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Abstract

Design Methods for Large Scale
Photonic Spiking Neural Networks

Milad Eslaminia

Silicon Photonics is a promising technology to develop neuromorphic hardware accelerators.

Most optical neural networks rely on wavelength division multiplexing (WDM), which calls for

power-hungry calibration to compensate for the non-uniformity fabrication process and thermal

variations of microring resonators (MRR). This imposes practical limitations on neuromorphic pho-

tonic hardware since only a small number of synaptic connections per neuron can be implemented.

As a result, the mapping of neural networks (NN) on a hardware platform requires the pruning of

synaptic connections, which drastically affects the accuracy.

In this work, we address these limitations from two directions. First, we proposed a method

to map pre-trained NN on an all-optical spiking neural network (SNN). The technique relies on

weight partitioning and unrolling to reduce synaptic connections. This method aims to improve

hardware utilization while minimizing accuracy loss. The resulting neural networks are mapped

on an architecture we propose, allowing us to estimate accuracy and energy consumption. Results

show the capability of weight partitioning to implement a realistic NN while attaining a 58% reduc-

tion in energy consumption compared with unrolling. Second, a synaptic weighting architecture is

proposed to implement weighting while reducing the number of required MRRs by half thus simpli-

fying the calibration requirements. The architecture was simulated to demonstrate its capability of

performing synaptic weighting. These methods together introduce design directions that can work

around constraints of photonic spiking neural network architectures and help reach toward realizing

large-scale photonic spiking neural networks.
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Chapter 1

Introduction

Artificial Neural Networks (ANN) are computing systems made of simple but highly intercon-

nected processing elements called neurons [1]. These elements, loosely based on models of biolog-

ical neurons, process information by their dynamic response based on external inputs. In contrast

to conventional von Neuman machines, which are suitable for processing given instructions based

on centralized processing and memory, ANNs are highly parallel [2, 3]. ANNs are deployed in

an ever-growing number of applications [2], which led to challenges related to design complexity,

computation power, and energy efficiency. This has brought the research community to focus on

neuromorphic engineering [4]. The goal of Neuromorphic engineering is to create hardware that

closely replicates the functionality of a biological neural system and attempt to match Machine

Learning algorithms to hardware that is similarly massively distributed and parallel [5, 6].

Biological systems like the brain perform complex tasks at very low energy costs. Biological

neurons communicate asynchronously through action-potentials and perform spike-based process-

ing [7]. These action potentials are generated based on the dynamic system modeling of the neuron.

Spiking Neural Networks (SNN) is a class of neural networks where each processing node or neuron

communicates through a sequence of spikes, hence allowing closer implementation of biological

systems. SNNs promise advantages such as low power consumption, fast inference, event-based

processing, and analog computation. SNNs are applicable to all the same problems solvable by

non-spiking neural networks [8] such as signal processing, event detection, classification, and ob-

ject recognition [9, 10].
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Electronic neuromorphic hardware typically relies on a shared time-division multiplexed digital

bus, for which the design involves a trade-off between available bandwidth and the interconnects

size [11]. To overcome the high latency and low bandwidth limitations of electronic interconnects,

silicon photonics has been proposed as an interconnect backbone to accelerate neural networks [12].

Matrix multiplication is at the core of Neural Network models. Neurons are interconnected through

synaptic weights. The input to post-synaptic neurons is the result of the summation and attenuation

of the output of each presynaptic neuron by synaptic weights. Photonic implementations of linear

operations such as matrix multiplication [13] can be performed in parallel and at lower energy

cost [14]. Considering the success of photonic and optical interconnects in delivering high data

rates in sectors such as data centers and telecommunication sectors, the technology is likely to

become mainstream for the implementation of neural networks dedicated to applications with high

bandwidth requirements such as wide-band radio frequency information processing [15], and ultra-

fast inference [16]. Applications beyond the reach of digital electronics could then be the target for

photonic neural networks and they could complement conventional electronic devices.

Photonic components such as excitable lasers have been demonstrated to behave similarly to

Leaky-Integrate and Fire Model (LIF) [17]. The LIF model implements a simplified model of the

dynamic systems of a biological neuron. Microring resonators (MRR) with a phase-change material

(PCM) have demonstrated similar integration and spiking behavior described by this model [18].

These features make silicon photonics a promising candidate for the implementation of SNNs.

1.1 Problem Statement

Neural Networks are highly parallel computing models. These models consist of individual

processing nodes called neurons. Large numbers of neurons placed in interconnected layers en-

able the highly parallel computation capabilities of neural networks. To replicate this attribute on

neuromorphic hardware and map neural network models for accelerated processing, neurons and

corresponding interconnect need to be represented one-to-one on the hardware. In other words,

to realize neuromorphic hardware, it is necessary to realize an architecture for the neurons and a

feasible way to interconnect these neurons to create larger networks.
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Figure 1.1: Neural networks consist of a large number of interconnected neurons.
This figure is reproduced from [19] with modifications.

Photonic Spiking Neural Network architectures rely on wavelength division multiplexing (WDM)

to collect and distribute signals between the neurons and the layers in a neural network. Operation

of WDM relies on a careful calibration of MRRs to individual resonance wavelengths. This is

necessary to reliably transmit and extract signals that are propagating on different wavelengths.

Calibration of MRRs is challenging as they are easily influenced by environmental factors like tem-

perature. Minute variations in these factors can cause a drift in the resonance wavelength of these

MRRs and result in the degradation of WDM to reliably extract a signal at the destination. Neuro-

morphic applications with many neurons and their individual synapses require a greater number of

MRRs. This imposes a practical limitation on the scale of a neural network model that current pho-

tonic architectures can accommodate. To address this limitation, we need to find potential answers

to these questions:

• How a neural network model is affected by the limited synaptic connectivity on the target

hardware?

• What are the potential methods to work around or mitigate these shortcomings?
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• Do these methods require a new hardware design or can they be implemented through soft-

ware preprocessing?

• How to evaluate and compare the impact of these limitations and the benefits of the mitigation

methods?

These questions motivate us to explore design methods to work around these limitations and

propose viable solutions to realize larger neural network models with the limitations of current

photonic architectures.

1.2 Thesis Objectives

We can address this problem in two directions. First, we can consider the neural network model

to be mapped onto the hardware. By modifying and reshaping the model, we potentially can work

around the limitation of the target neuromorphic hardware and create models that do not exceed the

number of available hardware resources. Second, we can consider the hardware itself and propose

new designs that can accommodate a larger number of neurons and synaptic connections with fewer

MRRs. It is to be expected that taking either of these directions will come at a penalty to model

accuracy and energy consumption. It will be necessary to evaluate the proposed solutions and

explore design space to arrive at trade-offs between these factors and this could lead us toward a

better understanding of design challenges and goals when scaling photonic spiking neural network

architectures to large networks. The objectives of this thesis are the following:

• The main objective of this thesis is to explore design methods that scale all-optical neural

network architectures to accommodate large neural network models.

• The design methods should consider the physical limitations and characteristics of optical

hardware.

• Provide evaluation and comparisons between the proposed and existing approaches to explore

design space.
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1.3 Thesis Contribution

The main contributions of this thesis are:

• A design flow for partitioning and mapping neural network models to a photonic SNN hard-

ware.

• Distribution of the neurons in a neural network model over identical and interconnected neu-

ron clusters.

• An architecture for all-optical neuron clusters that realize the distribution of the neural net-

work over these clusters.

• Evaluation and comparison of partitioning and mapping methods in terms of accuracy and

estimated energy consumption to explore the design space.

• A proposed photonic synaptic weighting architecture that can perform synaptic weighting

with a reduced number of MRRs.

• Validating the proposed synaptic weighting architecture using optical simulation in OptSim.

• A design flow for transforming and mapping synaptic weight from a source pre-trained neural

network model to the proposed architecture.

• A quantization method for synaptic weights that more closely models how accurately weights

are represented on photonic synapses.

The proposed design flow for weight partitioning and mapping has been accepted by 30th

IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-Soc) 2022 and pre-

sented at the conference in October 2022. The title of the paper is:

• Milad Eslaminia and Sébastien Le Beux, ”Toward Large Scale All-Optical Spiking Neural

Networks”.
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1.4 Thesis Organization

The thesis is organized into six chapters. Chapter 1 introduces the topic and discusses the prob-

lems and contributions of this thesis. Chapter 2 discusses the related works and other background

information related to this thesis. Chapter 3 proposes partitioning and mapping methods for scaling

an existing photonic SNN. Chapter 4 proposes a synaptic weighting architecture that can perform

synaptic weighting with a reduced number of MRRs. Chapter 5 presents simulation results of the

methods proposed in chapters 3 and 4. Finally, chapter 6 outlines the conclusion of the work and

future directions that could be pursued.
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Chapter 2

Related Works

2.1 Spiking Neural Networks

Deep ANN and convolutional neural networks (CNN) have demonstrated great success in ap-

plications such as classification, clustering, pattern recognition, and prediction in various fields.

On certain tasks such as image classification [20], these models are approaching human perfor-

mance and could explain how the human visual system performs similar tasks. Given these similar-

ities, there has been a great interest to create models that more closely resemble biological systems

[21, 22, 23, 24, 25].

While ANNs may rely on transmitting floating-point data between each compute unit in the

network, spiking neural networks (SNN) communicate through sequences of spikes over time, and

they are functionally like the biological neurons in the brain [9]. Conventional ANNs learn through

standard training methods based on the backpropagation of error signals [26]. Based on studies,

learning in the brain is closer to unsupervised learning methods such as Spike-timing-dependent

plasticity (STDP) [27]. SNNs offer solutions to solve certain problems, such as event detection,

classification, and signal processing [9, 28]. SNNs can be applied to all the same problems that

other non-spiking artificial neural networks can but with significant advantages in computational

power and energy efficiency [29, 11, 30].

In this section, fundamental concepts related to the theory of SNNs are introduced. First, we in-

troduce the readers to a representation of information using encoded spike sequences. Then neuron
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structure, its neural functions, and the dynamic models describing a spiking neuron are introduced.

Finally, we introduce the learning process in SNN, and we illustrate how spiking neurons can be

used to perform simple tasks.

2.1.1 Spiking Signals

In SNN, data representation is fundamentally different from other artificial neural networks. In

artificial neural networks, input data are represented as vectors of floating-point numbers and are

processed using matrix multipliers. In contrast, SNN takes sequences of pulses over periods of time

as its input [31]. The spike train effectively forms a binary sequence and the information is encoded

in the frequency of the spikes or the time gaps between them over a specific period [28]. Fig. 2.1

illustrates two main strategies for spike coding through rate coding and temporal coding.

time

time

time

Stimulus

Rate Coding

Temporal Coding

Figure 2.1: Main strategies to code stimulus data into spike trains. With rate coding, the frequency
of the spikes correlates with the occurrences of the action potentials. With temporal Coding, the
information is encoded in the timing of the spikes

Input data for SNNs are encoded in the form of Poisson-distributed spike trains. In this encoding

method, spike firing rates are proportional to the intensity of the input signal [32].

2.1.2 Spiking Neuron Model

Neurons are the elementary processing units in a nervous system and a neural network. A

typical neuron can be divided into three parts called dendrites, soma, and axon. The dendrites are

8



analogous to the inputs of a component that gather signals from other neurons [33]. These inputs

are transmitted to soma which performs the non-linear processing step of the neurons. If the total

inputs that arrived at soma exceed a threshold, an output is generated by the axon and transmitted

to other neurons. The connections between neurons are called synapses. Fig. 2.2 demonstrates this

process.

ΣΣΣ

Pre-synaptic 
Spikes

Weighted Synapses Neuron Nonlinearity
(LIF Model)

Output spike sequence

𝑉𝑡ℎ

𝑉𝑟𝑒𝑠𝑡

Membrane Potential

ω1

ω2

ω3

time

time

time

time

Figure 2.2: The functional structure of a biological neuron and its operation based on Leaky
Integrate-and-Fire model.

These neuronal signals are short electrical pulses that are called action potentials or spikes. A

sequence of these spikes forms a spike train that contains information on the density of spikes and

their timings. These action potentials or spikes are separated over time, and it is not possible for

the neuron to generate another spike in a period following the first spike. This period of inactivity

where it is difficult or impossible for the neuron to generate a spike is called the refractory period.

These electric spikes arrive at the postsynaptic neuron and can cause changes in the potential

difference between the interior and surroundings of the cell. This quantity is called the membrane

potential. When the neuron is not receiving any spikes, it stays at the resting state denoted by resting

potential Vrest. After a spike arrives at the neuron, the potential changes from this resting state, and

after a period it decays back to the resting state. The synapses carrying these spikes that increase

or decrease the membrane potential are called excitatory or inhibitory synapses, respectively. If

the membrane potential exceeds a specific threshold due to incoming received spikes, the neuron
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generates a spike output and then the membrane potential returns to the resting state. This behavior

of membrane potential can be seen in Fig. 2.3.

time

time

time

Input Current

Membrane Potential

Output

Vth

Vrest

time

time

time

Synaptic Current

Membrane Potential

Output

presynaptic spikes

Vth

Vrest

Figure 2.3: Behavior of a LIF neuron with, Left: An input current source and, Right: Presynaptic
spikes and synaptic current. Membrane potential (V (t)) rises from resting potential (Vrest). In ab-
sence of synaptic current, membrane potential decays back to resting potential. If the input current
is strong enough so that membrane potential reaches the threshold potential (Vth), the neuron gen-
erates an output spike and returns to a resting state. In this period, called the refractory period, the
neuron cannot output additional spikes. After the refractory period passes, the neuron can resume
accumulating potential and output additional spikes.

In these experiments, the neuronal dynamics can be described as a summation or integration

process over the action potentials followed by an activation mechanism triggered after the potential

reaches a specific voltage. To describe this behavior, various mathematical models are proposed,

such as Hodgkin-Huxley [34]. This model is a set of nonlinear differential equations that approx-

imate the dynamic systems of a neuron and its membrane potential. The leaky Integrate-and-Fire

(LIF) model [35] is a simplified model of this behavior and is described following equation (1).

τm
dV

dt
= − [V (t)− Vrest ] +RI(t) (1)

With the condition that if V (t) > Vth(t) then V (t) = Vrest, where V (t) is the membrane

potential at time t, Vth(t) is the threshold potential, Vrest is the resting potential, I(t) is the input
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current and τm is the time constant that models the leaky integration, analogous to an RC circuit

in Fig. 2.4. In this model, the neuron is represented as a parallel combination of a resistor and a

capacitor alongside a current source that acts as synaptic input to charge the capacitor and produce

a potential.

time

time

Figure 2.4: Electrical model of the leaky integrate and fire model. In response to a step input current,
the membrane potential responds with a smooth trace

The LIF model is an effective and relatively simple model [36, 34] to describe several biolog-

ically observed phenomena as well as representing an accurate computational model for existing

neural network algorithms [20].

2.1.3 Spike-Timing Dependent Plasticity (STDP)

STDP is a phenomenon experimentally discovered in biological neurons by Bi and Poo [27]

and then adapted for learning in event-based networks. STDP is an unsupervised learning algorithm

based on the time relation between post and presynaptic spikes. Any given synapse in the network

possesses a weight with which it connects the output of presynaptic neurons to postsynaptic ones.

If a spike has occurred in the post-synaptic neuron at a specific time window after a presynaptic

spike, it could be considered positive or excitatory stimulation. The synaptic weight under STDP

learning increases to signify this event. Similarly, the weight decreases if the post-synaptic spike

11



has occurred before a pre-synaptic spike is detected and this denotes an inhibitory stimulation. In

this way, STDP is a specific form of the more general Hebbian learning rule. The extent the weight

is adjusted in these events is a function of the time between post and presynaptic spikes and follows

the STDP curve for learning shown in Fig. 2.5. There are many theoretical models of STDP with

formulations that differ in weight dependence and weight changes [37].

Figure 2.5: STDP curve. The change in synaptic weight (∆ω) as a function of the pre- and post-
spike timing (∆t).

This figure is reproduced from [37]

2.2 Silicon Photonics

Silicon photonics aims to use existing CMOS fabrication processes to design optical hardware

integrated into a chip. Photonic integrated circuits (PIC) being compatible with the CMOS indus-

try, it is a promising route towards cost-effective optical accelerators [38]. Furthermore, the high

refractive index of silicon allows for close spacings and sharp bends in optical interconnect, hence

leading to compact optical circuits. In this section, primary photonic components that are used for

the implementation of neural networks are introduced.

2.2.1 Waveguides

Waveguides can be considered as wires for light in a photonic circuit and enable low-loss light

transmission between optical components. The high refractive index difference between the core

and surrounding medium can confine the optical waves in the waveguide. Modes are the solutions

12



to the field equations in a given waveguide geometry. Modes do not interact with each other, and

each propagates with its own wave number depending on the propagation frequency and geometry

of the medium. In this way, each mode is subject to an effective refractive index when propagating

in a waveguide.

2.2.2 Microring Resonators (MRR)

A typical ring resonator is composed of a looped optical waveguide in a way that resonance

can occur when the optical path is multiple times the carrying wavelengths. In this way, a ring res-

onator is capable of multiple resonance wavelengths. The distance between resonance wavelengths

depends on the length of the resonator: the smaller the ring radius, the larger the distance between

the resonances. The high refractive index of silicon allows for micrometer-scale radius rings. Ring

resonators are one of the most important components in silicon photonics as they are already used

to implement filters, switches, modulators, and wavelength division multiplexing (WDM).

A ring resonator usually consists of a looped waveguide and a straight waveguide transmitting

an optical signal. Common MRR configurations are represented in Fig. 2.6. In the all-pass config-

uration, the input signal is transmitted to the output with very low attenuation when the ring is off

resonance; in case resonance occurs, the input wave is coupled into the ring cavity, hence leading to

strong attenuation of the signal on the passport. The add-drop configuration involves coupling two

parallel waveguides. When operating in resonance, the input is coupled to the drop port otherwise

the input passes to the Through port.

Input Input Through

Drop Add

Pass

λ0 λ0

λ𝑟λ𝑟

Figure 2.6: The primary configuration of ring resonators. Left: All-pass. Right: Add-Drop config-
urations.
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2.2.3 Wavelength Division Multiplexing (WDM)

It is highly inefficient to use a separate physical communication channel for each connection

path in the network. Multiplexing allows the transmission of multiple signals into one channel,

thus increasing the aggregated network bandwidth. The common method of multiplexing in optics

and photonics is wavelength division multiplexing (WDM). WDM multiplexes signals into distinct

carrier wavelengths. At the receiver’s end, by filtering for certain wavelengths using for instance

ring resonators, the originals signals can be recovered. This way all available bandwidth can be

used and by reconfiguring the multiplexing system, a different number of transmission links can be

implemented using the same physical hardware.

2.2.4 Phase-Change Materials (PCM)

Phase-Change Materials (PCM) can change their state between amorphous and crystalline states

by absorbing sufficient energy. The change in phase is accompanied by a change in the refractive

index. This is suitable for controlling the attenuation of crossing optical signals or their routing.

These properties give photonic integrated circuits (PIC) non-volatile reconfiguration capability, thus

allowing PCM-based photonic hardware to be used for different applications.

2.2.5 Lasers

Lasers are light sources for a photonic circuit. Laser light is preferred to thermal light sources

due to its narrow spectral line width, which makes it suitable for precise optical computation and

transmission. This narrow band is achieved with high optical output power, typically in the range

of mW for on-chip interconnects. In comparison, a filtered thermal light source also has a nar-

row spectral width but wastes a significant portion of optical power. Among numerous already

demonstrated integrated lasers, Vertical-cavity surface-emitting laser (VCSEL) is one of the most

promising technology. A VCSEL is a semiconductor-based laser that emits light from its upper

surface. This allows several diodes to be implemented on the same wafer, allowing scaling to large

2-dimensional arrays.
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2.3 Optical Neural Networks

Neurons accumulate incoming pre-synaptic inputs that over time could result in firing spikes

or action potentials. This process can be divided into three neural functions: weighting function,

integration function, and activation function. This section is divided into subsections that each dis-

cuss different neural functions along with existing implementations of these functions with photonic

hardware.

2.3.1 Weighting Function

The fundamental function of a neural network is to learn from the observed sample input data

during the learning process and access this information for future input data. To this end, the learned

information needs to be stored in a memory in a manner that can be updated as well. This function

is achieved using the weights of synapses. In neural networks, updating of these weights enables

the learning process, which aims to achieve better performances through neural plasticity.

In order to implement this functionality, it is necessary to control the signal transmissions in

each synapse and perform excitatory and inhibitory functions. The work in [39, 40] proposes an

implementation of this weighting function using a bank of microring resonators (MRR) to dynam-

ically control the transmission over synapses between neurons, as illustrated in Fig. 2.7. The MRR

weight bank is a controllable spectral filter. The MRRs are parallel-coupled and can independently

control the transmission of a single WDM input. The output corresponds to the weighted sum of

the inputs. By relying on the resonance qualities of the MRR bank, this approach is highly sensitive

to temperature and fabrication variations, which are difficult to control and require calibration.

Figure 2.7: A microring weight bank. Input signals are modulated onto WDM carriers and multi-
plexed. Each input can be weighted by one tunable MRR corresponding to its wavelength.

The figure is reproduced from [40].
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MRR weight control can be achieved through feed-forward [41] or feedback [39] based ap-

proaches. The calibration phase in the feed-forward approach requires a suite of external measure-

ment equipment such as optical spectrum analyzers, oscilloscopes, and pattern generators. Although

the same calibration mechanism could be fully integrated on the chip, this approach is vulnerable to

fluctuations in temperature after calibration as well and they are thus only feasible for small-scale

models. The feedback approach in [39], does not require an external optical probing setup and as

a result, has a simpler calibration and control phase and it is not vulnerable to environmental fluc-

tuations. The feedback capabilities are achieved by embedding an in-ring photo-conductive heater

within the waveguide of each MRR weight.

The work in [42] studies the factors limiting the performance and channel count in the MRR

weight bank by introducing a quantitative parameter called the independent weighting factor. It

establishes a trade-off between channel count and required signal power and quantifies the degree

to which weights can be set independently. The authors developed a parametric transmission model

for MRR weighting banks with generalized matrix transfer theory and simulated their model with

symbolic programming methods in MATLAB to create a parametric simulator for waveguide cir-

cuits. They developed a parametric transmission model of a weighting bank with 8 MRRs and fit

the model to measured experimental data.

Phase-Change Materials such as Ge2Sb2Te5 (GST) can change their state from amorphous to

crystalline by receiving or releasing specific amounts of energy. This change in phase results in

a change in the refractive index of the material. The work in [43] realized a photonic synapse by

integrating islands of PCMs onto waveguides. It is demonstrated that a specific number of optical

pulses can change the state of the integrated PCM material in waveguides to create a photonic

memory of up to eight levels [44]. The schematic of this synapse can be seen according to Fig. 2.8.

An optical circulator connects the output of the synapse to the post-synaptic neuron from ports 2 to

3. Port 1 is used to apply input pulses to change the synaptic weight.

2.3.2 Integration Function

A neuron must be able to integrate the incoming presynaptic spikes over time and forward the

value to the activation function. This summation determines the value of membrane potential over
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Figure 2.8: Schematic of a PCM synapse. Synaptic weight changes by the number of pulses.
This figure is reproduced from [43].

time according to the operating model of the neuron such as the Leaky Integrate and Fire model. It

is important that the integration method is scalable to a large number of incoming synaptic inputs

as it defines the scalability of the model to the whole network. The work in [14] proposes a simple

scheme for parallel photonic neural interconnects called broadcast and weight that can be combined

with WDM to create scalable networks. Broadcast- and-weight weighting is accomplished by using

spectral filter banks on WDM multiplexed channels. The total power of each weighted signal is

detected using photodetectors and used as the input for the excitable laser. (Fig. 2.9). The pho-

todetectors output an electric current that is proportional to the total detected power of the weighted

WDM inputs and represents their sum. This electronic signal can modulate a laser and demonstrate

inhibitory behavior.

The work in [18] proposes an integration unit implemented using a GST embedded on a ring

resonator. This integration unit consists of two ring resonators creating a bipolar neuron capable of

both excitatory and inhibitory behavior and can receive both positive and negative weighted inputs

(2.10). The energy efficiency and speed of this method are dictated by the properties of the GST

material during read and write cycles. Pulses of amplitudes proportional to the positive and negative

weighted sums are fed to respective ring resonators. The two ports integrate positive and negative

weighted sums and the output is considered as the membrane potential. Modulating the resonant

wavelength offers the possibility of scaling to larger networks through wavelength multiplexing.

The summation can be achieved using WDM multiplexers. The work in [45] utilizes this scheme
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Figure 2.9: Schematic of the electro-optical implementation of integration. Power detectors gener-
ate an electrical signal that is proportional to the total power of the inputs from weighted synapses
and corresponds to the sum of the input.

This figure is reproduced from [14].

Figure 2.10: Schematic of the bipolar integration unit using properties of GST embedded on a ring
resonator.

This figure is reproduced from [18].

for building an all-optical spiking neural network. The schematic of the proposed all-optical neuron

is shown in Fig. 2.11. Weighted presynaptic inputs arrive on different wavelengths. An on-chip

multiplexer combines these pulses onto one waveguide that is connected to the soma of the neuron.

This multiplexer is realized using ring resonators in an add-drop configuration. The resonance of

each of these rings must not overlap to prevent a coupled wavelength in the main waveguide to

couple out in other rings. For this purpose, the radii of the rings are designed to be slightly different.

The difference in the radii leads to different resonance states for each of the weighted inputs. The

transmission ratio from the input port to the main waveguide can be tuned by adjusting the gaps

between the input waveguides, the ring, and the main drop waveguide.
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Figure 2.11: Schematic of the integration function implemented using WDM multiplexers in an
all-optical PCM-based network implementation.

This figure is reproduced from [45]

2.3.3 Activation Function

In a spiking neural network, presynaptic spikes accumulate in a post-synaptic neuron and in-

crease the membrane potential of the neuron until it reaches a specific threshold. At this point, the

neuron fires a spike, and the membrane potential is reset. The activation function of the neuron de-

termines when a neuron will fire a spike and it decides the signal propagation time in the network.

The work in [45] utilizes the properties of PCM embedded on a ring resonator as an activation func-

tion. The PCM cell is deposited on top of the waveguide crossing to tune the resonance condition.

This combination simulates the behavior of the rectified linear unit activation function (ReLU) ac-

cording to Fig. 2.12. This all-optical neuron implementation can scale to larger networks by using

wavelength multiplexing.

It has been demonstrated that an Excitable Laser can exhibit behavior like Leaky Integrate and

Fire mode, which is suitable to mimic a biological neuron. An excitable system has one stable state

at which it can indefinitely stay at rest and if excited over a certain threshold, the system emits a

spike and decays gradually over a period of time back to the resting state. The work in [46] has

demonstrated excitable behavior near the threshold by utilizing VCSELs with saturable absorbers.

The system dynamics of a two-section laser consisting of a gain section and a saturable absorber can

be described by Yamada model [47]. These differential equations describe the dynamic behavior of

the system using the gain (G(t)), the absorption (Q(t)), and laser intensity (I(t)). Nahmias et al.

[17] Demonstrated that the dynamics of the system near-threshold can be approximated by equation
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Figure 2.12: Schematic of the activation unit using PCM material embedded on a ring resonator. By
exploiting the properties of the PCM, a nonlinearity for transmission ratio is achieved that resembles
the ReLU function.

This figure is reproduced from [45].

(2).

dG(t)

dt
= −γG(G(t)−A) + θ(t) (2)

Where G(t) represents the gain, A is the gain bias, γG is the gain carrier relaxation rate, and

θ(t) represents the spiking inputs in the form of a series of impulses at different time intervals. If

G(t) > Gthresh, a spike is released and G(t) is set to Grest, the resting state gain. When comparing

this equation with the Leaky Integrate-and-Fire neuron model in equation (1), a close analogy can

be established where the gain behaves similarly to the membrane potential of the neuron. Table 2.1

summarizes the works studied in this section.

Table 2.1: Comparison of Photonic implementations of neural functions and their features. Note:
”O” denotes all-optical and ”O/E” denotes Optoelectric designs.

Neural Function Implementation Optical Components WDM Compatible Design Reference
Weighting Weighting banks (Spectral Filter) MRR Yes O/E [14][42]

PCM Synapse PCM waveguide Yes O
Integration All-Optical bipolar weighting PCM on Ring Resonators O [7]

Photodiodes (Total Power Detection) MRR Yes O/E [14]

WDM Multiplexer
MRR Yes O [45]

Activation Excitable Laser VCSEL with saturable absorbers Yes O/E [17]
PCM embedded on a ring resonator PCM on a ring resonator Yes O [45]
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2.3.4 Scaling Photonic Neural Networks

The work in [45] used WDM techniques to demonstrate a scalable photonic spiking neural

network with self-learning capabilities. The self-learning capabilities follow a simplified STDP

where the timing between incoming and output spike pulses are fixed in this model. The model

increases the synaptic weights of all inputs that contributed to a spike output and decreases the

synaptic weights that did not contribute. This is achieved by using a feedback waveguide from

the output of the neuron and channeling part of the energy back to the synaptic PCM weights to

implement the Hebbian learning rule. Fig. 2.13 shows this proposed scaling implementation.

Figure 2.13: Schematic of a single layer and photonic circuit model of distributor and collector
components.

This figure is reproduced from [45].

Each layer in this architecture is composed of Distributor and Collector components which are

implemented using a photonic circuit shown in Fig. 2.14. The collector is responsible for gathering

all the incoming outputs from the previous layer. This is achieved by multiplexing the incoming

weighted inputs into a single waveguide. This multiplexer is designed using a series of parallel

ring resonators. The distributor is responsible for equally distributing these collected inputs to all

neurons in this layer by demultiplexing. The authors have demonstrated their proposed all-optical

network by fabricating a single-layer network with 4 neurons and 15 connected synapses per neuron.

The design is then applied to the experimental task of detecting 4 different patterns of 3 by 5 pixels

denoting different alphabets. The schematic of this network is shown in Fig. 2.14. The model is
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simulated for larger networks for digit recognition tasks and a network with hidden layers applied

to a simple task of detecting the language in a given text reaching accuracy exceeding 90%.

Figure 2.14: Schematic of the all-optical network.
This figure is reproduced from [45].

The work in [48] implemented STDP for unsupervised pattern learning by using VCSEL ele-

ments along with vertical-cavity semiconductor optical amplifiers (VCSOA). In the encoding part

of the network, the inputs are encoded into spikes with different spike timing generated by the in-

put VCSEL neurons. The proposed network can learn one spike pattern at a time. The learning is

achieved by using an STDP array circuit constructed by VCSOA elements [49]. A three-port optical

circulator is used to inject the optical pulses into the VCSOA. The reflective output of the VCSOAs

is filtered to beams with different wavelengths to create the extent of weight change.

The work in [43] proposes an all-optical STDP learning scheme compatible with PCM synapses.

The presynaptic pulse is split with an optical coupler (OC) so that 50% of the presynaptic signal is

connected to one input (1) of an interferometer via a phase modulator (PM). The other 50% of the

postsynaptic signal is connected to the other input (2) of the interferometer.

The output signal of the interferometer is used to update the synaptic weight. In Fig. 2.15,

the behavior of presynaptic (black) and postsynaptic (blue) signals with no time delay (∆t = 0)

and the net output power of the interferometer as the switching signal (red) is demonstrated. As

the time delay between pre- and post-synaptic pulses increases, the number of output pulses with

power above the threshold increases, and a larger number of pulses are sent to the PCM synapse,

demonstrating the capability to change synaptic weights according to the timing of the spikes.

In this section, various proposed models to implement STDP learning with optical and photonic

elements were discussed. These models can adjust synaptic weights depending on the timing of

pre- and post-synaptic spikes. The proposed models intend to replicate the STDP curve from the

generated spikes by using characteristics of SOAs and other elements. Furthermore, some of the
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Figure 2.15: Schematic and behavior of all-optical STDP using PCM synapse.
This figure is reproduced from [43].

basic test applications of these proposed networks were covered.

2.4 Design and Simulation of Neuromorphic Silicon Photonic Circuits

The design and fabrication of neuromorphic optical accelerators involve components with het-

erogeneous behaviors involving optics and electronics domains. Simulation is needed to validate

the system behavior and to optimize circuits. The models must consider relevant physical aspects

and realities of the circuit to produce useful results. At the same time, physical simulation of the

system through numerical solvers is computationally complex, too slow, and hence does not scale to

a large number of components neural network applications demand. To this end, simplified behav-

ioral models are needed to replicate key characteristics and complex behavior of these components,

while allowing to scale up to larger circuits. Currently, one of the main challenges is the lack of

software enabling the comprehensive design and simulation of photonic neural networks. An ideal

simulation platform should simultaneously capture the complex dynamics of the underlying pho-

tonic components and accommodate the design and exploration of large-scale network architectures.

The work in [50] proposes a design flow for neuromorphic photonics architectures using behavioral

models. It takes the hardware into account from the early stages of the design to training and initial

inference tests. The design steps are illustrated in Fig. 2.16. The top four steps would result in a

neural network graph with trained weights.

23



Figure 2.16: Design flow for neuromorphic systems.
This figure is reproduced from [50].

In this section, first, the behavioral models and designs proposed for modeling photonic com-

ponents are introduced. The design approaches using these models to design and simulate a circuit

are discussed. Finally, the tools available for developing and optimizing spiking neural networks

are discussed.

2.4.1 Behavioral Models for Silicon Photonic Components

Electromagnetic simulation is typically used for the design and validation of photonic compo-

nents such as waveguides, resonators, couples, and others. They rely on numerical solvers such

as Lumerical [51] based on finite element method (FEM), finite difference time domain methods

(FDTD), or beam propagation methods. They can simulate the propagation of electromagnetic

waves in given geometries and materials. Simulating larger or more complicated topologies using

these methods is computationally challenging and extremely slow. While it is possible to physi-

cally simulate photonic components through the methods mentioned earlier, physical simulations

do not scale to design networks involving multiple heterogeneous components, especially when

they involve phase-change materials [52]. The accurate and scalable simulation of neural networks,

which are typically composed of thousands or more photonic components, is thus challenging. As
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such, behavioral models that enable fast simulation of photonic components that are still capable of

expressing accurate operating characteristics are required.

The work in [53] proposes an equivalent circuit model emulating the dynamics of a laser neuron.

The laser neuron rate equations are typically solved using numerical methods for differential equa-

tions such as the Runge-Kutta method and lack any analytical solution. This abstraction alongside

efficient SPICE analysis is used to demonstrate the accurate behavior of the laser neuron.

The work in [52] proposes a behavioral model for the simulation of PCM-based components.

The model allows representing the heating of phase-change cells, crystallization and amorphization

of PCM materials, and light propagation in the integrated devices. The simulations of the writing,

erasing, and reading process from a PCM cell involve simplified heat transfer, phase-change, and

electromagnetic models. The result is a model that can be computed in seconds as opposed to several

hours that would be required using conventional finite-element models with comparable accuracy

in transient responses of photonic components.

The work in [38] studies the design flows of photonic circuits. The layout of the circuit is built

from reusable cells where certain parts of the geometry of the component can be parameterized.

These so-called “PCells” are programmed in scripting languages and can be paired with other soft-

ware for the simulation of photonic circuits. A key advantage of the approach is the availability

of existing models for building elements in commercial photonic design kits. The work in [54],

proposes the use of hardware description language to create a parametric model based on experi-

mentally validated data.

The work in [55] has developed an open-source toolbox for the simulation of photonic com-

ponents and systems in Simulink and includes a library of common building blocks of photonic

circuits. These models are built based on a compact phase shifter model [56] that can be used to

replicate the physical behavior of optical components such as MZ Interferometers and microring

resonators. These models can be readily used in MATLAB for the simulation of silicon photonic

systems.
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2.4.2 Circuit Simulation Approaches

In electronics, circuit simulation typically relies on SPICE modeling of the components based on

Kirchhoff’s law and Modified Nodal Analysis for voltage and current. The simulation of photonic

circuits is fundamentally different since it involves optical waves. Optical waves are defined by an

amplitude and a phase. The waves propagate alongside waveguides and can travel in both directions

due to reflections; therefore, photonic circuits cannot be modeled by effort-flow formalism used in

other physical domains such as electronic circuits and mechanics [22]. This makes it difficult to

simulate circuits involving optical and electronic components such as neuromorphic architectures

inside the same framework. The work in [38] studies the design flow for photonic circuits and

describes four possible approaches to this problem. The work in [54] reviews these four general

approaches in the scope of the simulation of neuromorphic circuits:

(1) “Co-simulation using separate electronic and photonic circuit simulators.”

In this approach, simulators work in lockstep with signals being converted and exchanged

from one simulator to the other. Exchanging signals and data between an electronic and

photonic circuit simulator scales poorly for larger-scale neuromorphic architectures.

(2) “Partitioning and simulation using separate electronic and photonic circuit simulators.”

The circuit is split into electronic and optical partitions to be simulated separately in domain-

specific environments. According to the defined type of information shared by the environ-

ments, the parts are simulated in the right order over the time domain. The outputs and signals

from each partition are used as input to the other in order, hence allowing to replicate the

whole system. Since photonic neuromorphic architectures involve optical-electrical-optical

conversions, separate simulation of electronic and optical components is not suitable for this

purpose. Additionally, systems that include feedback loops between the two partitions or

operate in both directions are not suitable for this approach.

(3) “Simulate photonics and electronics together in a photonic circuit simulator. “

Simulating electronic circuits into a photonic simulator is possible in some environments [38]

but it requires electronic designers to abandon their familiar, reliable, simulation environment.
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Current photonic tools still do not support the simulation of optical and electronic elements for

large-scale circuits required for neural networks and might not include support for necessary

electronic building blocks.

(4) “Simulate photonics and electronics together in an electronic circuit simulator.”

Modeling photonic circuits inside an electronic circuit simulator has been demonstrated in

[53] for the SPICE analysis of a laser neuron. An example of this approach for the simulation

of a spiking neural network is shown in Fig. 2.17. The physical model simulator SIMPEL is

used to simulate the behavior of a laser neuron in a circuit. The resulting physical parameters

are used in Nengo [57] neural framework to predict the performance of the circuit to accom-

plish a task. Photonic quantities can be mapped to electronic quantities using circuit models

in Verilog, thus leading to a working environment for optoelectronic circuit simulation for a

predefined subset of applications and circuits.

2.4.3 Neural Modeling Software and Engineering Frameworks

While the tools and approaches covered so far enable the design and simulation of silicon pho-

tonic circuits, they are not suitable for the design of neural functions for a specific application

Neural Engineering Frameworks propose a methodology to create and simulate optimized large-

scale neural functions that can leverage biologically inspired models for neurons and demonstrate

their cognitive abilities. By using these frameworks, one can create a neural function, consisting of

a population of neurons and their synaptic weights, based on a given application specification.

The Neural Engineering Framework (NEF) proposed by [58] follows three main principles of

“Representation”, “Transformation” and “Dynamics” for the construction of large neural models

and for fast and scalable simulations. In such a framework, a population of neurons represents a

vector of real numbers that change over time (representation). The weights between this population

of neurons are defined by the linear or nonlinear functions to be applied on these vectors through

linear decoding (transformation) and therefore saving significant compute time during the simula-

tion. These vectors then can be considered as a set of state variables to model a dynamic system
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(dynamics). In a sense, this approach takes a high-level description of a neural function and com-

bines it with anatomical constraints to produce a detailed model of a population of neurons trained

to produce the desired output.

These frameworks can potentially be used by photonic researchers for system-level simulation

and training neuromorphic photonics in conjunction with behavioral models and circuit design flow

approaches to assess and optimize the performance of the architecture. As an example, Nengo

[57] is a neural engineering framework with graphical and scripting capabilities that support the

simulation of large-scale spiking neural networks. Nengo takes advantage of TensorFlow framework

and supports Python scripting and enables quick and accessible prototyping to researchers. As

previously discussed, Nengo has been jointly used with SIMPEL for the simulation of photonic

spiking neural networks involving lasers. However, the simulation of networks involving other

types of components such as ring resonators and PCM remains to be investigated.

BINDsNET [59] is another framework created as a Python package to support the simulation of

Spiking Neural Networks by extending existing Pytorch capabilities that is popular and established

among Machine Learning development communities and enables rapid prototyping of spiking neu-

ral networks on machine learning applications and with the help of existing optimized code path

from Pytorch and with the advantage of familiar scripting language. For a comparison of various

neural frameworks that support spiking neural networks refer to [59].

Photonics neuromorphic hardware is sensitive to imperfections in manufacturing processes,

thermal variations, and aging, which can lead to a drift in their parameters after extended periods

of use. For example, WDM multiplexers commonly used in neuromorphic architectures are built

using microring resonators and rely on a careful calibration of resonance frequencies depending on

the size of gaps or thermal constraints. These imperfections in hardware should be considered in

the training algorithm and design stage. These parameters should be exposed to the network trainer

and different neuromorphic processors should be able to perform the same function despite varying

parameters in hardware [54].

The neural networks should be modeled at both behavioral and physical abstraction levels.

Meanwhile, the behavioral layer simulates the flow of information throughout the network, the

information representation and their encoding, and the network learning process.
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Figure 2.17: Simulation approach for a spiking neural network using SIMPEL and Nengo. SIMPEL
can simulate the behavior of the component (in this case an excitable laser neuron) and create vari-
ables to be used for neural network simulation in Nengo to evaluate the performance and accuracy
on a task such as digit recognition.

This figure is reproduced from [54].

The photonic neuromorphic processors should be represented and implemented by users who

do not have any background in photonics. For this purpose, the hardware should be described

through a specification that breaks down the photonic processor into different levels of detail and

hierarchy from individual parts to lower-level photonic components. Programmers should be able

to design their desirable neural function to a certain specification that photonics engineers will be

able to design their components toward as well. This would allow programmers to define the target

neural functions independently from the underlying photonic hardware and the photonic engineer

will have the freedom to design the processor that meets a specification with different approaches

that in the end could serve the same application but with different performance, power efficiency,

and throughput.

The work in [54] proposes the use of hardware description languages (HDL) to describe the

circuits; the objective is twofold. First, HDL allows for scalable simulation of the network by the.

Second, it provides a set of specifications that photonics engineers can target during the hardware

design. Such an approach can be extended to support higher-level programming languages such

as Python or C to describe the behavior of the hardware in an algorithmic way. This higher-level
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coding then can be synthesized into HDL. Then the resulting HDL code could be assembled onto a

photonic neuromorphic processor, hence following a design flow similar to the one used to program

FPGAs.

The physical behavior and response of photonic components such as microring resonators or

excitable lasers heavily rely on environmental factors like temperature or physical design tolerances

that demand careful calibration and control of the components for producing predictable desired

behavior. When scaling up to larger systems with numerous components, the speed and viability

of the simulation become more important. By using behavioral models or other simplified building

blocks that represent these photonic components, faster and more viable computer-assisted designs

are made. However, while the existing approach already demonstrates the feasibility of using the

behavioral model in large-scale simulation, key hardware characteristics such as thermal sensitivity

are to be considered. Table 2.2 compares the capabilities of various simulations tool.

Table 2.2: Comparison of Simulations Tools for Photonic SNNs

Design and Simulation stage Lumerical [51] SPICE Analysis [53] Synopsys [60] SiPh Simulink [55][56] Nengo [57] BindsNET [59] Neurophox[61][62][63]
Behavioral Models for Silicon Photonic components Yes Yes Yes Yes Yes
Silicon Photonic Circuit Simulation Yes Yes Yes
Neural Network Modeling Yes Yes
Optical Neural Networks Yes

2.5 Conclusion

Spiking Neural Networks are considered to be the third generation of neural networks. They are

diverging from artificial neural networks by incorporating time dependence into the architecture. In

SNNs, each neuron and synapse obey dynamical rules analogous to the biological brains. SNNs

promise higher energy efficiency and could be more suited for event-driven applications compared

with ANNs. This leads to fast-growing research and development efforts to design efficient hard-

ware to implement SNNs, which remain to be found. Current implementations of silicon photonic

networks have been demonstrated but with low neuron counts. The need to increase the number of
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neurons requires scalable hardware enable to improve the processing capability of photonics neu-

ral accelerators and to broaden application domains. Current architectures mostly rely on external

electronic control systems, which is one of the main limits for scalability. Indeed, since the number

of programmable parameters increases quadratically with the neurons count, the large-scale inte-

gration of electronic controllers and their co-packaging alongside photonic hardware is the main

challenge.

Although today’s neuromorphic silicon photonic networks cannot reach the neuron density and

stability of current CMOS implementations, they promise high bandwidth and low latency process-

ing beyond the capabilities of digital electronic circuits. This raises the need for suitable applications

allowing to fully take advantage of features neuromorphic silicon photonics circuits can provide. We

found that control systems requiring fast decision-making involving systems with rapidly changing

parameters could potentially be a suitable application.

Neuromorphic silicon photonic architectures are analog processors requiring a direct mapping

of a given application to the hardware. Since optical components are sensitive to temperature, fab-

rication process variation, and aging, their actual behavior can not be fully predicted at design time,

thus leading to different results and performance. This calls for robust hardware and neural func-

tions able to compensate for the variation at run-time. The validation of such hardware required

domain-specific standardized benchmarks such as pattern recognition that remain to be developed.

As an example, pattern recognition based on the character was used in [45] to evaluate a photonic

network composed of 15 neurons. Software for the deployment of machine learning algorithm and

applications to silicon photonic processors are currently lacking. The standard approach involves

the development of applications using generic neural network frameworks, such as PyTorch and

Tensorflow, and the conversion to machine code for differing digital processors through compil-

ers. Considering the diversity of photonic components required to design optical neural networks,

their complex behavior, and their sensitivity to environmental variation, domain-specific neural en-

gineering software is needed to design the hardware by taking into consideration the characteristics

of the target hardware and similarly converting abstracted applications for specific analog photonic

processors.
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Chapter 3

Toward Large Scale All Optical Neural

Networks

3.1 Introduction

Most optical spiking neural networks rely on WDM to transmit signals in the network. WDM

involves accurate calibration of microring resonators (MRR). The resonance wavelength of these

MRRs is easily influenced by environmental factors, which leads to challenges. This imposes a

practical limit on photonic neuromorphic hardware where only a small number of synaptic connec-

tions per neuron can be accommodated.

To map large NNs to neuromorphic hardware, it is necessary to partition the network into smaller

clusters than can be mapped onto hardware neurons. There have been various works proposed for

partitioning and mapping NN models to crossbar-based electronic neuromorphic hardware [64, 65,

66]. These methods largely aim to reduce the number of synapses per neuron in the NN model and

partition the network according to hardware resource constraints, such as synapses per neuron.

In this work, we propose a method to efficiently map pre-trained NN on an all-optical SNN

architecture. The method relies on two algorithms leveraging weight partitioning and unrolling to

reduce synaptic connections in a pre-trained NN model. The efficiency of the method is evaluated

on the all-optical SNN architecture we propose. Results show that our method allows exploring the

trade-off between classification accuracy and power consumption.
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3.2 Design Flow

To efficiently map a NN on the targeted optical architecture, the network is partitioned, where

each partition respects the constraints of the targeted hardware. We propose the design flow illus-

trated in Fig. 3.1. The inputs of the flow are:

• a NN designed and trained using an existing neural engineering framework (NEF) [67][68].

Such NN typically performs a specific cognitive task such as classification. It is represented

by a graph where vertices and links represent neurons and synaptic connectivity respectively.

• A library of hardware components allowing to model of the behavior of the targeted optical

accelerator [69, 70, 71]. Physically accurate modeling of the silicon photonic components

involving PCM is challenging [69] and not suitable for performing large-scale simulation

that is required for the implementation of neural network. The waveguides embedded with

islands of PCM can provide varying but small numbers of transmissions. This feature enables

performing different weighting on the input signals. By quantizing the weights in the neural

network, we can represent the weighting that these synapses can provide. Similarly, other

components of the optical neural network such as the activation unit can be represented by

their behavior and their effects on signals. This helps to simplify the simulation for larger

neural network models. Section 3.5.1 further describes the models that we used in this work.

A key characteristic we use is the number of neurons and synapses per neuron. According to

the all-optical network proposed in [45], our architecture is built upon the number of calibrated

MRRs. Hence, taking into account the neuron count per computing unit allows us to ensure that

Design and train a neural network. 
Test the network on a given task.

Behavioral models for the target
hardware and available resources such
as neurons count. Neuromorphic  Accelerator configuration

Network Partitioner

Predict the accuracy of the new
network.
Compare the performance w.r.t. the
original network.

Generate bipartite
subgraphs for each layer.
Determine if the graphs
can be mapped.
Partition layers that can not
be mapped.
Generate new weights for
the resulting partitions.

Neural Engineering Framework

Hardware Library

Simulation

Figure 3.1: Proposed design flow.
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i) the hardware architecture is realistic and ii) each graph partition can be mapped. To overcome

the rather limited computing capability of each neuron cluster, the design of a realistic accelera-

tor requires flexible interconnected units. To satisfy the connectivity constraints, the partitioning

involves the duplication of neurons and the introduction of additional layers in the NN. Since the

network structure is changed, new synaptic weights are defined from the initially trained weights,

which we achieve without retraining. Indeed, while retraining would lead to better accuracy, it is

also a time-consuming task. Finally, the performance of the resulting partitioned network mapped

on the hardware is estimated using system-level simulation.

3.3 Hardware Architecture

The optical NN we target is composed of neuron clusters, where each cluster contains N neurons

with N synaptic inputs. The cluster is based on the all-optical NN demonstrated in [45]. Compared

to [45], we propose to use a multi-output collector and a multi-input distributor on the interface of

a cluster. Our goal is to better scale by enabling the mapping of NNs on multiple interconnected

neuron clusters. For this purpose, each cluster has three input and three output waveguides, each one

enabling the transmission of multiple signals using WDM. The multi-input distributor is depicted

in Fig. 3.2. By configuring the MRRs in the inputs, we can select the inputs to be distributed to the

neurons in a cluster. The MRRs on the output is calibrated to evenly distribute the signals among

the neurons. The schematic of the multi-output collector is depicted in Fig. 3.3. By configuring the

MRRs in the collector, it is possible to transmit the output of any neuron connected to the collector

to neighboring neuron clusters.

The schematic of a neuron cluster composed of N neurons, a distributor, and a collector is

illustrated in Fig. 3.4. Each of N neurons in the cluster can accommodate N synapses, therefore the

cluster is referred by a N×N cluster. For flexibility purposes, we assume that the signal wavelength

emitted by a neuron can be configured, which can be achieved using tunable lasers and ring tuning.

Finally, since we aim at implementing forward propagation only, we connect the output of each

cluster toward the input of three neighboring clusters, following the pattern illustrated in Fig. 3.5
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Figure 3.2: Schematic of the multi-input distributor.
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Collector...
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Figure 3.3: Schematic of the multi-output collector.

The number of neurons and synapses per neuron, N , is directly related to the number of cali-

brated MRRs. Hence, taking into account the neuron count per neuron cluster allows to ensure that

i) the hardware architecture is realistic and ii) each graph partition can be mapped. To satisfy the

connectivity constraints, the partitioning involves the duplication of neurons and the introduction

of additional layers in the NN. Since the network structure is changed, new synaptic weights are

defined from the initially trained weights, which we achieve without retraining. Indeed, while re-

training would lead to better accuracy, it is also a time-consuming task. Finally, the performance of

the resulting partitioned network mapped on the hardware is estimated using system-level simula-

tion.

In this way, the target hardware can theoretically process N number of neurons in each cluster

where each can accept N synaptic inputs. To this end, it is necessary to partition and distribute the

target neural network in a way that conforms to the specifications of the clusters.
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Figure 3.4: Schematic of a N ×N neuron cluster.

3.4 Energy Consumption Estimation

In this work, energy estimation is used for the purpose of comparison between different models

only and extrapolated based on the number of neurons used in each configuration. The main sources

of energy consumption in this architecture are for switching the activation units in each neuron

and programming the synaptic weights in all neuron clusters. The PCM synaptic weights are pro-

grammed before operation and do not require a continuous energy source, therefore to estimate op-

erating power consumption it is only necessary to estimate the energy required for switching of the

activation units [45]. To this end, the combined energy of the input pulses, subjected to attenuation in

the distributor and PCM synapses, reaching the activation unit must be enough to switch the state of

the PCM. The energy at each PCM-synapse, Esyn can be estimated by Esyn = Ein ·(1−LMRR)·C,

where Ein is the energy of the input pulses to the distributor, LMRR is the percentage of losses in

the coupling MRR and C is the measured coupling. By neglecting the losses in the PCM-synapse

itself, the energy that reaches the PCM-cell on the activation unit after the second MRR can be

estimated by Eact = Esyn · (Linsertion) ·C, where Linsertion is the insertion losses in the add-drop

MRR configuration. The approximate values for the parameters are extracted from the experimen-

tal results in [45]. LMRR can be estimated to be 9.3% to 29.0% depending on the position of then
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Figure 3.5: 2D organization of neuron clusters with size p × q. The data flow according to the
indicated directions.

neuron, C is estimated to be 0.165 for Esyn and 0.8 for Eact. The operation of a network with 4

neurons in [45] is estimated to consume 7.5 nJ per cycle.

3.5 Network Partitioning Algorithm

The main goal of the partitioning method is to efficiently distribute the neurons and their

synapses onto the clusters by considering hardware constraints. To achieve this, we have imple-

mented the following key features:

• Every layer is partitioned in a way that each partition fits on a single cluster. These clusters are

then connected through the introduction of additional layers to recreate the original function

of the layer with similar input and output sizes.

• The partitions are allocated to clusters by considering inter-partition dependencies. Careful
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wavelength allocation is achieved to minimize the number of clusters required to propagate

dependencies. The multi-output collectors and multi-input distributors have been configured

accordingly.

3.5.1 Problem Formulation

We define the problem by representing each layer of the network as a bipartite graph G(U, V,E)

where U and V denote each of the two parts of the graph and represent the input and outputs of the

layer and E denotes the edges (links) in the graph corresponding to the synaptic weights between

the two parts. Therefore, the parameters of the model are as follows:

• Fin: A matrix of pre-trained weights of a Fully Connected (FC) model used as input to the

algorithm.

• Fo: A matrix of pre-trained weights that is mappable to a neuron cluster, representing the

output of the algorithm.

• p, q: The number of neuron clusters in each axis resulting in a total of p× q clusters.

• u = |U(G)|: number of input neurons in layer G.

• v = |V (G)|: number of output neurons in the layer G.

• N : number of neurons per cluster. In this work, we assume N also equals the number of

wavelengths and hence to the number of possible fan-in synaptic connections per neuron.

• w: The number of possible different weight values for quantization. It corresponds to the

states of a PCM-cell synapse [72] and the available levels of signal transmission ratio on

each synapse. These ratios are controlled by configuring the states of the PCM-cells which in

return create varying levels of attenuation and therefore different weights that can physically

be represented on the hardware PCM-synapse. For example, the PCM synapse demonstrated

in [72] can provide 10 levels of signal transmission ratio.

• Tp×q: Scaling factor for synaptic weights in a cluster, which enables calibration of the sensi-

tivity of the PCM-cell in the activation units [45]. In terms of hardware implementation, this
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scaling can be obtained by either i) adapting the laser power of the source neuron or ii) tuning

ring resonators in the destination collector to extract the required signal power. We assume

all neurons in a given cluster have the same scaling factor. This scaling factor along with w

allows quantizing the weights from the source network to Ti,j × w unique levels.

Input: Fin input FC network, N, p, q, w
Output: Fo mapped configuration containing the information for every synaptic weight.

Fo← Initialize(p, q,N)
for every layer G in Fin do

u← |U(G)|

v ← |V (G)|
if v > N or u > N then

▷ Check if synaptic connections to a neuron exceed the number of neurons per cluster and find the number of
partitions.

Partitions← ⌈u/N × ⌈v/N⌉

WPartitions×N×N

▷ Create an array to store the weights of each group.

W ← SBA(G, Partitions,N)
▷ Partition the weights using SBA.

W,TPartitions← Quantize(W,w)
▷ Quantize the weights and determine a scaling factor for each partition.

Gpartitioned ← Initialize(W,TPartitions)
▷ Create a graph that represents the partitioned state of the layer. This determines the state of connections between
neuron clusters.

Fo ←Map(Gpartitioned,W, TPartitions)
▷ Write W and T to proper positions based on Gpartitioned.

else

W,T ← Quantize(G)

Fo ←Map(G,W, T )

Predict accuracy performance with Fo

Calculate the number of allocated neurons and clusters in Fo

Figure 3.6: Network partitioning algorithm.

By considering p× q clusters with N neurons per cluster, there is a total of p× q×N2 synaptic

weights to configure. These weights are represented by a matrix Fo where each entry corresponds to

a PCM synapse in the architecture. Unused synaptic connections are assigned to 0 and are discarded

during simulation. The algorithm to generate Fo is illustrated in Fig. 3.6. The input to the algorithm

is a pre-trained FC model where each layer G is individually tested to be mapped to the hardware.

If u > N or v > N (i.e. if the number of synapses exceeds the number of cluster inputs or

outputs), then partitioning is required. The partitioning relies on Sorting Based Algorithm (SBA)

presented in [64] and [65] and summarized as follows. The input and outputs neurons are divided
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into ⌈u/N⌉ and ⌈v/N⌉ groups with size N respectively for a total of ⌈u/N⌉ × ⌈v/N⌉ partitions.

Since partitioning introduces additional layers and neurons that impact the accuracy, partitions are

defined by sorting synaptic weights according to their magnitudes. This allows to use of the same

quantization and scaling factor (Ti,j) for a given cluster, thus limiting the accuracy reduction. The

resulting matrix Fo corresponds to the architecture configuration, for which accuracy is evaluated

by simulation.

3.5.2 Mapping Example

Fig. 3.7 and Fig. 3.8 provide an example, demonstrating the process of converting a given layer

in a NN through unrolling and weight partitioning respectively. The neural functions represent the

connectivity in a layer between the inputs xi and output neurons yj with synaptic weights wij . In this

example, 7 inputs are connected to 3 neurons and the target hardware can only accommodate N = 3

synapses per neuron (3 × 3 neuron clusters). y1 does not exceed 3 synapses and can be directly

mapped to a cluster without modification in each method while y2 and y3 require 7 and 4 synapses

respectively. The unrolling process decomposes y2 and y3 to a series of neural computing units (fi)

each with 3 synapses. All of the connectivity from the inputs are preserved which could maintain

accuracy performance and model quality. The weight partitioning process, groups the inputs based

on the magnitude of wij (gi) so that the strongest weights are mapped to shared clusters while the

smallest weights are pruned and are not represented on the hardware. In this example, x4 · w43,

x6 ·w63 and x7 ·w72 are pruned which could lead to degraded model quality. The unrolling scheme

requires 6 neurons in total located across 6 separate clusters and requires injection of inputs in

subsequent layers while the weight partitioning requires 5 active neurons across 3 neuron clusters.

This leads to reduced energy consumption and size of the circuit at the expense of reduced accuracy

performance and model quality.
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Figure 3.7: Illustration of SNN partitioning with unrolling
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Figure 3.8: Illustration of SNN partitioning with weight partitioning on target hardware.

42



3.6 Conclusion

This chapter explores the mapping optimization of pre-trained neural networks on neuromorphic

photonic hardware accelerators. For this purpose, we developed a method to efficiently partition and

distribute NN models onto instances of neuron clusters. We also proposed an architecture of neuron

clusters where they communicate with a configurable interconnect. The mapping method together

with the neuron cluster architecture realizes a larger neural network model by using instances of

existing photonic SNN hardware.
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Chapter 4

Synaptic Weighting with Photonic

Interconnects

4.1 Introduction

Microring resonators are the fundamental building blocks of the photonic circuit. The very

large architectures required for implementing neural networks would require an increasingly larger

number of MRRs and with that, the need for precise calibration of potentially several thousands

of MRRs rises. This gives importance to designs that aim to reduce the number of MRRs while

attempting to maintain the core functionality of the neural network architecture. The architecture

relies on a set of N MRRs to de-multiplex the WDM input and then subjects each individual wave-

length to weighting by using PCM cells. These weighted inputs are combined by using N additional

MRRs into a single waveguide that leads to the activation unit. This approach would require 2×N

MRRs to weigh and connect N inputs to a single neuron. By eliminating the first set of N MRRs

and combining PCM-cells with the waveguide we could reduce the number of MRRs to N . With

this goal in mind, the architecture proposed in [45] was modified, according to Fig. 4.1, to halve the

number of MRRs.

In this approach, the inputs are subjected to attenuation by all the PCM cells on their path. It is

clear then the state of the PCM-cells (yi) and the resulting attenuation in this design differs from the

states in the original design (xi). In order to properly weigh the inputs then it is necessary to find the
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equivalent states for these PCM cells. The objective of this chapter is to propose an architecture for

neural networks based on this idea and propose an interconnect and a method to find the equivalent

values for the PCM cells.
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Figure 4.1: Comparison between synaptic weighting proposed by Feldmann et al and the proposed
method. The number of MRRs is reduced to half.

4.2 Architecture

Fig. 4.2 illustrates the proposed interconnect for synaptic weighting in a layer with N inputs

and N output neurons. The output of the neurons from the previous layer, similar to the work in

[45], are combined into a waveguide by the collector and directed to the layer as a WDM input with

wavelengths λ1 to λn. The MRRs on the path are calibrated to distribute the input power at each

wavelength equally between each of the n output neurons (fi). The input signals are coupled into the

waveguides leading toward each of the fi’s and are subjected to different levels of attenuation. This

total effective attenuation depends on the position of the MRR with the corresponding wavelength.

In this example, the input λ1 is subjected to attenuation by only y11 PCM-cell when propagating

toward f1 but when it is propagating toward fn, it is facing the effective attenuation (xnn) caused by

y1n, y2n, · · · and ynn. In this way, by assigning wavelengths to MRRs in higher or lower positions
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with respect to each of fi’s, we can create stronger or weaker synaptic weighting. The level of

attenuation caused by each of PCM-cells (yij) can also be adjusted to further increase the accuracy

of the weights.

W
D

M
 In

pu
t

Figure 4.2: Proposed architecture.

The design in [45] with N neurons each with M synapses required 2 × M × N MRRs to

realize all synaptic interconnects. In contrast, in this design the number of MRRs are reduced to

M ×N . Fig. 4.3 illustrates how this interconnect can be repeated to create an entire neural network

encompassing many hidden layers.
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Figure 4.3: Architecture for large neural network using the proposed synaptic weighting architec-
ture.

4.3 Wavelength assignment and PCM adjustments

Finding the optimal position for each of the wavelengths and calibration of PCM-cells based on

the weights of the original neural network is the main goal of this section and it can be achieved

by following a similar design flow described in Section 3.2. In this method, yij represents the

attenuation in dB caused by i− th PCM-cell leading to fj . The effective attenuation between input

i leading to fj , xij , equals to the sum of all attenuation in the path or:

xij = yij + yi−1j + ...+ y1j (dB)

∀i, j ∈ 1, · · · , n

In this way, the inputs placed farther from the neurons will be subjected to higher attenuation

which corresponds to weaker synaptic weights. Conversely. inputs placed closer to each neuron will

represent stronger connectivity. The mapping method has to select and assign inputs accordingly

to create the closest representation of the original weights in a NN model. The proposed method
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is illustrated in Fig. 4.4. The input to this method is a Weight matrix (W ). W is a n × n matrix

containing the pre-trained weights of the input NN model where ωij is the i − th input to j − th

neuron in a hidden layer.

Each wavelength represents a single input to the layer thus the same wavelength can be used

only once when coupling to a waveguide connected to the same neuron. The placement of the

MRR with a matching wavelength signifies the strength of the weight corresponding to that input.

Sorting the synaptic weights allows for determining the positions of the wavelengths. The same

wavelength must be assigned to all MRRs that correspond to an input. The sorted weight matrix

SW is a n×n matrix and it is formed by sorting each column of the matrix W in descending order.

The wavelength matrix Λ is a n× n matrix where λij represents the wavelength of the i− th MRR

coupling toward neuron fj . In this way, the wavelength matrix will maintain the information that

what input each entry in matrix SW corresponds to.

Weight Matrix
W

Sorting each
column of W

Assign wavelengths
to each column.

Start

Wavelength Matrix

Sorted Weight
Matrix SW

Effective
Attenuation

Matrix X

PCM-cell
Matrix Y

Assign wavelengths
and program PCM-

cells

End

Quantization of

Figure 4.4: The flowchart for the proposed method for wavelength assignment and programming of
PCM-cells.

The original weights from the input NN model are assumed to be normalized floating-point val-

ues. In the next steps, the weights must be transformed to values that the PCM synaptic weights can

physically represent. To this end, we need to review the capabilities of the PCM synapse demon-

strated by [72] and illustrated in Fig. 4.5-A. The experiment on a PCM synaptic weighting sample

demonstrated 11 levels of transmission ratios corresponding to 11 levels of weighting. The transmis-

sion change depends on the number of pulses with the same energy used to program the PCM-cells.

This dependence is illustrated by Fig. 4.5-B. The model

∆T = ∆T0 +A× exp (B ×Np)

can be fitted to this graph to model the relation between transmission ratio (∆T ) and the number
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of pulses Np required for programming and A and B are parameters of the model. In this way,

we could estimate how to program each PCM-cell to the desired transmission ratio by finding the

number of required pulses. By assuming that original weights correspond to target transmission

ratios for each input, we can calculate the attenuation required for each input and by calculating

the differences of each subsequent weight, we can determine the desired attenuation in each of the

PCM-cells in this architecture and program them accordingly. The effective attenuation matrix X is

a n× n matrix where xij is the total attenuation seen from before PCM-cell yij in dB as illustrated

in Fig. 4.2. This matrix is formed from matrix SW via X = 10× log(1− SW ). We can now form

the PCM-cell matrix Y where yij is the target attenuation for i− th PCM-cell toward neuron fj and

it is given by:

yij = xij − xi−1j

Finally to program the PCM-cell, we need to determine the number of pulses required for achieving

the closest possible attenuation in each PCM-cell. The number of pulses Np needs to be an integer

value between 0 and 10000 according to the work in [72]. This step results in the quantization of

yij according to the fitted model:

yij = C1 + C2 ×Np

Where C1 and C2 are constant parameters of the model. The experimental values for parameters A

and B are presented in [72] and can be used to derive C1 and C2.
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Figure 4.5: (A) Optical transmission change of sample 2 shows 11 weights with pre-determined
numbers of 20 ns optical pulse (216 pJ) with upward and downward sweeps. The corresponding
number of pulses for each level is illustrated in the figure. (B) The dependence of the transmission
change on the pulse number.
This figure is reproduced from [72]
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4.4 Example

In this section, we use an example to help better illustrate the wavelength assignment and PCM

adjustments method. In this example, the weight matrix W is a 4× 4 matrix that represents a fully

connected layer with 4 neurons according to Fig. 4.6. Each column of this matrix is then sorted in

descending order to form matrix SW . Here, we can form a wavelength matrix Λ by assigning the

same wavelength to entries that correspond to the same input. These are entries that are in the same

row in the original weight matrix W . Effective attenuation matrix X is then formed from matrix

SW via xij = 10× log(1−swij). In the next step, the difference between entries in each column is

calculated to form PCM-matrix Y via yij = xij − xi−1j . Finally, we quantize the entries of matrix

Y following the described method to program PCM-cells. With this information, we can configure

the interconnect to represent this layer.

𝑌 =

0 0 3.01 0
3.01 3.01 0 0
1.8 1.8 1.8 4.81
1.41 𝑁𝑎𝑁 1.41 1.41

𝑋 =

0 0 3.01 0
3.01 3.01 3.01 0
4.81 4.81 4.81 4.81
6.02 𝑁𝑎𝑁 6.02 6.02

𝑆𝑊 =

1 1 0.5 1
0.5 0.5 0.5 1
0.33 0.33 0.33 0.33
0.25 0 0.25 0.25

Λ =

𝜆 𝜆 𝜆 𝜆

𝜆 𝜆 𝜆 𝜆

𝜆 𝜆 𝜆 𝜆

𝜆 𝑂𝐹𝐹 𝜆 𝜆

𝑊 =

1 0.33 0.5 0.33
0.25 0 0.5 0.25
0.33 1 0.25 1
0.5 0.5 0.33 1
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Figure 4.6: An example illustrating the process of determining values of yij and assigning wave-
lengths.
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4.5 Conclusion

Large architectures required for implementing NN would require an increasingly larger number

of MRRs. In this chapter, a synaptic weighting design was introduced that aims to reduce the number

of MRRs. Compared with the work in [45], this architecture reduces the number of required MRRs

by half. The weights of a NN model are not directly mappable to these synapses. The attenuation

on each PCM-cell needs to be derived from the original weights of the NN model. To this end, a

flow for assigning wavelengths to the inputs and finding the desired attenuation for each waveguide

with PCM-cell was introduced.
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Chapter 5

Results and Discussion

In this chapter, the experiments and results based on the proposed design methods in chapters

3 and 4 are presented. In section 5.1, the weight partitioning method introduced in Chapter 3 is

applied to a pattern recognition task. In section 5.2, we study the impact of weight partitioning

and unrolling on the accuracy of the model and hardware utilization using a fully connected model

for image classification. In section 5.3, we validate the synaptic weighting hardware proposed

in chapter 4 using simulation. Finally, in section 5.4, we compared this new synaptic weighting

hardware with the baseline design.

5.1 Pattern Recognition with Weight Partitioning

We consider a fully connected layer with 12 inputs and 4 outputs used to memorize four patterns,

as illustrated in Fig. 5.1. Each input pattern is composed of 4 × 3 black and white pixels. To

illustrate the method, we consider from 2 to 12 neurons per cluster in the architecture. Ten levels

of PCM-cell weighting were used for all scenarios. Table 5.1 reports, for each case, the mapping

results we obtain in terms of Active Neuron count, Neuron Cluster count, number of partitions,

and number of Recalled Patterns. The Active Neuron count corresponds to the number of active

input probes required for generating the spiking output of neurons. Cluster count is an indicator of

energy efficiency since only used clusters require laser emission and ring calibration. The number

of partitions is an indicator for both accuracy and computing latency since the more partitions, the
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more neurons and PCM synapses to be crossed. Finally, the number of patterns successfully recalled

allows for finding the minimum number of neurons per cluster required to map an application.
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Figure 5.1: Demonstration of pattern recognition example. 12-4 FC layer is trained to memorize
four different patterns. This layer is partitioned with M = 4 to be mapped to target hardware with 4
neurons per cluster and 4 synapses per neuron. The partitions are mapped to the neuron clusters with
matching colors. Each of the indicated neuron clusters is configured to enable interconnectivity. The
dotted lines indicate unused connections. The circuit-level view of the indicated output cluster is
demonstrated. The inputs are routed by configuring the MRRs in the collector and distributor.
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Table 5.1: Mapping Result for Pattern Recognition Example

M Neurons Clusters Partitions Recalled
2 44 32 12 1
3 40 20 8 2
4 24 8 3 3
6 24 5 2 4
8 24 5 2 4
10 24 5 2 4
12 16 2 1 4

For M = 12, the source neural network can be directly mapped on a single cluster. The four

patterns can be recalled since all synaptic connections are implemented. Reducing M implies re-

moving some synaptic connections but, in some cases, this can be achieved without impacting the

network performance. Indeed, since inputs pixels are not of equal significance (e.g. pixels 2, 5, 8,

and 11 can be used to reliably distinguish between the four patterns), the significance of the presence

(or absence) of key pixels correlates to the magnitude of the synaptic weight to the output neurons.

This allows recalling all patterns for 6, 8, and 10 neurons per cluster. For M = 3, the number of

output neurons exceeds the number of neurons per cluster, which calls for a significant increase in

partitions (8) and neuron clusters (20). In addition to expected energy and latency overhead, one of

the patterns can not be recalled. For M = 2, each neuron only receives 2 fan-in connections which

result in only one pattern to be recalled.

This study demonstrates the ability of our method to i) efficiently map neurons on clusters and

ii) explore the design space. It allows for maximizing energy efficiency by reducing neuron count

overhead and MRR calibration requirements while reaching the targeted accuracy.
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5.2 Image Classification with Weight Partitioning

5.2.1 Evaluation Method

We evaluated our method using Keras framework[68]. We used KerasSpiking to convert the

model to a spiking model. We approximated the behavior of the neurons using rectified linear unit

(ReLU) activation function. ReLU function closely resembles the behavior of the activation unit

demonstrated in [45]. We consider a fully connected multi-layer perceptron with 784 − 100 − 10

neurons for digit recognition on MNIST [73] data set with 60, 000 training samples and 10, 000

testing samples. The baseline accuracy for this network was 88.53%. The goal of the evaluation

is to estimate the required size of the cluster N for weight partitioning while avoiding great losses

in accuracy performance. This allows exploring the design space, here the number of neurons per

cluster, in order to find the best mapping and possibly identify the limit of the hardware.

5.2.2 Discussions

We evaluated the accuracy loss of the network and neuron count overhead against the baseline

over a range of a number of neurons per cluster (N ). The results are presented in Fig. 5.2. The

accuracy of the baseline is obtained for a number of neurons per cluster equal to the number of

inputs in the data set (N = 784). This also corresponds to the number of wavelengths in the optical

neuromorphic accelerator, which is not realistic since dense WDM can typically accommodate up

to 80 wavelengths. Decreasing the number of wavelengths in the accelerator is thus required, which

leads to partitioning and hence neuron count overhead. It is worth noting that the partitioning does

not immediately affect the accuracy performance. This is possible since the number of synaptic

connections from the neurons in the input layer to the neurons in the hidden layer does not exceed

N in these instances. From N = 98, the hidden layer with 100 neurons can no longer be mapped

onto a single cluster, which induces additional partitions. From 56 neurons per cluster, the neuron

count overhead would reach 145% for an accuracy loss of 47% for the weight partitioning approach.

As expected, energy consumption is correlated to the number of active neurons. The energy

consumption is estimated by using the experimental values provided by [45] and extrapolated to the

number of active neurons in considered models. Unrolling maintains every connectivity found in
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Figure 5.2: Comparison of Weight Partitioning and Unrolling methods for image classification on
MNIST.

the original model. To map the target hardware requires separate instances of the inputs and output

neurons to be presented in the hardware since it is not trivial to transmit the inputs and outputs to

and from the neurons freely to any other neuron. This means that each of the 100 neurons in the

hidden layer is required to be unrolled and mapped individually. This results in significant neuron

count overhead (237% for N = 56).

In contrast, the weight partitioning method aims to create compact models but that can lead

to significant losses in accuracy performance. Hence, while unrolling only suffers a 7.3% loss in

accuracy, it reaches 47.3% for weight partitioning. However, for realistic implementations of WDM

multiplexers of N = 56, the continuous energy consumption is estimated to be 1677 nJ per cycle,

compared with 3973 nJ per cycle for unrolling, which corresponds to a significant 58% reduction in

energy consumption.

This presents the ability of the proposed flow to investigate different mapping strategies with the

aim of exploring accuracy and energy trade-off. We showed that the proposed method allows for

exploring key design trade-offs involving accuracy and energy consumption. In our future work, we

plan to evaluate the latency overhead induced by additional network layers from unrolling, which

will call for transient simulations. We also plan to investigate the power overhead induced by the
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calibration of MRRs and the programming of PCM-based synapses. Considering the significantly

different results we obtain with unrolling and partitioning, two main research directions will be

explored. First, at the algorithmic level, we plan to combine both partitionings and unrolling in order

to satisfy accuracy constraints while minimizing power consumption. Second, at the architecture

level, we will explore the use of multistage network topologies, which are regular and could ideally

map optical SNN.
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5.3 Simulation and Validation of Synaptic Weighting Architecture

The architecture proposed in chapter 4 was simulated inside Synopsys OptSim with four inputs

according to Fig. 5.3. OptSim is a software tool for the design and simulation of optical systems at

the signal propagation level. The goal is to validate the design and its capability to perform synaptic

weighting. This schematic implements the synaptic weighting with four laser inputs. Each laser is

modulated with a pseudo-random binary sequence (PRBS). These four inputs are then under WDM

multiplexing to replicate the WDM input to the synapses. For MRRs are used to de-multiplex the

WDM input and extract the individual signals from the WDM input. To this end, the wavelength

of each laser source needs to be adjusted to match the wavelength where each corresponding MRR

has the maximum transmission.

Figure 5.3: Schematic of the circuit used for design validation with OptSim.

Table 5.2: Parameters for OptSim Schematic.

Microring# Length (µm) Laser Source λ(nm)

MRR1 21 Laser1 1575
MRR2 24 Laser2 1565
MRR3 27 Laser3 1557
MRR4 30 Laser4 1551

The wavelength spectrum of the four MRRs in the schematic is shown in Fig. 5.4. The MRRs

are designed to reduce overlapping spectrum. This allows the maximization of the coupling of the

input signals to the desired target MRR and minimizes the coupling of the adjacent signals.
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The wavelength of the four laser sources is adjusted to correspond with the maximum trans-

mission through each of the four MRRs. The parameters of these components are presented in

Table 5.2. Four waveguides (PCM1-4) are placed on the signal path between the MRRs. These

waveguides represent the attenuation caused by PCM-cells to produce the synaptic weighting on

the input signals.

The schematic was tested with three sets of target weights. The weights are values in [0, 1] and

can be considered as transmission ratios for each of the four inputs to the schematic. These weights

are converted to losses in dB to better illustrate their impact on the inputs. For example, the weight

of 1 implies that the corresponding input should reach the output without any losses. In contrast,

the weight of 0.5, suggests 3dB of attenuation is desired.

First, we test equal weighting according to Fig. 5.5. To test this scenario, we assume four equal

weights of 0.5. This is a scenario where all four inputs should be subjected to the same levels of

attenuation and therefore resulting in identical signal power at each wavelength in the output. This

means that we desire to achieve a transmission ratio of 0.5 or 3dB of attenuation on each individual

input signal. By setting the insertion loss of PCM1 to 3dB, we achieve this goal on input 1. Since

inputs 2, 3, and 4 will also be subjected to attenuation by PCM1, we configure PCM2-to-4 to a state

with minimal losses. The values for the attenuation caused by PCM synapses are extrapolated based
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on the work in [72] that was presented in chapter 4. The attenuation in waveguides PCM1 to PCM4

is adjusted according to the values in the Att. column to implement the target weights. In this way,

the accumulated losses for each input should be equal to the corresponding target weight. We can

measure the output power spectrum at the output port on the schematic in Fig. 5.5. The observed

transmission is then compared with the target weights to calculate errors. We can observe that as we

move down to the subsequent inputs, the weighting error increases. The input signal has to travel

through additional PCM synapses and MRRs before reaching output.
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Input# λ(nm) Weights Target Att.(dB) PCM# Att. (dB) Trans. ± Error (∆e)

1 1575 0.5 3.01 PCM1 2.91 0.50 0.00
2 1565 0.5 3.01 PCM2 0.30 0.49 0.01
3 1557 0.5 3.01 PCM3 0.30 0.44 0.06
4 1551 0.5 3.01 PCM4 0.30 0.40 0.10

Figure 5.5: Test with identical weights for all inputs.

Next we assume that w1 = w2 = 0.5 and w3 = w4 = 0.33, according to Fig. 5.6. The goal is

to further observe the impact of this design on inputs placed farther from the output neuron. These

inputs are subjected to higher attenuation. We can determine that inputs 1 and 2 are to be subjected

to 3dB losses while inputs 3 and 4 are to be subjected to 4.81 dB. Similar to the previous test, we can

satisfy this condition for inputs 1 and 2 by configuring PCM1 to 3dB of attenuation while adjusting

PCM2 for maximum transmission. Since input 3 will be subjected to 3dB of attenuation by PCM1,

we need to satisfy the remaining 1.81dB by configuring PCM3 to this level of attenuation. In the

end, since input 4 will be subjected to similar losses as input 3, we only have to configure PCM4 to

maximum transmission.

The output power spectrum is illustrated in Fig. 5.6. As expected, we can observe that the

weighting error increases the farther we move toward inputs farther from the output but overall the
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1 1575 0.5 3.01 PCM1 2.91 0.50 0.00
2 1565 0.5 3.01 PCM2 0.30 0.49 0.01
3 1557 0.33 4.81 PCM3 1.88 0.30 0.03
4 1551 0.33 4.81 PCM4 0.30 0.28 0.05

Figure 5.6: Test with w1 = w2 = 0.5 and w3 = w4 = 0.33

desired weighting and relative ratios between the four inputs are achieved.

Finally, we test the scenario where each weight is unique. We assume input 1 is weighted

by 1 where it is intended to reach the output with the maximum transmission. Inputs 2, 3, and 4

are weighted by 0.75, 0.5, and 0.33 respectively. The weights are sorted in descending order and

assigned to inputs in this order.
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Input# λ(nm) Weights Target Att.(dB) PCM# Att. (dB) Trans. ± Error (∆e)

1 1575 1 0 PCM1 0.30 0.92 0.08
2 1565 0.75 1.25 PCM2 1.30 0.72 0.03
3 1557 0.5 3.01 PCM3 1.89 0.44 0.06
4 1551 0.33 4.81 PCM4 1.89 0.17 0.18

Figure 5.7: Test with unique weights for each input.

In this way, the weakest weight, or the highest attenuation, will be assigned to lower inputs.

We configure PCM1 for maximum transmission to satisfy the weighting for input 1. PCM2 is
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then configured to provide approximately 1.25dB of attenuation to satisfy the weighting for input

2. To satisfy 3dB of attenuation for input 3, we configure PCM3 to 1.75 dB. In this way, together

with PCM2, they provide 3dB of attenuation to input 3. Finally, by configuring PCM4 to 1.81dB

attenuation, we satisfy 4.81dB attenuation for input 4. The output power spectrum is illustrated in

Fig. 5.7. We can observe that the corresponding transmission for each wavelength and as a result

the desired weighting was achieved.

This simulation demonstrates the ability of this design to perform synaptic weighting on the

inputs while utilizing half as many MRRs for this function. This saving comes at the expense

of increased weighting errors which calls for a comparison between the performance of the two

approaches. In the following section, we attempt to compare both architectures on larger models to

study the impact of the weighting error on model accuracy.

5.4 Comparison of Synaptic Weighting Architecture with Baseline

In the previous section, we demonstrated the ability of the proposed architecture to perform

the weighting functions with simulation. We observed an error in the weights after mapping to

the hardware which increases as we look toward weights that are placed farther from the output.

This necessity a comparison with the baseline architecture to identify the potential losses in the

accuracy of the neural network when processing a large model such as the one we used for the

image classification task in section 5.2.

The model used for this comparison is similar to the one used in section 5.2. We evaluated our

method using Keras framework[68]. We used KerasSpiking to convert the model to a spiking model.

We approximated the behavior of the neurons using rectified linear unit (ReLU) activation function.

ReLU function closely resembles the behavior of the activation unit demonstrated in [45]. We

consider a fully connected multi-layer perceptron with 784−100−10 neurons for digit recognition

on MNIST [73] data set with 60, 000 training samples and 10, 000 testing samples. The samples

were pre-processed to a binary format to reduce the sensitivity of the network to the precision of

weights when mapping the model to target hardware with limited weight precision.
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Figure 5.8: Comparison of proposed architecture and baseline with different values of Q.

The goal of the comparison is to estimate the losses in accuracy in the proposed method com-

pared with the baseline photonic synapse architecture in [72]. We introduced a parameter Q. Q

is the number of different weightings that each PCM synapse on the waveguide can realize. For

example, a PCM synapse with Q = 8 can be configured to provide eight unique weights. The quan-

tization process follows the method introduced in section 4.3 and the resulting weights are sampled

based on the number for parameter Q. We apply this quantization to both synaptic architecture and

compared the accuracy of the resulting model against parameter Q.

We evaluated the accuracy of the network for both photonic synaptic architectures over a range

of parameters Q. The results of the comparison are presented in Fig. 5.8.

For large values of Q (Q = 65000), the accuracy between the two architectures is comparable.

A large number of samples allow for representing the weights with enough precision that it will not

lead to notable losses in accuracy.

As we reduce the parameter Q, we can observe a gradual loss in accuracy but the two architec-

tures remain comparable. For Q = 128, the proposed architecture results in 19% lower accuracy

compared with the baseline. For smaller values of Q (Q < 64), the two architectures converge to

comparable accuracy. Overall, the two architectures can perform synaptic weighting on this task

with comparable accuracy despite the proposed architecture requiring half as many MRRs.
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5.5 Conclusion

In this chapter, we provided various experiments and tests to evaluate the methods presented in

chapters 3 and 4. We began by providing a pattern recognition experiment to illustrate the weight

partitioning method and its impact on the performance of the model. To evaluate the impact of

the unrolling and weight partitioning methods on larger models, we used a feed-forward model

for image classification on the MNIST dataset and compared the resulting accuracy and hardware

overhead to arrive at a trade-off between model accuracy and energy consumption on the hardware.

We simulated the proposed synaptic weighting architecture in OptSim to validate its ability to

perform synaptic weighting. The architecture with one output neuron and four inputs were tested.

The error for transmission ratio was calculated to provide a comparison with the baseline. Finally,

we evaluated the effect of the quantization resulting from PCM synapses on a large model for image

classification. We compared the accuracy against the parameter Q. This parameter represents the

different number of possible weights after quantization. The result of the test suggests that the

proposed method provides comparable accuracy to the baseline over a range of parameter Q.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The thesis aimed to explore potential design methods that realize the mapping of larger neural

network models on photonic spiking neural network hardware architectures. These large models can

contain thousands of neurons and synapses per neuron that need to be individually mapped onto the

target neural network hardware. Therefore, the size of models that can be mapped is limited by the

number of neurons and synapses that the hardware can accommodate. Photonic architectures rely

on WDM techniques to transmit signals to and from individual neurons. This calls for the addition

of microring resonators that are individually calibrated to specific wavelengths. This becomes more

challenging and unfeasible with the increased number of synapse neurons.

Unrolling and weight partitioning methods aim to map the neural network model to the hardware

with a reduction in the number of required synapses per neuron. These methods reshape the neural

network models so that can be they mapped onto more restricted hardware at the expense of model

accuracy.

In this work, these methods were adapted to an all-optical spiking neural network architecture.

Neuron clusters were introduced to facilitate the weight partitioning method. The larger neural

network models are then distributed over these clusters that communicate through photonic inter-

connects. The two methods were evaluated on an image classification test. In this experiment,

the resulting model accuracy with each method was compared when considering a varying number
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of synapses per neuron. We conclude that for a larger number of synapses, the weight partitioning

method results in models with comparable accuracy to unrolling while demanding up to 300% fewer

hardware resources. In contrast, when the number of synapses is severely restricted, the unrolling

method can maintain accuracy. This allows us to explore the design space by modifying the number

of synapses per neuron. We proposed a new synaptic weighting architecture that can perform a

weighting function with half as many microring resonators compared with the architecture in [45].

The proposed design with four input sources and one neuron was simulated with OptSim to validate

its capability to perform synaptic weighting.

The proposed architecture takes advantage of serialized weights to reduce the number of micro

rings. This results in PCM weights that cannot be directly mapped to a neural network model. This

necessitated the creation of a design flow to transform the weights from the original neural network

model to a format that can be mapped onto the proposed architecture. In order to better represent

the PCM weight, a quantization method based on experimental data in [72] was proposed. This

allows us to model and represent synaptic weights more closely to the accuracy of the physical

PCM synapses. Mapping to the proposed method results in a larger quantization error compared

with the original architecture. We expected this would lead to lower model accuracy and it was

necessary to evaluate its impact when dealing with many input sources.

To evaluate the architecture for this end, we used an image classification task. The model was

mapped onto the original and the proposed architectures and the resulting model accuracy was

compared. The goal of this comparison was to explore the design space and limitations of PCM

synapses in representing the values of weights. The PCM synapses can represent a limited number

of weighting values. The work in [72] has experimentally demonstrated 15 levels of weighting

using PCM synapses which is significantly lower than what is required to achieve an accuracy of

better than 50% in this application. This allows us to create a design goal for improving the PCM

synapses and their capabilities to a level where they will be able to perform more sophisticated

neural network applications. The proposed methods for unrolling and weight partitioning together

with the proposed synaptic weighting architecture allow us to realize a path toward large-scale

photonic spiking neural networks and work around the physical restrictions and limitations inherent

to existing photonic architectures.
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6.2 Future Work

In this work, we considered each layer in the neural network model independently and ap-

plied the weight partitioning and unrolling methods without considering their impact on the overall

topology of the network. As an extension of this work, we can analyze the connectivity between the

layers in the overall network. In this approach, we can identify paths from inputs to outputs with

higher connectivity and temporal spiking activity. These paths may contribute more to the overall

neural function of the model and the resulting accuracy compared. Prioritizing the preservation of

these paths on the final model could lead to improved overall model accuracy at a lower cost in

hardware resources and energy consumption.

We compared applying unrolling and weight partitioning methods to the entire neural network

model. One approach to achieve improved trade-offs is the combined use of weight partitioning

and unrolling methods at the same time. In this approach, we can identify which method results in

better accuracy – energy trade-offs in each hidden layer and apply unrolling or weight partitioning

methods accordingly.

One of the limitations of this work is that we did not consider the impact of latency in the

network after unrolling and partitioning. We also did not consider the accuracy of the PCM weights

and their impact on weight partitioning and unrolling methods. These are aspects that we could

consider in future comparisons and design methods. The latency can be added to the model for the

spiking neurons and interconnects. The latency will impact the spike timing in encoded inputs and

neurons and this impact can be studied as the network is scaled to larger sizes. The PCM synapses

can represent weights with limited precision. We provided a quantization method to approximate

the limited precision of PCM synapses in chapter 4. This method could be expanded and applied to

the weight partitioning and unrolling methods described in chapter 3.

We prioritized using pre-trained neural network models as the input to our design flow and

avoided re-training which is computationally expensive and time-consuming. One of the limitations

that we identified was the different levels of weighting possible with PCM-synapses and how the re-

sulting errors in representing weights impact the accuracy. We can potentially address this limitation
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by considering the characteristics of the PCM synapses during the training process. Quantization-

aware training methods can be used to compensate for the limitations of the synaptic weights during

the training process and improve model accuracy.

Fabrication imperfections on photonic neural networks lead to imperfect routing and non-ideal

nonlinearities. These imperfections in turn impact the performance of the hardware. It will be

necessary to take these factors into account and potentially correct them during training or with

other potential mitigation measures which can be explored in future works.
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