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ABSTRACT

Modelling of Passive Mode Locking in Semiconductor Quantum Dot Lasers

Adam Pywowarczuk

Quantum Dots (QDs) have been the subject of much attention due to their highly discrete 

band structure which allows for the emission of highly monochromatic light. Lasers can be made 

to produce pulses using a technique called mode-locking (ML), but QDs lasers which have not 

intentionally been mode-locked have still been observed exhibiting the same pulsing behaviour. 

The purpose of this research is to create a simulation of the dynamics of a QD laser to attempt to 

better understand the mechanism behind the observed mode-locking effect.

To study this, a simulation of a QD laser system was created in COMSOL Multiphysics 

5.4 based on a theoretical model which uses a quantum perturbation theory to provide a detailed 

treatment of carrier-light interactions to model the impact that four wave-mixing (FWM) has on 

the electric field. This simulation was used to recreate results from simulations based on a time 

domain travelling wave (TDTW) model as well as experimental data to assess how well the 

perturbation theory model is able to match the data. 

It was found that the simulation was able to produce results indicating the presence of 

lasing, but due to only simulating a single dot it is unable to properly show inhomogeneous gain 

broadening and mode-locking. Though this model shows potential for a variety of applications, it 

will need to be further enhanced to include multiple QDs and cavity modes to act as a more 

accurate and effective tool.
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Chapter 1 – Introduction to Quantum Dot Lasers

1.1 Introduction
Lasers are a very highly valued technology due to their ability to act as highly 

monochromatic and coherent light sources. Lasers primarily operate through stimulated emission, 

so the amplified light will be monochromatic due to one specific transition stimulating further 

emissions at the same wavelength. However, this is an idealization, and in reality we see a 

broader range of wavelengths depending on different factors. The desire for greater 

monochromaticity motivates the creation of lasers which use quantum dots (henceforth QDs), due 

to their unique density of states (henceforth DOS). The DOS of a material is a function which 

represents the distribution of allowed states which carriers can occupy at different energy values, 

and it depends on a variety of different factors. A technique called quantum confinement, wherein 

a dimension of the material is reduced until carriers within the material experience quantum 

effects, can be used to manipulate the DOS of the material.  Quantum dots, which create a highly 

discrete DOS through quantum confinement applied in three dimensions, are one such example 

of this approach. Other structures such as quantum wells (confined in 1 dimension) and quantum 

wires (confined in 2 dimensions) also take advantage of these effects to modify their DOS, but 

QDs offer the most discrete DOS function. As shown in Figure 1.1, [1] QDs have Dirac delta-like 

DOS function, which limits the number possible transitions within a certain energy range and 

thus limits the range of emitted wavelengths. Real implementations of QDs do not match up with 

this idealized picture, due to effects such as inhomogeneous broadening and the fact that the band 

gap of the QDs can vary with dot size [2], but they consistently perform better than bulk 

semiconductors in terms of gain, threshold current, jitter, and filamentation [3][4][5].
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Figure 1.1 Diagrams of the DOS functions for a bulk semiconductor (a), a quantum well (b), a 

quantum wire (c), and a quantum dot (d) [1]

Lasers using QDs as the active medium have been proposed as early 1976 by Dingle et al. 

[6], with multiple researchers successfully producing QD lasers in the 90s [6][7]. Of particular 

interest are QD lasers operating at 1.3 μm, which is the wavelength commonly used for 

communications. For this reason we are also looking for lasers which can emit periodic pulses, 

which are helpful due to higher bit rate transmission, optical clock recovery, ultrafast signal 

processing, and the generation of optical frequency combs (OFC). There are multiple different 

methods used for creating pulsing lasers, and the one commonly focused on is mode-locking 

(ML). Mode-locking refers to a technique where multiple modes of the standing wave within the 

laser cavity are locked together by controlling their phases to cohere. Due to the matching of their 

phases the waves will interfere destructively in much of the cavity, save for a region of highly 

constructive interference. This region of constructive interference will travel back and forth 

through the cavity periodically, creating pulses that repeat on a fixed duration. A depiction of this 

behaviour and how it differs from standard lasing behaviour is shown in Figure 1.2.
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Figure 1.2 Diagram comparing the time-domain intensity of a) a non-ML laser and b) a non-ML 

laser 

Mode-locking can be performed actively (using an electric signal or other external effects) 

or passively (through the properties of the device itself). The most common method for passive 

ML involves creating a laser cavity with two sections: the active lasing medium, and a saturable 

absorber (SA), which is a material that absorbs less light as its intensity increases. In general the 

loss of the cavity will be greater than the gain, but due to the SA the leading edge of the pulse 

will saturate the absorber more quickly than the peaks, causing a brief period of high gain. This 

creates a cycle where the loss periodically exceeds the gain, at which point the pulse envelope 

becomes inverted [8]. This cycle is illustrated in Figure 1.3.
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Figure 1.3 Demonstration of the gain-loss cycle seen in a two-section ML laser [9]

However, committing to a laser with two sections limits our design options, so single-

section ML lasers are preferred. The theoretical basis for mode-locking in single section lasers is 

not clearly understood, though it has been experimentally realized in multiple configurations, 

demonstrating high output power [10] and high temperature stability [11][12]. The purpose of 

this project is to investigate the causes of this observed mode-locking by developing a theoretical 

model and testing it through computer simulations to see how well it matches with these 

experimental results, as well as other theoretical predictions.

Popular candidates for the main cause of this effect are spatial hole burning (SHB), the 

Kerr-lens effect, self-phase modulation (SPM), group velocity dispersion (GVD), and four-wave 

mixing (FWM) [13]. This research primarily focuses on the contributions of FWM, which refers 

to a nonlinear response of the medium prompted by the optical field within the cavity. Four-wave 

mixing specifically refers to three optical fields of frequencies ω1, ω2, and ω3 being superimposed 

to create a wave at a fourth frequency ω4. As such, the frequency of this fourth wave must satisfy 

the relationship ω4 = ω1 ± ω2 ± ω3. For example, in one specific case we can have two photons 

that generate two new photons, which corresponds to the specific relationship ω1 + ω2 = ω3 + ω4. 

However, this process must still adhere to conservation of momentum by ensuring that p1,2 = p3,4. 

If we further define a frequency difference Ω and specify that ω1 = ω2, ω3 = ω1 + Ω, and ω4 = ω1 - 
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Ω we will find that p1,2=
(ω1+ω2)

c
=
2ω1
c

and p3,4=
(ω3+ω4)

c
=

(ω1+Ω )+(ω1−Ω )
c

=
2ω1

c
. This will 

ensure that the momentum before and after the mixing will be the same, meaning that momentum 

will be conserved. These conditions are also chosen so that the phases of the waves are properly 

locked in order to generate pulses.

This effect is of particular interest as most existing theoretical models, particularly those 

explored by Bardella et al. [14][15][16] use a time domain travelling wave (TDTW) approach. 

Though these models have shown good results, they do not include a detailed treatment of FWM, 

and also have difficulties including other minor effects such as GVD and SPM. For this research, 

a modified TDTW wave model similar to the one proposed Chow et al. [17][18] is used in 

combination with carrier rate equations derived by Jiao et al. [13]. What differentiates this from 

other TDTW models is that the equations modelling the electric field is derived from a detailed 

quantum mechanical picture of electron-light interaction, leading to a more detailed treatment of 

the effects of FWM than previous simulations. The results of this approach, as modelled using 

COMSOL Multiphysics 5.4, have been compared with both results from simulations of the 

previous model [14] and reported experimental data from single section mode-locked QD lasers 

[19][20] to demonstrate how a model which properly incorporates the effects of FWM can 

produce the same mode-locking that has been seen in previous research both theoretically and 

experimentally.

If the role that FWM plays in the observed mode-locking phenomenon is better 

understood, then it can aid further research into and development of pulsed QD lasers. A robust 

simulation of a QD laser can also be used to make predictions and evaluate which properties can 

produce desirable results, helping to design future devices.

1.2 Motivations and Contributions
This project was primarily motivated by acquiring a better understanding of the 

mechanism behind mode-locking in single section QD lasers. Multiple approaches to ML using 

either external signals or specialized two section cavities are well understood, but reported 

examples of ML in single section lasers are not well understood. Most common theoretical 

studies of this phenomenon use approaches which neglect the importance of many effects. 
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Multiple previous publications have explored the role which effects such as both spatial and 

spectral hole burning (SHB) [21], the Kerr lens effect [3], or non-linearities within the cavity [22] 

play in mode-locking, but there has not been as much inquiry into the role of FWM. This 

research’s emphasis on the influence of FWM can help fill in the blanks of our understanding of 

the observed mode-locking mechanism. The goal of this research is to properly evaluate the 

impact of these effects, and to see if they are a significant contributor to the thus far unexplained 

ML.

Previous models, in particular one put forth by Bardella et al. in multiple publications [14]

[15][16], have achieved good results in simulating such devices by using a simple TDTW 

approach. This model will henceforth be referred to as the TDTW model. This approach, 

however, does not significantly emphasize contributions from FWM and various other possible 

key factors. Due to these deficiencies, other possible approaches need to be investogated to make 

continued progress. To build on this foundation, further theoretical models which have been 

previously published by Jiao et al. [13] and Chow et al. [17][18] were also considered and have 

been elaborated on and expanding to build a complete model with a more thorough treatment of 

FWM than previous simulations. Contributions from these papers, such as the rate equations and 

gain switching, are used alongside other modifications which are added to avoid drawbacks or 

inconvenient assumptions such as thermal equilibrium. The final model is able to incorporate the 

effects of FWM through the application of quantum perturbation theory, and thus this model will 

be referred to as the perturbation theory model.

The resulting simulation can then be used to attempt to reproduce published results, both 

experimental [19][20] and from other simulations [14]. These results can be used to evaluate the 

accuracy of the theoretical model and assess the significance of FWM in passive mode-locking, 

as well as to propose ideas for future research and device designs.

This thesis primarily focuses on the simulation of this theoretical model. The major 

contributions are:

1) Simulation of the carrier dynamics, electrical field behaviour, and optical spectrum of quantum 

dots.
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2) Comparison of a new perturbation theory-based theoretical model emphasizing the 

contributions of FWM to the ML mechanism in these devices to previous proposed models, both 

in terms of their backgrounds and the produced results.

3) Comparison of published experimental data to the results of both the perturbation theory 

simulation and TDTW models using the appropriate parameters to assess the accuracy of the 

models and the importance of FWM.

4) Suggestions for future improvements to the simulation and possible areas of inquiry based on 

results from the simulation.

1.3 Organization of Thesis
This introductory chapter provides a basic explanation of QD lasers, mode-locking, some 

of the current challenges in the field, and some of the possible applications of such research. The 

reasoning for using QDs as the active medium of a laser over bulk materials is explained, as well 

as the applications and why the use of mode-locking to generate pulses is desirable. From there, 

the current limitations in ML are discussed, including methods of both active and passive mode 

locking. In particular, passive mode-locking within single section lasers, as well as current issues 

with our theoretical understanding of this phenomenon are discussed. A new theoretical model 

and simulation based on quantum perturbation theory is proposed as a solution.

Chapter 2 goes into detail on the theoretical background of this topic. The TDTW model 

used by Bardella et al., included both its strengths and flaws, is examined and from this a new 

model to explore other causes of mode locking is developed. This model is a modified version of 

the previous, using a similar approach but with a more detailed treatment of electron-light 

interactions using quantum perturbation theory, which better reflects the contributions of four-

wave mixing.

Chapter 3 discusses the implementation of the perturbation theory model in COMSOL 

Multiphysics 5.4. A basic outline of the equations and how they have been implemented, as well 

as a detailed description of each segment of the simulation will be presented. The simulation will 

also be converted into MATLAB code, which will be reproduced in full in the Appendix. A 
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second MATLAB program which was used to process the data and produce figures will also be 

explained. 

Chapter 4 presents the published results which were compared with the perturbation 

theory simulation. Three different published results were used as a basis of comparison: first, data 

sets from the TDTW [14]; then, experimental data from an InAs-based QD laser operating at 

wide range of injection currents [19]; and finally, experimental data from an InP-based QD laser 

[20].

Chapter 5 presents the results from the perturbation theory simulation, and contrasts them 

with the published results discussed in Chapter 4.  Both the perturbation theory simulation 

discussed in Chapter 3 and the TDTW model discussed in Chapter 2 were used to replicate this 

published data as closely as possible by using the appropriate values and parameters. The output 

from the improved simulation is analyzed in detail, in terms of how it compares with both the 

TDTW simulation and the real experimental results, as well as the implications of the results.

Chapter 6 acts as a summary of the previous chapters and all major findings from this 

work. Based on the findings from perturbation theory simulation, an assessment of the 

simulation’s capabilities and weaknesses is made, and plans for ways to improve it as well as 

future research into single-section ML QD lasers is proposed.
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Chapter 2 – Theoretical Model

2.1 Introduction
To start with some of the basic theory relating to quantum dots and their properties are 

discussed, as well as some of the basic theory behind lasing, will be explained. From here, the 

reason why quantum dots are desirable for laser applications will be made clear.

Section 2.2 gives a detailed explanation of the basic properties and current theoretical 

understanding of QDs, as well as some of the optoelectric devices which can be made with QDs. 

From there, section 2.3 will go into detail on laser theory, and explain different ways that the 

carrier dynamics in these systems can be modelled with rate equations. The next sections look at 

more detailed models for QD lasers specifically. In particular, section 2.4 will look over some of 

the previous published TDTW-centred models of ML behaviour in single-section QD lasers and 

analyze them. Section 2.5 will then go on propose a model based on quantum perturbation theory, 

and explain the important implications. Finally, the conclusion in section 2.6 will summarize the 

important results.

2.2 Properties of Quantum Dots
QDs are a specific application of a technique referred to as quantum confinement. This is 

a method used to take advantage of quantum effects, as bulk materials and other objects at large 

scales are governed by classical mechanics while quantum mechanics only plays a role at very 

small scales. Quantum confinement is simply a reduction of the spatial dimensions of the material 

which leads to a reduction of the carriers’ degrees of freedom and thus a reduction of the allowed 

phase space [23]. This technique is often used with indirect band gap semiconductors, where the 

conduction and valence bands are separated in both energy and phase space. The control over the 

allowed phase space provided by quantum confinement makes it possible to create a direct band 

gap where it is easier for transitions to occur, which is one example of the types of band gap 

engineering made possible through this technique. As these quantum effects, such as the 

uncertainty principle, can have a significant effect on the optoelectronic properties of the 

material, varying the size and shape of the structure allows control of important properties such 

as emission wavelength and carrier lifetimes [24].

9



A quantum dot refers specifically to a structure where quantum confinement has been 

performed in all three spatial dimensions, as opposed to simply one (quantum wells) or two 

(quantum wires, or quantum dashes). There are a variety of different methods for producing these 

structures, and the way they are produced can have a significant impact on their properties. 

Common methods include co-sputtering, plasma-enhanced chemical vapour deposition 

(PECVD), Chemical Beam Epitaxy (CBE), and Molecular Beam Epitaxy (MBE) [23]. 

Techniques involving the implantation of ions onto a substrate make it very easy to control the 

growth of the layers, but it is also important to be mindful of the substrate which is used. As the 

dots, or nanostructures, grow within pores in the substrate, the material used for the substrate and 

the structure of its pores can have a significant impact on the size and distribution of the dots 

[25]. The size of the dots in particular is very important for band gap engineering, as the spacing 

between the energy levels within the dots get smaller as the dots themselves get bigger [26][27].

Growth of QDs through epitaxy has been studied in detail, and is typically classified in 

terms of three different “modes”. These modes depend on interface energies and the lattice 

constant of the materials used. The most commonly used mode of QD growth for laser 

applications is the Stranski-Krastanov (SK) mode, in which one semiconductor with a large 

lattice constant is deposited onto one with a much smaller lattice constant. Due to the mismatch 

in the lattice sizes, a large amount of strain is created, and to release this strain the deposited 

atoms “relax” into clusters [28], these clusters becoming the QDs. A diagram explaining this 

relaxation mechanism is shown in Figure 2.1.
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Figure 2.1 Representation of relaxation during SK growth. The material with large lattice 

constant a1 is grown in the material with small lattice constant a0. This creates non-uniform 

spacing between the clusters [28]

The main reason QDs are ideal as a lasing medium is that the reduction of phase space in 

all three dimensions due to quantum confinement gives them a more discrete band structure than 

other materials. Because of the limited phase space, there are only a limited number of transitions 

which can occur, which is useful for stimulated emission (see section 2.3). However, this is an 

idealization, and there are multiple other effects that need to be taken into consideration in reality.

The most prominent of these effects that need to be considered when modelling QDs is 

inhomogeneous broadening. As mentioned earlier, the energy of the emissions from the QDs 

depends on their size. Due to the limitations of all known techniques for growing QDs, it is very 

difficult to control any variation in their sizes, and since QDs with different sizes allow different 

transitions, a system with a broad distribution of QD sizes will also have a broad range of 

possible emissions, limiting monochromaticity.
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 Figure 2.2 Diagram illustrating the impact of varying dot sizes on inhomogeneous gain 

broadening [9]

Due to this broadening effect, large increases in bandwidth have been observed. For 

example, QD semiconductor optical amplifiers designed with bandwidths of 2-dB and 10-dB 

were observed exhibit broadening effects as large as 150 nm and 300 nm [29].

Another important factor is the photon bottleneck effect. Due to the limitations in the 

phase space of the QDs, there is a corresponding drop in the electron-photon scattering rate [30]. 

The scattering rates affects the relaxation times in the QD states, making excited carries take 

longer to relax than in bulk material. This different carrier behaviour will need to be taken into 

consideration when studying the carrier dynamics in a QD laser. For example, carriers in QDs 

have been observed to have a fast recovery on the order of 1 ps, followed by a slow decay on the 

order of 100 ps [31]. Ultrafast recovery on the order of 100 fs has also been observed, and is 

commonly attributed to Auger scattering [32][33]. If these fast carrier dynamics can be taken 
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advantage of, lasers with very high repetition rates can be designed, so Auger scattering should be 

included in any model to be sure this effect is taken into account.

2.3 Laser Theory
LASER is an acronym which stands for Light Amplification by Stimulated Emission of 

Radiation. It is a device which allows for the production of high intensity, highly monochromatic 

light by taking advantage of a phenomenon referred to as stimulated emission. This describes the 

tendency for electrons in an excited state to interact with photons carrying the same amount of 

energy, causing the electrons to lose their energy by emitting a photon. Because of the nature of 

this interaction, the new outgoing photon will have the same wavelength and the original in-going 

one. The emitted photon can then go on to stimulate further similar emissions, as can the next 

emitted photon and the photon after it. These simulated emissions will eventually create a very 

large number of photons of the exact same wavelength, amplifying the intensity of the original 

photon many times over via the principle of superposition.

To create a laser, first the system must achieve what is called a population inversion. In a 

general distribution of carriers, we would expect the lower energy, unexcited states to be more 

highly populated than the higher energy, excited states. A population inversion is the opposite, or 

“inversion” of this default configuration; the higher energy states are much more populated than 

the lower energy levels. In the context of band theory, this would mean a large number of 

electrons in the conduction band and a large number of holes in the valence band. Such a 

configuration is difficult to achieve, and is very difficult to maintain for continuous operation, as 

the electrons and holes will want to recombine as quickly as they can. This is commonly achieved 

through forward biasing of a pn-junction.

When speaking about lasing, the state which the excited electrons occupy is often referred 

to as the excited state (ES), and the lower energy state that they decay down to is referred to as 

the ground state (GS). However, looking at only these two states is a very oversimplified picture 

which does not work out in reality.
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If we were to attempt to model a laser with only these two levels (two level laser), we 

would start by defining the number of carriers in the GS as N0 and the number of carriers in the 

ES as N1.

Figure 2.3 Diagram of a two-level laser

From here, we can work on creating rate equations for this system. Here, Rp represents the 

number of carriers excited by the pump per second, and γ10 represents the decay rate from level 1 

to level 0. This will be measured in 1/s, and is the inverse of the lifetime for N1 and the 

recombination time for N0.

dN 1

dt
=Rp(N 0−N 1)−γ10N 1 (2.1)

dN 0

dt
=γ 10N1−Rp (N0−N1) (2.2)

This is a very simple system of equations for the two levels, which conveniently also 

leaves us with 
dN 1

dt
=
−dN 0

dt
, ensuring that the number of carriers is conserved. Any carriers that 

are removed from N0 must be added to N1 through the pump, and any that are added to N0 are 

removed from N1 through radiative decay. However, as convenient as this model is, it is severely 

limited as a population inversion cannot be properly realized.

Before starting the pump, out of the total number of carriers in the system Ntot, all of them 

will be in the ground state N0 and none of them will be in the excited state N1. Thus the initial 

conditions for our system of equations will be N1(0) = 0 and N0(0) = Ntot, and from these it 

follows that 
dN 1

dt
=RpN totat t = 0. Since we’ve defined Ntot to be the total number of the carriers 
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of the system, we can also say that Ntot(t) = N0(t) + N1(t), and that this value will be constant for 

all time values. We can also find the steady state solution for N1 by setting the derivatives to 0. 

This leaves us with N1=
R pN 0

Rp+γ 10
, which can be further rearranged into 

N1

N 0

= 1

1+
γ 10
Rp

. This fraction 

N 1

N 0
tells us how much larger the number of carriers in the excited state is than those in the ground 

state. As such, if we want our steady state behaviour to be a population inversion, we want to 

have 
N1

N 0

>1, but looking at the expression we derived we will always have a value less than 1, 

even for very small γ10 and very large Rp. This tells us that the steady state behaviour of this 

system will always leave us with slightly more carriers in the ground state, meaning that this 

model is insufficient for showing a system where population inversion, and thus lasing, is 

maintained for a long period of time.

Figure 2.4 Diagram of a three-level laser

In that case, we can try to add more energy levels to improve this model. Instead of 

having all of the excited carriers decay straight down to the ground state, we will instead add an 

intermediate state in the middle. The excited carriers will rapidly decay down to this intermediate 

state without emitting a photon, and then finally undergo a much slower radiative transition down 

to the ground state.

We can now create a new set of rate equations for such a system, using very similar 

reasoning to our previous model:
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dN 2

dt
=Rp(N 0−N 2)−γ21N 2 (2.3)

dN 1

dt
=γ 21N2−γ 10N1 (2.4)

dN 0

dt
=γ 10N1−Rp (N0−N2) (2.5)

Once again, we can define Ntot = N0 + N1 + N2, and we can use the same initial conditions 

and the same method for finding steady state solutions. As we’re finding the steady state 

solutions, we can also introduce some assumptions to simplify some of the work. As mentioned 

in the description of this system, the transition from level 2 down to level 1 is very fast, so the 

transition rate γ21 is a very large value, typically much larger than what we would expect for the 

pumping rate Rp. Similarly, due to the fast decay, the population in level 2 will always be much 

lower than the population of the ground state. Assuming γ 21≫ Rpand N0≫N2, after we set the 

derivative to 0, we can simplify 2.3 into 0=RP N0−γ21N2, which leaves us with N2=
Rp

γ 21
N 0.

Next we can find the steady state solution of the intermediate level. Setting the derivative 

to 0 leaves us with N1=
γ 21
γ 10

N2, which we can then combine with the other steady state solution to 

create an expression for the population inversion. Since carriers decay out of level 3 very quickly, 

and these decays are nonradiative, we should be focusing on level 1 instead. Knowing that 

N1

N 0

=
R p

γ10
, we can see that the population inversion depends on both the pumping rate and the 

radiative decay rate. It is indeed possible to maintain a population inversion with this model, but 

it requires a high pump rate and a low decay rate, which makes such a system very inefficient.
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Figure 2.5 Diagram of a four-level laser

Since we still want better results, we can try again by adding another energy level. This is 

very similar to the three-level model, but this time there is another intermediate energy level that 

the carrier will move into after its radiative transition. From this last intermediate level, it then 

quickly decays back down to the ground state non-radiatively. We can now create a system of 

four rate equations for this model:

dN 3

dt
=Rp(N 0−N 3)−γ32 N 3 (2.6)

dN 2

dt
=γ 32N3−γ 21N2 (2.7)

dN 1

dt
=γ 21N2−γ 10N1 (2.8)

dN 0

dt
=γ 10N1−Rp (N0− N3) (2.9)

Now, we can check the steady state behaviour of this model and see if maintaining a 

population inversion is possible. By setting all of the time derivatives to 0, we end up with 

N2=
γ 32
γ 21

N 3and N 1=
γ 21
γ 10

N2. Since the radiative transition we are focusing on in this model is from 

level 2 to 1, we are looking only at the population inversion between 2 and 1. Using these steady 

state solutions, we find 
N 2

N 1

=
γ10
γ21

.

Just like in the three-level model, our radiative decay is very slow, so it’s decay rate is 

very small, whereas the decay rate from 1 to 0 is very large, which means that this model will 
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leave us with a population inversion that will be much greater than 1 at all times with no 

dependence on the pump rate, like with the previous model. This system of equations finally 

leaves us with solutions that will maintain a population inversion for a long period of time. As 

such, four-level or five-level models are commonly used in detailed treatments of lasing.

2.4 TDTW Model
Bardella et al. have written extensively about modelling mode-locking in QD lasers, in 

particular using a TDTW approach [14][15][16]. This approach models the electric field in the 

cavity as a travelling wave in the time domain, starting from some of Maxwell’s equations.

∇ × E=− jω μ0H  (2.10)

∇ ×H= j ω (ϵ 0 ϵ r E+P )+J= jω ϵ0 ϵ r E+ jω P+J  (2.11)

By combining the differential forms of the Maxwell-Faraday equation and Ampere’s 

circuital law, with terms added for the polarization and the stochastic current density, we can 

create a second order differential equation.

1
− jω μ0

∇ 2E= jω ϵ0 ϵ r E+ jω P+J  (2.13)

We can start to simplify this equation a bit to help us narrow down the solution. First, we 

will not be able to strictly define any transverse electric (TE) or transverse magnetic (TM) modes, 

so the laser cavity will only have quasi-TE and quasi-TM modes, both pointing in the same 

direction. We will define this direction as z, and since our electric field is only varying in that one 

direction we can replace the del operator with a simple derivative with respect to z. The 

polarization term which we’ve added can also be expressed in terms of the electrical field and the 

electronic susceptibility, via P=ϵ0 χ E, which further helps us to simplify this equation.

∂2E ( z ,ω )
∂ z2

=−ω2n2

c2
E ( z ,ω)−ω2μ0 χ E ( z ,ω)+ jω μ0 J  (2.14)

For the sake of simplicity, we can also define β (ω )=ωn
c

 (where β (ω0)=β0). We can then 

find a solution for this equation, and use a Fourier transform to convert it from the spatial domain 

into the frequency domain. 
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E (z ,ω0+Ω )=√ ω0μ0
β0

(E f ( z ,Ω) e− j β0 z+Eb (z ,Ω )e j β0 z) (2.15)

For the model, a forward (f) and backward (b) propagating wave solution is used. In the 

transformed version of the solution, Ω is the relative frequency, which is defined as Ω = ω – ω0 

where ω0 is the central lasing frequency. We can then substitute this solution into our original 

differential equation to acquire a new equation. This equation can then be further simplified by 

assuming |∂2E∂ t2 |≪ |ω0
∂ Ef ,b

∂ t | and |∂2E∂z2 |≪ |β0 ∂ E f ,b

∂ z |, and also defining the group velocity of the 

travelling wave as vg and including the refractive index of the medium n, which leads us to the 

following equation:

±∂ E f ,b ( z ,Ω )
dz

=− j
Ω
vg

Ef ,b ( z ,Ω )− j
ω0
2cn

χ ( z ,ω+Ω )E f , b ( z , Ω)+ 1
2 √ μ0ω0

β0
J (z ,ω0+Ω ) (2.16)

We can now perform another transformation out of the frequency domain to get our final 

time domain equation:

±∂ E f ,b ( z , t )
∂ t

+
n
c
∂E f , b ( z ,t )

∂ t
=
−αi

2
E f ,b ( z , t )− jPf ,b (z , t )+F f ,b ( z , t ) (2.17)

In this final step, we’ve created a new term, F, out of what was previously the stochastic 

current density. This term will be referred to as the spontaneous emission noise. Both this term 

and the polarization term will need to be described in more detail when working with this 

equation.

The model introduces a Lorentzian function in order to calculate the spontaneous 

emission term. This function is related to the broadening effect discussed earlier, as it models the 

shape linewidth of the spectrum.

Li ,k (t )=Γ exp ( j (ωi−ω0)−Γ t ) (2.18)

This step introduces two new indices, i and k. The index i allows us to implement the 

variation in sizes of the QDs. Since we cannot fabricate QDs of perfectly uniform size, we 

assume we have N groups of differently sized QDs, with dots in group i having a transition 

frequency of ωi. For the index k, we divide the laser cavity lengthwise into multiple slices of 
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length Δz, with each value of k referring to a different slice along the length of the cavity. Here Γ 

is the dephasing rate for the interband transition ωi. 

We will also need to incorporate a Gaussian distribution, which contributes to the model’s 

description of inhomogeneous gain broadening. As discussed earlier, this effect arises due to the 

variation in the sizes of the QDs creating a range of transition energies. To manage this, we can 

introduce a distribution of the possible transition energies in the system.

Gi=
1
A
exp(−4 ln2 (ℏ ωi−ℏ ω0)

2

ΔE2 ) (2.19)

This expression Gi represents the probability of a QD belonging to size group i, and A acts 

as a normalization constant.

An expression for the spontaneous emission can be derived using a simple Einstein 

approach [34]. These spontaneous emissions are random and independent events, so we introduce 

an extra term for a group of independent complex random processes. Where ϕi , k
f ,b (z , t ) is a uniform 

uncorrelated expression between 0 and 2π, this term will be e j ϕ i,k
f ,b (z , t ), which will then be filtered 

using the Lorentzian function through a convolution.

Li ,k ⊗ e j ϕi, k
f , b( z ,t )=Γ∫

−∞

t

e
j(ωi ,k−ω0) (t −τ )−Γ (t− τ )

e j ϕi ,k
f ,b( z ,τ )d τ

Ai , k
f ,b=e j (ωi,k−ω0 )Δ t−Γ Δt A i ,k

f , b ( z ,t − Δt )+ 1
2
Γ Δ t [ e j ϕi, k

f , b( z ,t )+e j(ωi ,k−ω0) Δt−Γ Δ t e j ϕ i,k
f ,b (z , t−Δ t )] (2.20)

For the sake of simplicity, we can just write this large convolution expression as A in 

which case the spontaneous emission term will be:

F f , b( z , t )= 1
Δ z

∑
i
∑
k √ ℏ ωi , k

π Γ Δt

β spN i ,k (z , t )
2 τ i, k

sp Ai , k
f , b ( z , t ) (2.21)

This expression introduces a few other new factors to the model. In particular βsp is a term 

which accounts for the spontaneous emissions into the active lasing region. Ni,k is the number of 

carriers in slice k within a dot of size group i, and τi,,k
sp is the corresponding spontaneous emission 
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lifetime. These values relate to the other major part of the model, where the carrier population 

dynamics will be modelled with a series of rate equations described later in this section.

For the polarization term, this model first calculates a series of microscopic polarizations. 

The microscopic polarization refers to the polarization contributed by each of the N groups of 

differently sized QDs, and these values can be summed up to find the macroscopic polarization 

seen in 2.17. This macroscopic polarization can thus be defined as follows:

Pf ,b (z , t )=∑
i
∑
k

pi , k
f ,b ( z , t ) (2.22)

This expression for the macroscopic polarization can be further defined in terms of the 

optical susceptibility [15].

Pf ,b (z , t )=
ω0

2cn
χ (z , t )⊗ E f , b ( z , t ) (2.23)

Combining these two equations, we can create an expression for the microscopic 

polarization of dot group i. 

pi ,k
f ,b (z , t )=Γ xy

ω0D kGiN d

2c nH wϵ 0

j|dk
i|2 (2 f i , k−1)

ℏ Γ
Li , k (t )⊗ E f , b ( z ,t ) (2.24)

However, we have now introduced several new values as well as another convolution 

term, this time with the Lorentzian function and the electric field. Γxy is the mode confinement 

factor, di,k is a dipole matrix element, and fi,k is the carrier occupation probability for state k in dot 

group i. To simplify this and differentiate it from our earlier convolution expression, this term 

will be referred to as B.

Li ,k ⊗ E f , b ( z ,t )=Γ∫
−∞

t

e
j (ωi,k−ω0 )t− Γ (t −τ )

Ef ,b ( z , t )dτ

Bi ,k
f , b=e j(ωi ,k−ω0) Δt−Γ Δ t Bi ,k

f , b ( z ,t − Δt )+ 1
2
Γ Δt [Ef ,b ( z , t )+e j (ωi ,k−ω0 )Δ t−Γ Δt E f , b ( z ,t − Δt )] (2.25)

These equations will describe the evolution of the electric field in time and space, but it 

relies on the dynamics of the carriers within the system. To properly solve these equations, we 

will need a second system of rate equations which describe the carrier populations in each energy 
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level. This system of equations will be similar to very basic model of laser dynamics described in 

section 2.3, but with some additions.

Figure 2.6 Diagram of the energy level diagram used in this model, including all relevant 

transitions and their lifetimes

Here, we will concern ourselves with five different energy levels: the ground state (GS), 

two excited states (ES1 and ES2), the wetting layer of the device (WL) and a separate 

confinement heterostructure (SCH). Lasing will be occurring in the two excited states, with 

carriers being injected into the SCH and then decaying down from WL into ES2, ES1 and GS, 

where a population inversion will start to build up.

dNSCH

dt
=ηi

J
e
Δ zW −

N SCH

τ r
SCG −

N SCH

τ c
WL +

NWL

τ e
WL  (2.26)

dNWL

dt
=

NSCH

τc
WL −

N WL

τ e
WL −

NWL

τ r
WL −∑

i

Gi

τc
ES2 NWL (1−f ES2)+

N ES2

τ e
ES2 (2.27)

dN ES2

dt
=

Gi

τc
ES2 NWL (1−f ES2)−

N ES2

τ e
ES2 −

NES2

τ sp
ES2 −

N ES2

τc
ES1 (1−f ES2)+

N ES1

τ e
ES1 (1−f ES 2) (2.28)
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dN ES1

dt
=
N ES1

τc
ES2 (1− f ES1)−

NES1

τe
ES1 (1−f ES2)−

N ES1

τ s
GS −

N ES1

τ c
GS (1− f GS)+

NGS

τ e
GS (1−f ES )− .. .

...−
j Δ z

ℏ ωi , ES1
[(E f conj( pES1

f )−conj (E f ) pES1
f )+(Eb conj (pES1

b )−conj (Eb) pES1
b )] (2.29)

dNGS

dt
=

Gi

τ c
GS NWL (1−f GS)−

NGS

τ e
GS −

N GS

τ sp
GS − .. .

...−
j Δ z

ℏ ωi , ES1
[(E f conj ( pGSf )−conj (Ef ) pGS

f )+(Ebconj (pGS
b )−conj (Eb) pGS

b )] (2.30)

Although the theoretical model describes lasing from two different excited states, most 

simulations use a simplified version which only looks at lasing from the first excited state, and 

thus only use four levels. This five level model is presented for completeness, and because this 

approach is incorporated into the model which the perturbation theory simulation is built around.

These carrier populations are also closely related to the occupation probabilities 

introduced earlier, through an additional equation:

N i , k ( z , t )=N lN DGiDk f i, k ( z ,t )W Δ z (2.31)

This uses the Gaussian distribution for the different dot sizes, as well as the width of the 

laser cavity, the total number of carriers ND, the number of QD layers Nl, and the degeneracy of 

the given state Dk. These extra values are largely based on the specific parameters used in the 

simulation.

There are a variety of different lifetimes used in this model. The subscript indicates which 

kind of transition it describes (escape, recombination, and spontaneous emission) and the 

superscript indicates the initial state of the carrier before the transition.

The spontaneous emission lifetimes are derived using the same Einstein approach used to 

derive the spontaneous emission term [34]. The escape can be described using this relationship: 

[35]

τ k1→k2
=τ k2→k1

e
ℏ (ωk2−ωk1)

kB t  (2.32)
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Both the electric field and the carrier dynamics portions of the models use an iterative 

approach to solve for the needed values and all necessary points in time and space. With this kind 

of approach, the value of any function f(x) at x + Δx is estimated by taking the value at x and 

adding 
df
dx

Δ x.

f ( x+Δ x )=f ( x)+ df
dx

Δ x (2.33)

This approach is very simple to apply to the population rate equations, but the electric 

field equation 2.17 will need to modified further, by converting it back into the time domain. This 

allows it to work much better with the iterative scheme.

E f ,b ( z± Δ z ,t ± Δt )=E f ,b ( z , t )− jPf ,b (z , t ) Δ z+F f ,b Δ z −
αi

2
E f , b ( z , t )Δ z (2.34)

There are a few limitations involved in this model. For example, though the TDTW 

approach has some computational advantages, it makes it very difficult to properly incorporate 

effects such as four-wave mixing, group phase dispersion and self-phase modulation [13]. Four-

wave mixing is of particular interest here, and it will need to be incorporated to properly 

investigate this phenomenon. Therefore, it is necessary to build upon these previous models to 

improve simulation results.

2.5 Perturbation Theory Model
To get around some of the limitations associated with the TDTW model, a modified 

treatment of the electric field which more thoroughly integrates the effects of FWM has been 

developed. In addition to maintaining important details like a non-linear refractive index, spatial 

hole burning, and first-order Taylor expansions with a central difference approximation [13], this 

alternative model primarily focuses on an advanced treatment of electron-light interaction using 

perturbation theory, and the interaction of multiple modes [17].

Chow et al. [17] presents a multimode description of the electric field within the laser 

cavity. By introducing both a term for the phase shift of the nth mode φn(t) and a passive 

resonator eigenfunction un(z), the solution to our previous differential equation for the electric 

field may be written as follows:
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E (z , t )=1
2
e− jΩ0 t∑

n

En (t ) e− jϕ n(t )un ( z ) (2.35)

Here, the electric field E(t) is is expressed as a superposition of several modes, En(t). This 

model also draws a clear distinction between the frequencies of the photons emitted during 

certain transitions (ω) and the frequency of the standing waves inside the cavity (Ωn = nc / 2Lnb). 

For simplicity, moving forward this model will focus on a function representing the 

dimensionless amplitude of the field rather than the full value of the electric field, ξ=
℘E
2ℏ γ

.

Starting from this simple equation, we can apply the Maxwell-semiconductor-Bloch 

equations [37] as well as using the slowly varying envelope approximation and then arrive at a 

reduced wave equation for the electric field amplitude.

d ξ
dt

=−γ cξ (t )+ j
ω Γ
ϵ

P (t ) (2.36)

This fairly simple wave equation depends largely on the optical mode confinement factor 

Γ=
NQW WH

W f H f
, which is defined based on the properties of the gain structure of the laser. This 

factor looks at the number of quantum well (QW) layers embedded with QDs which act as the 

active medium as well as the width and height of the active region compared with the width and 

height of the laser beam. The other important factor here is the macroscopic polarization, which 

will also depend on position in addition to time. Similar to the previous model, this term we use 

for the polarization comes from summing up several microscopic polarization contributions. The 

polarization is important to model the interactions between charged carriers, and by summing up 

several small polarizations, we can model the aggregate of millions of different interactions with 

a single equation. This approach lets us model all of the QDs as an active medium, while still 

treating interactions individually via the microscopic polarization terms which we are summing 

up.

P (t )=1
2
e− jω0 t∑

n

Pn (t ) e− jϕn (t )un ( z ) (2.37)

25



We will further need to derive this expression for the microscopic polarization 

contributions from individual electron-hole pairs, which is integrated across the length of the 

whole cavity.

Pn (t )=
2 Γ ℘
V

∑
q

e jω0 t+ j ϕn (t ) 2
L
∫
0

L

un ( z ) pq (t )dz (2.38)

The derivation of the solution for the microscopic polarization terms requires equations of 

motion found by taking the Hamiltonian of a combined system which includes both electrons and 

holes [17]. Chow et al. have demonstrated that this can be solved using either the Heisenberg or 

Schrodinger picture of quantum mechanics, and that we can also add a 3rd-order term derived 

using perturbation theory to provide a description of electron-light interactions.

pq (t )=pq
(1) (t )+pq

(3 ) (t ) (2.39)

The microscopic polarization of each relevant energy level is simply the sum of their 

derived 1st- and 3rd-order contributions.

pq
(1) (t )=− j (ne, q+nh , q−1)∑

n

un ( z) ξn (t ) e
− j ϕn (t ) Dγ (ωq−Ωn) (2.40)

pq
(3) (t )=2 j (ne ,q+nh ,q−1) ∑

n' , m,m'

un ' ( z )um (t )um' (t ) ξn ' ( z )ξm (t ) ξm' (t ).. .

...e
− j [ϕn ' (t )−ϕm (t )+ϕm' (t )]e

j(ωq−Ωn '+Ωm−Ωm' )t+γ t Dγ (Ωm−Ωm') ...

...
γab
γ
D γ(ωq−Ωn'+Ωm−Ωm') [Dγ (ωq−Ωm)+Dγ (ωq−Ωm' )] (2.41)

The third order term uses three different indices, n’, m, m’, as well as the electric field 

amplitude and a complex Lorentzian function Dγ(x) = (1 + jx/γ)-1 which represents the carrier 

dispersion in the cavity.

By summing up the solutions for this equation to find the polarization in all relevant 

energy levels (q = 1, 2, 3, 4, 5), we can find an expression for the macroscopic polarization, 

which can then be used in conjunction with eq. 2.36 to solve for the magnitude of the electric 

field. This will give us a slowly varying amplitude for each cavity mode, which depends on both 

the cavity gain and an extra coefficient derived from the 3rd-order term.
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d ξn
dt

=[gn
sat−

Ω0

2Q ]ξn (t )− ∑
n ' ,m ,m'

Real [Θnn ' mm '] ξn ' (t )ξm(t )ξm' (t ) (2.42)

This coefficient Θ arises from our third order polarization term and is referred to as the 

general 3rd-order coefficient. It depends heavily on the population inversion, the density of states 

within the QDs, and an extra factor which is added to model the effects of spatial hole burning.

Θnn 'mm'=
ΓΩ0℘

2

2 ϵ ℏ γ d
γab
γ

D (Ωm−Ωm ' )∑
q

nq
invηn' mm 'D (ωq−Ωn '+Ωm−Ωm ' ) .. .

...[D (Ωm−ωq)+D (ωq−Ωm)] (2.43)

To define the population inversion within the system, a function for the carrier 

distributions must be used. Rather than just focusing on electrons, like in the previous model, this 

one looks at both electrons (e) and holes (h). In the term here which evaluates the extent of the 

population inversion in the system, nq
inv , the subscript q indicates in which energy level we are 

looking at the distribution of electrons and holes.

nq
inv=f e, q+f h ,q−1 (2.44)

To calculate this, we will need to us additional functions for the distributions of carriers. 

Many models and other papers have used simple Fermi-Dirac distributions for both holes and 

electrons, but this isn’t ideal as their approach assumes that the system remains in equilibrium 

which can lead to inaccurate predictions. To help work around this flaw, modified Fermi-Dirac 

distributions will be used to avoid making any inconvenient assumptions.

f i ,q(Ei ,q , μi )= 1

exp( Ei , q− μi

kT )+1  (2.45)

This simple distribution revolves around both the temperature T of the system as well as 

the average energy E and chemical potential μ of carriers on each different energy level q. The 

main adjustment in this approach comes in the handling of the chemical potential. To avoid the 

assumption of thermal equilibrium, rather than using a constant value for the average chemical 

potential it will be a function which depends on the varying populations in the ground state [18]. 
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N0=N qwN qd f
i , 0(E0 ,i , μi ) (2.46)

This equation looks at the initial conditions of the system, before the pump is applied. 

Prior to any excitations, the number of carriers in the lowest level N0 must be equal to the total 

number of carriers in the system (the number of QW layers Nqw times the number of dots per 

layer Nqd). Prior to the pumping the system will also be in equilibrium, meaning we can use a 

Fermi distribution at this instant. By rearranging this, we can find an expression for the varying 

chemical potential after the pumping has begun as a function of the current population within the 

ground state.

μi=E0 ,i−kT ln(N qwN qd

N 0

−1) (2.47)

By using this modified function for the chemical potential with a basic Fermi distribution, 

we now have a better picture of the population inversion in the system in non-equilibrium 

conditions. In addition to the inversion’s role in the 3rd-order coefficient and the rate equation for 

the electric field, we will also need to define the electronic density of states. As discussed earlier, 

the ideal picture for the energy bands in a QD would be a delta function. In reality, however, we 

will end up with significant broadening. In an attempt to incorporate this inhomogeneous gain 

broadening, we can represent the density of states using a simple Gaussian distribution.

D (E )=
2NQD

√2π Δinh

e
−( E

√2Δinh
)
2

 (2.48)

28



Figure 2.7 Diagram showing how the electronic density of states is modelled using a Gaussian 

function based on the inhomogeneous broadening effect, illustrating the broadening as Δinh 

increases

Another important term which enters the model through the 3rd-order coefficient Θ is the 

effect of spatial hole burning. This term approximates the effects that arise from the diffusion of 

carriers caused by what is referred to as Riskan-Nummendal-Graham-Haken (RNGH) instability 

[21]. These instabilities typically arise from interactions with a saturable absorber [38][39], but 

since this model is focusing on single section lasers, they will likely not be a factor in any SHB 

which occurs. Instead, we will focus on a more simple treatment of SHB. 

ηm, n=
1
8 [1+ 2L∫0

L

(cos 2π (m−n) z
L

+cos
2 π (m−n) z

L )]dz (2.49)
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Starting from eq. 2.49 we integrate across the length of the entire cavity, we end up with a 

fairly simple expression which we can incorporate into the model.

ηn , m=
1
8
+
sin [2π (m−n)]
4 π (m−n)

 (2.50)

The gain is one of the other important elements of the rate equation for the field 

amplitude. An and Bn,m are coefficients relating to gain saturation, both self-saturation within a 

single mode (An), and cross saturation between different modes (Bn,m). These forms of saturation 

both modify the gain of the cavity. This variation of the gain as the modes saturate and desaturate 

is similar to the gain-loss cycle seen in two-section lasers, as shown in Figure 1.3. The 

expressions for both the cross and self-saturation effects can be expressed in terms of the 

complex 3rd-order coefficient Θ.

An=
Real (Θnnnn)

gn
 (2.51)

Bn ,m=
Real (Θnnmm+Θmmnn)

gn

 (2.52)

Both of these saturation terms act to modify the gain, such that when they grow the gain 

decreases and vice versa. As maintaining a large population inversion is the primary means of 

releasing energy in the laser, the power and thus the linear gain of the system is defined in terms 

of the population inversion term.

gn=Real( Γ Ω0℘
2

2ϵ ℏ γ d
∑
q

nq
inv Dγ (Ωn−ωq )) (2.53)

gn
sat=

gn

1+Anξn
2+∑

m≠n

Bn , mξn
2  (2.54)

Here the gain relies heavily on the carrier dispersion, which uses the same complex 

Lorentzian function from the microscopic polarization equations. The passive cavity is also 

saturated during this process, leading to saturation of the passive cavity frequency as follows:

Ωn
sat=Ωn+σ n−τn ξn

2−∑
m≠ n

τ n,m ξm
2
 (2.55)
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From here, just like in the TDTW model, after the electric field and the polarization are 

defined, we will need rate equations for the carrier populations in each energy level. This model 

will use a five-level approach very similar to the one used in the TDTW model. Here we will 

define five energy levels, N1, N2, N3, N4, and N5, which will take the place of NGS, NES1, NES2, NWL, 

and NSCH in a series of rate equations based on equations 2.26-2.30, only without the addition of 

the dot size distributions and complex conjugates. Unlike the simulations based around the 

TDTW model, we will also be using rate equations for five energy levels, rather than only four.

dN5

dt
=η

J
q
LW −

N5

τ r5
−
N 5

τ c 4
+
N4

τ e4
 (2.56)

dN 4

dt
=
N5

τ c4

−
N4

τ e 4
−
N 4

τ r 4
−
N4

τ c3
(1−f e ,3)+

N3

τe 3
 (2.57)

dN 3

dt
=
N 4

τc 3
(1−f e, 3)−

N3

τ e3
−

N 3

τ sp 3
−
N3

τ c 3
(1− f e, 3)+

N2

τ e2
(1−f e ,3) (2.59)

dN 2

dt
=
N 2

τc 3
(1− f e ,2)−

N2

τ e 2
(1−f e ,3)−

N2

τ sp1

−
N2

τc1
(1−f e ,1)+

N1

τe1
(1−f e ,2 ) (2.59)

dN1

dt
=
N 4

τ c 1
(1−f e, 1)−

N1

τ e1

−
N1

τ sp1
 (2.60)

In using these equations from the TDTW model, we are also able to bring in the new 

carrier distributions defined in equation 2.45 along with the varying chemical potential in 

equation 2.47. The most important part of this portion of the model is the decay rates for each 

energy level. We will need to calculate the average time for carriers to transition down from a 

higher level down to a lower one, which is accomplished in the same way as in the previous 

model, using equation 2.32.

With all of these extra equations and expressions, we finally have all of the information 

needed to solve the groups of rate equations we need: First the populations dynamics, and then 

the electric field amplitude. These systems of equations should give us all of the information 

needed to paint an accurate picture of the working of the laser while better representing the 

contributions of four-wave mixing.
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Chapter 3 – Simulation Details

3.1 Introduction
The perturbation theory-based model described in chapter 2.5 has been recreated using 

COMSOL Multiphysics 5.4, allowing the modelling of various QD laser devices. COMSOL was 

chosen over similar software like MATLAB as it simplifies incorporating the geometry of the 

system, allows us to use a series of constants and functions to represent all the relevant values, 

and lets us use a connected series of grouped differential equations that will be solved 

simultaneously. COMSOL also allow for simulations with a much more modular design, which is 

very useful for models like this which incorporate multiple separate parts. However, though it has 

many advantages when dealing with systems like this, it doesn’t have many tools for 

mathematical analysis, so MATLAB was also used in order to better process and analyze all of 

the results from the COMSOL file.

This chapter will outline in detail how all of the elements of the theoretical model were 

introduced into a single COMSOL program, as well as provide an explanation of some of the 

rationale behind the choices which were made. There will also be an explanation of the external 

MATLAB code which was used to process the output data from this simulation and create 

multiple important figures, and explanation of what it does and how it was used.

3.2 Geometry
The simulation was built on a 3D geometry modelled after a QD embedded in stacked 

layers on a thick substrate, complete with the thinner wetting layer and capping layer. The QD 

itself is embedded inside the wetting layer. A diagram of this arrangement is shown in Figure 3.1.
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Figure 3.1 Image of the QD geometry, as shown within the simulation

This geometry consists of four main entities: the substrate, the wetting layer, the capping 

layer (represented by blocks stacked on top of each other) and the dot itself (represented by a 

pyramid, which rests on top of the wetting layer and is embedded within the wetting layer).

Figure 3.2 Image of the entities included in the model’s geometry
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The material properties of each portion was modified based on the properties of the device 

being simulated, but the physical dimensions of the geometry were defined using a series of 

defined constants.

Table 3.1 Physical dimensions used to define the geometry of the QDs

Parameter Name Value Description

H_qd 1.5 nm QD height

L_outer 48 nm Length of outer boundary

L_base 11.213 nm Length of base

T_wet 1.6357 nm Thickness of wetting layer

T_sub 30 nm Thickness of substrate

3.3 Functions
Many of the key components of this simulation, such as the carrier distributions, gain 

coefficients, and SHB factor are all handled using functions withing COMSOL. In particular, 

both the band energies and the transition energies were handled using a table of values listing the 

energy level for each state.

These values will depend on which material is being used, and as devices using two 

different kinds of QDs were simulated here, two separate tables of values were used. All of these 

values were taken from published measurements from the same types of QDs being simulated 

[26][27].

Table 3.2 Carrier energies and transition energy values for InGaAs/GaAs QDs [26]
Energy Level (q) Electron energy (eV) Hole energy (eV) Recombination energy (eV)

1 0.75 -0.54 1.30

2 0.78 -0.54 1.33

3 0.78 -0.55 1.34

4 0.79 -0.55 1.35
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Table 3.3 Carrier energies and transition energy values for InAs/InP QDs [27]
Energy Level (q) Electron energy (eV) Hole energy (eV) Recombination energy (eV)

1 2.124 1.287 0.837

2 2.432 1.580 0.852

3 2.432 1.561 0.871

4 2.442 1.537 0.905

The energies for the InGaAs/GaAs are taken directly from [26], but the published results 

from [27] needed to be adapted a bit to fit this model’s approach to the energy levels and 

recombination energies for the InAs/InP QD lasers. As this model treats the transition down from 

level 3 to level 2 as the primary radiative transition, this will be assigned the energy measured for 

the p-shell transition, as it is the dominant transition. The other observed transitions, including the 

s-shell, are assigned accordingly relative to their position in the spectrum, and the electron and 

hole energies were extrapolated based on the recombination energies and the electron state 

energies reported by Franceschetti et al. [40]

In a similar fashion, the term for the SHB will be treated using a piecewise function which 

takes one argument rather than two. This is the term described in equation 2.50. The use of a 

single argument (m - n) rather than two (m and n) is for the sake of simplicity, but the choice to 

use a piece-wise function for what would otherwise be a continuous function is because in cases 

of self-saturation, where m = n, we will end up dividing by 0.

To avoid this issue, a function with three pieces is used. For the first two portions of the 

domain, m - n < 0 and m - n > 0,  we simply calculate the expression as shown in equation 2.50, 

but for very small values of m - n (between -0.01 and 0.01) we instead use an approximation to 

avoid dividing by zero. For very small values of x, we can say sin(x) ≈ x, which means we can 

approximate sin [2π (m−n) ]≈2 π (m−n), and further simplify the SHB expression. Using this 

approximation, we can then create a new expression for the SHB for very small mode differences 

which will allow us to avoid having to divide by zero.
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Figure 3.3 The piece-wise function used to model the effects of spectral hole burning

Other than these exceptions, the other important coefficients were simply calculated using 

simple analytic functions. In total, ten of these analytic functions were used: density of states 

(2.48), the Lorentzian dispersion function, cavity mode frequencies, chemical potential for 

electrons, chemical potential for holes (2.47), population inversion (2.44 and 2.45), the general 

3rd-order coefficient (2.43), self-saturation (2.51), and cross-saturation (2.52). All of these 

functions were represented exactly as outlined in the relevant passages of section 2.5.
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Figure 3.4 Image of the functions used to calculate the important variables in this model

All of these functions refer to each other in some capacity, such as using output from other 

functions as an input argument, but they also interact with the systems of differential equations 

described in the next section.

However, these differential equations are not defined globally, so the key variables are not 

available to be used by other functions and operation within the simulation. For example, the 

chemical potentials both depend on the population in the ground state of the system. As this is not 

a globally available variable, it cannot be used in the calculation. To work around this, any 

functions that depend on the population of the ground state N1 are set up so that in addition to the 

necessary arguments they also take the population in the ground state of the QDs. This way 

whenever these values are used, the differential equation part of the model can simply pass the 

current value of the relevant variable to the function.
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Figure 3.5 The function for the chemical potential for electrons, illustrating how globally 

inaccessible variables are included as arguments

All of these functions are closely connected to each other, with some of them being 

composites of some of these other functions. All of these functions will be needed to solve the 

main backbone of the model: the time domain differential equations describing the carrier 

populations and the electric field magnitude.

3.4 Differential Equations
This program uses multiple systems of equations to calculate the two main parts of this 

model: the carrier populations and the electric field magnitude. All three of these differential 

equations use separate Domain ODEs and DAEs (dode) physics modules, with all of them 

operating within the QD within the geometry. In the case of the electric field, only a single 

dependent variable is used for each, but since the population model has equations for each energy 

level we will need to set up the module with five different dependent variables (N1, N2, N3, N4, 

and N5).
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Figure 3.6 Diagram of the domain on which all three domain ODEs are calculated

The Domain ODEs and DAEs physics modules all use the same general form, where u is 

a vector containing each of the dependent variables, and ea and da are coefficient matrices referred 

to as the mass coefficient and the damping coefficient, respectively.

ea
∂2u
∂t 2

+da
∂u
∂t

=f  (3.1)

As none of our differential equations involve second order derivatives, ea will simply be 0 

in all cases, and since all of our equations are formatted as simple first order differential 

equations, while da will simply be 1 (or the identity matrix in the case of the populations).

All four components of the variable f will be the time derivatives of N1, N2, N3, N4, and 

N5, exactly as defined in 2.56-2.60. This simulation also adds a series of restrictions in order to 

maintain carrier conservation. Through multiple constraints, it is set up so that both the total 

number of carriers in the system remains constant and so that each of the individual populations 

remains positive.
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Figure 3.7 Image of the constraints set up to maintain conservation in the carrier rate equations

For the first conservation constraint, we focus on the total number of carriers in the 

system. We use the parameter NQD, which describes the number of carriers in the system and is set 

as the initial condition of N1. The constraint is set up so that if we subtract all of populations in 

each level from the total population it will be equal 0. This way, the sum of the populations in 

each level will always be equal to the total number of carriers in the system.

NQD−N1−N2−N3−N4−N 5=0 (3.2)

The other constraints ensure that the populations of each level stay positive by comparing 

the value for each population with the its absolute value. If Ni has a negative value, than 

subtracting it will leave you with a large positive values rather than 0, thus violating the 

constraint. 

|N i|−N i=0 (3.3)

Finally, the last ordinary differential equation to deal with the magnitude of the electric 

field is handled in a much more straightforward manner. This will only feature a single equation 

based on equation 2.42, and will take on a very small initial values to spur initial growth.

One additional modification is also required, as equation 2.42 only calculates the electric 

field of a single mode, we will make use of the sum() function in COMSOL to sum up the 

solutions for the electric field contributions from each mode and leave us with a full expression 

for the electric field magnitude. This is the portion of the model which takes into account both the 

self-saturation and cross-saturation of modes as well as all the values for the 3rd-order 

coefficient, so summing up the terms for each mode from m1 to m2 becomes necessary.
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Figure 3.8 Demonstration of the use of the sum() function to add up the saturation of each mode

3.5 Parameters
This model requires a large list of important parameters related to the functions and 

differential equations. Many of these are dependent on the specific device being modelled, but 

there are some which are used across all simulations. First, however, there are a few universal 

constants which need to be defined.

Table 3.4 List of all important constants used within the model

Name Expression Value Description

hbar h_const/2/pi[rad] 1.0546×1034 J·s/rad Reduced Planck Constant

NA N_A_const 6.0221×1023 1/mol Avogadro’s Constant

q e_const 1.6022×10-19 C Electron Charge

epsilon0 epsilon0_const 8.88542×10-12 F/m Vacuum Permittivity

kB k_B_const 1.3806×10-13 J/K Boltzmann’s Constant

The remaining important parameters are values related to the equations we have set up for 

the model, while others are related to properties of the device and the material and optical 

properties of the dots. The latter parameters will vary in each simulation, and will be outlined 

later, but some of these values will be the same in each simulation.
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Table 3.5 List of all parameters which are used in all versions of the model

Name Expression Value Description

t_step 0.05[ps] 5×10-14s Time Step

t_start 0[s] 0 s Start Time

t_end 100[ps] 1×10-10 s End Time

m1 1999 1999 First Mode

m2 2001 2001 Last Mode

eta 0.55 0.55 Carrier Injection Efficiency

inh 10[meV] 1.6022×10-21 J Inhomogeneous Gain 
Broadening

The values for initial and final time as well as the time step are incorporated into the time 

dependent solver used to find solutions to the differential equations. Though these time values are 

used for most of the simulations in order to collect a large amount of data with minimal 

computation time, some adjustments will be in order to replicate specific time ranges from the 

published data. These values will always be chosen so that 2000 steps in total are calculated. The 

rest of these values are all used within the defined functions or differential equations in some 

capacity.

Figure 3.9 The time dependent step set up to solve the domain ordinary differential equations

3.6 Post-Processing
After the simulation has finished running, we can very easily export tables of values for 

the populations and the electric field, as well as make figures with them. Though COMSOL’s 

built in graphing capabilities are sufficient for basic plots of these values, for a more detailed 
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analysis of the results we turn to MATLAB. After exporting these data tables as .txt files, they 

can very easily be imported into MATLAB and used as data. From here, they are entered into a 

program which processes this data to generate multiple additional figures, such as the gain 

spectrum of the laser.

There are two different programs here which use different approaches, one focusing on 

the electric field and the other on the populations. The first starts by isolating the last nine tenths 

of the calculated electric field values and stored them in a new variable. By ignoring the first few 

values, we ignore the initial activity from switching on the laser and instead focus on the pulsing 

behaviour of the laser.

In both cases, once we have isolated a short portion of the time domain activity of the 

electric field, a frequency domain Fast Fourier Transform (FFT) is performed on this segment of 

the electric field to convert these values into the frequency domain. Using an understanding of 

the basic properties of waves, this can also provide us with values in the wavelength domain. We 

can then also use the fftshift() function to centre the zero-frequency component at the centre of 

our gain spectrum. These values can then be used to calculate the absolute gain across the entire 

spectrum in dBm.

FdBm=10 log( FF̄) (3.4)

The code them creates another variable to store a version of the gain spectrum which has 

been normalized. This is achieved simply by taking the original spectrum and subtracting the 

maximum value. MATLAB’s pwelch() function, which applies Welch’s power spectral density 

estimate, is also used to create a frequency domain spectrum measured in dB. The next step of 

this analysis is to calculate the power of the laser based on the original electric field 

measurements. This is done simply by multiplying the electric field by its complex conjugate.

Now that all of the data has been fully processed, nine different figures are generated: two 

plots laser intensity vs time over different time scales, three different figures of wavelength vs 

dBm for three different spectral ranges, wavelength vs the normalized optical spectrum, two 

different figures of frequency vs dB, and frequency vs the normalized optical spectrum.
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The second program processes the electric field data in the same way, but it obtains this 

data in a different way. Rather than using the electric field data directly from the simulation, the 

carrier population data is used. In particular, N2 and N3 are focused on, as they take the place of 

NGS and NES as described in the old Bardella et al. model. Similar to what is described in section 

2.4, the program runs through each value of the populations in the time domain and uses them to 

calculate the occupation probabilities, the spontaneous emission noise terms, and from there 

calculate the electric field.

Once we have gone through all of these steps to recalculate a collection of values for the 

electric field, the exact same procedure used in the first program is then carried out using the new 

electric field values, and the exact same figures are produced.

Both of the programs used here are reproduced in full in the Appendix.
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Chapter 4 – Examination of the Proposed Perturbation Theory 
Model

4.1 Introduction
Several sets of data have been generated using this COMSOL simulation in order to verify 

the accuracy of the model and its underlying theoretical assumptions. The different sets of 

published results were picked to illustrate different important properties expected of a QD laser.

The first set of reproductions focuses on RF spectra published by Bardella et al. [14] 

including both data from their TDTW model [15][16] and experimental data. Using the same set 

of parameters described in the paper, both sets of results were replicated using the new improved 

model to demonstrate an approximate equivalence between the two approaches and show areas 

where the new may be an improvement.

In addition to comparing this work to simulations based on the TDTW model, agreement 

with experimental results is also taken into consideration. Next, a laser studied by Tierno et al. 

[19] is replicated using the perturbation theory simulation and all relevant parameters described 

in the paper to see how well it can demonstrate the time-domain pulsing behaviour which is one 

of the most prominent expected features of a mode-locked laser.

Finally, optical spectra from another mode-locked laser published by Majid et al. [20] will 

be recreated by running the same parameters through the simulation. Of particular interest here 

are is the presence of lasing from two peaks and the broadening of those peaks within the 

spectrum.

4.2 RF Spectra
The first set of results which were replicated were published by Bardella et al. to study RF 

line width and RIN in a single section passively mode-locked laser [14]. The publication involves 

two sets of spectra: simulated results from a InAs/InGaAs QD laser with a 250 μm long cavity, 

and experimental results from a InAs/InGaAs QD laser with a 1 mm long cavity. The researchers 

observe that the lasers start to exhibit mode-locking behaviour after increasing the injection 

current past a certain point. These results are reproduced in Figure 4.1.
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Figure 4.1 RF beat note spectra for a 250 μm long InAs/InGaAs QD laser, from published TDTW 

simulation results [14]

In addition to the simulated results produced using their TDTW model, some 

experimental data is also studied in this paper, which shall also be taken into account here. In this 

case, the actual device is the same as the simulated one in all properties except the cavity length. 

Once again, the lasing behaviour only becomes evident past a certain current threshold, with a 

very high power peak only being evident in the spectrum when using a higher injection current. 

This data is reproduced in Figure 4.2.
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Figure 4.2 RF beat note spectra for a 1 mm long InAs/InGaAs QD laser, from published 

experimental results [14]

Both the simulation and the experimental results have been reproduced using all of the 

parameters described in the paper. Almost all of the values needed for the simulation were 

provided in a table or in the text of the paper, and the rest could be extrapolated or estimated 

based on given information. These values have been reproduced in Table 4.1.
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Table 4.1 List of specific parameters used to simulate results published by Bardella et al. [14]
Name Expression Value Description

nb 3.34 3.34 Effective Refractive Index

Nqw 15 15 Number of QW Layers

Nd 2.7×1010[1/cm^2] 2.7×1014 1/m2 QD Surface Density

dip 0.72[eV*nm] 1.1536×10-28 kg·m3/s2 Dipole Matrix Element

T 283[K] 283 K Temperature

L 250[um] / 1[mm] 2.5×10-4 m / 0.001 m Cavity Length

W 5[um] 5×10-6 m Ridge Width

H 5[nm] 5×10-9 m QD Layer Height

lam0 1250[nm] 1.25×10-6 m Central Lasing Frequency

I 40[mA], 200[mA] / 
170[mA], 215[mA]

0.04 A, 0.2 A / 0.17 A, 
0.215 A

Laser Injection Current

The perturbation theory simulation was run four different times, with injection currents 

and cavity lengths varying in accordance to what was published in an attempt to match these 

same published results. Plots of the data generated by the simulation are reproduced in Figures 

4.3 and 4.4.
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Figure 4.3 RF beat note spectra for a 250 μm long InAs/InGaAs QD laser, from perturbation 

theory simulation

Figure 4.4 RF beat note spectra for a 1 mm long InAs/InGaAs QD laser, from perturbation theory 

simulation
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4.3 Time-Domain Pulses
The next results come from a study of temperature stability in QD lasers published by 

Tierno et al. [19] The authors observe very clear pulsing behaviour in an InAs QD laser over a 

wide range of injection currents, and the observed periodic pulsing suggests a relationship 

between the injection current and the period of the gain cycling. This is of particular interest 

given our focus on mode-locking and how FWM contributes to it. Their published data is 

reproduced in Figure 4.5.

Figure 4.5 Time domain electric field behaviour behaviour in a InAs QD laser using an injection 

current of a) 803 mA, b) 827 mA, c) 832 mA, d) 840 mA, e) 872 mA, and f) 910 mA, from 

published results [19]

The parameters of the device were all included within the published literature, and the 

relevant values have been reproduced in Table 4.2. Six different data sets were produced with the 

perturbation theory model, using injection currents ranging from 803 mA to 910 mA along with 

different time scales because of the changing repetition rate of the pulses seen in the experimental 

data. These results are reproduced in Figure 4.6.
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Table 4.2 List of specific parameters used to simulate results published by Tierno et al. [19]
Name Expression Value Description

nb 3.34 3.34 Effective Refractive Index

Nqw 10 10 Number of QW Layers

Nd 2.7×1010[1/cm^2] 2.7×1014 1/m2 QD Surface Density

dip 0.72[eV*nm] 1.1536×10-28 kg·m3/s2 Dipole Matrix Element

T 283[K] 283 K Temperature

L 3.5[mm] 0.0035 m Cavity Length

W 4.5[um] 4.5×10-6 m Ridge Width

H 5[nm] 5×10-9 m QD Layer Height

lam0 1225[nm] 1.225×10-6 m Central Lasing Frequency

I 803[mA] / 827[mA] / 
832[mA] / 840[mA] / 
872[mA] / 910[mA]

0.803 A / 0.827 A / 0.832 
A / 0.840 A / 0.872 A / 

0.910 A

Laser Injection Current
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Figure 4.6 Time domain electric field behaviour behaviour in a InAs QD laser using an injection 

current of a) 803 mA, b) 827 mA, c) 832 mA, d) 840 mA, e) 872 mA, and f) 910 mA, from 

perturbation theory simulation

4.4 Optical Spectrum
Finally, results describing an InAs/GaAs-based passively mode-locked QD laser, from a 

paper published by Majid et al. [20], were reproduced. Of particular interest with these results is 

the occurrence of lasing at two separate wavelengths, and how the power spectrum evolves as the 

injection current increases. In the initial measurements, there appears to be only a single peak, but 

a second peak at a smaller wavelength begins to grow. Their published results are reproduced in 

Figure 4.7.
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Figure 4.7 Optical power spectra for a passively mode-locked InAs/GaAs QD laser using 

injection current densities ranging from 70-350 A/cm2, from published results [20]

Though some slight adjustments need to be made to translate the injection current 

densities described in the paper into injection current values, these results can easily be recreated 

using the perturbation theory model to show how it can demonstrate lasing from multiple 

wavelengths. All of the relevant values are inferred from the publication, and are reproduced in 

Table 4.3.

Table 4.3 List of specific parameters used to simulate results published by Majid et al. [20]
Name Expression Value Description

nb 3.34 3.34 Effective Refractive Index

Nqw 5 5 Number of QW Layers

Nd 2.7×1010[1/cm^2] 2.7×1014 1/m2 QD Surface Density

Dip 0.72[eV*nm] 1.1536×10-28 kg·m3/s2 Dipole Matrix Element

T 293[K] 293 K Temperature

L 8.7[mm] 8.7×10-3 m Cavity Length

W 7[um] 7×10-6 m Ridge Width

H 10[nm] 1×10-8 m QD Layer Height

lam0 1550[nm] 1.550×10-6 m Central Lasing Frequency

J 70[A/cm^2], 140[A/cm^2], 
210[A/cm^2], 280[A/cm^2], 

350[A/cm^2]

7×105 A/m2, 1.4×106 A/m2, 
2.1×106 A/m2, 2.8×106 A/m2 

3.5×106 A/m2

Laser Injection Current 
Density
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After all of these publications were studied and all relevant information was entered into 

the perturbation theory simulation, several large data sets were generated so that we can analyze 

the results and see how well they compare to the actual published results. These simulated results 

are reproduced in Figure 4.8.

Figure 4.8 Optical power spectra for a passively mode-locked InAs/GaAs QD laser using 

injection current densities ranging from 70-350 A/cm2, from perturbation theory simulation
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Chapter 5 – Investigation

5.1 Introduction
A detailed analysis of the simulation results presented in Chapter 4, as well as how 

accurately it can replicate published results, will be presented. The simulated results showing 

agreement with the experimental data will confirm the validity of some of the assumptions that 

were made when designing the model.

First, the generated RF spectra will be examined in more detail, along with how it 

compared the published results, both theoretical and experimental. This is coupled with an 

analysis of what is seen in the published results, as well as possible explanations for the 

behaviour shown in the simulation. The RF spectrum is very important for identifying the 

presence of mode-locking, as it is expected to see a reduction in the line-width as the frequency 

difference between modes becomes constant. [14]

Next, focus is put on the results for the time domain behaviour of the electric field. This is 

the primary focus of our study on mode-locking, so it is of particular attention. The details of the 

pulsing behaviour seen in the experimental results is discussed, and the perturbation theory 

simulation results are compared to them. An analysis of the behaviour seen from the simulation 

and how it compares to the experimental data is presented.

Finally, the power spectra produced by the laser, both experimentally and in the 

perturbation theory simulation, is studied. Of particular interest is the causes of both broadening 

of peaks in the spectrum as well as the presence of lasing peaks from two distinct wavelengths.

5.2 RF Spectra
Figure 4.1 presents a comparison between the RF spectra generated by the TDTW model 

explored by Bardella et al. [15][16] and the ones generated using the perturbation theory model. 

When we then look at the power spectra generated by the perturbation theory simulation, we can 

see the expected lasing as indicated by the positive gain around the central frequency. We also see 

that the lasing peak is much broader at the lower injection current, whereas the higher injection 

current leads to a narrower peak, just as in the published results from the TDTW simulation.
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As discussed earlier, inhomogeneous gain broadening in the spectrum is caused by the 

variation of the sizes of the QDs. [9] Since the optical properties of QDs are heavily influenced 

by physical characteristics like size, and limits in fabrication techniques make it difficult to limit 

size variation in the dots, QD lasers will often emit light along a wider range of wavelengths than 

the idealized picture. Unfortunately, the perturbation theory simulation is unable to properly 

exhibit broadening to the extent that is expected. Though it uses a density of state functions 

which include some degree of broadening, this is only accomplished through an arbitrary 

coefficient. In reality, the broadening is caused by the varying distribution of dot sizes, something 

lacking within this model as only a single dot was used.

Additionally, the perturbation theory simulation does not show significant differences in 

terms of the relative intensities of the peaks. In contrast, in the published results from the TDTW 

simulation, we see a very large peak at the central frequency above the lasing threshold, but 

below the threshold the peak is much smaller. The perturbation theory model still has a noticeable 

peak at the central frequency in both cases, indicating the presence of lasing, but the differences 

in their maximum intensities isn’t as prominent.

Though the activity here has no significant connection to mode-locking or the role of 

four-wave mixing, these results do illustrate that the perturbation theory model for QD lasers is 

able to demonstrate lasing activity in the appropriate circumstances, but cannot properly illustrate 

the effects of inhomogeneous gain broadening.

Now, when looking at the perturbation theory simulation’s results in Figure 4.4, we can 

see very similar behaviour to what was seen in Figure 4.3. Once again we see a very prominent 

peak at the central frequency when above the lasing frequency, so once again the simulation is 

able to properly show lasing behaviour. The difference in the amount of broadening seen below 

and above the current threshold is not as apparent as in the previous data sets, but this detail is 

also not present in the experimental results in this case.

Another important feature within the experimental data is that we start to see a peak 

emerge at a second wavelength separate from the central wavelength. Though it is not a very high 

power peak, it is still evident. This feature is not seen in the data from the perturbation theory 

simulation, which attempts to recreate such behaviour through the presence of multiple modes in 
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the cavity. Though it is set up so that we can use as many modes as we like, adding more nodes to 

the simulation also leads to a large increase in the amount of memory needed to solve all of the 

equations, making it very computationally expensive. In this case, only 3 modes were used, so it 

is likely this effect isn’t very prominent due to the limited number of modes. The cavity being 

simulated is very large (~10-6), which requires a large amount of memory, further limiting the 

number of modes we can reasonably use when calculating the spectrum.

Similar to the inhomogeneous gain broadening, which is not properly incorporated due to 

the model simulating only a single dot, this element is limited by the currently simplified state of 

the perturbation theory simulation. With a more efficient algorithm or more computational 

resources, it may be possible to use a both a larger number of modes and a larger number of dots, 

and therefore show more broadening and lasing from multiple wavelengths.

5.3 Time Domain Pulses
When studying the time domain electric field behaviour of the device studied by Tierno et 

al. [19], periodically repeating time-domain electric field behaviour is evident both in the 

experimental data and in the data generated by the perturbation theory simulation, as represented 

in Figure 4.6. However, the simulation results differ somewhat from what is seen in the 

experimental data. First of all, though periodic behaviour is very evident in the varying electric 

field, it is very obviously sinusoidal in contrast to the pulses seen in the experimental data. The 

period of the sinusoidal simulated field also has a much faster repetition rate than reported, with 

the gain cycle repeating so frequently that the individual wave-forms cannot be clearly seen on 

larger time scales. By looking at smaller 100 ns segments of the full time domain of each data set 

in Figure 5.1, the period and how it varies can be more clearly discerned.
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Figure 5.1 Small segments of the time domain electric field behaviour of a 3.5 mm InAs QD laser 

with an injection current of a) 803 mA, b) 827 mA, c) 832 mA, d) 840 mA, e) 872 mA, and e) 

910 mA

Though the exact period may differ somewhat from the period seen in experimental 

results, we can see in both sets of data that the period varies as the injection current increases. 

However, the trend is not the same. In the experimental data, we see the period shorten as we 

increase the injection current from 803 mA to 827 mA (5 peaks in 1.5 μm becomes 7 peaks in 1.5 

μm), while with the simulated results the period increases, as we see 27 peaks in 40 ns at 803 mA 

and only 13 peaks at 827 mA. As the injection currents get higher, the experimental results show 

the period consistently decreasing, whereas the simulation results show the period increasing as 
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we increase the current, with the one exception being a small decrease in period as the current 

goes from 827 mA (33 peaks in 100 ns) to 832 mA (34 peaks in 100 ns).

Despite these drawbacks, periodic time domain behaviour is evident in the electric field 

data. Though the same kinds of pulses seen experimentally are not present in the simulated data, 

which instead appear more sinusoidal, the electric field intensity still varies significantly with 

time, to extent that this cannot be said to be a continuously operating laser. Additionally, there is a 

very consistent period in the variations from high intensity to low intensity within individual sets 

of data. Although the exact period differs from what has been published, the same trend of the 

period varying as the injection current is changed is still apparent. 

The more sinusoidal character of the electric field suggests some deeper issues with the 

simulation’s treatment of mode-locking. In addition to the issues related to the timing of the gain 

cycle, the lack of distinct pulses suggest a lack of mode-locking despite there still being clear 

periodic behaviour. In order for the effects of the modes being locked to be evident there needs to 

be a large number of modes interacting with each other, which is not happening due to the 

simulation’s limited treatment of inhomogeneous gain broadening and the small number of 

modes used.

When compared to the TDTW simulation, the most prominent difference is how the 

interactions between carriers and light are treated. Whereas the TDTW model treats the basic 

dynamics of the system, this model looks at individual interactions between electrons and 

electromagnetic waves through the application of quantum perturbation theory, and how these 

waves interfere with each other to produce four wave mixing. [17] These changes have a large 

impact on both the equations for the carrier populations and the electric field, and are intended to 

influence the pulsing behaviour caused by mode-locking in the laser cavity. As far as the general 

lasing behaviour goes, including spectral broadening and lasing from multiple wavelengths, the 

perturbation theory model performs as well as the TDTW model, but struggles with presenting 

inhomogeneous gain broadening and the formation of pulses. Despite these discrepancies, high 

frequency repetitive peaks are evident within the perturbation theory simulation where they could 

not be produced with the TDTW model.
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Looking into the equations in the perturbation theory model, the primary driver of the 

pulsing behaviour in the rate equation for the generalized 3rd-order coefficient (eq. 2.43), which 

mostly depends on the band structure, but is also heavily dependent on the population inversion. 

This contribution of the population inversion is how the carrier population rate equations become 

involved in the system. In this case, results reproduced in Figure 5.2 clearly indicate the presence 

of a population inversion among the carriers in the system. The highest energy levels, N4 and N5, 

are much more highly populated than all of the lower energy levels. However, it is important to 

note that this state isn’t completely static.

Figure 5.2 Simulated carrier dynamics of a 3.5 mm InAs QD with an injection current of 803 mA

Though from the figure we can see that the overall relative populations very quickly relax 

to a constant state, individual carrier transitions are still occurring between different energy 

levels, and as seen in eq. 2.56-2.60, these transitions depend on the lifetimes of each individual 

level. As such, the lifetimes can be seen as an important driver of the time domain behaviour of 
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the system. In addition to the other issues described, the discrepancies in the exact timing may be 

a consequence of the lifetime values that were used. These values were estimated based off of the 

properties of the materials used, but a more detailed study may be required for a more detailed 

treatment of this facet of the model.

5.4 Optical Spectrum
Finally, looking at the optical spectrum data will give us another opportunity to assess the 

ability of the simulation to show lasing from two distinct wavelengths. In both Figure 4.7 

(experimental) and 4.8 (simulation),  we can clearly see lasing from two separate peaks. Unlike in 

Figure 4.4, we can clearly see lasing from the second peak in the data generated by the 

perturbation theory model, so although this run of the simulation did not use a larger number of 

cavity modes, the separate peaks are still apparent.

Though the perturbation theory model is able to properly show the general broadening 

behaviour we expect in this case, there are still some issues which keep it from closely matching 

the experimental data. One of the most notable traits of the published experimental results is that 

the relative intensity of the two peaks changes as the injection current varies. Initially, the peak 

around 1350 nm dominates, but as the injection current increases the peak at 1225 nm becomes 

larger and larger until they are at approximately equal magnitude. When the same data is 

generated using the simulation, the two peaks are the same size at all tested injection currents.

The authors of the paper attribute this characteristic seen in their published results to the 

specific structure of their QD layers and the details of the fabrication. The device they are 

studying features closely stacked layers of InAs and GaAs QDs, with an InGaAs cap. [20] As 

discussed earlier, the current state of the simulation is that it is only simulating a single QD rather 

than hundreds. As such, this level of detail cannot be properly incorporated into the current 

version of the simulation. Although it was possible to incorporate important experimentally 

derived parameters for InGaAs QDs, [26] detailed information on the specific band structure of 

the active medium would require a more specialized treatment of the geometry and structure of 

the device.
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The presence of lasing from two separate wavelengths is the result of emissions from two 

different transitions between bands in the active medium, so an accurate view of the band 

structure of the results is required to accurately replicate this effect. The perturbation theory 

simulation’s model is able to properly show lasing from two different wavelengths, but a more 

accurate treatment of the band structure of the dots would be able to more accurately portray the 

way the relative intensities vary as the injection current increases.

Despite the general trend of lasing from two different wavelengths being present, when 

we look into the more specific details the simulated spectrum does not match very closely with 

the published results. Notably, the peaks are much more narrow, and the spectrum is overall much 

noisier than what was seen experimentally. The specific wavelengths where the lasing is 

occurring is also different, with the peaks in the experimental data occur around 1225 μm and 

1350 μm, whereas the simulated peaks occur at 1175 μm and 1525 μm. The first peaks are 

occurring at similar wavelengths, but the second are occurring at very different wavelengths, off 

by nearly 200 μm. The narrowing of the peaks compared to the experimental data may be a result 

of not using enough modes in the simulation, but their positioning in the spectra are a different 

matter. Since the specific energy of the emissions and thus the wavelengths where the lasing 

occurs depends on the change in energy which occurs with each transition, the previous alluded 

to inaccuracies in the representation of the device’s band structure could contribute to the large 

discrepancy seen in the second lasing wavelength.

Though this element requires some improvement, on a fundamental level many of 

expected behaviours can be seen. The theoretical model used was able to show the lasing from 

two separate wavelengths when expected, and looking at the time-domain electric field 

measurements reproduced in Figure 5.3 shows the same periodic time-domain behaviour which 

was observed earlier, including the switching on behaviour.
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Figure 5.3 Time domain electric field behaviour of a InAs/GaAs QD with an injection current 

density of 70 A/cm2
 as modelled using the perturbation theory simulation
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Chapter 6 – Conclusion
Though there are flaws in the results obtained using the current version of the perturbation 

model, much of the general lasing behaviour and other key characteristics of the data matches the 

expected trends to the same degree as the TDTW mode. Though the perturbation theory 

simulation’s main weaknesses were the lack of inhomogeneous gain broadening and cavity 

modes, these issues arise from its limited treatment of the device geometry, which only simulates 

a single dot.

When attempting to illustrate these important characteristics by replicating the findings of 

previous simulations of mode-locked QD lasers, there was close agreement with much of the 

general lasing behaviour despite some difficulties with mode-locking. The frequency domain RF 

spectra which were generated all show lasing at the expected frequencies, though they show some 

differences from both the results of a TDTW simulation and some experimental data. There was a 

smaller degree of inhomogeneous gain broadening in the perturbation theory simulation, which is 

likely related to the current iteration of the simulation only simulating a single dot. These issues 

can be resolved with a more detailed treatment of the device geometry, leading to more 

broadening in the spectra, or an alternative approach to the distribution of dot sizes like what is 

used in the TDTW model. Though there are still flaws with the current iteration of the 

perturbation theory simulation, it still matches the TDTW simulations fairly well and the ways to 

improve it are well understood.

Experimental data from an InAs-based QD laser was replicated with some accuracy by the 

perturbation theory model. The simulation was able to replicate the periodic behaviour similar to 

that seen in the recorded experimental data, but the period of the gain cycle didn’t quite match 

with the experimental data. The behaviour was also very sinusoidal, in contrast to the distinctive 

pulsing behaviour seen experimentally. Although the timing wasn’t exactly the same, the general 

trend of the period varying as the injection current was raised was still evident. The accuracy of 

this overall behaviour shows that the new theoretical model and its implementation reflects some 

of the dynamics of such a system, as the discrepancies in the specific timing may suggest issues 

with the specific values chosen rather than the methodology. The repetition rate of the gain cycle 

depends very strongly on the lifetimes of each energy level, so these issues are tied to 
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insufficiently accurate values picked for these parameters. The fact that the timing used here also 

appears to be much faster could also contribute to the lack of distinct pulses like we see in the 

experimental data. Though these general behaviours are still evident, the model will need to be 

expanded to include more cavity modes and more QDs to ensure the presence of interactions 

between different modes leading to the mode-locking and the distinct pulses observed in the 

experimental data. Similarly, new modules could be added to separately calculate more accurate 

values for the relevant lifetimes.

The perturbation theory model was also used to reproduce data from an InAs/GaAs QD 

laser showing lasing from two distinct wavelengths. The time domain behaviour of the carrier 

populations produced with the perturbation theory simulation still showed the same stable 

population inversion, and also showed lasing from two distinct peaks. However, the behaviour of 

the two peaks in the power spectra didn’t perfectly match, as the experimental data showed the 

changing relative intensity of the two peaks as the injection current density increased. The two 

peaks in the simulated spectra also did not closely line up with the experimental data, with the 

second peak being at a noticeably longer wavelength and both peaks being much sharper. This 

effect of lasing from two distinct wavelengths arises due to two dominant transitions of different 

energies, which can arise due to the band structure of the device. The structure used in this 

simulation was that of a single dot, and therefore it lacked many of the unique characteristics of 

the device used in the published results. Though either more accurate values or a method of 

calculating a device’s band structure could be incorporated into the simulation for improved 

results, the inaccuracies don’t appear to be fundamental to the model. The narrowness of the 

peaks may also be related to computational limitations restricting the number of lasing modes 

which can be used in the current simulation.

Though there are no published simulation results for this data which the perturbation 

theory simulation can be compared to, a replication of the model explored by Bardella et al. [19] 

was used to replicate these results to see how the outcomes compare to the perturbation theory 

model. However, though such results have not been published previously, a replication of their 

model was used alongside the perturbation theory model. This simulation is reproduced within 

the Appendix. Though this recreation of the Bardella et al. simulation was effective for smaller 
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devices, it is much more mathematically complex and therefore much more memory intensive, 

and thus is unable to properly simulate lasing activity in the larger cavities studied by Tierno et 

al. and Majid et al. Thus, a direct comparison with the TDTW model is not possible, but the fact 

that these results can only be obtained using the perturbation theory simulation shows that it is 

more useful.

The effectiveness of the perturbation theory model in exhibiting the general trends of the 

properties of these devices, especially in comparison with previously attempts, shows the validity 

of some of the assumptions that went into this model. However, despite many of these 

advantages, there are some changes that will need to be made to the model moving forward. In 

addition to minor issues caused by inaccurately selected parameters, particularly lifetimes and 

band structure, the simulation is largely held back by its limited treatment of inhomogeneous gain 

broadening. This issue limits its ability to properly simulate mode-locking, as well as lasing from 

multiple wavelengths, and is largely caused by the device geometry consisting of only a single 

dot. These issues can be resolved by either treating inhomogeneous gain broadening in a manner 

similar to the TDTW model, or by using more detailed treatments of the device’s geometry to 

show several QDs with different sizes. Thankfully, due to COMSOL’s modular design, it should 

be possible to add on further modules which can more accurately represent these characteristics 

of the devices, as well as more accurately derive values that were previously estimated based on 

the literature. However, these elements, as well as the use of more cavity modes, will be very 

computationally expensive.

Although the perturbation theory model presented here has some drawbacks in its current 

form, the cause of these weaknesses are clear based on how it performs compared to the TDTW 

model and published experimental results. With these causes well understood, these findings 

present clear steps which can be taken to improve the model to a state where it may have some 

predictive power. Such a model can also be used to help plan further research and assess which 

device properties may be desirable before fabrication. In this case, further work and refinement 

on the simulation, as outlined in this section, has the potential to bear much fruit.
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Appendix
Full code of the COMSOL simulation for the Bardella et al. data, converted into MATLAB

MATLAB code used to analyze the raw data using the electric field values

close all;
format long e;
pkg load signal;

ita_i=1; %imaginary unit
epsilon0=8.85e-12; %permittivity in vacuum
c=3e8; %speed of light (vacuum)
e=1.602e-19; %electron charge
m0=9.1095e-31; %electron rest mass
kB=1.3806e-23; %Boltzmann (J/K)
h=6.63e-34; %Planck (Js)
hbar=h/2/pi; %reduced Planck

lambda0=1.560-6;
omega0=c/(lambda0/2/pi);

t1=round(length(Eout)/10);
t2=length(Eout);
dt=time(3)-time(2);
E=Eout(t1:t2);
df=1/(t2-t1+1)/dt;
fmax=1/dt/2;
fFFT=round(-fmax:df:fmax-df);
f0=omega0/2/pi;
lambdaFFT=c./(fFFT+f0);
x=t2-t1;
F=(abs(fftshift(fft(E)))).^2/x^2;
F_dBm=10*log10(F/mean(F));
Fmax_dBm=max(F_dBm);
norm_spectrum=F_dBm-Fmax_dBm;
compat=pwelch('psd');
[pxx,f]=pwelch(E/mean(E),length(fFFT));
pwelch(compat);
f_m=linspace(f(1),f(length(f)),length(F_dBm));
P=E.*conj(E)/1e-3;
Pavg=mean(P);

omega=linspace(2*pi*220e12,2*pi*280e12,20000);
lambda=c./(omega/2/pi);
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figure(1);
plot(time/1e-12,Eout.*conj(Eout)/1e-3);xlim([0,time(t2)/1e-12]);
ylim([min(Eout.*conj(Eout)/1e-3),max(Eout.*conj(Eout)/1e-3)]);
xlabel('Time (ps)');ylabel('Intensity (mW)');

figure(2);
plot(time(t1:t2)/1e-12,P);xlim([time(t1)/1e-12,time(t2)/1e-12]);
ylim([min(P),max(P)]);xlabel('Time (ps)');ylabel('Intensity 
(mW)');

figure(3);
plot(lambdaFFT/1e-9,F_dBm);grid;xlabel('Wavelength [nm]');
xlim([(lambda0/1e-9)-30,(lambda0/1e-9)+30]);ylabel('Optical 
Spectrum [dBm]');

figure(4);
plot(lambdaFFT/1e-9,F_dBm);grid;xlabel('Wavelength [nm]');
xlim([(lambda0/1e-9)-20,(lambda0/1e-9)+20]);ylabel('Optical 
Spectrum [dBm]');

figure(5);
plot(lambdaFFT/1e-9,F_dBm);grid;xlabel('Wavelength [nm]');
xlim([(lambda0/1e-9)-10,(lambda0/1e-9)+10]);ylabel('Optical 
Spectrum [dBm]');

figure(6);
plot(lambdaFFT/1e-9,norm_spectrum);grid;xlabel('Wavelength 
[nm]');
ylabel('Normalized Opt. Spec. [dB]');

figure(7);
plot(f,10*log10(pxx));grid;xlabel('Frequency [Hz]');ylabel('Opt. 
Spec. [dB]');

figure(8);
plot(f_m,F_dBm);grid;xlabel('Frequency [Hz]');ylabel('Opt. Spec. 
[dB]');

figure(9);
plot(c./(lambdaFFT/1e-9),norm_spectrum);grid;xlabel('Frequency 
[Hz]');
ylabel('Opt. Spec. [dB]');
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MATLAB code used to analyze the raw data using the population values

close all;
format long e;
pkg load signal;

%%Constants%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%
ita_i=1; %imaginary unit
epsilon0=8.85e-12; %permittivity in vacuum
c=3e8; %speed of light (vacuum)
e=1.602e-19; %electron charge
m0=9.1095e-31; %electron rest mass
kB=1.3806e-23; %Boltzmann (J/K)
h=6.63e-34; %Planck (Js)
hbar=h/2/pi; %reduced Planck

%%Main Model Parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%
Hw=1.10e-9; %QD height
ita=3.5755; %effective refractive index
Nl=5; %number of QD layers
ND=3e14;%QD surface density change from 3e14 to 2e14
N=15; %number of QD groups 
D_ES=4; %degeneracy of ES
D_GS=2; %degeneracy of GS

tau_cW=1.2e-12; %capture time to WL
tau_cES=1.2e-12; %capture time to ES
tau_cGS=1.2e-12; %capture time to GS
tau_rW=100e-12; %interband recombination time in WL
tau_sES=500e-12; %spontaneous emission time of ES1
tau_sGS=1200e-12; %spontaneous emission time of GS

beta_sp=1e-4; %spontaneous emission factor
alpha=1700; %internal modal loss
Gammaxy=0.07; %optical confinement factor

steps=15;

%%Device Parameters%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%
W=6e-6; %ridge width
hSCH=355e-9; %height of separate confinement heterostructure 
(SCH)
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hW=355e-9; %width of wetting layer (WL)
r0=sqrt(0.99); %facet refractivity
rL=sqrt(0.33);
L=1.33e-3; %cavity length
l=L;    %length of amplifier

I=20e-3; %current
J=I/W/L; %current density

%%Mesh%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%
Vg=c/ita; %speed of light (cavity)
dt=20e-15; %time spacing
dz=dt*Vg; %distance spacing
NNz=round(L/dz); %number of distance steps
tend=80e-12; %end time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%
m_effSCH=0.073*m0; %effective carrier mass in SCH
m_effQW=0.064*m0; %effective carrier mass in QW
m_effQD=0.027*m0; %effective carrier mass in QD

T=300; %temperature

df=c/2/ita/L; %frequency spacing
dE=h*df; %energy spacing
Lw_h=0.008*e; %homogeneous gain broadening 
Lw_ES=0.045*e; %inhomogeneous gain broadening in ES
Lw_GS=0.0366*e; %inhomogeneous gain broadening in GS
d_ES=0.96e-9*e; %dipole matrix element of ES
d_GS=0.6e-9*e; %dipole matrix element of GS
A_ES=d_ES^2*pi/epsilon0;
A_GS=d_GS^2*pi/epsilon0;
Gamma=Lw_h/hbar; %dephasing rate of interband transition

energy_ES=0.856*e; %recombination energy of ES
energy_GS=0.806*e; %recombination energy of GS

%%Preallocation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%
Ef=zeros(NNz+1,length(time));Eb=zeros(NNz+1,length(time)); 
%electric field (+ and -)
Eftemp=zeros(NNz+1,1);Ebtemp=zeros(NNz+1,1); %temporary electric 
field (+ and -)
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prob_ES=zeros(NNz+1,length(time),N);prob_GS=zeros(NNz+1,length(ti
me),N); %occupation probability
If_ES=zeros(NNz+1,length(time),N);Ib_ES=zeros(NNz+1,length(time),
N); %convolution in polarization expression for ES
If_GS=zeros(NNz+1,length(time),N);Ib_GS=zeros(NNz+1,length(time),
N); %convolution in polarization expression for GS
If_sp_ES=zeros(NNz+1,length(time),N);Ib_sp_ES=zeros(NNz+1,length(
time),N); %convolution in polarization expression of spontaneous 
emission for ES
If_sp_GS=zeros(NNz+1,length(time),N);Ib_sp_GS=zeros(NNz+1,length(
time),N); %convolution in polarization expression of spontaneous 
emission for GS
pf_ES=zeros(NNz+1,length(time),N);pb_ES=zeros(NNz+1,length(time),
N); %polarization expression for ES
pf_GS=zeros(NNz+1,length(time),N);pb_GS=zeros(NNz+1,length(time),
N); %polarization expression for GS
N_SCH=zeros(NNz+1,length(time));N_W=zeros(NNz+1,length(time)); 
%carrier density on SCH and WL
N_stimES=zeros(NNz+1,1); %stimulated emission absorption in ES
N_stimGS=zeros(NNz+1,1); %stimulated emission absorption in GS
tau_eES=zeros(1,N);tau_eGS=zeros(1,N); %electron lifetime
tau_sp_ES=zeros(1,N);tau_sp_GS=zeros(1,N); %spontaneous emission 
lifetime
Omega_ES=zeros(1,N);Omega_GS=zeros(1,N); %emission frequency
Chi=zeros(20000,length(time));Chin=zeros(20000,length(time));
gain=zeros(20000,length(time));
G1=zeros(1,N); %dot size distribution
phif_ES=2*pi*rand(NNz+1,length(time),N);phib_ES=2*pi*rand(NNz+1,l
ength(time),N); %uniformly distributed between 0 and 2*pi and 
uncorrelated in time
phif_GS=2*pi*rand(NNz+1,length(time),N);phib_GS=2*pi*rand(NNz+1,l
ength(time),N);

Pf1=zeros(NNz+1,length(time));Pb1=zeros(NNz+1,length(time)); 
%total polarization (+ and -)
Pf2=zeros(NNz+1,length(time));Pb2=zeros(NNz+1,length(time));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%

for nn=1:N
    Omega_ES(nn)=(energy_ES+(nn-(N+1)/2)*N*dE)/hbar;
    Omega_GS(nn)=(energy_GS+(nn-(N+1)/2)*N*dE)/hbar;
end

deltaE_SCHQW=0.050*e; %SCH-WL energy separation
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EOmega_W=0.040*e+Omega_ES((N+1)/2)*hbar; %WL-ES energy separation 
40meV
%omega0=Omega_GS((N+1)/2); %central frequency
DOS_SCH=2*(2*pi*m_effSCH*kB*T/h^2)^1.5; %DOS in SCH
DOS_W=m_effQW*kB*T/pi/hbar^2; %DOS in WL

%%%%%%%%%%%%%%%%%QD size distribution%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%
G1(1:N)=exp(-4*log(2)*(hbar*(Omega_GS(1:N)-Omega_GS((N+1)/
2))).^2/Lw_GS^2);
Z=sum(G1); %normalization constant
Gx=G1/Z; %normalized dot size distribution

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
tau_eES(1:N)=tau_cES*D_ES*ND/DOS_W*exp((EOmega_W-
hbar*Omega_ES(1:N))/kB/T); %escape time from GS
tau_eGS(1:N)=tau_cGS*D_GS/D_ES*exp((hbar*Omega_ES(1:N)-
hbar*Omega_GS(1:N))/kB/T); %escape time from ES
tau_eW=tau_cW*DOS_W*Nl/DOS_SCH/hSCH*exp(deltaE_SCHQW/kB/T); 
%escape time from WL
tau_sp_ES(1:N)=1./(A_ES*ita*Omega_ES(1:N).^3/(pi^2*c^3*hbar)); 
%spontaneous emission time for ES
tau_sp_GS(1:N)=1./(A_GS*ita*Omega_GS(1:N).^3/(pi^2*c^3*hbar)); 
%spontaneous emission time for GS

Times=0;
s0=0.25; %unsaturated loss
Ssat=0.04; %saturation intensity
delta=14.801; %Kerr-coefficient
dng=-5.1e5; %dng/dlambda
lambda0=1.225e-6;
omega0=c/(lambda0/2/pi);
beta2=-1*lambda0^2/2/pi/c^2*dng; %dispersion coefficient

spdzf=zeros(NNz+1);spdzb=zeros(NNz+1);

for n=1:N
    for t=1:length(time)
        prob_ES(1:NNz+1,t,n)=N_ES(t)/Nl/ND/Gx(n)/D_ES/W/dz; 
%occupation probability
        prob_GS(1:NNz+1,t,n)=N_GS(t)/Nl/ND/Gx(n)/D_GS/W/dz;
    end
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    for t=2:length(time)
        If_ES(1:NNz+1,t,n)=exp(1i*(Omega_ES(n)-omega0)*dt-
Gamma*dt)*If_ES(1:NNz+1,t-1,n)+...
            1/2*dt*(Ef(1:NNz+1,t)+exp(1i*(Omega_ES(n)-omega0)*dt-
Gamma*dt)*Ef(1:NNz+1,t-1));
        Ib_ES(1:NNz+1,t,n)=exp(1i*(Omega_ES(n)-omega0)*dt-
Gamma*dt)*Ib_ES(1:NNz+1,t-1,n)+...
            1/2*dt*(Eb(1:NNz+1,t)+exp(1i*(Omega_ES(n)-omega0)*dt-
Gamma*dt)*Eb(1:NNz+1,t-1)); %convolution terms
        If_GS(1:NNz+1,t,n)=exp(1i*(Omega_GS(n)-omega0)*dt-
Gamma*dt)*If_GS(1:NNz+1,t-1,n)+...
            1/2*dt*(Ef(1:NNz+1,t)+exp(1i*(Omega_GS(n)-omega0)*dt-
Gamma*dt)*Ef(1:NNz+1,t-1));
        Ib_GS(1:NNz+1,t,n)=exp(1i*(Omega_GS(n)-omega0)*dt-
Gamma*dt)*Ib_GS(1:NNz+1,t-1,n)+...
            1/2*dt*(Eb(1:NNz+1,t)+exp(1i*(Omega_GS(n)-omega0)*dt-
Gamma*dt)*Eb(1:NNz+1,t-1));
    end
    
    
pf_ES(1:NNz+1,:,n)=(1i/hbar*omega0/2/pi/c/ita*Gammaxy/Hw*ND*Gx(n)
*D_ES*A_ES*(2*prob_ES(1:NNz+1,:,n)-1)).*If_ES(1:NNz+1,:,n); 
%polarization contributions
    
pb_ES(1:NNz+1,:,n)=(1i/hbar*omega0/2/pi/c/ita*Gammaxy/Hw*ND*Gx(n)
*D_ES*A_ES*(2*prob_ES(1:NNz+1,:,n)-1)).*Ib_ES(1:NNz+1,:,n);
    
pf_GS(1:NNz+1,:,n)=(1i/hbar*omega0/2/pi/c/ita*Gammaxy/Hw*ND*Gx(n)
*D_GS*A_GS*(2*prob_GS(1:NNz+1,:,n)-1)).*If_GS(1:NNz+1,:,n);
    
pb_GS(1:NNz+1,:,n)=(1i/hbar*omega0/2/pi/c/ita*Gammaxy/Hw*ND*Gx(n)
*D_GS*A_GS*(2*prob_GS(1:NNz+1,:,n)-1)).*Ib_GS(1:NNz+1,:,n);
            
    Pf1(1:NNz+1,:)=Pf1(1:NNz+1,:)+pf_ES(1:NNz+1,:,n); %sum up 
polarization terms
    Pb1(1:NNz+1,:)=Pb1(1:NNz+1,:)+pb_ES(1:NNz+1,:,n);
    Pf2(1:NNz+1,:)=Pf2(1:NNz+1,:)+pf_GS(1:NNz+1,:,n);
    Pb2(1:NNz+1,:)=Pb2(1:NNz+1,:)+pb_GS(1:NNz+1,:,n);
            
    If_sp_ES(1:NNz+1,2:length(time),n)=exp(1i*(Omega_ES(n)-
omega0)*dt-Gamma*dt)*If_sp_ES(1:NNz+1,1:length(time)-1,n)+...
        1/2*dt*(exp(1i*phif_ES(1:NNz+1,2:length(time),n))
+exp(1i*(Omega_ES(n)-omega0)*dt-
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Gamma*dt+1i*phif_ES(1:NNz+1,1:length(time)-1,n))); %convolution 
terms for spontaneous emission
    Ib_sp_ES(1:NNz+1,2:length(time),n)=exp(1i*(Omega_ES(n)-
omega0)*dt-Gamma*dt)*Ib_sp_ES(1:NNz+1,1:length(time)-1,n)+...
        1/2*dt*(exp(1i*phib_ES(1:NNz+1,2:length(time),n))
+exp(1i*(Omega_ES(n)-omega0)*dt-
Gamma*dt+1i*phib_ES(1:NNz+1,1:length(time)-1,n)));
    If_sp_GS(1:NNz+1,2:length(time),n)=exp(1i*(Omega_GS(n)-
omega0)*dt-Gamma*dt)*If_sp_GS(1:NNz+1,1:length(time)-1,n)+...
        1/2*dt*(exp(1i*phif_GS(1:NNz+1,2:length(time),n))
+exp(1i*(Omega_GS(n)-omega0)*dt-
Gamma*dt+1i*phif_GS(1:NNz+1,1:length(time)-1,n)));
    Ib_sp_GS(1:NNz+1,2:length(time),n)=exp(1i*(Omega_GS(n)-
omega0)*dt-Gamma*dt)*Ib_sp_GS(1:NNz+1,1:length(time)-1,n)+...
        1/2*dt*(exp(1i*phib_GS(1:NNz+1,2:length(time),n))
+exp(1i*(Omega_GS(n)-omega0)*dt-
Gamma*dt+1i*phib_GS(1:NNz+1,1:length(time)-1,n)));
    
    for z=1:NNz+1       
    
spdzf(z)=sum(Gamma*(sqrt(hbar*Omega_ES(n)/(pi*Gamma*dt)*(beta_sp*
N_ES(t))/(2*tau_sp_ES(n))).*If_sp_ES(z,:,n)+... %spontaneous 
emission noise
        
sqrt(hbar*Omega_GS(n)/(pi*Gamma*dt)*(beta_sp*N_GS(t)/(2*tau_sp_GS
(n)))).*If_sp_GS(z,:,n)));
    
spdzb(z)=sum(Gamma*(sqrt(hbar*Omega_ES(n)/(pi*Gamma*dt)*(beta_sp*
N_ES(t))/(2*tau_sp_ES(n))).*Ib_sp_ES(z,:,n)+...
        
sqrt(hbar*Omega_GS(n)/(pi*Gamma*dt)*(beta_sp*N_GS(t)/(2*tau_sp_GS
(n)))).*Ib_sp_GS(z,:,n)));
    end
end

for z=1:NNz+1  %NaN check
    for t=1:length(time)-1
        if z~=NNz+1; Ef(z+1,t+1)=(Ef(z,t)-1i*(Pf1(z,t)
+Pf2(z,t))*dz+spdzf(z)-alpha/2*Ef(z,t)*dz)*exp(-
1i*delta*abs(Ef(z,t))^2*dz); end
            if z~=1; Eb(z-1,t+1)=(Eb(z,t)-1i*(Pb1(z,t)
+Pb2(z,t))*dz+spdzb(z)-alpha/2*Eb(z,t)*dz)*exp(-
1i*delta*abs(Eb(z,t))^2*dz); end
                if isnan(abs(Ef(z,t))^2) 
                    keyboard; end
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    end
end

for t=1:length(time)-1
    
Ef(NNz+1,t+1)=(1-s0/(1+(abs(Ef(NNz,t))^2/Ssat)^1))*Ef(NNz+1,t+1); 
%self-focusing
    Eb(NNz+1,t+1)=rL*Ef(NNz+1,t+1); %boundary conditions
    Ef(1,t+1)=r0*Eb(1,t+1);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%   
Eout=sqrt(1-rL^2)*Ef(NNz+1,:); %output
save('Eoutput','Eout');
   
Ef(1:NNz+1,1:2)=Ef(1:NNz+1,length(time)-
1:length(time));Eb(1:NNz+1,1:2)=Eb(1:NNz+1,length(time)-
1:length(time));
N_SCH(1:NNz+1,1:2)=N_SCH(1:NNz+1,length(time)-
1:length(time));N_W(1:NNz+1,1:2)=N_W(1:NNz+1,length(time)-
1:length(time));

t1=round(length(Eout)/10);
t2=length(Eout);
dt=time(3)-time(2);
E=Eout(t1:t2);
df=1/(t2-t1+1)/dt;
fmax=1/dt/2;
fFFT=round(-fmax:df:fmax-df);
f0=omega0/2/pi;
lambdaFFT=c./(fFFT+f0);
x=t2-t1;
F=(abs(fftshift(fft(E)))).^2/x^2;
F_dBm=10*log10(F/mean(F));
Fmax_dBm=max(F_dBm);
norm_spectrum=F_dBm-Fmax_dBm;
compat=pwelch('psd');
[pxx,f]=pwelch(E/mean(E),length(fFFT));
pwelch(compat);
f_m=linspace(f(1),f(length(f)),length(F_dBm));
P=E.*conj(E)/1e-3;
Pavg=mean(P);
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omega=linspace(2*pi*220e12,2*pi*280e12,20000);
lambda=c./(omega/2/pi);

figure(1);
plot(time/1e-12,Eout.*conj(Eout)/1e-3);xlim([0,time(t2)/1e-12]);
ylim([min(Eout.*conj(Eout)/1e-3),max(Eout.*conj(Eout)/1e-3)]);
xlabel('Time (ps)');ylabel('Intensity (mW)');

figure(2);
plot(time(t1:t2)/1e-12,P);xlim([time(t1)/1e-12,time(t2)/1e-12]);
ylim([min(P),max(P)]);xlabel('Time (ps)');ylabel('Intensity 
(mW)');

figure(3);
plot(lambdaFFT/1e-9,F_dBm);grid;xlabel('Wavelength [nm]');
xlim([(lambda0/1e-9)-30,(lambda0/1e-9)+30]);ylabel('Optical 
Spectrum [dBm]');

figure(4);
plot(lambdaFFT/1e-9,F_dBm);grid;xlabel('Wavelength [nm]');
xlim([(lambda0/1e-9)-20,(lambda0/1e-9)+20]);ylabel('Optical 
Spectrum [dBm]');

figure(5);
plot(lambdaFFT/1e-9,F_dBm);grid;xlabel('Wavelength [nm]');
xlim([(lambda0/1e-9)-10,(lambda0/1e-9)+10]);ylabel('Optical 
Spectrum [dBm]');

figure(6);
plot(lambdaFFT/1e-9,norm_spectrum);grid;xlabel('Wavelength 
[nm]');
ylabel('Normalized Opt. Spec. [dB]');

figure(7);
plot(f,10*log10(pxx));grid;xlabel('Frequency [Hz]');ylabel('Opt. 
Spec. [dB]');

figure(8);
plot(f_m,F_dBm);grid;xlabel('Frequency [Hz]');ylabel('Opt. Spec. 
[dB]');

figure(9);
plot(c./(lambdaFFT/1e-9),norm_spectrum);grid;xlabel('Frequency 
[Hz]');
ylabel('Opt. Spec. [dB]');
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