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Abstract

Wind Estimation and Control of Unmanned Aerial Vehicles with Application to
Forest Fire Surveillance
Zhewen Xing, Ph.D.

Concordia University, 2023

In recent years, there has been an increasing interest in the application of unmanned
aerial vehicles in forest fire monitoring and detection systems. Armed with unmanned
aerial vehicles (UAVs), firefighters on the ground can get a bird’s-eye view of the terrain,
respond to forest fires quickly, distribute resources, and ultimately save lives and properties.
In practice, wind behaviors have significant impacts on both the performance of UAV and
forest fire situations. However, current wind measurement and estimation relies on data
gathered from ground weather stations that are often located several kilometers away from
the forest fire regions. As a result, it is challenging to maintain the performance and assess
the forest fire situations properly with the obtained wind information.

This thesis investigates the problems of the wind estimation and control of unmanned
aerial vehicles with application to forest fire surveillance. To develop UAVs as remote wind
sensing platforms, a two-stage particle filter-based approach is proposed to estimate winds
from quadrotor motion. Based on the estimated wind information, an active wind rejection
control strategy is designed to maintain the performance of a quadrotor UAV in the presence
of unknown winds. Then, the active wind rejection control strategy is developed for the
formation control of multiple UAVs to ensure their cooperative tracking capability. Finally,
based on the wind data and fire observations collected by UAVs, a forest fire monitoring

scheme is designed to accurately estimate the situation of wind-affected forest fires.
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Chapter 1

Introduction

1.1 Background

1.1.1 Guidance, Navigation and Control of UAV

Unmanned aerial vehicle techniques have seen explosive growth over the past few
decades. UAVs are classified based on weight, flying height, wing type, endurance and
range, which support wide varieties of applications. These applications cover a large num-
ber of fields, such as forest fire monitoring, aerial photography, payload delivery, agricul-
ture, infrastructure inspection, policing and surveillance. The reliability and safety of UAVs
are increasingly required for these practical applications because UAVs are often used to
execute specific tasks in complex and hazardous environments.

For the autonomous operation of UAVs, guidance, navigation and control are three es-
sential components that constitute the general structure of the UAV system, as demonstrated
in Fig. 1.1. These subsystems are devoted to the safe, reliable, and efficient performance
of the whole UAV system. The functions of these three subsystems are briefly discussed as

follows.

(1) Guidance subsystem is responsible for the generation of desired trajectories for the

1



- Control
Guidance
| Mission planning | Desired mgzépe%n;nt Control
¢ trajectories ¢ commands
- el Acturtors
| Path plfnnmg | | Controller |
- - ¢ Forces &
| Trajectory generation | | Control allocation | moments
UAV & environment A
information UAV
Navigation
| Sensing |
; ; UAV states
Environment State
perception estimation
2 Environmental
| Situation awareness | disturbances
* UAV motion

Figure 1.1: General structure of UAV guidance, navigation and control system [1]

control subsystem based on the information of UAV and environment obtained from
the navigation subsystem. To accomplish assigned tasks with the considerations of
targets, environment, operators, UAV cooperation, available power, etc., optimal tra-
jectories, as well as desired changes of velocities and attitudes to follow those paths,

are generated for the UAV in this subsystem.

(2) Navigation subsystem is responsible for the identification of current UAV states and
its surrounding environment information for the guidance and control subsystems.
UAV states, including position, velocity, attitude, and angular velocity can be mea-
sured or estimated with onboard sensors such as the GPS and IMU modules. In
addition, the environment perception is an important aspect. For example, changes
of wind speed and direction can be measured from wind sensors or estimated from

UAYV motion.



(3) Control subsystem is responsible for the determination of control commands to sta-
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1.1.2 Role of UAV in Fighting Forest Fire

5,000,000 8,000
4,500,000 000
4,000,000

— 6,000

£ 3,500,000 g

§ 3,000,000 5,000 &

o

g 2,500,000 4,000 &

Lo o

22,000,000 2000 2

8 =}

< 2

1,500,000
2,000
1,000,000
500,000 I 1,000
0 - 0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

I Area burned e Number of fires

Figure 1.2: Forest area burned and number of forest fire in Canada, 2012-2022 [2]

Over the past few decades, increasing global temperatures and more prolonged and
severe droughts have contributed to the favorable conditions of forest fires [3, 4]. These
forest fires resulted in irreparable environmental damages and unquantifiable economic
losses, which had detrimental impacts on ecosystem services, public health, and economic
activities. Fig. 1.2 shows a statistic result of burned forest area and the number of forest
fires in Canada from 2012 to 2022 (to date). In Canada, about 7300 forest fires have
occurred and burned about 2.5 million hectares of forests annually over the last 25 years

[5]. In addition, recent extreme forest fires in Brazil, Australia, and California in USA have



once again attracted public attention to the issue of forest fires.

Autonomous UAVs are playing an important role in fighting forest fires due to their low
cost and high flexibility. UAVs can be deployed to improve the situation awareness by the
ground team and share important data with the air and ground crews that can help ground
teams detect potential risks and put out the fire rapidly. Fig. 1.3 indicates the role of UAV

in three stages of fighting forest fires.

Before During After
Surveillance Diagnosis
¢ ¢ Post-fire
Detection Monitoring analysis
v ' |
Confirm Prognosis
¢ ¢ Recovery
Alarm Extinguish

Figure 1.3: Role of UAV in three stages of fighting forest fires

(1) Before: UAVs can be deployed to minimize the cause of forest fires for prevention.
Patrolling high-risk regions of potential fires by ground crews is usually dangerous,
time-consuming, and inefficient because of inadequate infrastructures and rough ter-
rains. Fixed-wing UAVs can traverse a long distance to continuously observe over a
large area of forest in order to find the potential occurrences of fires, while rotary-
wing UAVs can quickly provide close site-detection to confirm these hot spots. When
occurrences of these fires are confirmed, UAVs can quickly alert the ground team

about the emergence of forest fires.

(2) During: UAVs can be applied for a fast response to forest fires in order to minimize
adverse consequences. UAVs can locate fire sources and diagnose the extent of fire

in the air when thick smoke makes it nearly impossible for visual cameras to see the



source and scope of the growing fires from the ground, continuously monitor theses
fires and its surroundings with onboard cameras and other sensors, and predict the
speed and direction of forest fire propagation in real time. Furthermore, with com-
mands from the ground center, UAVs can assist in fire suppression by spreading fire
suppression liquid to extinguish the fire or dropping ignition spheres at the desired
locations to intentionally set small fires under set conditions to clear vegetation that

could become fuel in the future.

(3) After: UAVs can be used to evaluate damage and risks of forest fires. By mapping
with UAVs, the ground team can obtain a full view of the terrain situations before and
after the forest fire for the post-fire analysis. These information can be useful for the
recovery over the terrains. In addition, UAVs can help crews find the unextinguished

fires to warn firefighters operating away from the potential dangers.

1.2 Review of Related Works

Evidence suggests that wind behavior is one of the most important factors that has
great impacts on the performance of UAVs and the propagation of forest fires. A consid-
erable amount of research have been well studied on wind measurement and estimation
approaches for UAVs, control of UAVs against wind disturbances, and forest fire monitor-

ing approaches.

1.2.1 Wind Measurement and Estimation Approaches for UAVs

Wind measurement and estimation approaches have been widely developed on the UAV
platforms. Especially, fixed-wing UAVs benefit from their relatively high endurance and

the ability to traverse long distances to capture wind data in a broad range of areas with



more specific sensors, although the forward-flight nature makes it impossible for continu-
ous wind data collection at fixed point locations. In addition, rotary-wing UAVs, in partic-
ular multirotor UAVs, are increasingly used for in-situ wind measurements in low-altitude
environments, due to their hovering capability and easy maneuverability. UAV-based wind
measurement and estimation approaches can be applied to remotely collect wind data in
many fields. For example, UAVs can be deployed over the forest fire region to collect wind
data for the forest fire monitoring and fighting tasks.

To obtain wind data with UAVs, the most effective way is to measure wind speed and
direction via the anemometers carried by the UAV platforms. The available wind sensors
include but are not limited to the multi-hole pressure probe [6, 7, 8, 9, 10, 11, 12], the
Pitot tube [13, 14, 15, 9, 16], the ultrasonic anemometer [17, 18, 19, 20, 21], and the hot-
wire anemometer [22]. Reliable wind data can be produced by those chosen anemometers
during flight, although additional wind sensors may reduce the battery life and increase the
total expense.

However, in the case of no wind sensor or in the presence of wind sensor faults, indirect
approaches can be adopted to estimate wind data from UAV motion without additional
wind sensors. In general, there are two main types of indirect wind estimation approaches,
namely model-based approaches and data-driven approaches.

Model-based approaches are proposed based on the dynamic model of a UAV with the
consideration of wind effects acting on the UAV motion. The model-based approaches
involve but are not limited to those based on state estimation, parameter identification, and
disturbance observer. In [23], three approaches are compared for wind estimation based
on three quadrotor models, i.e., the kinematic particle model, the dynamic particle model,
and the rigid-body model. Each model is linearized about the hover equilibrium to enable
the wind estimation using a state observer. The linear Kalman filter [24, 25], the extended

Kalman filter [26, 27] and the unscented Kalman filter [28] are the most commonly used



optimal state observers for wind estimation on a UAV. In [29], three time-varying parameter
estimation algorithms are proposed for the wind estimation of a quadrotor based on the
adaptive observers. In [30], a multi-objective optimization algorithm is used to estimate
wind and identify aircraft model parameter. However, model-based approaches should be
applied with accurate models of UAVs. To apply these approaches for UAVs, large amounts
of effort should be invested to the mathematical model of aircraft dynamics.

Depending on previously observed data, data-driven approaches estimate or infer wind
vectors by matching the similar patterns in the history. The data-driven approaches can
characterize a static relationship between the wind vector and UAV states (or control re-
sponses) only from historical data. The relationships can be obtained by using data pro-
cessing methods, such as the least-squares fitting method, the artificial intelligence method,
etc. In [31], the oncoming flow velocity and direction can be determined from the bijective
contour figure of oncoming flow vector and the required power of each rotor. In [32], a
static relationship between the wind vector and Euler angles of a quadrotor UAV is ob-
tained through wind tunnel tests. Based on previous work, the relationship function is
corrected by adding the acceleration term in [33]. Artificial intelligence methods such as a
long short-term memory (LSTM) neural network method is used in [34] to estimate wind
vectors for a quadrotor UAV from the position and attitude measurements. Data-driven
methods can be applied without understanding the complex dynamic model of a quadrotor
UAV under wind effects. However, the real applications of data-driven methods face chal-
lenges of defining dataset to generate the mapping functions for wind estimation, solving

overfitting issues and so on.



1.2.2 Control of UAVs Against Wind Disturbances

Wind behaviors have unavoidable impacts on the performances of UAVs in outdoor
tasks, such as employing UAVs for the forest fire detection, monitoring, and fighting. Ex-
ternal wind disturbances generate unexpected forces and moments acting on the UAV that
will degrade the performance of the vehicle. In particular, small-scale UAVs are more sensi-
tive to those external disturbances due to their low inertia and small size. Therefore, control
of UAVs against wind disturbances should be investigated to ensure their performance of
tracking desired trajectories and stability in the presence of unknown wind disturbances.

In recent years, lots of effort has been invested in developing the control strategies of
UAVs under wind disturbances. One of the most efficient strategies is to design a robust
controller to attenuate wind effects. In [35], two robust nonlinear sliding mode controllers
are designed under wind perturbations. A switching model predictive attitude control is
adopted based on a piecewise affine (PWA) model of the quadrotor’s attitude dynamics
against wind gust disturbances [36]. The £, backstepping trajectory tracking control is
adopted to allow for the fast adaption to rapidly changing system uncertainties and wind
disturbances with the guaranteed robustness [37]. In [38], a robust nonlinear dynamic in-
version attitude controller is proposed in the presence of model uncertainties and external
disturbances of wind gusts, aerodynamic interactions with nearby structures, and ground
effects, while a feedback position controller is used to handle the lateral and vertical transi-
tions. In [39], the finite frequency H, control is used for the attitude stabilization, while the
PID-based H., loop shaping control is used for the linear motion in the presence of wind
disturbance. An acceleration feedback enhanced H,, control is adopted against wind dis-
turbance in [40]. However, robust control methods have a high degree of conservativeness
for the external disturbances defined by a norm bounded variable [41].

To improve the performance of UAV system against wind disturbances, unknown wind

effects acting on the UAV dynamics are usually estimated to be rejected. To achieve this



purpose, disturbance estimation and rejection techniques are developed, such as disturbance-
observer-based control, active disturbance rejection control, embedded model control and
composite hierarchical anti-disturbance control. Authors in [42] propose a detailed review
of disturbance observer. In [43], a high-gain residual observer is implemented in an em-
bedded robust attitude control of a quadrotor UAV for online estimation and compensation
of wind gust disturbances. In [44], a multiple observers based anti-disturbance control
is applied for a quadrotor UAV, where a composite disturbance observer together with an
extended state observer are used in the position loop to mitigate the payload and wind
disturbances and an extended state observer is used in the attitude loop to reject model
uncertainties and wind disturbances. In [45], an attitude control for a UAV quadrotor is
developed in the framework of active disturbance rejection control and embedded model
control to estimate and reject the disturbances. In view of the idea of composite hierarchical
anti-disturbance control, an adaptive composite disturbance rejection control is developed,
containing active disturbance rejection control and disturbance observer, for attitude con-
trol of the agricultural quadrotor UAV [46]. In addition, the deep-learning-based control
approaches have become increasingly attractive in recent years. To increase the robustness
of the proposed control scheme, the deep-learning-based approach is adopted to learn the
unknown aerodynamics of the UAV. In [47], a deep-learning-based trajectory tracking con-
troller is developed to learn to quickly adapt to rapidly-changing wind conditions. To this
end, the domain adversarially invariant meta-learning algorithm is developed for the offline
learning of the common aerodynamic representation, while a composite adaption law is
used to update wind-specific linear coefficients.
The sliding mode control schemes have been well studied for UAVs to solve the position

and attitude tracking problems, due to its inherent robustness to model uncertainties and

external disturbances. In [48], an adaptive fault tolerant control based on a multivariable



integral terminal sliding mode control is developed in the presence of parametric uncertain-
ties and actuator faults. An adaptive super-twisting sliding mode control is adopted for a
quadrotor UAV to track a desired trajectory under gust winds [49]. An adaptive PID-based
sliding mode control is offered for a quadrotor in the existence of external perturbations
with unknown bounds [50]. In [51], the position and attitude control of a quadrotor UAV
is realized by an optimized fuzzy-based sliding mode control. Based on the nonsingular
terminal sliding mode control, the fault tolerant control for a quadrotor UAV is proposed
with the consideration of model uncertainties and wind disturbances [52]. In [53], an adap-
tive nonsingular fast terminal sliding mode control is adopted to stabilize the attitude of a
quadrotor, while a robust backstepping sliding mode control is used to follow the prescribed

path.

1.2.3 Forest Fire Monitoring Approaches

In order to accurately monitor the situation of forest fires, the fire spread behavior has
been studied. The fire environment, which incorporates the effects of weather, fuel, and to-
pography, determines the propagation process of forest fires. To describe the characteristics
of propagating forest fires, fire spread models are developed, such as the Rothermel model
[54] and the Canadian Forest Fire Behavior Prediction system [55]. A review of wildland
surface fire spread modelling is proposed in [56, 57, 58]. However, these predictive models
are sensitive to the model input data, which are readily known to induce fire behaviors, such
as the wind condition, fuel distribution, and slope steepness. When no accurate measure-
ments or observations of these input data are provided, the estimation of forest fire spread
must be produced with inevitable errors.

Among these factors, the wind condition plays an important role in driving the forest
fire propagation and also for effective fire fighting using UAVs. As a result, many efforts

have been made for the better understanding of wind effects on the spread of forest fires
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and the estimation of wind conditions for forest fire monitoring. The interaction of wind
and fire is studied in [59]. In [60], authors provide an analysis of wildfire propagation
in the presence of low-level environmental vertical wind shear through four comparative
grassfire numerical simulations. In [61], the wildfire dynamics in wind-driven conditions
is predicted using an inverse modelling approach. Considering the interaction between fire
and wind, the spread rate of forest fire is predicted using UAV images and an LSTM model
in [62]. In [63], a wireless sensor network is deployed to sense wind conditions at ground
level to improve the prediction of wind-affected wildfire spread.

In recent years, to detect and monitor forest fires more quickly and accurately, UAVs
are widely used in forest firefighting missions. UAVs can take the roles of firefighters
when flying into the region of forest fires to monitor these flames with effective forest fire
detection [64, 65, 66] and estimation techniques [67, 68]. With observations of the fires
that are gathered via onboard sensors on the UAV platforms, firefighters can quickly obtain
accurate information about the current status of forest fires from a distance and also use
UAVs for firefighting, avoiding the threats of unexpected fire conditions to crews’ lives.
Therefore, the application of UAVs provides a promising and safety solution for the fast-
response forest fire monitoring and fighting mission.

A large variety of data assimilation methods have been developed to estimate the con-
dition of a propagating forest fire based on fire front observations. The Kalman filter is the
most commonly used data assimilation method for the forest fire monitoring mission [68].
However, the major drawback of the standard Kalman filter is that it works with the as-
sumption of linear Gaussian fire spread model. To overcome this limitation, extensions of
the Kalman filter or other sequential Monte Carlo filtering methods have been proposed, for
example, the extended Kalman filter [69], the unscented Kalman filter [69], the ensemble

Kalman filter [70, 71, 72], and the particle filter [73, 74].
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1.3 Objectives of This Thesis

The review of related works indicates the importance of accurate wind estimation for
assuring the performance of UAVs and assessing the status of propagating forest fires in
the presence of unknown winds. This thesis aims to estimate wind vectors from quadro-
tor motion and use the estimated wind information to maintain the performance of UAV's
and provide accurate assessments of the wind-affected forest fires under unknown wind

environments. In particular, this thesis is organized with the following objectives:

(1) Design and develop an online wind estimation approach that can extract wind infor-

mation from quadrotor motion without additional wind sensors.

(2) Design and develop an active wind rejection control strategy for a quadrotor UAV to

maintain its performance against unknown wind disturbances.

(3) Develop and implement the active wind rejection control scheme for multiple UAVs
to improve their cooperative tracking performance in the unknown wind environ-

ments.

(4) Design and develop a UAV-based forest fire monitoring approach to obtain an accu-

rate assessment of wind-affected forest fires.

1.4 Contributions of This Thesis

This thesis research contributes to the indirect wind estimation approach for a UAV
without additional wind sensors, the active wind-rejection control scheme to increase the
safety and reliability of UAVs against wind disturbances, and the UAV-based forest fire
surveillance strategy to produce accurate assessments of wind-driven forest fires in un-
known wind environments.

The main contributions of this thesis are summarized as follows:
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)

(2)

3)

4)

&)

(6)

A particle filter-based approach is proposed to estimate wind vectors in the case of
no additional flow sensors. Based on the nonlinear dynamics of a quadrotor UAV
with wind effects, this approach can provide accurate state and wind estimation from

quadrotor motion and reduce the influences of process and measurement noises.

A two-stage particle filter framework is developed to increase the computational ef-
ficiency of the state and wind estimation for a quadrotor UAV. As a feature of the
two-stage procedure, the subfilters in the second stage can produce wind estimation
in parallel based on the state particles obtained from the first stage, improving the

operational efficiency of the overall filter.

An active wind rejection control based on adaptive nonsingular terminal sliding mode
control is adopted for a quadrotor UAV to ensure its tracking performance in the pres-
ence of unknown wind disturbances. The external wind disturbances can be com-
pensated for, depending on the explicit wind estimation obtained from the two-stage
particle filter. In addition, an adaptive nonsingular terminal sliding mode control is
adopted to guarantee the robustness, considering estimation errors and model uncer-

tainties.

An active wind rejection distributed formation control is further developed for mul-
tiple quadrotor UAVs in order to improve their cooperative tracking performance in

the presence of wind disturbances.

A Gaussian process regression-based wind field reconstruction approach is proposed
using the wind data collected by UAVs in order to provide midflame wind prediction
for the assessment of forest fire spread condition. To obtain the maximum amount of
wind information about the forest front locations, the maximum mutual information

method is applied to provide optimal wind sensing locations for UAVs.

An ensemble Kalman filtering approach is developed for monitoring wind-affected
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forest fires based on wind measurements and fire front observations with UAVs.
Based on the reconstructed wind field, the wind input data can be sampled from a

multivariate Gaussian distribution which consider the forest front locations.

1.5 Organization of This Thesis

This thesis is presented in six chapters including this chapter of introduction, the rest of
which are organized as follows:

Chapter 2 provides several preliminary knowledge that will be used in this thesis. It
starts with the dynamic model of a quadrotor UAV, considering wind effects acting on the
UAV dynamics. Next, the equations of forest fire spread are obtained based on the pop-
ular Rothermel model, which can represent wind-affected fire spread on two-dimensional
surfaces. Last, four wind models are given, including the constant wind, wind gust, wind
turbulence, and log wind profile.

Chapter 3 proposes a two-stage particle filter-based wind estimation approach to extract
wind information from quadrotor motion. Considering the increasingly refined dynamic
model of a quadrotor, the particle filtering method is applied to address the problem of state
and wind estimation with strong nonlinear and non-Gaussian characteristics. To further
improve the computational efficiency of the particle filter, two-stage framework is adopted.

Chapter 4 presents an active wind rejection control of quadrotor UAVs based on the
adaptive nonsingular terminal sliding mode control to improve their performances in the
presence of winds. Based on the explicit wind estimation obtained from the proposed
two-stage particle filter, an active wind rejection control is developed by compensating for
the unexpected wind effects acting on the quadrotor UAV. The proposed control strategy
can guarantee the finite-time convergence and avoid the singularity problem by using non-
singular terminal sliding mode control method. Furthermore, to ensure the cooperative

tracking performance of multiple UAVs in the presence of unknown wind disturbances, the
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active wind rejection control scheme is implemented for the formation control of multiple
quadrotor UAVs.

Chapter 5 develops a UAV-based forest fire monitoring approach to accurately assess
the status of propagating forest fires induced by winds. To accurately monitor the propa-
gation of forest fires, UAVs are deployed to collect the wind measurements and fire front
observations for the assessment of status of wind-affected forest fires. The Gaussian pro-
cess regression method is adopted to reconstruct the wind field over the fire region and
the wind sensing locations are optimized by the maximum mutual information method.
With the collected data, the fire front locations are estimated in an ensemble Kalman filter
framework.

Chapter 6 draws some conclusions of these research works and summarizes several

predominant ideas for the future developments of the thesis’s outcomes.
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Chapter 2

Preliminaries

2.1 Quadrotor UAV Model

Figure 2.1: Reference frames and the quadrotor UAV configuration

The typical configuration and the reference frame of a quadrotor UAV are shown in
Fig. 2.1. Its propulsion system is composed of four symmetrically configured rotors with
propellers. Rotors 1 and 3 are arranged to rotate in the clockwise direction, while rotors 2
and 4 are arranged to rotate in the counter-clockwise direction. A quadrotor UAV is defined

as an underactuated mechanical system, because it has six degrees of freedom but only four
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independently controlled actuators to generate force or moments to maneuver.

U =0 =Q3 =0 91293792<Q4

(a) Throttle maneuver (b) Roll maneuver

T

{21 = Q3} < {Q2 = Qu}

Q1> Q3,02 =

(c) Pitch maneuver (d) Yaw maneuver

Figure 2.2: Maneuver schemes of a quadrotor UAV

The vehicle motion depends on the force and moment generated by the rotors’ spin.
Thrust and moment increase in direct relation to rotor rotation speed. The maneuver
schemes of a quadrotor UAV are shown in Fig. 2.2. The throttle, roll, pitch, and yaw
maneuvers are four basic maneuvers that allow a quadrotor UAV to arrive at a certain po-
sition. The throttle maneuver is achieved by equally increasing (or decreasing) all the
rotation speeds of all rotors. In this case, all rotors are required to produce equal thrusts
without generating any rotational moment. The roll maneuver is obtained by increasing
(or decreasing) the rotation speed of rotor 4 while decreasing (or increasing) the rotation
speed of rotor 2. In this case, due to the generation of roll moments generated by rotors
2 and 4, the vehicle can be rotate around the xj-axis. Likewise, the quadrotor UAV can
rotate around the y,-axis, because of the pitch moment generated by rotors 1 and 3. The

yaw maneuver is obtained by equally increasing (or decreasing) the rotation speed of rotors
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2 and 4, while equally decreasing (or increasing) the rotation speed of rotors 1 and 3. In
this case, the yaw angle is induced by mismatching the balance of thrusts of the rotor pairs

rotating in the clockwise and counter-clockwise directions.

2.1.1 Newton-Euler Dynamic Model

The Newton-Euler dynamic model can be used to describe the translational and rota-
tional motions of a quadrotor UAV. The body-fixed coordinate system and the earth-fixed
coordinate system are illustrated in Fig. 2.1. The body-fixed coordinate system is a right-
hand coordinate system attached to the rigid body of the vehicle, where the axis origin
coincides with the center of mass of the quadrotor and z;-axis, y,-axis and zj-axis point to-
wards the front, right and down directions, respectively. The earth-fixed coordinate system
is the inertial right-hand reference frame, where x,-axis, y,-axis and z,-axis point towards
the north, east and down directions, respectively.

To describe the dynamic model of a quadrotor UAYV, the following assumptions are

taken:
* The quadrotor mechanical design is symmetrical.
* The quadrotor body is rigid.

In the body-fixed coordinate system, the equations to describe the quadrotor motion are

given by [75, 12, 23]

mov+mw xv=F
2.1

Tw+wxIw=M

where m is the mass, I is the inertia matrix, v = [u, v, w]” represents the linear velocity
vector, w = [p, ¢, r]* represents the angular velocity vector, F' denotes the external force

vector, and M denotes the external moment vector.
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Based on the assumption of symmetrical body, the inertia matrix is written as

(2.2)

where I, is the inertia moment along the z;-axis, /,, is the inertia moment along the -axis,
and 7, is the inertia moment along the z,-axis.

To determine the trajectory of a quadrotor UAV in the earth-fixed coordinate system,
the ground speed of quadrotor should be expressed according to the linear velocity in the
body-fixed coordinate system. Let P = [z, y, z]T denote the position vector of a quadrotor
UAV, V, = [z, y, Z]* denote the ground speed vector, and © = [¢, 6, 1" denote the Euler
angle vector, where ¢, 6 and ¢ are the roll, pitch and yaw angles. The ground speed vector
of the aircraft can be expressed as

V, = Ro (2.3)

where R is the rotation matrix, which transfers free vectors from the body-fixed coordinate
system to the earth-fixed coordinate system with the yaw-pitch-roll rotation sequence [75,

12, 23]:

cosfcosy sin¢gsinfcosy — cospsiny cos ¢ sinf cosy + sin ¢psiny
R = |cosfsinty sin¢gsinfsiniy + cospcostp cos@sinfsiny —singcosyy| (2.4)

—sinf sin ¢ cos 6 cos ¢ cos

Similarly, the Euler angle derivatives can be obtained according to the angular velocities

in the body-fixed coordinate system

O = Lw (2.5)
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where the transfer matrix is written as [75, 12, 23]

1 singtanf cos¢tan6
L= |0 cos ¢ —sin ¢ (2.6)

0 sin¢gsect cos@psect

The external forces and moments acting on the quadrotor body are comprised of several

forces and moments [75, 12, 23]:

F=F,+F,+F,+F
2.7)
M = M, + M, + M

where F}, represents the gravity force vector in the body-fixed coordinate system, Fy and
M, represent the drag force and moment vectors caused by relative air speed, F,. and M.,
represent the control force and moment vectors induced by the propulsion system, and Fj
and M represent the perturbation force and moment vectors.

The control forces and moments of the quadrotor UAV are generated by four rotors
of the propulsion system. As aforementioned, the maneuvers of a quadrotor UAV are ac-
complished with the control of four independent rotors. Mathematically, according to the

quadrotor configuration shown in Fig. 2.1, the control force and moment vectors can be

written as
0 T¢
F. = 0 ) M, = To (2.8)
—Fz Tw
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with

F, 1 1 1 1 Ty
To 0 -1 0 ) T2
_ 2.9)
To l 0 —1 0 T3
T - k’m k‘m — k‘m k’m T4
where T; denotes the thrust of rotor ¢ with7 = 1, --- | 4, [ is the arm length, and £, is the

thrust-to-moment coefficient.

2.1.2 Wind Effects on Quadrotor UAV

The relative airspeed plays an important role to generate drag forces and moments act-
ing on a quadrotor UAV [76, 29]. When a quadrotor has low aerodynamic profile and
moves at low translational velocities in a no-wind environment, these aerodynamic effects
on the quadrotor body or rotors are usually neglected. However, drag forces and moments
are nonnegligible to affect the performance of aircraft, when the quadrotor suffers from the

natural winds.

Figure 2.3: Wind triangle relationship between quadrotor ground speed vector, airspeed
vector and wind vector

The wind triangle relationship basically encapsulates the vector relationship between
the ground speed vector V, the airspeed vector V,, and the wind speed vector V,,, as il-

lustrated in Fig. 2.3. The existence of wind speed vector results in the difference between
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the ground speed vector and airspeed vector. In the case of no wind, the airspeed vector is
equal to the ground speed vector.

In general, the ground speed of the aircraft can be provided by the onboard GPS or
IMU, while the airspeed can be measured via onboard airspeed sensors, such as Pitot tube.
Subsequently, the wind vector acting on the aircraft can be determined by the difference
between measurements of ground speed and airspeed. However, when airspeed sensors
fault or lack, for example, airspeed sensors equipped on a quadrotor UAV are vulnerable
to the downwash flow induced by rotors, the wind vector can be estimated from quadrotor
motion.

This thesis mainly focuses on the wind effects that lead to the position drift of a quadro-
tor UAV. Given the quadrotor ground speed vector and wind vector, one can calculate the
airspeed vector to generate the drag forces. The drag forces generated by wind effect can

be approximated as [75, 23, 34]

Fiy = Cung(& = (€ — )2 + (& — §)? (2.10)

where Fy,, Iy, and F, are the three components of the drag force vector, Cy,, and Cg,
are the lateral and vertical drag coefficients, and &, §, and . are the three components of
the wind vector in the earth-fixed coordinate system. It is noted that lateral and vertical
drag forces are separated. The vertical component of the airspeed contributes no lateral
drag force, while the lateral component of the airspeed contributes no vertical drag force.
The lateral component of the drag force is modeled by the standard aerodynamic effect
equation. Different from the lateral component of the drag force, the vertical component of

the drag force can be understood as a propulsive damping effect.

22



2.1.3 Simplified Dynamic Model

Considering the wind effects acting on the quadrotor UAV, the dynamic model of a
quadrotor UAV is given by Egs. (2.1)-(2.10), which involve the most typical elements to de-
scribe the quadrotor motion. Two coordinate systems are used to describe the transnational
and rotational motion of the vehicle. For the convenience of the fast digital simulation, the
dynamic model of a quadrotor needs to be simplified.

With the assumption of the low amplitude of angular motion, the approximations of
V, ~ v and © ~ w can be obtained. Therefore, the quadrotor dynamic model can be

simplified as
(cos ¢ sinf cos ) + sin psin ) F,

e m

, Canl = NE—THEGT o
. (cos¢sinfsiny —singcos)F,
v= m

+ Claay(§y — y)\/(fm — )+ (§ —9)° + @

m m
s (cos¢pcosh)F, PN Ca (&, — 2) N % (2.11)
m m m

"_Iy—fz- : T d¢
LML
_Iz_Ix i To d0
b= I, ¢w+ly+1’y
D L—T,. T dy
V= I, ¢8+IZ i

where d; for i € {x, y, z, ¢, 0, ¥} represents the lumped disturbances. Parameters of a
quadrotor dynamic model are listed in Table 2.1.

To be closer to the real model of a quadrotor model, the states of the quadrotor UAV are
polluted with zero-mean Gaussian noises. The variances of the process and measurement

noises are listed in Tables 2.2 and 2.3, respectively.
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Table 2.1: Parameters of the quadrotor dynamic model

Symbol Parameter Value  Unit
m Mass of quadrotor 1.5 kg
g Gravity 9.8 N/kg
I, Inertial moment along z-axis  0.03 kg - m?
I, Inertial moment along y,-axis  0.03 kg - m?
I, Inertial moment along z,-axis  0.05 kg - m?
Clzy Lateral drag coefficient 0.3 -
Cis Vertical drag coefficient 0.5 -
[ Arm length 0.4 m
km Thrust-to-moment coefficient 0.1 -

Table 2.2: Variance of process noise

Error source Symbol  Variance Unit
Position x,y, 2 1x1076 (m)?2
Linear velocity — 2,9,2 1x107%  (m/s)?
Attitude ¢, 0,9 1x10712  (rad)?

Angular velocity ¢, 6,79 1x 1072 (rad/s)?

Table 2.3: Variance of measurement noise

Error source Symbol Variance Unit
Position r,y, 2 1x107%  (m)?
Linear velocity — #,7,2 1x107* (m/s)?
Attitude ¢, 0,79 1x107* (rad)?

Angular velocity ¢, 6,1 1x107* (rad/s)?
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2.2 Forest Fire Spread Model

2.2.1 One-dimensional Rothermel Model

The Rothermel model [54, 77] is one of the widely used fire spread model, which
determine the rate of fire spread as a function of the local environmental factors such as
wind, topography, vegetation properties, etc. The no-wind, no-slope rate of spread is given
by [54, 77,78, 79, 80]

Ry = 15 (2.12)
PrenQig

where [, is the reaction intensity, &, is the propagating flux ratio, p, is the bulk density, ¢,
is the effective heating factor, and @), is the heat of preignition.

Considering wind effects on the fire propagation, the rate of spread should be corrected

by the wind coefficient [54, 77, 78, 79, 80]
R=Ry(1+ ®,) (2.13)

The wind coefficient derived from the experimental data is calculated as [54, 77, 78,

79, 80]
P, = 0(3.281Uf)3(; ) F (2.14)
op
with
B = 0.15988¢%%
C = 7.47 exp(—0.87115%%%)
(2.15)

E =0.715exp(—0.010940)
Bop = 0.203955 05189

where Uy denotes the mid-flame wind speed, /3 represents the packing ratio of the fuel bed,
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and o 1s surface area-to-volume ratio. The mid-flame wind can be calculated by [81]

1.83
Oln (6.1+0.36hf>

0.13hy

U = (2.16)
where Uj is the wind vector at altitude of 6.1 m above the vegetation top and A is the fuel
height.

Table 2.4 gives the parameters of fire spread model, which are adopted in the following

simulations.

Table 2.4: Parameters of the fire spread model

Symbol Parameter Value Unit
Ry No-wind, no-slope rate of spread 1 m/s
6] Packing ratio of the fuel bed 0.002 -
o Surface area-to-volume ratio 4000 /m
hy Fuel height 1.5 m

2.2.2 Extension to Two-dimensional Surfaces

The Rothermel model describes the one-dimensional fire spread, but the wind effects
contribute differently to the fire spread in different conditions. For example, the wind con-
tribution is maximum when the wind blows in the direction of fire spread. On the contrary,
the wind contribution is minimum and negative when the wind blows opposite to the direc-
tion of fire spread. Thus, the fire spread should be modeled in the horizontal plane in order
to account for the wind effects on the propagation of fire fronts. For this purpose, the ellip-
tical fire spread model [82, 83] extends the two-dimensional fire propagation configurations
based on the Rothermel model.

Fig. 2.4 shows the geometry of the elliptical fire spread model. According to the

Huygens principle, this model assumes that every point on the fire front spreads following
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Figure 2.4: Elliptical fire spread model

an elliptical geometry. Let g, denote a point on the fire front at time instant ¢; and gy,
denote a point on the fire front at time instant ¢;,; where ¢ is the time interval to spread

the fire point. The spread rates of the ellipse is calculated as [54, 77, 78, 79, 80]

b 2

LB

1 R

_1 2.17

b 2(R+HB) (2.17)
R

—b— —

¢ HB

where a is the velocity with respect to the semi-minor axis, b is the velocity with respect
to the semi-major axis, c is the velocity between the ignition point and the center of the
ellipse, LB denotes the length-to-breadth ratio, and H B denotes the heading-to-backing

fire spread rate ratio. The LB and H B are determined by [54, 77, 78, 79, 80]

LB = 0.936e%2°%6Us 1 0.461e~ 15187 — 0.397,

g LB+ VLB? —1 (2.18)
 LB-ILB2_-1
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The spread rates of the fire point in the X - and Y -directions are computed as [82, 83]

(e =D[a® cos o, (T4 Sin Py, + Ys COS o) — b? sin @y, (74 COS Py,
— Y Sin )] + csin py,
dy =D[—a®sin @y, (24 5N Qy, + Ys COS Py) — b COS Py (T4 COS Py, (2.19)

— Ys Sin Yy,)] + € Cos Yy,

N

D :[aQ(xs sin ,, + Y5 oS gow)2 + bz(ass COS Py — Vs SIN gpw)Q]_

where ¢,, is the azimuth angle of wind direction and ny = [z, ys]T is the vector normal to

the fire front.

2.3 Wind Models

2.3.1 Constant Wind

The constant wind model is a general wind model to approximate the wind situation
in nature. It can provide statistic values of the average winds speed with temporal and
spatial variations in three directions. Normally, the constant wind model is applied as a
basis to provide a more effective simulation environment by incorporating with other kinds

of winds. The model of constant wind can be written as

Vo = Viwe(, 1y, 2, 1) (2.20)

28



2.3.2 Wind Gust

The discrete 1-cosine wind gust model [84, 85] can represent the gust feature over time

or in space. The wind gust in a temporal form can be written as

(

0 T <tgs
Vi =4 2 (1 — cos L)) g <t <ty + 1y 221
0 t> g+ 1,

where V,,, is the maximum gust velocity, ¢, is the starting time of wind gust, and ¢, is the
gust endurance time. The wind gust model is used to describe a sudden change of wind
velocities. In general, the variation of wind gust speed between the peaks and average wind

is greater than 4.5 m/s in a short time interval.

2.3.3 Wind Turbulence

The popular Dryden turbulence model is employed to generate a continuous turbulence.
The model describes the characteristics of the turbulence flows in three directions by the

spectral functions [86]
5 2L, 1

Yo 14 (L,2)?
oLy 1+ 3(L,N)?
Yo (14 (L,$2)?)?
o Lw 1+ 3(L,N2)?
T 1+ (LoQ)?)?

®,(Q) =0
d,(Q) =0 (2.22)
(I)w(Q> =

where ¢, ®,, and ®,, are the component spectral functions in three directions, o, o,, and

0, are the turbulence intensities, and L,,, L,, and L,, are the turbulence scale lengths. At
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low altitudes, the turbulence intensities and scale lengths are given as

ow = 0.1Wo
Uw
74 (0177 + 0.000823h)04 (2.23)
— Uu}
70 = {0.177 + 0.000823h)0-4
Lo=h
. h
“ 7 (0.177 4+ 0.000823R)1-2 (2.24)
h

" (0.177 + 0.000823h) 2

where Wy, denotes the wind speed at the altitude of 6 m and / denotes the height of aircraft.

2.3.4 Log Wind Profile

The log wind profile is used to describe the relationship between wind speeds at dif-
ferent heights. At lower altitudes, the wind profile of the atmospheric boundary layer is

logarithmic [81].

Vi (h) = % (h — do) (2.25)

K 20
where V,,(h) is the wind speed at the altitude i above the ground, U, is the friction velocity,
x = 0.4 is the Von Kdrmén constant, dj is the zero plane displacement and z is the surface
roughness.

In order to estimate the mean wind speed at the altitude of hy, based on that at the

altitude of hq, the calculation is given by

In (h2_d° )
20

In (hl_do )
20

Viw(ha) = Vi (hy) (2.26)
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Values of dj and z are related to the fuel height hs as dy = 0.64hs and 2y = 0.13h;.

The wind speed at the altitude of / above the vegetation top is given by

U, (h+0.36h;
Vi(h+ hy) = =5 [ 22200 227
(hthy) = n( 0.13h; ) (2.27)

The relationship between the midflame wind speed and the wind speed at the height of

h above the vegetation top is given by

1.83

I ( 0:36hs (2:28)
n( 0.13h; )

Ur =Vy(h+ hy)

2.4 Summary

This chapter presents the preliminaries of this thesis, including the dynamic model of
a quadrotor UAV, forest fire spread model, and wind models. First, the Newton-Euler dy-
namic model is used to describe the translational and rotational motions of a quadrotor
UAV. In the dynamic model, the wind effects acting on the aircraft are also considered.
Second, the Rothermel model is used to describe the one-dimensional fire spread and ex-
tended to the two-dimensional fire spread according to the Huygen’s principle. Third, the

constant wind, the wind gust, the wind turbulence, and the log wind profile are introduced.
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Chapter 3

Two-Stage Particle Filter-based Wind

Estimation from Quadrotor Motion

3.1 Problem Formulation

This chapter investigates the problem of wind estimation for a quadrotor UAV without
the need of additional wind sensors or in the case when wind sensors are faulty, where the
wind information is important toward certain time- and safety-critical applications such as
forest fire monitoring and fighting using unmanned aerial vehicles. The wind vectors are
the time-varying parameters of the quadrotor dynamic model. A two-stage particle filter
algorithm is proposed to estimate wind vectors from quadrotor motion.

The Kalman filter approach is widely used to solve the state and parameter estimation
(SPE) problems, whereas it gradually loses efficiency in the wind estimation, due to the
increasingly refined models with strong nonlinear and non-Gaussian characteristics. To
overcome this issue, this chapter resorts to the particle filter which is good at solving the
SPE problems of the nonlinear and non-Gaussian systems [87]. The particle filter can

approximate the posterior distributions of the UAV states and wind vectors by sampling
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particles without the restrictive assumptions on the quadrotor model. With a perfect un-
derstanding of the quadrotor dynamic model, the particle filter can effectively reduce the
impacts of the process and measurement noises on the states and wind estimation.

To improve the efficiency of particle filter in high dimensions, the particle filtering
process is executed in a two-stage framework. To estimate states and wind parameters for a
quadrotor UAYV, a natural solution is to redefine an augmented state vector for the standard
particle filter approach, comprised of the vehicke states and wind parameters. However, this
solution suffers from the challenge of particle samplings caused by the dimension growth
of the augmented state. By adopting the proposed two-stage framework, this problem can
be mitigated as the sampling processes of UAV states and wind vectors are divided into two
stages of the particle filter. As a result, the computational efficiency can be improved since
the resampling process of wind vectors in the second-stage particle filter can be executed
in parallel. The two-stage framework has been widely used with the Kalman filter in the
actuator fault detection and diagnosis of a quadrotor UAV [88, 89].

Up to now, few works have been conducted on developing a two-stage particle filter for
the state and wind estimation from quadrotor motion. In [90], a two-stage particle filter
is used to estimate the non-Gaussian state with fading measurements. Motivated by the
work in [90], this chapter adopts the two-stage particle filter to estimate the unknown wind
vectors from quadrotor motion. This chapter extends the two-stage particle filter (TSPF) to
solve the problem of state and wind parameter estimation based on the nonlinear dynamic
model of a quadrotor UAV. By using the random walk model to describe the continuous
variation of wind vectors, the states of quadrotor and the time-varying wind parameters are

simultaneously estimated through the proposed TSPF approach.
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3.2 General Particle Filter

To introduce the particle filtering technique, a general nonlinear stochastic system can

be described as
@y ~ p(Tp|@r-1)
3.1
zi, ~ p(zi|zk)
where x;, € R" and z;, € R™ is the state and observation vectors.

The particle filter makes use of the Bayesian approach to compute or approximate the
posterior distribution of the hidden states given the observations. The posterior distribution
of the hidden states is denoted as p(x|2z1.), where 21, = {21, - - - 2 }. To overcome the
difficulty of obtaining the analytic solution of p(xy|z1.x), the particle filter approximates the
posterior distribution with a set of particles. However, there is still a problem of drawing
particles from the unknown p(xy|z1). To deal with the problem of sampling particles

from the posterior distribution, the important sampling technique is adopted. In this way,

the particles can be drawn from a proposal importance distribution with proper weights

;f ~ Q($0:k|z1:k)

(i) _ P(®or|z1n)
Q(m():k:|z1:k)

(3.2)

where m,(f) represents the particle drawn from the sampling distribution, w,(f) is the corre-
sponding weights of :c,(:), and ., = {xo, - - Tk }. ¢(@0.k|21.1) is the proposal distribution

of the particle propagation.

Therefore, the posterior distribution p(xy|21.;) can be approximated as
p(xk|Z1:8) Z wk () — :L'k)) (3.3)

, (i)
where N is the number of particles, w,(j) = & ; is the normalized weight of each

SN w
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particle, and 4(+) is the Dirac delta measure. With the approximation, the estimate of

given zi.; can be obtained by
N
% 1
Ty~ z_j (3.4)
To obtain the importance weight of each particle in a recursive fashion, the sequential

importance sampling technique is used. The proposal distribution is chosen as

Q(xox|z16) = ¢(Tok—1]|Z1:6-1)9(Tk|Tok—1, Z1:1) (3.5)

The posterior distribution of xj, can be deduced as

p(zk |$Uk)p(€17k ’ifikq)

p(Tox|z1:k) = p(Tor—1]|210-1) p(ze|Z101) (3.6)
As a result, the importance weight can be updated as
(i) _ p($0:k|z1:k)
q(xok| 21:1) 37)
o Pzl '
k—1 i)
g(@ @)y, Z1n)
If the importance distribution satisfies
q(xr|Tor—1, 21:6) = q(Tk|TR1, 28) (3.8)
then
(i) ()] 1 (0)
zZi|x T, |x
wl(c) ch](g) p(zk| i )p(Ty, | k1) (3.9)

a(@y 2y, 21)
Ideally, the particles are always propagated with equal weights for the state estimation.

However, it is unavoidable that a few particles will have negligible weights after several

iterations in a general particle filter procedure. In order to solve the particle degeneracy
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problem, the resampling technique is adopted for the particle filter. The technique is also
referred as sampling importance resampling algorithm. After the resampling procedure, a
set of particles with equal weights can be obtained to approximate the posterior distribution.
The traditional resampling methods are proposed, including the multinomial resampling,
the stratified resampling, the systematic resampling, and the residual resampling. Although
the resampling step can prevent the particle from degeneracy, it also has undesired effects.
The resampling step will lead to the particle impoverishment since the low-weighted par-
ticles are most likely to be removed and many of the offspring particles will be the same.
As a result, the diversity of the particles is reduced. This inevitable information damage
will increase uncertainty in the random sampling. Moreover, it is rather challenging to
operate resampling in parallel, which implies a longer execution time of the particle filter

algorithm.

3.3 Wind Estimation Framework

Noise
1

Z

]

[

o
le--
*--
7
A
-
=

20y 2(t)
.

7'y i i
1 1
1 1

ﬂ \
Forest Fire Monitoring | za(t) Z(t) u(t)
and Fighting Task ———-9( )—>| Controller l— Actuator |—~>

________________

First-stage
State Estimation

—

&)

Second-stage
Wind Estimation

A

£) |

Figure 3.1: Framework of the proposed TSPF scheme for the state and wind estimation
from quadrotor motion

The framework of the proposed TSPF scheme for the state and wind estimation from
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quadrotor motion is demonstrated in Fig. 3.1. The wind vector is estimated as the unknown
parameters of the quadrotor UAV system based on the dynamic model with wind effects.
Considering the nonlinear and non-Gaussian model, the particle filter algorithm is adopted
to estimate the time-varying wind parameters given the control inputs and the quadrotor
motion measurements. However, there is no direct relationship between the wind vector
and measurements, the particle filter is designed in the two-stage structure, where the first-
stage particle filter produces the state estimation from the measurements of UAV motion
and the second-stage particle filter estimates wind vectors based on the estimated states.
Moreover, the efficiency of the filtering process can be improved by using the cascaded
structure as the second-stage filtering can be done in parallel. The particle filter procedure
can reduce the influences of the process and measurement noises to provide accurate esti-
mates of states and wind vectors for the vehicle. The estimates can feed back to making
decisions to the forest fire monitoring and fighting tasks, for example, the obtained wind
information can be used to generate trajectories to reduce the quadrotor power consump-
tion in the forest fire monitoring or to decide the drop location of fire suppression fluid to
extinguish fires. In addition, the estimates of quadrotor states and wind vectors can feed
back to the controller to improve the performance of quadrotor UAV in the presence of

unknown winds.
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3.4 'Two-Stage Particle Filter-based Wind Estimation

3.4.1 Discrete-Time Model of a Quadrotor UAV

Let &, denote the wind vector, x;, denote the state vector of UAV, u,, denote the control

input vector at time instant ¢,

E’C = [Sx,ka Sy,kh éz,k]T
L = [Ik}) Yk, Zk, :tka yka 2k7 ¢k; Hka wk’a ék) ék‘? ¢k]T (310)

T
Wy = [Foky Toks Tok, To k)

To facilitate the design of the proposed TSPF scheme, the discrete-time state-space

model of a quadrotor UAV with the wind effects can be described as
xy, = f(zh-1, &, ur) + wyi, (3.11)

where f(-) is the nonlinear discrete-time state-space equation and w{ denotes the process
noise vector associated with the UAV states. The process noises are used to represent
uncertainties of the quadrotor UAV dynamic model. The process noises are assumed as
additive uncorrelated Gaussian noises with zero mean and a covariance ()7,.

To estimate wind vectors for a quadrotor UAV, the variations of wind velocities in three

directions are modeled by random walk processes

& = &1 + wy (3.12)

where w denotes the uncorrelated Gaussian noises with zero mean and a covariance Q5.
The wind variations are assumed to be homogeneous in three directions and have the same
variance ag, ie., Qi = aglg.

The quadrotor UAV is assumed to be equipped with standard sensor suite to measure
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its position and attitude information. The standard sensor suite includes an IMU module, a
magnetometer, and a GPS receiver. The IMU measures translational acceleration, angular
velocity and attitude. The magnetometer provides the orientation. The GPS measures the
translational velocity and position. It is assumed that the standard sensor suite can provide
measurements of all defined states of the quadrotor UAV. The measurement equation is
given by

zr, = h(xy) + vy, (3.13)

where h(-) is the measurement equation, v, denotes the associated measurement noise
vector. The measurement noise is assumed as additive uncorrelated Gaussian noise with
zero mean and a covariance Rj,.

In brief, the nonlinear stochastic model of a quadrotor UAV can be described as

Er ~ p(&rl&k-1)

Ly ~ p(wk’wk—la €k) (3.14)
2~ P(Zk|33k-)

Note that for simplicity of description, the control input wy, is removed, i.e., p(xy|Tr_1, &)

denotes p(xy|Tr_1, &k, wg).

3.4.2 Two-Stage Particle Filter Design

Considering the problem of wind estimation from quadrotor motion, 1.e., the estimate
of p(&k|z1.k), the key is to estimate the posterior probability p(&x|z1.x), Where z1; =
{z1,--,z,}. However, there is no direct relationship between & and z;.;. It can be
observed that &, and zy.; are related to @.,. Therefore, x(.; is used as an intermediate

variable to build a relationship between & and z;.; to solve the wind estimation problem.
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P(&k|z1:k) :/P(ﬁk, xo.k |21 ) Aok
:/p(§k|w0:k7 Zl:k)p($0:k|z1:k)d$0:k (3.15)

:/P(ﬁk|$o:k)p($o:k|z1;k)d$o:k
In the above equation, the fact is used that & is independent on z;.; once x. is given, i.e.,
P(&klxor, z1:k) = P(&k|Tok)-

First-stage PF Second-stage PF

O:k p Subfilter 1 & b=

@ 2y
x; 1| {& }
LY | Subfilter 2 ‘

v

\ 4

e ) £(i,IVI) N
Tok p{ Subfilter M & fim

v

Figure 3.2: Structure of the two-stage particle filter

Fig. 3.2 shows the cascaded structure of the proposed two-stage particle filter, where M
stands for the particle number of the first-stage particle filter, and N stands for the particle
number of each subfilter in the second-stage particle filter. The first-stage particle filter can

obtain a set of equally weighted particles {:vo 1101, to approximate p(xo.|z14) as
LM ‘
p(@oslzi) & 57 > (@ — ag)) (3.16)

j=1

and the j-th subfilter in the second-stage particle filter can obtain a set of equally weighted

particles {E,(:’j ) N | to approximate p(£k|wéj,)§) as

1 & .
p(&ila)) ~ NZ ) (3.17)
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where §(-) is the Dirac delta mass. Then, p(&y|z1.;) can be approximated as

P(&k|z1:k) :/p(&k|w0:k)p(w0:k|zlzk>dw0:k

M
1 ,
%M E;p(éklwéji) (3.18)
]:

To solve the estimating problem in a recursive fashion, p(xo|z1.,) and p(£k|w((f,)€)
should be derived from p(xo.x—1|z1.6—1) and p(&x—1 \:cgll_l), respectively.

The iterative calculation of p(xg.x|21.;) can be accomplished by

p(w&k\zhk) OCP(CUO:k7 Zk—1\z1;k—1)
ZP(Zk ’wO:k)p(wO:k |Z1:k—1)

(3.19)
:p(zk’m():k)/p(w&ka wo:k—1|Z1;k—1)dw0:k—1

ZP(Zk|93o:k)/p(va:k|$o:k—1)P($o:k—1|Z1:k—1)dwozk—1
where the facts that z; and x(.; are independent on 2., given x.; and xo.;_; are used,

respectively. It is assumed that a set of equally weighted particles {aco e 1} ", are obtained

at the time k& — 1. Substituting them into the above equation, p(x.x|z1.;) can be approxi-

mated as
1 X A
pleoalzie) = p(zalmoe) 37 3 plwosls) (3:20)
J:

Then, the calculation of p(x.; ]:co /1) can be given by

p($0:k|93((){1)c—1) :/p(wO:lm 5k|mé{l)c—1)d£k
(3.21)

=/¢mmmm%k0<&mM1M@
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It is assumed that 513(() b1

and the associated set of equally weighted particles {5 N
are given at the time k& — 1

(§k|az03: /._1) can be approximated as

<€k|w0k ) = / (ks Er 1|1’0k )€1

Z/p(ﬁklﬁk Dp(Eilzl) ) dé s

N - (3.22)
%/p(ﬁkfﬁk—l)%;fs(fk—l - zisz)dgk—l
1 N
= 2 P&lE)
=1

If a set of particles {£\"/)}X | are drawn from p(£,|€"7)), p(&|xy)_,) can be further
approximated as

(€k|w0k 1 NZ‘S ”)

Substituting Eq. (3.23) into Eq. (3.21), the approximated particle representation of
p(xo.x |wéj,)€_1) can be obtained by

(3.23)

plaoslzd)_)) ~

—

N
1 i
p(ka"élwwok 1 NZ E _S( 4) dék

(3.24)
L ), (0)
=N ZP(icO:k’&c g )
i=1
Recalling Eq. (3.20), if {:vk])}M1 are drawn from ZZ L p(:ck|:vk 1 ,(j’j)), p(xk|Zz1k)
can be approximated as
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where the normalized weight is

| ()
Ul = Pzl ;) (3.26)

M p(zelEl™)

S

Resampling particles with the weights, the equally weighted particles {w,(cJ ) }j]‘il can be
obtained. Therefore, the approximation of p(xo.|z1.;) satisfies Eq. (3.16).

The iterative calculation of p(&y ]zc((f,)g) can be accomplished by

p(ka >€k|w0k 1)

pla|z{)_) (3.27)

ocp(x[€r, =) )p(&la)_))

p(&lal)) =

Substituting Eq. (3.23) into the above equation, p(&k\w ) can be approximated as

p(&lzgd) ~ D w66 — &) (3.28)
i=1
where the normalized weight is
()0 g(0d)
> x|y,
wg,}cj): p(z;”| k &) | (3.29)

ij 1p(93k |mk 1 l(cm]))

Resampling particles with the weights, the equally weighted particles {5 N RN M | can be
obtained. Therefore, the approximation of p(£k|a:031 ;) satisfies Eq. (3.17).

Finally, according to Eq. (3.18), the estimate of &, given z;.; can be calculated as

A 1 N M
em D D & (3:30)

=1 j=1



As a byproduct, the estimate of x; can be calculated as
1 &
By~ 5 ; z!) (3.31)

To better understand the proposed two-stage particle filter for wind estimation, the

pseudo code is given in Algorithm 1.

Algorithm 1: The proposed two-stage particle filter for wind estimation
Input: Measurement of UAV state zj,
Output: Estimate of wind vector ék
1 Initialize state particles w(()i) ~ p(x() and wind vector particles E((f’j )~ p(&o);
2 for k < 1 to Nyerative dO

3 Sample é,i”) ~ p(€k|€;(f_J1)) : | .
o | Sample P ~ 5 0 plaideily, €67

. - (3)
5 w:E:jI)c — Mp(zk‘wk v)(m) ’
’ Zm:l p(Zk‘iEk )

6 | Resample {m,(j)}é\il from {&}X | with weight {wi],l}]ﬂil,
7 foreach subfilter j do

8 Reselect {é,(c” ) N | according to the resampled a:,(cj ),

y (@) p0) )

(4.4) pl@y g1 677)
9 W 4= RORE RN,

U P
10 Resample {£7}Y | from {7V} | with weight {wgkj) N
1 end

: : N M (i

12 | Bstimate & ~ 75 > img 2oy ¢l
13 end

3.5 Simulation Results

In the simulation, the proposed algorithm is used to estimate states and winds for a
quadrotor UAV. The motion of the quadrotor is simulated based on the dynamic model
(2.11). The parameters of the model are listed in Table 2.1. The process and measurement
noises are listed in Tables 2.2 and 2.3, respectively. The noises are assumed to be constant

with time. The random-walk wind model parameter is set as o7 = 0.05(m/s)?. The

44



particle numbers of the first-stage and second-stage particle filters are set as M/ = 500 and
N = 100. The simulation time interval is set as T, = 0.02s.
In order to demonstrate the effectiveness and performance of the proposed method,

different scenarios of wind conditions have been rendered to the quadrotor UAV as follows:
(1) Estimation of constant wind from quadrotor motion;
(2) Estimation of wind gust from quadrotor motion;
(3) Estimation of wind turbulence from quadrotor motion.

To compare the performances of the proposed two-stage particle filter (TSPF) algorithm
and the wind triangle (WT) algorithm, the simulations are conducted to estimate wind vec-
tors from a quadrotor in hover. The wind triangle algorithm [32] depends on the assumption
that a quadrotor UAV can quickly adjust its attitude to withstand the wind drag. By using
the wind triangle algorithm, the horizontal wind speed and direction for a quadotor UAV

are estimated from the measurements of linear velocities and Euler angles.

3.5.1 Estimation of Constant Wind from Quadrotor Motion

To evaluate the performances of the TSPF and WT algorithms for the constant wind
estimation, a quadrotor UAV is simulated to hover in a [3, 4, 0]” m/s constant wind. The
two algorithms are used to extract the wind vectors from quadrotor motion. Fig. 3.3 shows
the estimation results of the [3, 4, 0] m/s constant wind from a quadrotor UAV in hover.
It can be seen that the wind estimation results provided by the proposed TSPF algorithm
are comparable to those provided by the WT algorithm, since the quadrotor UAV is in
the steady-state condition after 2s. The wind rose diagrams of the lateral wind estimation
indicate that the proposed TSPF can provide accurate wind speed and direction estimation

of the lateral constant wind.
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To compare the accuracy of the two algorithms for the constant wind estimation, the
mean absolute error (MAE) and root-mean-squared error (RMSE) are calculated for the
TSPF and WT algorithms, respectively. The lateral wind vectors are estimated for three
different constant wind vectors, including & = [3, 4, 0]" m/s, € = [4, —3, 0]" m/s and
€ = [3, 4, 5]" m/s. Table 3.1 gives the comparison of MAE and RMSE for the constant
wind estimation from a quadrotor UAV in hover. The proposed TSPF algorithm obtains
better wind estimation accuracy than the WT algorithm in all three cases. It should be
noted that the WT algorithm results in large errors of the lateral wind estimation when
the vertical wind component is nonzero. This is because the wind drag generated by the
vertical wind component changes the steady-state condition of the quadrotor UAV which
the WT algorithm relies on. The proposed TSPF algorithm can provide a three-dimensional
wind estimation and separate the lateral and vertical wind estimation to avoid the impact of
vertical wind component on the lateral wind estimation.

Table 3.1: Comparison of MAE and RMSE for constant wind estimation from a quadrotor
UAV in hover

€ (m/s) [37 47 O]T [47 _37 O]T [37 47 5]T
TSPF WT TSPF WT TSPF WT

MAE of {, (m/s) 0.1242 0.1222 0.1160 0.1305 0.1190 0.2622
MAE of &, (m/s) 0.1151 0.1374 0.1203 0.1292 0.1123 0.3368
RMSE of &, (m/s) 0.1548 0.2406 0.1446 03099 0.1484 0.3261
RMSE of §, (m/s) 0.1440 0.3255 0.1515 0.2497 0.1421 0.4279

3.5.2 Estimation of Wind Gust from Quadrotor Motion

To evaluate the performance of the TSPF and WT algorithms for the wind gust estima-
tion, the quadrotor UAV is simulated to encounter two types of wind gusts, respectively.
According to the endurance time, the two types of gust scenarios are the slowly-changing

wind gust and quickly-changing wind gust, as listed in Table 3.2. For the slowly-changing
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Figure 3.3: Estimation results of a constant wind of [3, 4, 07 m/s from a quadrotor UAV
in hover
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gust, the endurance time is set as ¢, = 10s. For the quickly-changing gust, the endurance
time is set as t, = 4s. Both wind gusts start at ¢, = 4s and have the peak value of
Vgm = [4, 3, 2]" m/s.

Fig. 3.4 demonstrates the estimation results of the slowly-changing wind gust from a
quadrotor UAV in hover. It can be seen that the proposed TSPF algorithm and the WT
algorithm can effectively estimate the slow changes of the wind gust. The wind estimation
provided by the two algorithm gradually increase or decrease with the slow changes of the
wind gust. For the lateral wind speed and direction estimation, the two algorithms obtain
comparable results to the true value.

Fig. 3.5 demonstrates the estimation results of the quickly-changing wind gust from a
quadrotor UAV in hover. Although the WT algorithm results in more large errors, the pro-
posed TSPF algorithm can still produce reliable estimation of the quickly-changing wind
gust. Because the WT algorithm relies on the assumption that tilt angles directly corre-
sponds to the relatively air speed vector in the steady-state condition, there is a delay in the
wind estimation when the controller drastically responds to the sudden changes of the wind
gust. Compared with the WT algorithm, the proposed TSPF algorithm can extract winds
from the information of quadrotor motion, including the position, attitude and controller

inputs.

Table 3.2: Wind gust scenarios in the simulation

Wind gust scenario vy, (m/s) s (s) t,(s)

Slowly-change  [4, 3, 2]© 4 10
Quickly-change  [4, 3, 2] 4 4
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Figure 3.4: Estimation results of a slowly-changing wind gust from a quadrotor UAV in
hover
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Figure 3.5: Estimation results of a quickly-changing wind gust from a quadrotor UAV in
hover
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3.5.3 Estimation of Wind Turbulence from Quadrotor Motion

To evaluate the performance of the TSPF and WT algorithms for the wind turbulence
estimation, the quadrotor UAV is simulated to hover in a [3, 4, 0]7 m/s mean wind turbu-
lence with the turbulence intensity of ¢,,,.,, = [1.54, 1.54, 0.97]". Fig. 3.6 demonstrates
the estimation results of the Dryden turbulence from the quadrotor UAV in hover. It can be
seen that the proposed TSPF algorithm can correctly capture the high frequency component
of wind turbulence.

To compare the accuracy of the two algorithms for the turbulence estimation, the MAE
and RMSE are calculated for the two algorithms. Table 3.3 gives the comparison of
MAE and RMSE for the [3, 4, 0]” m/s mean Dryden turbulence with different turbu-
lence intensities of o,,,,,, = [0.93, 0.93, 0.58]7, 40 = [1.24, 1.24, 0.78]7, and 0, ., =
[1.54, 1.54, 0.97]7. In almost all cases, the TSPF algorithm has lower MAE and RMSE
than the WT algorithm. This fact indicates that the proposed TSPF algorithm outperforms
the WT algorithm in the wind turbulence estimation.

Table 3.3: Comparison of MAE and RMSE for a [3, 4, 0]” m/s mean Dryden turbulence
estimation from a quadrotor UAV in hover

Tuo (M/5) 0.93, 0.93, 0.58]7 [1.24, 1.24, 0.78]7 [1.54, 1.54, 0.97]”
TSPF  WT  TSPF ~ WT  TSPF  WT

MAEof &, (m/s) 0.1263  0.1337 0.1239  0.1408 0.1264  0.1489
MAEof §, (m/s) 0.1170  0.1436 0.1167 0.1479  0.1192  0.1532
RMSE of &, (m/s) 0.1634 02500 0.1611 02551 0.1615 0.2611
RMSE of §, (m/s) 0.1518 03257 0.1521 03269 0.1562  0.3285

To demonstrate the efficiency of the proposed TSPF algorithm to sensor noise, the
simulation comparison is conducted to estimate the [3, 4, 0] m /s mean Dryden turbulence
under different signal-noise ratio (SNR). The comparisons are given in Table 3.4. The MAE
and RMSE are compared under 10 dB, 20 dB and 30 dB. With the increased power of the

noise, the estimation errors of the proposed TSPF algorithm increase smaller than those of
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Figure 3.6: Estimation results of a [3, 4, 0]7

m/s mean Dryden turbulence with oy, ,,, =

[1.54, 1.54, 0.97]" from a quadrotor UAV in hover
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the WT algorithm. This indicates that the proposed TSPF algorithm outperforms the WT
algorithm in dealing with the sensor noises to estimate the wind vectors from quadrotor
motion.

Table 3.4: Comparison of MAE and RMSE for a [3, 4, 0] m/s mean Dryden turbulence
estimation from a quadrotor UAV in hover under different SNRs

SNR (dB) 10 20 30
TSPF WT TSPF WT TSPF WT

MAE of &, (m/s) 0.1775 0.6325 0.1390 02116 0.1226 0.0963
MAE of {, (m/s) 0.1859 0.7498 0.1423 0.2450 0.1292 0.1000
RMSE of {, (m/s) 0.2236 0.7981 0.1742 0.2695 0.1570 0.1207
RMSE of £, (m/s) 0.2328 0.9739 0.1814 03088 0.1662 0.1266

3.6 Summary

This chapter develops a two-stage particle filter-based scheme to estimate wind vectors
from quadrotor motion. To build a relationship between wind vectors and motion measure-
ments, the state of quadrotor UAV is introduced as an intermediate variable. By using a
cascaded structure, the states of quadrotor UAV are estimated from the motion measure-
ments in the first-stage particle filter, and wind vectors are calculated based on the estimated
states in the second-stage particle filter. To evaluate the effectiveness, the proposed wind
estimation algorithm is compared with the wind triangle algorithm in estimating constant
winds, wind gust, and Dryden turbulences. Simulation results demonstrate the outperfor-
mance of the proposed algorithm to extract three dimensional wind vectors from quadrotor

motion.
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Chapter 4

Active Wind Rejection Control of

Quadrotor UAVs

4.1 Problem Formulation

Wind behaviors have considerable impacts on the safety and reliability of UAVs when
performing outdoor tasks. The application of UAVs requires the precise and agile control
of these vehicles in the presence of strong and unpredictable winds. For example, UAVs,
which are employed in forest fire detection, monitoring, and fighting tasks, need to accu-
rately track a planned trajectory to collect fire information across the hazardous fire region
against unknown winds. External wind disturbances generate unexpected forces and mo-
ments acting on the UAV dynamics that degrade the performance of UAVs and even result
in serious accidents if appropriate reactions are not promptly activated to attenuate the wind
effects. In particular, quadrotor UAV's are more sensitive to those external disturbances due
to their small size. Therefore, the wind rejection control of UAVs required to be investi-
gated to ensure the stability and performance of tracking desired trajectories against wind
disturbances.

In most cases, the wind disturbances and modeling uncertainties are generally lumped
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together and the observer-based control methods are adopted to suppress the total distur-
bances, relying on the high-frequency and low-latency control. These control methods are
proposed based on the deterministic system but are quite sensitive to the stochastic process
and measurement noises. Moreover, the precise control of a quadrotor UAV in unknown
wind environments requires an accurate and prompt perception of the ambient winds to
quickly compensate for the wind effects.

This thesis proposes the control scheme based on the nonsingular terminal sliding mode
control [91, 52] to realize the control of quadrotor UAVs in the presence of unknown wind.
The proposed control strategy mainly contains the outer-loop control and the inner-loop
control. The outer-loop control is developed to track the desired trajectories and attenu-
ate wind effects, while the inner-loop control is developed to stabilize the attitude of the
quadrotor UAV. By using the NTSMC, the proposed control strategy can avoid the singu-
larity problem and guarantee the finite-time convergence of the position and attitude of the
quadrotor UAV towards the desired trajectories.

Based on the wind estimation produced by the wind estimator, the proposed wind re-
jection control scheme can actively compensate for wind effects acting on the quadrotor
UAVs to maintain UAV performances in the presence of unexpected wind disturbances.
Different from the general disturbance observer [42] that lumps together the disturbance
and uncertainty, the proposed control scheme mainly focuses on the wind effects and can

actively attenuate wind disturbances based on the explicit wind estimation.

4.2 Sliding Mode Control

Sliding mode control is an effective, robust control strategy that is inherently insensitive
to parameter variations, model uncertainties, and external disturbances. As a particular kind
of variable structure control system, sliding model control is composed of independent

structures with different properties and a switching logic between them. The basic idea of
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sliding mode control is to design an appropriate sliding surface and a control law to force
the system states onto this surface in a finite time [92].

To introduce the design of sliding mode control, a nonlinear system is modeled as

i(t) = f(x, u, t) 4.1)

where z(t) € R" denotes the state vector and u(t) € R™ denotes the control vector.

A sliding surface is designed as

s(z) =0 4.2)

where s(x) is the switching function. The switching function usually has the same order as

the control vector, i.e., s(x) € R™, which is constructed as

s(x) = [s1(), sa(x), -+, sm(@)]" (4.3)

The design of the sliding mode surface should assure the stability of the dynamics with

some specified performances, such as disturbance rejection and tracking the desired trajec-

tory.
Then, a discontinuous control law u(t) = [uy(t), ua(t), - -+ , um(t)]? is designed as
uf (t) si(x) >0
u; (1) si(z) <0
wherei =1, --- , mand u} (t) # u; (t).

The control law is designed to guarantee that the system state trajectory can be driven
onto the sliding surface in a finite time and maintained on it for all subsequent time, which

is the so-called reachability condition. In case of a single input system, the reachability
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condition can be summarized as

lim+ 5 <0
s—0 (45)
lim $ >0
s—0~
or, equivalently
55 <0 (4.6)

To ensure that the system state trajectory can reach the sliding surface in a finite time

in the face of disturbances, the n-reachability condition [93] is given by
5§ < —nls| 4.7

where 7) is a small positive constant.

4.3 Active Wind Rejection Control of a Quadrotor UAV

Inner Control

Outer Control Xi|
Attitude -
Controller
Position XjT Ti
Controller
Thrust &

Reference |Xi i . F, | Thrust |u Quadrotor
Trajectory | g |;mm===mmmmmmmmmmmommmoemoo—g Attitude "| Allocation UAV

Commands
Coefficient _C; Wind Effect
Adaptation Compensation

éf Wind
Estimator [

Figure 4.1: Framework of the proposed wind rejection control strategy of a quadrotor UAV

A hierarchical control system is designed for a quadrotor UAV to track the desired tra-
jectories and stabilize the attitude in the presence of wind. The framework of the proposed
control strategy is illustrated in Fig. 4.1. The outer-loop control combines the signals of
position controller and adaptive wind effect compensation to generate virtual control inputs

for the trajectory tracking, while the inner-loop control produces the control torques 7; for
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the attitude stabilization. By using the proposed control strategy, the wind disturbance is

attenuated via the adaptive wind effect compensation scheme.

4.3.1 Outer-loop Control

The outer-loop control strategy is designed to track the desired trajectories. Consider

the translational dynamics of the quadrotor UAV subject to wind disturbances

1
¥ =— —(cos¢sinf cost) + sin psin ) F,
m

d
b Cunylbe — (6~ 8P + (6 — 9P + 2

j=— %(cos ¢sinfsin) — sin ¢ cos ) F, (4.8)
1 d
b= Cuylly — (€ — 2P+ (& =2+ 2
5=— l(cosgzﬁcos OF, +g+ lodz(fz — %)+ d:
m m m

where d; fori € {x, y, z} represents the lumped disturbance of the translational dynamics
which are assumed to be unknown but bounded, i.e., |d;| < D;.

The quadrotor UAV is defined as an underactuated system, because the number of out-
puts is larger than that of control inputs. To solve this underactuating problem, virtual

control inputs are defined as

vy = —(cos ¢ sinf cosp + sinpsin) F,
vy = —(cos ¢sinfsinty) — sin g cos ) F, (4.9)

v, = —(cos pcosf)F,

where v; for i € {x, y, z} denotes the virtual control inputs.
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By recalling Eq. (4.8), the control-oriented model can be obtained as

Xi,l = Xi,2
(4.10)
Xi2 = Gi + hi(vi + ¢ f; + d;)
where
Xz1 =T
Xyl =Y (4.11)
Xz1 =%
Xz2 = x
Xy2 =1 4.12)
Xz,2 = z
Cpr = Cy = Cdz
! ! (4.13)
C, = Cdz
fo= (€ — i) (E — 22 + (&, — §)°
fy= (6 — (€ — 22+ (& — )2 (4.14)
fz = (Sz - Z)
G, =G, =0
4.15)
G,=g
1
he =hy =h. = — (4.16)
m

Let x4 fori € {x, y, 2z} denote the desired trajectory. Then, the tracking error related

to position is defined as

Xi = Xia — X& (4.17)
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and its corresponding derivative is given by

)L(z' = Xi,1 - X? = Xi2 — X? (4.18)

By combining Eqgs. (4.10) and (4.18), the error dynamics can be obtained as

Xi =Xi2 — Xf
(4.19)
:GZ‘ + h,(l/z + Cifi + dz) — X;j
Introduce the following nonsingular terminal sliding-mode surface [91]:
1.5
Si=Xi + =X (4.20)

- Xi
Bi

where [3;, p; and ¢; are positive design parameters. p; and ¢; are positive odd numbers,
which satisfies 1 < qu < 2.

By differentiating Eq. (4.20) with respect to time, the expression can be obtained as

. 1 ) Ll
SZ X’L —I— _}iX'qu XZ
1Z ) By (4.21)
=Xi+ _,&Xiqi [Gi + hi(v;i + cifi + di) — X

Py

Remark 4.1 Because p; and q; are odd numbers, if ; # 0, then )Zf‘ > 0.

To allow the sliding variable to reach the designated sliding surface and then remain
in close proximity to the sliding surface, the position control law can be designed as the

following form:

v, = v 4 s (4.22)

where v;4 is the equivalent control part to stabilize the ideal system without uncertainties
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and disturbances, and les

is the discontinuous control part to compensating for the pertur-
bations and disturbances.
Without considering the wind effects, the equivalent control part is designed by solving

the following equation:
. B 1 Pi 2q—1
Si=Xit g X (Gi+hivi = %) =0 (4.23)

where the disturbance term d; is omitted in this case.

Then, the equivalent control v/;? is obtained as

1 qi-
4= (B2, u G, — 4.24
v 0 (Bi b Xz + ¥9) (4.24)

The discontinuous control part to cope with the perturbations is designed as

VIS = —nsign(s;) (4.25)
where 7; > D, is positive design parameters.
In this way, without considering the wind effects, the outer-loop control law is designed

as

m:—ﬁ(ﬁsz& “ 4Gy — i) — nsign(s,) (4.26)

With the consideration of wind effects, an adaptive wind compensation is designed to
derive the control law. Let ¢; for i € {z, y, z} denote the estimate of drag coefficient. The

corresponding control law can be designed as

VvV, = —

1 7 ,L q . . A
h‘(ﬁzi X " Gi— i) — msign(s) — &, (4.27)
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The corresponding adaptive law to estimate the drag coefficient is given by
P (4.28)

Remark 4.2 In many works, the aerodynamic drag forces are assumed to be bounded so
that to handle them via the lumped disturbance. To specify the wind effect acting on the
dynamics of the quadrotor UAV, the wind vector is defined as the time-varying parameter
of the dynamic model, which can be estimated by the two-stage particle filter. The corre-

sponding control law is developed to attenuate wind effects.

Selecting the following Lyapunov candidate function:

z

1
Vp=2) si+ ;53 (4.29)

1=z

where ¢; = ¢; — ¢; is the estimation error of drag coefficient. The time derivative of the

Lyapunov candidate function is obtained as

Vp = g $;i8; + clcl

Z

(4.30)

1 1~ 1~;
_Z {Xl ﬂ b qu [G +h(Vz+czfz+d) Xz]}_kycici

Substituting the outer control law (4.27) and the adaptive law (4.28) into Eq. (4.30), the
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following condition can be derived:

% ;ﬂ_l 1
P G+ hal =

) z . 1
Vp = iXi T =
r ;S{X+5iQi ! hi Di

. . I
— m&gn(si) + Cz'fi + dz) — Xgl]} + ?cici

(2

1 pi ;%_1 . . 1_:
= Z Si—>—X; ¢ [—hlczfl + hlclfz + hzdz — hﬂ]iSlgIl(Si)] -+ —C;C;
i Bi ¢ Vi
- _ 1 1pi;%_1 1pi;%_1 .
= Ci(—C—si——X;' hifi) +=—=x;" hi(—misisign(s;) + ds;
i ( i Bi qi ) Bi qi ( (54) )
S Z —77;|SZ|

Py

Pig
where 7], = %%f(fi hi(n; — D;) > 0.

q; 2= . .
Bi—x; “ +Gi— X?) —Gifi

(4.31)

Therefore, the system satisfies the standard 7-reachability condition to guarantee the

trajectory tracking performance of the designed outer controller in the presence of unknown

winds and model uncertainty.

To compensate for wind effects in the controller design, it is important to estimate

time-varying wind vectors for a quadrotor UAV. As elaborated in the previous chapter,

the wind estimation can be produced by the proposed two-stage particle filter. Based on

the estimated wind vectors, the wind drags can be compensated with the proposed control

strategy to guarantee the performance and reliability of a quadrotor UAV in the presence of

unknown winds.

Based on the estimated wind vectors éz fori € {z, y, z}, the terms associated with the

drag forces can be obtained as

fo= o in(E— i) + (6 — 9
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Considering the errors of wind estimation produced by the two-stage particle filter, the
error associated with the drag forces is denoted as f, ' = f;! — f'. Then, the dynamic

model Eq. (4.10) can be reconstructed as

Xi2 =Gi + hi(vi + cifi + di)
=G+ hilvs +ei(f7 + 77+ di)
~ R (4.33)
=G+ hilvi + (1 = fifi)eifi + di]

=G, + h;(v; + Eifi +d;)

where ¢; for i € {z, y, 2} is defined as the drag coefficient of the reconstructed model.
By employing the adaptive law to estimate the drag coefficient, the performance of the
designed controller can be maintained.

Therefore, the ultimate control law can be presented as

1 i;2*% . . 2 5
== (B "+ G ) — msign(s:) — & (434)
with
X ]_ i Lpf’f‘—l ~
G = yisie DT Ry (4.35)

Bigi™
By using the virtual control laws v; for i € {x, y, z}, one can carry out the computa-
tions of the thrust F, the desired roll ¢¢ and pitch §¢ angles.

From Eq. (4.9), the computation of the thrust can be expressed as

F.=\/vi+vi+v2 (4.36)

Given the desired yaw ¢)¢ angle, the computations of the desired roll ¢¢ and pitch ¢
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angles can be expressed as

d ) v, sin? — v, cos Y2
¢" =arcsin | — 5 > 5
Ve TV, T

4.37)
v, cosp? + v, sin @bd)

6% = arctan (
v,
4.3.2 Inner-loop Control

The inner-loop control strategy is designed to track the desired roll ¢¢, pitch #¢ and yaw

y¢ angles. Consider the rotational dynamics of a quadrotor UAV

- [y_[z s ) d¢
e T Y L
A
A [z_[x i To dG
b= 42 .
7, oY + 7, + 7, (4.38)
. ]z—fy .. Ty dw
e yig, T W
=T

where d; for j € {¢, 0, 1} represents the unknown disturbance associated with the rota-
tional motion, which is assumed to be unknown but bounded, i.e., |dj| < D;.

By recalling Eq. (4.38), the control-oriented model can be obtained as

Xi1 = Xj.2
! ! (4.39)
Xjz2 = fi + hj(1; + dj)
where
Xo1 = @
Xo,1 = 0 (4.40)
Xo1 =
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Xo2 = 0 (4.41)
Xp2 =V
I,—1I, .
= 0
o T ¥
I, -1, ..
fo=——F—0o¥ (4.42)
y
I, -1, ..
= 0
fo T ¢
1
h, = —
¢ I,
h ! (4.43)
o= I, .
1
hy = —
(4 I,
Then, the tracking error related to attitude is defined as
X = X1~ Xja (4.44)
and its corresponding derivative is given by
L. .d -d
Xi = Xj1 — Xji1 = Xj2 —Xj (4.45)
By combining Eqs. (4.39) and (4.45), the error dynamics can be obtained as
L. .d
Xi =X52 = Xj
(4.46)

=fj + hy(7j +d;) = X§
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Again, select the nonsingular terminal sliding-mode surface [91]:

Py

s;=X;+ 5 —X; (4.47)
J

where (3;, p; and ¢; are positive design parameters. p; and ¢; are odd numbers, which
satisfy 1 < 2 < 2.
J

By differentiating Eq. (4.47) with respect to time, the expression can be obtained as

i3 1 D ~ﬁ_1~
§5 =X; + 'q—j,xfj j
1’ a (4.48)
X Di 29—
X]+Fq_j- qu Lfj + (7 + dj) X;l]
i 4j

Similar to the design of the position control law, the attitude control laws are developed

as

o __€q dis
Tj =T, +T;

1 q; 22 (4.49)
=- ;(ﬁj—j)?j T+ fi — X9) — nysign(s;)
i DPj
where n; > D, for j € {¢, 0, 1} are positive design parameters.
Selecting the following Lyapunov candidate function:
1 Y
Vo=5> 5 (4.50)
Jj=¢
The derivative of the Lyapunov candidate function is obtained as
_ P
V@ = Z Sj S’j
- (4.51)

1 pj.o—t .
= Z si{X; + —jxf [f5 + hy(m5 + dy) = X513
Substituting the attitude control law Eq. (4.49) into Eq. (4.51), the following condition
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can be derived as:

. i Di .ﬁ—l 1 qi - _Pj
~ 45 ~ a4
Vo = E :SJ{XJ ij] [fj+hj(_ﬁ(ﬁj#Xj T+ 1=
Jj=¢

— n;sign(s;) + d;) — X1}

'MwM@

<
Il
-

1p]~q
— Iy hjdjs; — hjn;sign(s;)s
Bq [ ji ﬂbg(y)J]

IN

—1;s;]

Py

-1
where 7; = 51 ZUZ‘” hi(n; — D;) > 0.

(4.52)

Therefore, the system satisfies the standard 7-reachability condition to guarantee the

performance of the inner controller to track the desired attitudes.

In order to produce the control thrust F, and torques [1,, T, T4]7,

the computations of the thrusts are given by

7% I AV S 3
Ll -h 0 | |
T3 % O —% —ﬁ To
I E- A A ud

based on Eq. (2.9),

(4.53)

4.4 Active Wind Rejection Cooperative Control of Mullti-

ple Quadrotor UAVs

The active wind rejection cooperative control strategy is proposed to maintain the for-

mation performance of multiple quadrotor UAVs in the presence of unknown winds. Con-

sidering the different wind effects acting on each UAYV, the active wind rejection cooperative

control scheme is adopted to attenuate the unexpected wind disturbances for each UAV and
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maintain the cooperative tracking performances of multiple quadrotor UAVs in the forma-
tion flight. More specifically, the UAV fleet should keep the formation shape and each UAV

should track the desired trajectory against ambient winds.

Inner Control

Outer Control Xnj|_
Attitude
e Controller
Information | Xni | Position X Tnj
Exchange Controller
Reference )| Thrust & F, Thrust | n-th
Trajectory [iatattataten, Atatatutstuintetetetettetat ettt Atitude > Allocation Quadrotor
~ | Commands UAV
Coefficient |Cni| Wind Effect i
Adaptation Compensation |!
il wind |,
Estimator

Figure 4.2: Framework of the proposed wind rejection cooperative control strategy of mul-
tiple quadrotor UAV's

Fig. 4.2 shows the framework of the proposed wind rejection cooperative control strat-
egy. A distributed control structure is adopted for a group of UAVs so that vehicles should
exchange information with each other to obtain the formation tracking errors. Then, the
proposed control strategy generates control signals based on the wind estimation for each
UAV. Similarly, the distributed control scheme for each vehicle is comprised of the outer

control and the inner control.

4.4.1 Basic Graph Theory

The formation control strategy is developed for a group of N quadrotor UAVs. To
describe the information flow in the group of quadrotor UAVs, an undirected graph is
generated, which is denoted as G = {V, &£, A}. V = {vy, vg, -+, vy} represents the
set of UAVs. € C {(vn, Um)|Un, Uy € V} represents the set of communication links
with unordered pairs of UAVs (v, v,,). A € R¥*Y denotes the adjacency matrix and
Qi 18 the nonnegative entry of A. «,,, = 1 if there is information exchange between

the m-th and n-th quadrotor UAVs, otherwise it is zero. If the graph has the property
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that (v, v,) € € <= (vn, v,) € €&, for any v,, v, € V), it is said to be undi-

rected,. The graph is named as a connected graph, if there exists a path between any two

UAVs. The set of neighbors of the m-th UAV is denoted as S,, = {v,,|(v,, vm) € E}. Let
N

B = diag(by, by, - - -, by) denote the degree matrix of a graph with b, = " _ cu,,, for
n € {1, ---, N}. The Laplacian matrix L is defined as £L = B — A.

Assumption 4.1 The graph containing all quadrotor UAVs is undirected and connected.

Lemma 4.1 If a graph is undirected and connected, and A is a diagonal matrix with non-

negative entries, then the matrix H = L + A is positive definite [94, 95, 96].

4.4.2 Cooperative Controller Design

To maintain the formation shape, the trajectory tracking error of each quadrotor UAV

should satisfy the following condition

Xni = Xmi (4.54)

where Y ,; and X,,; are the trajectory tracking errors of the n-th and m-th UAVs.
Considering the information exchange among the group of quadrotor UAVs, the coop-

erative tracking error of the n-th quadrotor UAV is defined as

Xri =Ni,1Xni + Ai2 Z Qi (Xni — Xmi)

e (4.55)
=(Ai1 + Aio Z Qnn ) Xoni — i 2 Z Ol X mi
meSy meSn
where n € {1,---, N} and ¢ € {z,y, z}. A1 and A, are positive parameters that

regulate the individual trajectory tracking error and the formation error, respectively.

Then, based on the basic graph theory, the cooperative tracking error of all quadrotor
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UAVs can be written as

X; = (Nialn + Ni2L)x: (4.56)

where X{ = [X§;, X5~ X" and X = [Xi, Xai, -+, Xwvi] " fori € {z, y, 2} By re-
ferring to Assumption 4.1 and Lemma 4.1, the matrix (\; ;Ix +\; 2.£) is symmetric positive
definite. According to the property of a positive definite matrix, the x; converges to zero
once the x§ converges to zero, therefore x¢, and x,,; converge to zero forn € {1, --- , N}.
To carry on, the cooperative control strategy will be designed for an individual quadrotor
UAV, i.e., based on x,,; fori € {z, y, z}.

The derivative of cooperative tracking error of the n-th quadrotor UAV is given by

Xoi =(Nia + Az D )Xt — Az D Qi Xoms

mGSn mESn (457)
=V Xni — )\i,2 Z O Xmi
mESn
where Wi = A1+ Xi2 Y es, Qnm > 0.
The cooperative error dynamics can be obtained as
X = WniXni = Ni2 D O Xoms (4.58)

mESn

By substituting Eq. (4.10) into Eq. (4.58), the following expression can be obtained as

mESn
where d,,; represents the unknown disturbance, which is bounded as |d,,;| < D,;.

Similarly, select the nonsingular terminal sliding-mode surface:

1 . Pnj
X i (4.60)
5m’

o C
Sni = X'rn _'_

71



where (3,,;, pn; and g,,; are positive design parameters. p,,; and g,,; are positive odd numbers

which satisfy 1 < 2 < 2.
By differentiating Eq. (4.60) with respect to time, the expression can be obtained as

. e i Ze
Sni = Xni + ] “Ani " Xm
ni qni

(4.61)

S 1 nt ‘e .
:Xz@ + 6 ‘Z_Xm ni {\Ijm [Gm + hm(l/m + Cmfm + dm) Xydu]

- )\i,Q Z anmiml}

mESn

With the consideration of active wind rejection, the distributed cooperative tracking law

is designed as

1 Qni :o 2—Dni
Uni = hmqjmﬁ _Xm ni + )\12 Z anmez
mESn (4.62)
Gm 2 r
hni + :ZZ 77n251gn(5n1) énzfm
with
A 1 ni R
Lut e o W i fo (4.63)

Cni = TniSni 5 — ni
571,2 Qni

where 1,; > D,,; and y,,; are positive parameters.

Selecting the following Lyapunov candidate function:

1 < 1 .
Vi = 5 > sh+ %ciz (4.64)

1=
Cni TEepresents the estimation error of the reconstructed drag coefficient.

where ¢,,; = ¢p; — C
The derivative of the Lyapunov candidate function with respect to time is obtained as

(4.65)

np § STLZ Snz an an
nz
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Substituting Eqgs. (4.61)-(4.63) into Eq. (4.65), the following expression yields

’ 1 ni o, Lni_ A A
Vnp = Z Snz_‘Z—XC L 9dni \I/nzh'm I:an f?’LZ CTLi fnz —|— dnz

1.

Cns Em'

— Npisign(spi)] +

’ 1 ni Lo SBL— A &
Vnp = Z Snz_%xc L 9dni \I]nzhnz I:an f?’LZ CTLi fnz —|— dnz

1. -
1 ni . Pni_ ~
—chz an Sni—5— b \I]nZX;z i 1hn2fnz)
Tni Bm Ani
1 ppiz, i .
+ ﬁ an ni \Ijmhm(dmsm - nniSIgn<5ni)5m’>
ni Qni

z
< Z Tl S
=z

Pni
1 ni -
where 7, = 22 BuigC i R (0, — D).

ﬁnz qni n

Therefore, the system satisfies the standard 7-reachability condition to guarantee the
cooperative trajectory tracking performance of the formation position controller in the pres-
ence of wind effect and model uncertainty.

It is noted that the formation position control strategy is developed to maintain the entire
formation shape of multiple UAVs in the flight. To stabilize the attitude, the attitude control

law Eq. (4.49) is applied for each UAV.

4.5 Simulation Results

In this section, simulations are conducted to demonstrate the effectiveness of the pro-
posed control strategies for the control of a single quadrotor UAV and the formation control

of multiple quadrotor UAVs in the presence of wind. The quadrotor dynamic model Eq.
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(2.11) is used in the simulations. The model parameters are given in Table 2.1. The two-
stage particle filter is also adopted to produce estimates of states and wind vectors for the
quadrotor UAV in order to implement the active wind rejection control strategy. The pro-
cess and measurement noises of the system are considered, variances of which are given in

Tables 2.2 and 2.3.

4.5.1 Control of a Single Quadrotor UAV in the Presence of Wind

The initial states of the quadrotor UAV are set as 2(0) = Om, y(0) = Om, 2(0) = Om,
¢(0) = Orad, #(0) = Orad, and 1(0) = Orad. The parameters of the proposed control
algorithm are given in Table 4.1. Considering the wind estimation errors, the parameters
of the adaptive law Eq. (4.28) are setas 7, = 1, 7, = 1 and 7, = 10. To deal with the
chattering problem, the sign functions are replaced by saturation functions, but the robust

performance is compromised. The saturation function is defined as

1 s> o
sat(s) = ¢ s/® |s| < (4.67)
-1 s<-9

where ® represents the boundary layer thickness, which are set as ®, = 0.2, &, = 0.2,

®, = 0.2, b5 = 0.1, &y = 0.1, and by, = 0.1.

Table 4.1: Parameters of the active wind rejection controller
Parameter (3, By, B2 Dz Pys D Qus Qys @z s Nys N
Value 2 13 11 10

Parameter g4, 89, By De» Do> Py s> Q6> Qv M N> T
Value 10 13 11 2

To demonstrate the performance of the proposed control scheme against wind effects,
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the designed control scheme is compared with a pure nonsingular terminal sliding mode
control (NTSMC). The pure NTSMC-based controller is designed without considering the
explicit wind effects acting on the quadrotor dynamics. The performances of the proposed

active wind rejection control scheme are evaluated in the following cases:
(1) Hovering performance under continuous wind
(2) Hovering performance under wind gust

(3) Trajectory tracking performance under continuous wind

Hovering Performance under Continuous Wind

Wind speed (m/s)

Figure 4.3: Generated continuous wind

The rendered continuous wind is composed of a [3, 2, 2|7 m/s constant wind and a
Dryden turbulence, as shown in Fig. 4.3. The quadrotor UAV is controlled to hover at the
initial position [0, 0, 0]7 in the presence of this wind condition.

Figs. 4.4 and 4.5 demonstrate the hovering performances of a quadrotor UAV and con-
trol thrusts of four rotors under the continuous wind. In the case of continuous wind condi-
tion, both controllers can stabilize the quadrotor UAV under the continuous winds, whereas

the proposed control scheme achieves a better hovering performance. Fig. 4.6 shows the
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Figure 4.4: Hovering performances of a quadrotor UAV under the continuous wind
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Figure 4.5: Thrusts of a quadrotor UAV for hovering under the continuous wind
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Figure 4.6: Wind and drag coefficient estimation of a quadrotor UAV for hovering under
the continuous wind
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estimation of continuous winds and drag coefficients. With the two-stage particle filter, the
accurate wind estimation of the continuous wind are provided. Moreover, the adopted drag
coefficient adaptation method can adjust the drag coefficients to stabilize the original sys-
tem in the presence of model uncertainty and estimation error. Based on the estimated wind
vectors and the adaptive drag coefficients, the proposed wind rejection control scheme can
actively compensate for the wind effects acting on the quadrotor UAV and maintain the

original system tracking performance and stability, in contrast to the pure NTSMC.

Hovering Performance under Wind Gust

|—¢ § —¢&
5
__4¢
=
£ 3¢
o]
% 2
=1t
= 0
-1 : : : : :
0 5 10 15 20 25 30

t(s)

Figure 4.7: Generated wind gust

Fig. 4.7 shows the gust wind that is rendered based on the discrete 1-cosine wind gust
model Eq. (2.21). The gust wind starts at ¢ = 10s and lasts for 5 s, the peak value of which
is set as [4, 3, 2] m/s.The quadrotor UAV is controlled to hover at the position [0, 0, 0]7
under the wind gust.

Figs. 4.8 and 4.9 demonstrate the hovering performances of a quadrotor UAV and
thrusts of four rotors under the gust wind. Before the wind gust, the proposed control
scheme has a comparable hovering performance to the pure NTSMC. When the wind gust

occurs, the sudden changes of the wind conditions in three direction can be instantaneously

78



— — — - Desired Proposed —-=.—-- NTSMC
x107
0.1 i 01 20 i
' i it 1
— 1 — i — i
E 005 I £ 005 i E10 I
8 [ > [ N R
il i .
0 A > 0 A3 T
0 10 20 30 0 10 20 30 0 10 20 30
t(s) t(s) t(s)
0 0.4 1
< 0.1 =) =)
£ £02 £
02 > >
0.3 0 -1
0 10 20 30 0 10 20 30 0 10 20 30
t(s) t(s) t(s)

Figure 4.8: Hovering performances of a quadrotor UAV under the gust wind
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Figure 4.9: Thrusts of a quadrotor UAV for hovering under the gust wind
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Figure 4.10: Wind and drag coefficient estimation of a quadrotor UAV for hovering under
the gust wind

and accurately estimated by the wind estimation scheme. Due to the quick evolution of
the wind gust in a short time window, it has a larger adverse effect on the quadrotor dy-
namics. Fig. 4.10 shows the estimation of wind gust and drag coefficients under the gust
wind. The proposed wind rejection control scheme can promptly capture and attenuate the
fast-varying wind effects caused by the wind gust so as to maintain the original system hov-
ering performance and stability. Because of the advantages of the proposed wind rejection
control scheme, the proposed scheme has smaller position errors than the pure NTSMC
when hovering in the presence of wind gusts. Fig. 4.11 shows the performances of the pro-
posed adaptive drag coefficient control under the gust wind. Compared with the same wind
rejection control without adaptive drag coefficients, the proposed control scheme can in-
crease the robustness of the quadrotor UAYV, although it can not ensure the drag coefficients

converge to the true values.
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Figure 4.11: Performance of the proposed adaptive drag coefficient control under the gust
wind
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Trajectory Tracking Performance under Continuous Wind

In this case, the quadrotor UAV is controlled to track a predesigned trajectory given by

z? =5 cos(lt) -5

15
d e
y® =5sin(—t) (4.68)
15
2
d .
2" = —sin(—t
(££0)
— — — - Desired Proposed —-—=-—-- NTSMC
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1
E E E o
3 = I
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0.4
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Figure 4.12: Trajectory tracking performances of a quadrotor UAV under the continuous
wind

Figs. 4.12,4.13 and 4.14 demonstrate the trajectory tracking performances of a quadro-
tor UAV under the continuous wind. During trajectory tracking, the proposed wind rejec-
tion control scheme can still accurately estimate the continuous wind and actively com-
pensate for the unexpected wind effects acting on the quadrotor dynamics. The trajec-
tory tracking errors are shown in Fig. 4.15. The proposed wind rejection control scheme

shows a better trajectory tracking performance compared with the pure NTSMC in the
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Figure 4.13: Thrusts of a quadrotor UAV for trajectory tracking under the continuous wind
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Figure 4.14: Wind and drag coefficient estimation of a quadrotor UAV for trajectory track-
ing under the continuous wind
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Figure 4.15: Trajectory tracking errors of a quadrotor UAV under the continuous wind

presence of continuous wind. The mean trajectory tracking error of the proposed con-
trol scheme is nearly zero, while the mean tracking error of the pure NTSMC is about

[0.06, 0.04, 0.02]7m. This result indicates the advantage of the proposed active wind re-

jection control scheme.

4.5.2 Formation Control of Multiple Quadrotor UAVs in the Presence

of Wind

A group of four quadrotor UAVs are simulated to cooperative monitor the central fire by
hovering at the designed locations around the fire in presence of wind. Fig. 4.16 shows the
communication network of the group of quadrotor UAVs. In the communication network,
UAV#1 can directly exchange information with UAV#2 and UAV#4, UAV#2 can directly
exchange information with UAV#1 and UAV#3, UAV#3 can directly exchange information

with UAV#2 and UAV#4, and UAV#4 can directly exchange information with UAV#1 and
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Central F

Figure 4.16: Communication network of quadrotor UAVs

UAV#3. Based on the communication network, the adjacency matrix is given by

A= (4.69)

The locations for fire monitoring are set as [5, 0, 10]7 m for UAV#1, [0, 5, 10]” m for
UAV#2, [—5, 0, 10]" m for UAV#3, and [0, —5, 10]7 m for UAV#4. The parameters to
yield cooperative tracking errors are set as \;; = 0.8 and \;» = 0.2. To evaluate the
tracking performance of the proposed active wind rejection formation control of multiple
quadrotor UAVs, the proposed scheme is compared with the pure NTSMC-based formation
control, which is developed without active wind rejection. Simulations are conducted in the

following cases:
(1) Formation hovering under wind gusts

(2) Formation Hovering under continuous winds
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Formation Hovering under Wind Gusts

In this simulation, three wind gusts are rendered to act on UAV#1, UAV#2, and UAV#3,
respectively, while UAV#4 encounters no wind gust. The generated wind gusts are shown
in Fig. 4.17. For UAV#1, the wind gust starts at ¢ = 5s and lasts for 3 s, the peak value of
which is [—3, 3, 2]7 m/s. For UAV#2, the wind gust starts at ¢ = 12s and lasts for 5, the
peak value of which is [4, 3, 1]7 m/s. For UAV#3, the wind gust starts at = 20 s and lasts
for 4s, the peak value of which is [1, —3, 3|7 m/s.

—¢ & — ==&
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-
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Figure 4.17: Generated wind gusts acting on multiple quadrotor UAV's

Figs. 4.18, 4.19 and 4.20 show the cooperative tracking performance of multiple quadro-
tor UAVs in the presence of wind gusts. Compared with the pure NTSMC-based formation
control, the proposed scheme can achieve more accurate cooperative tracking performances
of multiple quadrotor UAVs when encountering unknown wind gusts.

Wind effect compensation inputs and thrusts of the active wind rejection cooperative
control under the wind gusts are shown in Figs. 4.21 and 4.22. It can be seen that the wind
effect compensations are activated when the wind gusts are captured. Correspondingly, the
quadrotor UAVs can promptly take actions to attenuate disturbances caused by the wind

gusts and maintain the formation performances by using the proposed control scheme.
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Figure 4.18: x positions of multiple quadrotor UAV's under the wind gusts
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Figure 4.19: y positions of multiple quadrotor UAVs under the wind gusts
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Figure 4.20: z positions of multiple quadrotor UAVs under the wind gusts
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Figure 4.21: Adaptive wind effect compensation inputs under the wind gusts
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Figure 4.22: Thrusts of the active wind rejection formation control under the wind gusts

Formation Hovering under Continuous Winds

In this simulation, multiple quadrotor UAVs are commanded to hover and maintain
the formation under continuous winds. Different continuous winds are encountered by
the quadrotor UAVs, each of which is composed of a [3, 2, 2] m/s constant wind and a
Dryden turbulence. The rendered continuous winds are shown in Fig. 4.23.

Figs. 4.24, 4.25 and 4.26 show the cooperative tracking performances of multiple
quadrotor UAVs in the presence of continuous winds. It can be seen that the proposed
control scheme can continuously attenuate the wind effects acting on multiple quadrotor
UAVs to maintain the tracking performances in the presence of continuous winds in con-
trast to the pure NTSMC-based formation control, which results in larger tracking errors.

The adaptive wind effect compensation inputs and thrusts of the active wind rejection
formation control under the continuous winds are shown in Figs. 4.27 and 4.28. These
results indicate that the proposed scheme can accurately yield wind effect compensation

inputs with adaptive drag coefficients to maintain the cooperative tracking performances of
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Figure 4.23: Generated continuous winds acting on multiple quadrotor UAVs
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Figure 4.24: x positions of multiple quadrotor UAVs under the continuous winds
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Figure 4.25: y positions of multiple quadrotor UAVs under the continuous winds
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Figure 4.26: z positions of multiple quadrotor UAVs under the continuous winds
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multiple quadrotor UAVs in the presence of continuous winds.
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Figure 4.27: Adaptive wind effect compensation inputs under the continuous winds

4.6 Summary

In this chapter, an active wind rejection control strategy is developed for quadrotor
UAVs to improve their robustness in the presence of unknown wind disturbances. Con-
sidering the wind effects acting on the dynamic model of a quadrotor UAV, an adaptive
wind effect compensation method is proposed. The control system of each quadrotor UAV
mainly includes the outer-loop control and the inner-loop control. The proposed outer-loop
control is developed based on the nonsingular terminal sliding mode control and adaptive
wind effect compensation to guarantee the finite-time convergence to the desired position
in the presence of winds and generate the desired attitude signals for the inner control,
while the NTSMC-based inner-loop control is designed to ensure the attitude converge to
the desired attitude in the finite time. Furthermore, the proposed active wind rejection co-

operative control scheme is developed to maintain the cooperative tracking performances
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Figure 4.28: Thrusts of the active wind rejection formation control under the continuous

winds

of multiple quadrotor UAVs in the presence of winds. The simulation results demonstrate

the effectiveness of the proposed active wind rejection control scheme.

93



Chapter 5

Forest Fire Monitoring with a System of

UAVs under Effect of Wind

5.1 Problem Formulation

To obtain an accurate assessment of the wind-affected forest fires, a natural thought
is to estimate the forest fire propagation based on those widely used fire spread models
[79, 72]. The known inputs of these models, in particular for the wind field over the forest
fire region, are necessary for the accurate prediction of the forest fire burning situations.
However, it is usually challenging to obtain the on-site surveys of the model inputs before
the forest fire estimation. The production of the fast forest fire estimation depends on the
correct field research and experimentation.

In addition, the state and parameter estimation approaches are often used to simulta-
neously estimate the forest fire propagation and unknown wind parameters via the obser-
vations [79, 72]. Considering the high-dimensional nonlinear and non-Gaussian forest fire
model, most of the recent researches adopt the ensemble Kalman filter (EnKF) method to
approximate the current states and parameters of forest fires. However, the state and param-

eters are implicitly assumed to follow a linear Gaussian model. Moreover, a large number
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of ensembles must be taken in order to retrieve accurate error statistics of the parameters
and to overcome the equifinality problem.

This chapter presents an EnKF-based strategy to provide forest fire surveillance with
wind measurements and fire front observations obtained with a system of UAVs. The Gaus-
sian process regression (GPR) method is adopted to reconstruct the local wind field from
wind measurements collected by UAVs. Subsequently, the wind speeds can be predicted to
propagate the ensemble of fire states. Then, the proposed EnKF-based strategy can effec-

tively estimate the forest fire situations with the observations collected by UAVs.

5.2 Wind-affected Forest Fire Monitoring Strategy Design

UAV Platform

Wind »| Wind Field
Measurement ”| Estimation

Task Planning >
A 5 h 4
Wildfire : Wildfire
Observation Prediction
L Analysis &
Updating «
|

Figure 5.1: Framework of the proposed forest fire monitoring strategy

In this chapter, the forest fire monitoring strategy is proposed with a group of UAVs
to provide an accurate assessment of forest fires in the unknown wind environments. The
framework of the proposed strategy is demonstrated in Fig. 5.1. To achieve the purpose,
the GPR method is firstly adopted to reconstruct the local wind field. Then, the optimal
wind sensing locations are determined based on the maximum mutual information criterion.
Subsequently, with the wind measurements collected by UAVs at these locations, the wind
field estimation is updated and is used for the forest fire prediction. Finally, an EnKF-

based approach is designed to evaluate the forest fire conditions via the observations. Note
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that since the autonomous control of UAVs is not the main concern of this paper, it is
assumed that UAVs can decide their maneuvers toward the designed positions for wind

measurements and fire observations.

5.2.1 Local Wind Field Reconstruction

The Gaussian process regression is adopted to reconstruct the wind field within the
region of interest [97, 98]. It is assumed that the underlying function of the wind field is

continuous, which can be describe as

§o = Ja (p)
5.1
gy =/ y (p>
where p = [z, y]T denote the coordinates of any position in the wind field, and f,(-)

and f,(-) represent the underlying function of wind components in the = and y direction,
respectively. Two separate Gaussian processes (GPs) are used to describe the distribution
of wind components. The framework of the GPR-based wind field reconstruction approach
is shown in Fig. 5.2. To reduce the computational complexity, the two GPs share the
same hyperparameters, which means that the output space is assumed to be isotropic. For
simplicity of expression, the subscript is omitted in the rest of this thesis.

In general, a GPR-based wind field model is specified by a mean function p(-) and a

covariance function k(-), which is denoted as

£~ GP(u(p), k(p, p')) (5.2)

where 1(p) denotes the mean function of wind speed at position p, and k(p, p’) denotes
the covariance function of wind speed between positions p and p’.

It is assumed that UAVs can provide point wind measurements with the proposed wind
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Figure 5.2: Framework of the GPR-based wind field reconstruction approach

estimation approach, and the wind sensing locations can be provided by the onboard GPS

module. The noisy measurement of the wind speed for each UAV is assumed to be Gaussian

where ¢ denotes the wind measurement provided by a UAV, p, denotes the wind sensing
location, and ¢, is a zero-mean Gaussian noise with a variance of af.

Therefore, the GPR-based wind field model can be trained from a finite set of wind
measurements =, are taken by UAVs and the corresponding wind sensing locations F;. It

yields that the collection of wind measurements follow a multivariate Gaussian distribution

Es N(,um Z:ss + UEINS) (54)

where 1, denotes the mean wind speed vector, X5 denotes the GP covariance matrix that
represents the similarity of wind speeds between the wind sensing locations, and N, de-
notes the number of measurements.

To estimate wind speeds =; at the target locations F;, the joint distribution of the wind
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measurements =¢ and the wind speeds =; is given by

= Lhs Yes agl : Z:’;
~ N , e (5.5)

=t 127 Dis p

where (1, denotes the mean wind speed at the target positions, >J;; denotes the GP covariance
matrix that represents the similarity of wind speeds between the target locations, and
denotes the GP covariance matrix that represents the similarity of wind speeds between the
target locations and the wind sensing locations.

Subsequently, the wind estimates at the target locations follow a multivariate Gaussian
distribution Z;|P;, =, Py, ~ N (i, f)t), the estimated mean and covariance of which are
given by

iy =pu + L[5 v (B -
fie =pue + B [Ess + 0 In ] (S5 — ps)
(5.6)
Yy =Xy — ZZ; [Xss + UzINS]flzts
where /i, and 33, are the mean and covariance of estimated wind speeds at the target loca-
tions.

In the GPR-based wind field model, the mean function is often assumed to be zero
because offsets and simple trends can be subtracted out by preprocessing. With the as-
sumption that the input dimensions are isotropic, a classic squared exponential covariance

function is introduced as

1
k(p, P') = o exp(—55lp = PI”) (5.7)
where a]% is the signal variance and [ is the length scale. Let n = [0y, /|7 denote the

hyperparameter set. It can be observed that the estimated mean and covariance are speci-

fied by the hyperparameters. Considering the hyperparameters, the negative log marginal
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likelihood of the wind measurements is given by

L = —logp(Z;n) 59

1l e 1 N
:553277 1=, + 5 log det(X,) + - log 27
where &, = X, + 02Iy,. By using the maximum marginal likelihood approach, the
selection of these hyperparameters can be optimized via the training data set.

With the wind measurements provided by a group of UAVs at each time step, the hyper-
parameters for the GPR-based wind field model should be updated from the newly obtained

wind measurements. In the case of the high-frequency noise existing in the wind measure-

ments, a low-pass filter is designed to smooth the transition of the hyperparameters

~

Otk ZAanf,kq +(1 - )\of)Uf,k
5.9

lk :)\llkfl + (1 — )\l)lk
where (o, li;) are the smoothed hyperparameters at time instant ¢, (G, l;) are the es-
timated hyperparameters at time instant t, and (\,,, A;) are the smoothing coefficients in

the range of (0, 1).

5.2.2 Optimal Wind Sensing Locations

The Gaussian process method has been widely used to model unknown environmental
fields [99] and cope with the optimal sampling point selection problem [100]. As an ad-
vantage of the GPR-based wind field estimation, the estimated covariance of wind speeds
at the target locations can be provided, which represents the uncertainty of wind prediction.
To obtain the maximum amount of wind information at these target locations, the optimal
wind sensing locations should be determined for the UAVs.

To quantify the amount of uncertainty, the differential information entropy is introduced
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as

H(z) = — /p(x) log p(z)dx (5.10)

Since the prior distribution of wind speeds at the target locations follow a multivariate
Gaussian distribution =; ~ A/(0, 3 ), the information entropy of wind speeds at the target

locations can be calculated as
— 1 N,
H(E) = 5 logdet(Xy) + —(log 2 + 1) (5.11)

where NV; denotes the number of target locations.
If the wind measurements and the wind sensing locations are given, to quantify the

reduction of uncertainty of =; conditioning on =, the mutual information can be calculated

as
I(Ey; 25) =H(Z) — H(E=s)
=H(Z,) + H(Zs) — H(Z, Z5) (5.12)
1 log det(X;) det(X2)
2 det(Eg)
where
(
21 :Ett

Yo =Y + 021y,
(5.13)
Yo + 02y, XL
3 pr—

Z1’1&5 Ett

\

Therefore, the optimal wind sensing locations can be determined by maximizing the
mutual information. It is worth noting that the determination of the optimal wind sensing
locations is dependent on the selection of target locations, the number of wind sensing
locations, and the prior knowledge about the GPR-based wind field model, i.e., the prior
knowledge on the hyperparameters. On the other hand, once the wind measurements are

provided at these optimal wind sensing locations, the GPR-based wind field model can be
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updated for the wind prediction.

5.2.3 Forest Fire Monitoring Scheme Based on Ensemble Kalman Fil-

ter

In order to facilitate the design of EnKF for forest fire monitoring, the fire state vector,
which is composed of the two-dimensional coordinates of N fire points at time instant ¢,

is defined as

33£ = [(f]ac,l, Qy,1)7 (%,2, Qy,Q)a T, (QI,Nf, Qy,Nf)]T (5.14)

Correspondingly, the wind vector that induces the propagation of these fire points is

defined as
Sl{ = [(590717 fy,1>7 (506,27 £y,2)7 T (éx,Nfa fy,NfﬂT (5.15)

With the fire observations collected by UAVs, the observation vector of these fire points

is defined as

ZIJ: = [(qg,la qz,l)v (qg,% QZ,2)7 ) (qg,va qz,Nf)]T (516)

Considering the insuperable uncertainties in both forest fire predictions and the obser-
vations, the ensemble Kalman filter is designed to evaluate the status of forest fire via ob-
servations. The EnKF algorithm is a sampling-based approach, which is advantageous for
solving extremely high-dimensional, possibly nonlinear, and non-Gaussian state estimation
problems.

In the EnKF process, an ensemble of N, state vectors are propagated through the fire
spread model. To predict the forest fire spread, the current estimates of wind speeds are
required. Given the current coordinate estimates of the fire points, the wind estimates can

be sampled via the GPR-based wind field model

&y ~ &l 1= ) (5.17)
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where y =1, 2, ---, N..
Then, based on the fire spread model, the ensembles of forest fire states can be propa-

gated as

mil(k) 1 f(wi( i\k 17 £k\ ) + wf(j) (518)

where w}: ~ N (0, Q) denotes the process noise vector in the forest fire propagation.

Based on the state ensemble prediction, the predicted observations can be obtained as
2L, = il ) + ol (5.19)

where v,{ 0 N (0, Ry) denotes the observation noise vector.

To update the ensemble of predicted state vectors with the fire observations collected
by UAVs, the computation of the EnKF gain is required. The optimal gain is approximated
from the prediction ensembles Egs. (5.18) and (5.19).

The mean of the propagated state ensemble and the predicted observation ensemble can

be obtained as )

wk\k 1= E :wk\k 1

1 .
f _ ()
Zhk-1 Ty Zkk—1
k =1

(5.20)

Then, the cross-covariance between the propagated states and predicted observations

and the covariance of predicted observation can be computed as

( N,
- 1 - £0) £0)
Ck N 1 Z($£|k—1 - wk|g—1)(zk|k—1 zk|lg 1)
= (5.21)

N,
1 e
2z _ f f(G) f f(G)
Cr N _1Z(zk|k 1 zk“g 1)<zk|k 1_Z1g|ig7 )
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Thus, the EnKF gain can be computed as

Ky =CH(CF + Ry)™! (5.22)

Algorithm 2: The proposed EnKF-based forest fire monitoring approach

Input: Observation of forest fire z and the GPR-based wind field model p(&/|x])

Output: Estimates of fire states §3£

Ne .
Jj=1

[

Initialize the ensemble of forest fire states {:I:O
for & < 1 to Number of time steps do

3 Prediction:

4 Sample €k\k 1™ p(€£|k 1 ‘wi(jiuc 1)'

5 Propagate mg‘(]g) R f(mi(jl\k y €k‘ >+w£(3);

[

6 | Predict z/:‘(kj) L h<wk|k) O+ oY),

7 Update

8 wk|k 15 N ZJ 1 wk|(g) 1’

9 Z;’:uc 15~ ;V61 z;’:\(k) 1°

10 Cp* __1 ZJ 1(wk\k 1 wkfé) 1)(z£|k 1= zk|(lg) N
1 Cy _1 Z] 1(zk\k 1 zl]:\(lz) 1)(Z1{\k 17 ZI{\(;) D5

12 Compute gain K, < Cf*(CF# + Ry)™
13 | Update azﬁg) — a:kl(k L Ki(z] — z,ff,i) ME

14 | Estimate #] ~ - Zj;l wkf;)

15 end

With this gain, the ensemble of propagated states can be updated as
) =2l + Kz — 2] (5.23)

Finally, the estimate of forest fire state can be approximated as

Ne

. 1 ;
&l ~ v wg‘(,z) (5.24)
e i0

To better understand the proposed EnKF-based forest fire monitoring approach, the
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pseudo code is given in Algorithm 2.

5.3 Simulation Results

In this section, simulations are conducted to demonstrate the effectiveness of the pro-
posed forest fire monitoring strategy in the presence of unknown wind environments.
To generate wind environments for simulations, a horizontal wind field at the altitude

of h, = 50 m above the vegetation is defined as

&, asin®(&) + bcos?(£) + €
_ (50) (50> (5‘25)
&y acos(g5) + bsin(Z) + €
where @ = 4 and b = 3. ¢ is a zero-mean Gaussian noise with a variance of o2 =

0.01 (m/s)? that represents the uncertainty of wind speeds.
The propagation of fire front is simulated based on the fire spread model Eq. (2.19). The
parameters of the model are setas hy = 1.5m, Ry = 1 m/s, 3 = 0.002, and o = 4000 m~ L

The initial fire front has an arbitrary shaped boundary, which is described as

Qz0 =T - COSC

(5.26)

Gz =T -Sina

where « € [0, 27] and 7 = 7y + ks(sin 6« + sin 3«). In the simulations, parameters for the
initial fire front are set as ro = 100 m and k£, = 5 m. By evenly sampling «, the continuous
fire front is discreted by N; = 40 fire points. Fig. 5.3 shows the forest fire spread in the
self-defined wind field.

UAVs are commanded to provide wind measurements and forest fire observation at the
altitude of 50 m. The variances of wind measurement noise and forest fire observation

noise are set as 02 = 0.01 (m/s)? and 62 = 1 m?. To determine the optimal wind sensing
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Figure 5.3: Illustration of forest fire spread in the self-defined wind field

locations, the prior knowledge of the hyperparameters are set as oy = 5m/s and [ =
100 m. When arriving at the desired positions, UAVs are set to collect wind measurements
and forest fire observations at a frequency of 1 Hz. The smoothing coefficients for the

hyperparameters are set as A\,, = 0.1 and A\, = 0.1.

5.3.1 Forest Fire Monitoring with Regional Wind Field Estimation

In this simulation, the performance of the proposed strategy is evaluated with the re-
gional wind field estimation. The region of interest is defined as a scalar field {(z, y)| —
150m <z <200m, —150m < y < 200 m} with a resolution of 50 m in each direction.
The actual wind field with target locations is shown in Fig. 5.4.

In order to demonstrate the effectiveness of the GPR-based wind field estimation, the
estimation results of 10, 20, and 40 wind sensing locations are compared. Given the num-
ber of wind sensing locations, the optimal wind sensing locations can be obtained by using
the maximum mutual information criterion. The predicted mean wind fields are shown in

Fig. 5.5. It can be observed that the more available wind measurements collected by UAVs
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Figure 5.5: Predicted mean wind field with different numbers of wind measurements
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results in the better wind field estimation. However, in the case of insufficient measure-
ments, it will cause an underfitting problem for the regional wind field estimation. With the
estimated wind fields, the forest fire spread can be predicted. Fig. 5.6 shows the prediction
of forest fire spread at ¢ = 60s. The results of forest fire prediction suggest that the re-
gional wind field estimation can provide valuable information for the forest fire prediction,
but the performance of the forest fire prediction still depends on the accuracy of the wind

field estimation within the region of interest.

------------- Actual N, =20
———-N,=10 N, =40

200

150 |

100 -

50

Y (m)

=50

-100 1

Figure 5.6: Prediction of forest fire spread at t = 60 s

With the EnKF, the prediction of forest fire spread can be updated via the fire observa-
tions collected by UAVs. Fig. 5.7 shows the estimation of fire front with EnKF at ¢ = 60 s.
A comparison of forest fire spread prediction and estimation are demonstrated in Fig. 5.8.
The mean distances and the root mean squared (RMS) distances of the fire front estimation
to the actual fire front decrease, compared with those of the forest fire prediction without
observation update. This is due to the fact that with the fire observations collected by UAVs,
the prediction errors that are caused by the wind field estimation errors and uncertainties of

the forest fire spread model can be reduced by the EnKF.
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Figure 5.7: Estimation of forest fire spread with EnKF at t = 60s
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Figure 5.8: Comparison of forest fire spread prediction and estimation
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5.3.2 Forest Fire Monitoring with Specific Focus on the Fire Front

In this simulation, the wind field is estimated with specific focus on the fire front, i.e.,

the discrete fire points on the fire front are set as the target locations for the wind field

estimation. To avoid the underfitting problem caused by insufficient wind measurements,

the number of the wind sensing locations is set as Ny = 20.
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Figure 5.9: Wind field and forest fire estimation with specific focus on the fire front at

t=20s
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Figure 5.10: Wind field and forest fire estimation with specific focus on the fire front at

t=20s

Figs. 5.9-5.12 show the simulations of wind field and forest fire estimation with spe-

cific focus on the fire front. The optimal wind sensing locations are updated according to

109



—=a— Estimated Fire Front
% Wind Sensing Locations

200

100

£
>
-100
-200
-200

100

-100 0
X (m)

200

200

100

Figure 5.11: Wind field and forest fire estimation with specific focus on the fire front at

t=40s
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Figure 5.12: Wind field and forest fire estimation with specific focus on the fire front at

t=60s
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Figure 5.13: Comparison of forest fire estimation with regional wind field and specific
focus on the fire front
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the spreading fire points. It can be seen that with specific focus on the fire front, the wind
sensing locations are spread out with the propagation of the forest fire to satisfy the ob-
jectives. Correspondingly, the wind field near the fire front can be estimated with a higher
accuracy. Fig. 5.13 shows that with specific focus on the fire front, the mean distance and
RMS distance to the actual fire front both decrease. This result indicates the method can

improve the estimation accuracy of the border region of the forest fire as it keep expanding.

5.4 Summary

This chapter presents an EnKF-based strategy to estimate the forest fires with wind
measurements and fire observations collected by multiple UAVs. Using the Gaussian pro-
cess regression method, the local wind field model is reconstructed based on the wind
measurements to provide predictions of wind components for the fire prediction. Then,
to improve the wind field estimation for the forest fire monitoring, the locations of wind
sensing are optimized with the maximum mutual information method. Based on the Rother-
mel’s fire spread model, the propagation of the forest fire front is estimated in the ensemble
Kalman filter framework. The simulation results demonstrate the effectiveness of the pro-

posed forest fire monitoring strategy.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, the wind estimation from quadrotor motion, the active wind rejection
control of quadrotor UAVs and the forest fire monitoring approach with a group of UAVs

are investigated. To summarize, several major conclusions are drawn as follows:

(1) The proposed two-stage particle filter-based wind estimation approach can extract
wind vectors from quadrotor motion without additional wind sensors. By adopting
the cascaded structure, the accuracy and the computational efficiency of the particle

filter procedure can be improved.

(2) Compared with the wind triangle wind estimation algorithm, the proposed approach
can effectively estimate wind vectors based on the nonlinear dynamic model of a
quadrotor UAV and reduce the adverse impact of measurement noise and produce

more accurate estimation results.

(3) The proposed wind rejection control can actively compensate for the external wind
disturbances acting on the UAV dynamics based on the explicit wind estimation ob-

tained from the two-stage particle filter. By using an adaptive nonsingular terminal
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sliding mode control, one can attenuate the lumped disturbances, including wind es-
timation errors and model uncertainties. Moreover, the proposed active wind rejec-
tion cooperative control can improve the formation flight performances of multiple

quadrotor UAVs in the presence of unknown winds.

(4) Compared with the pure adaptive NTSMC, the designed controller with active wind
rejection mechanism can promptly get a response to the time-varying winds so as
to guarantee the tracking performance and stability of quadrotor UAVs against the

unexpected wind disturbances.

(5) The proposed wind field reconstruction approach based on the Gaussian process re-
gression method can retrieve the wind field over the forest fire region with the wind
data collected by UAVs. The optimal wind sensing locations can be determined via
the designed algorithm for a group of UAVs to collect wind data, where the maximum

amount of wind information can be obtained.

(6) The proposed ensemble Kalman filter-based forest fire monitoring approach with the
wind field reconstruction can accurately assess the status of wind-affected forest fires.
The proposed method can sample wind data from a multivariate Gaussian distribution
related to the fire front locations to overcome the challenge of obtaining wind input

data for forest fire estimation.

6.2 Future Works

This thesis mainly focuses on the wind estimation and control of UAVs with application
to forest fire surveillance. In the future, more effort should be devoted to the studies in the
related fields. Based on the current research in this thesis, several future directions are

outlined as follows:
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The proposed wind estimation approach and wind rejection control strategy are de-
pendent on the quadrotor aerodynamic model considering wind effects. However,
the current challenge is how to obtain the accurate aerodynamic representation of the
aircraft. Therefore, the accurate model of a quadrotor UAV is worth further investi-

gation.

The wind estimation approach and wind rejection control are investigated without
considering more complicated and challenging issues, such as sensor faults, actuator
faults, and computation and communication limitations, which are expected to be

studied in the future work.

The proposed forest fire monitoring approach relies on the forest fire spread model
and the interaction between winds and fires. As a result, the fire spread model should

be further investigated in the future to improve the accuracy of estimation.

The observations of forest fire states are assumed to be perfectly obtained in this
thesis, while more work should be done for the identification and localization of fire

front locations with UAVs.

Although the proposed approaches are validated in simulations, their effectiveness

should be further validated by real flight experiments.
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