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Abstract 
Development of Novel Quantitative Ultrasound Techniques 

Noushin Jafarpisheh, Ph.D. 
Concordia University 

Ultrasound is a medical imaging modality with many advantages, such as being real-time, portable, 

and cost-effective. Nevertheless, it provides a qualitative representation of the human body, which 

cannot reveal the physical characteristics of the tissue. Quantitative ultrasound (QUS) has evolved 

as a non-invasive ultrasound-based imaging modality to investigate the acoustic properties of 

tissue microstructure. It aims at recovering quantitative properties of tissue microstructure by 

investigating the power spectra of the radio frequency data or statistics of the envelope of the 

backscattered signal. The accuracy and precision of microstructural properties are necessary for a 

correct description of tissue microstructure. In particular, spectral-based techniques estimate the 

frequency-dependent backscatter coefficient (BSC) from the echo signal power spectra after 

removing attenuation effects from tissues between the transducer and the region of interest. The 

BSC can be parametrized in terms of a power law function or form factor models. While the power 

law model is associated with physics, the form factor can inform sub-resolution scatterer features, 

such as the effective scatterer diameter (ESD) and the acoustic concentration (AC). Common 

approaches to estimating the ESD and AC are based on minimization strategies of the squared 

difference between a model spectrum and a measured spectrum (or form factors). A key aspect of 

ESD and AC estimation is that it accurately and precisely quantifies the scattering properties of 

tissue. This thesis aims to introduce our novel regularized-based strategies to improve the 

estimation of the average attenuation, BSC, ESD, and AC. Chapter 2 presents two versions of our 

proposed method, ALGEBRA, to accurately and precisely estimate average attenuation and BSC 

in various tissue-mimicking phantoms. The power spectra at each frequency and depth have equal 

weights in ALGEBRA. However, due to the attenuation, the high-frequency contents of the power 

spectra at deep regions have a low signal-to-noise ratio. Additionally, the average attenuation 

varies gradually while the BSC alters markedly in different parts of the tissue. In Chapter 3, we 

consider these two shortcomings of the ALGEBRA and propose a novel method optimized using 
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alternating direction method of multipliers (ADMM) to estimate the same parameters. Chapters 4 

to 6 are dedicated to estimating ESD and AC using dynamic programming (DP) and analytical-

based methods. In Chapter 7, we propose a novel approach to estimate the distribution of scatterer 

sizes instead of reporting a single size to more accurately characterize tissue. In the final chapter, 

we provide conclusions and future work. 
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1Chapter 1  

Introduction and Literature Review 
 

1.1 Ultrasound Imaging 
 

Ultrasound is a medical imaging modality with a wide range of advantages, such as being real-

time, portable, and cost-effective. The range of frequency for medical ultrasound devices is 1-20 

MHz. Selecting the suitable transducer frequency is necessary for ensuring the best image 

resolution for diagnostic purposes. High-frequency ultrasound waves yield high axial-resolution 

images. However, they suffer from a higher level of attenuation compared to the lower frequency 

waves; thereby, they are the best suited for imaging shallow structures. On the other hand, low-

frequency ultrasound waves can travel to deeper regions because of a lower amount of attenuation. 

Figure 1.1 shows the interaction of ultrasound waves with tissues. An ultrasound transducer is 

made up of several piezoelectric crystals that vibrate when an electric current is applied to them. 

The vibrations generate ultrasound waves which moves through tissue. The ultrasound wave is 

partially converted to heat, partially scatters, partially penetrates deeper, and partially is reflected 

back to the transducer. Transmitting an ultrasound wave through tissues results in loss of 

amplitude, and, therefore, the energy of the ultrasound wave. The reflected echo received by the 

transducer is called radiofrequency (RF) data. The ultimate grayscale image displayed on the 

ultrasound machine is basically the envelope of the RF data and is called B-mode image. Figure 

1.2(a)-(c) illustrates an ultrasound machine, a transducer, and a B-mode image, respectively. 

 

Figure 1-1 Interaction of ultrasound waves with tissues. 
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(a)                                                (b)                                                       (c) 

Figure 1-2 Verasonics ultrasound machine at IMPACT lab (a). An ultrasound transducer at 
IMPACT lab (b). An example of a B-mode image of a three-layered phantom (c). The middle layer 
extends from 40mm to 55mm depth. 

More precisely, the interaction of ultrasound waves with tissue can be grouped as follows [1]: 

 Absorption: It refers to a process that the energy of the ultrasound wave is converted to the 

heat. 

 Refraction: Refraction occurs when sound encounters an interface between tissues with 

different sound speeds, causing the sound's direction to change 

 Reflection: Upon reaching the ultrasound wave to two tissues with various impedances, 

different types of the reflection can occur, depending on the size of the interface compared 

to the wave length as well as the structure of the interface. When the interface is rough or 

its size is smaller than the wavelength, a minority of ultrasound wave travels back to the 

transducer while the remaining scatters in different directions (diffuse scattering). On the 

other hand, for the smooth interface with the size greater than the wavelength, a majority 

of the wave is received by the transducer (specular reflection). The transducer receives all 

of the echoes if the ultrasound wave encounters the interface perpendicularly. However, 

when the wave approaches the interface with an oblique angle, the wave reflects with the 

same angle, and the transducer receives no wave. Figure 1.3 depicts the aforementioned 

types of reflection. 
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                         (a)                                                  (b)                                                   (c) 

Figure 1-3 Diffuse scattering (a). Oblique specular reflection (b). Perpendicular specular reflection 
(c). 

1.2 Quantitative Ultrasound 
 

Despite all the advantages of ultrasound imaging, including being real-time and portable, an 

ultrasound image only describes tissue qualitatively. Therefore, accurate tissue classification based 

on ultrasound remains an area for improvement. Additionally, ultrasound is highly operator- and 

system-dependent, so its interpretation depends on the operator's skills. 

Generally speaking, quantitative ultrasound (QUS) refers to the techniques that establish a 

quantitative assessment rather than presenting a qualitative map. Figure 1.4 illustrates a list of 

various modalities yielding quantitative analysis. However, QUS can reveal sub-resolution tissue 

characteristics [2]. It resolves the drawbacks of ultrasound imaging mentioned above by estimating 

the quantitative properties of tissue microstructure [3]–[6], aiming to extract the tissue's hidden 

properties.  

QUS techniques are categorized into different fields [2], [7]–[10]. Backscatter-based techniques 

describe tissue microstructure in time or frequency domains. Envelope statics corresponds to the 

methods [10]–[14] in the time domain that incorporates estimating the ratio of the coherent and 

incoherent echoes backscattered from tissue and the number density of the scatterers. The primary 

models introduced for reflecting the statics of the envelope entail Rayleigh, Rician, Nakagami, K, 

and homodyned-K distributions [15], [16]. Spectral-based techniques [17]–[19] delve into the 

power spectra of the RF data backscattered from tissue. These techniques provide estimations of 

the acoustic properties of tissue which comprise attenuation [20]–[23], backscatter coefficient 

(BSC) [24], and scatterer properties [25]–[27]. In technical terms, total attenuation represents the 

energy loss due to the interaction between tissue and ultrasound waves during propagation. The 

attenuation level depends on the tissue's structure, frequency, and depth of propagation. For each 
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solid angle in each volume, BSC is explained by calculating the ratio of the mean intensity of the 

scatterers received at 180º angle and the mean intensity of the incident wave in the time domain 

[25], [28]. More precisely, spectrum-based QUS techniques [3], [17], [27], [29] investigate the 

Fourier transform of the RF data to estimate acoustic properties of tissue such as the effective 

scatterer diameter (ESD) [25], [30]–[34], scattering strength and acoustic concentration (AC) [17], 

[26], mean scatterer spacing [35]–[38], effective attenuation 𝛼𝑒𝑓𝑓  (average attenuation from 

intervening tissues) [39], [40], and BSC 𝜎𝑏 [41]. The ESD (the correlation length of subwavelength 

variations of acoustic impedance) and AC (product of the number density of scatterers and the 

mean square acoustic impedance variation) are two crucial acoustic features associated with tissue 

microstructure [15]. These two parameters can be obtained by fitting form factor models to the 

experimental form factor derived from the BSC.  

The form factor is the Fourier transform of the spatial correlation function of the relative 

impedance between scatterers and their surrounding [17], [25]. Spectral-based and envelope statics 

approaches can jointly be implemented for characterizing tissue [42]. Recent advancement in the 

area of QUS employs neural networks to improve tissue characterization [43]–[47]. Flow-based 

[15] and elasticity-based [48] classes describe blood flow and mechanical features of the tissue 

using Doppler shift and elastography methods, respectively. Blood flow can also be analyzed using 

non-Doppler methods, such as speckle tracking [49]. 

 

Figure 1-4 An overview of modalities providing quantitative tissue properties. 
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1.2.1 Literature Review 
 

A growing attention has focused on improving QUS techniques. Recent work has demonstrated 

that the accuracy and precision of backscatter QUS parameters can be improved by regularizing 

the depth variation of estimates of tissue properties, based on the hypothesis of piece-wise 

variability with depth [50]–[54] or by regularizing lateral and axial variation [55]. Moreover, our 

group recently showed that using dynamic programming (DP) substantially improves estimates of 

effective attenuation αeff (average attenuation from intervening tissues) and BSC b [56] compared 

to a least square (LSQ) method previously devised to estimate the same parameters [57]. LSQ and 

regularized algorithms based on DP were previously employed to estimate attenuation and BSCs. 

LSQ minimizes a cost function based on the squared-difference between the measured backscatter 

spectrum and a theoretical model to extract the values of the depth-averaged attenuation coefficient 

and the magnitude and frequency dependence of the BSC. DP follows a similar strategy, but 

includes a regularization term in the cost function that assumes piece-wise continuity in the values 

of the depth-averaged attenuation and the magnitude and frequency dependence of the BSC. To 

reduce the computational burden, the DP strategy stores minimized values of the cost function to 

avoid recomputing them at each spatial position. 

However, the DP method faces three major issues:  

1) It is a discrete optimization method. This means that the solution is based on minimizing the 

cost function from a set of discrete values defined by a search range and step size for the acoustic 

properties. A small step size improves the results by reducing the quantization error at the expense 

of increasing the computational complexity. This issue is exacerbated when processing a large 

field of view (i.e., abdominal or obstetric imaging). This limits the real-time applicability of DP. 

In addition, the step size must be defined by the user, adding to the complexity of its 

implementation. 

2) A search range must be defined by the user. If ranges of values for the parameters of interest 

are not available for the tissue under study, a very large search range should be used, which further 

increases the computational complexity.  

3) A fundamental problem of DP is that the graph formed by regularization costs must be a tree, 

and cannot have a cycle. As such, DP cannot consider the entire data. In other words, DP is applied 
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on a 2D (axial vs lateral) array of power spectra but considers regularization only over depth for 

each lateral location independent from the others.  

Some of the recent work performed by other groups to improve QUS parameters is as follows: 

Destrempes et al. [52] optimized a generalized least absolute shrinkage and selection operator 

(LASSO) problem using a Lagrangian multiplier in addition to the Bayesian Information Criterion 

for estimating attenuation and scatterer properties to improve the contrast-to-noise ratio (CNR) on 

the difference in acoustic concentration. There is an interest in estimating coefficients related to 

distinct organs in the body. Deeba et al. [58] focused on diagnosing liver steatosis. They presented 

a cost function entailing total variation regularization to estimate effective scatterer diameter 

(ESD) and acoustic concentration (AC). They did not propose a new optimization algorithm but 

used MATLAB's convex optimization toolbox CVX [59] to solve the optimization problem. Rafati 

et al. [60] proposed a technique that can be used in diagnosing multiple liver diseases. They 

proposed a method to estimate the attenuation coefficient map using the attenuation coefficient 

slope. Accordingly, they approximated the logarithmic scale of the power spectra at each 

frequency as a function of depth. Consequently, the frequency where the maximum y-intercept 

occurred was selected for calculating the local attenuation coefficient slope. Afterward, the 

frequency range was limited to those where the ratio of the normalized power spectra with respect 

to the depths at two locations and two adjacent frequencies was within 25% of the estimated local 

attenuation coefficient slope. The ultimate estimate of the local attenuation coefficient slope was 

calculated using a linear regression on the confined frequency range. The use of L2 norms in cost 

functions gained popularity since they are differentiable. Birdi et al. [61] introduced an analytical 

regularized based method using L2 norms. The method directly estimates local attenuation 

providing a physical-based model, and as opposed to previous works, it couples the coefficients at 

all depth points. Additionally, performing this technique prevents post-processing computation for 

mapping effective attenuation to the local attenuation. The method is shown to outperform the 

traditional spectral log difference method. Furthermore, to exploit the advantages of the L1 norm, 

the authors proposed a weighted L2 norm scheme that can iteratively approximate the L1 norm. 

Oelze et al. [62] improved the estimation of ESD by weighting the low signal-to-noise ratio (SNR) 

part of the power spectra. Lavarello et. al [63] established three algorithms to estimate ESD based 

on a comparison between estimated BSC and the fluid-sphere scattering model. The authors 
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explained that the estimator can have a significant role in estimating ESD as well. Furthermore, 

similar to their previous work [64], they concluded that modeling a medium with a single scatterer 

size is not in accordance with the physical properties of the medium. Moreover, Nordberg et al. 

[65] proved when a medium contains scattering sources with a variety of sizes, a single scatterer 

size cannot accurately characterize that medium. 

1.2.2 Clinical Applications 
 

QUS potentially allows determining tissue characteristics and diagnose diseases objectively and 

noninvasively. Assessment of renal microstructure [4], [19], [20], fat infiltration [21], [24], 

structural evaluation of the uterine cervix during pregnancy [25, 26], cancer therapy monitoring 

and assessment [27], [28], fatty liver classification [76], [77], prostate cancer imaging [78], bone 

assessment [79], and breast cancer monitoring [80] are a few examples of clinical applications of 

QUS parameters. Besides, recent advances in ultrasound manufacturing have enabled the 

characterization and imaging of tissues based on sound speed, attenuation, and backscattering [2].  

1.3 Thesis Statement 
 

In addition to testing new clinical applications, growing attention has focused on improving QUS 

techniques. Recent work has demonstrated that the accuracy and precision of QUS parameters can 

be improved by exploiting the regularized-based techniques [50]–[56], [60]. Accordingly, our 

focus is mainly on introducing regularized techniques for improving the estimation of QUS 

parameters. 
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2 Chapter 2 

Analytic Global Regularized Backscatter Quantitative 
Ultrasound 
 

This chapter is published in IEEE Trans. UFFC, 2021 and International Symposium on Ultrasonic 

Imaging and Tissue Characterization (UITC) 2021. 

 

Herein, we propose two novel techniques to accurately and precisely estimate two important QUS 

parameters, namely the effective attenuation coefficient and the BSC. Both techniques optimize a 

cost function that incorporates data and continuity constraint terms, which we call AnaLytical 

Global rEgularized BackscatteR quAntitative ultrasound (ALGEBRA). We propose two versions 

of ALGEBRA, namely 1D- and 2D-ALGEBRA. In 1D-ALGEBRA, the regularized cost function 

is formulated in the axial direction, and QUS parameters are calculated for one line of RF echo 

data. In 2D-ALGEBRA, the regularized cost function is formulated for the entire image, and QUS 

parameters throughout the image are estimated simultaneously. This simultaneous optimization 

allows 2D-ALGEBRA to “see” all the data before estimating QUS parameters. In both methods, 

we efficiently optimize the cost functions by casting it as a sparse linear system of equations. As 

a result of this efficient optimization, a comparison of the running time for one RF line describes 

that 1D-ALGEBRA and 2D-ALGEBRA are respectively 600 and 300 times faster than 

optimization using the dynamic programing (DP) method previously proposed by our group. In 

addition, the proposed technique has fewer input parameters that require manual tuning. Our 

results demonstrate that the proposed ALGEBRA methods substantially outperform least-squares 

(LSQ) and DP methods in estimating QUS parameters in phantom experiments. 

2.1 Background  
 

To cope with the issues in DP method mentioned in Chapter 1, here we propose two versions of a 

novel technique which we call fast AnaLytical Global rEgularized BackscatteR quAntitative 

ultrasound, or ALGEBRA. ALGEBRA solves the regularized cost function analytically and does 

not need search ranges and step sizes. The first version of ALGEBRA, 1D-ALGEBRA, minimizes 
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exactly the same cost function as DP [56], where 1D refers to regularization in one (axial) 

direction. The second version is called 2D-ALGEBRA and performs a global regularization in 

both axial and lateral directions. 1D- and 2D-ALGEBRA are inspired by state of the art 

regularization strategies used in ultrasound elastography [36, 37]. 1D- and 2D- ALGEBRA are 

about 600 times and 300 times faster than DP [56], respectively, and also provides more accurate 

and precise QUS estimates. 

2.2 Algorithms 
 

The application of ALGEBRA on QUS is based on the reference phantom method (RPM) [83] to 

provide system- and operator- independent QUS parameter estimation. According to the RPM, the 

ratio of the power spectrum 𝑆𝑠(𝑓, 𝑧) of a sample s (phantom or tissue with unknown attenuation 

coefficient 𝛼𝑠 and BSC 𝜎𝑏,𝑠) to the power spectrum 𝑆𝑟(𝑓, 𝑧) of a reference phantom r (with known 

𝛼𝑟 and 𝜎𝑏,𝑟, and similar sound speed to the sample, and where subscript r indicates “reference”) 

[84] can be modeled as:  

 

𝑆𝑠(𝑓; 𝑧, 𝑥)

𝑆𝑟(𝑓; 𝑧)
=

𝜎𝑏,𝑠(𝑓; 𝑧, 𝑥)𝐴𝑠(𝑓; 𝑧, 𝑥)

𝜎𝑏,𝑟(𝑓)𝐴𝑟(𝑓, 𝑧)
 

2-1 

where f, z, and 𝑥 are frequency, depth, and lateral position, respectively. The factor A accounts for 

total attenuation of the acoustic pulse from the transducer to depth 𝑧: 

 

𝑒𝑥𝑝(−4∫ 𝛼(𝑓; 𝑧′, 𝑥)𝑑𝑧′
𝑧

0

) 

2-2 

where 𝛼 is in Np.cm-1. Assuming that the attenuation coefficient varies linearly with frequency 

[56], i.e., 𝛼(𝑓; 𝑧, 𝑥) = 𝛼0(𝑧, 𝑥)𝑓, where 𝛼0 in Np.cm-1 MHz-1 is the specific attenuation as defined 

by the International Electrotechnical Commission [85], then Eq. (2-2) can be expressed as: 
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 𝐴(𝑓; 𝑧, 𝑥) = 𝑒𝑥𝑝(−4𝑓 ∫ 𝛼0(𝑧
′, 𝑥)𝑑𝑧′

𝑧

0

)   

  𝐴(𝑓; 𝑧, 𝑥) = 𝑒𝑥𝑝(−4𝑓𝛼𝑒𝑓𝑓(𝑧, 𝑥)𝑧) 

2-3 

where 𝛼𝑒𝑓𝑓  is the effective attenuation equal to the average specific attenuation along the 

propagation depth 𝑧.  

𝛼𝑒𝑓𝑓(𝑧, 𝑥) = ∫ 𝛼0(𝑧
′, 𝑥)𝑑𝑧′

𝑧

0

 

2-4 

In the case of the homogeneous reference, the effective attenuation 𝛼𝑒𝑓𝑓  [cm-1 MHz-1] is equal to 

its local attenuation coefficient 𝛼0,𝑟. Note that 𝛼, 𝛼0, and 𝛼𝑒𝑓𝑓  can also be expressed in dB cm-1 or 

dB cm-1 MHz-1 by multiplying their numerical value by 8.686. 

We employ a power law model to parameterize the frequency dependence of 𝜎𝑏(𝑓; 𝑧, 𝑥) as follows: 

𝜎𝑏(𝑓; 𝑧, 𝑥) = 𝛽(𝑧, 𝑥)𝑓𝜈(𝑧,𝑥) 

2-5 

where 𝛽 and 𝜈 indicate the value of the BSC at 1MHz and its frequency dependence, respectively. 

After substituting Eqs. (2-2)-(2-4) into (2-1) and taking the natural logarithm from both sides 

similar to [56], we have: 

𝑋(𝑓; 𝑧, 𝑥) = ln (   
𝑆𝑠(𝑓; 𝑧, 𝑥)

𝑆𝑟(𝑓; 𝑧, 𝑥)
) = −4𝑎(𝑧, 𝑥)𝑓𝑧 + 𝑏(𝑧, 𝑥) + 𝑛(𝑧, 𝑥) 𝑙𝑛 𝑓 

2-6 

where  

𝑎(𝑧, 𝑥) = 𝛼𝑒𝑓𝑓(𝑧, 𝑥) − 𝛼0,𝑟  

𝑏(𝑧, 𝑥) = ln𝛽𝑠(𝑧, 𝑥) − ln𝛽𝑟 ,  

𝑛(𝑧, 𝑥) = 𝜈𝑠(𝑧, 𝑥) − 𝜈𝑟 .  

2-7 



 

13 
 

 

Both 1D- and 2D-ALGEBRA make use of a cost function containing a data term, D, and a 

regularization term, R: 

𝐶 = 𝐷 + 𝑅.  

2-8 

2.2.1 1D-ALGEBRA 
 

The ALGEBRA methods are applied to an 𝑁𝑅 × 𝑁𝐶 × 𝑁𝐹 power spectra matrix, where 𝑁𝑅 is the 

number of rows corresponding to different axial positions, 𝑁𝐶  is the number of columns 

corresponding to different lateral positions, and 𝑁𝐹 is the number of frequency bins within a 

useable frequency range. In 1D-ALGEBRA, one column (or lateral position) of power spectra is 

considered and regularization is performed in the axial direction to estimate 𝑎, 𝑏, and 𝑛 at different 

axial positions along that column. In 2D-ALGEBRA, the entire array of power spectra is used in 

a 2D regularization strategy.  

Removing the 𝑥 dependence in (2-5), data and regularization terms 𝐷 and 𝑅 in 1D-ALGEBRA are 

defined as follows: 

𝐷 = ∑ ∑(𝑋(𝑓𝑙 , 𝑧𝑖) − 𝑏𝑖 − 𝑛𝑖𝑙𝑛(𝑓𝑙) + 4𝑎𝑖𝑓𝑙𝑧𝑖)
2  

𝑁𝑅

𝑖=1

𝑁𝐹

𝑙=1

 

2-9 

 𝑅 = ∑ ∑𝑤𝑝(𝑝𝑖 − 𝑝𝑖−1)
2

𝑁𝑅

𝑖=2

  

3

𝑝=1

 

2-10 

where i and l refer axial location and frequency indices, respectively. Index 𝑝 refers to the three 

parameters (𝑝=1 for 𝑎, 2 for 𝑏, and 3 for 𝑛) and 𝑤𝑝 is the regularization weight for parameter  𝑝. 

As Figure 2-1(a) and Eq. (2-10) show, regularization is employed in the axial direction. To obtain 

the optimum parameters, we calculate the partial derivatives of the cost function with respect to 

𝑎𝑖, 𝑏𝑖, an 𝑛𝑖 and set them to zero. After some manipulations, we arrive at a set of simple linear 

equation as follows: 
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       UY=T. 

2-11 

𝐘 is a column vector with 3𝑁𝑅 components containing the parameters to be estimated at different 

depths, i.e., 𝑎𝑖, 𝑏𝑖, an 𝑛𝑖: 

𝒀 = [𝑎𝟏, ⋯ , 𝑎𝑁𝑅
, 𝑏𝟏, ⋯ , 𝑏𝑁𝑅

, 𝑛𝟏,⋯ , 𝑛𝑁𝑅
]
⊺
, 

2-12 

where superscript ⊺ indicates transposition. 𝐔 is a 3𝑁𝑅 × 3𝑁𝑅 matrix which can be separated into 

two 3𝑁𝑅 × 3𝑁𝑅 matrices named 𝐂 and 𝐖:  

  𝑼 = 𝑪 + 𝑾.  

2-13 

Matrix 𝐂 is formed of 6 component matrices: 

𝑪 = [
𝑪𝟏 𝑪𝟐 𝑪𝟑

𝑪𝟐 𝑪𝟒 𝑪𝟓

𝑪𝟑 𝑪𝟓 𝑪𝟔

]   

2-14 

and 𝐂𝐣, 𝑗 = 1, . . ,6, are 𝑁𝑅 × 𝑁𝑅  diagonal matrixes: 

𝐂𝟏 = (16∑ 𝑓𝑙
2𝑁𝐹

𝑙=1 )𝐙𝟐 ,         𝐂𝟐 = (−𝟒 ∑ 𝑓𝑙
𝑁𝐹
𝑙=1 )𝐙𝟏, 

 

𝐂𝟑 = (−𝟒∑ 𝑓𝑙  ln 𝑓𝑙
 𝑁𝐹
𝑙=1 )𝐙𝟏,     𝐂𝟒  =  (𝑁𝐹)𝐈 , 

 

 𝑪𝟓 = (∑𝑙𝑛𝑓𝑙

𝑁𝐹

𝑙=1

)𝑰,     𝑪𝟔 = (∑ (𝑙𝑛 𝑓𝑙)
2

𝑁𝐹

𝑙=1

)𝑰        

2-15 

where 𝐈 is the 𝑁𝑅 × 𝑁𝑅 identity matrix and 
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𝐙𝟏 = [

𝑧1 0 … 0
0 𝑧2 … 0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝑧𝑁𝑅

],  𝐙𝟐 =

[
 
 
 
𝑧1

2 0 … 0

0 𝑧2
2 … 0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝑧𝑁𝑅

2
]
 
 
 

 .     

2-16 

Matrix 𝐖 is defined as: 

                                𝐖 = [
𝐖𝐚 𝐎 𝐎
𝐎 𝐖𝐛 𝐎
𝐎 𝐎 𝐖𝐧

]                             

2-17 

where 𝐖𝐚,𝐖𝐛, and 𝐖𝐧 are 𝑁𝑅 × 𝑁𝑅 matrices given by: 

 

𝐖𝐩 = 𝑤𝑝𝐁   

2-18 

where 

𝐁 =

[
 
 
 
 

1 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −1 1]

 
 
 
 

 

 

and 𝐎 is a 𝑁𝑅 × 𝑁𝑅 matrix with zero elements.  

 

𝐓 in (11) is a 3𝑁𝑅 vector containing three vertically-concatenated 𝑁𝑅 × 1 column vectors, 𝐓𝟏,𝐓𝟐, 

and 𝐓𝟑 as follows: 

𝐓 = [
𝐓𝟏
 𝐓𝟐
𝐓𝟑

], 

2-19 
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whose ith components are given by: 

𝑇1𝑖 = −4𝑧𝑖 ∑ 𝑋(𝑓𝑙 , 𝑧𝑖)𝑓𝑙
𝑁𝐹
𝑙=1 , 

𝑇2𝑖 = ∑ 𝑋(𝑓𝑙 , 𝑧𝑖)
𝑁𝐹
𝑙=1 , 

𝑇3𝑖 = ∑ 𝑋(𝑓𝑙 , 𝑧𝑖) ln 𝑓𝑙
𝑁𝐹
𝑙=1 . 

2-20 

The values of 𝑎𝑖, 𝑏𝑖, an 𝑛𝑖 at different depths are obtained by solving (11) for 𝐘. 

2.2.2 2D-ALGEBRA 
 

In 2D-ALGEBRA, we have similar data and regularization terms: 

𝐷 = ∑∑∑(𝑋(𝑓𝑙 , 𝑧𝑖 , 𝑥𝑗) − 𝑏𝑖,𝑗 − 𝑛𝑖,𝑗ln(𝑓𝑙) + 4𝑎𝑖,𝑗𝑓𝑙𝑧𝑖)
2
  

𝑁𝐶

𝑗=1

𝑁𝑅

𝑖=1

𝑁𝐹

𝑙=1

  

2-21 

𝑅 = ∑ ∑∑ 𝑤𝑝,𝑧(𝑝𝑖,𝑗 − 𝑝𝑖−1,𝑗)
2
+ 𝑤𝑝,𝑥(𝑝𝑖,𝑗 − 𝑝𝑖,𝑗−1)

2

𝑁𝐶

𝑗=2

𝑁𝑅

𝑖=2

3

𝑝=1

   

2-22 

where j refers to the lateral location index. The indices of the regularization weights indicate (𝑧) 

axial and (𝑥) lateral directions. Thus, as Eq. (2-22) shows, the regularization is employed in both 

axial (𝑧) and lateral (𝑥) directions (Figure 2-1(b)). As axial and lateral parameters are coupled 

together, optimization should be performed on the whole image, not separately for each direction. 

For the 2D regularization the components of 𝐂 have  different sizes (𝑁𝑅𝑁𝐶 × 𝑁𝑅𝑁𝐶) as each 

component should also include lateral coefficient parameters. Therefore, the size of 𝐂 will be 

3𝑁𝑅𝑁𝐶 × 3𝑁𝑅𝑁𝐶. The matrix components of 𝐖𝟐 are defined as follows: 

𝐖𝟐 = [

𝐖𝒂𝟐
𝐎 𝐎

𝐎 𝐖𝐛𝟐
𝐎

𝐎 𝐎 𝐖𝐧𝟐

] 

2-23 
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where 

𝐖𝐩𝟐
= 𝐕 + 𝛒 . 

2-24 

𝐕 is a 𝑁𝑅𝑁𝐶 × 𝑁𝑅𝑁𝐶 matrix defined as 

 𝐕 = [

𝐕𝟏 0 ⋯ 0
0 𝐕𝟐 0 0
0 0 ⋱ 0
0 ⋯ 0 𝐕𝐍𝐂

]  

2-25 

where 𝐕𝟏, 𝐕𝟐, … , 𝐕𝑵𝑪
 are 𝑁𝑅 × 𝑁𝑅 matrices, and 𝐕𝟐 = 𝐕𝟑 = ⋯ = 𝑽𝐍𝐂−𝟏:  

 

(a) (b) 

Figure 2-1 Regularization strategies for (a) 1D- and (b) 2D-ALGEBRA. 

 

   𝐕𝟏 = [

𝑤𝑝,𝑧 + 𝑤𝑝,𝑥 0 ⋯ 0

0
⋮

2𝑤𝑝,𝑧 + 𝑤𝑝,𝑥

⋮

⋱
⋱

⋮
⋮

0 0 ⋯ 𝑤𝑝,𝑧 + 𝑤𝑝,𝑥

]  

2-26 
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𝐕𝟐  =   [

𝑤𝑝,𝑧 + 2𝑤𝑝,𝑥 0 ⋯ 0

0
⋮

2𝑤𝑝,𝑧 + 2𝑤𝑝,𝑥

⋮

⋱
⋱

⋮
⋮

0 0 ⋯ 𝑤𝑝,𝑧 + 2𝑤𝑝,𝑥

]  

2-27 

𝐕𝐍𝐂
= [

𝑤𝑝,𝑧 + 𝑤𝑝,𝑥 0 ⋯ 0

0
⋮

2𝑤𝑝,𝑧 + 𝑤𝑝,𝑥

⋮

⋱
⋱

⋮
⋮

0 0 ⋯ 𝑤𝑝,𝑧 + 𝑤𝑝,𝑥

] 

2-28 

In (26) to (28), except for the first and last elements, all the elements of the main diagonal are 

repeated 𝑁𝑅 −2 times. The size of matrix ρ in Eq. (29) is 𝑁𝑅 𝑁𝐶  ×  𝑁𝑅 𝑁𝐶 same as V. The 

formulation of ρ is as follows: 

  𝛒 = [

𝐦𝟏 𝐦𝟐 𝐎 𝐎
𝐦𝟐 𝐦𝟏 ⋱ 𝐎
𝐎 ⋱ ⋱ 𝐦𝟐
𝐎 𝐎 𝐦𝟐 𝐦𝟏

]  

2-29 

where m1 and m2 are 𝑁𝑅 × 𝑁𝑅 matrices as follows. Matrix m1 is repeated 𝑁𝐶  times and matrix 

m2 is repeated 𝑁𝐶 − 1 times in each direction to form 𝝆.  

         𝒎𝟏 =

[
 
 
 
 
 

0 −𝑤𝑝,𝑧 0 ⋯ 0

−𝑤𝑝,𝑧 0 ⋱ ⋯ …

0 ⋱ ⋱ ⋱ 0
⋮ … −𝑤𝑝,𝑧 ⋱ −𝑤𝑝,𝑧

0 0 0 −𝑤𝑝,𝑧 0 ]
 
 
 
 
 

. 

2-30 

𝒎𝟐 = [

−𝑤𝑝,𝑥 0 … 0

0 ⋱ 0 ⋮
⋮ 0 ⋱ 0
0 … 0 −𝑤𝑝,𝑥

]. 

2-31 
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Again, index 𝑝 refers to the three parameters (𝑝=1 for 𝑎, 2 for 𝑏, and 3 for 𝑛). It is important to 

note that Eq. (24) has the same functional form for the three parameters 𝑎, 𝑏 and 𝑛 because it is 

expressed in terms of index 𝑝. However, the actual values of the matrix 𝐖𝐩𝟐
 are different for  

different values of 𝑝 due to the different values of the weights 𝑤𝑝1
and 𝑤𝑝2

. Here, we also have a 

similar T vector but with 3𝑁𝑅𝑁𝐶 elements. After solving a similar equation to (2-11), we will solve 

for all 3𝑁𝑅𝑁𝐶 parameters. 

2.3 Methods 
 

2.3.1 Tissue-mimicking phantoms 
 

1D- and 2D-ALGEBRA were tested to data acquired from five tissue mimicking phantoms with 

the following properties:  

 Phantom A: Uniform  

o 𝛼0,𝑠 = 0.654 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 1.02 × 10−6 𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈   

o 𝜈𝑠 = 4.16 

o 𝜎𝑏,𝑠(6.6MHz)=2.62× 10−3 𝑐𝑚−1𝑠𝑟−1 

 Phantom B: Reference for Phantom A  

o 𝛼0,𝑠 = 0.670 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 8.79 × 10−6 𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈   

o 𝜈𝑠 = 3.14 

o 𝜎𝑏,𝑠(6.6MHz)=3.29× 10−3 𝑐𝑚−1𝑠𝑟−1 

 Phantom C: Attenuation step  

Top and bottom layers: 

o 𝛼0,𝑠 = 0.510 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 1.60 × 10−6 𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈   

o 𝜈𝑠 = 3.52 

o 𝜎𝑏,𝑠(8.9MHz)=3.52× 10−3 𝑐𝑚−1𝑠𝑟−1 

 

 



 

20 
 

 

Middle layer: 

o 𝛼0,𝑠 = 0.779 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 3.22 × 10−6 𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈   

o 𝜈𝑠 = 3.13 

o 𝜎𝑏,𝑠(8.9MHz)=3.02× 10−3 𝑐𝑚−1𝑠𝑟−1 

 Phantom D: Backscatter step 

Top and bottom layers 

o 𝛼0,𝑠 = 0.554 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 4.82 × 10−7 𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈   

o 𝜈𝑠 = 3.80 

o 𝜎𝑏,𝑠(8.9MHz)=3.52× 10−3 𝑐𝑚−1𝑠𝑟−1 

Middle layer 

o 𝛼0,𝑠 = 0.58 𝑑𝐵 ∙ 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 3.94 × 10−6 𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈   

o 𝜈𝑠 = 3.38 

o 𝜎𝑏,𝑠(8.9MHz)=6.37× 10−3 𝑐𝑚−1𝑠𝑟−1 

 Phantom E: Inclusion phantom (Gammex 410SCG phantom (Gammex-SunNuclear, 

Middleton, WI)):  

Background 

o 𝛼0,𝑠 = 0.5 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑠 = 2.997 × 10−6  𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈 

o 𝜈𝑠 = 3.34 

o 𝜎𝑏,𝑠(8MHz)=3.11× 10−3 𝑐𝑚−1𝑠𝑟−1 

Inclusions 

o Three 8mm-diameter cylindrical inclusions with +12, +6 and -6dB scattering with 

respect to the background 

More details about the composition of phantoms A-D are available in [34, 40]. 

Phantom A comprises a water-based agarose-propylene combined with filtered milk. Phantom B 

is composed of water-based agarose added by graphite powder. Both phantoms contain glass-beads 

with 5-43μm diameter as the source of scattering. The ground truth values were obtained with 
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single element transducers to measure attenuation and BSC utilizing narrowband substitution and 

broadband pulse-echo techniques, respectively [41, 42].  

Phantoms C (uniform BSC) and D (uniform attenuation) are water-based phantoms with three 

layer phantoms composed of mixtures of gelatin and unfiltered milk. The concentration of 

scatterers in phantom C is 4g/L in all parts, while in phantom D the concentration of scatterers in 

the second layer is 8g/L which is 4 times more than the other two layers. On the other hand, molten 

gelatin and unfiltered milk have been mixed with the ratio of 2.1:1 in all layers in phantom D. This 

ratio in the middle layer of phantom C is 1:1 to increase its attenuation with respect to the first and 

third layer, where the ratio is 2.85:1 [84].  

2.3.2 Data Acquisition 
 

 Homogenous Phantom 

Two phantoms (A and B above) were scanned with a 9L4 linear array transducer on a Siemens 

Acuson S3000 (Issaquah, WA) scanner operated at a 6.6MHz nominal center frequency to obtain 

10 uncorrelated frames of RF data for each phantom [56]. Phantom B was used as reference for 

the characterization of phantom A. RF data was accessed through the Axius Direct Research 

Interface [41]. 

 Layered Phantoms  

10 uncorrelated frames of RF data were acquired from Phantoms C and D, using their top layers 

as references. Both phantoms were scanned using a linear array transducer on a Siemens Acuson 

S2000 scanner operated at an 8.9MHz center frequency [36].  

 Different Echogenicity Phantom (Gammex phantom) 

Phantom E was scanned using a Verasonics Vantage 128 system (Verasonics, Kirkland, WA) with 

a L11-5v transducer operated at 8MHz to obtain 10 uncorrelated frames of RF data. Uncorrelated 

frames from a homogeneous region of the same phantom were used as reference. 

 

 



 

22 
 

 

2.3.3 Power Spectra Estimation 
 

We applied LSQ, DP, 1D- and 2D-ALGEBRA to 10 independent frames of RF echo data from 

each phantom. Parameter estimation regions of size 4mm×4mm were swept axially and laterally 

over each frame with an overlap of 85%, computing at each position the echo signal power 

spectrum using a multi-taper approach [88]. This procedure resulted in power spectra matrices 

with 40 columns and 74 rows in the uniform phantom, 86 columns and 108 rows in the layered 

phantoms, and 55 columns and 103 rows in Phantom E.  

We have solved LSQ analytically. To apply DP, the following search ranges were used: 

𝛼𝑠_𝑚𝑖𝑛 − 𝛼𝑟 − 0.5

8.686
< 𝑎 <

𝛼𝑠_𝑚𝑎𝑥 − 𝛼𝑟 + 0.5

8.686
 

log0.1
𝛽𝑠_𝑚𝑖𝑛

𝛽𝑟
< 𝑏 < log10

𝛽𝑠_𝑚𝑎𝑥

𝛽𝑟
 

𝜈𝑠_𝑚𝑖𝑛 − 𝜈𝑟 − 2 < 𝑛 < 𝜈𝑠_𝑚𝑎𝑥 − 𝜈𝑟 + 2 

where min and max indices refer to the minimum and maximum ground truth values in the layered 

phantoms. These values were the same in the uniform phantom. 

Tables 2-1(a) and (b) show the regularization weights in each method. The weights of 1D-

ALGEBRA are same as DP. The first and second elements of 2D-ALGEBRA weights correspond 

to the axial and lateral regularizations, respectively. In each method, first, the algorithm was 

executed using weights in order of 10. Then, considering the results, the weights were increased 

or decreased. The weights were increased when we saw a high variance in results, in other words 

when results were close to LSQ. On the other hand, weights were decreased when results were 

approaching a flat line. The values included in Table 2-1(a) and (b) are the final ones. 
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Table 2-1(a) Regularization Weights in Four Phantoms, DP method 

  DP  

Phantom 𝑤𝛼 𝑤𝑏  𝑤𝑛 

A 1012 108 108 

C 7×106 101 6×104 

D 7×108 3×101 104 

E 8×102 8×102 8×102 

 

Table 2-1(b) Regularization Weights in Four Phantoms,  2D-ALGEBRA method 

  2D-ALGEBRA  

Phantom 𝑤𝛼 𝑤𝑏  𝑤𝑛 

A [1010              1010] [108            108] [108              108] 

C [7×106       109] [101            101] [6×104    6×104] 

D [7×108  7×108] [3×101   3×101] [104              104] 

E [4×102  4×102] [4×102  4×102] [4×102    4×102] 

 

It can be easily shown that a symmetric diagonal dominant matrix, where its diagonal entries are 

positive, is a positive definite matrix. In addition, according to a theorem in linear algebra [89], 

the unique solution for equation Ax = b exists if and only if A (here, matrix U) is full rank. 

Therefore, as U is full rank, the unique solution exists. 1D- and 2D-ALGEBRA were implemented 

in Matlab R2018a (MathWorks, USA). 

To obtain Y in Eq. (2-11), we use the mldivide function "\" in Matlab. This operator is time 

efficient and provides two algorithms for full and sparse inputs [90]. 
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2.4 Results 
 

 Phantom A 

Figure 2-2(a) shows the mean and the standard deviation (error bars) of the attenuation coefficient 

(𝛼𝑠) vs. depth obtained from the 400 estimates  using DP (green), 1D-ALGEBRA (blue), and 2D-

ALGEBRA (red). The black dash line refers to the expected values. While 1D-ALGEBRA resulted 

in larger standard deviation compared to DP, the standard deviation obtained with 2D-ALGEBRA 

was close to that of DP.  

In Figure 2-2(b), the BSC is reconstructed from the average values of the 400 estimates of 𝛽𝑠 and 

𝜈𝑠. It can be observed that the bias of estimation using 1D- and 2D-ALGEBRA is lower than LSQ 

and DP. 

Figure 2-3 shows the B-mode image of the phantom and parametric images of the reconstructed 

BSC evaluated at 6.6MHz in dB scale with respect to 10−4  cm-1 sr-1 using LSQ, DP, 1D- and 2D-

ALGEBRA. In all phantoms, the range of color bar corresponds to the range of values obtained 

with DP. Visual comparison confirms that 1D- and 2D-ALGEBRA have the most similarity to 

ground truth compared to DP and LSQ. Quantitative analysis of bias and variance of BSC at center 

frequency reveals that using 1D-ALGEBRA leads to 98% decrease in variance and 39% in bias 

respect to DP. In addition, using 2D-ALGEBRA results in 100% and 35% reduction in variance 

and bias, respectively.  

To estimate the QUS parameters in an image with 𝑁𝐶 =74 and 𝑁𝑅 =40 using 1D- and 2D- 

ALGEBRA required 4 and 8 sec, respectively. In comparison, a Matlab implementation of DP 

required 2400 second for the same problem.  

 Phantoms C and D 

Figure 2-4(a) and 2-4(b-d) show the average and standard deviation (error bars) over 860 estimates 

of 𝛼𝑒𝑓𝑓  for Phantom C (attenuation step) and the results of the reconstruction of the BSC from the 

average values of 𝛽𝑠 and 𝜈𝑠 in each layer using Eq. (2-2 to 2-5), respectively. In these Figures, the 

black dashed line is the expected value of the parameter. In the case of the effective attenuation 

(Figure 2-4(a)), there is a smooth transition from the top to the middle layer to do the averaging 

effect of Eq. (2-4). Also, the standard deviation of DP is lower than 1D- ALGEBRA. On the other 

hand, Figure 2-5 reveals that the step size in DP had not been small enough as we see each layer 
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is not distinguished well. Here, to show how different layers are distinguished, we created a 

parametric image of the local attenuation (𝛼𝑙𝑜𝑐𝑎𝑙). The following equation shows how 𝛼𝑙𝑜𝑐𝑎𝑙 is 

obtained from 𝛼𝑒𝑓𝑓: 

 𝛼𝑙𝑜𝑐𝑎𝑙(𝑖) =
𝛼𝑒𝑓𝑓(𝑖)𝑧𝑖 − 𝛼𝑒𝑓𝑓(𝑖 − 1)𝑧𝑖−1

𝑧𝑖 − 𝑧𝑖−1
    

2-32 

 

                                                  (a)                                                                 (b) 

Figure 2-2 Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) 
in phantom A (uniform). The error bars show the standard deviation over the 400 samples for 
attenuation coefficient (a) and reconstructed BSC averaged over 400 samples (b). In (a), blue, red, 
cyan and black are superimposed. The black dashed line is the GT. 

 

Figure 2-5(f) demonstrates that using 2D-ALGEBRA, 𝛼𝑙𝑜𝑐𝑎𝑙  estimation agrees well with ground 

truth. The analysis of bias and variance of local attenuation shows that 1D- and 2D-ALGEBRA 

yield 81% reduction in bias. The variance of DP results is small, but it should not be misinterpreted 

as we see the parametric image of DP is far from the ground truth. This is evidence of the 

drawbacks of DP referred to in the introduction section.  

To estimate the QUS parameters in an image with 𝑁𝐶 =108 and 𝑁𝑅 =86 required 6 and 12 sec, 

respectively. In comparison, a Matlab implementation of DP required 3600 sec for the same 

problem. 
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                     (a) B-mode                              (b) Ground truth                            (c) LSQ 

 

                     (d) DP                               (e) 1D-ALGEBRA                    (f) 2D-ALGEBRA 

 

Figure 2-3 Parametric images of the BSC at the center frequency in phantom A (uniform). Results 
are shown on a dB scale with respect to 10-4 cm-1 sr-1. The colorbar shows BSC at the center 
frequency. 

Figure 2-6(a) shows the error bars over 860 estimate of 𝛼𝑒𝑓𝑓  for phantom D (backscatter step) and 

Figure 2-6(d) shows results of the reconstruction of the BSC from the average values of 𝛽𝑠 and 𝜈𝑠 

in each layer.  

Figure 2-7. shows the B-mode (a) and ground truth (b) as well as parametric images of BSC 

obtained at the center frequency using LSQ (c), DP (d), 1D (e)- and 2D-ALGEBRA (f) in phantom 

D (backscatter step). Visual assessment confirms that 1D- and 2D-ALGEBRA outperform other 

methods. Quantitative assessments of BSC at central frequency disclose 88% reduction in variance 

as well as 56% in bias using 1D-ALGEBRA compared to DP. In addition, using 2D-ALGEBRA 

leads to 99% and 55% decrease in variance and bias compared to DP, respectively.  
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To estimate the QUS parameters in an image with 𝑁𝐶 =108 and 𝑁𝑅 =86 with 1D- and 2D-

ALGEBRA took 9 and 18 sec, respectively. In comparison, a Matlab implementation of DP took 

5400 second for the same problem. 

.   

                                         (a)                                                                   (b) 

 

                                         (c)                                                                 (d) 

Figure 2-4 Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) 
in phantom C (attenuation step). The error bars show the standard deviation over the 860 samples 
for attenuation coefficient (a) and reconstructed BSC averaged over 400 samples in layer 1 (b), 
layer 2 (c), layer 3 (d). The black dashed line is the ground truth values. The red curve is 
superimposed by the blue curve. 

 

 Phantom E 

Figure 2-8 shows the parametric image of BSC at the center frequency. Quantitative assessment 

of BSC at the center frequency reveals that using 1D-ALGEBRA leads to 35% reduction in bias 
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in addition to 29% reduction in variance laterally compared to DP. Furthermore, using 2D-

ALGEBRA yields 31% and 25% reduction in variance laterally and axially, respectively as well 

as 26% reduction in bias with respect to DP. 

To estimate the QUS parameters in an image with 𝑁𝐶 =103 and 𝑁𝑅 =55, required 2 and 4 sec, 

respectively. In comparison, a Matlab implementation of DP took 1200 second for the same 

problem. 

 

                                (a) B-mode                    (b) Ground truth                     (c) LSQ 

 

                                  (d) DP                      (e) 1D-ALGEBRA                  (f) 2D-ALGEBRA 

 

Figure 2-5 Parametric images of the local attenuation (computed from Eq. (2-32)) of phantom C 
(attenuation step). The color bar shows the value of local attenuation. 
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                                           (a)                                                              (b) 

 

                                            (c)                                                                (d) 

Figure 2-6 Results of 1D-ALGEBRA (blue), 2D-ALGEBRA (red), DP (green), and LSQ (cyan) 
in phantom D (backscatter step). The error bars show the standard deviation over the 860 samples 
for the effective attenuation (a) and reconstructed BSC averaged over 400 samples in layer 1 (b), 
layer 2 (c), layer 3 (d). The black dashed line is the GT. The red curve is superimposed by the blue 
curve. 

 

Figures 2-9(a) and (b) show two parametric images of phantom E using 1D-Algebra with two 

different sets of weights: [10, 10, 10] and [104, 104, 104], respectively. Figure 2-9(b) is smoother 

than Figure 2-9(a) (less variance), at the expense of blurring the edges of the inclusions (larger 

bias). 
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                            (a) B-mode                      (b) Ground truth                  (c) LSQ 

 

 

                               (d) DP                        (e) 1D-ALGEBRA             (f) 2D-ALGEBRA 

 

Figure 2-7 Parametric image of the backscatter coefficient at the center frequency of phantom D 
(backscatter step). Results are shown on a dB scale with respect to 10-4 cm-1 sr-1. 

 

2.5 Discussion 
 

This work presented two analytical, regularized estimators of the attenuation and backscatter 

properties of tissue-mimicking materials. After various tests in tissue-mimicking phantoms, these 

algorithms, named 1D- and 2D-ALGEBRA, outperformed previously proposed regularized 

strategies (DP) in the following aspects: 
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1. Because of 1D- and 2D-ALGEBRA are analytical solutions to the minimization of a cost 

function, it does not require the definition of search ranges for the expected values of the 

parameters.  

2. Contrary to DP, the attenuation and backscatter parameters can be estimated on a continuous 

scale. 

3. Both 1D- and 2D-ALGEBRA are up to 600 times faster than DP. 

Considering these advantages, ALGEBRA has great potential to be applied clinically. 

Theoretically, we expect exactly the same result using DP and 1D-ALGEBRA as the cost functions 

are the same. However, achieving this requires step sizes to be small enough so that discontinuous 

ranges provided by DP be approximated by continuous range provided by 1D-ALGEBRA. On the 

other hand, as we are using a large number of samples, it is practically impossible to consider small 

step size for each parameter. For that reason, DP results are not as good as 1D-ALGEBRA. 

Nevertheless, 1D-ALGEBRA yields estimates with similar levels of bias and standard deviation 

than DP, but in a much shorter time.  

Moreover, comparing 1D-ALGEBRA and 2D-ALGEBRA reveals that 2D-ALGEBRA 

outperforms 1D-ALGEBRA in terms of bias and variance as it exploits regularization in both axial 

and lateral directions. Comparing the backscatter coefficient estimation results shown in Figures 

2-2, 2-4, 2-6(b-d) can result in the misleading conclusion that 1D-ALGEBRA and 2D-ALGEBRA 

provide almost the same results. This happens as we are plotting semi-log of 𝛽𝑠
𝜈𝑠. The improved 

performance of 2D-ALGEBRA compared to 1D-ALGEBRA is clear when 2D color-coded images 

are compared as shown in Figures 2-3, 2-5, and 2-7. In phantom A (uniform) shown in Figure 2-

3, 2D-ALGEBRA leads to almost same estimations in all parts of the phantom. For the layered 

phantoms (Figures 2-5, 2-7) it can be seen that 2D-ALGEBRA can well distinguish three layers 

of phantoms C and D, especially in phantom D with the backscatter step. 

2.6 Conclusion 
 

In this study, two versions of an analytically-solved, regularized QUS estimation technique, 1D-

ALGEBRA and 2D-ALGEBRA, were proposed to estimate the effective attenuation as well as the 

magnitude and frequency dependence of the backscatter coefficient. 1D-ALGEBRA is the fast 

version of our previous DP method which applies an axially regularized cost function. On the other 
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hand, 2D-ALGEBRA uses a globally (axially and laterally) regularized cost function. Regarding 

the quantitative analysis of bias and variance, we can conclude that applying 2D-ALGEBRA 

substantially improves the results compared to DP as it benefits the regularization in both axial 

and lateral directions.  

 

  

                                 (a) B-mode                        (b) GT                            (c) LSQ 

 

 

                                    (d) DP                            (e) 1D-ALGEBRA               (f) 2D-ALGEBRA 

 

Figure 2-8 Parametric image of the backscatter coefficient at the center frequency of phantom E 
(inclusion phantom). Results are shown on a dB scale with respect to 10-4 cm-1 sr-1. 
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                                                         (a)                                    (b) 

Figure 2-9 Influence of regularization weights in the parametric images of phantom E with 1D-
ALGEBRA. Weights in (a): [10 10 10], weights in (b): [104 104 104]. 
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3 Chapter 3 

Physics-Inspired Regularized Pulse-Echo Quantitative 
Ultrasound: Efficient Optimization with ADMM 
 

This chapter is submitted in IEEE Trans. UFFC, Major revision requested, 2022 and IEEE 

International Ultrasonic Symposium (IUS), 2022. 

 

Herein, we make two contributions to this field: First, we consider the physics of the average 

attenuation and backscattering to devise regularization terms accordingly. More specifically, since 

the average attenuation gradually alters in different parts of the tissue while BSC can vary 

markedly from tissue to tissue, we apply L2 and L1 norms for the average attenuation and the BSC, 

respectively. Second, we multiply different frequencies and depths of the power spectra with 

different weights according to their noise levels. Our rationale is that the high-frequency contents 

of the power spectra at deep regions have a low signal-to-noise ratio. We exploit the alternating 

direction method of multipliers (ADMM) for optimizing the cost function. Qualitative and 

quantitative evaluation of bias and variance exhibit that our proposed algorithm substantially 

improves the estimations of the average attenuation and the BSC. 

3.1 Background  
 

Our group recently proposed ALGEBRA, to estimate the total attenuation and the BSC. 

ALGEBRA optimizes a penalty function containing the L2 norm in both data and regularization 

terms. However, it suffers from two major issues as follows: 

1) ALGEBRA considers L2 norm regularization for both the average attenuation from 

intervening tissues (hereforth referred to as 𝛼𝑎𝑣𝑔), and the BSC. Nonetheless, according to the 

physics, the 𝛼𝑎𝑣𝑔, and BSC have different rates of spatial variations (due to the averaging effect 

in 𝛼𝑎𝑣𝑔 and the different physical mechanisms underlying absorption and scattering). In general, 

BSC can change from tissue to tissue, while 𝛼𝑎𝑣𝑔, presents more gradual changes.  

2) ALGEBRA considers equal involvement for power spectra at each frequency and depth in 
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parameter estimation. However, different frequency components of the power spectrum present 

varying levels of signal-to-noise ratio (SNR) as a function of depth. A maximum likelihood 

estimator should put less trust in low SNR data. 

To overcome the drawbacks mentioned above, we utilize the L2 norm for the average attenuation 

and the L1 norm for the BSC in the regularization part of the cost function. To optimize the 

proposed cost function efficiently, we employ the Alternation Direction Method of Multipliers, or 

ADMM. ADMM has been previously used by Coila et al. [50] for the regularization of local 

attenuation estimation. However, the authors did not parameterize BSC through the power-law 

model. We also introduce a criterion to define weights that vary with frequency and depth. 

3.2 Methods 
Similar to [56], [91], [92], we start with the RPM [83], a well-known approach employed to cancel 

system dependencies. Accordingly, we exploit equations 2-1 to 2-9. 

3.2.1 ADMM for L1 Norm Regularization in QUS 
 

We consider two different regularization functions R1 and R2 as follows. In R1, we use the L1 norm 

regularization for all the parameters: 

𝑅1 = ∑𝑤𝑎|𝑎𝑖 − 𝑎𝑖−1| + 𝑤𝑏|𝑏𝑖 − 𝑏𝑖−1| + 𝑤𝑛|𝑛𝑖 − 𝑛𝑖−1|

𝑁𝑅

𝑖=2

 

3-1 

where 𝑤𝑎, 𝑤𝑏 , and 𝑤𝑛 refer to the regularization weights for each parameter.  

In R2, we use L2 norm for the average attenuation and L1 for the BSC-related terms: 

𝑅2 = ∑𝑤𝑎(𝑎𝑖 − 𝑎𝑖−1)
2 + 𝑤𝑏|𝑏𝑖 − 𝑏𝑖−1| + 𝑤𝑛|𝑛𝑖 − 𝑛𝑖−1|

𝑁𝑅

𝑖=2

. 

3-2 

Here, the issue is that L1 norm is not analytically differentiable. To solve this, consider the goal is 

minimizing the following constrain cost function: 

𝐶 = 𝐷(𝑥) + 𝑅(𝑠) 
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subject to 𝐾 𝑥 + 𝐿𝑠 = 𝑚 

3-3 

where K and L are known matrixes and m is a given vector, x and s are separable variables. 

The augmented Lagrangian function solves the unconstrained version of the above constrained 

cost function as follows: 

      Lρ(x, s, y) =  D(x) +  R(s) + yT ( 𝐾 𝑥 + 𝐿𝑠 − 𝑚) + (
ρ

2
) || 𝐾 𝑥 + 𝐿𝑠 − 𝑚||2

2 

3-4 
where y is the Lagrange multiplier and ρ > 0 weights the constrain. 

ADMM solves the Eq. (3-3) iteratively as follows: 

𝑥𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥(𝐿𝜌(𝑥, 𝑠𝑘 , 𝑦𝑘))   

 𝑠𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠(𝐿𝜌(𝑥𝑘+1, 𝑠, 𝑦𝑘))    

 𝑦𝑘+1 = 𝑦𝑘 + ρ(Kxk+1  +  Lsk+1 −  m) 

3-5 

where k shows the iteration number. 

Therefore, as ADMM’s name implies, it penalizes each component of the cost function 

sequentially (alternative direction). This feature is favorable when an identical optimization 

procedure is not applicable for both data and regularization terms.  

Herein, we start with rewriting Eq. (2-9) in the matrix format and call the obtained equation 𝑄 𝑥 =

𝑌 where   𝑥 = [𝑎1 𝑎2 …𝑎𝑁𝑅
 𝑏1 …𝑏𝑁𝑅

 𝑛1 …𝑛𝑁𝑅
]
𝑇
, Q is a matrix containing depth and frequency 

and Y is a vector. We multiply both sides of this equation by  𝑄𝑇 and name 𝑄𝑇𝑄 = 𝐻, 𝑄𝑇𝑌 = 𝑡, 

and minimize the following cost function: 

𝐶= 1
2
||𝐻𝑥 − 𝑡||

2

2
, +𝜆 ||𝑠||

1
 

subject to 𝐾𝑥 − 𝑠 = 0 

3-6 
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where s denotes the regularization term, 𝐻, K, and t are equal to Eqs. 2-14, 2-17, 2-19, respectively: 

Now, to update x, s, and y, we exploit Eqs. (3-4), (3-5), where D(x) and R(s) are 1
2
||𝐻𝑥 − 𝑡||

2

2
, and 

𝜆 ||𝑠||
1
, respectively. Accordingly, we obtain: 

xk+1 ∶=  (HTH +  ρKTK)−1HTt +  ρKT (sk  −  yk))     

To update s, the following equation is obtained with respect to the shrinkage function Sλ

ρ

: 

𝑠𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠 𝜆||𝑠||1 − 𝑦 +
𝜌

2
||𝐾𝑥𝑘+1 − 𝑠||

2
 

which performs as soft thresholding: 

                          Sλ
ρ

= sgn(∙)max{| ∙ | −
λ

ρ
, 0}                   

Consequently, we have: 

sk+1 ∶=  𝑆λ
ρ

(K xk+1  +  yk)   

  y𝑘+1 =  yk  +  K xk+1  −  sk+1. 

3-7 

In contrast to the BSC, which can vary abruptly between different tissue regions, the average 

attenuation varies moderately. To be consistent with this physical property, we propose employing the 

L2 norm for the average attenuation and the L1 norm for the BSC in the regularization part instead of 

incorporating the same norms for all the parameters. Accordingly, we split the vector x into two parts 

for the average attenuation 𝑥1 and the BSC 𝑥2. Consequently, the corresponding elements of s and y 

are called 𝑠1, 𝑠2, 𝑦1, 𝑦2. Therefore, the algorithm is modified as follows: 

𝐶= 1
2
||𝐻𝑥 − 𝑡||

2

2
, +𝜆1 ||𝑠1||2

2
+ 𝜆2 ||𝑠2||1 

subject to 𝐾1 𝑥1 − 𝑠1 = 0, 𝐾2 𝑥2 − 𝑠2 = 0 

3-8 

Updating x and y are same as Eq. (3-7), but s is updated by 𝑠1 and 𝑠2 as follows: 
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xk+1 ∶=  (HTH +  ρKTK)−1HTt +  ρKT (sk  − yk)    

s1
k+1 ∶=  (K1 x1

k+1  +  y1
k)/( ρ + λ1) 

                                    s2
k+1 ∶=  Sλ2

ρ

(K2 x2
k+1  +  y2

k)                

                             yk+1 =  yk  +  K xk+1  −  sk+1                    

3-9 

where H and K are same as Eqs. (2-14) and (2-17), and 𝐾1, 𝐾2, 𝑥1, 𝑥2are: 

𝐾1 = 𝑲𝒂 , 𝐾2 = [
𝐊𝐛 𝐎
𝐎 𝐊𝐧

] 

3-10 

             𝑥1 = [ 𝑎1 𝑎2 …𝑎𝑁𝑅
]
𝑇
, 𝑥2 = [𝑏1 …𝑏𝑁𝑅

 𝑛1 …𝑛𝑁𝑅
]
𝑇
 

3-11 

3.2.2 Weighted Frequency 
 

We use a weighted frequency scheme to give the power spectra a score (weight) at each frequency and 

depth. To do so, the data term is multiplied by 𝑤𝑑. Thus, the data term formulation is adapted as 

follows: 

𝐷 = ∑∑𝑤𝑑(𝑙, 𝑖)(𝑋(𝑓𝑙 , 𝑧𝑖) − 𝑏𝑖 − 𝑛𝑖ln(𝑓𝑙) + 4𝑎𝑖𝑓𝑙𝑧𝑖)
2

𝑁𝑅

𝑖=1

𝑁𝐹

𝑙=1

 

3-12 
To select the bandwidth, we plot the logarithmic scale of the lateral average of the power spectra of 

sample and reference phantoms and determine the corresponding frequency range where higher power 

is amassed. The black dash lines in Figures 3-1 and 3-2 illustrate this range for example power spectra 

obtained from a sample phantom and a reference phantom, which are the corresponding frequencies 

for 80% of the maximum logarithmic power spectra. Herein, the background of the sample phantom 

is the reference phantom. To calculate 𝑤𝑑, we propose using contour level sets depicted in Figures 3-

3 and 3-4, and to carry out this, we form the following equations to compute 𝑤𝑠 and 𝑤𝑟 for the sample 

and reference phantoms separately. 
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𝑤𝑠 = {

1, 𝑆𝑠 > 𝑇1𝑠

𝑆𝑠 − 𝑇2𝑠

𝑇1𝑠 − 𝑇2𝑠
, 𝑇1𝑠 > 𝑆𝑠 > 𝑇2𝑠

 

𝑤𝑟 = {

1, 𝑆𝑟 > 𝑇1𝑟

𝑆𝑟 − 𝑇2𝑟

𝑇1𝑟 − 𝑇2𝑟
, 𝑇2𝑠 > 𝑆𝑟 > 𝑇2𝑟

 

where S is the logarithmic scale of the power spectra shown in Figures 3-1 and 3-2, and 𝑇1 and 𝑇2 

express the upper level and lower level of contours shown in Figures 3-3 and 3-4 with yellow and 

purple colors, respectively. The upper and lower level are 90% of the maximum and 167% of the 

minimum of the logarithmic power spectra. 

In the end, the intersection of the 𝑤𝑠 and 𝑤𝑟 computed using element-wise matrix multiplication is 

regarded as 𝑤𝑑: 

𝑤𝑑 = 𝑤𝑠⨀ 𝑤𝑟 . 

3-13 
Figure 3-1(a) exhibits power spectra of the sample phantom that were affected by the specular 

reflectors. Accordingly, we only consider the reference phantom to calculate 𝑤𝑑 (𝑤𝑑 = 𝑤𝑟). 

Figures 3-5 and 3-6 demonstrate 𝑤𝑑 for the region with specular reflectors and the region with 

inclusions. 

3.2.3 Tissue mimicking phantom and data acquisition 
 

Two regions of a phantom named Gammex 410SCG (Gammex-Sun Nuclear, Middleton, WI) were 

scanned with the serial number of 805546-4612–3 and 802259-2888-5 at Mexico and University 

of Wisconsin-Madison. In both regions, the background is the reference phantom. 

 Region with Specular Reflectors 

Five uncorrelated frames of RF data were collected, using the same transducer and operation 

parameters as the Gammex 410 SCG phantom. This region contains the presence of three nylon 

filaments of 0.1 mm in diameter. To get the Nylon filaments to produce specular reflectors, they 

were scanned placing the transducer perpendicular to the front face of the phantom. These 

structures produce echo signals originated from a coherent scattering process, despite the fact that 

these structures can commonly be present prior to the region of interest or within it, they violate 
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the assumption of incoherent scattering process on which the RPM is based, reducing the accuracy 

and precision of acoustic parameters such as the backscatter coefficient [93], [94]. Therefore, the 

importance of this analysis was to evaluate the susceptibility of the method in the estimation of 

QUS parameters, in terms of bias and variance, due to the presence of specular reflectors. 

The background has the following properties: 

o 𝛼𝑒𝑓𝑓 = 0.6035 𝑑𝐵 𝑐𝑚−1 𝑀𝐻𝑧−1 

o 𝛽𝑟 = 2.9966 × 10−6  𝑐𝑚−1𝑠𝑟−1𝑀𝐻𝑧−𝜈 

o 𝜈𝑛 = 3.4281 

o 𝜎𝑏,𝑟(8 MHz)=3.74× 10−3 𝑐𝑚−1𝑠𝑟−1 

 Region with Inclusions 

Ten uncorrelated frames of RF data were collected, using the homogeneous region as the reference 

with an L11-5v transducer operated at an 8 MHz center frequency on a Verasonics Vantage 128 

system (Verasonics, Kirkland, WA).  

This region is composed of three cylindrical inclusions with +12dB, +6dB, and -6dB scattering 

respecting the background. The 𝛼𝑎𝑣𝑔 and the BSC of this region are same as the region with 

specular reflectors. 

 

 
(a) (b) 

Figure 3-1 Lateral average of the power spectra of sample phantom (a) and reference phantom (b) 
in the logarithmic scale for the region with specular reflectors. 
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                                    (a)                                        (b) 

Figure 3-2 Lateral average of the power spectra of sample phantom (a) and reference phantom 
(b) in the logarithmic scale for the region with inclusions. 

 

 

Figure 3-3 Contour levels of the lateral average of the power spectra of reference phantom in the 
logarithmic scale for the region with specular reflectors. 

 

 

                                 (a)                                          (b) 

Figure 3-4 Contour levels of the lateral average of the power spectra of sample phantom (a) and 
reference phantom (b) in the logarithmic scale for the region with inclusions. 
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Figure 3-5 𝑤𝑑 for the region with specular reflectors. 

 

Figure 3-6 𝑤𝑑 for the region with inclusions. 

3.2.4 Quantitative Metrics 
 

In this study, we report the variance and bias of the estimations to evaluate and compare the results. 

To compute the variance and bias, four regions of the interests (ROI) are selected for each region. 

Figures. 3-7 and 3-8 present the locations of each ROI on a B-mode image of the region with 

specular reflectors and the region with inclusion, respectively. For the region with specular 

reflectors the locations are selected between the fibers and for the region with inclusions at the 

center of the background and each inclusion.  

To report the bias and variance for each ROI, we calculate the average of the estimations across 

the frames, M, and exploit the following equations. The BSC is scaled to dB w. r. to 10-4 as follows: 
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bias_ 𝛼𝑎𝑣𝑔 = |𝑀𝑎𝑖
 (: ) − 𝐺𝑇𝑎| 

variance_ 𝛼𝑎𝑣𝑔 = 𝑣𝑎𝑟(𝑀𝑎𝑖
(: )) 

bias_𝐵𝑆𝐶 = |10 log10 (
𝑀𝐵𝑆𝐶𝑖(:)

10−4 ) − 10 log10 (
𝐺𝑇𝐵𝑆𝐶

1𝑒−4 ) | 

variance_𝐵𝑆𝐶 = 𝑣𝑎𝑟(10 log10 (
𝑀𝐵𝑆𝐶𝑖(:)

10−4 )) 

3-14 

where GT accounts for the ground truth. 

 

 

Figure 3-7 Location of ROI in the region with specular reflectors. 

 

Figure 3-8 Location of ROI in the region with inclusions. 
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3.3 Results  
 

Figures. 3-9 to 3-13 compare six techniques tested on the region with specular reflectors and the 

region with inclusions. Regularization weights are tuned individually for each set to ensure the 

best results are fulfilled.  

 Region with Specular Reflector 

Figures. 3-9 and 3-10 report the bias and variance of the BSC on the dB scale and the average 

attenuation. The Figures demonstrate the superior performance of ADMM in terms of bias and 

variance compared to the ALGEBRA. More precisely, comparing ADMM and ALGEBRA both 

without 𝑤𝑑 in regions 1 to 4 reveals the bias of BSC estimation decreased 86.1%, 88.3%, 76.3%, 

and 83.1%, respectively and the variance experienced 68.8%, 78.9%, 60.1% and 77.7% reduction. 

Moreover, the bias of average attenuation decreased 85.5%, 92.7%, 83%, and 93.2% in ROI 1 to 

4 as well as 76.5%, 84.4%, 54.1%, and 76.2% reduction in the variance in each region is obtained. 

Additionally, associating ADMM with 𝑤𝑑, and different norms in the regularization term enhance 

the estimation. 

Quantitative comparison of ALGEBRA with and without 𝑤𝑑 in Figure 3- 9 shows that smoother 

estimations are acquired by incorporating 𝑤𝑑 in the cost function. Moreover, engaging ADMM 

with 𝑤𝑑 is accompanied by the following quantitative analysis concerning not including 𝑤𝑑 in the 

cost function. Using the 𝑤𝑑 strategy in ADMM reduced the bias of BSC by 88.1%, 52.5%, and 

98.9%, in regions 1 to 3, compared to not using 𝑤𝑑. Additionally, the variance is reduced by 42.1% 

in region 1. Moreover, attenuation evaluation results in 86.3%, 44.6%, decline in bias in regions 1 

and 3. Regarding variance appraisal 52.2% lower variance is reported in region 1 when using 

ADMM with 𝑤𝑑  vs not using 𝑤𝑑. A Matlab implementation of ALGEBRA shows it is 100 times 

faster than ADMM for this region. 

 Region with Inclusion 

The results of BSC estimation at center frequency using six techniques are depicted in Figure 3-

11. The visual comparison of the parametric images presents that ADMM surpasses ALGEBRA 

as it is more similar to the GT. From Figures 3-12 and 3-13, it is perceived that encompassing 𝑤𝑑 

in the ALGEBRA cost function reduces the bias and variance of the BSC and the average 
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attenuation estimations. Comparing results of our proposed technique concerning ADMM without 

weighting the data term shows 80.3% reduction in the bias in region 2 as well as 15.5%, 22.1%, 

and 1% reduction in the variance of BSC estimation in region 1, 3, and 4, respectively. 

Furthermore, attenuation evaluation results in 29.4%, 88.2%, and 66.1% decline in the bias of 

regions 2 to 4 besides 4.2%, 10.9% decrement in the variance of regions 1 and 3. A Matlab 

implementation of ALGEBRA shows it is 18 times faster than ADMM for this region. 

 

                                 (a)                                                                                     (b) 

Figure 3-9 Comparison of bias (a) and variance (b) of the BSC using ALGEBRA (ALGEBRA No 
𝑤𝑑), ALGEBRA associated with weighting the data term (ALGEBRA 𝑤𝑑), ADMM without 
weighting the data term and using L2 norm in the regularization part for all the parameters (ADMM 
No 𝑤𝑑), ADMM associated with weighting the data term and using L2 norm in the regularization 
part for all the parameters (ADMM 𝑤𝑑), ADMM without weighting the data term and using L1 
norm for the BSC and L2 norm for the average attenuation (ADMM L1L2 No 𝑤𝑑), and ADMM 
associated with weighting the data term and using L1 norm for the BSC and L2 norm for the 
average attenuation (ADMM L1L2 𝑤𝑑 ) in four ROI of the region with specular reflectors. Results 
are shown on a dB scale with respect to 10-4 cm-1 sr-1. 
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3.4 Discussion 
 

In this work, we exploited the RPM to formulate our proposed technique. Although new reference 

phantom free methods have been developed, the RPM can be feasibly implemented in the clinic 

without having to scan a phantom after each patient. Commercial scanners can be equipped by a 

pre-tuned reference phantom or data to train a machine learning model for providing the 

attenuation values. However, these systems provide the BSC measurement at one frequency [2].  

Here, we presented a novel penalty function consisting of L2 norm weighted data term and L1 and 

L2 norm regularization terms optimized using ADMM. Our method was applied to data acquired 

from two regions of a phantom which we called the region with specular reflectors and the region 

with inclusions.  

 

 

                                          (a)                                                                                (b) 

Figure 3-10 Comparison of bias (a) and variance (b) of the average attenuation using ALGEBRA 
(ALGEBRA No 𝑤𝑑), ALGEBRA associated with weighting the data term (ALGEBRA 𝑤𝑑), 
ADMM without weighting the data term and using L2 norm in the regularization part for all the 
parameters (ADMM No 𝑤𝑑), ADMM associated with weighting the data term and using L2 norm 
in the regularization part for all the parameters (ADMM 𝑤𝑑), ADMM without weighting the data 
term and using L1 norm for the BSC and L2 norm for the average attenuation (ADMM L1L2 No 
𝑤𝑑), and ADMM associated with weighting the data term and using L1 norm for the BSC and L2 
norm for the average attenuation (ADMM L1L2 𝑤𝑑 ) in four ROI of the region with specular 
reflectors. 
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Unlike [91], we carefully focused on selecting the bandwidth in the first part of our proposed 

technique. In [91], the frequency range was chosen based on the evaluation of the bias and variance 

of the BSC and the average attenuation estimations. Therefore, we observed for the region with 

inclusions a wide frequency range leads to the results that were in very good agreements with the 

GT. However, herein, our strategy for selecting the bandwidth of interest is different. Figures 3-1 

and 3-2 show that the frequency ranges were chosen based on the parametric image of the power 

spectra of the sample and reference phantoms. The intersection of the corresponding frequency 

ranges of the sample and the reference phantoms with high concentrated power is accounted for 

as the bandwidth of interest which is depth dependent as well. Our proposed approach for selecting 

the bandwidth of interest is more reasonable compared to the method we applied in [91] because 

of two points: 1) It is possible that a wide frequency range leads to excellent results in terms of the 

quantitative and qualitative assessments, but the selected band may contain low power, which is 

the case when sample and reference phantom are the same 2) In clinical applications with unknown 

GT, evaluation of bias which leads to selecting the frequency range is not practical.  

In the next step, we weighted the data term using the contour level sets. Weighting the data term 

is similar to giving scores from 0 to 1 to the least and most informative band of the echo signal 

power spectrum. On the other hand, considering zero weight does not make sense as there is still 

power on the less informative parts. Furthermore, assigning zero weights means completely 

ignoring the data term part of the cost function. Hence, we shifted the calculated 𝑤𝑑 and 

normalized it by dividing it by the maximum value of the new calculated 𝑤𝑑. Afterward, we 

appointed the L2 regularization norm for attenuation and the L1 norm for BSC to be in accordance 

with the physic-based properties of each. Finally, our novel cost function was minimized using 

ADMM. An important point that should be taken into account is that the expense of the 

computational complexity for reducing the bias and variance is worth, especially when a phantom 

or tissue that we attempt to characterize, be similar to the region with specular reflectors meaning 

that the majority part of the media is with the same QUS parameters and a small fraction of that 

has different parameters. In such a case, the ALGEBRA completely fails and our proposed 

technique is highly preferable. But similar to ALGEBRA, a limitation of our method is that for 

calculating the local attenuation, first, the effective attenuation needs to be estimated. Overall, the 

best results in terms of bias and variance for both regions of the phantom were acquired by 
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weighting the data term and applying L1 and L2 norms in the regularization part of the cost 

function.  

Calculating 𝑤𝑑 is performed offline. In a general case, we need to consider both phantoms. Here, 

as the sample and reference phantoms are the same and we take into account the average power 

spectra, the correlation between the power spectra of the sample and reference is high and they 

look similar. Therefore, considering only reference would be enough. 

In real experiments where GT are unknown, choosing the weights can be more challenging. In 

such cases, one way to investigate what weights are proper is to first run LSQ which is equal to 

setting zero weights for all the parameters and plot the QUS parameters. Then, we can set the 

weights to the values in the range of 0.1, 10, 1e2, …,1e8 and plot the results. Let us assume that 

for the weight 1e3, the results are almost identical to the LSQ. This means this weight is too small. 

Furthermore, if we suppose for the weight 1e7 the results are constant, it means the chosen weight 

is too large. In this case, 1e5 can be the optimal weight. To test this, we can double the optimal 

weight (2e5) and plot the results. If the results are similar to 1e5, then the optimal weight is 1e5. 

This implies that the results are independent of the weight. 

Additionally, here, we did not make an effort to optimize the computational complexity. Instead, 

our goal was to introduce a prototype for estimating the average attenuation and BSC. On the other 

hand, Matlab is inherently inefficient especially when relying on for loops over matrix 

manipulations. Dramatic speed improvements can be obtained using the same algorithm when 

implemented using a different language. 

Significant differences between our work and other groups are: I) Proposing weighting the data 

term. II) Taking into account physics properties of QUS parameter in the cost function.  

We predict using 𝑤𝑑 and combining L1 and L2 norms in the cost function can further improve the 

bias of estimation for the cases that sample and reference phantoms are different. 

3.5 Conclusion 
 

Herein, we proposed a novel approach for estimating the average attenuation and the BSC. Our 

algorithm incorporates ADMM to penalize a cost function containing L2 norm weighted data term 

and L1 and L2 norms regularization terms to be associated with the physical properties of the BSC 

and the average attenuation. Visual and quantitative evaluations justify that our proposed algorithm 

substantially outperforms the other techniques. 
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Figure 3-11 Qualitative comparison of parametric image of the BSC at the center frequency of the 
region with inclusions, with GT (a), and different methods (b-g). Results are shown on a dB scale 
with respect to 10-4 cm-1 sr-1. 
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                                        (a)                                                                              (b) 

Figure 3-12 Comparison of bias (a) and variance (b) of the BSC using ALGEBRA (ALGEBRA 
No 𝑤𝑑), ALGEBRA associated with weighting the data term (ALGEBRA 𝑤𝑑), ADMM without 
weighting the data term and using L2 norm in the regularization part for all the parameters (ADMM 
No 𝑤𝑑), ADMM associated with weighting the data term and using L2 norm in the regularization 
part for all the parameters (ADMM 𝑤𝑑), ADMM without weighting the data term and using L1 
norm for the BSC and L2 norm for the average attenuation (ADMM L1L2 No 𝑤𝑑), and ADMM 
associated with weighting the data term and using L1 norm for the BSC and L2 norm for the 
average attenuation (ADMM L1L2 𝑤𝑑 ) in four ROI in the region with inclusions. Results are 
shown on a dB scale with respect to 10-4 cm-1 sr-1.  
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                                      (a)                                                                        (b) 

Figure 3-13 Comparison of bias (a) and variance (b) of the average attenuation using ALGEBRA 
(ALGEBRA No 𝑤𝑑), ALGEBRA associated with weighting the data term (ALGEBRA 𝑤𝑑), 
ADMM without weighting the data term and using L2 norm in the regularization part for all the 
parameters (ADMM No 𝑤𝑑), ADMM associated with weighting the data term and using L2 norm 
in the regularization part for all the parameters (ADMM 𝑤𝑑), ADMM without weighting the data 
term and using L1 norm for the BSC and L2 norm for the average attenuation (ADMM L1L2 No 
𝑤𝑑), and ADMM associated with weighting the data term and using L1 norm for the BSC and L2 
norm for the average attenuation (ADMM L1L2 𝑤𝑑) in four ROI in the region with inclusions. 
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4 Chapter 4 

Regularized Estimation of Effective Scatterer Size and 
Acoustic Concentration Quantitative Ultrasound 
Parameters Using Dynamic Programming 
 

This chapter is published in IEEE Engineering in Medicine and Biology Society (EMBC), 2020 

and XVI Mexican Symposium on Medical Physics, 2020. 

Herein, we develop a novel technique based on DP to simultaneously estimate the acoustic 

attenuation, the effective scatterer size (ESS), and the acoustic concentration (AC) from ultrasound 

backscattered power spectra. This is achieved through two different approaches: (1) using a 

Gaussian form factor (GFF) and (2) using a general form factor (gFF) that is more flexible than 

the Gaussian form factor but involves estimating more parameters. Both DP methods are compared 

to an adaptation of a previously proposed LSQ method. Simulation results show that in the GFF 

approach, the variance of DP is on average 88%, 75% and 32% lower than that of LSQ for the 

three estimated QUS parameters. The gFF approach also yields similar improvements. 

4.1 Background  
 

We recently proposed a novel method to estimate attenuation and parameters from a power-law fit 

to the backscatter coefficient with improved precision. This method is based on a regularized cost 

function and optimized using DP [56], [57]. Recent work by other groups has also shown that more 

accurate QUS parameters can be estimated using regularized cost functions [39], [50], [52], [95]. 

Herein, we build on that work to include the use of form factor models to obtain a regularized 

estimate of ESS, AC, and the effective attenuation. We intend to involve scatterer characterization 

in backscattering formulas to accurately and precisely estimate AC and ESS in addition to effective 

attenuation. In the following two sections, we outline two different approaches based on DP for 

estimating QUS parameters. In both approaches, we exploit the RPM to have a system independent 

algorithm. In the last section, we present our results and compare them to the LSQ method. 
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4.2 Methods 
The general formula of attenuation is: 

𝐴(𝑓, 𝑧) = 𝑒𝑥𝑝(−4𝛼𝑓𝑧) 

4-1 

where A is the total attenuation, f is the frequency, z is the depth and α is the effective attenuation 

coefficient (average attenuation from intervening tissues). A general model for parametrizing the 

backscatter coefficients is: 

𝐵(𝑓) = 𝐵0𝐺(𝑓)  

4-2 

where 𝐵0 is the magnitude and 𝐺(𝑓) is the frequency dependence of backscatter coefficients. 

Under the condition of weak scattering, the following equation defines 𝐺(𝑓) in terms of a form 

factor model ( 𝐹(𝑓, 𝑎𝑒𝑓𝑓)): 

𝐺(𝑓) = 𝑓4 𝐹(𝑓, 𝑎𝑒𝑓𝑓) 

4-3 

4.2.1 Gaussian form factor 
 

As the microstructure of real tissue is often modeled using scatterers with spherically-symmetrical, 

Gaussian impedance correlation functions [17], a Gaussian form factor model has been selected as 

follows: 

𝐹(𝑓, 𝑎𝑒𝑓𝑓) = 𝑒𝑥𝑝 (−0.827(𝑘𝑎𝑒𝑓𝑓)
2
)  

4-4 

where 𝑘 is wave number and 𝑎𝑒𝑓𝑓  is ESS. By substituting (4-4) in (4-3), and (4-3) in (4-2), we 

have: 

𝐵(𝑓) = 𝐵0𝑓
4 𝑒𝑥𝑝 (−0.827(𝑘𝑎𝑒𝑓𝑓)

2
). 

4-5 
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To estimate ESS and AC, we use the RPM strategy based on normalizing the power spectrum S of 

the sample (s) by a power spectrum from a reference phantom (r), both of which are estimated 

from RF signals from a clinical scanner. The spectral ratio can be modeled as: 

𝑆𝑠

𝑆𝑟
=

𝐵𝑠 (𝑓)𝐴𝑠(𝑓, 𝑧)

𝐵𝑟(𝑓)𝐴𝑟(𝑓, 𝑧)
 

=
𝐵0𝑠

𝑓4 𝑒𝑥𝑝(−0.827 (𝑘𝑠𝑎𝑠)
2) 𝑒𝑥𝑝(−4𝛼𝑠𝑓𝑧)

𝐵0𝑟
𝑓4 𝑒𝑥𝑝(−0.827 (𝑘𝑟𝑎𝑟)2) 𝑒𝑥𝑝(−4𝛼𝑟𝑓𝑧)

    

4-6 

We assume that the media has a constant sound speed with the frequency dependence of 

attenuation near f1. In addition, in order to use RPM, the sample and the reference phantom must 

have similar sound speed, so 𝑘𝑠 = 𝑘𝑟. After taking the natural logarithm from both sides of (6), 

and substituting X1 = log
𝑆𝑠

𝑆𝑟
, 𝐵 = log

𝐵0𝑠

𝐵0𝑟

, 𝑎 = 𝑎𝑠
2 − 𝑎𝑟

2 , and 𝛼 = 𝛼𝑠 − 𝛼𝑟, we have: 

𝑋1 = 𝐵 − 0.827𝑘2𝑎 − 4𝛼𝑓𝑧                        

4-7 

This equation is summed over the frequency range from f1 to f2. The goal is to estimate 𝐵, 𝑎, and 𝛼 

using DP. Then, using the following equations, 𝐵0𝑠
, 𝑎𝑠, and 𝛼𝑠  can be obtained: 

𝐵0𝑠
= exp(𝐵)𝐵0𝑟

, 𝑎𝑠 = √(𝑎 + 𝑎𝑟
2), 𝛼𝑠 = 𝛼 + 𝛼𝑟 

4-8 

4.2.2 General form factor 
 

According to [15], for Gaussian scatterers and other form factors over a limited range of frequency, 

𝐹(𝑓, 𝑎𝑒𝑓𝑓) and ka ≤1.2 can be considered as follows: 

 

𝐹(𝑓, 𝑎𝑒𝑓𝑓) = 𝑒𝑥𝑝(−𝑨𝑓𝑛) 

4-9 
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where bold 𝐴 is related to the ESS of tissue by 0.827(
2𝜋

𝑐
𝑎)

𝑛

 , c is sound speed within tissue which  

is assumed to be 1540 m/s , and n~2. After taking the ratio of power spectra of echo signals of 

sample and reference phantoms, and taking the natural logarithm, we have:  

𝑆𝑠

𝑆𝑟
=

𝐵0𝑠
𝑓4 𝑒𝑥𝑝(−𝑨𝑠𝑓

𝑛) 𝑒𝑥𝑝(−4𝛼𝑠𝑓𝑧)

𝐵0𝑟
𝑓4 𝑒𝑥𝑝(−𝑨𝑟𝑓𝑛) 𝑒𝑥𝑝(−4𝛼𝑟𝑓𝑧)

  

4-10 

𝑋2 = 𝐵 − 𝑨𝑓𝑛 − 4𝛼𝑓𝑧 

4-11 

For the rest of this work, we first assumed n=2, and estimated three parameters 𝐵,𝑨, and 𝛼. This 

equation is summed over the frequency range from f1 to f2. Then, we considered 𝑛 as a parameter 

that should be estimated. In both approaches, once 𝐵0𝑠
 and 𝑎𝑠 (in approach 1) and 𝑨𝑠 (in approach 

2) are estimated, AC (𝑁𝛾2) can be obtained using the following equation: 

 𝐵0𝑠
= (

2𝜋

𝑐
)

4

𝑎𝑠
6
𝑁𝛾2

9
 

4-12 

As a first approximation to assess the accuracy and precision of the proposed DP method, we 

simulated sample and reference power spectra adding white Gaussian noise to B, a, and α and to 

B, a, n, and α in equations (4-7) and (4-11), respectively. Spectra were simulated to come from a 

layered phantom having a central layer with α=0.7787 dB·cm-1MHz-1, B=0.3222e-5 cm-1-sr-1 MHz-

n, a=31 μm, A=13.0269 µmnµsn  m−n, n=3.1263 sandwiched between two layers with α=0.5101, 

B=0.1600e-5, a=35, A=11.3917, n=3.5190 and α=0.5196, B=0.1600e-5, a=35, A=15.7979, 

n=3.5190. The values for the reference phantom are α=0.5101, B=0.1599e-5, a=35, A=10.3917, 

n=2. All of these values are used for two simulation approaches. Twenty independent realizations 

of the power spectra were simulated for each approach through the following equations:  
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Data for approach 1:  

 

𝑋1 = log
𝐵0𝑠

𝐵0𝑟

+ 𝜂𝐵𝑖
− 0.827𝑘2 ((𝑎𝑆

2 − 𝑎𝑟
2) + 𝜂𝑎𝑖

) − 4 ((𝛼𝑠 − 𝛼𝑟) + 𝜂𝛼𝑖
) 𝑓𝑧 ,    𝑖 = 1,… 20 

4-13 

Data for approach 2:  

𝑋2 = log
𝐵0𝑠

𝐵0𝑟

+ 𝜂𝐵𝑖
− ((𝑨𝑠 − 𝑨𝑟) + 𝜂𝑨) 𝑓(𝑛𝑠−𝑛𝑟)+𝜂𝑛𝑖  − 4((𝛼𝑠 − 𝛼𝑟) + 𝜂𝛼𝑖

)𝑓𝑧 ,   𝑖 = 1,… 20  

4-14 

where i refers to an instance of noise and 𝜂 indicates noise for each variable shown as a subindex. 

DP and LSQ were applied to the simulated spectra within a frequency range from f1 = 3.7 MHz to 

f2 = 7 MHz similar to the experimental analysis bandwidth in our laboratory and using the 

following search ranges for both approaches: 

(𝑎𝑠_𝑚𝑖𝑛 − 5)
2
− 𝑎𝑟

2 < 𝑎 < (𝑎𝑠_𝑚𝑎𝑥 + 5)
2
− 𝑎𝑟

2 

𝛼𝑠_𝑚𝑖𝑛 − 𝛼𝑟 − 0.5 < 𝛼 < 𝛼𝑠_𝑚𝑎𝑥 − 𝛼𝑟 + 0.5 

log (0.1
𝐵𝑠_𝑚𝑖𝑛

𝐵𝑟
) < 𝐵 < log (10

𝐵𝑠_𝑚𝑎𝑥

𝐵𝑟
) 

𝑛𝑠_𝑚𝑖𝑛 − 𝑛𝑟 − 2 < 𝑛 < 𝑛𝑠_𝑚𝑎𝑥 − 𝑛𝑟 + 2 

𝑨𝑠_𝑚𝑖𝑛 − 𝑨𝑟 − 2 < 𝑨 < 𝑨𝑠_𝑚𝑎𝑥 − 𝑨𝑟 + 2 

The general form of cost function contains two terms, data term, D, and regularization term, R, as 

follows: 

𝐶 = 𝐷 + 𝑅 

4-15 

where D and R for the first and second approaches are defined as follows: 
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                   𝐷1 = ∑(𝑋1 − 𝐵 + 0.827𝑘2𝑎 + 4𝛼𝑓𝑧)2

𝑓2

𝑓1

 

4-16 

𝐷2 = ∑(𝑋2 − 𝐵 + 𝑨𝑓𝑛 + 4𝛼𝑓𝑧)2 

𝑓2

𝑓1

 

4-17 

𝑅1 = 𝑤𝛼|𝛼𝑗 − 𝑎𝑗−1| + 𝑤𝐵|𝐵𝑗 − 𝐵𝑗−1| + 𝑤𝑎|𝑎𝑗 − 𝑎𝑗−1|  

4-18 

𝑅2 = 𝑤𝛼|𝛼𝑗 − 𝑎𝑗−1| + 𝑤𝐵|𝐵𝑗 − 𝐵𝑗−1| + 𝑤𝐴|𝑨𝑗 − 𝑨𝑗−1| + 𝑤𝑛|𝑛𝑗 − 𝑛𝑗−1| 

4-19 

where j refers to the jth depth. 

4.3 Results 
 

The results of approach 1 are shown in Figure 4-1. These results show that the variance of DP is 

on average 88%, 75% and 32% lower than that of LSQ for α, B, and a, respectively. In approach 

2, we first set n to 2. The ground truth value of n in our simulations is also 2. Results are shown in 

Figure 4-2. Then, we set n to be a variable number and estimate it. The results are shown in Figure 

4-3. These results show that the variance of DP is on average 75%, 100%, and 100% lower than 

that of LSQ for α, B, and A, respectively. When estimating four parameters, these improvements 

are 77%, 100% and 100%, 100% respectively for α, B, n and A. Since LSQ does not have the 

regularization term to limit the estimates of parameters, the parameters get a substantially higher 

variance compared to DP. In addition, in DP, Eq. (4-7) and (4-11) are summed over the frequency 

range as well as depth in the recursion step. However, considering in LSQ there is no recursion 

step, the summation is only over the frequency range. 
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(a)                                                 (b) 

 

                                                    (c)                                               (d) 

Figure 4-1 Results of LSQ (blue) and DP (red) methods using approach 1 in a simulated phantom 
with three layers and 20 instances of added zero-mean Gaussian noise. The error bars show the 
standard deviation over the 20 instances of noise for attenuation coefficient 

The estimation results of Figure 4-1 (c) can be substantially improved if the frequency range is 

chosen such that ka~1. In our simulations, the frequency for which ka=1 for the two scatterer 

diameters simulated corresponds to 7.662 and 8.651 MHz, whereas the frequency range of this 

work was set to 3.7 to 7 MHz. 

4.4 Conclusions 
 

In this work, we presented two approaches based on RPM to parameterize backscattering in terms 

of form factor models. In the first approach, we assumed the Gaussian form factor and proposed 

DP to estimate ESS and AC. In the second approach, we used a more general form factor 

formulation which is appropriate for any impedance correlation functions. Here, we estimated 
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more parameters through DP and LSQ. Besides, in both approaches, we simultaneously estimated 

the attenuation coefficient. We observed DP substantially reduced variance of estimations 

compared to the LSQ. 

 

           (a)                                                      (b) 

 

                                                     (c)                                                      (d) 

Figure 4-2 Results of LSQ and DP methods using approach 2 where n is fixed to 2 in a simulated 
phantom with three layers and 20 instances of added zero-mean Gaussian noise. The error bars in 
(a-c) show the standard deviation over the 20 instances of noise for attenuation coefficient (a), 
backscatter coefficient magnitude B (b), scaled ESS A (c), and acoustic concentration (d). The 
black dashed line is the known values. 

 



 

60 
 

 

 

                     (a)                                                 (b)                                                (c)                         

 

                                                 (d)                                              (e) 

Figure 4-3 Results of LSQ and DP methods using approach 2 where n is not fixed to 2 and is 
estimated. The simulated phantom has three layers and 20 instances of added zero-mean Gaussian 
noise. The error bars show the standard deviation over the 20 instances of noise for attenuation 
coefficient (a), backscatter coefficient magnitude B (b), backscatter power law n (c), scaled ESS 
A (d), and acoustic concentration (e). The black dashed line is the known values. 
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5 Chapter 5 

Evaluation of Contrast to Noise Ratio of Parametric 
Images of Regularized Estimates of Quantitative 
Ultrasound 
 

This chapter is published in IEEE International Ultrasonic Symposium (IUS), 2020. 

Here, we investigate whether parametric images of regularized estimates of the acoustic 

concentration can provide better conspicuity of high contrast objects than conventional B-mode 

images. To this end, we apply regularized estimation of acoustic concentration using DP to data 

acquired from a Gammex 410SCG phantom. The phantom contains three inclusions with different 

echogenicities, which are created from different concentration of scatterers. Conspicuity is 

quantified in terms of the inclusion CNR and border resolution. Our results demonstrate that using 

regularized QUS, the CNR of parametric images of the acoustic concentration was substantially 

higher CNR than those of conventional B-mode images, at the expense of border resolution. 

5.1 Background 
 

The application of QUS is usually based on creating parametric images, which visually represent 

the  spatial variation of the estimated acoustic properties [30], [96]. Numerous researchers have 

employed parametric images to estimate scattering properties including the acoustic concentration 

[96], [97]. Two key steps to obtain parametric images of the AC are the removal of system-

dependent effects (such as gains and focusing) and the compensation for intervening tissue 

attenuation. Our group recently developed a regularization strategy based on DP to compensate 

for system-settings and attenuation. We have previously shown that this strategy improves the 

accuracy and precision of QUS parameters [98].  

Given that the acoustic concentration is a quantitative surrogate of tissue echogenicity, just like 

the brightness of the conventional B-mode image, here we investigate whether parametric images 

of the AC could provide better conspicuity of high contrast objects than conventional B-mode 
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images. To this end, we compare the CNR and border conspicuity of AC parametric images to 

those of B-mode images in a tissue mimicking phantom with cylindrical inclusions. 

5.2 Methods 
 

5.2.1 Data Acquisition 
 

Two uncorrelated frames of raw RF echo signals were obtained from 8mm-diameter cylindrical 

inclusions (-6, +6, and +12dB more echogenic than the background) of a Gammex 410SCG 

phantom (Gammex-SunNuclear, Middleton, WI) with a Verasonics Vantage 128 system 

(Verasonics Inc., Kirkland, WA) using a L11-5v transducer operated at an 8MHz nominal center 

frequency.  

5.2.2 Estimation of the Acoustic Concentration 
 

A multi-taper technique [88] was used to compute a two-dimensional matrix of power spectra by 

slipping a 5mm×5mm  window with 85% overlap over each frame laterally and axially, which 

yielded 103 rows and 55 columns of power spectra. 

AC parametric images were constructed using the DP-based regularized approach that 

simultaneously compensates for attenuation [56] and estimates AC assuming a Gaussian form 

factor (Eqs. (4-7), (4-12)). The regularized strategy to estimate the AC is based on the RPM. 

In addition, B-mode images were constructed from the log transform of the absolute value of the 

analytic echo signal without further compressing the dynamic range. 

5.2.3 Comparison of Object Conspicuity 
 

To compare object detectability between AC and B-mode images, we quantified the compromise 

between contrast and noise, as well as the border resolution. The CNR, was computed as: 

   𝐶𝑁𝑅 =  
𝑝𝑖̅ − 𝑝𝐵𝐺𝑁𝐷̅̅ ̅̅ ̅̅ ̅̅

√𝜎𝑖
2 + 𝜎𝐵𝐺𝑁𝐷

2

 

5-1 
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where 𝑝 refers to either AC or B-mode values, i=1, 2, or 3 for the -6dB, +6dB, +12dB inclusions, 

respectively, and the overbar and 𝜎 indicate the mean and standard deviation of 𝑝 within 55mm2 

ROI within the inclusions and the background (BGND). The ROIs are shown in Figure 5-1. 

To assess border conspicuity, we plotted three axial lines crossing through the center of each 

inclusion and measured the intensity of B-mode and parametric images on each line, and 

normalized by subtracting minimum value in each curve, and then dividing by the maximum value.  

 

Figure 5-1 Location of regions of interest in B-mode image. 

5.3 Results 
 

Figure 5-2(a) and (b) show B-mode and AC images of the phantom with inclusions. Figure 5-3 

shows the logarithmic scale of CNR for the three inclusions for the AC parametric image (red) and 

the B-mode image (blue). In all cases the value of CNR of the AC image is larger than the B-mode 

CNR by a factor ranging from 4.92 to 14.16.  

Figure 5-4. represents the border conspicuity of the AC parametric image obtained with DP and 

the B-mode images for all inclusions. It can be seen that the border conspicuity of the B-mode 

image is better than that of the AC image. 
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(a) (b) 

Figure 5-2  B-mode (a) and AC (b) images of the cylindrical inclusions 

 

Figure 5-3 Logarithmic scale of CNR of cylindrical inclusions in B-mode and AC images obtained 
with DP. The error bars represent differences between the two frames. 

5.4 Discussion and Conclusion 
 

In this work, we evaluated whether parametric images of the DP-estimated AC provide better CNR 

and border resolution than the B-mode image. This could be helpful to show whether parametric 

images obtained with DP could be better options over B-mode images for the detection of objects 

with different echogenicities. To this end, we applied our state of art method [98] to data acquired 

from a Gammex 410SCG phantom and obtained the following results: 
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 Higher CNR for all inclusions in the AC parametric image compared to the B-mode 

image  

 Better border resolution in the B-mode image compared to the AC parametric image 

obtained with DP. 

Figure 5-3 shows that in the AC parametric image and B-mode image, +12dB and -6dB cylinders 

result in higher CNR, respectively and consequently, can be visualized more easily than other 

inclusions. This implies that the sequence of detectability of inclusions is different from B-mode 

image.  

From Figure 5-4, we observe that using B-mode we can understand, where exactly are inclusions. 

In fact, wherever we see a jump (step change) in the intensity profile, it implies the region of 

inclusion starts or ends. On the other hand, from intensity profile of DP, the exact region of 

inclusions is not detectable. Instead, we see a transition (slope) from the background to the 

inclusions, which is due to the finite size of the estimation region (5mm×5mm) in the power 

spectra. Therefore, even in the AC images, the common tradeoff between CNR and resolution is 

present.  

Here, we studied “easy-to-detect” objects. However, to assess the quality of an image and estimate 

the contrast of an object, a contrast-detail (CD) analysis is required, where well-trained observers 

view different diameter of objects to select the smallest visible one and form a CD curve [99], 

[100].  

The work presented here is an initial step towards future studies that will analyze the tradeoff 

between CNR and border resolution in more complex structures. Furthermore, we will extend the 

analysis to parametric images of the effective scatterer diameter. 
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Figure 5-4 Scaled border resolution of cylindrical inclusions in B-mode and AC images obtained 
with DP. The vertical lines indicate, where each inclusion starts or ends. 
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6 Chapter 6 

Analytical Globally-Regularized Estimation of 
Effective Scatterer Diameter and Acoustic 
Concentration in Quantitative Ultrasound 
 

This chapter is published in IEEE International Symposium on Biomedical Imaging (ISBI), 2021. 

Herein, we propose a novel technique to analytically estimate the effective scatterer diameter and 

the acoustic concentration using simultaneous attenuation compensation. We show that our 

proposed technique substantially outperforms a recently-proposed, DP based method, and is 100 

times faster. 

6.1 Background  
Our group has recently proposed a regularized method to estimate ESD and AC using DP [101]. 

DP can provide accurate and precise estimation subject to appropriate pre-defined search ranges 

of ESD and AC values. The search ranges correspond to each feature that needs to be estimated 

which must be defined around optimized values served as the ground truth if it is applicable. In 

the cases where the ground truth is unknown, the search range should be defined wide enough to 

assure it contains the range of values expected for the tissue under characterization. In addition, 

DP is a discrete estimation method because the search ranges are divided into discrete step sizes. 

Accordingly, the smaller the step size and the wider the search range, the larger the computational 

burden, which could impede real time clinical implementation. To tackle these difficulties, we 

propose a novel analytical strategy to estimate ESD and AC that does not depend on search ranges 

and step sizes, and that is faster than DP. The novel method is compared to DP in simulated echo 

signals. Because a similar analytical strategy, referred to as ALGEBRA [91], was proposed for the 

quantification of BSC, we referred to the new method as ALGEBRAESD. 

6.2 Methods 
 

We employ the RPM [83], a common and well known framework in the area of QUS to remove 

diffraction and system effects. We intend to exploit the spectrum normalization performed in the 
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RPM to simulate its real applications which is done usually for experimental data. The RPM 

normalizes the power spectrum of a sample phantom s (or tissue in a clinical application) with 

unknown acoustic properties by the spectrum of a reference phantom r with well-defined acoustic 

properties and similar sound speed to that of the sample. The sample and the reference should be 

scanned with the same system settings.  

Performing the similar strategy described in Chapter 4 as well as employing the original 

ALGEBRA, in ALGEBRAESD, we solve the following cost function analytically, as both D and R 

are quadratic in terms of the unknowns. Therefore, by taking the derivatives with respect to 

𝑏, 𝑑, and 𝑎, and set them to zero we have: 

𝐶 =  𝐷 + 𝑅 

6-1 

𝐷 = ∑∑(𝑋(𝑓𝑙 , 𝑧𝑖) + 𝑏(𝑧) − 0.827𝑘2𝑑(𝑧) − 4𝑎(𝑧)𝑓𝑧 )2

𝑁𝑅

𝑖=1

𝑁𝐹

𝑙=1

 

6-2 

𝑅 = ∑ ∑𝑤𝑝(𝑝𝑖 − 𝑝𝑖−1)
2

𝑁𝑅

𝑖=2

3

𝑝=1

         

6-3 

where i and l refer axial location and frequency indices, respectively. Index 𝑝 refers to the three 

parameters (𝑝=1 for 𝑎, 2 for 𝑏, and 3 for 𝑛) and 𝑤𝑝 is the regularization weight for parameter  𝑝 

Doing this, leads to having the following equation, where F is a square matrix, T is a vector 

composed of  three 3𝑁𝑅  vectors, T1, T2, and T3, and the goal is to estimate Y, a vector with 3𝑁𝑅 

elements containing all parameters that should be estimated as follows.  

𝐅𝐘 = 𝐓  

6-4 
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𝐓 = [
𝐓𝟏
 𝐓𝟐
𝐓𝟑

], 

6-5 

where ith components are as follows: 

𝑇1𝑖 = −4𝑧𝑖 ∑ 𝑋(𝑓𝑙 , 𝑧𝑖)𝑓𝑙
𝑁𝐹
𝑙=1 , 

𝑇2𝑖 = ∑ 𝑋(𝑓𝑙 , 𝑧𝑖)
𝑁𝐹
𝑙=1 , 

𝑇3𝑖 = −0.827∑ 𝑋(𝑓𝑙 , 𝑧𝑖)𝑘𝑖
2𝑁𝐹

𝑙=1 . 

6-6 

     𝐘 = [𝑎𝟏, ⋯ , 𝑎𝑁𝑅
, 𝑏𝟏, ⋯ , 𝑏𝑁𝑅

, 𝑑𝟏, ⋯ , 𝑑𝑁𝑅
 ]

⊺
. 

6-7 

As a result, we estimate all parameters for all depths at once, which leads to improved results 

especially for noisy regions of the image. We tested ALGEBRAESD and compared it to DP by 

applying both methods to a simulated power spectra array containing 74 rows (𝑁𝑅) and 20 columns 

(𝑁𝐶).  

The power spectra were mathematically computed. The simulated phantom contains two layers, 

each 37 mm deep, with the following properties: 𝛽𝑠 = [112.6 , 285.1] × 10−8 cm-1 sr-1 MHz-

4, 𝛿𝑠 = [50, 60] m,  𝛼𝑠 = [0.5, 0.6] dB cm-1 MHz-1, where the first and the second elements of 

the vector corresponds to the values in the first and second layers, respectively. Furthermore, the 

physical properties of the reference phantom are 𝛽𝑟 = 4.4 × 10−8 cm-1 sr-1 MHz-4  , 𝛿𝑟 = 30 m,

𝛼𝑟 = 0.59 dB cm-1 MHz-1. We generated the normalized power spectra by adding white Gaussian 

noise to 𝑏, 𝑑, and 𝑎 in Eq. (5) as follows: 

𝑋 = 𝑏 + 𝑛𝑏𝑖
− 0.827𝑘2(𝑑 + 𝑛𝑑𝑖

) − 4(𝑎 + 𝑛𝑎𝑖
)𝑓𝑧 , 𝑖 = 1, … ,20  

6-8 

where n refers to white Gaussian noise for each parameter indicated as a sub-index, and i represents 

each instance of noise.  
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To keep the representative results comprehensible, we calculate the local attenuation from the 

effective attenuation using Eq. 2-32. 

 

6.3 Results 
 

Figures 6-1 to 6-3 show parametric images of the ESD, AC, and local attenuation estimation in the 

simulated phantom obtained using ALGEBRAESD (b) and DP (c). It can be clearly observed that, 

the results of ALGEBRAESD agree well with the ground truth (a) and substantially outperform DP. 

To have quantitative assessments, we calculate the ratio of all estimated and ground truth values 

and then computed the minimum and maximum value of this ratio. Clearly, in this assessment, a 

method performs well when both min and max values are close to one. Accordingly, the min and 

max values are as follows using ALGEBRAESD and DP, respectively. For ESD estimation we get 

[0.93, 1.08] and [0.75, 1.3], for AC estimation [0.61, 1.6] and [0.21, 6.7], and for local attenuation 

[1, 1] and [0.98, 1.02]. In addition, the analytical estimation is substantially faster than DP. The 

estimation of QUS parameters using proposed method and DP required 0.711 sec and 103.1 sec, 

respectively. Both methods were executed with Matlab R2018a (MathWorks, USA) on an Intel 

Core i5-6500 CPU. 

 

 

                                          (a) GT        (b) Analytical Estimation  (c) DP 

m 

Figure 6-1 Parametric image of ESD. 
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6.4 Discussion  
Theoretically, we expect the results of AGLEBRAESD to be same as DP as both approaches aim to 

minimize the identical cost function. However, the quantization of the search ranges in DP reduces 

the accuracy and precision of the estimated values. On the other hand, if we select the step sizes 

in the DP very small such that it approaches the continuous search ranges, it leads to a very high 

computational complexity. In contrast, the analytical estimation we introduced here does not only 

improve the results in terms of accuracy and precision, but also it is computationally efficient 

which makes it a suitable option in real-time QUS applications.  

6.5 Conclusions 
 

Herein, we proposed a novel method to analytically estimate the ESD and AC called 

ALGEBRAESD. We applied the method to 20 samples of the simulated noisy normalized spectra, 

and observed that ALGEBRAESD substantially outperformed the DP strategy recently proposed by 

our group [101]. ALGEBRAESD was also substantially faster than DP, which is important in several 

clinical applications. In the future, we intend to apply our proposed method to more complex 

phantoms that reflect characteristics of real tissue. Furthermore, we will compare the analytical 

approach to iterative approaches using the nonlinear solvers such as NelderMead Simplex and 

Bayesian Optimization. 

 

                                      (a) GT                (b) Analytical Estimation         (c) DP 

mm-3 

Figure 6-2 Parametric mage of AC. the GT values are 236, 200 in the first and second layers, 
respectively. 
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                                   (a) GT                 (b) Analytical Estimation           (c) DP 

dB cm-1 MHz-1 

Figure 6-3 Parametric image of local attenuation. 
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7 Chapter 7 

Scatterer Size Distribution Estimation in Quantitative 
Ultrasound using Constrained Optimization 
 

This chapter is under review in Ultrasonic Imaging, 2022, and published in International 

Symposium on Ultrasonic Imaging and Tissue Characterization (UITC) 2021, 2022, and IEEE 

International Ultrasonic Symposium (IUS), 2021. 

Herein, we propose a novel strategy to estimate a distribution showing the contribution of different 

scatterer sizes. We conduct the estimation using a linear combination of the backscatter coefficient 

(BSC) for each scatterer size forming the resulting BSC. We perform the estimation by optimizing 

a constrained cost function solved using convex optimization and validate our method on four 

ground truth distributions. Results on simulated Gaussian (two phantoms), uniform (one phantom), 

and bi-modal (one phantom) distributions suggest that our proposed method can provide a good 

estimation for the scatterer size distribution. 

7.1 Background  
 

In order to gain characteristic information about tissue microstructure, backscattered echo signals 

can be parametrized with form factors to obtain the QUS parameters such as ESD [25]. The form 

factor represents the variation of the frequency dependence part of the backscattered signal from 

Rayleigh scattering and it is proportional to the spatial Fourier transform of the variations of 

acoustic impedance that constitute the scattering sources [25]. Extracting microstructure 

information from the form factors is feasible if the scatterer’s radius is not too small or too large 

compared to the wavelength [102]. In other words, it is known that the wave number k multiplied 

by the radius of the scatterer a needs to be between 0.6 to 1.2 [25]. Therefore, this limitation in 

estimating the scatterer size should be taken into account meaning that it is not possible to estimate 

all the scatterers’ radii within a medium. 
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Shape and scatterer size distribution affect RF data [103]. The impact of aggregate size distribution 

on backscattered data has been investigated in publications such as [104], [105]. Furthermore, 

analyzing scatterer size distribution can conduct us to deduce the tissue microstructure. 

Diseases typically affect the distribution of scatterers in tissues. Besides, the distribution of sizes 

is wide in diseases such as aggregated red blood [106] and diffuse renal disease [107]. 

Accordingly, the proposed method should allow the scatterer’s size distribution to be quantified in 

order to provide a comprehensive characterization of tissue. Consequently, herein, our aim is to 

estimate the contribution of each scatterer’s size within the media that satisfies the condition 0.6 ≤

𝑘𝑎 ≤ 1.2.  

7.2 Materials and Methods 
 

Let the frequency-dependent part of the BSC for each scatterer size be BSC𝑎(𝑓), where sub index 

a indicates scatterer radius, and x represent the contribution of each size within BSC𝑎(𝑓). The 

resulting BSC for entire sizes is BSC(𝑓) defined as follows: 

                                                                 𝐵𝑆𝐶(𝑓) =  ∑ 𝑥𝑎 𝐵𝑆𝐶𝑎(𝑓)𝑎                                           

7-1 

The equivalent version in matrix format is: 

                                                                       𝐴 𝑥 = 𝑏                                                                  

7-2 

where 𝐴 is the bank of BSC for individual sizes with 𝑁𝐹 rows referring to the number of frequency 

bins and 𝑁𝑆 columns representing the length of the scatterer size range. b is a column vector 

showing the compounded BSC with 𝑁𝐹 elements and x contains 𝑁𝑆 entries illustrating the 

contribution of each BSC for individual sizes. We propose to optimize the following cost function 

C: 

                                                                     𝐶 =   ||𝐴𝑥 − 𝑏||                                                         

7-3 

where ||.|| refers to norm 2. To minimize Eq. (7-3), we exploit the CVX toolbox [108] in Matlab 

R2018a. The CVX modeling system provides a framework to find a solution for convex 

optimization. It allows the constraints to be defined using Matlab syntaxes. Herein, the CVX 

constrains x to nonnegative values. In other words, the weight of a scatterer size cannot be negative. 
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An important point that should be taken into account is that there is a limitation in estimating 

scatterer size. To extract scatterer properties including ESD, for a known frequency range, the 

inequality of 0.6 ≤ 𝑘𝑎 ≤ 1.2 needs to be satisfied.  

We divide the problem into two parts, the forward problem, and the inverse problem. In the 

forward problem, for a given frequency range, the matrix A is generated, then assuming a 

distribution called GTf (ground truth in the forward problem), vector b is made using Faran theory 

without considering any limitations. In the inverse problem phase, we define a search range with 

the acceptable 0.6 ≤ 𝑘𝑎 ≤ 1.2 scatterer size taken into account when recovering the contribution 

of different diameters.  

As the matrix A is not necessarily full rank, reducing the number of columns (number of bins for 

scatterers sizes) will reduce the number of unknowns, rendering A a full rank matrix with a unique 

solution for the linear equation. As a result, a step size for scatterer size is specified, and the ignored 

columns are expected to be added to the closest acceptable column (scatterer size). Besides, the 

probability corresponding to the sizes that cannot be estimated is summed to the probability of the 

closest size that can be estimated which forms the GT in the inverse problem (GTi). 

 

7.2.1  Data 
 

Four simulated phantoms are used to validate our proposed algorithm, with the distributions of 

scatterer sizes assumed to be Gaussian (two phantoms, N (60, 64), N (40, 64),), uniform (one 

phantom U (31, 70)), and bi-modal (one phantom, summation of two Gaussian N (60, 64) + N 

(140, 25)). The phantoms used for in silico validation consist of 200 grams of glass beads in a 1.6L 

volume of water-based gel with different scatterer size distributions. The simulated frequency 

range is from 3 to 9MHz. The ESD for the first Gaussian, second Gaussian, uniform, and bi-modal 

distributions are 64µm, 46µm, 70µm, and 141µm, respectively. 

7.2.2 Frequency range 
 

Herein, we applied the following criterion to select the frequency range: For a known frequency 

range (here, 3 to 9 MHz) we plot the BSC and determine the corresponding frequency where the 

plot starts to become flat. More precisely, we take the derivative of the BSC in the linear scale and, 

specify the cut-off frequency where the derivative of BSC becomes 0.004. Figure 7-1 manifests 
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the BSC of the uniform distribution in the logarithmic scale. The blue line shows the BSC for the 

total frequency range and the red line depicts the cut-off frequency as 7.1. 

 

 
Figure 7-1 Logarithmic scale of the BSC for the uniform distribution, the cut-off frequency = 7.1. 

 

As a simulation of the instrument noise present in real measurements, we corrupt the calculated 

BSC with additive Gaussian noise. To test the robustness of our method against uncertainties, we 

added two levels of zero mean Gaussian noise to the resulting BSC in Eq. (7-1). Therefore, the 

equation will be modified as: 

                                                      𝐵𝑆𝐶(𝑓) =  ∑ 𝑥𝑎 𝐵𝑆𝐶𝑎(𝑓) + 𝑛𝑓𝑎                                              

7-4 

where 𝑛𝑓 is zero mean Gaussian noise. The low level of additive Gaussian noise in Eq. (4) for the 

first Gaussian, second Gaussian, uniform, and bi-modal distributions are N (0, 10-3), N (0, 10-3), N 

(0, 3×10-4), N (0, 3×10-2), respectively. The variance of the high level of noise is 10 times higher 

than the corresponding low level of noise.  

7.2.3 Quantitative analysis 
 

In addition to qualitatively comparing the GT and the estimated distributions, we measure the root 

mean square error (RMSE) to quantitatively assess our results. To do so, we calculate RMSE for 

the estimated histogram from clean signal and noisy signals and denote them as RMSEc and 

RMSEn, respectively. RMSE is defined as follows: 



 

77 
 

 

                                                       𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝐷̂𝑖 − 𝐷𝑖)

2

𝑖                                                                

7-5 

where 𝐷𝑖, and 𝐷̂𝑖 refer the ground truth of the contribution 𝑥 for the ith diameter in the inverse 

problem, and the estimated diameter, respectively and M denotes the total number of diameter bins 

in the estimation problem. 

 

Furthermore, to compare the estimated histogram and the GT, we report the earth mover’s distance 

(EMD) [109]. EMD corresponds to the minimum amount of work needed for one distribution to 

be transformed into another. More precisely, it is proportional to the area between two cumulative 

density functions (CDF). We calculate EMD between the GT and the estimated histogram from 

the clean signal as well as noisy signals and represent them as EMDc and EMDn. 

 

7.3 Results and Discussion 
 

Figures 7-2(a) to 7-5(a) show the GTs fed to the Faran code in the forward problem (GTF) and 

Figures 7-2(b) to 7-5(b) compare the estimation from noiseless signal shown in red with the GT in 

the inverse problem (GTi) illustrated in blue. Figures 7-2(a) and 7-3(a) present two Gaussian 

distributions. The distribution in Figure 7-2(a) only contains a few diameters that cannot be 

estimated (i.e., less than 43µm) while the second distribution in Figure 7-3(a) contains more sizes 

that are not within the 0.6 ≤ 𝑘𝑎 ≤ 1.2 range. The ka range for the first Gaussian, second Gaussian, 

uniform, and bi-modal distributions in the forward problem phase are between [0.006, 2.67], 

[0.006, 3.59], [0.006, 2.83], and [0.006, 2.87], respectively. 
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(a) (b) 

Figure 7-2 𝐺𝑇𝑓, Gaussian1 distribution (a), Comparison of estimation (red bars) and 𝐺𝑇𝑖 (blue 
bars). 

 

(a)                                                                                    (b) 

Figure 7-3 𝐺𝑇𝑓, Gaussian2 distribution (a), Comparison of estimation (red bars) and 𝐺𝑇𝑖 (blue 
bars). 

 

Figure 7-4(a) demonstrates a uniform distribution and Figure 7-5(a) shows a bi-modal distribution. 

Figure 7-5(b) demonstrates that our method can detect the two peaks in the bi-modal distribution. 

Figures 7-6 to 7-9 demonstrate the estimations from the clean signal and noisy signals for the same 

GTf, depicted in Figures 7-2(a) to 7-5(a). The variance of noise in Figures. 7-6(b) to 7-9(b) is ten 

times higher than Figures 7-6(a)-7-9(a). Visual comparison shows that adding a higher level of 

noise leads to higher error. 
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(a)                                                                                    (b) 

Figure 7-4 𝐺𝑇𝑓, uniform distribution (a), Comparison of estimation (red bars) and 𝐺𝑇𝑖  (blue bars). 

  

(a)                                                                                    (b) 

Figure 7-5 𝐺𝑇𝑓, bi-modal distribution (a), Comparison of estimation (red bars) and 𝐺𝑇𝑖 (blue bars) 

 

The quantitative assessment in Table 7-1 illustrates the ratio of RMSEnl and RMSEnh with respect 

to the RMSEc (subscripts nl, nh and c respectively refer to low noise, high noise and clean). These 

results show that increasing the noise variance by a factor of ten yields a modest increase in RMSE. 

In Table 7-2, the uncertainty in RMSEnl and RMSEnh with respect to the RMSEc over the different 

realizations of low and high noise is shown. The uncertainty in RMSEnh with respect to the RMSEc 

is lower than RMSEnl with respect to the RMSEc in all distributions meaning that RMSEnh/ RMSEc 

in Table 7-1 is more precise than RMSEnl/ RMSEc.  
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(a)                                                                                    (b) 

Figure 7-6 Comparison of estimations from the noiseless signal (red bars), noisy signals (yellow 
bars), and 𝐺𝑇𝑖 (blue bars) for Gaussian1 distribution. The variance of noise in (b) is 10 times higher 
than (a). 

  

(a)                                                                                    (b) 

Figure 7-7 Comparison of estimations from the noiseless signal (red bars), noisy signals (yellow 
bars), and 𝐺𝑇𝑖 (blue bars) for Gaussian2 distribution. The variance of noise in (b) is 10 times higher 
than (a). 
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(a)                                                                                    (b) 

Figure 7-8 Comparison of estimations from the noiseless signal (red bars), noisy signals (yellow 
bars), and 𝐺𝑇𝑖 (blue bars) for the uniform distribution. The variance of noise in (b) is 10 times 
higher than (a). 

 

(a)                                                                                    (b) 

Figure 7-9 Comparison of estimations from the noiseless signal (red bars), noisy signals (yellow 
bars), and 𝐺𝑇𝑖 (blue bars) for the bi-modal distribution. The variance of noise in (b) is 10 times 
higher than (a). 
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Table 7-1 Quantitative comparison of RMSEnl and RMSEnh respect to the RMSEc, where sub 
index nl, nh, and c refer to the low noise, high noise, and clean signal 

 RMSEnl/ RMSEc RMSEnh/ RMSEc 

Gaussian 1 3.3242 5.2678 

Gaussian 2 1.1972 3.8166 

Uniform 2.6972 2.9538 

Bi-modal 1.4001 1.5222 

 

Table 7-2 Uncertainty in RMSEnl and RMSEnh respect to the RMSEc, where sub index nl, nh, 
and c refer to the low noise, high noise, and clean signal. 

 RMSEnl/ RMSEc RMSEnh/ RMSEc 

Gaussian 1 0.3914 0.1694 

Gaussian 2 0.5523 0.3273 

Uniform 0.3616 0.2835 

Bi-modal 0.0638 0.0604 

 

EMD values between the ground truth and estimated distributions are shown in Table 7-3. These 

results are also aligned with the results of Table 7-1, showing modest increases in EMD with a 

ten-fold increase in the noise variance. In Table 7-4, the uncertainty in EMDnl and EMDnh over the 

different realizations of low and high noise is presented.  
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Table 7-3 Quantitative comparison of EMDc, EMDnl, and EMDnh, , where sub index nl, nh, and c 
refer to the low noise, high noise, and clean signal. 

 EMDc EMDnl EMDnh 

Gaussian 1 1.4893 4.8605 10.9687 

Gaussian 2 1.6596 2.0355 6.3210 

Uniform 2.8585 5.3706 5.6230 

Bi-modal 24.4895 32.5822 32.6630 

 

Comparison of Table 7-1 with Table 7-2 and Table 7-3 with Table 7-4 illustrates although the 

estimation in the bi-modal distribution is not accurate, it is precise. 

 

Table 7-4 Uncertainty in EMDnl, and EMDnh, where sub index nl and nh refer to the low noise 
and high noise. 

 EMDnl EMDnh 

Gaussian 1 0.2540 0.6044 

Gaussian 2 0.9063 0.5556 

Uniform 0.6409 0.6754 

Bi-modal 1.1233 0.9091 

 

The distribution of the scatterer sizes can vary during a disease. A tumor can cause aggregate size 

distributions in thyroid follicles [110] or aggregate red bold cells can occur in diabetics [111]. 

Therefore, reporting the scatterer size distribution is important for clinical purposes especially 

when the medium contains a wide range of sizes. In preliminary work [112], we estimated the 

distribution of sizes in two steps. In this work, we introduced a novel method to optimize a 

constrained cost function and tested the robustness of our technique by adding the Gaussian noise 

to the resulting BSC. Qualitative and quantitative evaluations of the results exhibit that our method 
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can provide a good estimation of the contribution of the scatterer sizes in terms of RMSE and 

EMD. 

Our approach facilitates the estimation of the scatterer size distribution for a full rank matrix. 

Hence, in the inverse problem phase, we converted the initial matrix into a full rank matrix by 

combining its columns. A possible future work can deal with reconstructing the contribution for 

each size from the representing size. 

 

7.4 Conclusions 
 

Herein, we proposed a novel technique to estimate the scatterer size distribution instead of 

estimating a single effective size. Our approach is based on minimizing a constrained cost function 

optimized using the CVX toolbox in Matlab. We considered the acceptable ka range in the 

estimation of sizes and tested our proposed method on Gaussian, uniform, and bi-model 

distributions. Results suggest that we can apply the method to phantom data in future work. 
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8 Chapter 8 

Conclusions and Future Work 
 

8.1 Conclusions 
 

In this thesis, we proposed novel QUS techniques to estimate average attenuation, BSC, and 

scatterer properties to quantify tissue microstructures. Previous work in this field can be 

categorized into two classes. This first class introduces novel techniques to estimate QUS 

parameters, while the second class incorporates these techniques into clinical scanners and 

commercializes them. Three QUS parameters have been commercialized clinically, namely 

average attenuation, backscattering, and sound speed, but more work remains to be done.  

Our study focused on the first class, and we presented novel techniques in each chapter to improve 

the estimation of the average attenuation, BSC, ESD, AC, and scatterer size distribution. In 

Chapter 2, we proposed two versions of a novel technique called 1D-ALGEBRA and 2D-

ALGEBRA to estimate the average attenuation and BSC. Unlike DP, the ALGEBRA technique 

removes the restriction of a discrete grid of parameter values over which the cost function is 

minimized. Therefore, continuous estimations of the attenuation and backscatter parameters are 

obtained. ALGEBRA optimizes a regularized cost function analytically, providing estimates much 

more accurately, precisely, and faster than previously presented techniques, such as the LSQ and 

DP, which is essential for clinical use where near real-time performance is invaluable. The 

regularization term in ALGEBRA is based on the L2 norm. Vajihi et al. [113] showed that the use 

of the L1 norm in the regularization terms provides better precision in parameter estimates than 

the use of the L2 norm. However, the L1 norm is not analytically differentiable so it could not be 

implemented in the ALGEBRA. Moreover, each frequency and depth of the power spectrum have 

the same contribution in the ALGEBRA method. Taking into consideration these shortcomings 

leads us to introduce a novel technique. In Chapter 3, the L1 and L2 norms in the regularization 

parts of the cost function were incorporated based on the physics of the BSC and average 

attenuation. Besides, we introduced a weight for each depth and frequency of power spectra 

multiplied by the data term according to the noise level of power spectra. In the end, we penalized 
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the cost function using ADMM. In Chapter 4, we modified the linear equation in [56] and 

considered different scattering models, such as form factors for different scatterer geometries, to 

estimate the ESD and AC as well as simultaneously estimate attenuation coefficients optimized 

using DP. To do so, we presented two approaches. In the first approach, we exploited the Gaussian 

form factor, while in the second approach, we assumed a more general form factor equation, which 

is suitable for any impedance correlation function. It should be mentioned that in the second 

approach we estimated more parameters compared to the first approach.  

As a possible application of our method described in Chapter 4, Chapter 5 investigates to answer 

the question that whether the parametric image of the AC obtained using DP provides better 

contrast in detecting high-contrast objects or the conventional B-mode images. To respond to this 

question, two criteria were utilized, CNR and border resolution. CNR voted for the parametric 

image of the AC, whereas the border resolution selected the B-mode image.  

Noting the drawbacks of DP as well as to benefit from the concept of analytical estimation 

introduced in Chapter 2, in Chapter 6, we proposed a novel method called ALGEBRAESD. The 

method employs the same linear equation in Chapter 4 to estimate ESD and AC analytically. 

However, when a media contains a wide range of sizes, reporting a single ESD cannot tell the 

whole story about the media. Therefore, in Chapter 7, we presented a cost function minimized 

using CVX toolbox in Matlab to estimate scatterer size distribution. The estimated probability of 

each scatterer size represents its contribution in forming the BSC. The qualitative and quantitative 

comparisons in each chapter justify that our proposed algorithms outperform the other techniques.  

 

8.2 Future Work 
 

Whether our proposed methods would perform well in clinical trials and real tissue data is an 

interesting question. As a result, testing our techniques on tissue data can be regarded as the first 

step towards clinical validation of each technique.  

Our regularized-based techniques require adjusting regularization weights for each phantom 

experiment. In general, larger weights are used in phantoms in which there is no significant change 

in the acoustic properties, such as phantom A (uniform phantom), thus allowing a significant 

variance reduction. However, increasing the weights to reduce the variance can result in biased 
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estimates. In other words, there is a trade-off between variance and bias in the selection of the 

weights. An interesting future work would be introducing an automated method to select the 

weights based on identifying what acoustic properties are the most influential in the selection 

process. The weights that result from applying this method to representative data from various 

organs could be saved as part of the imaging presets in the scanner to provide parametric images 

in real-time.  

The attenuation coefficient was assumed to be linearly dependent on frequency. A more realistic 

model would be a power-law fit [114]. However, the effect of the power law dependence could be 

minimized by the averaging effect of the effective attenuation. If a significant deviation from a 

linear dependence on frequency is expected, our regularized-based methods could be applied over 

contiguous, narrow frequency bands over which the variation of the effective attenuation with 

frequency could be approximated as linear, as implemented by Nasief et al. [115]. Then, the values 

obtained from the various frequency bands could be combined. 

A possible extension of our work on estimating the ESD and AC would be applying our proposed 

method to more complex phantoms that reflect the characteristics of real tissue. Furthermore, 

comparing the analytical approach to iterative approaches using nonlinear solvers such as Nelder 

Mead Simplex and Bayesian Optimization can be interesting. 

The field of deep learning is rapidly developing as a powerful tool for addressing a wide range of 

challenges, including QUS parameter estimations for better tissue characterization. The properties 

of scatterers can be learned from RF data using deep learning algorithms. However, all medical 

applications, including QUS, suffer from limited data sets as a major limitation of deep learning 

techniques. 
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