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Abstract

Analyzing Effects of Large and Rare Events with an Augmented Synthetic Control

Method

Ribal Abi Raad, Ph.D.

Concordia University, 2023

This dissertation consists of four chapters on applying the Synthetic Control Method to rare events

with a significant impact. Initially pioneered by Abadie, Diamond, and Hainmueller (2010a),

the Synthetic Control Method is a policy analysis tool developed to tackle the weaknesses of

traditional policy analysis models such as the Difference-in-Difference. In the first chapter of this

dissertation, this model is used to reconcile a recurring issue in the disaster literature: why some

countries recover better than others from disasters and the role that political institutions play in

this recovery. The results show that regulatory power is the most significant institutional quality

variable that determines post-disaster recovery. Ranking in the top 30% of countries regarding

regulatory power is linked to GDP recovery rates from disasters that are higher than predicted

GDP. The variable with the most negligible impact was corruption, as proxied by the corruption

perception index. A 1-point increase in this index was linked to a 0.05% increase in the recovery

rates compared to predicted GDP. On the other hand, the degree of democratization or level of

democracy is insignificant in determining the size or level of recovery. Finally, over five years after

the occurrence of a disaster, countries that experienced negative recovery rates of GDP per capita

had this value shrink by about 13%. In contrast, countries with positive recovery rates of GDP

per capita ended up with a GDP per capita ahead of its predicted value by 8% over the same

five-year period.

One of the most devastating disasters of the last 50 years is the COVID-19 pandemic that put

the entire world at a standstill. The second chapter of this dissertation summarizes the literature

surrounding anti-contagion policies and highlights a gap in the literature in untangling the impact

of individual anti-contagion policies. This gap is tackled in the third chapter, which investigates

the relative importance and impact of individual anti-contagion policies in reducing death rates in

the United States. Restrictions on gatherings proved to be the most significant policy in reducing
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death rates, lowering them on average by four out 100,000 COVID deaths per day 60 days after

the implementation of such a policy. School closings and public transportation closings were the

least effective policies reducing death rates by 0.2 and 0.5 per 100,000 over the same period.

In the fourth chapter, the traditional Synthetic Control Method is modified to account for

cumulative and interrupted events through the Multi Synthetic Control Method. This method

is tested on previous examples used in the literature and is shown to be robust to uninterrupted

events. When applied to anti-contagion policies in the United States, the Multi Synthetic Control

Method finds that the standard Synthetic Control Method can underestimate the true impact of

a policy by up to 150%. The values obtained from the Multi Synthetic Control Method for the

same event as compared to the base Synthetic Control Method were significantly different, ranging

between 20% to 150% different in absolute value.

Significant improvements have been made to the original Synthetic Control Method since its

inception. In this thesis, additional improvements are proposed to improve this method’s accuracy.

In the first chapter, a new method of selecting the vector of relative importance (known as the V

vector) is discussed. This method improves the accuracy of obtaining this vector for regressions

where the variance of the treated variable and the number of co-factor variables are high.

The results of this dissertation show the ability of the Synthetic Control Method to tackle all

kinds of policies. Policy-makers aiming to take on upcoming waves or different mutations of the

COVID-19 virus should consider the effectiveness of different policies and the implication of their

stringency in affecting death rates and economic variables, and the trade-off between them.
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Chapter 1

Disasters and institutions: recovering from large-scale

events the right way

Abstract

Countries affected by large and rare shocks experience different effects on their economies over time,

even if they are relatively similar regarding factors such as GDP per capita, unemployment, or other

macroeconomic variables. While rare, these disasters have a significant impact on long-run growth.

The synthetic control model is used to find the effects of these disasters for countries that have

experienced somewhat comparable disasters. The results show that the degree of democratization

is insignificant, but the regulatory quality is vital in determining post-disaster recovery. On

average, countries with poorer regulatory authorities experience a 10% decrease in GDP 5 years

after a disaster, while countries in the top 30% of regulatory power experience an 8% increase in

GDP over its predicted value over the same period.
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1.1 Introduction

Disasters are low-frequency large-scale events that affect a country or a region and result in

significant destruction of capital or loss of life. These could be any number of events such as

natural (earthquakes, floods, hurricanes), political (revolutions, instability, war), or financial. The

effect of these events on the economy has garnered much attention over the years. Traditionally,

the approach to understanding the impact of rare destructive events has focused on the damage

and loss of physical and human capital, usually up to three years after their occurrence. Focusing

on the short term is a myopic view of the impact of disasters as countries tend to overspend to

counteract the disaster’s negative impact leading to contradicting results amongst researchers. For

example, Jaramillo (2009) finds that for specific countries, the impact of natural disasters lasts

beyond the first five years in which recovery happens, with some disasters impacting GDP up to

10 years after their occurrence.

Historically, a negative correlation between disasters and economic growth has been estab-

lished. Researchers have identified various channels through which disasters can limit growth.

This includes lowering interest rates and returns on assets (Barro, 2001), (Ikefuji and Horii, 2012),

human capital destruction (Baez, Fuente, and Santos, 2010), or simply permanently contracting

GDP through significant loss of capital in smaller countries (Heger, Julca, and Paddison, 2008).

When looking at regions that have experienced (or are more at risk of experiencing) such rare,

devastating events, researchers have observed lower long-run growth rates than their less risky

counterparts across and within countries. Disasters lead to loss of labor, whether direct (death)

or indirect (relocation), and with less labor, an influx of capital may not be very effective. It is

better to look at various disasters rather than ones that only impact capital.

Some evidence also shows that disasters do not affect long-term growth, as any change is

only temporary (Skidmore and Toya, 2002). These conflicting results are often due to model

specifications, data selection, or modeling techniques. For example, post-disaster recovery usually

implies that capital stock could increase due to over-investment, even more than before the disaster.

Five years later, that might not be the case. While GDP is temporarily boosted, the scope of the

analysis could lead to contradicting results. This variation in experiences is partially attributed

2



to the quality of political institutions across countries. Old and antiquated capital is replaced by

newer and more efficient capital, the ‘creative destruction ’ of capital (Ikefuji and Horii, 2012).

The channels through which these disasters affect growth are many, and in this chapter, the focus

is on several institutional quality indices as accelerators or dampeners to post-disaster recovery.

These include but are not limited to the degree of democratization, corruption levels, and ease of

doing business.

The first motivation for tackling this topic is the increased frequency of disasters, even when

controlling for the increased reporting of disasters and their expanding impact over the years.

As societies interact more and as we start exploiting more of the limited amount of land we

have, large-scale events will have a bigger and more significant impact, something all the more

evident with the recent COVID-19 pandemic. Accelerating climate change means that certain

disasters will become more frequent and severe, and it is crucial to focus on them moving forward.

Growing inequality also leads to turbulent political upheavals, which leads to a spiraling sequence

of even more inequality. The other motivation behind this chapter is reconciling and explaining

the differences found in the literature.

Using the synthetic control method for a panel of selected countries and GDP data from 1975

to 2018, I model counterfactuals to the occurrence of a disaster and identify the impact of 96

significant and sizeable events. The percentage deviation difference between the counterfactual

model and the real data is calculated and used to assess the impact of such events. Results indicate

that disasters played a statistically significant role in altering GDP per capita for the countries

in the data set. This chapter identifies the impact that a disaster has on GDP, and it finds that

on average, in countries where recovery was slower than predicted due to the disaster, GDP was

10% lower than expected up to ten years after the disaster, while in countries where recovery

was faster, GDP was on average 8% higher ten years after the occurrence of the disaster. I then

look at those deviations and find that specific institutional quality indices explain the size and

movement of those deviations. Data limitations do not allow a proper analysis of the trade-off

between investing in infrastructure before a disaster and the recovery post-disaster.

While the degree of democratization was insignificant in determining the recovery from a

3



disaster, regulatory power and corruption perception are the most significant factors in the recovery

phase, contributing to around 20% of the recovery size. Looking at disasters as events with long-

term repercussions, where the impact can be positive or negative, depending on specific co-factors,

can help provide policy recommendations for post-disaster relief. This chapter finds that the size of

the disaster, identified by the value of capital lost as a percentage of GDP calculated by the Center

for Research on the Epidemiology of Disasters (EMDAT, 2020), does not affect the direction of the

change in GDP. Large disasters do not necessarily imply negative GDP growth rates. The results

support the fundamental theory that a country with more solid political institutions such as an

independent judiciary, will see a boost in its long-run growth after a disaster, despite experiencing

a significant loss of capital. The path to achieving these strong institutions is not discussed in this

chapter.

This chapter contributes to the literature by quantifying the impact of the quality of institutions

on post-disaster recovery and identifying critical institutional quality elements through which the

channels impacted by disasters affect growth. This empirical analysis explains the different results

in the literature around the impact of disasters through institutional quality. The rest of the

paper is organized as follows: in section 1.2, I present an up-to-date review of the literature

surrounding disasters. Section 1.3 presents the model used in the analysis, while section 1.4

provides a primary historical empirical analysis of disasters and an explanation of the synthetic

regression model, section 1.6 highlights the results from the regressions, and finally concluding

remarks are presented in section 1.7.

1.2 Literature review

Authors have found that when controlling for reporting, large-scale events are increasing year-

on-year (Ruiter et al., 2020). They find that this increase is in both frequency and scale of disasters

over time. Table 1.1 highlights this fact for Canada and shows the largest disasters in terms of

economic size for Canada over the last 90 years. Data older than this time period is unreliable

due to lack of reporting or record keeping in terms of the occurrence of disasters, and their impact

on the economy. Economic data prior to 1920 for a large portion of countries is often unavailable,
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and does not allow for comparison across countries. These data points are therefore excluded from

this analysis. Two of the top three disasters that occured in Canada happened in the last 10 years,

something not unique to just Canada, but seen all over the world. The heat wave that impacted

eastern Canada in July 2020, as well as record temperatures hitting Western Canada in July 2021,

are additional examples that extreme events are getting more frequent and more devastating.

Type Date Total damage (’000 US$)

Flood 2013 5,700,000
Wildfire 1989 4,200,000
Wildfire 2016 4,000,000
Drought 1977 3,000,000
Extreme temperature 1992 2,000,000

Table 1.1: Estimated disaster damage (top 5 in Canada)

There is much research concerning the short-term impact of disasters on macroeconomic vari-

ables, where the focus is usually on the immediate destruction of physical capital (Kajitani and

Tatano, 2018), (Benson and Clay, 2000). This view is slowly changing. The impact on long-run

growth has been emphasized more in recent years, and this subsection summarizes some of the

significant work done in this field. Many mechanisms dictate how disasters affect GDP, and po-

litical institutions are crucial in increasing the efficiency of those mechanisms (Drury and Olson,

1998).

One of the main channels through which GDP can be affected post-disaster is the interest rate.

Research from Barro (2006) and Barro (2009) tries to explain the equity premium puzzle through

disaster risk. He concludes that the allowance of low-probability disasters explains several puzzles

about asset returns, specifically the equity-premium and low real rate of return on government

bills, or why the expected real interest rates were low in the U.S. during major wars. Gourio (2012)

extends his model by adding variable disaster risk. This extension implies that changing disaster

risk induces business cycles, mainly through precautionary savings, highlighting how disasters can

impact long-run growth by affecting interest rates for a long period. These models expand the

definition of disasters to include man-made disasters, such as financial or technological crises.

Additionally, some work has tried to understand the impact disasters have on human capital,
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such as Baez, Fuente, and Santos (2010), especially since the importance of human capital to long-

run growth has been highlighted often (Barro, 2001) (Erosa, Koreshkova, and Restuccia, 2010).

Loss of human capital through a disaster can then drive a country to a lower balanced growth

path, increasing the gap in income between rich and developing countries.

The type of disaster is also an essential factor in the recovery process. While considering

large-scale events without filtering for types, Raddatz (2007) found that natural disasters lowered

real GDP by 2 to 4% for a panel of low-income countries. This is not the case when focusing on

specific types of disasters. Hsiang and Jina (2014) find that cyclones have small but significant

negative implications on long-term growth, leading to a GDP loss of about 6% for a panel of

U.S. states. Barone and Mocetti (2014) find that earthquakes in Italy reduced GDP by about

10% for specific regions compared to what they should have been. Using a two-sector endogenous

growth model, Ikefuji and Horii (2012) argue that theoretically, the negative effects of disasters

could be mitigated, and economic growth could be improved if a per unit tax on polluting inputs

is imposed. Institutional quality is crucial in ensuring tax policy is implemented properly and

applied, as the revenue from these taxes should be invested in replenishing capital lost from the

disaster. This also proves important before a disaster occurs, as tax revenue can be used to insure

against disasters.

The negative impact of disasters is not always consistent, and there has been more evidence

that disasters can lead to higher GDP in the long run. ‘Creative destruction’ of capital is the

most prominent theory supporting positive effects from disasters. Several authors have researched

this theory and put forth the idea that while the short-term effects of disasters are adverse,

there are observable positive spillovers on long-run growth rates (Ikefuji and Horii, 2012) and

(Skidmore and Toya, 2002). When such an event occurs, inefficient capital is destroyed, and

an increase in precautionary savings with investment directed towards newer, more productive

capital is observed. The replacement of capital would not have occurred at such a pace had the

country not been affected by a disaster. This could be due to many reasons such as corruption,

bureaucracy, or insufficient funding (Matta, Bleaney, and Appleton, 2022). Disasters can then act

as catalysts for change and provide opportunities to grow faster in the long run. Jaramillo (2009)
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shows that these events have permanent adverse effects for a few geographically small countries

typically affected by consistently large disasters. In contrast, larger countries typically experience

better recovery rates since they can replace capital better. They attribute this to the relative size

of the country shielding certain areas from the disaster and the ability to reallocate more resources

(physical and human) towards recovery.

More recently, Akao and Sakamoto (2018) attempted to reconcile this contradiction in the

disaster literature. They used an endogenous growth model with both aggregate and idiosyncratic

shocks to find that if resources are allocated efficiently, disasters will not hurt long-run growth. A

caveat of their research is that they do not mention the source of these inefficiencies. A potential

reason those other authors put forth is political institutions. Barone and Mocetti (2014) found

that the same disaster had a different impact on growth for different regions in Italy. They focused

on the quality of the political institutions of these regions and found that the region with the better

quality of political institutions experienced higher than expected growth rates.

Cavallo et al. (2013) argued that disasters have no long-run effects except under particular cir-

cumstances, where a disaster is followed by significant political change, highlighting the importance

of political institutions in post-disaster recovery. This idea had been supported in other papers.

Drury and Olson (1998) find that increased development and regime responsiveness dampen or

increase post-disaster political unrest. These varying channels could also explain why we observe

different impacts of disasters across different countries. Existing conditions such as corruption

levels, capital availability, and institutional quality might play significant roles in determining

post-disaster outcomes. Jong-A-Pin (2009) analyzes how some political instability measures affect

growth. He finds that instability of the political regime hurts growth, while instability within

the political regime works the other way around. This body of work is crucial in identifying the

variables used for the model, while the focus remains on political institutions as critical drivers of

growth post disasters.

The initial section of this work follows that of Cavallo et al. (2013) and Barone and Mocetti

(2014). The former conducted a cross-country study on the impact of disasters on GDP growth

rates, while the latter researched the impact of the same disaster on two regions in Italy. Both
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works use the synthetic control method to understand a disaster’s impact on GDP, which is a well-

suited tool for studying such events. Differences between both papers include model specification

(such as co-factor selection) and inference methods. Cavallo et al. (2013) find that for a disaster

to impact long-run GDP, it needs to be followed by drastic political change. Barone and Mocetti

(2014) find that the Italian region with better institutions recovered faster and stronger, and GDP

was even higher than predicted had they not been exposed to the disaster.

There is excellent support for the idea that institutions play an essential role in the process

of recovery post-disasters. Attention needs to be paid to these variables (Matta, Bleaney, and

Appleton, 2022). While Cavallo et al. (2013) focus on post-disaster political turmoil, this chapter

expands the scope of their research. In this chapter, the period and disasters considered are more

considerable. Variables related to political institutions and institutional quality are selected to

provide a more accurate analysis of the recovery, and the model is improved to be more accurate.

The Synthetic Control Method allows then for both in-sample and out-of-sample forecast.To the

best of my knowledge, the model presented in this chapter is unique in its approach to the joint

analysis of disasters, growth, and institutions.

1.3 Synthetic Control Method

This section introduces the synthetic control method (SCM) initially proposed by Abadie,

Diamond, and Hainmueller (2010b). This model allows the user to generate counterfactual data

series and compare them to the actual development of that series. This chapter tackles a given

disaster’s impact on GDP growth rates per capita. A disaster is defined as a treatment in the

context of the Synthetic Control Method. The accuracy of this methodology is improved for data

sets where the variance of the treated variable is significant. This is done by grouping the regions

selected into different tiers depending on where they are in the initial distribution of the treated

object. For this chapter, this treated object is GDP per capita. This is expanded on in the

following subsections.
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1.3.1 Why Synthetic Control Method

There are several benefits of using the Synthetic Control Method in analyzing regional treat-

ments compared to the more typical regression methods used in the literature, such as Difference-

in-Difference regressions. The most important of those is circumventing the problem of credible

untreated observations by allowing the use of weighted averages of other units. The only require-

ment when conducting the analysis is that an appropriate amount of pre-treatment observations

exists. For the Synthetic Control Method, this number is relatively small and could be as low as

ten to fifteen observations per treated unit (region or country). This advantage is evident when

studying yearly GDP observations as long-time series data on GDP for many countries is not

always available. Synthetic Control Method also allows country-by-country analysis compared to

more general regression methods. Including appropriate covariate variables eliminates biases that

control units could potentially have. For example, if certain control units experienced a regional

disaster similar to the one experienced by the main region being studied, or if there is a global

event (such as a pandemic) that affects many regions, at the same time, the selection of donors

can be adjusted to suit the needs of the researcher. The synthetic control method is extremely

well suited for regional policy analysis (Barone and Mocetti, 2014).

1.3.2 Synthetic Control Method model

A brief overview of the mathematical implications of the mode is presented, and the im-

provements proposed in this chapter are discussed. A partial mathematical intuition behind the

optimization sequence is discussed in the appendix. I start with a set I = {1, . . . , N} of so-called

“regions” (these can be countries, states, counties). One of the regions is exposed to the “treat-

ment”, such as a disaster, where N − 1 regions are not treated and a region i = tr is the region

exposed. The model includes an outcome variable (GDP) referred to as the treated outcome yi,

and a set of predictors. I assume yi,t is the outcome (or treated) of region i at time t, is the GDP

per capita of region i. The outcome variable is observed over T periods. At a point t = T0 < T ,

the treatment occurs (disaster happens), but only for the affected region i = tr, leaving T − T0

of treated periods moving forward, meaning the treatment is uninterrupted. In our case here, the
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treatment only occurs at t = T0, but Synthetic Control Method also works for treatments that

occur after that period as explained by (Abadie, Diamond, and Hainmueller, 2010b). We assume

that:

yi,t = ŷi,t + αi,tDi,t

where

Di,t =


1 if i = tr and t > T0.

0 otherwise

where yi,t is the observed value and ŷi,t is the predicted variable. In other words yi,t = ŷi,t for

t < T0 and after the treatment

αi.t = yi,t − ŷi,t and t > T0.

Our goal is then to estimate ŷi,t to be able to estimate αi,t. (Abadie, Diamond, and Hainmueller,

2010b) make the assumption that ŷi,t can be estimated through the following factor model

ŷi,t = β0 + θizi,t + λixi,t + εi,t

where zi is a vector of observed covariates (not affected by the intervention), xi is a vector of

unknown factor loadings, with θi unknown parameters, and λi a vector of unobserved common

factors. To solve this model, we build a set of positive weights wn where n = 1, . . . , N − 1 and

i 6= tr, such that
N∑
i=1

wi = 1. There are ideal weights w∗i such that

N−1∑
i=1

w∗i yi,t = ytr,t ∀t ∈ T and
N−1∑
i=1

w∗i zi = ztr ∀t ∈ T

yi,t is defined as any linear combination of the outcome variable at time t for region i using the

outcome variable of the other regions. We can then use

α̂i,t = yi,t −
N−1∑
i=1

w∗i yi,t
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as a way to estimate αi,t where t ∈ [T0 + 1, . . . , T ].

The vector zi for region i is built such that

zi = (xi;y
L
i )

where yL
i is a vector of pre-treatment outcomes for the treated region. Y L

i could include any

combination of yi up until the treatment, in other words yL
i = {y0i , . . . , ytri }. In building the

vector zi, Cavallo et al. (2013) and Abadie (2021) use the first half of the pre-treatment period

outcome observations, and reserve the other half for out-of-sample validation or

zi = (xi, y
0
i , . . . , y

tr/2
i )

This is the most common out-of-sample validation method, and has been used in literature from

Bouttell et al. (2018), Donohue, Aneja, and Weber (2019), Mills and Rüttenauer (2022), Alfano,

Ercolano, and Cicatiello (2021), and Li and Shankar (2020a). The training periods chosen for this

thesis are not always chosen as the first half of the pre-treatment observations. The training set

is determined depending on the amount of available pre-treatment observations and the value of

the Mean Square Predicted Error. Clearly there is a trade-off between the two as a short training

period is more likely to result in a higher Mean Square Predicted Error, and the lowest Mean

Square Predicted Error is obtained by using the full pre-treatment period for training. In his

paper Abadie (2021) does not recommend a specific way to set the training data period.

Taking all of this into consideration, the training data points are chosen randomly between 1/4

at the least and 3/4 at most of the pre-treatment observations, as long as at least 8 observations

are possible for training. For example, if the number of data points available for the pre-treatment

observations (y) is less than 15, in other words, the treatment starts in 1985, the minimum training

period can be is half of the length of the values pre-treatment, guaranteeing at least 8 out of 15

observations will be used in training, otherwise Mean Square Predicted Error is large. The training

period with the lowest mean-square predicted error for pre-treatment training values is chosen,

and then out of sample-validation is conducted on the rest of the pre-treatment data.
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If the distance between 0 and tr is odd, I round up for more accuracy. Xi is the set of predictor

variables, as described earlier, with the explanation already provided for their use. The vector Zi

is then defined as the vector of covariates. To get around the lack of data for certain disasters,

especially since a lot of the data is missing with regards to the corruption perception index (starts

from 1995), certain covariates are included only if data is available. The vector V is key in finding

the optimal weights, and improvements to the selection of this vector is explained in the following

subsection.

1.3.3 Improvements to selection of vector of relative importance

The weights for the donor pool are chosen in such as a way as to minimize a penalty function

argmin
W ∗

||z1 −Wz0||=
√

(z1 − z0W )′V (z1 − z0W )

where z1 is a vector of pre-treatment variables relevant for the treated region and z0 is the

same vector of variables for the non-treated regions, and V is a positive semi-definite matrix

that highlights the relative importance of every co-factor variable in determining the treatment

variable. The choice of V is done in such a way as to replicate the path of the outcome variable of

the treated “region”, by minimizing the distance between the variables of concern, which means

it cannot be arbitrary.

A general case for the initial guess for V is for it to be data driven, based on the treated

region, i.e. including the data values as a guess for V . The values in this vector are all positive,

with the first element of the vector always having a value of 1, and the remaining values reflect

the relative importance of the other variables in determining my outcome observations. For this

chapter, this includes the pre-treatment outcome variable or the GDP per capita prior to the

occurrence of the disaster, as well as the covariates selected for this regression. The selection of

the non-treated variables is also crucial in ensuring that the values of the weights sums up to 1.

The values obtained from the matrix V reflect how important each variable in z is in determining

the synthetic treated variable. These V values we obtain help us define the relative importance
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of the covariates. Once V ∗ is obtained, I then find the vector of weights W ∗ that minimizes the

following distance:

argmin
W ∗

(y1 − y0W
∗(V ∗))′(y1 − y0W

∗(V ∗)).

An improper selection of V may lead to an improper solution to the minimizing problem and

a choice of V that does not minimize the mean squared prediction error (Mean Square Predicted

Errors) of the outcome variable. I augment the standard Synthetic Control Method technique of

selecting V ∗ by using a two-step selection method. Countries are first grouped by the similarity

of their dependent variable, in this case, GDP per capita PPP, prior to the treatment. For the

selection of countries available three groups are created low income (< $5000), middle income(<

$15000 and > $5000), and high income(> $15000). This selection is made because the importance

of covariates is likely to vary between these groups. For example, the importance of government

expenditure or secondary school enrolment in determining GDP could vary significantly between a

low-income and a high-income country. Once countries have been sorted into these groups and for

a given treated period, I run a synthetic regression for all these countries given the specified treated

period and for an initial guess of V being data-driven. The average Mean Square Predicted Errors

(Mean square predictive error) of the pre-treated periods is then calculated for every country in

every group prior to the treatment period T0. The optimal V ∗ of the country with the lowest

Mean Square Predicted Errors in their respective region is then chosen, and this vector is used

as a guess for any future regressions for that particular group. When conducting an Synthetic

Control Method regression for the desired period and country, the guess is then selected from a

pool of already calculated vectors. This thesis provides a new way of obtaining the optimal vector

of relative importance, and highlights the benefits of using this two-step procedure. This method

leads to faster and more accurate convergence to an optimal V ∗ than the data-driven guess when

running multiple regressions and placebos while either lowering or not changing Mean Square

Predicted Errors for pre-treatment outcome variables. This comes at the cost of increasing the

time needed to conduct successful regressions for smaller data sets. As the number of regressions

conducted increases, the time required to conduct the regressions decreases as the initial guess of

the vector V is more accurate.
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1.3.4 Inference

In terms of statistical significance, the synthetic control method does not rely on traditional

inference tests but rather on “placebo” tests. As per Abadie, Diamond, and Hainmueller (2010b)

and Cavallo et al. (2013), the p-value of the level of significance of a disaster is obtained using the

following:

p-value =

Npl∑
np=1

I(ᾱ
pl(np)
l < ᾱi)

Npl

where Npl is the number of placebo tests conducted. In the context of synthetic regression, placebo

refers to the counterfactuals obtained from running an Synthetic Control Method regression on a

region that was not treated for the selected treatment period. The goal of such a process is to see

whether the deviation of the synthetic country’s GDP from the actual country’s GDP is larger

than that of a potential placebo region. In other words, in a random country not affected by this

disaster. To conduct this inference Cavallo et al., 2013 propose the following method:

1. For every disaster, compute the place effect using the available controls for the corresponding

disaster

2. At every point in time following the occurrence of the disaster (called leads) compute all the

placebos, and then take the average across all placebos

3. The actual lead average is ranked in the distribution of placebo averages

4. The lead specific p value is given by the following formula

p-value =

Npl∑
np=1

I(ᾱ
pl(np)
l < ᾱi)

Npl

where αl is the effect of the disaster on the country in question and αi is the placebo effect

There are caveats to using this particular method. First, the full data set cannot be considered

as potential placebos. Some regions in the pool of donors could have also experienced disasters or

significant events that impacted their GDP during the same period as the treated region. These
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countries need to be excluded from the list of placebos since a significant event in two regions

needs to be compared to insignificant events. Second, the placebo test cannot include countries

that are considered outliers as the model cannot find enough donors to build the counterfactual

of the treated variable (GDP per capita PPP) accurately, given the constraint of 0 6 wi 6 1,

since it would be impossible to build a counterfactual for an outlier such that
N∑
i=2

wiyi,t = ytr,t

This constraint can be relaxed and placebos can be formed using those outlying regions, and Li

and Shankar (2020b) show that this does not alter the results. The only noticeable drawback of

relaxing this assumption is significantly higher computational times. Given the large enough data

set, and the small amount of outliers, inference can be successfully conducted without having to

include the outlying regions.

From the possible set of countries used in most inferences tests done in this chapter, the

following countries are excluded: Burundi, Qatar, Luxembourg, Sierra Leone, Botswana, and

Switzerland. These countries display the most extreme outcome variable values for a large portion

of the time series considered. This means that it is almost impossible for the model to build

an exact synthetic counterpart for each one without a noticeable increase in computational time.

Adding to this, any country that experienced a significant disaster (as mentioned previously) three

years prior to the treatment period (not just those that experienced an event during the same year)

is excluded from being in the placebo pool. The reasoning is simple since a placebo is supposed

not to have experienced treatment at T0. Given the nature of disasters and their prolonged effect,

it is expected that if a country experienced a disaster, this effect might still be noticeable several

years after its occurrence, impacting the accuracy of the placebo.

Finally, a limit to the inference period is imposed and is one of two criteria: 10 years post-

disaster or the closest significant disaster, depending on the shortest period. For example, Mexico

experienced massive earthquakes in 1985 and 1995, and the closest selected disaster to the 1995

earthquake was in 2010. Therefore, the inference period for the 1985 earthquake is nine years,

the inference period for the 1995 earthquake is ten years, and the inference period for the 2010

disaster is eight years as it is data-limited. This is done for every inference test. A treatment is

considered significant at p-values less than 0.1 or 90% significance. Changing this 0.05 results in
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the loss of only three significant events.

To sum up, the contribution to the existing literature is two-fold. In terms of the model, the

selection of the V -vector improves accuracy of the simulations but increases computational time.

This vector reflects the relative importance of every co-factor in the model, so an accurate selection

of this vector results in more accurate regressions. Several propositions have been made to estimate

this vector, such as out-of-sample validation (Abadie, Diamond, and Hainmueller, 2015). This is

improved by grouping all the units (regions) depending on the values of their treated observations

at a specified point in time (the occurrence of the treatment). The number of these groups is

chosen to be three because it allows for he best trade-off between accuracy and speed, meaning

the lowest 1/3 of the outcome observations in terms of values are put in one group, the second 1/3

in another, and the final 1/3 in another. A representative vector for each group is found, which

would then be the initial guess for each simulation for a member of that group. This technique is

robust to out-of-sample validation, as all the simulations conducted in this chapter relied on an

out-of-sample selection for the vector V with no loss of accuracy in predicting the pre-treatment

outcome variable.

1.4 Empirics and data

1.4.1 Data sources

To conduct this analysis, data were obtained from several sources. The GDP data selected is

available from 1975 to 2018. Co-factor variables are selected if they are statistically significant

in determining GDP per capita. The literature on their importance is well established, so this

subsection only summarizes the variables and their sources. The list is as follows:

• Share of value-added (Agriculture and Industry): I use the World Bank Database for a panel

series dataset from 1970 to 2018, that describes the share of two different sectors in the

economy in the value added.

• Secondary enrolment rate: I use the World Bank Database for a panel series dataset from

1980 to 2018.
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• PolityIV :1 I use the Polity5 project that codes the degree of democratization of a country.

The values range from -10 (full autocracy) to +10 (full democracy), and data is available

from 1960 to 2013.

• Capital stock at current PPP: I use the capital stock data obtained from FRED that uses

the perpetual inventory method of calculation.

• Corruption Perception Index: I use the corruption perception index values calculated by

Transparency international.2 This data set is based on several sources that have to qualify

to certain criteria. I also use this data set in my regression. This is an additional control

variable in the synthetic regression model.

• Population, Labor Force, Enrolment rates, and Trade openness: I use the World Bank

Database to obtain these data series from 1975 to 2018. Not all countries have sufficient

data points.

• Disaster Data: I use the EM-DAT database from the Catholic University of Louvain in

Belgium. The data covers disasters from 1970 until 2018. This data is not used in the

synthetic regression calculations, but is used to generate the disaster list, which includes the

country and the time of the disaster of interest.

Both polity and corruption perception (cpi) are used as proxy measures of institutional quality

in the regression analysis done in section 1.5.2. Several other variables are added to the analysis

of the results that are not included in the Synthetic Control Method, as there is not enough

data for the entire sample of countries. Despite having data for 98 countries, and those countries

being the pool of donors, this chapter only focuses on the impact of disasters on a list of 30

countries. This list is separated into two regions, South East Asia (SEA) and South and Central

America (SCA). Initial work had been done on the full set of 98 countries prior to narrowing down

the list. Simulations were inaccurate for pre-treatment periods for some countries that either

lacked sufficient covariate data or were on the edge of the convex set of countries concerning their

1https://www.systemicpeace.org/polityproject.html
2https://www.transparency.org/en
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GDP. Not enough suitable donor countries were found to build counterfactuals due to the extreme

values of the dependent variable of these countries. The final countries selected do not exhibit such

qualities, making the estimations much more reliable. Countries in one of the regions mentioned

before tend to have similar economies, especially regarding GDP per capita in 2017 international

U.S. dollars using purchasing power parity rates.

Regressions on richer countries found no impact of disasters on GDP or insignificant results.

The final list of countries and the relevant and significant disasters can be found in Appendix

A. These regions were chosen for two reasons. First, the disasters affecting each region are very

similar in size and nature, mainly due to their proximity. Second, the quality of institutions

between these regions is significantly different, with outliers in each region. So while SA countries

are on the lower end of the institutional quality spectrum, except Peru, Ecuador, and Chile,

most of the SEA countries chosen are on the higher end. Other minor reasons for selecting these

regions are the availability of complementary data (GDP per capita, consumption per capita,

trade immigration/migration data, accuracy of the data reported, and the frequency/impact of

large-scale disasters). Improvements in this chapter could include more regions for robustness.

1.4.2 Disasters

In this subsection, the selection process of disasters is described in detail. As mentioned previ-

ously, the impact of disasters is more than just on physical capital, which is why in this chapter,

the criteria for disaster are expanded to consider the impact on human capital by considering

the number of affected individuals and capital destroyed. Data for disasters is obtained from the

Emergency Database (EM-DAT), collected by the Catholic University of Louvain, which defines

a disaster as an event that satisfies at least one of the following criteria:

• 10 or more people are reported killed.

• 100 people are reported affected (displaced); a state of emergency is declared.

• A call for international assistance is issued.

This is a broad definition of disasters and is biased towards smaller countries. The two main

18

https://www.emdat.be/emdat_db/
https://www.emdat.be/emdat_db/


criteria I care about are affected individuals and economic impact. The latter refers to the direct

value of the destruction caused by the disaster and does not consider any long-term effects, as

it is hard to track economic loss months or years after the disaster. The database records direct

estimated damage in terms of losses to GDP. The database includes various types of disasters.

For this research, I include natural disasters as a general classification group, which includes

geophysical disasters such as earthquakes, hydrological such as floods or landslides, biological such

as an epidemic, climatological such as droughts and wildfires, and meteorological such as storms.

I exclude technological or financial disasters from this list.

It does not make sense to single out unique disasters for two reasons. First, disasters tend to be

followed by an influx of financial aid, meaning losses in potential GDP may not be adequately mea-

sured. Second, richer countries have been historically more prepared over time for disasters (and

become even more prepared the more disasters to happen), which contributes to the decreasing

impact of these disasters on GDP over time. This could be due to over-investing in disaster-prone

areas, another trade-off that countries must consider. Richer countries will be able to provide this

level of investment and often do not rely on external aid to alleviate the impact of the disaster.

This means that policy implications are different between rich and developing countries. There is

a sizeable gap in the maturity of the insurance markets between the rich and developing countries.

This chapter also analyzes areas where these markets are underdeveloped to discuss alternative

policy implications for these countries. I argue that the well-preparedness of these richer countries,

which includes more mature financial and insurance markets, has contributed to the income gap

between them over time, despite significant moral hazard problems. This preparedness is partly

due to higher institutional quality that takes advantage of the increase in spending after a disaster

and the influx of new, more advanced capital.

In this chapter, disasters are selected depending on the percentage impact on population or

GDP. A sample selection criteria for a disaster is the event with the largest impact as a percentage

of GDP, without considering the impact on the population. The selection process is similar to that

designed in Cavallo et al. (2013) to select a minimum of three disasters in the pool of countries

for each country. Using the EM-DAT database, a list of all the disasters for the 98 countries
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occurring between 1975 and 2018 is obtained. I select disasters specific to the countries in one of

the two regions mentioned in this list. The economic and human impact of every disaster recorded

is calculated as a percentage of the country’s nominal GDP during the disaster and percentage of

the total population, respectively. All the disasters for the 98 countries in the pool are obtained

to ensure that when conducting inference, no country is also experiencing an event in the same

time frame as the treated country. For every country, two lists are made, the economic list, which

ranks the disasters from highest to lowest depending on their impact on GDP, and the human list,

which ranks the disasters from highest to lowest similarly. The top three disasters from each list

are then selected. This means that three to six disasters are selected per country, depending on

whether the economic disaster list selection overlaps with the human disaster one. The disasters

obtained are from 1975 to 2018, and for the 98 countries, the result is a total of 457 disasters

selected. For the specific regions, the total is 106 disasters or an average of 3.5 disasters per

country. For the panel of countries considered and out of the 96 disasters considered, 72 caused

significant deviations from GDP (positive or negative) up to 10 years after the occurrence of the

disaster.

A key addition presented by this chapter and that has been overlooked by Cavallo et al. (2013)

and Barone and Mocetti (2014) is that countries have had to deal with a series of disasters with

no predictable interval for their occurrence. Therefore, any analysis of the impact on long-term

growth needs to take that into account, which means that any subsequent disasters limit the scope

of the impact of a particular disaster. By ranking these events in terms of their effect on GDP

and population and choosing the top disasters such that there is a minimum of five years between

each disaster considered for the Synthetic Control Method, I guarantee that the events chosen are

infrequent and significant enough to be classified as “disasters”, but also providing an adequate

time frame to analyze the long term effect of these events.

It is important to note that disaster impact is biased towards smaller or poorer countries,

meaning the sample of disasters studied disproportionately includes poorer countries. Richer

countries with better institutions have likely been able to mitigate the effect of these disasters

over time through proper planning. This bias is tackled by not including minimum thresholds for
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disasters to be considered. In other words, in previous research, a disaster needed to have a certain

minimum level of impact on GDP to be included in the sample selection. Given that the sample

of countries in the two regions selected includes richer countries, not setting a minimum threshold

allows for a broader sample. The results from the Synthetic Control Method indicate that their

inclusion is significant, even if the impact is not as pronounced compared to poorer countries.

While in this chapter only natural disasters are included, a possible extension would be the

addition of financial, technological, or political disasters. This would also expand the possible

sample of countries studied. However, it would require a change to the covariates and the model.

1.4.3 Region selection

Two sets of countries were chosen for analysis in this chapter. The properties set for this

selection were done in such a way to ensure that events were significant and comparable. The first

group is South and Central America (SCA), and the second is South East Asia (SEA). The choice

of groups was decided by the similarity of events that affected each country in this group and the

high variance in institutional quality and GDP per capita. When comparing institutional quality,

a wide range is observed both between and within groups. Most SCA countries are significantly

lower ranked than their SEA counterparts in terms of corruption, regulatory power, and stability

rankings. This, however, does not translate similarly to GDP per capita values. Even within each

group, countries exhibit radically different institutional quality values. These values are also not

static and varied over time.

Country Polity Corruption Perception Index year

Mexico 8 3.5 2005
Argentina -8 n/a 1988
Chile 10 7.2 2010
Peru 9 3.5 2007
Ecuador -9 n/a 1992

Table 1.2: Polity and corruption index for select SCA countries
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Country Polity Corruption Perception Index year

Indonesia -7 n/a 1994
Philippines -8 3.6 2013
Australia 10 8.8 1996
Malaysia 4 n/a 1985
Singapore -2 9.1 2000

Table 1.3: Polity and CPI index for SEA countries

1.5 Results

The limitations of the data used and the selection criteria for the disaster list allow the analysis

of no more than ten years of post-disaster impact across all disasters. This is because the interval

of the occurrence of a disaster for some countries is sometimes less than ten years. However, in

the selection process of the disasters, a minimum of five years between disasters was imposed.

The post-disaster average deviation for all countries is calculated for a maximum of 10 years. The

final selection is the three-year and five-year averages. The three-year average is considered by the

literature as usually the long-run effect, and the five-year is where most disasters end up peaking

in terms of their effect, as seen in figure 1.2. This subsection presents the results of both the

simulations from the Synthetic Control Method and the regressions on the deviations (or α) from

the Synthetic Control Method. The first subsection discusses the average impact of a disaster on

GDP, while in the second subsection, and using an OLS regression; different institutional quality

variables are regressed on these deviations to quantify their impact and importance.

1.5.1 Results from changes to V-selection

This subsection highlights the impact of the changes to the vector of relative importance

through stylized examples. The goal is to understand how these changes affect the Mean Square

Predicted Errors (MSPE) for pre-treatment outcome variables. A smaller value of this number

leads to more robust conclusions about the impact of the treatment. The selection of regions

and treatment periods impacts the results of this robustness test, however, the conclusion is that

Mean Square Predicted Errors are on either reduced or the same as the base Synthetic Control
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Model. Computational time depends on the number of regressions conducted. All regressions were

conducted and recorded using a 2021 Apple Macbook Pro (M1 Max chip), with 32 GBs of RAM,

running Python 3.

Three tests were conducted to compare the Mean Square Predicted Errors from the base

Synthetic Control Method to the augmented version of the model (grouped version). The tests

were done using N = {20, 30, 40} regions as donor pools. For each pool, three groups were selected

for the tests. To stay consistent with the method proposed in this chapter, the groups were chosen

based on the ranking of the outcome variable for each country, where the first group included the

highest one-third values, the second, the middle one-third, and the third group was composed of

the bottom one-third values. This grouping can be altered to include more or fewer groups or

by changing the grouping criteria. This grouping is ex-post because obtaining the data used in

obtaining the optimal weights for the Synthetic Control Simulations is only up to the treatment

i.e. T0. Using ex-ante data (or post-treatment) data may lead to higher Mean Square Predicted

Errors and bad fits. The dataset of regions and treatment periods was selected randomly from the

available data used in this chapter.

Tests were conducted twice on a sample of three, five, seven, and ten random countries from

these pools, with the rest of the countries used in the simulation of the Synthetic Control Model.

Significance does not matter in this case since the purpose of the test is to simply find the Mean

Square Predicted Errors pre-treatment. Since the number of pre-treatment periods impacts the

convergence of the Synthetic Control Method, the results displayed in Table 1.4 capture the average

Mean Square Predicted Errors difference between the grouped version of the Synthetic Control

Method and the base model. A negative value indicates that the base Synthetic Control Method

has a higher Mean Square Predicted Errors than the grouped version.
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Pool size
Sample Size

3 5 7 10

N = 30 -10.2** -23.4*** -1.5** -4.3**
N = 40 0.8 -30.2*** -20.3** -0.05
N = 50 0.01 -5.8** -3.4** -0.85*

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.4: Mean Square Predicted Errors differences

In every case, the augmented Synthetic Control Method resulted in lower or similar pre-

treatment Mean Square Predicted Errors for the pre-treatment variables. This implies that the

weights calculated are a better fit for the model and would provide more accurate results for

forecasted variable. This adds confidence to the validity of the results from the Synthetic Control

Simulation, leading to more robust conclusions. The trade-off, in this case, comes at the cost of

higher computational time. The average computational time to complete regression is highlighted

in Figure 1.1. The augmented model is significantly slower, but the average time per regression

decreases as the number of regressions increases. This augmented version is therefore helpful for

large data sets.

Figure 1.1: Average time per regression (in seconds)
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(a) Disasters with negative recovery (b) Disasters with positive recovery

Figure 1.2: Percentage deviations for significant events

1.5.2 Impact on GDP from Synthetic Control Method

Running the synthetic simulations described above for all possible countries provides 45 sta-

tistically significant disasters from the set of 106 disasters chosen. The deviations of the synthetic

model from the actual data are saved for all periods after the occurrence of a significant event.

Out of the 45 observed events, 26 resulted in negative post-recovery differences (three-year and

five-year average), indicating that the synthetic regression predicted a higher value of GDP per

capita than its data counterpart. The split in the results matches the differences in results in

previous research (Ikefuji and Horii, 2012) (Akao and Sakamoto, 2018), and the results include

disasters that had both a positive and a negative impact. Figures 1.2b and 1.2a show the various

percentage deviation between the predicted minus the treated variable five years after the occur-

rence of an event. Each grey line represents one statistically significant event, and the dotted line

represents the average of all events. This dotted line is also presented in table 1.5. While this

difference becomes minimal for certain countries after five years, the majority show the long-term

implication of these events. These values are essentially the dotted line in figures 1.2a and 1.2b.

Several conclusions can be made from these results. First, while the most significant positive

recovery was around 15% higher than the actual GDP, this amount was more than half the negative

recovery values. It is a result that is to be expected, as it is harder to rebuild. While rebuilding

can be more beneficial than staying on the post-disaster path under certain conditions, disasters

will often just exacerbate an already underperforming system, heavily stifle growth, and impact
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GDP for extended periods.

To understand what these conditions are and what are the underlying factors behind this

split, several OLS regressions are done on the data obtained from the Synthetic Control Method

using both three and five-year average differences. These regressions include various proxies of

institutional quality. Table 1.5 shows the average disaster value for the data set, for both the

negative and positive values.

Negative Positive

Time period Mean SD Mean SD

T − 3 -0.46 1.69 -0.29 2.36
T − 2 -1.09 2.57 0.47 2.02
T − 1 -0.97 2.38 0.30 1.84
T0 -0.52 0.42 -0.19 0.508
T + 1 -8.32 5.46 3.41 1.78
T + 2 -9.79 5.27 6.95 2.90
T + 3 -10.79 5.96 8.13 3.96
T + 4 -10.76 5.76 7.79 2.44
T + 5 -9.96 4.47 6.25 5.35

Table 1.5: Average impact of disasters

1.5.3 Importance of political institutions

In analyzing the impact of political institutions on recovery, simple OLS regressions are con-

ducted, once for the three-year post-disaster GDP averages and another for the five-year average.

The goal is to understand the impact of polity, corruption perception index, and other institutional

quality variables on this deviation. The model is as follows :

Di,t = α + βiXi + γiZi + ei

where Di is the average deviation from actual GDP for the countries in the sample for the inferred

post-treatment dates for country i and periods t, depending on the model, this can be the three

year average or five year average. X is a matrix of dependent variables and Z is a matrix of

controls. I include the following variables in X:
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• Regulatory power: I use data calculated by (Kaufmann, Kraay, and Mastruzzi, 2010),

to estimate the regulator power in a country. It captures perceptions of the ability of the

government to formulate and implement policies and regulations that develop the private

sector. The data is normally distributed, and ranges between -2.5 to 2.5.

• Government effectiveness: I use data calculated by Kaufmann, Kraay, and Mastruzzi

(2010). The data captures perceptions of the quality of public services, the quality of the

civil service and the degree of its independence from political pressures. It is normally

distributed, and ranges between -2.5 to 2.5.

• Violence: I use data calculated by Kaufmann, Kraay, and Mastruzzi (2010). The data

captures frequency of acts of violence and civil disobedience. It is normally distributed, and

ranges between -2.5 to 2.5.

• CPI and Polity: Data for the Corruption perception index is limited, and only extends to

1994. If a disaster happened during a time where there is no corruption perception index

data, the average of total CPI is used as a proxy. Dropping this and lowering the sample

does not lead to any change in significance in the model. polity is an index that refers to the

degree of democratization of a country. It is between -10 and 10, where 10 indicates a full

democracy, and -10 refers to a full authoritarian regime.

• Z is a vector of controls: This vector includes population, labor force, land size, and in-

terest rates, as explained in earlier section, as they are significant variables when determining

GDP.

The motivation behind including polity in addition to the other institutional quality is to highlight

the importance of democratization in disaster recovery. Polity measures patterns of authority, and

is essentially an index of the level of authority in a country. A score of 10 indicates full democracy,

but is not fully reflective of the quality of institutions, so while Denmark and Cyprus have the

same polity score, the quality of the regulatory institutions are not the same. The results of the

regression can be seen in tables 1.6 and 1.7. The conclusions that can be drawn from these table
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is that political government regulatory power and corruption play a significant role in determining

how well a country recovers from a disaster.

This is an opposite conclusion to that of Cavallo et al. (2013) who finds that large enough

disasters induce political revolutions, linking the impact of disasters on GDP to these revolutions.

The results in this chapter challenge this idea to a certain extent. The polity index for the affected

countries seems insignificant, and regime changes are not necessarily the direct reason why disasters

impact GDP, but rather the deterioration of political-institutional quality. This is based on the

fact that a revolution leads to a significant decrease in the polity index of a country.

Insurance markets play a crucial role in hedging against disasters for both households. There

is a lack of comparable insurance data for the countries selected in this chapter, which does not

allow for a direct comparison of the insurance markets between countries. Historical values for

variables such as regulatory power, government effectiveness, and the corruption perception index

serve as valuable proxies for the ability of a government to direct capital to where it is needed

most and the confidence of citizens as well as foreign governments in funneling aid to governmental

agencies. This analysis does not extend, however, to the trade-off between preparing for a disaster

prior to its occurrence and the impact of the disaster.

The results from the regressions shown in Tables 1.6 and 1.7 provide evidence that, while con-

trolling for various factors, cpi and regulatory power are the only statistically significant variables

in determining post-disaster recovery, with regulatory power being the strongest of the two and

the more significant. A one standard deviation off the distribution, in other words, being in the

top 30% of countries regarding regulatory power, leads to a 13% increase in recovery rate. This

can be observed in the row titled reg in the regression tables. A country is expected on average to

recover 13% above their path prior to the disaster, five years after the disaster occurs if they are

in the top 30% of countries in regulatory power. Similarly, being on the opposite end will lead to

lagged recovery and a lower GDP 5 years after the disaster than had the disaster not occurred.

For example, Panama experienced two disasters of relatively similar impact. One was in 1989

and the other in 2013. Rocked by political turmoil prior to the first disaster, Panama’s recovery for

the following five years proved to be difficult, almost 16% less than the synthetic model. Without
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Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5

cpi 1.358* 1.311* 1.281* 1.295* 1.271*
(0.774) (0.816) (0.774) (0.831) (0.824)

pol 0.2281 0.2240 0.2281 0.2273 0.2191
(0.3147) (0.3320) (0.4157) (0.3523) (0.3451)

gov -7.8913 -7.9961 -7.8521 -7.1261 -8.1961
(5.4229) (5.7210) (5.3216) (5.4253) (6.3147)

reg 13.0713**13.3504**13.2310**13.4154** 13.2152**
(6.2258) (6.5680) (6.4312) (6.3156) (6.1283)

vio 3.7847 4.0835 4.52261* 4.0835 4.1422*
(2.8122) (2.9668) (2.0431) (2.512) (2.1318)

labor force 1.2041 1.4512 1.041
(1.4511) (1.410) (1.325)

land size 0.002351* 0.002281*
(0.001161)(0.001025)

interest rate 0.5281***
(0.01147)

R-squared 0.2305 0.2220 0.2013 0.2512 0.4211
R-squared Adj.0.1343 0.1248 0.1281 0.1247 0.2255
N 45 45 45 45 45

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.6: OLS results for three-year averages

Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5

cpi 1.632 1.512 1.415 1.421 1.364
(0.912) (0.879) (0.945) (0.913) (0.925)

pol 0.142 0.135 0.131 0.131 0.148
(0.121) (0.113) (0.107) (0.101) (0.098)

gov -7.315* -7.321 -7.451 -7.422 -7.962
(4.381) (4.765) (4.915) (4.453) (4.221)

reg 10.522**10.415**10.387*11.327**13.2152**
(4.314) (4.217) (4.597) (4.512) (5.323)

vio 6.821 6.587 6.891 6.098 6.922*
(5.210) (6.124) (5.997) (6.014) (5,326)

labor force 0.665 0.621 0.258
(1.331) (1.521) (1.425)

land size 0.0032**0.0025**
(0.0041) (0.0056)

interest rate 0.4219**
(0.1427)

R-squared 0.2014 0.2025 0.2142 0.2314 0.4211
R-squared Adj.0.1285 0.1275 0.1264 0.1235 0.3187
N 45 45 45 45 45

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.7: OLS results for five-year averages

29



going into the political details of the disaster, the drop in politicization, regulatory power, and

governmental effectiveness prior to the 1989 disaster contributed to the slow recovery. The period

from 1990 to the mid-2000s marked an increase in government effectiveness and a reduction in

corruption as the country became more democratic. Compared to 1989, Panama’s recovery from

the disaster in 2013 is better than expected, averaging 12% over its synthetic counterpart over the

following five years.

1.5.4 Robustness check

In order to test the validity of the results, several robustness checks are conducted. First,

the data is split into two different groups. The first group includes the countries where the post-

disaster recovery leads to a positive difference, i.e., the predicted GDP is higher than the actual

GDP path, and the other group is the inverse. In addition, the Quality of Government variable

obtained from the quality of government project run by the Department of Political Science at

Gteborg University is added to the regression. It is a variable that considers the core features that

determine the QoG such as impartiality, bureaucratic quality, and corruption, as well as measures

that are broader such as the rule of law and transparency. This is done to account for omitted

variable bias. The results in the appendix show that splitting the data or adding variables do

not add to the significance of the model or affect the significance of the previously mentioned

variables. Regulatory quality and cpi are still the only statistically significant values. The tables

can be found in Appendix B.

Reverse causality of the quality of institutions and democratization is another important factor

to consider here. Several authors, such as Jong-A-Pin (2009) found evidence of reverse causality

between political instability and growth. To test for this, a two-stage regression with instrumen-

tal variables is applied. In the first stage, the endogenous explanatory variables are treated as

functions of their instruments. The instruments considered are: education levels (primary and

secondary), distance to equator (Hall and Jones, 1999), and mortality rates (Acemoglu, Johnson,

and Robinson, 2001). The predicted value is used as an explanatory variable in the second stage in

the equation. In this case, the original function’s endogenous variable is the regressor. In testing
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for endogeneity, a few instrumental variables are selected to control for the endogeneity between

the exogenous variables and endogenous variables.

polity

cpi -0.24
polity 1.0
gov -0.18
reg -0.25
vio -0.03

Table 1.8: Correlation matrix for polity and other explanatory variables

Another potential issue is the link between any explanatory variables and polity. I test for

multicollinearity and show the correlation matrix for polity and the other variables. No significant

evidence of collinearity exists in this case. To test for endogeneity a simple Hausman test is

conducted and for both models listed above the p-valeues are respectively p3 = 0.24 and p5 = 0.31.

The null cannot be rejected and no evidence of endogeneity is found for the quality of institutions

and growth rates. While things like polity and interest rates are crucial in GDP determination,

the variables selected in the model do not display any statistically significant sign of endogeneity.

While the literature does mention political instability, polity itself is not necessarily a measure of

instability, but rather democratization, which explains the lack of endogeneity in the model.

1.6 Simulations from Synthetic Control Method

This section presents the results of the Synthetic Control Method regressions conducted on

both regions. A sample of these results is provided in figures 1.3 and 1.4, and the rest are shown

in the appendix. The dotted lines show the predicted GDP per capita values, while the solid red

lines show the actual values of the treated variable. Some notable observations for each region.

are also provided.
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1.6.1 South and Central America

In the SCA region, the biggest disaster impacting the following countries are considered:

Argentina, Brazil, Bolivia, Mexico, Chile, Ecuador, Dominican Republic, Honduras, Colombia,

Paraguay, Panama, Uruguay, and Peru. Table 1.2 presents an exciting range of the polity and

corruption levels of these countries during highlighted periods. For example, in the case of Mexico,

three major natural disasters are chosen. These occurred in 1985 (earthquake), in 2005 (earth-

quake), and finally in 2010 (flood), but only two of these were statistically significant. The earth-

quake in 1985 led to an increase in public scrutiny and increased expenditure on infrastructure.

However, prior to this, the quality of institutions was relatively poor, which is why the predicted

values for Mexico are higher than the actual values, meaning this disaster had adverse effects, even

ten years after its occurrence. There was also a severe restructuring of public safety codes, infras-

tructure investment, and improvements in relief and response efforts which would be necessary in

dealing with upcoming disasters (UNDRR, 2017). Despite a worldwide financial crisis in 2008,

the disaster that hit Mexico City, one of Mexico’s biggest cities in 2010, seemed not to have as

big of an impact on the GDP per capita in Mexico. However, Mexico’s infrastructure investment,

regulatory power, and cpi index prior to this disaster were relatively poor, even with higher polity

values (in 1985, polity was -3, in 2007, it was 9). The recovery is statistically significantly lower

than expected, similar to what happened in 1985.

For the countries in this group, the disasters that seem to have the most significant impact

are earthquakes, which is a benefit for comparing across countries and regions. In contrast, the

most devastating type of disasters in SEA are hurricanes and floods.3 When conducting the

OLS regression on the deviations and controlling for the various types of disasters, there is no

statistically significant difference between institutional quality and the impact of the disaster on

average.

Figure 1.3 shows the synthetic analysis for a selection of countries from this subset. As men-

tioned in section 1.3, only the first half of the pre-treatment outcome variable was used to estimate

the weights, thereby testing the model’s validity over the second half of that period as an added

3I cannot state whether the type of disasters can make a difference in the recovery process, but this is work that
can be developed in future research.
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measure to check the accuracy of the simulation. When looking at figure 1.3, the results of the

Synthetic Control Method display a fairly good pre-treatment fit to the data. This lends even

more credibility and robustness to the inference results. Except for Argentina, most regressions

were good with very low pre-treatment Mean Square Predicted Errors values. Inference tests

are conducted for every treated period regardless of pre-treatment Mean Square Predicted Errors

values, and the p-values for the forecasted periods are obtained for each simulation. These are

displayed below the graphs for the events chosen. Since the objective is to calculate the impact of

these disasters, the percentage deviation of GDP for a given period post-treatment is calculated

depending on the maximum post-treatment periods possible. The results of these deviations are

shown in Table 1.5, which provides the average impact of disasters up to five periods after one has

happened.

In terms of politics, the SCA countries display many fluctuations in different institutional

quality variables, as seen when looking at polity. For example, Ecuador, one of the poorer countries

in Latin America, was subjected to a financial crisis in 1998 which led to a political crisis soon

after, where the president was ousted and replaced by his vice president a year later. The result

was a drop in polity over the years that improved over time. However, the quality of the political

institutions was rather low, which meant that Ecuador performed relatively poorly in recovering

from three disasters in 1982, 1987, and 1993.

While Mexico and Chile were affected by devastating earthquakes in 1985, Chile’s post-disaster

recovery is better than Mexico’s. At the same time, Mexico underperformed relative to its synthetic

counterpart, and Chile over-performed. As seen in table 1.2, Chile’s polity index is -1. A few years

later, Chile’s polity index jumped from -6 to 8. In context, Chile’s military regime was ousted

in 1989. The 1985 earthquake caused more than 1 Billion dollars worth of damages and killed

177 people. Due to the military’s inability to deal with this earthquake, the Finance minister at

the time implemented reforms in the form of privatization of the construction sector, loosening

the military’s grip on a crucial sector of the economy (Vogler, 2010). In 2010 Chile experienced

another devastating earthquake, and the predicted GDP 8 years after was 6% lower than the

actual GDP, potentially owing to these reforms that occurred almost two decades before.
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(a) Mexico 1985, p-value = 0.08 (b) Chile 1985, p-value = 0.04

(c) Argentina 1988, p-value = 0.45 (d) Ecuador 1982 , p-value = 0.07

(e) Honduras 1974, p-value = 0.21

Figure 1.3: Synthetic Control regressions (SCA)
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1.6.2 South and South-East Asia

In the SEA region, similar to the SCA region, a mixture of countries is chosen on the spectrum

of the polity and corruption indices. These are Australia, Philippines, Malaysia, Thailand, Taiwan,

Indonesia, and Singapore. Table 1.3 shows the different polity levels at the time of their most

significant disasters and their corruption perception index for those periods. These values show

the disparity within these countries and highlight an important fact. A higher polity value does

not correlate with a higher CPI. This can be seen when looking at Singapore and Australia.

Singapore has a higher CPI value but a lower polity score than Australia. A -2 score indicates an

authoritarian regime that is also perceived to be less corrupt than the full democracy of Australia.

This will be crucial in understanding how each of these countries will be impacted by disasters.

The following graphs are selected results of conducting synthetic regressions on the aforemen-

tioned countries. Australia and Singapore also present a contrasting image to the majority of the

other countries discussed so far in this chapter. They are the only countries in the SEA region

where the synthetic control country under-performs the actual country in all disasters selected.

These two countries rank lowest in terms of corruption but vary differently when it comes to polity,

their degree of democratization. For SEA countries, the majority of disasters are hurricanes or

typhoons. The result of the inference tests are available in the appendix, showing the distribution

and type of significant disasters.

1.7 Concluding remarks

In this chapter, I find that institutional quality plays a significant role in the recovery of

GDP per capita after the occurrence of a disaster for countries where GDP per capita is less

than $35,000. The two most important measures of institutional quality are regulatory power

and level of corruption. These two variables, combined contribute to around 20% to the recovery

from disasters. The scope of the analysis is limited to 5 years for most of the countries chosen.

Therefore, a claim cannot be made about the optimal post-disaster recovery path with confidence,

especially since there is no criteria discussed about the optimal path for growth in this analysis.
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(a) Australia 1996, p-value = 0.04 (b) Malaysia 2004, p-value = 0.08

(c) Philippines 1990, p-value = 0.03 (d) Indonesia 1997, p-value = 0.07

(e) Singapore 2000, p-value = 0.33

Figure 1.4: Synthetic Control regressions (SEA)

36



While the importance of political institutions prior to the occurrence of the disaster is highlighted

in this research, there is no claim made about the cost required to establish these institutions and

the impact on GDP prior to the disaster. Further research could be directed towards answering

this question.

This chapter attempts to tackle an issue raised by various studies conducted on the long-term

impact of disasters. Since there is no clear consensus on the long-run effect of disasters on GDP,

this chapter contributes to the literature by studying the impact of disasters on a large panel of

countries using the Synthetic Control Method and quantifying the significance of various factors

on this impact. The findings in this chapter suggest that politicization levels are insignificant in

affecting GDP during the recovery phase. There is no evidence that democracies perform better

than autocracies recovering from a disaster. Even when considering institutional quality variables,

this research finds that only regulatory power seems to be the most significant factor. Regulatory

power and corruption are vital components in achieving a positive recovery from disasters and

even outgrowing its pre-disaster outcome. In practical terms, countries in the top 30% of the

distribution of regulatory authority will recover from a disaster in such a way that they will

overtake the path of their pre disaster GDP.

On average, and over five years after their occurrence, disasters will have a more significant

negative impact than positive impact, with an absolute difference of around 3% between the

average positive and negative values. While the negative impact can be pretty significant, there

is a smaller limit regarding how much more a country can recover after a disaster. The results

from the Synthetic Control Method regressions on richer countries show that disasters do not affect

long-run GDP. For countries where GDP per capita is greater than 35,000$ U.S. per year, the effect

of the disaster is negligible one year after its occurrence. Finally, I extended the methodology used

in performing regressions from the Synthetic Control Method. Grouping regions according to their

outcome variable leads to an efficient selection of the vector V , the vector of relative importance.

This results in faster and more accurate regressions for research that includes many events and

regions.

Future work can extend the model by looking at the consecutive impact of disasters or adding
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different types of disasters. In terms of the former, ignoring the accumulated effect of disasters

over time and their interaction with institutional quality seems unwise. Repeated disasters could

lead to a significant overhaul in institutional quality. The framework presented by this chapter

only studies the impact of a particular disaster until another occurs. In practical terms, this means

that the impact of some disasters can only be studied for less than five years. Adding multiple

steps to the synthetic control regression will provide a deeper insight into the true impact of these

disasters.

Appendix A

Table 1.9 summarizes the list of countries and dates selected for the final regressions.

Country Date Country Date

Bolivia 1992 Indonesia 2004
Bolivia 1997 Honduras 1974
Brazil 1984 Honduras 1993
Colombia 1985 Mexico 1985
Colombia 1999 Mexico 1995
Colombia 2011 Mexico 2005
Costa Rica 1988 Malaysia 2004
Costa Rica 1996 Malaysia 2007
Chile 1985 Panama 1988
Chile 2010 Panama 2013
Dominican Republic 1979 Paraguay 1983
Dominican Republic 1998 Paraguay 1998
Ecuador 1982 Paraguay 2007
Ecuador 1987 Philippines 1990
Ecuador 1993 Philippines 1995
Indonesia 1997 Philippines 2013
Thailand 2011 Thailand 2013
Thailand 1984 Singapore 2000
Singapore 2003 Uruguay 1999
Singapore 2007 Uruguay 2002

Table 1.9: List of countries and dates selected where a disaster was significant
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Appendix B

Tables 1.10 and 1.11 are summaries of the regressions conducted on the data that was split

between positive and negative values using the five-year averages

VARIABLES Reg 1 Reg 2 Reg 3 Reg 4 Reg 5
corruption perception index 1.314* 1.221 1.314* 1.289 1.264*

(0.665) (0.542) (0.684) (0.712) (0.613)
polity 0.458 0.551 0.528 0.671 0.591

(0.853) (0.546) (0.485) (0.543) (0.613)
government authority -6.241 -7.112 -6.895 -7.1261 -8.1961

(4.223) (4.387) (4.335) (5.425) (6.314)
regulatory power 12.891*** 13.251** 13.449** 13.124** 13.667**

(4.321) (6.531) (6.351) (5.951) (6.220)
violence 4.025 4.985 4.835 4.231

(4.221) (4.877) (4.996) (4.212)
labor force 1.315 1.312 1.381

(1.332) (1.322) (1.455)
land size 0.0021* 0.0019*

(0.0011) (0.0011)
interest rate 0.455***

(0.032)
R-squared 0.182 0.195 0.201 0.205 0.253
R-squared Adj. 0.180 0.173 0.169 0.168 0.155
N 26 26 26 26 26
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.10: OLS results for five-year averages for negative events
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VARIABLES R 1 R 2 R 3 R 4 R 5
corruption perception index 1.271 1.277 1.753* 1.741 1.887

(0.852) (0.899) (0.923) (1.132) (1.453)
polity 0.422 0.452 0.531 0.557 0.581

(1.214) (1.227) (1.315) (1.087) (1.023)
government authority -4.321 -5.221 -5.432 -5.257 -7.885

(3.891) (4.047) (3.987) (3.996) (7.243)
regulatory power 13.921*** 13.857*** 13.449*** 12.985*** 12.775***

(2.483) (2.335) (2.875) (2.645) (2.578)
violence 2.520 2.557 2.894 3.024

(3.8511) (3.781) (3.857) (4.002)
labor force 1.224 1.386 1.251

(1.459) (1.231) (1.557)
land size 0.0020** 0.0021***

(0.0012) (0.0009)
interest rate 0.583***

(0.0342)
R-squared 0.210 0.235 0.241 0.252 0.267
R-squared Adj. 0.208 0.204 0.203 0.198 0.205
N 19 19 19 19 19
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.11: OLS results for five-year averages for positive events

Tables 1.12 shows the results of the regression with the added QoG value.
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R 1 R 2 R 3 R 4 R 5
corruption perception index 1.632 1.512* 1.415* 1.421* 1.271*

(0.774) (0.712) (0.7740) (0.8165) (0.8165)
polity 0.2281 0.2240 0.2281 0.2273 0.2191

(0.3147) (0.3320) (0.4157) (0.3523) (0.3451)
government authority -7.8913 -7.9961 -7.8521 -7.1261 -8.1961

(5.4229) (5.7210) (5.3216) (5.4253) (6.3147)
regulatory power 13.0713** 13.3504** 13.2310** 13.4154** 13.2152**

(6.2258) (6.5680) (6.4312) (6.3156) (6.1283)
violence 3.7847 4.0835 4.52261* 4.0835 4.1422*

(2.8122) (2.9668) (2.0431) (2.512) (2.1318)
labor force 1.2041 1.4512 1.041

(1.4511) (1.410) (1.325)
land size 0.002351* 0.002281*

(0.001161) (0.001025)
interest rate 0.5281***

(0.01147)
R-squared 0.2305 0.2220 0.2013 0.2512 0.4211
R-squared Adj. 0.1343 0.1248 0.1281 0.1247 0.2255
N 19 19 19 19 19
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.12: OLS results for five-year averages for all events with added variables

Appendix C

The Synthetic Control Method works by minimizing a loss function defined as f(V ) using

quadratic optimization with equality constraints defined as follows

1

2
V ′PV + q′V

subject to

GV 6 h

AV = b

where P ∈ Rn×n is a symmetric matrix. D is defined as the diagonal of the V vector. We then

have

P = X
′

0DX0.
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and

q = X ′1DX0.

with l being the column size of Z0. In this case h = 1 and so G is bounded by 0 and 1. A is a

matrix of ones with a size 1× l. The Lagrange function of this problem is

L(V, u) =
1

2
V ′PV + q′V + v′(GV − h) + µ′(AV − b).

In order to minimize this loss function an initial guess of V is assumed called Vguess. The closer

the guess is to the actual optimizing value of V the faster and more accurate the convergence

is. This function is minimized using a Sequential Least Squares Programming method. This

iterative process requires that both the objective function and constraints are twice continuously

differentiable. Fu, Liu, and Guo (2019) provide more details on the SLSQP method and its

application.

Appendix D

The results from selected different training periods

(a) 2/3 training period (b) 1/3 training period
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Chapter 2

A critical review of the literature on COVID-19

anti-contagion policies

Abstract

This chapter presents an extensive overview of the literature surrounding the pandemic and the

different models used in analyzing the impact of anti-contagion policies on reducing death rates

and their impact on the economy. It also highlights the essential results of these policies and

shows that the overall impact on the economy was not as large as anticipated in terms of reducing

GDP. Understanding the impact of individual policies on reducing the death rates from COVID-

19 is raised by various researchers, and is highlighted throughout this chapter. This chapter sets

the stage for the rest of the thesis and highlights the importance in using the Synthetic Control

Method to tackle such a topic.
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2.1 Introduction

To better understand how anti-contagion policies developed in the pandemic and their effects, it

is crucial to provide a critical review of the literature surrounding COVID-19. This paper discusses

the different models used to predict the impact of these policies and the research that has discussed

their effects. I highlight some key areas where research is still lacking. More specifically, I focus

on discussing research surrounding individual policies. I show that despite the vast wealth of

literature, there are still gaps in the knowledge around the impact of individual policies. Properly

preparing for future waves of any future pandemic requires a thorough review of the data and

results of further research. Showcasing gaps in the literature highlights the contributions of the

rest of this thesis to the scientific literature.

Early in the pandemic, the literature surrounding COVID exploded and covered many topics.

Initially, the focus was on predicting the potential impact of the pandemic and what are some

possible responses to the virus. Eventually, the research shifted towards assessing the impact of

these responses. Given the significant uncertainty surrounding this event, its impact on people, its

ability to spread, and concerns over potential mutations, researchers have attempted to tackle all

the different facets of the contagion. Over two years since the start of the pandemic and concerns

about the impact of variants of the COVID-19 virus are taking center stage, more specifically with

regards to containment measures and their effectiveness.

Vaccine mandates, mask mandates, social distancing, and restrictions on gatherings are just

some of the policies used throughout the pandemic by policy-makers, which are still in effect today.

While the public consensus initially was that containment measures were needed and essential in

“flattening the curve” of fatalities, over the last year, there has been severe push back against

a lot of these anti-contagion measures, citing lack of effectiveness as shown by Montreal Gazette

(2021) and Public Broadcast Service (2021). Economists have attempted to tackle the pandemic’s

economic and human impact using various models and quantitative methods. With much research

being done in a short time, it is vital to take a step back and understand what has been found so

far and what is still missing. This chapter aims to show and discuss the other research that has

been done about the pandemic, current gaps in the literature, why they are there, and how these
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gaps could be tackled.

Initial attention was focused on the SIR, or SIRD (Susceptible, Infected, Removed, Dead)

model of infectious diseases. The model was developed by Kermack and McKendrick (1927)

to mathematically characterize and track the spread of infectious diseases and their impact on

a population. In terms of modeling the spread of the COVID-19 virus using this model, two

seminal papers by Atkeson (2020) and Stock (2020) introduced the basics of the SIR model to

economists and explored potential applications of this model. This was then followed by research

from Atkeson, Kopecky, and Zha (2020), Acemoglu et al. (2021), Fernández-Villaverde and Jones

(2020), among many. The focus was on the spread of the virus and the impact that containment

and social distancing measures had on its propagation, but not necessarily tackling the economic

impact of the pandemic. Abel and Panageas (2021) improve the model by adding waning immunity

and vaccinations.

In contrast, Pindyck (2020) augments how the model reacts to deaths and shows how reducing

the reproduction number (or infection rate) reduces the number of deaths. This addition helps

quantify the effects of lockdowns on the death rates. Eichenbaum, Rebelo, and Trabandt (2021)

extend this by incorporating household decisions during the pandemic to account for self-selection

into anti-contagion policies and quantify the impact on consumption. Finally, Acemoglu et al.

(2021) expands the model to account for targeted policies that focus on particular groups of

individuals (young versus elderly) and find that these policies are more effective than general

lockdown procedures. These models, however, do not track all the policies implemented. So much

of the research has consistently included only a few policies without capturing the effect of the

full scope of anti-contagion policies.

Much empirical work has been done on analyzing the performance of these anti-contagion

policies on “flattening the curve” as well. Researchers such as Deb et al., 2020, George et al.,

2020, or Alvarez, Argente, and Lippi, 2020 use traditional econometric models or policy models

such as difference-in-difference, OLS, or maximum-likelihood to study these policy effects. This

research was often not country-specific and provided a basis to assess the performance of different

political entities worldwide. Because of this, it was a non-trivial exercise to isolate specific policies,
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and so the bulk of the work done either focused on using an aggregate stringency index developed

as a way of measuring the strictness of aggregated policies across countries or research was specific

to understanding the impact of specific isolated policies. Often times the issues that limited

methodologies such as difference-in-difference in tackling the impact of anti-contagion policies were

the same for OLS. In this chapter, I will highlight some of the main issues hindering methodologies

such as difference-in-difference and Vector Auto Regression, and these issues will also be the reason

why OLS is also not suitable for such analysis.

Several gaps exist in the current body of work surrounding the impact of these policies. The

vast majority of the literature concludes that containment measures effectively reduce the spread

of diseases. The degree of effectiveness has varied between research. The first gap is the lack of

research surrounding the impact of each policy on its own in lowering death rates. This is due

to the difficulty in isolating policies, especially because of variations across and within countries

regarding policy implementation. Most countries imposed their anti-contagion policies around

the same time, but individual policies varied wildly (Hale et al., 2021a). Researchers have then

had to rely on comparing aggregate responses, namely the stringency index. On the other hand,

studying the removal of policies proved to be a more manageable task. Researchers such as Cho

(2020) could quantify the impact of the removal of lockdown measures simply because it was done

asymmetrically. In their research, they study the impact of removing lockdowns in Sweden relative

to other European countries.

This chapter aims to provide a detailed and somewhat updated review of the current literature

surrounding the pandemic. As the virus devastated healthcare systems all across the globe and

with hospitals reaching total capacity at alarming rates, much research was done on the impact

that policies have had in curbing infection rates and death rates. Crucially, how policies were

implemented, and the public pressure put on policymakers resulted in a myriad of research about

the efficacy of these policies, with sometimes contradicting results. A more considerable concern

relevant to economists was the trade-off between lowering death rates and affecting the economy.

Economists such as Acemoglu et al. (2021) and Atkeson, Kopecky, and Zha (2020) show that this

trade-off does exist, but that for the U.S., it is minimal. Others, such as Davis, Liu, and Sheng
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(2021) show that the economic cost of market activity was not as severe as expected in countries

that implemented a complete lockdown, such as South Korea.

The paper is structured as follows. In section 2.2 a review of all the models that have been

used in researching the link between anti-contagion policies and lowering death rates from the

virus is presented. Each model’s strengths and weaknesses are discussed, and an explanation

for the gap in the literature that fails to address the impact of specific anti-contagion policies is

proposed. In subsection 2.3.1 I showcase several major papers that researched the direct impact on

macroeconomic variables, such as interest rates, economic activity, and government spending. The

goal of this subsection is to show how widespread this impact of the pandemic was. In subsection

2.3.2, I summarize the literature on the impact of the pandemic on the labor market. With

work-from-home mandates and wage compensation policies put in place for substantial amounts

of time, many authors aimed to quantify the impact of these policies. One of the larger bodies of

work around the impact of the virus revolves around its impact on financial markets and assets.

I explore this in subsection 2.3.3. I end the chapter in section 2.4 with concluding thoughts and

provide a brief motivation about the work in the rest of the chapters in this thesis.

Before proceeding, an important note about the scope of the chapter is needed. As mentioned,

the literature around the pandemic is vast, and in this chapter, the focus is mainly on understand-

ing the impact of policies on reducing death rates. In 2021 alone, more than 350 working papers

were presented to NBER with the COVID-19 virus as the central focus. Tackling the full range of

literature around the pandemic would be a monumental task. I choose to focus on anti-contagion

policies to show that despite the extensiveness of this research on this topic, gaps still exist. In

this chapter, there is no attempt to address the efficacy of these policies. In other words, there

is no argument being presented about the efficacy of the policies but rather the importance of

studying the impact on the loss of life, as the impact on GDP was not as bad as initially assumed

or predicted.
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2.2 Containment measures research

At the onset of the pandemic, researchers scrambled to understand the impact of the pandemic

on GDP and the impact of anti-contagion measures on the economy as a whole. Given the

different containment measures imposed early in the pandemic, there was serious concern about

an unparalleled depression of major economies, in the vein of the Great Depression of 1929.

The earliest work to tackle this was from Eichenbaum, Rebelo, and Trabandt (2021) who use

the standard SIR framework, which will be expanded on further in this chapter, to study how

household consumption decisions would be affected during the pandemic as a response to lockdown

procedures. They find that by implementing the best simple containment policy in the U.S.,

lockdowns increase the severity of the recession, with the trade-off reducing the death toll by

around 500,000 for the year 2021. The focus on the impact of anti-contagion policies is important

for economists since the research highlights a certain trade-off between death rates and GDP

when imposing anti-contagion policies, at least in the short run (Acemoglu et al., 2021) (Casares,

Gomme, and Khan, 2022). Narrowing down the impact of individual policies on death rates

provides the necessary data to conduct this trade-off analysis for individual policies rather than

general lockdown or stringency policies.

It would not be harsh to say that many policymakers implemented anti-contagion measures

without considering their effects. With a lack of data, tools, and conflicting recommendations,

government responses to the pandemic varied widely. To that extent, George et al. (2020) provide

a guide in measuring the response of political entities to this pandemic, which includes the impact

these policies had on the environment and the total deaths caused by COVID-19. More specifically,

they cite a mix of the Oxford Stringency Index and the OECD policy tracker as critical tools for

comparing government responses and their outcomes. It is essential to highlight the stringency

index, as it is the foremost measure used by most researchers when conducting work on policies.

Despite being a solid indicator of the combined effectiveness of anti-contagion policies, this index

is insufficient in comparing policy effectiveness due to how it is constructed, but it does provide a

foundation to be able to compare these policies.

This index was developed by Hale et al. (2021a), using a set of 9 different anti-contagion policies
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to build a composite numerical value. These policies are assigned values individually depending

on their stringency (from no policy being implemented to the policy being imposed with fines

applicable for not abiding by the policy). These numerical values range from 0 to 4, although not

all policies can go up to 4. The final index is built as the average of these values.

S =
1

k

k∑
j=1

Ij

where I is the indicator value of policy j with k possible policies. For containment measures,

k = 9 comprehensive policies are considered, but these can be containment, economic, or health

policies. Since indicators have different maximum values defined as Nj and some indicators were

regionally specific (applied to a capital city or only specific cities), they are assigned flags fj to

represent the impact of these indicators (targeted versus un-targeted). The authors rework the

index Ij to normalize it across policies.

Ij,t = 100
vj,t − 0.5(Fj − fj,t)

Nj

where vj,t is is the recorded policy value at time t, Fj is an indicator if the policy Fj has a flag or

not, and fj,t is the actual flag value, with Nj being the maximum value for the policy in question.

The myriad of research that has used this indicator finds a strong correlation between higher

stringency and lower death rates.

Maximum values Nj for each policy are set according to the policy’s different implementation

methods. Restrictions on gatherings can go from 0 (no restrictions) to 4 (restrictions on gatherings

of 10 people or less), with 3 being restrictions on gatherings between 11-100 people, for example.

These values are set through observations in the data and are not country-specific. While policies

are normalized, there is no inherent distinction or inclusion of the efficacy of each policy. All

scales are ordinal; therefore, the final stringency index is not enough to identify the impact of

individual policies on death rates. The generalization of the scale is one of the main reasons why

much research has focused on the mix of restrictions rather than individual policies.

When using this index, it is impossible to disentangle specific policies’ impact. The same
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stringency score value could be due to wildly different policy mixes. Controlling for these values

in regressions is impossible because of the differences between policies. This is key as to why using

the stringency index on its own is insufficient and is a possible explanation of different efficiency

values.

The following two subsections provide a relatively thorough examination of the literature that

covers both the SIR model and the traditional econometric regressions and provides detailed results

from this research.

2.2.1 SIR Model

This subsection describes the SIR model, the potential insights that can be obtained from it,

and a summary of the most prominent research results from this model. The SIR model is a basic

infectious disease model that is widely used in the literature. What follows is a description of

its basic version. A population N at time t is split into four groups. S(t) refers to the group of

individuals that are susceptible to the disease (individuals that can be infected), I(t) for those that

are infected, R(t) for those that are resistant (or recovered from the disease), and D(t) individuals

that die due to the virus. t = 0 is the start of a pandemic. At this time, several assumptions

are made about the resistant individuals, such as the fact that they can never be infected again,

or for example, in the case of COVID that S(0) ≈ 1 and D(0) = 0, but these can be relaxed for

robustness purposes. In its most basic form, the total number of people in the economy is then.

S(t) + I(t) +R(t) +D(t) = N(t)

These segments of the populations evolve over time according to the following equations

∂S(t)/∂t = −β(t)
S(t)

1−D(t)
I(t)

∂I(t)/∂t = β(t)
S(t)

1−D(t)
I(t)− γI(t)

∂R(t)/∂t = (1− υ)γI(t)

∂D(t)/∂t = υγI(t)
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Where β is the infection rate or rate with which disease is spread from sick infected individuals

to susceptible individuals, γ is the rate at which agents recover from infections, and υ is the fatality

rate. All of these parameters are positive and agents flow only in one direction, from S to D

This model allows the modelling of social distancing by reducing the infection rate β through

whatever policy is appropriate. When analyzing this basic model for a single treatment of social

distancing, Sadeghi, Greene, and Sontag (2021) find that this mandate enacted early on will

significantly reduce the peak of the infection by around 60%. However, this does not tackle the

social distancing measure used to maintain social distancing. In other words, social distancing

refers to a broad set of rules and their severity, but not the actual rule being implemented, such as

a mask or work-from-home mandates. Understanding the impact of different policies is essential to

calibrate the parameter β properly. The following subsection shows the empirical research around

specific policies.

In their research, Acemoglu et al. (2021) expand this model to include multiple groups of

infected. They split the model population into j groups where the total population of each group

is Nj from equation 2.2.1, and the total population in the economy is
J∑

j=1

Nj. In their model,

they impose two restrictions, a lockdown, and social distancing measures, to understand whether

these effects are different between age groups. They also include the possibility of a vaccine and

a cure for the virus at some point. Their results focus less on individual policies since they only

consider full lockdowns and social distancing measures as anti-contagion policies but more on

how these policies impact different groups. They find that semi-targeted policies perform better

with or without the vaccine than general policies by reducing the fatality rates by half. While

general policies reduce the fatality rate to 1.83% of the total population, targeted policies lower

this number to 1.02%, something that is improved if the groups could be separated, down to

0.71%. As with other SIR models, there is still no clear distinction between policies, meaning

they do not distinguish which policy was more effective, but rather how the different policies

affected different groups of people. Finally, they find that GDP would be lowered by these policies

anywhere between 24% and 10%, depending on the severity of the policies and the assumptions

made. They acknowledge that this is a first step in the SIR research and that their model could
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be improved by understanding how anti-contagion measures could be actually implemented. More

recent research from Casares, Gomme, and Khan (2022) provides clearer numbers and indicates

that the impact of anti-contagion policies on GDP on the long run is minimal, reducing GDP by

1% if socieconomic restrictions are implemented, and up 4% in the short run.

Alvarez, Argente, and Lippi (2020) test the optimal lockdown policy by focusing on contain-

ment measures and using a dynamic planner’s control problem within a SIR framework. They find

that a severe lockdown that covers 60% of the population, which gradually gets reduced to 20%

of the population, is ideal for minimizing death rates from the virus, or what is called flattening

the curve. Their work provides a basis for modeling the impact of lockdowns but fails to include

other containment measures. Using this model, Atkeson, Kopecky, and Zha (2020) find that for

COVID-19, the reduction in death rates is mainly attributed to the reduction of the infection

rate rather than the reduction in the susceptible population since this population does not decline

quickly enough. With the emergence of the new variants of COVID-19, this work is even more

relevant in highlighting the importance of policies that appropriately target the infection rate.

Similar to the research mentioned earlier, the gap in their work isolates individual policies or sets

of policies.

These models provide a solid theoretical background in modeling the impact of the pandemic

on fatality rates and the spread of the disease. They offer the flexibility and adaptability to policies

such as vaccine or mask mandates (Alvarez, Argente, and Lippi, 2020), teleworking mandates, or

multi-group distinctions (Acemoglu et al., 2021), through various parameters and improvements

to the basic SIR model. While these parameters can capture some of the impacts of these policies,

a bloated model that considers all the different policies (together or separate) will be difficult to

calibrate. It is necessary to complement this work with a quantitative approach that provides a

way for economists to properly disentangle the effect of these policies relative to the magnitude

of their implementation. When looking at the current state of the empirical research, there is

no thorough work done on the individual impact of these policies. The majority of the current

quantitative work also uses the stringency index as a proxy for overall policy implementation,

which also poses another issue, the policy implication of such research. As mentioned before, this
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index does not differentiate between the relative efficiency of each of these policies implemented.

The same stringency score could be achieved through various policies and outcomes. In order to

provide policymakers with the right tools, it is essential then to tackle these individual effects.

In the following subsection, I present an overview of the empirical research in terms of both

methodologies and results until this chapter is written.

In this subsection, literature relevant to this dissertation’s scope are highlighted, by focusing

on specific improvements to the SIR model that attempt to model current anti-contagion policies.

This model can be extended to many different applications, and this evident in the various research

of Abuin et al. (2020), Gevertz et al. (2021), Broek-Altenburg and Atherly (2021), and Albi,

Pareschi, and Zanella (2021).

2.2.2 Empirical research

March 11th, 2020, was the day that the World Health Organization declared the COVID-19

outbreak a global pandemic Cucinotta and Vanelli (2020). Containment measures were imple-

mented far and wide across countries, and six months later, empirical literature about the impact

of these policies followed. While early on, theoretical models such as the SIR provided predictive

analysis about the efficacy of lockdowns, researchers quickly tackled government responses to this

pandemic. Most empirical literature relied on either a Difference-in-Difference or a structural Vec-

tor Auto Regression (VAR) approach. In this subsection, I present this research, its results, and

the shortcomings or issues that researchers faced.

Deb et al. (2020) consider the impact of overall containment measures for a panel of interna-

tional countries by using the stringency index as an explanatory variable. They use a difference-

in-difference method to study these policies’ impact. They find that quicker implementation of

measures resulted in a 10-20% reduction of deaths compared to later adopters of measures by

looking at the timing of the increase in the stringency index. Their research, however, does not

quantify the impact of individual policies in reducing these death rates.

Another critical problem in their research is an endogeneity issue that arises when conduct-

ing this type of empirical work. Whether the dependent variable was a policy indicator or the
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stringency index, case rates and death rates can be considered significant determinants for these

variables. It would be expected for any government entity to impose these restrictions as a re-

sponse to high death rates. Expecting the endogeneity to have a similar effect across policies is

also a bit naive. However, it is a workaround that some papers used to abstract from this issue

purely out of convenience and lack of instruments to be used. Another issue with this and other

econometric models is a feedback loop between policy implementation and individual behavior.

As governments implement various policies, individuals might see this as a signal to self-impose

certain restrictions, which might overstate the actual impact of these policies. Another endogenous

issue that cannot be tackled by their Difference-in-Difference model is the response of individuals

to the pandemic ahead of government restrictions as highlighted by Casares, Gomme, and Khan

(2022). The Synthetic Control Method provides an elegant solution to this problem by a method

called backdating that will be discussed further in this dissertation.

Data quality is also varied and incomparable for many countries, especially developing nations.

While the stringency index might be more consistent across the board, relevant variables for

the Difference-in-Difference regression such as testing data, mobility data, death rates, or air-

quality data are questionable. Think testing data for various countries. These values tend to

be very politically motivated, with some countries either under-reporting or not providing any

testing data (Deb et al., 2020). The same can be said for death rates, where transparency in

reporting deaths from COVID-19 is not always assured, as some states under-reported the deaths

from the virus. The Difference-in-Difference approach might not be suitable in this case. These

measurement errors can result in data not being considered for the regression, an underestimation,

or overestimating the impact of these policies.

It is difficult then to assess the true impact of the stringency index’s impact, given that it could

be composed of different policy mixes. This can lead to biased results when it comes to policy

implications. The fact is that the Difference-in-Difference methodology does not allow its users

much flexibility when tackling individual policies. However, there are robustness exercises that

can be done. Several authors attempt to deal with the shortcomings of the Difference-in-Difference

methodology of estimating policy effects.
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Some studies have tried to work around these by including more variables such as Jamison et

al. (2021). The trade-off is that the model was often too complicated, and in the case of Jamison

et al. (2021) was only able to be estimated for a period of two months only. This was due to the

lack of data for all the variables considered in this model. Given these issues, and at the time of

writing this chapter, no paper has tackled the individual effects of anti-contagion policies within

or across countries.

To show the gap in the data, I discuss key results from different empirical research. The con-

sensus is clear that anti-contagion policies have an impact on reducing death rates, arguably only

in the short term. In a cross country study spanning 13 countries, Jamison et al. (2021) compare

the impact of self-imposed behaviour changes (such as no gatherings, or voluntary isolation), to

government imposed restrictions on the death rates from COVID-19. They consider deaths from

the virus between 16-20 days after the start of the following form

∆i,t = α + β1behavior + β2Policy + γXi + θu + µ1t+ µ2t
2 + ei,t

where behavior and policy are dummy variables that indicate the policies mentioned above.

They conduct a simple regression and test for aggregated and disaggregated policies; namely, they

focus on the stay-at-home policies. They acknowledge that their approach is simplistic and do

not complicate their model for this study because of computational needs. Their main finding is

that government-imposed restrictions are more effective than self-imposed restrictions. They also

found that only three restrictions were significant. They concluded that workplace closing, event

restrictions, and size gathering restrictions are the only significant restrictions by the government.

This conclusion is indecisive since their sample size and robustness tests are limited. The key

finding here is that policies are not equal in their impact. Endogeneity is once again an issue, as

well as omitted variable bias.

In one of the more detailed papers concerning anti-contagion policies, Chernozhukov, Kasahara,

and Schrimpf (2021) deviate slightly from the standard empirical literature and use a Wright-type

causal path model, a structural model of econometrics, to find the impact of 6 different policies on

death rates. These policies are imposing masks for employees, closing K-12 schools, stay-at-home
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orders, closing restaurants except take-out, and closing movie theatres and businesses. They tackle

how policy and behavior impact death rates and the interaction between policy and behavior.

Similar to most empirical research, self-selection is present in their model and is acknowledged.

While they try to abstract from it, the feedback mechanism mentioned earlier is still likely present.

They suggest that had mask mandates been implemented in March 2020, deaths from COVID

could have probably been lowered by 19 to 47 thousand over the three months from March to

May 2020 in the United States. This research only focuses on the implementation of national

policies. As with all the research mentioned earlier, there is no ability to properly analyze the

asymptotic implementation and removal of policies. This means that they do not assess the impact

of individual policies nor do they compare the impact for different states. This major caveat means

that the actual final impact of state policies is ignored.

In a more localized setting, Huber and Langen (2020) study the impact of two anti-contagion

policies on death rates in Switzerland and Germany. These are mask mandates and restrictions

on gatherings. Once again, they use standard OLS models for estimations for Switzerland and

Germany. They find that implementing these policies reduces fatalities by 0.6 cases per 100,000

one month after their implementation, and the effect remains steady for two months (60 days)

after their implementation.

Given the already established results from empirical work and the highlighted issues of these

models, this paper proposes an alternative model that does not suffer from such issues, that is

relatively new, but is also computationally more intensive, and that is the Synthetic Control

Method.

2.2.3 Synthetic control

A recent paper by one of the authors of the synthetic control method discusses the relative

importance of this model in quantifying the impact of all kinds of policies (Abadie, 2021). In this

paper, he provides a literature review on various ways this technique has been used and highlights

the topics covered, including economic and non-economic subjects. These subjects range from

taxation policies (Kleven, Landais, and Saez, 2013) to right-to-carry laws (Donohue, Aneja, and
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Weber, 2019), to election results post large disasters (Heersink, Peterson, and Jenkins, 2017), and

even in medical research such as (Wedel and Pieters, 2017) and (Bouttell et al., 2018). I have

highlighted this method previously in chapter 1 and outlined the mathematical intuition behind

the model. In this subsection, and to be concise, I proceed with showcasing the benefits of using

this model in studying the effects of policies throughout the pandemic on reducing death rates

from COVID-19. This is contrasted with the previously discussed econometric models and how

this method can be used to provide calibration to more theoretical models such as the SIR model.

When considering the traditional econometric models used in the literature, an initial advantage

of the Synthetic Control Method over these models is that the issue of omitted variable bias is

no longer present, at least not in the same way discussed above. The Synthetic Control Method

uses co-factors and the variable of interest prior to the occurrence of an event to model the impact

of said event. While issues with this approach exist, omitted variables can be seen by having

bad pre-treatment fit the treated variables. In other words, if there is not enough data on the

treated variable before the treatment, then the model might over or underfit the data prior to this

treatment. This can be easily remedied through an augmented synthetic control model proposed

by Ben-Michael, Feller, and Rothstein (2021). Their model shows that when there is a lousy fit

prior to treatment in a traditional Synthetic Control Method, it is still possible to achieve accurate

results by de-biasing the Synthetic Control Method using ridge regressions for the pre-treatment

data.

Since COVID infection and death rates were recorded daily for specific countries or states since

the start of the pandemic, the previously mentioned problem is only an issue when trying to predict

the impact of policies implemented early on in the pandemic since there is little in-sample data

available to build counterfactuals. This is a clear advantage of the Synthetic Control Method over

its other counterparts because the need for in-sample data is minimal as compared to something

like Difference-in-Difference.

Donor selection is also not an issue when using Synthetic Control Method since . Li and Shankar

(2020b) show how, when running through different sample permutations, the pre-treatment fit for

the treated variable was significantly more accurate than Difference-in-Difference when applied to
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retail store sales for the same sample. This is also discussed by Abadie (2021) in his literature

review of the synthetic control method, where he shows that the Synthetic Control Method pro-

duces a more accurate pre-treatment fit than a Difference-in-Difference approach for any particular

sample.

In the context of the pandemic, Cho (2020) first applied the synthetic control method to

Sweden to quantify the impact of removing lockdown on death rates and infections. A significant

contribution to this paper is that Cho, 2020 shows that using a Difference-in-Difference approach

produces similar results to the synthetic control method when applied to Sweden. The advantage,

in this case, is that the synthetic control is a more suitable and robust tool for undertaking such

a task because of the ability to detect omitted variable bias and correct for endogeneity. In

his paper, he highlights donor requirements within the synthetic control method and presents a

clear benchmark for applying this method to other pandemic scenarios. However, in his paper,

Cho (2020) only studies the impact of completely removing the lockdown in Sweden and its

impact on the death rates. Similar to much of the literature, this only compares the impact of a

selection of anti-contagion policies to none. In fact, in his paper, the donors are selected based

on their stringency index level, regardless of what policies they implemented. He also highlights

the importance of undertaking work similar to Chernozhukov, Kasahara, and Schrimpf (2021)

using the Synthetic Control Method and calls it a “worthwhile project to pursue”. In terms of

results, he finds that early removal of the lockdown increased death rates by 25%. This number

is depressed because people will self-select into these policies even without a requirement imposed

on them. An issue not discussed in the paper is that the definition of early removal is vague.

There is no expectation that strict lockdowns will last forever, which then begs the question,

at what point is it optimal to remove the lockdown? Given that the author only looks at one

country and at one particular time, without comparing the effect of this removal to other similar

scenarios, it is hard to answer this question without looking at the result of the removal of policies

in different locations. In the following chapter of the thesis, this topic is tackled by considering

more treatment groups, more treated periods, and more variables, specifically vaccination rates.

Alfano, Ercolano, and Cicatiello (2021) use this method to study the impact of school opening
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on death rates in different regions of Italy. They show that for a particular region, 15 days after

the opening of schools, there is an increase in death rates by around 20% compared to what it

should have been. This effect persists for around 50 days after the opening of the schools. Using

the Synthetic Control Method Mills and Rüttenauer (2022) found that COVID-19 certification

(negative test, vaccination certification) led to an increase in vaccination rates in a panel of six

countries.

The Synthetic Control Method has gained traction when it comes to studying the impact of

the pandemic. Alfano, Ercolano, and Cicatiello (2021) use this method to study the impact of

school opening on death rates in different regions of Italy. They show that for a particular region,

15 days after the opening of schools there is an increase in death rates by around 20% compared to

what it should have been. This effect persists for around 50 days after the opening of the schools.

Using the Synthetic Control Method Mills and Rüttenauer (2022)find that COVID-19 certification

(negative test, vaccination certification) led to an increase in vaccination rates in a panel of six

countries.

The benefits of the Synthetic Control Method help tackle the issues presented in the empirical

research. For starters, the requirements for larger samples and large amounts of observed variables

are not necessary to conduct an accurate Synthetic Control Method regression, which, compared

to traditional regression methods, is a significant advantage. Unlike techniques such as Difference-

in-Difference, the Synthetic Control Method requires a relatively more minor pool of controls and

can produce consistently better and more accurate results at the expense of computational time

ONeill et al. (2016). Another benefit is what Abadie (2021) calls “Transparency of the Fit”.

The Synthetic Control Method provides detailed information about the co-factors of the synthetic

unit, the actual treated unit, the control group chosen to build the synthetic model, and the

complete data set used. Finally, the Synthetic Control Method only requires data up until the

occurrence of an event for the treated variable. Unlike other regression methodologies such as

OLS, ML, Difference-in-Difference, or any time-series models, no observations of the control group

are needed past the treated period. In fact, as a robustness exercise, it is common only to take

part in the pre-treatment periods to obtain synthetic weights and use the rest of the pre-treatment
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to verify fit. This again highlights that while large data sets are clearly desired, the Synthetic

Control Method can work in situations where this is not the case.

This method is not without any shortcomings. As Abadie (2021) mentions, inference testing

is probably the most significant limitation of this method. Compared to traditional parametric

regression methods, inference for Synthetic Control Method regressions relies heavily on control

group selection. While successful regressions can be conducted with smaller control pools, there is

a higher chance of rejection relative to traditional statistical inference. Another issue is the ease

of use/replication of the method. As of the date of writing of this paper, very few libraries exist

that support Synthetic Control Method, which limits researchers’ ability to use this technique.

Another standard limitation in a lot of the empirical research is that the Synthetic Control

Method can be biased if there are expectations of policy changes, such as the announcement

of the implementation of policies ahead of time. One proposed solution is to set the treatment

period to the announcement date, not implementation. In the case of COVID policies, this is not

necessary. First, announcements of policies being implemented were usually expected. Second,

there was little evidence mentioned in the literature about self-selection in measures such as school

closings, work-from-home orders, restrictions on gatherings, or restrictions on public events. Even

so, assuming that this expectation exists, compared to traditional methods, the Synthetic Control

Method offers an elegant solution to this issue. An easy way of handling this self-selection bias

is backdating the treatment periods and assuming that it starts from the date of announcement

of a policy, or for even more robustness, that it starts when individuals notice a sharp increase in

death rates since that could be interpreted as a signal to engage in social distancing measures. The

researcher then conducts the regression with that period as their treatment period. In this way, the

Synthetic Control Method circumvents this major pitfall of the previous empirical methods. For

this research, I conduct both backdating events to ensure no bias in the synthetic model results.

2.3 Other pandemic effects

In this section, I summarize the literature that has explored other areas impacted by the

pandemic. Much research has been done so far, and it is almost impossible to pack all of it com-
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prehensively. For each topic, I highlight the earlier research that was done and complement that

with more recent literature in the hopes of showcasing the progress that had been made from

the start of the pandemic. What is of relevance to my research are the models and econometric

techniques used in these different papers, as some of them use the SIR model. In contrast, others

have used specific econometric techniques, including Difference-in-Difference and the Synthetic

Control Method. I cover the impact of the pandemic on GDP, firm production, and household

consumption across countries, the impact on the labor force and how containment policies affected

unemployment, and finally, how financial markets reacted to the pandemic and containment mea-

sures.

2.3.1 Impact on GDP, firms, and households

Fiscal stimulus was an essential policy tool to mitigate the pandemic’s potential effects. Auer-

bach et al. (2021) find that the restrictions on economic activity severely impact the economy’s

supply side, reducing the effectiveness of government spending and the size of the fiscal multiplier.

They conclude that fiscal policy should not be a simple reaction to the economy’s contraction.

However, they should consider the channels through which this downturn affected the economy,

in this case, worldwide supply lines. Similarly, Baldwin and Freeman (2021) tackled the solution

provided to this issue at the beginning of the pandemic, which was shorter and more domestic

supply chains. They find that global supply chains did not simply cause economic shortages. The

design of these chains, while partly responsible for the economic downturn, was also why vaccines

and medical supplies were deployed rapidly worldwide.

In another paper, Lu et al. (2021) develop an agent-based model for Idaho’s potato supply

chains. They show that producing versatile input (such as potatoes) can stabilize prices and

reduce the impact of supply chain disruptions by about half. Industries with such input did not

experience severe disruptions in their production, lessening the impact on GDP. More specifically

they talk about food differentiation which can alleviate risks in the food supply chain.

Using a panel Vector Auto Regression model , Ludvigson, Ma, and Ng (2020) study the econ-

omy’s response to a significant natural disaster shock by calibrating this shock to the March 2020
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effect of the COVID-19 virus on the U.S. economy. They find that such a shock leads to a monthly

decrease in GDP equal to 12% per month and that in the mildest case, they expect a drop of 20%

in production over 12 months. They also find that persistent adverse shocks increase the duration

of macro uncertainty by the length of the shock. However, they highlight caveats in their research.

The large shocks selected for predictions in their model did not impact production as much as the

pandemic did and the policy responses to these were more localized. They Baker et al. (2020) use

a Vector Auto Regression model calibrated to large disasters to assess the impact that the uncer-

tainty caused by COVID has had on GDP. They use an empirical model with moments calibrated

to the COVID-19 shock. They find that a year-over-year contraction of 11 percent is expected

at the peak, two quarters after the pandemic’s start. They find that more than half is actually

induced by uncertainty. This model considers the different restrictions put in place and finds that

these restrictions on their own cannot explain the contraction in GDP. This is, in fact, relevant

when discussing policies to be implemented and comparing the trade-off between loss of life and

contraction of GDP. Disaster models are well fitted to analyze the impact of the pandemic, and

the Synthetic Control Method is a suitable model to calculate such shocks.

Similarly, Jones, Philippon, and Venkateswaran (2020a) study the macroeconomic differences

between large economic disasters such as wars or earthquakes and pandemics. More specifically,

these disasters tend to be short-term relative to the length of a pandemic which can span several

years, necessitating different responses from policymakers. While large disasters destroy capital,

pandemics do not, reducing the return on investment as labor becomes scarce. Their analysis

suggests that the pandemic would have reduced the natural interest rate under typical situations.

However, given the nature of the disease, it is likely that this rate will go up precisely due to

aggressive fiscal expansion. They contrast this to traditional natural disasters, more specifically

in poorer countries.

2.3.2 Impact on labor force

There is no denying that the pandemic has caused severe disruption to the labor market. Un-

employment from the closure of businesses is a significant concern, but another critical topic is
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the transformation of initial work-from-home mandates from temporary solutions to permanent

realities. On top of this, one of the more controversial containment policies that countries world-

wide implemented was wage compensation or wage subsidies. The biggest fear was that it would

incentivize workers not to work, leading to high levels of unemployment and lower production.

While the exact details of these policies differed between states and countries, the main objective

behind such policies was to offer immediate compensation to workers who lost jobs due to the

pandemic and potentially lower the pandemic’s impact on consumer spending. In some cases,

there was also an aim to provide a stopgap for workers until work from home was established as

an alternative to on-site work. Amongst economists, there is a general agreement that working

from home will be a part of the labor market moving forward (Brueckner, Kahn, and Lin, 2021)

Eberly, Haskel, and Mizen, 2021.

In their paper, Bai et al. (2021) show that the transition to a more digital economy has made

jobs and firms more resilient to shocks, using a difference-in-difference framework. They build a

work-from-home index for firms and find that this index increases uniformly across firms after the

pandemic, signaling a higher ability to conduct work from home even after the pandemic is over.

This result is in line with work from other authors such as Eberly, Haskel, and Mizen (2021) and

Brueckner, Kahn, and Lin (2021).

On a different note, Rojas et al. (2020) measure how school closures impacted the job market

conditions of states in the United States, more specifically, unemployment. The key takeaway

from their paper is that this dramatic increase in unemployment was due to the response to the

pandemic by households, not the mitigation strategies themselves. In other words, policies did not

result in increases in unemployment. Local anti-contagion policies (specifically school closures)

seemed to have little impact on the labor market.

Using register data from Norway, Alstadster et al. (2020) find that the majority, or around

90%, of layoffs were temporary. They find that the rise of unemployment overstates the loss of

output by about a third but that the majority of the impacted population is the most vulnerable

population, i.e., less-educated workers or women with children were more likely to be laid off

during the pandemic.
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Substantial work has also been done to understand the impact of governments’ responses to

the pandemic. The consensus is that these programs did not increase unemployment. The findings

of Bartik et al. (2020) or Holzer, Hubbard, and Strain (2021) suggest that there was no correlation

between governmental programs and unemployment. Results that were tested by authors such as

Finamor and Scott (2021) using a standard regression model.

Dube (2021) uses difference-in-differences to estimate the employment effects of the United

States unemployment benefits program offered during the pandemic. He finds similar results to

previous work and finds that this policy did not have any substantial and long-term adverse effect

on the job market, even after its expiry. Moreover, while Marinescu, Skandalis, and Zhao (2021)

found that these welfare payments decreased competition in the labor market between applicants,

and there was a decline in job applications being sent. Their results, however, still find that these

payments did not decrease employment.

2.3.3 Impact on financial markets

An important component of modern markets are financial assets, and a lot of work has tried

to understand the impact that the pandemic had on asset prices such as Davis, Liu, and Sheng

(2021), Alfaro et al. (2020), and Ramelli and Wagner (2020).

Davis, Liu, and Sheng (2021) find that asset prices fell between 20 to 50 percent in countries

around the world. This drop was followed by a drop in economic activity about three weeks later.

This was the trend in 32 out of 35 countries in their panel, with the notable exceptions being

South Korea and Taiwan, where in the former, there was only a minor drop in economic activity,

and in the latter saw none at all. China was the only country that saw a contemporaneous dip in

economic activity and asset prices. The key finding of this paper is that asset prices served as a

strong indicator of incoming economic activity decline.

A key finding of the paper of Davis, Liu, and Sheng (2021) is that the most efficient policy

responses to the pandemic involved rapid implementation of virus containment efforts but not

necessarily strict lock-downs on economic and social activity. This means that mask mandates,

social distancing, or work from home requirements had little impact on economic activity, but
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as per the authors this part of their research was not extensive, and only looked at groupings of

lock-down measures, but not individual measures, and in fact, does not account for the varying

effects of individual measures.

This work improved previous work done by Alfaro et al. (2020). Alfaro et al. (2020) try to

understand the link between infection rates and asset prices throughout the COVID pandemic in

the United States and the SARS pandemic in Hong Kong. Using a standard model of Infectious

diseases (SIR), they find that unanticipated changes in predicted values of infection rates across

the U.S. forecast next-day stock returns. More precisely, they find that if predicted values of

infections double, stock returns drop by 4 to 10 percent, and vice versa. Their work mirrors that

of Ramelli and Wagner (2020), who found that the most significant indicators for firms’ stock

prices during the pandemic were debt ratios and cash reserves.

Eichenbaum et al. (2020) find that older consumers reduced spending more than younger

consumers when the pandemic hit. A pandemic is a low-probability event with significant conse-

quences (similar to a disaster). They find that their result is consistent with the theory around

natural disasters. The theory states that as people age, they become more risk-averse in the face

of disasters. This is important in formulating the appropriate containment policies for different

age groups in a country.

Another crucial financial market asset is life insurance. These assets play an important role in

an individual’s lifetime savings and behavior and are tools that are highly affected by containment

policies. Since higher mortality risks are generally linked to lackluster containment policies, it

is crucial to understand how these policies affect life insurance contract prices. Harris, Yelowitz,

and Courtemanche (2021) find that these prices did not fluctuate during or after the pandemic.

The mortality rates being relatively low compared to the population and the rapid deployment

of containment policies across different states in the U.S. resulted in a relatively small increase in

life insurance prices.

Finally, Acharya, Engle III, and Steffen (2021) study the crash of bank stock prices in the early

onset of the pandemic. They find that while all bank stocks were heavily impacted during the

pandemic because of an increase in lending risk, banks with higher liquidity performed relatively
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better, similar to the 2007 mortgage crisis. Markets still perceive this as a binding constraint to

their activities. The quick fiscal stimulus response served as a dampener on this crash relative to

the 2007 crisis.

2.4 Conclusion

Very few events have garnered as much attention from researchers as the COVID-19 pandemic

has. Two years later, and economists are still working on identifying potential repercussions of

different anti-contagion policies, and the pandemic itself, not only to better prepare for future

mutations of the virus, but also any similar events that might arise such as large and natural

disasters from climate change.

This chapter asks three questions about anti-contagion policies and the pandemic. First, what

can be concluded from the current research, and what is still missing to better understand the

effectiveness of different policies on lowering death rates from the COVID-19 virus? The second

question asked is how are researchers currently tackling the gaps in the research and what are some

potential avenues that can be explored. Finally, how do these policies impact different economic

variables, and what is the trade-off between human and economic costs.

These questions are answered to an extent in this chapter. First, the current body of work shows

the importance of anti-contagion policies in reducing death rates, and that the economic trade-off

of these policies is minimal, especially in the long run. There is still however gaps surrounding

the impact of individual policies. This gap is being tackled through the use of different models,

and the Synthetic Control Method is a powerful tool to conduct such research. The first chapter

of this thesis discusses the Synthetic Control Method’s ability to quantify the impact of policies

in handling large crises. The rest of the thesis tackles the first two questions posed in this chapter

that have not been explored in great detail in the literature around the pandemic. The first is the

targeted impact of anti-contagion policies on deaths in the United States. While much research

has worked on the combined impact of these anti-contagion policies, or just the economic subsidy

policy, I focus on unravelling the individual policies themselves, thereby providing policymakers

with more accurate data on the impact of such policies. Secondly, I focus on the cumulative
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effect of these policies throughout the pandemic, and I propose a novel approach to the Synthetic

Control Method. Much of the literature has discussed the differences between large economic

disasters (financial or natural) and the pandemic and has used the Difference-in-Difference policy

to conduct such analysis. As mentioned by Abadie, Diamond, and Hainmueller (2010a) and Li and

Shankar (2020b) the Synthetic Control Method is often a better tool for studying policies than

Difference-in-Difference for studying the pandemic since it can be used to analyze more events

with a looser restriction on available data. While the Synthetic Control Method is a great tool for

policy analysis, it is not always suitable for quantifying the total impact of anti-contagion policies

in its basic form. I propose changes to this tool that could be applied to other similar responses.
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Chapter 3

Assessing the effectiveness of anti-contagion policies in

The United States using a synthetic control method

approach

Abstract

The COVID-19 pandemic is the most studied event of the last ten years. With several viruses

already spreading since the original variant and potentially more to come, understanding the

impact of anti-contagion and social distancing policies is crucial. I present an empirical model

that tackles the impact of each policy on curbing death rates from COVID-19. The studied period

is over 490 days and covers seven policies implemented in 50 U.S. states. The results show the

difference in the effectiveness of each policy. For example, closing schools resulted in a potential

reduction of death rates from COVID by 12%. On the other hand, restrictions on gathering on

average reduced death rates by up 3.86 times their predicted value, or by 4 cases per 100,000.

This was also the most efficient policy having a significant impact almost 80% of the time 30 days

following the implementation of the policy. The 20% gap is most likely due to lack of enforcement

of such a policy, since backdating was conducted on all events to ensure that self-selection was not a

possibility. At the same time, closing schools was shown to be the least effective in reducing death

rates. I find that with at least 70% of the population vaccinated, death rates are not significantly

affected when removing anti-contagion policies.
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3.1 Introduction

The COVID-19 pandemic proved just how unprepared countries were for such an event in terms

of the ability of their healthcare system to handle the shock and their policy responses. Actions

taken during the pandemic to curb the death rate (or flatten the curve) varied wildly between and

within countries, mainly due to the plethora of policy options that policymakers and scientists

proposed. These include, but are not limited, to policies such as imposing the use of masks in

confined spaces (Rancourt, 2020), lockdowns (Acemoglu et al., 2021), social distancing in public

areas, restrictions on gatherings (Deb et al., 2020), or work-from-home orders (CDC, 2021).

Initially, without much data or proper understanding of the impact of the different policies,

policymakers imposed and removed different restrictions with various claims about the effectiveness

of these measures thrown around. There was literature evidence backing many of these claims, and

the variance in the stringency of these policies varied wildly. The literature surrounding COVID-

19 anti-contagion policies has since exploded, with many authors trying to understand the impact

of anti-contagion policies. Some have measured the effect of stringier contamination policies on

death rates, such as Hallas, Hatibie, Koch, et al. (2021a), World Health Organization (2020), and

Hsiang et al. (2020). Others have looked at the long-term effect of the pandemic on economic

growth (Famiglietti and Leibovici, 2021), (Acemoglu et al., 2021). From the start of the pandemic

in February 2020, different policies have been implemented worldwide with varying outcomes and

not always with the desired impact (Deb et al., 2020). There are many difficulties in separating

the impact of individual policies, such as the random and often overlapping implementation of

anti-contagion policies, lack of data, or model restrictions. Chapter 2 discusses these in more

detail.

This chapter contributes to the research by identifying the effectiveness of anti-COVID mea-

sures separately in reducing death rates. This research aims to provide more insightful recom-

mendations for policymakers for future waves of COVID-19 or similar events by understanding

the impact of individual anti-contagion policies. Removing policies is also a contested topic, and

this chapter identifies the effects of removing policies on death rates. Anti-contagion policies were

always meant to be temporary. However, given how quickly the virus can spread and mutate,
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it was essential to identify what conditions were necessary to ensure the safe removal of these

policies and not increase death rates. This chapter is an ex-post performance review of handling

the pandemic for different U.S. states.

The overlapping implementation of these policies means it is difficult to disentangle the singular

effect of each policy. Using the traditional Synthetic Control Method (Synthetic Control Method)

proposed by (Abadie, Diamond, and Hainmueller, 2010a), I study different anti-contagion policies,

such as movement restrictions, curfews, and workplace closing, as well as one economic policy,

namely, a wage subsidy. Chapter 2 of this thesis showed precisely why this methodology is more

suited to analyze the effect of these policies than traditional policy analysis methods. Another

benefit of understanding the impact of each policy on reducing death rates is that it provides a

springboard for economists to tackle the trade-off of implementing a policy on death rates versus

economic impact. A policymaker is incentivized to apply the policy that reduces the death tolls

the most while having a negligible impact on the market.

The results show that all policies were significant in reducing death rates from the virus, but

they did not have the same level of impact. In other words, they did not all reduce death rates the

same way and for the same duration. The least efficient was closing schools, reducing death rates

on average by 0.1 per 100,000 during the same period. The results indicate that imposing these

policies reduced deaths by 60,000 to 200,000 from March 2019 to June 2020. On the other hand,

removing restrictions on a population that is not well vaccinated leads to an increase in death tolls.

When the population is sufficiently vaccinated, removing restrictions does not impact the death

rates. Sufficiently, in this case, refers to vaccine rates above 75%, where removing restrictions with

such conditions had little to no impact on death rates. This is discussed in the results section of

this chapter.

The rest of the paper is structured as follows. Section 3.2 explores the most up-to-date literature

surrounding the pandemic and the Synthetic Control Method. Section 3.3 details the data used

and the methods of selection for the data. Section 3.4 develops the model used in this chapter

and sections 3.5 and 3.6 describe the results and the conclusion of the paper.
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3.2 Literature

Various authors have voiced fears of variants of COVID-19 or other viruses from the same

family replicating the pandemic’s initial impact (Wong et al., 2020), (Wise, 2021). Understanding

how the current response to the pandemic has affected infections and death rates is vital in ensuring

quick recovery in the future and reducing the impact that this virus has had on human lives and

the economy. This trade-off was highlighted in Chapter 2, and it can even be extended to other

viral events that may not necessarily be of the same magnitude but are more localized.

As the virus spread in U.S. states, anti-contagion policy implementation was varied between

these states. However, it almost always included gathering restrictions, closure of public transport,

work from home orders, restrictions on movement, curfews, and international travel restrictions.

The stringency of these policy responses has also fluctuated across states since the start of the

pandemic as measured by the Oxford COVID-19 Government Response Tracker indicators. The

average of the stringency index across states spiked early in the U.S. with a low variance to this

index, indicating strict anti-contagion policy implementation for all states. There was a precipitous

drop in the average stringency index April 2020, and it steadily went down over that period. Over

the same time period, the variance of the index remained high and steady, with only a tiny drop in

April 2020, and remained at consistently high levels after June 2020. This means that while U.S.

states had initially decided to lower restrictions, a sizeable portion of them decided to increase

their restrictions throughout the pandemic to curb death rates further. This also indicates that

there was very high variance between states in terms of strictness of these policies. The peak

amount of policies implemented was April 2020, with an average of 5.8 policies implemented by

the 50 U.S. states. Since then, fewer and fewer states have had active closures and containment

policies. Figures 3.1 and 3.2 show the mean and variance of this index. By July 2021, only 31

states had more than one restriction actively enforced.
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Figure 3.1: Average stringency index across U.S. states
1

Figure 3.2: Standard deviation of stringency index across U.S. states
2

this chapter also provides a performance review of policymakers in different U.S. states. A de-

scriptive analysis of U.S. response to the pandemic Hallas, Hatibie, Koch, et al. (2021a) found that

for a panel of states, the regional and political variation in stringency was significant throughout

the pandemic and even widened within states, with Democrat-led states having the most strin-

gent policy responses and Republican-led states having the least. Targeted geographic policies

continued to exist even when states lifted state-wide policies. In Republican-led states, policies
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were more stringent in cities that leaned more towards the Democrats than in rural areas, while

the same was not valid for Democratic-led states. In their work, however, Hallas, Hatibie, Koch,

et al. (2021a) fail to account for the relative importance of the population density of these cities

in the decision-making process of removing restrictions. Political considerations often overshad-

owed the realities of the data in other countries. Abbasi (2020) criticizes the United Kingdom’s

response as inefficient and unstructured in terms of the implemented policies, with politics and

optics overshadowing proper policy making. He mentions that the reality of deaths in hospitals

and care homes looked entirely disconnected from government COVID-19 briefings.

In a seminal paper concerning the impact of the pandemic, Hsiang et al. (2020) use a simple

susceptible-infected-recovered (SIR) disease model to evaluate the effect of anti-contagion policies

on the growth rate of infections and death rates. They find that these policy actions significantly

slowed the growth rates of infections across a panel of six countries, China, South Korea, Italy,

Iran, France, and the United States, and prevented or delayed around 519 million cases of COVID-

19. They do not tackle death rates, a shortcoming in their paper. Chinazzi et al. (2020) find that

an international travel ban resulted in a 77% reduction in the potential spread of new cases from

China to neighboring countries.

Jones, Philippon, and Venkateswaran (2020b) extend a basic representative-agent framework

to understand the optimal containment policy in a pandemic. They propose extending the neoclas-

sical model to include contagion dynamics such as social distancing and working from home. They

find that relative to the incentives of private agents, a planner wishes to significantly front-load

mitigation strategies and that the prospect of mitigation, together with the possibility of agents

working from home, gives quantitatively meaningful reductions in the spread of disease.

The consensus in the research is that these anti-contagion policies were critical in reducing

either case rates or deaths. However, little has been done to identify each policy’s impact on its

own. In their paper, Famiglietti and Leibovici (2021) investigate the impact of containment policies

on economic activity using a VAR model. They find that these measures successfully curbed the

spread of the virus, with only a transitory impact on economic activity, while also highlighting

the importance of economic policies as a complement to health policies. In their model, they use
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exports of every state as a measure of economic activity. Finally, using the OxCGRT stringency

index for a panel of 32 countries and using an updated version of the model proposed by Hsiang

et al. (2020), Dergiades, Milas, and Panagiotidis (2020) found that anti-contagion policies were

effective in the full list of countries studied and that the higher stringency index values equated to

bigger drops in both case rates and death rates. Specifically, in certain countries, confirmed cases

and deaths were reduced by more than 90 percent relative to the underlying country-specific path

in the absence of anti-contagion measures.

In order to study these individual effects, I use the Synthetic Control Method as outlined

initially by Abadie, Diamond, and Hainmueller (2010a). This chapter adds to this method by

using the improvements outlined in chapter 1, loosening the restrictions on the weights of the

control regions in a two-step synthetic control method proposed by Li and Shankar (2020b), and

by using different inference methods outlined by Abadie (2021), to ensure the robustness of the

results. These improvements will be discussed in section 3.4. There are several arguments for using

the Synthetic Control Method to conduct this analysis. As mentioned in chapter 2 and earlier

subsections, the different timings of implementation and removal of policies are suitable for this

model as it allows for the study of different policies in isolation. In their paper comparing different

econometric tools for policy evaluation, Athey and Imbens (2017) referred to the Synthetic Control

Method as “[...]arguably the most important innovation in the policy evaluation literature in the

last 15 years”.

Other authors, such as McClelland and Gault (2017) also test changes to the original Synthetic

Control Method method used by Abadie, Diamond, and Hainmueller (2010a) and argue that the

method is robust to a slew of alterations and modifications. For this chapter, an advantage of

the method is the length of the significance of any particular event. McClelland and Gault (2017)

find that the while the standard Synthetic Control Method model loses some predictive power

for more extensive time series, or in other words, the accuracy of the predicted value is high for

smaller series, depending on the quality of the data used in predictions, up to T < 100. Due to

the limitation of the data set used in this chapter, only the first sixty days after the occurrence

of an event are considered in the analysis and results, meaning the results from any significant
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events would be valid over the entire period of consideration. Finally, to avoid the issue of multiple

treated units (regions experiencing the same event simultaneously), the improvements proposed

by Kreif et al. (2016) are considered. More specifically, optimal weights are relaxed to be negative

or more than one possibly. There is no significant loss of accuracy when these restrictions are

relaxed.

There has been a wealth of literature surrounding the pandemic, tackling different topics and

policies as mentioned earlier in chapter 2. To my knowledge, there is no research that uses

the Synthetic Control Method to study the impact on mortality rates in the U.S. of different

containment policies to such an extent.

3.3 Data Sources

Using the proper co-factors is essential in conducting accurate Synthetic Control Method re-

gressions to ensure that the model predictions are significant. These covariates are crucial in

finding the proper weights for the synthetic model. They are identified from the literature men-

tioned in section 3.2 surrounding the COVID-19 pandemic. The treated variable in this chapter

is death rates per 100,000; however, as case rates impact death rates, any research that tackles

both of these is considered when selecting covariates.

Deb et al. (2020) find that containment measures were more effective in reducing case rates in

countries with lower temperatures, lower population density, and where the share of the population

aged 65 or older was larger. These variables are selected as co-factors. They use several control

variables for their regression, such as air quality and mobility score, which are added to the list.

Health system quality as measured by Harris, Yelowitz, and Courtemanche (2021) is also added

to the list, as it is found to be significant in impacting death rates. The complete list of covariates

is as follows:

• Unemployment: unemployment data was obtained from the FRED database. The data is

monthly for all 50 states. This co-variate underlines possible transmission channels coupled

with on-site work, as lower unemployment with no work-from-home restrictions could lead
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to more transmissions (Chernozhukov, Kasahara, and Schrimpf, 2021).

• Density score: a variation on traditional density measures. Instead of using state-wide

density, I build a composite that I call the density score. For every state, I find the three

largest cities in that particular state in terms of population, and I build a weighted average

of their density based on their share of the total population. The data is calculated on a

monthly basis. Since certain metropolitan areas can stretch across states, the population

of the city considered is restricted to the size of the city, and not the metropolitan area it

represents to ensure consistency for the calculation of this index.

• Vaccination rate: vaccination rate per 100,000 person per state, obtained from the CDC

database. I make no distinction between the different vaccines used. Since vaccination only

started halfway through the data set I am working with, I dropped this co-factor for any

simulations done before the beginning of vaccinations.

• Old age population share: the share of people aged 65 and above, obtained from the U.S.

census bureau. This population is more vulnerable to the disease, and therefore a state with

an older population will experience more deaths (Mueller, McNamara, and Sinclair, 2020).

• Testing: testing data, which includes number of confirmed cases, was obtained from the

Johns Hopkins Centers for Civic Impact3(Johns Hopkins University, 2021), and it includes

data from March 2020 to July 2021.

• Healthcare quality index: a composite index, obtained from the Agency for Healthcare

Research and Quality as part of the department of the U.S. Health and Human services.

It provides a healthcare quality index per U.S. state, based on insurance costs, access to

healthcare, quality of healthcare, and surveys from healthcare professionals. I consider the

complete index, and the index for access to healthcare separately. The data covers all 50

U.S. states and is available for 2020.

• Air quality: I obtain this data from the Air Quality Open Data Platform, which includes

3https://civicimpact.jhu.edu/
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daily data for the most populous city per state. Deb et al. (2020) show that better air quality

allows for more outdoor events, leading to lower virus transmission rates.

• Mobility trends: data mobility trends obtained from both Google and Apple (Apple, 2021)

and (Google, 2021) for the two most populous cities per state including walking and driving

within the cities.

• Exports: aggregated per month, I obtain monthly data from the U.S. census bureau in U.S.

dollars.

• Stringency index: to control for the impact of potential policies already implemented for

a given region, the 14-day average of the stringency index is considered.

The key variable in this chapter is deaths caused by COVID-19, and daily data from the Johns

Hopkins Centers for Civic Impact(Johns Hopkins University, 2021) is used. It includes data from

March 2020 to July 2021. The data is a 7-day moving average of the number of deaths per 100,000.

3.3.1 COVID Policies

The stratification of the implementation of anti-contagion policies by different U.S. states

means a significant pool of controls and placebo variables is available to conduct statistically

significant regressions. Enough states exist for any event chosen from which to build proper coun-

terfactuals. The data obtained from OxCGRT details several policies, their implementation date,

and their severity. A benefit of this model is that there is no inherent bias if the policy was

announced before its implementation, especially since the average duration between an announce-

ment and the decision being made is less than a week (Deb et al., 2020). The inclusion of mobility

co-variates controls for the importance of mobility restrictions in reducing death rates.

The data for the policies implemented in each state was obtained from OxCGRT’s COVID

policy tracker (Hale et al., 2021b). It includes daily data about the policy implemented and its

respective levels of intensity for all U.S. states. There are three main policy categories: contain-

ment, economic, and health. this chapter uses all the containment policies and one economic

policy in the analysis, namely economic stimulus. This is because health policies did not fluctuate
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enough during the pandemic to be included in the research (Hale et al., 2021b). The economic

stimulus has been added because it was the most significant policy implemented throughout the

pandemic compared to the rest of the economic policies. The data is available from March 1st,

2020, until July 31st, 2021. Depending on the policy indicator, the values range between 0 and 4,

where 0 means no restrictions are in place, 1 is a recommendation, and 4 is the most severe level

of stringency for that policy. Descriptions of these indicators are provided below.

• School closing (sc, 1-3): records the closing of schools and universities, where the max value

indicates the closing of all levels of education.

• Workplace closing (wc, 1-3): records the closing of workplaces, where the max value records

the closing of everything except essential services, such as hospitals.

• Cancelling public events (cp, 1-2): records the cancelling of public events. The max value

records cancelling all events.

• Restrictions on gathering (rg,1-4): records putting limits on gatherings, where the highest

value records restricting gatherings on less than 10 people.

• Closing public transportation (pt,1-2): records closing public transportation where the high-

est value prohibits any public transportation use.

• Stay at home requirements (sh, 1-3): records staying at home requirements where the highest

value requires to only leaving home for emergencies.

• Internal movement restrictions (mr, 1-2): records restriction on movement between cities

and region, where the highest value records no movement in and out of state.

• International travel controls (ir,1-4): records international restriction where the maximum

value records total international border closure.

• Income support (es,1-2): records government providing cash support to those who have lost

jobs due to the pandemic, where the maximum value records the government replacing 50%

or more of worker’s salaries.
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3.4 Model

This model was discussed in previous chapters, however a brief refresher is provided in this

section. In a standard Synthetic Control Method setting, we start with a set of regions I where

I = {1, . . . , N} are the fifty states of the United States and N = 50, with no particular order

given to the states. One of these states is exposed to the ”treatment”, such as the implementation

or removal of an anti-contagion policy, where N − 1 states are not treated and a state i = tr is

the state treated. For the sake of simplicity, for any given simulation, the treated stated is i = 1.

The outcome variable in the model is deaths per 100,000. I assume yi,t is the outcome variable

of state i at time t. The outcome variable is observed over T periods. At a point t = T0 < T ,

the treatment occurs, but only for the affected region i = tr, leaving T − T0 of treated periods

moving forward, meaning the treatment is uninterrupted. It is assumed that

yi,t = ŷi,t + αi,tDi,t

which can be rewritten as:

y1,t =
N∑
i=2

wiyi,t

where t 6 T . To solve this model, I build a set of positive weights wi where i = 2, . . . , I such that
N∑
i=2

wi = 1. There are ideal weights w∗i such that

N∑
i=2

w∗i yi,t = ytr,t ∀t ∈ T and
N∑
i=2

w∗i zi = ztr ∀t ∈ T

and zi,t is a vector of covariates chosen to find the appropriate w∗ We can then use

α̂i,t = yi,t −
N∑
i=2

w∗i yi,t

as a way to estimate αi,t where t ∈ {T0 + 1, . . . , T}. This will be the deviation of the synthetic

predicted model from the actual data.

Seeing as restrictions typically lasted for weeks or even months, it would be expected for many
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states to have a particular restriction already in effect when another state adopts theirs. This

means that for every event or treatment, the control group included states already being treated.

An essential benefit of the Synthetic Control Method is that it allows finding a weighted average of

control units, which leaves room for a larger pool of possible comparable units. To avoid the issue

with multiple treated units, the weights are chosen in such a way that the synthetic alternative

closely tracks the performance of the treated variable before the treatment, and no restrictions

are imposed on the values of the weights. By allowing weighted averages of other states to act as

matches, which Difference-in-Difference (DiD) does not, Synthetic Control Method expands the

pool of possible comparators, which is valuable when the number of untreated states is limited.

Another requirement for a properly fitted Synthetic Control Method is that there cannot be

spillovers in terms of the treated variable between the treated region and regions in the donor

pool. In the case of the pandemic, this is not necessarily an issue since, due to lockdown policies,

there was little movement between U.S. states during the pandemic, at least after the initial

implementation of the policies, resulting in little to no spillover in terms of the treated variable

(deaths per 100,000).

The weights are obtained in such as a way as to minimize a penalty function defined as follows:

argmin
W ∗

||z1 −Wz0||=
√

(z1 − z0W )′V (z1 − z0W )

where z1 is a vector of pre-treatment variables and co-variates relevant for the treated region and

z0 is the same vector of variables for the non-treated regions, and V is a positive semi-definite

matrix. The vector z is defined as

zi = [xi,1, . . . , xi,m, yi,0, . . . , yi,n]′

where i refers to the region, xi,m is a covariate variable for the region i. In our case the m = 9

and yi,n is a set of pre-treatment outcome variables where n 6 T0. n could be chosen in such a

way that the vector z can include all outcome variables up until the treatment period, however,

for this model, n = T0

2
is rounded down, as a way of training the model. This means that only
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half of the outcome variables are used prior to the treatment to find the optimal weights, and the

other half is used as a validation for the accuracy of my model.

In section 3.3 the density score was mentioned as an alternative to state density as it represents

a more accurate co-variate for this analysis. This score is a weighted average of the total density of

a state, especially since cities are more likely to be impacted by anti-contagion policies compared

to rural areas (Hallas, Hatibie, Koch, et al., 2021a). First, the three largest cities in a state in

terms of population are found and sorted. Only the city is considered but not the metropolitan

area, as some metropolitan areas extend over several states. The respective population and size

are subtracted from that of the total population and size of the state. A new density is obtained

for each state i where the remaining population is divided by the remaining land size. Assuming

cities are ranked from 1 to 3 (1 being the most populous), the density of state i is then

densi =
Popi − pop1,i − pop2,i − pop3,i
Sizei − size1,i − size2,i − size3,i

where popn,i is the population of city n in state i and sizen,i is size in km2 of city n in state i. The

weights of the cities are found as the ratio of their population to total population of the state or

wn,i =
popn,i
Popi

The density score is calculated as

dsi = w1,id1,i + w2,id2,i + w3,id3,i +

(
1−

3∑
n=1

wn,i

)
densi

where dn,i is the respective density of the largest three cities and densi is the density of the

state excluding these largest cities. This density score provides a more accurate representation

of the density of a state when conducting the Synthetic Control Method. Data availability limits

the density score to be a monthly variable. A potential problem that may occur is population

movement once the pandemic had started, which could change the value of the score. While indeed

there was movement between cities, trends in mobility were not heavily affected in major cities as
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noted by Deb et al. (2020). In fact, when looking at mobility trends from both Apple and Google,

there is no significant dip or increase after the declaration of the national pandemic in March of

2020, indicating little change in city densities.

The choice to use 3 cities is used mainly for consistency of the score. In terms of co-factor,

using the density score versus state density value results in an average reduction of pre-treatment

Mean Square Predicted Errors by 1.8%. There is no loss of accuracy around the use of the density

score, and therefore this score is preferred over total density. The existence of better co-factors is

a possibility to be explored in subsequent research.

Once the predicted values ŷi,t are obtained, inference analysis is conducted by subtracting the

predicted value from the actual value, thereby calculating the alphas where

αi,t = yi,t − ŷi,t

Since the treated variable is death rate per 100,000, the value αi,t is then the deviation in death

rates. If an event is significant, and its implementation (or removal) has an impact on the outcome

variable, the alphas are expected to reflect this result. The assumption is that imposing restrictions

will reduce death rates to be significant, and removing them will increase death rates over the

actual rate. A significant synthetic region where a restriction was imposed is then expected to

have a higher synthetic value than the actual region, meaning the alphas are expected to be

negative, since yi < yni . The inverse can be applied to removing restrictions, meaning the alphas

are expected to be positive. This will be the terminology used then in referring to events, negative

for imposing restrictions, and positive for removing restrictions throughout the rest of the paper

and chapter 4.

The method proposed by Cavallo et al. (2013) is used to conduct inference testing:

1. The placebo effect is computed for every event by simulating the outcome variables for the

available controls for the corresponding event date.

2. At every point in time following the occurrence of an event (called leads), all the placebo

alphas are calculated and then averaged.
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3. The actual lead is ranked in the distribution of placebo averages.

4. The lead specific p-value is given by the following formula.

p-value =

Npl∑
np=1

I(ᾱ
pl(np)
l < ᾱi)

Npl

where ᾱi is the effect of the restriction on the state in question and ᾱp
i is the average

placebo effect. This is only the case if αi is expected to be positive (imposing restriction).

If αi is expected to be negative then the alternative p-value formulation is considered, more

specifically.

p-value =

Npl∑
np=1

I(ᾱ
pl(np)
l > ᾱi)

Npl

Two modifications to the treatment of the alphas that affect the analysis of the inference tests

are considered. First, because of how the virus interacts with the human body and its impact on

people affected, only periods ten days after treatment are considered for the inference test. The

virus does not kill immediately upon infection and takes at least a week before the worst effect,

i.e., death occurs. Transmission is not always immediate, and adherence to restrictions is not

always immediate. As mentioned earlier, the incubation duration of the virus is around 14 days,

after which the most severe effects of the virus are usually mitigated (World Health Organization,

2020).

According to the World Health Organization, while COVID-19 can last up to three months in

the human body, most people who develop symptoms improve without treatment in 2-6 weeks. A

person can transmit the virus 48 hours before developing symptoms (World Health Organization,

2020). Table 3.1 provides a summary by the CDC of the three stages of a typical COVID-19

infection. The CDC also states that moderate illness appears ten days after symptoms appear

and that severe illness can develop 20 days after symptoms appear (CDC, 2021). Therefore, when

considering the impact of the policies, it does not make sense to look simply at the immediate

impact on death rates but rather a specific period after. The data itself also backs this change.
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When looking at events where restrictions were imposed in Table 3.3b, it is clear that prior to the

10-day mark, there are minor changes to the outcome variable, with a sizeable jump happening

around the 10-day mark. As mentioned in chapter 2, the effects of imposing policies tend to peak

and slow down after the 50th day from the implementation date.

Symptoms Time of occurrence

No Symptoms Up to 10 days from the moment of infection
Mild illness From 10 to 20 days after symptoms show up.

Death is a possibility during this stage
Severe illness/death 20 days after symptoms, highest possibility of

death occurs during this period

Table 3.1: Effects of Covid 19
4

Different ranges are considered for the inference tests, mainly for robustness. Due to the nature

of the data, and since only events that were uninterrupted by any other event for at least 50 days

were considered, any range up to that point can be used for the tests to ensure comparable results

between simulations. The following ranges are considered when calculating the p-value, where T0

is the date of implementation or removal of a policy:

* From T0 + 10 to: T0 + 25, T0 + 40 and T0 + 50

* From T0 + 15 to: T0 + 30, T0 + 40 and T0 + 50

A policy is considered significant if the p-value is sufficiently low in four out of the six periods

mentioned above. Around 94% of the total events considered were significant for 4 out of the 6

ranges specified.

The second addition to the inference tests is the use of the percentage deviation as well as the

simple deviation in absolute value for the p-value calculations. Rather than the simplified version

of αi mentioned above, an additional value of α is considered:

αp
i =

yi,t − yni,t
yi,t

The same process for the inference tests conducted above is used for αp. The result of these two
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procedures is two p-values for every event. An event is considered significant if both p-values are

below 0.05. All but one event are significant in both scenarios as well.

3.4.1 Event Selection process

The selection process for events is crucial for the integrity and accuracy of the model, and it

is summarized in this subsection. The event period spans from March 1st, 2020, to June 31st,

2021, a total of 487 days. The selection process for events is as follows. For every state i, a daily

data set of policies in place at any given time is constructed. To do this, for every policy p, I find

the full list of dates where state i either exited or entered policy p. I consider a policy ”in-place”

if the policy flag is two or above. If the flag is 1 or 0, then the policy to not active. The main

reason I do this is that a flag of 1 refers to a recommendation for implementation or a suggestion,

and 0 means the policy is not in place. Since there is no way to see a policy’s enforceability level,

I use two or above to proxy an effective policy. For 50 states, I find that out of 24,350 possible

date/state combinations (487 days multiplied by 50 states), 20,571 of these had at least one policy

being actively implemented.

For every state, I find all the dates where the absolute change in policy numbers is 1 (either 1

policy was implemented or removed). I then select all these dates as potential treatment periods.

I then filter out these potential periods according to the following requirements:

• In the first day of a change in policy number, I find what policy was changed, implemented

or removed.

• If a policy was implemented, I find the number of states where this policy was not imple-

mented at the time, and vice versa. I add these states to my list of controls. If the list is

more than 20, I proceed through the remaining steps. Otherwise I ignore this event.

• For every event selected, I check whether there was another change in policy 50 days after

that particular event. If there is not, I proceed to the next step, otherwise I ignore this

event.

• With the control states selected, I filter out the policies implemented in the previous 14
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days, and build the covariate data of current policies in place. This serves as a control for

the impact of other events.

After an event is selected, I sort it into a list of implemented or removed anti-contagion policies.

The total amount of events selected is 256.

The model loses significance the more extended treatment lasts. Policies that are significant

ten days after the start of an event will remain significant 40 days after. There is a slight drop-off

from the 40th to the 50th day after the policy. After the 50th day, and for the policies where

such data was measured, the drop in significance is noticeable, with around 30% of events being

insignificant 50 days after treatment.

3.4.2 Improvements to model

Two improvements are considered to the traditional Synthetic Control Method. The first is

the selection of the V ∗ vector shown in chapter 1. The same method proposed in that chapter

is used, where regions are grouped according to the treated variable in different clusters. A V

vector is obtained for every region as an initial guess for each simulation conducted. The V in

each cluster that minimizes the Mean Square Predicted Errors is used as a guess for any synthetic

regression, including those conducted for the inference. The main benefit of this change is that

it improves accuracy by reducing pre-treatment Mean Square Predicted Errors between predicted

and actual data at the cost of higher simulation time.

The second improvement is the removal of the restriction placed on the weights. As proposed

by Doudchenko and Imbens (2016), the removal of these restrictions implies the possibility of

negative weights for each region. This allows for greater flexibility in selecting the donor group

and reduces the need for large control groups for the regression. These changes were among several

proposed by Doudchenko and Imbens (2016). Other changes include adding an intercept to the

model; however, testing this led to no change in the accuracy of the Synthetic Control Method

regressions.

The restriction that wi > 0 for i ∈ {2, . . . , I} is no longer binding, while still maintaining the

restriction
I∑

i=2

wi = 1. In order to test whether this change is valid, I use the method proposed by
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Li and Shankar (2020b) to compare traditional Synthetic Control Method to the amended version

of the model. In total, 9,000 simulations or synthetic regressions were conducted with a dataset

that includes 4.5 million distinct data points used in this chapter, including the regressions done

for inference.

3.5 Results from the baseline model

Two types of events are considered in this model, imposing restrictions and removing restric-

tions. In total, 256 events were analyzed. Of these, 88 were for imposing restrictions, and 168 were

for removing restrictions. The Synthetic Control Method is run on these events, and significance

is set at a p-value of 0.05 for each one of these events.

This results in 42 (47.7%) significant negative (implementing) events and 62 (36.9%) positive

(removing) events . While there are more significant events where restrictions were removed, in ab-

solute terms, they are less significant as a percentage of the total events in their respective sample

for two reasons. The first is the vaccination rate when removing restrictions. A fair assump-

tion is that policymakers would remove restrictions when a population is significantly vaccinated,

meaning infections are less likely to lead to deaths. The second reason that might explain this

difference is that when specific sanitary conditions are implemented, removing restrictions will

lead to less virus transmission. These conditions include mask mandates, social distancing rules,

or proper sanitization of surfaces. The impact of the former reason is tested in an OLS regression

in subsection 3.5.2. Tables 3.2 and 3.3 show the distribution of these events by policy.

Policy Number selected Significant Percentage

Closing public transport 6 3 50
Restrictions on gathering 4 2 50
Movement restrictions 13 10 76.9
Stay at home requirements 11 6 54.5
Cancelling public events 10 5 50
Economic Subsidy 24 13 54.1
School Closing 5 1 20
Workplace closing 15 6 40

Table 3.2: Number of significant policies when Imposing restrictions
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Policy Number selected Significant Percentage

Closing public transport 13 0 0
Stay at home requirements 27 12 44.4
Workplace closing 30 13 43.3
Movement restrictions 15 5 33.3
School Closing 22 10 45.4
Restrictions on gathering 9 4 44.4
Cancelling public events 20 4 20
Economic Subsidy 32 14 43.8

Table 3.3: Number of significant policies when removing restrictions

Out of 13 events where restrictions on public transport were removed, there was not a single

statistically significant event that led to increased death rates. Several reasons could lead to this.

First, in most cities, public transportation was heavily sanitized, and people just avoided using it

as a whole, even after restrictions were removed. Second, vaccine rates were highest in cities where

public transportation systems are most active. Finally, work-from-home requirements meant less

congested public transportation methods.

When imposing restrictions, there is a sharp drop off of the impact of the restriction from

its peak, with an average decrease of around 45% 50 days after the implementation of the anti-

contagion policy. Figures 3.3a and 3.3b show the absolute deviation from actual death rates (deaths

per 100,000) when imposing restrictions. When implementing restrictions, we see in figure 3.3a

that five days before and up to 10 days after the event, there is little change in death rates, and

the actual change starts occurring around ten days after the implementation of a policy. This is

important as inference is conducting by looking at deviations 10 days after the implementation

of a policy, and not immediately after. Figure 3.3b shows a sort of inverted U-shaped curve is

observed for such policies, with a drop-off around the 40-day mark after the implementation of

the treatment. The red lines on the graphs are for the period of T0 + 10.
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(a) Deviation pre T0 + 10 (b) Deviation post T0 + 10

Figure 3.3: Percentage deviation of death rates for all significant negative policies

To quantify the impact of these events, the average deviation is calculated for every policy

across all treatments for every day after the implementation of a treatment. Tables 3.4 and 3.5

show the predicted percentage change of implementing (Table 3.4) or removing (Table 3.5) a

restriction. The values represent the average percentage change of death rates within a specific

time frame. Four of these time frames are chosen that would be significant given how the virus

affects humans. The first thing that can be noticed is that the absolute average effect of removing

a restriction is significantly lower than the absolute average effect of imposing a restriction. This

is particularly important because it highlights several points made earlier in this chapter about

the conditions for removing a policy. More specifically, when removing restrictions, policymakers

anticipated a certain level of immunization or public safety standard such that the death rate would

not be heavily altered. Individuals and businesses adapted to public sanitization policies, which

could also help explain this absolute difference. This is especially clear when considering relatively

more enforceable policies such as workplace closing or restrictions on public transportation, where

there is more accountability from proper sanitization to wearing masks and adhering to public

safety recommendations like social distancing.
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Policy T0+10 to T0+30 T0+10 toT0+50 T0+20 to T0+40 T0+20 to T0+50

gathering restrictions -381.1 -333.8 -360.8 -320.5
closing public transport -62.2 -72.0 -73.7 -79.4
movement restrictions -115.8 -123.9 -120.7 -124.9
stay-at-home -144.6 -124.2 -134.0 -128.8
cancelling public events -58.5 -77.6 -101.2 -81.3
economic subsidy -166.0 -245.3 -198.7 -275.9
closing schools -12.7 -14.8 -12.1 -14.4
workplace closing -63.1 -59.0 -60.2 -57.4

Table 3.4: Average percentage deviation from actual death rate when implementing a restriction

Policy T0+10 to T0+30 T0+10 toT0+50 T0+20 to T0+40 T0+20 to T0+50

gathering restrictions 47.1 41.1 46.3 42.9
closing public transport - - - -
movement restrictions 38.7 41.7 44.8 44.3
stay-at-home 35.0 34.7 35.8 35.1
cancelling public events 33.9 35.9 37.5 38.7
economic subsidy 30.7 30.3 32.0 31.1
closing schools 12.0 14.8 15.7 16.2
workplace closing 8.2 7.8 7.5 7.4

Table 3.5: Average percentage deviation from actual death rate when removing a restriction

Imposing restrictions on public transportation also had one of the lowest effects on reducing

death rates, indicating the effectiveness of cleanliness and sanitization procedures. It is interesting

to note that school closing was the least significant restriction regarding actual event count and

effect. Finally, economic subsidies were also very effective, and their effect only grew stronger the

longer they were implemented. This could be explained by individuals adhering to other safety

measures, as they felt their income was not jeopardized by staying home. In fact, for most policies,

the longer the time frame, the lower the effect the policy had. The only other exception to this

was public transportation closures.

3.5.1 Estimation of impact on the death toll

To check the reduction in deaths from these policies, the significant events where an anti-

contagion policy was implemented are selected per state. The 30, 40, and 50-day averages for
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events are selected. Since the outcome variable is death rates per 100,000, each policy’s impact

was matched to the population of the state where it was implemented.

drp,i,T =
I∑

i=1

T∑
t=T0+10

αp,i,t ∗ popi,t
100, 000

Where p is a given policy out of the significant policies. For each policy p the sum of deviations in

values (αs) across states i are calculated and multiplied by the state’s population in year t, where

these policies were significant for at least 50 days. The results are summarized in table 3.6. The

last column represents the average death reduced per policy from T0 + 10 to T0 + 50 (or 50 days

after the policy is implemented).

The results show the scale and importance of these events in reducing death rates. It is

important to note that while restrictions on gatherings were not necessarily the most impactful

policy in terms of percentage change in death rates, it was by far the most impactful in terms of

absolute change. I attribute this to states that imposed restrictions on gatherings during peak

death rates of COVID as highlighted by Figures 3.4a and 3.4b.

(a) Gathering restriction implementation (b) Gathering restriction implementation

Figure 3.4: Examples of states imposing restrictions

Unfortunately, the sample of restrictions on gatherings and school closings was relatively small

due to the selection process and the requirement for an event to occur in isolation (without any

event alongside it). A significant analysis of the impact of implementing such measures cannot be

made with confidence.
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Policy T0+10toT0+30 T0+10toT0+40 T0+10toT0+50 Average

public transport restrictions 1, 138 2, 430 3, 644 1, 215
stay-at-home 8, 930 18, 396 31, 910 5, 318
workplace closing 5, 743 10, 367 15, 979 2, 663
movement restrictions 14, 091 32, 847 50, 859 5, 085
school closing 120 497 621 621
gathering restrictions 9, 335 27, 040 48, 871 24, 435
cancelling public events 2, 973 7, 527 8, 819 1, 763
economic subsidy 18, 149 33, 652 46, 857 3, 604

Total 60, 481 132, 758 207, 563 5, 189

Table 3.6: Total estimated deaths avoided

Table 3.6 shows each policy’s total estimated deaths reduced. The most inefficient policy was

school closing regarding reduced deaths and significant events. With 621 deaths reduced on aver-

age, it is 83 times less effective than the most effective policy regarding total death reduction. The

two most effective measures for reducing deaths were movement restrictions (mr) and restrictions

on gatherings (rg). The model estimates that they reduced deaths by around 50,000 over 50 days

of implementation. However, restrictions on gatherings were five times more effective at reducing

death rates, while movement restrictions were the second most effective. Economic subsidies, stay-

at-home requirements, and workplace closing follow in terms of effectiveness. I suspect that this

effect difference is due to the enforceability of the actual restrictions. Restrictions on gatherings

and closing public transportation would be the easiest to implement.

3.5.2 Vaccinations and restrictions

Using the Synthetic Control Method model results, specifically the removal of policies, this

chapter explains why many events were insignificant in changing the death rates. As mentioned

in sections 3.22 and 3.3, the number of significant events is expected to be lower when removing

restrictions. Since a possible reason behind this is that removing a restriction could result from

sufficient immunization, in this subsection, this hypothesis is tested using a simple OLS model.

When policymakers feel that restrictions have run their course, there is no reason to keep these

restrictions, and removing them should not result in any change to the death rates, or at least any

significant one.
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Out of the 62 events where removing restrictions was significant and ended up increasing the

death rates, there was no vaccination done at the time of removing the restrictions in 51 of these

events, or 82.2% of total events. The highest vaccination percentage out of the remaining events

was 45% (Florida, April 13th, 2021), and the average was 8%. Out of 106 events that were not

significant, 85 had a positive vaccination rate, with the average being 50% and the maximum

being 120%.

Several models are considered, with two different data sets of events. The first set is the full

list of 186 events where restrictions were removed, while the second only includes events where

restrictions were removed, but the vaccination rate was positive (> 0). There is no restriction set

on only considering significant events. The models are defined as follows

Yi = βXi + γZi + ui

Yi is the mean deviation between the actual and counterfactual. Different mean values are tested,

as shown in table 3.4, but no significant difference is found between these means in terms of the

results from the regression. The mean deviation between counterfactual and actual data between

T0+10 to T0+50 is the one that is presented as it has been the one used the most in this chapter so

far. The results of the OLS regressions for the other three means are shown in the appendix. Xi is

a vector of explanatory variables that include the ratio of the vaccinated population, as mentioned

in the previous section, which is the sum of all vaccines given over the total population. This

ratio goes from 0 to 2, where 2 is the entire population double vaccinated. Finally, the vector Zi

contains control variables, such as the density score, case average, share of the population that

is 65 years old, and quality of healthcare. No significance is lost between using the single-dose

vaccination ratio or the total vaccination ratio.

The tables below summarize the result of the regressions.
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Model 1 Model 2 Model 3 Model 4 Model 5
Vaccination rate -61.7848** -70.4107 * -63.7416* -59.1924** -64.0156 *

(-13.1493) (-16.7438) (-20.4534) (-16.5785) (-28.9196)
Case average 0.0076 0.0024 0.0027* 0.0025*

(0.0055) (0.0058) (0.0058) (0.0058)
Density score -1.2205** -1.3713** -0.8802*

(-0.4868) (-0.6131) (-0.3177)
Health score 0.0037 0.0033

(0.0040) (0.0041)
Over 65 pop. share -0.5458

(0.9761)

N 186 186 186 186 186
R-squared 0.057 0.144 0.153 0.159 0.1605
R-squared Adj. 0.048 0.034 0.034 0.034 0.0292
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.7: Regression with full dataset

Model 1 Model 2 Model 3 Model 4 Model 5
Vaccination rate -63.4592** -61.0383** -68.4777** -60.7184* -62.5412*

(-15.3418) (-15.7294) (-13.2690) (-23.9518) (-19.8612)
Case average 0.0035* 0. 0042* 0.0027 0.0041*

(0.0011) (0.0028) (0.0028) (0.0021)
Density score -1.512* -1.825** -1.422*

(-0.86) (-0.91) (-0.95)
Health score 0.5622 0.6311

(0.5729) (0.5837)
Over 65 pop. share -0.423**

(-0.0825)

N 48 48 48 48 48
R-squared 0.0754 0.0772 0.0845 0.0966 0.1072
R-squared Adj. 0.0557 0.0471 0.0466 0.0463 0.0461
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.8: Regressions using events with non-zero vaccination rates

The vaccination rate is significant in both cases, even when controlling for other variables.

The density score and the share of the population over 65 seem significant in terms of death rate

changes. Table 3.8 shows that when the vaccination ratio goes up by 1, i.e., the population is fully

vaccinated, differences in death rates from removing restrictions are reduced by around 60 to 70

percent from their predicted value.
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3.5.3 Robustness checks

Several robustness tests are conducted to check the Synthetic Control Method results’ validity

as Abadie (2021) proposed. The first check is backdating, where the start of a treatment period

is backdated to a random point, and the deviations from the backdated event are compared to

the actual event. The second robustness test is changing the composition of the co-factor vector.

When backdating, for every significant event, and where possible, an Synthetic Control Method

regression is done ten days earlier than the event’s occurrence. The average from T0+20 to T0+60 is

computed, which I call ᾱro and subtracted from the T0+10 to T0+50 average deviation, which was

obtained earlier. For the list of events, the following null hypothesis is proposed:

H0 : ᾱ2
ro,i = ᾱ2

i Ha : ᾱ2
ro,i 6= ᾱ2

i

where ᾱro,i is the average deviation from the robust Synthetic Control Method for an event, and

the null is rejected with a confidence level of 95%. This robustness technique checks whether the

treated period is indeed the period where events occur, and corrects for potential self-selection that

could happen from the announcement of a policy implementation/removal. For example, taking

the case of Texas, and for the January 26th, 2021 date, the state of Texas imposed a restriction

(Movement restriction). Since this event is significant, it is expected that the predicted value of

the Synthetic Control Method will be above the actual data. Assuming the event happens before

January 26th, for example, on January 16th, the changes to the death rate should still occur

around February 7th. As an additional robustness exercise, further periods were used to check for

the results’ validity. The following figure shows the case of selecting October 26th as a placebo for

the event that occurred on January 26th. The null is not rejected for the panel of events studied

for every event selected, and the results from this robustness test are summarized in Appendix B.
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(a) Placebo simulation (b) Actual simulation

Another robustness check is conducted on selecting vaccination rate as a co-factor since the

CDC calculates three different rates of vaccinations. This covariate could change the predictive

power of the model. For a random pool of states and events from the list of events considered, a

simple Synthetic Control Method is run for each one of the selected events, using three different

vaccination values as co-factors.

• Single dose vaccinations: percentage of the population that has received one dose of the

vaccine.

• Double dose vaccination: percentage of the population that has received two doses of the

vaccine.

• Total vaccination ratio: ratio of total vaccines administered over total population. This ratio

has an upper value of 2, assuming every individual has been vaccinated).

The average Mean Square Predicted Errors (mean square predictive error) for the pre-treatment

treated value is calculated for each permutation of event and vaccination rate used. The Mean

Square Predicted Errors associated with the total vaccination rate is the lowest, but the difference

between the first dose percentage and the total vaccination ratio is negligible. The formula used

to calculate the Mean Square Predicted Errors is:

MeanSquarePredictedErrorsN =
1

Pr

Pr∑
pr=0

(

N∑
n=0

T0−1∑
t=0

α2
n,t,pr

N × T
)
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Where i is the region, t is the period-specific to that region, and P is an arbitrary number of

permutations. For simplicity, 100 possible permutations are chosen for the three different values

of N . The data is summarized in Table 3.9.

Single dose Double dose Total vaccination ratio

N = 3 0.22 0.42 0.27
N = 5 0.20 0.33 0.17
N = 10 0.18 0.45 0.13

Table 3.9: Mean Square Predicted Errors results

Therefore using the single dose or total vaccination ratio does not impact the model’s accuracy.

3.6 Conclusion

From February 2020 to June 2021, deaths from the COVID-19 pandemic had reached around

700,000, making this virus the highest-killing disease during that period, eclipsing almost every

other deadly disease. These numbers do not account for under-reporting deaths from the virus.

Restrictions are still being constantly implemented and removed, and this chapter provides a more

precise idea of the effectiveness of these anti-contagion policies. This chapter estimates that by

implementing anti-contagion policies, U.S. states reduced deaths by around 200,000 or 30% of the

total deaths during the same period. A caveat is that these values are not estimates of the total

number of deaths that were reduced by all policies, but only the ones selected for this chapter.

The model described in this chapter requires that no other policies were implemented in a 50-day

time frame, meaning several periods were excluded from the regressions. The final list consists of

256 potential events for analysis, spanning from March 2020 to June 2021.

The intricacies of different policies, the stringency of their application, and the multitude

of policies implemented simultaneously make it difficult to assess the efficiency of these policies

properly. The contribution provided by this chapter is disentangling those effects from each

other. This chapter finds that workplace closures, stay-at-home requirements, and restrictions

on gatherings were the most efficient. This could be due to the ability of a policy maker to

impose those restrictions compared to something like limiting mobility. It is also important to
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note that closing schools was the least efficient in reducing death rates. This chapter highlights

the importance of properly securing and sanitizing a public environment to minimize disease

transmission.

This chapter defines the vaccine ratio as the number of vaccines administered within a state

over the population eligible to receive vaccines in that state. Removing restrictions with an under-

vaccinated population (vaccine ratio of less than one) leads to an increase in the death rates by

around 40%. It is also estimated that when a population is at least 66% double vaccinated (or

vaccine ratio equal to 1), death rates are reduced by around 60% after removing restrictions.

Additional research could tackle the initial conditions that could have impacted the effectiveness

of these policies.
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Figure 3.-5: Simulations obtained from Synthetic Control Method

Appendix B

FDS is the full data set and NZV is non-zero vaccination rates. Below are the results from the

regressions on the different means of average deviations or δFDS,T and δNZV,T T0+10 to T0+30,T0+20

to T0+40, and T0+20 to T0+50
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R 1 R 2 R 3 R 4 R 5
Vaccination rate -55.84** -58.35** - 57.44** -58. 97** -60.31**

(-22.41) (-19.47) (-21.34) (-28.33) (-21.97)
Case average 0.008* 0.007* 0.007 0.006*

(0.005) (0.006) (0.0007) (0.0004)
Density Score -1.41** -1.33** -1.82*

(-0.43) (-0.48) (-1.03)
Health Score 0.21 0.11

(1.18) (1.42)
Over 65 pop.share -0.77

(-0.98)
R-squared 0.0681 0.0775 0.102 0.105 0.111
R-squared Adj. 0.0554 0.0521 0.0511 0.0510 0.0507
N 155 155 155 155 155
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.10: OLS regression (FDS) for T0+10 to T0+30

Table 3.11: OLS regression (FDS) for T0+10 to T0+40

R 1 R 2 R 3 R 4 R 5
Vaccination rate -62.41*** -60.22*** - 59.31*** -63. 93** -61.48**

(-20.33) (-24.81) (-18.40) (-22.81) (-19.85)
Case average 0.007* 0.007* 0.007 0.007*

(0.004) (0.004) (0.0006) (0.0005)
Density Score -1.32** -1.38** -1.33*

(-0.94) (-0.98) (-1.03)
Health Score 0.35 0.48

(2.18) (1.02)
Over 65 pop.share -0.37**

(-0.18)
R-squared 0.0803 0.0825 0.122 0.125 0.141
R-squared Adj. 0.0753 0.0729 0.0688 0.0681 0.0667
N 155 155 155 155 155
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.12: OLS regression (FDS) for T0+20 to T0+40
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R 1 R 2 R 3 R 4 R 5
Vaccination rate -62.41*** -60.22*** - 59.31*** -63. 93** -61.48**

(-20.33) (-24.81) (-18.40) (-22.81) (-19.85)
Case average 0.007* 0.007* 0.007 0.007*

(0.004) (0.004) (0.0006) (0.0005)
Density Score -1.32** -1.38** -1.33*

(-0.94) (-0.98) (-1.03)
Health Score 0.35 0.48

(2.18) (1.02)
Over 65 pop.share -0.37**

(-0.18)
R-squared 0.0803 0.0825 0.122 0.125 0.141
R-squared Adj. 0.0753 0.0729 0.0688 0.0681 0.0667
N 155 155 155 155 155
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.13: OLS regression (FDS) for T0+20 to T0+50
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Chapter 4

A multi-stage synthetic control approach: assessing the

cumulative effect of COVID-19 anti-contagion policies

Abstract

The synthetic control method is a potent policy analysis tool. An application of this tool is to

study the impact of anti-contagion policies during the COVID-19 pandemic on various economic

and health indicators. A shortcoming of this method in its basic form is that a treated event

needs to be uninterrupted after its treatment. I propose a modified version of this model, with

the proper inference tools, that considers multiple interruptions of treatments over long periods.

I test this model for various U.S. states and found that this model can account for interruptions

in events and provides predictions for cumulative treatment effects. Results from the multi-staged

Synthetic Control Method show that in the case of multiple events occurring within short periods,

the Synthetic Control Method understates the impact of anti-contagion policies by around 200%.
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4.1 Introduction

Chapter 3 discussed how implementing and removing different anti-contagion policies impacted

the death rates and total deaths in various states in the United States. The effects of specific poli-

cies were quantified by using the synthetic control method. For this, synthetic control regressions

were applied at specific times and for unique events, where only one policy was implemented or

removed at a time. A significant restriction for event selection was that anti-contagion policies had

to run uninterrupted for 50 days or more. Since restrictions were often put in place or removed

in overlapping sequences, analysis often failed to capture or understand the cumulative impact of

anti-contagion policies.

Many improvements to the Synthetic Control Method have been made since Abadie, Diamond,

and Hainmueller (2010a) first introduced the concept. Most notably and recently was the aug-

mented synthetic control method proposed by Ben-Michael, Feller, and Rothstein (2021), which

corrects any bias that might result from a lousy pre-treatment fit of the data by correcting for the

covariates in the regression. Kreif et al. (2016) presented a different version of the synthetic control

method that considers multiple treated units receiving the same treatment. This technique was

something that was used previously in this thesis. Both Ben-Michael, Feller, and Rothstein (2021)

and Abadie (2021) highlight that in its basic form, the Synthetic Control Method cannot possibly

find the impact of events that are interrupted after their occurrence. This was also mentioned by

Cavallo et al. (2013). In his research, the selection of disasters chosen was limited by the Synthetic

Control Method’s inability to deal with multiple disasters that would occur within short periods.

This chapter proposes a novel addition to the synthetic control method to tackle such a gap,

an augmented version of this model that accounts for more than one treatment prior to the last

occurrence of uninterrupted treatment. This change allows the user to understand the cumulative

effect of multiple overlapping policy changes. The validity of this method is checked by conduct-

ing several robustness tests using established data and results. In a situation where treatment is

interrupted by the occurrence of another treatment or the end of that treatment, there is a com-

pounding effect that a traditional Synthetic Control Method regression is not able to capture. On

the other hand, applying a multi-stage Synthetic Control Method to an event where no significant

107



events occurred before it does not change the results. In other words, when policies are imple-

mented in a stratified way, where they are not all implemented at the same time, it is possible to

distinguish the effect of each policy and quantify the cumulative effect of all the policies at a final

point.

Using a selection of 8 states from the U.S. with varying policy implementation schedules, I find

that there is a stacking effect that is not captured by simple Synthetic Control Method regressions.

The simple Synthetic Control Method for one-time events was understated by up to 150% for

certain states. Second, when applied to the sample chosen in this chapter, the states that removed

policies too early do not experience a compounding effect, even if the implementation of policies

significantly reduced death rates. Despite many treatments, I find that if a state removed policies

implemented too early, there is no evidence of a lasting compounding effect. These changes to the

Synthetic Control Method are robust to various checks when conducting a multi-stage Synthetic

Control Method (Multi Synthetic Control Method) regression on events where there is no prior

impactful policy change. The results are similar to the standard Synthetic Control Method, with

no significant distinction between the two.

An essential contribution of this chapter to previous work in this dissertation and the literature

is the ability to track the cumulative effects of policies that overlap with other policies. The Multi

Synthetic Control Method regressions involve an iterative process for different events in the same

region. I supplement this with a change to the inference method to test this new proposal.

The Synthetic Control Method is already an excellent tool for this type of policy analysis, and

the additions mentioned in this chapter expand the possible scenarios where this tool can be

used. More specifically, it allows researchers to understand the impact of events that do not run

uninterrupted, unlike the basic Synthetic Control Method regression. When considering how anti-

contagion policies were frequently implemented and interrupted in cycles, this improvement allows

me to tackle this topic more efficiently.

As far as my knowledge goes, this chapter provides a novel approach to the Synthetic Control

Method that has not been explored in this way by other authors so far. The rest of the chapter is

organized as follows. In section 4.2, I discuss the data used to test out this model and the sources I
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used for this data. In section 4.3, I explain the changes to the baseline model of the Synthetic Con-

trol Method and highlight how these changes are implemented, including inference and robustness

testing. I test this updated model on benchmark Synthetic Control Method examples. In section

4.4, I show the results of my analysis. Finally, in sections 4.5 and 4.6, I run through the robustness

exercises mentioned earlier, and I discuss my conclusion and potential further improvements to

this model.

4.2 Data and data selection

4.2.1 Data sources

Data sources are similar to those in chapter 3. However, data selection is different. There

is no restriction on whether treatments are uninterrupted. Additional co-factors are introduced

for more robust and accurate simulations. Air quality was removed as it was insignificant in the

previous chapter in the regressions. The covariates chosen for this model are

• Unemployment: I use unemployment data obtained from the FRED database. The data

is monthly for all 50 states. This covariate underlines possible transmission channels coupled

with on-site work, as lower unemployment with no work-from-home restrictions could lead

to more transmissions.

• Density score: a variation on traditional density measures. Instead of using state-wide

density, I build a composite that I call the density score. For every state, I find the three

largest cities in that particular state in terms of population, and I build a weighted average

of their density based on their share of the total population.

• Vaccination rate: I use the vaccination rate per 100,000 persons per state, obtained from

the CDC database. I make no distinction between the different vaccines used. Since vaccina-

tion only started halfway through the data set. This co-factor is dropped for any simulations

done before the beginning of vaccinations.
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• Old age population share: the share of people aged 65 and above, obtained from the

U.S. census bureau.

• Testing: testing data, which includes the number of confirmed cases, was obtained from the

Johns Hopkins Centers for Civic Impact (Johns Hopkins University, 2021), and it includes

data from March 2020 to July 2021.

• Healthcare quality index: I use this composite index, obtained from the Agency for

Healthcare Research and Quality, part of the department of the U.S. Health and Human

Services. It provides an index on the quality of healthcare per U.S. state, based on insurance

costs, access to healthcare, quality of healthcare, and surveys from healthcare professionals.

I consider the complete index, and the index for access to healthcare separately. The data

covers all 50 U.S. states and is available for 2020.

• Mobility trends: data mobility trends obtained from both Google and Apple (Apple, 2021

Google, 2021) for the two most populous cities per state, including walking and driving

within the cities.

The treated variable considered is deaths caused by COVID-19, and I obtained daily data from

the Johns Hopkins Centers for Civic Impact1(Johns Hopkins University, 2021). It includes data

from March 2020 to September 2021, a total of 518 days. The data is a 7-day moving average of

the number of deaths per 100,000. An essential benefit of the Synthetic Control Method compared

to traditional policy analysis tools such as difference-in-difference is the ability to select from a

wide variety of control groups, even if the control group is relatively small. When conducting their

panel regression on the impact of anti-contagion policies in different countries using DiD, this was

one of the struggles mentioned by Deb et al. (2020).

4.2.2 Data selection

Similar to chapter 3, the history of all “strict” policies implemented in all 50 U.S. states from

March 2020 to September 2021 is recorded for any policy where the flag was more than 2. The

1https://civicimpact.jhu.edu/
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selection process for events is as follows:

1. Every time there is a treatment, only one treatment must have occurred. In other words,

when a restriction was removed or added, only one restriction must have been done at that

particular time. There is no requirement on time between treatments, as long as it is more

than one day.

2. When treatment occurs, I calculate how many states have also received that treatment in

the 15 days prior. I do not consider any event where more than ten states (20%) of my

regions received such a treatment within the past 15 days. This is done to ensure a large

enough pool of donors not affected by this treatment. This can be relaxed, however it does

not affect the results of the research. It however increases computational time.

These two criteria are set in such a way as to ensure comparability between the Synthetic

Control Method and the Multi Synthetic Control Method. The Synthetic Control Method cannot

untangle the effect of multiple events occurring simultaneously. Considering the states where the

daily death rates were somewhere between the 20th and the 80th percentile of all states allows for

the selection of a group without any outliers, removing the need for relaxing assumptions about

the Synthetic Control Method.

A daily rank is assigned for each state, between 1 and 50, where one refers to the state with

the highest death rate at time t, and 50 is the lowest death rate. Any state ranking anywhere

between 1 and 10 or 40 and 50 for more than 200 days was eliminated from the selection of states.

The pool of possible states to choose events from is reduced to 14. They are highlighted in Table

4.1.

state days events state days events

IN 393 13 IA 412 11
KY 465 15 MD 399 13
MN 443 7 NM 405 12
NC 496 5 OH 440 4
TX 436 17 VA 395 11
ID 382 16 NE 321 17
MA 340 10 UT 302 5

Table 4.1: Potential states
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The percentiles chosen for outliers could be changed with some loss to computational speeds

if they are expanded or if the assumption on the weights is relaxed, namely wi > 0 not holding;

however, the results would not be significantly different. These assumptions are relaxed in Section

4.5, and this analysis is done for a panel of 20 events. There is no loss in accuracy in terms of

the deviations obtained from the Synthetic Control Method, but on average, the regressions take

twice as much time to finish.

After the initial selection of states from the initial filters, all policy changes over the 518

days are identified. Then the states where the timing between policy changes was at most sixty

days for consecutive implementation or removal of policies were selected. Results from different

authors mentioned in chapter 2 and the author’s results in chapter 3 show that the impact of anti-

contagion policies on death rates drops around 50 days after their implementation but does not

entirely disappear. Eight states are left for the final Multi Synthetic Control Method regressions.

Considering that the Synthetic Control Method can accurately present counterfactual values for

one-hundred periods after an event, this assumption can be relaxed for any other research.

The total number of events considered after selecting states is 113. Since eight states were

selected, the first event for each state is discarded in the multi-stage analysis as it would be the

same result as the traditional Synthetic Control Method. The different events for the eight states

are also not equally distributed between them. Out of these 105 events, 41 were for events where

restrictions were added, and 64 were events where restrictions were removed. Table 4.2 shows

the distribution of these 105 events listed below and the average duration of implemented events

in days. The inference is made on the standard Synthetic Control Method and Multi Synthetic

Control Method for each of these treatments.
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State # implemented # removed Avg. duration (days)

Iowa (IA) 5 6 52
Kentucky (KY) 9 6 31
Indiana (IN) 7 6 32
Texas (TX) 10 7 35
Idaho (ID) 7 9 40
Nebraska (NE) 9 9 21
Maryland (MD) 7 6 57
Massachusetts (MA) 6 4 63

Table 4.2: States selected and policy distribution and duration

4.3 Multi-stage Synthetic Control Method model

The basic Synthetic Control Method model was explained thoroughly in chapters 1 and 3, but

a brief refresher is provided in this section to highlight the additions of the multi-stage regression.

The changes to the model are two-fold. The first change is the regression itself, where the vector

of co-factors that was used in obtaining the optimal weights is changed for the synthetic model.

Second is the inference methods used in testing the validity of the results.

In a standard Synthetic Control Method setting, the user of the model starts with a set of

regions i where i = {1, . . . , I} , in this case, the fifty states of the United States and I = 50, with

no particular order given to the states. One of these states is exposed to the ”treatment”, such

as the implementation or removal of an anti-contagion policy, where I − 1 states are not treated

and a state i = tr is the state treated. This state is treated at time t. For simplicity, I assume

that the treated region is i = 1. The model’s outcome or treated variable is the 7-day moving

average deaths per 100,000. yi,t is the actual outcome variable of state i at time t. The outcome

variable is observed over T periods. At a point t = T0 < T , the treatment occurs, but only for the

affected region i = tr, leaving T − T0 of treated periods moving forward, meaning the treatment

is uninterrupted ( in other words, there are no more treatments). The treated variable will then

look as follows

yi,t = ŷi,t + αi,tDi,t
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which can be rewritten as:

ŷ1,t =
I∑

i=2

wiyi,t

where t 6 T . With t 6 T0, Di,t = 0, andDi,t = 1 otherwise. To solve this model, I build a set of

positive weights wi where i = 2, . . . , I and i 6= tr, such that
I∑

i=2

wi = 1. There are ideal weights w∗i

such that
I∑

i=2

w∗i Yi,t = Ytr,t∀t ∈ T and
I∑

i=2

w∗iZi = Ztr∀t ∈ T

where Zi,t is a vector of covariates chosen to find the set of appropriate W ∗. Therefore the choice

of covariates is crucial in properly identifying the weights. We can then use

α̂i,t = yi,t −
I∑

i=2

w∗jYj,t

as a way to calculate αi,t where t ∈ {T0 + 1, . . . , T}. This will be the deviation of the synthetic

predicted model from the actual data. In this model, ŷi,t then refers to the predicted treated

variable.

4.3.1 Multi-stage changes

In the multi-stage synthetic control method proposed in this chapter, there is no longer a single

treatment period for a treated event. For every region i = tr, there are now several treated periods

defined as Tk. ỹit,k being the synthetic counterpart of the treated variable, for region i, time t, and

event k. In the multi-stage synthetic control method, the aim is to estimate:

α̃i
t,k = yit,k − ỹit,k

This deviation is the cumulative deviation caused by consecutive policies, where ỹ reflects the

estimated outcome variable after a series of events had occurred. In the simple Synthetic Control

Method, ŷit,k is the synthetic counterpart of an outcome variable that had been only affected with

one treatment. ỹit,k is the synthetic counterpart of the same variable, having been affected by
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several treatments. The difference between these two variables is defined as

δit,k = ŷit,k − ỹit,k

which is the deviations caused by the consecutive events from the traditional Synthetic Control

Method. By definition, since the α from the Synthetic Control Method already reflect the impact

that a certain policy had at time t, δit,k captures the effect of prior events. If δit,k = 0, this means

that the multiple treatments did not impact the outcome variable as much as the treatment implied

by ŷit,k

In order to capture this cumulative effect α̃, the vector Z, which is the co-factor vector, is

changed to reflect past effects of treatments. Recall that in the Synthetic Control Method the

optimal weights are obtained in such as a way as to minimize a penalty function defined as follows:

||Z1 −WZ0||=
√

(Z1 − Z0W )′V (Z1 − Z0W )

where Z1 is a vector of pre-treatment variables and covariates relevant for the treated region and

Z0 is the same vector of variables for the non-treated regions. V is a positive semi-definite matrix

that defines the relative importance of every co-factor in Z. In a traditional Synthetic Control

Method Z1 = [x1, . . . , xm, Y1,0, . . . , Y1,t]
′ where xm is covariate m and Yi,t is a linear combination

of the treated variable at time t prior to the treatment. For simplicity and without any loss of

accuracy, a valid combination is Y 1
t = y1t . In other words, the complete pre-treatment set of

treated variables is included in the co-factor vector. In chapters 1 and 3, I had included only half

of the pre-treatment set as an additional test for the accuracy of the model. This is not feasible

in the Multi Synthetic Control Method.

The changes implemented in this chapter on the vector Z are the following. For region i, with

treatment periods k = 1, . . . , K with K being the total number of treatments for every treatment

I consider treated variables up until the previous treatment. Each treatment starts at period T0,k
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where each event k lasts tor T0,k+1 − T0,k periods. I can then define

Zi
K = [xi,1, . . . , x

i
m, Ỹ

i
1,1, . . . , Ỹ

i
T0,0

, Y i
1,2, . . . , Y

i
T0,K ,K ]′

where i refers to the region, xim is a covariate variable for the region i, and Ỹ i
t,k = ŷit,k, where ŷit,k

is the predicted value obtained from a standard Synthetic Control Method. This however can

be changed to any other combination of the actual treated variable value and simple Synthetic

Control Method predicted value. For this chapter, the Synthetic Control Method predicted value

is used for its simplicity. I propose three propositions about the updates to the co-factor vector.

• The results of the first step of the multi-stage Synthetic Control Method and the traditional

Synthetic Control Method are the same since, up until that point, no other events had

occurred.

• There is no difference between using the predicted values from the traditional Synthetic

Control Method or the multi-stage Synthetic Control Method when conducting the second

stage of the multi-stage Synthetic Control Method. The predicted treated variable was

obtained from this regression.

• For any treated period after the second period, the compounded effect of different policies is

captured by the inclusion of the value of the predicted treated variable from the Synthetic

Control Method as long as that value is significant.

The procedure used to run the regressions of the Multi Synthetic Control Method is as follows.

For every region (or state), a traditional Synthetic Control Method regression is done for every

event chosen; the values are tested for significance and stored if significant. These are then used

for any subsequent regressions of the multi-stage regression. When calculating the appropriate

weights, the vector that contains the covariates will change depending on the date chosen. The

two main assumptions of the Synthetic Control Method do not necessarily have to hold. These

assumptions are
I−1∑
i=0

wi = 1
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0 6 wi 6 1 for{0, . . . , I − 1}

When conducting the Multi Synthetic Control Method, the counterfactual treated variables could

potentially become outliers. These counterfactuals would be used in the different stages of the

regression, meaning a convex set of weights is no longer possible to find even if the chosen states

and events are not necessarily outliers themselves initially. Outlier states will have fewer com-

parable states in their control pools. As pointed out by Li and Shankar (2020b), under certain

circumstances, relaxing the assumptions mentioned above is possible without loss of accuracy to

the regression. Increasing the bounds of the weights allows for more accurate Synthetic Control

Method regressions if the treated variable is an outlier.

Once the values from the Synthetic Control Method are calculated and tested for significance,

the second round of regressions are conducted and the observations from these regressions of

the treated variable ỹit,k where t > T0,K are stored. They are then subtracted from the actual

observation yik,t to get the new set of deviations, α̃

4.3.2 Inference in the multi-stage Synthetic Control Method

Inference in the Multi Synthetic Control Method requires two steps. In the first step, inference

is run on all the treated periods selected for the multi-stage. Any treated insignificant event is

removed from the list of events chosen for the multi-stage list. This is done before to obtaining

the results from the second stage of the Multi Synthetic Control Method. In the second step and

after obtaining the predicted values ỹ from the Multi Synthetic Control Method, an additional

inference test is conducted for each event in the multi-stage list that remains. There is only a slight

deviation from the routine inference procedures of the Synthetic Control Method. Before doing

this, though a test is also conducted on the difference between the Synthetic Control Method’s

and the Multi Synthetic Control Method’s deviations. The null hypothesis for this test and every

event k is

H0 : ¯̃αi,k = ¯̂αi,k Ha : ¯̃αi,k 6= ¯̂αi,k
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Since this is a simple average of values, a t-test is sufficient to conduct hypothesis testing. Rejecting

the null means that the deviations from the Synthetic Control Method are not equal to the

deviations of the Multi Synthetic Control Method, and it is then possible to proceed with the rest

of the inference procedure which is similar to that of the standard model.

1. I compute a placebo effect for every event by conducting an Multi Synthetic Control Method

regression on the outcome variables for the available controls for the corresponding event.

It is called a placebo effect because the control regions are selected so that they are not

subjected to the same treatment as the region in question at the date chosen.

2. At every point in time following the occurrence of the disaster (called leads), I compute all

the placebos alphas and then take the average across all placebos.

3. The actual lead is ranked in the distribution of placebo averages

4. The following formula gives the lead-specific p value.

p-value =

Npl∑
np=1

I(ᾱ
pl(np)
l < ᾱi)

Npl

where ᾱi is the effect of the restriction on the state in question and ᾱp
i is the average placebo

effect. This is only the case if αi is expected to be positive (imposing restriction). If α is

expected to be negative, then I consider the alternative p-value formulation; more specifically.

p-value =

Npl∑
np=1

I(ᾱ
pl(np)
l > ᾱi)

Npl

4.3.3 Testing the updated model

To test the validity of the changes, the model is applied to two established applications of the

synthetic control method. These models are the benchmarks used in most updates to the Synthetic

Control Method (Li and Shankar, 2020b), (Ben-Michael, Feller, and Rothstein, 2021), and (Kreif

et al., 2016). The objective is to see if the additions proposed in this chapter would change the
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results obtained in these benchmark papers. The first is Abadie, Diamond, and Hainmueller,

2010a (P1), which finds the impact of California’s Tobacco Control program on the consumption

of Tobacco in the state. The second is Abadie, 2021 (P2),where the authors test the impact of

the German reunification on the GDP of West Germany. In order to test the model, three, four,

and five events are randomly selected prior to the concurrence of the event described in each of

the papers. The post-treatment deviations obtained from each selection of the Multi Synthetic

Control Method are compared to the results from the papers. 10 post treatment period averages

are used for each test. The final results are summarized in table 4.3.

Method Results from P1 Results from P2

3-stage Synthetic Control Method -0.03*** 0.08***
4-stage Synthetic Control Method -0.03*** 0.05**
5-stage Synthetic Control Method -0.12** 0.06**

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.3: Results from testing Synthetic Control Method

Both of these events were unique and there were no significant events prior to these that had

affected the treatment variable. It is expected that the results from the Multi Synthetic Control

Method should not deviate from the traditional Synthetic Control Method. Table 4.3 shows that

for all the different Multi Synthetic Control Method variations, the null from the test is not

rejected. The values displayed in the two right columns are the differences between the average

from the Multi Synthetic Control Method and the papers studied.

4.4 Results from models

This paper presents an application of this model, however, it is computationally intensive.

For the 113 events selected and the follow up inference tests, a total of 4, 381 regressions were

conducted. Out of these events, 74 were significant, and these events are the ones selected for

the second step of regressions. I then start the work’s second step, but only using those 74 in my

multi-stage regressions. With inference testing, an additional 3, 126 regressions were conducted.
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Means IA IN ID TX MD NE MA KY

T0+15-T0+30 -31.7 -32.5 -33.8 9.8 -15.8 34.7 -131.5 3.3
T0+15-T0+45 -41.9 -76.9 -37.3 14.0 -25.0 39.9 -156.4 5.2
T0+15-T0+60 -24.1 -98.3 -37.5 13.3 -34.8 49.0 -92.9 -9.7

Table 4.4: Average percentage deviation for the last event using simple Synthetic Control Method

4.4.1 Standard Synthetic Control Method regressions

In this subsection, I discuss the results from the Synthetic Control Method regressions. The

discrepancy between the length of the different policies means that I cannot observe the same

means for these policies. In other words, for some policies, the maximum length of time available

until the next set of policies was implemented was relatively small, and while the event itself was

significant, the follow up event occurred within a time frame where in such a I am unable to

compare 50 or 60 day averages across events. However, for the entirety of the regions considered,

the final treatment or event was uninterrupted for a total of 60 days. In fact, for all eight states,

the last policy considered was the removal of one or all restrictions, which was a significant event

for 7 out of the 8 states.

Out of the 39 insignificant events, the majority were for removing restrictions, a total of 28 out

of 39. These results are similar to those found in chapter 3. The only exceptions are Kentucky and

Nebraska, where the only insignificant events were the removal of restrictions. For the last event

selected for each state, only the event that was selected for the state of Kentucky was insignificant.

Table 4.4 displays the synthetic results of several averages of the predicted treated variables on

the vaccination rates only for the standard Synthetic Control Method and for the last event in

the list. These values will then be subtracted from the Multi Synthetic Control Method for those

events.

4.4.2 Multi-stage regression

Given the objective of this chapter, I provide regression results only on the last treatment

period of the multi-stage Synthetic Control Method for every state. No two treatment periods

start on the same day for any of the eight states. However the predicted values 60 days after the
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treatment are obtained regardless. The treatment, in this case, being the last date where a major

policy change was recorded for any of these states within the time frame mentioned earlier. The

latest treatment in this case occurred on April 5th, 2021; in Kentucky. This event was the removal

of all policies except restrictions on public transportation.

After conducting inference testing on all eight states, the differences between the Synthetic

Control Method and the Multi Synthetic Control Method were significant in 7 different cases, the

exception being the state of Kentucky. This difference is calculated as

δi,t =
ŷi,t − ỹi,t
ŷi,t

Zhere i refers to region i and t > T0,K refers to the treatment period for event k. Figure 4.1 shows

these differences from T0 to T0 + 90. The blue bands around the lines are the 95% confidence

levels. Any line that intersects with the blue 0 lines indicates that δi,t is 0. We can see that

for Kentucky, there is no noticeable significant cumulative effect of previous policies. This is not

to say that the last policy was insignificant, but that the difference between the Multi Synthetic

Control Method and the Synthetic Control Method is negligible. When conducting the same type

of inference on the remaining seven states (and seven events) I find that they are all significant at

a 95% confidence level.
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Figure 4.1: Deviations, δi,t 90 days after period T0,K
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Values for several averages consistent with the impact of the COVID-19 virus on humans in

terms of the incubation period, and symptoms, including death, are recorded based on results

obtained from earlier research. These means are displayed in table 4.5, and they represent the

percentage difference between the two sets of deviations α̂i,t, and α̃i,t. The most significant devia-

tion was for the state of Massachusetts. On average, the deviations obtained from the multi-stage

Synthetic Control Method are 150% stronger. In other words, the predicted values obtained from

conducting a simple Synthetic Control Method for that treated period are, on average under-

predicted, and in fact, the cumulative effect of all the policies is almost twice as strong as the

effect predicted. I then study what could potentially explain these variations in these predicted

values. For the panel of states shown, I find that the predicted values from the Multi Synthetic

Control Method are between 10 and 150% larger than those predicted by the traditional Synthetic

Control Method.

Means IA IN ID TX MD NE MA KY

15-30 mean -55.7 -32.5 -33.8 9.8 -15.8 34.7 -131.5 3.3
30-45 mean -41.9 -76.9 -37.3 14.0 -25.0 39.9 -156.4 5.2
45-60 mean -24.1 -98.3 -37.5 13.3 -34.8 49.0 -92.9 -9.7
60-75 mean -27.3 -42.5 -33.6 12.4 -22.2 29.8 -65.6 -0.2

Table 4.5: Average percentage deviation between Synthetic Control Method and Multi Synthetic Control Method
for different states

The deviation peak was around the 40th day after the policy had been implemented for most

events, with a slight dip after this day. It is worth noting that when computing various means,

the 45 to 60-day average is usually higher in absolute value than the 15 to 30-day average or the

30 to 45-day average.

In order to explain this difference between the Synthetic Control Method value and the Multi

Synthetic Control Method values of the treated variable, I conducted an OLS regression with

my dependent variable being the 15-60 day average. This was chosen because it provides a well-

rounded representation of this difference without being limited by data availability.

δ̄i = βiXi + γiZiui
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where δ̄i is the 15- 60 day average and Xi is a vector of explanatory variables. The vector includes

the mean and variance of the stringency index as calculated by the Oxford COVID-19 Government

Response Tracker indicators, the number of policies implemented, and number of policies removed

for each state. Vector Zi is a vector of controls that includes the density factor calculated earlier

in chapter 3, percentage of the population over 65, and health quality. The results are in Table

4.6.

M1 M2 M 3 M4 M5
Stringency Mean 10.21** 8.05 ** 7.31** 7.65** 7.28**

(2.18) (2.43) (2.45) (2.31) (2.53)
Stringency Variance 0.51 0.78 0.91 -0.21 1.63

(0.31) (0.34) (0.45) (0.62) (1.21)
Policies imp. 1.95** 1.89** 1.86** 1.92**

(0.41) (0.60) (0.58) (0.55)
Policies rem. -0.54 * -0.51* -0.65

(-0.21) (-0.22) (-0.66)
Over 65 pop. 0.22 ** 0.18**

(0.07) (0.06)
Density score 0.13*

(0.08)

N 105 105 105 105 105
R-squared 0.3415 0.3489 0.3672 0.3724 0.3753
R-squared Adj. 0.3348 0.3341 0.3331 0.3323 0.3398

Table 4.6: OLS Regression results

Table 4.6 shows the results of the OLS regressions around the determinants of the differences

between the Synthetic Control Method and Multi Synthetic Control Method. The mean of the

stringency is significant in determining the percentage difference between the two models. Table

4.6 shows that for every point increase in the average stringency index, the Multi Synthetic Con-

trol Method deviates by 8 to 10% more than the Synthetic Control Method . As states imposed

more restrictions, and as they increased the severity of the restrictions, the effect of these policies

increased over time. The deviations between the Multi Synthetic Control Method and the Syn-

thetic Control Method for the last policy increased by 2% for each policy imposed on average.

The results show that the Synthetic Control Method under-predicts the true impact of a policy if

a series of significant events preceded it.
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4.5 Robustness testing

Two robustness tests are conducted to test the validity and accuracy of the results obtained.

These tests are augmented versions of robustness tests conducted for traditional Synthetic Control

Method regressions. The first test is the placebo test. As Abadie (2021) highlighted, when

conducting a placebo test, a treatment period is arbitrarily chosen prior to the actual treatment

period T0. A synthetic model is constructed using the arbitrarily chosen period, and then the

inference tests are conducted on the synthetic treated variables of the actually treated period.

In this chapter, this test is altered to accommodate the changes in the model. IA number of

events are randomly picked, specifically, three random dates where the variable of interest had not

been affected by any policies prior to that point for a significantly long period (either not at all or

more than 60 days). For each event, simple Synthetic Control Method regression is conducted for

the treated variable on that date, and the deviations from the actual value of the treated variable

are recorded.

For the Multi Synthetic Control Method, I pick any random date prior to the event in question

and any number of consecutive events. I choose to conduct this experiment with a 2-stage, 3-stage,

and 4-stage Synthetic Control Method, with at least ten days between each date. Data obtained

from the multi-stage regressions is compared to the standard model. If there are no significant

differences between the Synthetic Control Method and the Multi Synthetic Control Method, then

the multi-stage regression is the same as the Synthetic Control Method.

Three periods are chosen due to data limitations. For each event used, a minimum of 50

observations is needed to conduct inference, without any interruptions or policy changes. This

does not mean that no policies present at the time but that no policies were changed for 50 days

prior to the event was selected. The cumulative effects were unlikely to have any effect. The

events chosen are for the following states on the following dates: a)South Dakota, 2020-07-31,

b)Alabama, 2020-09-07, c)Nevada, 2021-02-21. The results of the multi-stage deviation regression

for the three events chosen are compared to the one-period Synthetic Control Method specifically,

the percentage change.
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Regression used Event 1 Event 2 Event 3

Synthetic Control Method 19.82%∗∗ 34.14% ∗∗ -70.52% ∗

2-stage Multi Synthetic Control Method 19.79% ∗ 33.98% ∗ -70.31%∗

3-stage Multi Synthetic Control Method 19.63% ∗ 34.34%∗∗ -71.28%∗

4-stage Multi Synthetic Control Method 19.37% ∗∗ 34.22%∗∗ -70.48% ∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.7: Robustness check on random events

The results are summarized in Table 4.7, which displays the average 30-day percentage differ-

ence in death rates for each of the three events, in both the multi-stage and traditional Synthetic

Control Method in their respective columns from the actual value. The signs represent the di-

rection of change. A negative sign means that the predicted value is more than the actual value

(implementation of a policy), and a positive sign indicates that the predicted value is less than the

actual value (removal of a policy). When conducting inference using Synthetic Control Method,

the events are significant at a 95% confidence level. From this table, I can see that there is no

difference between these events, meaning that in a scenario where these cumulative effects are not

present, the Multi Synthetic Control Method delivers predicted values similar to the Synthetic

Control Method, meaning we can use the Multi Synthetic Control Method without any loss of

accuracy.

Another robustness exercise involves changing the values of the treated variable in the vector

Z when attempting to obtain counterfactuals. In a traditional Synthetic Control Method this

is usually to only use half of the pre-treatment treated values to train the model. This chapter

adapts this technique to the model defined above. For every event after the first event in the

multi-stage regression, I only use half of the predicted values from the Synthetic Control Method.

In other words, the vector Z1 becomes

Zi,K = [xi,1, . . . , xi,m, Ỹi,1,1, . . . , Ỹi,T0,0
2

, Yi,1,2, . . . , Yi,T0,K
2

,K
]

For the set of 7 significant final treatment periods, there is no noticeable change in the means

highlighted in table 4.5 if the co-factors are changed.
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4.6 Conclusion

Policymakers responded to the pandemic in the United States by imposing various anti-

contagion policies at different times. These policies would often overlap, and this made analyzing

their impact difficult. While a popular tool in its standard form, the Synthetic Control Method

can only quantify the impact of policies that are uninterrupted after their occurrence by any

other policy. This chapter presents a modified version of this method that relies on changing the

co-factor vector and multiple iterations of the Synthetic Control Method to solve this issue.

The findings indicate that when a series of significant anti-contagion policies precede an anti-

contagion policy, a synthetic control regression can underestimate the impact of the last policy

in this series by up to 150% in absolute value. On average, each restriction imposed can add 2%

to the total deviation between the Synthetic Control Method and the Multi Synthetic Control

Method. The more stringent these policies the higher the deviation, almost 10% more for every

point increase in stringency.

These findings are robust when tested against events that were not interrupted or were not

preceded by significant events. Using key examples from the Synthetic Control Method literature,

I find no significant difference between the Synthetic Control Method and the Multi Synthetic

Control Method results. In these cases, the event studied was not preceded by any significant

events. The Multi Synthetic Control Method predicted similar results to that of the Synthetic

Control Method with several tests conducted on the average post-event differences. The Multi

Synthetic Control Method results were within a 99% confidence interval of the Synthetic Control

Method results. Future work can add further modifications to the model that can be undertaken.

The model could be used to focus on more concentrated and specific treatments or for more

extended treatment periods.
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Appendix A

The results of robustness checks are in table 4.8. In this case, for every event, 4 random stages

are used, and the 45 day average is taken as a benchmark. Increasing the number of stages, or

taking a different average does not change the results.

Regression ID IN IA TX

SCM 19.82%∗∗ 34.14% ∗∗ -70.52% ∗∗∗ 10.71 ∗∗∗

2-stage M-SCM 19.79% ∗∗ 33.98% ∗ -70.31%∗∗∗ 13.22 ∗∗∗

3-stage M-SCM 19.63% ∗∗ 34.34%∗∗ -71.28%∗∗∗ 8.43∗∗∗

4-stage M-SCM 19.37% ∗∗ 34.22%∗∗ -70.48% ∗∗∗ 9.71 ∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.8: Robusteness checks for selected significant events-positive values

Regression MD NE MA KY

SCM -12.32∗∗∗ 33.41∗∗∗ -122.33∗∗∗ 0.33∗∗∗

2-stage M-SCM -15.20∗∗∗ 42.22∗∗∗ -146.92∗∗∗ 5.87∗∗∗

3-stage M-SCM -27.42∗ 28.47∗∗∗ -125.87∗∗∗ 2.10∗∗∗

4-stage M-SCM -15.04∗∗∗ 29.04∗∗∗ -161.55∗∗∗ 4.22∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.9: Robusteness checks for selected significant events- negative values
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