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Abstract

Wearable Smart Rings for Multi-Finger Gesture Recognition Using
Supervised Learning

Seyed Ahmadreza Mousavi

This thesis presents a wearable, smart ring with an integrated Bluetooth low-energy

(BLE) module. The system uses an accelerometer and a gyroscope to collect fingers motion

data. A prototype was manufactured, and its performance was tested. To detect complex

finger movements, two rings are worn on the point and thumb fingers while performing

the gestures. Nine pre-defined finger movements were introduced to verify the feasibility

of the proposed method. Data pre-processing techniques, including normalization, statisti-

cal feature extraction, random forest recursive feature elimination (RF-RFE), and k-nearest

neighbors sequential forward floating selection (KNN-SFFS), were applied to select well-

distinguished feature vectors to enhance gesture recognition accuracy. Three supervised

machine learning algorithms were used for gesture classification purposes, namely Support

Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naive Bayes (NB). We demon-

strated that when utilizing the KNN-SFFS recommended features as the machine learning

input, our proposed finger gesture recognition approach not only significantly decreases

the dimension of the feature vector, results in faster response time and prevents overfitted

model, but also provides approximately similar machine learning prediction accuracy com-

pared to when all elements of feature vectors were used. By using the KNN as the primary

classifier, the system can accurately recognize six one-finger and three two-finger gestures

with 97.1% and 97.0% accuracy, respectively.
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Chapter 1

Introduction

1.1 Research Topic

This thesis presents a framework for multi-finger gesture recognition utilizing wearable

smart rings equipped with inertial measurement units (IMUs). A pair of self-calibrating

rings has been fabricated to be worn on the point and thumb fingers. Using Bluetooth low

energy (BLE), the inertial data are transmitted to the Raspberry Pi Zero W. As part of this

thesis, ten statistical features have been extracted from raw data for pre-processing before

applying feature selection methods to improve machine learning accuracy and processing

time. The classification of each gesture is further developed by comparing the results of

three different machine learning algorithms, namely, Support Vector Machine (SVM), K-

Nearest Neighbour (KNN), and Naive Bayes (NB). As a result of its small size, our finger

gesture recognition interface is sufficiently robust and adaptable to various hand and finger

shapes. Furthermore, this sensor-based finger gesture recognition method does not suffer

from the problems associated with vision-based gesture recognition, including background

colour, texture, and illumination.
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1.2 Motivation

The gesture recognition system recognizes human gestures and classifies them so they

can be used as control commands. Two important applications of finger and hand gesture

recognition include:

• Human-Computer Interaction (HCI) which can facilitate a wide spectrum of emerg-

ing applications, including smart home, virtual reality (VR), augmented reality (AR),

and gaming [1]. Gesture recognition has been used to advance methods of human-

robot interaction [2, 3, 4, 5, 6].

• As an assistive for people with disabilities such as motor impairments [7]. As another

example, hand and finger gesture recognition can be broadly used by deaf and mute

individuals as a communication tool through sign language recognition [8, 9].

In this project, we have focused on the Sensor-Based Recognition (SBR) approach due

to its advantages compared with the Vision-Based Recognition (VBR) method, including:

• Lower computation burden [10]

• Faster dynamic response [11]

• Lower data storage [11]

• No limitations in environmental conditions such as light [8, 11].

1.3 Contribution

We propose an adaptable, wearable smart ring system to recognize and classify multi-

finger gestures. Below are some of the key contributions of this work:

(1) Our system can detect multiple types of finger gestures, including upward, down-

ward, and circular movements, as well as more complex movements such as zooming

in and out.

2



(2) We have shown that an IMU can enhance machine learning accuracy by six to seven

percent compared to an accelerometer alone and by eight to thirteen percent in con-

trast to a gyroscope alone. By combining accelerometer and gyroscope data for de-

tecting each gesture, we were able to achieve significantly improved results compared

to using one of them as a measurement device.

(3) Utilizing sophisticated data pre-processing methods before feeding the data to the

machine learning model, the size of the feature vector is dramatically reduced from

60 to 10 for one-finger gestures and from 120 to 10 for two-finger gestures. Despite

maintaining accuracy, this reduction in feature size improves processing time and

prevents any possible overfitting.

(4) To improve the portability and user experience, we proposed a small-size ring pow-

ered by a rechargeable lithium polymer battery that can operate continuously for an

extended period of time on a single charge and uses wireless connectivity (BLE) in-

stead of a typical wired connection. Due to their small size (less than 20 mm × 20

mm) and low weight (3.2× 10−3 kg), our smart rings can be worn on any finger.

The rest of this thesis is organized as follows: Chapter 2 presents an overview of the

machine learning classification method and also hardware that are utilized in the field of

sensor-based finger and hand gesture recognition along with a comprehensive literature

review is introduced in which recent related works on the sensor-based finger and hand

gesture recognition. Chapter 3 introduces the proposed multi-finger gesture recognition

system and describes its hardware components and implementation. Chapter 4 is dedicated

to the feature selection methods utilized in this project. Chapter 5 presents the training and

testing details and the recognition results of the proposed system for multi-finger gesture

recognition. Finally, Chapter 6 concludes the thesis and gives an overview of future works.
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Chapter 2

Background and Related Works

2.1 Introduction

This chapter presents an overview of the machine learning fundamentals, classification

methods, and sensors utilized in sensor-based finger and hand gesture recognition. Also,

a comprehensive literature review is introduced in which recent related works on sensor-

based finger and hand gesture recognition are summarized and compared.

2.2 Machine Learning Fundamentals

Figure 2.1 shows the general structure of a machine learning-based predictive model,

where historical data is used as training data and new test data is used to generate outcomes.

In general, machine learning algorithms fall into four categories: Supervised learn-

ing, Unsupervised learning, Semi-supervised learning, and Reinforcement learning [12],

as shown in Figure 2.2. Supervised learning is the most common algorithm utilized in hand

and finger gesture recognition. It uses labeled training data and a collection of training ex-

amples to infer a function that maps an input to an output. Supervised learning is suitable

in case of a task-driven approach, i.e. when there are certain goals that must be achieved

from certain inputs. There are two types of supervised tasks that are commonly used: clas-

sification which separates the data, and regression which fits the data to the classes.

4



Figure 2.1: Training and testing phases of a machine learning-based predictive model.

Figure 2.2: Types of machine learning techniques.

2.2.1 Classification Methods Used in Gesture Recognition

KNN:

Both classification and regression problems can be solved with KNNs in machine learn-

ing. Using the KNN algorithm, the new input data is classified based on its similarity to the

previously trained data, which is grouped into coherent clusters or subsets. Inputs are as-

signed to classes based on the number of nearest neighbours they have. As a non-parametric

classification algorithm, KNN does not assume anything about the elementary dataset. In
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spite of this classifier’s simplicity, K plays a significant role in classifying data without la-

bels. Increasing K reduces the net noise. It can be expensive to determine the optimal K in

the case of large datasets [13].

NB:

Naive Bayes classifiers assign gesture classes based on feature vectors with each fea-

ture conditionally independent of another. Predictions can be made efficiently during both

training and inference stages, as it requires less training time than other more complex

models. Conditional independence is often observed to work well in many tasks, but it is

also often untrue in most cases, limiting performance [8].

Relevance Vector Machine (RVM):

RVMs are Bayesian sparse kernel algorithms for regression and classification, which

share many characteristics of SVMs while avoiding their primary drawbacks. SVMs pro-

duce decisions, while the outputs of RVM are posterior probabilities. In addition, the SVM

was developed for two classes, so extending it to more would be problematic. RVM typi-

cally produces sparser models than SVM, resulting in faster performance on test data while

maintaining comparable generalization error [14].

Logistic Regression (LR)

A standard probability-based model for classification problems in machine learning.

LR uses a logistic function to estimate probabilities mathematically, also called a sigmoid

function, as shown in Eq 1. It is possible to avoid over-fitting by using regularization

techniques. LR has the disadvantage of assuming linear relationships between independent

and dependent variables. Both classification and regression problems can be solved with

LR, but the classification is more commonly used. LR, which is also known as maximum-

entropy classification, is capable of both binary and multinomial classifications [14].

6



g(z) =
1

1 + e−z
. (1)

SVM:

A SVM is a mechanism for separating feature vectors of different classes by generating

hyperplanes in n-dimensional space (n = the number of input features). SVM uses the

principal difference between the classes as a criterion to calculate the separating hyper-

planes. SVMs are maximum margin classifiers, i.e. the hyperplanes are constructed to

maximize the distance (margin) between the hyperplanes and the closest feature vectors on

each side [15]. An example of SVM is depicted in Figure 2.3.

Figure 2.3: An example of SVM (source: [15]).

Decision Tree (DT):

The Decision Tree (DT) is one of the most popular classifiers due to its intelligible

nature. Due to their flexibility, robustness to noise, low computational cost, and ability

to handle redundant attributes, DT induction algorithms are preferred over other learning

7



algorithms [16]. Both classification and regression tasks can be handled by decision trees.

The prediction of discrete values is done through classification, while the prediction of con-

tinuous values is done through regression. There are numerus well known DT algorithms,

including ID3, C4.5, and CART. As shown in Figure 2.4, the instances are classified by

sorting down the tree from the root to some leaf nodes. Attributes of each node are checked

for classification starting with the root node, then moving along the tree branches corre-

sponding to the attribute value. It is common to split the branches based on Gini impurity

and Entropy for information gain, which can be expressed mathematically as [17]:

Entropy : H(x) = −
n∑

i=1

p (xi) log 2p (xi)

Gini(E) = 1−
c∑

i=1

p2i . (2)

Figure 2.4: An example of a DT structure.

Random Forest (RF):

It has been found that growing an ensemble of trees and letting them vote for the most

popular class can result in significant improvements in classification accuracy. A random

8



vector is often generated to govern the growth of each tree in an ensemble in order to grow

these ensembles. They vote for the most popular class after generating a large number

of trees. Generally, these procedures are referred to as random forests Figure 2.5. Each

tree in a random forest depends on the value of an independent and equal distribution ran-

dom vector sampled independently for each tree. The use of random forests is an effective

prediction tool. In random forests, there is no overfitting, since the Law of Large Num-

bers holds true. Random forest classifiers and regressors are more accurate when they are

injected with the right kind of randomness [18].

Figure 2.5: An example of a random forest structure considering multiple decision trees

2.3 Static vs. Dynamic Gesture Recognition

In finger or hand gesture recognition applications, the users move their hands or fingers

to assume a specific pose or configuration. The literature review on gesture recognition has

traditionally distinguished between two main types of gesture [19]:
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• Static gestures refer to hand or finger positions that are held in a fixed position. Some

examples of static gestures are pointing at a specific object, making a fist, or holding

the hand in a specific position. These types of gestures are usually used to interact

with digital devices, activate a certain function or to make selections on screens, etc.

Static gestures are also known as pose-based or posture-based gestures.

• Dynamic gesture is a hand or finger movement that occurs over time. It is a gesture

that changes over time, and can be detected using sensors such as accelerometers,

gyroscopes, or cameras. Some examples of dynamic gestures are swiping, rotating,

pinching or tapping. These types of gestures are typically used to interact with digital

devices, such as scrolling through a webpage or zooming in on a map. Dynamic

gestures are also known as motion-based or gesture-based gestures.

With the help of IMU sensors in our design, we are able to detect nine different dynamic

gestures by utilizing machine learning algorithms.

2.4 Hardware for Finger and Hand Gesture Recognition

Review

2.4.1 Visual-based and Sensor-based Hardware

Finger gesture recognition offers numerous benefits, including virtual typing and draw-

ing, signature recognition, augmented reality, sign-language recognition, and real-time

robot control. Finger gesture recognition approaches can be classified into Vision-Based

Recognition (VBR) [20, 21] and Sensor-Based Recognition (SBR) [10, 11, 22] algorithms.

Optical-based gesture recognition methods use optical sensors such as cameras [23, 24] or

infrared (IR) sensors [25] to capture the movements of fingers and interpret them into com-

mands. Although accurate classification is possible, high data storage and computation

efforts are required to extract information from images for training and inference opera-

tions [10, 11]. The VBR approaches have also suffered from occlusion problems (no direct

10



line of sight), different users’ hand speed, the need for a proper environment with enough

light to take photos [8, 11].

With recent technological advancements, batteries, circuit boards, microcontrollers, and

sensors have become small and cost-effective. Sensors are less susceptible to environmental

influences than cameras. Modern portable systems are practical for mobile and wearable

applications due to their ability to store large amounts of sensor data. Sensor-based ap-

proaches have the primary disadvantage of causing discomfort to users or restricting their

movements. The problem can be addressed by embedding sensors into wearable devices,

such as gloves or rings [8]. These wearable interfaces are introduced in the next subsection.

2.4.2 Types of interfaces for sensor-based gesture recognition

Although in numerous studies, no particular interface is used to mount the sensors

on the body, e.g. [9, 26], in real-world applications, convenient interfaces are needed to

facilitate the integration of motion sensors to the body. Four types of interfaces have been

used in previous studies to attach the sensor needed for finger and hand gesture recognition

in previous studies:

• Gloves [2, 9, 27]

• Rings [7, 28, 29, 30, 31]

• Smartwatches [29, 32, 33]

• Pens [22, 34]

Pens are more suitable for handwriting or signature recognition applications [9], but

wearable equipment such as rings, smartwatches and gloves can be used for widespread

applications. Smart Gloves are the first wearable interfaces and have been widely utilized

since 1977 [27]. However, due to the miniaturization of electronic sensors and components,

smaller and more fashionable interfaces such as smart rings and smartwatches are being

developed. Rings are finger-mounted equipment, while smartwatches are wrist-mounted
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interfaces with different motion sensors. In [34, 35], an accelerometer-based digital pen,

with a trajectory recognition algorithm, was designed to recognize handwritten digits and

gestures. Users were asked to write words using a smartphone as a pen [36] and the hand-

writing was reconstructed using a gyroscope and accelerometer embedded in the phone.

(a) Glove [27] (b) Smartwatch [37]

(c) Ring [38] (d) Smart Pen [39]

Figure 2.6: Different types of interfaces for sensor-based hand and finger gesture recognition.

Wireless Interfaces

The presence of wires to transmit the signals of the sensors will cause some movement

constraints for the users. To avoid these disadvantages, wireless sensors are becoming

more favorable [40]. To manage energy consumption, BLE modules are a suitable choice

for wireless interfaces [15, 38].

Our research for finger gesture recognition systems was identified through a compre-

hensive literature review of state-of-the-art techniques and technologies. Having conducted
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this research, we gained a better understanding of the advantages and limitations of differ-

ent electronic devices, allowing us to make an informed decision regarding which devices

to use. The following reasons led us to choose smart rings:

• Convenience: A smart ring is a convenient and portable device that can be worn on a

finger, making it easy for users to carry and use at all times.

• Discreetness: A smart ring is small and subtle, which allows for a more discreet inter-

action with the device and can be worn in various social and professional situations.

• Ergonomics: A smart ring is worn on the finger, a natural and intuitive location

for controlling digital devices, and it allows for easy and natural hand and finger

movements.

• User needs: The smart ring is designed to cater to specific user needs, such as track-

ing fitness and health data, providing notifications, or controlling smart home de-

vices.

• Technical feasibility: The smart ring is equipped with sensors and technologies that

are compact and power-efficient, making it a technically feasible device to wear all

day.

With recent advances in machine learning technologies, HCI products can now be used

as assistive devices for people with disabilities. They can also be used as communication

aids for people who are deaf or mute [7]. Our goal is to use this technology in the future

to improve communication between people with disabilities of all kinds. Additionally,

we intend to make people’s interactions with their smartphones and smart homes more

convenient and enjoyable. Smart ring systems have the potential to offer many possibilities.

2.4.3 Types of sensors used in gesture recognition

IMU-based sensors:

Wearable IMU-based sensors are probably the most common in gesture and human-motion
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recognition. IMU sensors benefit from efficiency in signal processing, and low latency

[41]. IMU sensors have been augmented to all the different wearable interfaces used in

hand and finger gesture recognitions, including gloves, rings, smartwatches and pens. Low

weight, price, and compact size are among the advantages of IMU sensors [42]. These

sensors have also become exceedingly power-efficient in recent years [27]. IMU-based

sensors have three different types [43], namely:

• Accelerometers

• Gyroscopes

• Magnetometer

These types of IMU-based sensors can be used invaluably. However, in many applications,

a combination of two or three are utilized.

The fusion of IMU-based sensors with other types of sensors introduced in the fol-

lowing is very common in hand and finger gesture recognition. A sensor-fusion algorithm

typically uses inertial sensors to track hand motions and other sensors to detect additional

information such as finger snapping, hand gripping, or fingerspelling [43]. However, it is

suggested that the inertial-sensor-only approach potentially increases portability and mo-

bility.

The inertial sensor improves portability and versatility with a reduced computation load

compared to multiple wearable sensors or heavy algorithms. Motion energy measured

at the smartwatch [33] is sufficient to recognize the user’s finger gestures. In a similar

study [32], a novel technique for recognizing fine-motor finger gestures using integrated

motion sensors (accelerometer and gyroscope) in off-the-shelf smartwatches is proposed.

The potential to distinguish five fine-motor gestures like pinching, tapping, and rubbing

fingers, with an average F1-score of 87% is achieved. In [44], a steady hand gestures

recognition using a three-axis accelerometer and gyroscope sensors in a smart device is

developed. An automatic gesture spotting algorithm is also investigated to detect the start

and endpoints of meaningful gesture segments.
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Flex Sensors:

Flex sensors are widely used in hand and finger gesture recognition applications. These

types of sensors are usually mounted on smart gloves. Figure 2.7 shows the utilization of

flex sensors in fusion with IMU-based sensors for hand gesture recognition [9].

Figure 2.7: Flex sensors in fusion with IMUs [9].

Stretch Sensors:

Fusing stretch sensors with IMU-based sensors is also common in gesture recognition.

For example, [40] has used stretch sensors in a combination of IMUs for multiple finger

tracking (Figure 2.8).

Electromyography (EMG) Sensors:

In many applications, electromyography sensors have been combined with IMU-based sen-

sors to recognize hand and finger gestures [42, 45]. As an example, [42] has utilized the

fusion of surface electromyography (sEMG) sensors with wrist-worn IMU sensors for Per-

sian sign language recognition, as is shown in Figure 2.9.

Pressure Sensors:

Pressure sensors mounted on the fingers are also used in gesture recognition applications.
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Figure 2.8: Stretch sensors in fusion with IMUs on wearable smart rings used for multiple finger
tracking [40].

Figure 2.9: Fusion of surface electromyography (sEMG) sensors with wrist-worn IMU sensors
[42].

As an example, [9] has shown that fusion of pressure sensors with flex and inertial sensors

can improve the accuracy of sign language interpretation systems based on smart wearable

hand devices. [46] has also used a fusion of pressure and IMU sensors for finger movement

monitoring.

Capacitive Proximity Sensors:

A low-cost, effective capacitive sensor device is proposed in [47] for recognizing hand

gestures. A prototype is fabricated and equipped with a capacitive sensing unit to capture

capacitance values from electrodes attached to finger phalanges. A recognition rate of 97%

is reached for the compressed feature dataset using Error Correction Output Code Support
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Figure 2.10: Wearable pressure sensors used for hand gesture recognition [9].

Vector Machines (ECOC-SVM) and KNN classifiers. Capacitive proximity sensing can

detect conductive objects by measuring the effect of an electrode on the electrical field.

TypingRing [28] distinguishes finger taps on a surface to allow text input. It uses proximity

sensors to detect if the adjacent finger is next to the ring or not. In finger gesture recogni-

tion, smart rings equipped with capacitive proximity sensors have been used to measure the

approximate distances to other fingers, enabling multi-finger gesture recognition [38]. Fig-

ure 2.11 depicts an example of multi-finger gesture recognition using capacitive proximity

sensors.

Figure 2.11: Capacitive proximity sensing working principles [38].

Microphones:

Microphones are sensors that are capable of recording sound signals. In some finger recog-

nition systems, microphones are also utilized in fusion with other sensors to improve ac-

curacy. As an example [48] has used a smart ring equipped with a contact microphone in
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fusion with an IMU for unistroke thumb gestures using a ring.

Figure 2.12: Wearbale ring equipped with contact microphone in fusion with an IMU sensor [48].

2.4.4 Types of Target Hand and Finger Gestures

Different studies have chosen various target hand and finger gestures to recognize. Di-

rectional gestures, such as up, down, right, left, left up, left down, right up, right down,

clockwise circle, and counterclockwise circle, are among the common gestures due to their

wide application in human-computer interaction [15]. A critical application of hand and

finger gesture recognition, as illustrated in Figure 2.13, is in sign language recognition

(SLR) systems, which deaf individuals have extensively used to communicate [42]. Num-

bers and alphabet can also be recognized as unistroke finger gestures using smart rings, as

shown in Figure 2.14 and Figure 2.15 [48].

2.5 Related Works

This section reviews previous work in sensor-based hand and finger gesture recognition.

Table 2.1 presents a summarized comparison of the mentioned works.

In [49], the authors have investigated the use of smartwatches for finger gesture recog-

nition. Recorded signals of IMU-based sensors integrated into smartwatches, including

accelerometers and gyroscopes, are utilized for finger gesture recognition. Three machine
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Figure 2.13: Examples of the typical hand gestures in sign language recognition. (a) NO. (b) Yes.
(c) How are you [42].

Figure 2.14: Recognition of numbers as unistroke finger gestures [48].

learning classifiers are utilized and compared for finger gesture recognition: KNN, LR and

DA.

A real-time continuous hand gesture recognition with wireless wrist-worn IMU sensors

has been introduced in [15]. This study used 3-axis accelerometers and 3-axis gyroscope

sensors to recognize ten hand movement gestures. SVM is used in this work as the clas-

sification algorithm. The authors have achieved recognition accuracy at 86.99% in fixed

combinational gestures and 60% in arbitrary combinational gestures.

A gyroscope-based continuous human hand gesture recognition has been proposed by

[43]. Instead of machine learning methods, the gestures are classified based on normalized

covariance and threshold adjustment in this study. A smart ring equipped with capacitive

proximity sensing in fusion with IMU-based sensors for multi-finger gesture recognition

19



Figure 2.15: Recognition of alphabets as unistroke finger gestures [48].

has been developed in [38].

An approach to hand gesture recognition using surface electromyography (sEMG) sen-

sors mounted on the arm and wrist-worn IMU sensors is described in [42]. The IMU-based

sensors are a 3-axis accelerometer and a 3-axis gyroscope fused with four sEMG sensors.

The performances of 4 various classifiers for the targeted gesture recognition are compared,

including KNN, LDA, DT and SVM.

The performance of ring and smartwatch-mounted IMU sensors for hand and finger

gesture recognition has been examined in [37]. This study investigates two IMU-based

sensors, namely an accelerometer and a gyroscope. The results are presented for RF, SVM,

KNN and NB classification algorithms. RF has shown the highest accuracy among all

methods.

A study of the effect of fusing pressure sensors with IMU and flex sensors on the accu-

racy of hand gesture recognition in American Sign Language is reported in [9]. This study

shows that without using the pressure sensor, 67.5% accuracy is achieved while adding the

pressure sensor dramatically improves the recognition efficiency to 98.2%.

In [26], a 9-axis IMU, including an accelerometer, gyroscope and magnetometer, is

mounted on the arm used for hand gesture recognition. SVM classifier is used in this
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study, and the accuracies of 99.63% and 88.43 are achieved in user-dependent and user-

independent cases, respectively.

As a result of the related research, and considering the advantages of these types of

classification over the use of a neural network, we decided to use KNN, SVM, and NB

machine learning algorithms for our finger gesture recognition system and compare their

performance. Furthermore, our experiments in comparing all of these when dealing with

accelerometer and gyroscope data confirms the results of the related research and demon-

strates the effectiveness of these methods. Compared to neural networks, these algorithms

offer the following advantages [50]:

• The KNN, SVM, and NB algorithms are relatively simple and easy to interpret.

• The theoretical foundations of these algorithms have been extensively studied. Com-

paratively to a neural network, which may be considered to be a black box model,

this can provide a greater level of confidence in the model’s performance.

• These algorithms require less computational resources to train and predict than neural

networks. Particularly in real-time applications, where a quick response is essential,

this is extremely important.

• In comparison with neural networks, these algorithms are less sensitive to the quality

of data, and they can handle noise and missing values more effectively.

There are several commercial hand and finger gesture recognition devices on the market

that use various technologies such as infrared sensors, cameras, and IMUs to detect and

recognize hand and finger gestures.

• The Myo technology is a device that uses EMG sensors to detect muscle activity in

the arm, allowing it to recognize a wide range of hand and finger gestures, as well

as arm movements [51]. Advantages of Myo include high precision , the ability to

recognize a wide range of gestures. On the other hand, Myo requiring to wear the

device on the arm. This can make it less comfortable to wear, more expensive.
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• Rokoko smart glove is a commercial device that uses IMUs to track hand and fin-

ger movements [52]. It has advantages such as high accuracy in tracking hand and

finger movements, providing realistic interactions, allowing for hands-free control

of devices, and integration with other technologies. The system, however, has some

disadvantages, such as the fact that it requires significant computational resources in

order to process visual data and recognize gestures.

• Leap Motion is a commercial device that uses infrared cameras and LED lights to

track the movement of hands and fingers, and it can recognize a wide range of ges-

tures such as finger movements and hand poses [53]. It has the ability to recognize

a wide range of gestures and can be integrated into various devices such as robots.

Nevertheless, they are sensitive to variations in lighting and appearance as they rely

on visual features such as colour, shape, and texture to recognize gestures.

Compared with commercially available motion detection and gesture recognition ap-

proaches, our smart ring system offers an acceptable level of accuracy for recognizing

dynamic finger gestures, while also being robust against adverse environmental conditions,

such as poor lightning. Additionally, low computational intensity required to detect our

predefined finger gestures. the IMU sensor utilized in our design provides real-time feed-

back and responsiveness to finger gestures, making it suitable for applications that require

high-speed interaction.
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Table 2.1: Comparison of Previous Related Work

Ref Dynamic/Static Recognized Gestures Interface Sensor Type Classification Method Detection Accuracy

[49] Static 5 Smartwatch IMU

KNN

LR

DA

81%

66%

84%

[15] Dynamic 10 Wrist-worn IMU SVM 86.99%

[43] Dynamic 6 Hand-worn IMU

Normalized covariance

&

Threshold adjustment

96%

[38] Static 8 Ring
Capacitive

IMU
- 95%

[54] Static 12 Ring Accelerometer

DT

KNN

NB

87%

86%

86%

[42] Static 20 Hand-worn
sEMG

IMU
KNN 96.13%

[48] static 42 Ring
Gyroscope

Microphone
DTW-KNN 92%-98%

[37] Dynamic 12 Ring/Smartwatch IMU

RF

SVM

KNN

NB

93%

92%

88%

86%

[9] Static 26 Hand-worn

IMU

Flex

Pressure

SVM 98%

[26] Static 8 Arm-worn IMU SVM 99.6%

[35] Dynamic 10 Pen Accelerometer NN 98%

[34] Dynamic 8 Pen IMU DTW 97.9%

[33] Static 37 Smartwatch IMU

NB

SL

DT

90%

94.62%

88%

[32] Static 5 Smartwatch IMU DTW-KNN 87%

[44] Dynamic 6 Smartphone IMU DTW -

[28] Dynamic QWERTY Keyboard Ring

Accelerometer

Multi-line Detector

Optical Displacement

HMM 98%
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Chapter 3

System Components and

Implementation

3.1 Introduction

This chapter presents an overview of the proposed system for multi-finger gesture

recognition and describes its components and implementation.

3.2 System Structure

Figure 3.1 illustrates the structure of the proposed system for multi-finger gesture recog-

nition in this project. The system contains three main parts, namely:

• The thumb finger ring

• The point finger ring

• The wrist band

Figure 3.2 shows how these three parts are worn on the fingers and wrist in a real-life

application.
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Figure 3.1: Finger gesture recognition system functional block diagram.

Figure 3.2: Overall fingers gesture detection and recognition system.

3.2.1 Smart Rings

This project fabricated two identical smart rings to be worn on the thumb and point

fingers, as shown in Figure 3.2. Each of these smart rings is equipped with an IMU sensor
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and Bluetooth transmitters to measure and send data needed for finger gesture recognition

to the wristband. The components used in the smart rings are introduced in detail in Section

3.3. The designed smart rings in this project benefit from low weight and small size and are

convenient to use. Their wireless connectivity feature eliminates any wire that could limit

user motions. Figure 3.3 shows the appearance of the fabricated rings.

The modular approach we follow is similar to [40], which leads to one or multiple

measurement devices that can be worn depending on the application where rings are used.

In comparison with current glove-based systems, which are inherently non-modular [55,

56], physical constraints are reduced, especially when monitoring all five fingers is not

necessary.

(a) (b)

Figure 3.3: smart ring hardware module: (a) Main board, back view; (b) Main board, front view.

3.2.2 Wrist Band

In order to recognize the multi-finger gestures in this study, a processing unit for ma-

chine learning algorithm implementation and an LCD system to show the results are fab-

ricated to a wrist-worn band. This wristband receives the data transmitted by both smart

rings, processes them through the implemented machine learning algorithms and displays

the recognized gesture on the screen as a result. A Raspberry Pi processor is used as the

processing unit. The utilized Raspberry Pi processor and the LCD system are introduced
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in more detail in Section 3.3.

3.2.3 Wireless and BLE Features

The proposed smart rings in this project benefit from wireless connectivity and BLE

features. Wireless connectivity provides the following major advantages [57]:

• Mobility: The length of the wires is not a limitation. The mobility of wireless devices

allows users to stay connected while moving around. This is an essential feature in

many applications involving the users’ motion.

• Convenience: Using wireless devices is much more convenient than their wired coun-

terparts. This feature provides a user-friendly experience.

• Almost zero setup time: A wireless device usually needs only to be turned on and

used to become set up.

Bluetooth is a global wireless technology standard that allows devices to communicate

over radio waves at short distances and low power. This technology was initially devel-

oped to replace serial data cables that connect various devices. Almost all mobile phones,

tablets, and laptops are equipped with Bluetooth technology [57]. Therefore, our proposed

smart rings can be compatible with many other smart electronic devices using Bluetooth

technology. BLE is a new technological enhancement to Bluetooth that was added as a

Bluetooth 4.0 specification. In keeping with its name, it is targeted at ”ultra-low power”

devices. Bluetooth’s low power features are extended even further with BLE. Devices com-

pliant with BLE standards consume very low power so that they can operate much longer

on smaller batteries and with less frequent charging. This is useful in applications where

battery life is critical and frequent charging is difficult [57].

3.2.4 Programming and Charging Boards

Besides the smart rings and wristband system, another PCB board is used for charging

and programming the measurement boards. The programming board modifies or debugs
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software throughout the designated pin headers. As an additional benefit, it enables a sen-

sor board powered by USB to start up and operate without a battery for a considerable

period. The battery board, whose pin header aligns with the main board, is also fabricated

to increase the convenience of charging and powering up the board while keeping its size

as small as possible. Figure 3.4 illustrates the top and back views of the battery charger

and programming board. When the battery has been charged, as shown in Figure 3.5, the

measurement board and battery board are connected, and the measurement device is ready

to begin transmitting data.

(a) (b)

Figure 3.4: programming and charger board: (a) back view; (b) front view.

3.3 System Components

3.3.1 Raspberry Pi Zero W

The proposed system utilizes a Raspberry Pi Zero W as its microprocessor unit to pro-

cess the data transmitted by the smart rings and execute the machine learning algorithms to

recognize and report finger gestures. The Raspberry Pi Zero W extends the Pi Zero family

by adding wireless LAN and Bluetooth connectivity. Thus, it is a suitable choice for this

project which features wireless smart rings. Figure 3.6 shows the appearance of Raspberry
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Figure 3.5: fabricated battery board.

Pi Zero W. The technical specification of this component is as follows [58]:

• 802.11 b/g/n wireless LAN

• Bluetooth 4.1

• BLE

• 1GHz, single-core CPU

• 512MB RAM

• Mini HDMI port and micro USB On-The-Go (OTG) port

• Micro USB power

• HAT-compatible 40-pin header

3.3.2 MPU 9250

The smart rings in this project utilize MPU 9250, IMU-based sensors. These sensors

consist of three independent vibratory MEMS rate gyroscopes and a three-axis MEMS
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(a)

(b)

Figure 3.6: Raspberry Pi Zero W used as the system microprocessor: (a) top view; (b) back view.

accelerometer. The vibratory MEMS rate gyroscopes detect rotation about the x-, y-, and z-

axis as shown in Figure 3.7. A capacitive pickoff detects vibrations caused by the Coriolis

Effect when the gyros are rotated about one of the sense axes. The signal is amplified,

demodulated, and filtered to produce a voltage proportional to the angular rate. Individual

16-bit Analog-to-Digital Converters (ADCs) are used on the chip to sample each axis. It is

possible to program the full-scale range of the gyro sensors as ±250, ±500, ±1000, or ±2000

degrees per second (DPS). Moreover, a wide range of cut-off frequencies is available, and

the ADC sample rate can be set from 8,000 down to 3.9 samples per second [59].

There is a separate proof mass for each axis of the 3-Axis MPU-9250 accelerometer.

To measure the acceleration in each axis, capacitive sensors detect the differential displace-

ment on the corresponding proof mass. The architecture of MPU-9250 is so that the sus-

ceptibility of an accelerometer to fabrication variations and thermal drift is reduced. When

placed on a level surface, the device will measure 0g on the x-, y- axes and +1g on the

z-axis. Factory calibration provides nominal voltage independence for the accelerometers’

30



scale factor. Sigma-delta ADCs provide digital outputs for each sensor. It is possible to ad-

just the digital output range to ±2g, ±4g, ±8g, or ±16g. Using the full-scale gyroscope range

of ±500°/sec (DPS) and the full-scale accelerometer range of ±2g, it is possible to acquire

sufficient precision while tracking finger motions. Table 3.1 summarizes the MPU-9250

sensor specification [59].

We calibrated the MPU9250 is by holding the hand parallel to the ground for a few

seconds. In this situation, change in angular velocity in all axes should be minor since

there is no movement, and accelerometer data should be equal to 1g on the z-axis and 0g

for the x-axis and y-axis.

Figure 3.7: Orientation of MPU 9250 sensor and its 3 axis data reading.

Table 3.1: MPU-9250 Technical Specification [59].

MPU 9250 Accelerometer Gyroscope

Scale Range ±2g, ±4g, ±8g and ±16g ±250, ±500, ±1000, and ±2000°/sec

Operatin Current 450 µA 3.2mA

Sleep Mode Current 8µA 8µA

Supply Voltage Range 2.4 – 3.6V 2.4 – 3.6V

It is possible to determine the orientation of an object in relation to Earth’s gravity

by using a gyroscope. A crucial difference between an accelerometer and a gyroscope is

that the gyroscope can detect rotation movements. In our design, since the IMU sensor
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is mounted in the back of the main board, the orientation of the IMU unit is depicted in

Figure. 3.7. For instance, while performing 90 deg clockwise gesture, we understand that

a rotation around a specific axis, such as the y-axis, could cause both accelerometer and

gyroscope data to change. The gyroscope exhibits fluctuating angular velocity, starting

with an increase during rotation around the y-axis and decreasing to zero after the gesture

is completed. In the final point, the accelerometer data on the x-axis indicates 1g as we

align with the Earth’s gravity, while the accelerometer data on the other two axes indicates

zero. Using this approach to interpret the IMU data enables us to define and differentiate

more complex gestures, either static or dynamic.

3.3.3 ESP32 Module

Each smart ring contains an ESP32 module with an Xtensa LX6 microprocessor and

a BLE module to transmit its collected data to the wristband, where the processing unit

is located. We have used the ESP32-C3-WROOM-02 module in this project. It supports

BLE for wireless data transmission. Figure 3.8 and 3.9 show the external appearance and

internal block diagram of this module, respectively.

Figure 3.8: External casing of ESP32-C3-WROOM-02 module [60].
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Figure 3.9: Internal block diagram of ESP32-C3-WROOM-02 module (source: [60]).

The technical specification of the utilized ESP32 module are as follows [60]:

• 2.4 GHz WiFi

• (802.11 b/g/n) and Bluetooth 5 module

• Built around ESP32C3 series of SoCs, RISCV singlecore microprocessor

• 4 MB flash

• 15 GPIOs

• Onboard PCB antenna

3.4 Target Finger Gesture and Corresponding Signals

In Table 3.2, you will find an overview of the most common finger and hand gestures

performed in recent studies. Smart rings, gloves, arm bands, and wrist bands are commonly

used as interfaces to recognize these gestures. With the combination of accelerometer and

gyroscope in our design, we are able to identify the common gestures observed in recent
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studies, which are finger movements up and down, right and left. Furthermore, like similar

studies, our one-ring system is capable of detecting angular movements such as rotations of

90 degrees clockwise and counterclockwise. However, when two rings are used together,

three new finger gestures are introduced, including zooming in, zooming out, and rotating

two fingers (Figure 3.10). As well as these gestures, our design has demonstrated the

capability of interpreting and collecting two rings data, which may be easily expanded to

include additional rings with different functionality and even define more complex multi-

finger gestures such as those used in sign language or other similar studies.

Figure 3.10: Target gestures.

Figures 3.11 - 3.19 illustrate real-time signal variation produced by the IMU units while

performing the nine target gestures of this project. With each gesture, the data shows a

combination of both gyroscope and accelerometer fluctuations in all the 3 axes.

The next chapter discusses feature extraction and selection from the recorded IMU-

based signals to effectively recognize multi-finger gestures using machine learning algo-

rithms.
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Table 3.2: Hand and finger gestures used in similar studies

Hand and finger gestures Reference
Wrist: up, down, left, right, left up,
left down, right up, right down, rotation right,rotation left [15]

Hand: pinch, tap, rub finger, squeeze, wave [32]
Pen: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 numeric trajectory [35]
Ring: circle, rectangle, bloom, scissors,
slide thumb over nail, slide thumb over middle finger, flick, snap [38]

Hand: up, down, left, right, clockwise, counter clockwise [43]
Wrist: hip, press, shake, beat, curve [49]
Ring: crook, unbend,finger down, wrist down, l-rotate, finger l-shift,
wrist l-shift, r-rotate, finger r-shift, wrist r-shift, finger up, wrist up [54]

(a) Performed finger-up gesture. (b) Accelerometer and gyroscope raw data signals during the
finger-up gesture.

Figure 3.11: Finger-up signal demonstration.
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(a) Performed finger-down gesture. (b) Accelerometer and gyroscope raw data signals during the
finger-down gesture.

Figure 3.12: Finger-down signal demonstration.

(a) Performed finger-right gesture. (b) Accelerometer and gyroscope raw data signals during the
finger-right gesture.

Figure 3.13: Finger-right signal demonstration.
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(a) Performed finger-left gesture. (b) Accelerometer and gyroscope raw data signals during the
finger-left gesture.

Figure 3.14: Finger-left signal demonstration.

(a) Performed finger-clockwise ges-
ture.

(b) Accelerometer and gyroscope raw data signals during the
finger-clockwise gesture.

Figure 3.15: Finger-clockwise signal demonstration.
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(a) Performed finger-counterclockwise
gesture.

(b) Accelerometer and gyroscope raw data signals during the
finger-counterclockwise gesture.

Figure 3.16: Finger-counterclockwise signal demonstration.

(a) Performed zoom-in gesture. (b) Accelerometer and gyroscope raw data signals during the
zoom-in gesture.

Figure 3.17: Zoom-in signal demonstration.
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(a) Performed zoom-out gesture. (b) Accelerometer and gyroscope raw data signals during the
zoom-out gesture.

Figure 3.18: Zoom-out signal demonstration.

(a) Performed two-finger 90-degree
clockwise gesture.

(b) Accelerometer and gyroscope raw data signals during the two-
finger 90-degree clockwise gesture.

Figure 3.19: Two-finger 90-degree clockwise signal demonstration.
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Chapter 4

Feature Selection and Machine Learning

Algorithms

4.1 Introduction

Feature selection is an essential concept in machine learning model development. The

most suitable set of features should be selected out of all the available features in order to

develop an efficient machine learning model. This chapter introduces the standard feature

selection methods utilized in finger and hand gesture recognition applications in Section

4.2. The feature selection algorithms utilized in this project are described in detail in Sec-

tion 4.3. Then a review of extracted features is presented in Section 4.4. Finally, the

machine learning algorithms used in this project are presented in Section 4.5.

4.2 Review of Feature Selection Methods

Feature selection aims to select d features from a given set of D measurements, d < D,

without significantly impairing the recognition ability [61]. The importance of feature

selection methods becomes apparent when a dataset contains many features. Having a high

degree of dimensionality can significantly lengthen the training time of a machine learning

model, which can lead to an overfitted model that is also complex. Feature selection is
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a solution to overcome these challenges. Features selection improves machine learning

classifier scalability, prediction, and generalization performance. Additionally, it reduces

computational complexity, storage requirements, and costs [62].

In our case, the raw data from accelerometers and gyroscopes are preprocessed before

being used as a training dataset. In the case of one ring, a single gesture generates six

different signals (three signals from the three-axis acceleration sensor and three signals

from the three-axis gyroscope). Therefore, two rings generate twelve different signals. A

signal’s characteristics can be represented by calculating multiple statistical features for

each signal. This process results in extracting a combination of gesture attribute from the

raw data. Notably, the feature vector ultimately contains weak or redundant information

about the signal and potent features that provide valuable information about the signal.

Feature selection is performed to identify those solid features and discard the others. This

reduces the feature vector size and prevents overfitting and high computational costs.

Feature selection methods are categorized into three main categories, namely:

• Filter Methods

• Wrapper Methods

• Embedded and Hybrid Methods

Before introducing the feature selection methods which are chosen in this project, we

present a review on the main categories of feature selection methods.

4.2.1 Filter Methods

In feature selection based on filter methods, the model begins with all features and uses

defined performance measures to select the best features subset [63]. Some of the standard

filtering methods include:

• Information gain

• Correlation
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• Fast correlation-based filter (FCBF)

• Chi-square

• Inconsistency criterion

• Minimum redundanc, maximum relevance (mRmR)

• Fisher score

• Feature weighting K-means

• Spectral feature selection (SPEC)

• Relief algorithm

• Linear Discriminant Analysis (LDA)

• Wilcoxon Mann Whitney test

The main disadvantage of filtering methods is ignoring the performance of the machine

learning classification system employing the set of selected features. Although due to their

general nature, filter methods are suitable for all situations, the mentioned disadvantage

causes them to yield less promising results compared to other feature selection typically

approaches.

4.2.2 Wrapper Methods

Wrapper methods evaluate feature subsets based on the quality of the performance on

a machine learning algorithm for classification or clustering (e.g. SVM or NB), which is

regarded as a black box evaluator. Due to their dependency on the modelling machine

learning algorithm, wrappers are slower to find sufficiently good subsets compared to filter

methods. Additionally, feature subsets selected using wrapper methods are biased toward

the machine learning algorithm used for evaluation. The selected features result in bet-

ter performance for the chosen classifier but worse results for another, mainly when their
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properties significantly differ. Therefore, it is necessary to use both an independent valida-

tion sample and another learning algorithm after finding the final subset to obtain a reliable

general error estimate [64].

4.2.3 Embedded and Hybrid Methods

Hybrid feature selection methods were proposed to combine the best properties of filters

and wrappers. The first step in hybrid feature selection strategies is to reduce the feature

space dimension space using a filter method, possibly obtaining several candidate subsets.

Afterward, the best candidate subset is determined using a wrapper [64]. Hybrid methods

are computationally more efficient than the wrapper method and more accurate than filter

and wrapper methods. However, they are unsuitable for high dimensional data. Many

hybrid feature selection methods have been proposed recently. For example, several hybrid

methods have been proposed based on the recursive feature elimination (RFE) method [65].

4.2.4 Search Strategies Utilized in Feature Selection

Search strategies are the core of feature selection algorithms, whether filter, wrapper or

hybrid type. The utilized search strategies can significantly affect the performance of the

feature selection process. To achieve optimum results, a search strategy should utilize lo-

cal search capabilities and perform computationally efficiently [62]. Figure 4.1 illustrates

the main stages in the feature selection process. Determination of a starting point and a

direction for the search is the first step of the feature selection process. In general, the

three types of search directions are forward search, backward search, and random search.

In forward searching, new features are added recursively in each iteration, starting from an

empty set. On the other hand, a backward elimination search does the opposite: starting

with all features and iteratively removing features until the desired subset is reached. An-

other variant utilizes a random search method, which iteratively adds and removes features

to build a subset of features.

The second stage in the feature selection process is choosing a search strategy. There
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Figure 4.1: Stages in feature selection process.

are three types of search strategies: exponential, sequential, and randomized. Exponential

search strategies are exhaustive and require 2N combinations of feature selection for N

features. Randomized search strategies have been introduced to overcome the drawbacks

of exponential and sequential strategies. A sequential search adds or removes features

sequentially from an empty set or a complete set. Table 4.1 summarizes the most common

search strategies in the field of feature selection based on [64].

4.3 Selected Feature Selection Method

When the relationship between the features and the target variable is complex and can-

not be adequately captured with a simple heuristic, wrapper methods are commonly uti-

lized. A wrapper method that utilizes a specific machine learning algorithm, for example,

may be able to capture interactions and non-linear relationships between features in addi-

tion to providing more accurate feature selection than a filter method. Wrapper methods

can also be useful if the data has a high degree of dimensionality or a large number of

features. The advantages of using the wrapper method, as well as the high dimensionality

of our one-ring and two-ring feature vectors, led us to choose wrapper methods over filter

methods in this study.

In [66], the authors present a wireless activity recognition system for patient moni-

toring using a body-worn accelerometer. Feature selection is performed using Relief-F
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Table 4.1: Search Strategies for Feature Selection

Algoritm Group Algoritm Name

Exponential
•Exhaustive search

•Branch-and-bound

Sequential

•Greedy forward selection or backward elimination

•Best-first search

•Linear forward selection

•Sequential Forward Selection (SFS)

•Sequential Backward Selection (SBS)

•Sequential Forward Floating Selection (SFFS)

•Sequential Backward Floating Selection (SBFS)

•Beam search (and beam stack search)

•Race search

Randomized

•Random generation

•Simulated annealing

•Evolutionary computation algorithms (e.g. genetic, ant colony optimization)

•Random hill-climbing

•Las Vegas Algorithm

•Tabu search

•Scatter search

and sequential forward floating search (SFFS). Compared to Relief-F, SFFS selected al-

most half as many features and provided higher accuracy. In [67], human movement data

were classified using features selected by a feature selection methodology. A comparison

was conducted between four commonly used methods for selecting and classifying human

movement features based on IMU data sets. Random Forest recursive feature elimination

(RF-RFE) was also employed to rank features in order of importance. RF, SVM, KNN,

and NB are the four classification algorithms used in this study. Considering the proven
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advantages of employing these feature selection methods to reduce dimensionality and se-

lect the appropriate feature in a large dataset, we decided to follow the recommendations

of [66, 67] by using RF-RFE and KNN-SFFS as our choice of feature selection methods.

4.3.1 RF-RFE

RF-RFE is a wrapper feature selection method based on a random forest machine learn-

ing model and recursive feature elimination search strategy. Based on [65], the RF-RFE

algorithm pseudocode can be summarized as presented in Algorithm 1.

Algorithm 1 RF-RFE Algorithm Pseudocode
begin

Read the training dataset T
Read the set of available features: F = {f1, f2, ..., fn}
Construct the set of remaining features: R← F
while R ̸= ∅ do

Train a RF model based on R
Evaluate feature importance and determine the least important feature (f− ∈ R)
R = R− f−

end
return Feature Ranking List

end

4.3.2 KNN-SFFS

KNN-SFFS is a wrapper method based on the KNN machine learning model and SFFS

search strategy. The SFFS search algorithm improves the performance of the simpler SFS

algorithm. An additional exclusion or inclusion step is added to the floating algorithm so

that features that have been included can be removed in order to sample a more significant

number of possible feature subset combinations. Note that this step is conditional and only

occurs if the resulting feature subset is assessed as being better by the criterion function

after being removed [61].

The pseudocode of the SFFS algorithm can be summarized as presented in Algorithm

2. It is noted that J(Xk) represents the feature selection criterion function that is evaluated
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based on the performance of the utilized machine learning model trained by Xk. Moreover,

Y is the set of all the features, Y = {y1, y2, ..., yD}, and Xk = {xj|j = 1, 2, ..., k;xj ∈ Y }

where k = (0, 1, 2, ..., d) [61].

Algorithm 2 Sequential Forward Floating Selection (SFFS) Algorithm Pseudocode
begin

Start with an empty set of features: X0 = ∅, k = 0.
while k < d (desired number of features) do

Step 1 (Inclusion):
xk+1 = argmax J(Xk + x) where x ∈ Y −Xk

Xk+1 = Xk + xk+1

k = k + 1
go to step 2
Step 2 (Conditional exclusion):
if xk = argmin J(Xk) then

go to step 1
else

while k > 2 do
xr = argmin J(Xk)
if J(Xk) ≥ J(Xk − xr) then

go to step 1
else

k = k − 1
X

′

k = Xk+1 −Xr

Xk = X
′

k

end
end

end
end
return Xk

end

4.4 Feature Extraction

Various features have been utilized in sensor-based finger and hand gesture recognition.

These features can be categorized into three main classes, namely:

• Time domain features

• Frequency domain features
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• Discrete domain features

These different classes of features are discussed in detail in the following.

4.4.1 Time Domain Features

The signals recorded with different types of sensors, i.e. IMU-based sensors such as

accelerometers and gyroscopes, are time domain signals. Therefore numerous time domain

function can be mathematically defined and calculated for these signals and utilized as

features for gesture recognition. These time domain features are introduces in the upcoming

subsections.

Envelope metrics

The basic following time domain metrics, which are called envelope metrics, despite

their simplicity and low computional costs, have been proven to be effective and valuable

metrics in activity or gesture recognition [49]:

• Min

• Max

• Median

Statistical metrics

Mean, variance and standard deviation are the common statistical metrics utilized in

gesture recognition applications, which are formulated respectivwely as follows [68]:

µ =
N∑
i=1

xi. (3)

σ2 =
1

N − 1

N∑
i=1

(xi − µ)2. (4)
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σ =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2. (5)

Correlation coefficient

Another metric known as correlation coefficient [69] or normalized covariance [43] is

also utilized as a feature in gesture recognition. This metric is formulated as follows:

ρx,y =
cov(x, y)

σxσy

, (6)

in which

cov(x, y) =
1

N

N∑
i=1

(xi − µx)(yi − µy). (7)

Root mean square (RMS)

As another simple metric, root mean square (RMS) of a signal shows how the signal

amplitudes change over time. It has been a common time domain feature in gesture recog-

nition and is formulated as follows [70]:

xRMS =

√√√√ 1

N

N∑
i=1

(xi)2. (8)

Zero-Crossing Rate

Zero crossing rate (ZCR) is the number of times a waveform crosses the zero axis. It is

calculated by counting how often the following conditions are met [71]:

{X(t) < 0 and X(t+ 1) > 0} or {X(t) < 0 and X(t+ 1) > 0}

|X(t)−X(t+ 1)| ≥ ϵ.
(9)

To avoid counting zero crossings because of noise, the ϵ threshold is defined.

49



Skewness and Kurtosis

Skewness is described as the degree of asymmetry of a signal and Kurtosis is described

as the degree of spikiness of a signal [72]. These metrics are mathematically calculated as

below [73]:

SKEW =
1

N

N∑
i=1

(
xi − µ

σ

)3

. (10)

KURT =
1

N

N∑
i=1

(
xi − µ

σ

)4

. (11)

Windowed Time Domain Features

Some studies in the field of sensor-based gesture recognition suggest that the recorded

signal during a user’s movement be divided into W time windows without overlap. Then

some time domain statistical metrics are introduced for these windowed signals. Some of

thesse metrics are as follows [66]:

Mean Trend:

The signal is divided into W time windows with no overlap. Then the mean of signal during

each of windows is calculated and subtracted from the mean of the succeeding window. The

Mean Trend metrics is then calculated as follows:

µT =
W∑
i=2

|µi − µi−1|. (12)

Variance Trend:

the variance of signal during each of windows is calculated and subtracted from the variance

of the succeeding window. The Variance Trend metrics is then calculated as follows:

σT 2 =
W∑
i=2

|σ2
i − σ2

i−1|. (13)

Windowed Mean Difference:

The mean value of the signal during each window is subtracted from its overall mean. Then
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the Windowed Mean Difference metric is calculated as below:

µD =
W∑
i=1

|µi − µ|. (14)

Windowed Variance Difference:

The variance of the signal during each window is subtracted from its overall variance. Then

the Windowed Mean Difference metric is calculated as below:

σD2 =
W∑
i=1

|σ2
i − σ2|. (15)

4.4.2 Frequency Domain Features

Frequency-domain metrics have been widely utilized to identify repetitive characteris-

tics of a sensor signals. Fast Fourier Transforms (FFT) and Fast Time Frequency Trans-

forms (FTFT) are common methods for performing frequency domain analysis of a time

signal with a specific length or window. Other frequency-based representations have been

used in addition to the FFT and its spectral representation, e.g. Wavelet transforms. Us-

ing wavelet transforms, a time-domain signal can be decomposed into a set of weighted

orthonormal vector bases or coefficients. In comparison to more established FFT methods,

these transforms offer computational advantages. Spectral Energy and Entropy are two

famous frequency domain features [74].

4.4.3 Discrete domain features

Dynamic time warping (DTW)

The dynamic time warping (DTW) metric is used to measure the similarity of two

sequences, which may vary in length and thereby correspond to different time bases. Par-

ticularly in the context of gesture recognition, DTW can be applied to finding similarity

metrics between signals. It has been shown that IMU-based gesture recognition accuracy

51



is improved through dynamic time warping by categorizing movements by comparing var-

ious temporal sequences that may change in speed [15].

4.5 An Analysis of KNN, SVM, and NB Algorithms

4.5.1 KNN

The nearest neighbors are a simple classifier that, in its simplest form, assigns the label

of its nearest neighbors training labels to an observation x. As a result, we only need a dis-

tance measure d(x, x′) between observations to implement the nearest neighbors method.

Figure 4.2 shows a simple one nearest neighbor classifier, which uses one of three labels

depending on whether the query point x is closest to the star, diamond or triangle. Although

the one-nearest-neighbour method is straightforward, it can be problematic when the data

itself is noisy. In this case, a majority vote can be used to decide the class membership of

x by pooling some neighbors (k-nearest neighbors). Based on the pseudocode of the KNN

algorithm described in [75], the pseudocode of finger gesture recognition utilized in this

project is presented in Algorithm 3.

Figure 4.2: A sample 1 nearest neighbor classifier [75].

4.5.2 SVM

In this subsection we introduce the mathematical formulation of SVM method based

on [75]. A hyperplane in a spaceH is described by:

{x ∈ H|⟨w, x⟩+ b = 0}, (16)
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Algorithm 3 K-Nearest Neighbor Classification Pseudocode
begin

Read train signals X, their corresponding finger gesture labels Y and input test signals
x.
for i = 1 to m do

Compute distance d(xi, x)
end
Compute set I containing indices for the k smallest distance d(xi, x).
return majority label of {yi where i ∈ I}

end

where w ∈ H and b ∈ R. Using such a hyperplane, we can naturally divide H into two

half-spaces: {x ∈ H|⟨w, x⟩ + b ≥ 0} and {x ∈ H|⟨w, x⟩ + b < 0} , and thus use it as the

decision boundary of a binary classifier. Suppose we are given this set of training data for

a binary classification task: {(x1, y1), ..., (xm, ym)} with xi ∈ H and yi ∈ {±}. It is our

goal to find a linear decision boundary parameterized by (w, b) such that ⟨w, xi⟩ + b ≥ 0}

whenever yi = +1 and ⟨w, x⟩ + b < 0} whenever yi = −1. The scaling of w is fixed so

that

min
i=1,...,m

|⟨w, xi⟩+ b| = 1. (17)

In this case, the margin simply becomes 1/∥w∥, as shown in Figure 4.3.

Therefore, we can formulate the problem of maximizing the margin as follows:

max
w,b

1

∥w∥

s.t. yi(⟨w, xi⟩+ b) ≥ 1 for all i, (18)

or equivalently

min
w,b

1

2
∥w∥2

s.t. yi(⟨w, xi⟩+ b) ≥ 1 for all i, (19)

this convex optimization problem has a quadratic objective function and linear constraints.
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Figure 4.3: A sample linearly binary classication problem of separating the diamonds from the
circles [75].

The training data were assumed to be linearly separable in the derivation of (4.5.2) – there

is a hyperplane that correctly determines the classification of the training data. This type

of classifier is called a hard margin classifier. This optimization problem cannot be solved

if the data are not linearly separable. This situation can be mitigated by introducing non-

negative slack variables ξi as follows:

yi(⟨w, xi⟩+ b) ≥ 1− ξi, (20)

making ξi large enough will satisfy the constraints for any w and b and the optimization

problem is modified as follows:

min
w,b

1

2
∥w∥2 + C

m

m∑
i=1

ξi

s.t. yi(⟨w, xi⟩+ b) ≥ 1− ξi for all i

ξi ≥ 0, (21)
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where C > 0 is a penalty parameter. The Lagrangian for this optimization problem can be

written as:

L(w, b, ξ, α, β) =
1

2
∥w∥2 + C

m

m∑
i=1

ξi +
m∑
i=1

αi(1− ξi − yi(⟨w, xi⟩+ b))−
m∑
i=1

βiξi, (22)

where αi and βi are non-negative Lagrange multipliers. Taking gradients with respect to

w, b and ξ and setting them to zero yields:

∇wL = w −
m∑
i=1

αiyiξi = 0

∇bL = −
m∑
i=1

αiyi = 0

∇ξiL =
C

m
− αi − βi = 0.

(23)

By substituting (23) into the Lagrangian and doing some simplifications, the optimization

problem can be formulated as:

min
α

1

2

∑
i,j

yiyjαiαj⟨xi, xj⟩ −
m∑
i=1

αi

s.t.
m∑
i=1

αiyi = 0

0 ≤ αi ≤
C

m
. (24)

The pseudocode of finger gesture recognition utilized in this project is presented in Algo-

rithm 4.

4.5.3 NB

NB classifier is one of the fundamental probabilistic classifiers used in machine learning

[75]. Assuming that x is the input and that C is a multinomial variable that takes one of K

states for the class code, Bayes’ rule allows [76]:
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Algorithm 4 SVM Classification Pseudocode
begin

Load training signals X and their corresponding labels Y
Initialize α
while stopping criteria of the optimization problem is not met do

for All {xi, yi}, {xj, yj} do
Optimize αi and αj (Equation (4.5.2))

end
end
return optimum αi and αj

end

P (C|x) = P (C)p(x|C)

P (x)
. (25)

Due to its analytical simplicity, the class-conditional densities are taken as normal densities:

p(x|Ci) =
1

(2π)
d
2 |Σi|

1
2

exp

[
−1

2
(x− µi)

TΣ−1
i (x− µi)

]
. (26)

The parameters of these normal densities are calculated based on the training data as fol-

lows:

X =


X1

1 X1
2 ... X1

d

X2
1 X2

2 ... X2
d

...

XN
1 XN

2 ... XN
d

 (27)

µ = E(X) = [µ1, µ2, ..., µd]
T (28)

σij = Cov(Xi, Xj) (29)
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Σ = Cov(X) =


σ2
1 σ12 ... σ1d

σ21 σ2
2 ... σ2d

...

σd1 σd2 ... σ2
d

 , (30)

where d is the number of features, and N is the size of the training set. Using the NB

method, it is assumed that the inputs are independent and any possible dependency among

them is ignored, i.e. σij = 0 if I ̸= j. Based on this assumption, we will have the following:

p(X|C) =
d∏

j=1

p(Xj|C). (31)

The pseudocode of finger gesture recognition utilized in this project is presented in

Algorithm 5, based on pseudocode of the NB algorithm described in [77].

Algorithm 5 Naive Bayes Algorithm Pseudocode
begin

Read the training dataset
Calculate the mean and standard deviation of the predictor features in each finger ges-
ture class
Read the testing dataset signals
for i = 1 to d (where d is the number of features) do

Calculate P (xi) (probability of predictor feature).
end
Calculate the likelihood of each finger gesture class.
return The finger gesture with the greatest likelihood.

end
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Chapter 5

Validation, Verification and Results

5.1 Introduction

This chapter presents the details of the training and testing process as well as the results

of the recognition of multi-finger gestures using the proposed system. Section 5.2 describes

the number of tests performed and stored to create the rich dataset that is needed for train-

ing our machine learning algorithm. Then in Section 5.3, the designated list of statistical

features extracted from the raw data is exemplified. Following that, a review of the ap-

propriate number of features for one-finger gestures and two-finger gestures is presented.

Section 5.4 provides a definition of the evaluation metrics that are used to interpret our

machine learning results, as well as an assessment of the accuracy of the machine learning

classifier used in the one-finger and two-finger gesture cases.

5.2 Data Preparation

As only one user collected and evaluated the data, the proposed system is a single-

user system. It is a common approach in machine learning research because it provides a

controlled environment in which data and evaluations can be closely monitored and under-

stood. An evaluation of one user is appropriate in our case as it allows us to have a detailed

understanding of the user’s behavior, preferences, and performance, which we can use to
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improve the system.

It should be noted that the proposed system can be easily extended to be a multi-user

system by collecting and analyzing data from multiple users. This can be done by adding

a user identification mechanism to the system and gathering data from multiple users. In

addition, the results can be compared in order to evaluate the effectiveness of the system.

The following are additional benefits of using a single-user system:

• Simplicity: It is much easier to collect, store and analyze data from a single user.

• Control: You have full control over the data collection process, which ensures the

quality and representativeness of the data.

• Flexibility: You can collect data in a variety of settings, such as in a controlled envi-

ronment like the lab, and explore different scenarios.

• Reproducibility: Your results can be easily reproduced by other researchers who can

replicate your study with the same user.

In order to implement machine learning algorithms, it is imperative to obtain a rich

dataset. In order to achieve this objective, each finger gesture was performed and recorded

2,000 times. Considering our target nine gestures which were introduced in Figure 3.12,

a total of 18,000 data samples are collected and stored for machine learning training pur-

poses. Every gesture is executed within a three-second time frame (i.e., the time required

for each gesture to be performed by a finger). The time frame is considered sufficient, as

most recent studies use sample sizes ranging between one and three seconds [78].

Test data, training data, and evaluation data are three different types of data that are

used in machine learning (ML) to evaluate the performance of a model.

• Training data is used to train the ML model. The model uses this data to learn

the relationship between input features and output labels. The model is trained by

adjusting the parameters to minimize the error between the predicted output and the

true output.
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• Test data is used to evaluate the performance of the trained model. The model is

presented with new data that it has not seen before and its performance is measured

by comparing the predicted output with the true output. The test data helps to evaluate

the generalization performance of the model, which is its ability to perform well on

new unseen data.

• Evaluation data is used to evaluate the model’s performance with various techniques,

such as cross-validation, which are used to estimate the model’s generalization per-

formance. Evaluation data can be used to compare different models, or different

configurations of the same model, to select the best one.

In our case, the data set was chosen by considering the problem’s characteristics, the

data’s representativeness, and the amount of data. We used a random sampling method to

split the data into a training and evaluation set. We used 80% of the data for training, and

20% of the data for evaluating the model. This process is done to ensure that the data is

representative of the problem and to reduce the chances of overfitting. Also, a test dataset is

collected by performing each gesture and collecting an unseen dataset in order to evaluate

the trained machine learning model with different feature sets.

The capability of machine learning models to learn is directly dependent on the quality

of the data and the features that can be derived from it during the pre-processing phase. In

order to eliminate noise and prevent false gesture recognition, the collected data are pre-

processed before being fed into our model. The following steps are carried out during the

pre-processing phase:

(1) Handling missing values

(2) Normalization

(3) Statistical feature extraction

(4) Feature selection

Normalization is usually performed prior to the extraction of statistical features during

data preprocessing. It is because normalizing the data helps to scale all features so that
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they are on a similar scale, which is important for many machine learning algorithms. In

the absence of normalization, certain features can have a far greater impact on the final

result than others, resulting in poor performance. Moreover, normalization can reduce the

impact of outliers in the data, which can also enhance performance. Normalizing the data

makes it easier to extract meaningful statistical features from the data. Consequently, the

model is now ready to be trained using the data.

5.3 Feature Selection Results

Candidate Features

The raw data can be used to extract a few statistical measures that can then be used

to construct the dataset. Our real-time processing and recognition requires features with a

low processing time and mathematical complexity. This is one important consideration in

selecting appropriate features for our study. In our study, we selected the following statis-

tical characteristics: minimum (min), maximum (max), average (avg), standard deviation

(sd), RMS, variance (var), covariance (cov), signal entropy (ent), zero-crossing (zcr), and

sum. In previous studies, these features have proven to be effective in the extraction of

features in the frequency and time domains, as shown in Table 5.1. Studies [37, 74, 66]

have demonstrated that the essential characteristics of signals can be captured effectively

by utilizing the variables min, max, avg, RMS, and sum. In finger gesture recognition ap-

plications [72, 79], ent, avg, var, cov, sd, min, max, zcr have been shown to be powerful

factors in capturing the characteristics of signals. After selecting these specific features

and extracting features from the raw data after being normalized, the output of the feature

selection method has proven to be effective enough to facilitate the training of our machine

learning algorithms.

Based on these feature choices for each accelerometer and gyroscope, the feature vector

in the case of one ring includes 60 columns and, in the case of two rings, includes 120

columns. Each column represents a statistical feature extracted from the raw data. The

new feature vector is a representation of each gesture and is used as input for our feature
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Table 5.1: Statistical features used in finger gesture recognition

Feature extraction in the frequency and time domains Reference
min, max, avg, sd, signal magnitude area (SMA), and
signal vector magnitude (SVM) [74]

power spectral density (PSD), ent, and spectral energy [79]
avg, max, min, 3quantiles, median, sd, mode, peak2rms,
cov, and RMS [49]

avg, var, sd, min, max, standard deviation auto-correlation,
mean auto-covariance, skewness, mean crossing rate,
standard deviation auto-covariance, mean auto-correlation,
standard deviation auto-covariance, kurtosis

[72]

max, min, mean, RMS, sum [37]
energy spectral, ent, mean, var, mean trend, and max [66]

selection methods. All these calculations happen within the Raspberry Pi before being used

as input for machine learning training.

Optimal Number of Features

In order to successfully utilize RFE-based feature selection, two factors must be con-

sidered: how many features to select and which algorithm to use. To configure RFE, we

chose Random Forest as the machine learning algorithm core and Selected K Best as our

configuration parameters to decide which feature to select. An illustration of the optimal

number of features to be selected in cross-validation for higher accuracy and the minimal

standard deviation is shown in Figure 5.1. According to our observation, the optimal num-

ber of features is between 10 and 20 for gestures performed with one finger and 10 for

gestures made with two fingers.
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(a) One-finger cross-validation function recommended feature quantity

(b) Two-finger cross-validation function recommended feature quantity

Figure 5.1: The recommended number of features.

5.4 Machine Learning Results

5.4.1 Machine Learning Evaluation Metrics

Various performance measures are derived from machine learning classification algo-

rithms in order to assess their effectiveness in various contexts. The following performance

indicators have been used:

• The confusion matrix summarizes the results of a classification problem. The correct
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and incorrect predictions are summarized with count values and broken down by

each class.

• The precision score is a way to evaluate the model’s performance in regard to count-

ing the number of true positives incorrectly out of all positive predictions made.

• The recall score measures the model’s performance in measuring the number of true

positives that are caused by incorrect measurement out of all the actual positive val-

ues.

• An accuracy score is used to measure the performance of the model by measuring

the ratio between the sum of true positive and true negative predictions.

• The F1-score is the harmonic mean of the precision and recall score, and is used as a

metric in situations in which either precision or recall scores could result in excessive

false positives or false negatives.

As each machine learning algorithm is applied separately to the RFE and SFFS output

dataset, six different states are obtained, and are further analyzed in the following section.

5.4.2 One-finger Gesture Recognition Results

Figure 5.2 depicts the difference in machine learning accuracy when the accelerometer

and gyroscope have been used alone or together as an IMU unit. After applying three

different machine learning algorithms to the three different datasets, we found that the

IMU dataset’s accuracy was improved by 6% − 7% over using the accelerometer dataset

alone and 8% − 13% over using the gyroscope dataset alone. Therefore, combining both

sensors in our design allows more freedom in detecting complex gestures and results in

higher accuracy.

As a result of applying the IMU dataset before performing any feature selection, the

result of machine learning evaluation metrics are shown in Table 5.3. Due to the high

number of features that the machine learning model needs to be processed, the machine

learning response time is within a few minutes, which is not acceptable for our finger
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gesture recognition system. Furthermore, the possibility that less valuable features or noise

in the signal may result in overfitting and reducing the quality of the dataset leads us to use

feature selection methods.

Figure 5.2: A comparison of accelerometers and gyroscopes when used together, and when used
separately

In order to improve accuracy and processing speed while reducing the risk of overfit-

ting, two feature selection techniques were used. Two different sets of features are selected

for each of our machine learning methods in order to train and test them. According to Fig-

ure 5.1 and based on the cross-validation function results, 10 to 20 would be an appropriate

number of features for our design.

Four experiments were conducted to understand better the effect of the number of fea-

tures on machine learning accuracy. Both RFE-10 and SFFS-10 stands for RFE and SFFS

feature selection method when choosing ten feature, which is the initial number of features

for each method. As a result of increasing the number of features to 20, namely RFE-20

and SFFS-20, the machine learning results are shown in Figure 5.3. It is evident that the

RFE features selection method produces lower accuracy when using 10 rather than 20 fea-

tures. However, there is a difference of approximately 1% between 10 and 20 features when
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Table 5.2: The result of a feature selection process

Methods Selected features

One-ring RFE-20

min-acc-x, min-acc-y, min-acc-z, min-gyro-z , max-acc-y,
max-gyro-z, avg-acc-x, avg-acc-y, avg-acc-z, sd-gyro-y,
sum-acc-x, sum-acc-y, sum-acc-z, sum-gyro-y, var-gyro-z,
cov-gyro-xy, rms-acc-x, rms-acc-y, rms-acc-z, zcr-acc-y

One-ring RFE-10
min-acc-z, min-gyro-x, max-acc-y, max-gyro-y, avg-gyro-x,
sd-gyro-y, var-gyro-x, sum-acc-z, rms-gyro-x, rms-gyro-y

Two-rings RFE-10
min-acc1-y, min-gyro2-z, max-gyro1-y, max-acc2-x,
sd-acc1-x, sd-gyro2-y, sum-acc1-x, sum-gyro1-y,
sum-acc2-x, ent-gyro1-x

One-ring SFFS-20

min-acc-x, min-acc-y, min-acc-z, min-gyro-z, max-acc-x,
max-acc-y, max-acc-z, max-gyro-z, avg-gyro-z, avg-acc-x,
avg-gyro-z, sd-gyro-y, sum-acc-y, sum-acc-z, var-gyro-z,
cov-gyro-xy, ent-gyro-y, rms-gyro-x, rms-gyro-y, zcr-acc-x

One-ring SFFS-10
min-gyro-x, min-gyro-z, max-gyro-y, max-gyro-z, sd-gyro-y,
sum-acc-x, sum-acc-y, sum-acc-z, cov-gyro-xy, rms-gyro-x

two-rings SFFS-10
min-acc1-x, min-acc1-y, min-acc2-z, max-gyro1-x, avg-gyro2-z,
sum-acc1-x, sum-acc2-y, avg-acc2-y, rms-gyro2-x, var-acc1-x

using SFFS feature selection methods. We obtained a similar result with SFFS by using

10 features as opposed to RFE by using 20 features. Additionally, compared to applying

machine learning to a dataset without feature selection, as shown in Figure 5.3, the number

of features decreases dramatically from 60 to 10, and the final machine learning results

vary by less than 2%. A slight difference in accuracy is acceptable to reduce the processing

time to a few seconds and use one-sixth of the original feature vector numbers when using

SFFS as our feature selection method.

Based on the application of feature selection methods, the selected features are shown

in Table 5.2. These results were used to conduct the four experiments mentioned above.

It is imperative to understand that RFE-20 and SFFS-10 for one-ring serve as inputs for

evaluating our machine learning model. Additionally, RFE-10 and SFFS-10 for two rings

are used in the following section for the evaluation of two two-ring gesture recognition.

Table 5.4 shows the evaluation metrics of the applied RFE feature selection with 20

features. Across three different machine learning algorithms, an average accuracy of 96%

is achieved. As it can be seen from Table 5.5, a higher performance is achieved with the
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Figure 5.3: The comparison between RFE and SFFS when using 10 or 20 features

SFFS feature selection method utilizing only 10 features. SFFS reached an accuracy of

97.1% with KNN classifiers, which outperforms the RFE in terms of accuracy with half

the number of features. Accordingly, we recommend the SFFS method with its selected 10

features as the method to select features.
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Table 5.3: One-finger machine learning results without feature selection methods

Evaluation Metrics KNN SVM NB
Selected Features 60 60 60
Accuracy 0.979 0.982 0.95
F1-Score 0.974 0.978 0.935
Recall 0.974 0.979 0.934
Precision 0.975 0.978 0.949

Table 5.4: One-finger machine learning results with RFE method

Evaluation Metrics KNN SVM NB
Selected Features 20 20 20
Accuracy 0.968 0.967 0.964
F1-Score 0.960 0.962 0.957
Recall 0.960 0.961 0.957
Precision 0.961 0.965 0.958

Table 5.5: One-finger machine learning results with SFFS method

Evaluation Metrics KNN SVM NB
Selected Features 10 10 10
Accuracy 0.971 0.963 0.956
F1-Score 0.964 0.956 0.946
Recall 0.964 0.956 0.944
Precision 0.965 0.959 0.954

Additionally, Figure 5.4 illustrates the confusion matrices for KNN, SVM, and Naive

Bayes classifiers, with 20 features for RFE and 10 features for SFFS.
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(a) KNN classifier with RFE
method

(b) SVM classifier with RFE
method

(c) NB classifier with RFE
method

(d) KNN classifier with SFFS
method

(e) SVM classifier with SFFS
method

(f) NB classifier with SFFS
method

Figure 5.4: One-ring gestures confusion matrices.
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5.4.3 Two-finger Gesture Recognition Results

Before applying feature selection, the primary two-finger dataset includes 120 feature

columns fed into three different machine learning algorithms. According to Figure 5.1,

It could be argued that 10 features could be considered suitable for training our machine

learning model to recognize two-finger gestures. Table 5.6 shows that different machine

learning models are applied to the original dataset, and evaluation metrics are extracted and

reported. Using appropriate features extracted from the data and gathering a rich dataset by

performing each finger measurement 2000 times, our model achieved a primary test result

of 99% for KNN after training.

Although we have achieved good results with this model, it is not acceptable to make

timely predictions for newly performed two-finger gestures. Having to extract 120 sta-

tistical features from data, feed them into a model, and display the results in a real-time

scenario is too time-consuming. To address this issue, we have chosen the most signifi-

cant features and built our model based on them through data pre-processing and feature

selection methods. Apart from reducing computation costs significantly, it also accelerates

processing time while maintaining an acceptable level of accuracy. According to Table 5.7,

the RFE feature selection method achieves an accuracy of 97.9%, when using the KNN

machine learning algorithm for ten features which is similar to the SFFS result when using

KNN with 97.5% accuracy.

Table 5.8, the detailed evaluation matrices of SFFS are shown. We selected the KNN

classifier in this case as our preferred machine learning classifier because it outperformed

the SVM and NB classifiers by a small margin. Figure 5.5 shows the confusion matrices

corresponding to the KNN, SVM, and NB classifiers with two different feature selection

methods. Note that the SFFS with 10 features is sufficient for our design, regardless of

whether it is used for one-finger or two-finger gesture recognition.
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Table 5.6: Two-finger machine learning results without feature selection methods

Evaluation Metrics KNN SVM NB
Selected Features 120 120 120
Accuracy 0.999 0.996 0.986
F1-Score 0.999 0.996 0.985
Recall 0.999 0.996 0.912
Precision 0.999 0.996 0.986

Table 5.7: Two-finger machine learning results with RFE method

Evaluation Metrics KNN SVM NB
Selected Features 10 10 10
Accuracy 0.979 0.975 0.960
F1-Score 0.980 0.975 0.960
Recall 0.980 0.975 0.960
Precision 0.980 0.975 0.960

Table 5.8: Two-finger machine learning results with SFFS method

Evaluation Metrics KNN SVM NB
Selected Features 10 10 10
Accuracy 0.970 0.964 0.959
F1-Score 0.970 0.964 0.959
Recall 0.969 0.964 0.960
Precision 0.970 0.964 0.958
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(a) KNN classifier with RFE
method.

(b) SVM classifier with RFE
method.

(c) NB classifier with RFE
method.

(d) KNN classifier with SFFS
method.

(e) SVM classifier with SFFS
method.

(f) NB classifier with SFFS
method.

Figure 5.5: Two-ring gestures confusion matrices.
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5.4.4 Classification Performance

We verified that the SFFS feature selection method outperforms the RFE method when

detecting one-finger and two-finger gestures, using fewer features while keeping a similar

accuracy. The applied modular approach in our study causes one or more measurement

devices to be worn based on the number of finger motions to be examined. Using one ring

is sufficient to perform one-finger gestures (Finger up, Finger down, Finger right, Finger

left, Finger 90 deg clockwise, Finger 90 deg counterclockwise), while using two rings is

restricted to two-finger gestures (Zoom in, Zoom out, Two fingers 90 deg clockwise).

Figure 5.6 and 5.7 illustrate the machine learning classification performance while per-

forming our pre-defined finger gestures. Each illustration shows the period before a gesture

is performed, during which the gesture is in progress, and the final position of each finger

after the gesture has been performed. In comparison to what we expected our actual signal

to be like Figures 3.11 - 3.19, the detected gestures and the fluctuation of accelerometer and

gyroscope data confirm our expectation and prove our choice of feature selection method

and machine learning algorithm.
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(a) Machine learning predicted movement for the
finger-up gesture.

(b) Machine learning predicted movement for the
finger-down gesture.

(c) Machine learning predicted movement for the
finger-right gesture.

(d) Machine learning predicted movement for the
finger-left gesture.

(e) Machine learning predicted movement for the
finger-clockwise gesture.

(f) Machine learning predicted movement for the
finger-counterclockwise gesture.

Figure 5.6: One-finger gesture recognition results.
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(a) Machine learning predicted movement for the
zoom-in gesture.

(b) Machine learning predicted movement for the
zoom-out gesture.

(c) Machine learning predicted movement for the two-
finger 90-degree clockwise rotation gesture.

Figure 5.7: Two-finger gesture recognition results.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

A wearable IMU-based smart ring prototype with an integrated BLE module is pre-

sented in this thesis. For the purpose of detecting finger gestures, a combination of ac-

celerometers and gyroscope sensors have been integrated into the sensing system. This

combination has proved to be more practical from the point of view of accuracy and detect-

ing complex finger gestures than relying on only one sensor. Utilizing accelerometers and

gyroscopes, the system can identify nine predefined finger gestures. The gestures can be

used to control a robotic arm or interact with smart devices, such as smartphones and televi-

sions. The raw data has been preprocessed on the Raspberry Pi, and the statistical features

have been extracted and stored. Using RFE and SFFS methods, the dataset is used to de-

termine which features are valuable and which are less important. Following this step, the

results are labelled according to the finger gestures associated with them. Using machine

learning data analysis, the recommended system was validated. We further investigate the

detection of finger gestures by using three different machine learning algorithms, namely

KNN, NB, and SVM. By utilizing the selected features from the SFFS and incorporating

them into KNN as our machine learning classifier, we were able to significantly reduce

the number of features required to achieve an acceptable level of accuracy and reduce the

processing and response time of the system as well. Results indicate that the recommended
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system can accurately recognize one-finger gestures with 97.1% accuracy and two-finger

gestures with 97% accuracy.

6.2 Limitations

One of the primary limitations of our proposed method is the hardware design. Even

though BLE is more energy efficient than Bluetooth 4.0, it still consumes a substantial

amount of energy and has low bandwidth compared to WiFi. It should be noted that when

using BLE, communication between devices is also restricted to relatively short distances

only. There is a limit to how much data the BLE-based devices can handle. Generally,

they are only able to transmit up to 100 KBps for short periods of time. The high output

current demanded by Bluetooth requires a DC/DC converter with a 3.3V output voltage and

a maximum output current of more than 300mAh. This is why we are limited in choosing

DC/DC converters. The battery used in our design is a 3.7V 350mAh Lithium Polymer

battery. In proportion to the battery’s current capacity, the battery’s size increases as the

battery’s current capacity increases. Therefore, our battery options are limited due to the

need to mount the board conveniently on the finger with a small battery. Our fabricated

board is 20 mm × 20 mm, and the closest battery we could find was 20 mm × 30.5 mm.

This led us to select a battery 10mm larger than the board size to provide the current needed

to initiate the BLE data transmission.

6.3 Future Work

The results and development of this project can have many practical applications: vir-

tual reality applications, sign language recognition, remote robot controllers, air sketches,

and smart controllable devices by finger and hand gestures. As part of future work, the

prototype will be reduced in size, and the current consumption will be decreased (resulting

in a smaller battery size). Duo to the modular approach used in our design made it possi-

ble to add another sensor to gather more data for detecting more complex finger or hand
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gestures, such as an electromyography (EMG) sensor. The sensor could be employed on

another ring or embedded in the next version of our design fabricated ring to gather the

user’s finger electrical signals generated by muscles.

We intend to enable our embedded WiFi connection as part of our future work. This will

give access to the advantages of WiFi wireless data transmission and BLE. When compared

to WiFi, BLE consumes less power. However, BLE does not support data transmission in

real-time to a server. In contrast, WiFi technology is 20-30 times faster than Bluetooth. As

a result, it is well suited for sharing large data files such as videos and photos. Compared

to WiFi, Bluetooth provides more accurate proximity data; however, its maximum wireless

range is 30 meters. Alternatively, WiFi is a better choice for open spaces.

Machine learning recognition functionality is another aspect of our plan for future im-

provements. The defined finger gestures can be expanded to include more complex multi-

finger gestures as well as hand gestures for more complex movement recognition results

such as sign language or air sketches. In addition, further improvements can be made to

our choice of feature selection methods, machine learning classifiers, and modifications to

the choice of statistical features in the time and frequency domains.

Ultimately, our goal is to move from the Raspberry Pi as the main processor to create

software that can be installed in smart devices such as phones and watches to use their

processor to handle the detection process and apply machine learning algorithms.
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