vision.

The experimenters helped subjects wear the HRV chest strap, GSR finger strap, respiration rate

belt and EEG cap. The experimenters briefed each participant the experimental tasks; impedance

of all the EEG electrodes was below 10 kΩ; participants completed the experiment by following

the experimental procedures specified in the experimental design. EEG signals were recorded by

a 64 channel BrainVision actiCHamp at 500 Hz during the experiment. The EEG was referenced

to Cz and the electrode placement was based on the international 10-10 system. The experimental

protocol was approved by Human Research Ethics Committee (HREC) of Concordia University. All

sections of the experiment were performed in accordance with relevant guidelines and regulations.

All subjects signed the informed consent form before taking the experiment.

5.1.2 Results on EEG microstate analysis
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Figure 5.1: Microstate coverage during rest (REST), problem understanding (PU), idea generation
(IG), rating idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values
between rest and other conditions are annotated by black dots (p > 0.050), blue dots (p ≤ 0.050),
yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions are annotated by
∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

59



Figure 5.1 shows the error bars of microstate coverage in each tested condition. In particular,

the coverage of microstate class A was the lowest during REST compared to during PU, IG, RIG,

IE, and RIE ( p = 0.000), while the coverage of microstate class B was the lowest during REST

compared to PU, RIG, IE, and RIE (p < 0.005). Similarly, the coverage of microstate class G was

the lowest during REST compared to during PU, IG, RIG, and RIE (p < 0.040). On the contrary,

the coverage of microstate class C was the highest during REST compared to during PU, RIG,

IE, and RIE (p < 0.001), while the coverage of microstate class D was the highest during REST

compared to PU, IG, RIG, and RIE (p < 0.009). The coverage of microstate class F was higher

during REST compared to during RIG and RIE (p < 0.021). In addition, the coverage of microstate

class A decreased significantly from RIG and RIE to PU, IG, and IE (p < 0.001), as well as from

PU to IG (p = 0.001). The coverage of microstate class B increased significantly from IG and IE to

PU, RIG, and RIE (p < 0.001). The coverage of microstate class C decreased significantly from IG
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Figure 5.2: Microstate duration during rest (REST), problem understanding (PU), idea generation
(IG), rating idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values
between rest and other conditions are annotated by black dots (p > 0.050), blue dots (p ≤ 0.050),
yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions are annotated by
∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

Figure 5.2 shows the error bars of microstate duration under each condition. In particular, the

duration of microstate class A was lower during REST compared to during RIG and RIE (p =

0.000). The duration of microstate class B was lower during REST compared to during PU (p =
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0.044), whereas it was higher during REST compared to during IG (p = 0.007). The duration

of microstate classes C, D and E was the lowest during REST compared to PU, IG, RIG, IE, and

RIE (p < 0.002). The duration of microstate class F was higher during REST compared to during

PU, IG, RIG, and RIE (p < 0.004). The duration of microstate class G was higher during REST

compared to that during IG (p = 0.027). Besides, the duration of microstate class A decreased

significantly from RIG and RIE to PU, IG, and IE (p < 0.001), as well as from PU to IG (p = 0.001).

The duration of microstate class B increased significantly from IG and IE to PU, RIG, and RIE

(p < 0.001). The duration of microstate class C decreased significantly from PU to RIG and RIE

(p < 0.007), as well as from IG to RIG, IE, and RIE (p < 0.006). The duration of microstate

class D decreased from PU to RIG and RIE (p < 0.002), as well as from IG and IE to PU, RIG,

and RIE (p < 0.001). The duration of microstate class E decreased significantly from RIE to PU

(p = 0.018). The duration of microstate class F decreased significantly from IE to PU, RIG, and

RIE (p < 0.034). The duration of microstate class G decreased significantly from RIG and RIE to

IG and IE (p < 0.001).
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Figure 5.3: Microstate occurrence during rest (REST), problem understanding (PU), idea generation
(IG), rating idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values
between rest and other conditions are annotated by black dots (p > 0.050), blue dots (p ≤ 0.050),
yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions are annotated by
∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).
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Figure 5.3 shows the error bars of microstate occurrence under each tested condition. In par-

ticular, the occurrence of microstate classes A, B, and G increased significantly from REST to PU,

IG, RIG, IE, and RIE (p = 0.000). Similarly, the occurrence of microstate class E increased sig-

nificantly from REST to IG, RIG, and RIE (p < 0.043), while the occurrence of microstate class

F increased significantly from REST to IG and IE (p = 0.000). On the contrary, the occurrence

of microstate class D decreased significantly from REST to PU, RIG, and RIE (p < 0.011). In

addition, the occurrence of microstate class A decreased significantly from RIG and RIE to PU, IG,

and IE (p < 0.003), as well as from PU to IG (p = 0.014). The occurrence of microstate class

B increased significantly from IG and IE to PU, RIG, and RIE (p < 0.011). The occurrence of

microstate class C decreased significantly from PU to RIG and RIE (p < 0.014), from IG to RIG,

IE, and RIE(p < 0.002), as well as from IE to RIE (p = 0.016). The occurrence of microstate

class D decreased significantly from PU to RIG and RIE (p < 0.001), as well as from IG and IE

to PU, RIG, and RIE (p < 0.001). The occurrence of microstate class F decreased significantly

from IG and IE to PU, RIG, and RIE (p < 0.001). The occurrence of microstate class G increased

significantly from IE to RIG and RIE (p < 0.047).
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Figure 5.4: Entropy rate of microstate sequences during rest (REST), problem understanding (PU),
idea generation (IG), rating idea generation (IE), idea evaluation (IE), and rating idea evaluation
(RIE). P-values between rest and other conditions are annotated by black dots (p > 0.050), blue
dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005). P-values between conditions
are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

In addition, the finite entropy rate was computed as one of the temporal dependency features of
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the generated microstate sequences in this study. The computed entropy rate was 1.633 bits/sample

(SE = 0.021) for REST, 1.663 bits/ sample (SE = 0.016) for PU, 1.826 bits/sample (SE = 0.018)

for IG, 1.623 bits/sample (SE = 0.017) for RIG, 1.782 bits/sample (SE = 0.017) for IE, and 1.595

bits/sample (SE = 0.017) for RIE, when considering the previous 6 microstate labels. The repeated

measures ANOVA revealed a significant effect CONDITION (F(3.237, 84.153) = 40.629, p =

0.000, η2 = 0.610). Post hoc paired t tests with Bonferroni correction as shown in Figure 5.4

indicated that the entropy rate was higher during IG and IE compared to during REST, PU, RIG, and

RIE (p < 0.001), while the entropy rate was higher during PU compared to during RIE (p = 0.006).
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Figure 5.5: Hurst exponent of microstate sequences averaged from 35 partitions during rest (REST),
problem understanding (PU), idea generation (IG), rating idea generation (IE), idea evaluation (IE),
and rating idea evaluation (RIE). P-values between rest and other conditions are annotated by black
dots (p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005).
P-values between conditions are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

the Hurst exponent averaged from 35 partitions was 0.628 (SE = 0.005) for REST, 0.628 (SE

= 0.004) for PU, 0.594 (SE = 0.003) for IG, 0.637 (SE = 0.005) for RIG, 0.604 (SE = 0.003) for

IE, and 0.644 (SE = 0.005) for RIE. The repeated measures ANOVA revealed a significant effect

CONDITION (F(3.276, 85.182) = 24.696, p = 0.000, η2 = 0.487). Post hoc paired t tests with

Bonferroni correction as shown in Figure 5.5 revealed that the Hurst exponent was significantly

lower during IG and IE compared to during REST, PU, RIG, and RIE (p < 0.041), while the Hurst

exponent was significantly lower during PU compared to during RIE (p = 0.025).

In the meantime, the entropy rate and Hurst exponent were computed for comparing between
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each of the six runs under each tested condition as shown in Figure 5.6 and Figure 5.7 respectively.

Even through this task-wise comparison was not covered in the published paper (Jia et al., 2021), the

results could shed light on how designers’ mind changes as the design process continues. Further

research is needed to continue with this direction.
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Figure 5.6: Entropy rate of microstate sequences during each run for each tested condition (rest
(REST), problem understanding (PU), idea generation (IG), rating idea generation (IE), idea eval-
uation (IE), and rating idea evaluation (RIE)). P-values between rest and other conditions are an-
notated by black dots (p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red
dots (p ≤ 0.005). P-values between conditions are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010),
∗∗∗(p ≤ 0.005).

5.1.3 Quantification of cognitive control under different design activities

The quantification of cognitive control was quantified combining the results obtained from EEG

microstate analysis and task-related power (TRP) analysis. The EEG microstate parameters indi-

cated that IG was associated with the most microstate C than other design activities, supported by

the coverage, duration, and occurrence of microstate C. Moreover, the temporal dependencies on

the microstate sequences showed the maximum entropy rate and the lowest Hurst exponent dur-

ing IG in comparison with other design activities. In our framework, the increasing entropy rate

and the decreasing Hurst exponent is mediated by a relaxation of cognitive control mechanisms.
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Figure 5.7: Hurst exponent of microstate sequences during each run for each tested condition (rest
(REST), problem understanding (PU), idea generation (IG), rating idea generation (IE), idea evalua-
tion (IE), and rating idea evaluation (RIE)). P-values between rest and other conditions are annotated
by black dots (p > 0.050), blue dots (p ≤ 0.050), yellow dots (p ≤ 0.010), and red dots (p ≤ 0.005).
P-values between conditions are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

The TRP analysis in delta, theta, and beta bands suggests differences among three groups of ex-

perimental conditions, which are IG, IE, and PU/RIG/RIE. It was found that delta, theta, and beta

power increased over frontal sites from REST to PU/RIG/RIE and IE, whereas they decreased over

all sites from REST to IG. A comparison within design activities indicated that delta, theta, and

beta power increased significantly over almost all sites from IG to IE, and PU/RIG/RIE, as well

as from IE to PU/RIG/RIE, while delta, theta, and beta power did not show significant differences

over almost all sites in PU/RIG/RIE. Increased theta power over the frontal sites has been viewed

as a function of working memory and cognitive control. Generally, increased frontal theta activity

has been interpreted as a need for increased cognitive control in response to conflict (Cavanagh &

Frank, 2014; Cavanagh, Zambrano-Vazquez, & Allen, 2012), encoding and retrieval of informa-

tion from working memory (Karakaş, 2020; Sauseng, Griesmayr, Freunberger, & Klimesch, 2010),

while increased beta activity is associated with the maintenance of intended status quo (Engel &

Fries, 2010). Besides, increases in delta power have been associated with heightened attention dur-

ing mental tasks. In summary, EEG microstate analysis and TRP analysis revealed that IG triggered

the least cognitive control among the tested five design activities.
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5.1.4 Quantification of cognitive workload under different design activities

Cognitive workload was quantified by the task-related power (TRP) results on alpha band, which is

then compared to the subjective rating results obtained from NASA-TLX. The TRP analysis results

on alpha band suggests differences among three groups of experimental conditions, which are IG,

IE, and PU/RIG/RIE. It was found that IG, IE, and PU/RIG/RIE were associated with decreases in

alpha power while the degree of decreases in alpha power was the largest over almost all sites during

IG, followed by during IE and PU/RIG/RIE. Alpha power has been considered as a reliable indicator

of cognitive workload (Fink et al., 2005) where the extent of decreases in alpha power is associated

with increases in cognitive workload (Keil et al., 2006). The TRP results on alpha band indicated

that the IG task triggered the highest cognitive workload, followed by IE and PU/RIG/RIE. In the

meantime, the obtained NASA-TLX results indicated that mental demand, time demand, effort, and

stress decreased significantly from IG to IE, supporting the hypothesis that IG would trigger the

highest cognitive workload.

5.1.5 Conclusion

Our research findings can be summarized as below. The results on EEG microstate parameters in-

dicated that microstate C, being negatively associated with the cognitive control network, was more

prevalent in idea generation. Furthermore, the EEG microstate sequence analysis indicated that

idea generation was consistently associated with the shortest temporal correlation times concerning

finite entropy rate, autoinformation function, and Hurst exponent. This finding suggests that the

interplay of functional networks appears less restricted while the brain has more degrees of freedom

in choosing the next network configuration. In the meantime, the task-related power (TRP) analy-

sis also revealed that idea generation in comparison with other design activities including problem

understanding, idea generation, idea evaluation, and self-rating, was associated with the highest

cognitive workload and lowest cognitive control due to the most significant decreases in theta, al-

pha, and beta power (Jia et al., 2021). Taken together, the TRP and EEG microstate results support

that idea generation would be associated with the highest cognitive workload and lowest cognitive

control during a design process.
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5.2 An application of tEEG framework beyond design: A pilot train-

ing experiment

This study applied the proposed tEEG framework to training process, where trainees’ cognitive

control and cognitive workload were quantitatively monitor as the skill acquisition process con-

tinued (Zhao, Jia, et al., 2022). This study could also serve as a good application example of the

proposed tEEG framework beyond the context of design. As mentioned in Chapter 4, when the

performance evaluation is not available the evaluation focuses on whether our results are aligned

with the literature and if the applied features could lead to a convergent conclusion. A pilot train-

ing process is designed to equip students with the knowledge, judgement, and skills required for

maintaining aircraft control and responding to critical flight situations. The present research aims

to investigate the changes in trainees’ cognitive control and cognitive workload along a skill acqui-

sition process while they underwent training on basic flight maneuvers. EEG microstate analysis

and spectral power features were applied to assess the variations in trainees’ cognitive workload and

cognitive control during different stages within a pilot training process. The experimental results

indicated that trainees’ cognitive workload decreased during the skill acquisition process, whereas

their cognitive control improved toward the end of the process. As the study demonstrated, even un-

der varied task demands, EEG microstate features were able to capture improvements in cognitive

control throughout the skill acquisition process.

We hypothesized that trainees’ cognitive workload would decrease whereas their cognitive con-

trol would improve under the same task demands through a skill acquisition process. Aiming to

test our hypothesis under a skill acquisition process, a pilot training experiment was designed with

a series of preparation steps and a familiarization session before the commencement of EEG data

collection. According to the skill acquisition theory (J. R. Anderson, 1982, 1987), trainees could

be considered as possessing the declarative knowledge for the upcoming flight tasks throughout

the recorded training process under the current experimental settings. In this way, the physiologi-

cal measures may capture trainees’ cognitive changes that could happen during a skill acquisition

process as the twenty-two sessions under study corresponded to the proceduralization and autom-

atization of knowledge within a skill acquisition process, where trainees applied the declarative
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knowledge in the execution of the target maneuvers through practicing (DeKeyser, 2020). More-

over, the first part of the hypothesis is the decrease in cognitive workload during a skill acquisition

process. Given that cognitive workload describes the balance between the task demands and the

available resources to the confronted task (Welford, 1978; Young et al., 2015), skill acquisition adds

to the available resources leading to a decreased cognitive workload with unvaried task demands.

The other part of the hypothesis is that cognitive control may improve along a skill acquisition

process. Enhanced cognitive control has been associated with improvements in information pro-

cessing, reasoning, planning, and decision-making (J. D. Cohen, 2017; Musslick & Cohen, 2021),

all of which could happen as the skill acquisition process continues. In the context of pilot train-

ing, the aforementioned cognitive changes are well aligned with the expected changes in trainees

after a training process. Therefore, we tested the hypothesis by assessing and comparing trainees’

cognitive workload and cognitive control when they were performing the same Baseline tasks along

the tested pilot training process. To be more precise, STAGE comparisons were conducted by di-

viding the twenty-two Baseline tasks within the pilot training process into three stages: Training

stage, PracticeA stage, and PracticeB stage. In the meantime, paired comparisons were conducted

between Baseline tasks and Trial tasks within the same stage to align our results with the effect of

varied task demands on cognitive workload and cognitive control reported in the literature. And

the effect of skill acquisition through our pilot training process was tested based on the quantitative

assessment results. Furthermore, STAGE comparisons were also conducted on the twenty-two Trial

tasks to see whether we will still be able to observe the same effect of skill acquisition on trainees’

cognitive workload and cognitive control under varied task demands.

5.2.1 Experiment and participants

The experiment was conducted on a custom aircraft flight simulator built by Marinvent Corpora-

tion. Aircraft dynamics reflected a Boeing 737 and were modelled using XPlane 11 from Laminar

Research on a computer running the Windows operating system. The simulator controls included a

yoke, pedals, rudder and throttle quadrant. During this experiment, participants did not have an out-

the-window view. Instead they referred to only a primary flight display (PFD) shown Figure 5.8 for
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knowledge of the aircraft attitude, altitude, heading, climb rate and speed. Participants used the air-

craft yoke to control aircraft pitch and roll. An autopilot controlled throttles (for speed maintenance)

and pedals (for turn coordination). As a result, participants operated only the yoke.

To equip the participants with a basic understanding of the flight instruments and flight maneu-

vers, a few preparation steps were added before the commencement of the pilot training process in

this experiment. Participants were asked to read a flight briefing presentation, watch four training

videos, and take a familiarization session accompanied by the test director in the selected simulator

to practice the basic maneuvers presented in the videos. They outline the Yoke as a flight control

and its effects on pitch and roll to control the desired parameters. How to interpret control and

performance indications on the PFD as well as some basic strategies were also covered.

Once the pilot training process started, participants’ physiological data and learning behaviours

were recorded till the end of the experiment by the National Research Council’s Integrated Physi-

ological Monitoring (IPM) (Law A & S., 2017) and synchronised with the aircraft simulator using

a network time protocol server. An iPad located to the left of the participant presented task instruc-

tions and collected NASA-TLX ratings and other questionnaire data (e.g. fatigue ratings). Instruc-

tions were presented and data were collected using Qualtrics software. The recorded physiological

data includes: Electroencephalogram (EEG), Electrocardiogram (ECG), Galvanic Skin Response

(GSR), and Eye tracking, while participants’ learning behaviors were recorded in the training de-

vices together with three cameras placed at the top, front and side of the participants. EEG data

was collected using a 64-channel BioSemi ActiveTwo system placed according to the international

10–20 system at a sampling rate of 2048 Hz. The results from other recorded physiological data

were not included in this research. For comparative analysis, subjective real-time evaluation by an

instructor was not possible due to COVID-19 health restrictions but was conducted post-experiment

by a review of parametric data and video of the sessions.

Twenty-four participants aged between 21-41 (11 males, 13 females) were recruited to conduct

the experiments. All participants reported to be in general good health without any neurological or

psychiatric disorder. In addition, all participants had normal vision or could achieve normal vision

with contact lenses, as glasses were not accepted for this experiment. Each participant received $100

CAD compensation together with $80 CAD as trip compensation after completing the experiments.
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Figure 5.8: Flight instrument example

All participants signed the informed consent forms before taking the experiment and filled out a

questionnaire related to the training tasks, based on which the experimenters may interview the

participants for more information. Participants were asked to rest for two minutes with their eyes

open and closed right before the training process. The pilot training process consists of twenty-two

sessions and the instructions for the required maneuvers were displayed on an iPad placed in front of

the participants under the supervision of the Test Director. The experimental protocol was approved

by the Concordia Human Research Ethics Committee as well as the research ethics board of the

National Research Council Canada.

During each session, the participants were instructed to complete a Baseline task during 30

seconds, a Trial task during 90 seconds, and a NASA-TLX questionnaire on the iPad to rate their

perceived workload before moving on to the next session. All maneuvers requested in Baseline

tasks were the same and the participant maintained straight and level flight at a constant heading

and altitude. Following the baseline, the simulator was paused and the participant read the twizzle

instructions and moved to the Trial stage. The maneuvers requested in Trial tasks varied in difficulty

on three levels:
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• Level 1: a climb, descent, or turn in one direction.

• Level 2: a climb, descent, or turn with reversal.

• Level 3: a climb or descent with reversal combined with a turn in one direction; or a turn with

reversal combined with a climb or descent.

Those twenty-two sessions were divided into three stages to better monitor different stages dur-

ing a training process, which are denoted as Training (7 Baseline and 7 Trial tasks), PracticeA (8

Baseline and 8 Trial tasks), and PracticeB (7 Baseline and 7 Trial tasks) in chronological order. Dur-

ing the Training stage, the test director provided the participant with feedback on their performance

and all participants were given the same sequence of maneuvers. By comparison, in the Practice A

and Practice B stages, no test instructor feedback was provided and the sequence of maneuvers was

pseudo-randomized across participants. Specifically, maneuvers were presented in blocks of three

that contained one twizzle from each of Level 1, Level 2 and Level 3 difficulties. Moreover, the first

Trial task in a new block could not be the same level as the last Trial task of the previous block.

5.2.2 Pre-processing for data collected from loosely controlled experiment

The EEGLAB toolbox was applied during pre-processing for removing noises and artifacts from the

EEG data (Delorme & Makeig, 2004). The collected EEG data were referenced to mastoids and then

filtered between 1 and 40Hz using a zero-phase Hamming windowed-sinc FIR filter. Afterward, the

channels that satisfied one or more criteria below were isolated as bad channels. The applied criteria

for bad channel detection include: 1) the channel kept flat for more than 5 seconds; 2) the correlation

between the channel and its nearby channels is smaller than 0.8; and 3) the amplitude of the channel

was greater than 3 standard deviation from the mean. For artifact removal, the multiple artifact

rejection algorithm (MARA) was applied where the IC components having more than 40% chance

to be labelled as artifacts (eye-blink, eye-movement, muscle-generated, and other artifacts) were

removed. Moreover, the signals were segmented in 2-second epochs for detecting bad segments and

bad local channels within each segment (Gabard-Durnam, Mendez Leal, Wilkinson, & Levin, 2018).

The detected bad segments were rejected and the bad local channels detected by applying FASTER
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(Nolan, Whelan, & Reilly, 2010) criteria were interpolated using spherical splines. Finally, the

obtained clean signals were re-referenced to average reference and downsampled to 250Hz.

5.2.3 Clustering-based segmentation: EEG microstate analysis

The seven microstate classes (A, B, C, D, E, F, G) were computed following the approach proposed

in (Pascual-Marqui et al., 1995). The Global Field Power (GFP) of the pre-processed EEG data

was computed for each task at each stage and only the EEG data at the computed GFP peaks were

sent to the modified k-means algorithm with the cost function defined in Eq. (7). We applied 100

repetitions to select the optimal microstate classes based on the cross-validation defined in Eq. (8)

from the microstate classes computed from each repetition.

F =
1

NT (NS − 1)

NT∑
t=1

||Vt −
NK∑
k=1

aktΓk||2, (7)

CV =

∑NT
t=1(V

′
t · Vt − (V ′

t · Γk)
2)

NT (NS − 1)
· ( NS − 1

NS − 1−NK
)2, (8)

where NT is the sample length, Vt is a NS × 1 vector consisting of the electric potential at time

point t, NK is the number of microstate classes, Γk is a normalized NS × 1 vector representing the

k-th microstate class, akt is the intensity of the k-th microstate class at the time point t.

Afterward, a full permutation procedure was applied to compute the group-wise microstate

classes from the microstate classes obtained in each participtant’s single task, which were denoted

as the global microstate classes. The global microstate classes were then used to represent the

pre-processed EEG data in the time domain by assigning one of the global microstate classes to

each time point. During this fitting back process, the highest spatical correlation was used as the

criterion for mocrostate class assignment and the polarity of the microstate classes was ignored.

Furthermore, no smoothing parameters were applied in our analysis to avoid any modification to

the temporal dynamics of the generated microstate sequences.
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5.2.4 Segment-wise analysis

• EEG microstate features

Three microstate parameters were computed for the 44 microstate sequences generated for

each participant’s different tasks during varied stages. The three parameters were duration,

occurrence, and coverage, which were used to describe at an average level how long a mi-

crostate could remain stable, how many times a microstate appeared per second, and the

fraction of the total analysis time covered by a microstate, perspectively.

Moreover, a finite estimate of the entropy rate (Von Wegner, 2018) and Hurst exponent esti-

mated by detrended fluctuation analysis (DFA) (Peng, Havlin, Stanley, & Goldberger, 1995)

were applied to measure the temporal dependencies of different microstates in this research.

In particular, the entropy rate was computed to measure the short-range temporal depen-

dencies, whereas the computed Hurst exponent aimed to measure the long-range temporal

dependencies (Jia & Zeng, 2021). Moreover, the generated microstate sequences needed to

be mapped intro the metric space S0 = {−1,+1} before applying DFA for Hurst exponent

computation. A total of 35 partitions were obtained for the seven microstate classes, and

the Hurst exponent was computed for the mapped sequences generated under each partition.

Therefore, the arithmetic average of the Hurst exponents computed from 35 partitions was

used in this research to describe the long-range temporal dependencies.

• Spectral analysis

The power spectral density (PSD) was estimated by applying the Welch periodogram method

with 50% overlapping Hamming windows of a length of 2 seconds to the pre-processed EEG

data. Afterward, the theta band (4-7.5 Hz) power and alpha band (8-12.5 Hz) power (Garcı́a-

Martı́nez, Martinez-Rodrigo, Alcaraz, & Fernández-Caballero, 2019) were computed from

the PSD for each Trial task and Baseline task within the tested training process (22 Trial

tasks, and 22 Baseline tasks). Under each task, the band powers at 64 EEG channels were

then grouped into five cortical areas (frontal, central, temporal, parietal, and occipital) (Ag-

noli, Zanon, Mastria, Avenanti, & Corazza, 2020; Jia & Zeng, 2021) for including AREA

comparisons in repeated measures ANOVA.
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• Statistical anlaysis

The EEG spectral power changes in theta and alpha bands were analyzed separately by a

2 (TASK) ×3 (STAGE)×5 (AREA) repeated measures ANOVA. The three within subject

factors were TASK (Baseline and Trial), STAGE (Training, PracticeA, and PracticeB), and

AREA (Frontal, Central, Temporal, Parietal, and Occipital). Greenhouse-Geisser correction

was applied in the case of sphericity violations. Post hoc paired t-test was conducted at each

tested AREA between TASK and between STAGE and Bonferroni correction was applied for

multiple comparisons.

For each of the computed EEG microstate parameters (coverage, occurrence, and duration),

a 2 (TASK) ×3 (STAGE)×7 (CLASS) repeated measures ANOVA was applied to analyze

the effects of different factors. The three within subject factors were TASK (Baseline and

Trial), STAGE (Training, PracticeA, and PracticeB), and CLASS (A, B, C, D, E, F, and G).

Greenhouse-Geisser correction was applied in the case of sphericity violations. Post hoc

paired t-test was conducted at each microstate CLASS between TASK and between STAGE

and Bonferroni correction was applied for multiple comparisons.

The temporal dependencies measured by entropy rate and Hurst exponent were analyzed sep-

arately by a 2 (TASK) ×3 (STAGE) repeated measures ANOVA. The two within subject

factors were TASK (Baseline and Trial) and STAGE (Training, PracticeA, and PracticeB).

Greenhouse-Geisser correction was applied in the case of sphericity violations. Post hoc

paired t-test was conducted between TASK and between STAGE and Bonferroni correction

was applied for multiple comparisons.

5.2.5 Results on performance evaluation, EEG spectral analysis, and EEG microstate

analysis

Performance evaluation results

The performance evaluation of each trial and baseline used a combination of qualitative and quan-

titative assessment. The evaluator looked at each trial and baseline and measured them along three

dimensions; the quality of the dataset, a quantitative assessment of performance in accomplishing
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the task, and a descriptive analysis of the trainee’s actions during the trial. The scale of the grading

level was selected by a panel of two instructors and tailored to the expected level of performance

of ab-initio trainees for each parameter. A single qualified instructor was used to evaluate trainee’s

performance attempt to minimize variations in assessments.

Among the three evaluated dimensions, the quality of the dataset can be reflected in the re-

sults on quantitative assessment of the trainees’ performance, whereas the descriptive analysis pro-

vides additional information that may explain for the trainee’s good or bad performance. There-

fore, this research only focused on the quantitative assessment dimension to reflect trainees’ per-

formance evaluation results throughout the training process. The quantitative assessment was com-

posed of five dimensions in total including three types of performance (heading, altitude, and rate

climb/descent) and three types of control management evaluations (roll and pitch), which were de-

noted as P-H, P-A, P-R, C-R, and C-P in Table 5.1 and 5.2.

Table 5.1: Averaged results for each performance evaluation dimension under Baseline and Trial
tasks.

Mean (SE) Training PracticeA PracticeB
Baseline Trial Baseline Trial Baseline Trial

P-H 3.88 (0.042) 3.68 (0.066) 3.98 (0.012) 3.72 (0.000) 4.00 (0.000) 3.77 (0.065)
P-A 3.73 (0.067) 3.13 (0.124) 3.92 (0.034) 3.34 (0.098) 3.89 (0.036) 3.50 (0.091)
P-R 2.92 (0.140) 2.36 (0.107) 3.21 (0.118) 2.38 (0.121) 3.27 (0.121) 2.49 (0.121)
C-R 3.83 (0.047) 3.38 (0.082) 3.93 (0.030) 3.27 (0.087) 3.99 (0.008) 3.46 (0.066)
C-P 2.83 (0.158) 2.21 (0.110) 3.16 (0.132) 2.27 (0.095) 3.23 (0.119) 2.27 (0.124)

The quantitative assessment decreased significantly from Baseline tasks to Trial tasks for all

the five evaluated dimensions throughout the training process (including Training, PracticeA, and

PracticeB stages) as shown in Figure 5.9a-5.9e. The averaged evaluation results are listed in Ta-

ble 5.1 and the related p-values for paired TASK comparisons can be found in Table 5.2. As for

STAGE comparisons on Baseline tasks, significant increases from Training to PracticeA stage were

observed under three evaluated dimensions, namely performance (altitude) (Figure 5.9b), perfor-

mance (rate climb/descent) (Figure 5.9c), and control management (pitch) (Figure 5.9e). In the

meantime, such significant increases were also observed from Training to PracticeB stages for all

the five evaluated dimensions (Figure 5.9a-5.9e) when trainees were conducting Baseline tasks. As

for STAGE comparisons on Trial tasks, performance (altitude) was the only dimension that showed
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Figure 5.9: Quantitative assessment on each dimension with P-values for TASK and STAGE com-
parisons annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005)
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Table 5.2: P-values for paired TASK and STAGE comparisons on each performance evaluation
dimension.

Comparison Dimension
P-H P-A P-R C-R C-P

S1:B-T 0.021* ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘
S2:B-T 0.001***↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘
S3:B-T 0.002***↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↘
B:S1-S2 0.072 0.017* ↗ 0.039* ↗ 0.148 0.016* ↗
B:S1-S3 0.022* ↗ 0.021* ↗ 0.006 ** ↗ 0.009** ↗ 0.002***↗
B:S2-S3 0.311 1.0 1.0 0.23 1.0
T:S1-S2 1.0 0.046* ↗ 1.0 0.463 1.0
T:S1-S3 0.567 0.001***↗ 0.942 1.0 1.0
T:S2-S3 1.0 0.066 0.949 0.13 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ Quantitative assessment increases
↘ Quantitative assessment decreases

significant increases from Training to PracticeA as well as from Training to PracticeB stage (Figure

5.9b). The related p-values for STAGE comparisons with Bonferroni correction are listed in Table

5.2.

Subjective ratings

By averaging the six dimensions, the global score of NASA-TLX for training was 5.85 (SD=0.97),

for practiceA was 5.52(SD=0.98), and for practiceB was 5.31(SD=1.03). As shown in Figure 5.10,

the results of NASA-TLX revealed that trainees’ cognitive workload decreases during the tested

pilot training process. In particular, significant decreases were observed from Training to PracticeA

(p=0.038), and from Training to PracticeB (p=0.024) according the post hoc analysis.

EEG spectral power results

In the theta band, the 2 × 3 × 5 repeated measures ANOVA revealed two significant main effects

of TASK (F(1, 23) = 13.110, p = 0.001, η2 = 0.368) and AREA (F(4, 92) = 34.337, p = 0.000,

η2 = 0.600), as well as one significant interaction effect of TASK × AREA (F(4, 92) = 15.604,

p = 0.000, η2 = 0.420). Figure 5.11 presents the comparison results on TASK and STAGE on

each brain area. And the p-values for pairwise comparisons of theta spectral power with Bonferroni

correction on each area are listed in Table 5.3, where B− and T− represent the two TASK types,
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Figure 5.10: NASA-TLX subjective rating results for STAGE comparison (Training, PracticeA,
and PracticeB). P-values for STAGE comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010),
∗∗∗(p ≤ 0.005)

namely Baseline tasks and Trial tasks respectively), whereas S1, S2, and S3 correspond to Training,

PracticeA, and PracticeB stages respectively. As shown in Figure 5.11, trainees’ theta spectral power

decreased significantly from Baseline tasks to Trial tasks over frontal sites under PracticeA stage and

PracticeB stage, over central sites for all three stages (Training, PracticeA, and PracticeB), and over

temporal sites under PracticeA stage and PracticeB stage. In the meantime, significant increases of

theta band powers were observed from Baseline tasks to Trial tasks over parietal and occipital sites

under Training stage, PracticeA stage, and PracticeB stage. As for STAGE comparison on Baseline

tasks, the spectral power results in theta band showed significant increases from Training stage to

PracticeA stage over central, temporal, parietal, and occipital sites, as well as from Training stage

to PracticeB stage over frontal, central, and temporal sites. However, no significant changes were

observed between different stages while the trainees were conducting Trial tasks over the five brain

areas.

In the alpha band, the 2×3×5 repeated measures ANOVA revealed three significant main effects

of TASK (F(1, 23) = 45.253, p = 0.000, η2 = 0.663), STAGE (F(2, 46) = 4.004, p = 0.048,

η2 = 0.148), and AREA (F(4, 92) = 35.845, p = 0.000, η2 = 0.609), as well as one significant

interaction effect of TASK × AREA (F(4, 92) = 21.992, p = 0.000, η2 = 0.495). Figure 5.12

presents the results on TASK comparisons and STAGE comparisons in each brain area, and the p-

values for pairwise comparisons of alpha spectral power with Bonferroni correction on each area are

listed in Table 5.4. For the TASK comparisons, trainees’ alpha band power significantly decreased
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Table 5.3: P-values for paired TASK and STAGE comparisons in theta band power.

Comparison Area
Frontal Central Temporal Parietal Occipital

S1:B-T 0.094 0.007** ↘ 0.086 0.0*** ↗ 0.0*** ↗
S2:B-T 0.0*** ↘ 0.0*** ↘ 0.0*** ↘ 0.0*** ↗ 0.0*** ↗
S3:B-T 0.0*** ↘ 0.0*** ↘ 0.003*** ↘ 0.001*** ↗ 0.0*** ↗
B:S1-S2 0.314 0.019 * ↗ 0.008 ** ↗ 0.034 * ↗ 0.02 * ↗
B:S1-S3 0.049 * ↗ 0.048 * ↗ 0.046 * ↗ 0.173 1.0
B:S2-S3 0.317 1.0 1.0 1.0 0.097
T:S1-S2 0.124 0.3 1.0 1.0 1.0
T:S1-S3 0.906 1.0 1.0 0.094 1.0
T:S2-S3 0.828 0.848 1.0 0.174 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ Theta band power increases
↘ Theta band power decreases

from Baseline tasks to Trial tasks over frontal and central sites for all the three stages (Training,

PracticeA, and PracticeB ), whereas significant increases were also observed over parietal sites

during Training and PracticeA stages as well as over occipital sites for all the three stages (Training,

PracticeA, and PracticeB ). As for the STAGE comparisons on Baseline tasks, significant increases

in alpha band power were observed from Training stage to PracticeA stage over central sites, as well

as from Training stage to PracticeB stage over central and parietal sites. However, no significant

changes in alpha band power were observed the STAGE comparisons on Trial tasks.

Table 5.4: P-values for paired TASK and STAGE comparisons in alpha band power.

Comparison Area
Frontal Central Temporal Parietal Occipital

S1:B-T 0.029* ↘ 0.008** ↘ 0.161 0.0*** ↗ 0.0*** ↗
S2:B-T 0.0*** ↘ 0.0*** ↘ 0.106 0.0*** ↗ 0.0*** ↗
S3:B-T 0.0*** ↘ 0.0*** ↘ 0.09 0.404 0.0*** ↗
B:S1-S2 1.0 0.021* ↗ 0.108 0.15 0.053
B:S1-S3 1.0 0.024* ↗ 0.067 0.014* ↗ 0.612
B:S2-S3 0.813 1.0 1.0 0.841 1.0
T:S1-S2 0.255 1.0 0.792 1.0 1.0
T:S1-S3 0.43 1.0 0.364 0.165 1.0
T:S2-S3 1.0 1.0 1.0 0.391 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ Alpha band power increases
↘ Alpha band power decreases
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Figure 5.11: EEG theta band power for Baseline tasks and Trial tasks during Training, PracticeA,
and PracticeB. P-values for TASK and STAGE comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤
0.010), ∗∗∗(p ≤ 0.005).

EEG microstate results

Figure 5.13 shows the topographic maps of seven global microstate classes across TASK and across

STAGE, as well as for each task type (Baseline or Trial) during different stages, namely Training,

PracticeA, and PracticeB. The seven microstate classes were labelled as A, B, C, D, E, F, and G

(Custo et al., 2017; Jia & Zeng, 2021; Michel & Koenig, 2018). For Baseline tasks, the seven

microstate classes explained 66.685% (SE = 0.347) of the global variance of the original EEG

topographies corresponding to peaks of GPF for Training stage, 67.628% (SE = 0.294) for Prac-

ticeA stage, 68.749% (SE = 0.312) for PracticeB stage. As for Trial tasks, the seven microstate

classes explained 67.127% (SE = 0.348) of the global variance of the original EEG topographies

corresponding to peaks of GPF for Training stage, 67.894% (SE = 0.264) for PracticeA stage,

68.342% (SE = 0.301) for PracticeB stage.

The computed EEG microstate parameters include coverage, occurrence, and duration. For mi-

crostate coverage analysis, the 2× 3× 7 repeated measures ANOVA revealed one significant main
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Figure 5.12: EEG alpha band power for Baseline tasks and Trial tasks during Training, PracticeA,
and PracticeB. P-values for TASK and STAGE comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤
0.010), ∗∗∗(p ≤ 0.005)

effect of CLASS (F(6, 138) = 52.261, p = 0.000, η2 = 0.694), as well as one significant interac-

tion effect of TASK × CLASS (F(6, 138) = 37.493, p = 0.000, η2 = 0.620). Figure 5.14 presents

the coverage comparison results on TASK and STAGE for each of the seven EEG microstate classes,

while the p-values for pairwise comparisons with Bonferroni correction on each microstate class

are listed in Table 5.5. For TASK comparison, significant increases in the coverage of microstate B

from Baseline tasks to Trial tasks were observed for Training and PracticeA stages; the significant

changes from Baseline to Trial tasks were also observed for the coverage of microstate C for Prac-

ticeA (increasing); the coverage of microstate D for Training (increasing), PracticeA (increasing),

and PracticeB (increasing); the coverage of microstate E for Training (decreasing), PracticeA (de-

creasing), and PracticeB (decreasing); the coverage of microstate F for PracticeA (increasing) and

PracticeB (increasing); the coverage of microstate G for Training (decreasing), PracticeA (decreas-

ing), and PracticeB (decreasing). The results on EEG microstate coverage showed no significant

difference in STAGE comparisons in all of the seven microstate classes.

In addition, the 2 × 3 × 7 repeated measures ANOVA on EEG microstate occurrence revealed

81



Global

A B C D E F G

Baseline-Training

Baseline-PracticeA

Baseline-PracticeB

Trial-Training

Trial-PracticeA

Trial-PracticeB

Figure 5.13: The spatial configuration of the seven microstate classes (A, B, C, D, E, F, and G) for
across TASK and STAGE (global) and for each task type (Baseline and Trial) during different stages
(Training, PracticeA, and PracticeB)

two significant main effects of TASK (F(1, 23) = 17.349, p = 0.000, η2 = 0.430) and CLASS

(F(6, 138) = 91.163, p = 0.000, η2 = 0.799), as well as one significant interaction effect of TASK

× CLASS (F(6, 138) = 32.424, p = 0.000, η2 = 0.585). Figure 5.15 presents the occurrence

comparison results on TASK and STAGE for each of the seven EEG microstate classes, while the

p-values for pairwise comparisons with Bonferroni correction on each microstate class are listed

in Table 5.6. For TASK comparison, significant differences between Baseline tasks and Trial tasks

were observed for all of the three stages (Training, PracticeA, and PracticeB) in the occurrence of

microstate B, C, D, E, F, and G despite the polarity of the changes. To be more precise, significant

increases were observed in the occurrence of microstate B, C, D, and F during Training, PracticeA,

and PracticeB, whereas significant decrease were observed in the occurrence of microstate E and G

during Training, PracticeA, and PracticeB. No significant difference was observed in the occurrence

of microstate A under TASK comparisons. As for STAGE comparison, the occurrence of microstate

D decreased significantly from PracticeA stage to PracticeB stage for Baseline tasks, whereas non of

the seven microstate classes showed any significant occurrence difference in STAGE comparisons

for Trial tasks.

Moreover, the 2 × 3 × 7 repeated measures ANOVA on EEG microstate duration revealed

two significant main effect of TASK (F(1, 23) = 12.140, p = 0.002, η2 = 0.345) and CLASS
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Figure 5.14: EEG microstate coverage for Baseline tasks and Trial tasks during Training, PracticeA,
and PracticeB stages. P-values for TASK and STAGE comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

(F(6, 138) = 35.832, p = 0.000, η2 = 0.609), as well as one significant interaction effect of

TASK × CLASS (F(6, 138) = 31.065, p = 0.000, η2 = 0.575). Figure 5.16 presents the duration

comparison results on TASK and STAGE for each of the seven EEG microstate classes, while the

p-values for pairwise comparisons with Bonferroni correction on each microstate class are listed

in Table 5.7. For TASK comparison, significant increases in the duration of microstate D from

Baseline tasks to Trial tasks were observed for Training, PracticeA, and PracticeB stages, whereas

the duration of microstate A, E, and G decreased significantly from Baseline to Trial tasks for

Training, PracticeA, and PracticeB stages. No significant differences between Baseline tasks and

Trial tasks were observed in the duration of microstate B, C, and F across different stages. In

the meantime, the results on EEG microstate duration showed no significant difference in STAGE

comparisons for all of the seven microstate classes for both task types (Baseline and Trial).
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Table 5.5: P-values of paired TASK and STAGE comparisons on EEG microstate coverage.

Comparison Microstate classes
Class
A

Class
B

Class
C

Class
D

Class
E

Class
F

Class
G

S1:B-T 0.606 0.018*↗ 0.269 0.0*** ↗ 0.0*** ↘ 0.084 0.0*** ↘
S2:B-T 0.218 0.03* ↗ 0.014*↗ 0.0*** ↗ 0.0*** ↘ 0.007**↗ 0.0*** ↘
S3:B-T 0.924 0.091 0.1 0.0*** ↗ 0.0*** ↘ 0.002***↗ 0.0*** ↘
B:S1-S2 0.92 0.987 0.377 0.15 1.0 0.337 1.0
B:S1-S3 1.0 0.806 0.721 1.0 1.0 0.228 0.451
B:S2-S3 1.0 1.0 1.0 0.097 0.475 1.0 0.521
T:S1-S2 1.0 0.944 1.0 1.0 1.0 0.165 0.672
T:S1-S3 0.585 0.723 0.71 1.0 0.606 0.315 0.086
T:S2-S3 1.0 1.0 1.0 0.634 0.507 1.0 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ Microstate coverage increases
↘ Microstate coverage decreases

Temporal dependency results on EEG microstates

For Baseline tasks, the finite entropy rate was 1.607 bits/sample (SE = 0.020) during Training,

1.623 bits/sample (SE = 0.019) during PracticeA, and 1.604 bits/sample (SE = 0.018) dur-

ing PracticeB. As for Trial tasks, the finite entropy rate was 1.771 bits/sample (SE = 0.015)

during Training, 1.776 bits/sample (SE = 0.015) during PracticeA, and 1.766 bits/sample

(SE = 0.017) during PracticeB. The 2 × 3 repeated measures ANOVA revealed one significant

main effect of TASK (F(1, 23) = 291.901, p = 0.000, η2 = 0.927). Figure 5.17 presents the

entropy rate results for TASK and STAGE comparisons, whereas the p-values for pairwise com-

parisons with Bonferroni correction are listed in Table 5.8. For TASK comparison, the averaged

entropy rate of microstate sequences increased significantly from Baseline tasks to Trial tasks for

all of the three tested stages including Training, PracticeA, and PracticeB. As for STAGE compar-

isons, the entropy results showed significant decreases from PracticeA to PractiveB stage, whereas

no significant difference in STAGE comparisons were observed for Trial tasks.

Moreover, the Hurst exponent averaged across 35 partitions was 0.649 (SE = 0.005) for Train-

ing, 0.642 (SE = 0.004) for PracticeA, and 0.647 (SE = 0.004) for PracticeB. As for Trial tasks,

the finite entropy rate was 0.608 (SE = 0.003) for Training, 0.607 (SE = 0.00.) for PracticeA,
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Figure 5.15: EEG microstate occurrence for Baseline tasks and Trial tasks during Training, Prac-
ticeA, and PracticeB stages. P-values for TASK and STAGE comparisons are annotated by
∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

and 0.611 (SE = 0.003) for PracticeB. The 2 × 3 repeated measures ANOVA revealed one sig-

nificant main effect of TASK (F(1, 23) = 221.604, p = 0.000, η2 = 0.906). Figure 5.18 presents

the averaged Hurst exponent for TASK and STAGE comparisons, whereas the p-values for pairwise

comparisons with Bonferroni correction are listed in Table 5.9. For TASK comparison, significant

decreases were observed in the averaged Hurst exponent of microstate sequences from Baseline

tasks to Trial tasks for all of the three tested stages including Training, PracticeA, and PracticeB.

However, no significant difference was observed in the Hurst exponent results on STAGE compar-

isons for both Baseline and Trial tasks.

5.2.6 Quantified cognitive control during a skill acquisition process

Trial tasks were associated with decreased cognitive control than Baseline tasks

The TASK comparisons indicated decreases in trainees’ cognitive control when they were con-

fronted with larger task demands under Trial tasks in comparison to Baseline tasks, which was

supported by decreased theta spectral power, increases in the parameters of microstate C, increased

entropy rate, and decreased Hurst exponent under Trial tasks. For EEG spectral powers in theta
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Table 5.6: P-values of paired TASK and STAGE comparisons on EEG microstate occurrence.

Comparison Microstate classes
Class
A

Class
B

Class
C

Class
D

Class
E

Class
F

Class
G

S1:B-T 0.435 0.011*↗ 0.012*↗ 0.0*** ↗ 0.024*↘ 0.011*↗ 0.004***↘
S2:B-T 0.726 0.006**↗ 0.005***↗ 0.0*** ↗ 0.002***↘ 0.002***↗ 0.0*** ↘
S3:B-T 0.085 0.013*↗ 0.018*↗ 0.0*** ↗ 0.005***↘ 0.0*** ↗ 0.003***↘
B:S1-S2 1.0 1.0 1.0 0.157 1.0 0.69 0.377
B:S1-S3 1.0 0.627 0.724 1.0 1.0 0.225 0.748
B:S2-S3 0.377 0.53 1.0 0.023*↘ 1.0 0.79 1.0
T:S1-S2 1.0 1.0 1.0 1.0 1.0 0.298 0.521
T:S1-S3 1.0 0.806 1.0 1.0 1.0 0.551 0.4
T:S2-S3 1.0 0.636 1.0 0.287 1.0 1.0 1.0

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ Microstate occurrence increases
↘ Microstate occurrence decreases

band, significant decreases from Baseline tasks to Trial tasks were observed for Training stage over

central sites, and for both PracticeA and PracticeB stages over frontal, central, and temporal sites.

In the literature, increased theta power over the frontal sites has been viewed as a reliable index of

working memory and cognitive control (Cavanagh et al., 2009; Cooper et al., 2019), which could be

related to increased cognitive control in encoding and retrieval of information from working mem-

ory (Karakaş, 2020; Sauseng et al., 2010). In general, our analysis results on theta spectral powers

indicated decreases in trainees’ cognitive control under increased task demands and increased un-

certainty under Trial tasks, whereas the significant theta increases over parietal and occipital sites

could be related to increased visual loads.

Among the seven computed EEG microstate states, microstate C was discussed here due to

its close relationship with cognitive control. Researchers have reported both positive and nega-

tive correlations of microstate class C with cognitive control mechanisms as reviewed in (Michel &

Koenig, 2018). As a result, TASK comparisons were conducted on the three parametes of microstate

C, namely coverage, occurrence, and duration, and the results indicated increased microstate C un-

der Trial tasks. To be more precise, the coverage of microstate C increased from Baseline tasks

to Trial tasks during Training stage (non-significant), PracticeA stage (significant), and PracticeB

stage (non-significant) as shown in Figure 5.14. The occurrence of microstate C significantly in-

creased from Baseline tasks to Trial tasks throughout the pilot training process (Training, PracticeA,
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Figure 5.16: EEG microstate duration for Baseline tasks and Trial tasks during Training, PracticeA,
and PracticeB stages. P-values for TASK and STAGE comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

and PracticeB) (Figure 5.15), whereas the duration of microstate showed non-significant decreases

under Training stage and non-significant increases under PracticeA and PracticeB stages (Figure

5.16). Combining the observations on microstate C and those indicated by other EEG quantities,

the increased microstate C under Trial tasks indicated that trainees’ cognitive control decreased

under larger task demands with increased uncertainty. Therefore, our results supported the notion

that microstate class C is negatively correlated to task demands, which was consistent with the the

studies suggesting microstate C’s role in reflecting activities in the default mode network (DMN)

(Bréchet et al., 2019; Seitzman et al., 2017; X. Xu, Yuan, & Lei, 2016).

The entropy rate computed from EEG microstate sequences described how random the se-

quences were, as it described how random or free the brain was in choosing the next network config-

uration (Jia & Zeng, 2021). The more random a microstate sequence was, the larger the computed

entropy rate became. On the contrary. the more organized a sequence was, the smaller the entropy

rate could be. In other words, decreased entropy rate would be associated with a higher cognitive

control as both of them indicated a more organized microstate sequence in our analysis. Our paired

TASK comparisons showed that entropy rate significantly increased from Baseline tasks to Trial

87



Table 5.7: P-values of paired TASK and STAGE comparisons on EEG microstate duration.

Comparison Microstate classes
Class
A

Class
B

Class
C

Class
D

Class
E

Class
F

Class
G

S1:B-T 0.041*↘ 0.693 0.904 0.0*** ↗ 0.0*** ↘ 0.583 0.0*** ↘
S2:B-T 0.03* ↘ 0.38 0.263 0.0*** ↗ 0.0*** ↘ 0.611 0.0*** ↘
S3:B-T 0.041*↘ 0.532 0.913 0.0*** ↗ 0.0*** ↘ 0.516 0.0*** ↘
B:S1-S2 1.0 1.0 0.728 0.222 1.0 0.556 1.0
B:S1-S3 0.717 1.0 1.0 0.563 1.0 0.83 0.628
B:S2-S3 1.0 1.0 1.0 1.0 0.598 1.0 0.292
T:S1-S2 0.96 0.393 1.0 1.0 1.0 0.415 0.911
T:S1-S3 0.339 0.984 0.861 1.0 0.485 0.898 0.221
T:S2-S3 0.543 1.0 1.0 1.0 0.213 1.0 0.962

* ρ ≤ 0.050, ** ρ ≤ 0.010, *** ρ ≤ 0.005
↗ Microstate duration increases
↘ Microstate duration decreases

tasks across the three stages (Training, PracticeA, and PracticeB) within a pilot training process as

shown in Figure 5.17. Given the negative correlation between entropy rate and cognitive control,

our analysis on the entropy rate of microstate sequences revealed that trainees’ cognitive control

was lower when they were confronted with increased task demands and increased uncertainty under

Trial tasks, which was consistent with the changing trend indicated by theta band power and the

parameters of microstate C.

Hurst exponent, as an indicator of long-range dependency, reflected the long-range correlation

in the EEG microstate sequences. The larger the Hurst exponent was, the more temporally cor-

related the microstates were, whereas Hurst exponent at 0.5 represented a completely uncorrelated

microstate sequence. From this standpoint, increases in Hurst exponent may indicate a higher cogni-

tive control, both of which are associated with a more predictable microstate sequence. According to

our paired TASK comparison results, significant decreases in the computed average Hurst exponent

were observed from Baseline to Trial tasks throughout the pilot training process (Traing, PracticeA,

and PracticeB) as shown in Figure 5.18. Considering the aforementioned positive correlation be-

tween Hurst exponent and cognitive control, our results indicated a lower cognitive control when

trainees were confronted with increased task demands and increased uncertainty under Trial tasks.

Such observations were also consistent with those indicated by theta spectral power, the parameters

of microstate C, as well as entropy rate.
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Figure 5.17: Entropy rate of microstate sequences for Baseline and Trial tasks during Training,
PracticeA, and PracticeB stages. P-values for TASK and STAGE comparisons are annotated by
∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

To sum up, our results on TASK comparisons indicated reduced cognitive control when trainees

were confronted with larger task demands and increased uncertainty under Trial tasks. The quanti-

tative performance evaluation results also indicated that trainees were less skilled and were having

more difficulty in completing the Trial tasks than Baseline tasks, which was reflected in the sig-

nificant decreases in each evaluated dimension across the training process (Training, PracticeA,

PracticeB). In addition, our analysis on cognitive control was consistent with the negative correla-

tion between cognitive control and uncertainty reported in the existing studies. Such consistency

across the applied EEG quantities and with the literature confirmed the reliability of our analysis

regarding cognitive control.

Trainees’ cognitive control improved after a skill acquisition process under unvaried task de-

mands

The STAGE comparisons on Baseline tasks showed significant or non-significant increases in theta

band power from Training stage to PracticeA stage, as well as from Training stage to PracticeB

stage. In particular, significant increases in theta band power from Training stage to PracticeA stage

over central, temporal, parietal, and occipital sites, as well as non-significant increases over frontal

sites. Similarly, significant theta increases were observed from Training stage to PracticeB stage
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Table 5.8: P-values for paired TASK and STAGE comparisons in entropy rate.

Comparison Entropy rate
B-S1 Vs. T-S1 0.0*** ↘
B-S2 Vs. T-S2 0.0*** ↘
B-S3 Vs. T-S3 0.0*** ↘
B-S1 Vs. B-S2 0.426
B-S1 Vs. B-S3 1.0
B-S2 Vs. B-S3 0.039* ↘
T-S1 Vs. T-S2 1.0
T-S1 Vs. T-S3 1.0
T-S2 Vs. T-S3 0.492

* ρ ≤ 0.050, ** ρ ≤ 0.010,
*** ρ ≤ 0.005
↗ Entropy rate increases
↘ Entropy rate decreases

Table 5.9: P-values for paired TASK and STAGE comparisons in Hurst exponent.

Comparison Hurst exponent
B-S1 Vs. T-S1 0.0*** ↘
B-S2 Vs. T-S2 0.0*** ↘
B-S3 Vs. T-S3 0.0*** ↘
B-S1 Vs. B-S2 0.192
B-S1 Vs. B-S3 1.0
B-S2 Vs. B-S3 0.27
T-S1 Vs. T-S2 1.0
T-S1 Vs. T-S3 1.0
T-S2 Vs. T-S3 0.346

* ρ ≤ 0.050, ** ρ ≤ 0.010, ***
ρ ≤ 0.005
↗ Hurst exponent increases
↘ Hurst exponent decreases

over frontal, central, and temporal sites, as well as non-significant theta increases over parietal and

occipital sites. In addition, no significant changes in theta spectral powers were observed from

PracticeA stage to PracticeB stage. According to the literature, increased theta power over the

frontal sites has been viewed as a reliable index of working memory and cognitive control (Cavanagh

et al., 2009; Cooper et al., 2019), which could be related to a higher cognitive control in encoding

and retrieval of information from working memory (Karakaş, 2020; Sauseng et al., 2010). Along the

same direction, our EEG spectral analysis in theta band indicated that Training stage was associated

with the lowest cognitive control in comparison with the other two stages (PracticeA and PracticeB)
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Figure 5.18: Hurst exponent of microstate sequences averaged across 35 partitions for Baseline
and Trial tasks during Training, PracticeA, and PracticeB stages. P-values for TASK and STAGE
comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

and that trainees’ cognitive control improved within a skill acquisition process.

In terms of the STAGE comparisons on microstate C, no significant changes were observed

throughout the pilot training process (Training, PracticeA, and PracticeB) for all the three mi-

crostate parameters, namely coverage, occurrence, and duration. The mean coverage of microstate C

decreased non-significantly from 11.403 (Trainging) to 10.480 (PracticeA), and then increased non-

significantly to 10.582 (PracticeB). The mean occurrence of microstate C decreased non-significantly

from 12.600 (Training) to 12.366 (PracticeA), and then decreased non-significantly to 12.212 (Prac-

ticeB). The mean duration of microstate C also decreased non-significantly from 8.635 (Trainging)

to 8.258 (PracticeA), and then increased non-significantly to 8.376 (PracticeB). To sum up, our re-

sults showed that Training stage could be associated with the most microstate C and that microstate

C decreased after repeated practices. By referring to the negative relationship between microstate C

and cognitive control, our STAGE comparisons on Baseline tasks indicated that trainees’ cognitive

control improved after a skill acquisition process, which was the lowest during Training stage in

comparison with the other two stages (PracticeA and PracticeB).

The STAGE comparisons on entropy rate increased non-significantly from Training stage to

PracticeA stage, then decreased non-significantly from PracticeA to PracticeB stage, as well as de-

creased non-significantly from Training stage to PracticeB stage under Baseline tasks (Figure 5.17).
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In particular, the entropy rate increased from 1.607 in Training to 1.623 in PracticeA, and then de-

creased significantly from 1.623 (PracticeA) to 1.604 (PracticeB) under Baseline tasks. Considering

the negative relationship between entropy rate and cognitive control, our STAGE comparison results

indicated that PracticeB stage was associated with the highest cognitive control and that trainees’

cognitive control improved significantly from PracticeA stage to PracticeB stage.

In addition, the STAGE comparisons on Hurst exponent showed non-significant decreases from

Training stage to PracticeA stage and non-significant increases from PracticeA stage to PracticeB

stage under unvaried task demands (Figure 5.18). That is, the STAGE comparisons on the twenty-

two Baseline tasks indicated that the averaged Hurst exponent experienced U-shaped changes by

decreasing from 0.649 (Training) to 0.642 (PracticeA) and increasing from 0.642 (PracticeA) to

0.647 (PracticeB) afterward. Therefore, the results on Hurst exponent indicated that trainees’ cog-

nitive control experienced a U-shaped changing trend, which was the highest during Training stage

and improved from PracticeA stage to PracticeB stage. As discussed in TASK comparisons, the

high cognitive control observed during Training stage could be related to the reduced uncertainty

with the help from the instructor.

The aforementioned results on unvaried task demands (Baseline tasks) indicated that trainees’

cognitive control improved along the skill acquisition process, even though such improvements

were observed at different moments as indicated by different features. In general, the theta band

power and microstate parameters indicated that trainees’ cognitive control was the lowest during

Training stage and their cognitive control improved after a skill acquisition process. Such improve-

ment in trainees’ cognitive control was reflected in the comparisons between PraciceA stage and

Training stage, as well as PracticeB stage and Training stage as indicated by theta band power and

microstate parameters. We also observed non-significant decreases in trainees’ cognitive control

from PracticeA stage to PracticeB stage as indicated by the coverage and duration of microstate C,

as well as the theta band power over temporal, parietal, and occipital sites. We may infer from those

observations that trainees’ cognitive control improved along the skill acquisition process, which

may happen at the end of the skill acquisition process or even earlier. Meanwhile, the slight de-

creases in cognitive control observed toward the end of the skill acquisition process may be related

to improved neural efficiency once the trainees became better trained and skilled (Gobel, Parrish,
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& Reber, 2011; Hatfield, Haufler, Hung, & Spalding, 2004; Kerick, Douglass, & Hatfield, 2004).

The other two features (entropy rate and Hurst exponent) indicated a U-shaped changing trend in

trainees’ cognitive control, which differed from our original hypothesis on an increasing cognitive

control along the skill acquisition. The discrepancy lies in the cognitive control decreases observed

from Training stage to PracticeA stage, which could be interpreted from the negative correlation

between uncertainty and cognitive control. PracticeA stage could be associated with increased un-

certainty as the absence of instructor’s help may be the reason for the increased uncertainty when

trainees moved from Training stage to PracticeA stage. From this standpoint, PracticeA stage corre-

sponds to the low cognitive control situation where trainees did not know when or where to control

or intervene for achieving a good performance (Botvinick, Braver, Barch, Carter, & Cohen, 2001;

Verguts & Notebaert, 2009). Despite the aforementioned discrepancy, the observed increases in cog-

nitive control from PracticeA stage to PracticeB stage were somehow consistent with our original

hypothesis. Improvements in cognitive control could be explained from the skill acquisition point

of view as tested by the pilot training process, which could contribute to a broad set of cognitive

functions that were improved after repeated practices (Amer, Campbell, & Hasher, 2016; Unsworth,

Fukuda, Awh, & Vogel, 2015). Overall, our STAGE comparisons on Baseline tasks indicated that

trainees’ cognitive control improved along the skill acquisition which may be observed toward the

end of the process (from Training to PracticeB, or from PracticeA to PracticeB) or even earlier

(from Training to PracticeA). Meanwhile, the quantitative assessment results indicated improved

performance (heading, altitude, and rate climb/decent) (Figure 5.9a-5.9c) and control management

(roll and pitch) (Figure 5.9d and 5.9e) from Training to PracticeA and from Training to PracticeB

in conducting the same tasks during a skill acquisition process.

5.2.7 Quantified cognitive workload during a skill acquisition process

Trial tasks were associated with increased cognitive workload than Baseline tasks

According to our experiment procedure, trainees were confronted with larger task demands, in-

creased task difficulty, and increased uncertainty under Trial tasks in comparison to Baseline tasks.
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Despite the different time length for each Baseline (30 seconds) and Trial task (90 seconds), Base-

line tasks differed from Trial tasks in that trainees were required to complete the same maneuvers

across the twenty-two Baseline tasks. On the contrary, the instructions of the twenty-two Trial tasks

varied from one to another and the required maneuvers under Trial tasks were more difficult than

those under Baseline tasks in general. Therefore, paired comparisons were conducted between the

two types of tasks, namely Baseline tasks and Trial tasks, to align our research with the reported

effect of task demands and uncertainty on cognitive workload in the literature.

The paired comparisons on alpha spectral powers indicated that trainees’ cognitive workload

was higher while they were conducting Trial tasks in comparison to Baseline tasks. In particular,

the TASK comparisons on alpha spectral powers showed significant decreases from Baseline tasks

to Trial tasks throughout the pilot training process (Training, PracticeA, and PracticeB) over frontal

and central sites, while non-significant decreases from Baseline tasks to Trial tasks were observed

over temporal sites for all the three stages. Meanwhile, significant increases in alpha band power

from Baseline to Trial tasks were observed over parietal sites for Training and PracticeA stages, as

well as over occipital sites for all the three stages, and such alpha increases may indicate increased

visual attention when trainees were confronted with increases task loads under Trial tasks (Fu et al.,

2001; Hohaia, Saurels, Johnston, Yarrow, & Arnold, 2022; Yamagishi et al., 2003). Considering the

differences between the two types of tasks, the alpha decreases from Baseline to Trial tasks (over

frontal, central, and temporal sites) may indicate an increased cognitive workload in responding

to larger task demands with increased task difficulty. This observation was aligned with the posi-

tive correlation between cognitive workload and task demands in the literature (Jia & Zeng, 2021;

Shaw et al., 2019; Wickens, 2008), which also confirmed the reliability of our analysis on cognitive

workload assessment.

To sum up, our results on TASK comparisons indicated increased cognitive workload when

trainees were confronted with larger task demands and increased uncertainty under Trial tasks. The

quantitative performance evaluation results also indicated that trainees were less skilled and were

having more difficulty in completing the Trial tasks than Baseline tasks. In particular, the significant

decreases in each evaluated dimension across the training process (Training, PracticeA, PracticeB)
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could complement the EEG features in indicating that people may experience more cognitive work-

load at the tasks that seem to be difficult and challenging for them. By referring to the literature,

our analysis on cognitive workload added evidences to the positive correlation between cognitive

workload and task demands. As a result, such consistency across the applied EEG quantities and

with the literature confirmed the reliability of our analysis regarding cognitive workload, which laid

the foundation for our further investigations.

Trainees’ cognitive workload decreased under unvaried task demands during a pilot training

process

The time-course changes of cognitive workload along the training process were reflected in the

STAGE comparisons on the EEG alpha band power and NASA-TLX subjective ratings. The STAGE

comparisons on Baseline tasks showed significant increases in trainees’ alpha band power from

Training stage to PracticeA stage over central sites, as well as from Training stage to PracticeB

stage over central and parietal sites. In addition, non-significant increases in alpha band power

were observed from Training stage to PracticeA stage over temporal, parietal, and occipital sites,

and from Training stage to PracticeB stage over frontal, temporal and occipital sites, as well as

from PracticeA stage to PracticeB stage over frontal, central, temporal, and parietal sites. Alpha

power has been considered as a reliable indicator of cognitive workload (Fink et al., 2005) where

the extent of decreases in alpha power is associated with increases in cognitive workload (Keil et al.,

2006). Alpha power has also been associated with task difficulty (Brouwer, Hogervorst, Holewijn,

& van Erp, 2014; Jaquess et al., 2018; Jaušovec & Jaušovec, 2000), semantic memory process

(Doppelmayr, Klimesch, Hödlmoser, Sauseng, & Gruber, 2005; Klimesch, 1999), and attention

(Klimesch, 2012). Therefore, the STAGE comparisons of alpha spectral power under unvaried task

demands (Baseline tasks) indicated a decreasing trend in trainees’ cognitive workload within the

pilot training process.

Furthermore, such decreasing trend in trainees’ cognitive workload was confirmed in the sub-

jective rating results as shown in Figure 5.10. In particular, trainees’ cognitive workload decreased

significantly from Training stage to PracticeA stage, as well as from Training stage to PracticeB

stage. In addition, non-significant decreases were observed from PracticeA stage to PracticeB stage
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(Figure 5.10). Considering the chronological order of those stages within the tested pilot training

process, the subjective rating results indicated a decreasing cognitive workload along a pilot training

process where trainees’ subjective perception of the workload was captured at each stage without

distinguishing the TASK types.

Taken together, the EEG spectral power results in alpha band and the subjective rating results

both indicated that trainees’ cognitive workload decreased along the tested pilot training process

(from Training, to PracticeA, and then to PracticeB). This was consistent with our hypothesis on the

decreasing cognitive workload within a skill acquisition process when compared to the performance

evaluation results. The significant increases in the assessment of all of the five evaluated dimensions

under Baseline tasks from Training to PracticeB and the significant/non-significant increases from

Training to PracticeA showed the effectiveness of the tested skill acquisition process where trainees

improved their skills and achieved better performance through the pilot training process.

5.2.8 Quantitative changes in cognitive workload and cognitive control under varied

task demands

Apart from the aforementioned analysis on Baseline tasks (unvaried task demands), the present

research also investigated the changes in trainees’ cognitive workload and cognitive control under

varied task demands. The research question is whether we would be able to observe the same

changes as indicated by the analysis on Baseline tasks if the same analysis was applied on Trial

tasks with varied task demands. First of all, no significant changes were captured by any of the

tested features in the STAGE comparisons on Trial tasks. Among the non-significant changes,

the parameters of microstate C indicated that trainees’ cognitive control improved along the skill

acquisition process. In particular, the mean coverage decreased from Training stage to PracticeA

stage and then decreased to PracticeB stage, such decreasing trend was also observed in the mean

occurrence and duration of microstate C. In the meantime, the temporal dependency features, both

entropy rate and Hurst exponent, indicated that PracticeB stage was associated with the highest

cognitive control in comparison with Training and PracticeA stages. To be more precise, entropy

rate showed an inverted U-shaped changing trend whereas Hurst exponent indicated a U-shaped

changing trend. However, the changes in alpha band power showed more variations across the five
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brain areas, and such varied changing trend was also observed in theta band power. And both alpha

and theta band power shared a high similarity between the observed changing patterns under Trial

tasks. In particular, both features showed a U-shaped changing trend over frontal and central sites,

an increasing trend over temporal sites, a decreasing trend over parietal sites, and an inverted U-

shaped trend over occipital sites. Based on those observations, the spectral changes in theta band

and alpha band may reflect the varied neural activation over different brain areas in responding to

the varied flight tasks, instead of being interpreted from cognitive control or workload point of view.

What can be learned from the similarity and discrepancy between the results obtained on Trial

tasks and the aforementioned results obtained on Baseline tasks? EEG microstate features seemed

to be more robust in reflecting trainees’ cognitive changes under varied tasks than spectral features,

whereas the spectral features could be more sensitive to changes in task demands and difficulty lev-

els. Trainees were instructed to conduct the same maneuvers across the twenty-two Baseline tasks

along the pilot training process, whereas the maneuvers in the twenty-two Trial tasks varied from

one to another with a varied difficulty level presented in a pseudo-randomized order. From this

standpoint, the cognitive changes captured by certain features under Trial tasks could be triggered

by the variations of task demands, whereas under Baseline tasks the effect of task demands could be

avoided. The observed changes on Baseline tasks may reflect the actual changes in trainees’ cog-

nitive workload and cognitive control along the pilot training process. In the meantime, the quan-

titative assessment results seem to complement the EEG microstate features in indicating trainees’

changes through the skill acquisition process. Among the five evaluated assessment dimensions,

the three performance dimensions (heading, altitude, and rate climb/descent) showed an increas-

ing trend from Training to PracticeA and then to PracticeB (Figure 5.9a-5.9c). This could reflect

trainees’ improvement as the skill acquisition process continues, despite of the fact that performance

(altitude) was the only dimension that showed significant increases from Training to PracticeA and

also from Training to PracticeB under Trial tasks (Figure 5.9b). Moreover, the control management

(roll) dimension indicated a U-shaped changing trend without any significant changes (Figure 5.9d),

which seemed to be consistent with the U-shaped changing cognitive control indicated by the two

temporal dependency features on microstate sequences (entropy rate and Hurst exponent). To sum

up, we may conclude that trainees’ cognitive workload decreased whereas their cognitive control
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improved along the skill acquisition process as indicated by the results on Baseline tasks (unvaried

task demands). And the effect of skill acquisition on trainees’ cognitive control improvement could

be captured by microstate features, including microstate parameters and the temporal dependency

quantities like entropy rate and Hurst exponent, even under varied tasks.

5.2.9 Conclusion

The present study aimed to capture the changes in trainees’ cognitive workload and cognitive

control within a skill acquisition process. Trainees’ cognitive control was quantified using EEG mi-

crostate analysis and spectral features, while the quantification of cognitive workload was based on

spectral analysis and subjective ratings. A series of STAGE comparisons and TASK comparisons

were conducted to investigate the time-course changes and to align our analysis with other findings

reported in the literature respectively. In particular, our results on TASK comparisons indicated that

Trial tasks were associated with higher cognitive workload but lower cognitive control than Base-

line tasks, which were also reflected in the decreased performance under Trial tasks as indicated by

the quantitative evaluation results. The EEG-indicated changes in trainees’ cognitive workload were

aligned with the research findings on increased cognitive workload triggered by larger task demands

(Gevins & Smith, 2003; Shaw et al., 2019; Wickens, 2008). In comparison to Baseline tasks, our re-

sults showed decreased cognitive control under Trial tasks which may be related to increased uncer-

tainty (Jia & Zeng, 2021). Afterward, the same EEG quantities were applied in STAGE comparisons

to test our hypothesis. We would expect decreases in trainees’ cognitive workload and increases in

their cognitive control from the experimental results during a skill acquisition process. The STAGE

comparisons on Baseline tasks indicated that trainees’ cognitive workload decreased whereas their

cognitive control improved along the tested pilot training process, where pilot trainees’ skilled per-

formance improved as indicated by the quantitative performance evaluation results. Moreover, the

cognitive control changes within a skill acquisition process could be captured by EEG microstate

features even under varied task demands (Trial tasks), which was also aligned with the performance

evaluation results. Overall, the results presented in this research indicated that trainees’ cognitive

control improved whereas their cognitive workload decreased during a skill acquisition process.
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5.3 Capacity zone: A quantitative approach for ensuring high effi-

ciency by manipulating workload

This research investigates how much workload is a “good” workload for human beings to achieve a

satisfactory level of mental effort. This study belongs to the third stage within the research method-

ology, where simulations were conducted to model human participants’ time-varying work effi-

ciency and mental stress under a problem-solving process within limited time. Besides testing the

quantitative workload-efficiency representation with simulations in this application, the findings ob-

tained from them could contribute to a general problem-solving process. Moreover, it will shed light

on the quantification of other related cognitive factors and how they influence performance in our

future research.

When given a “good” workload, human beings can efficiently accomplish the assigned task

within the time limit, whereas they could fail to complete it due to low efficiency when given a

“bad” workload. The objective of the present research is thus to investigate how much workload

is a “good” workload for a human being to meet the deadline with a successful completion of

the assigned task. A high work efficiency can be achieved through manipulating the workload

assignment and assigning to different human beings at the right moment. It should be noted that

multitasking and open-ended tasks are not covered in the present research as we keep our focus

on the scenarios where human beings are requested to complete a given task within a predefined

deadline. The scenarios under discussion can be widely observed in many fields including industry,

education, and medicine (Hinds et al., 2004; Malone, 2018; Vesin et al., 2018; Whittaker, 2005;

Yuksel et al., 2016), which could lead to various consequences due to the mismatch between the

workload and the limited time resource.

5.3.1 Comparison between human workload-efficiency relationship and the ideal

modeling

Taking the definition of mental effort as the amount of mental energy devoted to the confronted

task, the amount of workload the person can complete with one unit of mental energy per time unit

could be considered as positively proportional to the capacity level. That is to say, human beings’
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work efficiency accumulates the amount of workload completed by each mental effort unit within

a time unit, which is also influenced by their mental capacity level. As a result, a quantitative

representation of the relationship between mental stress and work efficiency based on the raised-

cosine representation (Eq. (6)) could be written as shown in Eq. (9):

ϵ(t) = β ∗ ϵmax ∗ E(t)
β ∗ 1

2ϵmax[1 + cos (
W (t)− 1

2
βσmax

1
2
βσmax

π)], if 0 ≤ W (t) ≤ βσmax ,

0, otherwise.

(9)

where ϵmax denotes the maximum work efficiency the person could achieve per unit of mental

effort.

As shown in Eq. (9), a person’s work efficiency depends on the current workload W (t), max-

imum efficiency ϵmax, stress limit σmax, and mental capacity β. Among those influencing factors,

we assume that the maximum efficiency ϵmax and stress limit σmax can be obtained from a person’s

previous performance and behavioral data. According to Eq.(4), β, considered as a constant vari-

able, describes the extent to which a person is good at the current workload. Thereafter, we are able

to plot human beings’ work efficiency as a function of their workload.

As for the ideal modeling, the general idea of modeling the workload-efficiency relationship is

to see how work efficiency responds to varied workload assignment without the influence of human

factors or limits. However, in the real case the work efficiency will be as much as the expected

amount of workload required to be completed within a time unit, where the the person’s limited

capacity and the influence of other human factors are not considered. Such ideal case could help

explaining why human beings are sometimes assigned with too much workload in real-life practices.

However, human beings’ responses to varied workload are so different from the ideal case that their

efficiency is affected by their stress and other human factors. Therefore, ignoring the influence

of human factors could result in fatigue, stress, or some severe mental health problems in human

beings after long-term exposure to high workload. Mathematically, the ideal workload-efficiency

relationship can be described as:
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ϵ(t) = W (t) , (10)

where W (t) represents a person’s workload to be completed at time t and ϵ(t) represents the per-

son’s ideal work efficiency at time t.
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Figure 5.19: Modeling human beings’ and the ideal workload-efficiency relationships at mental
capacity β = 1.0

An ideal workload-efficiency relationship line was then added to the original modeling of human

beings’ workload-efficiency relationship as shown in Figure 5.19, with ϵmax = 100, σmax = 200,

and β = 1.0. As shown in Figure 5.19, two intersections have been generated between human

beings’ workload-efficiency curve and the ideal workload-efficiency line. For simplicity, we name

the intersection corresponding to a smaller workload as the first intersection and the one with larger

workload as the second intersection. As a result, the human workload-efficiency curve is divided

into three parts by the two interactions, one zone locating on the left side of the first intersection,

another zone locating between the two intersections, and the other zone locating on the right side

of the second intersection as shown in Figure 5.19. Intuitively, we named those three zones as

Laid-back zone, Capacity zone, and Fatigue zone based on the corresponding workload range. In

particular, Laid-back zone corresponds to the situation where human beings are assigned with too

little workload so that they may behave lazily, Capacity zone describes the situation where human

beings are given a moderate amount of workload assignment that is somehow compatible to the per-

son’s mental capacity, Fatigue zone could describe the overwhelmed situation where human beings
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are given too much workload. Apart from the aforementioned differences, the aforementioned three

zones seem to be related to different cases where people are assigned with varied amount of work-

load. Therefore, simulations were performed to monitor changes in human beings’ work efficiency

and mental stress under different zones.

5.3.2 Results

Time-course simulations were conducted to capture the changes in human work efficiency and men-

tal stress when given a fixed amount of workload assignment under varied mental capacity. The

initial point may fall in different zones as indicated in Figure 5.19) due to the variations in men-

tal capacity even though the given workload assignment is the same. As a consequence, different

working patterns have been recognized based on our observations on the simulation results, which

are closely related to the the aforementioned zones.

To avoid any confusion on distinguishing a person’s cognitive workload and the total assigned

workload given by the computer, we named the latter as the workload assignment WT . Within

our analysis, we used workload to describe human beings’ subjective conception of the given task,

whereas the workload assignment was used to represent the objective workload demands. We as-

sume a very basic strategy here that human beings’ workload is determined by balancing the remain-

ing workload (in total) and the remaining time resource. More precisely speaking, the considered

workload determination strategy is to compute human beings’ workload by dividing the remaining

total workload with the remaining time. From a different point of view, this strategy is consis-

tent with our current simplification in which human beings’ time resources are constantly changing

whereas other resources are either treated as constants or neglected. Mathematically, the applied

workload determination strategy can be described as:

W (t) =
WT −

∑t
0 ϵ(τ)∆τ

T − t
, (11)

where W (t) denotes a person’s cognitive workload at time t, WT denotes the workload assign-

ment, T represents the time length within which the person is asked to finish the assigned workload,
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∑t
0 ϵ(τ)∆τ represents the completed workload which sums the person’s efficiency from the begin-

ning to the time point t, T − t denotes the remaining time.

Simulation results on time-varying work efficiency and mental stress

The tested workload assignments are set as 15000, 12500, 10000, 7500, 5000, and 2500, whereas the

other parameters are fixed as time limit T at 100, stress limit σmax at 200, and maximum efficiency

ϵmax at 100. Besides, we compared three different mental capacity levels under each simulated

case. The tested mental capacity levels include the mental capacity β = 1.0 as indicated in Figure

5.19, one smaller capacity β = 0.7, as well as one larger capacity β = 1.3. In addition, the task

completion status is also indicated in Figure 5.20-5.25 by color: red for successful completion and

black for failure.

The simulation results indicate that when given a large amount of workload assignment such

as WT = 15000, human beings’ work efficiency decreases to zero whereas their mental stress

increases to the maximum along the process under under β = 1.0 and β = 1.3 (Figure 5.20).

Moreover, human beings’ work efficiency stays at zero and their mental stress stays at the maximum

level when the mental capacity decreases to β = 0.7, which could be seen as the extreme case of the

aforementioned trends observed under β = 1.0 and β = 1.3. According to the initial settings, the

mental stress of the human beings with a mental capacity at β = 0.7 would achieve the maximum

limit from the beginning till the end leading to a minimum level of work efficiency throughout the

process. In addition, the simulation results indicated that human beings fail to complete the given

workload assignment WT = 15000 for all the three tested mental capacity levels β = 0.7, β = 1.0,

and β = 1.3.

As shown in Figure 5.21, when the workload assignment is WT = 12500 the human beings

with a mental capacity at β = 1.3 succeed in completing the given workload assignment with both

of their work efficiency and mental stress keep decreasing throughout the process. Whereas for the

other two tested cases with a smaller mental capacity at β = 1.0 and β = 0.7, human beings’ work

efficiency decreases to zero while their mental stress increases to the maximum. In addition, the

simulation results also indicate that human beings with a mental capacity at β = 1.0 and β = 0.7

fail to complete the given workload assignment (Figure 5.21).
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As shown in Figure 5.22, when given a workload assignment at WT = 10000 human beings

seem to achieve a stable state where both of their work efficiency and mental stress stay stable

throughout the process under β = 1.0. For the case with a larger mental capacity at β = 1.3, hu-

man beings’ efficiency and mental stress both keep decreasing along the process. However, human

beings’ efficiency decreases to zero whereas their mental stress increases to the maximum under a

smaller mental capacity value β = 0.7. Among the three tested mental capacity levels, human be-

ings with a mental capacity at β = 1.0 and β = 1.3 succeed in completing the workload assignment

within the time limit, whereas those with a mental capacity at β = 0.7 fail to complete the given

workload assignment as shown in Figure 5.22.

When assigned with a workload assignment at WT = 7500 (Figure 5.23), the simulated curves

for work efficiency and mental stress resemble those observed under WT = 10000 (Figure 5.22).

However, the stable state observed under WT = 10000 with β = 1.0 disappears under WT = 7500.

In particular, both work efficiency and mental stress keep decreasing throughout the process with

β = 1.0 and β = 1.3, whereas work efficiency decreases to zero but mental stress increases to

the maximum with β = 0.7. In the meanwhile, human beings can successfully accomplish the

workload assignment at the tested two mental capacity values β = 1.0 and β = 1.3 but fail in

completing the task for β = 0.7.
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Figure 5.20: Work efficiency and mental stress curves under varied mental capacity β when WT

= Wmax = 15000. Task completion status is indicated by color: red for successful completion and
black for failure.
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(b) Mental stress curves

Figure 5.21: Work efficiency and mental stress curves under varied mental capacity β when WT

= Wmax = 12500. Task completion status is indicated by color: red for successful completion and
black for failure.
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(b) Mental stress curves

Figure 5.22: Work efficiency and mental stress curves under varied mental capacity β when WT

= Wmax = 10000. Task completion status is indicated by color: red for successful completion and
black for failure.
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Figure 5.23: Work efficiency and mental stress curves under varied mental capacity β when WT

= Wmax = 7500. Task completion status is indicated by color: red for successful completion and
black for failure.
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(b) Mental stress curves

Figure 5.24: Work efficiency and mental stress curves under varied mental capacity β when WT

= Wmax = 5000. Task completion status is indicated by color: red for successful completion and
black for failure.
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Figure 5.25: Work efficiency and mental stress curves under varied mental capacity β when WT

= Wmax = 2500. Task completion status is indicated by color: red for successful completion and
black for failure.

When the workload assignment is reduced to WT = 5000 (Figure 5.24), the stable state ob-

served at mental capacity β = 1.0 under WT = 10000 (Figure 5.22) appears again. As shown in

Figure 5.24, with a mental capacity at β = 1.0 human beings’ work efficiency keeps stable almost

throughout the process at a value which is only half of that observed under WT = 10000. The

simulation results indicate that for the human beings with a mental capacity at β = 1.3 both of

their work efficiency and mental stress keep increasing along the process, whereas for those with a

mental capacity at β = 0.7 both of their work efficiency and mental stress keep decreasing. Despite

the aforementioned different trends in work efficiency and mental stress, the simulation results indi-

cate that human beings succeed in completing the given workload assignment under all of the three

tested mental capacity levels (β = 0.7, β = 1.0, and β = 1.3).
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When the workload assignment decreases to WT = 2500 (Figure 5.25), the stable states ob-

served at mental capacity β = 1.0 under the workload assignment WT = 10000 (Figure 5.22) and

WT = 5000 (Figure 5.24) disappears again. Instead, human beings’ work efficiency and mental

stress both keep increasing throughout the process with a mental capacity at β = 1.0. Moreover,

the same increasing trends in work efficiency and mental stress are also observed for the other two

tested mental capacity levels, namely β = 0.7 and β = 1.3. In the meantime, according to the sim-

ulation results human beings with a mental capacity at β = 0.7 and β = 1.0 succeed in completing

the given workload assignment, whereas those with a mental capacity at β = 1.3 end up with a

failure.

To sum up, the aforementioned observations seem to indicate that human beings’ work effi-

ciency and mental stress may follow a specific pattern or trend when the initial point falls in dif-

ferent zones according to the given workload assignment WT and a predefined mental capacity β.

Therefore, the following section aims to identify the possible patterns under different settings and

to investigate how can the identified patterns be mapped to the three zones identified in Figure 5.19.

5.3.3 Discussion

Three working zones corresponding to three working patterns

The ideal case modeling line is added to the corresponding human beings’ workload-efficiency

curves under the tested three mental capacity levels, namely β = 0.7, β = 1.0, β = 1.3. As shown

in Figure 5.26, two intersections are generated under each tested mental capacity between the ideal

modeling and the human workload-efficiency curves. In particular, the two intersections under

β = 0.7 locate at W (t) = 35 and W (t) = 70, the intersections under β = 1.0 locate at W (t) = 50

and W (t) = 100, and the intersections under β = 1.3 locate at W (t) = 65 and W (t) = 130.

Let’s recall the time-varying word efficiency and mental stress curves observed in Figure 5.20

under the workload assignment at WT = 15000. The corresponding initial workload equals to 150,

which is larger than all the intersections generated between human beings and the ideal workload-

efficiency curves under the three mental capacity levels. That is to say, the initial point falls in

Fatigue zone under all the three tested mental capacity levels as shown in Figure 5.26. As shown
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in Figure 5.20, human beings fail to complete the given workload assignment across the tested

mental capacity levels (β = 0.7, 1.0, 1.3), while their work efficiency decreases to zero and their

mental stress increases to the maximum limit. The work efficiency and mental stress curves ob-

served under β = 0.7 are the extreme cases of the aforementioned pattern where work efficiency

decreases directly to zero and mental stress increases directly to the maximum at the beginning. The

aforementioned changing trends in work efficiency and mental stress may indicate a specific pattern

under Fatigue zone.
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Figure 5.26: Comparison between human beings’ and the ideal workload-efficiency relationships
for varying mental capacity at β = 0.7, 1.0, 1.3

When the given workload assignment is set at WT = 12500, the corresponding initial workload

equals to 125. By referring to the modeling results shown in Figure 5.26, the initial point falls in

Capacity zone (65 < 125 < 130) for the mental capacity at β = 1.3 whereas for the other two

mental capacity levels at β = 1.0 and β = 0.7 the initial point falls in Fatigue zone. As indicated

in Figure 5.21, both of work efficiency and mental stress keep decreasing throughout the process

when the initial point falls in Capacity zone under β = 1.3, where the human beings succeed in

completing the given workload assignment. However, the human beings with a mental capacity at

β = 0.7, 1.0 fail to complete the workload assignment WT = 12500 and the changing trends of

the work efficiency and mental stress resemble what have been seen under WT = 15000. This

similarity might be explained by the location of the initial point that belong to Fatigue zone for a
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mental capacity at β = 0.7, 1.0 under WT = 12500 and for all the three mental capacity levels

under WT = 15000.

The original workload corresponding to the workload assignment at WT = 10000 is W (t =

0) = 100, locating exactly at the one of the intersections under β = 1.0 (Figure 5.26). As for the

other two tested mental capacity levels, the original point falls within Capacity zone for β = 1.3

and within Fatigue zone for β = 0.7. As shown in Figure 5.22, the work efficiency and mental stress

stay at the initial level throughout the process when the original point locates at the intersection

under β = 1.0. In the meantime, the trends of work efficiency and mental stress resemble what

have been observed under WT = 12500 when the initial point falls in Capacity zone and Fatigue

zone for β = 1.3 and β = 0.7 respectively. The simulation results also indicate that human beings

are able complete the given workload assignment when the initial point falls within Capacity zone

including the intersection positions.

As the workload assignment reduced to WT = 7500 as shown in Figure 5.23, the corresponding

initial workload equals to 75, which locates within Capacity zone under β = 1.0, 1.3 and within

Fatigue zone under β = 0.7 (Figure 5.26). Similar to the aforementioned observations, both of

work efficiency and mental stress keep decreasing throughout the process when the initial point

falls in Capacity zone, whereas human beings’ work efficiency decreases to zero whereas their

mental stress increases to the maximum when the initial point falls in Fatigue zone.

The original workload corresponding to the workload assignment at WT = 5000 is W (t =

0) = 50, which once again locates exactly at the one of the intersections under β = 1.0 (Figure

5.26). Similar to the stable state observed under WT = 10000, human beings’ work efficiency and

mental stress both stay stable throughout the process under β = 1.0 as shown in Figure 5.24. As for

the other two tested mental capacity levels, the initial point falls in Capacity zone under β = 0.7

and in Laid-back zone under β = 1.3. This is the first time that the initial point falls in Laid-back

zone based on our observations so far, human beings’ work efficiency and mental stress both keep

increasing throughout the process as indicated in Figure 5.24 for β = 1.3. The decreasing work

efficiency and mental stress under β = 0.7 resembles what have been observed with the initial point

within Capacity zone. Moreover, the simulation results indicated that human beings can succeed in

completing the given workload assignment when working at Capacity zone as well as Laid-back
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zone.

When the workload assignment reduced to WT = 2500 as shown in Figure 5.25, the corre-

sponding initial workload equals to 25 locating in Laid-back zone for all the three tested mental

capacity levels. According to Figure 5.25, human beings’ work efficiency and mental stress both

keep increasing throughout the process when the initial point falls in Laid-back zone. In addi-

tion, the simulation results indicate that human beings may succeed or fail in completing the given

workload assignment when working at Laid-back zone.

To sum up, based on our observations so far there seems to be a mapping between different

changing patters reflecting human beings’ work efficiency and mental stress and the three zones

identified under the three tested mental capacity levels as shown in Figure 5.26. Therefore, three

patterns have been identified as:

Pattern I: observed within Laid-back zone, where both of work efficiency and mental stress

keep increasing, human beings may succeed or fail in completing the workload assignment.

Pattern II: observed within Capacity zone, where both of work efficiency and mental stress

keep decreasing, human beings succeed in completing the workload assignment.

Pattern III: observed within Fatigue zone, where work efficiency decreases to zero and men-

tal stress increases to the maximum level, human beings fail to complete the given workload

assignment.

Our simulation results show that under Pattern I human beings keep working at a very low

efficiency even though the workload assignment can be successfully completed in some cases. This

is not an expected situation as they are actually capable to complete much more workload assign-

ment instead of just completing the given small amount of workload assignment. On the contrary,

Pattern III seems to be accompanied with a high stress level but low efficiency when the human

beings are confronted with a large amount of workload assignment. Such low efficiency may ex-

plain the human beings’ failure under this working pattern. Besides, long-term exposure to such

overwhelmed situation may lead to fatigue and other mental health problems. Pattern II describes

the situation where human beings are not given too much or too little workload and can therefore
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succeed in completing the workload assignment at a relative high efficiency. In spite of the de-

creasing trend observed in human beings’ work efficiency, their work efficiency keeps at a relative

high level throughout the process. In addition, by monitoring their cognitive workload under Pat-

tern II we may infer that the workload is well managed under such working pattern due to the

decreasing workload trend. Among the three patterns, Pattern II is the only working pattern under

which a successful completion of the given workload assignment can be ensured. However, human

beings always fail to complete the workload assignment within the time limit under Pattern III

and they may fail or succeed in completing the workload assignment under Pattern I. In addition,

more workload assignment can be completed under Pattern II when compared to the successful

cases under Pattern I. Therefore, Pattern II appears to be the preferred working pattern for human

beings.

The Capacity zone and workload equilibrium

According to our observations so far, human beings are actually able to complete more workload

assignment when the initial workload falls in Laid-back zone, where their work efficiency and

mental stress keep increasing as the process continues (Pattern I). When working at Laid-back

zone, human beings tend to lay back considering that they do not feel any challenge or stress towards

the assigned workload, which could also lead to a bad performance reflected in a low efficiency and

sometimes a failure in completing the given task. When the initial workload locates in Fatigue

zone, human beings’ work efficiency decreases to zero whereas their mental stress increases to

the maximum as described in Pattern I. In addition, the process always ends with a failure in

completing the given task, the reason for which may be found in the name indicating that human

beings would feel fatigue when given too much workload when working at Fatigue zone. This

is unexpected in real-life practices in terms of efficiency and effectiveness as human being always

fail to complete the workload assignment and may lead to potential mental health problems. As

a result, Fatigue zone should firstly be avoided. Similarly, Laid-back zone is not an expected

working zone either given that human beings are working at a very low efficiency and behaving

lazily toward the assigned work, even though they may not always fail in completing the workload

assignment. The most important characteristics shared by the two zones discussed above is that
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human beings can only accomplish a relatively small amount of workload assignment regardless of

the completion results. On the contrary, when working under Capacity zone located between the

two intersections, human beings can keep working at a high efficiency throughout the process and

succeed in completing the given workload assignment within the time limit. Thereafter, the concept

of Capacity zone is proposed in this paper to ensure the successful completion and a high efficiency

for the task handled by human beings.
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(a) Intersections under β = 0.7, 1.0, and1.3
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(b) Intersections under ϵmax = 70, 100, and130

Figure 5.27: Comparison of human beings’ and the ideal workload-efficiency relationships under
maximum efficiency ϵmax = 130 and ϵmax = 70

The two intersections between human beings’ and the ideal modeling seem to serve as the

boundaries of human beings’ Capacity zone, with the first intersection as the lower boundary and

the second intersection as the upper boundary. Considering the working patterns identified under

the three working zones during simulations, the stable states observed observed at WT = 5000 and

WT = 10000 correspond to the two intersections generated under β = 1.0. Moreover, by including

more workload assignment values into our simulations Pattern II was observed in all the tested

cases when human beings’ initial workload falls in Capacity zone. When the initial workload is

smaller than 50, Pattern I was observed in all of the tested cases where human beings will be

working at their Laid-back zone with increasing work efficiency and increasing mental stress. This

may suggest that human beings’ efficiency is very low when working under Laid-back zone and

they gradually increase their efficiency in order to complete the assigned workload. However, when

corresponding initial workload is larger than 100, Pattern III appeared where human beings can no

longer complete the workload assignment working at their Fatigue zone. The decreasing efficiency

and increasing mental stress under Pattern III indicate that human beings are having difficulty

in handling the task and their working states are moving away from the second intersection while
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working at their Fatigue zone. Moreover, the ideal case modeling line is added to the corresponding

human beings’ workload-efficiency curves under ϵmax = 130 and ϵmax = 70 (Figure 5.27b). Two

intersections are generated between the ideal modeling and the human workload-efficiency curve

under each of the three tested mental capacity levels under ϵmax = 130, whereas no interaction was

generated under ϵmax = 70 across the tested mental capacity levels. From a practical viewpoint,

ϵmax ≥ 100 can be considered as one of the requirements in selecting the right human beings

to complete the target task. That is, the human beings with a maximum efficiency ϵmax ≥ 100

are considered unqualified for the confronted task under the current settings. When the maximum

efficiency is set to 130, the generated intersections include two intersections located at W (t) =

44.71 and W (t) = 154.55 for β = 1.3, two intersections at W (t) = 34.39 and W (t) = 118.89

for β = 1.0, and two intersections at W (t) = 24.08 and W (t) = 83.22 for β = 0.7. The

aforementioned boundary effect of the generated intersections has been confirmed across the three

different mental capacity levels under ϵmax = 130. Thereafter, we name the two intersections as the

workload equilibrium points considering their important role in defining human beings’ Capacity

zone and separating the corresponding working patterns. The definition of human beings’ Capacity

zone as well as the other two working zones could thus be summarized as follows.

Laid-back zone: corresponds to the workload values smaller than the first workload equilib-

rium, where both of work efficiency and mental stress keep increasing and human beings may

succeed or fail in completing the workload assignment.

Capacity zone: corresponds to the workload values between the two workload equilibrium

points, where both of work efficiency and mental stress keep decreasing and human beings

always succeed in completing the workload assignment.

Fatigue zone: corresponds to the workload values larger than the second workload equilib-

rium, where work efficiency decreases to zero and mental stress increases to the maximum

level and human beings always fail to complete the given workload assignment.

Figure 5.28 presents a summary of human beings’ workload equilibrium, Capacity zone, and

the changing trends within different zones at a reduced mental capacity example for β = 0.7 (needs
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to be updated with the new parameters). The proposed Capacity zone is highlighted with colored

background in Figure 5.28, where the arrows indicate different changing trends and the workload

equilibrium is marked by solid or hollow circle regarding its stability. Based on our observations,

human beings are only able to complete the a large amount of workload assignment within the pre-

defined time limit when working at the Capacity zone. When working outside of the Capacity

zone, human beings can only handle a very limited amount of workload assignments, even though

they do not always fail to complete the given assignment. The increasing work efficiency observed

under Laid-back zone (corresponding to the right-oriented black arrow in Figure 5.28) does not

mean a good performance, considering that human beings keep working at a relatively low effi-

ciency level throughout the process and they keep approaching the first workload equilibrium. As

for Fatigue zone, only a small portion of the task can be completed even though a larger amount

of workload is assigned to the human beings than that for Capacity zone. Moreover, the increas-

ing workload when working at the Fatigue zone (corresponding to the right-oriented black arrow

in Figure 5.28) may lead to fatigue and stress related health problems if such condition continues

for a long time, which should be avoided. However, human beings are able to work at a relatively

high efficiency and can always succeed in completing the workload assignment when working at

the Capacity zone. Despite the fact that human beings’ efficiency keeps decreasing toward the first

workload equilibrium (corresponding to the red arrows within in Figure 5.28), they are still work-

ing at a relatively high efficiency which contributes to the successful task completion. The word

“capacity” is used to highlight the good matching between this working zone and human beings’

current mental capacity β level, which is reflected in the successful completion of the task and a

good performance (efficiency). In the meanwhile, this way of naming emphasizes the paired appli-

cation and close relationship between human beings’ Capacity zone and their mental capacity β.

Human beings’ mental capacity β reflects a general mental status regarding the given task consid-

ering their knowledge, skills, and affect. The determination of a Capacity zone could not be done

without a fixed mental capacity β. This means that the application of Capacity zone should always

be in pair with a known mental capacity β as any changes in the mental capacity will change the

position and shape of the corresponding Capacity zone.
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Furthermore, the proposed Capacity zone could provide theoretical interpretation to the dead-

line related as well as the mental capacity related phenomena reported in the literature (Chong,

Van Eerde, Chai, & Rutte, 2010; Gonzalez-Mulé, Carter, & Mount, 2017; Kulikowski, 2021; Phillips,

2008; Schmitt, Ohly, & Kleespies, 2015). Meanwhile, the three identified working zones and their

corresponding working patterns showed high consistency with the challenging and hindering ef-

fect of time pressure on performance (Baethge, Vahle-Hinz, Schulte-Braucks, & van Dick, 2018;

Kunzelmann & Rigotti, 2021). The proposed Capacity zone located between the two workload

equilibrium points under varied initial settings could help in theoretically explaining the dual ef-

fect of cognitive abilities on burnout proposed in a recent study (Kulikowski, 2021). That is, the

Proposition 1 in that paper saying that “cognitive ability indirectly decreases burnout via increasing

job resources” , could be explained by the differences in individual’s Capacity zone under varied

mental capacity as illustrated in Figure 5.27a, and the Proposition 2 may be explained with the

cases presented in Figure 5.27b. Consider an individual with a mental capacity at 0.7 works at the

Fatigue zone whereas another individual with a mental capacity at 1.0 works within the Capacity

zone when both of them are required to work on an assigned task with a corresponding initial work-

load around 100 (Figure 5.27a). Under such circumstance, the latter is associated with a decrease

on burnout in comparison with the former case considering that burnout is a typical consequence

of continuously working at the Fatigue zone. In addition, the Proposition 2 in the study (Ku-

likowski, 2021) mentioned that individuals with higher cognitive abilities may also receive more

task demands and have higher performance pressure compared to the individuals with lower cogni-

tive abilities, which could be explained with the cases shown in Figure 5.27b. Employers seem to

have very high expectation in the employees with high cognitive abilities, which may be represented

as the employer tend to overestimate those individuals’ maximum efficiency whereas their actual

efficiency limit may be much lower due to varied reasons. In this way, more tasks and workload

assignments will be given to this employer which may result in long-term working at then Fatigue

zone and increases in burnout.

Is there an optimal position within human beings’ Capacity zone that should be suggested for

real-life practice? Considering that the Capacity zone describes the area between the two workload

equilibrium points, we may start with those two points located at the boundaries of the preferred
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working zone. Should we recommend the workload equilibrium? The answer is no due to the fol-

lowing two reasons. First, the first workload equilibrium is the only stable equilibrium point because

it could “attract” the state point back to it with any displacements (in the Laid-back zone or Capac-

ity zone). However, human beings can only complete a relatively small amount of workload when

working at or around this stable equilibrium compared to the rest area within Capacity zone. As

the result, the first workload equilibrium should not be recommended. Second, the second workload

equilibrium is an unstable equilibrium which should not be recommended either. In Figure 5.28, it

is distinguished from the stable equilibrium by a hollow circle marker. Human beings complete the

most amount of workload if working exactly at this point from the beginning, but at the risk that the

state point will leave further and further with any slight displacement. What about the position cor-

responding to human beings’ maximum efficiency ϵmax? We should not recommend the maximum

efficiency point either because human beings’ efficiency will keep decreasing toward the first work-

load equilibrium instead of staying at the maximum value. That is to say, the maximum efficiency

point in Figure 5.28 only means the starting point of human beings’ time-course efficiency, but the

completed workload amount is not very large compared to the amount of workload completed at the

second workload equilibrium. Therefore, there is not a specific position that should be considered

as the optimal position to be recommended. However, there is an area within the Capacity zone

that could be suggested to computers as the preferred area.

Based on the aforementioned discussions, we would suggest to facilitate the positions within

human beings’ Capacity zone that locate near the second workload equilibrium when assigning

workload to different individuals. At those positions, human beings could work at a high efficiency

and end with a successful completion of the given task with a large amount of workload completed.

Moreover, those positions may locate on the right side of the maximum efficiency point, meaning

that human beings will work at a high efficiency for a period of time by approaching and then leaving

from their maximum efficiency. Last but not least, keeping a certain distance from the second

workload equilibrium can reduce the risk of exceeding the Capacity zone. As human beings’ state

point keeps moving toward the first workload equilibrium while working at their Capacity zone, it

will never reach the second workload equilibrium not to mention exceeding the preferred working

zone.
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Figure 5.28: Human beings’ Capacity zone and the state changing trends in different zones repre-
sented in workload-efficiency relationship at β = 0.7

Determining and applying human beings’ Capacity zone

In terms of the determination of human beings’ Capacity zone, it could be done by identifying the

two workload equilibrium points on the workload-efficiency curve corresponding to the intersec-

tions generated between human beings’ and the ideal modeling. Mathematically, this can be done

by solving Eq. (9) and Eq. (11) under predefined β and ϵmax values. The smaller one’s mental

capacity β is, the narrower the corresponding Capacity zone becomes while moving toward the

left side. On the contrary, a larger mental capacity leads to a wider range for the corresponding

Capacity zone locating more toward the right side on the workload-efficiency curves. Based on

the current assumptions, the maximum efficiency also increases with a larger mental capacity level.

With regard to variations in the maximum efficiency ϵmax, a larger value corresponds to a broader

and higher Capacity zone, and vice versa. Considering that the positions of the original workload-

efficiency curves won’t change under varied maximum efficiency, the changing trend of Capacity

zone is not as obvious as that under varied mental capacity. Moreover, a large maximum efficiency

ϵmax may be able to compensate the deficiency of mental capacity β.

Furthermore, a four-step protocol is proposed below for applying and facilitating human partici-

pants’ Capacity zone in real-life practices. First, the workload-efficiency modeling for the involved
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human participants can be done based on their previous performance (to obtain his maximum ef-

ficiency ϵmax) and other recordings (to obtain his mental capacity β). Second, an ideal workload-

efficiency modeling line can be added to the original modeling in order determine the correspond-

ing Capacity zone located between the workload equilibrium points. Third, a computer or human

instructor should adjust the workload allocation strategy to assign a “good” workload amount to

different human participants so that they can work at their Capacity zone. Fourth, the computer or

human instructor should frequently update human participants’ mental capacity β values used in the

workload-efficiency modeling based on the timely feedback from them. The fourth step needs to be

addressed in our future work as human participants’ mental capacity is considered stable throughout

the problem-solving process in the current research.

Limitations and future directions

This research has a few limitations which need to be addressed in our future work. First, the current

research proposes human beings’ Capacity zone that is determined on a predefined mental capacity

and maximum efficiency. However, the current discussions do not cover how to extract the values of

those two parameters from behavioural and physiological data. In our future work, further investiga-

tion will be conducted regarding what kinds of data should be used and how to obtain human beings’

mental capacity and maximum efficiency from the data. Second, interventions from computers or

human instructors are suggested to pull human participants back to their capacity zone when they

are found working outside of it, whereas the details of how to inform computers of human partici-

pants’ current working zone and the exact working position are not covered in the present research.

As a result, our future work will address the questions including what quantification methods are

suitable to extract human beings’ cognitive workload and what else should be added if workload

itself is not enough. Third, the current research does not consider the differences in workload de-

termination strategies across individuals. For example, some people prefer to complete as much

workload as they can in the early stage whereas some may prefer to leave most of the workload till

the last few days or weeks before the deadline. Another example is that human beings may apply

different problem-solving strategies like depth-first or breadth-first strategies, and varied strategies

for workload/task decomposition. It is also possible that some human participants are able to get
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back to their capacity zone by themselves thanks to their applied strategies in coping with “bad”

workload or stress. Covering those differences in our future work will also add more dimensions to

our analysis and make it more adaptive to different scenarios that may happen in real-life practices.

Last but not the least, our current observations are based on the theoretical analysis and simula-

tion results built upon the stress-effort model. Part of our future work is to identify human beings’

capacity zone from their behavioural and physiological data recorded during experiments.

Conclusions

This paper proposes the concept of human beings’ capacity zone located between the two workload

equilibrium points to ensure a successful accomplishment of a collaborative task under a predefined

deadline. Computers or human instructors are suggested to facilitate human beings’ capacity zone

and to intervene when they are working outside their capacity zone to ensure a high efficiency of the

entire systems or teams. According to our discussions above, human beings could always succeed

in accomplishing the given task with a large amount of workload completed in the end if they work

within their capacity zone. This characteristic of capacity zone is highlighted under a collaborative

project where the successful completion of the each human participant’s task is crucial to the overall

success. The proposed capacity zone should be used together with a mental capacity β value and a

maximum efficiency ϵmax level that could vary between different individuals. Those two parameters

not only contribute to the initial determination of one’s capacity zone but also keep reshaping it in

responding to any variations in the parameters during the process.

We suggest that a computer or human instructor should intervene with human participants when

they are working outside their capacity zone. The necessity of such intervention results from our

observations that human beings are not able to come back to their capacity zone by themselves

once working outside. However, only a limited amount or workload assignment can be done if

they continue to work outside their capacity zone. Therefore, we suggest that interventions are

required under those cases to pull them back to their capacity zone. In this way, a successful

accomplishment of each human participant’s task and a high overall efficiency can be ensured.

Moreover, an area right before the second workload equilibrium is highlighted in order to achieve a

even better performance with a larger amount of completed workload compared to the rest positions
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within the capacity zone. In terms of possible intervention actions, a computer or human instructor

could directly adjust the workload assignment amount for different human participants depending on

their current mental capacity levels. For example, when a human participant is working at the laid-

back zone, the computer or human instructor may intervene by adding more workload assignment

or updating the deadline to an earlier time (smaller T ) to pull the person back to the capacity zone.

On the contrary, possible interventions for a human participant who is working at the fatigue zone

include extending the time limit or taking out some workload assignment from the person.

5.4 Ongoing exploration on the quantification and impact of mental

capacity: An N-back working memory experiment

This ongoing study aims to test the proposed quantitative approach with experimental evidence

where we designed a cognitive experiment based on the N-back WM paradigm, which falls under

the third stage of the research methodology toward the second research objective. One research goal

of this study, a continuation of the one presented in Section 5.3, is to quantify different individuals’

mental capacities as well as their limits that would contribute to the determination of capacity zones.

Taking it as the ultimate goal of this study, the current preliminary analysis might contribute to the

other two research questions listed below. From this perspective, the current analysis can be seen

as the first step to measuring a person’s capacity limit and detecting when it is reached. Overall,

this study was designed to answer three questions, of which the third corresponds to the ultimate

objective, which requires further discussion among the research team in order to summarize the

existing findings and add additional analysis. Though the current analysis did not yield sufficient

results to measure or detect one’s capacity limit, I will continue to finalize the analysis and conduct

further investigations along this direction in my future research.

(1) How would the tested features respond to different workload as N increases from 1 to 2 and

then to 3 in an N-back WM paradigm?

(2) Do the EEG-based results differentiate between spatial and verbal information under an N-

back WM paradigm?
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(3) If some participants have already reached their capacity limit in an N-back WM paradigm

with N up to 3, can we detect it from their network oscillations?

In the meantime, the experiment design was motivated by our discussions with a few expe-

rienced pilots and observations on a pilot training process within the study presented in Section

5.2. A number of well-established EEG features were tested under an N-back WM paradigm under

varying conditions to see how they responded and how sensitive they were to a particular changing

dimension. Participants in this study are sometimes called ”pilot trainees” since they have been

hired for both this N-back experiment and the aforementioned pilot training experiment. In this

vein, the research outcome from this ongoing study which might also provide useful information to

the study (Zhao, Jia, et al., 2022) in improving the reliability and precision of the quantification of

pilot trainees’ cognitive changes within a skill acquisition process.

5.4.1 Experiment and participants

The N-back experiment in this study was adapted from the N-back protocol applied in (Nystrom

et al., 2000), which contrasted WM processes with letters (verbal) versus spatial locations. Un-

der an N-back WM paradigm, participants are presented with a sequence of visual stimuli and are

asked to answer if the current item is the same as the one presented N items prior. Our N-back

experiment consists of two versions, namely the verbal version and the spatial version. The stimuli

used for both versions were the same group of letters showing at varying locations on the screen,

which could ensure that participants receive identical visual stimuli to “eliminate a potential con-

found between WM and differential low-level visual experience” (Nystrom et al., 2000). The only

difference between the two versions lied in the task instructions presented in the beginning of the

block, indicating whether the letter (for verbal version) or the location (for spatial version) should

be considered in making a judgement.

Three workload levels were tested during the experiment with N equals to 1, 2, and 3 for both

verbal and spatial versions. General instructions were displayed to the participants at the beginning

of the experiment, indicating how the experiment works and the tasks to be completed. The trials

were grouped in blocks, there were instructions at the beginning of each block indicating the version
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(spatial or verbal) and difficulty level (1-back, 2-back, or 3-back) of the current block. Participants

were asked to complete 12 blocks in total and each block consisted of 50 sequential trials. Those

12 blocks were presented in a predefined order starting with 3 spatial blocks (1-back, 2-back, and

3-back), 3 verbal blocks (1-back, 2-back, and 3-back), followed by another 3 spatial blocks and 3

verbal blocks. At the beginning of each trial, a cross appeared at the center of the screen for 0.2

s. After 1.1 s following the offset of the cross, the stimulus (a random letter) appeared at a random

location for 0.2 s. After the offset of the stimulus, participants were given 3.0 s to indicate their

response. In our experiment, participant were allowed to change their responses and only the latest

press before the time limit was considered as their final response. In addition, participants were

instructed to practice the spatial and non-spatial version of the N-back task on all three difficulties

(1-back, 2-back, 3-back) before starting the experiment.

Twenty-four participants aged between 21-41 (11 males, 13 females) were recruited to conduct

the experiments. All participants reported to be in general good health without any neurological or

psychiatric disorder.In addition, all participants had normal vision or could achieve normal vision

with contact lenses, as glasses were not accepted for this experiment. Each participant received

$50 CAD compensation together with $80 CAD as trip compensation after completing the experi-

ments. Participants’ physiological data and behavioural data were recorded throughout the experi-

ment. The recorded physiological data includes: Electroencephalogram (EEG), Electrocardiogram

(ECG), Galvanic Skin Response (GSR), and Eye tracking, while participants’ behavioural data were

recorded by the computer. EEG data was collected using a 64-channel BioSemi ActiveTwo system

placed according to the international 10–20 system at a sampling rate of 2048 Hz. The results from

other recorded physiological data were not included in this research. The data collected from three

subjects have been removed for further analysis due to bad data quality or unexpected interruptions,

resulting in a data sample consisted of 21 subjects for further analysis.

5.4.2 Data pre-processing

The EEGLAB toolbox was applied during pre-processing for removing noises and artifacts from the

EEG data (Delorme & Makeig, 2004). The collected EEG data were referenced to mastoids and then

filtered between 1 and 40Hz using a zero-phase Hamming windowed-sinc FIR filter. Afterward, the
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channels that satisfied one or more criteria below were isolated as bad channels. The applied criteria

for bad channel detection include: 1) the channel kept flat for more than 5 seconds; 2) the correlation

between the channel and its nearby channels is smaller than 0.8; and 3) the amplitude of the channel

was greater than 3 standard deviation from the mean. For artifact removal, the multiple artifact

rejection algorithm (MARA) was applied where the IC components having more than 40% chance

to be labelled as artifacts (eye-blink, eye-movement, muscle-generated, and other artifacts) were

removed. According to the experiment protocol, the collected data were segmented into 4.5-second

epochs, among which only those with correct answers were kept for further analysis. The kept

4.5-second epochs were then analyzed for detecting bad segments and bad local channels within

each segment (Gabard-Durnam et al., 2018). The detected bad segments were rejected and the bad

local channels detected by applying FASTER (Nolan et al., 2010) criteria were interpolated using

spherical splines. Afterward, the obtained clean signals were re-referenced to average reference and

downsampled to 250Hz. Finally, baseline correction was applied to the pre-processed epochs using

the 1.3-second fixation period. As a result, the pre-processed epochs used for further analysis were

3.2-second epochs starting from the presence of the trigger letter.

5.4.3 Feature extraction and analysis

• Spectral analysis: The power spectral density (PSD) was estimated by applying the Welch

periodogram method with 50% overlapping Hamming windows of a length of 2 seconds to

the pre-processed EEG data. Afterward, the theta band (4-7.5 Hz) power, alpha band (8-

12.5 Hz) power, low beta band (13-19.5 Hz) power, high beta band (20-30 Hz) power, and

gamma band (30.5-40 Hz) power were computed from the PSD for each individual’s trials

with correct answers. In the meantime, we also computed a few features derived from the

band power features that have been reported to be associated with engagement, mental effort,

and fatigue in the literature (Fernandez Rojas et al., 2020; Freeman, Mikulka, Scerbo, &

Scott, 2004; J. Hu & Min, 2018; Ismail & Karwowski, 2020; Khare & Bajaj, 2020). The

engagement index (Freeman, Mikulka, Prinzel, & Scerbo, 1999; Pope, Bogart, & Bartolome,

1995) has been applied to describe how engaged the individual is at the confronted task, which

represents the ratio between beta power and the sum of theta and alpha power associated
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with certain EEG measurement channels. Two types of entropies were computed, namely

sample entropy (Richman & Moorman, 2000) and permutation entropy (Bandt & Pompe,

2002) according to the reported applications on fatigue detection. Under each trial, the band

powers and power derived features at 64 EEG channels were then grouped into five cortical

areas (frontal, central, temporal, parietal, and occipital) (Agnoli et al., 2020; Jia & Zeng,

2021) for including AREA comparisons in repeated measures ANOVA.

• EEG microstate features: The seven microstate classes (A, B, C, D, E, F, G) were computed

following the same approach as described in Section 5.2. The Global Field Power (GFP)

was computed for each trial and only the EEG data at the computed GFP peaks were sent to

the modified k-means algorithm with the cost function. We applied 100 repetitions to select

the optimal microstate classes based on the cross-validation defined in Eq. (8) from the mi-

crostate classes computed from each repetition. Afterward, a full permutation procedure was

applied to compute the group-wise microstate classes from the microstate classes obtained

in each individual’s single block, which were denoted as the global microstate classes. The

global microstate classes were then used to represent the pre-processed EEG data in the time

domain by assigning one of the global microstate classes to each time point. During this

fitting back process, the highest spatical correlation was used as the criterion for mocrostate

class assignment and the polarity of the microstate classes was ignored. Furthermore, no

smoothing parameters were applied in our analysis to avoid any modification to the temporal

dynamics of the generated microstate sequences.

Three microstate parameters, namely duration, occurrence, and coverage, were computed for

the microstate sequences generated for each individual’s different trials. Moreover, a finite

estimate of the entropy rate and Hurst exponent estimated by detrended fluctuation analysis

(DFA) were applied to measure the temporal dependencies of different microstates in this

research. More detailed information could be found in Section 5.2.

• Statistical anlaysis: The EEG spectral features were analyzed separately by a 2 (VERSION)

×3 (DIFFICULTY)×5 (AREA) repeated measures ANOVA. The three within subject factors

were VERSION (Spatial and Verbal), DIFFICULTY (1-back, 2-back, and 3-back), and AREA
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(Frontal, Central, Temporal, Parietal, and Occipital). Greenhouse-Geisser correction was

applied in the case of sphericity violations. Post hoc paired t-test was conducted at each

tested AREA between VERSION and between DIFFICULTY and Bonferroni correction was

applied for multiple comparisons.

For each of the computed EEG microstate parameters (coverage, occurrence, and duration),

a 2 (VERSION) ×3 (DIFFICULTY)×7 (CLASS) repeated measures ANOVA was applied to

analyze the effects of different factors. The three within subject factors were VERSION (Spa-

tial and Verbal), DIFFICULTY (1-back, 2-back, and 3-back), and CLASS (A, B, C, D, E, F,

and G). Greenhouse-Geisser correction was applied in the case of sphericity violations. Post

hoc paired t-test was conducted at each microstate CLASS between VERSION and between

DIFFICULTY and Bonferroni correction was applied for multiple comparisons.

The temporal dependencies measured by entropy rate and Hurst exponent were analyzed sep-

arately by a 2 (VERSION) ×3 (DIFFICULTY) repeated measures ANOVA. The two within

subject factors were VERSION (Spatial and Verbal), DIFFICULTY (1-back, 2-back, and 3-

back). Greenhouse-Geisser correction was applied in the case of sphericity violations. Post

hoc paired t-test was conducted between VERSION and between DIFFICULTY and Bonfer-

roni correction was applied for multiple comparisons.

5.4.4 Preliminary results

In the theta band, the 2× 3× 5 repeated measures ANOVA revealed one significant main effect of

AREA (F(4, 80) = 13.945, p = 0.000, η2 = 0.411). Figure 5.29 presents the comparison results on

VERSION and DIFFICULTY on each brain area. As shown in Figure 5.29, trainees’ theta spectral

power increased significantly from Spatial 1-back to Verbal 1-back tasks over frontal sites, and

from Spatial 3-back tasks to Verbal 3-back tasks over central and parietal sites. As for DIFFICULTY

comparison, the theta band power results over frontal sites showed significant increases from Spatial

1-back to 2-back, as well as from 1-back to 3-back conditions. However, significant decreases in

theta band power were observed from Spatial 1-back to 2-back over temporal site, from Spatial

1-back to 3-back over parietal and occipital sites, as well as from Verbal 1-back to 2-back and from
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Verbal 1-back to 3-back over occipital sites.
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Figure 5.29: EEG theta band power for Spatial and Verbal N-back tasks with N equals to 1, 2,
and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

In the alpha band, the 2× 3× 5 repeated measures ANOVA revealed one significant main effect

of AREA (F(4, 80) = 12.480, p = 0.000, η2 = 0.384). Figure 5.30 presents the comparison

results on VERSION and DIFFICULTY on each brain area. As shown in Figure 5.30, trainees’

alpha spectral power increased significantly from Spatial 1-back tasks to Verbal 1-back tasks over

frontal and parietal sites, from Spatial 2-back to Verbal 2-back tasks over frontal sites, and from

Spatial 3-back tasks to Verbal 3-back tasks over occipital sites. In the meantime, significant alpha

decreases were observed from Spatial 3-back to Verbal 3-back tasks over central and temporal sites.

As for DIFFICULTY comparison, the alpha band power increased significantly from Spatial 1-back

to 3-back over central sites whereas significant decreases in alpha band power were observed from

Spatial 1-back to 3-back over occipital sites. However, no significant decreases in alpha band power

were observed in paired DIFFICULTY comparisons on Verbal N-back tasks across the tested brain

areas.

In the low Beta band, the 2 × 3 × 5 repeated measures ANOVA revealed two significant main
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Figure 5.30: EEG alpha band power for Spatial and Verbal N-back tasks with N equals to 1, 2,
and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

effects of DIFFICULTY (F(2, 40) = 17.850, p = 0.000, η2 = 0.472) and AREA (F(4, 80) =

43.245, p = 0.000, η2 = 0.684), as well as one significant interaction effect of DIFFICULTY ×

AREA (F(8, 160) = 6.947, p = 0.015, η2 = 0.258). Figure 5.31 presents the comparison results

on VERSION and DIFFICULTY on each brain area. As shown in Figure 5.31, trainees’ low Beta

spectral power decreased significantly from Spatial 1-back to Verbal 1-back tasks over frontal sites,

from Spatial 2-back to Verbal 2-back tasks over frontal sites. However, significant increases in

low Beta band power were observed from Spatial 2-back to Verbal 2-back tasks over parietal and

occipital sites, as well as from Spatial 3-back to Verbal 3-back tasks over occipital sites. As for

DIFFICULTY comparison, the low Beta band power decreased significantly from Spatial 1-back to

2-back tasks over parietal and occipital sites, from Spatial 1-back to 3-back tasks over frontal and

parietal sites, from Verbal 1-back to 2-back tasks over parietal sites, from Verbal 1-back to 3-back

tasks over central and parietal sites, as well as from Verbal 2-back to 3-back tasks over frontal sites.

However, no significant changes in low Beta band power were observed over temporal sites either

for VERSION or DIFFICULTY paired comparisons.
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Figure 5.31: EEG low Beta band power for Spatial and Verbal N-back tasks with N equals to 1,
2, and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

In the low Beta band, the 2 × 3 × 5 repeated measures ANOVA revealed two significant main

effects of DIFFICULTY (F(2, 40) = 6.547, p = 0.010, η2 = 0.247) and AREA (F(4, 80) =

36.033, p = 0.000, η2 = 0.683), as well as one significant interaction effect of VERSION ×

DIFFICULTY (F(2, 40) = 4.005, p = 0.036, η2 = 0.167). Figure 5.32 presents the comparison

results on VERSION and DIFFICULTY on each brain area. As shown in Figure 5.32, trainees’

high Beta spectral power decreased significantly from Spatial 1-back to Verbal 1-back tasks over

occipital sites, whereas significant increases in high Beta power were observed from Spatial 2-

back to Verbal 2-back tasks over parietal sites. As for DIFFICULTY comparison, the significant

decreases in high Beta band power were observed from Spatial 1-back to 3-back tasks over frontal,

central, and parietal sites, as well as from Verbal 1-back to 3-back tasks over frontal and parietal

sites. Meanwhile, no significant changes in high Beta band power were observed over temporal

sites either for VERSION or DIFFICULTY paired comparisons.

In the Gamma band, the 2 × 3 × 5 repeated measures ANOVA revealed two significant main

effects of VERSION (F(1, 20) = 4.447, p = 0.0478, η2 = 0.182) and AREA (F(4, 80) = 26.316,
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Figure 5.32: EEG high Beta band power for Spatial and Verbal N-back tasks with N equals to 1,
2, and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

p = 0.000, η2 = 0.568). Figure 5.33 presents the comparison results on VERSION and DIFFI-

CULTY on each brain area. As shown in Figure 5.33, trainees’ Gamma spectral power increased

significantly from Spatial 1-back to Verbal 1-back tasks over central, temporal, and parietal sites.

However, significant decreases in gamma band power were observed from Spatial 2-back to Verbal

2-back tasks over central and temporal sites, as well as from Spatial 3-back to Verbal 3-back tasks

over frontal and occipital sites. Meanwhile, no significant changes were observed in the Gamma

band power in any paired DIFFICULTY comparisons across the tested brain areas.

Besides the aforementioned band power features, the results on engagement index and two

entropy features will be presented below. In the analysis on engagement index, the 2 × 3 × 5

repeated measures ANOVA revealed one significant main effect of VERSION (F(1, 20) = 4.911,

p = 0.038, η2 = 0.197), as well as one significant interaction effect of DIFFICULTY × AREA

(F(8, 160) = 3.930, p = 0.032, η2 = 0.164). Figure 5.34 presents the comparison results on

VERSION and DIFFICULTY on each brain area. As shown in Figure 5.34, trainees’ engagement

index decreased significantly from Spatial 1-back to Verbal 1-back tasks and from Spatial 2-back
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Figure 5.33: EEG Gamma band power for Spatial and Verbal N-back tasks with N equals to 1, 2,
and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

tasks to Verbal 2-back tasks over frontal sites. In the meantime, significant increases in engagement

index were observed from Spatial 2-back to Verbal 2-back tasks over occipital sites, as well as

from Spatial 3-back to Verbal 3-back tasks over central sites. As for DIFFICULTY comparison,

trainees’ engagement index decreased significantly from Spatial 1-back to 3-back tasks over frontal

sites. However, their engagement index increased significantly from Spatial 1-back to 3-back, from

Verbal 1-back to 2-back, and from Verbal 1-back to 3-back tasks over occipital sites. In addition, no

significant changes in engagement index were observed over temporal and parietal sites either for

VERSION or DIFFICULTY paired comparisons. Similarly, the results obtained on sample entropy

and permutation are presented in Figure 5.35 and 5.36. The DIFFICULTY comparison results on

sample entropy showed significant decreases from Spatial 1-back to 3-back tasks over the frontal

sites as well as significant increases from Spatial 1-back to 2-back tasks over the Parietal sites. In

the meantime, the DIFFICULTY comparison results on sample entropy showed significant increases

from Spatial 1-back to 2-back tasks as well as from Verbal 1-back to 2-back tasks over the parietal

sites. In terms of VERSION comparisons, permutation entropy seemed to be more sensitive to
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the content or format of information as significant changes were observed between Spatial 2-back

and Verbal 2-back tasks over frontal, temporal, and occipital sites, as well as from Spatial 3-back

to Verbal 3-back tasks over frontal, central, temporal, and parietal sites. However, the VERSION

comparisons on sample entropy did not show any significant changes across the five brain areas

under discussion.
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Figure 5.34: Engagement index (EI) for Spatial and Verbal N-back tasks with N equals to 1, 2,
and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

In the meantime, microstate parameters and the temporal dependency features on microstate

sequences were computed under each of the tested condition followed by post hoc paired t tests

with Bonferroni correction when needed. Figure 5.37 presents the microstate coverage comparison

results on VERSION and DIFFICULTY for each of the seven EEG microstate classes plotted with

annotations based on the p-values from pairwise comparisons. For VERSION comparison, signifi-

cant decreases in the coverage of microstate G from Spatial 1-back to Verbal 1-back tasks, whereas

the coverage of other microstates didn’t show any significant changes between Spatial and Verbal

tasks across the tested difficulty levels (1-back, 2-back, and 3-back). In the meantime, no significant

differences were observed in DIFFICULTY comparisons for all of the seven microstate classes for
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Figure 5.35: Sample entropy for Spatial and Verbal N-back tasks with N equals to 1, 2, and 3.
P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤
0.010), ∗∗∗(p ≤ 0.005).

both task types (Spatial and Verbal).

The occurrence comparison results on VERSION and DIFFICULTY for each of the seven EEG

microstate classes plotted with annotations based on the p-values from pairwise comparisons as

shown in Figure 5.38. For VERSION comparison, significant decreases in the occurrence parameter

were observed from Spatial 1-back to Verbal 1-back tasks on microstate B, E, and G, and such

significant occurrence decreases were also observed from Spatial 2-back to Verbal 2-back tasks on

microstate B, C, E, and G. However, no significant changes were observed between Spatial 3-back

and Verbal 3-back tasks across the seven microstate classes. In terms of DIFFICULTY comparison,

the occurrence of microstate C and F significantly decreased from Verbal 1-back to 2-back tasks,

the occurrence of microstate F significantly decreased from Spatial 1-back to 3-back tasks, whereas

significant increases in the occurrence of microstate B, C, and E were observed from Verbal 2-back

to 3-back tasks.

The duration comparison results on VERSION and DIFFICULTY for each of the seven EEG

microstate classes plotted with annotations based on the p-values from pairwise comparisons as
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Figure 5.36: Permutation entropy for Spatial and Verbal N-back tasks with N equals to 1, 2, and
3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤
0.010), ∗∗∗(p ≤ 0.005).

shown in Figure 5.39. For VERSION comparison, significant increases in the duration parameter

were observed from Spatial 1-back to Verbal 1-back tasks on microstate A, B, C, D, and E, and such

significant increases were also observed from Spatial 2-back to Verbal 2-back tasks on microstate

A, B, C, and F. However, no significant duration changes were observed between Spatial 3-back and

Verbal 3-back tasks across the seven microstate classes. In terms of DIFFICULTY comparison, the

duration of microstate G significant increased from Spatial 1-back to 2-back as well as from Verbal

1-back to 2-back tasks. In addition, the duration of microstate B and F significantly decreased from

Verbal 2-back to 3-back tasks.

Moreover, the VERSION and DIFFICULTY comparison results on entropy rate of the generated

microstate sequences are plotted with annotations based on the p-values from pairwise comparisons

as shown in Figure 5.40. For VERSION comparison, significant increases were observed from

Spatial 1-back to Verbal 1-back tasks and also from Spatial 2-back to Verbal 2-back tasks, whereas

non-significant decreases were observed from Spatial 3-back to Verbal 3-back tasks. In terms of

DIFFICULTY comparison, the computed entropy rate significant decreased from Verbal 2-back to
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Figure 5.37: EEG microstate coverage for Spatial and Verbal N-back tasks with N equals to 1, 2,
and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

3-back tasks.

the Hurst exponent averaged across 35 partitions was computed and compared as another tem-

poral dependency feature in this research. And the the pairwise comparison results on the computed

Hurst exponent showed no significant changes either in VERSION comparisons or DIFFICULTY

comparisons as shown in Figure 5.41. The comparison results are are plotted with annotations

based on the p-values from pairwise comparisons followed by Bonferroni correction was for multi-

ple comparisons when needed.

5.4.5 Discussions on the preliminary results

The results on theta band power showed significant increases from Spatial 1-back to 2-back as well

as from Spatial 1-back to 3-back tasks over the frontal sites. In the meantime, the theta band power

increased non-significantly from Verbal 1-back to 2-back and then to 3-back tasks. Considering the

aforementioned association between increased frontal theta activity with increased cognitive control

(Cavanagh & Frank, 2014; Karakaş, 2020; Sauseng et al., 2010), our results on theta band power

indicated an increasing need of cognitive control, information retrieval, and conflict encoding as N

increases from 1 to 3 under an N-back WM paradigm for both of the tested versions (Spatial and
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Figure 5.38: EEG microstate occurrence for Spatial and Verbal N-back tasks with N equals to 1,
2, and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

Verbal). However, the effect of VERSION on theta band power is not significant and the DIFFI-

CULTY comparison results on theta band showed a decreasing trend on the other four investigate

brain areas either supported by significant or non-significant differences. Such decreasing trend and

some of the non-significant changes in theta band power are worth studying for achieving a better

understanding of the research topic, which will be covered in my future research.

The results on alpha band power showed significant increases from Spatial 1-back to 3-back

over the central sites whereas significant decreases were observed from Spatial 1-back to 3-back

over occipital sites. In the meantime, the alpha band power changes among the three Verbal tasks

(1-back, 2-back, and 3-back) showed diverse changing trends despite the fact none of those changes

was significant. In addition, the VERSION comparisons showed both significant increases and

significant decreases from Spatial tasks to Verbal tasks over different brain areas as shown in Figure

5.30. Besides the aforementioned relationship between alpha activation and cognitive workload,

alpha band oscillations have also been linked to top-down modulation of attention (Palva & Palva,

2007; Sauseng et al., 2005). And there are studies supporting that “alpha-band power follows the

focus of spatial attention, by decreasing over task-relevant areas and increasing over brain regions

that represent distracting information (Händel, Haarmeier, & Jensen, 2011; Klimesch, 2012; Payne,
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Figure 5.39: EEG microstate duration for Spatial and Verbal N-back tasks with N equals to 1, 2,
and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by ∗(p ≤ 0.050),
∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

Guillory, & Sekuler, 2013; Payne & Sekuler, 2014; Sauseng et al., 2009; Snyder & Foxe, 2010)”

(Fodor, Marosi, Tombor, & Csukly, 2020). Therefore, continued analysis is needed to look into the

reasons for the observed alpha increases and decreases reported in the literature as well as from our

analysis.

Moreover, my future research will also include the results obtained on the other six computed

spectral features including three band powers (low beta band, high beta band, and gamma band),

engagement index, sample entropy, and permutation entropy, which have already showed some

changing trends worth studying. For example, the DIFFICULTY comparisons on low beta band

power showed a decreasing trend over frontal, central, and parietal sites for both Spatial and Verbal

tasks supported by significant or non-significant changes (Figure 5.31). Similarly, such decreasing

trend was also observed in high beta band power over the aforementioned three brain areas for both

types of tasks when N varied from 1 to 3 (Figure 5.32). However, gamma band power seemed to

be more sensitive to VERSION effect than DIFFICULTY effect as the DIFFICULTY comparisons

on gamma band did not show any significant changes (Figure 5.33), which was also supported by

the ANOVA results. The VERSION comparisons showed significant increases from Spatial 1-back

to Verbal 1-back tasks over central, temporal, and parietal sites, whereas significant decreases were
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Figure 5.40: Entropy rate of microstate sequences for Spatial and Verbal N-back tasks with N
equals to 1, 2, and 3. P-values for VERSION and DIFFICULTY comparisons are annotated by
∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

observed from Spatial 2-back to Verbal 2-back tasks over central and temporal sites, as well as from

Spatial 3-back to Verbal 3-back tasks over frontal and occipital sites.

Among the seven computed EEG microstate states, our previous discussions in Section 5.1 and

5.2 highlighted microstate C due to its close relationship with cognitive control. Therefore, the

three parametes of microstate C, namely coverage, occurrence, and duration, were discussed in the

first place in the investigation of trainees’ cognitive changes under N-back tasks. The coverage

of microstate C showed a decreasing trend under Spatial N-back tasks when N changed from 1

to 3, whereas a U-shaped changing coverage was observed under Verbal tasks (Figure 5.37). Of

note, the coverage of microstate C and the other six microstates (A, B, D, E, F, and G) did not

show any significant changes in both DIFFICULTY and VERSION comparisons except for the

only significant decrease from Spatial 1-back to Verbal 1-back in the coverage of microstate G.

The occurrence of microstate C also showed a decreasing trend under Spatial tasks as well as

a U-shaped changing trend under Verbal tasks (Figure 5.38). The supporting evidences include

significant decreases from Verbal 1-back to 2-back tasks, significant increases from Verbal 2-back

to 3-back tasks, as well as non-significant changes in the paired DIFFICULTY comparisons under

Spatial tasks. In the meantime, the occurrence of microstate F also indicated a decreasing trend

under Spatial tasks and a U-shaped trend under Verbal tasks, supported by significant decreases
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Figure 5.41: Hurst exponent of microstate sequences averaged across 35 partitions for Spatial and
Verbal N-back tasks with N equals to 1, 2, and 3. P-values for VERSION and DIFFICULTY
comparisons are annotated by ∗(p ≤ 0.050), ∗∗(p ≤ 0.010), ∗∗∗(p ≤ 0.005).

from Spatial 1-back to 3-back tasks as well as from Verbal 1-back to 2-back. Also, the occurrence

parameter seemed to be more sensitive to the content or format of information as the results on

VERSION comparisons showed significant occurrence decreases from Spatial 1-back to Verbal 1-

back tasks in microstate B, E, and G, as well as from Spatial 2-back to Verbal 2-back tasks in

microstate B, C, E and G.

However, the duration of microstate C followed an inverted-U changing trend under both types

of tasks (Spatial and Verbal) as shown in Figure 5.39. The comparison results of duration param-

eter under Verbal tasks seemed to follow an inverted-U shaped trend across the computed seven

microstates. The supporting evidences include the significant duration increases from Verbal 1-

back to 2-back tasks in microstate G, significant duration decreases from Verbal 2-back to 3-back

tasks in microstate B and F, as well as the non-significant changes in the paired comparisons. And

the VERSION comparisons on duration showed significant increases from Spatial 1-back to Verbal

1-back tasks as well as from Spatial 2-back to Verbal 2-back tasks in microstate A, B, C, and F.

Although the aforementioned observations on the duration parameter were so different from what

have been observed on the other two microstate parameters (coverage and occurrence), the results

on duration seemed to achieve a certain consistency among the seven microstates. Continued anal-

ysis is needed to interpret such differences and consistency through combining theoretical support
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and experimental evidences in my future research.

Moreover, entropy rate computed from the generate microstate sequences showed a decreasing

trend under Spatial tasks and followed a U-shaped trend under Verbal tasks as shown in Figure

5.40. Entropy rate increased significantly from Verbal 2-back to 3-back tasks, whereas the other

evidences are non-significant changes obtained in DIFFICULTY comparisons for the decreasing

and U-shaped trends under Spatial and Verbal tasks respectively. Following our previous analysis

on the negative correlation between entropy rate and cognitive control, our results indicated that

participants’ cognitive control increased under Spatial N-back tasks while N increased from 1 to

3, whereas their cognitive control increased from 1-back to 2-back then decreased from 2-back to

3-back when conducting Verbal N-back tasks. This is consistent with the cognitive control varia-

tions indicated by the coverage and occurrence of microstate C, considering its role in reflecting

activities in the default mode network (Bréchet et al., 2019; Seitzman et al., 2017; X. Xu et al.,

2016). Furthermore, the computed Hurst exponent, as the other temporal dependency feature on

the microstate sequences, decreased from 1-back to 2-back tasks and then decreased from 2-back

to 3-back tasks under both Spatial and Verbal N-back WM paradigms (Figure 5.41). Adopting the

positive relationship between Hurst exponent and cognitive control from our precious analysis, the

U-shaped changing trend in Hurst exponent indicated that participants’ cognitive control decreased

from 1-back to 2-back and then then increased from 2-back to 3-back under both of the two tested

versions of N-back WM paradigm. That is, the observations from Hurst exponent results were so

different from that obtained on entropy rate as well as the coverage and occurrence of microstate C

that additional analysis is needed to interpret such phenomena.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research aims to quantify cognitive workload and mental capacity while people perform com-

plex cognitive activities from their EEG signals. Overall, the present research covers theoretical

analysis, framework development, experiment design, and experimental data analysis to address the

challenges in quantifying cognitive workload, mental capacity from EEG signals under complex

cognitive activities. The tEEG framework was proposed in the first place to address the challenges

in EEG-based cognitive design studies, which might fill the gap between the existing EEG studies

and the cognitive studies under complex cognitive activities. The tEEG framework has then been ap-

plied for the quantification of cognitive workload and mental capacity from the EEG signals within

and beyond the context of design. In particular, cognitive workload was quantified by combining

the spectral analysis results on EEG data and confirmed with the results obtained from subjective

ratings. The quantification of cognitive control, as part of mental capacity, was based on the EEG

microstate features and spectral analysis, which has been confirmed with the subjective evaluation

results from pilot instructors. In addition, these applications indicated that the loosely controlled

experiments proposed in the tEEG framework could be well supported by EEG microstate analysis,

which appears to offer an effective approach to investigating the cognitive changes under complex

cognitive activities.
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The present research was structured and developed following a three-stage research method-

ology. Two research objectives have been formulated in the first place based on the pilot studies

(Zhao et al., 2018; Zhao & Zeng, 2019) in applying and extending the stress model, based on which

a series of theoretical analyses and literature review were conducted leading to a three-stage method-

ology. According to the research methodology, a new research framework was proposed during the

first stage for conducting EEG-based analysis to quantify designers’ cognitive changes based on

our past research efforts and a series of theoretical analyses (Zhao et al., 2020). Design activities

are considered as representative examples of complex cognitive activities and EEG appears to be a

promising tool for monitoring designers’ cognitive changes within a design process as indicated in

the literature. The proposed tEEG framework was then applied to quantitatively monitor changes in

people’s cognitive workload and mental capacity within and beyond the context of design, during

the second stage in the research methodology. These applications not only illustrate how the tEEG

framework can be used but also provide feedback for further developing the framework and con-

tribute in various ways to specific fields, such as design and learning. Moreover, the third stage aims

at establishing a quantitative representation of the stress model to relate the quantification results on

the mentioned cognitive factors to human mental effort as well as the behavioral variations, which

is more a future direction of my current research. Along this direction, investigations would be

conducted into the impact of cognitive workload and mental capacity on mental effort, which would

be one step further to apply my current research findings and most existing quantitative cognitive

findings in real-life scenarios. Even though it is still at an early stage as explained in this research,

my future research will continue to conduct further investigations toward the second research ob-

jective. Research outputs from every stage (mainly for the first two stages) of the methodology are

summarised one by one in the following paragraphs, as well as their contributions to the studied

phenomenon and corresponding field.

A task-related framework, denoted as tEEG framework, is proposed for conducting EEG-based

analysis to investigate designers’ cognitive changes under different design activities (Zhao et al.,

2020). As one of the key outcomes of the present research, the proposed tEEG framework consists

of three main parts, namely data collection from loosely controlled experiments, clustering-based

segmentation of unstructured data, and EEG-based segment analysis. The overall design process
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inputs the initial design problem and outputs the final design solutions if viewed from a high level

perspective. The data collected during loosely controlled experiments include designer’s behaviors,

biometric data, and design solutions based on the target design problem. Loosely controlled exper-

iments are designed and conducted regarding the studied research topic where participants’ design

activities happen. Secondly, clustering-based segmentation can be conducted to identify the hidden

structured stimulus-response data pairs from the unstructured data. Several sub-processes can be

extracted from a complex design after this step. Last but not least, each extracted segment can be

analyzed using traditional hypothesis test method. It is during this step that some of the existing

results and techniques on EEG-based cognitive and affective states may be adopted and integrated.

Moreover, the results obtained in later applications indicated that loosely controlled experiments

proposed in the tEEG framework can be well supported by EEG microstate analysis, which appears

to offer an effective approach to facilitating an ecologically valid neurocognitive study.

Within the context of design, the first application simulated the design process in a loosely con-

trolled setting, aiming to quantify the design-related workload and cognitive control and uncover

their temporal dynamics (Jia et al., 2021). The TRP and EEG microstate results suggest that idea

generation is associated with the highest cognitive workload and lowest cognitive control during

open-ended creation tasks. In particular, the results indicated that idea generation and idea evolu-

tion were associated with decreases in alpha power, while the decreases were significantly larger

during idea generation compared to idea evolution. In addition, problem understanding, rating idea

generation, and rating idea evaluation were shown to be associated with increases in theta and beta

power while the increases were largest during problem understanding, which are in line with those

from visual creativity and higher-order cognition research based on ERD/ERS and TRP. The effec-

tiveness of loosely controlled experiments proposed in our tEEG framework was successfully tested

in this research by comparing the findings on the studied phenomena that have been effectively

studied by validated experimental research.

Beyond the context of design, the second research strictly followed the steps within our tEEG

framework to capture the changes in trainees’ cognitive control and workload while they under-

went training on basic flight maneuvers (Zhao, Jia, et al., 2022). This is also the first application

that followed the framework from experiment design to each step of data analysis for testing the
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hypothesis that trainees’ cognitive workload would decrease whereas their cognitive control would

improve under the same task demands through a skill acquisition process. EEG microstate analy-

sis and spectral power features were applied in this research to assess trainees’ cognitive workload

and cognitive control variations during different stages within a pilot training process. Our results

revealed that trainees’ cognitive workload decreased along the pilot training process whereas their

cognitive control improved toward the end of the process under unvaried task demands. Our in-

vestigations also indicated that even under varied task demands the effect of skill acquisition on

cognitive control could be captured by EEG microstate features.

As for the third stage, a quantitative representation for describing the impact of cognitive work-

load and mental capacity on mental effort was established and modeled based on the stress-effort

model. The model has been verified with simulations and applied for phenomena interpretations

under the condition when a collaborative task needs to be completed within a limited period. The

concept of capacity zone was proposed to ensure high efficiency that lies between the two workload

equilibrium points (Zhao, Qiu, & Zeng, 2022). Human instructors or computers should facilitate

human beings’ capacity zones and intervene when they are found working outside the capacity zone.

This characteristic is emphasized in collaborative projects, in which each individual’s task is crucial

to the overall success of the project. The proposed capacity zone should be used together with a

mental capacity value and a maximum efficiency level of each human participant. These parameters

not only contribute to the initiation of capacity zone, but also continuously reshape them as param-

eters change. Furthermore, the proposed quantitative approach would be tested with experimental

evidence based on an N-back WM paradigm in the ongoing research presented in Section 5.4. Even

though the current research only covers some preliminary results on the N-back dataset, my future

with continue to finalize the current analysis and I believe that the deliverable from my research will

pave the way to achieving the second research goal step by step.
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6.2 Future work

Two future research directions have been identified based on the aforementioned research findings

and the preliminary results obtained from the ongoing exploration. One future direction is to mea-

sure different individual’s mental capacity from their physiological recordings by continuing with

my current analysis on the dataset collected under an N-back WM paradigm, which corresponds

to the third stage within my research methodology aiming at the second research objective. The

research outcome could enable the application of the capacity zone model under varied real-life

scenarios with customized workload allocation strategies and timely interventions. In this vein, the

goal is to increase the overall efficiency of the project, team, or system by providing quantitative

feedback on the mental capacity of each individual. The processes that rely heavily on subjective

criteria like expert evaluations and judgments would benefit greatly from objective feedback on hu-

man participants’ mental capacity. As an example of such a process, pilot training, in which the

instructors can use such objective metrics to give a more precise assessment, adjust the training

tasks, provide timely interventions, and supervise more trainees simultaneously, the efficiency of

the training process can be improved.

The other future direction is to conduct further analysis to identify which parts of subjective

evaluations can be replaced by physiological metrics and whether physiological metrics can sup-

plement expert evaluations with additional information. This is motivated by the similarity and

differences that have been observed between EEG quantities and quantitative assessment provided

by the experts on the study of pilot training process (Zhao, Jia, et al., 2022). There are a few things

that could be considered to continue in this direction: 1) may include more EEG features included

into my analysis; 2) may incorporate other physiological measures into the current EEG-based anal-

ysis; and 3) may follow a recursive process to improve the precision and reliability. For example,

we may ask the experts to calibrate the current subjective evaluations based on the physiological

metrics and then come back to modify the metrics based on the updated expert evaluations. The

process could be repeated a number of times until both physiological metrics and subjective eval-

uations are relatively stable. Research along this line would continue to improve the accuracy and

reliability of objective assessments of human participants’ performance, which may also shed light
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on the studies of other cognitive functions.

145



References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human

Neuroscience, 7, 246.

Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis

of epilepsy: a review. Knowledge-Based Systems, 45, 147–165.

Addante, R. J., Watrous, A. J., Yonelinas, A. P., Ekstrom, A. D., & Ranganath, C. (2011). Pres-

timulus theta activity predicts correct source memory retrieval. Proceedings of the National

Academy of Sciences, 108(26), 10702–10707.

Afflerbach, P., & Johnston, P. (1984). On the use of verbal reports in reading research. Journal of

Reading Behavior, 16(4), 307–322.

Agarwal, R., & Gotman, J. (1999). Adaptive segmentation of electroencephalographic data using a

nonlinear energy operator. In 1999 IEEE International Symposium on Circuits and Systems

(ISCAS) (Vol. 4, pp. 199–202).

Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2020). Predicting response

originality through brain activity: An analysis of changes in EEG alpha power during the

generation of alternative ideas. NeuroImage, 207, 116385.

Ahituv, N., Igbaria, M., & Sella, A. V. (1998). The effects of time pressure and completeness of

information on decision making. Journal of Management Information Systems, 15(2), 153–

172.

Al-Shargie, F., Tariq, U., Mir, H., Alawar, H., Babiloni, F., & Al-Nashash, H. (2019). Vigilance

decrement and enhancement techniques: a review. Brain Sciences, 9(8), 178.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression.

146



The American Statistician, 46(3), 175–185.

Amer, T., Campbell, K. L., & Hasher, L. (2016). Cognitive control as a double-edged sword. Trends

in Cognitive Sciences, 20(12), 905–915.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem situations. Psy-

chological Review, 94(2), 192.

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A

revision of bloom’s taxonomy of educational objectives. Longman,.

Anton, N. E., Bean, E. A., Hammonds, S. C., & Stefanidis, D. (2017). Application of mental

skills training in surgery: a review of its effectiveness and proposed next steps. Journal of

Laparoendoscopic & Advanced Surgical Techniques, 27(5), 459–469.

Aoki, T., & Kowalik, U. (2011). BROAFERENCE: A prototype of an emotion-based TV quality

rating system. In Emotional Engineering (pp. 223–245). Springer.

Appel, U., & Brandt, A. V. (1983). Adaptive sequential segmentation of piecewise stationary time

series. Information Sciences, 29(1), 27–56.

Austin, J., & Delaney, P. F. (1998). Protocol analysis as a tool for behavior analysis. The Analysis

of Verbal Behavior, 15(1), 41–56.

Austin, R. D. (2001). The effects of time pressure on quality in software development: An agency

model. Information Systems Research, 12(2), 195–207.

Baethge, A., Vahle-Hinz, T., Schulte-Braucks, J., & van Dick, R. (2018). A matter of time?

challenging and hindering effects of time pressure on work engagement. Work & Stress,

32(3), 228–247.

Baldwin, C. L. (2012). Auditory cognition and human performance: Research and applications.

CRC Press.

Balters, S., & Steinert, M. (2017). Capturing emotion reactivity through physiology measurement

as a foundation for affective engineering in engineering design science and engineering prac-

tices. Journal of Intelligent Manufacturing, 28(7), 1585–1607.

Bandt, C., & Pompe, B. (2002). Permutation entropy: a natural complexity measure for time series.

Physical Review Letters, 88(17), 174102.

147



Bardwell, L. V. (1991). Problem-framing: A perspective on environmental problem-solving. Envi-

ronmental Management, 15(5), 603–612.

Barlow, J., Creutzfeldt, O., Michael, D., Houchin, J., & Epelbaum, H. (1981). Automatic adap-

tive segmentation of clinical EEGs. Electroencephalography and Clinical Neurophysiology,

51(5), 512–525.
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Jaušovec, N., & Jaušovec, K. (2000). EEG activity during the performance of complex mental

problems. International Journal of Psychophysiology, 36(1), 73–88.

Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account

for data on the sternberg task. Journal of Neuroscience, 18(24), 10688–10699.

Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load

in a working memory task. European Journal of Neuroscience, 15(8), 1395–1399.

Jia, W., von Wegner, F., Zhao, M., & Zeng, Y. (2021). Network oscillations imply the highest cog-

nitive workload and lowest cognitive control during idea generation in open-ended creation

tasks. Scientific Reports, 11(1), 1–23.

Jia, W., & Zeng, Y. (2021). EEG signals respond differently to idea generation, idea evolution and

evaluation in a loosely controlled creativity experiment. Scientific Reports, 11(1), 1–20.

Johnson, W., Bouchard Jr, T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g:

Consistent results from three test batteries. Intelligence, 32(1), 95–107.

Johnson, W., te Nijenhuis, J., & Bouchard Jr, T. J. (2008). Still just 1 g: Consistent results from

five test batteries. Intelligence, 36(1), 81–95.

Judge, T. A., Colbert, A. E., & Ilies, R. (2004). Intelligence and leadership: A quantitative review

and test of theoretical propositions. Journal of Applied Psychology, 89(3), 542.

Kamzanova, A. T., Kustubayeva, A. M., & Matthews, G. (2014). Use of EEG workload indices for

157



diagnostic monitoring of vigilance decrement. Human Factors, 56(6), 1136–1149.

Kane, M. J., Bleckley, M. K., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view

of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169.

Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention:

the contributions of goal neglect, response competition, and task set to stroop interference.

Journal of Experimental Psychology: General, 132(1), 47.

Kar, S., Bhagat, M., & Routray, A. (2010). EEG signal analysis for the assessment and quantifica-

tion of driver’s fatigue. Transportation Research Part F: Traffic Psychology and Behaviour,

13(5), 297–306.
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