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Abstract

Wind Estimation and Control of Unmanned Aerial Vehicles with Application to
Forest Fire Surveillance

Zhewen Xing, Ph.D.

Concordia University, 2023

In recent years, there has been an increasing interest in the application of unmanned

aerial vehicles in forest fire monitoring and detection systems. Armed with unmanned

aerial vehicles (UAVs), firefighters on the ground can get a bird’s-eye view of the terrain,

respond to forest fires quickly, distribute resources, and ultimately save lives and properties.

In practice, wind behaviors have significant impacts on both the performance of UAV and

forest fire situations. However, current wind measurement and estimation relies on data

gathered from ground weather stations that are often located several kilometers away from

the forest fire regions. As a result, it is challenging to maintain the performance and assess

the forest fire situations properly with the obtained wind information.

This thesis investigates the problems of the wind estimation and control of unmanned

aerial vehicles with application to forest fire surveillance. To develop UAVs as remote wind

sensing platforms, a two-stage particle filter-based approach is proposed to estimate winds

from quadrotor motion. Based on the estimated wind information, an active wind rejection

control strategy is designed to maintain the performance of a quadrotor UAV in the presence

of unknown winds. Then, the active wind rejection control strategy is developed for the

formation control of multiple UAVs to ensure their cooperative tracking capability. Finally,

based on the wind data and fire observations collected by UAVs, a forest fire monitoring

scheme is designed to accurately estimate the situation of wind-affected forest fires.
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Chapter 1

Introduction

1.1 Background

1.1.1 Guidance, Navigation and Control of UAV

Unmanned aerial vehicle techniques have seen explosive growth over the past few

decades. UAVs are classified based on weight, flying height, wing type, endurance and

range, which support wide varieties of applications. These applications cover a large num-

ber of fields, such as forest fire monitoring, aerial photography, payload delivery, agricul-

ture, infrastructure inspection, policing and surveillance. The reliability and safety of UAVs

are increasingly required for these practical applications because UAVs are often used to

execute specific tasks in complex and hazardous environments.

For the autonomous operation of UAVs, guidance, navigation and control are three es-

sential components that constitute the general structure of the UAV system, as demonstrated

in Fig. 1.1. These subsystems are devoted to the safe, reliable, and efficient performance

of the whole UAV system. The functions of these three subsystems are briefly discussed as

follows.

(1) Guidance subsystem is responsible for the generation of desired trajectories for the
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Figure 1.1: General structure of UAV guidance, navigation and control system [1]

control subsystem based on the information of UAV and environment obtained from

the navigation subsystem. To accomplish assigned tasks with the considerations of

targets, environment, operators, UAV cooperation, available power, etc., optimal tra-

jectories, as well as desired changes of velocities and attitudes to follow those paths,

are generated for the UAV in this subsystem.

(2) Navigation subsystem is responsible for the identification of current UAV states and

its surrounding environment information for the guidance and control subsystems.

UAV states, including position, velocity, attitude, and angular velocity can be mea-

sured or estimated with onboard sensors such as the GPS and IMU modules. In

addition, the environment perception is an important aspect. For example, changes

of wind speed and direction can be measured from wind sensors or estimated from

UAV motion.

2



(3) Control subsystem is responsible for the determination of control commands to sta-

bilize the vehicle and track the desired trajectories generated by the guidance subsys-

tem. To accomplish the trajectory tracking control of a UAV, a set of waypoints are

extracted from the desired trajectories. The designed controller yields appropriate

control commands and allocates them to each control surface of the UAV, including

the thrust, rudder, elevator, aileron, etc., to traverse all waypoints.

1.1.2 Role of UAV in Fighting Forest Fire

Area burned Number of fires
2012 1,928,138 7,337
2013 3,798,229 5,900
2014 4,607,677 4,883
2015 3,969,536 6,773
2016 1,400,627 5,026
2017 3,456,768 5,305
2018 2,266,587 6,845
2019 1,838,960 4,258
2020 229,271 3,928
2021 4,299,453 6,525
2022 1,093,888 3,110
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Figure 1.2: Forest area burned and number of forest fire in Canada, 2012-2022 [2]

Over the past few decades, increasing global temperatures and more prolonged and

severe droughts have contributed to the favorable conditions of forest fires [3, 4]. These

forest fires resulted in irreparable environmental damages and unquantifiable economic

losses, which had detrimental impacts on ecosystem services, public health, and economic

activities. Fig. 1.2 shows a statistic result of burned forest area and the number of forest

fires in Canada from 2012 to 2022 (to date). In Canada, about 7300 forest fires have

occurred and burned about 2.5 million hectares of forests annually over the last 25 years

[5]. In addition, recent extreme forest fires in Brazil, Australia, and California in USA have

3



once again attracted public attention to the issue of forest fires.

Autonomous UAVs are playing an important role in fighting forest fires due to their low

cost and high flexibility. UAVs can be deployed to improve the situation awareness by the

ground team and share important data with the air and ground crews that can help ground

teams detect potential risks and put out the fire rapidly. Fig. 1.3 indicates the role of UAV

in three stages of fighting forest fires.

Surveillance

Detection

Confirm

Alarm

Diagnosis

Monitoring

Prognosis

Extinguish

Post-fire 
analysis

Recovery

Before During After

Figure 1.3: Role of UAV in three stages of fighting forest fires

(1) Before: UAVs can be deployed to minimize the cause of forest fires for prevention.

Patrolling high-risk regions of potential fires by ground crews is usually dangerous,

time-consuming, and inefficient because of inadequate infrastructures and rough ter-

rains. Fixed-wing UAVs can traverse a long distance to continuously observe over a

large area of forest in order to find the potential occurrences of fires, while rotary-

wing UAVs can quickly provide close site-detection to confirm these hot spots. When

occurrences of these fires are confirmed, UAVs can quickly alert the ground team

about the emergence of forest fires.

(2) During: UAVs can be applied for a fast response to forest fires in order to minimize

adverse consequences. UAVs can locate fire sources and diagnose the extent of fire

in the air when thick smoke makes it nearly impossible for visual cameras to see the

4



source and scope of the growing fires from the ground, continuously monitor theses

fires and its surroundings with onboard cameras and other sensors, and predict the

speed and direction of forest fire propagation in real time. Furthermore, with com-

mands from the ground center, UAVs can assist in fire suppression by spreading fire

suppression liquid to extinguish the fire or dropping ignition spheres at the desired

locations to intentionally set small fires under set conditions to clear vegetation that

could become fuel in the future.

(3) After: UAVs can be used to evaluate damage and risks of forest fires. By mapping

with UAVs, the ground team can obtain a full view of the terrain situations before and

after the forest fire for the post-fire analysis. These information can be useful for the

recovery over the terrains. In addition, UAVs can help crews find the unextinguished

fires to warn firefighters operating away from the potential dangers.

1.2 Review of Related Works

Evidence suggests that wind behavior is one of the most important factors that has

great impacts on the performance of UAVs and the propagation of forest fires. A consid-

erable amount of research have been well studied on wind measurement and estimation

approaches for UAVs, control of UAVs against wind disturbances, and forest fire monitor-

ing approaches.

1.2.1 Wind Measurement and Estimation Approaches for UAVs

Wind measurement and estimation approaches have been widely developed on the UAV

platforms. Especially, fixed-wing UAVs benefit from their relatively high endurance and

the ability to traverse long distances to capture wind data in a broad range of areas with
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more specific sensors, although the forward-flight nature makes it impossible for continu-

ous wind data collection at fixed point locations. In addition, rotary-wing UAVs, in partic-

ular multirotor UAVs, are increasingly used for in-situ wind measurements in low-altitude

environments, due to their hovering capability and easy maneuverability. UAV-based wind

measurement and estimation approaches can be applied to remotely collect wind data in

many fields. For example, UAVs can be deployed over the forest fire region to collect wind

data for the forest fire monitoring and fighting tasks.

To obtain wind data with UAVs, the most effective way is to measure wind speed and

direction via the anemometers carried by the UAV platforms. The available wind sensors

include but are not limited to the multi-hole pressure probe [6, 7, 8, 9, 10, 11, 12], the

Pitot tube [13, 14, 15, 9, 16], the ultrasonic anemometer [17, 18, 19, 20, 21], and the hot-

wire anemometer [22]. Reliable wind data can be produced by those chosen anemometers

during flight, although additional wind sensors may reduce the battery life and increase the

total expense.

However, in the case of no wind sensor or in the presence of wind sensor faults, indirect

approaches can be adopted to estimate wind data from UAV motion without additional

wind sensors. In general, there are two main types of indirect wind estimation approaches,

namely model-based approaches and data-driven approaches.

Model-based approaches are proposed based on the dynamic model of a UAV with the

consideration of wind effects acting on the UAV motion. The model-based approaches

involve but are not limited to those based on state estimation, parameter identification, and

disturbance observer. In [23], three approaches are compared for wind estimation based

on three quadrotor models, i.e., the kinematic particle model, the dynamic particle model,

and the rigid-body model. Each model is linearized about the hover equilibrium to enable

the wind estimation using a state observer. The linear Kalman filter [24, 25], the extended

Kalman filter [26, 27] and the unscented Kalman filter [28] are the most commonly used
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optimal state observers for wind estimation on a UAV. In [29], three time-varying parameter

estimation algorithms are proposed for the wind estimation of a quadrotor based on the

adaptive observers. In [30], a multi-objective optimization algorithm is used to estimate

wind and identify aircraft model parameter. However, model-based approaches should be

applied with accurate models of UAVs. To apply these approaches for UAVs, large amounts

of effort should be invested to the mathematical model of aircraft dynamics.

Depending on previously observed data, data-driven approaches estimate or infer wind

vectors by matching the similar patterns in the history. The data-driven approaches can

characterize a static relationship between the wind vector and UAV states (or control re-

sponses) only from historical data. The relationships can be obtained by using data pro-

cessing methods, such as the least-squares fitting method, the artificial intelligence method,

etc. In [31], the oncoming flow velocity and direction can be determined from the bijective

contour figure of oncoming flow vector and the required power of each rotor. In [32], a

static relationship between the wind vector and Euler angles of a quadrotor UAV is ob-

tained through wind tunnel tests. Based on previous work, the relationship function is

corrected by adding the acceleration term in [33]. Artificial intelligence methods such as a

long short-term memory (LSTM) neural network method is used in [34] to estimate wind

vectors for a quadrotor UAV from the position and attitude measurements. Data-driven

methods can be applied without understanding the complex dynamic model of a quadrotor

UAV under wind effects. However, the real applications of data-driven methods face chal-

lenges of defining dataset to generate the mapping functions for wind estimation, solving

overfitting issues and so on.
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1.2.2 Control of UAVs Against Wind Disturbances

Wind behaviors have unavoidable impacts on the performances of UAVs in outdoor

tasks, such as employing UAVs for the forest fire detection, monitoring, and fighting. Ex-

ternal wind disturbances generate unexpected forces and moments acting on the UAV that

will degrade the performance of the vehicle. In particular, small-scale UAVs are more sensi-

tive to those external disturbances due to their low inertia and small size. Therefore, control

of UAVs against wind disturbances should be investigated to ensure their performance of

tracking desired trajectories and stability in the presence of unknown wind disturbances.

In recent years, lots of effort has been invested in developing the control strategies of

UAVs under wind disturbances. One of the most efficient strategies is to design a robust

controller to attenuate wind effects. In [35], two robust nonlinear sliding mode controllers

are designed under wind perturbations. A switching model predictive attitude control is

adopted based on a piecewise affine (PWA) model of the quadrotor’s attitude dynamics

against wind gust disturbances [36]. The L1 backstepping trajectory tracking control is

adopted to allow for the fast adaption to rapidly changing system uncertainties and wind

disturbances with the guaranteed robustness [37]. In [38], a robust nonlinear dynamic in-

version attitude controller is proposed in the presence of model uncertainties and external

disturbances of wind gusts, aerodynamic interactions with nearby structures, and ground

effects, while a feedback position controller is used to handle the lateral and vertical transi-

tions. In [39], the finite frequency H∞ control is used for the attitude stabilization, while the

PID-based H∞ loop shaping control is used for the linear motion in the presence of wind

disturbance. An acceleration feedback enhanced H∞ control is adopted against wind dis-

turbance in [40]. However, robust control methods have a high degree of conservativeness

for the external disturbances defined by a norm bounded variable [41].

To improve the performance of UAV system against wind disturbances, unknown wind

effects acting on the UAV dynamics are usually estimated to be rejected. To achieve this
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purpose, disturbance estimation and rejection techniques are developed, such as disturbance-

observer-based control, active disturbance rejection control, embedded model control and

composite hierarchical anti-disturbance control. Authors in [42] propose a detailed review

of disturbance observer. In [43], a high-gain residual observer is implemented in an em-

bedded robust attitude control of a quadrotor UAV for online estimation and compensation

of wind gust disturbances. In [44], a multiple observers based anti-disturbance control

is applied for a quadrotor UAV, where a composite disturbance observer together with an

extended state observer are used in the position loop to mitigate the payload and wind

disturbances and an extended state observer is used in the attitude loop to reject model

uncertainties and wind disturbances. In [45], an attitude control for a UAV quadrotor is

developed in the framework of active disturbance rejection control and embedded model

control to estimate and reject the disturbances. In view of the idea of composite hierarchical

anti-disturbance control, an adaptive composite disturbance rejection control is developed,

containing active disturbance rejection control and disturbance observer, for attitude con-

trol of the agricultural quadrotor UAV [46]. In addition, the deep-learning-based control

approaches have become increasingly attractive in recent years. To increase the robustness

of the proposed control scheme, the deep-learning-based approach is adopted to learn the

unknown aerodynamics of the UAV. In [47], a deep-learning-based trajectory tracking con-

troller is developed to learn to quickly adapt to rapidly-changing wind conditions. To this

end, the domain adversarially invariant meta-learning algorithm is developed for the offline

learning of the common aerodynamic representation, while a composite adaption law is

used to update wind-specific linear coefficients.

The sliding mode control schemes have been well studied for UAVs to solve the position

and attitude tracking problems, due to its inherent robustness to model uncertainties and

external disturbances. In [48], an adaptive fault tolerant control based on a multivariable
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integral terminal sliding mode control is developed in the presence of parametric uncertain-

ties and actuator faults. An adaptive super-twisting sliding mode control is adopted for a

quadrotor UAV to track a desired trajectory under gust winds [49]. An adaptive PID-based

sliding mode control is offered for a quadrotor in the existence of external perturbations

with unknown bounds [50]. In [51], the position and attitude control of a quadrotor UAV

is realized by an optimized fuzzy-based sliding mode control. Based on the nonsingular

terminal sliding mode control, the fault tolerant control for a quadrotor UAV is proposed

with the consideration of model uncertainties and wind disturbances [52]. In [53], an adap-

tive nonsingular fast terminal sliding mode control is adopted to stabilize the attitude of a

quadrotor, while a robust backstepping sliding mode control is used to follow the prescribed

path.

1.2.3 Forest Fire Monitoring Approaches

In order to accurately monitor the situation of forest fires, the fire spread behavior has

been studied. The fire environment, which incorporates the effects of weather, fuel, and to-

pography, determines the propagation process of forest fires. To describe the characteristics

of propagating forest fires, fire spread models are developed, such as the Rothermel model

[54] and the Canadian Forest Fire Behavior Prediction system [55]. A review of wildland

surface fire spread modelling is proposed in [56, 57, 58]. However, these predictive models

are sensitive to the model input data, which are readily known to induce fire behaviors, such

as the wind condition, fuel distribution, and slope steepness. When no accurate measure-

ments or observations of these input data are provided, the estimation of forest fire spread

must be produced with inevitable errors.

Among these factors, the wind condition plays an important role in driving the forest

fire propagation and also for effective fire fighting using UAVs. As a result, many efforts

have been made for the better understanding of wind effects on the spread of forest fires
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and the estimation of wind conditions for forest fire monitoring. The interaction of wind

and fire is studied in [59]. In [60], authors provide an analysis of wildfire propagation

in the presence of low-level environmental vertical wind shear through four comparative

grassfire numerical simulations. In [61], the wildfire dynamics in wind-driven conditions

is predicted using an inverse modelling approach. Considering the interaction between fire

and wind, the spread rate of forest fire is predicted using UAV images and an LSTM model

in [62]. In [63], a wireless sensor network is deployed to sense wind conditions at ground

level to improve the prediction of wind-affected wildfire spread.

In recent years, to detect and monitor forest fires more quickly and accurately, UAVs

are widely used in forest firefighting missions. UAVs can take the roles of firefighters

when flying into the region of forest fires to monitor these flames with effective forest fire

detection [64, 65, 66] and estimation techniques [67, 68]. With observations of the fires

that are gathered via onboard sensors on the UAV platforms, firefighters can quickly obtain

accurate information about the current status of forest fires from a distance and also use

UAVs for firefighting, avoiding the threats of unexpected fire conditions to crews’ lives.

Therefore, the application of UAVs provides a promising and safety solution for the fast-

response forest fire monitoring and fighting mission.

A large variety of data assimilation methods have been developed to estimate the con-

dition of a propagating forest fire based on fire front observations. The Kalman filter is the

most commonly used data assimilation method for the forest fire monitoring mission [68].

However, the major drawback of the standard Kalman filter is that it works with the as-

sumption of linear Gaussian fire spread model. To overcome this limitation, extensions of

the Kalman filter or other sequential Monte Carlo filtering methods have been proposed, for

example, the extended Kalman filter [69], the unscented Kalman filter [69], the ensemble

Kalman filter [70, 71, 72], and the particle filter [73, 74].
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1.3 Objectives of This Thesis

The review of related works indicates the importance of accurate wind estimation for

assuring the performance of UAVs and assessing the status of propagating forest fires in

the presence of unknown winds. This thesis aims to estimate wind vectors from quadro-

tor motion and use the estimated wind information to maintain the performance of UAVs

and provide accurate assessments of the wind-affected forest fires under unknown wind

environments. In particular, this thesis is organized with the following objectives:

(1) Design and develop an online wind estimation approach that can extract wind infor-

mation from quadrotor motion without additional wind sensors.

(2) Design and develop an active wind rejection control strategy for a quadrotor UAV to

maintain its performance against unknown wind disturbances.

(3) Develop and implement the active wind rejection control scheme for multiple UAVs

to improve their cooperative tracking performance in the unknown wind environ-

ments.

(4) Design and develop a UAV-based forest fire monitoring approach to obtain an accu-

rate assessment of wind-affected forest fires.

1.4 Contributions of This Thesis

This thesis research contributes to the indirect wind estimation approach for a UAV

without additional wind sensors, the active wind-rejection control scheme to increase the

safety and reliability of UAVs against wind disturbances, and the UAV-based forest fire

surveillance strategy to produce accurate assessments of wind-driven forest fires in un-

known wind environments.

The main contributions of this thesis are summarized as follows:
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(1) A particle filter-based approach is proposed to estimate wind vectors in the case of

no additional flow sensors. Based on the nonlinear dynamics of a quadrotor UAV

with wind effects, this approach can provide accurate state and wind estimation from

quadrotor motion and reduce the influences of process and measurement noises.

(2) A two-stage particle filter framework is developed to increase the computational ef-

ficiency of the state and wind estimation for a quadrotor UAV. As a feature of the

two-stage procedure, the subfilters in the second stage can produce wind estimation

in parallel based on the state particles obtained from the first stage, improving the

operational efficiency of the overall filter.

(3) An active wind rejection control based on adaptive nonsingular terminal sliding mode

control is adopted for a quadrotor UAV to ensure its tracking performance in the pres-

ence of unknown wind disturbances. The external wind disturbances can be com-

pensated for, depending on the explicit wind estimation obtained from the two-stage

particle filter. In addition, an adaptive nonsingular terminal sliding mode control is

adopted to guarantee the robustness, considering estimation errors and model uncer-

tainties.

(4) An active wind rejection distributed formation control is further developed for mul-

tiple quadrotor UAVs in order to improve their cooperative tracking performance in

the presence of wind disturbances.

(5) A Gaussian process regression-based wind field reconstruction approach is proposed

using the wind data collected by UAVs in order to provide midflame wind prediction

for the assessment of forest fire spread condition. To obtain the maximum amount of

wind information about the forest front locations, the maximum mutual information

method is applied to provide optimal wind sensing locations for UAVs.

(6) An ensemble Kalman filtering approach is developed for monitoring wind-affected
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forest fires based on wind measurements and fire front observations with UAVs.

Based on the reconstructed wind field, the wind input data can be sampled from a

multivariate Gaussian distribution which consider the forest front locations.

1.5 Organization of This Thesis

This thesis is presented in six chapters including this chapter of introduction, the rest of

which are organized as follows:

Chapter 2 provides several preliminary knowledge that will be used in this thesis. It

starts with the dynamic model of a quadrotor UAV, considering wind effects acting on the

UAV dynamics. Next, the equations of forest fire spread are obtained based on the pop-

ular Rothermel model, which can represent wind-affected fire spread on two-dimensional

surfaces. Last, four wind models are given, including the constant wind, wind gust, wind

turbulence, and log wind profile.

Chapter 3 proposes a two-stage particle filter-based wind estimation approach to extract

wind information from quadrotor motion. Considering the increasingly refined dynamic

model of a quadrotor, the particle filtering method is applied to address the problem of state

and wind estimation with strong nonlinear and non-Gaussian characteristics. To further

improve the computational efficiency of the particle filter, two-stage framework is adopted.

Chapter 4 presents an active wind rejection control of quadrotor UAVs based on the

adaptive nonsingular terminal sliding mode control to improve their performances in the

presence of winds. Based on the explicit wind estimation obtained from the proposed

two-stage particle filter, an active wind rejection control is developed by compensating for

the unexpected wind effects acting on the quadrotor UAV. The proposed control strategy

can guarantee the finite-time convergence and avoid the singularity problem by using non-

singular terminal sliding mode control method. Furthermore, to ensure the cooperative

tracking performance of multiple UAVs in the presence of unknown wind disturbances, the
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active wind rejection control scheme is implemented for the formation control of multiple

quadrotor UAVs.

Chapter 5 develops a UAV-based forest fire monitoring approach to accurately assess

the status of propagating forest fires induced by winds. To accurately monitor the propa-

gation of forest fires, UAVs are deployed to collect the wind measurements and fire front

observations for the assessment of status of wind-affected forest fires. The Gaussian pro-

cess regression method is adopted to reconstruct the wind field over the fire region and

the wind sensing locations are optimized by the maximum mutual information method.

With the collected data, the fire front locations are estimated in an ensemble Kalman filter

framework.

Chapter 6 draws some conclusions of these research works and summarizes several

predominant ideas for the future developments of the thesis’s outcomes.

15



Chapter 2

Preliminaries

2.1 Quadrotor UAV Model
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Figure 2.1: Reference frames and the quadrotor UAV configuration

The typical configuration and the reference frame of a quadrotor UAV are shown in

Fig. 2.1. Its propulsion system is composed of four symmetrically configured rotors with

propellers. Rotors 1 and 3 are arranged to rotate in the clockwise direction, while rotors 2

and 4 are arranged to rotate in the counter-clockwise direction. A quadrotor UAV is defined

as an underactuated mechanical system, because it has six degrees of freedom but only four
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independently controlled actuators to generate force or moments to maneuver.
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(d) Yaw maneuver

Figure 2.2: Maneuver schemes of a quadrotor UAV

The vehicle motion depends on the force and moment generated by the rotors’ spin.

Thrust and moment increase in direct relation to rotor rotation speed. The maneuver

schemes of a quadrotor UAV are shown in Fig. 2.2. The throttle, roll, pitch, and yaw

maneuvers are four basic maneuvers that allow a quadrotor UAV to arrive at a certain po-

sition. The throttle maneuver is achieved by equally increasing (or decreasing) all the

rotation speeds of all rotors. In this case, all rotors are required to produce equal thrusts

without generating any rotational moment. The roll maneuver is obtained by increasing

(or decreasing) the rotation speed of rotor 4 while decreasing (or increasing) the rotation

speed of rotor 2. In this case, due to the generation of roll moments generated by rotors

2 and 4, the vehicle can be rotate around the xb-axis. Likewise, the quadrotor UAV can

rotate around the yb-axis, because of the pitch moment generated by rotors 1 and 3. The

yaw maneuver is obtained by equally increasing (or decreasing) the rotation speed of rotors
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2 and 4, while equally decreasing (or increasing) the rotation speed of rotors 1 and 3. In

this case, the yaw angle is induced by mismatching the balance of thrusts of the rotor pairs

rotating in the clockwise and counter-clockwise directions.

2.1.1 Newton-Euler Dynamic Model

The Newton-Euler dynamic model can be used to describe the translational and rota-

tional motions of a quadrotor UAV. The body-fixed coordinate system and the earth-fixed

coordinate system are illustrated in Fig. 2.1. The body-fixed coordinate system is a right-

hand coordinate system attached to the rigid body of the vehicle, where the axis origin

coincides with the center of mass of the quadrotor and xb-axis, yb-axis and zb-axis point to-

wards the front, right and down directions, respectively. The earth-fixed coordinate system

is the inertial right-hand reference frame, where xg-axis, yg-axis and zg-axis point towards

the north, east and down directions, respectively.

To describe the dynamic model of a quadrotor UAV, the following assumptions are

taken:

• The quadrotor mechanical design is symmetrical.

• The quadrotor body is rigid.

In the body-fixed coordinate system, the equations to describe the quadrotor motion are

given by [75, 12, 23]

mv̇ +mω × v = F

Iω̇ + ω × Iω = M

(2.1)

where m is the mass, I is the inertia matrix, v = [u, v, w]T represents the linear velocity

vector, ω = [p, q, r]T represents the angular velocity vector, F denotes the external force

vector, and M denotes the external moment vector.
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Based on the assumption of symmetrical body, the inertia matrix is written as

I =


Ix

Iy

Iz

 (2.2)

where Ix is the inertia moment along the xb-axis, Iy is the inertia moment along the yb-axis,

and Iz is the inertia moment along the zb-axis.

To determine the trajectory of a quadrotor UAV in the earth-fixed coordinate system,

the ground speed of quadrotor should be expressed according to the linear velocity in the

body-fixed coordinate system. Let P = [x, y, z]T denote the position vector of a quadrotor

UAV, Vg = [ẋ, ẏ, ż]T denote the ground speed vector, and Θ = [ϕ, θ, ψ]T denote the Euler

angle vector, where ϕ, θ and ψ are the roll, pitch and yaw angles. The ground speed vector

of the aircraft can be expressed as

Vg = Rv (2.3)

where R is the rotation matrix, which transfers free vectors from the body-fixed coordinate

system to the earth-fixed coordinate system with the yaw-pitch-roll rotation sequence [75,

12, 23]:

R =


cos θ cosψ sinϕ sin θ cosψ − cosϕ sinψ cosϕ sin θ cosψ + sinϕ sinψ

cos θ sinψ sinϕ sin θ sinψ + cosϕ cosψ cosϕ sin θ sinψ − sinϕ cosψ

− sin θ sinϕ cos θ cosϕ cos θ

 (2.4)

Similarly, the Euler angle derivatives can be obtained according to the angular velocities

in the body-fixed coordinate system

Θ̇ = Lω (2.5)

19



where the transfer matrix is written as [75, 12, 23]

L =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ

 (2.6)

The external forces and moments acting on the quadrotor body are comprised of several

forces and moments [75, 12, 23]:

F = Fg + Fd + Fc + Fδ

M = Md +Mc +Mδ

(2.7)

where Fg represents the gravity force vector in the body-fixed coordinate system, Fd and

Md represent the drag force and moment vectors caused by relative air speed, Fc and Mc

represent the control force and moment vectors induced by the propulsion system, and Fδ

and Mδ represent the perturbation force and moment vectors.

The control forces and moments of the quadrotor UAV are generated by four rotors

of the propulsion system. As aforementioned, the maneuvers of a quadrotor UAV are ac-

complished with the control of four independent rotors. Mathematically, according to the

quadrotor configuration shown in Fig. 2.1, the control force and moment vectors can be

written as

Fc =


0

0

−Fz

 , Mc =


τϕ

τθ

τψ

 (2.8)
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with 

Fz

τϕ

τθ

τψ


=



1 1 1 1

0 −l 0 l

l 0 −l 0

−km km −km km





T1

T2

T3

T4


(2.9)

where Ti denotes the thrust of rotor i with i = 1, · · · , 4, l is the arm length, and km is the

thrust-to-moment coefficient.

2.1.2 Wind Effects on Quadrotor UAV

The relative airspeed plays an important role to generate drag forces and moments act-

ing on a quadrotor UAV [76, 29]. When a quadrotor has low aerodynamic profile and

moves at low translational velocities in a no-wind environment, these aerodynamic effects

on the quadrotor body or rotors are usually neglected. However, drag forces and moments

are nonnegligible to affect the performance of aircraft, when the quadrotor suffers from the

natural winds.

g

wa

xg

yg

Figure 2.3: Wind triangle relationship between quadrotor ground speed vector, airspeed
vector and wind vector

The wind triangle relationship basically encapsulates the vector relationship between

the ground speed vector Vg, the airspeed vector Va and the wind speed vector Vw, as il-

lustrated in Fig. 2.3. The existence of wind speed vector results in the difference between
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the ground speed vector and airspeed vector. In the case of no wind, the airspeed vector is

equal to the ground speed vector.

In general, the ground speed of the aircraft can be provided by the onboard GPS or

IMU, while the airspeed can be measured via onboard airspeed sensors, such as Pitot tube.

Subsequently, the wind vector acting on the aircraft can be determined by the difference

between measurements of ground speed and airspeed. However, when airspeed sensors

fault or lack, for example, airspeed sensors equipped on a quadrotor UAV are vulnerable

to the downwash flow induced by rotors, the wind vector can be estimated from quadrotor

motion.

This thesis mainly focuses on the wind effects that lead to the position drift of a quadro-

tor UAV. Given the quadrotor ground speed vector and wind vector, one can calculate the

airspeed vector to generate the drag forces. The drag forces generated by wind effect can

be approximated as [75, 23, 34]

Fdx = Cdxy(ξx − ẋ)
√

(ξx − ẋ)2 + (ξy − ẏ)2

Fdy = Cdxy(ξy − ẏ)
√
(ξx − ẋ)2 + (ξy − ẏ)2

Fdz = Cdz(ξz − ż)

(2.10)

where Fdx, Fdy and Fdz are the three components of the drag force vector, Cdxy and Cdz

are the lateral and vertical drag coefficients, and ξx, ξy and ξz are the three components of

the wind vector in the earth-fixed coordinate system. It is noted that lateral and vertical

drag forces are separated. The vertical component of the airspeed contributes no lateral

drag force, while the lateral component of the airspeed contributes no vertical drag force.

The lateral component of the drag force is modeled by the standard aerodynamic effect

equation. Different from the lateral component of the drag force, the vertical component of

the drag force can be understood as a propulsive damping effect.

22



2.1.3 Simplified Dynamic Model

Considering the wind effects acting on the quadrotor UAV, the dynamic model of a

quadrotor UAV is given by Eqs. (2.1)-(2.10), which involve the most typical elements to de-

scribe the quadrotor motion. Two coordinate systems are used to describe the transnational

and rotational motion of the vehicle. For the convenience of the fast digital simulation, the

dynamic model of a quadrotor needs to be simplified.

With the assumption of the low amplitude of angular motion, the approximations of

Vg ≈ v and Θ̇ ≈ ω can be obtained. Therefore, the quadrotor dynamic model can be

simplified as

ẍ =− (cosϕ sin θ cosψ + sinϕ sinψ)Fz
m

+
Cdxy(ξx − ẋ)

√
(ξx − ẋ)2 + (ξy − ẏ)2
m

+
dx
m

ÿ =− (cosϕ sin θ sinψ − sinϕ cosψ)Fz
m

+
Cdxy(ξy − ẏ)

√
(ξx − ẋ)2 + (ξy − ẏ)2
m

+
dy
m

z̈ =− (cosϕ cos θ)Fz
m

+ g +
Cdz(ξz − ż)

m
+
dz
m

ϕ̈ =
Iy − Iz
Ix

θ̇ψ̇ +
τϕ
Ix

+
dϕ
Ix

θ̈ =
Iz − Ix
Iy

ϕ̇ψ̇ +
τθ
Iy

+
dθ
Iy

ψ̈ =
Ix − Iy
Iz

ϕ̇θ̇ +
τψ
Iz

+
dψ
Iz

(2.11)

where di for i ∈ {x, y, z, ϕ, θ, ψ} represents the lumped disturbances. Parameters of a

quadrotor dynamic model are listed in Table 2.1.

To be closer to the real model of a quadrotor model, the states of the quadrotor UAV are

polluted with zero-mean Gaussian noises. The variances of the process and measurement

noises are listed in Tables 2.2 and 2.3, respectively.
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Table 2.1: Parameters of the quadrotor dynamic model
Symbol Parameter Value Unit

m Mass of quadrotor 1.5 kg

g Gravity 9.8 N/kg

Ix Inertial moment along xb-axis 0.03 kg ·m2

Iy Inertial moment along yb-axis 0.03 kg ·m2

Iz Inertial moment along zb-axis 0.05 kg ·m2

Cdxy Lateral drag coefficient 0.3 -
Cdz Vertical drag coefficient 0.5 -
l Arm length 0.4 m

km Thrust-to-moment coefficient 0.1 -

Table 2.2: Variance of process noise
Error source Symbol Variance Unit

Position x, y, z 1× 10−6 (m)2

Linear velocity ẋ, ẏ, ż 1× 10−6 (m/s)2

Attitude ϕ, θ, ψ 1× 10−12 (rad)2

Angular velocity ϕ̇, θ̇, ψ̇ 1× 10−12 (rad/s)2

Table 2.3: Variance of measurement noise
Error source Symbol Variance Unit

Position x, y, z 1× 10−4 (m)2

Linear velocity ẋ, ẏ, ż 1× 10−4 (m/s)2

Attitude ϕ, θ, ψ 1× 10−4 (rad)2

Angular velocity ϕ̇, θ̇, ψ̇ 1× 10−4 (rad/s)2
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2.2 Forest Fire Spread Model

2.2.1 One-dimensional Rothermel Model

The Rothermel model [54, 77] is one of the widely used fire spread model, which

determine the rate of fire spread as a function of the local environmental factors such as

wind, topography, vegetation properties, etc. The no-wind, no-slope rate of spread is given

by [54, 77, 78, 79, 80]

R0 =
IRξpf
ρbεhQig

(2.12)

where IR is the reaction intensity, ξpf is the propagating flux ratio, ρb is the bulk density, εh

is the effective heating factor, and Qig is the heat of preignition.

Considering wind effects on the fire propagation, the rate of spread should be corrected

by the wind coefficient [54, 77, 78, 79, 80]

R = R0(1 + Φw) (2.13)

The wind coefficient derived from the experimental data is calculated as [54, 77, 78,

79, 80]

Φw = C(3.281Uf )
B(

β

βop
)−E (2.14)

with
B = 0.15988σ0.54

C = 7.47 exp(−0.8711σ0.55)

E = 0.715 exp(−0.01094σ)

βop = 0.20395σ−0.8189

(2.15)

where Uf denotes the mid-flame wind speed, β represents the packing ratio of the fuel bed,
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and σ is surface area-to-volume ratio. The mid-flame wind can be calculated by [81]

Uf = U0
1.83

ln
(

6.1+0.36hf
0.13hf

) (2.16)

where U0 is the wind vector at altitude of 6.1m above the vegetation top and hf is the fuel

height.

Table 2.4 gives the parameters of fire spread model, which are adopted in the following

simulations.

Table 2.4: Parameters of the fire spread model
Symbol Parameter Value Unit

R0 No-wind, no-slope rate of spread 1 m/s

β Packing ratio of the fuel bed 0.002 -
σ Surface area-to-volume ratio 4000 /m

hf Fuel height 1.5 m

2.2.2 Extension to Two-dimensional Surfaces

The Rothermel model describes the one-dimensional fire spread, but the wind effects

contribute differently to the fire spread in different conditions. For example, the wind con-

tribution is maximum when the wind blows in the direction of fire spread. On the contrary,

the wind contribution is minimum and negative when the wind blows opposite to the direc-

tion of fire spread. Thus, the fire spread should be modeled in the horizontal plane in order

to account for the wind effects on the propagation of fire fronts. For this purpose, the ellip-

tical fire spread model [82, 83] extends the two-dimensional fire propagation configurations

based on the Rothermel model.

Fig. 2.4 shows the geometry of the elliptical fire spread model. According to the

Huygens principle, this model assumes that every point on the fire front spreads following
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Figure 2.4: Elliptical fire spread model

an elliptical geometry. Let qk denote a point on the fire front at time instant tk and qk+1

denote a point on the fire front at time instant tk+1 where tf is the time interval to spread

the fire point. The spread rates of the ellipse is calculated as [54, 77, 78, 79, 80]

a =
b

LB

b =
1

2
(R +

R

HB
)

c = b− R

HB

(2.17)

where a is the velocity with respect to the semi-minor axis, b is the velocity with respect

to the semi-major axis, c is the velocity between the ignition point and the center of the

ellipse, LB denotes the length-to-breadth ratio, and HB denotes the heading-to-backing

fire spread rate ratio. The LB and HB are determined by [54, 77, 78, 79, 80]

LB = 0.936e0.2566Uf + 0.461e−0.1548Uf − 0.397,

HB =
LB +

√
LB2 − 1

LB −
√
LB2 − 1

.
(2.18)
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The spread rates of the fire point in the X- and Y -directions are computed as [82, 83]

q̇x =D[a2 cosφw(xs sinφw + ys cosφw)− b2 sinφw(xs cosφw

− ys sinφw)] + c sinφw

q̇y =D[−a2 sinφw(xs sinφw + ys cosφw)− b2 cosφw(xs cosφw

− ys sinφw)] + c cosφw

D =[a2(xs sinφw + ys cosφw)
2 + b2(xs cosφw − ys sinφw)2]−

1
2

(2.19)

where φw is the azimuth angle of wind direction and ns = [xs, ys]
T is the vector normal to

the fire front.

2.3 Wind Models

2.3.1 Constant Wind

The constant wind model is a general wind model to approximate the wind situation

in nature. It can provide statistic values of the average winds speed with temporal and

spatial variations in three directions. Normally, the constant wind model is applied as a

basis to provide a more effective simulation environment by incorporating with other kinds

of winds. The model of constant wind can be written as

Vw = Vwc(x, y, z, t) (2.20)
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2.3.2 Wind Gust

The discrete 1-cosine wind gust model [84, 85] can represent the gust feature over time

or in space. The wind gust in a temporal form can be written as

Vw =


0 t < tgs

Vgm
2
(1− cos 2π(t−tgs)

tg
) tgs ≤ t ≤ tgs + tg

0 t > tgs + tg

(2.21)

where Vgm is the maximum gust velocity, tgs is the starting time of wind gust, and tg is the

gust endurance time. The wind gust model is used to describe a sudden change of wind

velocities. In general, the variation of wind gust speed between the peaks and average wind

is greater than 4.5m/s in a short time interval.

2.3.3 Wind Turbulence

The popular Dryden turbulence model is employed to generate a continuous turbulence.

The model describes the characteristics of the turbulence flows in three directions by the

spectral functions [86]

Φu(Ω) = σ2
u

2Lu
π

1

1 + (LuΩ)2

Φv(Ω) = σ2
v

Lv
π

1 + 3(LvΩ)
2

(1 + (LvΩ)2)2

Φw(Ω) = σ2
w

Lw
π

1 + 3(LwΩ)
2

(1 + (LwΩ)2)2

(2.22)

where Φu, Φv, and Φw are the component spectral functions in three directions, σu, σv, and

σw are the turbulence intensities, and Lu, Lv, and Lw are the turbulence scale lengths. At
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low altitudes, the turbulence intensities and scale lengths are given as

σw = 0.1W20

σu =
σw

(0.177 + 0.000823h)0.4

σv =
σw

(0.177 + 0.000823h)0.4

(2.23)

Lw = h

Lu =
h

(0.177 + 0.000823h)1.2

Lv =
h

(0.177 + 0.000823h)1.2

(2.24)

whereW20 denotes the wind speed at the altitude of 6m and h denotes the height of aircraft.

2.3.4 Log Wind Profile

The log wind profile is used to describe the relationship between wind speeds at dif-

ferent heights. At lower altitudes, the wind profile of the atmospheric boundary layer is

logarithmic [81].

Vw(h) =
U∗

κ
ln

(
h− d0
z0

)
(2.25)

where Vw(h) is the wind speed at the altitude h above the ground, U∗ is the friction velocity,

κ = 0.4 is the Von Kármán constant, d0 is the zero plane displacement and z0 is the surface

roughness.

In order to estimate the mean wind speed at the altitude of h2 based on that at the

altitude of h1, the calculation is given by

Vw(h2) = Vw(h1)
ln
(
h2−d0
z0

)
ln
(
h1−d0
z0

) (2.26)
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Values of d0 and z0 are related to the fuel height hf as d0 = 0.64hf and z0 = 0.13hf .

The wind speed at the altitude of h above the vegetation top is given by

Vw(h+ hf ) =
U∗

κ
ln

(
h+ 0.36hf
0.13hf

)
(2.27)

The relationship between the midflame wind speed and the wind speed at the height of

h above the vegetation top is given by

Uf = Vw(h+ hf )
1.83

ln
(
h+0.36hf
0.13hf

) (2.28)

2.4 Summary

This chapter presents the preliminaries of this thesis, including the dynamic model of

a quadrotor UAV, forest fire spread model, and wind models. First, the Newton-Euler dy-

namic model is used to describe the translational and rotational motions of a quadrotor

UAV. In the dynamic model, the wind effects acting on the aircraft are also considered.

Second, the Rothermel model is used to describe the one-dimensional fire spread and ex-

tended to the two-dimensional fire spread according to the Huygen’s principle. Third, the

constant wind, the wind gust, the wind turbulence, and the log wind profile are introduced.
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Chapter 3

Two-Stage Particle Filter-based Wind

Estimation from Quadrotor Motion

3.1 Problem Formulation

This chapter investigates the problem of wind estimation for a quadrotor UAV without

the need of additional wind sensors or in the case when wind sensors are faulty, where the

wind information is important toward certain time- and safety-critical applications such as

forest fire monitoring and fighting using unmanned aerial vehicles. The wind vectors are

the time-varying parameters of the quadrotor dynamic model. A two-stage particle filter

algorithm is proposed to estimate wind vectors from quadrotor motion.

The Kalman filter approach is widely used to solve the state and parameter estimation

(SPE) problems, whereas it gradually loses efficiency in the wind estimation, due to the

increasingly refined models with strong nonlinear and non-Gaussian characteristics. To

overcome this issue, this chapter resorts to the particle filter which is good at solving the

SPE problems of the nonlinear and non-Gaussian systems [87]. The particle filter can

approximate the posterior distributions of the UAV states and wind vectors by sampling
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particles without the restrictive assumptions on the quadrotor model. With a perfect un-

derstanding of the quadrotor dynamic model, the particle filter can effectively reduce the

impacts of the process and measurement noises on the states and wind estimation.

To improve the efficiency of particle filter in high dimensions, the particle filtering

process is executed in a two-stage framework. To estimate states and wind parameters for a

quadrotor UAV, a natural solution is to redefine an augmented state vector for the standard

particle filter approach, comprised of the vehicke states and wind parameters. However, this

solution suffers from the challenge of particle samplings caused by the dimension growth

of the augmented state. By adopting the proposed two-stage framework, this problem can

be mitigated as the sampling processes of UAV states and wind vectors are divided into two

stages of the particle filter. As a result, the computational efficiency can be improved since

the resampling process of wind vectors in the second-stage particle filter can be executed

in parallel. The two-stage framework has been widely used with the Kalman filter in the

actuator fault detection and diagnosis of a quadrotor UAV [88, 89].

Up to now, few works have been conducted on developing a two-stage particle filter for

the state and wind estimation from quadrotor motion. In [90], a two-stage particle filter

is used to estimate the non-Gaussian state with fading measurements. Motivated by the

work in [90], this chapter adopts the two-stage particle filter to estimate the unknown wind

vectors from quadrotor motion. This chapter extends the two-stage particle filter (TSPF) to

solve the problem of state and wind parameter estimation based on the nonlinear dynamic

model of a quadrotor UAV. By using the random walk model to describe the continuous

variation of wind vectors, the states of quadrotor and the time-varying wind parameters are

simultaneously estimated through the proposed TSPF approach.
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3.2 General Particle Filter

To introduce the particle filtering technique, a general nonlinear stochastic system can

be described as
xk ∼ p(xk|xk−1)

zk ∼ p(zk|xk)
(3.1)

where xk ∈ Rn and zk ∈ Rm is the state and observation vectors.

The particle filter makes use of the Bayesian approach to compute or approximate the

posterior distribution of the hidden states given the observations. The posterior distribution

of the hidden states is denoted as p(xk|z1:k), where z1:k = {z1, · · · zk}. To overcome the

difficulty of obtaining the analytic solution of p(xk|z1:k), the particle filter approximates the

posterior distribution with a set of particles. However, there is still a problem of drawing

particles from the unknown p(xk|z1:k). To deal with the problem of sampling particles

from the posterior distribution, the important sampling technique is adopted. In this way,

the particles can be drawn from a proposal importance distribution with proper weights

x
(i)
k ∼ q(x0:k|z1:k)

w
(i)
k =

p(x0:k|z1:k)

q(x0:k|z1:k)

(3.2)

where x
(i)
k represents the particle drawn from the sampling distribution, w(i)

k is the corre-

sponding weights of x(i)
k , and x0:k = {x0, · · · xk}. q(x0:k|z1:k) is the proposal distribution

of the particle propagation.

Therefore, the posterior distribution p(xk|z1:k) can be approximated as

p(xk|z1:k) ≈
1

N

N∑
i=1

w̃
(i)
k δ(xk − x

(i)
k ) (3.3)

where N is the number of particles, w̃(i)
k =

w
(i)
k∑N

i=1 w
(i)
k

is the normalized weight of each
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particle, and δ(·) is the Dirac delta measure. With the approximation, the estimate of xk

given z1:k can be obtained by

x̂k ≈
1

N

N∑
i=1

x
(i)
k (3.4)

To obtain the importance weight of each particle in a recursive fashion, the sequential

importance sampling technique is used. The proposal distribution is chosen as

q(x0:k|z1:k) = q(x0:k−1|z1:k−1)q(xk|x0:k−1, z1:k) (3.5)

The posterior distribution of xk can be deduced as

p(x0:k|z1:k) = p(x0:k−1|z1:k−1)
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
(3.6)

As a result, the importance weight can be updated as

w
(i)
k =

p(x0:k|z1:k)

q(x0:k|z1:k)

∝ w
(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
0:k−1, z1:k)

(3.7)

If the importance distribution satisfies

q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk) (3.8)

then

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, zk)

(3.9)

Ideally, the particles are always propagated with equal weights for the state estimation.

However, it is unavoidable that a few particles will have negligible weights after several

iterations in a general particle filter procedure. In order to solve the particle degeneracy
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problem, the resampling technique is adopted for the particle filter. The technique is also

referred as sampling importance resampling algorithm. After the resampling procedure, a

set of particles with equal weights can be obtained to approximate the posterior distribution.

The traditional resampling methods are proposed, including the multinomial resampling,

the stratified resampling, the systematic resampling, and the residual resampling. Although

the resampling step can prevent the particle from degeneracy, it also has undesired effects.

The resampling step will lead to the particle impoverishment since the low-weighted par-

ticles are most likely to be removed and many of the offspring particles will be the same.

As a result, the diversity of the particles is reduced. This inevitable information damage

will increase uncertainty in the random sampling. Moreover, it is rather challenging to

operate resampling in parallel, which implies a longer execution time of the particle filter

algorithm.

3.3 Wind Estimation Framework

Controller Actuator Sensor

First-stage
State Estimation

Wind Vector

u(t) z(t)

Second-stage 
Wind Estimation

»̂(t)

»(t)

x̂(t)

x(t)Forest Fire Monitoring 
and Fighting Task

~x(t)xd(t)

Noise Noise

System and Wind Effect

Two-Stage Particle Filter

Figure 3.1: Framework of the proposed TSPF scheme for the state and wind estimation
from quadrotor motion

The framework of the proposed TSPF scheme for the state and wind estimation from
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quadrotor motion is demonstrated in Fig. 3.1. The wind vector is estimated as the unknown

parameters of the quadrotor UAV system based on the dynamic model with wind effects.

Considering the nonlinear and non-Gaussian model, the particle filter algorithm is adopted

to estimate the time-varying wind parameters given the control inputs and the quadrotor

motion measurements. However, there is no direct relationship between the wind vector

and measurements, the particle filter is designed in the two-stage structure, where the first-

stage particle filter produces the state estimation from the measurements of UAV motion

and the second-stage particle filter estimates wind vectors based on the estimated states.

Moreover, the efficiency of the filtering process can be improved by using the cascaded

structure as the second-stage filtering can be done in parallel. The particle filter procedure

can reduce the influences of the process and measurement noises to provide accurate esti-

mates of states and wind vectors for the vehicle. The estimates can feed back to making

decisions to the forest fire monitoring and fighting tasks, for example, the obtained wind

information can be used to generate trajectories to reduce the quadrotor power consump-

tion in the forest fire monitoring or to decide the drop location of fire suppression fluid to

extinguish fires. In addition, the estimates of quadrotor states and wind vectors can feed

back to the controller to improve the performance of quadrotor UAV in the presence of

unknown winds.
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3.4 Two-Stage Particle Filter-based Wind Estimation

3.4.1 Discrete-Time Model of a Quadrotor UAV

Let ξk denote the wind vector, xk denote the state vector of UAV, uk denote the control

input vector at time instant tk

ξk = [ξx,k, ξy,k, ξz,k]
T

xk = [xk, yk, zk, ẋk, ẏk, żk, ϕk, θk, ψk, ϕ̇k, θ̇k, ψ̇k]
T

uk = [Fz,k, τϕ,k, τθ,k, τψ,k]
T

(3.10)

To facilitate the design of the proposed TSPF scheme, the discrete-time state-space

model of a quadrotor UAV with the wind effects can be described as

xk = f(xk−1, ξk, uk) + ωx
k (3.11)

where f(·) is the nonlinear discrete-time state-space equation and ωx
k denotes the process

noise vector associated with the UAV states. The process noises are used to represent

uncertainties of the quadrotor UAV dynamic model. The process noises are assumed as

additive uncorrelated Gaussian noises with zero mean and a covariance Qx
k.

To estimate wind vectors for a quadrotor UAV, the variations of wind velocities in three

directions are modeled by random walk processes

ξk = ξk−1 + ωξ
k (3.12)

where ωξ
k denotes the uncorrelated Gaussian noises with zero mean and a covariance Qξ

k.

The wind variations are assumed to be homogeneous in three directions and have the same

variance σ2
ξ , i.e., Qξ

k = σ2
ξ I3.

The quadrotor UAV is assumed to be equipped with standard sensor suite to measure
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its position and attitude information. The standard sensor suite includes an IMU module, a

magnetometer, and a GPS receiver. The IMU measures translational acceleration, angular

velocity and attitude. The magnetometer provides the orientation. The GPS measures the

translational velocity and position. It is assumed that the standard sensor suite can provide

measurements of all defined states of the quadrotor UAV. The measurement equation is

given by

zk = h(xk) + υk (3.13)

where h(·) is the measurement equation, υk denotes the associated measurement noise

vector. The measurement noise is assumed as additive uncorrelated Gaussian noise with

zero mean and a covariance Rk.

In brief, the nonlinear stochastic model of a quadrotor UAV can be described as

ξk ∼ p(ξk|ξk−1)

xk ∼ p(xk|xk−1, ξk)

zk ∼ p(zk|xk)

(3.14)

Note that for simplicity of description, the control input uk is removed, i.e., p(xk|xk−1, ξk)

denotes p(xk|xk−1, ξk, uk).

3.4.2 Two-Stage Particle Filter Design

Considering the problem of wind estimation from quadrotor motion, i.e., the estimate

of p(ξk|z1:k), the key is to estimate the posterior probability p(ξk|z1:k), where z1:k =

{z1, · · · , zk}. However, there is no direct relationship between ξk and z1:k. It can be

observed that ξk and z1:k are related to x0:k. Therefore, x0:k is used as an intermediate

variable to build a relationship between ξk and z1:k to solve the wind estimation problem.
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p(ξk|z1:k) =

∫
p(ξk, x0:k|z1:k)dx0:k

=

∫
p(ξk|x0:k, z1:k)p(x0:k|z1:k)dx0:k

=

∫
p(ξk|x0:k)p(x0:k|z1:k)dx0:k

(3.15)

In the above equation, the fact is used that ξk is independent on z1:k once x0:k is given, i.e.,

p(ξk|x0:k, z1:k) = p(ξk|x0:k).

(1)

0:k

(2)

0:k

(M)

0:k

... ...

First-stage PF Second-stage PF

1:k

Sub¯lter 1

Sub¯lter M

Sub¯lter 2

f
(i;1)

k gNi=1

f
(i;2)

k gNi=1

f
(i;M)

k gNi=1

...

Figure 3.2: Structure of the two-stage particle filter

Fig. 3.2 shows the cascaded structure of the proposed two-stage particle filter, whereM

stands for the particle number of the first-stage particle filter, and N stands for the particle

number of each subfilter in the second-stage particle filter. The first-stage particle filter can

obtain a set of equally weighted particles {x(j)
0:k}Mj=1 to approximate p(x0:k|z1:k) as

p(x0:k|z1:k) ≈
1

M

M∑
j=1

δ(x0:k − x
(j)
0:k) (3.16)

and the j-th subfilter in the second-stage particle filter can obtain a set of equally weighted

particles {ξ(i,j)k }Ni=1 to approximate p(ξk|x(j)
0:k) as

p(ξk|x(j)
0:k) ≈

1

N

N∑
i=1

δ(ξk − ξ
(i,j)
k ) (3.17)
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where δ(·) is the Dirac delta mass. Then, p(ξk|z1:k) can be approximated as

p(ξk|z1:k) =

∫
p(ξk|x0:k)p(x0:k|z1:k)dx0:k

≈ 1

M

M∑
j=1

p(ξk|x(j)
0:k)

≈ 1

MN

N∑
i=1

M∑
j=1

δ(ξk − ξ
(i,j)
k )

(3.18)

To solve the estimating problem in a recursive fashion, p(x0:k|z1:k) and p(ξk|x(j)
0:k)

should be derived from p(x0:k−1|z1:k−1) and p(ξk−1|x(j)
0:k−1), respectively.

The iterative calculation of p(x0:k|z1:k) can be accomplished by

p(x0:k|z1:k) ∝p(x0:k, zk−1|z1:k−1)

=p(zk|x0:k)p(x0:k|z1:k−1)

=p(zk|x0:k)

∫
p(x0:k, x0:k−1|z1:k−1)dx0:k−1

=p(zk|x0:k)

∫
p(x0:k|x0:k−1)p(x0:k−1|z1:k−1)dx0:k−1

(3.19)

where the facts that zk and x0:k are independent on z1:k−1 given x0:k and x0:k−1 are used,

respectively. It is assumed that a set of equally weighted particles {x(j)
0:k−1}Mj=1 are obtained

at the time k − 1. Substituting them into the above equation, p(x0:k|z1:k) can be approxi-

mated as

p(x0:k|z1:k) ≈ p(zk|x0:k)
1

M

M∑
j=1

p(x0:k|x(j)
0:k−1) (3.20)

Then, the calculation of p(x0:k|x(j)
0:k−1) can be given by

p(x0:k|x(j)
0:k−1) =

∫
p(x0:k, ξk|x(j)

0:k−1)dξk

=

∫
p(x0:k|ξk,x(j)

0:k−1)p(ξk|x
(j)
0:k−1)dξk

(3.21)
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It is assumed that x(j)
0:k−1 and the associated set of equally weighted particles {ξ(i,j)k−1}Ni=1

are given at the time k − 1, p(ξk|x(j)
0:k−1) can be approximated as

p(ξk|x(j)
0:k−1) =

∫
p(ξk, ξk−1|x(j)

0:k−1)dξk−1

=

∫
p(ξk|ξk−1)p(ξk−1|x(j)

0:k−1)dξk−1

≈
∫
p(ξk|ξk−1)

1

N

N∑
i=1

δ(ξk−1 − ξ
(i,j)
k−1)dξk−1

=
1

N

N∑
i=1

p(ξk|ξ(i,j)k−1)

(3.22)

If a set of particles {ξ̌(i,j)k }Ni=1 are drawn from p(ξk|ξ(i,j)k−1), p(ξk|x
(j)
0:k−1) can be further

approximated as

p(ξk|x(j)
0:k−1) ≈

1

N

N∑
i=1

δ(ξk − ξ̌
(i,j)
k ) (3.23)

Substituting Eq. (3.23) into Eq. (3.21), the approximated particle representation of

p(x0:k|x(j)
0:k−1) can be obtained by

p(x0:k|x(j)
0:k−1) ≈

∫
p(x0:k|ξk,x(j)

0:k−1)
1

N

N∑
i=1

δ(ξk − ξ̌
(i,j)
k )dξk

=
1

N

N∑
i=1

p(x0:k|ξ̌(i,j)k ,x
(j)
0:k−1)

(3.24)

Recalling Eq. (3.20), if {x̌(j)
k }Mj=1 are drawn from 1

N

∑N
i=1 p(xk|x

(j)
k−1, ξ̌

(i,j)
k ), p(xk|z1:k)

can be approximated as

p(xk|z1:k) ≈
M∑
j=1

w
(j)
x,kδ(xk − x̌

(j)
k ) (3.25)
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where the normalized weight is

w
(j)
x,k =

p(zk|x̌(j)
k )∑M

m=1 p(zk|x̌
(m)
k )

(3.26)

Resampling particles with the weights, the equally weighted particles {x(j)
k }Mj=1 can be

obtained. Therefore, the approximation of p(x0:k|z1:k) satisfies Eq. (3.16).

The iterative calculation of p(ξk|x(j)
0:k) can be accomplished by

p(ξk|x(j)
0:k) =

p(x
(j)
k , ξk|x(j)

0:k−1)

p(x
(j)
k |x

(j)
0:k−1)

∝p(x(j)
k |ξk, x

(j)
0:k−1)p(ξk|x

(j)
0:k−1)

(3.27)

Substituting Eq. (3.23) into the above equation, p(ξk|x(j)
0:k) can be approximated as

p(ξk|x(j)
0:k) ≈

N∑
i=1

w
(i,j)
ξ,k δ(ξk − ξ̌

(i,j)
k ) (3.28)

where the normalized weight is

w
(i,j)
ξ,k =

p(x
(j)
k |x

(j)
k−1, ξ̌

(i,j)
k )∑N

n=1 p(x
(j)
k |x

(j)
k−1, ξ̌

(n,j)
k )

(3.29)

Resampling particles with the weights, the equally weighted particles {ξ(i,j)k }Ni=1 can be

obtained. Therefore, the approximation of p(ξk|x(j)
0:k) satisfies Eq. (3.17).

Finally, according to Eq. (3.18), the estimate of ξk given z1:k can be calculated as

ξ̂k ≈
1

MN

N∑
i=1

M∑
j=1

ξ
(i,j)
k (3.30)

43



As a byproduct, the estimate of xk can be calculated as

x̂k ≈
1

M

M∑
j=1

x
(j)
k (3.31)

To better understand the proposed two-stage particle filter for wind estimation, the

pseudo code is given in Algorithm 1.

Algorithm 1: The proposed two-stage particle filter for wind estimation
Input: Measurement of UAV state zk
Output: Estimate of wind vector ξ̂k

1 Initialize state particles x(i)
0 ∼ p(x0) and wind vector particles ξ(i,j)0 ∼ p(ξ0);

2 for k ← 1 to Niterative do
3 Sample ξ̌

(i,j)
k ∼ p(ξk|ξ(i,j)k−1) ;

4 Sample {x̌(j)
k }Mj=1 ∼ 1

N

∑N
i=1 p(xk|x

(j)
k−1, ξ̌

(i,j)
k );

5 w
(j)
x,k ←

p(zk|x̌
(j)
k )∑M

m=1 p(zk|x̌
(m)
k )

;

6 Resample {x(j)
k }Mj=1 from {x̌(j)

k }Mi=1 with weight {w(j)
x,k}Mj=1;

7 foreach subfilter j do
8 Reselect {ξ̌(i,j)k }Ni=1 according to the resampled x

(j)
k ;

9 w
(i,j)
ξ,k ←

p(x
(j)
k |x(j)

k−1,ξ̌
(i,j)
k )∑N

n=1 p(x
(j)
k |x(j)

k−1, ξ̌
(n,j)
k )

;

10 Resample {ξ(i,j)k }Ni=1 from {ξ̃(i,j)k }Ni=1 with weight {w(i,j)
ξ,k }Ni=1;

11 end
12 Estimate ξ̂k ≈ 1

MN

∑N
i=1

∑M
j=1 ξ

(i,j)
k

13 end

3.5 Simulation Results

In the simulation, the proposed algorithm is used to estimate states and winds for a

quadrotor UAV. The motion of the quadrotor is simulated based on the dynamic model

(2.11). The parameters of the model are listed in Table 2.1. The process and measurement

noises are listed in Tables 2.2 and 2.3, respectively. The noises are assumed to be constant

with time. The random-walk wind model parameter is set as σ2
ξ = 0.05 (m/s)2. The
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particle numbers of the first-stage and second-stage particle filters are set as M = 500 and

N = 100. The simulation time interval is set as Ts = 0.02 s.

In order to demonstrate the effectiveness and performance of the proposed method,

different scenarios of wind conditions have been rendered to the quadrotor UAV as follows:

(1) Estimation of constant wind from quadrotor motion;

(2) Estimation of wind gust from quadrotor motion;

(3) Estimation of wind turbulence from quadrotor motion.

To compare the performances of the proposed two-stage particle filter (TSPF) algorithm

and the wind triangle (WT) algorithm, the simulations are conducted to estimate wind vec-

tors from a quadrotor in hover. The wind triangle algorithm [32] depends on the assumption

that a quadrotor UAV can quickly adjust its attitude to withstand the wind drag. By using

the wind triangle algorithm, the horizontal wind speed and direction for a quadotor UAV

are estimated from the measurements of linear velocities and Euler angles.

3.5.1 Estimation of Constant Wind from Quadrotor Motion

To evaluate the performances of the TSPF and WT algorithms for the constant wind

estimation, a quadrotor UAV is simulated to hover in a [3, 4, 0]T m/s constant wind. The

two algorithms are used to extract the wind vectors from quadrotor motion. Fig. 3.3 shows

the estimation results of the [3, 4, 0]T m/s constant wind from a quadrotor UAV in hover.

It can be seen that the wind estimation results provided by the proposed TSPF algorithm

are comparable to those provided by the WT algorithm, since the quadrotor UAV is in

the steady-state condition after 2 s. The wind rose diagrams of the lateral wind estimation

indicate that the proposed TSPF can provide accurate wind speed and direction estimation

of the lateral constant wind.
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To compare the accuracy of the two algorithms for the constant wind estimation, the

mean absolute error (MAE) and root-mean-squared error (RMSE) are calculated for the

TSPF and WT algorithms, respectively. The lateral wind vectors are estimated for three

different constant wind vectors, including ξ = [3, 4, 0]T m/s, ξ = [4, −3, 0]T m/s and

ξ = [3, 4, 5]T m/s. Table 3.1 gives the comparison of MAE and RMSE for the constant

wind estimation from a quadrotor UAV in hover. The proposed TSPF algorithm obtains

better wind estimation accuracy than the WT algorithm in all three cases. It should be

noted that the WT algorithm results in large errors of the lateral wind estimation when

the vertical wind component is nonzero. This is because the wind drag generated by the

vertical wind component changes the steady-state condition of the quadrotor UAV which

the WT algorithm relies on. The proposed TSPF algorithm can provide a three-dimensional

wind estimation and separate the lateral and vertical wind estimation to avoid the impact of

vertical wind component on the lateral wind estimation.

Table 3.1: Comparison of MAE and RMSE for constant wind estimation from a quadrotor
UAV in hover

ξ (m/s) [3, 4, 0]T [4, −3, 0]T [3, 4, 5]T

TSPF WT TSPF WT TSPF WT

MAE of ξ̂x (m/s) 0.1242 0.1222 0.1160 0.1305 0.1190 0.2622

MAE of ξ̂y (m/s) 0.1151 0.1374 0.1203 0.1292 0.1123 0.3368

RMSE of ξ̂x (m/s) 0.1548 0.2406 0.1446 0.3099 0.1484 0.3261

RMSE of ξ̂y (m/s) 0.1440 0.3255 0.1515 0.2497 0.1421 0.4279

3.5.2 Estimation of Wind Gust from Quadrotor Motion

To evaluate the performance of the TSPF and WT algorithms for the wind gust estima-

tion, the quadrotor UAV is simulated to encounter two types of wind gusts, respectively.

According to the endurance time, the two types of gust scenarios are the slowly-changing

wind gust and quickly-changing wind gust, as listed in Table 3.2. For the slowly-changing

46



0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

True Value
 

20%
40%

60%
80%

100%

0%  EW 

N

S

Wind Speeds in m/s
WS  6

5.5  WS < 6

5  WS < 5.5

4.5  WS < 5

4  WS < 4.5

0  WS < 4

TSPF
 

16.6%
33.2%

49.8%
66.4%

83%

0%  EW 

N

S

Wind Speeds in m/s
WS  6

5.5  WS < 6

5  WS < 5.5

4.5  WS < 5

4  WS < 4.5

0  WS < 4

WT
 

17.8%
35.6%

53.4%
71.2%

89%

0%  EW 

N

S

Wind Speeds in m/s
WS  6

5.5  WS < 6

5  WS < 5.5

4.5  WS < 5

4  WS < 4.5

0  WS < 4

Figure 3.3: Estimation results of a constant wind of [3, 4, 0]T m/s from a quadrotor UAV
in hover
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gust, the endurance time is set as tg = 10 s. For the quickly-changing gust, the endurance

time is set as tg = 4 s. Both wind gusts start at tgs = 4 s and have the peak value of

vgm = [4, 3, 2]T m/s.

Fig. 3.4 demonstrates the estimation results of the slowly-changing wind gust from a

quadrotor UAV in hover. It can be seen that the proposed TSPF algorithm and the WT

algorithm can effectively estimate the slow changes of the wind gust. The wind estimation

provided by the two algorithm gradually increase or decrease with the slow changes of the

wind gust. For the lateral wind speed and direction estimation, the two algorithms obtain

comparable results to the true value.

Fig. 3.5 demonstrates the estimation results of the quickly-changing wind gust from a

quadrotor UAV in hover. Although the WT algorithm results in more large errors, the pro-

posed TSPF algorithm can still produce reliable estimation of the quickly-changing wind

gust. Because the WT algorithm relies on the assumption that tilt angles directly corre-

sponds to the relatively air speed vector in the steady-state condition, there is a delay in the

wind estimation when the controller drastically responds to the sudden changes of the wind

gust. Compared with the WT algorithm, the proposed TSPF algorithm can extract winds

from the information of quadrotor motion, including the position, attitude and controller

inputs.

Table 3.2: Wind gust scenarios in the simulation
Wind gust scenario vgm (m/s) tgs (s) tg (s)

Slowly-change [4, 3, 2]T 4 10

Quickly-change [4, 3, 2]T 4 4
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Figure 3.5: Estimation results of a quickly-changing wind gust from a quadrotor UAV in
hover
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3.5.3 Estimation of Wind Turbulence from Quadrotor Motion

To evaluate the performance of the TSPF and WT algorithms for the wind turbulence

estimation, the quadrotor UAV is simulated to hover in a [3, 4, 0]T m/s mean wind turbu-

lence with the turbulence intensity of σu,v,w = [1.54, 1.54, 0.97]T . Fig. 3.6 demonstrates

the estimation results of the Dryden turbulence from the quadrotor UAV in hover. It can be

seen that the proposed TSPF algorithm can correctly capture the high frequency component

of wind turbulence.

To compare the accuracy of the two algorithms for the turbulence estimation, the MAE

and RMSE are calculated for the two algorithms. Table 3.3 gives the comparison of

MAE and RMSE for the [3, 4, 0]T m/s mean Dryden turbulence with different turbu-

lence intensities of σu,v,w = [0.93, 0.93, 0.58]T , σu,v,w = [1.24, 1.24, 0.78]T , and σu,v,w =

[1.54, 1.54, 0.97]T . In almost all cases, the TSPF algorithm has lower MAE and RMSE

than the WT algorithm. This fact indicates that the proposed TSPF algorithm outperforms

the WT algorithm in the wind turbulence estimation.

Table 3.3: Comparison of MAE and RMSE for a [3, 4, 0]T m/s mean Dryden turbulence
estimation from a quadrotor UAV in hover

σu,v,w (m/s) [0.93, 0.93, 0.58]T [1.24, 1.24, 0.78]T [1.54, 1.54, 0.97]T

TSPF WT TSPF WT TSPF WT

MAE of ξ̂x (m/s) 0.1263 0.1337 0.1239 0.1408 0.1264 0.1489

MAE of ξ̂y (m/s) 0.1170 0.1436 0.1167 0.1479 0.1192 0.1532

RMSE of ξ̂x (m/s) 0.1634 0.2500 0.1611 0.2551 0.1615 0.2611

RMSE of ξ̂y (m/s) 0.1518 0.3257 0.1521 0.3269 0.1562 0.3285

To demonstrate the efficiency of the proposed TSPF algorithm to sensor noise, the

simulation comparison is conducted to estimate the [3, 4, 0]T m/s mean Dryden turbulence

under different signal-noise ratio (SNR). The comparisons are given in Table 3.4. The MAE

and RMSE are compared under 10 dB, 20 dB and 30 dB. With the increased power of the

noise, the estimation errors of the proposed TSPF algorithm increase smaller than those of

51



0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

True Value
 

11.6%
23.2%

34.8%
46.4%

58%

0%  EW 

N

S

Wind Speeds in m/s
WS  6

5.5  WS < 6

5  WS < 5.5

4.5  WS < 5

4  WS < 4.5

0  WS < 4

TSPF
 

12%
24%

36%
48%

60%

0%  EW 

N

S

Wind Speeds in m/s
WS  6

5.5  WS < 6

5  WS < 5.5

4.5  WS < 5

4  WS < 4.5

0  WS < 4

WT
 

12.6%
25.2%

37.8%
50.4%

63%

0%  EW 

N

S

Wind Speeds in m/s
WS  6

5.5  WS < 6

5  WS < 5.5

4.5  WS < 5

4  WS < 4.5

0  WS < 4

Figure 3.6: Estimation results of a [3, 4, 0]T m/s mean Dryden turbulence with σu,v,w =
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the WT algorithm. This indicates that the proposed TSPF algorithm outperforms the WT

algorithm in dealing with the sensor noises to estimate the wind vectors from quadrotor

motion.

Table 3.4: Comparison of MAE and RMSE for a [3, 4, 0]T m/s mean Dryden turbulence
estimation from a quadrotor UAV in hover under different SNRs

SNR (dB) 10 20 30

TSPF WT TSPF WT TSPF WT

MAE of ξ̂x (m/s) 0.1775 0.6325 0.1390 0.2116 0.1226 0.0963

MAE of ξ̂y (m/s) 0.1859 0.7498 0.1423 0.2450 0.1292 0.1000

RMSE of ξ̂x (m/s) 0.2236 0.7981 0.1742 0.2695 0.1570 0.1207

RMSE of ξ̂y (m/s) 0.2328 0.9739 0.1814 0.3088 0.1662 0.1266

3.6 Summary

This chapter develops a two-stage particle filter-based scheme to estimate wind vectors

from quadrotor motion. To build a relationship between wind vectors and motion measure-

ments, the state of quadrotor UAV is introduced as an intermediate variable. By using a

cascaded structure, the states of quadrotor UAV are estimated from the motion measure-

ments in the first-stage particle filter, and wind vectors are calculated based on the estimated

states in the second-stage particle filter. To evaluate the effectiveness, the proposed wind

estimation algorithm is compared with the wind triangle algorithm in estimating constant

winds, wind gust, and Dryden turbulences. Simulation results demonstrate the outperfor-

mance of the proposed algorithm to extract three dimensional wind vectors from quadrotor

motion.
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Chapter 4

Active Wind Rejection Control of

Quadrotor UAVs

4.1 Problem Formulation

Wind behaviors have considerable impacts on the safety and reliability of UAVs when

performing outdoor tasks. The application of UAVs requires the precise and agile control

of these vehicles in the presence of strong and unpredictable winds. For example, UAVs,

which are employed in forest fire detection, monitoring, and fighting tasks, need to accu-

rately track a planned trajectory to collect fire information across the hazardous fire region

against unknown winds. External wind disturbances generate unexpected forces and mo-

ments acting on the UAV dynamics that degrade the performance of UAVs and even result

in serious accidents if appropriate reactions are not promptly activated to attenuate the wind

effects. In particular, quadrotor UAVs are more sensitive to those external disturbances due

to their small size. Therefore, the wind rejection control of UAVs required to be investi-

gated to ensure the stability and performance of tracking desired trajectories against wind

disturbances.

In most cases, the wind disturbances and modeling uncertainties are generally lumped
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together and the observer-based control methods are adopted to suppress the total distur-

bances, relying on the high-frequency and low-latency control. These control methods are

proposed based on the deterministic system but are quite sensitive to the stochastic process

and measurement noises. Moreover, the precise control of a quadrotor UAV in unknown

wind environments requires an accurate and prompt perception of the ambient winds to

quickly compensate for the wind effects.

This thesis proposes the control scheme based on the nonsingular terminal sliding mode

control [91, 52] to realize the control of quadrotor UAVs in the presence of unknown wind.

The proposed control strategy mainly contains the outer-loop control and the inner-loop

control. The outer-loop control is developed to track the desired trajectories and attenu-

ate wind effects, while the inner-loop control is developed to stabilize the attitude of the

quadrotor UAV. By using the NTSMC, the proposed control strategy can avoid the singu-

larity problem and guarantee the finite-time convergence of the position and attitude of the

quadrotor UAV towards the desired trajectories.

Based on the wind estimation produced by the wind estimator, the proposed wind re-

jection control scheme can actively compensate for wind effects acting on the quadrotor

UAVs to maintain UAV performances in the presence of unexpected wind disturbances.

Different from the general disturbance observer [42] that lumps together the disturbance

and uncertainty, the proposed control scheme mainly focuses on the wind effects and can

actively attenuate wind disturbances based on the explicit wind estimation.

4.2 Sliding Mode Control

Sliding mode control is an effective, robust control strategy that is inherently insensitive

to parameter variations, model uncertainties, and external disturbances. As a particular kind

of variable structure control system, sliding model control is composed of independent

structures with different properties and a switching logic between them. The basic idea of
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sliding mode control is to design an appropriate sliding surface and a control law to force

the system states onto this surface in a finite time [92].

To introduce the design of sliding mode control, a nonlinear system is modeled as

ẋ(t) = f(x, u, t) (4.1)

where x(t) ∈ Rn denotes the state vector and u(t) ∈ Rm denotes the control vector.

A sliding surface is designed as

s(x) = 0 (4.2)

where s(x) is the switching function. The switching function usually has the same order as

the control vector, i.e., s(x) ∈ Rm, which is constructed as

s(x) = [s1(x), s2(x), · · · , sm(x)]T (4.3)

The design of the sliding mode surface should assure the stability of the dynamics with

some specified performances, such as disturbance rejection and tracking the desired trajec-

tory.

Then, a discontinuous control law u(t) = [u1(t), u2(t), · · · , um(t)]T is designed as

ui(t) =


u+i (t) si(x) > 0

u−i (t) si(x) < 0

(4.4)

where i = 1, · · · , m and u+i (t) ̸= u−i (t).

The control law is designed to guarantee that the system state trajectory can be driven

onto the sliding surface in a finite time and maintained on it for all subsequent time, which

is the so-called reachability condition. In case of a single input system, the reachability
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condition can be summarized as
lim
s→0+

ṡ < 0

lim
s→0−

ṡ > 0

(4.5)

or, equivalently

sṡ < 0 (4.6)

To ensure that the system state trajectory can reach the sliding surface in a finite time

in the face of disturbances, the η-reachability condition [93] is given by

sṡ ≤ −η|s| (4.7)

where η is a small positive constant.

4.3 Active Wind Rejection Control of a Quadrotor UAV
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Figure 4.1: Framework of the proposed wind rejection control strategy of a quadrotor UAV

A hierarchical control system is designed for a quadrotor UAV to track the desired tra-

jectories and stabilize the attitude in the presence of wind. The framework of the proposed

control strategy is illustrated in Fig. 4.1. The outer-loop control combines the signals of

position controller and adaptive wind effect compensation to generate virtual control inputs

for the trajectory tracking, while the inner-loop control produces the control torques τj for
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the attitude stabilization. By using the proposed control strategy, the wind disturbance is

attenuated via the adaptive wind effect compensation scheme.

4.3.1 Outer-loop Control

The outer-loop control strategy is designed to track the desired trajectories. Consider

the translational dynamics of the quadrotor UAV subject to wind disturbances

ẍ =− 1

m
(cosϕ sin θ cosψ + sinϕ sinψ)Fz

+
1

m
Cdxy(ξx − ẋ)

√
(ξx − ẋ)2 + (ξy − ẏ)2 +

dx
m

ÿ =− 1

m
(cosϕ sin θ sinψ − sinϕ cosψ)Fz

+
1

m
Cdxy(ξy − ẏ)

√
(ξx − ẋ)2 + (ξy − ẏ)2 +

dy
m

z̈ =− 1

m
(cosϕ cos θ)Fz + g +

1

m
Cdz(ξz − ż) +

dz
m

(4.8)

where di for i ∈ {x, y, z} represents the lumped disturbance of the translational dynamics

which are assumed to be unknown but bounded, i.e., |di| ≤ Di.

The quadrotor UAV is defined as an underactuated system, because the number of out-

puts is larger than that of control inputs. To solve this underactuating problem, virtual

control inputs are defined as

νx = −(cosϕ sin θ cosψ + sinϕ sinψ)Fz

νy = −(cosϕ sin θ sinψ − sinϕ cosψ)Fz

νz = −(cosϕ cos θ)Fz

(4.9)

where νi for i ∈ {x, y, z} denotes the virtual control inputs.
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By recalling Eq. (4.8), the control-oriented model can be obtained as

χ̇i,1 = χi,2

χ̇i,2 = Gi + hi(νi + cifi + di)

(4.10)

where
χx,1 = x

χy,1 = y

χz,1 = z

(4.11)

χx,2 = ẋ

χy,2 = ẏ

χz,2 = ż

(4.12)

cx = cy = Cdxy

cz = Cdz

(4.13)

fx = (ξx − ẋ)
√

(ξx − ẋ)2 + (ξy − ẏ)2

fy = (ξy − ẏ)
√
(ξx − ẋ)2 + (ξy − ẏ)2

fz = (ξz − ż)

(4.14)

Gx = Gy = 0

Gz = g

(4.15)

hx = hy = hz =
1

m
(4.16)

Let χdi for i ∈ {x, y, z} denote the desired trajectory. Then, the tracking error related

to position is defined as

χ̃i = χi,1 − χdi (4.17)
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and its corresponding derivative is given by

˙̃χi = χ̇i,1 − χ̇di = χi,2 − χ̇di (4.18)

By combining Eqs. (4.10) and (4.18), the error dynamics can be obtained as

¨̃χi =χ̇i,2 − χ̈di

=Gi + hi(νi + cifi + di)− χ̈di
(4.19)

Introduce the following nonsingular terminal sliding-mode surface [91]:

si = χ̃i +
1

βi
˙̃χ
pi
qi
i (4.20)

where βi, pi and qi are positive design parameters. pi and qi are positive odd numbers,

which satisfies 1 < pi
qi
< 2.

By differentiating Eq. (4.20) with respect to time, the expression can be obtained as

ṡi = ˙̃χi +
1

βi

pi
qi

˙̃χ
pi
qi

−1

i
¨̃χi

= ˙̃χi +
1

βi

pi
qi

˙̃χ
pi
qi

−1

i [Gi + hi(νi + cifi + di)− χ̈di ]
(4.21)

Remark 4.1 Because pi and qi are odd numbers, if ˙̃χi ̸= 0, then ˙̃χ
pi
qi

−1

i > 0.

To allow the sliding variable to reach the designated sliding surface and then remain

in close proximity to the sliding surface, the position control law can be designed as the

following form:

νi = νeq
i + νdis

i (4.22)

where νeq
i is the equivalent control part to stabilize the ideal system without uncertainties
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and disturbances, and νdis
i is the discontinuous control part to compensating for the pertur-

bations and disturbances.

Without considering the wind effects, the equivalent control part is designed by solving

the following equation:

ṡi = ˙̃χi +
1

βi

pi
qi

˙̃χ
pi
qi

−1

i (Gi + hiνi − χ̈di ) = 0 (4.23)

where the disturbance term di is omitted in this case.

Then, the equivalent control νeq
i is obtained as

νeq
i = − 1

hi
(βi

qi
pi

˙̃χ
2− pi

qi
i +Gi − χ̈di ) (4.24)

The discontinuous control part to cope with the perturbations is designed as

νdis
i = −ηisign(si) (4.25)

where ηi > Di is positive design parameters.

In this way, without considering the wind effects, the outer-loop control law is designed

as

νi = −
1

hi
(βi

qi
pi

˙̃χ
2− pi

qi
i +Gi − χ̈di )− ηisign(si) (4.26)

With the consideration of wind effects, an adaptive wind compensation is designed to

derive the control law. Let ĉi for i ∈ {x, y, z} denote the estimate of drag coefficient. The

corresponding control law can be designed as

νi = −
1

hi
(βi

qi
pi

˙̃χ
2− pi

qi
i +Gi − χ̈di,1)− ηisign(si)− ĉifi (4.27)
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The corresponding adaptive law to estimate the drag coefficient is given by

˙̂ci = γisi
1

βi

pi
qi

˙̃χ
pi
qi

−1

i hifi (4.28)

Remark 4.2 In many works, the aerodynamic drag forces are assumed to be bounded so

that to handle them via the lumped disturbance. To specify the wind effect acting on the

dynamics of the quadrotor UAV, the wind vector is defined as the time-varying parameter

of the dynamic model, which can be estimated by the two-stage particle filter. The corre-

sponding control law is developed to attenuate wind effects.

Selecting the following Lyapunov candidate function:

VP =
1

2

z∑
i=x

s2i +
1

γi
c̃2i (4.29)

where c̃i = ĉi − ci is the estimation error of drag coefficient. The time derivative of the

Lyapunov candidate function is obtained as

V̇P =
z∑
i=x

siṡi +
1

γi
c̃i ˙̂ci

=
z∑
i=x

si{ ˙̃χi +
1

βi

pi
qi

˙̃χ
pi
qi

−1

i [Gi + hi(νi + cifi + di)− χ̈di ]}+
1

γi
c̃i ˙̂ci

(4.30)

Substituting the outer control law (4.27) and the adaptive law (4.28) into Eq. (4.30), the
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following condition can be derived:

V̇P =
z∑
i=x

si{ ˙̃χi +
1

βi

pi
qi

˙̃χ
pi
qi

−1

i [Gi + hi(−
1

hi
(βi

qi
pi

˙̃χ
2− pi

qi
i +Gi − χ̈di )− ĉifi

− ηisign(si) + cifi + di)− χ̈di ]}+
1

γi
c̃i ˙̂ci

=
z∑
i=x

si
1

βi

pi
qi

˙̃χ
pi
qi

−1

i [−hiĉifi + hicifi + hidi − hiηisign(si)] +
1

γi
c̃i ˙̂ci

=
z∑
i=x

c̃i(
1

γi
˙̂ci − si

1

βi

pi
qi

˙̃χ
pi
qi

−1

i hifi) +
1

βi

pi
qi

˙̃χ
pi
qi

−1

i hi(−ηisisign(si) + disi)

≤
z∑
i=x

−η′i|si|

(4.31)

where η′i =
1
βi

pi
qi
˙̃χ
pi
qi

−1

i hi(ηi −Di) ≥ 0.

Therefore, the system satisfies the standard η-reachability condition to guarantee the

trajectory tracking performance of the designed outer controller in the presence of unknown

winds and model uncertainty.

To compensate for wind effects in the controller design, it is important to estimate

time-varying wind vectors for a quadrotor UAV. As elaborated in the previous chapter,

the wind estimation can be produced by the proposed two-stage particle filter. Based on

the estimated wind vectors, the wind drags can be compensated with the proposed control

strategy to guarantee the performance and reliability of a quadrotor UAV in the presence of

unknown winds.

Based on the estimated wind vectors ξ̂i for i ∈ {x, y, z}, the terms associated with the

drag forces can be obtained as

f̂x = (ξ̂x − ẋ)
√

(ξ̂x − ẋ)2 + (ξ̂y − ẏ)2

f̂y = (ξ̂y − ẏ)
√
(ξ̂x − ẋ)2 + (ξ̂y − ẏ)2

f̂z = (ξ̂z − ż)

(4.32)
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Considering the errors of wind estimation produced by the two-stage particle filter, the

error associated with the drag forces is denoted as f̃−1
i = f−1

i − f̂−1
i . Then, the dynamic

model Eq. (4.10) can be reconstructed as

χ̇i,2 =Gi + hi(νi + cifi + di)

=Gi + hi[νi + ci(f̂
−1
i + f̃−1

i )−1 + di]

=Gi + hi[νi + (1− fif̃−1
i )cif̂i + di]

=Gi + hi(νi + c̄if̂i + di)

(4.33)

where c̄i for i ∈ {x, y, z} is defined as the drag coefficient of the reconstructed model.

By employing the adaptive law to estimate the drag coefficient, the performance of the

designed controller can be maintained.

Therefore, the ultimate control law can be presented as

νi = −
1

hi
(βi

qi
pi

˙̃χ
2− pi

qi
i +Gi − χ̈di )− ηisign(si)− ˆ̄cif̂i (4.34)

with

˙̄̂ci = γisi
1

βi

pi
qi

˙̃χ
pi
qi

−1

i hif̂i (4.35)

By using the virtual control laws νi for i ∈ {x, y, z}, one can carry out the computa-

tions of the thrust Fz, the desired roll ϕd and pitch θd angles.

From Eq. (4.9), the computation of the thrust can be expressed as

Fz =
√
ν2x + ν2y + ν2z (4.36)

Given the desired yaw ψd angle, the computations of the desired roll ϕd and pitch θd
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angles can be expressed as

ϕd =arcsin

(
−νx sinψ

d − νy cosψd√
ν2x + ν2y + ν2z

)

θd =arctan

(
νx cosψ

d + νy sinψ
d

νz

) (4.37)

4.3.2 Inner-loop Control

The inner-loop control strategy is designed to track the desired roll ϕd, pitch θd and yaw

ψd angles. Consider the rotational dynamics of a quadrotor UAV

ϕ̈ =
Iy − Iz
Ix

θ̇ψ̇ +
τϕ
Ix

+
dϕ
Ix

θ̈ =
Iz − Ix
Iy

ϕ̇ψ̇ +
τθ
Iy

+
dθ
Iy

ψ̈ =
Ix − Iy
Iz

ϕ̇θ̇ +
τψ
Iz

+
dψ
Iz

(4.38)

where dj for j ∈ {ϕ, θ, ψ} represents the unknown disturbance associated with the rota-

tional motion, which is assumed to be unknown but bounded, i.e., |dj| ≤ Dj .

By recalling Eq. (4.38), the control-oriented model can be obtained as

χ̇j,1 = χj,2

χ̇j,2 = fj + hj(τj + dj)

(4.39)

where
χϕ,1 = ϕ

χθ,1 = θ

χψ,1 = ψ

(4.40)
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χϕ,2 = ϕ̇

χθ,2 = θ̇

χψ,2 = ψ̇

(4.41)

fϕ =
Iy − Iz
Ix

θ̇ψ̇

fθ =
Iz − Ix
Iy

ϕ̇ψ̇

fψ =
Ix − Iy
Iz

ϕ̇θ̇

(4.42)

hϕ =
1

Ix

hθ =
1

Iy

hψ =
1

Iz

(4.43)

Then, the tracking error related to attitude is defined as

χ̃j = χj,1 − χdj,1 (4.44)

and its corresponding derivative is given by

˙̃χj = χ̇j,1 − χ̇dj,1 = χj,2 − χ̇dj (4.45)

By combining Eqs. (4.39) and (4.45), the error dynamics can be obtained as

¨̃χj =χ̇j,2 − χ̈dj

=fj + hj(τj + dj)− χ̈dj
(4.46)
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Again, select the nonsingular terminal sliding-mode surface [91]:

sj = χ̃j +
1

βj
˙̃χ

pj
qj

j (4.47)

where βj , pj and qj are positive design parameters. pj and qj are odd numbers, which

satisfy 1 <
pj
qj
< 2.

By differentiating Eq. (4.47) with respect to time, the expression can be obtained as

ṡj = ˙̃χj +
1

βj

pj
qj

˙̃χ

pj
qj

−1

j
¨̃χj

= ˙̃χj +
1

βj

pj
qj

˙̃χ

pj
qj

−1

j [fj + hj(τj + dj)− χ̈dj ]
(4.48)

Similar to the design of the position control law, the attitude control laws are developed

as
τj =τ

eq
j + τ dis

j

=− 1

hj
(βj

qj
pj

˙̃χ
2−

pj
qj

j + fj − χ̈dj )− ηjsign(sj)
(4.49)

where ηj > Dj for j ∈ {ϕ, θ, ψ} are positive design parameters.

Selecting the following Lyapunov candidate function:

VΘ =
1

2

ψ∑
j=ϕ

s2j (4.50)

The derivative of the Lyapunov candidate function is obtained as

V̇Θ =

ψ∑
j=ϕ

sj ṡj

=

ψ∑
j=ϕ

sj{ ˙̃χj +
1

βj

pj
qj

˙̃χ

pj
qj

−1

j [fj + hj(τj + dj)− χ̈dj ]}

(4.51)

Substituting the attitude control law Eq. (4.49) into Eq. (4.51), the following condition
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can be derived as:

V̇Θ =

ψ∑
j=ϕ

sj{ ˙̃χj +
1

βj

pj
qj

˙̃χ

pj
qj

−1

j [fj + hj(−
1

hj
(βj

qj
pj

˙̃χ
2−

pj
qj

j + fj − χ̈dj )

− ηjsign(sj) + dj)− χ̈dj ]}

=

ψ∑
j=ϕ

1

βj

pj
qj

˙̃χ

pj
qj

−1

j [hjdjsj − hjηjsign(sj)sj]

≤
ψ∑
j=ϕ

−η′j|sj|

(4.52)

where η′j =
1
βj

pj
qj
˙̃χ

pj
qj

−1

j hj(ηj −Dj) > 0.

Therefore, the system satisfies the standard η-reachability condition to guarantee the

performance of the inner controller to track the desired attitudes.

In order to produce the control thrust Fz and torques [τϕ, τθ, τψ]T , based on Eq. (2.9),

the computations of the thrusts are given by



T1

T2

T3

T4


=



1
4

0 1
2l
− 1

4km

1
4
− 1

2l
0 1

4km

1
4

0 − 1
2l
− 1

4km

1
4

1
2l

0 1
4km





Fz

τϕ

τθ

τψ


(4.53)

4.4 Active Wind Rejection Cooperative Control of Multi-

ple Quadrotor UAVs

The active wind rejection cooperative control strategy is proposed to maintain the for-

mation performance of multiple quadrotor UAVs in the presence of unknown winds. Con-

sidering the different wind effects acting on each UAV, the active wind rejection cooperative

control scheme is adopted to attenuate the unexpected wind disturbances for each UAV and
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maintain the cooperative tracking performances of multiple quadrotor UAVs in the forma-

tion flight. More specifically, the UAV fleet should keep the formation shape and each UAV

should track the desired trajectory against ambient winds.
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Figure 4.2: Framework of the proposed wind rejection cooperative control strategy of mul-
tiple quadrotor UAVs

Fig. 4.2 shows the framework of the proposed wind rejection cooperative control strat-

egy. A distributed control structure is adopted for a group of UAVs so that vehicles should

exchange information with each other to obtain the formation tracking errors. Then, the

proposed control strategy generates control signals based on the wind estimation for each

UAV. Similarly, the distributed control scheme for each vehicle is comprised of the outer

control and the inner control.

4.4.1 Basic Graph Theory

The formation control strategy is developed for a group of N quadrotor UAVs. To

describe the information flow in the group of quadrotor UAVs, an undirected graph is

generated, which is denoted as G = {V , E , A}. V = {v1, v2, · · · , vN} represents the

set of UAVs. E ⊆ {(vn, vm)|vn, vm ∈ V} represents the set of communication links

with unordered pairs of UAVs (vn, vm). A ∈ RN×N denotes the adjacency matrix and

αnm is the nonnegative entry of A. αnm = 1 if there is information exchange between

the m-th and n-th quadrotor UAVs, otherwise it is zero. If the graph has the property
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that (vn, vm) ∈ E ⇐⇒ (vm, vn) ∈ E , for any vn, vm ∈ V , it is said to be undi-

rected,. The graph is named as a connected graph, if there exists a path between any two

UAVs. The set of neighbors of the m-th UAV is denoted as Sn = {vm|(vn, vm) ∈ E}. Let

B = diag(b1, b2, · · · , bN) denote the degree matrix of a graph with bn =
∑N

m=1 αnm for

n ∈ {1, · · · , N}. The Laplacian matrix L is defined as L = B −A.

Assumption 4.1 The graph containing all quadrotor UAVs is undirected and connected.

Lemma 4.1 If a graph is undirected and connected, and Λ is a diagonal matrix with non-

negative entries, then the matrixH = L+ Λ is positive definite [94, 95, 96].

4.4.2 Cooperative Controller Design

To maintain the formation shape, the trajectory tracking error of each quadrotor UAV

should satisfy the following condition

χ̃ni = χ̃mi (4.54)

where χ̃ni and χ̃mi are the trajectory tracking errors of the n-th and m-th UAVs.

Considering the information exchange among the group of quadrotor UAVs, the coop-

erative tracking error of the n-th quadrotor UAV is defined as

χ̃cni =λi,1χ̃ni + λi,2
∑
m∈Sn

αnm(χ̃ni − χ̃mi)

=(λi,1 + λi,2
∑
m∈Sn

αnm)χ̃ni − λi,2
∑
m∈Sn

αnmχ̃mi

(4.55)

where n ∈ {1, · · · , N} and i ∈ {x, y, z}. λi,1 and λi,2 are positive parameters that

regulate the individual trajectory tracking error and the formation error, respectively.

Then, based on the basic graph theory, the cooperative tracking error of all quadrotor
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UAVs can be written as

χ̃c
i = (λi,1IN + λi,2L)χ̃i (4.56)

where χ̃c
i = [χ̃c1i, χ̃

c
2i, · · · , χ̃cNi]T and χ̃i = [χ̃1i, χ̃2i, · · · , χ̃Ni]T for i ∈ {x, y, z}. By re-

ferring to Assumption 4.1 and Lemma 4.1, the matrix (λi,1IN+λi,2L) is symmetric positive

definite. According to the property of a positive definite matrix, the χ̃i converges to zero

once the χ̃c
i converges to zero, therefore χ̃cni and χ̃ni converge to zero for n ∈ {1, · · · , N}.

To carry on, the cooperative control strategy will be designed for an individual quadrotor

UAV, i.e., based on χ̃ni for i ∈ {x, y, z}.

The derivative of cooperative tracking error of the n-th quadrotor UAV is given by

˙̃χcni =(λi,1 + λi,2
∑
m∈Sn

αnm) ˙̃χni − λi,2
∑
m∈Sn

αnm ˙̃χmi

=Ψni
˙̃χni − λi,2

∑
m∈Sn

αnm ˙̃χmi

(4.57)

where Ψni = λi,1 + λi,2
∑

m∈Sn
αnm > 0.

The cooperative error dynamics can be obtained as

¨̃χcni = Ψni
¨̃χni − λi,2

∑
m∈Sn

αnm ¨̃χmi (4.58)

By substituting Eq. (4.10) into Eq. (4.58), the following expression can be obtained as

¨̃χcni = Ψni[Gni + hni(νni + cnifni + dni)− χ̈dni]− λi,2
∑
m∈Sn

αnm ¨̃χmi (4.59)

where dni represents the unknown disturbance, which is bounded as |dni| ≤ Dni.

Similarly, select the nonsingular terminal sliding-mode surface:

sni = χ̃cni +
1

βni
˙̃χcni

pni
qni (4.60)
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where βni, pni and qni are positive design parameters. pni and qni are positive odd numbers,

which satisfy 1 < pni

qni
< 2.

By differentiating Eq. (4.60) with respect to time, the expression can be obtained as

ṡni = ˙̃χcni +
1

βni

pni
qni

˙̃χcni
pni
qni

−1 ¨̃χcni

= ˙̃χcni +
1

βni

pni
qni

˙̃χcni
pni
qni

−1{Ψni[Gni + hni(νni + cnifni + dni)− χ̈dni]

− λi,2
∑
m∈Sn

αnm ¨̃χmi}

(4.61)

With the consideration of active wind rejection, the distributed cooperative tracking law

is designed as

νni =−
1

hniΨni

βni
qni
pni

˙̃χcni
2− pni

qni +
1

hniΨni

λi,2
∑
m∈Sn

αnm ¨̃χmi

− Gni

hni
+
χ̈dni
hni
− ηnisign(sni)− ˆ̄cnif̂ni

(4.62)

with

˙̄̂cni = γnisni
1

βni

pni
qni

˙̃χcni
pni
qni

−1
Ψnihnif̂ni (4.63)

where ηni > Dni and γni are positive parameters.

Selecting the following Lyapunov candidate function:

Vnp =
1

2

z∑
i=x

s2ni +
1

γni
˜̄c2ni (4.64)

where ˜̄cni = ˆ̄cni − c̄ni represents the estimation error of the reconstructed drag coefficient.

The derivative of the Lyapunov candidate function with respect to time is obtained as

V̇np =
z∑
i=x

sniṡni +
1

γni
˜̄cni

˙̄̂cni (4.65)
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Substituting Eqs. (4.61)-(4.63) into Eq. (4.65), the following expression yields

V̇np =
z∑
i=x

sni
1

βni

pni
qni

˙̃χcni
pni
qni

−1
Ψnihni[cnifni − ˆ̄cnif̂ni + dni

− ηnisign(sni)] +
1

γni
˜̄cni

˙̄̂cni

V̇np =
z∑
i=x

sni
1

βni

pni
qni

˙̃χcni
pni
qni

−1
Ψnihni[c̄nif̂ni − ˆ̄cnif̂ni + dni

− ηnisign(sni)] +
1

γni
˜̄cni

˙̄̂cni

=
z∑
i=x

˜̄cni(
1

γni
˙̄̂cni − sni

1

βni

pni
qni

Ψni
˙̃χcni

pni
qni

−1
hnif̂ni)

+
1

βni

pni
qni

˙̃χcni
pni
qni

−1
Ψnihni(dnisni − ηnisign(sni)sni)

≤
z∑
i=x

−η′ni|sni|

(4.66)

where η′ni =
1
βni

pni

qni

˙̃χcni
pni
qni

−1
Ψnihni(ηni −Dni).

Therefore, the system satisfies the standard η-reachability condition to guarantee the

cooperative trajectory tracking performance of the formation position controller in the pres-

ence of wind effect and model uncertainty.

It is noted that the formation position control strategy is developed to maintain the entire

formation shape of multiple UAVs in the flight. To stabilize the attitude, the attitude control

law Eq. (4.49) is applied for each UAV.

4.5 Simulation Results

In this section, simulations are conducted to demonstrate the effectiveness of the pro-

posed control strategies for the control of a single quadrotor UAV and the formation control

of multiple quadrotor UAVs in the presence of wind. The quadrotor dynamic model Eq.
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(2.11) is used in the simulations. The model parameters are given in Table 2.1. The two-

stage particle filter is also adopted to produce estimates of states and wind vectors for the

quadrotor UAV in order to implement the active wind rejection control strategy. The pro-

cess and measurement noises of the system are considered, variances of which are given in

Tables 2.2 and 2.3.

4.5.1 Control of a Single Quadrotor UAV in the Presence of Wind

The initial states of the quadrotor UAV are set as x(0) = 0m, y(0) = 0m, z(0) = 0m,

ϕ(0) = 0 rad, θ(0) = 0 rad, and ψ(0) = 0 rad. The parameters of the proposed control

algorithm are given in Table 4.1. Considering the wind estimation errors, the parameters

of the adaptive law Eq. (4.28) are set as γx = 1, γy = 1 and γz = 10. To deal with the

chattering problem, the sign functions are replaced by saturation functions, but the robust

performance is compromised. The saturation function is defined as

sat(s) =


1 s > Φ

s/Φ |s| ≤ Φ

−1 s < −Φ

(4.67)

where Φ represents the boundary layer thickness, which are set as Φx = 0.2, Φy = 0.2,

Φz = 0.2, Φϕ = 0.1, Φθ = 0.1, and Φψ = 0.1.

Table 4.1: Parameters of the active wind rejection controller
Parameter βx, βy, βz px, py, pz qx, qy, qz ηx, ηy, ηz

Value 2 13 11 10

Parameter βϕ, βθ, βψ pϕ, pθ, pψ qϕ, qθ, qψ ηϕ, ηθ, ηψ

Value 10 13 11 2

To demonstrate the performance of the proposed control scheme against wind effects,
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the designed control scheme is compared with a pure nonsingular terminal sliding mode

control (NTSMC). The pure NTSMC-based controller is designed without considering the

explicit wind effects acting on the quadrotor dynamics. The performances of the proposed

active wind rejection control scheme are evaluated in the following cases:

(1) Hovering performance under continuous wind

(2) Hovering performance under wind gust

(3) Trajectory tracking performance under continuous wind

Hovering Performance under Continuous Wind
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2.5
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3.5

Figure 4.3: Generated continuous wind

The rendered continuous wind is composed of a [3, 2, 2]T m/s constant wind and a

Dryden turbulence, as shown in Fig. 4.3. The quadrotor UAV is controlled to hover at the

initial position [0, 0, 0]T in the presence of this wind condition.

Figs. 4.4 and 4.5 demonstrate the hovering performances of a quadrotor UAV and con-

trol thrusts of four rotors under the continuous wind. In the case of continuous wind condi-

tion, both controllers can stabilize the quadrotor UAV under the continuous winds, whereas

the proposed control scheme achieves a better hovering performance. Fig. 4.6 shows the
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Figure 4.4: Hovering performances of a quadrotor UAV under the continuous wind
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Figure 4.5: Thrusts of a quadrotor UAV for hovering under the continuous wind
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Figure 4.6: Wind and drag coefficient estimation of a quadrotor UAV for hovering under
the continuous wind
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estimation of continuous winds and drag coefficients. With the two-stage particle filter, the

accurate wind estimation of the continuous wind are provided. Moreover, the adopted drag

coefficient adaptation method can adjust the drag coefficients to stabilize the original sys-

tem in the presence of model uncertainty and estimation error. Based on the estimated wind

vectors and the adaptive drag coefficients, the proposed wind rejection control scheme can

actively compensate for the wind effects acting on the quadrotor UAV and maintain the

original system tracking performance and stability, in contrast to the pure NTSMC.

Hovering Performance under Wind Gust
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Figure 4.7: Generated wind gust

Fig. 4.7 shows the gust wind that is rendered based on the discrete 1-cosine wind gust

model Eq. (2.21). The gust wind starts at t = 10 s and lasts for 5 s, the peak value of which

is set as [4, 3, 2]T m/s.The quadrotor UAV is controlled to hover at the position [0, 0, 0]T

under the wind gust.

Figs. 4.8 and 4.9 demonstrate the hovering performances of a quadrotor UAV and

thrusts of four rotors under the gust wind. Before the wind gust, the proposed control

scheme has a comparable hovering performance to the pure NTSMC. When the wind gust

occurs, the sudden changes of the wind conditions in three direction can be instantaneously
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Figure 4.8: Hovering performances of a quadrotor UAV under the gust wind
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Figure 4.9: Thrusts of a quadrotor UAV for hovering under the gust wind
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Figure 4.10: Wind and drag coefficient estimation of a quadrotor UAV for hovering under
the gust wind

and accurately estimated by the wind estimation scheme. Due to the quick evolution of

the wind gust in a short time window, it has a larger adverse effect on the quadrotor dy-

namics. Fig. 4.10 shows the estimation of wind gust and drag coefficients under the gust

wind. The proposed wind rejection control scheme can promptly capture and attenuate the

fast-varying wind effects caused by the wind gust so as to maintain the original system hov-

ering performance and stability. Because of the advantages of the proposed wind rejection

control scheme, the proposed scheme has smaller position errors than the pure NTSMC

when hovering in the presence of wind gusts. Fig. 4.11 shows the performances of the pro-

posed adaptive drag coefficient control under the gust wind. Compared with the same wind

rejection control without adaptive drag coefficients, the proposed control scheme can in-

crease the robustness of the quadrotor UAV, although it can not ensure the drag coefficients

converge to the true values.
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Figure 4.11: Performance of the proposed adaptive drag coefficient control under the gust
wind

81



Trajectory Tracking Performance under Continuous Wind

In this case, the quadrotor UAV is controlled to track a predesigned trajectory given by

xd =5 cos(
π

15
t)− 5

yd =5 sin(
π

15
t)

zd =− sin(
2π

15
t)

(4.68)

0 10 20 30
-10

-5

0

0 10 20 30
-5

0

5

0 10 20 30

-1

0

1

0 10 20 30
-0.3

-0.2

-0.1

0

0 10 20 30
0

0.2

0.4

0 10 20 30

-0.02

0

0.02

Figure 4.12: Trajectory tracking performances of a quadrotor UAV under the continuous
wind

Figs. 4.12, 4.13 and 4.14 demonstrate the trajectory tracking performances of a quadro-

tor UAV under the continuous wind. During trajectory tracking, the proposed wind rejec-

tion control scheme can still accurately estimate the continuous wind and actively com-

pensate for the unexpected wind effects acting on the quadrotor dynamics. The trajec-

tory tracking errors are shown in Fig. 4.15. The proposed wind rejection control scheme

shows a better trajectory tracking performance compared with the pure NTSMC in the

82



0 10 20 30
0

5

10

0 10 20 30
0

5

10

0 10 20 30
-10

0

10

0 10 20 30
-5

0

5

10

15

Figure 4.13: Thrusts of a quadrotor UAV for trajectory tracking under the continuous wind
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Figure 4.14: Wind and drag coefficient estimation of a quadrotor UAV for trajectory track-
ing under the continuous wind

83



0 10 20 30
-0.05

0

0.05

0.1

0 10 20 30
-0.02

0

0.02

0.04

0.06

0 10 20 30
-0.02

0

0.02

0 0.04 0.08
0

0.1

0.2

-0.02 0 0.02 0.04 0.06
0

0.1

0.2

-0.01 0 0.01 0.02 0.03
0

0.2

0.4

Figure 4.15: Trajectory tracking errors of a quadrotor UAV under the continuous wind

presence of continuous wind. The mean trajectory tracking error of the proposed con-

trol scheme is nearly zero, while the mean tracking error of the pure NTSMC is about

[0.06, 0.04, 0.02]Tm. This result indicates the advantage of the proposed active wind re-

jection control scheme.

4.5.2 Formation Control of Multiple Quadrotor UAVs in the Presence

of Wind

A group of four quadrotor UAVs are simulated to cooperative monitor the central fire by

hovering at the designed locations around the fire in presence of wind. Fig. 4.16 shows the

communication network of the group of quadrotor UAVs. In the communication network,

UAV#1 can directly exchange information with UAV#2 and UAV#4, UAV#2 can directly

exchange information with UAV#1 and UAV#3, UAV#3 can directly exchange information

with UAV#2 and UAV#4, and UAV#4 can directly exchange information with UAV#1 and
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Figure 4.16: Communication network of quadrotor UAVs

UAV#3. Based on the communication network, the adjacency matrix is given by

A =



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


(4.69)

The locations for fire monitoring are set as [5, 0, 10]T m for UAV#1, [0, 5, 10]T m for

UAV#2, [−5, 0, 10]T m for UAV#3, and [0, −5, 10]T m for UAV#4. The parameters to

yield cooperative tracking errors are set as λi,1 = 0.8 and λi,2 = 0.2. To evaluate the

tracking performance of the proposed active wind rejection formation control of multiple

quadrotor UAVs, the proposed scheme is compared with the pure NTSMC-based formation

control, which is developed without active wind rejection. Simulations are conducted in the

following cases:

(1) Formation hovering under wind gusts

(2) Formation Hovering under continuous winds
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Formation Hovering under Wind Gusts

In this simulation, three wind gusts are rendered to act on UAV#1, UAV#2, and UAV#3,

respectively, while UAV#4 encounters no wind gust. The generated wind gusts are shown

in Fig. 4.17. For UAV#1, the wind gust starts at t = 5 s and lasts for 3 s, the peak value of

which is [−3, 3, 2]T m/s. For UAV#2, the wind gust starts at t = 12 s and lasts for 5 s, the

peak value of which is [4, 3, 1]T m/s. For UAV#3, the wind gust starts at t = 20 s and lasts

for 4 s, the peak value of which is [1, −3, 3]T m/s.
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Figure 4.17: Generated wind gusts acting on multiple quadrotor UAVs

Figs. 4.18, 4.19 and 4.20 show the cooperative tracking performance of multiple quadro-

tor UAVs in the presence of wind gusts. Compared with the pure NTSMC-based formation

control, the proposed scheme can achieve more accurate cooperative tracking performances

of multiple quadrotor UAVs when encountering unknown wind gusts.

Wind effect compensation inputs and thrusts of the active wind rejection cooperative

control under the wind gusts are shown in Figs. 4.21 and 4.22. It can be seen that the wind

effect compensations are activated when the wind gusts are captured. Correspondingly, the

quadrotor UAVs can promptly take actions to attenuate disturbances caused by the wind

gusts and maintain the formation performances by using the proposed control scheme.
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Figure 4.18: x positions of multiple quadrotor UAVs under the wind gusts
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Figure 4.19: y positions of multiple quadrotor UAVs under the wind gusts
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Figure 4.20: z positions of multiple quadrotor UAVs under the wind gusts
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Figure 4.21: Adaptive wind effect compensation inputs under the wind gusts
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Figure 4.22: Thrusts of the active wind rejection formation control under the wind gusts

Formation Hovering under Continuous Winds

In this simulation, multiple quadrotor UAVs are commanded to hover and maintain

the formation under continuous winds. Different continuous winds are encountered by

the quadrotor UAVs, each of which is composed of a [3, 2, 2]T m/s constant wind and a

Dryden turbulence. The rendered continuous winds are shown in Fig. 4.23.

Figs. 4.24, 4.25 and 4.26 show the cooperative tracking performances of multiple

quadrotor UAVs in the presence of continuous winds. It can be seen that the proposed

control scheme can continuously attenuate the wind effects acting on multiple quadrotor

UAVs to maintain the tracking performances in the presence of continuous winds in con-

trast to the pure NTSMC-based formation control, which results in larger tracking errors.

The adaptive wind effect compensation inputs and thrusts of the active wind rejection

formation control under the continuous winds are shown in Figs. 4.27 and 4.28. These

results indicate that the proposed scheme can accurately yield wind effect compensation

inputs with adaptive drag coefficients to maintain the cooperative tracking performances of
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Figure 4.23: Generated continuous winds acting on multiple quadrotor UAVs
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Figure 4.24: x positions of multiple quadrotor UAVs under the continuous winds
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Figure 4.25: y positions of multiple quadrotor UAVs under the continuous winds
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Figure 4.26: z positions of multiple quadrotor UAVs under the continuous winds
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multiple quadrotor UAVs in the presence of continuous winds.
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Figure 4.27: Adaptive wind effect compensation inputs under the continuous winds

4.6 Summary

In this chapter, an active wind rejection control strategy is developed for quadrotor

UAVs to improve their robustness in the presence of unknown wind disturbances. Con-

sidering the wind effects acting on the dynamic model of a quadrotor UAV, an adaptive

wind effect compensation method is proposed. The control system of each quadrotor UAV

mainly includes the outer-loop control and the inner-loop control. The proposed outer-loop

control is developed based on the nonsingular terminal sliding mode control and adaptive

wind effect compensation to guarantee the finite-time convergence to the desired position

in the presence of winds and generate the desired attitude signals for the inner control,

while the NTSMC-based inner-loop control is designed to ensure the attitude converge to

the desired attitude in the finite time. Furthermore, the proposed active wind rejection co-

operative control scheme is developed to maintain the cooperative tracking performances

92



0 10 20 30
-10

0

10

0 10 20 30
0

5

10

0 10 20 30
-20

-10

0

10

0 10 20 30
-10

0

10

20

30

UAV#1 UAV#2 UAV#3 UAV#4

Figure 4.28: Thrusts of the active wind rejection formation control under the continuous
winds

of multiple quadrotor UAVs in the presence of winds. The simulation results demonstrate

the effectiveness of the proposed active wind rejection control scheme.
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Chapter 5

Forest Fire Monitoring with a System of

UAVs under Effect of Wind

5.1 Problem Formulation

To obtain an accurate assessment of the wind-affected forest fires, a natural thought

is to estimate the forest fire propagation based on those widely used fire spread models

[79, 72]. The known inputs of these models, in particular for the wind field over the forest

fire region, are necessary for the accurate prediction of the forest fire burning situations.

However, it is usually challenging to obtain the on-site surveys of the model inputs before

the forest fire estimation. The production of the fast forest fire estimation depends on the

correct field research and experimentation.

In addition, the state and parameter estimation approaches are often used to simulta-

neously estimate the forest fire propagation and unknown wind parameters via the obser-

vations [79, 72]. Considering the high-dimensional nonlinear and non-Gaussian forest fire

model, most of the recent researches adopt the ensemble Kalman filter (EnKF) method to

approximate the current states and parameters of forest fires. However, the state and param-

eters are implicitly assumed to follow a linear Gaussian model. Moreover, a large number
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of ensembles must be taken in order to retrieve accurate error statistics of the parameters

and to overcome the equifinality problem.

This chapter presents an EnKF-based strategy to provide forest fire surveillance with

wind measurements and fire front observations obtained with a system of UAVs. The Gaus-

sian process regression (GPR) method is adopted to reconstruct the local wind field from

wind measurements collected by UAVs. Subsequently, the wind speeds can be predicted to

propagate the ensemble of fire states. Then, the proposed EnKF-based strategy can effec-

tively estimate the forest fire situations with the observations collected by UAVs.

5.2 Wind-affected Forest Fire Monitoring Strategy Design

Task Planning

UAV Platform

Wind 
Measurement

Wildfire 
Observation

Wind Field 
Estimation

Wildfire 
Prediction

Analysis & 
Updating

Figure 5.1: Framework of the proposed forest fire monitoring strategy

In this chapter, the forest fire monitoring strategy is proposed with a group of UAVs

to provide an accurate assessment of forest fires in the unknown wind environments. The

framework of the proposed strategy is demonstrated in Fig. 5.1. To achieve the purpose,

the GPR method is firstly adopted to reconstruct the local wind field. Then, the optimal

wind sensing locations are determined based on the maximum mutual information criterion.

Subsequently, with the wind measurements collected by UAVs at these locations, the wind

field estimation is updated and is used for the forest fire prediction. Finally, an EnKF-

based approach is designed to evaluate the forest fire conditions via the observations. Note
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that since the autonomous control of UAVs is not the main concern of this paper, it is

assumed that UAVs can decide their maneuvers toward the designed positions for wind

measurements and fire observations.

5.2.1 Local Wind Field Reconstruction

The Gaussian process regression is adopted to reconstruct the wind field within the

region of interest [97, 98]. It is assumed that the underlying function of the wind field is

continuous, which can be describe as

ξx = fx(p)

ξy = fy(p)

(5.1)

where p = [x, y]T denote the coordinates of any position in the wind field, and fx(·)

and fy(·) represent the underlying function of wind components in the x and y direction,

respectively. Two separate Gaussian processes (GPs) are used to describe the distribution

of wind components. The framework of the GPR-based wind field reconstruction approach

is shown in Fig. 5.2. To reduce the computational complexity, the two GPs share the

same hyperparameters, which means that the output space is assumed to be isotropic. For

simplicity of expression, the subscript is omitted in the rest of this thesis.

In general, a GPR-based wind field model is specified by a mean function µ(·) and a

covariance function k(·), which is denoted as

ξ ∼ GP(µ(p), k(p, p′)) (5.2)

where µ(p) denotes the mean function of wind speed at position p, and k(p, p′) denotes

the covariance function of wind speed between positions p and p′.

It is assumed that UAVs can provide point wind measurements with the proposed wind
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Figure 5.2: Framework of the GPR-based wind field reconstruction approach

estimation approach, and the wind sensing locations can be provided by the onboard GPS

module. The noisy measurement of the wind speed for each UAV is assumed to be Gaussian

ξ̄ = f(ps) + ϵs (5.3)

where ξ̄ denotes the wind measurement provided by a UAV, ps denotes the wind sensing

location, and ϵs is a zero-mean Gaussian noise with a variance of σ2
s .

Therefore, the GPR-based wind field model can be trained from a finite set of wind

measurements Ξs are taken by UAVs and the corresponding wind sensing locations Ps. It

yields that the collection of wind measurements follow a multivariate Gaussian distribution

Ξs ∼ N (µs, Σss + σ2
sINs) (5.4)

where µs denotes the mean wind speed vector, Σss denotes the GP covariance matrix that

represents the similarity of wind speeds between the wind sensing locations, and Ns de-

notes the number of measurements.

To estimate wind speeds Ξt at the target locations Pt, the joint distribution of the wind
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measurements Ξs and the wind speeds Ξt is given by

Ξs
Ξt

 ∼ N

µs
µt

 ,
Σss + σ2

sINs ΣT
ts

Σts Σtt


 (5.5)

where µt denotes the mean wind speed at the target positions, Σtt denotes the GP covariance

matrix that represents the similarity of wind speeds between the target locations, and Σts

denotes the GP covariance matrix that represents the similarity of wind speeds between the

target locations and the wind sensing locations.

Subsequently, the wind estimates at the target locations follow a multivariate Gaussian

distribution Ξt|Pt, Ξs, Ps ∼ N (µ̂t, Σ̂t), the estimated mean and covariance of which are

given by 
µ̂t =µt + ΣT

ts[Σss + σ2
sINs ]

−1(Ξs − µs)

Σ̂t =Σtt − ΣT
ts[Σss + σ2

sINs ]
−1Σts

(5.6)

where µ̂t and Σ̂t are the mean and covariance of estimated wind speeds at the target loca-

tions.

In the GPR-based wind field model, the mean function is often assumed to be zero

because offsets and simple trends can be subtracted out by preprocessing. With the as-

sumption that the input dimensions are isotropic, a classic squared exponential covariance

function is introduced as

k(p, p′) = σ2
f exp(−

1

2l2
∥p− p′∥2) (5.7)

where σ2
f is the signal variance and l is the length scale. Let η = [σf , l]

T denote the

hyperparameter set. It can be observed that the estimated mean and covariance are speci-

fied by the hyperparameters. Considering the hyperparameters, the negative log marginal
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likelihood of the wind measurements is given by

L =− log p(Ξs|η)

=
1

2
ΞTs Σ

−1
η Ξs +

1

2
log det(Ση) +

Ns

2
log 2π

(5.8)

where Ση = Σss + σ2
sINs . By using the maximum marginal likelihood approach, the

selection of these hyperparameters can be optimized via the training data set.

With the wind measurements provided by a group of UAVs at each time step, the hyper-

parameters for the GPR-based wind field model should be updated from the newly obtained

wind measurements. In the case of the high-frequency noise existing in the wind measure-

ments, a low-pass filter is designed to smooth the transition of the hyperparameters


σf,k =λσfσf,k−1 + (1− λσf )σ̂f,k

lk =λllk−1 + (1− λl)l̂k
(5.9)

where (σf,k, lk) are the smoothed hyperparameters at time instant tk, (σ̂f,t, l̂t) are the es-

timated hyperparameters at time instant tk, and (λσf , λl) are the smoothing coefficients in

the range of (0, 1).

5.2.2 Optimal Wind Sensing Locations

The Gaussian process method has been widely used to model unknown environmental

fields [99] and cope with the optimal sampling point selection problem [100]. As an ad-

vantage of the GPR-based wind field estimation, the estimated covariance of wind speeds

at the target locations can be provided, which represents the uncertainty of wind prediction.

To obtain the maximum amount of wind information at these target locations, the optimal

wind sensing locations should be determined for the UAVs.

To quantify the amount of uncertainty, the differential information entropy is introduced
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as

H(x) = −
∫
p(x) log p(x)dx (5.10)

Since the prior distribution of wind speeds at the target locations follow a multivariate

Gaussian distribution Ξt ∼ N (0, Σtt), the information entropy of wind speeds at the target

locations can be calculated as

H(Ξt) =
1

2
log det(Σtt) +

Nt

2
(log 2π + 1) (5.11)

where Nt denotes the number of target locations.

If the wind measurements and the wind sensing locations are given, to quantify the

reduction of uncertainty of Ξt conditioning on Ξs, the mutual information can be calculated

as
I(Ξt; Ξs) =H(Ξt)−H(Ξt|Ξs)

=H(Ξt) +H(Ξs)−H(Ξt, Ξs)

=
1

2
log

det(Σ1) det(Σ2)

det(Σ3)

(5.12)

where 

Σ1 =Σtt

Σ2 =Σss + σ2
sINs

Σ3 =

Σss + σ2
sINs ΣT

ts

Σts Σtt


(5.13)

Therefore, the optimal wind sensing locations can be determined by maximizing the

mutual information. It is worth noting that the determination of the optimal wind sensing

locations is dependent on the selection of target locations, the number of wind sensing

locations, and the prior knowledge about the GPR-based wind field model, i.e., the prior

knowledge on the hyperparameters. On the other hand, once the wind measurements are

provided at these optimal wind sensing locations, the GPR-based wind field model can be
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updated for the wind prediction.

5.2.3 Forest Fire Monitoring Scheme Based on Ensemble Kalman Fil-

ter

In order to facilitate the design of EnKF for forest fire monitoring, the fire state vector,

which is composed of the two-dimensional coordinates of Nf fire points at time instant tk,

is defined as

xfk = [(qx,1, qy,1), (qx,2, qy,2), · · · , (qx,Nf
, qy,Nf

)]T (5.14)

Correspondingly, the wind vector that induces the propagation of these fire points is

defined as

ξfk = [(ξx,1, ξy,1), (ξx,2, ξy,2), · · · , (ξx,Nf
, ξy,Nf

)]T (5.15)

With the fire observations collected by UAVs, the observation vector of these fire points

is defined as

zfk = [(qox,1, q
o
y,1), (q

o
x,2, q

o
y,2), · · · , (qox,Nf

, qoy,Nf
)]T (5.16)

Considering the insuperable uncertainties in both forest fire predictions and the obser-

vations, the ensemble Kalman filter is designed to evaluate the status of forest fire via ob-

servations. The EnKF algorithm is a sampling-based approach, which is advantageous for

solving extremely high-dimensional, possibly nonlinear, and non-Gaussian state estimation

problems.

In the EnKF process, an ensemble of Ne state vectors are propagated through the fire

spread model. To predict the forest fire spread, the current estimates of wind speeds are

required. Given the current coordinate estimates of the fire points, the wind estimates can

be sampled via the GPR-based wind field model

ξ
f(j)
k|k−1 ∼ p(ξfk|k−1|x

f(j)
k−1|k−1) (5.17)
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where j = 1, 2, · · · , Ne.

Then, based on the fire spread model, the ensembles of forest fire states can be propa-

gated as

x
f(j)
k|k−1 = f(x

f(j)
k−1|k−1, ξ

f(j)
k|k−1) + ω

f(j)
k−1 (5.18)

where ω
f(j)
k ∼ N (0, Qf ) denotes the process noise vector in the forest fire propagation.

Based on the state ensemble prediction, the predicted observations can be obtained as

z
f(j)
k|k−1 = h(x

f(j)
k|k−1) + υ

f(j)
k (5.19)

where υ
f(j)
k ∼ N (0, Rf ) denotes the observation noise vector.

To update the ensemble of predicted state vectors with the fire observations collected

by UAVs, the computation of the EnKF gain is required. The optimal gain is approximated

from the prediction ensembles Eqs. (5.18) and (5.19).

The mean of the propagated state ensemble and the predicted observation ensemble can

be obtained as 
xfk|k−1 =

1

Ne

Ne∑
j=1

x
f(j)
k|k−1

zfk|k−1 =
1

Ne

Ne∑
j=1

z
f(j)
k|k−1

(5.20)

Then, the cross-covariance between the propagated states and predicted observations

and the covariance of predicted observation can be computed as


Cxz
k =

1

Ne − 1

Ne∑
j=1

(xfk|k−1 − x
f(j)
k|k−1)(zk|k−1 − z

f(j)
k|k−1)

Czz
k =

1

Ne − 1

Ne∑
j=1

(zfk|k−1 − z
f(j)
k|k−1)(z

f
k|k−1 − z

f(j)
k|k−1)

(5.21)
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Thus, the EnKF gain can be computed as

Kk = Cxz
k (Czz

k +Rf )
−1 (5.22)

Algorithm 2: The proposed EnKF-based forest fire monitoring approach

Input: Observation of forest fire zk and the GPR-based wind field model p(ξfk |x
f
k)

Output: Estimates of fire states x̂fk
1 Initialize the ensemble of forest fire states {xf(j)0 }Ne

j=1;
2 for k ← 1 to Number of time steps do
3 Prediction:
4 Sample ξ

f(j)
k|k−1 ∼ p(ξfk|k−1|x

f(j)
k−1|k−1);

5 Propagate x
f(j)
k|k−1 ← f(x

f(j)
k−1|k−1, ξ

f(j)
k|k−1) + ω

f(j)
k ;

6 Predict zf(j)k|k−1 ← h(x
f(j)
k|k−1) + υ

f(j)
k ;

7 Update:
8 xfk|k−1 ←

1
Ne

∑Ne

j=1 x
f(j)
k|k−1;

9 zfk|k−1 ←
1
Ne

∑Ne

j=1 z
f(j)
k|k−1;

10 Cxz
k ← 1

Ne−1

∑Ne

j=1(x
f
k|k−1 − x

f(j)
k|k−1)(z

f
k|k−1 − z

f(j)
k|k−1)

T ;

11 Czz
k ← 1

Ne−1

∑Ne

j=1(z
f
k|k−1 − z

f(j)
k|k−1)(z

f
k|k−1 − z

f(j)
k|k−1)

T ;
12 Compute gain Kk ← Cxz

k (Czz
k +Rf )

−1;
13 Update x

f(j)
k|k ← x

f(j)
k|k−1 +Kk(z

f
k − z

f(j)
k|k−1);

14 Estimate x̂fk ≈ 1
Ne

∑Ne

j=1 x
f(j)
k|k

15 end

With this gain, the ensemble of propagated states can be updated as

x
f(j)
k|k = x

f(j)
k|k−1 +Kk(z

f
k − z

f(j)
k|k−1) (5.23)

Finally, the estimate of forest fire state can be approximated as

x̂fk ≈
1

Ne

Ne∑
j=1

x
f(j)
k|k (5.24)

To better understand the proposed EnKF-based forest fire monitoring approach, the
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pseudo code is given in Algorithm 2.

5.3 Simulation Results

In this section, simulations are conducted to demonstrate the effectiveness of the pro-

posed forest fire monitoring strategy in the presence of unknown wind environments.

To generate wind environments for simulations, a horizontal wind field at the altitude

of hr = 50m above the vegetation is defined as

ξx
ξy

 =

a sin2( x
50
) + b cos2( y

50
) + ϵ

a cos( x
50
) + b sin( y

50
) + ϵ

 (5.25)

where a = 4 and b = 3. ϵ is a zero-mean Gaussian noise with a variance of σ2
ϵ =

0.01 (m/s)2 that represents the uncertainty of wind speeds.

The propagation of fire front is simulated based on the fire spread model Eq. (2.19). The

parameters of the model are set as hf = 1.5m,R0 = 1m/s, β = 0.002, and σ = 4000m−1.

The initial fire front has an arbitrary shaped boundary, which is described as


qx,0 = r · cosα

qx,0 = r · sinα
(5.26)

where α ∈ [0, 2π] and r = r0 + ks(sin 6α+ sin 3α). In the simulations, parameters for the

initial fire front are set as r0 = 100m and ks = 5m. By evenly sampling α, the continuous

fire front is discreted by Nf = 40 fire points. Fig. 5.3 shows the forest fire spread in the

self-defined wind field.

UAVs are commanded to provide wind measurements and forest fire observation at the

altitude of 50m. The variances of wind measurement noise and forest fire observation

noise are set as σ2
s = 0.01 (m/s)2 and σ2

υ = 1m2. To determine the optimal wind sensing
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Figure 5.3: Illustration of forest fire spread in the self-defined wind field

locations, the prior knowledge of the hyperparameters are set as σf = 5m/s and l =

100m. When arriving at the desired positions, UAVs are set to collect wind measurements

and forest fire observations at a frequency of 1Hz. The smoothing coefficients for the

hyperparameters are set as λσf = 0.1 and λl = 0.1.

5.3.1 Forest Fire Monitoring with Regional Wind Field Estimation

In this simulation, the performance of the proposed strategy is evaluated with the re-

gional wind field estimation. The region of interest is defined as a scalar field {(x, y)| −

150m ≤ x ≤ 200m, −150m ≤ y ≤ 200m} with a resolution of 50m in each direction.

The actual wind field with target locations is shown in Fig. 5.4.

In order to demonstrate the effectiveness of the GPR-based wind field estimation, the

estimation results of 10, 20, and 40 wind sensing locations are compared. Given the num-

ber of wind sensing locations, the optimal wind sensing locations can be obtained by using

the maximum mutual information criterion. The predicted mean wind fields are shown in

Fig. 5.5. It can be observed that the more available wind measurements collected by UAVs
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Figure 5.4: Actual wind field with target locations

-100 0 100 200

-150

-100

-50

0

50

100

150

200

0

1

2

3

4

5

6

7

8

(a) Ns = 10
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(b) Ns = 20
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(c) Ns = 40

Figure 5.5: Predicted mean wind field with different numbers of wind measurements
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results in the better wind field estimation. However, in the case of insufficient measure-

ments, it will cause an underfitting problem for the regional wind field estimation. With the

estimated wind fields, the forest fire spread can be predicted. Fig. 5.6 shows the prediction

of forest fire spread at t = 60 s. The results of forest fire prediction suggest that the re-

gional wind field estimation can provide valuable information for the forest fire prediction,

but the performance of the forest fire prediction still depends on the accuracy of the wind

field estimation within the region of interest.
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Figure 5.6: Prediction of forest fire spread at t = 60 s

With the EnKF, the prediction of forest fire spread can be updated via the fire observa-

tions collected by UAVs. Fig. 5.7 shows the estimation of fire front with EnKF at t = 60 s.

A comparison of forest fire spread prediction and estimation are demonstrated in Fig. 5.8.

The mean distances and the root mean squared (RMS) distances of the fire front estimation

to the actual fire front decrease, compared with those of the forest fire prediction without

observation update. This is due to the fact that with the fire observations collected by UAVs,

the prediction errors that are caused by the wind field estimation errors and uncertainties of

the forest fire spread model can be reduced by the EnKF.
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Figure 5.7: Estimation of forest fire spread with EnKF at t = 60 s
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Figure 5.8: Comparison of forest fire spread prediction and estimation
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5.3.2 Forest Fire Monitoring with Specific Focus on the Fire Front

In this simulation, the wind field is estimated with specific focus on the fire front, i.e.,

the discrete fire points on the fire front are set as the target locations for the wind field

estimation. To avoid the underfitting problem caused by insufficient wind measurements,

the number of the wind sensing locations is set as Ns = 20.
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Figure 5.9: Wind field and forest fire estimation with specific focus on the fire front at
t = 0 s
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Figure 5.10: Wind field and forest fire estimation with specific focus on the fire front at
t = 20 s

Figs. 5.9-5.12 show the simulations of wind field and forest fire estimation with spe-

cific focus on the fire front. The optimal wind sensing locations are updated according to
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Figure 5.11: Wind field and forest fire estimation with specific focus on the fire front at
t = 40 s
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Figure 5.12: Wind field and forest fire estimation with specific focus on the fire front at
t = 60 s
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Figure 5.13: Comparison of forest fire estimation with regional wind field and specific
focus on the fire front
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the spreading fire points. It can be seen that with specific focus on the fire front, the wind

sensing locations are spread out with the propagation of the forest fire to satisfy the ob-

jectives. Correspondingly, the wind field near the fire front can be estimated with a higher

accuracy. Fig. 5.13 shows that with specific focus on the fire front, the mean distance and

RMS distance to the actual fire front both decrease. This result indicates the method can

improve the estimation accuracy of the border region of the forest fire as it keep expanding.

5.4 Summary

This chapter presents an EnKF-based strategy to estimate the forest fires with wind

measurements and fire observations collected by multiple UAVs. Using the Gaussian pro-

cess regression method, the local wind field model is reconstructed based on the wind

measurements to provide predictions of wind components for the fire prediction. Then,

to improve the wind field estimation for the forest fire monitoring, the locations of wind

sensing are optimized with the maximum mutual information method. Based on the Rother-

mel’s fire spread model, the propagation of the forest fire front is estimated in the ensemble

Kalman filter framework. The simulation results demonstrate the effectiveness of the pro-

posed forest fire monitoring strategy.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, the wind estimation from quadrotor motion, the active wind rejection

control of quadrotor UAVs and the forest fire monitoring approach with a group of UAVs

are investigated. To summarize, several major conclusions are drawn as follows:

(1) The proposed two-stage particle filter-based wind estimation approach can extract

wind vectors from quadrotor motion without additional wind sensors. By adopting

the cascaded structure, the accuracy and the computational efficiency of the particle

filter procedure can be improved.

(2) Compared with the wind triangle wind estimation algorithm, the proposed approach

can effectively estimate wind vectors based on the nonlinear dynamic model of a

quadrotor UAV and reduce the adverse impact of measurement noise and produce

more accurate estimation results.

(3) The proposed wind rejection control can actively compensate for the external wind

disturbances acting on the UAV dynamics based on the explicit wind estimation ob-

tained from the two-stage particle filter. By using an adaptive nonsingular terminal
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sliding mode control, one can attenuate the lumped disturbances, including wind es-

timation errors and model uncertainties. Moreover, the proposed active wind rejec-

tion cooperative control can improve the formation flight performances of multiple

quadrotor UAVs in the presence of unknown winds.

(4) Compared with the pure adaptive NTSMC, the designed controller with active wind

rejection mechanism can promptly get a response to the time-varying winds so as

to guarantee the tracking performance and stability of quadrotor UAVs against the

unexpected wind disturbances.

(5) The proposed wind field reconstruction approach based on the Gaussian process re-

gression method can retrieve the wind field over the forest fire region with the wind

data collected by UAVs. The optimal wind sensing locations can be determined via

the designed algorithm for a group of UAVs to collect wind data, where the maximum

amount of wind information can be obtained.

(6) The proposed ensemble Kalman filter-based forest fire monitoring approach with the

wind field reconstruction can accurately assess the status of wind-affected forest fires.

The proposed method can sample wind data from a multivariate Gaussian distribution

related to the fire front locations to overcome the challenge of obtaining wind input

data for forest fire estimation.

6.2 Future Works

This thesis mainly focuses on the wind estimation and control of UAVs with application

to forest fire surveillance. In the future, more effort should be devoted to the studies in the

related fields. Based on the current research in this thesis, several future directions are

outlined as follows:
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(1) The proposed wind estimation approach and wind rejection control strategy are de-

pendent on the quadrotor aerodynamic model considering wind effects. However,

the current challenge is how to obtain the accurate aerodynamic representation of the

aircraft. Therefore, the accurate model of a quadrotor UAV is worth further investi-

gation.

(2) The wind estimation approach and wind rejection control are investigated without

considering more complicated and challenging issues, such as sensor faults, actuator

faults, and computation and communication limitations, which are expected to be

studied in the future work.

(3) The proposed forest fire monitoring approach relies on the forest fire spread model

and the interaction between winds and fires. As a result, the fire spread model should

be further investigated in the future to improve the accuracy of estimation.

(4) The observations of forest fire states are assumed to be perfectly obtained in this

thesis, while more work should be done for the identification and localization of fire

front locations with UAVs.

(5) Although the proposed approaches are validated in simulations, their effectiveness

should be further validated by real flight experiments.
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A. Drzeniecka-Osiadacz, M. Korzystka-Muskała, P. Muskała, P. Modzel et al., “Are

estimates of wind characteristics based on measurements with pitot tubes and gnss

117



receivers mounted on consumer-grade unmanned aerial vehicles applicable in me-

teorological studies?” Environmental Monitoring and Assessment, vol. 189, no. 9,

2017, Art. no. 431.

[14] J.-W. Kampoon, W. Okolo, S. A. Erturk, O. Daskiran, and A. Dogan, “Wind field

estimation and its utilization in trajectory prediction,” in AIAA Atmospheric Flight

Mechanics Conference, Kissimmee, United States, Jan. 2015.

[15] J. D. Barton, “Fundamentals of small unmanned aircraft flight,” Johns Hopkins APL

Technical Digest, vol. 31, no. 2, pp. 132–149, 2012.

[16] B. Arain and F. Kendoul, “Real-time wind speed estimation and compensation for

improved flight,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50,

no. 2, pp. 1599–1606, 2014.

[17] R. J. Barthelmie, P. Crippa, H. Wang, C. M. Smith, R. Krishnamurthy,

A. Choukulkar, R. Calhoun, D. Valyou, P. Marzocca, D. Matthiesen, G. Brown, and

S. C. Pryor, “3D wind and turbulence characteristics of the atmospheric boundary

layer,” Bulletin of the American Meteorological Society, vol. 95, no. 5, pp. 743–756,

2014.

[18] D. Hollenbeck, G. Nunez, L. E. Christensen, and Y. Chen, “Wind measurement and

estimation with small unmanned aerial systems (sUAS) using on-board mini ultra-

sonic anemometers,” in International Conference on Unmanned Aircraft Systems,

Dallas, United States, Jun. 2018.

[19] T. Shimura, M. Inoue, H. Tsujimoto, K. Sasaki, and M. Iguchi, “Estimation of wind

vector profile using a hexarotor unmanned aerial vehicle and its application to me-

teorological observation up to 1000 m above surface,” Journal of Atmospheric and

Oceanic Technology, vol. 35, no. 8, pp. 1621–1631, 2018.

118



[20] G. W. Donnell, J. A. Feight, N. Lannan, and J. D. Jacob, “Wind characterization us-

ing onboard IMU of sUAS,” in Atmospheric Flight Mechanics Conference, Atlanta,

United States, Jun. 2018.

[21] R. T. Palomaki, N. T. Rose, M. van den Bossche, T. J. Sherman, and S. F. De Wekker,

“Wind estimation in the lower atmosphere using multirotor aircraft,” Journal of At-

mospheric and Oceanic Technology, vol. 34, no. 5, pp. 1183–1191, 2017.

[22] C. A. Wolf, R. P. Hardis, S. D. Woodrum, R. S. Galan, H. S. Wichelt, M. C. Metzger,

N. Bezzo, G. C. Lewin, and S. F. de Wekker, “Wind data collection techniques on a

multi-rotor platform,” in Systems and Information Engineering Design Symposium,

Charlottesville, United States, Jun. 2017.
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