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Abstract 

Evaluation of human thermal response and building resilience to extreme heat events 

Lili Ji, Ph.D. 

Concordia University, 2022 

Under the current and potential impact of climate change, there is a growing concern about extreme 

heat events and their challenges to human health and building resilience. The indoor heat-stress 

situation relates to the interaction of outdoor extreme heat events, building characteristics, and 

occupants’ vulnerability. The high heat-related mortality rate of older people (aged 65+) and the 

trend of the population aging worldwide indicate the significant importance of evaluating and 

predicting heat-stress conditions for older people. Building thermal resilience determines the 

ability to tolerate extreme heat events and maintain or recover indoor comfort. Models of the 

relation between outdoor extreme weather data, indoor environment parameters, and human 

physiological responses are still needed to predict the consequences of global warming. Therefore, 

this research aims to evaluate building occupants’ thermal response and quantify building thermal 

resilience against extreme heat events. The Bioheat models applicable to calculating young and 

older adults’ physiological responses under hot exposure were developed. The validation study 

shows that the simulation results of the proposed models agree well with the published 

experimental data. The heat-stress index Standard Effective Temperature (SET) can be calculated 

based on the proposed Bioheat models and used in the selection of extreme hot years (EHY) and 

quantification of building thermal resilience. The EHY was selected by quantifying the degree of 

synchronization between outdoor heatwave events and building indoor overheating conditions 

based on the concept of POS (Percentage of Synchronization). It has been proved that in building 
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overheating-centric studies, the EHYs should be selected according to the severity and intensity of 

heatwaves defined by SET. A new quantification framework for building thermal resilience against 

extreme heat events was developed. The framework includes the conceptual resilience trapezoid 

curve, Thermal Resilience Index (TRI), and resilience labelling system for zone level and building 

level resilience. The proposed framework has been implemented in a calibrated building model to 

quantify the building thermal resilience with different retrofit strategies. With this method, the 

effect of retrofit strategies and their combinations on the building and zonal thermal resilience can 

be quantified, labelled, and compared, thereby, a detailed design of resilience enhancement 

strategies to be achieved. The contributions of the thesis include validated new models and 

methods to quantify human thermal responses and building resilience to extreme heat events. 

These new methods and models contribute potentially significant impacts to the research under 

different climate zones and future climates covering from a single building to large scales to 

quantify community or city scale resilience to heat. 
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Chapter 1 Introduction 

1.1. Statement of the problem 

Overheating in buildings has led to adverse impacts, including heat-related health concerns and 

mortality (Lomas and Porritt, 2017; Vellei et al., 2017). Currently, about 30% of the world’s 

population is exposed to deadly heat for over 20 days annually (Mora et al., 2017). Heat-related 

mortality cases have been reported from 164 cities across 36 countries; among them, the well-

known heatwaves in mid-latitudes are those in Chicago in 1995 (~ 740 deaths) (Whitman et al., 

1997), Paris in 2003 (~4870 deaths) (Dousset et al., 2011) and Moscow in 2010 (~10860 deaths) 

(Shaposhnikov et al., 2014). Even in cold climate zones (ASHRAE, 2013a) in Canada, five 

heatwaves in 1987, 1994, 2010, 2018, and 2021 resulted in mortality, for example, 106 deaths in 

2010 (Bustinza et al., 2013), 66 deaths in 2018 (Lamothe et al. 2019), and 676 deaths in 2021 

(Egilson, 2022). Meanwhile, climate change is expected to exacerbate heatwaves worldwide. By 

2100, mid-latitudes will be exposed to about 60 days of lethal heatwaves annually, and 48%~74% 

of the world’s population is projected to experience deadly heatwaves (Mora et al., 2017). 

Consequently, building overheating risk is expected to follow suit: the building overheating 

discomfort rate in Paraguay will reach 30% to 50% in 2070, considering a high greenhouse gas 

emission scenario (RCP 8.5) (Silvero et al., 2019). The summer indoor air temperatures are 

estimated to increase by up to 7℃ in Dutch cities in a future scenario by 2100 (Hamdy et al., 

2017). Under the current and potential impact of climate change, research on human health risks 

and building resilience to extreme heat events are significantly important.  
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Human vulnerability to heat varies among different age groups. Most heat wave deaths occur in 

buildings, including residential buildings, nursing homes, and hospitals (Liu et al., 2017; 

Macintyre et al., 2018). The highest levels of excess mortality were found in areas with larger 

elderly populations (Taylor et al., 2015). There is epidemiological evidence that older people are 

more vulnerable to high ambient temperatures because of the weakening of thermoregulatory 

activities and sensory delays in triggering the thermoregulatory system (Soebarto et al., 2019). The 

world population aging process has been escalating: the number of people aged 60 years and over 

was tripled in the last 50 years and is expected to reach over 2.1 billion in the next thirty years 

(Issahaku and Neysmith, 2013; Mba, 2010). Western Europe and Northern America are 

continuously at the highest population aging rate, and developing countries have the most 

significant increases in absolute numbers of older populations (Wang, 2020). Attention and care 

should be on older people, especially their physiological responses under heat-stress conditions 

they become more vulnerable than younger populations. 

Extreme hot weather is the primary exterior forcing for building overheating. Proper usage of 

extreme weather data is essential to evaluate building overheating problems under current and 

future climates. The selection of extreme hot years (EHYs) for providing outdoor weather data for 

building simulation is typically based on outdoor temperature data (Guo et al., 2019; Liu et al., 

2021). Direct indices such as dry bulb temperature or empirical indices such as operative 

temperature (OT) have been commonly used as the dominant factor in assessing the indoor 

overheating situation (Gustin et al., 2020; Jentsch et al., 2015). However, there is still only limited 

and indirect epidemiological evidence concerning indoor temperature exposure during overheating 

that gives rise to adverse health effects (Hamdy et al., 2017). 
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Building thermal resilience determines the ability to tolerate extreme heat events and maintain or 

recover to an indoor comfortable environment. No consistent index has been proposed to evaluate 

the building resilience to heat and compare different resilient cooling strategies. Most related 

studies have used overheating metrics to indicate building thermal resilience (Flores-Larsen et al., 

2022; Flores-Larsen and Filippín, 2021; Hess et al., 2018; Katal et al., 2019; Loughnan et al., 2015; 

Nicol et al., 2020). However, resilience is related to the whole process of disruption, absorption, 

and recovery (Homaei and Hamdy, 2021), and building thermal resilience further involves 

building characteristics and occupants' thermal responses. Therefore, a comprehensive framework 

is needed to assess and quantify building resilience to heat concerning the whole resilience 

procedure and impact factors about building features, occupants’ response, and resilient cooling 

strategies. 

1.2. Objectives of this thesis 

To solve the problems mentioned above, this thesis aims to evaluate building occupants' thermal 

response and building thermal resilience against extreme heat events. The bioheat models that are 

applicable to calculate young and older adults’ physiological responses under hot exposure will be 

developed to provide useful tools to predict thermal responses and calculate the physiological-

based heat-stress index for occupants with different heat vulnerability levels. To ensure the indoor 

overheating patterns can be sufficiently captured during the studied weather situation, a new 

method of selecting EHYs based on the synchronization of indoor and outdoor heat events will be 

proposed. Under extreme heat events, the quantification framework for building thermal resilience 

will be developed. The framework considered the resilience profile, quantification index, and 

resilience level labeling. The outcomes of the thesis provide tools to quantify human thermal 
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responses and building resilience to extreme heat events. The tools can then be applied to research 

under different climate zones and future climates, as well as be extended from a single building to 

quantify community or city scale resilience to heat.  

1.3. Summary and thesis layout 

This chapter introduces the research gaps in the study of evaluating human thermal response and 

building resilience to extreme heat events. It points out the important need to develop 

quantification tools to assess occupants’ vulnerability and building thermal resilience with a proper 

selection of extreme hot years. To solve the problems mentioned above: 

Chapter 2 reviewed the research in recent years about indoor heat-stress evaluation, extreme 

weather year selection and building thermal resilience assessment and enhancement. The human 

physiological modelling, heat-stress indices and mortality risk analysis for young and older adults 

are summarized. The selection methods of extreme weather years for overheating studies are 

reviewed along with the typical year selections. The assessment methods of building resilience to 

heat events and resilience mitigation strategies are summarized.  

Chapter 3 improves the two-node bioheat model for young adults to make it applicable to the hot 

environment. By collecting relevant thermoregulatory models and testing their performance in the 

two-node model structure based on published experimental data, the thermoregulatory system of 

the bioheat model for young adults was improved and validated under heat and cold exposure 

conditions. Higher accuracy than previous models was achieved when predicting the core and skin 

temperatures in hot environments. 

Chapter 4 develops a two-node bioheat model for older people. The model was developed based 

on the two-node model for young adults by accounting for the age-related attenuation of 
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thermoregulation and sensory delays in triggering thermoregulatory actions. The model was 

validated with published experimental data and achieved good agreement with the measured skin 

temperature and core temperature. This model can predict older people’s thermal response in heat-

stress environments. 

Chapter 5 develops a new method for selecting EHYs. A new approach to select EHYs based on 

the synchronization of outdoor and indoor-based extreme years was proposed. This approach 

allows a comparison between the temperature-based and thermal-based indices and among the 

duration, intensity, and severity-based extreme years. On top of that, a representative extreme year 

for each city could be identified with the proposed method. 

Chapter 6 develops a new framework to quantify building thermal resilience. Building thermal 

resilience can be quantified based on the resilience trapezoid concept. An index was proposed to 

label the building resilience classes with respect to the relative improvement from original indoor 

thermal conditions. Except for the whole building resilience, the zone-level resilience was also 

evaluated. The proposed framework can be used to quantify the overall and zonal thermal 

resilience of a building against extreme heat events. 

This thesis contributes to bioheat models applicable to hot exposure of young and older adults, a 

new method to select EHY for building overheating studies, and a new framework for quantifying 

building thermal resilience to extreme heat events. Different from previous studies, this work 

provides a clear definition of building thermal resilience and quantification tools for heat-

vulnerable people's physiological responses and building resilience to heat. The models and 

methods have evident potential to be used in extended spatial and temporal scales.  
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Chapter 2 Literature Review 

2.1. Introduction 

This section summarizes research in recent years about indoor heat-stress evaluation, extreme 

weather year selection, and building thermal resilience assessment and enhancement. The three 

main methods used to evaluate human heat-related health risks are physiological modelling, heat-

stress indices, and mortality risk analysis. As extreme events have had a substantial impact on 

older people’s mortality and mobility, the studies on heat-stress evaluation of older people are 

summarized in a separate subsection to understand the research direction better to protect the heat-

vulnerable population. The selection methods of extreme weather years for overheating studies are 

also reviewed along with the typical year selections, as the extreme year selection methods are 

often derived from existing typical year selection methods. Finally, the assessment of building 

resilience to heat events, including building thermal modelling, overheating, and resilience 

evaluation and mitigation strategies, are summarized. The research gaps are analyzed based on the 

reviewed studies in each section. 

2.2. Indoor heat-stress evaluation 

It is important to have models and indices to evaluate human heat stress to avoid health risks and 

reduce mortalities during extreme heat events. Human physiological models, which can predict 

thermal risks by calculating core temperature, skin temperature, and water loss of the human body, 

are helpful tools in heat-stress evaluation. Besides, heat-stress indices are also widely used to 

assess and predict human thermal risks. There are more than 100 heat-stress indices over the last 

70 years of development (Havenith and Fiala, 2016), which include direct indices that can be 



7 

 

measured by instruments, empirical indices that are derived from experimental and survey data, 

and rational indices developed based on physiological models. Older people aged 65+ account for 

a large percentage of heat-related mortality. Due to the heat vulnerability of older people, 

physiological models and heat-stress indices need to be adjusted for application to the aging 

population.  

2.2.1 Heat-stress modelling and indices 

Physiological models consist of the passive system indicating the heat balance of the human body 

and the active system taking into account thermoregulatory activities such as sweating, skin blood 

flow, and shivering. Under hot exposure, the thermoregulatory actions would be triggered to 

increase the heat transfer from the body core to the skin and, after that, from the skin surface to 

the environment, thus releasing heat to the environment and protecting the human body from heat 

injuries by accumulative heat. Because the thermoregulatory activity is essential when people are 

exposed to a heat-stress environment, the active system enables physiological models to be used 

as thermal strain assessment tools.  

Although initially developed for thermal comfort research, the two-node physiological model 

(Gagge et al., 1986) has been successfully used in the assessment of heat strain (Havenith and 

Fiala, 2016). The multi-node models, which can calculate local physiological responses of 

different body parts, are also widely used in heat stress evaluation. Physiological models have been 

developed and improved in the past 70 years and are still being investigated, compared, and 

modified for various research purposes. For example, Unnikrishnan et al. (2021) developed a 

thermoregulatory model to predict the whole body and organ- and tissue-level heat-stress 

responses under different environments, activity, and clothing levels and found the activity level 
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is the primary driver of rectal temperature increase. Under the current situation of COVID-19, the 

thermal stress caused by wearing facial masks is also investigated with modified physiological 

models (Shi et al., 2021).  

Table 2-1 Heat-stress index 

Heat-stress index Environmental and occupants’ 

variables 

Reference 

T

a 

RH RT Va Met Clo  

Direct 

Dry bulb temperature √   

Wet bulb temperature √ √  

Empirical 

Effective temperature (ET) √ √  √   Holmes et al. (2016) 

Equivalent Temperature (EqT) √  √ √   Kownacki et al. (2019) 

Discomfort Index (DI) √ √     Holmes et al. (2016) 

Heat Index (HI) √ √     Loenhout et al. (2016) 

Apparent Temperature (AT) √ √  √   Pioppi et al. (2020) 

Environmental stress index (ESI) √ √ √    Liang et al. ( 2011) 

Operative Temperature (OT) √  √ √  √ Holmes et al. (2016) 

Wet Bulb Globe Temperature (WBGT) √ √ √ √ √ √ Holmes et al. (2016) 

Rational 

Heat Stress Index (HSI) √ √ √ √ √  Holmes et al. (2016) 

Index of Thermal sensation (TS) √ √ √ √ √ √ Kownacki et al. (2019) 

Predicted Heat strain (PHS) √ √ √ √ √ √ Holmes et al. (2016) 

Predictive Mean Vote (PMV) √ √ √ √ √ √ Kownacki et al. (2019) 

Standard Effective Temperature (SET) √ √ √ √ √ √ Holmes et al. (2016) 

Universal Thermal Climate Index (UTCI) √ √ √ √ √ √ Langner et al. (2013) 

Thermal Work Limit (TWL)  √ √ √ √ √ √ Kownacki et al. (2019) 

Physiologically Equivalent Temperature (PET) √ √ √ √ √ √ Pioppi et al. (2020) 

 

As mentioned earlier, heat-stress indices have been developed to evaluate thermal risks. Many 

direct, empirical, and rational heat-stress indices are used in existing literature (Holmes et al., 
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2016). The direct index can be measured, such as dry and wet bulb temperatures. Empirical indices 

are developed from field experiments and generally expressed in terms of some environmental 

parameter, not a physiological parameter (Brake and Bates, 2002). Examples of empirical indices 

include the Effective Temperature (ET), Wet Bulb Globe Temperature (WBGT), and others. 

Rational indices include physiological parameters such as sweat rate, core temperature, or heart 

rate and parameters calculated based on the physiological models, such as Predicted Heat strain 

(PHS), Standard Effective Temperature (SET), and others.   

Table 1 lists 16 heat-stress indices widely used in existing studies and indicates the factors they 

include. The environmental variables, including air temperature, relative humidity, radiation, air 

speed, and occupants' characteristics, such as activity level and clothing level, can be considered 

in a heat-stress index.  

2.2.2 Heat-related mortality risk 

Heat-related mortality burdens have increased due to extreme heat events and urban heat islands 

along with climate change. The number of summer-season heat-related deaths was found to grow 

on every continent (Vicedo-Cabrera et al., 2021). Studies were conducted to relate daily mortality 

with thermal parameters like air temperature, PET and UTCI and found that hot conditions are risk 

factors for daily mortality (Nastos and Matzarakis, 2012). Predicting the mortality risk is also a 

topic many researchers focus on to assess the consequence of global warming and evaluate 

potential mitigation strategies. Peng et al. (2011) estimated the relationship between heatwaves 

and mortality with Poisson regression models. The widely used quantitative method to assess the 

impacts of heat on mortality was developed by Honda et al. (2014). They calculated the relative 

mortality risk (RMR) based on the deviation of air temperature from an optimum temperature, at 
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which the heat-related excessive mortality has the lowest value. Mitchell et al. (2016) estimated 

the number of heat-related deaths (M) by relating the change in apparent temperature (AT) with 

the difference in the baseline mortality rate. The above-mentioned methods have been used to 

estimate the heat-related mortality risk in the US (Shindell et al., 2020), Middle East and North 

Africa (MENA) (Ahmadalipour and Moradkhani, 2018), Greece (Nastos and Matzarakis, 2012), 

and other areas of the world. 

Studies have found that an increase in heat-related deaths was related to the increased number of 

older adults, who are more vulnerable to heat due to psycho-physical impairment and/or lack of 

socio-economic resources (Liotta et al., 2018). Studies have shown that a 1℃ temperature rise 

would increase cardiovascular (3.44%, 95% CI 3.10–3.78), respiratory (3.60%, 3.18–4.02), and 

cerebrovascular (1.40%, 0.06–2.75) mortality of elderly by 3.44%, 3.60%, and 1.4%, respectively, 

at the confidence interval of 95% (Bunker et al., 2016). Extreme heat led to a significant risk for 

mortality and morbidity in the US elderly (Chien et al., 2016). A review study about heat-related 

mortality risk in Europe suggested that older women are at higher risk than men (van Steen et al., 

2019).  Heat-related elderly deaths in August have been predicted to increase by 12-15 times in 

the 2050s than 2010s in a megacity in Indonesia (Varquez et al., 2020). It was also suggested that 

the heat-related mortality rate of the older population in Korea would be increased by social 

isolation indicators (Kim et al., 2020). The high heat-related mortality rate of older people and the 

population aging problem happening worldwide indicate the significant importance of evaluating 

and predicting the heat-stress conditions specifically for older people to establish a more reliable 

heat-alert system. 
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2.2.3 Heat-stress evaluation of older people 

To develop physiological models applicable to predict older peoples’ physiological responses 

under hot exposure, studies have been conducted to adjust the existing models for average-aged 

people based on age-related changes and hot exposure thermoregulation. Studies were conducted 

to explore the impact of indoor overheating on heat-related symptoms of older people and found 

that high air temperatures were related to rising risks of dry mouth, fatigue, thirst, less frequent 

urination, and trouble sleeping (Teyton et al., 2022). Experimental studies have also shown that 

older people store more heat than young people during short exposure to dry and humid hot 

environments, meaning they experience more significant thermal strain during heat events 

(Stapleton et al., 2014). Based on the multi-node thermal comfort model for average-aged people 

of Karaki et al. (2013),  Rida et al. (2014) developed a model for older people by modifying basic 

metabolic rate, skin fat, skin blood flow, and thermoregulatory factors, and Itani et al., (2020b) 

adjusted the model for fat thickness, threshold of sweating, metabolic rate, heart rate, and cardiac 

output to make it applicable to the hot environment. However, a widely used heat-stress index 

considering the age-related difference and physiological responses of older people under hot 

exposure is still lacking. The understanding of the mechanistic links between heatwaves and health 

is still insufficient (Meade et al., 2020). More studies are required to integrate physiological 

research with climate-health models to help protect vulnerable heat populations. 

2.3. Reference weather year selection 

Indoor thermal condition is often studied using thermal simulation with historical, current, and 

future climate data. Due to computational complications and time consumption of climate 

modelling and building simulation, long-term multidecadal assessment is challenging. The 
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reference weather years are therefore generated to decrease the number of simulations for assessing 

the impact of climate on indoor thermal and energy performance. The reference years should keep 

the quality and main characteristics of the interest of long-term climate datasets. Two categories 

of reference weather years are often generated: Typical reference weather years and extreme 

reference weather years. 

2.3.1 Typical reference weather year 

Typical reference weather years represent the typical weather conditions, excluding extremes 

within multi-years. The widely used typical meteorological year (TMY) is an artificial year that is 

derived from multi-year weather datasets through mathematical methods (Yuan et al., 2022). By 

the Sandia method, a TMY is created by selecting each typical meteorological month (TMM) that 

consider the minimum difference between the cumulative distribution function (CDF) of the month 

and the long-term, while the Danish method is to compare the difference of standard deviation 

between selected months and the long-term (Li et al., 2020; Yaqubi et al., 2022). Researchers also 

improved these methods to generate typical reference weather years that are applicable to different 

locations. Arima et al. (2017) proposed Typical and Design Weather Year (TDWY) to estimate 

both annual and maximum cooling/heating loads by including monthly and yearly averages and 

minimum/maximum hourly values of multi-year data in the TDWY. Murphy (2017) modified 

TMY with Regional Climate Models to get more accurate solar radiation data for the simulation 

of the photovoltaic system. 

2.3.2 Extreme reference weather year 

Including extreme weather conditions in the reference weather years are essential to assess indoor 

overheating risks or maximum cooling/heating load under the impact of climatic uncertainties. To 
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do this, the Design Summer Year (DSY) was developed to assess natural ventilation in summer, 

which considers the near-extreme weather conditions by selecting the year with the third hottest 

summer within 20 years (Levermore and Parkinson, 2006). In addition to DSY, the design 

reference year (DRY) was a year formed from individual extreme weather months in respect of 

not only air temperature but also humidity and solar radiation (Watkins et al., 2013). Summer 

Reference Year (SRY) was produced by adjusting the months of Typical Reference Year (TRY) 

to represent near-extreme air temperatures, cloud cover and wind speed (Jentsch et al., 2015), 

which overcame the shortcomings of DSY and DRY that the discomfort evaluation results were 

inconsistent with the corresponding TRY. Similarly, Extreme Meteorological Year (XMY) was 

produced based on the typical weather year TMY and adjusted the months with the highest and 

lowest daily or hourly average dry-bulb temperature (Crawley and Lawrie, 2015). Based on the 

quantile regression method, the quantile regression ensemble summer year (QRESY) that contains 

heatwaves was produced using a weighted average ensemble (Herrera et al., 2018). Typical Hot 

Years (THYs) were produced accounting for both outdoor and indoor thermal conditions (Guo et 

al., 2019), which focused more on the impact of outdoor climate on the indoor heat events intensity 

and therefore more suitable to conduct the indoor overheating assessment.  

To explore the impact of climate change on building thermal and energy performance, future years 

consisting of both typical and extreme conditions were generated. Nik (2016) selected one typical 

year Typical Downscaled Year (TDY), and two extreme years Extreme Cold Year (ECY) and 

Extreme Warm Year (EWY), through a similar procedure of selecting TMY. The difference is that 

the three years were selected based only on dry-bulb temperature instead of four variables. The 

extreme years were selected by the maximum (EWY) and minimum (ECY) absolute difference. 

Machard et al. (2020) conducted building thermal simulations with Future Typical Year (TWY) 
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composing the 12 most statistically common months and Future Heatwave Event (HWE) weather 

files selected based on percentile thresholds calculated by mortality data from historical heatwaves.  

The above-mentioned extreme reference weather years SRY, XMY, THY-I, and THY-E were 

compared in the study of Liu et al. (2021) who found that those years could capture different 

patterns of overheating events, for example, the THY-I (THY-Intensity) could capture the severest 

daytime overheating and the THY-E (THY-Event) could examine the longest duration of daytime 

overheating, while in XMY one could find the severest and longest nighttime overheating. 

Therefore, the current extreme reference weather years still lead to inconsistent results about 

indoor overheating problems, and there is no conclusion on which year is more representative. The 

investigation of which pattern of the overheating problem has the most significant impact on 

occupants might be a way to inversely explain which extreme year is appropriate for overheating 

analysis. 

2.4. Building thermal resilience quantification 

2.4.1 Building thermal modelling 

Building thermal models can be developed based on building energy simulation models that 

include the heat transfer processes or based on heat, air and moisture transfer (HAMT) analysis of 

the building envelope and indoor environment. With the boundary condition obtained from 

building thermal models, the detailed indoor airflow and temperature distribution can be simulated 

with computational fluid dynamics (CFD) analysis or other alternative ways. Data-driven methods 

are also used to predict indoor thermal environments in recent years. 
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By calibrating and validating the models based on monitored indoor climate data or thermal 

comfort surveys, building energy models developed by software such as EnergyPlus (DOE, 2020), 

ESP-r (Energy Systems Research Unit, 2020), TRNSYS (Thermal Energy System Specialists, 

2019) and Pleiades-Comfie (Tsoka, 2015) can be used to study the indoor thermal condition due 

to their consideration of heat transfer processes (Baba et al., 2022; Benchekroun et al., 2019; 

Elsharkawy and Zahiri, 2020). Because ventilation and infiltration produce heat transfer related to 

airflow currents, airflow network models are often integrated with the building energy models to 

develop combined thermal and airflow calculations (Firla̧g and Murray, 2013; Martínez-Ibernón 

et al., 2016; Martínez-Mariño et al., 2021). In such models, the thermal condition in a zone is 

considered uniform. Thus, a thermal zone should be divided into smaller cells to capture the spatial 

variations of indoor temperature in a room (Vidhyashankar et al., 2022). IDA Indoor Climate and 

Energy (ICE) is another tool widely used to simulate indoor climate, which can model indoor air 

flows, thermal conditions and energy performance (Kistelegdi and Baranyai, 2013; Paliouras et 

al., 2015; Rohdin et al., 2014; Sana et al., 2021). It is able to model buildings with multiple zones 

and variable time steps (Ahmed et al., 2022).  

The hygrothermal analysis considers the HAMT of building envelope and indoor spaces and, 

therefore, can precisely model the indoor thermal conditions under the effect of the outdoor 

climate. Whole building hygrothermal models such as WUFI+ (Künzel et al., 2005) and DETECt 

(Buonomano et al., 2015) were developed by integrating HAMT through building envelope with 

indoor heat and moisture balances (Tariku et al., 2010). Simplified indoor climate models were 

also designed to predict the dynamic indoor situation in response to outdoor climate and building 

operation. A building indoor model can be developed based on the analytic solution of Fourier’s 

equation to consider the heat transfer, but this approach ignores moisture (Pfafferott et al., 2021; 
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Ryzhov et al., 2019). The benefit of the simplified building physics models is that they could be 

continuously recalibrated with the operation of buildings to capture the time-dependent change of 

building characteristics for more efficient indoor climate control (Yang et al., 2019).  

The surface temperatures output from building thermal models can be used as boundary conditions 

for the CFD to simulate air movements and temperature distribution (Rohdin et al., 2014; Ţurcanu 

et al., 2020), and the results can then be validated with measured indoor thermal data (Zhao et al., 

2022). This way, indoor climate distribution in different usage conditions such as seasons, 

occupancy densities and air diffusers can be predicted and evaluated (Zhao et al., 2022). 

Considering the computationally time-consuming requirements of CFD, an alternative simplified 

way to simulate indoor air temperature distribution is based on the contribution ratio of indoor 

climate (CRI), which indicates the personal impact of all heat factors, and can achieve similar 

accuracy with CFD but with much shorter simulation time (Huang et al., 2012; Zhang et al., 2013). 

Modelica-based room thermal modelling is another way to simulate the detailed indoor climate, 

which can consider the view factors for arbitrary polygon for radiation calculation, vertical 

temperature gradient and airflow under the effect of other room features (Eriksson et al., 

2012)(Christoph Nytsch-Geusen et al., 2021).  

Data-driven methods like Artificial neural networks (ANNs) were also used to simulate the indoor 

climate (Aliberti et al., 2019; Ganguly et al., 2020; Mba et al., 2016; Sözer and Aldin, 2019). The 

parameters of Linear Time Invariant (LTI) models can be determined with physical data, which 

was suitable to predict building indoor climate insensitive to short-term disturbances (Kramer et 

al., 2013).  
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2.4.2 Building overheating evaluation 

After defining a heat-stress index, a threshold is needed to identify whether the environment is in 

a heat-stress situation. Besides, different types of heat events might result in various health effects. 

For example, a continuous heat event might bring cumulative heat injury inside a person, and a 

rapid temperature increase might lead to intense heat injury, so a method is needed to identify the 

pattern of a heat event. Many heat-stress indices have associated heat-stress thresholds. However, 

a limited number of them have been related to the patterns of heat stress situations applied to 

building overheating analysis.  

The Chartered Institution of Building Services Engineers (CIBSE) proposed the most popular 

overheating criteria based on the indoor operative temperature. One way to define overheating is 

to identify a particular temperature above which a given proportion of people in a building vote 

+2 or +3 on the PMV scale (Irving et al. 2005). For bedrooms in residential buildings, the 

temperature should not exceed 26°C for 1% of the annual occupied hours. The temperature should 

not exceed 28°C for 1% of the yearly occupied hours for living rooms. Space temperature should 

not exceed 28°C for 1% of the annual occupied hours for school and office buildings. The other 

overheating criteria are based on the adaptive thermal comfort model, which gives a temperature 

threshold that changes with mean ambient temperature and the occupants' sensitivity. The 

operative temperature thresholds per building category are shown in Table 2. The Trm in Table 2 

means the exponentially weighted running mean of the daily mean outdoor air temperature. In 

Technical Memorandum 52 (TM52) (CIBSE, 2013), there are three criteria considering the 

deviation between the actual operative temperature in the room Top and the limiting maximum 

acceptable temperature Tmax, namely Hours of exceedance (He), Daily weighted exceedance (We) 

and Upper limit temperature (Tupp). A similar logic is adopted by ASHRAE 55 (ASHRAE, 2013) 
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to define the acceptability comfort ranges. The standard first measures comfort temperature and 

the acceptability ranges for three categories of people are then defined based on the comfort 

temperatures, as listed in Table 2-2. The Tref is the monthly mean outdoor air temperature. 

Table 2-2 Operative temperature benchmark thresholds  

Category Building category 
Limiting maximum acceptable temperature Tmax 

CIBSE ASHRAE 

Ⅰ 

Spaces to be occupied by very sensitive 

and fragile persons with special 

requirements, such as the handicapped, 

sick, the very young and the elderly 

0.33Trm+18.8+2 
0.31×Tref+17.8+2 

(90% acceptability) 

Ⅱ New buildings and renovations 0.33Trm+18.8+3 
0.31×Tref+17.8+3 

(80% acceptability) 

Ⅲ Existing buildings 0.33Trm+18.8+4 
0.31×Tref+17.8+4 

(60% acceptability) 

 

Besides the overheating criteria based on operative temperature, U.S. Green Building Council uses 

Standard Effective Temperature (SET) to define overheating for residential or non-residential 

buildings. It evaluates overheating with the resolution of one week instead of considering annual 

occupied hours. It requires simulation to demonstrate that a building’s interior environment will 

maintain “livable temperatures” during a power outage that lasts seven days during the peak 

summertime of a typical year. Laouadi et al. (2020b) evaluated overheating in buildings with SET 

and defined different patterns of the heat event: duration, intensity and severity. The overheating 

criteria to limit the intensity and severity were developed based on the heat-related health outcomes 

related to maximum body dehydration and core temperature of occupants. Adaptive thermal 

comfort is not included in the method. 

There are studies exploring further overheating event patterns. Lee (Lee and Shaman, 2017) 

introduced continuously overheated intervals (COIs), which account for continuous exposure 

duration. The interval approach will render several COIs, or stretches of time within each Top 

remains continuously above Tlimit. The overheating risk of a modelled building was evaluated with 
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COI under current and future climates. Potential overheating issues for space under evaluation can 

be quickly discerned in this way. Hamdy (Hamdy et al., 2017) proposed Indoor overheating degree 

(IOD) and Overheating escalation rate (OER) to precisely assess the thermal response of dwellings 

to an increase in thermal stress due to, for example, global warming and the urban heat island 

effect. IOD considers both the intensity and the frequency. OER represents the sensitivity of indoor 

overheating to climate change (caused by global warming).  

The indoor climate and overheating problems under the impact of climate change were evaluated 

in previous research, and consistent conclusions about the increased indoor heat stress were made. 

Hosseini et al. (Hosseini et al., 2022) simulated the indoor climate of residential buildings in 

Sweden under the effects of both climate change and microclimate. A 17% rise in cooling degree-

day (CDD) and a 25% increase of daily peak cooling load on an extremely warm day were found 

when considering microclimate. The overheating hours would increase by 140% in the future 

climate. Lei et al. (Lei et al., 2022) studied the current and future indoor overheating situations in 

bedrooms of heritage apartments in China. At least a 41% increase in overheating hours was found 

in 2050 compared to the current climate. Fiorito et al. (Fiorito et al., 2022) evaluated the thermal 

comfort in naturally ventilated historic buildings in Italy under current and future climates and 

found the discomfort levels would not be acceptable in the 2050 and 2080 scenarios. Escandón et 

al. (Escandón et al. 2022) studied the overheating situation of social housing stock in Spain. It was 

found that by 2050, according to the Chartered Institution of Building Services Engineers (CIBSE) 

criteria, 100% of social housing would be overheated due to global warming. Rahif et al. (Rahif et 

al., 2022) assessed the discomfort in a nearly zero-energy dwelling in Brussels and found that 

overheating risk would increase up to 528% by the end of this century. Dodoo (2020) studied the 

overheating risk and indoor thermal comfort of a modern multi-story residential building in 
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Sweden and found the overheating hours and Predicted Percentage of Dissatisfied (PPD) increased 

significantly under future climate scenarios.  

2.4.3 Building thermal resilience evaluation and enhancement 

Extreme heat events challenge the ability of buildings to maintain and recover to thermal comfort 

conditions. The evaluation and enhancement of building resilience have been important topics in 

recent years. To assess building resilience to heat, there is no consistent index. Many studies used 

the overheating evaluation metrics to indicate resilience, such as indoor temperature (Katal et al., 

2019; Nicol et al., 2020), Heat Index (Flores-Larsen and Filippín, 2021), Indoor Overheating 

Degree (IOD) (Flores-Larsen et al., 2022), the mortality rate (Hess et al., 2018), and thermal 

sensation of occupants (Loughnan et al., 2015).  Hatvani-Kovacs et al. (2016) proposed a more 

comprehensive framework to assess population heat stress resilience, involving heat stress 

resistance, vulnerability, and adaptation ability. Therefore, building resilience to heat is related to 

the whole process of disruption, absorption, and recovery, thus needs to be assessed and quantified 

with a more comprehensive index involving the resilience procedure and impact factors. The 

influential factors of building resilience were also investigated. The building design characteristics 

are the main impactor of building resilience to heat, including solar heat gains through the glazed 

balconies and low potential of natural ventilation (Schünemann et al., 2022), the social location of 

buildings, and occupants' access to mitigation sources (Eady et al., 2020), the age of the house, the 

number of air-conditioning units, the pitch of the roof, home insulation and the number of heat-

mitigation modifications (Loughnan et al., 2015), building orientation, thermal mass and shading 

(Iddon et al., 2015). 
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The failure to build a tolerance to extreme heat events indicated the significant importance of 

applying strategies to enhance resilience. Studies have shown that the performance of resilience 

enhancement strategies varies with building characteristics and surrounding environments (Sun et 

al., 2021). Zeng et al. (2022) proposed a strategy of pre-cooling the house during off-peak hours 

during heatwaves, which improved the overheating problems of most of the 814 residential 

buildings in California, US. López-García et al. (2022) tested reducing solar heat gains and 

increasing ventilative cooling for residential buildings in Spain to mitigate the overheating 

situation assessed with real monitored data. Heracleous et al. (2021) suggested that natural 

ventilation and roof insulation could minimize the cooling degree hours by 96.8% of their studied 

school building in Cyprus. Schünemann et al. (2021) explored the impact of individual window 

ventilation behaviour of residents on overheating risk by comparing six window ventilation 

profiles applied to a multi-residential building in Germany and found that fully opened windows 

and room doors could reduce overheating risk significantly. The application of green roofs on 

buildings in Italy has been proven to have the ability to save cooling energy, improve indoor 

comfort and attenuate ceiling temperatures of top floors (Cirrincione et al., 2021). Sun et al. (2021) 

compared eleven passive cooling strategies applied to vulnerable communities in California and 

the US. They proved that installing solar-control window films and adding roof insulation were 

the two most effective measures. A review study about natural ventilation in warm climate 

suggested that cross ventilation performed better than single-sided ventilation, while windcatchers 

and solar chimneys displayed a better performance by creating higher ventilation rates (Ahmed et 

al., 2021). The study also recommended combining solar chimneys or windcatchers with water 

evaporation cooling to achieve indoor comfort as well as cooling energy saving. Mohaibesh et al. 

(2021) suggested to learn from the design of traditional typologies to enhance resilience by 
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comparing the thermal performance of traditional house and modern buildings and found the 

vernacular architecture and the use of thermal insulation made the traditional building more 

resilience to extreme weather. Therefore, quantification methods of building resilience to heat are 

still needed to evaluate various enhancement strategies when applying to different buildings and 

climates. 
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Chapter 3 Evaluation and Improvement of the Thermoregulatory 

System for the Two-node Bioheat Model 

The contents of this chapter are published in “Ji, L., Laouadi, A., Shu, C., Wang, L., & Lacasse, 

M. A. (2021). Evaluation and improvement of the thermoregulatory system for the two-node 

bioheat model. Energy and Buildings, 249, 111235. https://doi.org/10.1016/j.enbuild.2021.111235 

”. The contents are slightly modified. 

Abstract 

The two-node bioheat model is widely used in thermal comfort standards and design tools. In 

recent years, there have been many new experimental studies and thermoregulatory models 

developed under stressful heat or cold conditions, but those have not been tested under the two-

node model structure.  Furthermore, limited validation studies of the two-node model revealed 

significant discrepancies in the prediction of skin temperature. This study collects relevant 

thermoregulatory models (six for sweating, three for skin blood flow and shivering, and four for 

sweat evaporation efficiency) and devises a methodology to compare the accuracy of various 

model combinations against experimental data. An improved model is developed and validated 

under heat and cold exposure conditions. The RMSE method is used to compare the accuracy of 

various model combinations and to optimize the proposed thermoregulatory model constants. 

3.1. Introduction 

Bioheat modeling is an important approach in thermal comfort and heat stress standards in built 

environments to protect the health of people and maximize their performance and productivity in 

workplaces.  Bioheat modeling predicts the dynamic physiological response of the human body 

https://doi.org/10.1016/j.enbuild.2021.111235
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when subjected to stressful thermal conditions. A bioheat model consists of two systems: passive 

and thermoregulatory (active). The passive system deals with the different mechanisms of heat 

exchange between the human body and the environment. The thermoregulatory system deals with 

the physiological control mechanisms for sweating, vasodilation, vasoconstriction, and shivering. 

Bioheat modeling was extensively addressed in the past decades, and various one to multi-segment 

body models have been proposed (Havenith and Fiala, 2016). The simplest two-node model 

(Gagge et al., 1986) in which the human body is represented by one segment with two nodes, one 

for the core and one for skin layers has gained widespread popularity in engineering applications 

due to its simplicity, easy implementation in computer tools, and faster calculation time (Enescu, 

2019).  The model has been implemented in thermal comfort standards and building energy design 

tools (ASHRAE-55, 2017; Tartarini et al., 2020). The two-node model provides the physiological 

parameters required for the calculation of the standard effective temperature (SET*)  index (Wang 

et al., 2020; Zhang and Lin, 2020). The SET* index is both a thermal comfort and heat stress index, 

and its thermal sensation scale was established based on the skin temperature and wettedness 

(Blazejczyk et al., 2012). ASHRAE (2017) uses the SET* index to compute the cooling effect of 

high airspeed, which is not covered in the predicted mean vote (PMV) index (developed for still 

air).  The two-node model has as well been used and adapted to cover outdoor thermal comfort 

(Ooka et al., 2010). Due to its simplicity and quick calculation time, the most popular building 

simulation software such as EnergyPlus (DOE, 2020), ESP-r (Rida and Kelly, 2017), and TRNSYS 

(TEES, 2021) have implemented the two-node model and SET* index for indoor thermal comfort 

analysis.  Furthermore, the predictions of the two-node model were consolidated by several 

experimental studies in the past (Doherty and Arens, 1988; Takada et al., 2011). Recently, 

laboratory thermal comfort and calorimetry studies on human subjects have received a renewed 
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interest to explore the physiological response of people under stressful heat or cold exposure 

(Stapleton et al., 2014; Kenny et al., 2017, 2019; Notley et al., 2020).  Newer thermoregulatory 

models have also been developed for other bioheat models (Katić et al., 2016). It is, therefore, 

worthwhile to investigate the accuracy of the two-node model with various thermoregulatory 

models against recent experimental data and explore any further model improvements. 

Gagge et al. (1971, 1986) developed the foundation of the two-node model of the whole body. The 

passive system of the model is based on a straightforward one-dimensional transient heat transfer 

from the core to the skin layer and then to the environment. However, the thermoregulatory system 

for sweating, skin blood flow, and shivering are based on empirical relationships developed for 

average (male and females) young adults. The accuracy of the empirical models, particularly the 

model constants, is tied to the experimental conditions, measurement quality, parameter ranges, 

and subject physiological differences (Havenith, 2001; Takada et al., 2011). Limited experimental 

validation studies of the Gagge et al. (1986) model showed indeed conflicting results.  Doherty 

and Arens (1988) found that the model under-predicts the core temperature by 0.31C and skin 

wettedness by 0.16, but overestimates the skin temperature by 0.48 C. Similarly, Ooka et al. 

(2010) found the model under predicts the core temperature by up to 0.32 C and overestimates 

the skin temperature by up to 0.75 C. Furthermore, Takada et al. (2009) found the two-node model 

underestimates the core temperature by up to 0.5 C and skin temperature by up to 1.8 C under 

cool exposure conditions. In addition, Li et al. (2017) found that the Gagge et al. (1986) model 

under or over-predicts the skin temperature by 0.49 C or 0.09 C, respectively, for male subjects 

and 0.52 C or 0.19 C, respectively, for female subjects. However, Takada et al. (2011) found 

that the model provides a good estimate of the steady-state skin temperature under low-activity 
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(metabolic) conditions. Further improvements of the thermoregulatory system of the two-node 

model and validation studies of the model covering wider ranges of model inputs are therefore 

needed. 

Several studies have addressed the improvement of the thermoregulatory system of the two-node 

model. Takada et al. (2009) considered personal differences of subjects in their thermoregulatory 

responses by adjusting six coefficients related to the regulation of sweating and skin blood flow. 

The six coefficients were obtained using limited sets of experimental data for young male subjects 

seated and wearing trunks. Ooka et al. (2010) included the effect of the metabolic rate on sweating 

secretion at high activity levels. Their model was validated with experimental data conducted on 

university-age subjects. Dongmei et al. (2012) extended the two-node model for sleeping subjects 

by modifying the vasomotor and sweating functions. Recent thermoregulatory models have also 

been developed for segmented and multi-node bioheat models (Havenith and Fiala, 2016). The 

thermoregulatory system is controlled either by a unified controller or by an individual controller 

for each effector. The unified controller uses common thresholds (thermo-neutral) for all effectors 

involving sweating, skin blood flow, and shivering. This was adopted by Hirata et al. (2015) and 

Li et al. (2017). The individual controller treats each effector as having its own threshold, which 

was adopted by Fiala et al. (2012), Karaki et al. (2013), Rida and Kelly (2017), and Coccarelli et 

al. (2018). However, the performances of these thermoregulatory models applied to the two-node 

structure have not been evaluated and compared yet.  

The goal of this paper is to compare and improve the prediction accuracy of relevant 

thermoregulatory models for implementation in the two-node model structure of the whole body. 

The paper is structured as follows: Section 2 presents the methodology to compare the prediction 

accuracy of thermoregulatory models collected from literature with selected public experimental 
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data, and development of improved thermoregulatory models; and Section 3 presents the results 

of inter-mode comparison and validation of the proposed two-node model for the whole body. 

3.2. Methodology 

The methodology includes first a brief description of the two-node model with relevant 

thermoregulatory models for sweating, skin blood flow, and shivering as collected from the 

literature.  Second, criteria to select the benchmark experiments are presented, followed by the 

proposed method to compare the prediction accuracy of models. Finally, an improved 

thermoregulatory model is proposed.  

3.2.1 Description of the two-node model 

The two-node model treats the human body as two concentric cylinders for the core and skin layers. 

The core and skin layers are represented by one node each (Figure 3-1). A uniform layer of clothing 

covers the skin layer throughout the body. Metabolic heat is generated at the core layer. A small 

portion of that heat is dissipated from respiration through convection and evaporation, and the 

remainder is transported by conduction and skin blood flow to the skin surface. The heat loss from 

the skin surface to the environment is divided into two parts: 1) the sensible heat by conduction, 

radiation, and convection from the skin surface to the clothing layer and then to the environment; 

2) the insensible heat by the evaporation of sweat and water diffusion from the skin surface. 
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Figure 3-1 Schematic of the two-node model representation of the human body 

The heat balance at the core and skin nodes is expressed as follows: 

𝑚𝑐𝑟𝑐𝑐𝑟
𝑑𝑇𝑐𝑟

𝑑𝜏
/𝐴𝑏 = 𝑀 + 𝑆𝐻𝐼𝑉 − 𝑊 − 𝑄𝑟𝑒𝑠 − ℎ𝑠𝑘(𝑇𝑐𝑟 − 𝑇𝑠𝑘)                                       (3-1) 

𝑚𝑠𝑘𝑐𝑠𝑘
𝑑𝑇𝑠𝑘

𝑑𝜏
/𝐴𝑏 = ℎ𝑠𝑘(𝑇𝑐𝑟 − 𝑇𝑠𝑘) − 𝐷𝑟𝑦 − 𝐸𝑣𝑎𝑝                                                                    (3-2) 

where 𝑚𝑐𝑟 and  𝑐𝑠𝑘  are the mass (kg) of the core and skin nodes, respectively; 𝑐𝑐𝑟 and 𝑐𝑠𝑘 are the 

specific thermal capacity (W/kg∙C) of the core and skin nodes, respectively;  𝑇𝑐𝑟 and 𝑇𝑠𝑘 are the 

core and skin node temperatures (C), respectively; 𝑑𝜏 is the time step (1 min); 𝐴𝑏 is the Dubois 

body surface area (m2); M is the metabolic rate (W/m2); SHIV is the shivering metabolic rate 

(W/m2); W is the mechanical work done by the body (W/m2); 𝑄𝑟𝑒𝑠  is the heat loss through 

respiration (W/m2); ℎ𝑠𝑘  is the skin thermal conductance that accounts for the blood flow  

(W/m2∙C); Dry and Evap are the sensible and evaporative heat exchanges of the skin node (W/m2), 

respectively. 

The sensible heat balance of the clothing layer is given by Equation 3-3, 

1

𝑅𝑑,𝑎𝑖𝑟+𝑅𝑑,𝑐𝑙𝑜
(𝑇𝑠𝑘 − 𝑇𝑜𝑝) = (ℎ𝑐 + ℎ𝑟)(𝑇𝑐𝑙 − 𝑇𝑜𝑝)                                                                (3-3) 
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where 𝑅𝑑,𝑎𝑖𝑟 and 𝑅𝑑,𝑐𝑙𝑜 are the dry thermal resistances of the air and clothing layers (m2⋅C/W), 

respectively, 𝑇𝑜𝑝 is the operative temperature (C), ℎ𝑐 is the convective heat transfer coefficient of 

ambient air (W/(m2∙C)), and ℎ𝑟 is the radiative heat transfer coefficient (W/(m2∙C)). 

The skin evaporative heat loss (Esk) consists of the heat loss due to the regulatory sweating (SWR) 

and moisture diffusion (Edif) from the skin surface. The Esk is given by Equation 3-4, 

𝐸𝑠𝑘 = 𝜂𝑒𝑣𝑎𝑝 × (0.68 × SWR + Edif) = 𝑤 × 𝐸𝑚𝑎𝑥                                                                    (3-4) 

Where SWR is the sweating rate (g/m2∙h), w is the skin wettedness defined as the ratio of the 

evaporative heat flux (Esk) to the maximum evaporative heat flux (Emax), and 𝜂𝑒𝑣𝑎𝑝 is the sweat 

evaporation efficiency. 

3.2.2 Thermoregulatory controls 

Under heat or cold conditions, the deviation of 𝑇𝑐𝑟 , 𝑇𝑠𝑘  or 𝑇𝑏 (body temperature) from their 

threshold values (𝑇𝑐𝑟0, 𝑇𝑠𝑘0 or 𝑇𝑏0) are set as the thermoregulatory control signals. The warm 

signal is given by Δ𝑇𝑤 = (𝑇 − 𝑇0)+ while the cold signal is given by ∆𝑇𝑐 = (𝑇0 − 𝑇)+,  where ‘+’ 

means the only positive value will be taken. These signals would trigger the regulatory sweating, 

vasodilation, vasoconstriction, and shivering. In the following section, various thermoregulatory 

models are selected from public literature to investigate their prediction accuracy under the two-

node model structure. 

a. Sweating models 

Under hot exposure or high activity levels, the human body relies on sweat secretion and 

evaporation from the skin surface to cool and maintain its core temperature. Sweating is triggered 

when the core and skin temperatures exceed their threshold values.  
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Gagge et al. (1986) proposed a model in which the sweating rate is a function of the body and skin 

temperature control signals as given by Equation 3-5, 

 𝑆𝑊𝑅 = CSW × 𝛥𝑇 𝑏,𝑠𝑤 × exp(
𝛥𝑇𝑠𝑘,𝑠𝑤

10.7
)                                                                                      (3-5) 

where SWR is the sweating rate (g/m2h), CSW is a model constant,  ∆𝑇𝑏,𝑠𝑤 is the body temperature 

control signal for sweating (C), 𝛥𝑇𝑠𝑘,𝑠𝑤 is the skin temperature control signal for sweating (C).  

The threshold temperatures for sweating are set equal to the neutral values of 𝑇𝑏0,sw = 36.49C, 

𝑇𝑠𝑘0,sw = 33.7C, 𝑇 𝑐𝑟0,sw = 36.8C. 

Based on evidence from their own and third-party experiments that sweating rate increases with 

activity level at the constant core and skin temperatures,  Ooka et al. (2010) modified Equation 3-

5 by accounting for the effect of the metabolic rate on the sweat secretion as given by Equation 3-

6, 

𝑆𝑊𝑅 = {CSW × 𝛥𝑇𝑏,𝑠𝑤 × exp(
𝛥𝑇𝑠𝑘,𝑠𝑤

10.7
)} × [{1 + 3 × 𝑒𝑥𝑝(−0.5(𝑀𝑒𝑡 − 1))} × {1 −

𝑒𝑥𝑝(−(𝑀𝑒𝑡 − 1))}2]                                                                          (3-6) 

where Met is the metabolic rate in met units. 

Rida and Kelly (2017) adopted the model in which the sweating threshold of the core temperature 

(𝑇 𝑐𝑟0,𝑠𝑤) is not a fixed value, but calculated through a piecewise function of the skin temperature 

using Equation 3-7. This model stipulates that sweat secretion is delayed under cold exposure 

conditions when the skin temperature is lower than 33C, 

 𝑇 𝑐𝑟0,𝑠𝑤 = {
42.084 − 0.15833 × 𝑇𝑠𝑘;  𝑓𝑜𝑟 𝑇𝑠𝑘 < 33℃

36.85;  𝑓𝑜𝑟 𝑇𝑠𝑘 ≥ 33℃
                                                       (3-7) 

The sweat rate is then given as a linear function of the core temperature control signal (𝛥𝑇 𝑐𝑟,𝑠𝑤) 

by Equation 3-8, 
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𝑆𝑊𝑅 = 45.8 + 739.4 × 𝛥𝑇 𝑐𝑟,𝑠𝑤                                                                                             (3-8). 

Hirata et al. (2015) adopted the Fiala et al. (2001) model by assuming that the sweating rate 

depends on the temperature elevation in the skin and core layers, as given by Equations 3-9 to 3-

11,  

 𝑆𝑊𝑅 = (𝑊𝑠𝑘 × 𝛥𝑇 𝑠𝑘,𝑠𝑤 + 𝑊𝑐𝑟 × 𝛥𝑇𝑐𝑟,𝑠𝑤) × 2
𝛥𝑇𝑏,𝑠𝑤

10                                                                (3-9) 

𝑊𝑠𝑘 = 𝛼11tanh(𝛽11𝛥𝑇𝑠𝑘,𝑠𝑤 − 𝛽10) + 𝛼10                                                                                (3-10) 

𝑊𝑐𝑟 = 𝛼21tanh(𝛽21𝛥𝑇𝑐𝑟,𝑠𝑤 − 𝛽20) + 𝛼20                                                                               (3-11) 

where the coefficients 𝛼 (g/(min·C)) and 𝛽 (g/(min·C)) are determined for the average sweating 

rate based on measurements. For people with standard sweating, the coefficients are defined as 

α10=1.20 g/(min∙C), α11=0.80 g/(min∙C), β10=0.19, β11=0.59 [C -1], α20=6.30 g/(min∙C), 

α21=5.70 g/(min∙C), β20=1.03, β21=1.98 [C -1]. 

Li et al. (2017) proposed a model in which the gender difference is considered. The sweating 

threshold temperatures for the core and skin nodes are:  𝑇𝑐𝑟0,sw = 36.94C and 36.67C for males 

and females, respectively; and 𝑇𝑠𝑘0,sw = 34.16C and 33.8 C for males and females, respectively. 

The heat loss by regulatory sweating per body surface area (𝐸𝑟𝑠𝑤) is calculated for males and 

females by Equations 3-12 to 3-13. In this paper, the average values for males and females are 

used, 

𝐸𝑟𝑠𝑤(𝑚𝑎𝑙𝑒𝑠) = (223 ∙ 𝛥𝑇𝑐𝑟,𝑠𝑤 + 20 × 𝛥𝑇𝑠𝑘,𝑠𝑤)2
𝛥𝑇𝑠𝑘,𝑠𝑤

10 /1.89                                         (3-12) 

𝐸𝑟𝑠𝑤(females) = (111 ∙ 𝛥𝑇𝑐𝑟,𝑠𝑤 + 10 × 𝛥𝑇 𝑠𝑘,𝑠𝑤)2
𝛥𝑇𝑠𝑘,𝑠𝑤

10 /1.89                                         (3-13) 
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b. Sweat evaporation efficiency models 

Sweat evaporation efficiency is also an important parameter to account for. Sweat evaporation 

efficiency is defined as the ratio of the evaporated sweat heat to the total secreted sweat heat 

(including the one by skin diffusion). In humid conditions, the sweat secreted by the human body 

would accumulate on the skin surface, thus raising the skin wettedness and causing sweat to start 

dripping off instead of evaporating. This leads to a decrease in sweat evaporation efficiency 

(Candas, et al. 1979). The sweating formulation of Gagge et al. (1986) assumes that all sweat is 

evaporated (𝜂𝑒𝑣𝑎𝑝 = 1) before the skin wettedness reaches a critical value.  However, ISO (2018) 

proposed a quadratic expression as a function of the skin wettedness as given by Equation 3-14, 

𝜂𝑒𝑣𝑎𝑝 = 1 −
𝑤2

2
                                                                                               (3-14) 

where 𝜂𝑒𝑣𝑎𝑝 is the sweat efficiency, and the 𝑤 is the skin wittedness. 

Similarly, Candas et al. (1979) experimentally found that the sweat evaporation efficiency is a 

function of the skin wettedness, and proposed a relationship by fitting the experimental data, as 

given by Equation 3-15,  

𝜂𝑒𝑣𝑎𝑝 = {
−4.8076 × 𝑤3 + 8.3638 × 𝑤2 − 5.0536 × 𝑤 + 2;  𝑖𝑓 0.4143 ≤ 𝑤 ≤ 1  

1;    𝑖𝑓 𝑤 < 0.4143
          (3-15). 

Kubota et al. (2014) applied a piecewise function to calculate the sweat evaporation efficiency as 

given by Equation 3-16,  

𝜂𝑒𝑣𝑎𝑝 = {
0.37 + 0.31/𝑤′;  𝑖𝑓 0.49 ≤ 𝑤′ ≤ 1  

1;    𝑖𝑓 𝑤′ < 0.49
                                                                    (3-16) 

where 𝑤′ is equal to the skin wettedness (w) when the evaporative efficiency is unity. 
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c. Skin blood flow models 

The skin blood flow (SBF) is controlled by vasoconstriction and vasodilation. Vasoconstriction 

constricts blood vessels to decrease the SBF under cold exposure, whereas vasodilation opens them 

to increase the SBF under hot exposure. Vasoconstriction is triggered when the mean skin 

temperature is below the neutral value to decrease heat loss.  Vasodilation is, however, triggered 

when the core temperature is above the neutral value to increase heat loss (Rida et al., 2014). 

During vasoconstriction or vasodilation, the SBF varies between the minimum and maximum 

values. The maximum vasoconstriction occurs when the mean skin temperature reaches 27.8 C 

(Smith, 1991), and the maximum vasodilation occurs when the core temperature reaches 37.2 C 

(Karaki et al., 2013). In the Gagge et al. (1986) model,  the SBF is given by Equation 3-17: 

SBF = (𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙 + 𝐶𝐷𝐼𝐿 × 𝛥𝑇𝑐𝑟,𝑑𝑖𝑙)/(1 + 𝐶𝑆𝑇𝑅 × 𝛥𝑇𝑠𝑘,𝑐𝑜𝑛𝑠)                                             (3-17) 

where 𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙 is about 6.3 litre/m2/hr, and CDIL and CSTR are model constants. The SBF of the 

human body is also limited by the maximum and minimum values, namely 𝑆𝐵𝐹𝑚𝑎𝑥 = 90 

litre/m2/hr and 𝑆𝐵𝐹𝑚𝑖𝑛 = 0.5 litre/m2/hr. 

Vanggaard et al. (2011) reported that arterio-venous anastomoses (AVA) play a major role in the 

blood circulation in the peripheral body parts. The blood circulation in the arteries and veins and 

blood perfusion to the skin can be modeled using the nonlinear formulation of the Avolio multi-

branched model of the human arterial system (Karaki et al., 2013). According to this theory, the 

SBF rate is calculated by Equations 3-18 to 3-20, 

𝑆𝐵𝐹 =
𝑆𝐵𝐹𝑑𝑖𝑙×𝑆𝐵𝐹𝑐𝑜𝑛𝑠

𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙
                                                                                                      (3-18) 

𝑆𝐵𝐹𝑑𝑖𝑙 = {

𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙;    𝑓𝑜𝑟 𝑇𝑐𝑟 ≤ 36.8℃                                                                               
𝑇𝑐𝑟−36.8

37.2−36.8
(𝑆𝐵𝐹𝑚𝑎𝑥 − 𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙) + 𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙;    𝑓𝑜𝑟 36.8℃ ≤ 𝑇𝑐𝑟 ≤ 37.2℃

𝑆𝐵𝐹𝑚𝑎𝑥;    𝑓𝑜𝑟  𝑇𝑐𝑟 ≥ 37.2℃                                                                              

      (3-19) 



34 

 

𝑆𝐵𝐹𝑐𝑜𝑛𝑠 = {

𝑆𝐵𝐹𝑚𝑖𝑛;    𝑓𝑜𝑟 𝑇𝑠𝑘 ≤ 10.7℃                                                                                             
𝑇𝑠𝑘−10.7

33.7−10.7
(𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙 − 𝑆𝐵𝐹𝑚𝑖𝑛) + 𝑆𝐵𝐹𝑚𝑖𝑛   𝑓𝑜𝑟 10.7℃ ≤ 𝑇𝑠𝑘 ≤ 33.7℃

𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙;    𝑓𝑜𝑟  𝑇𝑠𝑘 ≥ 33.7℃                                                                                          

                                              

(3-20). 

Li et al. (2017) abstracted the human body as four concentric cylinders:  core, muscle, fat, and 

skin. A central pool of blood delivers the arterial blood to the capillaries and tissues in each layer, 

and the blood flows back to the central pool through the veins. For the skin layer, the blood flow 

rate is calculated using Equations 3-21 to 3-23, 

𝑆𝐵𝐹 =
11.89+𝐷𝐿

1+𝑆𝑇
× 2∆𝑇 𝑠𝑘,𝑑𝑖𝑙/10 ×

𝐴𝑏

1.89
                                                                                        (3-21) 

𝐷𝐿 = 117 × ∆𝑇 𝑐𝑟,𝑑𝑖𝑙 + 7.5 × ∆𝑇𝑠𝑘,𝑑𝑖𝑙;    DL =  0 if DL < 0                                                   (3-22) 

𝑆𝑇 = −0.63 × ∆𝑇𝑐𝑟,𝑐𝑜𝑛𝑠 − 0.63 × ∆𝑇 𝑠𝑘,𝑐𝑜𝑛𝑠;    ST =  0 if ST >  0                                    (3-23). 

d. Shivering models 

When vasoconstriction is triggered under cool exposure conditions, the non-shivering 

thermogenesis increases metabolic heat generation. When a further decrease occurs in the core 

temperature under cold exposure conditions, shivering (muscle movement) is triggered as a second 

line of defense against cold to generate metabolic heat. Shivering occurs when the core temperature 

is between 35.8 C and 37.1 C (Smith, 1993). A resting person can increase his or her metabolic 

heat production by shivering about three- to fourfold (Kenney, 2012).  

In the  Gagge et al. (1986) model, the shivering rate is controlled by multiplicative changes of the 

skin and core temperature control signals as given by Equation 3-24, 

𝑆𝐻𝐼𝑉 = 19.4 × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠 × ∆𝑇𝑐𝑟,𝑠ℎ                                                                                  (3-24). 

Tikuisis and Giesbrecht (1999) added body fat percentage as an attenuation factor and fitted their 

experimental data as in Equation 3-25, 
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𝑆𝐻𝐼𝑉 =
1

√𝐵𝐹
{155.5 × (37 − 𝑇𝑐𝑟)  +  47.0 × (33 − 𝑇𝑠𝑘)  −   1.57 × (33 − 𝑇𝑠𝑘)2}               (3-25) 

where BF is the body fat percentage (%), which varies with the subject's age. 

Coccarelli et al. (2018) adopted a piecewise function to calculate the shivering rate based on a 

variable shivering threshold temperature as given by Equation 3-26, 

𝑇𝑠𝑘0,𝑠ℎ = {
35.5;                                            𝑖𝑓 𝑇𝑐𝑟 ≤ 35.8℃

−10222 + 570.9 × 𝑇𝑐𝑟 − 7.9455 × 𝑇𝑐𝑟
2 ;   𝑖𝑓 35.8℃ ≤ 𝑇𝑐𝑟 ≤ 37.1℃

               (3-26). 

The shivering metabolic heat 𝑆𝐻𝐼𝑉 is given by Equation 3-27, 

𝑆𝐻𝐼𝑉 = {
0;                                                        𝑖𝑓 𝑇𝑠𝑘 ≤ 40 − 𝑇𝑠𝑘0,𝑠ℎ               

𝑆𝐻𝐼𝑉𝑚𝑎𝑥 [1 − (
𝑇𝑠𝑘−20

𝑇𝑠𝑘0,𝑠ℎ−20
)2]  𝑖𝑓 (40 − 𝑇𝑠𝑘0,𝑠ℎ) ≤ 𝑇𝑠𝑘 ≤ 𝑇𝑠𝑘0,𝑠ℎ

                        (3-27) 

where the maximum shivering rate 𝑆𝐻𝐼𝑉𝑚𝑎𝑥 of the whole body is calculated by Equation 3-28, 

𝑆𝐻𝐼𝑉𝑚𝑎𝑥 =
1

3600
(−1.1861 × 109 + 6.552 ∙ 107 × 𝑇𝑐𝑟 − 9.0418 ∙ 105 × 𝑇𝑐𝑟

2 )                      (3-28). 

3.2.3 Numerical solution procedure 

The time-explicit scheme is used to solve Equations 3-1 and 3-2, where the future values of the 

nodal temperatures are calculated based on the present thermal state of the human body. Equations 

3-1 and 3-2 are thus numerically converted as follows: 

𝑇𝑐𝑟,𝑖 = 𝑇𝑐𝑟,𝑖−1 + [𝑀 𝑖−1 + 𝑆𝐻𝐼𝑉 𝑖−1 − 𝑊𝑖−1 − 𝑄𝑟𝑒𝑠,𝑖−1 − ℎ𝑠𝑘(𝑇𝑐𝑟,𝑖−1 − 𝑇𝑠𝑘,𝑖−1)] × 𝐴𝑏 × ∆𝜏/

𝑚𝑐𝑟𝑐𝑐𝑟                                                                                            (3-29) 

𝑇𝑠𝑘,𝑖 = 𝑇𝑠𝑘,𝑖−1 + [ℎ𝑠𝑘(𝑇𝑐𝑟,𝑖−1 − 𝑇𝑠𝑘,𝑖−1) − 𝐷𝑟𝑦𝑖−1 − 𝐸𝑠𝑘,𝑖−1] × 𝐴𝑏 × ∆𝜏/𝑚𝑠𝑘𝑐𝑠𝑘              (3-30) 

where (i) is the index of the time step. 

Figure 3-2 shows the flow chart to solve for 𝑇𝑐𝑟  and 𝑇𝑠𝑘 . The environmental parameters, 

physiological values, and temperature threshold values are defined in the initial step (i = 0). The 
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clothing surface temperature 𝑇𝑐𝑙 can be calculated iteratively at each time step as shown in the 

chart. 

 

Figure 3-2 Numerical solution procedure 

3.2.4 Selection of benchmark experiments 

To compare the accuracy of the two-node model with the above-mentioned thermoregulatory 

models, benchmark experimental cases have to be collected and selected from public literature.  

The following screening criteria are used to select such cases: 

• The experiments should be conducted in controlled climate chambers  
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• The experiments should cover hot and cold conditions with at least 60 min exposure time. 

• Experiments should be performed on large representative numbers of young (average age) 

adult subjects with known characteristics (weight, height, age, clothing) 

• Subjects should be un-acclimatized to warm or cold temperatures 

• Measurement should include core and skin temperatures and metabolic rate with adequate 

accuracy 

Based on the literature search, the selected experiments include: Stapleton et al. (2014) for hot 

exposure, Tsuzuki and Iwata (2002) for mild cold (cool) exposure, and Inoue et al. (1992) for cold 

exposure.  For testing the sweat evaporation efficiency models, the Ooka et al. (2010) experiment 

with the intense sweating condition is selected. Brief descriptions of these experiments follow: 

Stapleton et al. (2014) conducted laboratory experiments in a calorimeter chamber on 12 young 

subjects (males and females) aged below 24 years while wearing light athletic shorts and sandals. 

While seated, the subjects were exposed to 36.5C and 20% relative humidity (RH) (hot-dry 

condition) or 36.5C and 60% RH (hot-humid condition) for 120 min. The core temperature and 

skin temperature at four body locations were measured every 10 min and 30 min, respectively. The 

metabolic rate of subjects was continuously measured during the exposure time. Tsuzuki and Iwata 

(2002) conducted experiments on 100 young adults (males and females) averaged 23.5 years old 

while wearing cotton sweatshirts, sweat pants, and calf-length socks. The subjects were sedentary, 

sitting quietly, talking, and reading magazines in an environment of 23C and 60% RH for 150 

min. The core temperature and skin temperature at eight body locations were measured at an 

interval of 30 min and 10 min, respectively.  The metabolic rate of subjects was continuously 

measured during the exposure time.  Inoue et al. (1992) conducted experiments on nine young 
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adults (males) averaged 21.7 years old while wearing only swimming trunks. The subjects were 

sedentary, sitting quietly in an environment of 12C and 45% RH for 60 min. The core temperature 

and skin temperature at nine body locations were measured at an interval of 5 min. The metabolic 

rate of subjects was measured three times at 10 to 20, 30 to 40, and 50 to 60 min during the 

exposure time.  The average value was used for the simulation.  Ooka et al. (2010) conducted 

experiments on 39 young adults (males and females) of university age (averaged 20 years old) 

while wearing T-shirts and short pants. The subjects were seated silently in an environment of 

35C and 70% RH for 60 min.  The core temperature and skin temperature at eight body locations 

were obtained at an interval of 5 min. The authors did not measure the metabolic rate of subjects 

but estimated it according to the activity level of subjects. Table 3-1 summarizes the conditions of 

the five benchmark experimental scenarios. 

Table 3-1 Benchmark experiment settings 

Scenarios 
Ta=Tmrt 

(℃) 

Va 

(m/s) 

RH 

(%) 

M 

(met) 
CLO 

 Age 

(year) 

Height 

(m)  

Duration 

(min) 

Reference 

1 36.5 0.25 20 0.93 0.1 24 1.7 120 Stapleton et al. (2014) 

2 36.5 0.25 60 0.94 0.1 24 1.7 120 Stapleton et al. (2014) 

3 23 0.2 60 1 0.63 23.5 1.652 150 Tsuzuki et al. (2002) 

4 12 0.05 45 1 0.06 21.7 1.728 60 Inoue et al. (1992) 

5 35 0.1 70 1 0.3 20 1.619 60 Ooka et al. (2010) 

 

3.2.5 Model evaluation method 

The two-node model combined with the selected thermoregulatory models is evaluated in terms 

of their prediction accuracy for the core and skin temperatures under steady-state conditions or in 

the last 30 min of exposure time to avoid the effects of the initial conditions, which were usually 

not known in most cases before experiments.  The root mean square error (RMSE) method is used 

according to Yang et al. (2015). The RMSE is calculated for each set of node temperatures under 
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hot or cold exposure based on the deviation between the experimental data and model predictions. 

The RMSE is calculated as follows: 

𝑐𝑅𝑀𝑆𝐸 =  √𝑅𝑀𝑆𝐸𝑐𝑟
2 + 𝑅𝑀𝑆𝐸𝑠𝑘

2                                                                                               (3-31) 

where 𝑐𝑅𝑀𝑆𝐸 is the combined RMSE,  𝑅𝑀𝑆𝐸𝑐𝑟 and 𝑅𝑀𝑆𝐸𝑠𝑘 are RMSE values calculated for the 

core and skin temperatures, respectively, of each experimental scenario.  

3.2.6 Improvements of the two-node model 

Given the limited accuracy of the popular Gagge et al. (1986) model as discussed in Section 3.1, 

the proposed model improvements deal with fine-tuning the thermoregulation model constants of 

the Gagge et al. (1986) model and including the influence of other control signal terms under both 

warm and cold exposure conditions. For sweating, the Gagge et al. (1986) model assumes the 

sweat secretion is controlled by the body temperature control signal with a modifying factor based 

on the skin temperature control signal. Other formulations assume that the sweat secretion is 

triggered by both the core and skin temperature control signals. A possible improvement of the 

Gagge et al. (1986) model would therefore include the skin control signal as the main influencer. 

The following model is proposed: 

𝑆𝑊𝑅 = CSW × (𝛥𝑇𝑏,𝑠𝑤 + 𝐴𝑐𝑜𝑓 × 𝛥𝑇𝑠𝑘,𝑠𝑤) × exp(
𝛥𝑇𝑠𝑘,𝑠𝑤

10.7
)                                                    (3-32) 

where the added 𝐴𝑐𝑜𝑓 constant may take values between 0 and 0.5 (calculated from the Fiala et al. 

(2001) formulation for sweat secretion). 

For the skin blood flow, the Gagge et al. (1986) model assumes a range of values for the model 

constants for vasodilation and constriction. However, optimizing these constants to cover a wide 

range of hot and cold exposure conditions has not been attempted before.  The proposed model, 

therefore, deals with fine-tuning the values of these constants CDIL and CSTR in Equation 3-17. 
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(Note that we also tried to include the influence of the skin temperature control signal but found it 

has no influence on the skin blood flow). According to ASHRAE (2013), CDIL takes values 

between 50 and 225 litre/(m2∙hr∙C) and CSTR takes values between 0.25 and 0.75. 

For shivering, the Gagge et al. (1986) model assumes that shivering is triggered by multiplicative 

control signals of core and skin nodes.  In the shivering models of Tikuisis and Giesbrecht (1999), 

Li et al. (2017), and Coccarelli et al. (2018), shivering is triggered by additive control signals.  

Possible improvement of the Gagge et al. (1986) shivering model would therefore include the 

combination of the additive and duplicative control signals of the core and skin temperatures. The 

proposed model for shivering is expressed as follows: 

𝑆𝐻𝐼𝑉 = 19.4 × 𝛥𝑇𝑠ℎ,𝑠𝑘 × 𝛥𝑇𝑠ℎ,𝑐𝑟 + Cof
sc

× 𝛥𝑇𝑠ℎ,𝑐𝑟 + Cof
ss

× 𝛥𝑇𝑠ℎ,𝑠𝑘                      (3-33). 

The added coefficients Cof
sc

 and Cof
ss

 are to be determined using the evaluation method as 

explained below. 

The constants of the proposed models in Equations 3-17, 3-32, and 3-33 are determined by 

conducting a series of numerical experiments under hot and cold exposures with known 

experimental data. The evaluation method of Section 3.2.5 is applied to select the optimized values 

of the constants leading to the minimum combined  

𝑐𝑅𝑀𝑆𝐸. Table 3-2 lists the ranges of each constant and the sampling interval for the numerical 

experiments. A total number of 165 possible combinations of 𝐴𝑐𝑜𝑓 and 

𝐶𝐷𝐼𝐿  are created and tested under hot exposure, and 1331 possible combinations of  

𝐶𝑆𝑇𝑅, 𝐶𝑜𝑓𝑠𝑐 , and 𝐶𝑜𝑓𝑠𝑠  are created and tested under cold exposure. The optimized values are 

presented in the results section. 
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Table 3-2 Ranges and sampling of possible constants values 

Constants Ranges Reference Sampling interval 
Number of 

possible values 

𝐴𝑐𝑜𝑓 [0, 0.5] Fiala et al., 2001 0.05 11 

𝐶𝐷𝐼𝐿 [50, 225] 
ASHRAE, 2013 

12.5 15 

𝐶𝑆𝑇𝑅 [0.25, 0.75] 0.05 11 

𝐶𝑜𝑓𝑠𝑐 [0, 50] Tikuisis and 

Giesbrecht, 1999 

5 11 

𝐶𝑜𝑓𝑠𝑠 [0, 5] 0.5 11 

 

Another improvement of the Gagge et al. (1986) model is to account for the sweat evaporation 

efficiency. To this end, the sweat evaporation efficiency models, as presented before, are integrated 

into the Gagge et al. (1986) model and tested in terms of the deviation of the skin and core 

temperatures from the benchmark experimental data of scenario 5 (Ooka et al., 2010).  The model 

with the lowest combined cRMSE is selected and implemented in the inter-comparison of the next 

section. 

3.2.7 Model inter-comparison 

The selected thermoregulatory models are tested under the two-node model structure. Table 3-3 

lists the selected models to be evaluated. 

Table 3-3. List of selected thermoregulatory models for testing 

 

Sweating model 

S1 S2 S3 S4 S5 S6 S7 

Gagge et al 

(1986) 

Ooka et al, 

(2010) 

Rida et al, 

(2017) 

Hirata et al, 

(2015) 

Li et al, 

(2017) 

Yang et al, 

(2015) 
Proposed 

Skin blood flow model 

B1 B2 B3 B4 

Gagge et al, 

(1986) 

Karaki et al, 

(2013) 

Li et al, 

(2017) 
Proposed 

Shivering model 

SHIV1 SHIV2 SHIV3 SHIV4 

Gagge et al, 

(1986) 

Tikuisis, 

(1998) 

Coccarelli et al. 

(2018) 
Proposed 
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The model evaluation method of Section 3.2.5 is applied to rank and select the best performing 

model combinations based on the minimum value of the combined RMSE (Equation 3-31). The 

procedure to conduct the model inter-comparison is composed of three steps, as shown in Figure 

3-3. In the first step, the benchmark experimental input data are collected and divided into two 

categories: hot and cold exposure. The input data include: environmental conditions (air 

temperature, mean radiant temperature, relative humidity, airspeed, and exposure times) and 

subjects’ data (age, weight, height, metabolic rate of activity, clothing insulation level). In the 

second step, all the selected thermoregulatory models are implemented in the two-node model 

structure. Under hot exposure, the sweating and skin blood flow models are combined to produce 

a total of 28 model combinations.  Under cold exposure, the skin blood flow and shivering models 

are combined to produce a total of 16 model combinations. In the third step, simulations are run 

and then compared with the experimental data to calculate RMSEs. In addition to the core and skin 

temperatures, other outputs including skin evaporative heat loss and body water loss percentage 

and relative change in the skin blood flow from the neutral (basal) condition are also compared 

with the experimental data but are not presented in this chapter. 

 
Figure 3-3 Procedure of inter-model comparison 
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3.3. Results  

3.3.1 Sweat evaporation efficiency 

Figure 3-4 shows the effect of the sweat evaporation efficiency models on the transient core and 

skin temperatures.  The tested models are: E1-efficiency =1, E2-Equation 3-14, E3-Equation 3-15 

and E4-Equation 3-16. At steady-state conditions (end of exposure time), the E4 model results in 

cRMSE = 0.14C, followed by E2 (cRMSE = 0.18C), E3 (cRMSE = 0.31C) and E1 (cRMSE = 

0.42C).  E4 and E2 are therefore regarded as the most applicable to the two-node model under 

intense sweating conditions.  

  

Figure 3-4 Comparison of the sweat evaporation efficiency models for the prediction of the core 

(a) and skin (b) temperatures using Gagge et al. (1986) model against  the experimental data of 

Ooka et al. (2010) (dashed lines are the margins of the experimental error)  

3.3.2 Proposed two-node model 

The experimental data of Stapleton et al. (2014), Tsuzuki and Iwata (2002), and Inoue et al. (1992) 

are used for hot and cold exposure to fine-tune the model constants. The detailed settings of the 

experiments are shown in Table 3-1. Scenario 1 (hot-dry) and scenario 2 (hot-humid) are for hot 

exposure, while scenario 3 (cool) and scenario 4 (cold) are for cold exposure. The model constants 

(a) (b)
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Acof and CDIL are tested under hot exposure, while CSTR, Cofsc, and Cofss are tested under cold 

exposure. Figure 3-5(a) shows the RMSE for the core and skin temperatures of the hot exposure 

scenarios 1 and 2 to fine-tune Acof and CDIL. With the increase of CDIL, both RMSEsk and 

RMSEcr increase; with the increase of Acof, the RMSEsk decreases whereas RMSEcr increases. 

The point (red dot in the dashed circle), which has the smallest distance to the origin point 

(minimum cRSME), corresponds to the optimized values of Acof and CDIL. Figure 3-5(b) shows 

the RMSE for the core and skin temperatures of the cold exposure of scenarios 3 and 4. With the 

increase of CSTR, both RMSEcr and RMSEsk decreases; with the increase of Cofss, or Cofsc the 

RMSEcr decreases whereas and RMSEsk increases. The point (red dot in the dashed circle), which 

has the smallest distance to the origin point, corresponds to the optimized values of CSTR, Cofsc, 

and Cofss. Table 3-4 compares the optimized values of the proposed model constants with the 

original values of Gagge et al. (1986) and ASHRAE-55 (2017).   

  

Figure 3-5 RMSE between simulations and experiments of (a) hot exposure (scenarios 1 and 2) 

and (b) cold exposure (scenarios 3 and 4) 

 

 

 

 

Cofsc
increase
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Table 3-4 Comparison of model constants 

Model constants Gagge et al. (1986) 

/ ASHRAE(2017) 

Proposed model 

𝐶𝑆𝑊 [g/(m2∙h)] 170 170 

𝐴𝑐𝑜𝑓 0 0.2 

𝐶𝐷𝐼𝐿 [litre/(m2∙hr∙℃)] 200/120 50 

𝐶𝑆𝑇𝑅 0.1/0.5 0.75 

𝐶𝑜𝑓𝑠𝑐 0 50 

𝐶𝑜𝑓𝑠𝑠 0 0.5 

ηevap 1 Equation (3-16) 

 

Figures 3-6 and 3-7 show a comparison between the proposed and Gagge et al. (1986) models for 

the predictions of the core and skin temperatures under hot and cold exposures, respectively. Under 

hot exposure (Figures 3-6 (a) and (b)), the Gagge et al. (1986) model overestimates the skin 

temperature by up to 1.25 C, but slightly underestimates the core temperature by a maximum 

discrepancy of  0.18 C.  The proposed model predicts the core temperature with similar accuracy 

as the Gagge et al. (1986) model. However, for the skin temperature, the predictions of the 

proposed model are in good agreement with the experimental data with a maximum discrepancy 

of 0.11 C. Under cold exposure (Figures 3-7 (a) and (b)), the Gagge et al. (1986) model again 

overestimates the skin temperature by up to 1.06 C, and underestimates the core temperature by 

up to 0.43 C. The predictions of the proposed model are, however, in good agreement with the 

experimental data with a maximum discrepancy of 0.31 C for the skin temperature and 0.19 C 

for the core temperature. 
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Figure 3-6 Comparison of the Gagge et al. (1986) and proposed models with experimental data 

for the prediction of the core and skin temperatures under (a) hot-dry scenario 1 and (b) hot-

humid scenario 2.  

  

Figure 3-7 Comparison of the Gagge et al. (1986) and proposed models with experimental data 

for the prediction of the core and skin temperatures under (a) cool scenario 3 and (b) cold 

scenario 4.  

3.3.3 Inter-model comparison 

The model combinations as shown in Figure 3-3 are simulated for the experimental scenarios of 

Table 3-1 (Scenarios 1-4). The sweat evaporation efficiency model E4 is included in all model 

combinations, except for the Gagge et al. (1986) model (S1B1). 

Figure 3-8 shows the cRMSE of each model combination under hot exposure conditions (scenarios 

1 and 2) ranked in ascending order. The proposed model (S7B4) has the smallest cRMSE of 0.18 

(a) (b)

(a) (b)
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C, followed by S4B4 and S3B4 (0.22 C). If the model accuracy is cut off by cRMSE < 0.4 C 

(corresponding to 0.1C and 0.39 C uncertainties in the core and skin temperatures, respectively), 

six model combinations (S7B4, S4B4, S3B4, S7B3, S4B3, S7B1) will qualify for the accurate 

predictions of both the core and skin temperatures.  However, the model combinations with higher 

cRSME can be regarded as accurate for the prediction of either the skin temperature or the core 

temperature, or not accurate at all for both temperatures. An example of a model that predicts the 

core temperature with better accuracy than skin temperature is the Gagge et al. (1986) model 

(S1B1), which produces a cRMSE of 1.32 C (RMSEcr = 0.15 C, RMSEsk = 1.31C).  Besides 

yielding the best model combinations for the accurate prediction of the core and skin temperatures, 

the cRMSE comparison method is as well useful to indicate which best skin blood flow model can 

be combined with each sweating model or vice versa to produce the best results.  In this regard, all 

the sweating models produce the best results if they are combined with the proposed skin blood 

flow model (B4).  Similarly, all the skin blood flow models produce the best results if they are 

combined with the proposed sweating model S7.  

Given these results, the proposed sweating model S7 is, therefore, the most accurate model, 

followed by S4 and S3 (cRMSE < 0.4C).  The accuracy of the sweating models S1, S2, and S6 

depends on the combined skin blood flow model, resulting in intermediate accuracy levels (0.4C 

< cRMSE < 0.8 C) if combined with B4, or significantly lower accuracy levels (cRMSE > 0.8C) 

if combined with other skin blood flow models.  Sweating model S5 produces higher uncertainty 

(cRMSE > 0.8C) with any skin blood flow model, and therefore it is not recommended for 

integration in the two-node model. The four skin blood flow models B1-4 may produce high 

accuracy levels, particularly if they are combined with the proposed sweating model S7. 
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Figure 3-8 cRMSE of combinations of sweating models (S1-7) with skin blood flow models (B1-

4) under hot exposure conditions (scenarios 1 and 2) for the prediction of the core and skin 

temperatures 

Figure 3-9 compares all the sweating models combined with the best skin blood flow model (S1-

7B4) for the predictions of the core and skin temperatures under hot-humid exposure conditions 

(scenario 2). The core temperature predictions of the model S5B4 are the closest to the 

measurement data, with a discrepancy of T = 0.007 C at the end of exposure time, followed by 

S6B4 (0.05C) and S2B4 (0.06C). However, their predictions for the skin temperature have 

higher discrepancies of 0.79C (S5B4), 0.63C (S6B4), and 0.58 C (S2B4). The skin temperature 

predictions of the proposed model S7B4 are the closest to the measurement data, with a 

discrepancy of 0.12 C at the end of exposure time while the maximum discrepancy for the core 

temperature is 0.15 C. 

Figure 3-10 compares all the skin blood flow models combined with the best sweating model 

(S7B1-4) to predict the core and skin temperatures under hot-humid exposure (scenario 2). The 
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predictions of the proposed model S7B4 are the closest to the measurement data, followed by S7B3 

and S7B2 (or S7B1). The predictions of S7B2 and S7B1 models have discrepancies of 0.36C and 

0.34C for the core and skin temperatures, respectively. 

 

 

 

 

Figure 3-9 Comparison of sweating models (S1-7) combined with the best skin blood flow model 

(B4) for the predictions of the (a) core and (b) skin temperatures under scenario 2. 

  

Figure 3-10 Comparison of the skin blood flow models (B1-4) combined with the best sweating 

model (S7) for the predictions of the (a) core and (b) skin temperatures under scenario 2. 

 

Figure 3-11 shows the cRMSE of each combination of shivering models (SHIV1-4) with the skin 

blood flow models (B1-4) for the prediction of the core and skin temperatures under cold exposure 

conditions (scenarios 3 and 4) ranked in ascending order. The proposed model B4SHIV4 has the 

smallest cRMSE of 0.30C, followed by B3SHIV4 (cRMSE = 0.31C), and B3SHIV1 (cRMSE = 

(a) (b)

(a) (b)
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0.32C). If the model accuracy is cut-off by cRMSE < 0.5C, only a few model combinations 

(B4SHIV4, B4SHIV3, and B4SHIV1) will qualify to accurately predict both the core and skin 

temperatures. Gagge et al (1986) (S1B1) produces an intermediate accuracy with a cRMSE of 0.78 

C.  The proposed skin blood flow model B4 produces the best results when it is combined with 

each shivering model.  Similarly, the proposed shivering model SHIV4 produces the best results 

if it is combined with each skin blood flow model.   

 

Figure 3-11 cRMSE of combinations of shivering models (SHIV1-4) with skin blood flow models 

(B1-4) under cold exposure conditions (scenarios 3 and 4) for the prediction of the core and skin 

temperatures. 

In view of these results, the proposed skin blood flow model B4 is therefore the most accurate 

model (cRMSE < 0.4 C), followed by B1 and B2 (intermediate accuracy; 0.4 C < cRMSE < 0.8 

C), and B3 (low accuracy; cRMSE > 0.8 C). Likewise, the shivering models SHIV1, SHIV3, 

and SHIV4 are considered as accurate models for the prediction of the core and skin temperatures, 

particularly when they are combined with the proposed skin blood flow model B4.  However, the 

shivering model SHIV2 (which is adopted in ASHRAE, 2013) is in the last ranks when it is 
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combined with all the skin blood flow models with cRMSE > 1C, and it is therefore not 

considered as an accurate model.  

Figure 3-12 compares all skin blood models combined with the best shivering model (B1-4SHIV4) 

and all shivering models combined with the best skin blood flow models (B4SHIV1-4) for the 

predictions of the core and skin temperatures under cool exposure conditions (scenarios 3). The 

core temperature predictions of the models B1-2SHIV4 are the closest to the measurement data, 

with a discrepancy of T = 0.03 C at the end of exposure time, followed by B4SHIV4, B4SHIV1, 

and B4SHIV3 with approximately the same uncertainty level (~0.09 C). However, B4SHIV4, 

B4SHIV1, and B4SHIV3 perform the best for the skin temperature prediction, with a discrepancy 

of 0.01 C at the end of the exposure time.  Models B1-2SHIV4 produce higher discrepancies of 

1.06 C. The models of B4SHIV4, B4SHIV1, and B4SHIV3 are therefore considered as the best 

models for the predictions of the core and skin temperatures under cool exposure scenario 3. 

Figure 3-13 compares the models B1-4SHIV4 and B4SHIV1-4 for the predictions of the core and 

skin temperatures under cold exposure conditions (scenarios 4). The models that produce the best 

predictions with a discrepancy T < 0.2 C for the core temperature at the end of the exposure 

time are in order B3SHIV4, B4SHIV4, B4SHIV1, and B4SHIV3. The models that produce the 

best predictions with a discrepancy < 0.3 C for the skin temperature at the end of exposure time 

are in order B3SHIV4, B1SHIV4, B4SHIV4, and B4SHIV3. The proposed model B4SHIV4 is, 

therefore, among the first ranked models under this cold exposure scenario 4.  Considering both 

exposure scenarios 3 and 4, the proposed model B4SHIV4 produces the best and reliable results 

for predicting the core and skin temperatures. 
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Figure 3-12 Comparison of model combinations (B1-4SHIV4, B4SHIV1-4) for the predictions of 

the (a) core and (b) skin temperatures under cool exposure conditions of scenario 3. 

 
 

Figure 3-13 Comparison of model combinations (B1-4SHIV4, B4SHIV1-4) for the predictions of 

the (a) core and (b) skin temperatures under cold exposure conditions of scenario 4. 

Based on the results of Figures 3-8 to 3-13 for hot and cold exposures, the common skin blood 

flow model for the accurate prediction of the core and skin temperatures under hot and cold 

exposures is the proposed model B4. Furthermore, these models can be ordered by the prediction 

accuracy (cRMSE < 0.4 C): S7B4SHIV4, S4B4SHIV4, S3B4HSIV4, S7B4SHIV3, S4B4SHIV3, 

S3B4HSIV3, S7B4SHIV1, S4B4SHIV1, S3B4HSIV1. The less accurate models (0.4 C < cRMSE 

< 0.8 C) should be used with caution since they may under or over-estimate either the core or skin 

temperature. The rest of the models should be avoided due to their lower accuracy (cRMSE > 0.8 

C).   

(a) (b)

(a) (b)
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3.3.4 Additional validation of the proposed model 

The proposed model is further validated using other experimental studies with wider ranges of the 

input parameters.  Based on the screening criteria of Section 2.4, additional experiments of Ooka 

et al. (2010) under hot exposure conditions and Inoue et al. (1992) under cold exposure conditions 

are used for the validation. Four experimental scenarios (6-9) are therefore added for the validation 

study, as shown in Table 3-5.  

Table 3-5 Experimental conditions of scenarios 6-9 

Scenarios 
Ta=Tmrt 

(℃) 

Va 

(m/s) 

RH 

(%) 

M 

(met) 
CLO 

 Age 

(year) 

Height 

(m)  

Duration 

(min) 

Reference 

6 35 0.1 50 1 0.3 20 1.619 60 Ooka et al. (2010) 

7 35 0.1 50 2 0.3 20 1.619 45 Ooka et al. (2010) 

8 40 0.1 50 1 0.3 20 1.619 60 Ooka et al. (2010) 

9 17 0.05 45 1 0.06 21.7 1.728 60 Inoue et al. (1992) 

 

Figures 3-14 and 3-15 show a comparison between the proposed model predictions and 

experimental data for the transient mean skin and core temperatures under the hot exposure 

scenarios 5-8. The model predictions are within the experimental error ranges and are in good 

agreement with the experimental data with maximum discrepancies of 0.19 C and 0.52 C for the 

core and mean skin temperatures, respectively. 

  

Figure 3-14 Comparison of the proposed model predictions with the experimental data for the 

core and skin temperatures under hot exposure of (a) scenario 5 and (b) scenario 6.  

(a) (b)
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Figure 3-15 Comparison of the proposed model predictions with experimental data for the core 

and skin temperatures under hot exposure of (a) scenario 7 and (b) scenario 8.  

Figure 3-16 shows a comparison between the proposed model predictions and the experimental 

data for the transient mean skin and core temperatures under the cold exposure scenario 9. The 

model predictions are again in good agreement with the experimental data with maximum 

discrepancies of 0.11 C and 0.54 C in the core and mean skin temperatures, respectively. 

 
Figure 3-16 Comparison of the proposed model predictions with the experimental data for the 

core and skin temperatures under cold exposure of scenario 9. 

 

(a) (b)
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3.4. Discussion 

The results of Figure 3-4 reveal that the sweat evaporation efficiency should be accounted for in 

heat stress standards (e.g., ISO 7933, 2018) that are based on bioheat models, particularly under 

intense sweating conditions (wettedness close to the critical value of 0.85 resulting from high 

activity levels with metabolic rate > 1 met) or hot and humid conditions.  The effect of the sweat 

evaporation efficiency is more perceptible for the skin temperature than the core temperature.  If 

not accounted for, the skin temperature will be under-predicted (by at least 0.5C), and 

consequently the heat transfer from the skin surface to the environment and body dehydration 

(water loss) will be under-predicted.  For situations where the sweating is not intense (slightly 

warm or warm sensation with wettedness lower than 0.5), the effect of the sweat evaporation 

efficiency is not significant.   

The results of the inter-model comparison showed that combinations of various thermoregulatory 

models for sweating, skin blood flow, and shivering may lead to different accuracy levels. A few 

or several model combinations may result in acceptable accuracies for the prediction of the core 

and skin temperatures, but many of them produce high uncertainties, and therefore they should be 

avoided in bioheat modeling. This substantiates the need to further improve such thermoregulatory 

models for better accuracy.  The proposed approach to improve such models under the two-node 

model structure proved to be effective and lead to the best two-node model that can predict the 

core and skin temperatures with high accuracy under heat and cold exposures with wide ranges of 

input parameters.  This improved and experimentally validated model is recommended for use in 

thermal comfort and heat stress metrics that are based on simple (two-node) bioheat modeling, 

namely: 
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• Update the Gagge et al. (1986) model for the calculation of the standard effective temperature 

(SET) of ASHRAE-55 (2017) with its online tool (Tartarini et al., 2020). 

• Update the predicted heat strain (PHS) model of ISO 7933 (2018). The PHS model is not based 

on bioheat modeling and is valid only under constant environmental conditions (not accurate 

under alternating cool and warm conditions (Havenith and Fiala, 2016; Laouadi et al., 2020b; 

Lundgren-Kownacki et al., 2017; Ooka et al., 2010).  

• Update the thermoregulatory models of future editions of the Handbook of Fundamentals of 

ASHRAE (2017). 

• Implement the improved model in building simulation software to perform thermal comfort 

and overheating analysis in built environments.  

3.5. Conclusion 

In this study, recently published thermoregulatory models for sweating (six models), skin blood 

flow (three models), shivering (three models), and sweat evaporation efficiency (four models) 

were collected and an approach was developed to evaluate their accuracy under the two-node 

bioheat model structure against benchmark experimental data. A new two-node model with an 

improved thermoregulatory system was developed and extensively validated using experimental 

data covering hot and cold exposure conditions.  The benchmark experimental data were selected 

from public literature through a list of screening criteria to ensure the measurement data were of 

high quality and suitable for use in the two-node model. 

The root mean square error (RMSE) method of two variables was used to compare various model 

combinations for the prediction of the core and skin temperatures under scenarios of hot and cold 

exposure conditions. The proposed model improved the thermoregulatory system of the two-node 
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model of Gagge et al. (1986) by including additional temperature control signals and optimizing 

the values of the model constants against the selected experimental data for hot and cold exposure 

conditions. The RMSE method was used to carry out the optimization in which the values of the 

model constants were sampled from reasonable ranges to cover all possible cases.  The values of 

the model constants that resulted in the lowest combined RMSE values for the prediction of the 

core and skin temperatures were chosen.  The model was further validated by comparing its 

predictions for the core and skin temperatures with additional experimental data covering wider 

ranges of input data.  

The comparison of the sweat evaporation efficiency models against experimental data revealed 

that the efficiency affects to a greater extent the skin temperature (by more than 0.5 C) than the 

core temperature under intense sweating conditions.  The models of Kubota et al. (2014) and ISO 

7933 (2018) produced the best results. 

The inter-model comparison, including the proposed thermoregulatory models, showed that only 

several model combinations can be considered as accurate for the prediction of the core and skin 

temperatures under hot and cold exposure conditions.  These models include, in order of accuracy: 

S7B4SHIV4, S4B4SHIV4, S3B4HSIV4, S7B4SHIV3, S4B4SHIV3, S3B4HSIV3, S7B4SHIV1, 

S4B4SHIV1, and S3B4HSIV1, from which the proposed models (S7, B4, and SHIV4) were found 

to be the most accurate in predicting the core and skin temperatures.  Other model combinations 

may be considered as accurate for the prediction of the core temperature or the skin temperature 

or not accurate at all for both temperatures. 

The extensive validation study of the proposed model under a wide range of input data of hot and 

cold exposure conditions supports the belief that the proposed model should be integrated into 

thermal comfort and thermal (heat and cold) stress standards and design tools, including the 
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ASHRAE thermal comfort online tool (Tartarini et al., 2020), ISO 7933 (2018) standard, and 

building energy simulation software to permit carrying out thermal comfort calculations and 

overheating analysis in built environments. 
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Chapter 4 Development of a Bioheat Model for Older People under 

Hot and Cold Exposures 

The contents of this chapter are published in “Ji, L., Laouadi, A., Wang, L., & Lacasse, M. A. 

(2022). Development of a bioheat model for older people under hot and cold exposures. Building 

Simulation. https://doi.org/https://doi.org/10.1007/s12273-022-0890-3 ”. The contents are slightly 

modified. 

Abstract 

Physiological modeling is important to evaluate the effects of heat and cold conditions on people's 

thermal comfort and health. Experimental studies have found that older people (above 65-year-

old) undergo age-related weakening changes in their physiology and thermoregulatory activities, 

which makes them more vulnerable to heat or cold exposure than average aged young adults. 

However, addressing the age-related changes by modeling has been challenging due the wide 

variability in seniors' physiology and thermoregulatory characteristics. This study develops a two-

node physiological model to predict the thermal response of older people. The model is built on a 

newly developed two-node model for average-age young adults by accounting for the age-related 

attenuation of thermoregulation and sensory delays in triggering thermoregulatory actions. A 

numerical optimization method is developed to compute the model parameter values based on 

selected benchmark data from the literature. The proposed model is further validated with 

published measurement data covering large input ranges. The model predictions are in good 

agreement with the measurements in hot and cold exposure conditions with a discrepancy 0.60 ℃ 

for the mean skin temperature and of 0.30 ℃ for the core temperature. The proposed model can 

https://doi.org/https:/doi.org/10.1007/s12273-022-0890-3
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be integrated into building simulation tools to predict heat and cold stress levels and the associated 

thermal comfort for older people in built environments.   

4.1. Introduction 

Physiological models for the human body are essential to studying heat and cold effects on people's 

thermal comfort and health in built environments.  Under heat or cold exposure, occupants can 

adapt to the imposed conditions through thermoregulatory controls of sweating, vasodilation, 

vasoconstriction, and shivering. However, thermoregulation efficiency declines with age (Van 

Hoof et al., 2017; Balmain et al., 2018). Older people (above 65 years old) may experience delayed 

and weakened vasodilation/constriction, sweating, shivering, and lower metabolism and cardiac 

output (blood volume), making them more vulnerable to succumb to heat or cold events. (Rida et 

al., 2014; Hirata et al., 2015). Meanwhile, the world population aging process has been escalating: 

the number of people aged 60 years and over was tripled in the last 50 years and is expected to 

reach over 2.1 billion in the next thirty years; the aged population currently reaches the highest 

level in human history (Issahaku and Neysmith, 2013; Mba, 2010). In Canada, the senior 

population reached over 6 million in 2014, 15.6% of Canada's population, and is expected to 

surpass 9.5 million, making up 23% of Canadians (Government of Canada, 2014). Therefore, the 

senior population should receive great attention and adequate care, especially for their 

physiological responses under stressful hot and cold conditions. Unfortunately, current heat/cold 

stress and thermal comfort standards in built environments for older people are limited (Zhao et 

al., 2020), and therefore more research efforts are needed. Experimental studies on older people 

showed that they were less sensitive than young people to changes in the operative temperature 

(between 21℃ and 31℃). This was explained by the increased thermal detection thresholds caused 
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by reduced skin innervation and vascular supply (Guergova and Dufour, 2011; Xiong et al., 2019). 

In both moderate temperature drift (17℃ to 25℃) and steady-state (21.5℃) conditions, older 

people felt cooler than young people and showed more distal vasoconstriction (Schellen et al., 

2010). Another experimental study showed that older and young people have similar thermal 

sensation, comfort, and acceptability in near-neutral environments (20℃ and 25℃) (Soebarto et 

al., 2019). The above studies indicate that older people’s thermal sensations are related to their 

thermoregulation to different environments (Tejedor et al., 2020). 

Table 4-1 Experimental studies on age-related weakening of thermoregulatory activities 

Physiological 

parameter 
References 

Exposure No. of 

subjects 
Age Activity 

Age-related 

Changes Condition 

Metabolic rate 

Tsuzuki and Ohfuku (2002) Cool to hot 109 72.4±5.3 Sedentary -30% 

Van Pelt et al. (2002) 
Room 

temperature 
166 66±4 

Sedentary 

Exercise 

-12.5% to -

16.4% 

Frisard et al. (2007) 
Room 

temperature 

49 60-74 Sedentary -8% (±5%) 

74 >90 Sedentary -27% (±5%) 

Stapleton et al. (2014) Hot 12 65±5 Sedentary no changes 

Vasodilation 
Kenney and Havenith (1993) Hot 34 49-74 

Sedentary 

Exercise 
-24 to -41% 

Pierzga et al. (2003) Hot 12 64-75 Sedentary -33% 

Maximum SBF 

Holowatz and Kenney 

(2010) Hot / 65-85 
Sedentary 

-50% 

Kenney and Havenith (1993) Sedentary 

Vasoconstriction DeGroot and Kenney (2007) Mild cold 36 65-89 Sedentary 
+25% to 

+50% 

Minimum SBF 
Fox et al. (1977) 

Cold 47 65-90 
Sedentary 

50% 
Waller and Maibach (2005) Sedentary 

Whole-body 

sweating rate 

Sagawa et al. (1988) Hot 6 61-73 Sedentary -22(±6%) 

Inoue (1996) Hot 8 65-70 Sedentary -17% (±10%) 

Andersen (1996) Hot 9 73.9±4.8 Sedentary -24% (±6%) 

Inbar et al. (2004) Hot 8 71±1.0 Sedentary 
-25% 

(±2.7%) 

Inoue et al. (1999) Hot 5 67±3 Exercise 
-25% 

(±1.5%) 

Larose et al. (2013) Hot 16 56-70 Exercise 
-12% 

(±0.4%) 

Shivering rate 

Kenney and Buskirk (1995) Cold 40 70 Sedentary -20% 

Andersen (1996) Cold 9 73.9±4.8 Sedentary -23% 

Sessler (2008) / 8 89±7 Sedentary -10% 

Haman et al. (2010) / / / Sedentary decrease 
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To further explore the mechanisms of thermoregulation changes with age, more experimental 

studies in climatic chambers are reviewed to provide supportive evidence to the modeling work. 

Public studies on age-related physiological changes of a human body are divided into two 

categories: (1) weakening of thermoregulatory activities; and (2) sensory delays in triggering 

thermoregulatory actions. The weakened thermoregulatory activities include basal metabolism, 

skin blood flow, sweating, and shivering. Many experimental studies have found that older adults’ 

metabolic rate is lower than young adults but with considerable variability amongst older people. 

Changes in metabolism are attributed to decreased lean body mass (muscles) and water content 

and increased body fat (Elmadfa and Meyer, 2008). The experiment study of Tsuzuki and Ohfuku 

(2002) showed that the metabolic rate of older people could be as low as 30% compared to young 

people in a sedentary position. The ability to adjust the skin blood flow is also attenuated during 

vasodilation and vasoconstriction. This is due to two mechanisms: First, the redistribution of the 

cardiac blood output from body organs to the skin layer to dissipate internal heat or reduce internal 

heat loss is impaired in older people; and Second, the sensitivity and responses of the vasodilator 

and vasoconstrictor system are attenuated compared to young adults (Balmain et al., 2018). As a 

consequence, during vasodilation, the skin blood flow is reduced in older people by up to 30%, as 

reported in Holowatz and Kenney (2010). During vasoconstriction, older people experience, 

however, higher skin blood flows (Kenney & Munce, 2003). DeGroot and Kenney (2007) 

conducted experiments on more than 36 older subjects under mild cold stress conditions and found 

that the skin blood flow was higher by 25 to 50% than young subjects. Older people also experience 

a decrease in sweating due to the impairment of the eccrine sweat gland receptors and sweat gland 

outputs (Akbari Rad et al., 2016; Balmain et al., 2018). The experiment of Larose et al. (2013) on 

85 people aged between 20 and70 years old during exercise found that the whole body sweat rate 
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of older people (56-70 years old) was reduced by about 12% compared to young adults. Likewise, 

the shivering metabolic rate is diminished for older people due to decreased lean body mass 

(muscles) (Frank et al., 2000). The experiments of Anderson et al. (1996) under cold conditions 

showed that the shivering metabolic rate was about 23% lower in the older group than the young 

group. More experimental studies addressing age-related weakening in metabolism, vasodilation, 

vasoconstriction, sweating, and shivering are summarized in Table 4-1. 

For the second category, published studies on sensory delay signals of older people show 

considerable variability. The human body includes temperature sensors distributed in the skin layer 

and hypothalamus and built-in temperature threshold values to trigger thermoregulation actions. 

With aging, the sensitivities of these sensors are significantly reduced, putting older people at 

potential health risk of hyper or hypothermia. For the skin blood flow control of older people, 

vasodilation and vasoconstriction are triggered using signals from the skin and core 

(hypothalamus) temperature sensors. The experiment of Greaney et al. (2020) on 26 older and 

young people under passive heating showed that the core temperature threshold for vasodilation 

was increased by 0.5℃. The experiment of Ozaki et al. (1997) showed that the threshold skin 

temperature for vasoconstriction of older people was delayed by up to 1.6°C. Similarly, older 

people show a large variability of temperature threshold values to trigger sweating. Sweating 

regulation is triggered by both the skin and hypothalamus sensors.  Dufour and Candas (2007) 

found up to a 2 ℃ increase in the threshold skin temperature for the sweating of older people. 

Experimental studies found that the null zone (the difference between sweating and shivering 

temperature thresholds) of older people is larger than young adults. For older people, the null zone 

is 1.12 °C, whereas the one for young adults is 0.43°C (Appenzeller et al., 1999). Non-shivering 

thermogenesis for both older and young people starts with vasoconstriction (Sessler, 2008). 
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However, the shivering thermogenesis of older people starts at lower skin and core temperatures 

than young adults.  Table 4-2 summarizes the experimental studies reporting changes in 

temperature threshold values for vasodilation, vasoconstriction, sweating, and shivering. 

Table 4-2 Experimental studies on age-related sensory delays 

Physiological 

parameter 
References 

Exposure No. of 

subjects 
Age Activity 

Age-related 

Changes (℃) condition 

Core 

temperature 

threshold for 

vasodilation 

Tankersley et al. (1991) Warm 13 65±1.2 Exercise +0.09(±0.03) 

Holowatz et al. (2003) Hot 7 71±6 Sedentary +0.1 (±0.1) 

Greaney et al. (2020) Hot 13 67±7 Sedentary +0.5(±0.1) 

(Tochihara et al. 1993) Hot 9 62-72 Sedentary 0.05 

Skin 

temperature 

threshold for 

vasoconstriction 

(Tochihara et al. 1993) Cold 10 66-79 Sedentary -0.5 

Ozaki et al. (1997) / 14 60–80 Sedentary -1.6 (±0.3) 

Core 

temperature 

threshold for 

vasoconstriction 

Plattner et al. (1993) / 24 / / -1.2 

Frank et al. (2000) Cold 8 55-71 Sedentary -0.7 (±0.1) 

El-Gamal et al. (2000) 
Room 

temperature 
20 60-75 Sedentary -0.3 (±0.1) 

Core 

temperature 

threshold for 

sweating 

Sagawa et al. (1988) Hot 6 61-73 Sedentary +0.28 (±0.01) 

Andersen (1996) Hot 9 73.9±4.8 Sedentary +0.27 (±0.12) 

Tankersley et al. (1991) Warm 13 65±1.2 Exercise 
no significant 

changes 

Skin 

temperature 

threshold for 

sweating 

Dufour and Candas 

(2007) 
Hot 15 67.8±3.7 Sedentary +2.0 (±0.1) 

Body 

temperature 

threshold for 

sweating 

Armstrong and Kenney 

(1993) 
Hot 6 61± 1 Sedentary 

no significant 

changes 

Stapleton et al. (2014) 
Room 

temperature 
8 65± 3 Exercise +0.35 (±0.25) 

Core 

temperature 

threshold for 

shivering 

Vassilieff (1994) / 18 76± 4.8 Sedentary -0.3 to -1.3 

Andersen (1996) Cold 9 73.9±4.8 Sedentary -0.27 

Sessler (2008) / 8 89±7 Sedentary -0.9 (±0.2) 

Skin 

temperature 

threshold for 

shivering 

Sessler (2008) / 14 60–80 Sedentary -1.6 

 

It is evident from the reviewed studies (Tables 4-1 and 4-2) that the reported weakenings in 

thermoregulatory activities include as well the effects of sensory signal delays to trigger 

thermoregulatory actions, thus making it difficult to isolate the weakening factors. Furthermore, 
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activity levels may interfere with the weakening factors. In addition, the large variability of 

temperature threshold values to trigger thermoregulation actions amongst older people makes it 

difficult to assume average values for modeling purposes. To address these challenges, several 

attempts have been conducted to model the physiological changes in older people, primarily 

through multi-node segmental models. Novieto (2013) developed an older people multi-node 

model by modifying the Fiala model for young adults (Fiala et al., 2012) and accounting for 

personal parameters (weight, height, and metabolic rate) and thermoregulatory changes of older 

people. The thermoregulation changes were established by fitting published experimental data. 

The model accuracy was good for the core temperature (< 0.1℃.) but had a large deviation (1.2℃) 

for the skin temperature. Rida et al. (2014) developed a multi-node model for older people based 

on the Karaki et al. (2013) model for young adults.  The model accounts for the age-related changes 

in metabolism, skin blood flow, sweating, shivering, and body fat thickness. The temperature 

threshold values were assumed based on literature data. The model was validated with public 

measurement data under cold and hot conditions (air temperature: 10℃ to 35℃). Hirata et al. 

(2015) developed a multi-node model under hot exposure conditions by accounting for older 

people’s sensory delays for the skin blood flow and sweating. The temperature threshold values 

were determined by sensitivity analysis. The model was validated with experiments in hot and 

humid exposure environments. The predicted core temperature agreed well with the measurement 

data, but the model accuracy for the skin temperature was within 20% uncertainty. Ma et al. (2017) 

developed an individualized multi-node segmental model for Chinese older people based on an 

existing model for young adults. The model accounts for the age-related changes for metabolism, 

cardiac output, body fat, and skin surface area but does not consider the changes in temperature 

threshold values. The model was validated only for the skin temperature prediction under hot and 



66 

 

cold exposure conditions with an uncertainty of 14%. Wang et al.(2018) developed a data-driven 

model to predict the thermal sensation and skin temperature of older people. The model training 

data were taken from field studies in China and may not be applied to other locations. Coccarelli 

et al. (2018) developed a multi-node model for older people by accounting for the age-related 

changes of tissue distribution in each body segment and sensory delays in thermoregulation. This 

model was validated under hot exposure conditions and showed good agreement with the measured 

core and skin temperatures. Itani et al. (2020) developed a multi-node model for older people based 

on the Karaki et al. (2013) model for average-aged people.  The thermoregulation threshold 

temperatures were determined by a sensitivity analysis using public experimental data. The model 

predictions agreed well with the selected experiments under heat-stressful conditions. 

In summary, the previously mentioned modeling work has been based on multi-node segmental 

body models of older people. No attempts have been tried to develop simplified models for the 

whole body of older people for possible integration in comfort and heat stress standards and design 

tools for built environments. Compared to the multi-node segmental models, the two-node model 

represents a human body by the core node and skin node. The two-node model is popular in thermal 

comfort studies (Enescu, 2019). The mean skin temperature calculated from the two-node model 

has been correlated with whole-body thermal sensation by multiple studies under steady-state 

conditions (Takada et al., 2013). Similarly, the core temperature obtained from the two-node model 

is a criterion to evaluate thermal-related health safety (ISO 7933, 2017). In building thermal design 

standards and tools (ASHRAE-55, 2017; Tartarini et al., 2020), and building simulation software 

such as ESP-r  (Rida and Kelly, 2017), EnergyPlus (DOE, 2020), and TRNSYS (Klein et al., 2004), 

the two-node model has been implemented to evaluate the occupants' thermal comfort. Rational 

heat-stress indices such as the standard effective temperature (SET*) are calculated based on the 
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physiological parameters provided by the two-node model (Wang et al., 2020a; Zhang and Lin, 

2021). It is, therefore, worthwhile and important to extend the two-node model for young adults 

to cover the heat vulnerable older adults by considering the aging effects on their thermal 

responses. 

This study aims to develop a two-node model for older people by accounting for the age-related 

physiological changes under stressful hot and cold exposure conditions. The paper is structured 

into five sections.  After the introduction, the second section presents the methodology to build the 

two-node model for older people and the optimization method to determine the key model 

parameter values. The third section presents the model optimization results and the model 

validation studies, followed by the sections on discussion and conclusion. 

4.2. Methodology 

The development of the bioheat model for older people is built on a newly developed two-node 

model for young adults (Ji et al., 2021).  The age-related physiological changes of older people are 

accounted for in the thermoregulatory actions and threshold values triggering these actions.  The 

details of the model development follow. 

4.2.1 Heat balance of human body 

The heat balance of the human body accounts for the internal heat generation by metabolism and 

heat exchange with the surrounding environment.  In the two-node model, the metabolic heat is 

produced at the core node. Part of this internal heat is dissipated to the environment through 

respiration and to the skin node through conduction, convection, and skin blood flow perfusion. 

The skin node exchanges dry and evaporative heat with the environment. The heat balance 

equations for the skin and core nodes are given below, 
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𝑚𝑐𝑟𝑐𝑐𝑟

𝐴𝑏

𝑑𝑇𝑐𝑟

𝑑𝜏
= 𝑀 + 𝑆𝐻𝐼𝑉 − 𝑊 − 𝑄𝑟𝑒𝑠 − ℎ𝑠𝑘(𝑇𝑐𝑟 − 𝑇𝑠𝑘)                                                           (4-1) 

𝑚𝑠𝑘𝑐𝑠𝑘

𝐴𝑏
 
𝑑𝑇𝑠𝑘

𝑑𝜏
= ℎ𝑠𝑘(𝑇𝑐𝑟 − 𝑇𝑠𝑘) − 𝐷𝑟𝑦 − 𝐸𝑣𝑎𝑝                                                                          (4-2). 

The skin sensible heat loss (Dry) and evaporative heat loss (Evap) are given by Equation 4-3 and 

Equation 4-4, respectively, 

𝐷𝑟𝑦 =
1

𝑅𝑑,𝑎𝑖𝑟+𝑅𝑑,𝑐𝑙𝑜
(𝑇𝑠𝑘 − 𝑇𝑎) = (ℎ𝑐 + ℎ𝑟)(𝑇𝑐𝑙 − 𝑇𝑎)                                                   (4-3) 

𝐸𝑣𝑎𝑝 = 𝜂𝑒𝑣𝑎𝑝 × (0.68 × 𝑆𝑊𝑅 + 𝐸𝑑𝑖𝑓) = 𝑤 × 𝐸𝑚𝑎𝑥                                                   (4-4). 

4.2.2 Thermoregulatory system 

The thermoregulatory activities, including sweating, vasodilation, vasoconstriction, and shivering, 

are triggered by warm or cold temperature signals. The signals are the deviation of the body 

temperature, core temperature, and mean skin temperature from their threshold values. The 

thermoregulatory system of the proposed model for older people is built around that for young 

adults by introducing new thermoregulatory attenuation coefficients and directly using the 

threshold temperature values for older people. The description of each thermoregulatory system 

follows: 

a. Skin blood flow 

The skin blood flow rate (SBF) depends on the body's thermal state and varies between the upper 

and lower limits. Under heat-stressful conditions, the skin blood flow is increased by 

vasodilatation, while under cold conditions, skin blood flow is controlled by vasoconstriction.  The 

skin blood flow rate is expressed by the following equation: 

𝑆𝐵𝐹 = [𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙 + 𝐶𝐷𝐸 ∙ 𝐶𝐷𝐼𝐿 × ∆𝑇𝑐𝑟,𝑑𝑖𝑙]/[1 + 𝐶𝐶𝐸 ∙ 𝐶𝑆𝑇𝑅 × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠]                     (4-5) 

where CDE and CCE are attenuation coefficients of vasodilation and vasoconstriction of older 

people, respectively. The attenuation coefficients account for age-related weakening in 

vasodilation and vasoconstriction activities, which makes the skin blood flow regulation vary from 
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young adults. The ranges of these coefficients will be discussed in Section 2.2, and the final values 

will be determined. CDIL and CSTR are constants equal to 50 and 0.75 Litre/(m2∙hr∙℃), 

respectively. ∆𝑇𝑐𝑟,𝑑𝑖𝑙  is the warm control signal of the core temperature for vasodilation, and 

∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠 is the cold control signal of the skin temperature for vasoconstriction. These are given 

by ∆𝑇𝑐𝑟,𝑑𝑖𝑙 = (𝑇𝑐𝑟  − 𝑇𝑐𝑟0,𝑑𝑖𝑙)
+ , and ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠 = (𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠 − 𝑇𝑠𝑘)+ , where 𝑇𝑐𝑟0,𝑑𝑖𝑙  is the core 

temperature threshold for vasodilation and 𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠  is the skin temperature threshold for 

vasoconstriction. ‘+’ means only positive values will be taken. For young people, the values of 

𝑇𝑐𝑟0,𝑑𝑖𝑙 and 𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠 are 36.8℃ and 33.7℃, respectively ( Ji et al., 2021). For older people, 𝑇𝑐𝑟0,𝑑𝑖𝑙 

is higher and 𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠 is lower, resulting in delays in triggering vasodilation and vasoconstriction. 

The ranges and values of these threshold values will be analyzed and determined in the following 

sections. 

b. Sweating regulation 

Under hot and/or humid exposure or with a high activity level, the human body releases heat from 

the skin surface to the environment through sweat evaporation. The sweating rate is calculated 

with Equation 4-6,  

𝑆𝑊𝑅 = 𝐶𝑆𝑊𝐸 × 𝐶𝑆𝑊 × (∆𝑇𝑏,𝑠𝑤 + 𝐴𝑐𝑜𝑓 × ∆𝑇𝑠𝑘,𝑠𝑤) × 𝑒𝑥𝑝 (
∆𝑇𝑠𝑘,𝑠𝑤

10.7
)                                  (4-6)                                                                                               

where CSWE is a sweat attenuation coefficient for older people with respect to the age-related 

weakening in sweating rate, and CSW and 𝐴𝑐𝑜𝑓 are model constants for young adults, equal to 

170 g/m2h and 0.2, respectively.  ∆𝑇𝑏,𝑠𝑤  and 𝛥𝑇𝑠𝑘,𝑠𝑤  are the body and mean skin temperature 

control signals for sweating,  expressed by ∆𝑇𝑏,𝑠𝑤 = (𝑇𝑏  −  𝑇𝑏0,𝑠𝑤)+ , and 𝛥𝑇𝑠𝑘,𝑠𝑤 = (𝑇𝑠𝑘 −

𝑇𝑠𝑘0,𝑠𝑤)+.  
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The average body temperature (𝑇𝑏) can be calculated by the weighted average of the mean skin 

and core temperatures: 

𝑇𝑏 =  𝛼𝑇𝑠𝑘 + (1 − 𝛼)𝑇𝑐𝑟                                                                                                     (4-7) 

where α is the ratio of the thermal mass of the skin layer to the total body mass, given by Equation 

4-8 as a function of  the  skin blood flow rate: 

𝛼 = 0.0417737 + 0.7451832/(𝑆𝐵𝐹 + 0.5854417)                                                    (4-8). 

Similarly, the body temperature threshold 𝑇𝑏0,𝑠𝑤 is calculated as the weighted average of the  core 

temperature threshold  𝑇𝑐𝑟0,𝑠𝑤  and skin temperature threshold 𝑇𝑠𝑘0,𝑠𝑤  using Equation 4-7. For 

young people, 𝑇𝑐𝑟0,𝑠𝑤 and 𝑇𝑠𝑘0,𝑠𝑤 are 36.8℃ and 33.7℃, respectively (Ji et al., 2021), whereas, 

for older people, the values are higher, resulting in delays in sweating activity.  

Under hot and humid exposure conditions, sweating evaporation is restricted, resulting in a 

decrease in sweat evaporation efficiency (Itani et al., 2020). The model of Kubota et al. (2014) for 

the sweat evaporation efficiency was found to produce better results than other formulations (Ji et 

al., 2021), and therefore, it is adopted in this study. The sweat evaporative efficiency is given by 

Equation 4-9, 

𝜂𝑒𝑣𝑎𝑝 = {
0.37 + 0.31/𝑤′;  𝑖𝑓 0.49 ≤ 𝑤′ ≤ 1  

1;    𝑖𝑓 𝑤′ < 0.49
                                                                         (4-9)                                           

where 𝑤′ is the skin wettedness when sweating is fully converted to evaporative heat loss.  

c. Shivering 

Under cold exposure conditions, when the non-shivering thermogenesis during vasoconstriction is 

not sufficient to maintain the body core temperature at the neutral value, shivering activity will be 

triggered. Shivering can increase heat production by superficial muscle fibers contraction. In this 

study, the shivering rate is expressed by Equation 4-10, 
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 𝑆𝐻𝐼𝑉 = 𝐶𝑆𝐻𝐸 × ( 𝐶𝑜𝑓𝑠𝑐𝑠 × ∆𝑇𝑐𝑟,𝑠ℎ × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠 + 𝐶𝑜𝑓𝑠𝑐 × ∆𝑇𝑐𝑟,𝑠ℎ + 𝐶𝑜𝑓𝑠𝑠 × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠)    (4-10) 

where CSHE is an attenuation coefficient for shivering rate of older people, which is added due to 

the age-related weakening of shivering action. ∆𝑇𝑐𝑟,𝑠ℎ is the core temperature control signal for 

shivering given by ∆𝑇𝑐𝑟,𝑠ℎ =  (𝑇𝑐𝑟0,𝑠ℎ − 𝑇𝑐𝑟)+ . For young people, the core temperature threshold 

value for shivering 𝑇𝑐𝑟0,𝑠ℎ is 36.8℃, while the value is lower for older people, leading to a delay 

in triggering the shivering activity. 𝐶𝑜𝑓𝑠𝑐𝑠, 𝐶𝑜𝑓𝑠𝑐, and 𝐶𝑜𝑓𝑠𝑠  are model constants equal to 19.4, 

50, 0.5, respectively. 

4.2.3 Extents of age-related attenuation factors 

The model parameters that need to be determined for older people include the attenuation 

coefficients (CDE, CCE, CSWE, CSHE), and temperature threshold values for vasodilation and 

constriction, sweating and shivering.  The value ranges for those parameters are collected from 

public literature data as presented in Section 4.1. Figure 4-1 presents the ranges of the attenuation 

percentage for metabolism and thermoregulatory activities for vasodilation and constriction, 

sweating, and shivering based on the literature review of Table 4-1. The theoretical parameter 

ranges vary from 0% (no age-related change) to the measured maximum change percentage. Figure 

4-2 shows the ranges of the difference between older and young people in the thresholds of the 

core and mean skin temperatures for vasodilation, vasoconstriction, sweating, and shivering based 

on the literature review of Table 4-2.  
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Figure 4-1 Experimental ranges of age-related changes in thermoregulation relative to young 

people 

 
Figure 4-2 Experimental ranges of age-related deviations in regulatory temperature threshold 

values relative to young people 

4.2.4 Optimization of model parameters 

The values of the model parameters for the thermoregulatory system of older people are optimized 

by minimizing the error between the model predictions and the selected experimental benchmark 

data.  The parameters that need to be optimized include the attenuation coefficients of vasodilation, 
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vasoconstriction, sweating, and shivering, and the temperature threshold values for triggering these 

thermoregulatory activities. However, the attenuation coefficient of the metabolic rate of older 

people is considered variable, and its value is directly taken from the measured experimental data. 

The proposed optimization process consists of a series of numerical experiments in which the 

parameter values are sampled from the experimental ranges to cover a sufficiently high number of 

points to locate the optimum values. Table 4-3 summarizes the parameter ranges from Figures 4-

1 and 4-2. 16200 possible combinations of model coefficients and temperature threshold values 

are evaluated in hot exposure scenarios, and 7488 possible combinations are tested under cold 

exposure conditions. 

Table 4-3 Sampling of model coefficients and threshold temperature values 

 

 

 

 

 

 

4.2.5 Benchmark cases 

Seven benchmark experimental cases are selected to cover the scenarios from cold, mild cold to 

hot exposure conditions. Older people’s core and skin temperatures are measured for at least 60 

min in climate chambers. At least ten older people subjects were measured in each experimental 

case. More details on the screening criteria and measurement process of the selected experimental 

cases can be found in the previous work by the authors (Ji et al., 2021). In total, 2346 core 

Exposure Parameters Range 
Sampling 

interval 

Number of 

possible 

values 

Hot 

Vasodilation attenuation coefficient CDE [0.6,1] 0.05 9 

Sweating attenuation coefficient CSWE [0.75,1] 0.05 6 

Deviation of vasodilation threshold 𝑇𝑐𝑟0,𝑑𝑖𝑙 (℃) (0, 0.5] 0.1 5 

Deviation of sweating threshold  𝑇𝑐𝑟0,𝑠𝑤  (℃) (0, 0.3] 0.05 6 

Deviation of sweating threshold 𝑇𝑠𝑘0,𝑠𝑤 (℃) (0, 2] 0.2 10 

Cold 

Vasoconstriction attenuation coefficient CCE [0.5,1] 0.1 6 

Shivering attenuation coefficient CSHE [0.77,1] 0.046 6 

Deviation of vasoconstriction threshold  𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠 (℃) [-1.6,0) 0.1 16 

Deviation of shivering threshold 𝑇𝑐𝑟0,𝑠ℎ (℃) [-1.3,0) 0.1 13 
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temperature data and 5154 mean skin temperature data were obtained. The data at each time point 

were then averaged by the number of subjects in each scenario. Finally, 68 core temperature data 

and 79 mean skin temperature data were used to compare with the simulation results. The detailed 

experimental settings of the benchmark cases are shown in Table 4-4. 

Table 4-4 Detailed settings of the benchmark experiments 

Scenario 

Number 

of 

Subjects 

Ta=Tmrt 

(℃) 

Va 

(m/s) 

RH 

(%) 
MET CLO 

Age 

(year) 

Height 

(m) 

Weight 

(kg) 

Duration 

(min) 
Reference 

1 12 36.5 0.25 20 0.95 0.1 65 1.8 80.1 120 
Stapleton et al. 

(2014) 

2 12 36.5 0.25 60 0.96 0.1 65 1.8 80.1 120 
Stapleton et al. 

(2014) 

3 109 31 0.2 60 0.7 0.67 72.4 1.525 55.7 150 
Tsuzuki and 

Ohfuku (2002) 

4 109 27 0.2 60 0.7 0.67 72.4 1.525 55.7 150 
Tsuzuki and 

Ohfuku (2002) 

5 109 23 0.2 60 0.7 0.67 72.4 1.525 55.7 150 
Tsuzuki and 

Ohfuku (2002) 

6 10 17 0.2 45 0.9 0.06 63.7 1.602 53.8 60 
Inoue et al.  

(1992) 

7 10 12 0.2 45 0.9 0.06 63.7 1.602 53.8 60 
Inoue et al.  

(1992) 

 

4.2.6 Optimization function 

The proposed two-node model with each possible combination of parameters is evaluated 

according to its accuracy in predicting the core and mean skin temperatures. To obtain a model 

that performs well for the prediction of both the core temperature and mean skin temperature, the 

function to be minimized uses the combined root mean square error (cRMSE) method (Ji et al., 

2021). The cRMSE is calculated based on the difference between the experiments and predictions. 

The cRMSE is calculated in the last 30 minutes of the exposure time to capture the steady-state 

conditions. Moreover, to get equal weighting for each experimental scenario of a given exposure 

type, a fixed number of data points is applied to each scenario. The combined RMSE is thus 

obtained as follows: 
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𝑐𝑅𝑀𝑆𝐸 =  √𝑅𝑀𝑆𝐸𝑐𝑟
2 + 𝑅𝑀𝑆𝐸𝑠𝑘

2                                                                                      (4-13) 

where the RMSE of each nodal temperature is calculated for all scenarios of each exposure type 

as follows: 

𝑅𝑀𝑆𝐸 =  √∑ 𝑅𝑀𝑆𝐸𝑖
2/𝑚𝑚

𝑖=1                                                                                               (4-14) 

where (m) is the number of scenarios. 

It should be noted that the minimization function (Equation 4-13) theoretically leads to the same 

optimum parameter values as by maximizing the coefficient of determination (R2) when the latter 

is calculated for both the core and mean skin temperatures for all scenarios of a given exposure 

type. 

4.3. Results 

4.3.1 Optimized values of model parameters 

Figure 4-3 shows the distribution of RMSEcr and RMSEsk for each combination of the parameter 

values under hot exposure (a- Scenarios 1 to 4) and cold exposure (b- Scenarios 5 to 7). The 

distance of the points to the axis origin is the cRMSE, amongst which the smallest distance (the 

distance of the framed colored point to the axes origin; note as well the different scales of the 

horizontal and vertical axes) corresponds to the optimum value. Table 4-5 lists the optimum values 

of the attenuation coefficients and temperature thresholds for older adults and their deviations from 

those for young adults (taken from Gagge et al, 1986).  
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Figure 4-3 The RMSE values of the mean skin and core temperature predictions under (a) hot 

exposure conditions (Scenarios 1 to 4), and (b) cold exposure conditions (Scenarios 5 to 7) Note: 

the colored point in each figure has the smallest distance to the axes origin. 

 

Table 4-5  Optimized values of model parameters 

 

It would also be helpful to find a representative value of the metabolic rate reduction factor for an 

average older population for thermal comfort calculation purposes. To do so, the optimization 

method was run using the optimized parameter values in Table 4-5.  The attenuation factor of the 

metabolic rate covers the range 0.7 to 1 (Figure 4-1). The corresponding minimum cRMSE value 

(a) (b)

Parameters Young Deviation Older 

Vasodilation threshold 𝑇𝑐𝑟0,𝑑𝑖𝑙 (℃) 36.80 +0.50 (±0.05) 37.30 

Vasoconstriction threshold 𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠 (℃) 33.70 -0.45 (±0.05) 33.25 

Sweating threshold  𝑇𝑐𝑟0,𝑠𝑤 (℃) 36.80 +0.20 (±0.05) 37.00 

Sweating threshold 𝑇𝑠𝑘0,𝑠𝑤 (℃) 33.70 +0.60 (±0.05) 34.30 

Shivering threshold 𝑇𝑐𝑟0,𝑠ℎ (℃) 36.80 -0.10 (±0.02) 36.70 

Vasodilation attenuation coefficient CDE 1 -0.40 (±0.05) 0.60 

Vasoconstriction attenuation coefficient CCE 1 -0.50 (±0.05) 0.50 

Sweating attenuation coefficient CSWE 1 0 (±0.02) 1.00 

Shivering attenuation coefficient CSHE 1 0 (±0.02) 1.00 

Min SBF rate (L/h/m2) (fixed) 0.5 +50% 0.75 

Max SBF rate (L/h/m2) (fixed) 90 -30% 63 

Max sweating rate factor (fixed) 1 -0.1 0.9 
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for the core and mean skin temperatures for all scenarios in Table 4-4 (m = 6; excluding Scenario 

3 due to its RMSE dominance) yields an optimized attenuation factor for the metabolic rate of 0.8.  

4.3.2 Core and mean skin temperature predictions 

Figure 4-4 shows the core and mean skin temperature predictions of the proposed model under the 

hot scenarios (Scenarios 1-2). To eliminate the impacts of occupants' initial conditions and capture 

the prediction accuracy during the steady-state, the deviations between experiments and 

predictions of each scenario are evaluated during the last 0.5 hours of exposure. Under the hot-dry 

exposure (a), the maximum deviations between the proposed model predictions and experimental 

data are 0.13℃ in Tcr, and 0.6 ℃ in Tsk. Similar results are obtained under the hot-humid 

exposure (b). The maximum discrepancy between the predictions and experiments is 0.1℃ for 

Tcr, and 0.29 ℃ for Tsk. 

 

 

 

 
Figure 4-4 Comparison of the results between the model and experiments of hot (a) Scenario 1, 

and (b) Scenario 2 

 

(b)
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Figure 4-5 shows the results of the proposed model and the benchmark data under warm scenarios 

(Scenarios 3-4). Under Scenario 3, the maximum discrepancies between the predictions and 

experiments are 0.30℃ in Tcr, and 0.59 ℃ in Tsk. Similar results are obtained under the warm 

scenario 4 (b) with maximum discrepancies of 0.30℃ in Tcr and 0.20 ℃ in Tsk. 

 

 

 

 
Figure 4-5 Comparison of the results between the model and experiments of warm (a) Scenario 

3, and (b) Scenario 4 

 

Figure 4-6 shows the results of the proposed model and the experimental data of mild cold to cold 

scenarios (Scenarios 5-7). Under mild cold exposure (a), the maximum discrepancies between 

predictions and the experiments are 0.29℃ in Tcr, and 0.14 ℃ in Tsk. Similar results are obtained 

for the cold scenarios (b) and (c) with maximum discrepancies of 0.11℃ in Tcr, and 0.35 ℃ in Tsk. 

(a) (b)
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Figure 4-6. Comparison of the results between the model and experiments of the cold (a) 

Scenario 5, (b) Scenario 6, and (c) Scenario 7 

(a)

(b)

(c)
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4.3.3 Further model validation 

To validate the proposed model with new datasets which have not been used in the optimization 

process, five extra experimental cases are obtained from literature according to the previously 

mentioned screening criteria. Table 4-6 shows the detailed settings of the selected experiment 

cases.  

Table 4-6 Validation experiment settings 

Scenario 

Number 

of 

Subjects 

Ta= 

Tmrt 

(℃) 

Va 

(m/s

) 

RH 

(%) 
MET CLO 

Age 

(year) 

Height 

(m) 

Weight 

(kg) 

Duration 

(min) 
Reference 

8 16 21 0.1 50 0.8 0.55 70 1.603 59.0 60 

Xiong et al.  

(2019) 

9 16 25 0.1 30 0.8 0.55 70 1.603 59.0 60 

10 16 28 0.1 50 0.8 0.55 70 1.603 59.0 60 

11 16 31 0.1 70 0.8 0.55 70 1.603 59.0 60 

12 46 
26.5 to 

19 
0.2 60 0.65 0.05 71 1.69 69.2 120 

DeGroot 

and Kenney 

(2007) 

 

Scenarios 8 to 11 are taken from the experiments of  Xiong et al. (2019), in which 16 older people 

(males and females) aged 70 years old were tested during hot and humid summer of a subtropical 

climate location in China.  The subjects would therefore be fully acclimatized to warm and humid 

conditions.  During the experiments, the subjects were exposed to four constant warm and cool 

environmental conditions for 60 min. The subjects wore short-sleeved T-shirts, long trousers, and 

slippers and were seated and relaxed. The skin temperatures at ten body locations were measured 

per minute, and the mean skin temperature was calculated. However, the core temperature and 

metabolic rate of the subjects were not measured.  An average value of the metabolic rate for the 

older people was therefore assumed 80% of sedentary young adults (1 met).  

Scenario 12 is taken from the experiments of DeGroot and Kenney (2007), in which an initial 

number of 46 (the number was significantly decreased with the exposure time) older people (males 
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and females) aged about 71 years old were exposed to mild cold environmental conditions with a 

variable temperature from 26.5℃ to 19℃ for 120 min.  The temperature was initially kept constant 

at 26.5℃ for 20 min and then was steadily reduced with two rates at 0.25°C/min for 20 min 

followed by 0.05°C/min for the remainder time. During the experiments, the subjects were clothed 

with shorts (for men) or shorts and sports bras (for women). With a time interval of 5 min, the skin 

temperature at eight body locations and the core temperature was measured.  The metabolic rate 

was indirectly measured by continuously measuring the volume of oxygen consumption and 

carbon dioxide production during the exposure time.  The net (excluding respiration heat loss) 

metabolic heat, therefore, includes the portion due to shivering under such cold exposure. The net 

average (overexposure time) metabolic rate was calculated as 37.7 W/m2 (0.65 met) and used in 

the simulation.  

Figure 4-7 shows the validation results of Scenarios 8-11. The maximum discrepancy between 

model predictions and experimental data is 0.32 ℃ in Tsk during the last 0.5h in the hot Scenario 

11. 

Figure 4-8 shows a comparison of the model predictions for the core and mean skin temperatures 

with the experimental data of Scenario 12. The maximum discrepancy between core temperature 

predictions and experimental data is 0.27 ℃ during the last 0.5h. The mean skin temperature 

during the last 0.5h of exposure time was, however, over-predicted by 1.2℃. In Scenario 12, the 

air temperature decreased from 26.5℃ to 19℃. The overestimation of skin temperature might be 

due to the shivering rate added to the heat generation with the process of air temperature decrease.  
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Figure 4-7 Validation results of Scenarios 8 to 11 

 

Figure 4-8 Validation results of Scenario 12 

4.4. Discussion 

A couple of things are noted for the model development for older people. To obtain average 

representative values of the model parameters, the prediction error is minimized for the core 

temperature and mean skin temperature in multiple experimental conditions (with various 
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environmental settings as listed in Table 4-4). If the cRMSE for each experiment is minimized 

independently of the other experimental settings, the corresponding optimum parameter values 

would not be representative of older people as a large group. Similarly, to get the model that 

performs well for both the mean skin temperature and core temperature, the metric cRMSE is used 

to integrate the error of the core temperature (RMSEcr) and mean skin temperature (RMSEsk). 

Moreover, the obtained optimized values of the model parameters are numerical values and not 

necessarily equal to the actual average values of a large pool of older people under wide ranges of 

exposure conditions and activity levels. If such parameter values are measured and available, they 

should be directly used in the model, but the model accuracy would differ from those with the 

general optimized values.   

The model predictions for the experimental Scenarios 1 to 12 show overall good trend and 

accuracy levels with the measured core and mean skin temperatures.  For well controlled steady 

experimental conditions (measured environmental conditions and subject data) such as the 

benchmark cases (Scenarios 1 to 11), the accuracy of the model for both the core temperature and 

mean skin temperature are good and within the experimental errors (maximum deviations are 0.30 

C for Tcr and 0.60 C for Tsk), whereas in previously published multi-node models,  the maximum 

prediction deviations were 0.35℃ in the core temperature and 1.2℃ in the mean skin temperature 

(Novieto, 2013; Rida et al., 2014). For transient exposure cases where the subject data (particularly 

the metabolic rate under cold exposure conditions where the shivering metabolic rate cannot be 

separated from the net measured metabolic rate; Scenario 12) are estimated, the model prediction 

accuracy is expected to be lower, particularly for the most sensitive mean skin temperature. 

To further evaluate the accuracy of the proposed model, a comparison of the simulation results is 

conducted with average-aged young people’s model. Figure 4-9 shows the simulated core 
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temperature and mean skin temperature by the proposed model and the new two-node model of 

young people by (Ji et al., 2021) under  the hot to cold exposure conditions (Scenarios 1, 2, 5, 7; 

Table 4). The measurement data of older and young subjects in each scenario are also plotted. 

From the measurements in hot scenarios (Scenarios 1-2), older people’s core temperature is higher 

than young people by a maximum of 0.5℃, and mean skin temperature is lower than young people 

by a maximum of 0.5℃. In the mild cold scenario (Scenario 5), the core temperature of older 

people is higher than young people at the beginning of exposure and slightly lower at the end of 

exposure by 0.2℃. The mean skin temperature of older people is higher than young people by a 

maximum of 0.4℃. In the cold scenario (Scenario 7), the core temperature of older people is close 

to young people and slightly lower at the end of exposure by 0.3℃, and the mean skin temperature 

of older people is also lower than young people by a maximum of 0.9℃. From Figure 4-9, the 

simulation results can capture the relative difference between older and young people in each 

scenario. The simulated core temperature of older people is higher than young people by a 

maximum of 0.5℃ in hot scenarios, which is consistent with public measurement data (Stapleton 

et al., 2014). However, in hot scenarios, the difference between the simulated mean skin 

temperatures of older and young people is smaller than the measurements. In the mild cold 

scenario, the simulated core temperature difference and mean skin temperature difference between 

older and young people are within 0.2℃ and 0.3℃, respectively, which are consistent with the 

measurement data. In the cold scenario, the simulated core temperature difference between older 

and young people is 0.3℃ at the end of exposure time, similar to the measurements, while the 

simulated mean skin temperature difference reaches a maximum error of 0.8℃, which is smaller 

than measurements. Overall, the simulations can capture the relative difference between older and 

young people in hot to cold scenarios. The simulated core temperature difference between the two 
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age groups is consistent with the measurements, while the accuracy of the simulated mean skin 

temperature difference is relatively limited (note as well the measured mean skin temperature may 

carry significant inaccuracies depending on the number of measurement points on the skin surface; 

Liu et al., 2011). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-9 Comparison of older people and young people’s simulations in (a) Scenario 1, (b) 

Scenario 2, (c) Scenario 5, and (d) Scenario 7 

The proposed model of older people can replicate thermal responses with acceptable accuracy 

levels under both hot and cold exposures, particularly the core temperature, which is the most 

important thermal safety index used in existing building thermal design standards (ISO 7933, 

2017) to limit heat-related health issues of people in workplaces.  In this regard, the proposed 
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model can be applied to analyze the thermal stress of older people and should be included in 

existing relevant standards for built environments (e.g., ASHRAE-55, 2017 and  ISO 7933, 2018) 

to cover older people. 

4.5. Conclusion 

This paper developed a two-node physiological model for older people under both hot and cold 

exposures. The model was built around a newly developed model for young adults by accounting 

for the age-related weakening changes in physiology and thermoregulatory activities for sweating, 

vasomotor, and shivering. Two types of age-related physiological changes were considered: the 

weakening of thermoregulatory activities and sensory delays in triggering thermoregulatory 

actions.  The age-related changes were collected from public literature. A new optimization 

method was developed to obtain the optimized values of the model parameters. The method 

consisted of selecting high-quality experimental benchmark cases from published literature and 

conducting numerical experiments, in which the proposed model was run for each benchmark case 

using large combinations of model parameter values pooled from possible ranges. The combined 

RMSE (cRMSE) between predictions and experiments were calculated to evaluate the 

performance of reproducing the core temperature and mean skin temperature of the different 

scenarios. Its minimum value corresponded to the optimized parameter values. 

The model was extensively validated using published experimental studies. In constant 

environmental conditions, the proposed model predictions agreed well with the experiments: the 

maximum deviation was 0.30℃ in the core temperature and 0.60℃ in the mean skin temperature 

under steady hot and cold exposures. In transient environmental conditions, the model prediction 

accuracy is limited particularly for the mean skin temperature. The proposed model can capture 



87 

 

the relative difference between older and young people in hot to cold scenarios. The simulated 

core temperature difference between the two age groups is consistent with the selected public 

measurement data, whereas the accuracy of the simulated mean skin temperature difference is 

limited. Future work should be conducted to improve the model prediction accuracy for the mean 

skin temperature under transient conditions.  

Overall, given the model's simplicity and accuracy in predicting thermal responses of older people, 

it is recommended to integrate the proposed model in building simulation design tools to predict 

heat and cold stress levels and the associated thermal comfort for older people in built 

environments. 
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Chapter 5 Evaluating Approaches of Selecting Extreme Hot Years for 

Assessing Building Overheating Conditions during Heatwaves 

The contents of this chapter are published in “Ji, L., Laouadi, A., Shu, C., Gaur, A., Lacasse, M., 

& Wang, L. (Leon). (2022). Evaluating approaches of selecting extreme hot years for assessing 

building overheating conditions during heatwaves. Energy and Buildings, 254, 111610. 

https://doi.org/10.1016/j.enbuild.2021.111610 ”. The contents are slightly modified. 

Abstract 

When assessing a buildings' performance under overheating conditions there is a need to identify 

extreme hot years (EHYs) for a given climate location. Different types of EHYs can be selected 

depending on the criteria used for their selection, such as long, intense, or severe heatwaves defined 

based on dry-bulb temperature and other thermal comfort indices. However, the effect of the EHY 

type on the extent of indoor overheating has not been quantitively evaluated. The selection of multi 

EHYs also complicates the overheating assessment process. Therefore, an investigation was 

undertaken to explore the suitability of different EHY when assessing the extent of indoor 

overheating in buildings. In this study, the “Percentage of Synchronization” (POS) of outdoor and 

indoor-based extreme years was proposed as an approach to the selection of EHYs. A higher value 

of POS for a given EHY implied that there was a more significant risk for indoor overheating to 

occur. Thus, when evaluating different EHYs, the most suitable choice in EHY would then be 

selected as the one with the highest POS value. The proposed method was demonstrated for 

residential archetype building models for five different climate zones. In the selection of EHYs for 

building overheating analysis, the thermal-based index was confirmed to be more suitable than the 

https://doi.org/10.1016/j.enbuild.2021.111610
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temperature-based index in the selection process; in the same context, the heatwave intensity and 

severity are more important than the duration of the event. Representative EHYs for each of the 

cities studied were identified; these include: 2010 (Ottawa and Montreal), 2013 (Toronto), 2006 

(Baltimore), 1992 (Phoenix), and 2005 (Houston). 

5.1. Introduction 

Overheating in buildings has created serious health concerns, particularly about heat-vulnerable 

populations such as elders, children, and sick people during summertime heatwaves (Lomas and 

Porritt, 2017; Vellei et al., 2017). Heat-related mortality cases have been reported in 164 cities 

across 36 countries (Mora et al., 2017), of which, the most well-known heatwaves as having caused 

significant mortality in the mid-latitudes are those of Chicago in 1995 (~ 740 deaths) (Whitman et 

al., 1997), Paris in 2003 (~4870 deaths) (Dousset et al., 2011) and Moscow in 2010 (~10860 

deaths) (Shaposhnikov et al., 2014). Currently, about 30% of the world’s population is annually 

exposed to extreme heat events of over 20 days duration (Mora et al., 2017). Even in a cold climate 

zone (ASHRAE, 2013a) such as in Canada, four heatwaves with mortality occurred in 1987, 1994, 

2010, and 2018  for which 106 deaths happened in 2010 and 66 deaths in 2018 (Lamothe et al. 

2019). Understandably climate change is expected to exacerbate the occurrence of heatwaves 

worldwide. For example, by 2100, 48% to ~74% of the world’s population is projected to 

experience deadly heatwaves and the mid-latitudes will be exposed to about 60 days of lethal 

heatwave events annually  (Mora et al., 2017). As a consequence, the risk of building interiors 

overheating is expected to follow suit. For instance, if considering a high greenhouse gas emission 

scenario (RCP 8.5) the building overheating discomfort rate in Paraguay is expected to reach 30% 

to 50% by 2070 (Silvero et al., 2019). Due to the effect of global warming, the summer indoor air 
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temperatures are estimated to increase on average by up to 7℃ in the Netherlands by 2100 

compared to the current climate, even when maximum ventilation rates are applied. Indeed, 

traditional mitigation strategies such as natural ventilation are expected to become less efficient as 

global warming increases (Hamdy et al., 2017). The building overheating problem has already 

seriously affected the health of building occupants and it will become even unhealthier in the 

future. 

Therefore, it is essential to quantify the risks to building overheating during extreme heat events 

to permit mitigation measures to be developed.  Such information would be useful in responding 

to these overheating challenges as they can be applied to improving standards and building codes. 

A highly valuable approach in the development of overheating mitigation measures is conducting 

building thermal response simulations from which one can determine the response of buildings to 

local historical and future climate loads. Building overheating assessments for different climate 

scenarios necessarily need to be realized using building simulation with local climate data. The 

evaluation of different mitigation strategies to decrease overheating also relies on building 

simulation models. When conducting a building overheating assessment using simulation, one first 

needs to identify extreme weather scenarios, i.e., a so-called “extreme hot year” (EHY). Unlike a 

typical meteorological year (TMY), which represents the typical (average) climate trends (Hall et 

al., 1978; Bilbao, 2003), an EHY is selected by evaluating the occurrence and intensity of outdoor 

heatwave events that span one or more months (such as warm/hot climates) amongst several years 

of weather data; the World Meteorological Organization recommends the use of at least 31 years 

of climate data  (WMO, 2017). The selection of an EHY (or occurrences when multiple years need 

to be selected) is the first step when undertaking a building overheating simulation analysis. An 

improper selection could underestimate and thus exaggerate the effects on building overheating 
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from outdoor heat events with conservative and overambitious mitigation and code 

recommendations.  As such, this study focuses on the selection of EHYs to be used in simulations 

of the thermal response of buildings, a prerequisite for building overheating analysis. 

The selection of EHYs requires first addressing a few key issues. The first is the selection criteria. 

There are often two types of indices to evaluate heatwaves: temperature-based indices and those 

that are thermal-based. The former is more often applied with the majority based on dry bulb 

temperatures. A few examples include, but are not limited to, the: Design Summer Year (DSY) 

(CIBSE, 2002); probabilistic Design Summer Year (pDSY) (Eames, 2016); near extreme Summer 

Reference Year (SRY) (Jentsch et al., 2015); future probabilistic Hot Summer Year-1 (pHSY-1), 

and; Typical Hot Year (THY) (Guo et al., 2019). On the other hand, there are a limited number of 

studies that have been conducted based on thermal indices. The future probabilistic Hot Summer 

Year-2 (pHSY-2) is based on the Physiological Equivalent Temperature (PET) heat stress index 

(Liu et al., 2016).  Laouadi et al.(2020a) proposed the Reference Summer Weather Year (RSWY) 

based on the transient Standard Effective Temperature (t-SET), taking into account temperature, 

relative humidity, wind speed, and a person’s level of activity and extent of clothing.  

Because of the different indices used, the selected EHYs often vary. For example, the temperature-

based EHY for Ottawa, Canada, is 2012, whereas it is 2010 when a thermal-based index is 

employed (Laouadi et al. 2020a). A thermal-based index considers temperature and other 

parameters, including relative humidity, wind speed, and a person’s thermal response 

characteristics. Although they seem intuitively more reasonable than temperature-based indices, 

thermal-based methods require more inputs (indoor conditions and occupant parameters) and are 

therefore more complicated to calculate, as a result many previous studies have chosen to use 

temperature-based indices for convenience. Although the temperature is commonly regarded as an 
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important factor in building overheating analysis, other thermal-related parameters such as relative 

humidity (related to sweating rate) and airspeed (related to evaporative heat release) have not been 

proven to be essential parameters to include in overheating studies. So the difference between 

using a temperature-based index and a thermal-based index needs to be evaluated quantitatively, 

to permit selecting the more reliable index. Currently, there is no consensus on the standard 

practices for the selection of EHY or indices. It may be possible to select both temperature and 

thermal indices in an actual situation, which, however, could overcomplicate the analysis. 

Therefore, it is still preferable to rely on one criterion to identify a unique EHY for a given city, 

which should not vary amongst different studies. As such, one of the objectives of this study is to 

evaluate the temperature-based and thermal-based indices in the selection of an EHY. 

The second issue that needs to be resolved is related to the various types of heatwave events (i.e., 

as may result from different durations, severity, and intensity), and those also resulting in multiple 

EHYs. Hamdy et al. (2017) quantify the severity of outdoor heatwaves, the so-called outdoor 

ambient warmness degree, by the time-averaged deviation between the outdoor air temperature 

and the threshold temperature of 18 ℃. Guo et al. (2019) took into consideration the intensity, 

duration, and total intensity of heatwave events. The intensity of a heatwave event is determined 

based on the difference in outdoor air temperature to that of the threshold temperature (35 ℃), 

whereas the duration is the number of days or hours when the air temperature is higher than the 

same threshold, and finally, the total intensity is defined as the integration in time of the difference 

between the air temperature and threshold temperature. Guo et al. (2019) selected three THYs, 

including THY-I based on the total heatwave intensity, THY-E based on the maximum heatwave 

intensity and duration, and THY-N by the number of hot nights. Machard et al. (2020) 

characterized heatwaves in terms of maximal temperature, duration, and intensity, based on three 
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percentile thresholds calculated from mortality data based on historical heatwaves. In the study of 

Machard et al. (2020), the duration of a heatwave was the period when the air temperature 

exceeded the 97.5 percentile threshold, and the intensity was the ratio between the global intensity 

and the difference between the 99.5 percentile threshold and the 97.5 percentile threshold. The 

global intensity was the sum, for each day of a heatwave event, of the positive difference between 

daily mean temperature and the 97.5 percentile threshold.  

Laouadi et al. (2020a) selected the duration, severity, and intensity of outdoor heatwave events. 

The severity was determined as the time integration of the difference between the outdoor standard 

effective temperature (SET) and its threshold (30 ℃). The duration was the number of days when 

the daily severity exceeded the threshold value, and the intensity was the ratio of the severity to 

the duration.  Laouadi et al. (2020a) also selected three types of Reference Summer Weather Year 

(RSWY) having the maximum heatwave event duration, severity and intensity as criteria for 

selection. Practically speaking, having multiple EHYs complicates the selection and analysis 

process, especially when using long-term historical weather data for building simulations. For 

example, separate building overheating analyses could be required for up to six different EHYs (2 

selection indices × 3 heatwave types). In contrast, such an overheating analysis often targets the 

same objective which is to evaluate and reduce an occupants' thermal risk. The process becomes 

quite challenging when multiple city locations are considered each having long-term weather data 

files required to complete the analysis (e.g., 31 years). Therefore, another objective of this study 

was to evaluate the types of heatwave events (long, severe, intense) used for EHY selection and 

then explore the possibility of selecting one representative EHY instead of having to complete an 

anlysis with several EHYs. 
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In summary, because of the nature of outdoor heatwave events and existing practices in respect to 

different selection criteria, multiple EHYs could be selected. The question that is posed is whether 

it is possible to develop a method to evaluate the EHYs using different selection criteria and from 

which the preferred approach to selection can be proposed, following which a unique EHY may 

be identified for a given city. The proposed method would be expected to address and quantify the 

significance of different indices and permit selecting the most important EHY. No existing study 

has been completed where multiple EHYs were compared for which the selection was based on 

temperature and thermal indices according to the duration, severity, and intensity of heatwave 

events. There is also a lack of information on selecting the most important EHY as compared to 

the use of multiple EHYs. 

In this study, a method to identify a unique EHY is proposed and compared using different indices 

and types of heatwaves based on the concept of “synchronization” of the outdoor heatwave and 

the indoor overheating. Unlike meteorological or climate studies focusing on outdoor heatwave 

events, a building overheating analysis is “indoor-overheating centric” and is intended for 

evaluating the indoor thermal response of building occupants. The impact of heatwave events on 

the indoor thermal environment is based on outdoor weather conditions and building 

characteristics that cannot be simplified by being purely driven by outdoor weather parameters. 

As such, it is important that the EHYs are also those years when indoor overheating is most likely 

to occur. Building overheating analysis focuses on the concept of the synchronization between the 

outdoor heatwave event and indoor overheating so that an EHY can be selected based on the 

increased likelihood of occurrence of this synchronization. In other words, although outdoor 

heatwave events could manifest different behaviour, the indoor thermal response could 

nonetheless be similar or these different heatwave events: an extreme year could be selected for 
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the highest (higher) probability of building thermal response. For example, a year should be 

selected with a higher chance of creating the longest, most severe, or most intense, indoor 

overheating. A similar idea to the “indoor-overheating-centric” approach to selecting extreme 

weather data has been mentioned in previous studies. Guo et al. (2019) proposed choosing the 

extreme weather data based on a long-term indoor thermal scenario for a typical residential 

building. The concept of indoor extreme year is therefore adopted in this study. Laouadi et al. 

(2020a) validated the selection of outdoor EHYs by their consistency with indoor-based extreme 

years. However, a quantifiable approach has still not yet been developed or extended to broader 

applications. 

In this study, EHY selections are evaluated concerning the suitability of different heatwave indices, 

or definitions, based on the indoor-overheating centric concept. Unlike previous studies where 

multi EHYs were selected based only on outdoor weather data, the innovation in this study is 

consideration of both outdoor extreme weather and building thermal response simultaneously. 

Hence the objectives in this study are to:  

• Explore the possibility of selecting a representative EHY based on the idea of 

“synchronization” of the outdoor and indoor extreme years.  

• Evaluate the temperature-based and thermal-based indices in the selection of EHY for an 

indoor-overheating centric analysis and illustrate the importance of using the thermal-

based index.  

• Compare the three types of heatwave parameters (duration, severity and intensity) in the 

selection of EHY for an indoor-overheating centric analysis and determine the most 

important parameter affecting the selection of EHY. 
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As well, given that the building thermal response is being evaluated, buildings with representative 

configurations and operating conditions should be considered, as has been previously 

recommended in the studies of Guo et al. (2019) and Laouadi et al. (2020a). Therefore, in this 

study, archetype building models were employed to represent typical old and current construction 

practices and building operations, including shading systems, natural ventilation, and intermittent 

cooling systems. In the subsequent sections, the method of obtaining the percentage of 

synchronization (POS) is first introduced, and thereafter an in-depth discussion is provided on the 

definition of an extreme year, long-term climate data, building simulation, and analysis of results. 

5.2. Methodology 

The proposed methodology is illustrated in Figure 5-1 for the percentage of synchronization (POS) 

of the outdoor extreme years (left column) and indoor extreme years (right column) (Guo et al., 

2019), which are defined following an existing method for three different types of heatwave events 

(Laouadi, et al. 2020a, 2020b). The procedure is as follows: With the long-term climate data of air 

temperature, relative humidity, atmospheric pressure, and wind speed, the heatwave events are 

evaluated either by using the temperature-based index or thermal-based index (SET). The 

calculation method of SET is shown in the Appendices A.1.The duration, severity, and intensity 

for each heatwave event are calculated. The EHYs are then selected based on yearly heatwave 

events to obtain the longest, most severe, and most intensive weather year. The indoor thermal 

situation is identified by building simulations using long-term climate data. The indoor overheating 

conditions are then evaluated to determine the extreme years indoors following a similar method 

for identifying outdoor EHYs. The synchronization of outdoor and indoor weather years is 

quantified using the percentage of synchronization (POS) for a given city. The suitability of a 
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selected weather year, the selection criteria, and the type of heatwave event can then be indicated 

by the values calculated for their POS. A higher value for POS implies that the selection approach, 

or the weather year, is more suitable for conducting an indoor-overheating centric study. It should 

be noted that the method uses long-term weather data to select the EHY, but does not generate any 

new weather data. In this paper, the use of this method is illustrated using historical weather data 

although it can also be applied to future scenarios should future weather data be available. Also 

note that according to the information provided in previous studies (Laouadi et al., 2020a) and that 

given in this study, the synchronization-based weather year selection could depend on building 

types. Therefore, it may be possible to identify a universal weather year when multiple archetype 

buildings are evaluated so that the year with the highest POS score for different building types can 

then be selected following the proposed method. This signifies that for most of the buildings 

evaluated, the selected year covers most of the cases having a higher chance of occurrence of 

indoor and outdoor heatwave events. Although the proposed method could initially be 

cumbersome to use, the resultant weather year will be unique, and this will simplify the complex 

analysis of other building simulations once it is determined.  
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Figure 5-1 Schematic of the proposed methodology to select extreme years and evaluate 

synchronization 

The POS value for outdoor and indoor extreme years is defined as the percentage of occurrence of 

any of the outdoor EHYs for the indoor extreme years in respect to a given building type under 

local climate loads; the POS is quantified according to that given in Equation 5-1: 

POS =
∑ 𝑉𝑂𝑖

𝑐·𝑚
𝑖=1

c·m
                                                                                                                 (5-1) 

where VO is the vote (1 or 0) in respect to the presence of an indoor extreme year for a given 

building configuration, m is the number of archetype building configurations, and c is the number 

of types of extreme years taken into consideration. The criterion of VO=1 indicates that the indoor 

extreme year is the same as any of the outdoor extreme years. For example, the indoor extreme 

long duration event heatwave year is the same as any outdoor extreme long duration/severe/intense 

year. When comparing the POS of different extreme year types (long/severe/intense), the POS of 
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each type needs to be calculated, and as such, c=1; when evaluating the value of POS for a type of 

building or a city, the POS value of three types of extreme years all need to be considered, hence 

in this instance, c=3. A calculation example of POS and details about the vote criteria are provided 

in Section 5.3.2. 

5.2.1 Outdoor and indoor extreme years 

In this study, both the thermal-based and temperature-based indexes were used to determine 

outdoor and indoor extreme years. Most of the traditional methods to select extreme weather data 

use temperature-based indices. In this study, when the temperature-based index is used, the 

heatwave duration is measured in terms of the number of days of a continuous heat event. The 

severity (°C2∙h) is given in Equation 5-2, which is the weighted number of cooling degree hours, 

as adopted by CIBSE TM49 (2014), to select EHYs. The intensity (°C2) of a heatwave event is 

calculated as the ratio of severity to the duration of the event, expressed in hours. 

WCDH = ∑ ∑ (𝑇𝑜 − 𝑇𝑐𝑢) 224
𝑡=1

𝑁
𝑖=1                                                                                (5-2) 

Where 𝑇𝑜 is the hourly daily operative temperature and Tcu is the adaptive threshold temperature 

for the location under consideration, calculated using the running mean of the outside dry-bulb 

temperature (CIBSE, 2014); weather variables other than temperature are not considered. 

In comparison, the thermal-based index uses the comfort index for the transient Standard Effective 

Temperature (t-SET) (Laouadi et al. 2020a) and considers the effect of other weather variables 

including dry bulb temperature, relative humidity, airspeed, and a reference person’s posture and 

clothing level, which is used to evaluate the effect of heat events on building occupants from a 

thermal comfort perspective. With t-SET as an index, the severity (°C∙h) of a heat event is given 
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by Equation 5-3 (Laouadi et al. 2020a, 2020b). The duration (d) and intensity (°C) are defined 

using the same method as above. 

𝐒𝐄𝐓𝐇 = ∑ SETHd+SETHn =  ∑ [t-SET - t-SETd]+
𝒅𝒂𝒚𝒉𝒐𝒖𝒓 +𝑵 ∑ [t-SET - t-SETn]+

𝒏𝒊𝒈𝒉𝒕𝒉𝒐𝒖𝒓               

(5-3)  

Where N is the duration (in days) of a heat event, SETHd is the severity of the event during the 

daytime, SETHn reflects the preceding nighttime severity, t-SET is the hourly SET value during 

the day or night time, t-SETd and t-SETn are the t-SET threshold values, respectively, during the 

day and night time. For both the outdoor heatwave and indoor overheating, the value of t-SETd is 

fixed at 30℃. The value of t-SETn for an outdoor heatwave event is 26℃, and t-SETn for an 

indoor overheating event is 30℃, when considering the neutral thermal level for occupants 

sleeping on a mattress. The “+” sign means only positive values are considered for analysis. A heat 

event is declared if the SETHd value exceeds 4 °C·h for at least two successive days (Laouadi et 

al. 2020a). 

With the above thermal-based index or temperature-based index, the duration, severity, and 

intensity of each heat event over the long term can be identified. Three extreme years (i.e., with 

the longest, the most severe, and the most intense heat events) were selected. It should be noted 

that the outcome from the selection process of three years might be the same year, or two years, or 

indeed, three different years. 

5.2.2 Long-term climate data 

Long term climate data, consisting of a continuous time series of historical data comprising hourly 

values of air temperature, relative humidity, atmospheric pressure, wind speed and direction, total 

cloud cover, solar radiation (global horizontal, direct normal, and diffuse horizontal), and snow-
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cover was prepared for selected Canadian and US cities located in different North American 

climate zones. According to ASHRAE Standard 169-2013 (ASHRAE, 2013a), Canada and the US 

have eight temperature-based climate zones and three moisture regimes, the moisture regimes 

being classified as A, B, or C. From Canada, three cities were selected for analysis: Ottawa 

(Ontario), Montreal (Quebec) from climate zone 6A (Cold-Humid), and Toronto (Ontario) from 

zone 5A (Cool-Humid).  Those selected from the USA, included the cities of: Baltimore 

(Maryland), Houston (Texas), and Phoenix (Arizona) representing climate zones: 4A (Mixed-

Humid), 2A (Hot-Humid), and 3B (Hot-Dry), respectively. 

The historical climate data for the Canadian cities were prepared for the period of 1986-2016 by 

collecting observations of historical climate from Environment and Climate Change Canada 

(ECCC, 2018) and filling in missing values from bias-corrected Climate Forecast System 

Reanalysis (CFSR) data (Saha et al. 2010) to prepare a complete time-series. A detailed description 

of the methodology used is described in (Gaur et al., 2019). For the US cities, the data was prepared 

for the period of 1991-2010. The hourly historical climate time series for air temperature, relative 

humidity, atmospheric pressure, wind speed and direction, total cloud cover variables were 

collected from the Climate Forecast System Reanalysis (CFSR) database (Saha et al. 2010). The 

hourly solar radiation data, including global, direct, and diffuse radiation, were taken from the 

National Solar Radiation Data Base (NSRDB, 2012). 
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Table 5-1 Archetype building model parameters for each city 

City 
Toronto 

Baltimore 
Houston Toronto 

Montreal, Ottawa Phoenix Montreal, Ottawa 

Climate zone 
Cool-Humid 

Mixed-Humid 
Hot-Humid Cool-Humid 

Cold-Humid Hot-Dry Cold-Humid 

Building type Single-detached house Row house 

Orientation of windows N-S-E-W N-S-E-W N-S-E-W N-S (or E-W) 

Footprint area (m2)  80   80  80 110 

Window Wall ratio (%) 16  16 16 24 

Construction Old Current Old Current Old Current Old Current 

Exterior Wall 

Effective R (m2 KW−1) 
1.83 3.17 1.25 2.08 0.61 1.44 1.83 3.17 

Basement Wall 

Effective R (m2 KW−1) 
0.1 1.26 0.1 1.26 0.1 1.26 0.1 1.26 

Basement Floor 

Effective R (m2 KW−1) 
0.26 1.69 0.26 1.69 0.26 1.69 0.26 1.69 

Attic insulation 

Effective R (m2 KW−1) 
3.6 8.2 1.43 7.76 1.2 6.2 3.6 8.2 

Window 

U-Value (W m−2 K−1) 
2.58 1.58 2.69 1.4 2.69 1.4 2.58 1.58 

SHGC 0.7 0.67 0.5 0.31 0.5 0.31 0.7 0.67 

Design Infiltration Rate 

(ACH@50Pa) 
6.86 2.32 6.86 2.32 6.86 2.32 9.32 2.8 

 

5.2.3 Building Data: Archetype building models and configurations 

This study focuses on typical residential building construction as is prevalent in North America 

based on archetype house models. The reason for selecting residential buildings is that most of the 

historical heatwaves fatalities occurred in residential homes, as demonstrated by the 2018 

heatwave that occurred in Montreal, Canada (Lamothe et al., 2019) and as well, that of the 2003 

European heatwave (Vellei et al., 2017). Natural Resources Canada (NRCan) has generated 

archetype building models based on rating over 500,000 homes across Canada (Parekh et al., 

2012). Therefore, the single-detached home and row house archetype buildings were used for this 

study. The house models were created using EnergyPlus software (DOE, 2020). Each home model 

has two above-ground floors, an attic space and a full basement. The first floor was assigned to 
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the living room, where occupants may spend most of their time during the daytime, and the second 

floor was the bedroom. Internal heat gains from occupancy, lights, and equipment were taken from 

the National Building Code of Canada (NRC, 2015) specifically: 3 people per home, lighting gains 

=5 W/m2, and; equipment heat gains = 5 W/m2. According to the International Energy 

Conservation Code, the single-detached archetype house model is also applied to USA locations, 

but considering local construction practice in accordance with the International Energy 

Conservation Code (IECC, 2018). The basement boundary wall and floor surface temperatures 

were pre-calculated by running the basement and slab pre-processor in EnergyPlus (DOE, 2020). 

The building age affects building overheating conditions. A higher overheating risk is often found 

in new homes (French, 2008) and new apartment buildings Maivel et al. (2015) as compared to 

older buildings because of higher glazing surface areas, lower ventilation rates, reduced external 

shading, and to a lesser extent increased levels of thermal insulation in newer homes. In retrofitted 

buildings, strategies including improved airtightness, higher-level insulation, high-performance 

windows, and large south-facing windows that would increase overheating risk (Mavrogianni et 

al. 2013; Ibrahim and Pelsmakers, 2018; Gupta et al, 2019). Therefore, both older (1980s) and 

current construction practices were considered for the archetype buildings. The home construction 

characteristics for each city and climate zone are summarised in Table 5-1. The single-detached 

home has windows on each facade on the first and second floors, whereas the row house has 

windows on the south and north facades (N-S orientation) or east and west facades (E-W 

orientation).  

Apart from the building construction age, building operation could also alter indoor conditions. As 

well, shading systems affect solar heat gains through windows and therefore the risk of 

overheating. Exterior shadings such as external shutters, awnings, and overhangs are found to 
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reduce the risk of overheating (Zinzi et al., 2017; Ruff et al., 2018). Strategies such as natural 

ventilation and night cooling are also typical methods to reduce indoor heat discomfort while 

avoiding, or minimizing, the need for mechanical cooling in buildings (Brotas and Nicol, 2016; 

Stazi et al., 2017). Although cooling systems are perhaps considered an efficient solution to resolve 

overheating problems in buildings, many countries have encouraged or mandated the adoption of 

passive cooling measures for existing and new buildings to permit complying with energy 

efficiency and carbon emission standards (ASHARE, 2013; Committee on Climate Change, 2019). 

As such, passive operation measures for the building models investigated in this study were 

considered. Furthermore, the rapid use of air-conditioning during heat events may have a major 

impact on summertime electricity demand and would increase the risk of HVAC failures or 

blackouts (Ostro et al., 2010). Given this possibility, operation measures such as intermittent 

cooling should also be considered in the building models studied. 

Taking all of the information into consideration, seven (7) different building operation measures 

were applied to archetype homes that included both old and current construction practices, as 

shown in Table 5-2. The seven (7) selected measures, based on the above literature, were to include 

measures that influence indoor overheating conditions. The proposed method can be applied to 

other cases should there be interest in evaluating additional measures. In this study, three (3) 

primary passive measures were considered, including the use of interior blinds, exterior screen 

shadings, and natural ventilation (i.e. opening windows). Interior blinds were opened by setting 

the slats in a horizontal position (slat angle 90°) and closed by setting the slats' vertical position 

(slat angle 175°). Exterior screen shades were always set closed with a 5% openness factor. The 

above three (3) configurations were combined with natural ventilation. Natural ventilation was 

realized by opening windows by 25% when the indoor temperature exceeded both 26°C and the 
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outdoor temperature. The impact of intermittent cooling was also considered by operating a central 

air-conditioner (when windows are closed) to supply cool air to the living room and bedroom 

during the daytime from 11:00 am to 6:00 pm (M7 measure, applied to the single home model 

based on current construction practice). A relaxed setpoint temperature was fixed at 30.6°C 

(Laouadi et al., 2020a,b), which corresponded to a t-SET= 30°C (corresponds to a slightly warm 

comfort level) at a relative humidity of 50%. 

Table 5-2 Building operation measures for abating indoor temperature 

Measure Description 

M1 Interior blinds open (slat angle: 90°) + closed windows 

M2 Interior blinds closed (slat angle:175°) + closed windows 

M3 Interior blinds open + opened windows 

M4 Interior blinds closed+ opened windows 

M5 Exterior shading closed + closed windows 

M6 Exterior shading closed + opened windows 

M7 Interior blinds closed + closed windows + intermittent cooling 

 

Building simulations were conducted using the weather and building data as was previously 

described. For Canadian locations, the simulations were conducted over 31 years (1986-2016); for 

USA locations, simulations were conducted for 20 years (1991-2010). In total, 5,661 simulations 

were conducted for the selected building models and locations. From the simulation results and 

POS analysis, a unique EHY can be selected for each city. 

5.3. Results 

5.3.1 Outdoor extreme years 

Figure 5-2 shows the distribution of EHYs of the six cities forming part of this evaluation study 

based on thermal-based and temperature-based indices. The majority of the EHYs selected using 
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either of the two indices are different. The thermal-based EHYs are often above the Y=X line, 

indicating they often occur in a later year than the temperature-based extreme year. About 70% of 

the thermal-based extreme years range between 2000-2013, whereas 70% of the temperature-based 

years vary between 1998-2006. As such, the distribution of thermal-based extreme years shows a 

trend of increasing heatwave events in more recent years whereas the latter does not, suggesting 

that the thermal-based years seem more consistent with recent and actual heat events for these 

cities. For example, in Montreal, Canada, the most lethal heatwave occurred in 2010, causing 9.3 

deaths per million population (Lamothe et al., 2019). This is consistent with the overall trend of 

climate change. Figure 5-2 also shows most of the cities have different years identified for these 

two different indices, whereas three cities have the same year identified from the thermal-based 

and temperature-based indices: Baltimore (Long heatwave year), Ottawa (Intense heatwave year), 

and Montreal (Intense heatwave year). 

 

Figure 5-2 Different outdoor extreme years selected by thermal-based index and temperature-

based index for different heatwave types. 

Figure 5-3 provides a comparison of the magnitudes of three types of outdoor extreme years for 

each of the six city locations. The six cities are ranked from higher to lower latitude. As may be 
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apparent, the heatwaves become more severe as the latitude decreases. The difference in EHYs 

obtained from thermal and temperature-based indices can be understood by focusing on the cities 

of Phoenix and Houston. Phoenix is located in a hot-dry climate zone (2A), whereas Houston is 

situated in the hot-humid climate zone (3B); understandably, the humidity levels of the two cities 

are significantly different. With the thermal-based index, the duration, intensity, and severity of 

heatwaves in Phoenix are weaker than those experienced in Houston. In contrast, using the 

temperature-based index, Phoenix is subject to more acute heatwave events than Houston. This 

difference arises because the thermal-based index includes the effect of the higher humidity as is 

present in the hot-humid climate zone whereas the temperature-based index only considers the 

temperature.  

 

Figure 5-3 The duration, intensity, and severity of heatwave events in EHYs for each city 

Thermal-based:

Temperature-based:
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5.3.2 Indoor extreme years and POS calculation 

 

Figure 5-4 Indoor extreme years and overheating (OH) magnitude (relative) for single-detached 

home located in Ottawa (Ontario) and for various configurations Note: Black dots represent the 

indoor extreme year for each configuration; the bubble size relates to the duration (Blue), 

severity (Red), and intensity (Green) of indoor overheating, respectively; the solid lines in each 

subfigure correspond to outdoor extreme years 

To illustrate the method to calculate POS, the results of indoor and outdoor extreme years for the 

single-detached home and row house (N-S) located in Ottawa, Canada, are presented and 

compared. The effects of different climate zones and building orientations will be analyzed in 

subsequent sections. Figure 5-4 shows the indoor extreme years (black dots) with the longest, most 

severe, and most intense indoor overheating (OH) for each building configuration in Ottawa and 
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the relative magnitude of indoor overheating. The outdoor extreme years (solid horizontal lines) 

are also shown to permit a comparison with the indoor extreme years. 

Figure 5-4a shows the extreme years as determined from the use of the thermal-based index. As 

already mentioned in Section 5.3.1 (Figure 5-2), the thermal-based outdoor extreme years have 

been identified as 2010 (having the longest and most severe heatwave) and 2002 (with the most 

intense heatwave). For the majority of building measures, indoor extreme years (black dots) with 

the longest (Figure 5-4a1) and most severe (Figure 5-4a2) indoor overheating are located on the 

lines of the outdoor extreme year (2010), with the exception of M1 and M2 for older and current 

construction, and M5 for older buildings. For the majority of building measures, indoor extreme 

years experiencing the most intense (Figure 5-4a3) overheating are 2002, with the exception of 

M2 and M6 of older buildings, and M1, M2, M6, and M7 for buildings of the current construction 

practice. However, for M6, 2010 is identified as the indoor extreme year with the most intense 

overheating for older and current buildings. It is evident that having multiple selection criteria and 

different heatwave events complicated the analysis.  

The use of POS is proposed as a means to permit synthesizing the data and thus simplifying the 

process of determining an EHY, as is shown in Table 5-3. The vote count for the occurrence of an 

outdoor extreme year given an indoor extreme year is 1 when the indoor and outdoor extreme years 

“synchronize” (i.e., when the dots align along with one of the solid lines). For example, for 

buildings of older construction and M1, the indoor extreme year for long duration events (Figure 

5-a1) is 2005, which is different from 2010 and 2002 (the dot is not located on any of the solid 

lines), hence the vote is 0; for older construction and M3, the indoor extreme year for long duration 

events is 2010 (Figure 5-4a1), which is the same as the outdoor extreme year for long duration 

events;  the vote is thus given as 1.  
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Table 5-3 Calculation example of POS of single house located in Ottawa, Canada (heat events 

based on thermal-based index) 

Building age 

Building 

operation 

measure 

Vote of indoor extreme years presence in outdoor extreme years 

Long Year  Severe Year Intense Year 

Old 

Construction 

M1 0 0 1 

M2 0 1 0 

M3 1 1 1 

M4 1 1 1 

M5 0 1 1 

M6 1 1 1 

Current 

Construction 

M1 0 0 0 

M2 0 0 0 

M3 1 1 1 

M4 1 1 1 

M5 1 1 1 

M6 1 1 1 

M7 1 1 0 

Sum of votes 8 10 9 

Sum of building 

configurations 
13 13 13 

POS (c=1, m=13) 62% = 8/13 77% = 10/13 69% = 9/13 

POS (c=3, m=13) 70% = (8 + 10 + 9)/(13 × 3) 

 

When comparing the POS value of each of the three types of extreme years (long duration / severe 

/ intense), the POS of each type needs to be calculated (c=1). For example, considering the 

synchronization of outdoor and indoor extreme years for long duration events (Figure 5-4a1), the 

total votes is 8 (i.e. summation of votes in the first column of Table 5-3). The total number of 

building configurations, m, is 13 (M1-M6 for older construction and M1-M7 for current 

construction), so the POS value is 62% (8/13), which indicates there 62% of the cases for which 

the indoor heatwave of longest duration occurs during the outdoor extreme years (i.e. these EHYs 

are “synchronized”). The year having the most number of “synchronizations” for the duration of a 

heatwave is 2010. In other words, 2010 is the year having outdoor heatwave events with the longest 

duration and as well, indoor overheating events with the longest duration for most of the archetype 
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buildings located in Ottawa. Using this same procedure, the POS values for outdoor and indoor 

extreme severe years were calculated as 77% (2010 for Ottawa), and the POS value of outdoor and 

indoor extreme intense years was 69% (2002 for Ottawa).  

When all heatwaves are considered regardless of their types (c=3), the total vote is 27 (8+10+9), 

and the total number of building configurations, m, is 13, producing a POS value of 70%. This 

means that 70% of the cases may experience both indoor and outdoor heatwaves for a single home 

in Ottawa. Measures M1, M2, M5, and M7 are all without natural ventilation and lack air and 

thermal exchange with the outdoors, hence this could be the reason why their indoor extreme years 

are not synchronized with the outdoor extreme years. In real buildings, the scenarios for measures 

M1 and M2 (i.e. closed windows + interior blinds open (M1) or closed (M2)) could not last long 

in summer because they would eventually lead to higher indoor temperatures. Figure 5-4b shows 

the temperature-based indoor and outdoor extreme years. Compared to thermal-based extreme 

years, temperature-based indoor extreme years are much less synchronized with outdoor EHYs 

(fewer black dots are located along the solid lines). 

The bubble size in Figure 5-4 indicates the magnitudes (duration, severity, and intensity) of indoor 

overheating. No matter whether a thermal-based (Figure 5-4a) or temperature-based overheating 

index used (Figure 5-4b), duration and severity of indoor overheating of buildings having 

temperature abatement measures M1 and M2 are greater than other measures, which implies that 

the use of interior blinds has a limited effect on reducing indoor overheating risk. The intensity of 

indoor overheating for all abatement measures is relatively similar. 
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Figure 5-5 Indoor extreme years and overheating (OH) magnitude (relative) for row houses (N-S 

orientation) of various configurations located in Ottawa (Ontario). Note: Black dots represent 

indoor extreme year for each configuration; the size of bubbles indicates the duration (Blue), 

severity (Red), and intensity (Green), respectively, of indoor overheating; the two solid lines in 

each subfigure correspond to each of the outdoor extreme years. 

Figure 5-5 shows the indoor extreme years (black dots) with the longest, most severe, and most 

intense overheating for row houses having windows located in the N-S orientation. The outdoor 

EHYs are also shown in the figure to permit comparing these to indoor extreme years. Similar to 

that obtained for the single-detached home, for the majority of building operation measures to 

abate indoor temperatures, thermal-based indoor extreme years are synchronized with the 

corresponding outdoor EHYs, whereas there is much less synchronization for the temperature-

based selection. As for the magnitude of overheating, compared to the single home (Figure 5-4a1, 
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a2; b1,b2), the duration and severity of indoor overheating is lower for the row house (Figure 5-

5a1,a2;b1,b2), which for row houses is due to the windows only being located in the N-S 

orientation (according to the original archetype building models created based on actual statistics), 

whereas for a single home, windows are oriented in all the four orientations. The thermal-based 

intensity of indoor overheating for a row house (Figure 5-5a3) is similar to that of a single home 

(Figure 5-4a3), whereas the temperature-based intensity of indoor overheating for the row house 

(Figure 5-5b3) is less than that of the single home (Figure 5-4b3), which indicates that the 

temperature-based index may underestimate the intensity of overheating risk. 

5.3.3 EHY selections based on percentage of synchronization (POS) 

In this section, the values of POS for the thermal-based index are compared to that of the 

temperature-based index taking into consideration the three types of heatwave events (i.e. long 

duration, severe, and intense) for different climate zones. A higher value of POS means it is more 

suitable to choose an index and to choose a heatwave type. 

Figure 5-6 compares the POS value for the thermal-based and temperature-based indices. Figure 

5-6a shows that the thermal-based POS is higher than the temperature-based POS for all three 

building types (i.e single home; row house-NS windows; row house-EW windows). Figure 5-6b 

shows the POS values for the single-detached home located in the five climate zones considered 

in this study. All cases indicate that the thermal-based POS value is higher than those of the 

temperature-based POS values. When comparing hot-dry and hot-humid climates, thermal-based 

POS values are much higher for hot-humid climates because the thermal-based index considers 

the effects of humidity.  
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Figure 5-6 POS values with effect of thermal-based and temperature-based indices for (a) 

different building types (b) five climate zones.  

 

Figure 5-7 Thermal-based POS values in respect to three types of overheating events 

(duration/severity/intensity) for (a) different building types (b) five climate zones 

In Figure 5-7 a comparison of the thermal-based POS values is shown for the three types of 

heatwave events (duration /severity/intensity). According to that shown in Figure 5-7a, severity-

based and intensity-based POS values are similar for the three building types and higher than the 

duration-based POS value. The thermal capacity of the building envelops delays the occurrence of 

indoor overheating and mismatches the durations of outdoor and indoor extreme heat events.  From 

Figure 5-7b, the severity-based and intensity-based POS values are higher than that of the duration-

(a) (b)

(b)(a)
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based POS values for all climate zones. The highest severity-based POS value occurs in a cold-

humid climate. The highest intensity-based POS values arise in the hot-humid climate, which 

indicates that it is better to select EHYs in cool or cold climate zones based on the heatwave type 

for which priority is given, in decreasing order of importance, to severity > intensity > duration. 

In contrast, in a mixed or hot climate, it is better to select EHYs based on the heatwave type for 

which the priority is given, as before in decreasing order of importance, to intensity > severity > 

duration.  The severity and intensity of extreme heatwave events have been shown to cause health 

effects on humans, where severe exposure to heat (considering both time and magnitude) is likely 

to physiologically overwhelm body functions even without active awareness of the occupant under 

stress, such as during sleep (Anderson et al., 2013). People also tend to experience thermal 

discomfort due to short, hot periods because they have not had the opportunity to adapt their 

behavior or adjust their expectations (De Dear and Brager, 2002). In hot climate zones, the duration 

of heatwaves can extend from weeks to months, and as such, it is, therefore, important to evaluate 

heat-related health injuries over a short period. 

Therefore, if a single extreme heatwave year needs to be determined as a reference, for the cool 

and cold climates it is recommended to choose the severe extreme year whereas for mixed or hot 

climates the intense extreme year should be chosen as reference, with either type of extreme 

heatwave year based on the thermal-based index. This conclusion has been reached based on the 

previous analysis of POS values reflecting the majority of the archetype buildings and occupant 

responses for a specific climate. Table 5-4 provides the unique EHY as a reference for each of the 

cities considered in this study. 
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Table 5-4 The unique EHY of each city. 

City Unique EHY 
Extreme heatwave 

Severity (℃∙h) Intensity (℃) 

Ottawa 2010 436.5 2.6 

Montreal 2010 521.7 3.2 

Toronto 2013 431.9 3.0 

Baltimore 2006 1088.1 3.5 

Phoenix 1992 3924.4 3.9 

Houston 2005 12418.1 5.1 

 

5.3.4 Application – Building overheating evaluation by selected extreme years 

To demonstrate the benefit of a single EHY identified, we evaluated building overheating 

conditions during heatwave events. According to the analysis given in Section 5.3.2, the 

overheating magnitude in a single-detached home is higher than that for a row house, so the former 

building type is evaluated in this section. Here, the thermal comfort metric SET is used to evaluate 

the indoor thermal comfort level: SET > 30℃ indicates an uncomfortable and unacceptable hot 

condition, where occupants are likely to start sweating (Parsons, 2003). The temperature abatement 

operation measure M4 (closed interior blinds with open windows) is considered typical for cold 

climate locations, whereas measure M6 (closed exterior shades with open windows) is considered 

typical for hot climate locations. These selections are useful because the usage of window shadings 

is regionally dependent. For example, external shading devices in residential buildings are 

uncommon in temperate or cold climates such as those of Europe and other high latitude areas 

such as Canada, whilst windows in almost all dwellings have internal blinds or curtains 

(Mavrogianni et al., 2017). 

Figures 5-8a-c show the indoor SET, air temperature, and relative humidity in a single-detached 

home of current construction practice and temperature abatement measure M4 during the most 
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severe thermal-based heatwave years that include: 2013 for Toronto, 2010 for Ottawa, and 2010 

for Montreal. The simulations start at the same initial conditions but thereafter use different EHY 

data. The most severe heatwave in Toronto is longer in duration than in Ottawa and Montreal. 

During the heatwave, the daytime indoor SET is above 30℃ for four to six successive days, which 

leads to the heat stress of building occupants.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5-8 Indoor thermal conditions in single-detached home of current construction and using 

typical temperature abatement measure M4 during the most severe heatwaves in Toronto, 

Ottawa, and Montreal (a) (b) (c) and the most intense heatwaves in Houston, Phoenix, and 

Baltimore (d) (e) (f). 

Figures 8d-f show the building indoor SET, air temperature, and relative humidity in the single-

detached home of current construction and that includes temperature abatement measure M6 

during the most intense thermal-based heatwave years that include: 2005 for Houston, 1992 for 

Phoenix, and 2006 for Baltimore. The intense heatwaves experienced in Baltimore, Phoenix, and 

Houston last 480h, 960h, and 3000h, respectively, amongst which the intense heatwave in Houston 
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covers the entire summer period. During the overlap period of heatwaves of these three cities, the 

building indoor SET is comparable and above 30℃ during successive days; this means the heat 

stress experienced by building occupants during these heatwave events is comparable. During the 

heatwave event in Houston, the building's indoor temperature is not the highest. Nonetheless, the 

indoor relative humidity is maintained at much higher levels than those found in the other cities, 

resulting in a continuously high level of building indoor SET and thus severe overheating.  

5.4. Conclusions 

In this study, a method has been proposed to quantify the degree of synchronization between 

outdoor heatwave events and building indoor overheating conditions based on the concept of POS 

(Percentage of Synchronization). A higher value of POS indicates a higher chance of building 

indoor overheating occurring based on outdoor heatwave events for the majority of archetype 

buildings and situations for specific climate zones. A higher value of POS also indicates that a 

selection method (temperature-based or thermal-based) or a heatwave type (i.e. longest duration, 

most severe, and most intense) could also result in a greater chance of overheating conditions 

arising in buildings. Should an extreme or worst scenario need to be evaluated, a selection method 

producing a higher value of POS is preferred since this is more significant when conducting 

building indoor overheating analysis using building simulations.  

In summary, the conclusions are: 

• In building overheating-centric studies, the EHYs should be selected according to the 

severity and intensity of heatwaves defined by the thermal-based index, especially for 

humid climates. 
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• The EHYs selected with thermal-based index result in higher POS than the temperature-

based index for buildings located in cold to hot climate zones, especially in the climate 

zones with high humidity.  

• The EHYs with the most intense and severe heatwaves lead to higher POS than the years 

with the longest heatwave, indicating the intensity and severity of heatwaves are more 

significant than the duration of heatwaves when selecting EHYs for building centric 

analysis.  

• In cool or cold climates, the severe extreme year should be selected. In mixed or hot 

climates, the intense extreme year should be selected. 

• The concept of POS (Percentage of Synchronization) can be applied to different types of 

buildings located in various climate zones to be used as a criterion to select the most 

significant EHYs for indoor overheating studies.  

As previously mentioned, the POS-based EHYs are needed to permit evaluating archetype building 

responses to extreme heat events and as such, the selection could depend on building type and the 

temperature abatement operational measures used. Given these choices, different extreme years 

could be obtained. However, if a building archetype employing typical operational measures to 

abate indoor temperatures has been well defined, the proposed use of POS is entirely applicable. 

Since many reference building models (e.g. developed by DOE or NRCan) are developed based 

on the statistics of building stocks this is often the case. It may indeed be preferable that those 

developing reference models can apply this method to determine a unique EHY for each model 

type; this would benefit the building practitioner community, as the process needs to be undertaken 

but once for any given building type.  
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On the other hand, to further demonstrate its usefulness, the proposed method ought still to be 

applied to other building types, different building temperature abatement measures, and in 

different climate zones. The proposed method can be applied to selecting the unique extreme year, 

which might be time-consuming work. It is also possible to identify a unique EHY for most of the 

different building types or actual urban building stocks provided building information is available. 

This would help ensure that building-scale or urban-scale building overheating analysis can be 

simplified and consistent amongst all researchers.  

As well, completing over 5000 building simulations to select a single weather file may be 

cumbersome. One alternative is to use the method of meta-models without then the need to run 

many building simulations. Also, the verified extreme years for the six cities of this study can be 

applied directly. The overall, contribution of this paper would is to propose an essential concept 

of synchronization between temperature-based and thermal-based indices for assessing extreme 

heat events and a new method using POS values, that can be applied to other cities around the 

globe, irrespective of their climate. In EHY selection for building overheating study, the thermal-

based index is confirmed to be more suitable than the temperature-based index; the heatwave 

intensity and severity are more important than the duration. 
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Chapter 6 Quantifying Building and Zone Level Thermal Resilience 

against Summertime Heat Events 

The contents of this chapter are published in “Lili Ji, Chang Shu, Abdelaziz Laouadi, Michael 

Lacasse and Liangzhu (Leon) Wang (2023), Quantifying improvement of building and zone level 

thermal resilience by cooling retrofits against summertime heat events, Building and Environment, 

https://doi.org/10.1016/j.buildenv.2022.109914”. The contents are slightly modified. 

Abstract 

Quantifying building resilience to extreme weather conditions helps identify the capability of a 

building system to tolerate disturbances and recover from extreme events. The robustness of 

building retrofit strategies can also be evaluated through their contributions to building resilience. 

In this study, building thermal resilience to summertime heatwaves is defined based on the concept 

of resilience trapezoid. The Thermal Resilience Index (TRI) with several labeling classes (Class F 

to Class A+) is proposed to quantify the resilience levels with respect to the relative improvement 

from original indoor thermal conditions. In addition to evaluating the overall resilience of a 

building, the resilience of each thermal zone in the building can be quantified with the proposed 

TRI criteria. A quantification framework is proposed by using the Standard Effective Temperature 

(SET) index as the performance indicator, and the entire procedure is demonstrated with a long-

term care building of five stories. Four retrofit measures and their combinations are implemented 

to improve the building resilience to heatwaves. The results show layered multiple strategies are 

necessary to improve both the overall resilience of the building and the resilience of its component 

thermal zones. The resilience of the building can achieve the level of Class B after the combined 

https://doi.org/10.1016/j.buildenv.2022.109914
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strategies are applied, providing an improvement of 50%-70% in the degree of resilience. The 

proposed TRI index and spatial distribution analysis are useful in evaluating the overall and zonal 

resilience of a building. 

6.1. Introduction 

Global climate change has led to an increased occurrence of extreme weather events. Heatwaves 

have become one of the predominant extreme weather events with increasing frequency, intensity, 

and severity in recent years (Ji et al., 2022a; Mora et al., 2017). During a heatwave, it remains a 

question as to how a building could adapt, absorb, and alleviate the disruptive impacts of the 

extremely hot weather, shelter occupants against the environmental heat, and eventually recover 

its normal operational status after the event. The answer to the question directly leads to an 

important concept of ‘resilience’, which defines the capacity of a subject to anticipate, absorb, 

adapt to, and/or rapidly recover from a disruptive event (Cabinet Office, 2011). The primary 

features of ‘resilience’ include robustness, resourcefulness, rapid recovery, and adaptability 

(NIAC, 2010). The resilience concept has been widely applied to natural disasters such as 

hurricanes (Sun et al., 2020), floods (Vardoulakis et al., 2015), and earthquakes (Ayyub, 2014), 

whereas not many investigations have applied this concept to buildings under heatwave conditions 

(Attia et al., 2021). A building’s resilience against heatwaves determines the thermal performance 

of the building from the perspective of thermal comfort and the heat stress experienced by building 

occupants. Therefore, this study focuses on the concept of ‘building thermal resilience’, which 

quantifies the capability of a building system to tolerate disturbances from extreme heat events 

and to be retrofitted to achieve a robust and fast recovering building system (Homaei and Hamdy, 

2021). 
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A limited number of previous studies on building thermal resilience have been published, which 

can be grouped into two main categories. One category is based on metrics that do not have a direct 

connection to the resilience concept, such as overheating hours or comfort indices, and are noted 

to have a relatively vague definition of building thermal resilience. Lomas and Ji (Lomas and Ji, 

2009), and Lomas and Giridharan (Lomas and Giridharan, 2012) assessed the resilience of 

naturally ventilated buildings to climate change with the overheating hours quantified with respect 

to the time when the air temperature within the building was above fixed and adaptive thresholds 

(CIBSE, 2017). Burman et al. (Burman et al., 2014) adopted a framework involving vulnerability, 

resilience, and adaptive capacity to assess the overheating and energy performance in non-

domestic buildings. Based on the ASHRAE adaptive thermal comfort model (ASHRAE-55, 2017), 

Coley et al. (Coley et al., 2017) proposed a probabilistic adaptive comfort equation for the design 

of resilient buildings. In all these studies, the concept of resilience was mentioned, but a 

quantitative definition of resilience was not provided. In comparison, attempts were made to define 

building thermal resilience in some other studies. Attia et al. (Attia et al., 2021) reviewed the 

resilience studies at both urban and building scales and proposed the definition of resilient cooling 

against heatwaves or power outages involving vulnerability, resistance, robustness, and 

recoverability. However, no quantitative analysis was provided. Zhang et al. (Zhang et al., 2021) 

also reviewed different resilient cooling strategies and qualitatively assessed those strategies 

against four criteria for resilience, which included absorptive capacity, adaptive capacity, 

restorative capacity, and recovery speed. A recent work by Homaei and Hamdy (Homaei and 

Hamdy, 2021) proposed a framework and labeling metric for building thermal resilience with the 

main focus, however, on power outages during heating seasons. In summary, there is a lack of 

quantitative studies that have been completed on building thermal resilience during summertime 
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heatwaves. Considering the increasing occurrence of threats from extreme heat events, it is 

therefore imperative to define building thermal resilience during summertime heatwaves so that 

different mitigation strategies can be quantitatively evaluated. The outcomes from such work 

would be valuable to researchers to understand better building resilience during heatwaves and 

helpful to stakeholders to permit the selection of the appropriate mitigation strategies for their 

buildings and communities. Results from such studies would also help develop associated building 

codes and standards. 

Through the process of defining and quantifying building thermal resilience, the following 

challenges and research questions need to be addressed: 

1) Selection of the appropriate resilience profile 

A resilience profile describes the transition stages that cover the entire resilient procedure of 

interruption, degradation, and recovery. Therefore, it is important to select a resilience profile that 

reflects the actual responses of building thermal resilience. The general resilience profiles include 

the resilience triangle (Bruneau et al., 2003) and resilience trapezoid (Panteli and Mancarella, 

2017). Their difference is that the latter takes into account the post-threat degradation state when 

there are no effective actions to recover from the threats (Panteli et al., 2017; Panteli and 

Mancarella, 2017).  

2) Determination of the quantitative resilience assessment metric 

Defining an assessment metric is key to the quantification of resilience. Previous work on building 

resilience with respect to power outages, as completed by Homaei and Hamdy (Homaei and 

Hamdy, 2021), defined a metric of ‘Weighted Unmet Thermal Performance (WUMTP)’ based on 

two event phases (during and post-event), three hazard levels, and penalties that would accrue from 
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the different exposure times. Chang and Shinozuka (Chang and Shinozuka, 2004) measured the 

resilience of communities from earthquakes through a probabilistic metric of ‘Resilience (R)’ with 

the loss of performance and time to recovery. The probability was calculated numerically to 

quantify the uncertainty concerning resilience. Another probabilistic resilience metric Re was 

proposed by Ayyub et al. (Ayyub, 2014) to consider robustness, resourcefulness, and system aging. 

Henry et al. (Henry and Emmanuel Ramirez-Marquez, 2012) proposed a dynamic metric of 

resilience Я(t|ej) to define a time-dependent system resilience of a road network as the ratio of 

recovery and total loss. Their study was later expanded (Hosseini et al., 2016) to evaluate resilience 

from different perspectives using different indices.  

In the current study, to measure building thermal resilience, it is important to take into account the 

entire resilient process during and after the occurrence of a heatwave instead of the resilience at 

selected points in time. As well, the focus in this study is on a deterministic resilience metric, not 

a probabilistic resilience metric, given that the former would be the first step, and the latter can be 

achieved by inferential simulations of future disruptive events.  

3) Determination of the performance indicator of building thermal resilience 

A performance indicator that represents the condition of a system's performance is needed for the 

resilience curve of the system. Typical heat-stress indices can be used as performance indicators. 

For example, Homaei and Hamdy (Homaei and Hamdy, 2021) used the operative temperature as 

the building performance indicator. However, the operative temperature did not consider indoor 

humidity and occupants’ physiological response. There are direct, empirical, and rational heat-

stress indices in the field of building thermal environment analysis (Holmes et al., 2016). Direct 

indices such as dry bulb temperature and wet bulb temperature can be measured and used to 

evaluate the heat stress conditions. Empirical indices are developed from field experiments and 
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generally expressed in terms of some environmental parameter, not a physiological parameter 

(Brake and Bates, 2002). Examples of empirical indices include the Effective Temperature (ET), 

Wet Bulb Globe Temperature (WBGT), and others. Rational indices include physiological 

parameters such as sweat rate, core temperature, or heart rate and parameters that are calculated 

based on physiological models (Ji et al., 2022b, 2021), such as Predicted Heat strain (PHS), 

Standard Effective Temperature (SET), and others. Summertime building thermal performance is 

not only related to the indoor temperature but also other environmental parameters as well as 

occupants' physiological responses (Ji et al., 2022a). Evidently, rational heat stress indices can 

comprehensively be used to evaluate indoor thermal conditions (air temperature, relative humidity, 

radiation, airspeed) and related human physiology when subjected to such conditions. Hence such 

an index is, therefore, the most suitable within a framework for assessing thermal performance of 

a building and should be considered for adoption as a performance indicator.  

4) Whole building level versus zone level thermal resilience  

Another important part of building thermal resilience that has been ignored in previous studies is 

the thermal resilience at the thermal zone level. It should be noted that an occupant might dwell in 

a few thermal zones in a building and is only affected by the resilience of these specific zones. If 

these specific zones have a reduced level of resilience, the occupant would continuously feel 

uncomfortable no matter how well the other zones perform or the overall building performs. 

Besides, the unbalance of zone level thermal resilience would lead to different rates of recovery 

from heatwaves, and this, in turn, would further affect an occupants' thermal comfort by 

temperature steps (Nagano et al., 2005). Therefore, an analysis of zone-level thermal resilience is 

necessary to help attain a uniformly comfortable indoor environment.  
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To summarise and address the above four research questions, it is evident that a building’s thermal 

resilience, when subjected to summertime heatwaves, has not yet been clearly defined nor 

quantified. In this paper, a framework is proposed to measure building thermal resilience at both 

the whole building and thermal zone levels. Based on the thermal performance of the building 

during heatwaves, the building’s thermal resilience profile is developed from which the thermal 

resilience index can be quantified. Thereafter, a case study is completed to demonstrate the 

evaluation framework. Researchers, building designers, and policymakers can use this evaluation 

framework to measure and label buildings from the perspective of thermal resilience. The trade-

off between building thermal risk and energy consumption could also be evaluated using the 

quantitative tool developed in this study for assessing building thermal resilience. 

6.2. Methodology 

In this study, a building thermal resilience profile is proposed based on the concept of a resilience 

trapezoid, which describes the shapes of the performance profiles from the start of an interruption 

until the end of the event and the restoration of adequate thermal comfort. The heat-stress index 

SET is adopted as the building thermal performance indicator. A new Thermal Resilience Index 

(TRI) is proposed to quantify building thermal resilience and the improvements after applying 

mitigation strategies. The process of deriving the TRI is based on the study by Homaei and Hamdy 

(Homaei and Hamdy, 2021). In Table 6-1, the proposed method is compared to that of Homaei 

and Hamdy’s (Homaei and Hamdy, 2021) method. A detailed explanation is presented in the 

following subsections. 
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Table 6-1 Comparison of the proposed method with a previous work 

Components Proposed method 
Homaei and Hamdy (Homaei 

and Hamdy, 2021) 

Definition 

(Section 6.2.1) 

Performance indicator Standard Effective Temperature (SET) Operative Temperature (OT) 

Resilience profile Resilience trapezoid Resilience triangle 

Quantification 

(Section 6.2.2) 

Building level resilience √ √ 

Zone level resilience √ X 

Labeling 

(Section 6.2.2.3) 

Resilience labeling √ √ 

Each labeled class 

connected to resilience 

improvement 

√ X 

Implementation 

(Section 6.2.3) 
Application scenarios Summertime heatwave Winter power outage 

 

6.2.1 Definition --- Building thermal resilience trapezoid 

The resilience triangle is the foundation for an empirical resilience assessment (Panteli et al., 

2017). It covers the transition from the interruption state to the recovery state (Chang and 

Shinozuka, 2004). However, the degradation state after the interruption and before the restoration 

is not considered (Panteli et al., 2017). In comparison, the resilience trapezoid, the solid black 

curve shown in Figure 6-1, is a more complete model that can capture the time and degree of 

system failure, the time the system stays in the extreme state, and the time required to recover to a 

normal state. The area of the trapezoid is often used as a quantitative metric to evaluate the 

resilience of the system and the efficiency of resilience enhancement strategies (Panteli et al., 

2017).  
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Figure 6-1 Building thermal resilience curve based on resilience trapezoid and 12 segments 

(#1~12) in the curve (dashed curves mean possible trends in real cases) 

The resilience trapezoid model is used in this study to suit the characteristic variation in building 

thermal performance during heatwave events as observed from measurements in real buildings. 

Figure 6-2 shows the Standard Effective Temperature (SET) (black curve) in a building calculated 

based on a two-node bioheat model (Ji et al., 2021) by inputting measured indoor temperature and 

relative humidity from May to August (Shu et al., 2020) and the local outdoor air temperature 

(grey curve)  measured from the roof of the building. With 28℃ (CIBSE, 2017) as the threshold 

temperature for indoor and outdoor heat events, the red and green shading highlights the time 

frames during which indoor overheating and outdoor heatwave events occur, respectively. It can 

be noticed that the indoor SET increases during the heatwave, showing that the tolerance to the 

heatwave for this building starts to decrease. The indoor SET increases to the maximum at the end 

of the heatwave, whereas it does not necessarily decrease soon after the peak occurs but normally 

stays at an extreme level for a certain period of time. Indoor overheating still persists after the 
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outdoor heatwave, which implies that there is a post-heatwave extreme state with respect to 

building thermal performance. Afterward, the indoor SET gradually recovers to the normal level 

(similar to pre-heatwave). It should be noted that when there are no effective actions to defend 

against the heatwave, a post-heatwave extreme state should be considered in the building thermal 

resilience curve, which is the reason that resilience trapezoids are used instead of resilience 

triangles.  

 

Figure 6-2 Summertime building thermal performance based on measured data 

Based on the above observation, a conceptual curve for building thermal resilience is proposed in 

Figure 6-1. With SET as the performance indicator, the curve consists of two periods (i.e., the 

heatwave period (t0~t1) and post-heatwave period (t1~t2)), three thresholds (i.e., SETcomf, 

SETalert, and SETemer), and three hazard levels (i.e., habitable, alert, emergency). The SETmax 

is the maximum SET value for a heatwave event. The thresholds are related to the heat stress of 

the building occupants. As a rational heat-stress index, the relationship between SET and 

occupants' thermal sensation has already been explored in previous studies (Ji et al., 2022d). 

According to the ASHRAE 7-point predicted thermal sensation (PTS) scale for thermal sensation 
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(ASHRAE-55, 2017), a higher value of thermal sensation implies that an occupant feels more heat 

stress. Therefore, the thresholds SETcomf, SETalert, and SETemer can be determined based on 

the relationship of SET and the predicted thermal sensation (PTS) (Gao et al., 2015), as given by: 

𝑃𝑇𝑆 = 0.25𝑆𝐸𝑇 − 6.03, 𝑅2 = 0.998                                                                              (6-1) 

Based on the ASHRAE 7-point scale (ASHRAE-55, 2017), when PTS = 0, the comfort level is 

neutral, and the SETcomf is calculated to be 24.12℃. The SETalert = 28.12℃ and SETemer = 

32.12℃ are calculated when PTS = 1 and PTS =2 (ASHRAE-55, 2017), respectively. The three 

SET threshold values divide the resilience trapezoid into three hazard levels: the habitable level, 

heat alert level, and emergency level. 

6.2.2 Quantification --- Building Thermal Resilience Index 

a. Zone-level thermal resilience 

The area of the trapezoid is often used as a quantitative metric to evaluate resilience (Panteli et al., 

2017), and as suggested by Homaei and Hamdy (Homaei and Hamdy, 2021), the two periods, three 

thresholds, and three hazard levels divide the area into 12 segments. Figure 6-1 shows the 12 

segments (S1-12) of the resilience curve across different phases (during and post heatwave) and 

hazard levels. The colored area of each segment, i, is defined as SETHi (℃∙h), which is the 

integration of the area of SET above its hazard threshold over time. For each hazard level, the 

longer the performance stays at a given level, the more difficult the recovery will be, and as such, 

the first half of exposure time under each hazard level is regarded as ‘easy recovery exposure’, 

whereas the second half is referred to as a ‘difficult recovery exposure’. To reflect this effect on 

resilience, penalty coefficients are assigned to each of the segments (SETHi) based on logical 

assumptions (Homaei and Hamdy, 2021). These coefficient values for different exposure segments 



132 

 

are given in Table 6-2. The higher the penalty coefficient, the more difficult for the building to 

recover from exposure to heat. For example, the penalty value is higher during the heatwave 

(𝑊1,𝑖= 1−6 = 0.6) as compared to after the heatwave (𝑊1,𝑖= 7−12 = 0.4). The emergency level has 

the highest penalty value (𝑊2,𝑖= 5−8  = 0.7) amongst the three hazard levels (habitable level: 

𝑊2,𝑖= 1,2,11,12 = 0.1; alert level: 𝑊2,𝑖= 3,4,9,10  = 0.2). The difference in penalty value for different 

stages of the resilience profile is reflected by 𝑊3,𝑖 . For example, during the heatwave, in the 

habitable level, the penalty value for S1 is 𝑊3,1 =2 and for S2 it is 𝑊3,2=8, and so on. With these 

coefficient values, the weighted value for SETHi (WSETHi) of each segment is calculated as given 

in Equation 6-2. 

𝑊𝑆𝐸𝑇𝐻𝑖 = 𝑆𝐸𝑇𝐻𝑖𝑊1,𝑖𝑊2,𝑖𝑊3,𝑖                                                                                                (6-2) 

Table 6-2 Penalty coefficients for the 12 segments (Homaei and Hamdy, 2021) 

Segments 

𝑺𝒊 

Coefficients 

𝑊1,𝑖  

(during or post-heatwave penalty) 

𝑊2,𝑖  

(hazard level penalty) 

𝑊3,𝑖  

(exposure time penalty) 

𝑆1 0.6 0.1 2 

𝑆2 0.6 0.1 8 

𝑆3 0.6 0.2 10 

𝑆4 0.6 0.2 20 

𝑆5 0.6 0.7 20 

𝑆6 0.6 0.7 40 

𝑆7 0.4 0.7 40 

𝑆8 0.4 0.7 20 

𝑆9 0.4 0.2 20 

𝑆10 0.4 0.2 10 

𝑆11 0.4 0.1 8 

𝑆12 0.4 0.1 2 

 

In building performance simulations such as using EnergyPlus (DOE, 2020), the thermal zones 

are normally assumed to be one node in the simulation, with each having its individual resilience 

curve. So the resilience metric WSETHz (℃∙h) for the thermal zone is the summation of the 12 

segments of this zone, for which: 
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𝑊𝑆𝐸𝑇𝐻𝑧 = ∑ 𝑊𝑆𝐸𝑇𝐻𝑖
12
𝑖=1                                                                                                       (6-3) 

where z indicates that it is the thermal zone WSETH, and i is the segment counter. 

The zone level thermal resilience index TRIz is calculated from the ratio of the original zone value 

for 𝑊𝑆𝐸𝑇𝐻𝑧,𝑜 to the retrofitted zone value for 𝑊𝑆𝐸𝑇𝐻𝑧,𝑟: 

𝑇𝑅𝐼𝑧 = 𝑊𝑆𝐸𝑇𝐻𝑧,𝑜/𝑊𝑆𝐸𝑇𝐻𝑧,𝑟                                                                                             (6-4). 

As such, the TRIz of each zone in the original building is 1.0, and the TRIz of zones for retrofitted 

buildings represent their relative resilience level as compared to their own original condition. With 

the TRIz values of zones in retrofitted buildings, one can tell if the zone level resilience has been 

improved, no matter what the original situation.  

b. Building-level thermal resilience 

To quantify the thermal resilience of the whole building, WSETHb can be calculated by the 

weighted average of the zonal WSETH with the room areas for zones, as given by: 

𝑊𝑆𝐸𝑇𝐻𝑏 =  ∑
𝑊𝑆𝐸𝑇𝐻𝑧,𝑗×𝐴𝑗

∑ 𝐴𝑗
𝑁
1

                                                                                                         (6-5) 

where b indicates that the value of WSETH being calculated is for the overall building, and 

𝑊𝑆𝐸𝑇𝐻𝑧,𝑗 is the WSETH value of each thermal zone, Aj is the floor area of each zone, j is the 

thermal zone counter, and N is the total number of thermal zones in the studied building. 

To mitigate indoor overheating and enhance the building thermal resilience, retrofit strategies are 

often applied to buildings. Compared to the original building before the retrofit, it is necessary to 

know the improvement in resilience level that the retrofits bring to the building. An index that is 

the ratio of resilience performance of the original building to that of the retrofitted building is 

therefore defined as the building thermal resilience index (TRI), which is given by: 

𝑇𝑅𝐼 = 𝑊𝑆𝐸𝑇𝐻𝑏,𝑜/𝑊𝑆𝐸𝑇𝐻𝑏,𝑟                                                                                    (6-6) 
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where 𝑊𝑆𝐸𝑇𝐻𝑏,𝑜 is the whole building WSETH of the original building, and 𝑊𝑆𝐸𝑇𝐻𝑏,𝑟 is the 

whole building WSETH of the retrofit building. After the retrofit, the indoor SET is expected to 

decrease, resulting in the reduction of WSETHb. A higher TRI value indicates that the building is 

more resilient to the extreme heat event; TRI < 1 means that the retrofit building is less resilient 

than the original baseline building; TRI = 1 means there is no improvement in resilience, and 

finally; TRI > 1 means the retrofitted building is more resilient than the original building. 

c. Thermal resilience labeling 

Similar to the resilience labeling used for energy systems (Rajagopalan and Leung Tony, 2012), 

building thermal resilience can be labeled into several classes (Homaei and Hamdy, 2021). By 

comparing the performance of an original building to that of a retrofit building, the building 

thermal resilience can be scaled from F to A+, where A+ represents the most resilient building, 

and F is the original building resilience level: a building having no retrofits. However, clear 

physical meaning for each class and the reason for the range division are needed. In this study, the 

range division, as summarized in Table 3, is based on improvement in resilience. When 𝑊𝑆𝐸𝑇𝐻𝑏,𝑟 

of the retrofit building is 10% less than 𝑊𝑆𝐸𝑇𝐻𝑏,𝑜 of the original building, the TRI is calculated 

to be 1.1, the range 1.0-1.1 is therefore classified as Class E, representing 0-10% resilience 

improvement. For classes D to A+, the improvement on WSETH with an increment of 20% is 

applied to each class, and the corresponding ranges of TRI are calculated. This makes seven (7) 

labeling levels in total, which were adopted for the resiliency labeling of building energy 

performance (Pérez-Lombard et al., 2009). In this way, when 𝑊𝑆𝐸𝑇𝐻𝑏,𝑟 of the retrofit building is 

30% less than 𝑊𝑆𝐸𝑇𝐻𝑏,𝑜 of the original building, the TRI is 1/(1-30%) = 1.4, so the range 1.1-1.4 

is therefore classified as Class D, representing a resilience improvement of 10-30%. Similarly, 
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Classes from level C to level A+ represent resilience improvements, respectively, for ranges of: 

30%-50%, 50%-70%, 70%-90%, and > 90%. With this labeling method, the higher class bands 

become broader, which reflects the growing difficulty to achieve a higher class of resilience. For 

example, the TRI needs to be increased more from Class C to Class B than from Class D to Class 

C. This labeling system can be applied to both building-level and zone-level resilience based on 

the value of TRIb and TRIz, respectively.  

In this study, the goal of the building-level thermal resilience is set to be Class B (at least 50% of 

resilience improvement); the goal of zone-level thermal resilience is set to be 50% of thermal zones 

reach to Class B and the maximum difference of zone classes is less than one class (e.g. if the most 

resilient zone is Class B, the worst resilient zone should be at least Class C). 

Table 6-3 Building thermal resilience labeling 

Label TRI Resilience improvement 

Class A
+
 (10.0, +∞) >90% 

Class A (3.3, 10.0] 70%-90% 

Class B (2.0, 3.3] 50%-70% 

Class C (1.4, 2.0] 30%-50% 

Class D (1.1,1.4] 10%-30% 

Class E (1.0, 1.1] 0-10% 

Class F (0, 1.0] No improvement 

 

6.2.3 Implementation --- Framework of building thermal resilience quantification 

Based on the definition and quantification method given above, Figure 6-3 shows the framework 

used to quantify building thermal resilience. In the first step, a target heatwave event and the related 

climate data should be collected; this information would be input to conduct building simulations. 

To obtain the indoor thermal parameters (i.e., air temperature, relative humidity, and airspeed), the 
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original building and its retrofitted conditions should be simulated using a building performance 

simulation program, such as EnergyPlus (DOE, 2020). Then, the indoor thermal parameters are 

used as inputs to the SET model (Ji et al., 2021) to permit calculating the performance indicator 

SET. With the value of SET, the building thermal performance curve can then be determined. The 

building thermal performance curve can be abstracted based on the trapezoid resilience curve 

having 12 segments with respect to the two phases, three hazard levels, and exposure time at each 

level; the calculations can then be conducted. As such, in the third step, the zone level values for 

WSETHz and TRIz can be calculated according to Equations 6-2 to 6-4, and the thermal resilience 

classes for each zone can be labeled given the values calculated for TRIz in accordance with that 

provided in Table 6-3. After which, the building level values for WSETHb and TRIb can be 

calculated according to Equations 6-5 to 6-6, and the building thermal resilience classes can be 

labeled from the values of TRIb calculated according to that given in Table 6-3.  In the following 

sections, a case study is provided to illustrate this workflow. 

 

Figure 6-3 Framework of building thermal resilience quantification 
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6.3. Case study 

6.3.1 Heatwave and climate data 

From June 30 to July 05, 2018, a heatwave occurred in Montreal, Canada, and 66 heat-related 

deaths were reported because of this event (Lamothe et al., 2019). This heatwave event is used in 

this study as an example case to evaluate a building's thermal resilience. The weather data was 

collected from hourly measurements from a weather station located in the urban area of Montreal 

(Shu et al., 2022a). The air temperature, relative humidity, wind speed, wind direction, solar 

radiation, and precipitation were collected and converted to an EPW format for input to the 

Energyplus (DOE, 2020) building simulation model. 

6.3.2 Building model and retrofit measures 

The building model was developed for a long-term care building constructed in the 1980s with a 

footage area of 817m2, which is one of the buildings in a monitoring campaign conducted in 

Montreal, Canada since the summer of 2020 (Leon et al., 2020). The indoor temperature and 

relative humidity (RH) in selected spaces on different floors and orientations were monitored 

continuously with a time interval of 15min. On-site weather stations were placed on the roofs of 

this building to gather local weather data, including air temperature, relative humidity, solar 

radiation, wind speed and direction, and precipitation. Those measured indoor and outdoor 

environment data were used to calibrate and validate the building model (Ji et al., 2022c). The 

detailed calibration procedure can be found in Appendices A.2. 

The selected long-term care building is an L-shaped building facing the southerly direction and is 

composed of five floors above ground and one below-grade basement floor. All patient rooms and 

offices in this building are naturally ventilated. Figure 6-4(a) shows the map view of the building 
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and Figure 6-4(b) shows the 3-D model of the building as studied and developed in Design 

Builder®. Figures 6-4(c) and 6-4(d) are the thermal zone divisions of Floor 1 and the standard 

floors from Floors 2 to 5, respectively. A total of 80 thermal zones for naturally ventilated patient 

rooms, office rooms, and corridors were investigated to permit analyzing the zone-level and 

building-level thermal resilience. 

 

(a) 

 

(b) 

 

                            (c) 

 

                       (d) 

 

Figure 6-4 (a) Oblique aerial photo, (b)3-D model, (c) thermal zone division of Floor 1, and (d) 

thermal zone division of Floor 2~5 for a long-term care building located in Montreal, Canada 

From a building survey, site visit, and architecture plan, the building parameters, operation 

schedules, and air conditioning information were collected (Wang and Shu, 2021). Some unknown 

parameters, including envelope thermal properties, internal heat gains, and natural ventilation rate, 

were calibrated through a Monte-Carlo method (Hoffman, 2014) based on the measured hourly 

indoor temperature (Ji et al., 2022c). Sensitivity analyses were conducted first to identify the most 

important parameters, and thereafter parametric simulations were conducted to determine the value 

of these unknown parameters. The calibrated values (Ji et al., 2022c) of the parameters are shown 

in Table 6-4. 
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Table 6-4 Calibrated parameter values 

Category Parameter Unit Value 

Wall Wall U-Value W/m2K 0.3 

Roof Roof U-Value W/m2K 0.25 

Wall Wall thermal mass KJ/km2 220 

Roof Roof thermal mass KJ/km2 335 

Window Window U-Value W/m2K 2.72 

Window Window SHGC - 0.37 

Interior blinds 
Slat angle Deg 59 

Solar reflectance  0.6 

Equipment Equipment power density W/m2 2.93 

Lighting Lighting power density W/m2 9.94 

Air mass flow through cracks  

Air mass flow coefficient at reference 

crack condition of walls and roof 

surfaces 

kg/m∙s 0.0025 

kg/m∙s 0.0012 

Natural ventilation control Natural ventilation set point ℃ 26 

Interior room door opening 

factor Width factor for door opening 
% 47 

Room window opening factor % 10 

 

In Figure 6-5, the measured and simulated data (average values of the three monitored rooms) are 

compared after applying the calibrated parameters during the calibration and validation periods. 

At the room level, the root mean square error (RMSE) of the calibration and validation range in 

value from 0.56℃ to1.09℃, which are both less than the requirement of 1.5℃ as suggested in 

previous studies (O’ Donovan et al., 2019). The mean bias error (MBE) is within ± 1.2%, and the 

coefficient of variation of the RMSE (CvRMSE) is less than 3.65%, which is also within the 

standard requirement (±5% and 20%) as given in the literature (IPMVP, 2003). More details of 

the model development and calibration can be found in the authors’ previous paper (Ji et al., 

2022c). 
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(a) 

 

(b) 

Figure 6-5 Comparison of the measured and simulated data during (a) calibration period and 

(b) validation period 

Table 6-5 Mitigation strategies of retrofit buildings and comparison with the original building 

 Original building Retrofit building 

Shading Interior blinds Exterior shading (ES) 

Natural ventilation  Window opening area 10% 

Window opening area 50% (NV)  

Windows are open when the indoor temperature is 

higher than 26℃ and higher than the outdoor 

temperature (Laouadi et al., 2020b) 

Roof Regular roof 

Green roof (GF)  

Height of plants 0.3 m; Leaf area index (LAI) 3; 

Leaf emissivity 0.9; Leaf reflectivity 0.2; Substrate 

thickness 0.1 m; Conductivity of dry soil 0.4 

W/(m·K); Thermal absorption of soil 0.96 

(Morakinyo et al., 2016) 

Night ventilation 

(NiV) 
No 

Exhaust fans  

Operating time 9pm ~ 10am; Design pressure rise 

420Pa; Fan total efficiency 0.6; Maximum air 

change rate 5h-1 (Guo et al., 2020) 

Two strategies 

combination 
/ 

ES+GF, ES+NiV, ES+NV, GF+NiV, GF+NV, 

NiV+NV 

Three strategies 

combination 
/ 

ES+GF+NiV, ES+GF+NV, ES+NiV+NV, 

GF+NiV+NV, ES+GF+NV 

Four strategies 

combination 
/ ES+GF+NiV+NV 
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Mitigation strategies were applied to the original calibrated building model, including replacing 

interior blinds with exterior shading (ES), increasing window opening area to enhance natural 

ventilation (NV), applying a green roof (GF), and applying night ventilation (NiV). Detailed 

descriptions of these four (4) building retrofit measures, and combinations of these measures with 

2 to 4 strategy combinations, are listed in Table 6-5. The thermal resilience of the retrofit measures 

will be quantified using the proposed method. 

6.4. Results 

6.4.1 Thermal performance curve 

Figure 6-6 shows the thermal performance curves of the original building and the retrofitted 

buildings. The buildings are named with respect to the strategies implemented for each of them. 

The effect of retrofits on the curves can be analyzed from three aspects: i) average reduction: 

lowering the black curve that reflects the average thermal performance of the whole building, ii) 

peak removal: lowering the highest curve that represents the most overheated zone, and iii) daily 

consistency: reducing fluctuation of curves that shows the difference between daytime and 

nighttime.  

Amongst the four (4) individual retrofit strategies (GF, ES, NiV, NV), NV is the most efficient in 

average reduction by lowering the average curve to below SETemer threshold, and ES works well 

on peak removal by reducing the SET of the most overheated zone. NiV primarily affects the 

nighttime SET value but has a limited impact on daytime SET, which does not contribute to the 

daily consistency. GF has no significant influence on thermal conditions. Almost all the retrofit 

strategy combinations can improve the average thermal performance except for ES+GF and 

GF+NiV. However, without ES, the combinations of GF+NiV, GF+NV, NiV+NV, and 
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GF+NiV+NV cannot reduce the peak value of SET, which means they have a limited effect on the 

most overheated zone. 

From the above qualitative analysis of the performance curves, no individual strategy can 

simultaneously improve the thermal performance of the whole-building average, the most 

overheated thermal zone, and the daily consistency, thus combined strategies are necessary. 

Furthermore, when analyzing building thermal resilience, not only should one focus on the overall 

mean curve, but the resilience of the thermal zones in the building should also be evaluated since 

these are related to the worst resilience case. A good retrofit strategy should be able to enhance the 

overall resilience as well as achieve the resilience uniformity of all thermal zones.  

Due to the complexity of the effect of retrofits on building thermal performance, a single index is 

necessary to define the building resilience during and after the heatwave period, as well as the 

spatial distribution in thermal resilience of different thermal zones. With the single index value, 

one could simplify the analysis process for building overheating problems and resilience 

performance assessment. Otherwise, there is a need to compare different criteria and there is the 

possibility that each of these may yield different overheating results (Shu, 2021; Shu et al., 2022b). 

With the quantification method proposed in Section 6.2, the building thermal performance curve 

can be abstracted as a trapezoid resilience curve, and thereafter, the calculations for the thermal 

resilience index can be completed. The quantitative analysis for zone-level and building-level 

thermal resilience is presented in the following sections. 
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Figure 6-6 Thermal performance curves of the original building and retrofitted buildings (Note: 

The curves of different colors are the thermal performance curves of different thermal zones; the 

black curve is the averaged profile of all thermal zones) 

6.4.2 Zone-level thermal resilience 

As mentioned above, the focus ought to be made on the zone-level thermal resilience since it is 

more likely that occupants would be residing in the same zone or a few zones, and their thermal 

comfort is influenced to a greater extent by the resilience of a specific set of zones.   
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In Figure 6-7, the zone-level thermal resilience index (TRIz) and labeled classes of the retrofitted 

buildings are shown. In this figure, for thermal zones located on different floors and facing 

different directions, the consequences of retrofit measures on the resilience levels are compared. 

It should be noted that the TRIz of all zones in the original building is equal to 1.0 (Class F), and 

the TRIz of each zone in the retrofitted buildings indicates the relative resilience improvement 

compared to the original condition.  

For individual retrofit strategy (i.e., GF, ES, NiV, and NV), as in Figure 6-7, GF, NiV, and NV 

work better on upper floors (Floors 3~5) than on lower floors (Floors 1~2) to improve their zone 

resilience. They also improve more for zones facing north and east than zones facing south and 

east. ES has limited improvement for all the zones while working specifically well on Zone 1-7 

(Floor 1, zone #7). Of note is that Zone 1-7 is facing south-west and has a smaller floor area than 

other zones and hence, more serious overheating problems in the original situation, whereby the 

ES retrofit measure decreases solar heat gains from the south-west in the afternoon and from this, 

the resilience level is improved. As such, individual strategies have different features with respect 

to improvements in resilience; more specifically, amongst these retrofit measures, NV is the most 

efficient, whereas the ES works well in the worst resilience zone. However, none of the individual 

strategies can achieve the zone-level resilience goal set in Section 2.2.3. NV makes 39% (<50%) 

of zones reach Class B and the deviation of labeling is two classes (Class D VS Class B, > one 

class). 
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Figure 6-7 Zone thermal resilience index (TRIz) and labeled classes of the retrofitted buildings 

(Bars in different colors: TRIz and resilience label of each thermal zone; Red horizontal dashed 

line: TRIz = 1 (baseline); Black vertical dashed line: separator between floors) 

 

Since individual retrofit measures have their own advantages and disadvantages, the combination 

of retrofit measures can take advantage of each measure. For example, the combination of ES+NV 

can achieve the zone-level resilience goal: 64% of zones reach Class B and the deviation of 

labeling is one class (Class C VS Class B). The combination of all four measures can improve 65% 

of zones to at least Class B. Zones on upper floors even reach Class A while most zones on lower 

floors stay at Class C, which actually does not contribute to the uniformity between zones. 

Therefore, when designing appropriate combinations of retrofit strategies, additional design efforts 

should be applied to improve the zone-level thermal resilience on lower floors, instead of simply 

increasing the layers of combination. 
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6.4.3 Building-level thermal resilience 

 

Figure 6-8 Building thermal resilience index (TRIb) and labeled classes of the original building 

and retrofitted buildings 

Figure 6-8 shows the TRIb of the original building and different retrofitted buildings, including 

their overall building thermal resilience level. The buildings are designated by the types of 

measures implemented on them. For buildings with an individual retrofit strategy, none of them 

can reach the building-level thermal resilience goal of Class B, as set in Section 6.2.2.c. For 

buildings with combinations of two retrofit strategies, NiV+NV and ES+NV are labeled as Class 

B. Other buildings located in Class B have three or four strategy combinations.    
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Figure 6-9 TRIb increases by a single strategy applied on different baseline buildings: (a) 

Baseline buildings with GF; (b) Baseline buildings with NV; (c) Baseline buildings with ES; (d) 

Baseline buildings with NiV. 

As well, with different baseline buildings, the efficiency of the same single strategy might vary. 

For example, as shown in Figure 6-9(b), using the building with ES as a baseline, adding NV can 

increase the TRIb to the goal of Class B and the contribution of NV is 0.94, whereas, with NiV as 

a baseline, the TRIb can also reach to Class B by adding NV but the contribution of NV is lower. 

It seems the selection of the best retrofit strategy also depends on the measures that have already 

been implemented in a building. Besides, the improvement of resilience level becomes more 

difficult with the baseline level becoming higher. As shown in Figure 6-9, when the baseline level 

is higher than Class C, the contribution by adding an individual strategy is less than when the 
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baseline level is lower. This means that more appropriate strategy and design are needed to make 

the building to Class A or A+. 

6.5. Discussion 

A new resilience parameter, the building Thermal Resilience Index (TRI) was proposed in this 

study, as well as an associated labeling system to quantify the level of building thermal resilience 

that also includes the distribution of thermal zone level resilience. Higher values for TRIb imply 

that the building is more resilient to heatwaves and the zones are more balanced. Based on the 

resilience improvement, building thermal resilience can be labeled, which makes it easier to 

measure and visualize a resilience level. Apart from the building overall resilience index, the 

relative resilience of each zone compared to its original situation can also be calculated as the zone 

level thermal resilience index TRIz. The analysis of zone-level resilience can help select more 

efficient retrofit measures according to their performance on zones of different floors and 

directions. 

Another way to evaluate the zone level resilience is through the spatial distribution of their thermal 

resilience. Equation 6-3 indicates that the WSETHz is the absolute thermal resilience of each zone: 

the lower the value, the more resilient the zone. The distribution of WSETHz represents the 

resilience uniformity of all zones.  

Figure 6-10 shows the frequency distribution of WSETHz for all thermal zones in each building. 

The left column indicates the building overall resilience class (from Class F to B), and each 

building is categorized in the corresponding class. From Class F to Class B, the mean and standard 

deviation (Std) of the spatial resilience distribution tend to be smaller. In the analysis in Section 

6.4, among the individual strategies, NV is the most efficient and ES can improve the worst zone 
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resilience; among the combinations of two strategies, NiV+NV and ES+NV can reach the 

building-level goal of Class B, and ES+NV can as well reach the zone-level goal. The Std of NV, 

ES, NiV+NV, and ES+NV are therefore important to note. The Std of ES is 95.3, which is much 

higher than the Std of NV (24.7); the Std of NiV+NV and ES+NV are comparable, both close to 

21.0. The Std of three or four strategies are lower but have limitations in the implementation in 

reality and retrofit expenses. Overall, ES+NV is the most recommended in this case study, which 

can realize both building-level and zone-level resilience goals, and leads to a good resilience 

uniformity of all zones. 
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Figure 6-10 Distribution of WSETHz (Std: Standard deviation of WSETHz of all thermal zones, 

which indicates the variation of resilience among the zones in the studied building. Small Std 

values mean the zones in the building tend to have similar resilience evaluated by WSETHz.) 

This study emphasizes the analysis of thermal resilience from both building-level and zone-level. 

Thermal zones have different ability to recover from a heatwave, which causes some zones to 

remain uncomfortable hot for a longer period of time and this, in turn, leads to thermal risks to 

occupants living in these zones, especially for vulnerable people, such as those that are older, as 

well as children and sick people (Ji et al., 2022b). This is particularly true for large buildings, such 

as long-term care centers, senior homes, and hospitals. Some rooms could be most vulnerable, and 



152 

 

special retrofit measures should be implemented in the event that the whole building strategy 

cannot meet the worst zone requirement. 

One of the limitations of this study is the lack of acceptance criteria for resilience, that is, the class 

for which the resilience level is deemed acceptable. In future studies, criteria can be explored and 

defined to indicate the meaning of different classes. For example, by considering the trade-off 

between the investment in retrofit strategies and the return on thermal resilience, one can optimize 

the building thermal resilience with the lowest cost in money and energy, from which the objective 

of attaining an acceptable level of resilience can be recommended. 

In addition to the deterministic resilience index, probabilistic (Ayyub, 2014; Chang and Shinozuka, 

2004) or dynamic indexes (Henry and Emmanuel Ramirez-Marquez, 2012) are also worth 

investigating. Building thermal properties are not constant; they are affected by material aging 

with the time of usage. A probabilistic index can take into account the uncertainty of the building 

performance with lifelong aging effects and from the influence of future weather conditions. The 

uncertainty in calculating thermal performance indicators, such as the uncertainty in the SET 

model, could also be considered in the probabilistic index. Besides, a building is a dynamic system. 

Its thermal performance might be changed by the occupant behaviors and building operations. A 

dynamic index can evaluate human adaptive behaviors during the heatwave and measure the real-

time resilience level. These quantification methods will be explored in future studies. 

The method proposed in this study is illustrated by building thermal resilience against heatwaves. 

A similar procedure may also be used in other scenarios, such as winter/summer power outages, 

community or city-scale thermal resilience, and so on. 
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6.6. Conclusions 

In this study, building thermal resilience with respect to the occurrence of summertime heatwave 

events is defined and quantified. The quantitative resilience approach consisting of the resilience 

profile, the resilience metric, and the performance indicator was investigated. A framework for 

building thermal resilience quantification was proposed, which includes the following important 

factors: 

• The conceptual building thermal resilience curve has the profile of a resilience trapezoid. 

• A resilience parameter, the Thermal Resilience Index (TRI), can be calculated by 

determining the improvement in relative resilience from original conditions.  

• The zone-level and building-level thermal resilience can be labeled based on the value of 

TRIz and TRIb, respectively, and each labeled class represents the percentage of 

improvement in resilience. 

• The distribution in zone-level resilience can also be analyzed by the absolute thermal 

resilience of each zone WSETHz. A smaller standard deviation of the distribution means 

the zone resilience is more homogenous. 

• The Standard Effective Temperature (SET) can be used as a performance indicator to 

permit defining the building thermal performance curve. 

The resilience framework is illustrated for a building before and after retrofits with respect to the 

occurrence of a heatwave event. The different retrofit strategies studied included exterior shading 

(ES), green roof (GF), natural ventilation (NV), and night ventilation (NiV). The results obtained 

from the case study were the following: 
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• Among the individual strategies, NV is the most efficient, whereas ES can improve the 

thermal resilience of the most overheated zone. 

• The combination of ES+NV is the most recommended in this case, which can efficiently 

improve building-level resilience and more than 50% of zone-level thermal resilience to 

Class B, as well as reach a good resilience uniformity of zones.  

• Most strategies and their combinations are more efficient on upper floors than on lower 

floors. Design efforts should therefore be applied to improve the thermal resilience on 

lower floors, instead of simply increasing the layers of combination. 

• The efficiency of a retrofit strategy could be affected by the strategies that have already 

been implemented in the building. NV is more efficient in building with ES than NiV. The 

improvement in building resilience class becomes difficult when the baseline class is at 

Class C and above. 
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Chapter 7 Conclusions and Future Work 

7.1. Conclusions  

This research focused on evaluating human thermal response and building resilience to extreme 

heat events. Three essential aspects related to the indoor heat-stress situation were explored: 

occupants’ vulnerability, outdoor extreme heat events and building thermal resilience. An existing 

Bioheat model was improved to better apply to hot exposure situations. The heat vulnerability of 

older people was investigated based on the improved Bioheat model and the age-related changes. 

The approaches of selecting extreme weather years (EHYs) were evaluated for indoor overheating-

centric studies. The quantification method of building thermal resilience was explored and applied 

to real building cases for assessing the resilience enhancement efficiency of passive cooling 

strategies. Related research problems were solved about young and older people’s physiological 

responses to hot exposure, indices and heatwave patterns considered in EHY selection, and 

resilient cooling strategy quantification. The conclusions were the following: 

• The existing two-node bioheat model for average-aged people can be improved by 

additional temperature control signals and optimizing the values of the model constants to 

hot exposure. The recently published thermoregulatory models about sweating, skin blood 

flow, shivering, and sweat evaporation efficiency can be integrated into the two-node 

structure to inter-compare their efficiency in improving the prediction of physiological 

responses, including core temperature and mean skin temperature. After adjusting based 

on the age-related weakening changes in physiology and thermoregulatory activities for 

sweating, vasomotor, and shivering, the two-node bioheat model can be applied to predict 

older people’s physiological responses.  
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• In building overheating-centric studies, the EHYs should be selected according to severity 

and intensity instead of the duration of heatwaves. The heatwaves should be defined by the 

thermal-based index instead of only air temperature. The EHYs selected with thermal-

based index results in a higher percentage of synchronization (POS) of outdoor and indoor 

heat events than the temperature-based index for buildings located in the cold to hot climate 

zones, especially in the climate zones with high humidity. The EHYs with the most intense 

and severe heatwaves lead to higher POS than the years with the longest heatwave, 

indicating the intensity and severity of heatwaves are more significant than the duration of 

heatwaves when selecting EHYs for building centric analysis. In cool or cold climates, the 

severe extreme year should be chosen. In mixed or hot climates, the intense extreme year 

should be selected. 

• The concept of POS can be applied to different types of buildings in various climate zones 

to be used as a criterion for selecting the most significant EHYs for indoor overheating 

studies. A representative historical EHY for each city of three cities in Canada and three in 

the US was chosen from long-term climate data.  

• Based on the building thermal resilience quantification, among the four studied overheating 

retrofit strategies, including exterior shading (ES), green roof (GF), natural ventilation 

(NV), and night ventilation (NiV), NV is the most efficient, whereas ES can improve the 

thermal resilience of the most overheated zone. The combination of ES+NV is the most 

recommended, which can efficiently enhance building-level resilience and more than 50% 

of zone-level thermal resilience to Class B, as well as reach a good resilience uniformity 

of zones.  
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7.2. Contributions 

This research developed models to quantify young and older adults’ physiological responses to 

heat-stress conditions and building thermal resilience against extreme heat events, as well as the 

method to select extreme reference weather years for indoor overheating studies. These models 

and methods were validated and demonstrated with case studies and could be extensively used in 

studies related to protecting human health and enhancing building resilience to heat events. The 

models and methods include: 

• A bioheat model for average-aged people with an improved thermoregulatory system in 

the two-node model was developed and validated using experimental data covering hot and 

cold exposure conditions. The thermoregulatory system was improved by including 

additional temperature control signals and optimizing the values of the model constants. 

The model constants were optimized based on the combined RMSE to predict the core and 

skin temperatures. Inter-comparison was conducted for the proposed thermoregulatory 

models together with recently published thermoregulatory models for sweating (six 

models), skin blood flow (three models), shivering (three models), and sweat evaporation 

efficiency (four models) in the two-node structure. The improved two-node model was 

proved to accurately predict core and skin temperatures under a wide range of hot and cold 

exposure conditions. 

• A new bioheat model for older people was developed based on the two-node model for 

average-aged people, accounting for the age-related weakening changes in physiology and 

thermoregulatory activities for sweating, vasomotor, and shivering. Two types of age-

related physiological changes were considered, including the weakening of 
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thermoregulatory activities and sensory delays in triggering thermoregulatory actions. 

Under steady hot and cold exposures, the proposed model predictions agreed well with the 

experiments: the maximum deviation was 0.30℃ in the core temperature and 0.60℃ in the 

mean skin temperature. The proposed model can also capture the relative difference in 

physiological responses between older and young people in hot to cold scenarios. 

• A new method was proposed to select extreme hot years for building indoor overheating 

analysis. The extreme hot year (EHY) was determined by quantifying the degree of 

synchronization between outdoor heatwave events and building indoor overheating 

conditions based on the concept of Percentage of Synchronization (POS). A higher value 

of POS indicates a higher chance of building indoor overheating occurring based on 

outdoor heatwave events for many archetype buildings and situations for specific climate 

zones.  

• A new quantification framework was proposed to evaluate the building and zone level 

thermal resilience to extreme heat events. The framework was based on the investigation 

of the resilience profile, the resilience metric, and the performance indicator. The 

conceptual building thermal resilience curve has the profile of a resilience trapezoid. A 

resilience parameter, the Thermal Resilience Index (TRI), can be calculated by determining 

the improvement in relative resilience from original conditions. The zone-level and 

building-level thermal resilience can be labelled based on the value of TRIz and TRIb, 

respectively. Each labelled class represents the percentage of improvement in resilience. 

The distribution in zone-level resilience can also be analyzed by the absolute thermal 

resilience of each zone WSETHz. A smaller standard deviation of the distribution means 
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the zone resilience is more homogenous. The Standard Effective Temperature (SET) can 

be used as a performance indicator to define the building thermal performance curve. 

7.3. Future work 

The main contribution of this research is proposing validated models and methods to be used in 

the studies about climate-resilient buildings, from the three aspects of occupants’ physiological 

responses, building thermal resilience and selection of extreme weather data from a long-term 

period.  

The proposed models and methods can be extensively implemented on larger spatial and temporal 

scales. With projected future climate data, one can select the extreme reference weather and then 

thereby investigate the climate change impact on human health and building resilience, based on 

which to explore potential mitigations to avoid negative consequences due to global warming. 

Based on a similar concept, with weather data of different climate zones of the world, the 

quantification method can be applied and label the building thermal resilience in different climates, 

thus, providing a quantitative comparison of various climates and their impact on buildings.  

The proposed method can quantitively evaluate the health risk reduction and resilience 

enhancement efficiency of climate mitigation strategies such as nature-based solutions (NBS), 

which have been regarded to have significant potential to mitigate the effects of heatwaves, reduce 

heat vulnerability and enhance the thermal resilience (Kabisch et al., 2016). The type and extent 

of NBS, as well as the spatial distribution of the NBS at the community scale, directly influence 

the local microclimate and in turn, the safety to humans to thermal effects due to extreme heat 

events. As buildings act as wind obstacles and anthropogenic heat is released into the environment, 

the interactions between outdoor microclimate and indoor thermal conditions can also be affected 
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by NBS configurations. The proposed tools can act as quantitative evaluations of human thermal 

risks and community-building thermal resilience levels with and without the protection of NBS 

strategies under the impact of urban heat islands and climate change. The use of labeling of the 

resilience level allows quantifying the performance of a given NBS configuration, thereby 

permitting a detailed design to be achieved. 

Due to older people being more vulnerable than young people to heat or cold conditions, predicting 

older people's thermal sensations is also important for controlling the built environment and 

avoiding extreme heat/cold injuries. Previous studies mainly focused on predicting the thermal 

sensation of general population, and the data-driven methods are often not constrained by 

physiological responses. Integrated models can be studied to combine the proposed physiological 

model of older people and the data-driven methods. The surveyed data on older people’s thermal 

sensations can be found in ASHRAE Global Thermal Comfort Database II (Földváry Ličina et al., 

2018). The dataset has collected the environmental conditions, subjects' factors, and thermal 

sensation vote (TSV) survey results. With the environmental conditions (air temperature, mean 

radiant temperature, relative humidity, and airspeed) and subject factors (clothing insulation, 

height, and weight) as inputs, core and skin temperatures, water loss, and standard effective 

temperature (SET) can be calculated by the two-node model of older people. The above 

physiological parameters and building operation mode (natural-ventilated/air-conditioned), older 

people's gender, surveyed seasons, and climate zones can be used to train the data-driven model 

to predict older people’s thermal resilience in various scenarios. 
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Appendices 

A.1. Calculation of Standard Effective Temperature (SET) based on the 

developed Bioheat models 

Referring to ASHARE 55 ( 2017), SET is defined as the temperature of an imaginary environment 

at 50% RH, <0.1 m/s (20 fpm) average airspeed Va, and Tr = Ta, in which the total heat loss from 

the skin of an imaginary occupant with an activity level of 1.0 met and a clothing level of 0.6 clo 

is the same as that from a person in the actual environment with actual clothing and activity level. 

SET can be calculated with Newton’s iterative solution, as shown in Figure A.1-1. 

 

Figure A.1-1 Calculation of SET (Zhang and Lin, 2020) 
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A.2. Building modeling and calibration based on measured data 

Building models that can accurately predict hourly indoor air temperatures in free-running 

situations are key to understanding overheating conditions and the resilience of passive cooling 

strategies under a changing climate. To accurately predict indoor temperatures, it is necessary to 

properly model pressure-driven infiltration and natural ventilation. This can be achieved by 

coupling a building thermal model to an airflow network model. The development of coupled 

building thermal and airflow network models is described in this section to calibrate building 

models using field measurements of indoor air temperature.  

Figure A.2-1 shows the procedure of building modelling and calibration. Through building survey, 

site visit and architecture plan, building parameters, operation schedules, and HVAC systems 

information are collected. Airflow network (AFN) is applied to the building models. There are 

unknown parameters to be calibrated based on the measured indoor hourly temperature. The 

subsections below will introduce the procedure in detail with three measured and modelled 

buildings. 

 

Figure A.2-1 Procedure of building modeling and calibration 
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 A building measurement campaign was conducted to monitor the indoor and outdoor thermal 

conditions of different types of buildings in Montreal, Canada (Shu et al., 2020). The indoor 

temperature and relative humidity (RH) in selected spaces on different floors and orientations of 

13 buildings (three primary schools, three hospitals and four residential buildings) were monitored 

continuously over the summer seasons from 2020 to 2021. On-site weather stations were placed 

on the roofs of buildings to gather local weather data, including air temperature, relative humidity, 

solar radiation, wind speed and direction, and precipitation. With the monitored indoor and outdoor 

conditions, the overheating issues of these buildings can be assessed during the monitored period. 

However, with climate change, the overheating conditions in future climate projections need to be 

predicted and possible mitigation strategies need to be investigated using calibrated building 

models.  

Among the monitored buildings, three buildings including a long-term care building (LTCB), a 

primary school (PS), and a multi-unit social housing (SH) are modelled in Design BuilderTM and 

exported for use in an EnergyPlus simulation package. The monitored LTCB is an L-shaped 

building facing the northwest direction and is composed of five floors above the ground and below-

grade basement floor. The total length and width of the building are 44m and 42m, respectively. 

The size of a typical private patient room in the building is 5.4m x 3.6m. The building was 

constructed in 1980 with exterior walls made of concrete and solid brick veneer cladding. There 

were no central cooling systems in the building. As for the mechanical ventilation system, five 

lounge spaces used a central system to provide fresh air. 

The PS building is a 3+1 story building originally built in 1930. The building was partially 

retrofitted six times including the extension in 1955, adding boiler room in 2008, masonry in 2009, 
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plumbing in 2014, and new roof in 2015, sanitary blocks and foundations in 2019. The building 

can accommodate 396 students and 24 teaching staff. The total length and width of the building 

are 53m and 46m, respectively. The size of a typical private classroom in the building is 9.4m x 

8.1m. The building was constructed with exterior walls made of concrete panels and solid brick 

veneer claddings. There were no cooling systems or mechanical ventilation system in the 

buildings. The classrooms were cooled by natural ventilation by opening windows and portable 

fans (in some classrooms). The SH building is a three-story building built in 2008 and mainly 

occupied by older people. The total length and width of the building are 105m and 18.5m, 

respectively. The size of a typical unit in the building is 9.2m x 8.2m. The building is composed 

of 54 suites (dwelling units) with one bedroom. Each unit was occupied by one or two people. 

There were no cooling and mechanical ventilation system in the dwelling units. An activity room 

on the first floor is cooled by a rooftop unit. Indoor sensors were installed in selected rooms in the 

above buildings to monitor the air temperature and relative humidity. In each building, all the 

sensors were installed in the same locations in each room, about 1.7-meter height near the corner. 

Outdoor weather stations were installed on the roof of the buildings to monitor the air temperature, 

relative humidity, wind speed, and solar radiation. The monitored data were collected during the 

summer 2020. 

According to the information collected through building surveys, site visits and onsite 

measurement, the original building models were developed. The 3D models of the three buildings 

are shown in Figure A.2-2. 
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(a) 

 
(b) 

 
(c) 

Figure A.2-2 3-D view of the as-simulated building models 

The unknown building parameter values were calculated through building model calibration using 

the monitored temperature data. The ranges of the unknown parameter values were taken from 

related published literature and the national building code of Canada. Table A.2-1 summarizes the 

ranges of the unknown building parameters for building calibration of the LTCB. Unknown 

parameters and ranges of the primary school and social housing are also analyzed in a similar way, 

the tables of which are not listed here due to the page’s limitation. 

Table A.2-1 Unknown parameters and ranges of the Long-term care building 

Building Parameter Range Unit References 

Wall 
U-Value 0.25-0.62 W/m2K 

RDH (2017) 
Thermal mass 150-350 W/m2K 

Roof 
U-Value 0.15-0.39 KJ/km2 

Thermal mass 150-350 KJ/km2 

Window 
U-Value 2.38-3.31 W/m2K Double glazing with 

aluminum frame SHGC 0.3-0.7 / 

Shading 
Slat angle 5-175 Deg Blind shading 

parameter Solar reflectance 0.4-0.9 / 

Internal heat gain 
Lighting power density 6.6-11.3 W/m2 NECB2017 

Equipment power density 2.5-10 W/m2 NECB2017 

Infiltration 
Air mass flow coefficient at reference 

crack condition 

Walls:  

0-0.0040 

Roof: 

0-0.0045 

kg/s RDH (2017) 

Natural 

ventilation 

Natural ventilation temperature set point 22-26 ℃ Comfort range 

Window opening factor 0-0.1 / 

Site visit Room door opening factor 0-1 
/ 

Exterior doors opening factor 0.025 

 

The airflow network models are applied to the building models. The buildings are treated as a 

collection of nodes representing thermal zones in the building and flow elements representing 
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cracks, doors, ducts, and other flow paths between the zones. Conservation of mass flows between 

the zones generates simultaneous nonlinear equations, which can be solved to determine the 

resultant flow through the building. Using an airflow network model to predict ventilation rates in 

a building allows the inclusion of external weather data in the calculation. The natural variability 

of the ventilation drivers such as wind speed and direction and thermal effects can be incorporated 

into the calculation, providing more realistic ventilation predictions than using a fixed ventilation 

rate based on open window area alone. The airflow through each leakage component is assumed 

to follow the leakage relationship of a crack flow, which is characterized by the air mass flow 

coefficient (C) and exponent (n) as in Equation A.2-1. 

𝑚𝑎̇ = 𝑉�̇� × 𝐴 × 𝜌 = 𝐶 ∙ ∆𝑃𝑛                                                                                     (A.2-1) 

Where 𝑚𝑎̇  is the maximum mass flow rate of each surface (kg/s), 𝑉�̇� is the maximum volume flow 

rate per area (m3/s/m2), A is the component surface area (m2), ρ is air density (kg/m3), ∆P pressure 

differential across the leakage component (Pa), n is the leakage exponent coefficient, defaulted to 

0.65.  

In the pre-modelling stage, the design infiltration rate for good airtightness of 0.4 ACH (NRC, 

2017) for the whole building is set, and the DesignBuilder software automatically creates the 

leakage data of each exterior and interior surface. However, the infiltration rate is dynamic, 

affected by wind pressure and surface leakage characteristics. For old buildings (1980), the 

maximum leakage rate for the entire similar buildings was found to be 0.72 CFM/SF@75Pa = 

3.66L/s/m2@75Pa, according to RDH (2017) (RDH, 2017). For retrofit or new buildings, referring 

to ASHARE 90.1 (ASHRAE Standards Committee, 2004), ABAA and NECB (NRC, 2017), the 
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maximum air leakage for the entire building built after 2005 is 2.0L/s∙m2@75Pa.  Therefore, to 

make the leakage data closer to the actual situation, calculations of the maximum air mass flow 

coefficient for the exterior surfaces of the monitored rooms, assuming a uniform distribution over 

exterior building surfaces, are shown in Table A.2-2.  

Table A.2-2 Calculated air leakage data of the monitored natural ventilated rooms (using the 

Long-term care building as an example) 

Surface 

Air leakage limit 

@75Pa 

(L/s/m2) 

Area (m2) 

Air density  

(Reference condition) 

(kg/L) 

n 
C 

(max) 

Roof 3.66 20.297 0.0012 0.7 0.0043 

Wall_North 3.66 13.095 0.0012 0.7 0.0028 

Wall_West 3.66 2.987 0.0012 0.7 0.00063 

Wall_South 3.66 18.893 0.0012 0.7 0.0040 

 

In the airflow model, the exterior windows are opened when the indoor temperature is higher than 

the outdoor temperature and a given set point temperature (the natural ventilation setpoint 

temperature will be calibrated based on the monitored data). The thermal and ventilation 

conditions in the zones are affected by the window and door operations (the opening area 

percentage will be calibrated based on the monitored data), infiltration through the crack of roofs, 

walls, and partitions, as well as the air released through exhaust fans. The airflow path through the 

large horizontal openings is applied to the vertical stairway and elevator thermal zones.  The 

building calibration process is composed of five steps: parametric simulation with all variables, 

the first-round calibration, sensitivity analysis, parametric simulation with the most important four 

variables, second round calibration, as shown in Figure A.2-3. 
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Figure A.2-3 Building calibration procedure 

In the first step, the unknown model parameters with their practical ranges are defined. The 

Hamiltonian Monte-Carlo (HMC) sampling method is used for 600 random samplings within each 

parameter range. HMC is a random sampling algorithm applicable when the model parameters are 

continuous rather than discrete and able to suppress random walk behavior through a clever 

auxiliary variable scheme that transforms the problem of sampling from a target distribution into 

the problem of simulating Hamiltonian dynamics (Hoffman, 2014). So 600 combinations of all the 

defined parameters are obtained, and then 600 parametric simulations are performed. The 

parametric simulations are realized with an R package named “eplusr”, which enables to use 

EnergyPlus directly in the R language. The input-output dataset can be used to do sensitivity 

analysis to identify the most important parameters of the building thermal model, as explained in 

the next paragraphs. The input-output dataset can also be used to do the first-round calibration of 
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all the defined parameters. In this round calibration, the simulated indoor air temperatures are 

compared with measurements, and the RMSE is calculated. The parameter combination 

corresponding to the minimum RMSE is adopted for the building model. In the second step, the 

most important four parameters (obtained from the sensitivity analysis) are further calibrated. 

HMC is again used for 1000 random samplings within each parameter range, resulting in 1000 

combinations of all the defined parameters, and then 1000 parametric simulations are performed. 

The simulated indoor air temperature is compared with measurements, and the RMSEs are 

calculated. The parameter combination corresponding to the minimum RMSE is adopted for the 

building model. The calibration process stops when the RMSE reaches its low-level value of below 

1.5℃. This low-level value is taken from the study of (O’ Donovan et al., 2019) about the error of 

predicting air temperatures in a naturally ventilated building. After calibration, validation is then 

done with the other set of measured data during the different periods for the calibration stage. All 

the above steps are realized and automated using a script developed in the R programing language. 

Typically, there are six steps for implementing sensitivity analysis in building performance 

analysis: determine input variations; create building energy models; run energy models; collect 

simulation results; run sensitivity analysis; presentation of sensitivity analysis results. The first 

four steps have been finished after the first round of parametric simulation. So that the input-output 

dataset from the first-round parametric simulations is collected to feed the sensitivity analysis to 

identify the most important parameters. Three different approaches are utilized to offer robust 

analysis results: SRC, t-value, and random forest variable importance. High SRC means more 

important of the variable. The t-value is the statistic used to test whether the coefficient of the 

corresponding variable is zero. The higher the absolute value of t, the more important is the 
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corresponding variable. The conditional variable importance from the random forest applies to 

correlated inputs. If there is a large variation of the outputs unexplained (i.e., non-linear effects in 

the model), the conditional variable importance from the random forest can be used. The three 

approaches are integrated into one index called  Sensitivity Value Index (SVI) (Lim and Zhai, 

2017) to avoid the potential inconsistency.  

After calibration, the building models are validated with measured indoor temperature data (over 

different periods of time). For the LTCB, the monitored data were collected from July 14, 2020 to 

August 13, 2020. Therefore, the data from July 14 to July 28 were selected for model calibration 

so that all the parameters to be calibrated have significant effects on indoor temperature, and the 

data from July 29 to August 13 were selected for model validation. For the PS, the monitored data 

were collected from August 04, 2020 to September 30, 2020. Therefore, the data from August 26 

to September 13 (school occupied) were used for the calibration and the data from September 14 

to 30 were used for validation. For the SH, the monitored data were collected from May 01 to 26, 

2021. However, from May 01 to 13, the outdoor temperature was from 5℃ to 20℃ and the 

simulated indoor temperature was lower than 22℃, which made natural ventilation not activated. 

Therefore, the data from May 14 to 20 were used for the calibration and the data from May 21-26 

were used for the validation. 

Table A.2-3(a) shows the evaluation criteria (RMSE) of the calibration and validation results for 

each room and their spatial averages in LTCB. At a room level, the RMSE of the calibration and 

validation are from 0.56℃ to1.09℃, which are less than the 1.5℃ requirement (O’Donovan et al. 

2019). The MBE is within ±1.2% and the CvRMSE is less than 3.65%. At a building level 

(calculated by averaging the data of the three rooms), the validation results show that the RMSE 
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is 0.54℃, the MBE is 0.58% and the CvRMSE is 1.85%. Table A.2-3(b) shows the evaluation 

criteria results of PS. At room level, the RMSE of the calibration and validation are from 0.63℃ 

to 0.78℃. The MBE is within ±1.39% and the CvRMSE is less than 3.19%. At the building level 

(calculated by average data of the two rooms), validation results show that the RMSE is 0.67℃, 

the MBE is -0.12% and the CvRMSE is 2.78%. Table A.2-3(c) shows the evaluation criteria results 

of SH. At room level, the RMSE of the calibration and validation are from 0.56℃ to1.50℃. The 

MBE is within ±4.9% and the CvRMSE is less than 5.28. In building level (calculated by average 

data of the four rooms), validation results show that the RMSE is 0.71℃, the MBE is 0.47% and 

the CvRMSE is 2.55%. The positive MBE value means the simulated data are in general slightly 

higher than the measured data. The negative MBE value means the simulated data are in general 

slightly lower than the measured data. 

Table A.2-3 Error metrics for the predictions of the hourly indoor air temperatures of monitored 

rooms in (a) LTCB (b) PS and (c) SH 

(a) 

Error metrics 
Room 1 Room 2 Room 3 Room Average 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

RMSE (°C) 0.56 0.66 0.57 0.55 1.09 1.08 0.46 0.54 

MBE (%) 0.25 0.90 -0.70 0.57 1.182 0.285 0.244 0.58 

CvRMSE (%) 1.93 2.31 1.89 2.02 3.63 3.61 1.54 1.85 

(b) 
Error  

metrics 

Room 1 Room 2 Room Average 

Cal. Val. Cal. Val. Cal. Val. 

RMSE (°C) 0.73 0.7 0.63 0.78 0.63 0.67 

MBE (%) -0.82 1.17 -0.90 -1.39 -0.86 -0.12 

CvRMSE (%) 2.57 3.12 2.22 3.19 2.21 2.78 

(c) 
Error  

metrics 

Bedroom 1 Living room 1 Bedroom 2 Living room 2 Room average  

Cal Val Cal Val Cal Val Cal Val Cal Val 

RMSE (°C) 0.63 1.05 0.56 0.91 1.49 0.77 1.21 1.50 0.59 0.71 

MBE (%) 1.19 1.08 1.25 0.52 -4.90 -0.67 -3.72 0.99 -1.65 0.47 

CvRMSE (%) 2.44 3.86 2.16 3.33 5.28 2.71 4.35 5.51 2.18 2.55 
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Figure A.2-4 compares the measured and simulated indoor temperature (average values of the 

three monitored rooms of LTCB) after applying the calibrated parameter values during the 

calibration and validation periods. To analyse whether the simulated data can capture the peak 

indoor temperatures, the distribution of the measured and simulated hourly temperatures during 

the validation period are shown in Figure A.2-5. During the validation period, there are 11 hours 

when the measured temperature is above 30.4℃ (the last bin in Figure A.2-5 (a)), and 8 hours 

when the simulated temperature is above 30.4℃ (the last bin in Figure A.2-5(b)). Therefore, the 

simulated data can capture 73% of the peak temperatures. Comparing the three bins of 29.8℃ to 

30.4℃, the simulations overestimate the hours between 29.8℃ to 30.4℃ by 85 hours, but 

underestimate the temperature in the bins of 28.4℃ to 29.4℃ by 87 hours. This deviation might 

be because of occupant behavior in adjusting window and door openings under different weather 

conditions to control nature ventilation, whereas in the simulation the opening factors of windows 

and doors are kept constant during the simulation period. 

 
(a) 

 
(b) 

Figure A.2-5 Comparison of the measured and simulated data (room averages of LTCB) during 

(a) calibration period and (b) validation period 
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(a) 

 
(b)  

Figure A.2-6 Distribution of average room data of LTCB during the validation period: (a) 

measured and (b) simulated temperatures 

Figure A.2-6 shows a comparison between the measured and simulated data (average data of the 

two rooms in PS) after applying the calibrated parameter values, and the distribution of the 

measured and simulated hourly temperatures during the validation period is shown in Figure A.2-

7. There are 26 hours when the measured temperature is above 31.2℃, and 42 hours when the 

simulated temperature is above 31.2℃. Therefore, the simulated data can capture 100% of the 

peak temperatures with a slight overestimation. The hours of the measured and simulated 

temperature above 28℃ are as well comparable: 514 hours versus 522 hours, respectively. 

 
(a) 

 
(b) 

Figure A.2-7 Comparison of the measured and simulated data (room averages of PS) during (a) 

calibration period and (b) validation period 
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(a) 

 
(b) 

Figure A.2-8 Distribution of average room data of PS during the validation period: (a) 

measured and (b) simulated temperatures 

Figure A.2-8 shows the comparison of the measured and simulated data (average data of the four 

rooms in SH) after applying the calibrated parameters. The distribution of the measured and 

simulated hourly temperatures during the validation period is shown in Figure A.2-9. There are 10 

hours when the measured temperature is above 30.0℃, and 8 hours when the simulated 

temperature is above 30.0℃. Therefore, the simulated data can capture 80% of the peak 

temperatures. The hours of the measured and simulated temperatures above 29℃ are comparable: 

36 hours versus 41 hours, respectively. 

 
(a) 

 
(b) 

Figure A.2-8 Comparison of the measured and simulated data (room averages of SH) during (a) 

calibration period and (b) validation period 
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(a) 

 
(b) 

Figure A.2-9 Distribution of average room data of SH during the validation period: (a) 

measured and (b) simulated temperatures 

The calibrated values of the unknown parameters of the LTCB model are shown in Table A.2-5.  

Table A.2-5 Calibrated parameter values of LTCB 

Object Parameter Unit Final value 

Wall Wall U-Value W/m2K 0.3 

Roof Roof U-Value W/m2K 0.25 

Wall Wall thermal mass KJ/km2 220 

Roof roof thermal mass KJ/km2 335 

Window Window U-Value W/m2K 2.72 

Window Window SHGC - 0.37 

Interior blinds 
Slat angle Deg 59 

Solar reflectance   0.6 

Equipment Equipment power density W/m2 2.93 

Lighting Lighting power density W/m2 9.94 

Air mass flow through cracks  

Air mass flow coefficient at 

reference crack condition of walls 

and roof surfaces 

kg/m∙s 0.0025 

kg/m∙s 0.0012 

Natural ventilation control Natural ventilation set point ℃ 26 

Interior room door opening 

factor 
Width factor for door opening  

% 47 

Room window opening 

factor % 10 

 


