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ABSTRACT

Security Weaknesses in IoT Management Platforms

Bhaskar Tejaswi

A diverse set of Internet of Things (IoT) devices are becoming an integrated part of

daily lives, and playing an increasingly vital role in various industry, enterprise and agri-

cultural settings. The current IoT ecosystem relies on several IoT management platforms

to manage and operate a large number of IoT devices, their data, and their connectivity.

Considering their key role, these platforms must be properly secured against cyber attacks.

In this work, we first explore the core operations/features of leading platforms to design a

framework to perform a systematic security evaluation of these platforms. Subsequently,

we use our framework to analyze a representative set of 52 IoT management platforms,

including 42 web-hosted and 10 locally-deployable platforms. We discover a number of

high-severity unauthorized access vulnerabilities in 9/52 evaluated IoT management plat-

forms, which could be abused to perform attacks such as remote IoT SIM deactivation, IoT

SIM overcharging, and IoT device data forgery. More seriously, we also uncover instances

of broken authentication in 13/52 platforms, including complete account takeover on 8/52

platforms along with remote code execution on 2/52 platforms. In effect, 17/52 platforms

were affected by vulnerabilities that could lead to platform-wide attacks. 28 platforms
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responded to our responsible disclosure. We were also assigned 11 CVEs and awarded

bounty for our findings.
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Chapter 1

Introduction

1.1 Overview

The pace of IoT adoption is rapidly increasing. It is estimated that the number of IoT de-

vices will reach 38.6 billion worldwide by 2025 and 50 billion by 2030 [16]. IoT devices

play a significant role in our daily lives (e.g., home automation), as well as at the enterprise

level (e.g., device fleet management). A key component of the IoT ecosystem is an IoT

platform, which hosts a number of endpoints supporting the business operations utilizing

IoT devices [30]. Some of these platforms provide data management services to enable

data collection from IoT devices, followed by its processing and analytics. Some platforms

offer device management services for users (e.g., enterprise IoT device administrators) to

remotely connect to their devices by using a platform’s web portal and APIs. In others,

users are also allowed to remotely execute commands on the IoT devices (by installing

an edge client on the devices), and to upload firmware files to IoT devices. Also, beyond
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WiFi/LAN, IoT devices are increasingly being internet-connected via cellular networks.

Cellular IoT SIM sellers provide connectivity management services [14], to facilitate their

customers to easily and efficiently manage all of their IoT SIM cards (e.g., remotely acti-

vate/deactivate SIM cards).

1.2 Motivation

The versatile functionalities offered by the platforms, if not properly designed/implemented,

can result in serious security issues. In 2021, researchers at FireEye disclosed a critical

vulnerability in the device onboarding process of the Kalay cloud platform [12], allow-

ing a remote attacker to collect the login credentials and execute commands on millions

of IoT devices managed by the platform. IoT connectivity services can also be abused

to compromise IoT devices, and to commit financial frauds and criminal activities (see

e.g., [19, 58, 59]).

Existing work has demonstrated several attacks on cellular IoT that could cause over-

charging through voice services [65], and create financial losses for the cellular operators

by using IoT SIMs inside non-IoT devices [66]. Connectivity management services are a

major component of cellular IoT for SIM management tasks. Apart from a recent Black-

Hat presentation [47] (conducted on 9 platforms), there is no comprehensive evaluation of

vulnerabilities in these services. Unauthorized access control issues in IoT platforms have

been studied in the past [35] by analyzing IoT devices’ mobile companion applications.

However, such studies have only covered the API endpoints called from the client-side,
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i.e., management APIs with more serious security issues remain unexplored. Apart from

web-hosted platforms, there are also widely-used locally-deployable solutions (both open

and closed-source) for IoT deployment, which so far have not been analyzed.

1.3 Problem Statement

The term “IoT platform” is used by different vendors offering various combinations of ser-

vices. Given the heterogeneous nature of platforms, to perform a systematic evaluation, we

focus on three key IoT management services: connectivity, device, and data management.

We define an IoT management platform as a platform that provides either one or a combi-

nation of these services for IoT devices. These platforms can be used by enterprises for the

devices used by them, or businesses that sell IoT devices to consumers. Such platforms can

be web-hosted (managed by a third-party service provider), or locally-deployable (man-

aged by the enterprise using the platform). IoT management platforms are different from

other web management platforms in many aspects. For example, these platforms obtain

data from multiple sources (devices, SIM cards, users), and each of them could become

a potential source of malicious data entry. Also, these platforms manage real-world IoT

deployments. As many of them are performing critical operations in industrial and en-

terprise IoT setups, exploiting vulnerabilities in them could have severe physical world

consequences in addition to revenue loss and day-to-day business disruption.

We design and implement a generalized security framework to evaluate the security

posture of IoT management platforms from an external attacker’s perspective, focused on
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the key services provided by them—i.e., connectivity, device, and data management. Our

evaluation framework comprises a wide range of vulnerabilities such as broken authentica-

tion, unauthorized access, vulnerable trigger-action function, and lack of input validation.

For the evaluation, we rely on a combination of automated, semi-automated, and manual

vulnerability detection techniques; for web-hosted platforms, these tests are carefully ap-

plied not to interfere with the platform operations. The scope of evaluation comprises the

web requests generated upon using the platforms’ websites, and those corresponding to the

platforms’ standalone APIs. We use custom Python scripts to simulate the behavior of IoT

devices making API calls to the platforms. We also use virtual machines (VMs) to mimic

Linux-based IoT devices for evaluating platforms that provide agent software for device

management. To evaluate locally-deployable platforms, we install their Linux-compatible

versions inside VMs.

We used our framework to conduct a security evaluation of 52 IoT management plat-

forms (42 web-hosted and 10 locally-deployable), and found major security weaknesses

in several platforms. Vulnerabilities detected on these platforms could impact multiple

stakeholders—the platform itself, the enterprise users, the end consumers, and all the de-

vices connected to these platforms, with consequences such as: disconnecting IoT de-

vices from the cellular network, sending arbitrary unauthorized commands to devices, and

disclosure of device metadata including GPS coordinates. Moreover, poorly configured

devices can be leveraged for platform-level attacks against the corresponding platforms

and their users; e.g., authentication tokens/keys intercepted from the IoT devices that use

HTTP/MQTT (without TLS) can be leveraged by an attacker to perform cross-site scripting
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(XSS) via forged data submissions.

1.4 Contributions

Our contributions and notable findings can be summarized as follows:

1. We design a comprehensive security evaluation framework for evaluating various

complex functionalities offered in modern IoT management platforms. We include

tests pertinent to core platform services—connectivity, device, and data management

for operating a large number of IoT devices. We consider several practical attacker

models, including a regular remote attacker, an on-path attacker, and an attacker

requiring minor user involvement (e.g., clicking on an attacker-provided link). We

realize this framework using a carefully-deployed combination of existing tools (in

addition to our own scripts), as our tests are performed on live services (albeit on our

own test accounts) along with locally-deployable platforms.

2. We apply our framework on 52 selected IoT management platforms of various sizes

with a wide range of offered services. These include a combination of 42 web-

hosted and 10 locally-deployable platforms. Our analysis uncovered vulnerabilities

in 33/52 platforms. 17/52 platforms were affected by vulnerabilities that could lead

to platform-wide attacks affecting all users and all connected devices. This indicates

that our framework is both applicable (i.e., can handle varying, complex services),

and effective (i.e., can detect serious security problems).

3. The unauthorized access vulnerabilities that we found in 9/52 IoT platforms involve
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key platform features that can be abused to launch serious attacks against service

availability, reliability, and billing. Such attacks include: arbitrary SIM deactiva-

tion, unauthorized Short Message Service (SMS) delivery and forged data submis-

sion from IoT devices.

4. 13/52 platforms are affected by broken authentication, with varying implications on

their services—e.g., full account takeover of any user (in Aeris Neo, AskSensors,

Favoriot, MDash, ResIOT, Fogwing, Thingsboard, GlobalM2MSIM), and preventing

IoT SIM registration and activation (Hologram, KeepGo and OneSIMCard).

5. A vulnerable trigger-action function (cf. [36]) in TheThings.io grants root access to

a Kubernetes container shared across users on the platform, by breaking out of their

JavaScript sandbox. Missing sandbox implementation for trigger-action function in

OpenRemote grants root access to the server to any platform user.

6. 16 platforms lack proper input validation checks, making them all vulnerable to XSS

attacks, and one (ResIOT’s locally-deployable platform) vulnerable to SQL injection.

On 9 platforms, an adversary can abuse XSS to steal session credentials (browser

cookies and login tokens).

7. We were assigned 11 CVEs (detailed in Appendix B) for vulnerabilities uncovered

in locally-deployable platforms. Among these, one CVE was rated as critical (score

9.8/10), 3 CVEs rated as high severity (2 CVEs with score 8.8/10 and one CVE with

score 7.2/10), and 7 CVEs rated as medium severity (with scores between 4.3/10 and
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6.5/10). We also received monetary awards as bounty from two companies (Bood-

skap and Platform X1) along with a certificate of appreciation from Verizon (see

Appendix C for excerpts of acknowledgments received from platforms).

1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we first present an overview

of three key IoT management operations, i.e., connectivity management, device manage-

ment, and data management. We describe our threat model, scopes of considered attacks,

and types of attackers. We also discuss the prior research work relevant to our study. In

Chapter 3, we introduce our framework and present the methodology we use to perform

a security evaluation of IoT management platforms. We also discuss the platforms we

selected for our research as well as our analysis setup. In Chapter 4, we present the ex-

perimental results of our analysis and discuss the impact of our findings. In Chapter 5, we

discuss the limitations of our work and include key insights from our work and recommen-

dations for platform developers and users. Finally, we present our concluding remarks and

future work.

1.6 List of Publications

The following publications [53, 54] resulted from the research work performed during my

master’s program. Most of the work presented in this thesis has been peer-reviewed and

1Actual name withheld according to the guidelines of the company’s bug disclosure program. Throughout
the thesis, this company will be referred to as Platform X.
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accepted in the first article.

• Bhaskar Tejaswi, Mohammad Mannan, and Amr Youssef. All Your IoT Devices Are

Belong to Us: Security Weaknesses in IoT Management Platforms. In proceedings

of the 13th ACM Conference on Data and Application Security and Privacy (ACM

CODASPY ’23), April 24-26, 2023, Charlotte, NC, United States.

• Bhaskar Tejaswi, Nayanamana Samarasinghe, Sajjad Pourali, Mohammad Mannan,

Amr Youssef. Leaky Kits: The Increased Risk of Data Exposure from Phishing

Kits. In proceedings of the Symposium on Electronic Crime Research (APWG

eCrime’22), Nov 30 - Dec 2, 2022, online. (Best student paper award.)
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Chapter 2

Background

In this chapter, we summarize key functionalities offered by IoT management services and

provide our threat model.

2.1 IoT Connectivity Management

With the widespread deployment of 4G/5G technologies, cellular connectivity is becom-

ing the preferred option for many consumer/industrial IoT devices. Although the IoT SIM

cards (also called as programmable wireless SIM cards, Machine to Machine/M2M SIM

cards) use the same network as the cellular network, there are some notable differences.

Firstly, IoT SIM cards are typically offered for global connectivity via multiple carriers.

Secondly, the IoT SIM owners can manage their SIM cards via connectivity management

services, e.g., to register, activate, pause, track usage, change subscription plans, and de-

commission devices. These tasks can be performed automatically at scale, through web

9



APIs provided by the connectivity services.

IoT SIM cards can typically be purchased from the providers’ websites after creating

a user/business account on the portal; some providers do not sell SIM cards to individual

users and involve a manual verification process. Following is a brief outline of each state

in the IoT SIM card’s lifecycle [13]: when the SIM card is delivered to the user, it remains

at the initial state (not connected to the cellular network); after registering a card on the

portal (e.g., by entering an activation code printed on the card), it reaches the active state

and can connect to the cellular network, and the user is billed for the SIM usage; a tem-

porarily suspended card is in the paused state (unable to access the cellular network); and

a permanently disconnected card from the cellular network is in the terminated state (e.g.,

when an IoT device is decommissioned).

Key features offered by the connectivity management services for enterprise users in-

clude: managing the SIM state and connection troubleshooting in real time; setting usage

limits on data consumption for each SIM card, or a group of SIM cards; sending/receiving

SMS messages to/from the SIM card (e.g., for commands/outputs); setting the Interna-

tional Mobile Equipment Identity (IMEI) lock to prevent abuse of stolen cards; generating

reports on data usage and billing; and creating rules to generate alerts in case an anomalous

behavior is detected, e.g., exceeding the data consumption limit.
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2.2 IoT Device Management

Enterprises typically deal with a large number of devices and these deployments need to

be managed remotely. IoT device management services offer a centralized web portal to

perform such key administrative tasks on the IoT devices, as well as web APIs to enable au-

tomation. Key features in device management include [6]: provisioning and authentication

of devices (devices are assigned unique IDs, and authentication tokens, which are then used

for onboarding on the platform); adjusting the configuration of the IoT device as needed

(e.g., adding a new variable in the JSON object sent to the platform, modifying the API’s

URL), monitoring usage, and diagnostics for troubleshooting; and allowing enterprises to

upload software/firmware updates, which are subsequently pushed to IoT devices.

2.3 IoT Data Management

IoT data management services enable centralized data aggregation and processing for IoT

devices. Similar to device management, the IoT device is onboarded on the platform with a

unique device ID and authentication token. Data is typically submitted to the platform via

protocols such as HTTP, MQTT, AMQP, and COAP [37]. Users can also create visualiza-

tion dashboards based on IoT device data for analytics purposes.
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2.4 Threat Model

The scopes of the considered attacks are defined as follows. A platform-wide attack affects

all users and all connected devices of the platform; examples include: remote code exe-

cution via sandbox escape (platform infrastructure compromise), attacks involving broken

authentication and unauthorized access issues that require the use of easily-enumerated

identifier values (e.g., short numeric IDs, sequential SIM numbers). A user-specific at-

tack can affect only a specific user and the devices owned by that user; examples include:

session hijacking via XSS, password reset via CSRF, user credential theft via SSLStrip, at-

tacks involving broken authentication and unauthorized access vulnerabilities that require

specific user/device IDs that are not easily-enumerated/guessed (e.g., UUIDs, registered

email address of the target user). A device-specific attack can affect a specific device (e.g.,

intercepting HTTP traffic to steal device authentication credentials). To perform these at-

tacks, we assume three types of attackers in our threat model. A user-independent remote

attacker directly interacts with the platform and does not need to involve the victim user/de-

vice in any manner. Such an attacker can create a user account on the platform’s website,

and perform the intended attacks. A user-dependent remote attacker also performs the

attack remotely but requires user involvement (such as clicking on a phishing URL). An

on-path attacker must be on the same network path as the victim user/IoT device and col-

lect and analyze the traffic flow between the user’s browser/IoT device and the platform’s

server. Attacks requiring physical access to an IoT/user device are out of scope.
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2.5 Ethical Considerations and Responsible Disclosure

We performed all the tests on our own accounts. For inadvertent access to sensitive data

(e.g., authentication credentials in error messages), as per our university’s ethics guide-

lines, we informed the affected platform in a timely fashion and did not retain the data. We

did not perform any active scanning via automated tools for vulnerability detection and ex-

ploitation, to avoid any adverse effect on the day-to-day usage of the web-hosted platforms.

For the sandbox breakout on TheThings.io, we followed a coordinated disclosure process,

and we were granted a complimentary paid account by the platform for comprehensive

testing. We reported our findings to all the affected platforms via emails/support tickets. In

one instance (Asksensors), upon not receiving any response, we also took the help of the

CERT-FR (cert.ssi.gouv.fr). At the time of this submission, we received responses from

28 platforms. Aeris Neo took down their portal for fixing. RemoteIOT promptly acted

on our disclosure and remediated the reported vulnerability within a day (which we also

confirmed). KeepGo, Favoriot, Fogwing, SocketXP, and ResIOT have also resolved the

reported issues. Asksensors and Verizon claimed to have fixed all issues, but on a second

inspection, we found some fixes to be inadequate, and as such informed the companies

again. 6 other platforms applied partial fixes. Another 9 platforms indicated that they are

working on the fixes. 4 platforms (Telnyx, Pelion, Tago, SIMControl) where minor security

issues were reported, responded that they consider those issues as acceptable risks.

13
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2.6 Related Work

2.6.1 IoT Cellular Connectivity

Trend Micro, in collaboration with Europol [21], studied how IoT SIM cards from compro-

mised IoT devices are misused for committing cyber telecom frauds such as subscription

fraud (i.e., abusing business processes to access sensitive data from victim’s account), and

toll fraud (i.e., initiating high volumes of expensive international calls). Some cellular con-

nectivity providers offer lower data charges for IoT SIMs compared to non-IoT SIM cards.

Past research [66] has revealed that it is possible to use IoT SIM cards of such providers

outside the IoT devices (e.g., in a smartphone), causing financial loss to the connectivity

providers. Another study [62] uncovered several vulnerabilities that can be exploited to

launch data and text spamming attacks against IoT SIM card owners. Big-data based algo-

rithms have been proposed to detect anomalous behavior in IoT SIM card usage [70]. In a

recent BlackHat presentation [47], a study on 9 IoT platforms found vulnerabilities such as

unauthorized access, insecure communication, and XSS. The work covered the platforms

that grant access to the website/APIs only after purchasing SIM cards. Our concurrent

study of 20 platforms providing connectivity management services uncovered several other

critical attack scenarios (e.g., account takeover, user information disclosure, SIM registra-

tion failure, IMEI lock reset) by exploiting vulnerabilities in key platform functionalities.

We also found that even with the limited set of functionalities offered to trial accounts with

no SIM cards, attackers can launch platform-wide (e.g., obtaining sensitive information of

all customers), and user-specific (e.g., account takeover) attacks.
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2.6.2 IoT Security

There have been several studies that have focused on different components within the IoT

ecosystem. In [72], the authors investigate the security vulnerabilities in smart home sys-

tems, focusing on the interactions between devices, IoT clouds, and mobile apps, and

found unexpected state transitions that can be exploited to attack real-world smart home

platforms. Another study [15] presents an empirical security analysis of the SmartThings

smart home programming platform and found design flaws that lead to significantly over-

privileged apps and inadequate protection of sensitive information. In [5], a methodol-

ogy has been proposed for analyzing the security properties of home-based IoT devices,

along with a systematization of the literature on these devices. Another study [38] dis-

covered vulnerabilities in several mass-market camera systems that can be exploited by

attackers to impair users’ privacy. These vulnerabilities allow attackers to carry out various

attacks, such as injecting forged video streams and eavesdropping on private video data. A

study [44] on proprietary communication protocols used in Enterprise Internet of Things

(E-IoT) presented a set of proof-of-concept attacks that could allow an attacker to compro-

mise E-IoT systems using communication buses and to carry out denial of service, eaves-

dropping, impersonation, and replay attacks. The aforementioned studies mostly focused

on specific domains—e.g., home-automation [5, 15, 72], video-surveillance [38], smart-

buildings [44, 45]. They relied on vendor-specific devices and mobile companion applica-

tions, and as such, did not cover all the platform APIs comprehensively. In comparison, our

work is device/app-agnostic, and covers both client-side and management APIs—the latter

APIs are not covered in prior work. We also cover websites and stand-alone APIs from a
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variety of IoT platforms: consumer IoT (e.g., Tuya), enterprise IoT (e.g., thethings.io, Kaa

IoT), and industrial IoT (e.g., Siemen’s Mindsphere, Fogwing), and more generic IoT plat-

forms (e.g., AWS, Azure). Also, we tested both web-hosted as well as locally-deployable

platforms (the latter ones were not analyzed for security vulnerabilities in the past). Past

work on trigger-action platforms [36] found that sandboxes used on these platforms could

be escaped, leading to severe consequences such as the leakage of private data of users.

This motivated us to check for sandbox escape issues in trigger-action functionalities on

IoT platforms. Insecure ecosystem interfaces are included in OWASP’s list of top 10 secu-

rity issues in IoT systems [39]. The websites and web APIs of IoT management platforms

are among the most vital interfaces and vulnerabilities in them can be abused to target a

large set of users and their devices. IoT platforms have been compared based on the secu-

rity features mentioned by the platforms in their documentation [17]; however, no actual

security evaluation was performed.
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Chapter 3

Analysis Framework

In this chapter, we provide a framework for performing the security analysis of IoT man-

agement platforms. At first, we identify key platform functionalities by manually ana-

lyzing a few platforms and perusing their API documentations. Then we select an initial

list of potential security vulnerabilities that is motivated by prior research in the field of

IoT security [2, 3, 9, 31, 32, 33, 35, 36, 60, 61, 63, 69, 71], and online services secu-

rity [4, 7, 8, 10, 11, 20, 28, 40, 43, 46, 73]. We then iteratively refine the list of associated

vulnerabilities based on their impact on the key functionalities, and focus on the vulnera-

bilities applicable to multiple platforms. Figure 1 provides an overview of the proposed

framework. In the figure, yellow box indicates that vulnerability detection requires ac-

tive interaction with the IoT management platform’s web server; the blue box ones can

be detected by passively monitoring the web traffic between the browser and the platform.

The attacks can result from one or multiple vulnerabilities. In this chapter, we discuss the

process of detection of each vulnerability along with the potential impact on the affected
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platforms, users, and connected devices. For each platform, we create two user accounts,

and use one as an attacker and the other as a victim user.

Figure 1: Overview of proposed security analysis framework
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3.1 Broken Authentication

Broken authentication [32, 33, 63, 69, 71] in IoT management platforms can lead to platform-

wide attacks such as SIM state tampering, device data tampering, user information disclo-

sure, arbitrary command delivery, and firmware theft. Broken authentication could also

lead to user-specific attacks such as account takeover, which grants an attacker read and

write access to all functionalities accessible to the targeted user. We perform the following

checks to detect insecure implementation of authentication.

We log in to the platform and capture all the web requests that require authentication

(e.g., cookies and API keys). We also capture requests by issuing API requests from stan-

dalone API collections (if provided). We exclude web requests for loading static content

such as JavaScript files and images. We then remove the session credentials from each

request and resend it to the platform; we label the platform as vulnerable if the response for

any modified web request is the same as the original one. We use Auth Analyzer [27] for

these checks, followed by manual review to assess the impact.

We check for logic bugs in the forgot password and password reset functionalities of

the platforms’ websites. We test if it is possible to reset the password of another user by

tampering parameters (e.g., email address, username) in the underlying web requests.

After purchasing an IoT SIM card (where possible), to activate the card and manage

its lifecycle, the card owner must create an account on the platform and add the card to

their platform account. We check if the platform validates whether the user owns the card

that they are trying to add to their account. Absence of such validation could allow forged
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IoT SIM registration, wherein an attacker is able to add an unassigned card to their ac-

count, which when purchased by a legitimate user, would fail to register, and may require

intervention from the platform’s technical support.

3.2 Unauthorized Access

Unauthorized access [8, 11, 35, 73] refers to the inability of an IoT management platform

to validate if the entity requesting a resource is allowed to access that resource, and to what

extent. These vulnerabilities could result in platform-wide attacks such as SIM state tam-

pering, device data tampering, arbitrary SMS messages, user information disclosure, alerts

configuration leakage, SMS message leakage and device data leakage. We perform the

following actions to identify such issues. (a) We create two user accounts for each target

platform – one as the victim account, and the other as an attacker account. (b) We log in

with the victim account on the platform, and capture the underlying web request to test for

unauthorized access. (c) We replace the authentication details in the web request captured

in step (b) with those of the attacker account and send the modified request to the platform.

(d) We observe the response of the modified request sent from the attacker’s account. If the

modified request is successfully processed, we flag the platform as vulnerable to unautho-

rized access. We use Auth Analyzer to detect unauthorized access vulnerabilities, followed

by a manual review of the affected requests to assess the impact. For this vulnerability, the

platforms do check for the authentication credentials in the web requests but fail to vali-

date if the requesting users have permission to access the resources. Unauthorized access
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can lead to several abuse scenarios in the following key functionalities of device, data, and

connectivity management services.

IoT SIM management. A user needs to manage the IoT SIM card through different state

changes (activation, deactivation, pause) in its lifecycle, which must be properly access-

controlled. Unauthorized activation of SIM cards in non-functional IoT devices can lead to

unnecessary subscription charges, and unauthorized deactivation of a card would discon-

nect the corresponding IoT device.

SIM and service alerts. A user can set up notification alerts to limit data usage for IoT SIM

cards. A user can also write custom trigger functions for conditional alerts based on data

transmitted by the devices. By abusing unauthorized read access to these alert settings, an

attacker could infer the nature of data transmitted by the devices and could obtain sensitive

information such as the API keys for third-party services used in the trigger-functions.

Unauthorized write access allows an attacker to change the notification rules for the user’s

SIMs/devices, affecting day-to-day operations and causing financial losses.

SMS. SMS messages are widely used for managing the configuration of IoT devices and for

sending and receiving data from IoT devices [41]. Unauthorized read access could allow an

attacker to obtain sensitive information exchanged between IoT devices and the platform

via SMS, whereas unauthorized write access can be abused to send SMS messages to users’

IoT SIMs, which may lead to arbitrary command execution in IoT devices and overcharging

of the victim’s account.

IMEI lock. Users can set up an IMEI lock for their IoT SIM cards by specifying the IMEI

number of the devices whitelisted for using the SIM card. This helps to prevent the misuse
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of stolen IoT SIM cards. An unauthorized IMEI lock could allow an attacker to interrupt

the cellular connectivity for the affected card, disable the IMEI lock protection altogether,

and use the IoT SIM card outside the designated IoT devices, leading to financial loss for

the card owner.

Remote commands. Users can remotely execute commands on their IoT devices via the

platform’s website. Insufficient access control may allow an attacker to execute arbitrary

commands on target devices. Some platforms also store the output of the executed com-

mands, for later viewing by the user. If unprotected, potentially sensitive information may

be exposed from these outputs.

Firmware updates. Users can upload firmware files for their IoT devices on the platform’s

website. These files can also be downloaded from the platform. By abusing unauthorized

read access, an attacker can download files uploaded by other users, which may cause

breach of intellectual properties [72]. On the other hand, unauthorized write access could

be abused to inject malicious firmware into targeted IoT devices.

IoT device data. Platforms must ensure that an IoT device’s data is available only to the

device owner. A platform also must validate incoming data submission requests to confirm

if the requests are coming from a legitimate IoT device, e.g., via checking access tokens.

Unauthorized read access to these tokens could be abused by an attacker to submit forged

data from the affected IoT devices.

Account information. Users provide PII e.g., user name, email ID, mobile phone num-

ber, address, and organization name, during registration of an account. Unauthorized read

access can leak such PII, and unauthorized write access in functionalities such as change
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password could allow an attacker to take over a user’s account.

3.3 Vulnerable Trigger-Action Functions

Trigger-Action Platforms (TAPs [9, 36, 61]) connect IoT devices and cloud services with

the help of trigger-action applications. When a trigger is received by the application, certain

actions are performed, which are programmed into the trigger-action application. Some

IoT management platforms offer similar trigger-action features on their websites, allowing

users to write code for custom functionality (typically in JavaScript), e.g., unit conversion,

and periodic tasks. Custom functions must be written for parsing and processing data

payloads received from IoT devices; see [56] for an example of such a function that triggers

an email when the temperature reading received from a device goes beyond a set limit.

Platforms use sandbox libraries with a limited set of JavaScript methods to securely

execute these user-supplied trigger-functions in an isolated environment, and to avoid at-

tacks such as remote code execution. Popular NodeJS libraries (e.g., [23, 48, 49, 50, 51])

are known to have sandbox bypass vulnerabilities and can be exploited in IoT communi-

cation (cf. [36] for TAPs vulnerabilities on IFTTT and Zapier platforms). We first try to

find out the sandbox library used by the platform through a stack trace using the following

JavaScript code:

function main(params, callback){callback(new Error().stack);}

If the detected JavaScript sandboxing library has known vulnerabilities, we check for
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those vulnerabilities and use benign system commands such as id for confirming the priv-

ilege level of the system access granted by the vulnerability. We follow a process of coor-

dinated disclosure with affected platforms to minimize any accidental system impact.

3.4 Lack of Input Validation

IoT management platforms must validate the inputs present in the web requests before pro-

cessing them. Also, any data received from IoT devices must be suitably encoded before

displaying on the platform’s website. The lack of input validation [4, 32, 33, 52] enables

attacks, e.g., XSS and SQL injection. While XSS can lead to user-specific attacks, e.g.,

account takeover, SQL injection can cause platform-wide database compromise. We detect

the presence of these vulnerabilities by sending web requests with malformed input param-

eters and analyzing the corresponding web responses. To detect XSS, we provide custom

JavaScript payloads (e.g., <script>alert(1)</script>) in the input parameters, and

check if the supplied payload is executed in the browser while navigating the website. Sim-

ilarly, we checked if SQL errors are returned upon appending a single quote at the end of

input parameter values. Due to ethical/legal concerns, we do not use automated scanning

tools to flood the platforms with requests containing malicious inputs. All instances of

this vulnerability on web-hosted platforms have been solely detected via manual inspec-

tion. Burp’s active scanner is used to supplement manual testing on locally-deployable

platforms.
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3.5 Cross-site Request Forgery

Cross-Site Request Forgery (CSRF [7]) relies on the inability of the web server to determine

if a web request has been knowingly triggered by a legitimate user, or the user has been

tricked into submitting a crafted form, which lead to a web request being sent from an

active user session with valid session credentials. In order to detect this vulnerability, we

look for the presence of unique tokens in the web request body, which are neither known to

the attacker nor can be enumerated. We use CSRF Scanner [25] Burp extension to passively

detect CSRF vulnerabilities. Next, we remove false positives by checking the presence of

custom headers in the web requests.

3.6 Insecure Communication

Cleartext Communication. We check if the platforms use HTTP by default, and if the

platforms return valid responses to web requests made over HTTP, or allow MQTT without

TLS, since such cleartext communication [52, 64] would be vulnerable to sniffing attacks

by an on-path attacker.

SSLStrip Attack. In an SSLStrip attack [34], we assess if it is possible to downgrade

the connection from HTTPS (secure) to HTTP (insecure), thereby exposing the transmitted

data to be intercepted by an on-path attacker. Our test setup for SSLStrip comprises of the

following components: (a) Linux virtual machine (VM) as the victim’s machine; (b) Kali

VM as the attacker’s machine; and (c) Bettercap v1.6.2 [24] installed inside the attacker

machine. We note the IP address of the victim virtual machine. Thereafter, we launch the
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Bettercap tool in the attacker’s machine via the following command: sudo bettercap

-X -T <victim machine IP address> -proxy. Bettercap forces all the web

traffic from the victim machine to be routed through the attacker machine. It also attempts

to downgrade the SSL/TLS connection. Thereafter, we try to log in to the platform’s web-

site from the victim machine and check if the supplied login credentials are captured by the

Bettercap tool in the attacker machine and confirm if the platform’s website is vulnerable

to SSLStrip attack.

3.7 Misconfigured Cookie Attributes

The websites of the IoT management platforms services must be configured to ensure suf-

ficient protection to all browser cookies, especially those which are used for session man-

agement. We check the following cookie attributes, which must be set for securing session

cookies: (a) the Secure attribute, which instructs the browser to send the cookie only with

HTTPS requests, to prevent cookies from being exposed to on-path attackers; and (b) the

HTTPOnly attribute, to make cookies inaccessible to client-side scripts, for preventing

cookies from being stolen via cross-site scripting attacks.

3.8 Information Disclosure via Error Messages

IoT management platforms must be configured to securely handle error conditions. Oth-

erwise, these services may return verbose internal messages in the response, disclosing

details about the make and build of the technology stack behind these services, which can
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be leveraged by adversaries to discover potential vulnerabilities.

3.9 Information Leakage to Third Parties

Websites use third-party scripts for several purposes such as user tracking, analytics and

error reporting. However, several web tracking scripts have been found to exfiltrate the

personal information of users in the past [1]. Apart from user account information, the

IoT management platform’s website contains sensitive information such as API keys and

device tokens, which are used for the management of IoT devices and IoT SIM cards. It is

essential to limit the exposure of such details to third parties. We check (by using regular

expressions, when applicable) if any sensitive information, e.g., credit card number, IMEI,

Integrated Circuit Card Identification Number (ICCID), API key, token, login password, is

sent to third parties.

3.10 Target Platforms and Analysis Setup

Target platforms. Since the IoT platforms are used mostly by enterprise users/developers

and not meant for mass consumption, typical website ranking services (such as Tranco2)

cannot be used for platform selection. Instead, we rely on a combination of the follow-

ing sources to gather the list of 52 web-hosted/locally-deployable platforms: (a) survey

papers on IoT platforms [29, 67, 68]; (b) top search engine results with keywords such as

IoT platform, IoT device management, IoT data management, IoT connectivity, IoT SIM,

2https://tranco-list.eu
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M2M SIM. The selected web-hosted platforms cater to a large number of IoT devices (self-

reported by the platforms, as of Sept. 1, 2022): e.g., Verizon (31M), Telenor (17M), Emnify

(10M), RemoteIOT (10M). For the selected locally-deployable platforms, we found (as of

Sept. 1, 2022) several instances from Censys.io, e.g., Thingsboard (2206), DGIOT (130),

OpenRemote (57); note that these counts include only the internet exposed deployments,

and each deployment may serve many IoT devices.

30 platforms allowed creation of trial enterprise user accounts, in which we registered

using fictitious company names such as TestCompany. For the rest, we registered for trial

accounts as individual users. 20 platforms (all web-hosted) we assessed offer connectivity

management service via cellular networks. We purchased IoT SIM cards from 6/20 plat-

forms, namely, Telnyx, Telenor, Hologram, OneSIMCard, KeepGo and OpenM2M. For

these 6 platforms, we performed the security analysis with the privileges of valid enterprise

users of these platforms. For the remaining 14/20 platforms offering connectivity manage-

ment services, and for all the platforms analyzed that offer device and data management

services, we conducted the analysis with the trial user accounts, typically having access

to a limited set of functionalities. In addition to 42 web-hosted platforms, we also evalu-

ated 10 locally-deployable IoT platforms, which include 2 closed-source and 8 open-source

platforms.

Analysis setup. We perform a black-box security assessment of the platforms and analyze

their web applications and web APIs. We use Burp Suite [42] as a man-in-the-middle proxy

to intercept web requests and send crafted web requests to the platforms.

We use the following approaches in our analysis (see Table 1). We perform manual

28



Table 1: List of analysis tools and approaches

Security Vulnerability Analysis Type Tool/Technique
Broken authentication Semi-automated Auth Analyzer [27]
Unauthorized access Semi-automated Auth Analyzer [27]
Vulnerable trigger-action functions Manual -
Lack of input validation Manual -
Cross-site request forgery Semi-automated CSRF Scanner [25]
Insecure communication Automated Bettercap [24]
Information disclosure via error messages Automated Error Message Checks [26]
Misconfigured cookie attributes Automated Burp Suite
Info. leakage to third parties Semi-automated Regex based search

testing to check the lack of input validation and vulnerable trigger-action functions; no

automated scanning tools are used to avoid affecting the platform operations. For trigger-

action functions, we manually explore the available sandbox-escape attacks for a given

library. The following tests are semi-automated: broken authentication and unauthorized

access (manually exploring key functionalities on the website to capture underlying web

requests), CSRF (removing false positives reported by CSRF Scanner [25]), information

leakage to third parties (tuning the regular expressions for each platform). Finally, in-

formation disclosure via error messages, misconfigured cookie attributes, and testing for

insecure communication are performed automatically. Impact analysis is done manually.

To mimic the behavior of real IoT devices, we used Curl3 and custom Python scripts

to issue test HTTP requests to the platforms. We needed to install an edge agent on an

IoT device to perform the analysis on 10/52 IoT platforms. We installed Linux-compatible

versions of these agents inside virtual machines. To evaluate the locally-deployable IoT

platforms, we set up each platform inside a separate VM. While testing these local deploy-

ments, we used Burp Suite’s active scanner in conjunction with manual testing. Since we

3https://github.com/curl/curl
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perform a black-box assessment, we do not conduct a source code review for the open-

source locally-deployable platforms.
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Chapter 4

Results

We use our framework to analyze the security posture of 52 IoT management platforms.

The analysis was done between January 2021 and June 2022. We summarize the discov-

ered attacks, their scope, and corresponding vulnerable platform functionalities (denoted

by ✗) in Table 2. In this chapter, we provide a detailed discussion of the findings of our

analysis; Table 3 provides an overview of the findings based on the discovered instances

of data exposure and malicious write along with the type of attacker and the scope of the

attack. The notations used in Table 3 are as follows. Any remote attacker can perform

platform-wide ( ) or user-specific ( ) attacks; a user-dependent remote attacker can per-

form platform-wide ( ) or user-specific ( ) attacks; any on-path attacker can perform

user-specific (
⨂︁

) or device-specific (
⨀︁

) attacks. In instances exploitable by multiple at-

tacker types, we consider the worst one (e.g., remote attackers are worse than on-path

attackers), with the broadest scope. Platform notation: web-hosted if not mentioned, (O):

open-source locally-deployable, (C): closed-source locally-deployable.
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4.1 Broken Authentication

We found several broken authentication vulnerabilities with varying security consequences:

complete account takeover in AskSensors, Fogwing, MDash, Aeris Neo, ResIOT, Favoriot,

GlobalM2MSIM and Thingsboard; data exposure in Aeris Neo, Favoriot, TheThings.io

and AskSensors; and several IoT SIM registration issues (e.g., denial of service) in Holo-

gram, KeepGo, and OneSIMCard. Below we discuss these vulnerabilities, grouped by the

affected resources.

Account information. Broken authentication in user account management was found on

AskSensors, Fogwing, Boodskap, Aeris Neo, ResIOT, GlobalM2MSIM and Thingsboard.

On AskSensors, an attacker can obtain sensitive account information for any user, by pro-

viding a 4-digit ID value, which can be easily enumerated for all users. Details such as user-

name, email ID, number of connected IoT devices, account creation date, user’s address,

and the password reset token are exposed. Specifically, the reset token can be exploited

to completely takeover any user account by submitting a forgot password request with the

victim’s email address. On Fogwing’s analytics portal, an attacker could reset the password

of any user by providing the victim’s registered email ID. On Boodskap, all APIs return

valid responses for unauthenticated requests. Although most of the requests contain UUIDs

which cannot be known to a remote attacker, an existing user can abuse this to elevate their

role to an admin. An attacker could view sensitive information of any user of Aeris Neo, by

providing a 5-digit account ID of the victim. Using a trial and error approach, the attacker

can retrieve sensitive information, e.g., name, email ID, account type and API key for other
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users. The API key leaked in this vulnerability is used for authentication throughout the

platform and can be further abused to gather information, e.g., SIM card details, billing

details and data usage. Upon submitting a password reset request on GlobalM2MSIM’s

website, the password reset link sent to the registered email ID contains a random pass-

word reset key. The key parameter is not validated by the platform. Thus, a valid reset link

can be made by providing any random string in the key parameter and the email address

of the victim user. An attacker could reset the victim user’s password and takeover their

account, granting access to the IoT SIM cards owned by the victim user. In ResIOT, an

attacker could get any user’s authentication token by providing the victim’s email address.

Thereafter, the attacker could log in to the victim user’s account on the platform, and per-

form IoT SIM management tasks. We also found vulnerabilities in MDash, AskSensors

and Thingsboard that could be abused by a user-dependent remote attacker to take over the

account of any user. On MDash, the registration web request contains a URL parameter; a

user-dependent remote attacker can submit a registration request, even for an existing user,

and provide an attacker-controlled website in the URL parameter. The platform sends an

email to the victim user with the activation link containing the attacker’s website URL.

Similar attack is possible via password reset requests on Asksensors (by modifying URL

parameter in request) and Thingsboard (by modifying Host header in request).

IoT device. Broken authentication could be abused for remote command execution and

device data forgery. An attacker could send arbitrary commands to the IoT devices con-

nected to AskSensors, where the attacker needs to supply the command and the device ID
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Table 2: Overview of the discovered attacks

Attack
Scope Attack Description Vulnerable Platform Functionalities

SIM
Mgmt.

Alerts
Mgmt. SMS IMEI

Lock
Device
Commands

Firmware
Updates

Device Data
Handling

User
Accounts

Platform-wide

Sandbox escape ✗

Database compromise ✗

Arbitrary command issuance ✗

Mistimed alerts ✗

SIM state tampering ✗ ✗

Device data tampering ✗

Arbitrary SMS messages ✗

User information disclosure ✗

Alerts config. leakage ✗

SMS message leakage ✗

Firmware theft ✗

Device data leakage ✗ ✗

User-specific
Account takeover ✗

Partial account modification ✗

Device-specific API key theft ✗ ✗ ✗

(a 5-digit numeric value) in a POST request. An attacker could also obtain the GPS coordi-

nates of each IoT device on the platform. We found broken authentication on Favoriot that

could let an attacker obtain sensitive information such as user ID, Bcrypt hashed password,

API keys with read-only and read-write permissions—by providing only the email address

of a victim user. The leaked API keys could be used to read data sent by the victim’s IoT

devices, as well as to send forged data on behalf of those IoT devices to the platform. On

TheThings.io, an attacker could download the firmware image files uploaded by any user

through an unauthenticated web request, by supplying a 5-digit organization-id.

IoT SIM registration. We found a lack of authentication in the IoT SIM card registra-

tion process of 3/6 platforms from whom we purchased IoT SIM cards. KeepGo users can

register their IoT SIM card on the platform by entering their Integrated Circuit Card Iden-

tification (ICCID) number; no other verification is required. Upon registration, a request is

sent to the platform to check the SIM card’s availability. We refer to such endpoints as IoT

SIM validation endpoints. ICCID numbers are susceptible to enumeration as evident from
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past attacks [57]. We altered the last few digits in our own IoT SIM card’s ICCID number

and observed three types of responses: a) SIM Card Not Found, b) This line already in use,

c) Success. We found an unassigned ICCID number within under 100 requests, which we

could successfully register from another test account. Similarly, an attacker can enumer-

ate valid unassigned ICCID (in Hologram) and SIM numbers (in OneSIMCard) and add

them to fake accounts. If such an unassigned SIM card is later purchased by a customer,

she would receive an error message during registration of the SIM card (and may require

intervention of the support team).

On Telnyx, registering a SIM card requires the user to provide a 10-digit unique code

printed on the physical card. In both Telenor and OpenM2M, IoT SIM registration is not

performed by the user. Thus, these three platforms are not affected by this issue.

4.2 Unauthorized Access

We found that 9/52 platforms are vulnerable to unauthorized access. We provide the details

below.

IoT SIM. On KeepGo and OneSIMCard, an attacker can disrupt IoT SIM cards’ cellular

connectivity. On KeepGo, users can create sub accounts within their own account and as-

sign IoT SIM cards to these sub accounts. An attacker can view other users’ sub accounts,

by inputting a 4-digit account ID (easily enumerated). More importantly, an attacker can

deactivate another user’s sub account, which deactivates all the IoT SIM cards assigned to

that sub account; the attacker needs to send the victim sub account’s ID. We also found
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Table 3: Overview of the discovered instances of data exposure and malicious write along
with the type of attacker and the scope of attack.
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Verizon’s Thingspace
Platform X
Aeris Neo
RemoteIOT
OneSIMCard
Hologram
KeepGo
Tago

⨀︁ ⨀︁ ⨀︁
Favoriot
TheThings.io
Mdash
Fogwing
Asksensors
CSL

⨂︁ ⨂︁ ⨂︁ ⨂︁ ⨂︁
GlobalM2MSIM
Imvvy

⨂︁ ⨂︁ ⨂︁ ⨂︁ ⨂︁
Open M2M
ResIOT
Thingsboard
ResIOT (C)
Bevywise (C)
Thingsboard (O)
OpenRemote (O)
Boodskap (O)
DGIOT (O)
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another instance of unauthorized access vulnerability in KeepGo, using which an attacker

can set any arbitrary future date as the date of IoT SIM card deactivation (requires the IC-

CID number of a targeted SIM, or can be guessed in a trial-and-error approach for arbitrary

targets). Both of these attacks can be performed by anyone with a registered account on the

platform, with or without an IoT SIM card from KeepGo.

On OneSIMCard, we found three unauthorized access vulnerabilities affecting IoT SIM

cards (the first two issues have been fixed). An attacker can block the cellular connectivity

and internet access for any IoT SIM in the platform, by sending web requests with the SIM

number of the victim, which is a unique 15-digit numeric value.4 An attacker can also set

country restrictions for any IoT SIM card, which would restrict the data access of the IoT

SIM card in the countries specified by the attacker. On OneSIMCard, an attacker could

remove the IMEI lock set on any IoT SIM card as well as set arbitrary IMEI lock on any

IoT SIM card by providing the victim’s 15-digit SIM number (fixed during our testing).

Only existing users with SIM cards assigned to their accounts can perform these attacks.

An attacker can use the broken authentication in SIM registration process (see Sec. 4.1) to

obtain such an account.

Alerts. We found unauthorized access vulnerabilities in the alerts configuration on KeepGo

and TheThings.io, using which attackers can exfiltrate sensitive information as well as

modify the configured alerts. On KeepGo, users can set rules to trigger an email alert

notification if the account balance falls under a set threshold. An attacker could modify this

rule for any user by providing account ID (a 4-digit number), condition value (containing

4As from the purchased cards, OneSIMCard apparently uses sequential SIM numbers.
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the threshold amount in USD) and the desired email address in a POST request. The

attacker could set a large negative value as the threshold and as a result, the alert would

not be triggered. An attacker could also redirect the alerts to an arbitrary email address. In

both cases, the user would not receive the notification in time, which may lead to service

disruption. KeepGo users can set rules to keep track of data usage and detect changes in

IMEI corresponding to IoT SIM cards. An attacker can view the rules set by other users by

providing the 3-digit line rule ID. However, the platform blocks unauthorized attempts to

modify or delete these rules.

TheThings.io contains a module named Cloud Code, allowing users to write jobs, func-

tions, and triggers on the platform [55]. An attacker can view the cloud codes of other users,

by providing a 5-digit organization ID (easily enumerated). TheThings.io lets users utilize

third party services e.g., Twilio (for SMS/voice alerts), and SendGrid, Mandrill, SES, and

Gmail (for emails) while defining triggers. The unauthorized access vulnerability in Cloud

Code exposes the authentication credentials (e.g., API keys, tokens) for these third party

services as well. These credentials can be abused in several ways, e.g., to retrieve sensitive

information such as metadata of emails previously sent, to use the service APIs for free

(incurred cost will be billed to the victim), and to launch phishing attacks via emails and

SMS messages. Another access vulnerability in the Alerts Manager module (which gener-

ates alerts depending on user-set conditions), allows an attacker to delete the alerts set by

any user, leading to potential service disruptions.

SMS. We found unauthorized SMS access vulnerabilities on KeepGo and OneSIMCard

platforms, enabling an attacker to view SMS messages exchanged between the IoT devices
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and the platform, and send arbitrary messages to the IoT devices. KeepGo users can send

SMS messages to their IoT SIM cards from the platform, and the responses from the IoT

devices can be viewed on KeepGo’s website. For each inbound and outbound message, the

user is charged 0.05 USD. An attacker could view all the exchanged IoT SMS messages

by providing the ICCID of the victim’s IoT SIM card (see Sec. 4.1, under “IoT SIM Regis-

tration”), and the billing cycle. More importantly, an attacker can send arbitrary messages

by inputting the target SIM’s ICCID and the SMS text in a POST request, after which, the

victim’s account balance is reduced by 0.05 USD. Similarly, on OneSIMCard, an attacker

could view messages sent to any SIM card, and send arbitrary messages to an IoT SIM

card by inputting the target SIM number and the SMS text in a POST request, for which

the victim’s account balance is reduced by 0.01 USD. Note that the attacker’s account is

not charged at all in these attacks. On OpenM2M, an attacker could read SMS messages

for any SIM card by providing a 6-digit subscription ID.

IoT device data. We found unauthorized access vulnerabilities pertaining to IoT de-

vice data with varying implications: arbitrary dashboard modification on TheThings.io;

IoT device data forgery in Fogwing and AskSensors; sensitive device data exposure in

TheThings.io, Fogwing, AskSensors, and Platform X.

On TheThings.io, each organization has a dashboard (containing smaller units known

as widgets) with an overview of the status of connected IoT devices. An attacker could view

the dashboard configuration for any organization by supplying the victim organization’s ID

(5-digit numeric value, easily enumerated). The exposed information includes: dashboard

ID and configuration of individual widgets on the dashboard (e.g., name of widgets used,
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source of data). More importantly, by using the exposed dashboard ID, an attacker could

edit/delete the dashboard configuration of any organization by inputting the dashboard ID

and the desired dashboard settings in a PUT request. One of the widgets, iFrame Link,

lets users load content from external pages in an iFrame. Through unauthorized access,

an attacker could add a malicious iFrame Link to any organization’s dashboard, which

could load content from an attacker-controlled website. On Fogwing, an attacker could

view sensitive information of any IoT device by providing the 4-digit gateway ID; exposed

details include name, edge ID, geolocation, health status, and data received from the device.

An attacker could further abuse the leaked edge ID to send forged data on behalf of the

targeted IoT device to the platform by providing the victim’s edge ID and the attacker’s

API key as URL parameters along with the forged data payload in the POST request.

On AskSensors, for any device, simply by providing a 4-digit ID, an attacker could

view the API keys, and remove the device. An attacker could also read data submitted by

any IoT device, and send forged data on behalf of any device to the platform. The exposed

API key could be further abused to launch XSS attacks (see Sec. 4.4).

On Platform X, an attacker could view details of the security updates deployed on any

device by providing the 5-digit update ID in a POST request. Exposed details include

device ID, device name, device state (online/offline), update status, update message and

update time. For any device, the last fetched log file could be obtained by providing the

6-digit device ID in a POST request. An attacker could view outputs of commands issued

by other users (fixed during our testing) by providing their own user token, the command

ID and device ID (both 5-digit numbers) and their own CSRF token.
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Account information. We found access control violations leading to exposure of account

information on the TheThings.io, Fogwing, ResIOT, AskSensors and Aeris Neo platforms.

AskSensors uses Stripe APIs5 for payment processing, and exposes the stripe card objects6

of all users, through an API, where an attacker needs to supply only a 4-digit ID value.

Exposed details include card company’s name, card expiry month and year, last 4 digits

of the card, CVC check status (pass, fail, unavailable, unchecked), card type (debit, credit,

prepaid) and billing address. On TheThings.io, an attacker can obtain organization details

such as organization name and subscription ID for all organizations on the platform. An

attacker could also obtain user information such as the email address and the permissions

granted for all users within an organization. In both cases, the attacker needs to provide a 5-

digit numeric organization ID value. On Fogwing, an attacker could access details of all the

connected enterprises by providing a 4-digit numeric ID, which can be enumerated easily.

Exposed details include enterprise name, business location and type of business. On Aeris

Neo, there are two user roles, namely standard user and account manager. Only an account

manager can access account management functionality of a given account. However, all

users in an account use the same API key for authentication/authorization. A standard user

can use the shared API key to make themselves the account manager. ResIOT provides a

graphical representation of the available credit amount in the user’s account. An attacker

can obtain information about the credit amount available in any account in the past. The

request contains a 4-digit numeric id in the URL. However, the attack has limited impact

since the exact user for a given exposed graph cannot be determined.

5https://stripe.com/en-ca
6https://stripe.com/docs/api/cards/object
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4.3 Vulnerable Trigger-Action Functions

In TheThings.io, users can execute JavaScript code in the Jobs, Triggers, and Functions of

the Cloud Code module on the platform’s website. These code segments are executed in

a sandbox as mentioned in the official documentation [55]. We discovered a remote code

execution vulnerability on the platform’s server, by following the steps below. Note that

the vulnerability affects all the three functionalities (Jobs, Triggers and Functions).

When we used the require module (from Node.js) in a JavaScript function, we obtained

an error indicating that its use is disallowed. Therefore, we tried to find more about the

sandbox library used by the platform; see Sec. 3.3. From the stack trace returned in the error

message, we found that Jailed [22] sandbox is used. We followed a coordinated disclosure

approach, wherein we were provided a perpetual access account by the platform’s CEO

for further testing. We leveraged known sandbox bypass attacks [23] against Jailed, to

use require module inside a function to invoke the child_process (from Node.js) module,

and test for remote code execution using process.exec(). We executed the system

command id to confirm that we attained remote code execution with root user privileges.

We found that the Cloud Codes functionality was running inside a kubernetes pod, shared

by all users on the platform. We could attain root access on this shared pod. No further

commands were executed which could alter any existing system configuration or exfiltrate

any sensitive information.

On OpenRemote, users can write rules in Groovy programming language to create

event-based workflows. We found that the functionality has not been sandboxed, and allows
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users to run commands on the server itself. We verified the issue on a local installation on

Linux. We were assigned a CVE (rated 9.8/10, critical severity) for this vulnerability.

Post disclosure, the functionality has been restricted to super users, and the developers are

working on a sandbox implementation.

4.4 Lack of Input Validation

We found SQL injection on ResIOT’s locally-deployable platform. We found cross-site

scripting (XSS) vulnerabilities on 16/52 evaluated platforms. On 9 of them (OpenM2M,

OneSIMCard, Favoriot, TheThings.io, AskSensors, Thingsboard, Boodskap, Bevywise,

DGIOT), an attacker could steal session cookies and authentication tokens stored in browser’s

LocalStorage/SessionStorage from active user sessions via XSS. Note that on each of these

9 platforms, we attained stored XSS, providing an attacker perpetual access to session

cookies/tokens whenever the user visits the affected pages, leading to account takeover. On

ResIOT’s locally-deployable platform, a user-dependent remote attacker could use cross-

site request forgery to execute arbitrary SQL queries on the platform’s database.

On Platform X, an IoT device’s log file content is displayed without proper sanitization.

Hence, any JavaScript payload injected into the log file can be used to trigger XSS attacks

against the corresponding user. An attacker can insert such payloads in devices that may

collect attacker-controlled inputs. On RemoteIOT, users can execute commands to fetch

files from the devices. Similar to Platform X, an attacker could insert XSS payloads on

devices that collect attacker-controlled inputs (remediated after our disclosure).
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On KeepGo, by exploiting the unauthorized access vulnerability in the SMS function-

ality (see Sec. 4.2), an attacker can send a JavaScript payload as an SMS message, which

executes when the IoT SIM owner views the list of sent SMS messages on the platform’s

web portal. Similarly, an unauthorized access vulnerability in AskSensors (see Sec. 4.2) al-

lows adding JavaScript payload in an IoT device’s description field; the payload is executed

on the browser when the victim user views the device details. The victim’s authorization

token stored in the browser’s LocalStorage can be stolen via XSS.

On Thingspace’s Freeboard portal, a user-dependent remote attacker can abuse CSRF to

embed XSS payloads on a user’s dashboard. Similar abuse scenarios involving use of CSRF

for injecting XSS payloads were found on OneSIMCard and OpenM2M. On Thingsboard,

an existing user can inject XSS payloads into the user logs, which can also be accessed

by an admin user. Using this, any user can steal the admin’s authentication token. An

existing user can inject XSS payloads on Boodskap, Bevywise and DGIOT to steal admin

cookies/tokens.

Broken authentication in Aeris Neo (see Sec. 4.1) can be used to launch XSS attacks

against the users by injecting JavaScript payloads in the first/last name parameters. An

attacker could abuse broken authentication (see Sec. 4.1) in Favoriot to make forged data

submissions containing XSS payloads. On TheThings.io and Imvvy, an on-path attacker

could capture the authentication credentials from HTTP requests and MQTT(without TLS)

messages, respectively and abuse them to launch XSS attacks.
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4.5 Cross-site Request Forgery

On OneSIMCard, a user-dependent remote attacker can craft a form for password mod-

ification and trick a user to submit the form during their active session, thereby taking

over the user account. Thereafter, the attacker would be able to perform critical IoT SIM

management tasks such as SIM activation/deactivation,IMEI lock removal and IoT SMS

delivery. On Bevywise and Thingspace’s Freeboard portal, CSRF can be abused to in-

ject XSS payload on a user’s dashboard; on Bevywise, it leads to account takeover. On

ResIOT, an attacker can target the platform’s admin via CSRF to perform SQL injection.

On OpenM2M, an attacker with the knowledge of the victim’s 6-digit subscription ID can

suspend the victim’s IoT SIM card. On GlobalM2MSIM, an attacker can modify victim’s

profile details such as contact information, delivery address and company VAT number us-

ing CSRF. Since we did not have active subscription for GlobalM2MSIM, we could not

validate other abuse scenarios.

4.6 Insecure Communication

Upon requesting ResIOT’s website using HTTP, the server does not redirect the user to

HTTPS (fixed post our disclosure), in which case, sensitive information such as login cre-

dentials, SIM details, API tokens are transmitted in cleartext via HTTP. Data transmission

without TLS is supported on 3 platforms via HTTP APIs and on 10 platforms via MQTT. If

an IoT device is erroneously configured to use HTTP/MQTT (without TLS), the IoT device

would send data to the platform over cleartext, enabling attacks such as API key theft by
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on-path attackers. 10 platforms’ websites do not set HSTS header in the web responses.

We use Bettercap to confirm if the SSLStrip attack could be launched on these platforms

against the accounts owned by us; 8 platforms are confirmed to be vulnerable (i.e., lo-

gin username and password can be captured by an on-path attacker). On the remaining 2

platforms lacking HSTS, the attack failed due to the use of custom headers. TLS imple-

mentation is deployment-specific for locally-deployable platforms. Using Censys.io, we

found7 several instances of internet-exposed deployments that allow insecure communica-

tion via HTTP (without TLS): Thingsboard (1938/2206), DGIOT (119/130), OpenRemote

(57/57), Mainflux (26/28), dojot (22/23); several deployments allow insecure communica-

tion via MQTT (without TLS): Thingsboard (1446/2206), DGIOT(105/130), OpenRemote

(7/57), Dojot (2/23).

4.7 Misconfigured Cookie Attributes

11 web-hosted platforms have inadequately protected session cookies; the Secure attribute,

and the HTTPOnly attribute were not set in 7 and 10 platforms, respectively; both at-

tributes were missing in 6 platforms. On locally-deployable platforms, the Secure attribute

is linked to TLS implementations (measurement on internet exposed deployments require

user logins, not performed due to ethical considerations). HTTPOnly was not set on session

cookies of 4 locally-deployable platforms.

7This is measured by checking standard open ports (port 80/8080 for HTTP and 1883 for MQTT), cap-
tured by Censys.io on each deployment as on Sept. 1, 2022.
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4.8 Information Disclosure via Error Messages

Thingspace, ClearBlade, KeepGo, AskSensors and Aeris Neo return verbose error mes-

sages upon supplying invalid input in web requests, revealing internal paths and stack trace.

More importantly, Thingspace leaks the Base64 encoded authentication credentials (easily

decoded to reveal the plaintext username/password) in a verbose error message. The stack

trace indicates that the leaked credentials are used for sending authenticated requests to an

internal host (b2bservices.vzwcorp.com).

4.9 Information Leakage to Third Parties

On Hologram, Fullstory (session recording script) captures sensitive information, includ-

ing credit card details of users (fixed at the time of writing). On Telnyx, customer names

and shipping addresses are sent to Fullstory and user details such as name, phone number,

company name and address are sent to api-iam.intercom.io. On TheThings.io, details sent

to api-iam.intercom.io include user’s name, email, phone number, and the authentication

token for the user’s devices. On Emnify, third-party analytics scripts (Mixpanel and Heap-

analytics) capture information such as email ID, organization ID and IMSI. On SIMcontrol,

the API key used for IoT SIM management is sent to sentry.io. SIMControl responded that

they have configured server-side scrubbing of sensitive information on sentry.io. For Full-

story, rules can be set to prevent capturing of sensitive customer information [18].
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Chapter 5

Discussion and Conclusion

In this chapter, we discuss our limitations, key takeaways from our analysis, and recom-

mendations for platform developers and users.

5.1 Limitations

For 14/20 platforms offering connectivity management services, and for all the platforms

offering device and/or data management services, we performed the assessment with trial

accounts with a limited set of functionalities. Thus our findings may represent a lower

bound of the vulnerabilities. Several platforms do not allow self-registration of user ac-

counts, and require manual verification (e.g., proof of business ownership) before granting

access to the platform; we excluded such platforms. Also, most of the vulnerabilities tested
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and their detection techniques are no different from those adopted in traditional web secu-

rity. However, results from our vulnerability assessment demonstrate the practical conse-

quenses of such known issues in the IoT management platforms.

5.2 Key Takeaways

We draw the following key takeaways and observations from our findings.

1. Platform-wide attacks: Compared to attacking a single IoT device, the IoT platform

provides a large attack surface that encompasses a large number of registered enter-

prises, their connected devices, and their users. Thus, the impact of vulnerabilities

detected in the platforms is amplified significantly. 17/52 platforms are affected by

vulnerabilities leading to platform-wide attacks.

2. Platform design flaws: On 9/52 platforms, user resources are not properly isolated,

which lead to unauthorized access vulnerabilities. There needs to be a strong binding

between the device/SIM IDs and the corresponding users, along with adequate iso-

lation of users and their resources. Also, on 9/52 platforms, the use of short numer-

ic/guessable IDs (e.g., 4-digit values, SIM numbers) instead of longer IDs, coupled

with a lack of sufficient rate limiting of web requests, makes it easier for an attacker

to quickly launch enumeration/guessing attacks against all IoT entities—enterprises,

users, devices. Furthermore, on 3/52 platforms, the absence of unique tokens for

registering SIM cards makes it possible for an attacker to register multiple SIM cards

which they don’t own. As a result, the customers purchasing those cards would not
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be able to register and activate them.

3. Multifaceted nature of attacks: Platform issues (broken-authentication/unauthorized-

access) can compromise IoT devices, and forged data submissions containing XSS

payloads can be used to launch user-specific attacks. This highlights the need for a

more carefully considered adversary model. For example, in Asksensors, we found

a broken authentication vulnerability on the platform that allows a remote attacker to

issue arbitrary commands to any connected device. On the other hand, on TheThings.io,

we found that it is possible for on-path attackers to steal device authentication tokens,

and further abuse them to launch XSS attacks against the corresponding device own-

ers on the platform.

In addition, we observed that chaining of multiple vulnerabilities can be used to

launch attacks with more severe impact. For example, the SQL injection vulnera-

bility on ResIOT’s locally-deployable platform could only be performed by platform

users. However, by leveraging CSRF, a user-dependent remote attacker could also

exploit the SQL injection vulnerability. Additionally, CSRF can be used as a vector

to inject XSS payloads on the victim’s web dashboard, leading to account takeover

(e.g., Bevywise, OneSIMCard and OpenM2M). Similarly, API key theft from devices

using insecure communication (HTTP without TLS) can be used to send forged data

with XSS payloads, leading to account takeover (e.g., TheThings.io).

4. Unique challenges in locally-deployable platforms: Compared to a Software-as-

a-Service (SasS) based web-hosted IoT platforms, locally-deployable platforms are
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configured and maintained by the enterprises using the platforms. Thus, the adminis-

trators are responsible for performing several crucial tasks to ensure security of their

deployments. Administrators are required to monitor available patches for newly

discovered vulnerabilities and deploy them in a timely manner. In addition, adminis-

trators must harden the default installations, which includes changing the default cre-

dentials (e.g., passwords, secret keys). Weak, guessable, or hardcoded passwords are

the among the top 10 security risks for IoT systems identified by OWASP [39]. Sim-

ilar to IoT devices, some locally-deployable platforms (e.g., OpenRemote, DGIOT,

dojot) have a default user account (typically with admin privileges) that is created

upon installation, with a default username and password. If the login credentials for

the default account are not changed, an attacker can abuse this configuration flaw

to log in to the platform. Furthermore, in case a JSON web token (JWT) is used

for platform-wide authentication of an open-source platform (e.g., in Thingsboard,

Mainflux), the default value of the signing key used to generate JWT can be obtained

from the configuration files. Enterprises deploying any such platform must change

the key’s value to a non-guessable one; otherwise, an attacker would be able to gen-

erate valid JWTs using the default key value (and a target user’s email/user ID), and

impersonate any user on these platform deployments. Due to ethical considerations,

we did not perform an active measurement to determine platform deployments using

default credentials.
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5.3 Recommendations

We propose the following recommendations for the platforms and their users.

1. Some platforms continue to support devices using cleartext protocols (HTTP, MQTT

without TLS). The abuse scenarios in such cases are deployment-specific (i.e., de-

pends on their users). However, the platforms must emphasize the security implica-

tions of such choices, and perhaps adopt strict platform-wide TLS enforcement.

2. Data sent by devices using APIs and via MQTT should not be assumed to be se-

cure, and should be appropriately validated and escaped while processing them at

the platform’s end.

3. Custom code functionalities on IoT platforms must run inside sandboxes, which

should be secured against sandbox escape attacks. As a defense in depth measure

to limit the exploit’s impact, the custom functionality should not run with root privi-

leges on the server.

4. With regards to broken authentication in IoT SIM registration, the IoT connectivity

providers may give a unique and randomized (alphanumeric) token to the SIM card

owner when the SIM card is purchased to ensure that only legitimate IoT SIM card

owners can add the SIM cards to their management platform accounts. This ran-

domized token could be printed on the SIM card’s packaging (as observed in case of

Telnyx), or sent to the SIM owners via email or SMS.

5. The web requests responsible for IoT SIM enumeration must be rate-limited to make
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it infeasible for an attacker to obtain valid IoT SIM numbers, which have not yet been

registered on the platform.

6. We observe that only 12/52 platforms have publicly disclosed vulnerability reporting

programs such as responsible disclosure and bug bounty; all platforms should adopt

such programs.

7. Besides fixing the vulnerabilities that we disclosed, platform administrators should

also regularly check for new issues, e.g., using our test framework, especially when

major code changes are made or when new functionalities are added to the platforms.

8. Business/organization users of these platforms may also use our framework for choos-

ing a platform with adequate security support, and for performing periodical security

auditing. Our findings can be used to raise awareness of potential security and privacy

issues among the users that rely on management platforms for their IoT operations.

5.4 Conclusion and Future Work

We provide a security evaluation framework for IoT management platforms which offer

data management, device management and connectivity management (cellular) services for

consumer/business/industrial IoT devices. We use our framework to perform a systematic

review of 52 real-world IoT management platforms. Our security analysis revealed major

unauthorized access flaws in 9 IoT management platforms. We also uncovered other severe

vulnerabilities such as broken authentication in 13 platforms, and remote code execution
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on 2 platforms. All the vulnerabilities in our framework can be exploited by attackers with

no or minimal expenditure (e.g., to purchase trial SIM cards for connectivity management

services). We hope that our study would help the IoT management platform developers

secure their platforms against these easy-to-launch but severe attacks.

For future work, the Standard Development Kit (SDK) libraries offered by the platforms

could be checked for security issues. The IoT agents used by the platforms could be further

evaluated to check for security vulnerabilities.
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Appendix A

List of evaluated platforms

Table 4 provides an overview of the analyzed platforms. We list the platform’s name,

platforms’s type (web-hosted/locally-deployable), account type, services they offer and the

services that were analyzed. The symbol indicates that the given service is offered by

the platform and analyzed in this work, whereas * indicates that the service is offered by

the platform, but not analyzed in this work; notation used for locally-deployable platforms

are (O) for Open-source and (C) for Closed-source platforms.

Note that for some services, access to the website/web APIs was restricted to active

subscription holders. We did not analyze those services where obtaining such subscription

was not feasible. When the platform seeks company details such as company name and/or

company email id while setting up an account, we consider that the account is an enterprise

account. Otherwise, we consider that the account is a regular account. The type of account

relates to the category of users (individual or enterprise) affected by the vulnerabilities

found on the platforms.
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Table 4: List of evaluated IoT management platforms
Platform Name Platform Type Account Type Conn. Mgmt. Dev. Mgmt. Data Mgmt.
Azure IoT Web-hosted Regular
AWS IoT Core Web-hosted Regular
Verizon’s Thingspace Web-hosted Enterprise *
Telus IoT Web-hosted Enterprise
Platform X Web-hosted Regular
Tuya Web-hosted Enterprise *
Sierra Wireless Web-hosted Enterprise *
Cumulocity Web-hosted Enterprise
Telenor Web-hosted Enterprise
Truphone Web-hosted Enterprise
Telnyx Web-hosted Enterprise
Socketxp Web-hosted Regular
Siemen’s Mindsphere Web-hosted Enterprise
Aeris Neo Web-hosted Regular *
Bosch IoT Suite Web-hosted Enterprise
RemoteIOT Web-hosted Regular
ClearBlade Web-hosted Enterprise
OneSIMCard Web-hosted Enterprise
Hologram Web-hosted Enterprise
Emnify Web-hosted Enterprise
Blynk Web-hosted Regular
Thinger Web-hosted Regular
Soracom Web-hosted Enterprise
KeepGo Web-hosted Enterprise
GigSky Web-hosted Enterprise
Kaa Web-hosted Enterprise
Pelion Web-hosted Regular *
Tago Web-hosted Enterprise
Favoriot Web-hosted Enterprise
SIMcontrol Web-hosted Enterprise
TheThings.io Web-hosted Enterprise
MDash Web-hosted Regular
Luner Web-hosted Regular
Fogwing Web-hosted Enterprise *
AskSensors Web-hosted Regular
CSL Web-hosted Regular
GlobalM2MSIM Web-hosted Enterprise
Aikaan Web-hosted Enterprise
Imvvy Web-hosted Enterprise
Open M2M Web-hosted Enterprise
ResIOT Web-hosted Enterprise
Thingsboard Web-hosted Enterprise
ResIOT (C) Locally-deployable Enterprise
Thingsboard (O) Locally-deployable Regular
OpenRemote (O) Locally-deployable Regular
Boodskap (O) Locally-deployable Regular
Bevywise (C) Locally-deployable Regular
DGIOT (O) Locally-deployable Regular
Mainflux (O) Locally-deployable Regular
Zeus IOT (O) Locally-deployable Regular
IoTGateway (O) Locally-deployable Regular
Dojot (O) Locally-deployable Regular
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Appendix B

List of assigned CVEs

Below are the CVSS v3.0 base scores, severity ratings and descriptions of the 11 CVE-IDs

assigned by MITRE for our reported vulnerabilities in locally-deployable platforms. The

CVE-IDs are mentioned in decreasing order of their CVSS scores.

• CVE-2022-31860 (CVSS base score: 9.8/10, Critical): An issue was discovered in

OpenRemote through 1.0.4 allows attackers to execute arbitrary code via a crafted

Groovy rule.

• CVE-2022-34020 (CVSS base score: 8.8/10, High): Cross Site Request Forgery

(CSRF) vulnerability in ResIOT ResIOT IOT Platform + LoRaWAN Network Server

through 4.1.1000114 allows attackers to add new admin users to the platform or other

unspecified impacts.

• CVE-2022-35135 (CVSS base score: 8.8/10, High): Boodskap IoT Platform v4.4.9-

02 allows attackers to escalate privileges via a crafted request sent to /api/user/upsert/<uuid>
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• CVE-2022-34022 (CVSS base score: 7.2/10, High): SQL injection vulnerability

in ResIOT IOT Platform + LoRaWAN Network Server through 4.1.1000114 via a

crafted POST request to /ResiotQueryDBActive.

• CVE-2022-35136 (CVSS base score: 6.5/10, Medium): Boodskap IoT Platform

v4.4.9-02 allows attackers to make unauthenticated API requests.

• CVE-2022-31861 (CVSS base score: 5.4/10, Medium): Cross site Scripting (XSS)

in ThingsBoard IoT Platform through 3.3.4.1 via a crafted value being sent to the

audit logs.

• CVE-2022-35137 (CVSS base score: 5.4/10, Medium): DGIOT Lightweight indus-

trial IoT v4.5.4 was discovered to contain multiple cross-site scripting (XSS) vulner-

abilities.

• CVE-2022-34021 (CVSS base score: 5.4/10, Medium): Multiple Cross Site Script-

ing (XSS) vulnerabilities in ResIOT IOT Platform + LoRaWAN Network Server

through 4.1.1000114 via the form fields.

• CVE-2022-35612 (CVSS base score: 5.4/10, Medium): A cross-site scripting (XSS)

vulnerability in MQTTRoute v3.3 and below allows attackers to execute arbitrary

web scripts or HTML via a crafted payload injected into the dashboard name text

field.

• CVE-2022-35134 (CVSS base score: 5.4/10, Medium): Boodskap IoT Platform

v4.4.9-02 contains a cross-site scripting (XSS) vulnerability.
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• CVE-2022-35611 (CVSS base score: 4.3/10, Medium): A Cross-Site Request Forgery

(CSRF) in MQTTRoute v3.3 and below allows attackers to create and remove dash-

boards.
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Appendix C

Acknowlegments received

28/52 platforms responded to our vulnerability disclosures. We received positive responses

from the platforms, wherein we were acknowledged for our findings, and the platforms

committed to remediate the reported issues. Below are some excerpts of the acknowledg-

ments received from the platforms for our vulnerability disclosure.

• I am contacting you to thank you for your report of a security issue at our Neo

website. We confirmed what you discovered, and have shut down that site while

we repair the code and service. We noted this security issue some time ago on a

parallel platform and fixed it there. However, we failed to check the Neo site which

has similar code. We take security matters very seriously, and this was a surprise

to us that we had overlooked this. Once again, I wish to thank you for your report!

-Aeris Communications, Inc.

• After speaking with the technical team I wanted to thank you for the discoveries you

have made.. - TheThings.io
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• Thank you for highlighting the security issues within our platform. -Favoriot

• Thank you for your disclosure, we appreciate it. We have made issue reports inter-

nally and will proceed to make necessary changes to avoid these issues described

-Open M2M

• Thank you for taking the time to investigate this issue and for reaching out to us; we

are aware of the security issues relating to groovy and several years ago sandboxing

was rather difficult so we always advised limiting the ability to use groovy rules un-

less your users can be trusted. Thanks for providing the link discussing sandboxing;

I’m sure things have improved in this area and we will give this high priority to try

and find a solution. -OpenRemote

• We are grateful for your efforts in providing a vulnerability report. Our Team ap-

plauds the work and commitment to secure Verizon’s environment. -Verizon Enter-

prise Vulnerability Management Response Team

• Your email was truly helpful to us and our IT member are working on that to fix all

the bugs. iI’s like a bug bounty program from other companies. It’s much appre-

ciated that we got your feedback. Again, thank you so much for your time and all

cooperation. -KeepGo

• Thank you for trying out our platform and also thank you for pointing out this poten-

tial issue. It will be fixed and a new patch will be released shortly. -Boodskap
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