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Abstract 60 

In this paper, we develop a series of Artificial Neural Networks (ANN) using different chemical 61 

kinetic and thermodynamic input parameters to predict detonation cell sizes. The feedforward 62 

neural networks are trained and validated using available experimental data from the Caltech 63 

detonation database covering a wide variety of gaseous combustible mixtures at different initial 64 

conditions. For each combination of input parameters, a multiple-stage process is followed, which 65 

is described in detail, to first determine the best hyperparameters of the ANN (hidden layers, nodes 66 

per layer, etc.) and secondly to establish through a fitting process the optimal parameters for each 67 

specific network. The performance of the artificial neural networks with different input features is 68 

assessed using data from the same source, but that is kept independent and separate from the 69 

training and validation process of the ANN. It is found that ANN with three features can provide 70 

an accurate estimation of detonation cell size, while increasing the number of features does not 71 

improve the accuracy of the ANN. It is also found that the input parameters with the best 72 

performance relate indirectly to the stability parameter χ.  73 



 
 

3 

1. Introduction 74 

 Detonation is a supersonic, combustion-driven, compression wave [1]. Due to the effects of 75 

instability, the propagation of a detonation wave generally exhibits a cellular pattern, where the 76 

width has proven to be an extremely useful length scale to characterize the sensitivity of an 77 

explosive mixture. Knowledge of the cell size permits other dynamic detonation parameters (i.e. 78 

critical initiation energy, detonability limit, critical tube diameter) to be estimated [2]. For this 79 

reason, there is a substantial amount of literature on the experimental measurement of cell sizes of 80 

different mixtures. 81 

 So far, no quantitative theory has been developed to predict cell size. Yet, from pure 82 

dimensional analysis, it should be related to a characteristic reaction zone length of the detonation 83 

structure. Hence, numerous attempts have been made to relate experimentally measured cell sizes 84 

to some characteristic chemical lengths scale Δ in the one-dimensional ideal ZND detonation 85 

structure. In general, a linear proportionality relationship between the cell size λ and the steady 86 

chemical induction length scale Δi has been proposed, i.e. λ = A×Δi, where A is a constant 87 

proportionality factor [3-7]. These results have been shown to capture qualitatively the effects of 88 

mixture composition, temperature, and pressure on cell size, provided that a suitable model is made 89 

to describe the factor A in the correlation [8, 9]. In most cases, the factor A is simply determined 90 

by matching the induction length with one experimental data point for a particular combustible 91 

mixture (e.g., value at stoichiometric composition), and the relationship is then extended to predict 92 

cell size over a limited range of initial conditions. However, cell sizes predicted by this technique 93 

are usually only valid for mixtures with conditions that are similar to that of the matching point. 94 

More, the factor A is not universal and significantly varies for different mixture compositions, 95 

especially off-stoichiometric and diluted mixtures, and initial conditions. Hence, results for the 96 
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predicted cell size can be several orders of magnitude different than the experimentally measured 97 

values. 98 

 In recent years, Machine Learning (ML) is becoming increasingly common in fluid dynamics 99 

to analyze and interpret large enough datasets [10]. Using ML techniques thus provides a good 100 

opportunity to develop a new strategy for detonation modelling. An example is the study reported 101 

in [11] where feedforward Artificial Neural Network (ANN) combined with POD (Proper 102 

Orthogonal Decomposition) modal analysis to extract the features of the flow fields is used to 103 

predict the wave configurations of cellular detonations. Apart from (ANN) [12], our recent work 104 

[13] also uses the Convolutional Neural Network (CNN) trained with numerical simulation results 105 

for constructing lead shock evolution from the reactive front to obtain a full cellular detonation 106 

surface. Equivalently, CNN can also be trained and applied for wave mode identification in a 107 

Rotating Detonation Combustor (RDC) based on a single image [14]. Other deep learning methods 108 

were applied to predict energetic material detonation performance [15] or explosive blast-loads on 109 

engineering structures [16], and used in other studies of combustion phenomena [17, 18]. In most 110 

cases, a robust evaluation of input representations and ML algorithms is needed. 111 

For detonation cell sizes, various experimental measurements have been collected in the 112 

Caltech detonation database [19], thus providing an open dataset for ML. It is believed that ML 113 

algorithms can be applied to learn from the detonation database to make better predictions. In fact, 114 

a detonation cell size model based on a deep artificial neural network of three fuels, namely 115 

hydrogen, methane and propane, with air and oxygen as oxidizers has been developed previously 116 

by Malik et al. [20].  In their model, they only used the mixture condition and the thermochemical 117 

properties, i.e., the adiabatic flame temperature and fuel fraction, as input features for the neural 118 

network construction and training. Therefore, the characteristics of the detonation structure, e.g., 119 
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characteristic lengths and reaction sensitivity, are not considered in their ANN model 120 

development.  121 

Recent advances on detonation instability suggest that the unstable dynamics of the detonation 122 

structure depend not only on the temperature sensitivity of the reaction, governed by the activation 123 

energy Ea, but also on the shape of the reaction zone, characterized by the length of induction and 124 

main heat release layer. It is thus logical to believe that the cell size should also be a function of 125 

these detonation structure characteristics. In fact, based on this observation, Ng et al. [21] has 126 

previously formulated a relevant non-dimensional stability parameter χ, given by the degree of 127 

temperature sensitivity in the induction zone εI multiplied by the ratio of induction length ΔI to the 128 

reaction length ΔR, which is approximated by the inverse of the maximum thermicity (1/𝜎̇max) 129 

multiplied by the Chapman-Jouguet (CJ) particle velocity  𝑢$%& . 130 

𝜒 = 𝜀*
Δ*
Δ,

= 𝜀*Δ*
𝜎-./
𝑢$%&

																															(1) 131 

and the thermicity is given by: 132 

𝜎̇ = 45
𝑊
𝑊7

−
ℎ7
𝐶;𝑇

=
>?

7@A

𝑑𝑌7
𝑑𝑡 																												(2) 133 

 134 
where W is the mean molar mass of the mixture, Cp is the mixture’s specific heat at constant 135 

pressure, Yi and hi are the mass fraction and the specific enthalpy of species i, respectively. The 136 

global activation energy in the induction process eI can be obtained by constant-volume explosion 137 

calculations. Assuming that the induction time τi has an Arrhenius form: 138 

𝜏7 = 𝐴𝜌I𝑒𝑥𝑝 5
𝐸.
𝑅𝑇O

=																																				(3) 139 

with r the density to the power n, the activation temperature  eI = Ea/RTs can be determined by: 140 

𝜀* =
𝐸.
𝑅𝑇O

=
1
𝑇O
ln 𝜏S − ln 𝜏A
1
𝑇S
− 1
𝑇A

																								 (4) 141 
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where two constant-volume explosion simulations are run with initial conditions (T1,τ1) and (T2,τ2). 142 

Conditions for states one and two are obtained by considering the effect of a change in the shock 143 

velocity by ±1%DCJ [22]. 144 

 From its definition, the parameter χ includes essentially all the important elements controlling 145 

the instability, i.e. energetics, temperature sensitivity, induction and chemical energy release zone 146 

length. From a physical point of view, the role of these parameters provides the scenario that 147 

incoherence in the exothermicity can lead to gasdynamic instabilities in the reaction zone, resulting 148 

in different behaviors of the detonation front, equivalent to Meyer and Oppenheim's coherence 149 

concept [23]. With this parameter χ, Ng et al. [9] model the variation of the proportionality factor 150 

A and obtain an improved generic relationship λ = A×Δi correlating the cell sizes and induction zone 151 

length computed from detailed chemical kinetics, taking into account the effect of detonation 152 

instability, i.e., 153 

𝜆 = 𝐴(𝜒) ∙ Δ* = 4(𝑎X𝜒YX + 𝑏X𝜒X) ∙ ∆*

>

X@]

						(5) 154 

Using again the cell sizes from the Caltech database and with the degree of a polynomial equal to 155 

N = 3, the coefficients ak and bk are obtained using a multi-variable least square regression [9]. It 156 

is shown to provide a good correlation and prediction over a wide range of mixture composition 157 

and initial conditions. 158 

 Considering the importance of instability which is related to the detonation structure and the 159 

improved accuracy by including chemical kinetics and hence, the stability parameter χ in the cell 160 

size correlation, in this paper, a predictive modelling based on the ANN approach with both 161 

chemical kinetic and thermochemical parameters are presented. In Sec. 2, we present the detailed 162 

methodology used to construct the ANN-based model. In Sec. 3, results obtained using ANN with 163 

different input features are presented. This paper ends with the conclusion in Sec. 4. 164 
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2. Methodology 165 

In this study, a type of ANNs was developed to predict the detonation cell size, more specifically 166 

classified as a Deep Neural Network (DNN) as it comprises of multiple hidden layers. The 167 

development and optimization of the DNN were done using Keras [24] and the KerasTuner [25] 168 

frameworks, which allowed for the determination of the optimal number of neurons and layers of 169 

the DNN that lead to the minimum loss. 170 

 171 

Mixture Initial condition Variation Reference 
C2H2 / Air T = 293K ;  P = 1atm f = 0.39 – 2.96 Knystautas et al. (1984) 
C2H2 / O2 T = 293K ;  f = 1 P = 0.055 – 3.01atm Manzhalei et al. (1974) 
C2H4 / Air T = 293K ;  P = 1atm f = 0.51 – 2.13 Knystautas et al. (1984) 
CH4 / O2 T = 293K ;  f = 1 P = 0.078 – 0.13atm 

P = 0.079 – 0.25atm 
P = 0.37 – 6.08atm 

Knystautas et al. (1982) 
Laberge et al. (1993) 
Manzhalei et al. (1974) 

CH4 / Air T = 293K ;  f = 1 P = 1atm Moen et al. (1984) 
CH4 / O2 T = 298K ; P = 1.18atm f = 0.76 – 1.34 Aminallah et al. (1993) 
C3H8 / Air T = 293K ;  P = 1atm f = 0.74 – 1.29 

f = 0.61 – 1.66 
Moen et al. (1984) 
Knystautas et al. (1982) 

H2 / O2 / 70%Ar T = 298K ;  f = 1 P = 0.093 – 0.54atm Barthel (1974) 
H2 / O2 / 40%Ar T = 298K ;  f = 1 P = 0.060 – 0.52atm Barthel (1974) 
H2 / O2 T = 293K ;  f = 1 P = 0.052 – 0.20atm 

P = 0.20 – 12.0atm 
P = 0.281 – 0.977atm 

Knystautas et al. (1982) 
Manzhalei et al. (1974) 
Desbordes (1990) 

H2 / Air T = 300K ;  P = 1atm f = 0.453 – 3.57 
f = 0.512 – 3.29 
f = 0.5 – 1.0 
f = 0.369 – 5.51 

Guirao et al. (1982) 
Ciccarelli et al. (1994) 
Stamps et al. (1991) 
Tieszen et al. (1986) 

H2 / Air T = 500K ;  P = 1atm f = 0.29 – 2.368 Ciccarelli et al. (1997) 
H2 / Air T = 500K ;  P = 1atm f = 0.19 – 2.397 Ciccarelli et al. (1997) 
H2 / Air T = 373K ;  P = 1atm f = 0.36 – 3.03 Stamps et al. (1991) 
H2 / Air T = 300K ;  f = 1 P = 0.0296 – 0.987atm 

P = 0.251 – 1.493atm 
Bull et al.  (1979) 
Stamps et al. (1991) 

H2 / Air T = 300K ;  f = 0.5 P = 0.236 – 2.49atm Stamps et al. (1991) 
C2H6 / Air T = 298K; P = 0.92atm f = 1.03 – 1.29 Moen et al. (1984) 
C2H6 / Air T = 293K ;  P = 1atm 

 
T = 298K ;  P = 1atm 

f = 0.79 – 1.27 
f = 1.0 
f = 1.0 

Knystautas et al. (1984) 
Bull et al. (1982) 
Tieszen et al.  (1991) 

C2H6 / O2 T = 293K ;  f = 1 P = 0.040 – 0.146atm Knystautas et al. (1982) 

Table 1: Mixture compositions and initial conditions for all cell size data considered in the 172 
correlation. (Original references are detailed in [19] or [26]). 173 
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For the DNN model, 388 data rows were used, which were a combination of experimental cell 174 

size data as well as chemical kinetics and thermodynamic data. The first were experimental cell 175 

sizes λ, sourced from the Caltech database [19] for different reactive mixtures and initial 176 

conditions, and the second chemical kinetics parameters, calculated from the analysis using the 177 

steady one-dimensional Zel'dovich–von Neumann–Döring (ZND) model [5, 26, 27], for the same 178 

initial conditions and reactive mixtures, using Konnov’s detailed reaction mechanism [28] and the 179 

CHEMKIN II package [29]. Surveyed existing detailed reaction mechanisms, the validation study 180 

and report by Schultz and Shepherd [22, 30] has shown the adequacy of the Konnov’s mechanism 181 

for use in detonation simulation. In this work, as listed in Table 1, the reactive mixtures include 182 

CH4, C2H2, C2H6, C2H4, H2 and C3H8, oxidized with O2 and air at a wide range of different 183 

equivalent ratios, initial pressures, temperatures and different dilutions with AR, H2O and N2. All 184 

these data can be divided into two main categories, the features and the target of this neural 185 

network. The target is the detonation cell size, which the network aims to predict accurately, and 186 

the features, which are any possible combination of the remaining available input parameters that 187 

are to be used to predict the target once the model is created. Creating the DNN model requires 188 

training and a testing process based on the available data, which is outlined in Fig. 1. The outlined 189 

process aims to determine the optimal number of layers, neurons per layer and model fitting for a 190 

given set of input features, which is crucial to obtain the minimum loss for these inputs. At the 191 

same time careful consideration was given to the computational cost, with a series of 192 

optimizations, frameworks and techniques employed in order to minimize it. 193 

 194 

 195 

 196 
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 197 
 198 

Figure 1: Flowchart of model creation process  199 

 The first stage of this process, after the data is initially imported, is to perform data exploration, 200 

in order to determine whether there are any missing or apparently wrong data inputs, to check the 201 

range and distribution of the data and also to visualize the relationship between different features. 202 

The last one allows us to determine which of the features correlate (i.e y = a·x), and thus one of 203 

them can be dropped from the training process as it would not contribute to the improvement of 204 

the model. The initial data is then split randomly into 3 parts, the training, the validation and the 205 
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testing data, with each part representing respectively 60%, 20% and 20% of the initial data. The 206 

first two are used during the creation and optimization of the model (hyper-tuning and fitting), 207 

while test data is used only once the model is created, in order to determine its accuracy, thus 208 

remaining impartial to the model creation process. Having a second set of data, specifically the 209 

validation data, during the creation and optimization of the neural network helps avoid overfitting 210 

the model to the training data.  Although the validation data are not directly used in the fitting 211 

process of the model, there is still information that is passed to the model creation process, which 212 

makes the need for another independent, impartial set of data, such as the testing data, necessary 213 

to determine the accuracy of the model. After this first step, the features of all 3 data parts are 214 

scaled using the minmax scaler available from Scikit-learn (https://scikit-learn.org/). It should be 215 

noted that the fitting of the scaler is only done to the training data, in order to avoid any data 216 

leakage, and then the scaler is applied to the validation and testing data. This scaling step is 217 

necessary to avoid features impacting the model more than others just due to their higher 218 

magnitude.  219 

 After the initial data processing, the structure of the model and the range of the hyper-220 

parameters, such as the number of layers, number of nodes/layer and the learning rate are 221 

determined. More specifically, the number of hidden layers is specified between 1 to 4, with a 222 

different maximum number of nodes for each layer (512, 256, 128, 64) and step sizes (16, 8, 4, 2) 223 

for the iteration process to follow. The default values for the batch size (32), which is the number 224 

of training points to be used in one forward and backward pass, and for the learning rate (1e-3) 225 

were determined from an initial sensitivity analysis to be adequate for this problem, without 226 

significant improvements in the model’s accuracy from modification of these parameters. The 227 

ReLU (Rectified Linear Units) activation function is chosen for each layer and neuron. This is a 228 
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function that returns 0 for negative inputs and the input value for any positive results, 229 

mathematically expressed as f(x) = max(0, x). The reason for choosing this activation function is 230 

that it has wide applicability with good accuracy, can capture well non-linearities and does not 231 

require a lot of computational resources [31]. It was also found for this problem specifically to 232 

produce more accurate predictions compared to other available activation functions. To create the 233 

loss function, which needs to be minimized, the average square relative error is chosen,i.e.,: 234 

𝐿𝑜𝑠𝑠 = 	
1
𝑁4c

d𝑦fghi − 𝑦.jkl
𝑦.jk

∙ 100%o
S>

A

																							(6) 235 

The reason for choosing this loss function lies in the range of the target data, which includes cell 236 

sizes from ~ 0.1 mm up to ~1500 mm. This means that if an absolute type of loss is chosen instead, 237 

such as the most commonly used Mean Squared Error (MSE), then the generated model would not 238 

be able to correctly predict small cell sizes, as their contribution to the cost function is smaller than 239 

the larger cell sizes. Choosing the square error, instead of the absolute error has the advantage of 240 

penalizing larger errors, similarly to the effect of MSE compared to Mean Average Error (MAE). 241 

Finally, for the DNN model, the RMSprop (Root Mean Squared Propagation) is chosen as an 242 

optimizer, which is an algorithm to change attributes of the neural network such as weights and 243 

learning rate in order to minimize the loss function.  244 

 Once this is completed, the hyper-fitting process begins, in order to determine the optimal 245 

hyper-parameters of the DNN. This is an iterative process during which different models are 246 

created based on the specified range of hyperparameters and are then each fitted to the training 247 

data for 150 epochs, with each epoch representing one forward and one backward pass of all 248 

training data, or until the model stops improving.  The cost function for each combination is then 249 

calculated using the validation data, in order to determine eventually through this iterative process, 250 

the hyperparameter combinations that lead to the lowest loss function values. It should be noted 251 
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that through this iterative process the framework does not go over every possible combination, like 252 

in grid search, but instead uses a hyperband optimization process, which identifies the best values 253 

of hyperparameters to be tested within the specified range. 254 

Once this process is finished, the top 3 hyperparameter combinations with the lower validation 255 

loss are determined. The models with these hyperparameter combinations are each now fitted to 256 

the training data to determine the parameters of the model. The fitting process occurs now for 3000 257 

epochs, a number much higher than before, which guarantees that the model is not under-fitted, 258 

meaning that the model using the validation data could not have been improved further if the fitting 259 

process continued. The opposite behavior, which is overfitting, is avoided by saving the parameters 260 

for each epoch, and then choosing the parameters of the epoch with the lowest validation loss. 261 

Overfitting essentially occurs when the model continues improving with each iteration of its 262 

predictions using training data, but increasingly worsens with each step of its predictions using the 263 

validation data. These fitting stages can be both seen in Fig. 2. Monitoring the validation loss 264 

during training to achieve optimal training can be found in [32], [33]. Finally, once the best model 265 

out of the 3 is determined, it is evaluated using the test data, which as mentioned, has remained 266 

impartial to the training process. 267 

 268 

Figure 2: Error variation for training and validation data during fitting process  269 
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3. Results 270 

3.1 Basic 3-feature model 271 

Through the hyperparameter and fitting process described above, and a parametric study of 272 

different features, a 3-feature model was created to predict the detonation cell size. Compared to 273 

other generated ANNs, this one offers a very good prediction accuracy while requiring a low 274 

number of features. The structure of this DNN model can be seen in Fig. 3 below. 275 

 276 

Figure 3: Deep Neural Network structure 277 

As features of this model the induction length (Δi), the detonation Mach number (MCJ) and the 278 

maximum thermicity (𝜎̇max) were chosen. In fact, these three features describe essentially the main 279 

reaction length scales and quantify the strength of the detonation. It consists of 4 hidden layers 280 

with 416, 96, 4 and 42 neurons for each layer, with a total of 42337 trainable parameters for all 281 

layers. The prediction accuracy of this model using the training, validation and testing data can be 282 

seen in Table 2 and Fig. 4. It is worth mentioning that the different axis ranges, for clearer 283 

presentation, are results of the initial random data division, giving rise to different data intervals 284 

for the training, validation and testing.  285 

 286 
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 Training Data Validation Data Testing Data 
Count 232 78 78 

Mean Error % 16.144 21.421 22.340 
Std 13.059 18.597 17.889 

Minimum 0.0146 0.1221 0.2471 
25% 6.0448 8.1391 10.488 
50% 12.832 16.409 17.888 
75% 23.493 31.560 30.841 

Maximum 64.589 95.392 81.028 

Table 2: Error analysis of optimal model using the training, validation and testing data  287 

   288 

   289 
Figure 4: Model prediction vs original data for training, validation and testing data  290 
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The model shows a good mean error of 16.14% for the training data, indicating a good fitting 296 

of the model to the training data. A similar mean error is found between the validation and testing 297 

data, meaning that these two data sets can be considered equivalent, therefore validating the 60-298 

20-20 splitting choice. Smaller testing and validation data sets demonstrated big error differences 299 

between them.  As previously mentioned, the prediction accuracy of a DNN model is determined 300 

using only the testing data, which in this case is at an average absolute error of 22.34% and a 301 

maximum of 81%. Looking at the distribution of predictions compared to the actual data in Fig. 4, 302 

it can be seen that the model predicts with higher accuracy lower cell sizes than higher.  303 

This becomes clearer in the Bland-Altman plots [34] in Fig. 5, where the data shown are a 304 

combination of the predicted cell sizes from the model and the actual (experimental) cell sizes. In 305 

the x-axis the average of the two is shown, and in the y-axis the difference (actual – prediction).  306 

From these plots, it is shown that a higher prediction accuracy in the cell size region 0-150 mm for 307 

all 3 data sets, with all but one data points falling within the lower and upper 95% confidence 308 

bounds. This behavior could be explained by the distribution of available data points that were 309 

used during training, which was mainly in the lower cell size region. Therefore, having more data 310 

corresponding to higher cell sizes means that the model’s accuracy could potentially be further 311 

improved in that cell size region. The prediction accuracy of this model can be considered very 312 

good, especially once the inherent uncertainty of measuring the experimental cell size is taken into 313 

account, which would also explain the higher cell size variations, where the instability is more 314 

prominent and thus more difficult in determining the experimental cell size. In other words, cell 315 

sizes in the larger range are usually related to conditions near limits (e.g., low initial pressure, off-316 

stoichiometric conditions or as a result of physical boundary effects) where measurement data are 317 

limited. The cell patterns at these conditions are highly irregular and a characteristic cell value is 318 
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difficult to distinguish. The actual cell size could be of the order of the tube diameter and thus can 319 

be affected by the physical boundary condition. From the Bland-Altman plots it can also be 320 

determined from the average difference (black line) that the model has a slight positive bias, 321 

meaning that it tends to slightly overpredict the cell size.  322 

 323 
(a)  324 

 325 
(b) (cont’d) 326 

-200

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

D
iff

er
en

ec
e 

be
tw

ee
n 

ce
ll 

si
ze

s [
m

m
]

Average Cell Size [mm] 

-150

-100

-50

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800D
iff

er
en

ce
 b

et
w

ee
n 

ce
ll 

si
ze

s [
m

m
]

Average cell size [mm]



 
 

17 

 327 
(c) 328 

Figure 5: Bland-Altman plot of the actual vs predicted cell sizes using the training (a), validation (b) and 329 
testing (c) data set. The black line is the average difference, and in red the upper and lower limits of the 330 

95% confidence interval for the average difference 331 

To verify the data randomization does not have a significant effect on the result, two more 332 

random divisions of the initial data were considered, with the predicted vs actual cell sizes depicted 333 

in Tables 2 & 3, along with their corresponding graphs of predicted vs actual cell sizes for all data 334 

sets (Fig. 5 & 6). They showed a very close mean error for the testing data, and generally similar 335 

error distribution. This indicates the data sample is sufficient and the randomization done here 336 

eliminates the selection bias. It also insures the process against accidental bias and that the initial 337 

data randomization has negligible effects on the results. 338 

 339 

 Training Data Validation Data Testing Data 
Count 232 78 78 

Mean Error % 14.023 18.847 23.697 
Std 13.724 16.431 19.988 

Minimum 0.039 0.322 0.043 
25% 4.342 8.385 9.040 
50% 9.719 13.204 20.174 
75% 19.655 27.161 34.902 

Maximum 76.919 81.317 85.839 
 340 

Table 3: Error Analysis for training, validation and testing data, with random data division 2 341 
 342 
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 344 

 345 
Figure 6: Model prediction vs original data for training, validation and testing data, with random data 346 

division 2  347 

 348 

 Training Data Validation Data Testing Data 
Count 232 78 78 

Mean Error % 19.857 21.314 22.394 
Std 15.981 16.898 17.560 

Minimum 0.490 1.273 0.543 
25% 7.839 7.154 7.824 
50% 15.918 16.759 21.287 
75% 27.140 32.948 31.640 

Maximum 78.200 96.524 66.671 
 349 

Table 4: Error Analysis for training, validation and testing data, with random data division 3 350 
 351 
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352 

 353 
Figure 7: Model prediction vs original data for training, validation and testing data, with random data 354 

division 3 355 

Finally, one more study was performed for these 3 input features, but with the data used 356 

for training, validation and testing limited to cell sizes in the range 0-150mm. This was done in 357 

order to determine the overall prediction improvement of the model if the higher than 150 mm cell 358 

sizes were disregarded, as the amount of available data is limited in that region.  The prediction of 359 

this reduced model for the 3 data sets can be seen in Table 5.  360 

 Training Data Validation Data Testing Data 
Count 208 70 70 

Mean Error % 11.181 19.039 20.678 
Std 11.956 15.518 19.354 

Minimum 0.008 0.117 0.541 
25% 2.845 5.395 7.285 
50% 6.859 15.604 15.235 
75% 15.035 29.387 28.107 

Maximum 78.136 76.484 117.261 
 361 

Table 5: Error Analysis for training, validation and testing data for reduced model  362 
 363 
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As expected, the model shows a prediction improvement compared to the original model 364 

for all 3 data sets. The mean error of training data drops to 11.18%, while the mean error of the 365 

testing data, which as mentioned determines the overall prediction accuracy of the model, 366 

improves slightly from 22.34% to 20.68%. This improvement is not significant enough to justify 367 

the big limitation to the model’s cell size prediction range.  368 

 369 

3.2 Feature sensitivity analysis 370 

In Sec. 3.1, we show that the basic 3-feature ANN with minimum inputs that characterize the 371 

complete reaction zone length (i.e., induction length Δi and the maximum thermicity 𝜎̇max)  and 372 

wave strengths (i.e., the detonation Mach number MCJ) provide reasonably good cell size 373 

prediction. Built upon this basis model and searched for improvement, a different number and 374 

combination of features were considered, thus leading to the creation of different DNNs. The 375 

matrices include additional features to describe the sensitivity of the reaction zone (i.e., activation 376 

Energy), initial thermodynamic and mixture conditions that include the initial pressure, initial 377 

temperature and mixture equivalence ratio. A selection of different combinations is outlined in 378 

Tables 6 and 8, and the corresponding prediction accuracy of each model using the testing data in 379 

Tables 7 and 9.  380 

 Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

Initial Pressure P0 ●  ●    ●  ● ● 

Initial Temperature T0  ● ●       ● 

Equivalence Ratio        ● ●  ● 

Mach Number MCJ ● ● ● ● ● ● ● ● ● ● 

Induction Length Δi ● ● ● ●  ● ● ● ● ● 

Thermicity 𝜎̇-./   ● ● ● ● ●  ● ● ● ● 

Activation Energy Θ    ● ● ●   ● ● 

Table 6: Combination of features used for DNN model, part I 381 
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 Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

Mean Error % 23.016 24.864 22.008 24.489 29.772 29.192 22.901 22.100 22.830 24.448 

Std 17.895 23.367 18.022 17.171 22.318 25.942 16.860 19.790 17.077 18.043 

Minimum 0.6061 0.3695 0.3658 0.614 0.027 1.617 0.018 0.9966 0.599 0.077 

25% 10.151 9.3177 8.4664 9.950 11.303 10.188 9.255 5.9958 8.553 8.476 

50% 17.983 20.238 16.217 19.902 26.243 24.338 21.984 16.204 19.537 22.202 

75% 32.276 33.158 32.381 39.848 46.645 39.547 33.850 31.556 34.536 36.173 

Maximum 75.852 122.05 73.259 61.724 86.603 174.93 64.336 106.35 61.930 76.341 

Table 7: Error analysis of Testing data for DNNs created with different features, part I 382 

 Model 
11 

Model 
12 

Model 
13 

Model 
14 

Model 
15 

Model 
16 

Model 
17 

Model 
18 

Induction   Length Δi ● ● ●  ●    

Thermicity 𝜎̇-./   ●  ●   ●  

Mach Number MCJ ●  ● ●  ●  ● 

Stability Parameter χ ●       ● 

Table 8: Combination of features used for DNN model, part II 383 

 Model  
11 

Model  
12 

Model  
13 

Model  
14 

Model  
15 

Model  
16 

Model 
17 

Model 
18 

Mean Error % 28.106 30.983 31.682 29.122 41.312 56.032 58.627 48.159 

Std 24.832 21.189 24.508 34.570 24.893 34.416 33.352 30.848 

Minimum 0.758 1.113 0.567 0.256 0.349 0.864 1.750 0.836 

25% 8.242 13.257 11.374 7.018 18.878 19.394 29.583 21.441 

50% 19.600 25.911 26.566 19.210 38.687 61.289 62.758 44.950 

75% 38.586 46.203 47.756 44.562 60.828 89.891 85.476 73.722 

Maximum 100.722 95.162 108.813 249.485 115.920 105.285 183.923 99.658 

Table 9: Error analysis of Testing data for DNNs created with different features, part II 384 

Starting from Tables 6 and 7, it can be seen that introducing additional features to the basic 3 385 

feature model mentioned previously leads to a similar accuracy (DNNs 1, 3, 7, 8 and 9) or even 386 

slightly worse accuracy (DNNs 2, 4 and 10), meaning that using more features (and therefore data) 387 

does not necessarily lead to a more accurate model, as one would intuitively think. The other 3 388 

feature DNNs that were considered here (DNNs 5, 6 and 11) all demonstrated a worse prediction 389 

accuracy than the basic model, but could still provide a reasonable prediction accuracy of close to 390 

29%. Removing either one of the features from the basic model (DNNs 12 to 14) resulted in similar 391 
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prediction accuracy (29% to 32%). It is therefore clear that a combination of any 3 features is 392 

necessary for a good or reasonably accurate prediction, or even 2, provided that they are a 393 

combination of Δi, MCJ and σmax. Using only one feature (DNNs 15 to 17) does not allow for an 394 

accurate prediction. It should be noted when the parameters that compose the χ parameter are used 395 

as independent features the model accuracy is much higher compared to using the χ parameter 396 

alone. 397 

It is interesting to re-iterate that the above parameter study demonstrates the ANN with the 398 

minimum of 3 features provides relatively good performance to predict the characteristic 399 

detonation cell sizes. Existing models developed or applicable for a wide range of applications 400 

such as the model proposed by Gavrikov [8] and Ng et al. [9, 26] could have a mean absolute 401 

percentage error about 50%, as compared to about 23-30% in this work. 402 

 The basis 3-feature model that includes the induction length, thermicity and Mach number 403 

appears to provide the minimum features to describe the reaction zone and the detonation strength 404 

necessary for the cell size prediction. Although additional features that related to the mixture’s or 405 

initial condition (i.e., P0, T0 and equivalence ratio) could lead to a slight smaller mean error, the 406 

improvement is indeed not significant. An interesting observation from these ANNs is that adding 407 

the global activation energy as a feature for the prediction does not seem to increase the model 408 

accuracy. This could perhaps imply that the temperature sensitivity of the reaction zone does not 409 

necessary govern the cell size scale but affect the regularity of the cell patterns.   410 

 411 

4. Concluding remarks  412 

An accurate DNN model has been developed for detonation cell size prediction, using available 413 

experimental cell size values and computed kinetic data over a wide range of initial and 414 
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thermodynamics conditions. By extension, this model could also be used to estimate other dynamic 415 

detonation parameters. The advantage of this model lies in its simplicity, requiring only three 416 

features, and could be used with any reactive mixture, beyond those that were used during training. 417 

The inputs are irrespective to the mixture molecular compositions but mainly computed chemical 418 

kinetic features. Hence, the model has the potential to further apply or be amended to include 419 

higher hydrocarbon mixtures not considered in this work. One limitation is that in its development 420 

a single chemical kinetics mechanism by Konnov [28], previously validated for detonation 421 

simulation, was used. It may imply that a similar accuracy might not be obtainable when other 422 

mechanisms, particularly tailored for a specific combustible mixture, are employed. The 423 

dependence of the developed ANNs to different chemical kinetic mechanisms will be examined 424 

for potential improvement in the future work. 425 

In this paper, the described development process guarantees that an optimal ANN is generated 426 

for each combination of input parameters, and that its prediction accuracy is correctly assessed by 427 

using an independent set of data. An average prediction error of 22.34 % was obtained for the 3-428 

feature model, with better accuracy exhibited in the lower cell region. Aside from the basic neural 429 

network configuration, others with different combinations and numbers of features were 430 

considered, indicating that at least 3 features are required to predict accurately the cell size. 431 

Increasing the number of input parameters does not improve the prediction accuracy of the model. 432 

Finally, taking into account the subjectiveness of the cell size measurement, the developed ANN 433 

model provides quantitively accurate results. 434 
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