
Scaling Local Learning for Supervised and Self-supervised
Learning

Adeetya Patel

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

February 2023

© Adeetya Patel, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Adeetya Patel

Entitled: Scaling Local Learning for Supervised and Self-supervised Learning

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Essam Mansour

Examiner
Dr. Essam Mansour

Examiner
Dr. Ching Suen

Supervisor
Dr. Eugene Belilovsky

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

February 07, 2023

Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Scaling Local Learning for Supervised and Self-supervised Learning

Adeetya Patel

Traditional neural network training methods optimize a monolithic objective function jointly

for all the components. This can lead to various inefficiencies in terms of potential parallelization.

Local learning is an approach to model-parallelism that removes the standard end-to-end learning

setup and utilizes local objective functions to permit parallel learning amongst model components

in a deep network. Recent works have demonstrated that variants of local learning can lead to

efficient training of modern deep networks. However, in terms of how much computation can be

distributed, these approaches are typically limited by the number of layers in a network. Hence, the

first study explores how local-learning can be applied at the level of splitting layers or modules into

sub-components, adding a notion of width-wise modularity to the existing depth-wise modularity

associated with local learning. We investigate local-learning penalties that permit such models to be

trained efficiently. Our experiments on various datasets demonstrate that introducing width-level

modularity can lead to computational advantages over existing methods and opens new opportunities

for improved model-parallel distributed training. The second study focuses on adapting existing

local-learning frameworks to self-supervised learning tasks, specifically using the SimCLR method.

However, existing local-learning frameworks lack in performance due to task-relevant information

collapse in early layers. To address the issue, we propose modifying the local objective functions

layerwise to gradually increase the problem difficulty with depth. We found that our method was

able to maintain the similar performance as the end-to-end trained model while also increasing

parallelization.

iii

Acknowledgments

I would like to express my deepest gratitude to my research supervisor, Prof. Eugene Belilovsky,

for his unwavering support, guidance, and mentorship throughout my graduate studies. His expertise,

invaluable feedback, and constant encouragement have been instrumental in the completion of this

thesis. His kind-heartedness and genuine interest in my success as a researcher have left a lasting

impact on me. I cannot thank him enough for his patience and understanding for the entire process.

I greatly value that he was consistently accessible to talk about the challenges I encountered over

the past two years. I am truly grateful to have had the opportunity to work with such an esteemed,

dedicated, and compassionate mentor.

I would also like to express my appreciation to Dr. Michael Eickenberg for his contributions to

my research. His ideas and suggestions have been very helpful and valuable throughout the process.

I am grateful for his support and collaboration.

I am also incredibly grateful to my family and friends for their unwavering support, encourage-

ment, and understanding throughout this journey. Their love and support have been a source of

strength for me, and I could not have done this without them.

iv

Contents

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Neuron-Group Level Parallelization . 1

1.2 Local Learning for Self-supervised Learning . 2

1.3 Related Work . 3

1.4 Contributions . 5

1.5 Working Papers . 6

2 Background 7

2.1 Convolutional Neural Networks . 7

2.2 Supervised Learning . 9

2.3 Self-supervised Learning . 10

2.4 Contrastive Self-supervised Learning . 11

2.4.1 SimCLR: A Simple Contrastive Learning Framework 12

2.5 Backpropagation . 14

2.6 Distributed Training . 16

2.6.1 Data Parallelism . 16

2.6.2 Model Parallelism . 17

2.6.3 Limitations . 17

v

2.7 Linear Probe Evaluation . 19

2.8 Local Learning Methods . 19

2.8.1 Decoupled Greedy Learning (DGL) . 20

3 Local learning with Neuron Groups 22

3.1 Introduction . 22

3.2 Methods . 23

3.2.1 Background and Notation . 23

3.2.2 Grouped Neuron DGL (GN-DGL) . 25

3.2.3 Stop-Gradient Grouped Neuron DGL . 26

3.2.4 Grouped Neuron DGL with diversity-promoting penalty 27

3.3 Experiments and Results . 29

3.3.1 Layerwise and Grouped Neuron DGL . 30

3.3.2 Multi-layer Grouped Neuron DGL . 33

3.3.3 Ablations of Layerwise Ensembling . 38

3.4 Conclusion and Future Work . 39

4 Decoupled Greedy Self-supervised Learning 40

4.1 Introduction . 40

4.2 Methods . 41

4.2.1 Decoupled Greedy Self-supervised Learning (DGSSL) 41

4.2.2 Decoupled Greedy SSL with Layerwise Loss Modification 44

4.3 Experiments and Results . 49

4.3.1 Layerwise Decoupled Greedy SSL . 50

4.3.2 Multilayer Decoupled Greedy SSL . 51

4.3.3 Decoupled Greedy SSL with Layerwise Loss Modification 54

4.4 Conclusion and Future Work . 58

5 Conclusion and Future Work 59

vi

Appendix A Decoupled Greedy SSL 62

A.1 Local Module Splitting . 62

A.2 Data Augmentation Module . 63

A.3 Additional Results . 63

Bibliography 67

vii

List of Figures

Figure 2.1 A simple framework for contrastive learning. Two augmented views xi and

xj of a sample x are processed by a shared encoder f(·) to obtain representations

hi and hj . A projector network g(·) takes these representations as input and obtain

embeddings zi and zj . The contrastive loss is applied on zi and zj to maximize the

agreement between the views. 13

Figure 2.2 Data-flow diagram across time for standard backpropagation algorithm, high-

lighting the fundamental limitations of backpropagation algorithm: forward, update

and backward locking. 15

Figure 2.3 Approaches of distributed training in deep learning. Extracted from Laskin et

al. (2020). 16

Figure 2.4 Linear Probe Evaluation: a linear classifier (probe) is trained while CNN

encoder weights are frozen during this evaluation phase. 19

Figure 2.5 Local learning framework of Belilovsky, Eickenberg, and Oyallon (2020);

Nøkland and Eidnes (2019), where each module is trained in-parallel online using

local auxiliary loss. 21

Figure 3.1 Grouped Neuron DGL, each layer and neuron group has a local objective. All

local groups are learned in parallel, feeding their output directly to the next layer’s

groups. 24

Figure 3.2 To encourage diverse feature learning among different neuron-groups, each

neuron-group within a layer is encouraged to output different softmax activations for

non-target labels. 28

viii

Figure 3.3 Architecture of VGG6a described with local learning framework of DGL

Belilovsky et al. (2020). 31

Figure 3.4 Illustration of our approach. Multi-layer modules are used in combination

with a gradient decoupled output and diversity-promoting penalty. 33

Figure 3.5 CIFAR-10 results. Accuracy versus maximum training time in MACs for a

given node in a theoretical distributed scenario for various local learning methods.

We observe that for both ResNet-32 (top) and a wider ResNet-32x2 (bottom), the

GN-DGL leads to better tradeoffs in training time versus accuracy. The size of the

bubbles is proportional to the inference time of the models. 35

Figure 3.6 Imagenet32 results. Accuracy versus maximum training time in MACs for a

given node in a theoretical distributed scenario for various local learning methods.

We observe that for both ResNet-32 (top) and a wider ResNet-32x2 (bottom), the

GN-DGL leads to better tradeoffs for this complex dataset. InfoPro is not shown as

it yielded very poor performance on this dataset. 36

Figure 3.7 CIFAR-100 results. Accuracy versus maximum training time in MACs for a

given node in a distributed scenario for various local learning methods. We observe

that for both ResNet-32 (top) and a wider ResNet-32x2 (bottom), the GN-DGL

leads to better tradeoffs in training time versus accuracy, with trends substantially

improving over DGL and InfoPro. 37

Figure 4.1 Decoupled Greedy Learning Framework for Self-supervised learning. The

contrastive loss functions are applied locally on intermediate projections of feature

representations using an auxiliary network. The main network modules along with

their auxiliary modules share parameters to process two augmented views of samples.

The error gradients only flow locally within corresponding modules. 42

Figure 4.2 Sample-difficulty quantification: two augmented images are processed by the

pretrained SimCLR model to obtain the embeddings to compute the cosine similarity.

A positive pair with higher similarity score is considered easier than the one with

lower similarity score. On the other hand, for negative pairs, lower similarity scores

indicate an easy negative pair and vice-versa. 46

ix

Figure 4.3 VGG6a (left), VGG16a (middle) and VGG19a (right): Comparison of linear

evaluation top-1 accuracy for end-to-end self-supervised training (K = 1) and

extremely local self-supervised training (K = 5 for VGG6a, K = 14 for VGG16a

and K = 17 for VGG19a) using Decoupled Greedy Learning framework. 50

Figure 4.4 Decoupled Greedy SSL results for ResNet-50. Comparison of linear evalu-

ation top-1 accuracy for different values of K, where K = 1 suggests end-to-end

training. We observe that changing auxiliary network from ‘0c2f’ (left) to ‘1c2f’

(right) improves the performance significantly. 51

Figure 4.5 Results of Decoupled Greedy SSL for ResNet-110 with different values of

K. We observe significant drop in performance as the value of K is increased. We

believe this happens because of the increased depth of the network, which contributes

towards information collapse as described in Wang, Ni, Song, Yang, and Huang

(2021). The auxiliary network design follows the ‘1c2f’ architecture. 51

Figure 4.6 Depth-wise linear probe evaluation: intermediate representations from each

block of ResNet-50 are evaluated using linear probes. The weights of the encoder

blocks are frozen during linear probe training. 52

Figure 4.7 Depth vs linear probe top-1 accuracy for ResNet-50 with different values of

K. We evaluate linear probe top-1 accuracy at different depths. 53

Figure 4.8 Depth vs linear probe top-1 accuracy. We evaluate linear probe top-1 accuracy

at different depths. Evaluation of DGSSL-LLM (indicated by increased difficulty) vs

vanilla DGSSL for different values of K. 54

Figure 4.9 Linear Probe Evaluation over depth for different version of DGSSL-LLM and

vanilla DGSSL. We observe DGSSL-LLM with increasing difficulty outperforms

other methods for all values of K. 57

Figure A.1 Depth-wise split configuration for ResNet-50 and ResNet-110. 62

Figure A.2 Data augmentation functions used for the implementation of our experiments. 63

Figure A.3 Epochs vs Training Loss (left) and Epochs vs KNN Top-1 Accuracy (right),

evaluated after each epoch for ResNet-50 with ‘0c2f’ (a), ResNet-50 with ‘1c2f’ (b),

and VGG6a (c) for different values of K. 64

x

Figure A.4 Epochs vs Linear Evaluation Top-1 Accuracy, evaluated for ResNet-50 after

every 100 epochs, trained using different auxiliary networks (‘0c2f’ and ‘1c2f’) for

different values of K. 65

Figure A.5 Epochs vs Linear Evaluation Top-1 Accuracy, evaluated for ResNet-110 after

every 100 epochs, trained using different auxiliary networks (‘0c2f’ and ‘1c2f’) for

different values of K. 66

xi

List of Tables

Table 3.1 Grouping of neurons in each layer of VGG6a. We observe with increased

number of groups, there is performance degradation, however a surprisingly high

overall accuracy can be maintained despite a lack of communication across neuron

groups. We note that the presented results do not utilize stop-gradient techniques,

nor a local diversity-promoting penalty. 31

Table 3.2 Ablating the effect of local diversity-promoting penalty and use of stop-gradient

communication in GN-DGL. 31

Table 3.3 Ablating the effect of width in GN-DGL. We observe that as width increases,

using GN-DGL begins to yield performance comparable to DGL, with increased

parallelization. 32

Table 3.4 ResNet-32 on CIFAR-10 (Training speed up comparison) 34

Table 3.5 ResNet-32 on CIFAR-10 (Inference speed up comparison) 34

Table 3.6 Ablating the effect of layerwise ensembling in GN-DGL on CIFAR-10 with

ResNet-32. We observe that layerwise ensembling for GN-DGL yields better perfor-

mance compared to last-layer evaluation. Performance gains are increased gradually

as the K increases for a given G. 38

Table 4.1 Comparison of DGSSL-LLM vs vanilla DGSSL for different values of K.

Linear evaluation accuracy evaluated at the last layer of the models is presented.

DGSSL-LLM outperforms vanilla DGSSL in all cases, nearly recovering end-to-end

performance for K = 4. 54

xii

Table 4.2 Hyper-parameter sensitivity test: Effect of using different sample-ratios on

DGSSL-LLM with different values of K. We observe that DGSSL-LLM with diverse

sample-ratios achieve comparable performance to vanilla-DGSSL. The positive and

negative sample-ratio is kept same for this test. Best results are in bold. 56

Table 4.3 Ablating the effect of decreasing problem-difficulty as opposed to increasing

problem-difficulty in DGSSL-LLM method for different values of K. DGSSL-LLM

with increasing difficulty achieves best results across all values of K. 57

Table 4.4 Ablating the effect of only using positive sample pairs as opposed to using both

positive and negative sample pairs for layerwise loss modification in DGSSL-LLM

with K=16. 58

xiii

Chapter 1

Introduction

In traditional neural network training methods, such as backpropagation, the parameters of each

layer of the network must wait for the signal to propagate to the top and back down before updating,

which can be time-consuming and may not fully utilize available resources (Jaderberg et al., 2017a).

The local learning framework addresses this issue by proposing the simultaneous optimization of the

parameters at each layer. Instead of training each layer of the network sequentially, this framework

suggests that the parameters of each layer should be learned and updated in parallel (Belilovsky et al.,

2020; Laskin et al., 2021; Nøkland & Eidnes, 2019; Wang et al., 2021). This is achieved by applying

a separate loss to each layer. It allows for more efficient optimization of the parameters in terms of

training time. In this thesis, we present two closely related studies that examine the potential benefits

and limitations of local learning frameworks. Additionally, we propose new methods as extensions

to existing approaches in order to address any identified limitations, which are described briefly in

the subsequent sections.

1.1 Neuron-Group Level Parallelization

Existing frameworks for local learning Belilovsky et al. (2020) enables the efficient training of

the deep neural network by allowing each layer of the network to be learned in isolation using local

objective functions, in contrast to the end-to-end training. However, the maximum parallelization that

existing local learning approaches can achieve is limited by the number of layers in the architecture

1

used. We address this limitation and introduce a new local learning method which enables the

parallelization of the deep network at individual neuron-group level going beyond the layer level

parallelization of existing approaches.

Through a series of experiments on various datasets, we aim to investigate the performance and

behavior of neural networks trained using a purely local objective function at neuron-group level, in

comparison to those trained using the layer-level objective functions and traditional joint adaptation

approach. We will analyze the functional properties of the resulting networks, examining the role of

feedback between layers and the impact on the overall performance of the model. Additionally, we

will explore the conditions under which local loss function training may outperform the traditional

approach, and provide insights on the potential practical implications for training deep neural

networks. Our findings have the potential to inform the design and optimization of future neural

network architectures, as well as provide a deeper understanding of the functional properties of deep

networks. It is to be noted that this study only focuses on supervised learning approaches, specifically

large-scale image classification task. The methodology and findings of the study are discussed in

depth in Chapter 3.

1.2 Local Learning for Self-supervised Learning

Self-supervised learning, in which a model learns to perform a task using only unlabeled data,

has the potential to greatly improve the efficiency and effectiveness of machine learning systems.

However, traditional approaches to self-supervised learning often involve training an end-to-end

model, which can be computationally intensive and may not scale well to larger datasets. To address

this challenge, we propose the use of local learning methods for self-supervised learning tasks as a

means of increasing parallelization and improving efficiency. Specifically, we apply the Decouple

Greedy Learning (DGL) framework, as described in Belilovsky et al. (2020), to the popular SimCLR

method T. Chen, Kornblith, Norouzi, and Hinton (2020).

This approach has the potential to parallelize the training of the models in self-supervised learning

tasks by learning each layer of the network in parallel. However, we observe the issue of task-relevant

information collapse in the initial layers of locally trained models, as described in Wang et al. (2021),

2

which poses a significant challenge in achieving optimal performance on locally trained models. This

phenomenon results in degradation of performance as the initial layers fail to propagate maximum

task-relevant information to the subsequent layers. To address this issue, Wang et al. (2021) proposes

the use of a decoder model to reconstruct the input at every layer. However, this approach is not

scalable and incurs a significant computational burden.

In order to overcome this challenge, we propose a new method that incorporates additional

techniques to ensure maximum task-relevant information propagation to subsequent layers. Our

hypothesis is that systematically increasing the problem difficulty layer by layer can facilitate

maximum task-relevant information propagation. To test this hypothesis, our method proposes

layerwise modification of the local loss function such that the problem difficulty increases with

depth. By conducting experimental evaluations, we demonstrate the effectiveness of our method in

improving the performance of self-supervised learning models. The results indicate that our method

achieves performance that is comparable to that of traditional end-to-end training methods. Overall,

this study contributes to the field by providing a new approach for improving the efficiency and

scalability of self-supervised learning methods through the use of local learning frameworks. The

methodology and findings of this study are thoroughly discussed in the Chapter 4.

1.3 Related Work

Sequential local learning, where a network is built up through greedily adding individual layers

and solving local layerwise optimization problems, has been studied in a number of classical

works Fahlman and Lebiere (1989); Ivakhnenko and Lapa (1965). These kinds of approaches

were commonly used on simple datasets particularly in the case of unsupervised models (Bengio,

Lamblin, Popovici, and Larochelle (2007); Vincent et al. (2010). Their use was motivated primarily

by difficulties associated with joint optimization of deep networks such as the vanishing gradient

problem. However, such methods fell out of favor with the advent of modern techniques to tackle

joint deep network training such as improved initialization, residual connections He, Zhang, Ren, and

Sun (2016a) and normalizationIoffe and Szegedy (2015). These sequential local learning techniques

have been revisited recently by Belilovsky, Eickenberg, and Oyallon (2019a) which showed that this

3

approach can yield high-performance models on large datasets and architectures. Belilovsky et al.

(2020) further demonstrated that this can be performed in the parallel local learning setting, where

layers are learned simultaneously, allowing for improved distributed training of deep networks. It can

even be done in an asynchronous manner if each layer is allowed to maintain a memory. Nøkland and

Eidnes (2019) demonstrated an alternative loss function which yields improved performance in the

local learning setting. Wang et al. (2021) further extended this idea, illustrating a novel regularization

term that combats the collapsing of the representation towards the target supervised task through the

use of an autoencoder.

Gomez et al. (2022); Xiong, Ren, and Urtasun (2020) introduce the idea of overlapping local

layers and blocks while performing parallel local learning. This can improve performance but

re-introduces locking constraints that prevent a number of distributed applications of parallel local

learning, for example it is not directly compatible with asynchronous training as in Belilovsky et al.

(2020). Laskin et al. (2021) has performed a study comparing a number of local learning techniques

including interlocking backpropagation on several common large scale tasks.

Pyeon, Moon, Hahn, and Kim (2021) has proposed techniques for learning the architecture in the

setting of decoupled learning. Techniques proposed in this work are compatible with our study and

can be naturally combined.

Related to our work Veness et al. (2019) studied a local objective where each neuron solves a

binary classification problem. Results were illustrated in an online-learning setting but have not been

extended to the standard offline learning settings or to complex datasets such as imagenet.

Belilovsky et al. (2020); Choromanska et al. (2019); Lee, Zhang, Fischer, and Bengio (2015)

considers local objective functions with globally generated targets. These, however, require feedback

communication between the various layers and model components. Our work on the other hand

focuses on local learning objectives and their extensions.

Jaderberg et al. (2017b) proposed to also use auxiliary networks to locally approximate a gradient

in order to allow for parallel learning of neural network layers and blocks. However, the auxillary

models must predict a high-dimensional and time-varying target, which creates a lot of instability,

making it impractical in practice Belilovsky et al. (2020); Huo, Gu, and Huang (2018a).

Pipelining Y. Huang et al. (2018) is a systems-level solution that can alleviate to a degree the

4

issues introduced by backpropagation that prevent parallel training at different modules. However,

this techniques does not remove the fundamental limits (often described as locks in Jaderberg et al.

(2017b)) and thus does not allow for a full parallelization.

G. E. Hinton and Salakhutdinov (2006) introduced greedy layerwise unsupervised learning for

training Deep Belief Networks (DBN). Bengio et al. (2007) proposed an algorithm for training

deep architectures using a contrastive divergence objective, which follows the greedy layerwise

training approach. Their method demonstrated improved performance over traditional unsupervised

learning methods. Another example is the work of Erhan, Courville, Bengio, and Vincent (2010)

who introduced the concept of pre-training deep architectures using stacked autoencoders, which

utilizes a greedy layerwise training approach. This method also showed improved performance in

various applications.

1.4 Contributions

This thesis presents several contributions to the field of deep learning, specifically in the area of

distributed local learning. The main contributions of this thesis are as follows:

• We propose the extension of the recent Decoupled Greedy Learning (DGL) framework to

include neuron-level groups, referred to as Grouped Neuron DGL (GN-DGL). This new

approach increases the degree of parallelization that was previously possible with existing

methods.

• We introduce the use of a diversity-promoting penalty to facilitate the learning of diverse

feature representations among different neuron groups. Our experiments show that use of this

penalty improves the performance of the GN-DGL method.

• We present a thorough comparison of different variants of the GN-DGL method with existing

local learning methods such as DGL (Belilovsky et al., 2020) and InfoPro Wang et al. (2021).

Our results demonstrate that the GN-DGL method outperforms these existing methods in

certain scenarios.

5

• We also study the limitations of adapting the recent Decoupled Greedy Learning (DGL)

framework to the SimCLR method. Our findings provide insight into the challenges of

adapting this framework for self-supervised learning tasks.

• To address these limitations, we introduce a new method called Decoupled Greedy Self-

supervised Learning (DGSSL), which improves the performance of locally trained SimCLR

models.

• To evaluate the effectiveness of our proposed method, we conduct ablation studies focusing on

variants of the DGSSL method. These variants include one that increases problem difficulty

with depth, and another that decreases problem difficulty with depth. Subsequent ablation

study focuses on the impact of using both positive and negative pairs of samples for layerwise

loss modification, as well as the impact of only using positive pairs.

1.5 Working Papers

The work titled "Local Learning with Neuron Groups," presented by Patel, Eickenberg, and

Belilovsky (2022) at the ICLR 2022 “From Cells to Societies: Collective Learning Across Scales

Workshop" serves as a foundation for this thesis. Specifically, a substantial portion of Chapter 3 is

drawn from the aforementioned work by Patel et al. (2022). Additionally, an extended version of

Chapter 3 is currently under review for the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) 2023. Furthermore, efforts are underway to prepare Chapter 4 for

publication. The author of this thesis served as the lead author to all of the aforementioned works,

and the co-authors acknowledge the incorporation of these works within the thesis.

6

Chapter 2

Background

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep learning algorithm that are particularly

well-suited for image and video analysis due to their ability to extract and recognize complex

features in the input data (LeCun, Bengio, et al., 1995). CNNs are composed of multiple layers of

interconnected nodes, with each layer responsible for extracting different types of features from

the input. These layers are organized in a hierarchical manner, with lower layers extracting simple

features such as edges and colors, and higher layers combining these features to recognize more

complex objects and patterns (LeCun, Bengio, & Hinton, 2015).

One of the key features of CNNs is their use of convolutional layers, which are designed to

automatically learn spatial hierarchies of features. These layers use a small, learnable kernel or filter

that is convolved with the input data to compute a set of output features (G. E. Hinton, Srivastava,

Krizhevsky, Sutskever, & Salakhutdinov, 2012). By applying multiple convolutional layers, CNNs

can learn increasingly complex features of the input data, such as edges, shapes, and objects.

In addition to convolutional layers, CNNs also incorporate pooling layers which are responsible

for reducing the spatial dimensions of the input data while maintaining the most important features.

This property, known as translation invariance, allows CNNs to recognize objects in any position

within the input data (Scherer, Müller, & Behnke, 2010). Pooling layers can be implemented using

various techniques, such as max pooling, average pooling etc. Pooling layers also help to reduce the

7

number of parameters in the model, making it more efficient and easier to train (He, Zhang, Ren, &

Sun, 2016b).

One of the major advantages of CNNs is their ability to be trained efficiently, even on large

datasets (Krizhevsky, Sutskever, & Hinton, 2012). This is in part due to their use of convolutional

and pooling layers, which reduce the number of parameters and computational cost of the model.

In comparison to other types of neural networks, such as fully connected networks, CNNs have

significantly lower training times and are able to achieve good performance with fewer training

examples (Simonyan & Zisserman, 2014). Additionally, CNNs can be trained using techniques such

as model parallelism, which involves dividing the model into smaller sub-models that can be trained

in parallel, further improving training speed (Goyal et al., 2017). This can be achieved using various

techniques such as data parallelism, where the input data is divided among multiple GPUs, or model

parallelism, where different layers of the model are assigned to different GPUs (C.-C. Chen, Yang, &

Cheng, 2018). Another approach is the use of local learning methods (Belilovsky, Eickenberg, &

Oyallon, 2019b; Bengio et al., 2007; Nøkland & Eidnes, 2019; Wang et al., 2021), which we further

discuss in subsequent sections.

Due to their ability to automatically learn hierarchical representations of the input data, CNNs

have achieved state-of-the-art performance on a wide range of tasks, including image and video

classification (Karpathy et al., 2014), object detection (Ren, He, Girshick, & Sun, 2015), and

segmentation (Xu et al., 2018). Their efficiency and effectiveness make them a powerful tool for a

wide range of applications, and techniques such as model parallelism and weight sharing can further

improve the speed and scalability of these algorithms. They are also widely used in applications

such as medical imaging (), facial recognition, and autonomous driving. These applications require

the ability to recognize complex patterns in visual data, and CNNs are particularly well-suited to

this task. As such, CNNs continue to be a vital and influential aspect of the field of deep learning.

Due to their ability to automatically learn hierarchical representations of the input data, CNNs

have achieved state-of-the-art performance on a wide range of tasks, including image and video

classification (Karpathy et al., 2014), object detection (Ren et al., 2015), and segmentation (Xu et al.,

2018). Their efficiency and effectiveness make them a powerful tool for a wide range of applications,

and techniques such as model parallelism and weight sharing can further improve the speed and

8

scalability of these algorithms. They are also widely used in applications such as medical imaging

(Litjens et al., 2017), facial recognition (Parkhi, Vedaldi, & Zisserman, 2015), and autonomous

driving (Bojarski et al., 2016). These applications require the ability to recognize complex patterns

in visual data, and CNNs are particularly well-suited to this task (Krizhevsky et al., 2012). As such,

CNNs continue to be a vital and influential aspect of the field of deep learning (LeCun et al., 2015).

2.2 Supervised Learning

Supervised learning is a type of machine learning where the model is trained on labeled data,

meaning that the correct output is provided for each example in the training dataset (Bengio, Courville,

& Vincent, 2013; Krizhevsky et al., 2012). The goal of supervised learning is to learn a function that

can map the input data to the corresponding outputs, so that the model can predict the output for

new, unseen examples (Goodfellow, Bengio, & Courville, 2016). This is achieved through the use of

algorithms that learn from the labeled training data and make predictions on new data.

Supervised learning algorithms can be classified into several categories, such as regression and

classification algorithms (Mahesh, 2020). Regression algorithms are used to predict continuous

values, such as the price of a house based on its size and location (Hastie, Tibshirani, Friedman, &

Friedman, 2009). On the other hand, classification algorithms are used to predict discrete values,

such as the type of animal in an image. These algorithms are designed to learn complex patterns in

the data and make accurate predictions based on those patterns.

There are many popular supervised learning algorithms, such as decision trees (Kingsford &

Salzberg, 2008), support vector machines (Cortes & Vapnik, 1995), and neural networks (LeCun et

al., 2015). These algorithms have been extensively studied and applied in various domains, including

natural language processing (Brown et al., 2020), computer vision (Krizhevsky et al., 2012), and

speech recognition (G. Hinton et al., 2012). They have proven to be effective at solving a wide range

of problems in these domains, making them an important tool in the machine learning toolkit.

One of the main challenges in supervised learning is the need for large amounts of labeled

data, which can be time-consuming and expensive to obtain. Another challenge is the potential

for overfitting, where the model performs well on the training data but poorly on new, unseen data.

9

To address these challenges, researchers have developed various techniques, such as regularization

(Kukačka, Golkov, & Cremers, 2017) and cross-validation (Kohavi et al., 1995), to improve the

generalization ability of supervised learning models. These techniques help to prevent overfitting

and improve the performance of the model on new data.

Overall, supervised learning has proven to be a powerful tool for solving a wide range of

problems in different fields. Despite its challenges, it continues to be an active area of research and

development, with many exciting developments and applications yet to come.

2.3 Self-supervised Learning

Self-supervised learning has gained significant attention in recent years as a means of leveraging

vast amounts of unlabelled data to improve the performance of machine learning models (Brown

et al., 2020; Schuhmann et al., 2022). The basic idea behind self-supervised learning is to use the

inherent structure of the data to create pseudolabels, or labels that are not explicitly provided by

human annotators (Doersch, Gupta, & Efros, 2015). These pseudolabels are then used to train a

neural network on a pretext task, which is a task that is not the final task of interest but is designed to

learn useful representations for the final task.

There are two main approaches to self-supervised learning: generative and contrastive (Liu et al.,

2021). Generative approaches involve training on tasks such as image-inpainting and video frame

prediction, where the model is trained to generate missing parts of an image or predict future frames

in a video (Kim, Woo, Lee, & Kweon, 2019; Pathak, Krahenbuhl, Donahue, Darrell, & Efros, 2016).

These tasks encourage the model to learn rich representations of the data by forcing it to generate

plausible samples.

Contrastive approaches, on the other hand, focus on learning close projections of augmented

versions of the same sample and pushing far the projections of different samples (T. Chen et al.,

2020; Jaiswal, Babu, Zadeh, Banerjee, & Makedon, 2020). This is done by training the model

to differentiate between different augmentations of the same sample and different samples. This

approach has been shown to be particularly effective for learning representations of images and

videos.

10

Overall, self-supervised learning is a promising approach for leveraging unlabelled data to

improve the performance of machine learning models. It has been used to improve the performance

of various tasks, but it is important to be aware of its limitations. Further research is needed to better

understand the strengths and limitations of self-supervised learning and to develop more effective

methods for creating pseudolabels.

2.4 Contrastive Self-supervised Learning

Contrastive learning is a method which learns useful representations by comparison. In supervised

learning, labels for each sample is provided in order to discriminate it from other samples. Whereas,

in contrastive self-supervised learning, we use pseudolabels which try to pull the augmented versions

of samples in a batch closer to each other and at the same time it also tries to learn to push the

different samples far from each other.

This notion of similarity can also be used in supervised learning setup by mapping the represen-

tations from same class closer and vice versa. Hence, the contrastive learning can be applied to both

supervised (Khosla et al., 2020) and self-supervised settings (T. Chen et al., 2020). In this thesis, we

would only focus on the use of contrastive learning in context of self-supervised learning.

In self-supervised contrastive learning, a similarity metric is used to measure distances between

two feature representations. In computer vision tasks, these representations are learned by an encoder

network and fed to a contrastive loss function. In other words, a sample is taken from a dataset and

few augmentations are applied to obtain an augmented version of the sample. Now, these two views

of a sample are considered positive samples to train the encoder network and remaining samples from

the dataset are regarded as negative samples. Such setup helps a model to learn useful representations

by differentiating positive samples from negative samples. Such a method of learning requires ample

number of negative examples in a batch/dataset to be able to learn useful representations. Based on

this idea, it is understood why contrastive learning algorithms tend to benefit by training with larger

batch sizes (T. Chen et al., 2020).

11

2.4.1 SimCLR: A Simple Contrastive Learning Framework

A simple framework for contrastive learning (SimCLR) paper (T. Chen et al., 2020) proposed a

simplified framework for contrastive self-supervised learning, where the model learns by maximizing

the agreement between positive samples obtained by applying appropriate transformations on data as

shown in Figure 2.3.

An important component of a SimCLR framework is its data augmentation module. As shown in

Figure 2.3, a sample x is taken from a dataset and a set of appropriate augmentations are applied on

x to obtain two views xi and xj of a sample to be considered a positive pair. T. Chen et al. (2020)

have shown that applying specific augmentations significantly affects performance of the model.

Specifically, when random crop and color distortion is applied in sequence, the model produces

highest top-1 accuracy on ImageNet dataset. On the other hand, applying sobel filtering, rotation,

gaussian noise, and gaussian blur are not as effective as applying random crop, cutout, and color

distortion for performance on ImageNet dataset.

Feature extractor f(·): A convolutional neural network based encoder network is used to extract

feature representations from two augmented views of a sample. T. Chen et al. (2020) have adapted a

commonly used ResNet architectures (He et al., 2016a) to extract representations hi and hj , where i

and j indicates two different views of sample.

Projection head g(·): As shown in Figure 2.3, a projection head is attached to an encoder

network f(·), which takes in a feature representation hi and hj as input to produce an embedding

vector zi and zj to apply a contrastive loss. T. Chen et al. (2020) have used a one hidden layer MLP to

apply non-linear transformations on representations for their experiments. Although, several results

suggests that using a single layer MLP as a projection head in SimCLR degrades the performance

of the model compared to using one hidden layer MLP. In addition to that, some experiments from

the paper have also concluded that applying contrastive loss on raw representations deteriorates

the performance of the network, which establishes the importance of having a projection head in

SimCLR.

The encoder network along with the projection head g(·) is trained using an end-to-end backprop-

agation algorithm and a single contrastive loss function is applied on vector embeddings produced

12

Figure 2.1: A simple framework for contrastive learning. Two augmented views xi and xj of a
sample x are processed by a shared encoder f(·) to obtain representations hi and hj . A projector
network g(·) takes these representations as input and obtain embeddings zi and zj . The contrastive
loss is applied on zi and zj to maximize the agreement between the views.

by the projection head. In this work, we propose to alter this encoder network f(·) by dividing it

into smaller encoder modules to train independently using separate local contrastive loss functions.

We demonstrate that having different architectures of projection heads can significantly affect the

performance of the locally trained model.

Evaluation method In SimCLR, during linear evaluation mode, the projection head g(·) is

discarded and an MLP module is attached after the encoder network f(·). Based on architectural

design, linear or non-linear transformation of representations hi and hj is performed by the MLP

module to evaluate the standard categorical cross-entropy loss. This method is also known as

linear probe evaluation, which is further detailed in Sec 2.7. Note that the parameters of encoder

module f(·) are not updated during linear evaluation training mode. Though, there exist methods of

evaluation which also fine tunes the parameters of the encoder module on a subset of dataset (Zhai,

Oliver, Kolesnikov, & Beyer, 2019), which is commonly known as semi-supervised learning.

13

2.5 Backpropagation

Typically, a neural network is trained using an end-to-end backpropagation algorithm to jointly

train all the layers of a network using a global loss function. Such joint training of all layers using a

single loss function typically increases network capacity to learn a function for large-scale datasets

efficiently. The Backpropagation algorithm is a well-known method used in the training of artificial

neural networks (Rumelhart, Hinton, & Williams, 1985). It is an efficient algorithm that allows for

the adjustment of weights in the network in order to improve the network’s performance on a given

task. The algorithm is based on the gradient descent optimization technique, which involves the

calculation of gradients of the error function with respect to the network weights.

The Backpropagation algorithm operates in two phases: a forward phase and a backward phase.

In the forward phase, the input data is fed through the network and the output is generated. In this

phase, the input data is passed through each layer of the network in a sequential manner, with the

weights of each layer being applied to the input data in order to produce the output of that layer. The

output of each layer is then passed as the input to the next layer, until the output of the final layer

is produced. This output is then compared to the desired target, and the error between the two is

calculated. In the backward phase, the error between the output and the desired target is used to

compute the gradients of the error function with respect to the weights. These gradients are then

used to update the weights in the direction that minimizes the error. This process is repeated for each

weight in the network, until the error is reduced to an acceptable level.

However, such sequential approach introduces several locking issues while using it to train large

models as shown in Figure 2.2, which can be understood through the perspective of data dependencies

(Jaderberg et al., 2017a). Forward locking occurs when the processing of a layer is dependent on

the completion of processing in the previous layers. This means that the processing of each layer

must be completed in a specific sequence before the next module can begin. Update locking expands

upon this by requiring that all dependent layers must be processed in forward direction before

any updates can be made to a particular layer. Backwards locking takes this one step further by

requiring that all dependent layers be processed in both the forward and backward directions before

a particular layer can be updated. This added constraint can significantly impact the efficiency of

14

Figure 2.2: Data-flow diagram across time for standard backpropagation algorithm, highlighting the
fundamental limitations of backpropagation algorithm: forward, update and backward locking.

the processing, as it requires additional computations to be completed before updates can be made.

These locking problems can hinder the efficiency of neural network training and impede parallel

processing capabilities.

To address this issue, researchers have attempted to introduce local loss functions for each layer

or module, which can be trained using a sequential greedy learning procedure Bengio et al. (2007);

Ivakhnenko and Lapa (1965). This approach allows each layer or module to be trained independently,

which can help to reduce the computational and memory requirements of the overall training process.

While this approach can be effective in some cases, it can also be somewhat limited in terms of the

types of models that can be trained, and may not always achieve the same level of performance as

traditional end-to-end training methods.

15

2.6 Distributed Training

Distributed training of neural networks is a common approach used in deep learning to improve

the efficiency and effectiveness of training large models. This approach involves the use of multiple

devices, such as multiple GPUs or multiple machines, to train a model in parallel. There are four

main approaches to distributed training: data parallelism, model parallelism, pipeline parallelism and

local parallelism as described in Laskin et al. (2020).

Loss

Loss

Loss
Loss

Loss

Loss

Loss

(a) Data Parallelism (b) Model Parallelism (d) Local Parallelism

Process
2

Process
1

Process
N

Loss

(b) Pipeline Parallelism

Figure 2.3: Approaches of distributed training in deep learning. Extracted from Laskin et al. (2020).

2.6.1 Data Parallelism

Data parallelism involves distributing the data across multiple devices and processing it in parallel.

This approach allows for faster training times as multiple devices can process the data simultaneously.

However, the model must be able to fit on a single device as it is replicated across all devices. This

requires careful consideration of the data processing pipeline and how it can be effectively divided

and distributed across devices, as well as the communication and synchronization between devices

during training (Krizhevsky, 2014).

One major advantage of data parallelism is the ability to achieve faster training times. This is

because multiple devices can be used in parallel to process the data, allowing for much faster training

times (Goyal et al., 2017). Data parallelism can also be easier to implement, as it does not require

significant changes to the model architecture. It is a common approach for training large models on

multiple GPUs or across multiple machines in a distributed computing environment (Dean et al.,

2012).

However, there are also some limitations to consider when using data parallelism. One limitation

16

is that the model must be able to fit on a single device, as it is replicated across all devices. This may

limit the size and complexity of the model that can be trained using data parallelism (You, Gitman, &

Ginsburg, 2017). There may also be communication overhead between devices, which can decrease

the overall speed of training. Additionally, distributing the data across multiple devices may require

significant changes to the data processing pipeline, which can be challenging and require additional

resources.

2.6.2 Model Parallelism

Model parallelism involves dividing the model across multiple devices, allowing the model to

be trained on larger datasets and leveraging the computational power of multiple devices for faster

training times. This approach is useful for training very large models that would not fit on a single

device, as it allows for the use of more computational resources to train the model. However, it can

be more difficult to implement as the model must be specifically designed to be split across multiple

devices. This requires careful consideration of the model architecture and how it can be effectively

divided and distributed across devices, as well as the communication and synchronization between

devices during training (Guan, Yin, Li, & Lu, 2019).

One major advantage of model parallelism is the ability to train very large models that would not

fit on a single device. This is because the model is divided across multiple devices, allowing for the

use of more computational resources to train the model. Model parallelism can also lead to faster

training times, as multiple devices can be used in parallel to process the data or model. This can be

particularly useful for training very large models or datasets that would take a long time to train on a

single device (Gomez et al., 2020).

2.6.3 Limitations

Despite having many advantages, there are several limitations to consider when using distributed

training in deep learning. One major disadvantage of data and model parallelism is the communication

overhead that is required. In order to update the weights of the model, the gradients must be calculated

and transmitted between the different parts of the model. This can lead to a significant amount of

communication overhead, as the gradients need to be transmitted between different GPUs or devices

17

in order to update the model (C.-C. Chen et al., 2018). This communication overhead can slow

down the training process and limit the scalability of the model, as it becomes more difficult to add

additional GPUs or devices to the training process. This is because the more GPUs or devices that

are added, the more gradients need to be transmitted and the greater the communication overhead

becomes (Goyal et al., 2017). This can ultimately lead to a diminishing return on the performance

gain from adding additional GPUs or devices, as the communication overhead becomes a significant

bottleneck.

Another disadvantage of such approaches is the reliance on a central coordinator to collect

and aggregate the gradients from different nodes in order to update the model. In a distributed

training setup, the model is trained on multiple nodes or devices, and the gradients are calculated

and transmitted to a central coordinator in order to update the model (Chilimbi, Suzue, Apacible, &

Kalyanaraman, 2014). This central coordinator can become a bottleneck in the training process, as it

must collect and aggregate the gradients from all of the different nodes in order to update the model

(Konečnỳ et al., 2016). This can limit the scalability of the model and reduce the overall efficiency

of the training process, as the central coordinator may become a bottleneck and limit the ability to

add additional nodes or devices to the training process. This is especially problematic when training

large and complex models, as the central coordinator may need to handle a large number of gradients

and the communication overhead may become significant.

In addition to the communication overhead and reliance on a central coordinator, such approaches

may also suffer from convergence issues. Due to the distributed nature of the training process,

the gradients may be noisy or inconsistent, which can lead to slower convergence and reduced

performance of the model. This can be especially problematic when training large and complex

models, as the convergence issues may become more pronounced as the model size increases.

Additionally, the convergence issues may be exacerbated by the communication overhead and

reliance on a central coordinator, as these factors may introduce additional noise and inconsistency

into the gradients and make it more difficult for the model to converge (Keuper & Preundt, 2016).

Overall, these disadvantages of model parallelism and data parallelism can make it challenging to

effectively train neural networks in these settings, and may require the use of alternative algorithms

or optimization techniques in order to achieve good performance.

18

Figure 2.4: Linear Probe Evaluation: a linear classifier (probe) is trained while CNN encoder weights
are frozen during this evaluation phase.

2.7 Linear Probe Evaluation

Linear probe evaluation is a method used to evaluate the representations learned by a convolutional

neural network (CNN). The idea behind linear probe evaluation is to take the features learned by

a CNN and use them as input to a linear classifier (probe) as shown in Figure 2.4. This classifier

is trained to perform a task using the CNN features, and its performance is used as a measure of

the quality of the CNN representations (Alain & Bengio, 2016). This approach has been used to

evaluate the representations learned by CNNs in a variety of tasks, such as object recognition, face

recognition, and natural language processing. Linear probe evaluation has been shown to be a useful

tool for understanding the properties of CNN representations, and it has been used to identify the

specific layers and units in a CNN that are most important for a given task.

2.8 Local Learning Methods

In this section, we describe the local learning framework of Nøkland and Eidnes (2019) and

Decoupled Greedy Learning Belilovsky et al. (2020). Additionally, we also discuss some of the

limitations of using purely local loss functions and introduce a previously explored solution to use an

Information Propagation Loss as described in Wang et al. (2021).

Several inefficiencies of a fully end-to-end back-propagation algorithm have been reported

in recent works. As described in Jaderberg et al. (2017a), mainly three inefficiency of the back-

propagation algorithm prohibit parallelization are forward, backward, and update locking. Backward

19

locking requires the error signal to propagate through all subsequent modules before it can reach to a

module. Update locking does not allow update of a module before a forward signal has propagated

through the full network. And forward locking issue does not allow a module to propagate a signal

forward until it has received signals from the previous layers.

Several methods have been proposed to address backward locking issues Choromanska et al.

(2019); Huo, Gu, and Huang (2018b); Huo, Gu, Huang, et al. (2018); Lee et al. (2015); Nøkland

(2016). Jaderberg et al. (2017a) describes update unlocking as far more severe issue and proposes

Decoupled Neural Interfaces (DNI). DNI achieves update unlocking by directly predicting gradients

for each module using an auxiliary network depending only on the input. The gradient of weights

can be high-dimensional as the model size increases. Hence, this method does not scale well.

A scalable approach to update unlocking was recently proposed in Belilovsky et al. (2020). We

describe this approach and its limitations briefly in the following section.

2.8.1 Decoupled Greedy Learning (DGL)

Local learning framework of Decoupled Greedy Learning (DGL) proposes to decouple each

layer or module to train in isolation using an independent objective function as shown in Figure 2.5.

Here, each module is trained in-parallel online along with the corresponding auxiliary module, which

essentially addresses the fundamental limits of backpropagation algorithm: forward, update and

backward locking. This approach significantly helps to reduce memory consumption and training

time by parallelization. Although training all layers jointly using a global objective function ensures

efficient adaptation to function for large datasets to achieve high performance, DGL has been shown

to work well on large-scale image classification tasks under supervised learning settings.

Another recent work in this direction Wang et al. (2021) shows that training each layer or module

using local loss functions similar to end-to-end loss function results in collapse of task-relevant

information in early layers. To address this issue of information collapse, they propose an Information

Propagation Loss (InfoPro), which adds a regularizer term to the standard local loss function. The

regularizer term tries to reconstruct the input at each layer or a module using an auxiliary decoder

network, effectively introducing two separate auxiliary heads for each local module. It has been

shown to achieve high performance in large-scale image classification tasks and outperforming

20

Figure 2.5: Local learning framework of Belilovsky et al. (2020); Nøkland and Eidnes (2019), where
each module is trained in-parallel online using local auxiliary loss.

previously proposed Decoupled Greedy Learning (DGL).

Unfortunately, this approach to address the issue of information collapse is not computationally

scalable, as the auxiliary decoder module consists of multiple convolutional layers which operates on

the upsampled version of feature representations. Size of the decoder module is dependent on the

size of the model to maintain the high performance on a given task.

In this thesis, we extend the local learning framework of Decoupled Greedy Learning by intro-

ducing another dimension of modularity to increase parallelization of the models. We also study the

application of local learning frameworks in self-supervised learning settings especially with SimCLR

to potentially achieve parallelization and reduce training times.

21

Chapter 3

Local learning with Neuron Groups

3.1 Introduction

Neural networks are typically trained by stochastic gradient descent in combination with the

back-propagation algorithm to optimize a monolithic objective function jointly for all the components

(G. Huang, Liu, Pleiss, Van Der Maaten, & Weinberger, 2019; Krizhevsky et al., 2012; Simonyan &

Zisserman, 2014; Szegedy et al., 2015) . This learning algorithm allows joint adaptation of all layers

and neuron connections in a network based on a global objective function. It is typically believed

that this joint adaptation is essential to obtain a high performance for large-scale data sets as joint

adaptation towards an overarching objective allows the individual layers and neurons to adapt their

functionality efficiently. On the other hand, several recent works have studied the idea to use a purely

local loss function, where there is no feedback between the independent layers. These approaches

are based on the classic sequential greedy learning procedure Bengio et al. (2007); Ivakhnenko

and Lapa (1965) but allow the different model components to simultaneously learn their model

parameters. Surprisingly, relying purely on this forward communication, high-performance models

can be constructed Belilovsky et al. (2020); Nøkland and Eidnes (2019). These observations have

implications on both the functional properties of high-performance deep networks as well as practical

implications for distributed training of neural networks. If layerwise learning can still bring high

performance, this raises the question: to what degree do neural network components need to be

trained jointly?

22

We can obtain some inspiration from biological neural systems. Biological neural systems rely on

extremely localized synaptic updates, often modeled as Hebbian learning Hebb (1949) or adaptations

thereof. The primary ways for a biological neural system to incorporate global information into

learning is by way of feedback/recurrent neural connections, which can bring information that was

computed at a later stage back to earlier neurons and hence be incorporated by local learning. Local

learning in biological systems includes spatially local processing in retinotopic maps, which inspired

locally connected architectures such as convolutional networks. Further, in biological systems, there

often exist parallel pathways that perform different but somewhat overlapping computations (e.g.

magno- and parvocellular visual pathways). We take inspiration from this idea and translate it to a

channelwise splitting of computations such that the different components can be efficiently hosted on

different processing units.

In this work we investigate the limits of using supervised local loss functions, moving them from

the layer level to the “neuron group" level. Specifically, we consider the case where non-overlapping

groups of neurons within a network layer each have their own local objective function and optimize

their parameters in isolation. Our investigation reveals that networks can still demonstrate high

performance despite this modification. We also investigate how to encourage these decoupled

networks to learn diverse behavior (i.e. learn different representations from each other) based solely

on forward communication. We illustrate the practical applications of this by comparing the proposed

method to existing local learning approaches in the context of total training time, inference time, and

model performance.

3.2 Methods

3.2.1 Background and Notation

In traditional approaches, the parameters of each layer of the network are learned sequentially,

which can be time-consuming and may not fully utilize available resources. The local learning

framework introduced by Belilovsky et al. (2020); Nøkland and Eidnes (2019) presents a promising

solution to the challenge of training deep neural networks efficiently. These local learning frameworks

address this issue by proposing the simultaneous optimization of the parameters at each layer j,

23

Aux

Group 1.1
FC Loss

Group 1.2

Aux

Aux

Group 2.1

Group 2.2

Aux

Aux

Group 3.1

Group 3.2

Aux

Aux

Group 4.1

Group 4.2

Aux

Forward
Connection

Error
Gradient

Figure 3.1: Grouped Neuron DGL, each layer and neuron group has a local objective. All local
groups are learned in parallel, feeding their output directly to the next layer’s groups.

denoted as θj . Instead of training each layer of the network sequentially, this framework suggests

that the parameters of each layer should be learned jointly and in parallel. This approach allows for

more efficient optimization of the parameters in terms of training time.

To formalize this concept, we must first introduce some notation. Let us consider an input to a

neural network, denoted as x0. This input is then passed through a series of layers, each performing

a set of operations denoted as fθj (xj−1), where θj refers to the parameters of the network at layer j.

In addition to these operations, a local loss function is also applied to the representation xj at each

layer, denoted as L(y, xj ; γj , θj). The parameters γj in this loss function correspond to those of an

auxiliary network.

One important aspect of this framework is the introduction of the auxiliary network, which is

used to compute the parameters θj along with the auxiliary network parameters γj as mentioned in

the local loss function above. The auxiliary network is trained along with the corresponding layer

from the main network, and its purpose is to provide additional information to the local loss function

that can help to improve the optimization process. For example, the auxiliary network may be trained

to predict the labels of the input data from the layer representations xj , which can then be used to

guide the optimization of the corresponding layer in the main network.

24

Algorithm 1: Grouped-Neuron DGL
Input: Mini-batches S ≜ {(xt

0, y
t)}t≤T

1 Initialize Parameters {θij , γi
j}j≤J,i≤G.

2 for (x0, y) ∈ S do
3 for j ∈ 1, ..., J do
4 for i ∈ 1, ..., G do
5 xi

j ← fθi
j
(xj−1).

6 Compute∇(γi
j ,θ

i
j)
L̂(y, xi

j ; γ
i
j , θ

i
j).

7 (θij , γ
i
j)←Update params (θij , γ

i
j).

8 end
9 xj ←

∥∥G
i=1

xi
j .

10 end
11 end

3.2.2 Grouped Neuron DGL (GN-DGL)

In this section, we introduce a new method for parallelizing deep neural network training called

Grouped Neuron DGL (GN-DGL). The primary motivation for this method is to improve the

efficiency of the training process by breaking down the objective function into smaller, parallelizable

components.

In order to achieve this goal, we propose to divide each layer into smaller groups that have

isolated losses. This approach builds upon the concept of layerwise local learning. We introduce a

group-wise local loss term as L(y, xij ; γij , θij). Here, xij refers to a subset of the overall representation

xj , and the parameters γij and θij correspond to those of an auxiliary network and the neuron group

i in the layer j, respectively. By dividing the objective function in this manner, we are able to

parallelize the optimization process even further, potentially leading to greater efficiency.

One key aspect of our GN-DGL method is the way in which we learn each of these groups

in parallel. Rather than sequentially optimizing each group as has been done in previous work

Belilovsky et al. (2019a), we propose to learn each group online, as has been demonstrated in other

approaches such as Belilovsky et al. (2020); Nøkland and Eidnes (2019). Our approach is illustrated

in Algorithm 1, where we optimize a greedy objective for each neuron group. It is important to note

that during a forward pass, each neuron group i at layer j receives as input the output representations

xkj−1 from all groups of the previous layer j − 1 (i.e. all k in layer j − 1). This is illustrated in

Figure 3.1. We note that in our implementation, the last fully connected layer is decoupled from the

25

previous layer’s neuron groups and is divided into its own groups, which are trained using the same

approach as the other layers.

Algorithm 2: Stop-Gradient GN-DGL
Input: Mini-batches S ≜ {(xt

0, y
t)}t≤T

1 Initialize Parameters {θij , γi
j}j≤J,i≤G.

2 for (x0, y) ∈ S do
3 for j ∈ 1, ..., J do
4 for i ∈ 1, ..., G do
5 xi

j ← fθi
j
(xj−1).

6 zij = sg
[∥∥

k ̸=i
xk
j

]
7 Compute∇(γi

j ,θ
i
j)
L̂(y, xi

j , z
i
j ; γ

i
j , θ

i
j).

8 (θij , γ
i
j)←Update params (θij , γ

i
j).

9 end
10 xj ←

∥∥G
i=1

xi
j .

11 end
12 end

3.2.3 Stop-Gradient Grouped Neuron DGL

The second method, an extension of GN-DGL method, loosens the communication restrictions

between neuron-groups by allowing each neuron group to send its output representations to the

auxiliary networks of the other neuron groups in the same layer. However, this is only a forward

communication and no information is sent back to the previous layers during backward pass of

the optimization process. This is achieved by introducing a stop-gradient operation before the

output representations are passed to the auxiliary networks, as shown in Algorithm 2. This ensures

that no gradients can flow back through the communication channels during the backward pass,

while still allowing the auxiliary networks to make use of the information contained in the gradient-

decoupled output representations of the previous layer neuron groups. We refer to this approach as

the Stop-Gradient Grouped Neuron DGL (Stop-Gradient GN-DGL)

It is worth noting that the Stop-Gradient GN-DGL method does come with some additional

communication overhead due to the need to transmit the output representations of neuron groups.

However, we believe that the potential performance benefits outweigh this cost in many cases. To

reduce the communication cost, we suggest spatially pooling the output representations before

26

sending them to the auxiliary networks. This reduces the size of the data being transmitted, while

still preserving some of the important information contained in the output representations.

We believe that the Stop-Gradient GN-DGL method has the potential to improve the overall

performance of deep neural networks by allowing each neuron group to make use of more context

when making its own predictions. In our experiments, we will compare the performance of the

Stop-Gradient GN-DGL method to the GN-DGL.

3.2.4 Grouped Neuron DGL with diversity-promoting penalty

An expected weakness of local group losses is that representations learned in different groups will

be correlated and redundant to each other, not permitting optimal aggregation of predictive power. We

attempt to address this by introducing a diversity-promoting penalty. Specifically, we allow auxiliary

modules to send their softmax output distributions to each other. We add a diversity-promoting term

in the loss function which encourages diversity locally, based solely on communication of softmax

layer outputs between auxiliary modules.

To achieve this, we utilize a variant of the penalty studied in Dvornik, Schmid, and Mairal (2019).

During training, the class probabilities for each group is encouraged to be close to the target vector

with one non-zero entry for class label. Even though the highest entry of the class probabilities

pij is used to make the prediction about class, the other entries can also be used to extract useful

information from the network. To represent it formally, we consider each neuron group of the

network and their corresponding auxiliary modules to be parameterized by θij and γij respectively,

where i and j indicates the group index and layer index respectively. Each group leads to the class

probabilities pij = softmax(f(θij ,γi
j)
(xj−1)). Now consider p̂ij =

pij⊙my

∥pij⊙my∥1
where my is a vector with

zero at position y and 1 otherwise.

Now, for a group a in the layer j, we compute the diversity-promoting penalty with each

remaining group b in the same layer as shown in Eq. 1,

ϕ(p̂aj , p̂
b
j) = sim(p̂aj , sg[p̂

b
j]) (1)

Here, sg denotes the stop-gradient operation and sim is the cosine similarity. It is important to

27

Figure 3.2: To encourage diverse feature learning among different neuron-groups, each neuron-group
within a layer is encouraged to output different softmax activations for non-target labels.

note here that to estimate the diversity-promoting penalty for group a with all remaining groups b

of the same layer, we use a gradient-decoupled version of p̂bj . This means that no gradient signal

needs to be sent back. This penalty encourages diversity by pushing the non-target-label softmax

activations of the different groups away from each other as shown in Figure 3.2. This penalty only

produces negligible overhead in communication between auxiliary modules.

Layerwise ensemble evaluation Typically, the prediction of a neural network is given by the

softmax outputs of the last layer of the network. Whereas, the Layerwise Ensemble Evaluation

method allows us to assess the performance of a neural network by aggregating the predictions made

by different groups of neurons at different depths within the network. Following Belilovsky et al.

(2019b) we investigate how each group performs on the task and evaluate how each group of neurons

within the network contributes to the overall prediction made by the network.

To begin, we consider the output of the softmax layer, denoted by lij , produced by each group of

neurons. Here, i and j represent the indices of the neuron group over width and depth, respectively.

We then take a weighted mean of all of these vectors to obtain the final output, le, as shown in Eq. 2.

le =
1

K ×G

G∑
i=1

K∑
j=1

αijlij (2)

28

Here, G is the number of neuron groups and K is the number of layers. The weights αij are kept

constant for the groups within a given layer, but are varied for different layers using the weighting

scheme proposed in Belilovsky et al. (2019b).

This method allows us to understand the performance of each neuron group independently,

as well as how they contribute to the overall prediction made by the network. By evaluating the

performance of the network in this way, we can identify any potential issues or areas for improvement

within each neuron-group. This can be particularly useful in the context of local learning, where the

network is trained on separate local loss functions.

3.3 Experiments and Results

Our experimental results start with an initial set of ablations and then focus on evaluations of

performance tradeoffs in model-parallel learning setting. First, we study a simple VGG6a model

using layerwise and group-neuron level local loss functions. This allows us to establish basic

performance characteristics of this approach compared to layerwise training. In the second set of

experiments, we focus on an application to model-parallel training, comparing our method in the case

of multi-layer modules to the recent methods such as Decoupled Greedy Learning (DGL) Belilovsky

et al. (2020) and local learning with Information Propagation (InfoPro) Wang et al. (2021).

Datasets We perform our ablations using the popular CIFAR-10 dataset used in many prior works

Belilovsky et al. (2020); Huo, Gu, and Huang (2018a) in order to obtain intuition on the performance

of the various components. CIFAR-10 consists of 60,000 32x32 color training images and 10,000

test images, each belonging to one of 10 classes. In addition to CIFAR-10, we also use CIFAR-100

and a downsampled version of the Imagenet dataset (denoted as Imagenet32 Chrabaszcz, Loshchilov,

and Hutter (2017)) in our experiments studying trade-offs in model-parallelism criteria. CIFAR-100

is similar to CIFAR-10, but has 100 classes instead of 10. Imagenet32 is a version of the Imagenet

dataset that has been downsampled to 32x32 resolution, making it more computationally feasible for

certain types of models. We believe that by utilizing a diverse set of datasets for our experiments, we

can more thoroughly understand the implications of our findings and how they may apply in different

29

contexts.

Training hyper-parameters For experiments in Sec 3.3.1, we utilized the Adam optimizer Kingma

and Ba (2014) for training our networks. We set the batch size to 128 and trained the networks for

a total of 150 epochs. After tuning the hyperparameters, we found a specific learning rate decay

schedule which improved the overall performance of the method. Specifically, we set the initial

learning rate to 0.001 and decreased it to 0.0005 and 0.0001 at epochs 50 and 100, respectively. In

addition, we utilized a dropout rate of 0.01 to prevent overfitting and improve generalization.

For the experiments in Sec 3.3.2, we adopted the hyper-parameters from a previous study Wang

et al. (2021). These included the use of the SGD optimizer with a Nesterov momentum of 0.9 and

an initial learning rate of 0.8. The models were trained for total 160 epochs. We employed cosine

learning rate annealing to progressively decrease the learning rate as training progressed. The batch

size was set to 1024 and we utilized an ℓ2 weight decay ratio of 1e-4 to regularize the model.

3.3.1 Layerwise and Grouped Neuron DGL

The VGGNet used in the experiments, denoted VGG6a, consists of six layers (four convolutional

and two fully connected) and is taken from Nøkland and Eidnes (2019). The convolutional layers

have 128, 256, 512, 512 channels respectively, and 8192, 1024 features in the last two fully connected

layers. The VGG6a architecture used in this experiment is shown in Figure 3.3. We note that the

architecture presented in the figure is based on DGL framework of Belilovsky et al. (2020). To report

DGL results, we train each layer with its own auxiliary network as described in Belilovsky et al.

(2020). For GN-DGL experiments, we further split the layers widthwise into 2 to 10 neuron groups.

The neuron groups within each layer and their auxiliary networks are trained locally by the auxiliary

loss. The details about widthwise splitting are further elaborated below at the end of Sec 3.3.1. Each

neuron group has its own auxiliary loss except the last fully connected layer, as shown in Figure 3.1.

We use the same auxiliary network design and loss (termed predsim) as Nøkland and Eidnes (2019).

We define naive splitting where each neuron group is trained locally by their corresponding

auxiliary networks and there is no encouragement of diversity among local modules from the same

layer. Results of naive splitting experiments on VGG6a is presented in Table 3.1. Here the increasing

30

number of group size is indicated with G-Group, where G is the minimum number of groups in any

layer. We also report the DGL Belilovsky et al. (2020) test accuracy for VGG6a, where the network

is only divided depthwise and each layer is a local module in itself with their own auxiliary network

and loss. We observe that as we increase G, the test accuracy slightly decreases (which is expected).

We believe the decrease in accuracy is mainly due to correlated feature, arising from each neuron

group being trained in isolation.

Figure 3.3: Architecture of VGG6a described with local learning framework of DGL Belilovsky et
al. (2020).

Method DGL 2-Group 4-Group 6-Group 8-Group 10-Group
Test Accuracy 92.25 91.63 90.55 89.8 89.07 88.91

Table 3.1: Grouping of neurons in each layer of VGG6a. We observe with increased number of
groups, there is performance degradation, however a surprisingly high overall accuracy can be
maintained despite a lack of communication across neuron groups. We note that the presented results
do not utilize stop-gradient techniques, nor a local diversity-promoting penalty.

Method DGL 6-Group GN-DGL
6-Group 6-Group
GN-DGL GN-DGL

with diversity Stop Gradient + diversity
Test Accuracy 92.2 89.8 90.6 91.9

Table 3.2: Ablating the effect of local diversity-promoting penalty and use of stop-gradient commu-
nication in GN-DGL.

31

VGG6a 2xVGG6a 3xVGG6a
DGL 92.25 93.27 93.27

6-Group GN-DGL 89.8 92.6 93.28

Table 3.3: Ablating the effect of width in GN-DGL. We observe that as width increases, using
GN-DGL begins to yield performance comparable to DGL, with increased parallelization.

Diversity of features and Stop-Gradient In order to improve performance of the overall model,

we permit forward communication between within-layer modules. Specifically we allow softmax

activations and gradient-decoupled pre-auxiliary module features to be sent across local modules.

This corresponds to the stop-gradient and diversity-based approaches discussed in Sec 3.2.3 and 3.2.4.

In Table 3.2, we show the ablations which demonstrate that these additions consistently improve the

performance of the model allowing it to nearly recover the DGL performance.

Increasing Width We also investigate the effect of increasing width in Table 3.3, we observe

that increasing the width of a 6-group GN-DGL can bring the performance closer to the DGL

performance.

Widthwise splitting of VGG6a We describe the widthwise splitting on the VGG6a architecture.

Specifically, we focus on the splitting of the first three convolutional layers. First, we introduce

the 2-Group configuration, in which the first three convolutional layers are split in a (2,4,2) pattern.

This means that the first convolutional layer is divided into two neuron groups, the second into

four, and the third into two. This configuration allows for a balance between preserving the original

architecture and introducing a degree of parallelization.

Next, we introduce the G-Group configurations for G ∈ {4, 6, 8, 10}. In these configurations,

the splitting pattern of (2,4,2) is multiplied by G/2. For example, in the 6-Group configuration, the

split is (6,12,6). These configurations allow for a greater degree of parallelization as G increases.

Our goal in using these splitting configurations is to evaluate the effects on the performance and

efficiency of the method as G increases.

32

Aux
+

Div

Module 1.1

Module 1.2 FC Loss

Module 2.1

Module 2.2

Forward
Connection

Error
Gradient

Aux
+

Div

Aux
+

Div

Aux
+

Div

Figure 3.4: Illustration of our approach. Multi-layer modules are used in combination with a gradient
decoupled output and diversity-promoting penalty.

3.3.2 Multi-layer Grouped Neuron DGL

In the field of deep learning, it is well-known that training a neural network using all of the

layers at once can lead to better performance compared to training each layer independently (fully

layerwise training) as shown in Belilovsky et al. (2020); Wang et al. (2021). According to the Wang

et al. (2021), it has been shown that the initial layers of a the network are not able to effectively

transmit enough task-relevant information from the input to the subsequent layers when they are

trained independently. This can hinder the model’s performance. To address this issue, in this

section, we extend our splitting techniques to modules, which are defined as collections of layers, and

sub-modules: sub-networks that can be grouped together to form a module as shown in Figure 3.4.

Unlike the previous section, for multi-layer versions of GN-DGL, we divide the network in such

a way that we get K and G local modules depth-wise and width-wise respectively, resulting in a total

of K ×G local modules. Here, K corresponds to depth-wise splitting used in Wang et al. (2021), on

whose experimental setup we base this experiment set. Each local module consists of approximately

same number of layers and same number of channels in a particular layer and they are trained in

isolation to each other as shown in Figure 3.4.

33

In addition to improving performance, we note that when performing multi-layer splits in the

context of the CNN, the inference time of the overall network is decreased. This can provide an

additional benefit in applying GN-DGL. By dividing the network into local modules, there are fewer

cross-connections and computations, resulting in a faster evaluation time. This is particularly useful

for applications where real-time performance is a priority, such as in image and video processing.

Training speed up comparison with end-to-end (Higher is better)

KxG Infopro DGL Multi-layer GN-DGL (with Stop-Gradient & Diversity)
G=2 G=4 G=8

Test Acc. Speed up Test Acc. Speed up Test Acc. Speed up Test Acc. Speed up Test Acc. Speed up
1 93.01 1 93.01 1
2 92.35 1.833 91.47 1.894 91.41 3.674
4 91.25 2.625 88.62 3.622 89.68 6.304 89.69 11.982
8 88.5 3.856 85.53 6.456 87.94 10.667 89.27 17.445 88.86 28.531

16 87.02 5.218 83.87 11.609 85.37 16.426 88.11 24.522 88.96 33.736
32 83.38 23.072 85.09 30.47 87.86 39.333

Table 3.4: ResNet-32 on CIFAR-10 (Training speed up comparison)

Inference speed up comparison with end-to-end (Higher is better)

KxG Infopro DGL Multi-layer GN-DGL (with Stop-Gradient & Diversity)
G=2 G=4 G=8

Test Acc. Speed up Test Acc. Speed up Test Acc. Speed up Test Acc. Speed up Test Acc. Speed up
1 93.01 1 93.01 1
2 92.35 1 91.47 1 91.41 1.961
4 91.25 1 88.62 1 89.68 1.899 89.69 3.777
8 88.5 1 85.53 1 87.94 1.785 89.27 3.448 88.86 7.03

16 87.02 1 83.87 1 85.37 1.612 88.11 2.936 88.96 5.824
32 83.38 1.338 85.09 2.324 87.86 4.336

Table 3.5: ResNet-32 on CIFAR-10 (Inference speed up comparison)

Discussion of Baseline Methods Here, we compare the proposed approach with other local-

learning methods such as Decoupled Greedy Learning (DGL) Belilovsky et al. (2020) and local

learning with Information Propagation (InfoPro) Wang et al. (2021). The other local-learning

approaches only split the network across depth, unlike our approach of splitting across depth as

well as width. Such splitting across both directions gives several advantages in performance and

computation speed. We consider other local-learning methods as a special case of G = 1 for

comparison. We note an inefficiency of the InfoPro method is its decoder model that tries to

reconstruct the input to the network at each layer, leading to high computational cost at deeper layers

34

0 1 2 3 4 5 6 7
Max Training Time (in MACs) 1e7

80

85

90

Ac
cu

ra
cy

Accuracy vs Max Training Time (diameter Inference time)

e2e
Infopro
DGL
GN-DGL G=2
GN-DGL G=4
GN-DGL G=8

e2e
GN-DGL K=1
GN-DGL K>1
single thread

e2e
GN-DGL K=1
GN-DGL K>1
single thread

0.0 0.5 1.0 1.5 2.0 2.5
Max Training Time (in MACs) 1e8

86

88

90

92

94

Ac
cu

ra
cy

Accuracy vs Max Training Time (diameter Inference time)

e2e
Infopro
DGL
GN-DGL G=2
GN-DGL G=4
GN-DGL G=8

e2e
GN-DGL K=1
GN-DGL K>1
single thread

e2e
GN-DGL K=1
GN-DGL K>1
single thread

Figure 3.5: CIFAR-10 results. Accuracy versus maximum training time in MACs for a given node
in a theoretical distributed scenario for various local learning methods. We observe that for both
ResNet-32 (top) and a wider ResNet-32x2 (bottom), the GN-DGL leads to better tradeoffs in training
time versus accuracy. The size of the bubbles is proportional to the inference time of the models.

(due to spatially upsampling a high number of channels). In addition we provide as reference the

performance of a model when it is divided in width by G and trained end to end. We denote this

baseline as single thread. We also report the performance of the model corresponding to G with K=1,

which serves as a baseline of running individual sub-networks trained independently and recombined

by a fully connected layer. Finally we denote the end to end training baseline as e2e.

Metrics We have carefully considered a number of different metrics for comparison in our setup.

We believe that total training time, inference time, and final performance are the three most important

factors to consider, as they all have a significant impact on the overall effectiveness of any local

learning method. To accurately compare the training time of different methods, we have chosen

to use the maximum computation time of any sub-component in multiply–accumulates (MACs) as

35

0 1 2 3 4 5 6 7
Max Training Time (in MACs) 1e7

10

20

30

40

Ac
cu

ra
cy

Accuracy vs Max Training Time (diameter Inference time)

e2e
DGL
GN-DGL G=2
GN-DGL G=4
GN-DGL G=8

e2e
GN-DGL K=1
GN-DGL K>1
single thread

e2e
GN-DGL K=1
GN-DGL K>1
single thread

0.0 0.5 1.0 1.5 2.0 2.5
Max Training Time (in MACs) 1e8

20

30

40

50

Ac
cu

ra
cy

Accuracy vs Max Training Time (diameter Inference time)

e2e
DGL
GN-DGL G=2
GN-DGL G=4
GN-DGL G=8

e2e
GN-DGL K=1
GN-DGL K>1
single thread

e2e
GN-DGL K=1
GN-DGL K>1
single thread

Figure 3.6: Imagenet32 results. Accuracy versus maximum training time in MACs for a given node
in a theoretical distributed scenario for various local learning methods. We observe that for both
ResNet-32 (top) and a wider ResNet-32x2 (bottom), the GN-DGL leads to better tradeoffs for this
complex dataset. InfoPro is not shown as it yielded very poor performance on this dataset.

our measure. This allows us to fairly compare the training times of different methods, as it takes

into account the full complexity of each method, and is the true measure of overall time required to

complete training in local learning settings. In addition to training time, we have also considered

the inference time of different methods. This is important because it can have a significant impact

on the real-world performance of a method, particularly in situations where quick response times

are required. Finally, we have also considered the overall performance of different methods as a key

metric for comparison. This allows us to determine the overall effectiveness of a method, and to

identify those methods that are likely to be the most useful in practice.

36

0 1 2 3 4 5 6 7
Max Training Time (in MACs) 1e7

40

50

60

70

Ac
cu

ra
cy

Accuracy vs Max Training Time (diameter Inference time)

e2e
Infopro
DGL
GN-DGL G=2
GN-DGL G=4
GN-DGL G=8

e2e
GN-DGL K=1
GN-DGL K>1
single thread

e2e
GN-DGL K=1
GN-DGL K>1
single thread

0.0 0.5 1.0 1.5 2.0 2.5
Max Training Time (in MACs) 1e8

55

60

65

70

Ac
cu

ra
cy

Accuracy vs Max Training Time (diameter Inference time)

e2e
Infopro
DGL
GN-DGL G=2
GN-DGL G=4
GN-DGL G=8

e2e
GN-DGL K=1
GN-DGL K>1
single thread

e2e
GN-DGL K=1
GN-DGL K>1
single thread

Figure 3.7: CIFAR-100 results. Accuracy versus maximum training time in MACs for a given node
in a distributed scenario for various local learning methods. We observe that for both ResNet-32 (top)
and a wider ResNet-32x2 (bottom), the GN-DGL leads to better tradeoffs in training time versus
accuracy, with trends substantially improving over DGL and InfoPro.

Discussion of results For Multilayer GN-DGL, we conducted experiments on three datasets:

CIFAR-10, CIFAR-100, and ImageNet-32 which are presented in Figures 3.5, 3.7, 3.6 respectively.

We compared our method to DGL Belilovsky et al. (2020) and InfoPro Wang et al. (2021), two

popular approaches for parallelizing deep neural network training, specifically CNNs. We used both

ResNet-32 and a wider ResNet-32x2 for our experiments. In addition to accuracy, we also measured

total training time and inference speed as metrics for evaluating the performance tradeoffs of each

method as described in Sec 3.3.2. Additionally, we also present numerical tables corresponding to

the results of the Figure 3.5 (ResNet-32 on CIFAR10) in Tables 3.4 & 3.5.

It can be observed that various configurations of our Grouped Neuron DGL method have better

tradeoffs in many regimes in terms of performance, total training time and inference speed when

37

compared to DGL and InfoPro with ResNet-32. For example, our method achieves accuracy of

89.69% when K*G=4, compared to 88.62% of DGL with approx. 6 times training and 2 times

inference speed up as shown in Tables 3.4 & 3.5. For the more complicated datasets CIFAR-100

and Imagenet32, we observe the tradeoffs are more significantly improved with the G>1 trending

significantly higher than DGL or InfoPro. The naive baselines of single thread heavily underperforms

in terms of training time and accuracy tradeoffs. We note that simple K=1 approach can perform

reasonably well for wider models but degrades as G increases, particularly for CIFAR-100 dataset as

shown in Figure 3.7.

InfoPro gives improved performance over DGL on CIFAR-10, however it does not provide

substantial improvements for CIFAR-100. Furthermore, we were unable to obtain reasonable

performance on Imagenet32 with the InfoPro method, either obtaining overly slow performance or

low accuracy. We hypothesize that it requires a deep convolutional decoder model, which leads to

drastic slowdown. We also observed it was more sensitive to hyperparameters than the DGL and

GN-DGL method.

3.3.3 Ablations of Layerwise Ensembling

An ablation comparison between layerwise ensembling from Sec 3.3.2 is presented in Table 3.6.

Here we compare the ensemble results to the naive result from just taking the last-layer. We observe

that layerwise ensembling gives consistent improvement without any additional cost, validating our

use of this approach in the experiments.

Evaluation Method G=2 G=4 G=8
K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=2 K=4

last-layer only 89.45 87.52 84.73 82.84 89.01 88.25 84.64 88.67 87.11
layerwise ensemble 89.68 87.94 85.37 83.38 89.27 88.11 85.09 88.96 87.86

Table 3.6: Ablating the effect of layerwise ensembling in GN-DGL on CIFAR-10 with ResNet-32.
We observe that layerwise ensembling for GN-DGL yields better performance compared to last-layer
evaluation. Performance gains are increased gradually as the K increases for a given G.

38

3.4 Conclusion and Future Work

In conclusion, our proposed GN-DGL method has shown promising results in outperforming

existing local learning methods in certain scenarios. However, there is room for improvement in

terms of the auxiliary network design to optimize the tradeoffs. As a future direction, efficient

methods to promote diversity among neuron-groups could also be explored to further enhance the

performance of the GN-DGL method. Additionally, the potential of the GN-DGL method can be

evaluated in other complex tasks and architectures to determine its versatility and scalability.

39

Chapter 4

Decoupled Greedy Self-supervised

Learning

4.1 Introduction

Self-supervised learning is a machine learning approach that involves training a model on a large

dataset without providing explicit labels for each sample. Here, the model is given a task to perform,

such as predicting a missing piece of information, and it is then left to learn from the data on its own.

This approach has gained popularity in recent years because it allows for the efficient use of large

amounts of unlabeled data, which is often easier to obtain than labeled data. Some examples of self

supervised learning algorithms include SimCLR (T. Chen et al., 2020), which uses a contrastive loss

function to learn visual representations from images, and GPT (Generative Pretrained Transformers)

Brown et al. (2020), which is a autoregressive language model. It uses a transformer architecture to

learn natural language processing tasks.

Given the widespread use of self supervised learning, it is natural to study how well DGL

(Decoupled Greedy Learning) adapts to self-supervised learning tasks. DGL is a framework for

learning in which the model architecture is divided in logical sub-components and trained in isolation

using local loss functions. It has been used successfully on a variety of tasks in supervised learning

such as large-scale image classification (Belilovsky et al., 2020), semantic segmentation and object

detection (Wang et al., 2021). However, the performance of DGL on self supervised learning tasks

40

has not been extensively studied, and it is important to understand how well it adapts to this type

of learning in order to fully leverage its capabilities and explore potential parallelization strategies.

By studying the performance of DGL on self supervised learning tasks, we can better understand its

capabilities and limitations, and potentially improve its performance in these scenarios. This would

enable DGL to be more widely used in a variety of applications, including those that rely on self

supervised learning techniques.

In this chapter, we will present a study on applying local-learning methods, such as DGL

(Belilovsky et al., 2020), for the popular self-supervised learning method SimCLR (T. Chen et al.,

2020). We will begin by examining the limitations of using DGL for SimCLR and then introduce

a new local-learning method that builds on DGL, specifically tailored towards local learning of

SimCLR. Our experiments demonstrates that the locally trained models using the proposed method

are able to achieve the performance comparable to the end-to-end trained model.

4.2 Methods

In this section, we describe our methods studying local learning frameworks such as DGL for

self-supervised learning tasks. First, we introduce the Decoupled Greedy Self-supervised Learning

(DGSSL) method, which is described in detail in Sec 4.2.1. This method applies the SimCLR method,

a popular self-supervised learning technique, within the DGL framework. We utilize linear probe

evaluation method to understand the performance of each layer on the image classification task.

However, we also recognize the limitations of the DGSSL method and therefore introduce a new

approach in Sec 4.2.2. This method, called DGSSL with Layerwise Loss Modification, modifies the

local loss function for each layer (sub-module) such that the problem difficulty is gradually increased

as the model progresses through the layers. This allows us to address the limitations of the original

DGSSL method ultimately leading to improved performance on the self-supervised learning task.

4.2.1 Decoupled Greedy Self-supervised Learning (DGSSL)

To begin, we describe the local learning framework of DGL (Belilovsky et al., 2020) in the

context of self-supervised learning and introduce notation. Consider a batch of samples xk, first we

41

Module 1

Module 1 Module 2

Module 2

shared
parameters

Representation
View 1

Representation
View 2

Augmented

View 1

Augmented

View 2Original Image

shared
parameters

maximize
agreement

maximize
agreement

Figure 4.1: Decoupled Greedy Learning Framework for Self-supervised learning. The contrastive
loss functions are applied locally on intermediate projections of feature representations using an
auxiliary network. The main network modules along with their auxiliary modules share parameters to
process two augmented views of samples. The error gradients only flow locally within corresponding
modules.

apply data augmentation functions t and t′ drawn from T , where T is a distribution of stochastic

data augmentations. Hence, we obtain a batch of transformed versions x̃2k−1
0 and x̃2k0 by applying

t and t′ respectively on a batch of samples xk as shown in Algorithm 3. Here, the sub-scripts and

super-scripts indicate the local-module index and augmented-sample index respectively as shown in

Algorithm 3.

Now, we denote operation of layer j as fθj (xj−1), where θj corresponds to the parameters of the

local module.We propose to learn the parameters θj in parallel online as described in Belilovsky et al.

(2020).

DGSSL training

We apply a local-learning scheme of Belilovsky et al. (2020) to the contrastive learning framework

of SimCLR (T. Chen et al., 2020) by splitting the encoder network depth-wise into multiple modules.

These modules are trained in isolation from each other, along with their auxiliary modules, using

local-loss functions. We note that the encoder network, represented by f(·) and its parameters θ,

shown in Figure 2.3, is split into several local-modules, represented by fj(·) with parameters θj ,

where j denotes a local-module. We understand the projection heads of SimCLR as the auxiliary

networks. Therefore, in our Decoupled Greedy SSL approach, we have multiple auxiliary projection

42

Algorithm 3: Decoupled Greedy Self-supervised Learning (Training)
Input: batch size N , constant τ , structure of f , g, T .

1 Initialize Parameters {θj , γj for fj(·), gj(·)}j≤J .
2 for sampled minibatch {xk}Nk=1 do
3 # prepare input-data
4 for k ∈ {1, . . . , N} do
5 draw two augmentation functions t∼T t′∼T
6 # the first augmentation
7 x̃2k−1

0 = t(xk)
8 # the second augmentation
9 x̃2k

0 = t′(xk)

10 end
11 # iterate over J local-modules
12 for j ∈ 1, ..., J do
13 # Forward propagate k sample-pairs in encoder-module fj(·) and auxiliary-net gj(·).
14 for k ∈ {1, . . . , N} do
15 x2k−1

j = fθj (x̃
2k−1
j−1) # pre-auxiliary representation

16 z2k−1
j = gγj

(x2k−1
j) # auxiliary projection

17 x2k
j = fθj (x̃

2k
j−1) # pre-auxiliary representation

18 z2k
j = gγj (x

2k
j) # auxiliary projection

19 end
20 # calculate pairwise-similarity on auxiliary projections from module j
21 for a ∈ {1, . . . , 2N} and b ∈ {1, . . . , 2N} do
22 Sj(a, b) = (zaj)

⊤zb
j/(∥za

j ∥∥zb
j∥)

23 end
24 define L̂ as L̂ = 1

2N

∑N
k=1 [ℓ(2k−1, 2k) + ℓ(2k, 2k−1)] ,

25 where ℓ(a, b)=− log
exp(Sj(a,b)/τ)∑2N

k=1 1[k ̸=a] exp(Sj(a,k)/τ)

26 # calculate parameter-gradients for encoder-module fj(·) and auxiliary-net gj(·).
27 Compute∇(γj ,θj)L̂(Sj ; γj , θj).
28 (θj , γj)← Update parameters (θj , γj).
29 end
30 end
31 return encoder network {fj(·)}j≤J , and throw away auxiliary networks {gj(·)}j≤J

heads, represented by gj(·), and their parameters are γj .

As described in Algorithm 3, during training of Decoupled Greedy SSL, we obtain two augmented

versions of input by applying series of stochastic augmentations on input batch xk. Now, we train

each local module in-parallel online using contrastive loss on intermediate projections zj of these two

different views of samples. Note that intermediate projection here refers to the output of auxiliary

projection heads gj(·) for module j.

Here, both transformed versions of samples are propagated forward using a shared local encoder

module fj(·) as shown in Figure 4.1. Then, at each local-module boundary, we have an auxiliary

network which performs non-linear transformations on feature representations of both augmented

43

views, essentially performing similar operations as SimCLR projection heads. The auxiliary module

parameters γj are also shared among two augmented views of intermediate representations. As

mentioned earlier, in SimCLR, the contrastive loss is evaluated on the outputs of the projection heads

to maximize the agreement between positive pairs of samples. Similarly, the local contrastive loss

is evaluated on the outputs of auxiliary projection heads and it propagates the error signal back to

corresponding local encoder module as shown in Figure 4.1. Simultaneously, gradient decoupled

feature representations are propagated forward to train the subsequent local encoder modules. The

last encoder module is directly coupled with a fully connected layer similar to SimCLR projection

head. Hence, it can be seen as an auxiliary network for last encoder module. We note that local

loss functions used to train the encoder modules are similar to the contrastive loss functions used by

original SimCLR method (T. Chen et al., 2020).

Linear Evaluation of Decoupled Greedy SSL

In Decoupled Greedy SSL, during linear evaluation, we discard all auxiliary modules along

with the projection heads of each local-modules. To evaluate a categorical cross-entropy loss, we

attach an MLP module which performs a linear or non-linear transformation of representations xj ,

where j indicates the last encoder module. As described in Algorithm 4, Θl are the parameters of the

attached MLP module and similar to SimCLR, the parameters θj are only utilized during forward

propagation and not updated during linear evaluation training. Hence, each gradient update step is

only responsible to update the parameters Θl of the MLP head attached to the encoder module as

shown in Algorithm 4.

4.2.2 Decoupled Greedy SSL with Layerwise Loss Modification

As described by Wang et al. (2021), in fully layerwise training, where each layer of the network

is trained in isolation along with corresponding auxiliary networks using local loss function, the

initial layers of the network are not able to pass enough task-relevant information about the input to

the subsequent layers, which results in performance degradation. They show that when the layers

are trained in isolation, the learned features tend to discard the information about the input which

is not useful for that particular layer but may be useful in improving overall performance of the

44

Algorithm 4: Decoupled Greedy Self-supervised Learning (Linear Evaluation)
Input: batch size N , structure of f , h.

1 Initialize Parameters Θl for h(·), {θj for fj(·)}j≤J

2 for sampled minibatch {xk, yk}Nk=1 do
3 for k ∈ {1, . . . , N} do
4 for j ∈ 1, ..., J do
5 xk

j = fθj (x
k
j−1) # intermediate representation

6 end
7 ŷk = hΘl

(xk
j) # class logits

8 end
9 define L̂ = 1

N

∑N
k=1 cross-entropy (ŷk, yk) ,

10 Compute∇Θl
L̂(ŷ, y; Θl).

11 Θl ←Update parameters Θl.
12 end

network. As a solution to this issue, they propose to reconstruct the input at each layer from the raw

representations using the auxiliary decoder network. The problem with this decoder network is that,

it adds a computational burden on the overall training process because it becomes very expensive

to reconstruct the original input from high dimensional representations during later layers of the

network. Hence, this approach to address the issue of task-relevant information collapse is not

scalable. Hence, we introduce a new method to address this issue in the next section.

Proposed Method

We propose to address the information collapse issue by choosing different samples to train

each layer of the network based on the sample difficulty. In other words, we increase the problem

difficulty gradually as we go deeper in the network by explicitly choosing the samples to be trained

at each layer. Our hypothesis is that it will help initial layers to propagate task-relevant information

to subsequent layers if initial layers are trained with most easy samples with increasing difficulty as

we go deeper in the network.

There are multiple ways we could choose to decide the difficulty of the samples given the task.

As this work is focused on SimCLR framework, the sample difficulty is chosen based on how similar

or different augmented versions are from each other. This can be decided based on heuristics which

describes the severity of the augmentations applied. In other words, the use of severe augmentations

can lead to significant changes in the appearance of a sample, while still maintaining its underlying

meaning. This can make it challenging for a model to maximize agreement between these different,

45

but semantically similar, versions of the sample. An alternative method for determining sample

difficulty is to utilize the pretrained SimCLR model. This model is able to distinguish between

semantically similar and different images by producing corresponding representations in the feature

space. For example, it will generate similar representations for a pair of semantically similar images,

but distinct representations for semantically different images. By utilizing the output of the pretrained

SimCLR model, we can effectively gauge the difficulty of a given sample as shown in Figure 4.2. This

method is based on the assumption that the pretrained SimCLR model has learned robust features

and can accurately capture semantic differences (and similarities) in the images being compared. To

use this method, we compute the cosine similarity of the features produced by the SimCLR model

for pairs of augmented samples before training. We utilize an end-to-end trained model using the

SimCLR method to calculate these similarity scores.

Figure 4.2: Sample-difficulty quantification: two augmented images are processed by the pretrained
SimCLR model to obtain the embeddings to compute the cosine similarity. A positive pair with
higher similarity score is considered easier than the one with lower similarity score. On the other
hand, for negative pairs, lower similarity scores indicate an easy negative pair and vice-versa.

Difficulty thresholds In the SimCLR method, as described by T. Chen et al. (2020), two augmented

versions of the same image are considered a positive pair, while negative pairs are created using

augmented versions of other images in the same batch. However, in our DGSSL with Layerwise

46

Algorithm 5: DGSSL with Layerwise Loss Modification (DGSSL-LLM)
Input: batch size N , constant τ , structure of f , g, T .

1 Initialize Parameters {θj , γj for fj(·), gj(·)}j≤J , Thresholds {αj , βj}j≤J .
2 for sampled minibatch {xk}Nk=1 do
3 # prepare input-data
4 for k ∈ {1, . . . , N} do
5 draw two augmentation functions t∼T t′∼T
6 # the first augmentation
7 x̃2k−1

0 = t(xk)
8 # the second augmentation
9 x̃2k

0 = t′(xk)

10 end
11 # iterate over J local-modules
12 for j ∈ 1, ..., J do
13 # Forward propagate k sample-pairs in encoder-module fj(·) and auxiliary-net gj(·).
14 for k ∈ {1, . . . , N} do
15 x2k−1

j = fθj (x̃
2k−1
j−1) # pre-auxiliary representation

16 z2k−1
j = gγj

(x2k−1
j) # auxiliary projection

17 x2k
j = fθj (x̃

2k
j−1) # pre-auxiliary representation

18 z2k
j = gγj (x

2k
j) # auxiliary projection

19 end
20 # calculate pairwise-similarity on auxiliary projections from module j
21 for a ∈ {1, . . . , 2N} and b ∈ {1, . . . , 2N} do
22 Sj(a, b) = (zaj)

⊤zb
j/(∥za

j ∥∥zb
j∥)

23 end
24 # prepare sets to modify the local-loss-function for module j
25 µ=positive-sample-selection(Sj , N, αj)
26 # Ω is a list of sets with length 2N
27 Ω=negative-sample-selection(Sj , N, βj)
28 # calculate loss only for positive pairs present in µ

29 define L̂ as L̂ = 1
2|µ|

∑N
k=1 1[k∈µ] [ℓ(2k−1, 2k,Ω2k−1) + ℓ(2k, 2k−1,Ω2k)] ,

30 # ignore the negative pairs not present in ω

31 where ℓ(a, b, ω)=− log
exp(Sj(a,b)/τ)∑2N

k=1 1[k ̸=a∧k∈ω] exp(Sj(a,k)/τ)

32 # calculate parameter-gradients for encoder-module fj(·) and auxiliary-net gj(·).
33 Compute∇(γj ,θj)L̂(Sj ; γj , θj).
34 (θj , γj)← Update parameters (θj , γj).
35 end
36 end
37 return encoder network {fj(·)}j≤J , and throw away auxiliary networks {gj(·)}j≤J

Loss Modification method, we must carefully select positive and negative pairs for each layer or

submodule based on the thresholds αj and βj . These thresholds determine which positive pairs (and

negative pairs) are used for training at layer j. Specifically, positive pairs with a similarity score

above αj and negative pairs with a similarity score below βj are chosen, with the values of αj and

βj decreasing and increasing respectively. This process is designed to train the initial layers with

47

the easiest positive and negative pairs (indicated by higher and lower similarity scores, respectively)

and gradually adding in more difficult pairs as the training progresses. The final layer or submodule

will be trained on all positive and negative pairs in the batch, as it will have the lowest value for

αj(0.0) and the highest value for βj(1.0), representing the full difficulty of the problem. Note that

the thresholds αj and βj are initialized separately for each layer/module j.

Algorithm 6: Positive Sample Selection
Input: Pairwise similarity matrix S, batch size N , Difficulty threshold for positive pairs α.

1 µ← {}
2 for k ∈ {1, . . . , N} do
3 if S(2k, 2k − 1) ≥ α then
4 µ← µ ∪ {k}
5 end
6 end
7 return µ

Algorithm 7: Negative Sample Selection
Input: Pairwise similarity matrix S, batch size N , Difficulty threshold for negative pairs β.

1 ∀i ∈ {1, 2, . . . , 2N}, ωi ← {}

2 Ω = [ω1, ω2, . . . , ω2N] such that Ωi ≡ ωi

3 for a ∈ {1, . . . , N} do

4 for k ∈ {1, . . . , 2N} do

5 if S(2a− 1, k) ≤ β then
Ω2a−1 ← Ω2a−1 ∪ {k}

6 end

7 if S(2a, k) ≤ β then

Ω2a ← Ω2a ∪ {k}

8 end

9 end

10 end

11 return Ω

Sample selection For selecting the positive samples, we simply iterate over the similarity matrix Sj

of layer j, and select the positive pair (a, b) for which the pairwise similarity Sj(a, b) ≥ αj as shown

in 6. Similarly, the negative samples are selected individually for each selected positive sample as

shown in lines 5 and 7 of the Algorithm 7. The positive and negative sample pairs are selected into µ

48

and Ω respectively. Here, Ω is a list of sets ωi where i ∈ {1, 2, . . . , 2N}, and it indicates the sample

index for which the negative samples are selected in set ωi. Subsequently, the contrastive local loss

function is modified based on the selected pairs of samples in sets µ and ωi. It is important to note

that the contrastive loss ℓ(a, b) is only calculated if the negative sample b is present in the set ωi,

where i is the index of sample a. The steps for calculating the contrastive local loss based on sets µ

and ω is outlined in Algorithm 5.

Linear evaluation The evaluation method for DGSSL with Layerwise Loss Modification is same

as vanilla DGSSL as described in the Algorithm 4.

4.3 Experiments and Results

In this work, we conducted experiments on two widely used deep learning architectures, VGGNet

and ResNet, using the CIFAR-10 dataset. Our primary focus is on evaluating the performance of the

Decoupled Greedy SSL method and understand the limitations.

To obtain the intuition behind the method, we design first set of experiments based on VGGNet,

which follows training each layer of VGGNet in isolation using a local contrastive loss function.

In addition, we also explore the use of this method as an application to model parallel training

using ResNets. In experiments based on ResNet architecture, we use a local module that consists of

multiple layers which are trained with the help of local contrastive loss function as described in 31.

The contrastive loss function is similar to NT-Xent loss described in T. Chen et al. (2020).

The limitations of the vanilla DGSSL method has been studied using ResNet50 architecture,

which led to the design of next set of experiments focused on studying and evaluating the second

method (DGSSL with Layerwise loss modification) presented in Sec 4.3.3. For evaluation of all

experiments, we follow a linear evaluation method after unsupervised training has completed as

described at the end of Sec 4.2.1.

Hyperparameters For all our experiments with VGGNet and ResNets, we use batch size of 256.

We adapt Adam optimizer (Kingma & Ba, 2014) with learning rate of 0.001. To obtain different

views of samples, we use four types of data augmentations applied to each sample in sequence as

49

described in Appendix A.2. We use random resized crop, horizontal flip, color-jitter, and grayscale

during self-supervised training of the models. The ℓ2 weight decay of 1e-6 is also used for all

experiments.

4.3.1 Layerwise Decoupled Greedy SSL

200 400 600 800 1000
Epochs

76

78

80

82

84

86

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy
vgg6a_K=1
vgg6a_K=5

200 400 600 800 1000
Epochs

65

70

75

80

85

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy
vgg16a_K=1
vgg16a_K=14

200 400 600 800 1000
Epochs

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy
vgg19a_K=1
vgg19a_K=17

Figure 4.3: VGG6a (left), VGG16a (middle) and VGG19a (right): Comparison of linear evaluation
top-1 accuracy for end-to-end self-supervised training (K = 1) and extremely local self-supervised
training (K = 5 for VGG6a, K = 14 for VGG16a and K = 17 for VGG19a) using Decoupled
Greedy Learning framework.

The VGGNet architectures used in this set of experiments are VGG6a, VGG16a and VGG19a.

Here, we decouple each layer of the network and attach a separate auxiliary network for each layer.

The local contrastive loss function is applied on the projections after the auxiliary network to train

each layer and their auxiliary module in isolation. For VGGNet experiments, we use one hidden layer

MLP as an auxiliary module which transforms the representations to a 128-dimension feature space

where contrastive loss is applied. The results are shown in the Figure 4.3. We observe that VGG6a

demonstrates better performance for extremely local training with K = 5, whereas deeper models

such as VGG16a and VGG19a shows poor performance for parallelized models compared that of

their end-to-end trained counterparts. Based on what Wang et al. (2021) concluded, we believe that

the extremely local training of deeper networks suffer more from the issue of information collapse

compared to models with less depth. This hypothesis can be verified further by more experiments.

Also, more efficient auxiliary networks can be introduced to improve the overall performance.

50

4.3.2 Multilayer Decoupled Greedy SSL

Now, we extend the idea of layerwise training to multi-layer local modules as an application to

model-parallel training. Here, instead of each layer being trained in isolation using a contrastive loss

function, we form a local module with a set of layers and attach an auxiliary network at the end of

last layer of each local module as shown in Figure 4.1. We demonstrate our results for ResNet-50

and ResNet-110 in Figures in Figure 4.4 and 4.5 respectively. We observe a trend of decrease in

accuracy as the value of K increases, which is expected. Here, K refers to depth-wise splitting of

the encoder module resulting in total K number of local-modules that are trained in parallel. Details

about depth-wise splitting of the full encoder network is deferred in Appendix A.1.

200 400 600 800 1000
Epochs

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

200 400 600 800 1000
Epochs

76

78

80

82

84

86

88

90

92

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

Figure 4.4: Decoupled Greedy SSL results for ResNet-50. Comparison of linear evaluation top-1
accuracy for different values of K, where K = 1 suggests end-to-end training. We observe that
changing auxiliary network from ‘0c2f’ (left) to ‘1c2f’ (right) improves the performance significantly.

100 150 200 250 300 350 400 450 500
Epochs

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet110_K=1
resnet110_K=2
resnet110_K=3
resnet110_K=4
resnet110_K=8
resnet110_K=16

Figure 4.5: Results of Decoupled Greedy SSL for ResNet-110 with different values of K. We
observe significant drop in performance as the value of K is increased. We believe this happens
because of the increased depth of the network, which contributes towards information collapse as
described in Wang et al. (2021). The auxiliary network design follows the ‘1c2f’ architecture.

51

Auxiliary network design In our experiments with the ResNet models, we explored the impact of

using different auxiliary network designs on the performance of parallelized models. Specifically, we

compared a simpler design with just two hidden layer MLP and no convolutional layers (referred to

as ‘0c2f’) to a design with one convolutional layer and two hidden layer MLP (referred to as ‘1c2f’).

Our results showed that the use of the ‘0c2f’ design led to a decrease in performance as the degree

of parallelization (represented by the value of K) increased, as shown in left of Figure 4.4. On the

other hand, the ‘1c2f’ design significantly improved the performance of the parallelized models

compared to the ‘0c2f’ design. We provide further evidence of this effect in Figures A.4 and A.5.

Based on these results, we decided to only use auxiliary networks with the ‘1c2f’ design in all of our

subsequent experiments.

Figure 4.6: Depth-wise linear probe evaluation: intermediate representations from each block of
ResNet-50 are evaluated using linear probes. The weights of the encoder blocks are frozen during
linear probe training.

Depth-wise dynamics In order to better understand the performance of locally trained models, we

conducted an evaluation over depth using a linear probe method on pretrained ResNet-50 models that

were trained with various values of K. The evaluation involved attaching several MLP heads (linear

probes) after each block of a pretrained ResNet-50 model as illustrated in Figure 4.6. Typically, a

block is made up of three convolutional layers in ResNet-50 architecture. The specific boundaries

are analogous to the local-module boundaries of K=16, which is specified in Figure A.1. These MLP

heads were then trained on the CIFAR-10 image classification benchmark for 200 epochs, using the

representations obtained at different depths of the main encoder network. We note that the parameters

52

10 20 30 40 50
Depth

60

65

70

75

80

85

90

Lin
ea

r P
ro

be
 To

p-
1

Ac
cu

ra
cy

Depth vs Linear Probe Top-1 Accuracy

resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

Figure 4.7: Depth vs linear probe top-1 accuracy for ResNet-50 with different values of K. We
evaluate linear probe top-1 accuracy at different depths.

of the main encoder network are not updated during linear evaluation training process. This allowed

us to compare the performance of the models with different values of K and understand how the

learning dynamics differed between them.

The results are shown in Figure 4.7. We see an interesting trend of increase in accuracy over

depth for different values of K. We observe that for the end-to-end training, increase in linear probe

accuracy is more gradual as the depth increases. However, the DGSSL method appears to plateau

early on in terms of accuracy.

One possible explanation for this difference is the information-collapse phenomenon described

by Wang et al. (2021). In the DGSSL method, the early layers may be trying to fully solve the

problem, leading to a collapse of information that prevents the model from performing as well as the

end-to-end trained model. On the other hand, the end-to-end trained model is able to gradually solve

the problem and achieve better overall performance, despite the initial layers not performing as well.

This effect is consistent as the value of K increases. For larger values of K, the initial layers tend

to perform very well, as can be seen in the case of K = 16. However, as we move deeper into the

model, the trend seems to change and the later layers perform worse on the task, resulting in lower

overall performance. To address this problem we propose a new Structured DGL scheme (referred to

as DGSSL-LLM) that modifies the loss function layerwise in order to gradually increase the problem

difficulty, described in Sec 4.2.2.

53

4.3.3 Decoupled Greedy SSL with Layerwise Loss Modification

In this section, we present experiments to evaluate the DGSSL with Layerwise Loss Modification

(DGSSL-LLM) method and compare it’s performance with vanilla DGSSL. The results are presented

in Table 4.1. We consider the end-to-end model a special case of DGSSL with K=1 for the purpose

of comparison. We observe that for all values of K our DGSSL-LLM method outperforms vanilla

DGSSL, nearly recovering end-to-end performance for K=4. Specifically, as the value of K increases

the gain in the performance is larger. We also investigate the learning dynamics of the DGSSL-LLM

method by applying linear probe evaluation method at different depths of the networks. As shown

in the Figure 4.8, the overall performance of the model is increased but the evaluation over depth

suggests that the initial layers are still trying to fully solve the task as in vanilla DGSSL.

Method K=1 K=4 K=8 K=16
DGSSL

92.56
91.03 88.81 87.44

DGSSL-LLM 91.96 90.51 89.8

Table 4.1: Comparison of DGSSL-LLM vs vanilla DGSSL for different values of K. Linear
evaluation accuracy evaluated at the last layer of the models is presented. DGSSL-LLM outperforms
vanilla DGSSL in all cases, nearly recovering end-to-end performance for K = 4.

10 20 30 40 50
Depth

65

70

75

80

85

90

Lin
ea

r P
ro

be
 To

p-
1

Ac
cu

ra
cy

Depth vs Linear Probe Top-1 Accuracy

resnet50_K=4
resnet50_K=4_increasing_diff
resnet50_K=8
resnet50_K=8_increasing_diff
resnet50_K=16
resnet50_K=16_increasing_diff

Figure 4.8: Depth vs linear probe top-1 accuracy. We evaluate linear probe top-1 accuracy at different
depths. Evaluation of DGSSL-LLM (indicated by increased difficulty) vs vanilla DGSSL for different
values of K.

Choosing difficulty thresholds As discussed in Sec 4.2.2, we propose to modify the local loss

function in order to increase the difficulty of the task with depth. To achieve this, we must subselect

54

positive and negative sample pairs that represent the problem-difficulty using difficulty thresholds.

These thresholds, αj and βj , are used to determine the selection of positive and negative pairs of

samples based on the similarity scores obtained from a previously trained SimCLR model. By

adjusting these thresholds, we can control the level of difficulty at each layer/module. We must

carefully choose these difficulty thresholds for each layer j in the DGSSL-LLM method before

training. If we choose very high or very low values for αj and βj respectively, there is a risk of only

using a small subset of pairs to train the layer. This can lead to poor generalization at that particular

layer due to overfitting on a small subset of data and ultimately negatively impacting the overall

performance of the model.

To address this issue, we propose new hyperparameters, positive-sample-ratio (µpos) and negative-

sample-ratio (µneg), as a way to select difficulty thresholds for our model. Rather than selecting

these thresholds for each layer separately, we choose the sample ratios universally for the entire

model, which change non-linearly for each layer or module. We use the sample ratios to determine

the proportion of positive or negative pairs we select for any layer/module. For example, if we set a

positive-sample-ratio of 0.50, we would choose at least half of the total number of positive sample

pairs to train that particular layer/module. We define the positive and negative sample ratios for each

layer/module j as follows:

µj
pos = µ(K−j)

pos

µj
neg = µ(K−j)

neg

Here, K denotes the total number of local-modules and j is the module-index ranging from

1 to K. In other words, if we have K=16, the first local module would have sample ratios of

µ
(16−1)
pos = µ15

pos and µ
(16−1)
neg = µ15

neg, and the last layer/module would always have sample ratios

of 1, meaning it is trained with all the available positive and negative sample pairs, representing

the highest level of problem difficulty. By using these sample ratios, we can search for difficulty

thresholds that will help maintain the desired size of the subset as specified by the sample ratio. This

approach allows for a more consistent and efficient selection of samples.

55

Sensitivity analysis We performed a sensitivity test to evaluate the effect of using different sample-

ratios on our DGSSL-LLM method. The results of this test are presented in Table 4.2. The aim of

this test was to investigate how sensitive our method is to variations in the sample-ratios. We have

noticed that our method is highly resilient to a variety of sample-ratios. This means that regardless of

the proportion of samples used, our method outperforms vanilla DGSSL in some cases or achieves

comparable performance. This highlights the robustness and flexibility of our method.

Method Sample-ratio K=4 K=8 K=16
Vanilla DGSSL - 91.03 88.81 87.44

DGSSL-LLM

0.81 89.9 88.12 86.63
0.83 91.08 89.8 87.51
0.85 90.55 88.75 87.7
0.87 90.38 89.35 88.21
0.89 91.43 90.34 88.44
0.91 90.93 89.77 88.24
0.93 91.26 89.92 88.93
0.95 91.96 90.37 89.8
0.97 91.54 90.51 89.66

Table 4.2: Hyper-parameter sensitivity test: Effect of using different sample-ratios on DGSSL-LLM
with different values of K. We observe that DGSSL-LLM with diverse sample-ratios achieve
comparable performance to vanilla-DGSSL. The positive and negative sample-ratio is kept same for
this test. Best results are in bold.

Ablating the effect of decreasing problem difficulty In this ablation study, we tested a variation

of the DGSSL-LLM method that decreases the problem difficulty with depth, instead of increasing it

as in the original method. The results, presented in Table 4.3, showed that both versions of DGSSL-

LLM outperformed the vanilla DGSSL. However, the version that increased the difficulty with depth

achieved the highest performance for all values of K. We believe that allowing each layer/module to

operate at different difficulty levels improves the performance of the vanilla DGSSL method, but

gradually increasing the difficulty is more effective. Furthermore, the depth-wise evaluation of both

the versions of DGSSL-LLM along with vanilla DGSSL is presented in Figure 4.9.

Ablating the effect of negative-pair selection The SimCLR method operates on the contrastive

loss function, where the features of the model are learned by maximizing the agreement between

56

Method K=1 K=4 K=8 K=16
DGSSL

92.56
91.03 88.81 87.44

DGSSL-LLM
(increasing-diff.)

91.96 90.51 89.8

DGSSL-LLM
(decreasing-diff.)

91.34 90.21 89.15

Table 4.3: Ablating the effect of decreasing problem-difficulty as opposed to increasing problem-
difficulty in DGSSL-LLM method for different values of K. DGSSL-LLM with increasing difficulty
achieves best results across all values of K.

10 20 30 40 50
Depth

65

70

75

80

85

90

Lin
ea

r P
ro

be
 To

p-
1

Ac
cu

ra
cy

Depth vs Linear Probe Top-1 Accuracy

resnet50_K=4
resnet50_K=4_increasing_diff
resnet50_K=4_decreasing_diff

10 20 30 40 50
Depth

70

75

80

85

90

Lin
ea

r P
ro

be
 To

p-
1

Ac
cu

ra
cy

Depth vs Linear Probe Top-1 Accuracy

resnet50_K=8
resnet50_K=8_increasing_diff
resnet50_K=8_decreasing_diff

(a) DGSSL-LLM with increasing vs decreasing problem-difficulty for K=4 (left) and K=8 (right).

10 20 30 40 50
Depth

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Lin
ea

r P
ro

be
 To

p-
1

Ac
cu

ra
cy

Depth vs Linear Probe Top-1 Accuracy

resnet50_K=16
resnet50_K=16_increasing_diff
resnet50_K=16_decreasing_diff

(c) DGSSL-LLM with increasing vs decreasing problem-difficulty for K=16.

Figure 4.9: Linear Probe Evaluation over depth for different version of DGSSL-LLM and vanilla
DGSSL. We observe DGSSL-LLM with increasing difficulty outperforms other methods for all
values of K.

the positive pairs of samples and pushing the negative pairs of samples away from each other in the

feature space. The DGSSL-LLM method described in Sec 4.2.2, modifies this contrastive local loss

57

function to increase the difficulty of the problem as we move deeper into the layers.

To achieve this, we subselect the positive and negative pairs of samples at each layer. This way,

the initial layers work with easy pairs of positive and negative samples, while the deeper layers

work with more challenging pairs. In this ablation study, we only modify the layerwise-local-loss

to subselect the positive pairs of samples and keep the negative pairs of samples as they are. This

allows us to maintain the desired level of difficulty throughout the layers. The results of this study

are presented in Table 4.4. We found that both versions of DGSSL-LLM outperformed the vanilla

DGSSL. However, the version of DGSSL-LLM that utilized both positive and negative pairs achieved

the highest performance for K=16. This suggests that utilizing both positive and negative pairs in the

DGSSL-LLM method improves the overall performance of the model.

Method DGSSL
DGSSL-LLM
(Pos.+Neg.)

DGSSL-LLM
(Pos. Only)

K=16 87.44 89.8 88.66

Table 4.4: Ablating the effect of only using positive sample pairs as opposed to using both positive
and negative sample pairs for layerwise loss modification in DGSSL-LLM with K=16.

4.4 Conclusion and Future Work

In conclusion, our study has highlighted the limitations of the existing local learning method,

DGL, for a popular self-supervised learning algorithm, SimCLR. To address these limitations, we

proposed a new method called Decoupled Greedy Self-supervised Learning with Layerwise Loss

Modification (DGSSL-LLM) that significantly improves the performance of locally trained models.

Our ablation studies showed that the use of increasing difficulty applied on both positive and negative

pairs is the most effective variant of DGSSL-LLM. This finding is crucial in the development of

local learning methods for self-supervised learning algorithms. In future work, we plan to extend our

framework to other self-supervised learning methods such as Barlow-twins and Masked Autoencoders

(MAE) to further validate the effectiveness of the approach.

58

Chapter 5

Conclusion and Future Work

In this thesis, we presented two methods to scale the current local learning methods in supervised

learning and self-supervised learning settings, specifically focusing on image-classification task.

Scaling local learning for supervised learning We proposed a new method for training neural

networks called the Grouped Neuron DGL (GN-DGL). This method builds on existing local learning

methods such as DGL, and is based on the idea of using a purely local loss function to train

independent neuron groups where there is no feedback between the independent groups. By breaking

down the objective function in this manner, the optimization process can be parallelized, potentially

leading to faster training. Specifically we studied a common image classification task, focusing on

the convolutional neural network. The results from experiments demonstrate that this approach can

allow for increased parallelization of local learning methods, unlocking substantial improvements

for accuracy given training and inference time. In fact, in some cases, the GN-DGL method even

outperformed the traditional end-to-end training approach.

We also discussed the potential implications of this approach on the practical considerations

for distributed training. The GN-DGL method allows for the different model components to simul-

taneously learn their model parameters, which can be beneficial for distributed training scenarios

where different processing units can handle different components of the network. Additionally, we

explored ways to encourage diverse behavior in these decoupled neuron-groups based solely on

forward communication. This proved to be important because it helped to avoid correlated features

59

among groups and improved the performance of the GN-DGL method.

However, it is important to note that the proposed method should be further investigated in more

complex tasks and different types of data sets, to fully understand its capabilities and limitations. The

current method of promoting diverse feature learning between neuron-groups requires communicating

representations to different auxiliary nets, which may not be the most efficient method. Therefore,

future work should look into more efficient methods of propagating such group-specific contexts

and improve the overall efficiency of the GN-DGL method. Additionally, more efficient design of

auxiliary networks will also affect the performance of this method significantly.

Overall, the GN-DGL method provides a new way to train neural networks and can be a useful

approach for researchers, practitioners, and engineers who are working with large-scale data sets,

distributed systems or neural networks. The method has the potential to improve the efficiency of

neural networks by reducing the training time, and speeding up the inference time. However, further

research is needed to fully understand its capabilities and limitations.

Local learning for self-supervised learning We presented a detailed study on applying Decoupled

Greedy Learning (DGL) framework, for the popular self-supervised learning method SimCLR. We

evaluated the performance of locally trained models at different depths and discovered that using the

DGL for SimCLR has a limitation. DGL tends to focus on one specific layer at a time instead of

the entire model, causing the early layers to try and fully solve the task. This leads to the issue of

information-collapse in early layers and ultimately degrades the overall performance of the network.

To address this limitation, we introduced a new local-learning method, called Decoupled Greedy

Self Supervised Learning with Layerwise Loss Modification (DGSSL-LLM). This method modifies

the local loss function for each layer to gradually increase the problem difficulty as the model

progresses through the layers. We showed that this approach allows the initial layers to propagate

the task-relevant information to subsequent layers and results in better performance, while still

leveraging the benefits of the DGL framework such as increased parallelization and low-memory

footprint. By experimental analysis, we demonstrated that that locally trained models using the

proposed method are able to achieve performance comparable to the end-to-end trained model on the

image classification task using CIFAR-10 dataset. The results also indicate that this method is more

60

robust to different architectures and different number of local modules.

However, the main limitation of the DGSSL-LLM method is the use of a pretrained SimCLR

model (potentially end-to-end for robustness) to quantify the sample difficulty in DGSSL-LLM

method. Future work will focus on replacing the use of such pretrained models by introducing other

simple and efficient methods for difficulty quantification. Additionally, this study is limited to the

specific task of image classification using the SimCLR method, and it would be interesting to further

study the generalization of the proposed method to other self-supervised learning methods and tasks

such as Masked Auto-Encoders (MAEs), Barlow-twins etc.

Overall, this method is important for understanding the capabilities and limitations of local

learning approaches in self-supervised learning tasks. It could potentially improve the efficiency of

the models by reducing the training time and lead to significant computational advantages, making

this method an attractive option for large-scale applications.

61

Appendix A

Decoupled Greedy SSL

A.1 Local Module Splitting

In this section, we show how local modules are obtained from the main encoder module for

different values of K for experiments presented in Sec 4.3. We divide the main encoder module

depth-wise to obtain K number of modules and define local module boundaries. As shown in Figure

A.1, each pair of numbers is a local module boundary for different values of K. The pair of numbers

describe the layer index and index of basic/bottleneck block of resnet within that layer respectively.

This setup for ResNet-110 is taken from Wang et al. (2021).

Figure A.1: Depth-wise split configuration for ResNet-50 and ResNet-110.

62

A.2 Data Augmentation Module

In following Figure A.2, we have shown the data augmentation functions used for all experiments

presented in Chapter 4.

Figure A.2: Data augmentation functions used for the implementation of our experiments.

A.3 Additional Results

In this section, we present some additional results for our Decoupled Greedy SSL method

presented in Chapter 4. The training and validation curves for experiments presented in Sec 4.3 are

shown in Figure A.3. Furthermore, comparison between different auxiliary network architectures

(‘0c2f’ and ‘1c2f’) used in DGSSL method for ResNet-50 and ResNet-110 architectures is presented

in Figures A.4 and A.5 respectively.

63

0 200 400 600 800 1000
Epochs

5.2

5.4

5.6

5.8

6.0

6.2
Tr

ai
ni

ng
 L

os
s

Epochs vs Training Loss
resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

0 200 400 600 800 1000
Epochs

40

50

60

70

80

90

KN
N

To
p-

1
Ac

cu
ra

cy

Epochs vs KNN Top-1 Accuracy

resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

(a) ResNet-50 with ‘0c2f’ auxiliary network for different values of K.

0 200 400 600 800 1000
Epochs

5.2

5.4

5.6

5.8

6.0

6.2

Tr
ai

ni
ng

 L
os

s

Epochs vs Training Loss
resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

0 200 400 600 800 1000
Epochs

40

50

60

70

80

90

KN
N

To
p-

1
Ac

cu
ra

cy

Epochs vs KNN Top-1 Accuracy

resnet50_K=1
resnet50_K=2
resnet50_K=3
resnet50_K=4
resnet50_K=8
resnet50_K=16

(b) ResNet-50 with ‘1c2f’ auxiliary network for different values of K.

0 200 400 600 800 1000
Epochs

5.4

5.6

5.8

6.0

6.2

6.4

Tr
ai

ni
ng

 L
os

s

Epochs vs Training Loss
vgg6a_K=1
vgg6a_K=5

0 200 400 600 800 1000
Epochs

40

45

50

55

60

65

70

75

80

KN
N

To
p-

1
Ac

cu
ra

cy

Epochs vs KNN Top-1 Accuracy

vgg6a_K=1
vgg6a_K=5

(c) VGG6a with ‘0c2f’ auxiliary network for different values of K.

Figure A.3: Epochs vs Training Loss (left) and Epochs vs KNN Top-1 Accuracy (right), evaluated
after each epoch for ResNet-50 with ‘0c2f’ (a), ResNet-50 with ‘1c2f’ (b), and VGG6a (c) for
different values of K.

64

200 400 600 800 1000
Epochs

82

84

86

88

90

92
To

p-
1

Ac
cu

ra
cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_0c2f_K=2
resnet50_1c2f_K=2

200 400 600 800 1000
Epochs

80

82

84

86

88

90

92

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_0c2f_K=3
resnet50_1c2f_K=3

(a) ResNet-50 with different auxiliary networks for K = 2 (left) and K = 3 (right).

200 400 600 800 1000
Epochs

80

82

84

86

88

90

92

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_0c2f_K=4
resnet50_1c2f_K=4

200 400 600 800 1000
Epochs

76

78

80

82

84

86

88

90

92

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_0c2f_K=8
resnet50_1c2f_K=8

(b) ResNet-50 with different auxiliary networks for K = 4 (left) and K = 8 (right).

200 400 600 800 1000
Epochs

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet50_K=1
resnet50_0c2f_K=16
resnet50_1c2f_K=16

(c) ResNet-50 with different auxiliary networks for K = 16.

Figure A.4: Epochs vs Linear Evaluation Top-1 Accuracy, evaluated for ResNet-50 after every 100
epochs, trained using different auxiliary networks (‘0c2f’ and ‘1c2f’) for different values of K.

65

100 150 200 250 300 350 400 450 500
Epochs

72

74

76

78

80

82
To

p-
1

Ac
cu

ra
cy

Epochs vs Top-1 Accuracy
resnet110_K=1
resnet110_1c2f_K=2
resnet110_0c2f_K=2

100 150 200 250 300 350 400 450 500
Epochs

68

70

72

74

76

78

80

82

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy
resnet110_K=1
resnet110_1c2f_K=3
resnet110_0c2f_K=3

(a) ResNet-110 with different auxiliary networks for K = 2 (left) and K = 3 (right).

100 150 200 250 300 350 400 450 500
Epochs

68

70

72

74

76

78

80

82

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy
resnet110_K=1
resnet110_1c2f_K=4
resnet110_0c2f_K=4

100 150 200 250 300 350 400 450 500
Epochs

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy
resnet110_K=1
resnet110_1c2f_K=8
resnet110_0c2f_K=8

(b) ResNet-110 with different auxiliary networks for K = 4 (left) and K = 8 (right).

100 150 200 250 300 350 400 450 500
Epochs

65

70

75

80

To
p-

1
Ac

cu
ra

cy

Epochs vs Top-1 Accuracy

resnet110_K=1
resnet110_1c2f_K=16
resnet110_0c2f_K=16

(c) ResNet-110 with different auxiliary networks for K = 16.

Figure A.5: Epochs vs Linear Evaluation Top-1 Accuracy, evaluated for ResNet-110 after every 100
epochs, trained using different auxiliary networks (‘0c2f’ and ‘1c2f’) for different values of K.

66

References

Alain, G., & Bengio, Y. (2016). Understanding intermediate layers using linear classifier probes.

arXiv preprint arXiv:1610.01644.

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2019a). Greedy layerwise learning can scale to

imagenet. Proceedings of the 36th International Conference on Machine Learning (ICML).

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2019b). Greedy layerwise learning can scale to

imagenet. In International conference on machine learning (pp. 583–593).

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2020, 13–18 Jul). Decoupled greedy learning of CNNs.

In H. D. III & A. Singh (Eds.), Proceedings of the 37th international conference on machine

learning (Vol. 119, pp. 736–745). PMLR. Retrieved from https://proceedings.mlr

.press/v119/belilovsky20a.html

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new

perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798–

1828.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep

networks. In Advances in neural information processing systems (pp. 153–160).

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., . . . others (2016).

End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . others (2020).

Language models are few-shot learners. Advances in neural information processing systems,

33, 1877–1901.

Chen, C.-C., Yang, C.-L., & Cheng, H.-Y. (2018). Efficient and robust parallel dnn training through

67

https://proceedings.mlr.press/v119/belilovsky20a.html
https://proceedings.mlr.press/v119/belilovsky20a.html

model parallelism on multi-gpu platform. arXiv preprint arXiv:1809.02839.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive

learning of visual representations. In International conference on machine learning (pp.

1597–1607).

Chilimbi, T., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project adam: Building an

efficient and scalable deep learning training system. In 11th usenix symposium on operating

systems design and implementation (osdi 14) (pp. 571–582).

Choromanska, A., Cowen, B., Kumaravel, S., Luss, R., Rigotti, M., Rish, I., . . . others (2019).

Beyond backprop: Online alternating minimization with auxiliary variables. In International

conference on machine learning (pp. 1193–1202).

Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2017). A downsampled variant of imagenet as an

alternative to the cifar datasets. arXiv preprint arXiv:1707.08819.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., . . . others (2012). Large scale

distributed deep networks. Advances in neural information processing systems, 25.

Doersch, C., Gupta, A., & Efros, A. A. (2015). Unsupervised visual representation learning by

context prediction. In Proceedings of the ieee international conference on computer vision (pp.

1422–1430).

Dvornik, N., Schmid, C., & Mairal, J. (2019). Diversity with cooperation: Ensemble methods for

few-shot classification. In Proceedings of the ieee/cvf international conference on computer

vision (pp. 3723–3731).

Erhan, D., Courville, A., Bengio, Y., & Vincent, P. (2010). Why does unsupervised pre-training

help deep learning? In Proceedings of the thirteenth international conference on artificial

intelligence and statistics (pp. 201–208).

Fahlman, S., & Lebiere, C. (1989). The cascade-correlation learning architecture. Advances in

neural information processing systems, 2.

Gomez, A. N., Key, O., Gou, S., Frosst, N., Dean, J., & Gal, Y. (2020). Interlocking backpropagation:

Improving depthwise model-parallelism. arXiv preprint arXiv:2010.04116.

Gomez, A. N., Key, O., Perlin, K., Gou, S., Frosst, N., Dean, J., & Gal, Y. (2022). Interlocking

68

backpropagation: Improving depthwise model-parallelism. Journal of Machine Learning

Research, 23(171), 1–28.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., . . . He, K. (2017).

Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

Guan, L., Yin, W., Li, D., & Lu, X. (2019). Xpipe: Efficient pipeline model parallelism for multi-gpu

dnn training. arXiv preprint arXiv:1911.04610.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical

learning: data mining, inference, and prediction (Vol. 2). Springer.

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In

Proceedings of the ieee conference on computer vision and pattern recognition (pp. 770–778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks. In

European conference on computer vision (pp. 630–645).

Hebb, D. (1949). The organization of behavior. emphnew york. Wiley.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., . . . others (2012). Deep neural

networks for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal processing magazine, 29(6), 82–97.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural

networks. science, 313(5786), 504–507.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Im-

proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580.

Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., & Weinberger, K. (2019). Convolutional networks

with dense connectivity. IEEE transactions on pattern analysis and machine intelligence.

Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le, Q. V., & Chen, Z. (2018). Gpipe: Efficient

training of giant neural networks using pipeline parallelism. arXiv preprint arXiv:1811.06965.

Huo, Z., Gu, B., & Huang, H. (2018a). Training neural networks using features replay. Advances in

Neural Information Processing Systems.

Huo, Z., Gu, B., & Huang, H. (2018b). Training neural networks using features replay. Advances in

69

Neural Information Processing Systems, 31.

Huo, Z., Gu, B., Huang, H., et al. (2018). Decoupled parallel backpropagation with convergence

guarantee. In International conference on machine learning (pp. 2098–2106).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In International conference on machine learning (pp. 448–456).

Ivakhnenko, A. G., & Lapa, V. G. (1965).

Cybernetic Predicting Devices. CCM Information Corporation..

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D., & Kavukcuoglu,

K. (2017a). Decoupled neural interfaces using synthetic gradients. International Conference

of Machine Learning.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver, D., & Kavukcuoglu,

K. (2017b). Decoupled neural interfaces using synthetic gradients. International Conference

of Machine Learning.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., & Makedon, F. (2020). A survey on contrastive

self-supervised learning. Technologies, 9(1), 2.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale

video classification with convolutional neural networks. In Proceedings of the ieee conference

on computer vision and pattern recognition (pp. 1725–1732).

Keuper, J., & Preundt, F.-J. (2016). Distributed training of deep neural networks: Theoretical and

practical limits of parallel scalability. In 2016 2nd workshop on machine learning in hpc

environments (mlhpc) (pp. 19–26).

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., . . . Krishnan, D. (2020). Supervised

contrastive learning. Advances in Neural Information Processing Systems, 33, 18661–18673.

Kim, D., Woo, S., Lee, J.-Y., & Kweon, I. S. (2019). Deep video inpainting. In Proceedings of the

ieee/cvf conference on computer vision and pattern recognition (pp. 5792–5801).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kingsford, C., & Salzberg, S. L. (2008). What are decision trees? Nature biotechnology, 26(9),

1011–1013.

70

Kohavi, R., et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and

model selection. In Ijcai (Vol. 14, pp. 1137–1145).

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016).

Federated learning: Strategies for improving communication efficiency. arXiv preprint

arXiv:1610.05492.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv

preprint arXiv:1404.5997.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional

neural networks. Advances in neural information processing systems, 25.

Kukačka, J., Golkov, V., & Cremers, D. (2017). Regularization for deep learning: A taxonomy.

arXiv preprint arXiv:1710.10686.

Laskin, M., Metz, L., Nabarro, S., Saroufim, M., Noune, B., Luschi, C., . . . Abbeel, P. (2020).

Parallel training of deep networks with local updates. arXiv preprint arXiv:2012.03837.

Laskin, M., Metz, L., Nabarro, S., Saroufim, M., Noune, B., Luschi, C., . . . Abbeel, P. (2021). Parallel

training of deep networks with local updates. Retrieved from https://openreview

.net/forum?id=ufS1zWbRCEa

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10), 1995.

Lee, D.-H., Zhang, S., Fischer, A., & Bengio, Y. (2015). Difference target propagation. In

Joint european conference on machine learning and knowledge discovery in databases (pp.

498–515).

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., . . . Sánchez, C. I.

(2017). A survey on deep learning in medical image analysis. Medical image analysis, 42,

60–88.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., & Tang, J. (2021). Self-supervised

learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering.

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and

Research (IJSR).[Internet], 9, 381–386.

71

https://openreview.net/forum?id=ufS1zWbRCEa
https://openreview.net/forum?id=ufS1zWbRCEa

Nøkland, A. (2016). Direct feedback alignment provides learning in deep neural networks. Advances

in neural information processing systems, 29.

Nøkland, A., & Eidnes, L. H. (2019). Training neural networks with local error signals. arXiv

preprint arXiv:1901.06656.

Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.

Patel, A., Eickenberg, M., & Belilovsky, E. (2022). Local learning with neuron groups. In From

cells to societies: Collective learning across scales.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context encoders:

Feature learning by inpainting. In Proceedings of the ieee conference on computer vision and

pattern recognition (pp. 2536–2544).

Pyeon, M., Moon, J., Hahn, T., & Kim, G. (2021). {SEDONA}: Search for decoupled neural networks

toward greedy block-wise learning. In International conference on learning representations.

Retrieved from https://openreview.net/forum?id=XLfdzwNKzch

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection

with region proposal networks. Advances in neural information processing systems, 28.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error

propagation (Tech. Rep.). California Univ San Diego La Jolla Inst for Cognitive Science.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional

architectures for object recognition. In International conference on artificial neural networks

(pp. 92–101).

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M., . . . others (2022).

Laion-5b: An open large-scale dataset for training next generation image-text models. arXiv

preprint arXiv:2210.08402.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015).

Going deeper with convolutions. In Proceedings of the ieee conference on computer vision

and pattern recognition (pp. 1–9).

Veness, J., Lattimore, T., Budden, D., Bhoopchand, A., Mattern, C., Grabska-Barwinska, A., . . .

72

https://openreview.net/forum?id=XLfdzwNKzch

others (2019). Gated linear networks. arXiv preprint arXiv:1910.01526.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., & Bottou, L. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion. Journal of machine learning research, 11(12).

Wang, Y., Ni, Z., Song, S., Yang, L., & Huang, G. (2021). Revisiting locally supervised learning:

an alternative to end-to-end training. In International conference on learning representations.

Retrieved from https://openreview.net/forum?id=fAbkE6ant2

Xiong, Y., Ren, M., & Urtasun, R. (2020). Loco: Local contrastive representation learning. Advances

in neural information processing systems, 33, 11142–11153.

Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang, J., & Huang, T. (2018). Youtube-vos: A

large-scale video object segmentation benchmark. arXiv preprint arXiv:1809.03327.

You, Y., Gitman, I., & Ginsburg, B. (2017). Scaling sgd batch size to 32k for imagenet training.

arXiv preprint arXiv:1708.03888, 6(12), 6.

Zhai, X., Oliver, A., Kolesnikov, A., & Beyer, L. (2019). S4l: Self-supervised semi-supervised

learning. In Proceedings of the ieee/cvf international conference on computer vision (pp.

1476–1485).

73

https://openreview.net/forum?id=fAbkE6ant2

	List of Figures
	List of Tables
	Introduction
	Neuron-Group Level Parallelization
	Local Learning for Self-supervised Learning
	Related Work
	Contributions
	Working Papers

	Background
	Convolutional Neural Networks
	Supervised Learning
	Self-supervised Learning
	Contrastive Self-supervised Learning
	SimCLR: A Simple Contrastive Learning Framework

	Backpropagation
	Distributed Training
	Data Parallelism
	Model Parallelism
	Limitations

	Linear Probe Evaluation
	Local Learning Methods
	Decoupled Greedy Learning (DGL)

	Local learning with Neuron Groups
	Introduction
	Methods
	Background and Notation
	Grouped Neuron DGL (GN-DGL)
	Stop-Gradient Grouped Neuron DGL
	Grouped Neuron DGL with diversity-promoting penalty

	Experiments and Results
	Layerwise and Grouped Neuron DGL
	Multi-layer Grouped Neuron DGL
	Ablations of Layerwise Ensembling

	Conclusion and Future Work

	Decoupled Greedy Self-supervised Learning
	Introduction
	Methods
	Decoupled Greedy Self-supervised Learning (DGSSL)
	Decoupled Greedy SSL with Layerwise Loss Modification

	Experiments and Results
	Layerwise Decoupled Greedy SSL
	Multilayer Decoupled Greedy SSL
	Decoupled Greedy SSL with Layerwise Loss Modification

	Conclusion and Future Work

	Conclusion and Future Work
	Appendix Decoupled Greedy SSL
	Local Module Splitting
	Data Augmentation Module
	Additional Results

	Bibliography

