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Abstract

Symplectic aspects of Gaudin integrable systems and Szegö kernel variational
method

Ramtin Sasani, Ph.D.
Concordia University, 2023

In this thesis, we will study the symplectic aspects of classical Gaudin systems, an

important type of integrable dynamical systems at both classical and quantum levels. After

a review of integrability and the Lax representation of integrable dynamical systems, we

will investigate the analytical properties of Gaudin model via its spectral curve. The main

focus is to reconstruct the Lax matrix using the analytical information of the system and

subsequently, provide a symplectic structure for the phase space. We will also calculate

the symplectic potential in terms of action-angle coordinates using Szegö kernel variational

method. A brief look into the spectral transform aspect as well as the study of variational

properties of vector of Riemann constants will also follow.
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6.1 Szegö kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Differentiation of symplectic potential w.r.t. angle variables . . . . . . . . . 67

v



6.3 Differentiation of symplectic potential w.r.t. action variables . . . . . . . . 71

7 Spectral transform 77
7.1 Spectral transform as symplectomorphism . . . . . . . . . . . . . . . . . . . 80

8 Variations of vector of Riemann constants 82
8.1 Hyperelliptic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Generic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

vi



Chapter 1

Introduction

This work presents a study of rational Gaudin systems and their symplectic properties

from an analytical perspective. Since the introduction of Guadin model in 1976, this has

been a very attractive topic of study in the field of mathematical physics. The unique

properties of Gaudin models make them quite significant in the study of both classical and

quantum integrable dynamical systems.

Chapter 2 consists of a review of underlying concepts of integrability, Lax representation

and some notions from symplectic geometry. We will then provide a general description of

Gaudin model framework, followed by an overview of the analytical properties of Gaudin

system and subsequently, the analytical approach to constructing the solutions of the sys-

tem. Building on what we learn and the tools we develop in this analytical study of Gaudin

models, we will then expand the work to the phase space and its symplectic structure. We

are aiming to show that there exists a canonical way of constructing a symplectic structure

via Darboux coordinates. This requires showing that the main components of symplectic

structure, which are the canonical 1-form and 2-form, also known as symplectic poten-

tial and symplectic form, have a loosely speaking, natural representation in terms of the

provided coordinates.

The classical Gaudin system has the rational matrix representation


( m∑

j=1

Aj

λ− λj

)
Ψ = µΨ

d

dtj
Ψ = Aj

λ− λj
Ψ

(1.0.1)

where Aj ∈ sl(N,C) and Ψ a vector of dimension N . Lax representation paves the way to
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the analytical study of integrable systems. Lax equation which is essentially an alternative

representation of equations of motion, is centered around the Lax matrix L(λ), λ being the

spectral parameter. Setting the Lax pair L(λ) =
∑

j
Aj

λ−λj
and Mj(λ) = Aj

λ−λj
, with Ψ and

µ being the eigenvector and eigenvalue of the Lax operator L(λ), the Lax representation of

Gaudin model becomes 
L(λ)Ψ = µΨ
d

dtj
Ψ = Mj(λ)Ψ

(1.0.2)

Lax matrix contains all crucial information to describe the system so looking into its

eigenvectors and eigenvalues will tell us a lot about the dynamical system in question.

The key here is the characteristic polynomial of Lax matrix det(L(λ) − µ1) which bridges

the eigenvectors and eigenvalues. Since the Lax matrix is an element of sl(N,C). The

characteristic polynomial has N complex values µ (eigenvalues) associated to a given λ.

This means that the characteristic polynomial defines an N -sheeted covering of extended

complex plane (i.e. CP1 or Riemann sphere) hence it can be realized as a compact Riemann

surface called the spectral curve. More specifically, the spectral curve Γ associated to the

system is the compact Riemann surface described by the equation det(L(λ)− µ1) = 0 and

it has the genus

g = N(N − 1)m
2 −N + 1 (1.0.3)

The eigenvectors, being meromorphic functions, now form a vector bundle on this surface

and using the analytical data contained in the poles of Lax matrix (the data we will call

dynamical data), and the fact that the field of meromorphic functions on a Riemann surface

has a parametrization in terms of Jacobi theta functions, we will be able to reconstruct the

components of the eigenvectors, hence the Lax matrix itself, via just the dynamical data of

the system. More specifically, the goal is to reconstruct the matrix of eigenvectors

Ψ̂(λ) =


ψ1(P1) . . . ψ1(PN )

...
...

...

ψN (P1) . . . ψN (PN )

 (1.0.4)
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Then the Lax matrix can be reconstructed via

L(λ) = Ψ̂(λ)µ̂Ψ̂−1(λ) (1.0.5)

where µ̂ = diag(µ1, ..., µN ), µj the eigenvalues corresponding to a given spectral parameter

λ. With the assumption of L(λ0) being diagonal, the main result is the following formula

for the components of eigenvectors:

ψk(P ) = Ck
θ
(
A(P )−A(λ(k)

0 ) +A(λ(1)
0 )−A(D)−K

)
θ
(
A(P )−A(D)−K

) θ(e+
∫ P

λ
(1)
0
ω)

θ(e+
∫ P

λ
(k)
0
ω)

(1.0.6)

A being the Abel map, K the vector of Riemann constants, λ(j)
0 the points above λ0

on Γ and θ the Jacobi theta function on Cg. This will be covered in chapter 3. We will

also review some applications of Gaudin system, namely su(2) Gaudin model, in describing

dynamical systems in physics such as Lagrange top.

The work of chapter 3 will then be continued to the phase space of the system M,

characterized by the set of pairs {Gj , Lj} modulo the right multiplication of Gj by diagonal

matrices where Aj = GjLjG
−1
j , and also the quotient by the action of gauge group keeping

the Lax equation invariant. The phase space turns out to be a 2g-dimensional. This

space can be equipped with a canonical symplectic structure, using either a set of Darboux

coordinates satisfying standard Poisson bracket relations known as dynamical variables, or

another set of Darboux coordinates , in this case action-angle variables. Considering the

canonical 1-form

ΘM =
m∑

j=1
trLjG

−1
j dGj (1.0.7)

also known as symplectic potential, its exterior derivative ωM = dΘM, gives the symplectic

2-form on the phase space. The symplectic structure of phase space is studied in chapters

4 and 5. We will provide two different parametrizations of M: First, via the so-called

dynamical variables. These are the coordinates of g points γj = (λγj , µγj ) on the spectral

curve whose formal sum defines the dynamical divisor, i.e. the divisor of the poles of Lax

matrix L(λ). The second parametrization which is the one we are mostly interested in will

be given by the so-called action-angle variables {qj , Ij}gj=1.

The significance of action-angle variables comes from the fact that the angle variables
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are coming from a torus and their canonical conjugates, action variables, are functions of

constants of motion. Consequently, the Hamiltonian can be expressed in terms of action

variables only. This provides a useful geometric description of the system and has important

applications in quantum mechanical approach and perturbation theory.

The essence of chapter 4 and 5 may be summarized by the following:

ωM =
g∑

j=1
dµγj ∧ dλγj =

g∑
j=1

dIj ∧ dqj (1.0.8)

The link between the symplectic structure of phase space and the analytical reconstruc-

tion of Lax matrix is that angle variables also appear in the theta functions expressing the

eigenvectors as characteristics. The conjugate action variables will also be defined via the

loop integrals of canonical meromorphic 1-form µdλ over the a-cycles of homology group

basis.

In chapter 6, we will turn our focus to the symplectic potential, that is a canonical 1-form

generating the symplectic form ωM via its exterior derivative. Expressing the canonical 1-

form in terms of action-angle variables requires the calculation of partial derivatives of Gj

matrices with respect to angle and action variables. In other words, the following needs to

be calculated:

ΘM =
m∑

j=1
tr(LjG

−1
j

∂Gj

∂qγ
) dqγ +

m∑
j=1

tr(LjG
−1
j

∂Gj

∂Iγ
) dIγ (1.0.9)

While this is may not seem straightforward on the first sight, rewriting these matrices

in terms of Szegö kernel, a ( 1
2 ,

1
2)-form on Γ× Γ given by

Spq(P,Q) =
θpq
(
A(P )−A(Q)

)
θpq(0)E(P,Q) (1.0.10)

E(P,Q) being the prime form, is the key to find required derivatives. The matrix of

eigenvectors of L(λ) can be expressed in terms of Szeg o kernel by:

Ψ̂(λ)ab = Sq(λ(b), λ
(a)
0 )

Sq(λ(b), λ
(1)
0 )

(1.0.11)

with q the vector of angle variables. Subsequently, the following identities relating the
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matrices Gj and G−1
j to Szegö kernel can be derived:

[
Gj
]
ab

= Sq(λ(b), λ
(a)
0 )(λ− λ0)√

dλ
√
dλ0

∣∣∣
λ=λj

,
[
G−1

j

]
ab

= Sq(λ(b)
0 , λ(a))(λ0 − λ)√
dλ
√
dλ0

∣∣∣
λ=λj

(1.0.12)

Considering the fact that Aj = GjLjG
−1
j , the matrix Gj can be identified with Ψ̂(λj) in

the vicinity of λj . We then apply the variational formulae below

∂S(x, y)
∂qγ

= −
∮

aγ

Sq(x, t)Sq(t, y) (1.0.13)

and

∂Sq(x, y)
∂Iγ

= −πi2
∑

xk br. pts
res

t=xk

vγ(t)
Wt
[
Sq(x, t), Sq(t, y)

]
dλ(t)dµ(t) (1.0.14)

where vγ are the basis of holomorphic differentials on the spectral curve Γ and Wt is the

Wronskian with respect to t and the sum is taken over all branch points.

Once we have all of these, the required partial derivatives can be calculated. The end

result conveniently turns out to be

ΘM =
g∑

γ=1
Iγdqγ

Chapters 7 and 8 are a mainly a glance into future paths of research. The spectral

transform viewpoint sheds light on this work from a different angle, via the link between

the phase space of the system and the space of spectral data. The variations of vector of

Riemann constant with respect to action variables is also an intriguing result that appears

while studying the symplectic properties of Gaudin systems. Our observation is that

∂Kj

∂Ii
= ∂Ki

∂Ij

In chapter 8, we look into this directly, without relying on previous work, in the case

of spectral curve being hyperelliptic. The idea is to prove the desired result for a specific

choice of base point for the Abel map A, then show that all the steps and calculations are

essentially invariant under a change of basepoint. We will also provide a scalar potential

function F whose gradient is the vector of Riemann constants, i.e. K = ∇F . Expanding

the results to generic case could be a subject of future research.
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Chapter 2

Integrable systems and Lax

formalism

The roots of integrable systems can be traced back to the genesis of classical mechanics,

beginning with the quest for exact solutions of Newtonian equations of motion. Other than

the Kepler problem which was solved by Newton himself, only a handful of ”integrable”

systems are known to us even after almost two centuries of intense studies. Liouville finally

provided a general framework to describe the cases where the equations of motions are

solvable by quadrature, i.e. when the solution can be expressed in terms of some integrals

and following the works of Poincaré in the late 19th century, the theory of integrable systems

remained more or less dormant for several decades till the late 60s. Once Lax formulation

was devised, the domain of integrable systems expanded significantly, leading to numerous

results. More recently, these results have been extended to quantum mechanics which has

led to a very active field of research.

Notion of Lax pairs involves presenting the equations of motion of the system in the form

L̇(λ) = [M(λ), L(λ)] where the matrices M(λ) and L(λ) depend on dynamical variables as

well as a parameter λ known as spectral parameter. The importance of Lax pair originates

from the fact that evolution under Lax equation preserve the spectrum of Lax matrix

L. This means that the curve defined by the characteristic polynomial of Lax matrix

det(L(λ)−µI) = 0 is time-independent. This so-called spectral curve, can be regarded as a

Riemann surface and it will be used later on to reconstruct the solution of the system. This

points at two aspects of the theory: group theoretic aspect which enters through the Lie

algebra involved in the commutator [M,L] and the complex analytical aspect that enters
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through the spectral curve. Here we are interested in the latter.

Integrable systems are rather rare to come across so once we do, there are usually many

constraints on the matrices L(λ) and M(λ). To obtain the solutions of the system in the

analytical setting, we look for the eigenvector of L(λ) corresponding to an eigenvalue of

L(λ) such as µ which is a point of the spectral curve. We will then utilize analytic tools to

construct the solution in terms of theta functions.

2.1 Integrable dymanical systems and Lax representation

The integrable dynamical systems are defined through Liouville theorem, systems pos-

sessing n independent quantities Fj conserved under the time flow that are also in involution

i.e. they commute with respect to the Poisson bracket. Such property, also known as Liou-

ville integrablity, then leads to Liouville theorem which states ”The solutions of a Liouville

integrable system are obtained by some integrals”. The conserved quantities live on a 2n

dimensional phase space and we require a set of coordinates on this space. Action-angle

variables are a set of coordinates introduced for this purpose. The angle variables θj are

angular variables describing the cycles on which the motion is taking place. The action vari-

ables Ij are defined as integrals of a differential 1-form known as the canonical form (which

depends on Fj) over those cycles and they are canonically conjugated to angle variables.

Before getting to the idea of Lax representation, let us quickly refresh some of the basics

of symplectic and Poisson geometry. Consider a Poisson manifold M , which is going to be

the phase of the system later on, equipped with a Poisson bracket { , } : C(M)× C(M)→

C(M) defined on the algebra of all differentiable functions on M . The Hamiltonian of

the system H will determine the time evolution of functions on M via ḟ = {H, f}. The

important property of the Poisson bracket is that if f1 and f2 are conserved quantities,

then so is {f1, f2} since {H, f1} = {H, f2} = 0 implies that {H, {f1, f2}} = 0. A Poisson

bracket is degenerate in general, which means that there is a function f on M such that

{f, g} = 0 for all functions g. Such functions that lie in the center of the Poisson algebra are

called Casimir functions. If the center is non-trivial, i.e. contains non-constant functions,

one can reduce the dynamical system by setting all functions of the center to constant

values. This defines a foliation of M into symplectic leaves. The Poisson bracket will be

non-degenerate on the leaves. Now assuming that the manifold M is equipped with the

7



symplectic structure, i.e. a non-degenerate closed 2-form ω, locally expressed by

ω =
∑
i<j

ωijdx
i ∧ dxj

the Poisson bracket can be reconstructed from the symplectic structure by

{f1, f2} = −
∑
ij

ωij∂if1∂jf2

where ωij is the ij entry of the inverse of the matrix [ωij ].

Lax pair is a new concept that emerged from the modern studies of integrable systems.

A Lax pair L,M consists of two matrices as functions on the phase space of the system.

The Hamiltonian equations of motion may be written as the following Lax equation

L̇ = dL

dt
= [M,L] (2.1.1)

The significance of Lax pair lies in the fact that it allows for an easy construction of

conserved quantities. The solution of Lax equation is of the form

L(t) = G(t)L(0)G(t)−1 (2.1.2)

where the invertible matrix G is given by M = ĠG−1. It follows that if I(L) is a function

of L invariant by the conjugation L → GLG−1, then I
(
L(t)

)
is a constant of motion.

Such functions of functions of eigenvalues of L. Eigenvalues of L(t) are preserved by time

evolution hence Lax equation is called isospectral.

The following well-known and simple examples will further illuminate the above notions.

Example 1: For any Liouville integrable system, the Lax pair can be constructed in

a tautological way. Assume we have a finite-dimensional Hamiltonian with n degrees of

freedom, a Poisson bracket {, } and Hamiltonian H. Liouville integrability means there are

n independent integrals of motion Fi, i = 1, ..., n, in involution. By Liouville theorem, there

exists a system of conjugate coordinates Ii, θi, i = 1, ..., n, where Ii are only the functions

of Fi. In these coordinates, the equations of motion take the form:

İj = 0, θ̇j = ∂H

∂Ij
(2.1.3)
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Now consider a Lie algebra generated by {Hi, Ei, i = 1, ..., n} with the commutators:

[Hi, Hj ] = [Ei, Ej ] = 0, [Hi, Ej ] = 2δijEj (2.1.4)

The Lax pair will be then given by:

L =
n∑

j=1
IjHj + 2IjθjEj , M = −

n∑
j=1

∂H

∂Ij
Ej (2.1.5)

It is easy to check that the equation L̇ = [M,L] is equivalent to the equations of motion. This

construction however, is useless since we are using the action-angle variables to construct

the Lax pair hence we are assuming that we already know action-angle variables, in which

case there is no need for Lax pair.

Example 2: Take the harmonic oscillator with the equations of motion:

q̇ = p, ṗ = −ω2q (2.1.6)

Set the Lax pair:

L =

 p ωq

ωq −p

 , M =

 0 −ω/2

ω/2 0

 (2.1.7)

Again, one can quickly check that the Lax equation L̇ = [M,L] is equivalent to the

equations of motion. The Hamiltonian can be written as H = 1
2(p2 + ω2q2) = 1

4 tr(L2).

This example may be generalized to n independent harmonic oscillators by writing the Lax

matrices L and M in a block-diagonal form where each block is a 2×2 matrix as above. Now,

the conserved quantities are tr(L2n) = 2
∑

(2Fi)n where 2Fi = p2
i +ω2q2

i and tr(L2n+1) = 0,

so that they are equivalent to the collection of Fi.

The Lax pairs that depend analytically on a parameter such as λ are Lax pairs with

spectral parameter λ. The study of analytical properties of the Lax equation with spectral

parameter L̇(λ) = [M(λ), L(λ)] leads to a significant insight into its structure and introduces

many objects and concepts with which we will be working in the future.

In what follows we will review some examples of Lax pairs with spectral parameter:

Example 3: Euler top is a case where the Lax pair appears naturally. This is a case of a

rotating solid body attached to a fixed point with no external force involved. The equations

of motion are written in a moving frame with the origin at the fixed point of the top.
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Consider the 3× 3 matrices Jij = ϵijkJk and Ωij = ϵijkωk where J⃗ is the vector of angular

momentum of the top in the moving frame given by J⃗ = I.ω⃗ where I = diag(I1, I2, I3) is

the inertia tensor and ω⃗ is the rotation vector of the moving frame. The equation of motion

is

dJ⃗

dt
= −ω⃗ ∧ J⃗ (2.1.8)

which can be rewritten in the matrix form J̇ = [Ω, J ]. One could think of setting the

Lax pair as L = J and M = Ω but this turns out to be problematic since the conserved

quantities tr(Ln) either vanish or are the functions of J⃗2. Hence some modifications are

required. Define the diagonal matrix I = diag(I1, I2, I3) where Ik = 1
2(Ii + Ij − Ik) for Ii’s

the moments of inertia and (i, j, k) a cyclic permutation of (1, 2, 3). The matrix J is now

given by J = IΩ + ΩI. Now set the Lax pair as:

L(λ) = I2 + 1
λ
J, M(λ) = λI + Ω (2.1.9)

where λ is a free arbitrary parameter, the so-called spectral parameter. One can check

that the Lax equation gives back the equation of motion and Now the Hamiltonian appears

amongst the conserved quantities of the form trLn(λ).

Example 4: Another example of Lax pair with spectral parameter is the Lagrange top.

This is when the top is in a gravitational field, so its weight should also be accounted for.

In one case where two inertia moments are equal and the center of mass is located at a

position like (0, 0, h) with respect to the rotation axis containing a point to which the top

is attached. The equations of motion are:

dJ⃗

dt
= −ω⃗ ∧ J⃗ + h⃗ ∧ P⃗ , dP⃗

dt
= −ω⃗ ∧ P⃗ (2.1.10)

where P⃗ is the weight and h⃗ is the vector from the fixed point to the center of mass, and J⃗

and ω⃗ are as in previous example. The conserved quantities are P⃗ 2, J⃗ .P⃗ and the energy:

H = 1
2(J⃗ .I−1.J⃗)− P⃗ .⃗h (2.1.11)

10



We now write the Lax pair as 4× 4 matrices in block form:

L(λ) =

 0 Iht + λ−2P t

Ih+ λ−2P λ−1J

 , M(λ) =

 0 λht

λh Ω

 (2.1.12)

where the 3 × 3 matrices J and Ω are as in the previous example, and h and P are 3 × 1

matrices corresponding to the vectors h⃗ and P⃗ of the Lagrange top. Calculating the left-

hand side of L̇− [M,L] = 0 and applying the Lagrange condition I1 = I2 confirms that the

Lax equation is equivalent to the equations of motion.

2.2 Construction of Lax pair

Given an integrable system, there is no useful algorithm to construct a Lax pair. How-

ever, there is a general procedure, due to Zakharov and Shabat, to construct consistent

Lax pairs paving the way to integrable systems. This is a general method of constructing

matrices L(λ) and M(λ) depending on a spectral parameter λ such that the Lax equation is

equivalent to the equations of motions of an integrable system. This method works around

the analytical properties of L(λ) and M(λ) for λ ∈ C∗. Considering the systems with a

finite number of degrees of freedom, the main result expresses the possible forms of Lax

matrices.

Suppose that the matrices L(λ) and M(λ) are of dimension N×N . Assume furthermore

that L and M are rational functions of the parameter λ. Let {λk} be the set of their poles.

Assuming no pole is at infinity, the Lax matrices can be generally written as:

L(λ) = L0 +
∑

k

Lk(λ) with Lk(λ) =
−1∑

r=−nk

Lkr(λ− λk)r (2.2.1)

and

M(λ) = M0 +
∑

k

Mk(λ) with Mk(λ) =
−1∑

r=−mk

Mkr(λ− λk)r (2.2.2)

where nk and mk are the order of poles at the point λk, and the coefficients Lkr and Mkr

are matrices. We also assume that the positions of poles λk are constants independent of

time. The following proposition clarifies the structure of the Lax pair:
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Proposition: ([1], p. 36) Assuming that L(λ) has distinct eigenvalues in a neighbour-

hood of λk, one can perform a regular similarity transformation Gk(λ) diagonalizing L(λ)

in a vicinity of λk:

L(λ) = Gk(λ)Ak(λ)G−1
k (λ) (2.2.3)

where Ak(λ) is diagonal and has a pole of order nk at λk. As a result, the decomposition of

L(λ) and M(λ) in singular parts reads as:

L(λ) = L0 +
∑

k

Lk(λ) with Lk(λ) =
(
Gk(λ)Ak(λ)G−1

k (λ)
)

−
(2.2.4)

M(λ) = M0 +
∑

k

Mk(λ) with Mk(λ) =
(
Gk(λ)Bk(λ)G−1

k (λ)
)

−
(2.2.5)

where Bk(λ) is diagonal with a pole of order mk at λk and
( )

− denotes the singular part

of the analytic expansion.

In the proximity of a singularity, L(λ) and M(λ) can be simultaneously diagonalized if

the Lax equation holds true. In this diagonal ”gauge”, the Lax equation simply states that

the matrix Ak(λ) is conserved and Bk(λ) is diagonal. Once we transform these results into

the original gauge, we get the general solution of non-dynamical constraints on M(λ):

Proposition: ([1], p. 38) Let L(λ) be a Lax matrix of the form (2.2.1). The general

form of M(λ) such that the orders of poles match on both sides of the Lax equation is

M = M0 +
∑

k Mk with

Mk =
(
Pk(L, λ)

)
−

(2.2.6)

where Pk(L, λ) is a polynomial in L(λ) with coefficients rational in λ and the singular part

is taken at λ = λk.

It is important to realize that the dynamical variables are the elements of the Lax matrix,

or the elements of Lkr. Now the question of specifying a certain model of dynamical system

essentially becomes the matter of choosing the number and the order of poles of the Lax

matrix. Choosing the polynomials Pk(L, λ) amounts to specifying the dynamical flows.

The above propositions give the general form of M(λ) as far as the matrix structure

and the λ-dependence are concerned. We should keep in mind however that the coefficients
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of the polynomial Pk should be already known and given as functions of the elements of

matrix L and they require further characterizations in order to obtain an integrable system.

Let us now illustrate these constructions on some of the examples we saw before, the Euler

and Lagrange tops.

Example (Euler top): From (2.1.9), we see that L(λ) has a pole at 0 and M(λ) has

a pole at ∞. We now apply the above construction to remove this pole. There exists a

polynomial P (x) = αx2 + βx + γ such that P (I2) = I so need α = − 1
I1I2I3

. Redefining

M(λ) to M(λ)− λP (L(λ)) gives M = M0 − (α/λ)J2 with M0 = Ω− α(I2J + JI2)− βJ .

One can check that M0 = 0 by computing (Ii − Ij)(M0)ij using P (I2
i ) = Ii. Hence for the

Euler top we can choose

M(λ) = −α
λ
J2 (2.2.7)

Notice that this new M(λ) is such that M(λ) = −α(λL2)−. The Lax matrix of the Euler

top L(λ) = I2 + λ−1J is of the form L0 + L− with L0 diagonal and non-dynamical. The

eigenvalues of J are 0,±i
√
J⃗2 which are non-dynamical since J⃗2 belongs to the center of

Poisson bracket and has been fixed to a numerical value.

Example (Lagrange top): From (2.1.12), we get that L(λ) has a pole at 0 and

M(λ) has a pole at ∞. We can remove this pole by redefining M(λ) to M(λ)− I−1λL(λ).

We should however notice that since the eigenvalues of L0 are degenerate in this case, M0

cannot be expressed as a polynomial in L0. The new M(λ) can be written as M = M0 +M−

with M−(λ) = −I−1(λL(λ))−. For the Lagrange top the Lax matrix is again of the form

L0+L− where L0 is non-dynamical. For the singular part one gets, since J is antisymmetric,

A− = λ−2 diag(
√
P⃗ 2,−

√
P⃗ 2, 0, 0) which again belongs to the center of Poisson bracket and

is non-dynamical.

2.3 Phase space as a symplectic manifold

Identifying the phase space of a dynamical system basically comes down to identifying

the degrees of freedom. We start with an initial phase space that contains all dynamical

variables and parameters of the system. This is usually an even-dimensional space with a

symplectic structure. Then one needs to account for the invariants of the system to reduce

the number of degrees of freedoms to the actual independent ones. This is done through a

process known as Hamiltonian reduction.
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Let us first clarify a few notions from symplectic geometry and Hamiltonian mechanics.

If a Lie group G acts on a symplectic manifold M by symplectic diffeomorphism, the action

of any one-parameter subgroup of G is locally Hamiltonian i.e. there exists a function HX ,

locally defined on M such that X.f = {HX , f}. Now, this action is said to be Poissonian if

the Hamiltonians HX of all one-parameter subgroups are globally defined, depend linearly

on X and

H[X,Y ] = {HX , HY } (2.3.1)

If the action of a Lie group G on a symplectic manifold M is Poissonian, any X ∈ g,

the Lie algebra of G, is associated with the function HX such that X.f = {HX , f} and

X → HX is linear. Hence, there is a function P : M → g∗ such that HX(m) = ⟨P(m), X⟩

where ⟨ , ⟩ is the pairing between g and its dual. The association m→ P(m) ∈ g∗ is called

the moment map.

We also need to know the idea of coadjoint orbits. Suppose G is a connected Lie group.

The coadjoint action of G on g∗, the dual of g, is defined by:

(Ad∗ g.η)(X) = η(Ad g−1(X)), g ∈ G, η ∈ g∗, X ∈ g (2.3.2)

where Ad is the usual adjoint action. The important fact here is that coadjoint orbits in g∗

generated by this coadjoint action are equipped with a canonical symplectic form known as

Kostant-Kirillov symplectic structure. At a point ξ ∈ g∗ of a coadjoint orbit, take any two

tangent vectors VX = ad∗X.ξ and VY = ad∗Y.ξ. The Kostant-Kirillov symplectic form is

defined by:

ωK(VX , VY ) = ξ([X,Y ]) (2.3.3)

and it is a closed and non-degenerate 2-form on any G-orbit.

Now let M be a symplectic manifold and G a group acting on M by the Poissonian

action. Let P be the moment map, fix a particular value of the moment like µ and consider

the set of points m in the phase space such that P(m) = µ. By the Noether theorem, the

motion of the system takes place on the set:

Mµ = P−1(µ) (2.3.4)
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Assuming that µ is not a critical value of P, there exists a tangent space at m, tangent to

Mµ. Now the dimension of Mµ is given by

dimMµ = dimM − dimG (2.3.5)

The stabilizer of the moment µ, denoted by Gµ, is the group of all g ∈ G such that

Ad∗
g µ = µ. The action of Gµ preserves Mµ so the reduced phase space Mµ is defined as the

quotient of Mµ by this action:

Mµ := Mµ/Gµ = P−1(µ)/Gµ (2.3.6)

There are particular values of µ for which this quotient is not well-defined but for a generic

set, Mµ is well-defined and can be assumed to be a differentiable manifold.

The crucial property of reduced phase space is that it is naturally equipped with a

symplectic structure and in particular, it is of even dimension.

Proposition: ([1], p. 529) Let ξ and η be two vectors tangent to Mµ at the point p. At

a point m ∈ Mµ above p, consider two vectors ξ′ and η′ tangent to Mµ and projecting to ξ

and η respectively. We then set:

ωp(ξ, η) = ωm(ξ′, η′) (2.3.7)

This is independent of the choice of representatives m, ξ′, η′ and defines a symplectic form

on Mµ.

Thus, the phase space can be equipped with a well-defined symplectic form.

2.4 Symplectomorphism and symplectic potential

A symplectomorphism φ : M → N is a diffeomorphism from a symplectic manifold

(M,ω1) to another one (N,ω2) that preserves the symplectic structure, i.e. the pullback of

symplectic form ω2 under φ is:

φ∗ω2 = ω1 (2.4.1)
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An example of symplectomorphism is the transformation between two canonical co-

ordinates sets of a manifold, called canonical transformation. We will be dealing with a

symplectomorphism of this type later as we will study two different sets of canonical coor-

dinates on the phase space of Gaudin system as a symplectic manifold.

A symplectic potential which also sometimes known as tautological one-form, canonical

one-form or Liouville one-form is a 1-form defined on the cotangent bundle T ∗M of a man-

ifold M . The exterior derivative of this form gives a symplectic form on T ∗M which has a

symplectic structure. The importance of symplectic potential is in relating the Hamiltonian

and Lagrangian formalisms of a dynamical system. In local coordinates, say (pi, qi) is a

point in cotangent bundle T ∗M (pi ∈ T ∗
q M, qi ∈M), then the symplectic potential is given

by:

ΘM =
∑

i

pidqi (2.4.2)

and its exterior derivative is the canonical symplectic form ω = dΘM =
∑

i dpi ∧ dqi.

As we shall see later, the phase space of Gaudin system is an even-dimensional space and

it can be equipped with a canonical symplectic structure. We will study this symplectic

structure, the associated symplectic potential and we will find the canonical coordinates

parameterizing the phase space.

2.5 Classical Gaudin model

In his 1970s papers [9], [10] and [11], M. Gaudin introduced a new class of quantum

integrable models mostly for the purpose of studying quantum magnets. The simplicity and

unique properties of Gaudin model immediately attracted wide attention amongst mathe-

matical physicists, as the Gaudin model has many applications in the study of both classical

and quantum integrable systems.

The Gaudin model can be understood and characterized in different ways, but the Lax

approach is perhaps the most straightforward and suitable way for the purpose of this work.

It will be done by setting the space of spectral parameter first, then introducing the Lax

matrix and subsequently, identifying the phase space of the system. The dynamics of the

system will then be determined by the Hamiltonian and Lax equation.

The classical Gaudin system is an integrable system defined on the punctured or marked
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Riemann sphere. Assume X \ {λ1, ..., λm} is a punctured sphere with λi showing the posi-

tions of punctures or marked points. Let Ak, k = 1, ...,m be elements in sl(N,C).

We set the Lax matrix

L(λ) =
∑

k

Ak

λ− λk
(2.5.1)

with the regularity at infinity condition which requires
∑

k Ak = 0 and L(λ0) being diagonal.

Hence, the matrices Ak may be realized as the residues of the Lax matrix at the puncture

points λk. The phase space of the system shall be realized as the number of degrees of

freedom in all Ak. By considering the diagonalization

Ak = GkLkG
−1
k (2.5.2)

with the choice of Gk up to right multiplication by a diagonal matrix and then taking

quotient by the simultaneous left multiplication of an element of sl(N,C), we obtain the

phase space of the system M. The canonical 1-form on this space is given by

ΘM =
∑

k

tr
(
AkG

−1
k dGk

)
(2.5.3)

The integrable system on this phase space is now defined by the following Hamiltonian

H =
∑
k ̸=l

tr(AkAl)
(λ− λk)(λ− λl)

=
∑

k

Hk

λ− λk
(2.5.4)

where

Hk =
∑
k ̸=l

tr(AkAl)
λk − λl

(2.5.5)

form a family of commuting Hamiltonians known as Gaudin Hamiltonians.

We have the following relation for the Hamiltonians Hk:

{L(λ), Hk} = −[Ak, L(λ)] (2.5.6)

The classical Gaudin system is in fact the autonomous (time-independent) Hamiltonian

system with the same Hamiltonians as above. Let λ1, ..., λm be the variables that define

the position of the m punctured or marked points. The Gaudin model is often described
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by the following set of equations

∂Aj

∂ti
= [Aj , Ai]
λi − λj

(2.5.7)

which are equivalent to the Lax formulation of the Gaudin model as we will see in

section 3.1. The matrices Aj may be regarded as the residues of the Lax operator at

λ = λi. Now consider m time variables t1, . . . , tm; setting the other Lax matrix Mj = Aj

λ−λj
,

these equations for each time variable ti can be rewritten in the Lax form:

dL(λ)
dtj

= [Mj(λ), L(λ)] (2.5.8)

We will study various aspects of classical Gaudin systems such as spectral curve, explicit

solutions and the symplectic structure of phase space in details in the following chapters.

2.6 Analytical approach to Lax equation

One of the main focus of the work presented here is on solving the Lax equation of Gaudin

system through an analytical method which involves theta functions and subsequently con-

structing a set of Darboux coordinates using parameters appearing in the analytical solution

of the system.

The general idea for solving the Lax equation with spectral parameter is as follows: The

spectral curve, denoted by Γ is described by the characteristic equation for the eigenvalues

of the Lax matrix det(L(λ) − µ1) = 0. Since the Lax equation L̇(λ) = [M(λ), L(λ)] is

isospectral, i.e. the eigenvalues of L(λ) are time-independent, so is the spectral curve. At

any point of the spectral curve, there exists an eigenvector of L(λ) with eigenvalue µ. We will

reconstruct the eigenvector from its analytical properties on Γ, namely information about

poles, monodromy, asymptotic properties, etc. In particular, all the analytical information

of the system is contained in the divisor of the poles of Lax matrices which we call dynamical

divisor. The time evolution of this divisor is equivalent to a linear flow on the Jacobian

of Γ. The Jacobian J(Γ) of a Riemann surface (already equipped with a set of g a-cycles

and g b-cycles as the basis of homology and a basis {ωj}gj=1 of holomorphic differentials

on Γ) is defined as J(Γ) = Cg/(Z + BZg) where B is the matrix of b-periods. Hence, if

Γ is of genus g, the dimension of Jacobian is g as well. We will explicitly reconstruct the

eigenvectors, which turn out to be comprised of meromorphic components on the Riemann
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surface, using a special type of functions defined on the Jacobian of the Riemann surface,

the theta functions. As a result, one can express dynamical variables in terms of theta

functions. We then show that the symplectic structure can be ”nicely” written in terms

of coordinates of the points of the dynamical divisor. This exhibits the interplay between

analytical data and separation of variables.

After fulfilling the aforementioned tasks, we will be in a position to clarify the link

between integrable systems and Riemann surfaces. Let Γ be a Riemann surface of genus

g and λ a meromorphic function on it. We assume that λ takes each value N times. Any

other meromorphic function µ on Γ is an element in the field of rational functions of λ and

µ. The choice of these functions allows us to present Γ as an N sheeted covering of the

Riemann sphere through the covering (λ, µ)→ λ.

We can interpret Γ as the spectral curve of a Lax matrix L(λ) in the following way: Let

λ
(1)
0 , ..., λ

(N)
0 be the N points above λ = λ0. Choose a divisor D of g points on Γ. From

these data, we construct N linearly independent meromorphic functions ψ1 = 1, ψk with

a zero at λ(1)
0 and poles at D + λ

(k)
0 for k = 2, ..., N . This uniquely determines ψk u to

multiplication by a constant. Let Pi = (λ, µi) be the N points above λ. Define the N ×N

matrices Ψ̂ij = ψi(Pj) and µ̂ = diag(µi), and

L = Ψ̂µ̂Ψ̂−1 (2.6.1)

This matrix is a rational function of λ because it is a rational of λ, µ1, ..., µN , invariant

under the permutations of µj . It tends to zero at ∞ and Γ is the spectral curve of L(λ)

since it contains the eigenvalues of L(λ). Note that L is defined only up to conjugation by

diagonal matrices because we did not specify a normalization for the functions ψk.

We now introduce a time evolution such that Γ is time-independent but the dynamical

divisor D depends on time. This is enough to establish the existence of a rational Lax

equation:

L̇(λ) = [M(λ), L(λ)], M(λ) = ˙̂ΨΨ̂−1 (2.6.2)

To relate to Liouville integrability, we have to introduce a symplectic structure on the

space of dynamical variables, i.e. phase space. Imposing a coadjoint orbit structure on the

poles of L(λ) automatically yields integrability once we have performed the Hamiltonian

reduction by the diagonal group action of dimension N − 1. This produces a dynamical
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system of dimension 2g. The g angle variables are given by the Abel map of dynamical

divisor appearing as the characteristic of the theta functions used in the construction of

eigenvectors, which evolve linearly on the Jacobian of Γ, and the g action variables are

contained in the moduli of the spectral curve, i.e. they belong to the set of deformation

parameters characterizing the moduli space of the curve.

The conditions we impose on the moduli, coming from the coadjoint orbit structure and

the Hamiltonian reduction, can be all written as the following:

d̃(µdλ) is a holomorphic differential

where d̃ is the differential with respect to the dynamical variables, i.e. variables from

the phase space while keeping λ constant. This means that the polar parts of µdλ are non-

dynamical. Since d̃(µdλ) =
∑g

k=1 ωkd̃Ik (ωj a basis of holomorphic differentials on Γ), we

can see that there are exactly g independent dynamical variables, hence g action variables.

In this setting, the standard symplectic form on the phase space is given in terms of

coordinates of the points of dynamical divisor D, denoted by γj = (λγj , µγj ). We will

also see that the angle variables θj =
∑g

k=1
∫ γk ωj are canonically conjugated to the action

variables Ij =
∮

aj
µdλ and that:

ω =
g∑

j=1
d̃µγj ∧ d̃λγj =

g∑
j=1

d̃Ij ∧ d̃θj (2.6.3)

To elaborate more on this result, starting from a Riemann surface Γ(λ, µ) = 0, we specify g

independent variables F1, ..., Fg by imposing the regularity condition for d̃(µdλ). We take g

arbitrary points γj = (λγj , µγj ) and impose the symplectic structure ω =
∑g

j=1 d̃µγj ∧ d̃λγj

on these data. We determine the g variables Fj by solving g equations demonstrating that

the curve passes through g points γj :

Γ(λγj , µγj ;F1, ..., Fg) = 0 (2.6.4)

This determines Fj as symmetric functions of λγk
, µγk

. The interesting result is that these

function Poisson commute, i.e. {Fi, Fj} = 0, because the action variables Poisson commute

too and they are independent functions of Fj .

It is would be beneficial to see a concrete application of this approach before developing

it in great technical details. The following ”Kowalevski top” is a good example to help us

understand the analytical method:
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The Kowalevski top: ([1], p. 169) Consider the motion of a top in a moving frame with

the origin at a fixed point of the top. Assume the moments of inertia satisfy I1 = I2 = 2I3

and that the center of mass is on the plane x3 = 0 but away from the origin so the top has

no rotational symmetry. We are free to choose the inertia axis up to a rotation around the

third one, hence we can assume that the fixed point is on the first axis. Set the notation:

ω⃗ =


p

q

r

 , P⃗ =


γ1

γ2

γ3

 , h⃗ =


h

0

0

 (2.6.5)

following the same equations of motion as in Lagrange top and writing them in components

with c = h/I3, we obtain:


2ṗ = qr

2q̇ = −pr − cγ3

ṙ = cγ2


γ̇1 = rγ2 − qγ3

γ̇2 = pγ3 − rγ1

γ̇3 = qγ1 − pγ2

(2.6.6)

The Hamiltonian

H = I3
2 (2p2 + 2q2 + r2)− hγ1 (2.6.7)

and the quantities

P⃗ 2 = γ2
1 + γ2

2 + γ2
3 , P⃗ .J⃗ = I3(2pγ1 + 2qγ2 + rγ3) (2.6.8)

are conserved (J⃗ is the vector of angular momentum as previous examples). The symplectic

leaves in this example are of dimension 4 so we need one more conserved quantity to show

integrability. This quantity is known as Lowalevski conserved quantity and it is given by:

K = (p2 − q2 + cγ1)2 + (2pq + cγ2)2 (2.6.9)

Set σ0 = 1 and σj as the 2× 2 so-called Pauli matrices:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (2.6.10)
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and the Kowalevski variables:
z1 = J1 + iJ2

z2 = J1 − iJ2


ξ1 = γ1 + iγ2

ξ2 = γ1 − iγ2

(2.6.11)

Now define the Lax matrix as:

L(λ) =



0 −λξ2
1
2z2 λγ3

λγ1 0 −λγ3 −1
2z1

1
2z1 λγ3 −J3 2 1

λ + λξ1

−λξ3 −1
2z2 −21

2 − λγ2 J3


(2.6.12)

The Lax matrix satisfies the symmetry properties:

L(−λ) = Σ−1
1 L(λ)T Σ1, L(λ)T = −Σ−1

2 L(λ)Σ2, L(−λ) = Σ−1
3 L(λ)Σ3 (2.6.13)

where the matrices Σj are given by:

Σ1 =

σ1 0

0 σ1

 , Σ2 =

σ2 0

0 σ2

 , Σ3 =

σ3 0

0 σ3

 (2.6.14)

In general, the Kowalevski top endures two external forces γ⃗ which is P⃗ here and γ⃗′. Here

we restrict ourselves to the pure Kowalevski case which has no external forces other than

wieght so γ⃗′ = 0. The equation of the spectral curve Γ: det(L(λ)− µ) = 0 reads:

µ4 −
(λ2

2 γ⃗
2 − 1

4H + 1
λ2

)
µ2 + λ4

16(γ⃗2)2 + λ2

16
(
(J⃗ .γ⃗)2 −Hγ⃗2)+ K

256 = 0 (2.6.15)

The Hamiltonians H and K are given by:

H = 1
2(J2

1 + J2
2 + J2

3 )− 4γ1 = 1
2z1z2 + J2

3 − 2(ξ1 + ξ2) (2.6.16)

K = (J2
1 − J2

2 + 8γ1)2 + (2J1J2 + 8γ2)2 = (z2
1 + 8ξ1)(z2

2 + 8ξ2) (2.6.17)

Note that the coordinates λ and µ on the spectral curve appear only through λ2 and µ2

which is a consequence of the symmetries of L(λ).

Let us clarify the solutions µ(λ) of the equation of the spectral curve around λ = 0 and
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λ =∞. Around λ =∞, we have four branches:

µ = ϵ

√
γ⃗2

2 λ+ iϵ′
J⃗ .γ⃗

4
√
γ⃗2 +O( 1

λ
) (2.6.18)

where ϵ and ϵ′ are independent ± signs. Around λ = 0, we get two branches with µ → 0

and two branches with µ→∞:

µ = ϵ

√
K

16 λ+O(λ3), µ = ϵ
( 1
λ
− H

8 λ
)

+O( 1
λ3 ) (2.6.19)

Now recall that Γ is defined as the desingularization (resolving the singularity by adding

the ∞ point) of the curve defined by (2.6.15). We are going to study Γ by considering it as

consecutive coverings of simpler curves. Setting λ2 = z in (2.6.15) yields a curve C of the

equation:

µ4 −
(z

2 γ⃗
2 − 1

4H + 1
z

)
µ2 + z2

16(γ⃗2)2 + z

16
(
(J⃗ .γ⃗)2 −Hγ⃗2)+ K

256 = 0 (2.6.20)

Γ is a two-sheeted covering of C. Setting µ2 = y, we get a curve E of the equation:

y2 −
(z

2 γ⃗
2 − 1

4H + 1
z

)
y + z2

16(γ⃗2)2 + z

16
(
(J⃗ .γ⃗)2 −Hγ⃗2)+ K

256 = 0 (2.6.21)

and C is now a two-sheeted covering of E. E is an elliptic curve of genus 1. By setting

t = 1/z and Y = ty− 1
4 γ⃗

2 + H
8 t−

1
2 t

2, the equation of E takes the form Y 2 = tP3(t), where

P3(t) is the degree 3 polynomial:

P3(t) = 1
4 t

3 − H

8 t
2 +

(H2

64 + γ⃗2

4 −
K

256
)
t− (J⃗ .γ⃗)2

16 (2.6.22)

The four branch points are obtained by solving Y = 0, so there is a branch point at

t = 0 (or z =∞) and three branch points at finite values of t (or z).

We now study the covering C → E coming from µ→ y = µ2. This two-sheeted covering

is branched only at y = 0 and y =∞. The meromorphic function y on E takes each value

three times because for a given y, z is determined by a degree 3 equation. Hence it has

three zeros and three poles. Setting y = 0 in the equation of E gives

1
16(γ⃗2)2 + 1

16 t
(
(J⃗ .γ⃗)2 −Hγ⃗2)+ K

256 t
2 = 0 (2.6.23)
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yielding two points (y = 0, t = t1, t2). The third point with y = 0 and the three points

with y = ∞ occur when t = 0 and t = ∞. For t → ∞ we have two points P1, P2 on E

corresponding to the branches:

P1 : y = t− H

4 +O(1
t
), P2 : y = K

256
1
t

+O( 1
t2

) (2.6.24)

Set t as the local parameter at ∞, now P1 is a pole of y and P2 is the third zero of y. For

t→ 0, choose the local parameter
√
t and we get two branches:

P3 : y = γ⃗2

4
1
t
± i J⃗ .γ⃗4

1√
t

+O(1) (2.6.25)

showing that y has a double pole at P3 = (t = 0, y = ∞) on E. Of these six poles and

zeros of y, four are branch points of the covering C → E because at P3 the equation of C is

singular. Since C is a desingularized curve, P3 blows up to two points P̃3 and P̃ ′
3 of C, and

P3 has two pre-images similar to other points in its neighbourhood. On the other hand,

P1 and P2 are branch points and have just one pre-image each, P̃1 and P̃2 on C. Using the

Riemann-Hurwitz formula 2g − 2 = N(g0 − 2) + ν, where g0 = 1, N = 2 and ν = 4, we find

that the genus of C is 3.

We finally study the covering Γ→ C coming from λ→ z = λ2 whose only ramification

can be at z = 0,∞. For a given z, there are 4 values of µ satisfying the equation of C so

the meromorphic function z has 4 zeros and 4 poles. Four branches of Γ above λ =∞ are

already obtained in (2.6.18) which by definition, correspond to four points on the curve Γ.

They project on the two branches of C given by (2.6.25), therefore the covering at points

P̃3 and P̃ ′
3 is unbranched. Similarly, above λ = 0 we have the four branches of Γ given

by (2.6.19). Two points of Γ, Q1,2 = (µ ∼ ±λ
√
K/16) project on P̃2 and the two points

Q3,4 = (µ ∼ ±1/λ) project on P̃1, as seen from (2.6.24). So the covering is unbranched at

these points. This covers all zeros and poles of z hence the covering Γ→ C is unbranched.

Applying the Riemann-Hurwitz formula again with g0 = 3, N = 2, ν = 0, gives g = 5 for

the genus of the spectral curve Γ.

We are now able to proceed to the matrix of eigenvectors of L(λ). Consider the eigen-

vector Ψ(λ, µ) satisfying L(λ)Ψ = µΨ at the point (λ, µ) of the spectral curve. We can

easily find the eigenvectors of L(λ) at the four points Q1, Q2, Q3, Q4 above λ = 0 with the

normalization of the first component. Then putting them in columns gives the matrix Ψ̂(λ)
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as:

Ψ̂(λ) =



1 1 1 1

iζ +O(λ) −iζ +O(λ) i z1
z2

+O(λ) −i z1
z2

+O(λ)

−iz2
4 ζλ+O(λ2) iz2

4 ζλ+O(λ2) −4i
z2

1
λ +O(1) 4i

z2
1
λ +O(1)

−1
4 z1λ+O(λ2) −1

4 z1λ − 4
z2

1
λ +O(1) 4

z2
1
λ +O(1)


(2.6.26)

The j-th column corresponds to the expansion at Qj . Here ζ =
√

(z2
1 + 8ξ1)/(z2

2 + 8ξ2).

2.7 Szegö kernel method

We will see that for the Gaudin systems, the symplectic potential (i.e. the canonical

1-form) associated to the symplectic structure on the phase space is given by

ΘM =
∑
j=1

trAjG
−1
j dGj (2.7.1)

where Ak is the diagonalization of L(λ) in a neighbourhood of the pole λk by Gk. However,

having the parameterization of phase space M by action-angle coordinates {θj , Ij}, we

need to express this 1-form in terms of action-angle variables. This requires calculating

the partial derivatives of Gk with respect to action-angle variables, although establishing a

connection between Gj and action-angle variables is indeed a challenge. We will bridge this

gap using the Szegö kernel which is a (1
2 ,

1
2) bidifferential form on Γ× Γ, defined as:

Spq(x, y) =
θpq
(
A(x)−A(y)

)
θpq(0)E(x, y) (2.7.2)

for a given characteristics (p, q) where A is the Abel map on the surface, E is the prime

form and θpq is the theta function with characteristics (p, q) defined on the Jacobian of

the surface. The useful fact is that Gk can be identified with the matrix of eigenvectors Ψ̂

locally around λk and the components of eigenvectors will have already been expressed in

terms of theta functions. Therefore with some work, the eigenvectors and subsequently Ψ̂

can be written in terms of Szegö kernel as following:

Proposition: The matrix of eigenvectors Ψ̂ and its inverse in terms of Szegö kernel
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are:

Ψ̂(λ)ab = Sq(λ(b), λ
(a)
0 )

Sq(λ(b), λ
(1)
0 )

, Ψ̂−1(λ)ab = Sq(λ(b)
0 , λ(a))

Sq(λ(b)
0 , λ(1))

(2.7.3)

where λ(i) and λ(j)
0 are points above λ and λ0 on the spectral curve realized as an N -sheeted

covering of CP1.

The next step is to identify Gj with Ψ̂(λj) in the vicinity of λj given the fact that

Aj = GjLjG
−1
j and L(λ) = Ψ̂(λ)µ̂Ψ̂(λ)−1. There are now previously established formulae

for variations of Szegö kernel with respect to action-angle variables, namely

∂S(x, y)
∂qγ

= −
∮

aγ

Sq(x, t)Sq(t, y) (2.7.4)

and

∂Sq(x, y)
∂Iγ

= −πi2
∑

xk br. pts
res

t=xk

vγ(t)
Wt
[
Sq(x, t), Sq(t, y)

]
dλ(t)dµ(t) (2.7.5)

where vγ are the basis of holomorphic differentials on the spectral curve Γ and Wt is the

Wronskian with respect to t and the sum is taken over all branch points. With these

formulae applied, we will be able to calculate the required partial derivatives. The end

result is that:

ΘM =
g∑

j=1
Ijdqj (2.7.6)
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Chapter 3

Classical Gaudin system

The Gaudin models, introduced by M. Gaudin in his 1976 paper [10], are a significant

part of the theory of integrable systems and the subject of high interest amongst math-

ematical physicists. Their unique properties at both classical and quantum level, are in

connection with a long-range type of interactions described by the commuting Hamiltoni-

ans of Gaudin system. We will later review some use cases of Gaudin models but here we

are mostly interested in analytical construction of the solution. The classical Gaudin system

is best expressed via its Lax representation. Once we have the Lax equation, the problem

of finding the solution of the system becomes the problem of finding the eigenvectors of

Lax matrix. The eigenvector equation is closely related to the characteristic equation of the

matrix and in this case, the characteristic equation defines an algebraic curve, referred to

as the spectral curve. The general idea is to find the eigenvectors at any given point of the

spectral curve and then use them to reconstruct the Lax matrix. This boils down to finding

the meromorphic functions in the components of eigenvectors which hold specific analytical

properties. Therefore, we need to study the spectral curve first, then extract the analytical

data of the system and try to construct suitable functions satisfying the required analytical

properties.

3.1 Lax representation of Gaudin model

Suppose we have the following ordinary matrix differential equation

∂λΨ = L(λ)Ψ (3.1.1)
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where L(λ) is a matrix-valued meromorphic function of λ ∈ CP1 and Ψ(λ) ∈ CN . λ is

called the spectral parameter . Consider the following special case of equation (3.1.1):

Now set

L(λ) =
m∑

j=1

Aj

λ− λj
(3.1.2)

where the residues Aj ∈ sl(N,C) are independent of λ. We also impose the following

assumptions:

1) Regularity at infinity, which requires

m∑
j=1

Aj = 0 (3.1.3)

2) Ψ is holomorphic for all λ ∈ CP1 \ {λ1, ..., λm}

3) Ψ has regular singularities at λ = λj , j = 1, ...,m

4) L(λ) is diagonal at λ = λ0

By choosing the normalization point λ0 = ∞ and combining the equations (3.1.1) and

(3.1.2) we get the equations:


∂λΨ =

( m∑
j=1

Aj

λ− λj

)
Ψ

∂λj
Ψ = Aj

λ− λj
Ψ

(3.1.4)

which leads to the following system of nonlinear ODE known as Schlesinger equations:

∂Aj

∂λi
= [Ai, Aj ]
λi − λj

, i ̸= j

∂Ai

∂λi
=

m∑
j=1,j ̸=i

[Ai, Aj ]
λi − λj

(3.1.5)

Here we consider the autonomous analogue of this, it then becomes the so called classical

Gaudin system: 
( m∑

j=1

Aj

λ− λj

)
Ψ = µΨ

d

dtj
Ψ = Aj

λ− λj
Ψ

(3.1.6)

Suppose L(λ) =
∑

j
Aj

λ−λj
and Mj(λ) = Aj

λ−λj
, then Ψ and µ can be regarded as the
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eigenvector and eigenvalue of the operator L(λ) and the tj-time evolution equation of Ψ is

determined by L(λ) so


L(λ)Ψ = µΨ
d

dtj
Ψ = Mj(λ)Ψ

(3.1.7)

differentiating the first equation with respect to tj gives

d

dtj
L(λ)Ψ + L(λ) d

dtj
Ψ = µ

d

dtj
Ψ = µMj(λ)Ψ = Mj(λ)L(λ)Ψ

=⇒ d

dtj
LΨ + LMjΨ = MjLΨ =⇒ L̇Ψ = (MjL− LMj)Ψ

=⇒ L̇ = [Mj , L] (3.1.8)

Equation (3.1.8) is called the Lax equation and it is an alternative form of representing

the equations of motion of a system. The pair (L,Mj) is called the Lax pair and L the

Lax matrix which depend on dynamical variables as well as the spectral parameter λ. The

importance of Lax equation comes from the fact that it is an isospectral evolution equation

for the Lax matrix L(λ) i.e. the spectrum of the matrix is time-invariant.

Taking the Lax equation and substituting L(λ) and Mj(λ) gives

d

dt

(∑
k

Ak

λ− λk

)
=
[ Aj

λ− λj
,
∑

k

Ak

λ− λk

]
(3.1.9)

Subsequently, taking the residues of both sides at a λl yields the better known form of

Gaudin system


∂Aj

∂tk
= [Aj , Ak]
λj − λk

, j ̸= k

∂Aj

∂tj
=
∑
l ̸=j

[Aj , Al]
λj − λl

(3.1.10)

The analytical method of solving an integrable system is based on the study of eigen-

vector equation L(λ)Ψ(λ, µ) = µΨ(λ, µ) where Ψ(λ, µ) is the eigenvector with eigenvalue µ.

Now consider Γ, the curve defined by the characteristic polynomial of L(λ), i.e. det(L(λ)−

µ1) = 0 which is called the spectral curve. The immediate result of Lax equation being

isospectral is that Γ is a time-independent curve. To avoid technical difficulties, we only
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consider the maximal subset of the locus of det(L(λ)−µ1) = 0 that makes Γ non-singular,

i.e. all of its points have the property that the projection to either λ or µ component can be

used to homeomorphically identify a neighbourhood of the point on the surface with a disc

in the respective projection plane. We also require that all branch points of the spectral

curve be simple. With these assumptions, Γ can be regarded as a compact Riemann surface

and it is going to be central to the analytical solution method of integrable systems.

3.2 Analysis of the solution on the spectral curve

As noted, the analytical approach to solve the equations of motion revolves around the

eigenvector equation of the Lax matrix. At any point of the spectral curve there exists

an eigenvector of L(λ) with eigenvalue µ. We can reconstruct the eigenvector Ψ from its

analytical properties on Γ. Specifically, from all the so-called dynamical information of the

system that are contained in the divisor of its poles. We will later use theta functions to

explicitly reconstruct the eigenvectors from these analytical data.

The first step of the solution is to calculate the genus of the spectral curve defined by

the Lax matrix L. Assume L depends on the spectral parameter λ as previously stated

L(λ) =
m∑

j=1

Aj

λ− λj
(3.2.1)

Let us denote the eigenvector of L(λ) with eigenvalue µ by Ψ(λ, µ). A point on the spectral

curve Γ is a pair (λ, µ) satisfying det(L(λ)− µ1) = 0. As mentioned before, to avoid some

technical complications, we only consider the non-singular points satisfying characteristic

equation plus the desingularized infinity point. Branch points are also assumed to be simple.

This then defines a non-singular, compact Riemann surface. Assuming that the Lax matrix

L is N ×N , the equation of Γ is of the form

Γ(λ, µ) = (−µ)N +
N−1∑
q=0

rq(λ)µq = 0 (3.2.2)

The coefficients rq(λ) are polynomials of matrix elements of L(λ) so they have poles at

λj . We can see from equation (3.2.2) that the spectral curve appears as N -sheeted covering

of the Riemann sphere. To a given point λ on the Riemann sphere, there corresponds N

points on the curve whose coordinates are (λ, µ1), ..., (λ, µN ), where µi are the solutions of
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the algebraic equation Γ(λ, µ) = 0. By definition, µi are the eigenvalues of L(λ). We are

going to determine the analytical properties of the eigenvector Ψ(λ, µ) and try to reconstruct

L(λ) from them.

Denote the N points above λ = ∞ on the spectral curve by ∞1, ...,∞N . The regu-

larity condition at infinity means that the points ∞1, ...,∞N are the regular points of the

differential µdλ. Therefore resλ=∞ L(λ)dλ = 0 which implies

m∑
j=1

Aj = 0

We are now in the position to compute the genus of the spectral curve.

Theorem 1. ([1], p.126) The genus of the spectral curve Γ is

gΓ = N(N − 1)m
2 −N + 1 (3.2.3)

Proof. To compute the genus, we utilize the Riemann-Hurwitz formula which expresses the

genus of an N -sheeted covering of a Riemann surface of genus g0

2g − 2 = N(2g0 − 2) + ν (3.2.4)

where ν is the branching index of the covering. Being a Riemann sphere, g0 = 0 in this

case. To find ν, we should calculate the number of branch points with multiplicity or in

other words, the number of roots of Γ(λ, µ) in µ with multiplicity. This is also the number

of zeros of ∂µΓ(λ, µ). Since ∂µΓ(λ, µ) is a meromorphic function, the number of its zeros

equals the number of poles. These poles are located at the poles of L(λ). Above λj , a pole

of L(λ), we have N branches of the form µj = lj
λ−λj

+ ... where lj is the eigenvalue of Aj

(assumed to be distinct). On such branch we have

∂µΓ(λ, µ)|(λ,µj(λ)) =
∏
i ̸=j

(µj(λ)− µi(λ)) (3.2.5)

which has a pole of order N − 1. Thus, summing over all branches, the total order of

the pole over λj is N(N − 1). Now summing over all poles of L(λ), we see that the total

branching index is ν = N(N − 1)m so the genus of the spectral curve is

gΓ = N(N − 1)m
2 −N + 1
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Going back to the problem of reconstructing the eigenvectors, we shall now see how

the general procedure of solving an integrable system using its analytical properties on the

spectral curve works. We say that the vector Ψ(P ) has a pole if one of its components has a

pole. The divisor D of the poles of the eigenvector Ψ(P ) for P a finite point on the spectral

curve contains all the dynamical information of the system, hence it is called dynamical

divisor.

Let P = (λ, µ) ∈ Γ and assume that it is not a branch point of the surface so all eigen-

values of L(λ) are distinct and the eigenspaces at P are one-dimensional. The eigenvector

Ψ(P ) is of the form

Ψ(P ) =


ψ1(P )

...

ψN (P )

 (3.2.6)

We choose to normalize Ψ such that its first component ψ1(P ) is equal to 1 at any point

P ∈ Γ. We can see that each ψj(P ) depends analytically on P locally. These components

are as a matter of fact, meromorphic functions.

Proposition: ([1], p.131) With the above normalization, the components of the eigen-

vectors Ψ(P ) at P = (λ, µ) are meromorphic functions on the spectral curve.

Proof. Take a point P = (λ, µ) on the spectral curve Γ. It satisfies the equation det(L(λ)−

µ1) = 0 and there is a unique eigenvector Φ(P ) for the eigenvalue µ with the normalized first

component ψ1(P ) = 1. Notice that the components of Ψ(P ) can be regarded as some minors

(determinant of the square matrix obtained by removing a row and a column) of the matrix

L(λ) − µ1 so written in terms of elements of L(λ) − µ1, they are meromorphic functions

on Γ. By applying the normalization, we divide all components by the first component

(another meromorphic function) hence they are still meromorphic functions on Γ.

Thus, to each point (λ, µ) on Γ, we associate a meromorphic eigenvector Ψ(P ). At

branch points however, several eigenvectors can be associated to the point. For a generic

Lax matrix, the eigenspaces are one-dimensional even at branch points. Moreover, the

eigenspaces around P admit a unique analytic continuation at P , regardless of the chosen

branch. The associated eigenspace to each point of Γ defines an analytic line bundle (see
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[1], p.131) known as the eigenvector bundle where the eigenvectors at each point lie.

Example: Let us briefly review a 2×2 case where L(λ) is a 2×2 matrix to get a better

understanding of the situation at branch points. Let

L(λ) =

a(λ) b(λ)

c(λ) d(λ)


which has eigenvalues

µ±(λ) = 1
2(a(λ) + d(λ))± 1

2

√
∆(λ) , ∆(λ) = (a(λ)− d(λ))2 + 4b(λ)c(λ)

The corresponding normalized eigenvectors are

Ψ± =

 1

ψ±

 , ψ± = d(λ)− a(λ)
2b(λ) ±

√
∆(λ)

2b(λ)

Assume that λ0 is a root of ∆(λ) = 0. As λ −→ λ0, Ψ+ and Ψ− tend smoothly to the same

limit except if one has also b(λ0) = 0. If b(λ0) ̸= 0, we can express L(λ0) in the basis given

by Ψ(λ0) and
( 0

1

)
, hence

L(λ0) −→

1
2(a(λ) + d(λ)) b(λ0)

0 1
2(a(λ) + d(λ))


which means that L(λ0) is of the Jordan form and has only one eigenvector. However, if

b(λ0) = 0, then we also have a(λ0) = d(λ0). Assuming that d(λ)− a(λ) and b(λ) vanish to

first order in λ− λ0, then d(λ)−a(λ)
2b(λ) tends to some limit ψ0. We see that ψ± ∼ ψ0 ±

√
c(λ)
b(λ) .

Therefore if c(λ0) ̸= 0, we still have only one eigenvector of the form
( 0

1

)
. If c(λ) also

vanishes to first order in λ − λ0, the matrix L(λ0) is diagonalizable and the eigenvectors

Ψ± tend to different limits at λ0. However, in this case we have ∆ ∼ (λ − λ0)2 so the

corresponding point (λ0, µ0) of the spectral curve is not a branch point, but a singular

point which blows up to two points if we desingularize it. This analysis also applies to the

branch points of order 2 in general case.

To understand the analytical properties of Ψ(P ), we first count the number of its poles

in the following proposition:

Proposition: ([1], eq. 5.17) The number of poles of Ψ(P ) with normalized first com-

ponent is g +N − 1 , where g = gΓ is the genus of spectral curve.

33



Proof. Let Ψ̂(λ) be the matrix of eigenvectors of L(λ):

Ψ̂(λ) =


ψ1(P1) . . . ψ1(PN )

...
...

...

ψN (P1) . . . ψN (PN )

 (3.2.7)

where Pj are the N points above λ. So by definition, Ψ̂(λ) is the matrix diagonalizing L(λ).

We also apply the normalization ψ1(Pj) = 1. Now define:

W (λ) = [det Ψ̂(λ)]2

W (λ) is a well-defined rational function of λ on the Riemann sphere since the square of the

determinant does not depend on the order of Pj . It has a double pole at the simple poles

of Ψ(λ). We just need to count its zeroes to get the number of poles.

We show that W (λ) has a simple zero for values of λ corresponding to branch points

of the covering. If so, the number of poles would be ν
2 . Recall that from (3.2.4), the

number of branch points is ν = 2(N + g− 1) which concludes the result. Notice that W (λ)

only vanishes at branch points where two columns of Ψ̂(λ) are identical. Let Pj = (µj , λ),

then Ψ(Pj) are the eigenvectors of L(λ) corresponding to the eigenvalues µj hence they

are linearly independent when all µj are different. Therefore W (λ) cannot vanish at such

points. The other possibility of W (λ) vanishing is when the vector Ψ(P ) vanishes itself

which means all of its components must have a common zero but this is not possible since

the first component is always 1. Now assume b0 corresponds to a branch point which is

of order 2. Let z be a local analytic parameter, the covering projection P → λ has the

expression λ = b0 + λ1z
2 + O(z3). The determinant vanishes to order z so W vanishes to

order z2 which is proportional to λ− b0 thus W (λ) has a simple zero at b0.

We also need to study the behaviour of the eigenvector around λ = λ0. At the N points

λ
(j)
0 above λ0, the eigenvectors are proportional to canonical vectors ei due to L(λ) being

diagonal at λ0. We also assume that λ0 is not a branch point. The compatibility with the

normalization of ψ1(P ) = 1 gives us the following statement:

Proposition: ([1], 1st prop. of p.135) The kth component of Ψ(P ), ψk(P ) must have

a simple pole at λ(k)
0 and vanish at λ(1)

0 for k = 2, ..., N .

Proof. Around λ(k)
0 , k = 1, ..., N , the eigenspace of L(λ) is spanned by a vector of the form
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Vk(λ) = ek +O( 1
λ). The first component of Vk is V 1

k = δ1k +O( 1
λ). To gave Ψ normalized,

we divide Vk by V 1
k . So:

Ψ(P )|
P →λ

(1)
0

=



1

O( 1
λ)

...

O( 1
λ)


, Ψ(P )|

P →λ
(k)
0

=



1

O(1)
...

O(λ)
...

O(1)


, k ≥ 2

where O(λ) at the kth component has pole at λ(k)
0 .

To recap, imposing the condition that L(λ0) is diagonal introduces N − 1 poles at

λ
(j)
0 , j = 2, ..., N . The location of these poles is independent of time and they do not

contain any dynamical information. Only the position of the other g poles has dynamical

significance. Taking the formal sum of of these g dynamical poles gives us a degree g

divisor D known as the dynamical divisor. Unlike the aforementioned non-dynamical poles,

the dynamical divisor does depend on time so if necessary, it could also be denoted by D(t).

Since the vector Ψ(P ) possesses a pole if one of its components have a pole, we obtain by

the last two prepositions that the divisor of the kth component of the eigenvector Ψ(P ) is

bigger than (−D+λ
(1)
0 −λ

(k)
0 ). This information is sufficient to reconstruct the eigenvectors

and the Lax matrix. The following proposition implies that having the analytical data of

the eigenvectors, i.e. the dynamical divisor, ensures the existence of a meromorphic vector

meeting the required analytical behaviour:

Proposition:([1], p. 135) Let D be a divisor of degree g on Γ. Up to normalization,

there is a unique meromorphic function ψk with divisor (ψk) ≥ −D + λ
(1)
0 − λ

(k)
0 .

Proof. This can deduced from Riemann-Roch theorem, which states that for a compact

Riemann surface on genus g, we have

l(D)− l(K −D) = deg(D)− g + 1

where l(D) is the complex dimension of the vector space of meromorphic functions f on the

surface, such that all the coefficients of the divisor (f) + D are non-negative and K is the

canonical divisor, i.e. the divisor associated to the canonical line bundle. An immediate
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corollary of Riemann-Roch theorem is that

Corollary: ([1], p. 558) The dimension of the space meromorphic functions with at

most k poles and at least h zeros on a Riemann surface of genus g is greater than or equal

to k − h+ 1− g. The equality occurs when k − h > 2g − 2.

As a result, since ψk must have g + 1 poles and one zero, the dimension of the space

of functions such as ψk is 1. Therefore ψk is unique up to multiplication by a constant

ψk → dkψk.

3.3 Reconstructing the solution from analytical data

Equipped with the functions ψk(P ) and the vector Ψ(P ) =
(
1, ψ2(P ), ..., ψN (P )

)T , we

can eventually construct the eigenvectors we have been looking for. The following theorem

guarantees the existence of the matrix L which solves the Lax equation:

Theorem 2. ([1], p.136) Given the spectral curve Γ, such that above the points λk, the

N branches µ1, ..., µN are of the form µj = cj

λ−λk
+ (regular terms) , there exists a unique

matrix L(λ), rational in λ, such that

(
L(λ)− µ1

)
Ψ(P ) = 0

This matrix has poles at the points λk and satisfies the condition L(λ0) = diag(a1, ..., aN ).

The matrix L(λ) is given by

L(λ) = Ψ̂(λ)µ̂Ψ̂−1(λ) (3.3.1)

where µ̂ = diag(µ1, ..., µN ).

This theorem states that once the spectral curve is given, all of the dynamical data

are encoded into the divisor D. We should point out that the eigenvector Ψ(P ) here is

defined up to left multiplication by diagonal matrices. On the Lax matrix, this amounts to

conjugation by a constant diagonal matrix.

Before getting to the main theorem of this section, let us review three key objects from

the theory of Riemann surfaces that play a significant role here. Suppose we have a compact

Riemann surface Γ with a choice of canonical homology basis H1(Γ,Z) = Z{a1, b1, ..., ag, bg}

and a basis of holomorphic differentials {ωj}gj=1 normalized with respect to a-cycles. The
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Abel map A(P ) : Γ→ Cg is defined on the Riemann surface Γ by

A(P ) :=
( ∫ P

P0
ω1, ...,

∫ P

P0
ωg
)T (3.3.2)

with a fixed point P0. The integration paths are taken inside fundamental polygon of Γ,

i.e. the simply connected domain obtained by cutting the surface along cycles aj , bj realized

as loops on the surface. Therefore, the definition is independent of integration paths. On

a formal sum of points (i.e. a divisor), it is defined by the natural linear combination of

Abel maps on each individual point. Taking the values of A(P ) inside the Jacobian of the

surface J(Γ) = Cg/(Zg +BZg), B the matrix of b-periods, makes the Abel map well-defined.

The vector of Riemann constants K is defined as

Kj := τjj

2 −
g∑

l=1

∫
al

AjdAl (3.3.3)

and it only depends on the choice of homology basis and the basepoint P0.

We then need to fix a basis for Homology group and also holomorphic differentials. To

avoid certain technical difficulties in future, more specifically, to avoid having non well-

defined integrals of the meromorphic form µdλ due to the integration path crossing the

poles of the differential, we choose a basis of homology for the punctured Riemann surface,

i.e. a canonical basis {ai, bi}gi=1, {l
(k)
i } on Γ \ {λ(k)

j }, j = 1, ...,m, k = 1, ..., N where a- and

b- cycles are as before and {l(k)
i } are small loops around {λ(k)

j }, the points above λj .

We also fix a basis of holomophic differentials {wj} on Γ normalized with respect to

a-cycles, i.e.
∮

aj

ωk = δjk.

We also require the Riemann theta functions, an important class of complex analytic

functions which will essentially be the building blocks of the eigenvectors. A Riemann theta

function in g variables is defined by

θ(z1, ..., zg) =
∑

n⃗∈Zg

exp
(
2πi⟨n⃗, z⃗⟩+ πi⟨Bn⃗, n⃗⟩

)
(3.3.4)

It can be shown that the series on the right converges, hence it defines an analytic function

on Cg. The crucial application of theta functions for us is the fact that they can be used

to express meromorphic functions on a Riemann surface of genus g. To show this, we recall

the Riemann’s theorem:

Theorem: ([1], eq.15.15) Let z = (z1, ..., zg) ∈ Zg, arbitrary. Either the function
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θ(A(p)− z) vanishes identically for p ∈ Γ or it has exactly g zeros p1, ..., pg such that

A(p1) + ...+A(pg) = z −K

K being the vector of Riemann constants.

Using this, we wish to show the following lemma:

Lemma: The field of meromorphic functions on a Riemann surface can be parameter-

ized by the ratio of theta functions.

proof. Assuming f is a meromorphic function with g poles at σ1, ..., σg, an additional

pole at q+ and a specific zero at q−. By the Riemann-Roch theorem, such function is unique

up to a multiplication factor. Define the vectors

v =
g∑

j=1
A(σj) +K

v+ = A(q+) +
g∑

j=2
A(σj) +K

v− = A(q−) +
g∑

j=2
A(σj) +K

v0 = v + v+ + v−

and the function

f(p) = θ(A(p)− v−)θ(A(p)− v0)
θ(A(p)− v)θ(A(p)− v+)

One can check using Riemann theorem that the factors in the denominator vanish at the

points σ1, ..., σg and q+, σ2, ..., σg respectively. Similarly, the two factors in the numerator

vanish at q−, σ2, ..., σg and g other points. The zeros at σ2, ..., σg are cancelled out between

the numerator and denominator, therefore giving the correct poles and zeros. f(p) can also

be shown to be well-defined as we go round cycles on the surface using the properties of

theta functions.

We are now finally in a position to construct the solution of Gaudin system in terms of

theta functions using the dynamical data of the system.

Theorem 3. ([1], eq. 5.40) The components of eigenvector matrix Ψ̂(λ) subject to being

diagonal at L(λ0) and the normalization ψ1(λ) = 1 can be explicitly expressed in terms of
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theta functions as:

ψk(P ) = Ck
θ
(
A(P )−A(λ(k)

0 ) +A(λ(1)
0 )−A(D)−K

)
θ
(
A(P )−A(D)−K

) θ(e+
∫ P

λ
(1)
0
ω)

θ(e+
∫ P

λ
(k)
0
ω)

(3.3.5)

where

- N points above λ0 on the spectral curve are denoted by λ(1)
0 , ..., λ

(N)
0 .

- D is the degree g dynamical divisor D = (γ1, ..., γg) composed of g dynamical poles of

the eigenvectors of Lax matrix on the spectral curve.

- A is the Abel map and K is the vector of Riemann constants, both with the base point

P0.

- e is a vector in Cg such that θ(e) = 0 and ω = (ω1, ..., ωg) a basis of holomorphic

differentials on Γ.

Proof. We have already established that eigenvectors of L are meromorphic functions and

their analytical information is given by the dynamical divisor D. As mentioned earlier, the

Riemann’s theorem can be used to construct a parametrization of meromorphic functions

on the Riemann surface Γ in terms of theta functions. For a vector e in the divisor Dθ =

{z | θ(z) = 0}, the function θ(e +
∫ y

x ω) does not vanish identically in y. By Riemann’s

theorem, this has g zeros y1, ..., yg for given x. One of these zeros is x since e ∈ Dθ, set

y1 = x. We now show that y2, ..., yg are independent of x. By Riemann’s theorem, we have

A(y1) + ...+A(yg) = A(x)− e−K

so y2, ..., yg are determined by A(y2) + ... + A(yg) = −e − K which is independent of x.

To use this to construct meromorphic functions, notice that
θ(e+

∫ y

x1
ω)

θ(e+
∫ y

x2
ω)

has a zero at y = x1

and a pole at y = x2. The extra g− 1 zeros in the numerator and denominator cancel each

other out.

The components of the eigenvector Ψ(t, P ) can now be explicitly written. Ψk has a pole

at λ(k)
0 and a zero at λ(1)

0 so we need the block
θ(e+

∫ P

λ
(1)
0
ω)

θ(e+
∫ P

λ
(k)
0
ω)

. It also has g poles located at

dynamical poles which are encoded into the dynamical divisor D. By Riemann’s theorem

and using the same analysis as above, if P is one of these g poles, then we have:

A(P )−A(D)−K = −
∑
A(other g − 1 poles)−K = e+K −K = e (3.3.6)
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so putting θ
(
A(P ) − A(Dt) − K

)
in the denominator gives us g dynamical poles. Finally,

there should be no monodromy, we then need to assemble all these blocks so that the

product remains unchanged when we loop around cycles in the basis of homology group of

Γ so the sum of the arguments of the theta functions in the numerator should be equal to the

sum of the arguments in the denominator for the whole expression to have no monodromy.

We add the term θ
(
A(P )−A(λ(k)

0 ) +A(λ(1)
0 )−A(Dt)−K

)
to the numerator to fulfil this

requirement. Thus:

ψk(t, P ) = Ck
θ
(
A(P )−A(λ(k)

0 ) +A(λ(1)
0 )−A(Dt)−K

)
θ
(
A(P )−A(Dt)−K

) θ(e+
∫ P

λ
(1)
0
ω)

θ(e+
∫ P

λ
(k)
0
ω)

(3.3.7)

where Dt denotes the dynamical divisor at time t.

It is convenient to express this result in terms of theta functions with characteristic.

Recall the following formula for a theta function with characteristic vector [p, q]

θ[p, q](z, τ) = eπip2τ+2πip(z+q)θ(z + pτ + q, τ) (3.3.8)

setting p = 0, we can regard the theta function in (3.3.5) as a theta function with

characteristic for q = A(D) +K so we have

(q)l = Kl +
∫ D

P0
ωl = Kl +

g∑
i=1

∫ γi

P0
ωl (3.3.9)

So with q as above and denoting the theta function with characteristic [0, q] by θq, we

can rewrite the components of Ψ̂(λ) as:

ψk(t, P ) = Ck
θq
(
A(P )−A(λ(k)

0 ) +A(λ(1)
0 )
)

θq
(
A(P )

) θ(e+
∫ P

λ
(1)
0
ω)

θ(e+
∫ P

λ
(k)
0
ω)

(3.3.10)

We will later utilize the components of vector q to construct coordinates on the space

of spectral covers, i.e. the phase space of our system of equations.

3.4 Time evolution of eigenvectors

One last thing that remains after reconstructing the eigenvectors from analytical and

dynamical data is to show that the time evolution of the eigenvectors satisfying the required
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analytical properties indeed matches the one given by the time evolution equation of the

system d

dtj
Ψ = MjΨ. Recall that the time evoltion of the system is governed by the Lax

equation

d

dtj
L(λ) = [Mj(λ), L(λ)] (3.4.1)

Let t represent any of time variables tj and for brevity, denote Mj by just M . Also

assume that we have constructed the normalized eigenvector Ψ(t, P ) at time t and point

P = (λ, µ) with the eigenvalue µ. By the Lax equation, we obtain:

d

dt
LΨ = d

dt
(LΨ)− L d

dt
Ψ = MLΨ− LMΨ

=⇒ d

dt
(LΨ) + L(MΨ−Ψ)−MµΨ = 0

=⇒ d

dt
(µΨ)− µ(MΨ) + L(MΨ− d

dt
Ψ) = 0

=⇒ L(MΨ− d

dt
Ψ) = µ(MΨ− d

dt
Ψ) (3.4.2)

This implies that Ψ̇−MΨ must be a multiple of the eigenvector of L for the eigenvalue µ,

which is Ψ(t, P ). Therefore

d

dt
Ψ(t, P )−M(λ)Ψ(t, P ) = C(t, P )Ψ(t, P ) (3.4.3)

where C(t, P ) is a scalar function. Normalizing the eigenvector Ψ(t, P ) so that its first

component equals 1 gives

C(t, P ) =
∑

j

M1j(λ)ψj(t, P ) (3.4.4)

By the analysis of the previous section, the normalized eigenvector Ψ(t, P ) has poles at the

dynamical divisor D(t) and the N − 1 points ∞k. Now for infinitesimal dt, consider the

function

N (t, dt, P ) ≡ 1 + C(t, P )dt = 1 + dt
∑

j

M1j(λ)ψj(t, P ) (3.4.5)

The equation (3.4.3) can be equivalently rewritten as

N (t, dt, P )Ψ(t+ dt, P ) =
(
1 + dtM(λ)

)
Ψ(t, P ) +O(dt2) (3.4.6)
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We can see that N (t, dt, P ) as a meromorphic function of P ∈ Γ normalizes the eigenvector

with the time evolution given by Ψ̇ = MΨ derived from the Lax equation. The divisor of

this meromorphic function is

(N ) = D(t+ dt) +
∑
k,i

P ◦
k,i −D(t)−

∑
k,i

Pk,i (3.4.7)

where as before, Pk,i are the points above λk and P ◦
k,i the zeros of N . From (3.4.6), we see

that N cancels the poles of Ψ(t+ dt, P ) at D(t+ dt) and produces the poles of Ψ(t, P ) at

D(t). The poles at ∞2, ...,∞N are the same at both sides of (3.4.6) and do not appear in

N . Furthermore, since M(λ) has a simple pole at λk, N also has a simple pole at N points

Pk,i above λk. N also needs to have extra zeros P ◦
k,i in order to match the number of poles.

Since dt is small, and N = 1 for dt = 0, the zeros are close to the poles, D(t+dt) is close to

D(t) and on each sheet of the covering there is exactly one zero P ◦
k,i close to the simple pole

Pk,i. Now by combining the theorem ([1], p. 143) and ([1], eq. 5.37), we obtain the following:

Theorem: Let γj(t) with j = 1, ..., g be the points of the dynamical divisor D(t). Let

ω be any holomorphic differential on Γ. The time evolution of the points γj(t) induced by

the Lax equation L̇(λ) = [M(λ), L(λ)] is such that:

d

dt

g∑
j=1

∫ γj(t)
ω =

∑
k

N∑
i=1

resPk,i

([
M(λ)Ψ(t, P )

]
1ω
)

(3.4.8)

where [M(λ)Ψ(t, P )]1 =
∑

j M1j(λ)ψj(t, P ) is the first component of the vector M(λ)Ψ.

which leads to the following result:

Corollary: ([1], eq. 5.38) The flow induced by the Lax equation on the eigenvector

bundle of the spectral curve is a linear flow on the Jacobian of the curve, i.e.

A(D(t))−A(D(0)) = tU (M) (3.4.9)

where

U
(M)
j =

∑
k,i

resPk,i

(
[M(λ)Ψ(t, P )

]
1ωj

)
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ωj being the basis of holomorphic differentials. The equation (3.4.9) in conjunction

with the explicit expression of eigenvectors (3.3.5) shows that the time evolution of the

eigenvectors conincides with Ψ̇ = M(λ)Ψ.

3.5 su(2) Gaudin models

In this section, we provide a brief survey of rational su(2) Gaudin models and how

the Lagrange top [see example 4, (2.1.10)] can be obtained from a two-body su(2) rational

Gaudin model.

First, we set the following basis for su(2):

σ1 = 1
2

 0 −i

−i 0

 , σ2 = 1
2

0 −1

1 0

 , σ3 = 1
2

−i 0

0 i


and recall the correspondence between R3 and su(2)

v = (v1, v2, v3)←→ σ = 1
2

 −iv3 −iv1 − v2

−iv1 + v2 iv3


which gives an isomorphism between (su(2), [·, ·]) and the Lie algebra (R3,×) with × the

vector product. This allows to identify the matrices of su(2) with vectors in R3 and it also

induces a scalar product on su(2) from R3. Via this scalar product, the elements of dual

space su∗(2) may be identified with su(2).

The Lie algebra of the N -body su(2) Gaudin model is given by ⊕Nsu∗(2), the direct

sum of N copies of su∗(2), denoted by {vα
i }3α=1, 1 ≤ i ≤ N , the set of coordinate functions

related to the i-th copy of su(2). The Lie-Poisson bracket on ⊕Nsu∗(2) is

{vα
i , v

β
j } = −δij ϵαβγ v

γ
i 1 ≤ i, j ≤ N (3.5.1)

where ϵαβγ is the skew-symmetric tensor with ϵ123 = 1. The dynamics of rational su(2)

Gaudin model is governed by the Lax matrix

LG(λ) = σαp
α +

N∑
i=1

σαv
α
i

λ− λi
= p +

N∑
i=1

vi

λ− λi
(3.5.2)

where the distinct λi are complex parameters of the models. Here the constant vector
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p ∈ R3 needs to be added in order to get a sufficient number of functionally independent

integrals of motion. To recall, an integral of motion is a function of the coordinates of

the phase space which is constant along a certain trajectory. In other words, quantities

conserved throughout the motion. The complete set of integrals of rational su(2) model

can then be constructed by computing the residues of Lax matrix at λ = λi on the spectral

curve det(LG(λ)− µ1) = 0 which then leads to the following 2N independent functions in

involution. ([16], prop. 2):

Hi = ⟨p,vi⟩+
∑
i ̸=j

⟨vi,vj⟩
λi − λj

, Ci = 1
2⟨vi,vj⟩, i = 1, ..., N (3.5.3)

where Hi are the integrals of motion and Ci are Casimir functions i.e. functions that

commute with any othe function with respect to the Poisson bracket. Essentially, Hi are

Gaudin Hamiltonians of the system, as described by (2.5.5). The Hamiltonian of rational

su(2) Gaudin model is given by

HG =
N∑

i=1
ηiHi, ηi ̸= ηj ∈ C (3.5.4)

An interesting specialization of this Hamiltonian is obtained by setting ηi = λi. In that

case, it yields

HG = 1
2
∑
i ̸=j

⟨vi,vj⟩+
∑

i

λi⟨p,vi⟩ (3.5.5)

We may now express the equations of motion with respect to this Hamiltonian. ([16],

prop. 5)

v̇i =
[
λip +

N∑
j=1

vj , vi

]
(3.5.6)

The equivalent Lax representation is

L̇G(λ) = [LG(λ),MG(λ)] (3.5.7)

where

MG(λ) =
∑

i

λivi

λ− λi
(3.5.8)
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Lagrange top serves as a handy example of su(2) Gaudin systems in two-body case; A

3-dimensional rigid body motion around a fixed point in a homogeneous field (gravity in

this case) which is characterized by the inertia tensor diag(1, 1, α), α ∈ R, meaning that

the body is rotationally symmetric with respect to the third coordinate axis, and the fixed

point lying on the symmetry axis as demonstrated below.

The standard form of equations of motion is given by the Euler-Poisson equations

J̇ = P ×X, Ẋ = J ×X (3.5.9)

where J = (J1, J2, J3) is the vector of angular momentum, P = (0, 0, α) is the weight vector

along the gravity field and X = (x1, x2, x3) the vector pointing from the fixed point to

the center of mass. This defines an integrable system with 2 degrees of freedom and the

Hamiltonian is

H = 1
2(J2

1 + J2
2 + J2

3 ) + αx3 (3.5.10)

The elements Jk, xk are the generators of Lie-Poisson Euclidean algebra e(3) defined by

the Poisson brackets

{Jk, Jl} = Jm, {Jk, xl} = xm, {xk, xl} = 0 (3.5.11)

where (klm) is the cyclic permutation of (123). This Lie-Poisson bracket has two Casimir
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functions

C1 =
∑

k

x2
k, C2 =

∑
k

xkJk (3.5.12)

These Casimir functions are constant on symplectic leaves, which are four-dimensional

symplectic manifolds in this case. The two commuting integrals of motion, i.e. Gaudin

Hamiltonians, of the system are the Hamiltonian itself and J3 since J3 is a conserved

quantity due to invariance of angular momentum under rotation about the direction of

gravity field.

The Lagrange top can now be constructed from su(2) Gaudin magnet model, originally

introduced in [10] . This model has the Lax matrix

LG(λ) =
m∑

j=1

1
λ− λj

s3
j s−

j

s+
j −s3

j

+ α

1 0

0 −1

 (3.5.13)

where λj ∈ C and α ∈ R are the parameters of the model and λ the spectral parameter

as before. α indicates the intensity of magnetic field. Local variables {s3
j , s

±
j }mj=1 are the

generators of direct sum of m su(2) spins.

As discussed in section 2.6, the nonlinear dynamics of the system defined by the equa-

tions (3.5.9) becomes linear on the Jacobian of the spectral curve

ΓG : det(LG(λ)− µ1) = 0 (3.5.14)

which by the formula (3.2.3), has the genus g = m − 1. The spectral curve ΓG can be

alternatively written as

v2 = α2 +
m∑

j=1

( Hj

λ− λj
+

s2
j

(λ− λj)2

)
(3.5.15)

Following (3.5.3), the commuting Gaudin Hamiltonians are

Hj =
∑
k ̸=j

2s3
js

k
j + s+

j s
−
j + s−

j s
+
j

λj − λk
+ 2αs3

j (3.5.16)

Now considering the two-body case of this model where m = 2, the phase space is
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su(2)⊕ su(2). Assume s1
j and s2

j are as s±
j = s1

j ± s2
j . The Lax matrix is given by

L(λ) = L1
λ− λ1

+ L2
λ− λ2

+ α

i 0

0 −i

 (3.5.17)

where

Lk =

 is3
k s2

k + is1
k

−s2
k + is1

k −is3
k

 ∈ su(2), k = 1, 2

By Inönü-Wigner contraction (see [16], section 3) from the rotation group O(n + 1)

to the Euclidean group E(n), the Lie-Poission algebra e(3) for the Lagrange top can be

obtained. The generators of this algebra J± = J1 ± iJ2, x± = x1 ± ix2, x3 and J3. The

algebra e(3) is generated by the natural extension of Poisson bracket to these generators.

We skip the details of the contraction, but the end result is that the Lax matrix of Lagrange

top becomes

L(λ) = 1
λ

J3 J−

J+ −J3

+ 1
λ2

x3 x−

x+ −x3

+ α

i 0

0 −i

 (3.5.18)

Here, α describes the intensity of gravitational field. The expanded form of spectral

curve det(L(λ)− µ1) = 0 is

Γ : −µ2 = 1
λ4 + 2l

λ3 + 2H
λ2 + 2J3

λ
+ α2 (3.5.19)
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Chapter 4

Symplectic structure of the system

Having studied the analytical aspects of Gaudin system and reconstructed the Lax

matrix from analytical data, the next step is to study the symplectic properties of the

system, specifically the symplectic structure of the phase space which is a crucial part

of Hamiltonian formalism of integrable systems and the associated Poisson structure. As

briefly discussed in section 2.3, the symplectic structure and properties are attributed to

the space on which the motion and its orbits take place, that is, roughly speaking, the

phase space of the system. Our aim in this section to define and understand the symplectic

structure of this even-dimensional space and then express the canonical symplectic forms in

terms of a suitable coordinate system, the one obtain by the dynamical data encoded in the

dynamical divisor and also the action-angle variables which will follow in the next chapter.

4.1 The phase space of Gaudin system

In other to characterize the phase space of the system, we are going to diagonalize the

coefficients in the rational Lax matrix of the form (3.1.2). Each Aj can be written as:

Aj = GjLjG
−1
j (4.1.1)

where Lj is a diagonal matrix and Gj , Lj ∈ sl(N,C). Lj is also chosen to be non-dynamical,

that is it does not contain the dynamical data of the system.

Recall that the equation of the spectral curve det(L(λ) − µ1) = 0, we expand it in its

48



polynomial form:

Γ(λ, µ) = (−µ)N +
N−1∑
j=0

rj(λ)µj = 0 (4.1.2)

We have already provided a rigorous construction of the phase space in (2.3.6), denoted

byM. Here, we are going to define it directly for the case of Gaudin system (3.1.6). For the

sake of simplicity and without the loss of precision, here we consider the phase space as the

set of degrees of freedoms of system, which can be translated into all degrees of freedom in

Aj , j = 1, ...,m matrices, subject to
∑
Aj = 0 for regularity at∞. Given the decomposition

(4.1.1), Aj can be alternatively characterized by the set of all m pairs (Gj , Lj), j = 1, ...,m,

modulo the right multiplication of Gj by diagonal matrices in addition to the action of

gauge group, that is the action under which the Lax equation is invariant. Here, the said

action is the left multiplication of all Gj by an element of S ∈ sl(N,C). Under this action,

the Lax pair transforms as:

L→ SLS−1, M → SMS−1 + ∂tSS
−1

and it is easy to verify the invariance of Lax equation under this action. To sum up, the

phase space is given by

M =
{

(Gj , Lj)m
j=1,

m∑
j=1

GjLjG
−1
j = 0

}
/ ∼ (4.1.3)

where ∼ is the equivalence by the action of simultaneous left multiplication Gj → SGj ,

S ∈ sl(N,C) and choice of Gj is up to right multiplication by a diagonal matrix. We now

count the number of degrees of freedom in all (Gj , Lj) and then subtract those eliminated

by the quotients. which leads to the following theorem concerning the dimension of the

phase space:

Theorem 4. ([1], p.127) The dimension of M is 2g and there are g independent action

variables in the equation of the spectral curve (4.1.2).

Proof. To count all the parameters, we start with the dynamical variables Gj which are

N ×N matrices so we have N2 parameters for each. But notice that Aj is invariant under

Gj → GjDj for a diagonal matrix Dj so the dimension of the orbit of Aj under this action is

N2−N . We have m of these orbits so the number of degrees of freedom so far is (N2−N)m.
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We also have the invariance under the right action of diagonal matrices Gj → GjD. The

orbit of this action has the dimension N − 1 (excluding the identity element as it does

not act). The phase space M can now be obtained by the Hamiltonian reduction by this

action. We need to reduce the total number of degrees of freedom of system by the number

of constrained imposed by the action. This is done by first fixing a moment map, setting

A = GLG−1 as the moment map which yields N − 1 constraints then we take the quotient

by the specified action which has orbits of dimension N − 1 so the total number of degrees

of freedom (N2 −N)m should be reduced by 2(N − 1). Thus by using theorem (1) for the

genus of the spectral curve we get:

dimM = (N2 −N)m− 2(N − 1) = 2g

Now, to count the number of independent coefficients in (4.1.2), notice that rj(λ) is a

rational function of λ and we also know its value at ∞ since µj → aj (Recall (??)). rj is

also a symmetrical function of µ1, ..., µN where µi are the eigenvalues of the Lax matrix

L(λ). Above λ = λk, they can be written as

µj = cj

λ− λk
+ regular

where cj are fixed and non-dynamical since they are the elements of the diagonal matrix

Lk which is non-dynamical, whereas the regular part of µj is dynamical. From (4.1.2), We

can see that rj(λ) has a pole of order j at λ = λk so it can be expressed using j × m

parameters, which are actually the coefficients of all these poles. Summing over j we get
1
2N(N+1)m parameters overall. However, not all these parameters are independent because

the coefficients cj are non-dynamical. This implies that the highest order term in rj(λ) is

fixed therefore it yields N constraints on the coefficients of rj(λ). We are now left with
1
2N(N − 1)m = g +N − 1 parameters.

It remains to take the symplectic quotient by the action of diagonal matrices. Consider

the Hamiltonians

Hn = 1
n

resλ=∞ tr(Ln(λ))dλ , n = 1, ..., N − 1 (4.1.4)

i.e. the 1
λ term in tr(Ln(λ)). These are functions of rj(λ) and they are the generators of

the diagonal matrices action. Since they are the moment map for the diagonal action, they
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would be fixed on the orbits so after taking the quotient, the number of parameters reduces

by N − 1 so we are left with g independent action variables.

4.2 Symplectic structure of the phase space

Following theorem (4), Lax description of a dynamical system provides a natural coordi-

nates on phase space with g independent action variables Fi which parameterize the spectral

curve Γ and g points γi = (λγi , µγi) which we called the dynamical divisor or dynamical

data. We are essentially looking for expressing the symplectic form in these coordinates.

The phase space of the system appears as a fibred space whose base is the space of moduli

of the spectral curve, i.e. the set of parameters determining the deformations of spectral

curve as a Riemann surface, which are explicitly described as the coefficients of the spectral

curve equation Γ(λ, µ) = det(L(λ)− µ1) and the fibre at any given Γ is the Jacobian of Γ,

which is a g-dimensional space over C.

Before proceeding, we need to introduce a differential d̃ on the phase space M which

varies the variables of this space, action variables Fi and dynamical divisors λγi , µγi , con-

strained to the spectral curve Γ. d̃ differentiates any function of Fi, λ, µ by keeping λ

constant. Consider a bundle consisting of the family of spectral curves Γ where the coeffi-

cients of Γ (in its polynomial form) depend on the moduli parameters, parameterizing the

base space. By differentiating on this bundle of curves while keeping λ constant we obtain a

horizontal differentiation, i.e. a connection on the bundle. Explicitly, for a function on this

bundle, or in other words, a function f depending on Fi, λ, µ we take λ as a local parameter

and define d̃f =
∑

i ∂Fif d̃Fi. At a branch point, we take µ as the local parameter and:

d̃f = ∂µf d̃µ+
∑

i

∂Fif d̃Fi (4.2.1)

where µ is obtained by differentiating Γ(λ, µ) = 0 while keeping λ constant:

d̃µ = − 1
∂µΓ(λ, µ)

∑
i

∂FiΓ(λ, µ)d̃Fi (4.2.2)

At a branch point of the covering map P = (λ, µ) → λ, we have ∂µΓ(λ, µ) = 0 so the

differential d̃ has a pole even if f is regular. If however, f(P ) only depends on λ(P ), then

d̃f would be regular at the branch points.
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Now, define the 1-form ΘM, also known as symplectic potential, on M as

ΘM =
m∑

j=1
trLjG

−1
j d̃Gj (4.2.3)

The differential of the inverse matrix is given by dM−1 = −M−1dMM−1. Hence

d(LjGjdG
−1
j ) = d(LjG

−1
j ) ∧ dGj = (dLjG

−1
j + LjdG

−1
j ) ∧ dGj

= (dLjG
−1
j − LjG

−1
j dGjG

−1
j ) ∧ dGj

Taking the trace and summing over j, we obtain the 2-form ωM

ωM = d̃ΘM =
m∑

j=1

(
tr(d̃Lj ∧G−1

j d̃Gj)− tr(LjG
−1
j d̃Gj ∧G−1

j d̃Gj)
)

= −
m∑

j=1
tr(LjG

−1
j d̃Gj ∧G−1

j d̃Gj) (4.2.4)

since Lj are non-dynamical, their differentiation with respect to dynamical variables van-

ishes. The goal is to show that ωM is a symplectic form on M and express it in terms of

Darboux coordinates on M.

Recall that we have an eigenvector Ψ(λ) of the Lax matrix L(λ) at each point P (λ, µ),

up to normalization. Assume Ψ(−1)(P ) is a dual eigenvector such that ⟨Ψ(−1)(P ),Ψ(P )⟩ = 1

( ⟨ , ⟩ is the standard inner product).

We now define the 1-form ω on Γ which can be regarded as a 2-form on phase spaceM.

ω = ω1 + ω2 (4.2.5)

where

ω1 = ⟨Ψ(−1)(P ), d̃L(λ) ∧ d̃Ψ(P )⟩dλ

ω2 = ⟨Ψ(−1)(P ), d̃µ ∧ d̃Ψ(P )⟩dλ

Knowing the dynamical divisor, Ψ(P ) is defined up to multiplication by a diagonal

matrix independent of P . The eigenvectors at ∞ are normalized by

ψi(∞j) = λδij +O(1), i, j = 2, ..., N (4.2.6)
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Define the following 2-form on M:

ω̃ = 1
2
∑
k,i

resPk,i
(ω) (4.2.7)

where Pk,i are the points above the poles λk of L(λ). We then have the following theorem:

Theorem 5. ([1], eq. 5.61) The form ω̃ can be expressed in terms of the coordinates of the

points of the dynamical divisor (λγi , µγi) as:

ω̃ =
g∑

i=1
d̃λγi ∧ d̃µγi (4.2.8)

Proof. The sum of residues of ω, as a form on Γ, obviously vanishes. We have four different

types of the poles of ω. First are the dynamical poles of Ψ, then the poles at Pk,i which

come form Lax matrix L and µ, next the poles above λ = ∞ coming from Ψ and dλ and

finally the poles at the branch points of the covering coming from the poles of Ψ(−1) and d̃µ

in (4.2.2). We first compute the residues at the dynamical poles (λ1, λg). The coordinates

of these points are γi = (λγi , µγi) for i = 1, .., g. Near such points, we can choose λ as a

local parameter and we have Ψ = 1
λ−λγi

× (regular part), hence:

d̃Ψ = d̃λγi

λ− λγi

(Ψ +O(1)) ⇒ ω1 ∼ ⟨Ψ(−1), d̃AΨ⟩ ∧ d̃λγi

dλ

λ− λγi

(4.2.9)

Since (A−µ)Ψ = 0 and Ψ(−1)(A−µ) = 0, we have (d̃A−d̃µ)Ψ+(L−µ)dΨ = 0. Multiplying

this by Ψ(−1) we get ⟨Ψ(−1), d̃AΨ⟩ = d̃µ, therefore:

resγi ω1 = d̃µ|γi ∧ d̃λγi (4.2.10)

Here d̃µ is regarded as a meromorphic function on Γ. At γi, we have:

d̃µ|γi = d̃µγi + ∂λΓ
∂µΓ

∣∣∣
γi

d̃λγi (4.2.11)

and the second term does not contribute to the wedge product in (4.2.10). The residues

coming from ω2 can be computed similarly, so we get:

resγi ω = 2d̃µγi ∧ d̃λγi (4.2.12)
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We now show that there are no residues at the branch points. Looking at ω1, At a branch

point b, Ψ(−1) has a simple pole, d̃A is regular, dΨ has a simple pole due to (4.2.2) and the

form dλ has a simple zero. Thus, ω1 has a simple pole at b. To compute its residue, it is

enough to just keep the polar part of d̃Ψ, i.e. to replace d̃Ψ by ∂µΨd̃µ (notice that µ is a

local parameter around b). We then get:

resb ω1 = resb ⟨Ψ(−1), d̃A∂µΨ⟩ ∧ d̃µ dλ = resb ⟨Ψ(−1), (d̃A− d̃µ)∂µΨ⟩ ∧ d̃µ dλ (4.2.13)

where the antisymmetry property of the wedge product is used in the last part of the

equation to replace d̃A by d̃A− d̃µ. By the eigenvector equation (A−µ)Ψ = 0 and varying

the point (λ, µ) on the spectral curve around b, we yield to

(A− µ)∂µΨ = Ψ− dλ

dµ

dA

dλ
Ψ (4.2.14)

where dλ
dµ vanishes at the branch points. We then differentiate and multiply on the left by

Ψ(−1) and obtain:

resb ⟨Ψ(−1), (d̃A− d̃µ)∂µΨ⟩ ∧ d̃µ dλ = resb ⟨Ψ(−1), d̃Ψ⟩ ∧ d̃µ dλ

− resb ⟨Ψ(−1), d̃
(dλ
dµ

dA

dλ
Ψ
)
⟩ ∧ d̃µ dλ (4.2.15)

We can see that the first term on the right hand side is cancelled by the term resb ω2. The

second term is equal to

resb
d̃µb

µ− µb
∧ d̃µ dλ (4.2.16)

To show this, note that ζ = dλ
dµ

dA
dλ Ψ vanishes at b = (λb, µb). Writing ζ = (µ − µb)ζ1, we

get d̃ζ = − d̃µb
µ−µb

ζ + d̃µζ1 + ζ2 with ζ2 being regular. The ζ1 term does not contribute to

ω due to the antisymmetry of the wedge product and the ζ2 term has no resdiue. Using

(4.2.14), we get ⟨Ψ(−1), dλ
dµ

dA
dλ Ψ⟩ = 1 yielding (4.2.16). This contribution is cancelled by the

new form ω3:

ω3 = d̃(log ∂µΓ) ∧ d̃µ dλ (4.2.17)

We will see that ω3 has poles only at the branch points. At the branch point b, ∂µΓ has a
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zero, so we write ∂µΓ = (µ− µb)C with C regular. The contribution of the point b to ω3 is

resb
d̃∂µΓ
∂µΓ ∧ d̃µ dλ (4.2.18)

The variation of ∂µΓ is

d̃∂µΓ = d̃(µ− µb)C + (µ− µb)d̃C (4.2.19)

The second term does not contribute to the residue since C is regular. The variation d̃µ

cancels again due to the antisymmetry of the wedge product and we are left with the

contribution of dµb which cancels (4.2.16).

We now compute the third type of residues, the ones above λ =∞. The normalization

of the eigenvectors at ∞ is given by (4.2.6). Notice that A = A0 +O( 1
λ) and µ = µ0

i +O( 1
λ)

around∞i so d̃A and d̃µ are O( 1
λ). Furthermore, Ψ(−1) vanishes at∞i and dλ has a double

pole. Also ω1 and ω2 are regular at ∞i since d̃Ψ(∞i) = O(1) due to the normalization

condition. Finally, ω3 is regular too because on the sheet µ = µi(λ), we can write ∂µΓ =∏
j ̸=i(µi − µj) yielding d̃ log ∂µΓ = O( 1

λ) hence d̃ log ∂µΓ ∧ d̃µ = O( 1
λ2 ) has a double zero

which cancels out the pole of dλ at ∞. All these show that ω has no residues at λ =∞.

At the end, it remains to show that ω3 has no other poles. ω3 is clearly regular at the

points of the dynamical divisor and does not contribute to the residues at these points. To

compute the residue of ω at the points Pk,i above λk, note that if ∂µΓ has a pole of order

m at λk, then it can be written as ∂µΓ = c(λ)
(λ−λk)m where c(λ) is regular and non-vanishing.

Since d̃λ = 0 and d̃λk = 0 we get d̃(log ∂µΓ) = d̃ log c(λ) which is regular. At λk, note

that d̃µ is regular on all sheets above λk. This is because due to the form of L(λ), we have

µ̂ = Lk + (regular). Since Lk describes the coadjoint orbit and is non-dynamical, we have

d̃Ak = 0 so ω3 has no residue.

We will now show that ωM and −ω̃ coincide.

Theorem 6. ([1], eq. 5.66) The form ωM is given by

ωM = −
∑

k

tr
(
LkG

−1
k d̃Gk ∧G−1

k d̃Gk

)
= −

g∑
i=1

d̃λγi ∧ d̃µγi = −ω̃ (4.2.20)

This shows that ωM is the symplectic form on the orbit.

Proof. We first compute the residues of ω1 at λk where only Ak contributes to the residue.
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Using the diagonalization in (4.1.1), we can write the Lax matrix as A = GkLkG
−1
k /(λ−λk)

around λ = λk. So locally around λk we can identify the matrix Ψ̂(λ) = Gk. Now consider

the matrix of eigenvectors

Ψ̂(λ) =
[
ψk(Pj)

]
jk

(4.2.21)

where ψk is the k-th component of the vector Ψ(λ) and Pj = (λ, µj) are the N points above

λ. Also denote the diagonal matrix diag(µ1, ..., µN ) by µ̂. Hence

L(λ) = Ψ̂(λ)µ̂Ψ̂−1(λ) (4.2.22)

By (4.2.22), locally around λk, Ψ̂(λ) can be identified with Gk. More precisely, we have

Ψ̂(λ) = GkDk and Ψ̂(−1)(λ) = D−1
k G−1

k for a diagonal matrix Dk. The residues are obtained

by integrating ω1 along small circles Ck,i around each of the N points Pk,i above λk. We

can choose these small circles so that they project on the base λ on a single small circle Ck

around λk. We then get

N∑
i=1

resPi,k
ω1 =

N∑
i=1

1
2πi

∮
Ck,i

Ψ(−1)(Pi)d̃L(λ) ∧ d̃Ψ(Pi)

= 1
2πi

∮
Ck

tr
(
Ψ̂(−1)(λ)d̃L(λ) ∧ d̃Ψ̂(λ)

)
(4.2.23)

using the fact that Ψ̂(−1)(λ) is the matrix whose rows are the vectors Ψ(−1)(Pi). Since

Ψ(Pi), i = 1, ..., N forms a basis of eigenvectors, the integrand in (4.2.23) constructs the

trace. Now using the identification of Ψ̂(λ) in terms of Gk gives

resλk
ω1 = res

λk

(
tr
(
D−1

k G−1
k (d̃GkLkG

−1
k −GkLkG

−1
k d̃GkG

−1
k ) ∧ (d̃GkDk +Gkd̃Dk)

)
/(λ− λk)

)
dλ

= −2 tr
(
LkG

−1
k d̃Gk ∧G−1

k d̃Gk +G−1
k d̃Gk[Lk, d̃DkD

−1
k ]
)

(4.2.24)

The last term vanishes because it is the commutator of two diagonal matrices. Finally,

there is no contribution from since ω2 is regular at λk because d̃µ is regular on all the sheets

above λk so it has no residue. Hence

resλk
ω1 = −2 tr

(
LkG

−1
k d̃Gk ∧G−1

k d̃Gk

)
(4.2.25)

Therefore using (4.2.7) and theorem (5), the sum of (4.2.24) over all λk yields the
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equation (4.2.20).

Thus we have established that ωM =
∑g

j=1 d̃µγj∧d̃λγj . This implies that the coordinates

(λγi , µγi) of the points of the dynamical divisor are indeed canonical coordinates on M, the

phase space of the system, and they satisfy the base identities of the non-degenerate Poisson

bracket.
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Chapter 5

Action-angle variables

We have already put a set of Darboux coordinates on the phase space of Gaudin system,

M. We are now going to introduce another set of coordinates onM using the characteristics

q (3.3.9) of the theta function that appears in the solution of the Lax equation Ψ in (3.3.5).

The components of the characteristics vector q minus the vector of Riemann’s constants K

happen to be what are known as angle variables. Angle variables along with their canonical

conjugates known as action variables give a set of coordinates called action-angle which

express a dynamical system in separable variables.

To understand the significance of action-angle variables, we need to go back to the very

fundamental notions of integrable systems. Consider a dynamical Hamiltonian system with

the phase spaceM of dimension 2n and a set of canonical coordinates pj , qj with the usual

Poisson bracket relations. We then have a non-degenerate closed 2-form ω =
∑

j dpj ∧ dqj

and let H be the Hamiltonian of the system.

Definition: The system is called Liouville integrable if it has n independent conserved

quantities Fj such that {H,Fj} = 0 and they are in involution, i.e. {Fi, Fj} = 0.

The independence means that dFj are linearly independent, or that the tangent space of

the surface Fj = fj exists everywhere and has the dimension n. There cannot be more than

n independent quantities in involution otherwise the Poisson bracket would be degenerate.

The Hamiltonian H can then be written as a function of Fj . The crucial Liouville theorem

states that:

The Liouville theorem: ([1], p.7) The solution of the equations of motion of a Liou-

ville integrable system is obtained by quadrature, i.e. the solution can be expressed in terms

of integrals.
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Now letMf be the level manifold described by Fj(p, q) = fj , j = 1, ..., n. Under suitable

compactness and connectivity conditions, Mf can be shown to be an n-dimensional torus

Tn. This is where the angle variables become apparent as variables to describe the motion

along the cycles, i.e. the tori. The torus Tn is isomorphic to a product of n circle Cj . Let

θj be the angular variable parameterizing Cj and we call {θj} the set of angle variables.

The action variables Ij are defined as the integrals of the canonical 1-form α =
∑

j pjdqj

over the cycles Cj :

Ij = 1
2π

∮
Cj

α (5.0.1)

Ij are functions of Fj which are conserved throughout the motion on the level manifold

Mf and they are also independent so knowing the values of Ij determines Mf .

To construct these coordinates in our setup, consider the homology basis {ai, bi}gi=1, {l
(k)
i }

on Γ \ {λ(k)
j }, j = 1, ...,m, k = 1, ..., N , where a- and b- cycles are as before and {l(k)

i } are

small loops around {λ(k)
j }, the points above λj . Also set the basis of holomorphic differen-

tials {ωk} normalized by a-cycles:
∮

ak

ωl = δkl. Now define the g angle variables by

θk =
g∑

i=1

∫ γi

p0
ωk =

g∑
i=1

∫ λγi

λ0
σk(λ)dλ (5.0.2)

where the integration paths are taken along the cycles ak and the holomorphic differentials

ωk are written in terms of the local parameter λ as ωk = σk(λ)dλ on integration paths.

We notice that the expression in (5.0.2) is similar to the k-th component of Abel map

of dynamical divisor D = (γ1, ..., γg) so the vector of angle variables θ⃗ = (θ1, ..., θg) can

alternatively be expressed in terms of vector of Riemann’s constants K and q⃗ = (q1, ..., qg),

the characteristic of the theta functions appearing in the explicit solution of eigenvectors in

(3.3.10) as:

θ⃗ = q⃗ −K = A(D) (5.0.3)

The components of q may be regarded as another set of angle variables. We are par-

ticularly interested in q angle variables due to the fact that some variational formulae for

the Szegö kernel with respect to these variables are previously established. We will apply

this framework in chapter 6 to directly calculate the symplectic potential generating the

symplectic structure of the phase space in terms of action-angle variables. To define the

59



conjugate action variables, we first need a lemma.

Lemma 1: The differential form d̃(µdλ) is regular, i.e. it is of the form fdg, where

as before d̃ is the differential with respect to the moduli of spectral curve while keeping λ

constant.

Proof: Taking the variation at constant λ produces poles at the branch points of the

covering which are cancelled by corresponding zeros of dλ. The form µdλ has poles at finite

distance where L(λ) has poles. Around a pole λk, we have

Ak(λ) = Gk(λ)Lk(λ)G−1
k (λ) (5.0.4)

and we assume that the polar part of the diagonal matrix Lk(λ) is non-dynamical. There-

fore, the singular part of µ is fixed under d̃ and d̃(µdλ) is regular at λk. At λk =∞, dλ has

a double pole. The dominant term of µdλ is cidλ when µ → ∞i = (∞, ci) and it is fixed

under d̃. The other terms are also kept fixed because of the conjugation action by diagonal

matrices. The Hamiltonians generating this group action are given by (4.1.4). Assuming

µi = ci + di
λ , we get

Hn =
∑

i

cn−1
i di

and after Hamiltonian reduction, these quantities will be kept fixed. So ci and di are

non-dynamical and d̃(µdλ) is also regular at infinity.

We have already seen that the phase space has the dimension 2g so the g action variables

Ik, canonically conjugated to θk, are constructed as:

Ik =
∮

ak

µdλ (5.0.5)

Notice that the regular meromorphic differential µdλ has poles at the points above λj

and given the choice of homology basis for the punctured spectral curve, the path integrals

above will be well-defined with respect to the homotopy class of the a-cycles.

The action-angle variables {qk, Ik} now provide another set of Darboux coordinates as

we see in the following proposition:

Theorem 7. ([1], eq. 5.75) Given that d̃(µdλ) is regular, we then have:

ωM =
g∑

i=1
d̃µγi ∧ d̃λγi =

g∑
i=1

d̃Ii ∧ d̃θi =
g∑

i=1
d̃Ii ∧ d̃qi (5.0.6)
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Proof. Since d̃(µdλ) is a regular form, it decomposes in the basis of holomorphic differentials

as d̃(µdλ) =
∑

i αiωi. To find the coefficient αi, we integrate both sides along the cycle al.

So

αl =
∮

al

d̃(µdλ) = d̃
∮

al

µdλ = d̃Il (5.0.7)

With ωk = σk(λ)dλ, we get

d̃(µdλ) =
∑

k

d̃Ikωk =
∑

k

d̃Ikσk(λ)dλ (5.0.8)

Since the variations are taken at constant λ, then d̃(µdλ) = d̃µdλ and d̃µ decomposes on

the d̃Ik by (4.2.2). Hence

d̃µ =
∑

k

∂µ

∂Ik
d̃Ik,

∂µ

∂Ik
= σk(λ) (5.0.9)

By the definition of angle variables in (5.0.2) and using

d̃σi(λ) =
∑

k

∂σi(λ)
∂Ik

d̃Ik (5.0.10)

we obtain

d̃θi =
g∑

j=1
σi(λ)d̃λγj +

g∑
j=1

∫ λγi

λ0

∑
k

∂2µ

∂Ii∂Ik
dλd̃Ik (5.0.11)

Finally, we get

ωM =
∑

i

d̃µγi ∧ d̃λγi =
∑
i,j

d̃Ii ∧ σi(λγi)d̃λγi

=
∑

i

d̃Ii ∧
(
d̃θi −

∑
j

∫ λγi

λ0

∑
k

∂2µ

∂Ii∂Ik
dλd̃Ik

)
=
∑

i

d̃Ii ∧ d̃θi (5.0.12)

where the second term in the parenthesis vanishes because ∂Ii∂Ik
µ is symmetrical with

respect to indices i, k and d̃Ii∧d̃Ik is antisymmetric. The last equality for qi and Ii variables

can be obtained from the variational identity for the vector of Riemann constants K that

we will establish in chapter 8. It can also be directly derived from the explicit expression

of the symplectic potential ΘM which will be calculated in the next chapter.
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Hence, Ik are canonically conjugated to qk. The Poisson structure with these coordinates

is:

{Ii, Ij} = 0, {Ii, qj} = δij , {qi, qj} = 0

The set of action-angle variables, besides the aforementioned advantages, are also sig-

nificant in the calculation of the canonical 1-form, also known as symplectic potential, since

there are already well-known variational formulae with respect to action-angle variables.

This matter will be studied in details in the next chapter.
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Chapter 6

Symplectic potential

We previously saw in (4.2.3) that the symplectic potential of the Gaudin system is

defined by the following 1-form:

ΘM =
m∑

j=1
tr(LjG

−1
j dGj) (6.0.1)

The aim of this section is to express this potential in terms of the canonical action-angle

coordinate of system

Iγ =
∮

aγ

µdλ , qγ =
(
A(D) +K

)
γ

(6.0.2)

where the vector q⃗ = (qγ)g
γ=1 is the characteristic of the theta function in the formula

of the eigenvectors of Gaudin system in (3.3.5). In other words, we want to calculate the

partial derivatives of Gj with respect to qγ and Iγ in order to obtain

ΘM =
g∑

γ=1

m∑
j=1

tr(LjG
−1
j

∂Gj

∂qγ
) dqγ +

g∑
γ=1

m∑
j=1

tr(LjG
−1
j

∂Gj

∂Iγ
) dIγ (6.0.3)

(in this section, we denote d̃ by just d). The overall strategy of calculating (6.0.3) is that

first, we write Gj as functions on the spectral curve. More specifically, we need to express

Gj in terms of the components of the points coming from the spectral curve. This will be

done via identifying Gj locally with Ψ̂, the matrix of the eigenvectors of Lax matrix, and

then expressing the elements of Ψ̂ in terms of Szegö kernel. We will subsequently apply the

previously established variational formulae for Szegö kernel to calculate the required partial

derivatives.
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6.1 Szegö kernel

A review of Szegö kernel and a few other lemmas is necessary before discussing the

details of the calculation. We first need to introduce some holomorphic objects in order to

define the Szegö kernel. As before, suppose we have a Riemann surface Γ of genus g with

a choice of canonical homology basis and a normalized basis of holomorphic differentials

{ωk} on Γ. Let θ[η∗] be the genus g theta function of odd half-integer characteristic η∗

corresponding the matrix of b-periods. Define the holomorphic differential h(P ) on Γ by:

h(x) =
g∑

k=1
θ[η∗]zk

(0)ωk(P ) (6.1.1)

where θ[η∗]zk
denotes the derivative of theta function with respect to its k-th entry. All

zeros of this differential are double and we can define the prime form on Γ by:

E(P,Q) =
θ[η∗]

(
A(P )−A(Q)

)
h(P )h(Q) (6.1.2)

and this definition is independent of the choice of any odd characteristic η∗.

Having the prime form, we can now define the Szegö kernel. A (1
2 ,

1
2)-form on Γ × Γ

given by

Spq(P,Q) =
θpq
(
A(P )−A(Q)

)
θpq(0)E(P,Q) (6.1.3)

Here we set the characteristic p = 0 and q to be the Abel map of the dynamical divisor

D plus the verctor of Riemann constants K so q = A(D) + K. We will need the following

property of Szegö kernel:

Proposition: The local expression of Szegö kernel when x→ y is

Spq(x, y) ≃
√
dξ(x)

√
dξ(y)

ξ(x)− ξ(y) (6.1.4)

where ξ is the local coordinate.

Proof. Assume f(x, y) = θ[η∗](A(x)−A(y)). Since f has a zero at x = y, in a neighbourhood

of x = y with local coordinate ξ, it can be written as f(x, y) = (ξ(x) − ξ(y))(1 + ...). By

differentiating f with respect to x coordinate, we get dxf =
∑

j θzj

(
A(x) − A(y)

)
vj(x)
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therefore h(x) = dxf |x=y. So in the neighbourhood of x = y, we have

h(x) = dξ(x)f |ξ(x)=ξ(y) = ∂

∂ξ(x)(ξ(x)− ξ(y))(1 + ...)dξ(x)

= dξ(x)(1 + ...)|ξ(x)=ξ(y) = dξ(x)

and similarly h(y) = dξ(y) since higher order terms vanish. So in this neighbourhood we

have

E(x, y) =
θ[η∗]

(
A(x)−A(y)

)√
h(x)

√
h(y)

= ξ(x)− ξ(y)√
dξ(x)

√
dξ(y)

+ ...

and as x −→ y, we have
θpq
(
A(x)−A(y)

)
θpq(0) −→ 1

hence in the neighbourhood of x = y as x −→ y, we get

Spq(x, y) =
θpq
(
A(x)−A(y)

)
θpq(0)E(x, y) =

√
dξ(x)

√
dξ(y)

ξ(x)− ξ(y)) + ...

Recall Ψ̂(λ), the matrix of eigenvector of Lax matrix L(λ) defined in (4.2.21). We now

seek to express Ψ̂ in terms of Szegö kernel. Then:

Theorem 8. We have the following identities for Ψ̂ and its inverse in terms of the Szegö

kernel:

Ψ̂(λ)ab = Sq(λ(b), λ
(a)
0 )

Sq(λ(b), λ
(1)
0 )

, Ψ̂−1(λ)ab = Sq(λ(b)
0 , λ(a))

Sq(λ(b)
0 , λ(1))

(6.1.5)

Proof. The elements of the matrix defined by (6.1.5) are meromorphic functions. We need

to show that the resulting matrix has similar analytical properties as the eigenvectors matrix

Ψ̂, that is, its rows have the same analytical properties as the eigenvectors ψk in (3.3.5).

Thus, we must show that they have the same poles and zeros. The Szegö kernel with the

characteristics p = 0 and the vector q as in (3.3.9) is given by

Sq(x, y) = θq(A(x)−A(y))
θq(0)E(x, y) (6.1.6)

By (6.1.4), Sq(λ(b), λ
(a)
0 ) has a pole when λ(b) = λ

(a)
0 or equally, when λ = λ0 and we are

the a-th point above it. This means the a-th row of Ψ̂ i.e. the eigenvector ψa has a pole at
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a-th point above λ0. Notice that the base point of the Abel map as in (3.3.5) is set to be

λ
(1)
0 , the first point above λ0 or equally, λ(1)

0 in theorem (3). The first eigenvector ψ1 has

a pole at λ(1)
0 as explained earlier, so once we apply the normalization ψ1 by dividing the

rows of Ψ̂ by the fist row ψ1, the denominator of other components tend to infinity at λ(1)
0

(the numerators are finite) hence other rows have a zero at λ(1)
0 .

It remains to show that we also have g dynamical poles given by the dynamical divisor.

Recall that the prime form in the denominator of Szegö kernel is defined as

E(x, y) = θ[η∗](A(x)−A(y))
h(x)h(y) (6.1.7)

for some odd half-integer characteristic η∗ = η1τ +η2. We also know that K is a half-period

([2], prop. 8.1.8) and so are A
(
λ

(j)
0
)
. Now consider odd half-integer the characteristic η∗ =

A
(
λ

(k)
0
)
−A(D)−K. The components of k-th row of Ψ̂ have the term θ[η∗](A(λ(j))−A(λ(k)

0 ))

in the denominator so when λ(j) is one of the dynamical poles i.e. one of the points in the

divisor D, we get:

θ[η∗](A(λ(j))−A(λ(k)
0 )) = θ

(
A(λ(j))−A(λ(k)

0 ) +A(λ(k)
0 )−A(D)−K

)
= θ(e) = 0 (6.1.8)

where we applied (3.3.8) and the same analysis that was used in the proof of theorem (3)

in (3.3.6). This implies that the k-th row of Ψ̂ has g poles at the points of the dynamical

divisor D therefore its poles and zeros are similar to those of ψk. As mentioned earlier,

the prime form is independent of the characteristic as long as it is odd half-integer so the

previous result also holds regardless of the odd half-integer characteristic used in the prime

form.

To conclude, the analytical properties of the matrix defined in (6.1.5) coincide with the

analytical properties of the matrix of eigenvectors (3.2.7). Hence (6.1.5) similarly represents

the meromorphic functions described in (3.3.7) that solve the Lax equation. The boundary

and normalization condition follows from the asymptotic expansion of the prime form.

As for the inverse, for Ψ(µ, λ) = S(µ,λ)√
dµ

√
dλ

, we have the well-known relation (see [14], eq.

4.13)

Ψ(µ, λ)Ψ(λ, ν) = Ψ(µ, ν)
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for any arbitrary three points λ, µ and ν. Setting µ = ν = λ0, we get

Ψ−1(λ0, λ) = Ψ(λ, λ0)

which gives the formula for the elements of Ψ̂−1.

The following identities relating the matrices Gj and G−1
j to Szegö kernel can now be

derived from (6.1.5) :

Lemma 2: The matrix Gj and its inverse are given by

[
Gj
]
ab

= Sq(λ(b), λ
(a)
0 )(λ− λ0)√

dλ
√
dλ0

∣∣∣
λ=λj

,
[
G−1

j

]
ab

= Sq(λ(b)
0 , λ(a))(λ0 − λ)√
dλ
√
dλ0

∣∣∣
λ=λj

(6.1.9)

Proof. The matrix Gj differs from the matrix of eigenvectors by a multiplication by a

diagonal matrix so it can be identified with Ψ̂(λj) without setting the normalization of the

first component of eigenvectors, which is done by dividing by the first component of each

column in Ψ̂. This concludes the lemma.

6.2 Differentiation of symplectic potential w.r.t. angle vari-

ables

Firstly, We have the following known variational formula for Szegö kernel:

Lemma 3:([12], eq. 2.18) The variation of Szegö kernel with respect to the angle

variables is

∂Sq(x, y)
∂qγ

= −
∮

aγ

Sq(x, t)Sq(t, y) (6.2.1)

We will also use the following lemma:

Lemma 4: Given two points p, t ∈ Γ and the variable ν ∈ Γ, and λ( ) representing the

projection of the spectral curve points onto λ-argument, we have the following identity:

N∑
a=1

Sq(t, ν(a))Sq(ν(a), p) = Sq(t, p)
(

1
λ(t)− ν −

1
λ(p)− ν

)
dν (6.2.2)

Proof. For the variable ν ∈ Γ, the expression
∑N

a=1 Sq(t, ν(a))Sq(ν(a), p) is a 1-form with

respect to ν where ν is in fact the parameter on the base space (CP1) of the N -sheeted
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cover and it has two simple poles at ν = λ(t) and ν = λ(p). Here λ is the map that projects

from the cover to the base. Using the local expansion of Szegö kernel, we have to have the

following form:

N∑
a=1

Sq(t, ν(a))Sq(ν(a), p) = C(t, p)
(

1
λ(t)− ν −

1
λ(p)− ν

)
dν

= Sq(t, p)
(

1
λ(t)− ν −

1
λ(p)− ν

)
dν (6.2.3)

The coefficient C(t, p) must be the Szegö kernel Sq(t, p) due to the singularity structure at

t = ν(a) and p = ν(a).

Now we can proceed to calculating the first part of (6.0.3). The calculation involves

multiple stages so we have broken it down into each individual step and will elaborate on

them.

Proposition: The following equality holds:

m∑
j=1

tr
(
LjG

−1
j

∂Gj

∂qγ

)
= Iγ (6.2.4)

Proof. Notice that from (4.2.22), Ψ̂(λj) can be identified with Gj in a neighbourhood of λj

which results in lemma 2. We have

m∑
j=1

tr
(
LjG

−1
j

∂Gj

∂qγ

)
=
∑

j

tr
(
LjG

−1
j

∂
[
Gj

]
ab

∂qγ

)
(6.2.5)

We apply lemma 2 to write
[
Gj

]
ab

in terms of Szegö kernel

(6.2.5) =
∑

j

tr
(
LjG

−1
j

∂
[

Sq(λ(b),λ
(a)
0 )(λ−λ0)√

dλ
√

dλ0

∣∣∣
λ=λj

]
ab

∂qγ

)
(6.2.6)

We evaluate the Szegö kernel term at λ = λj and write it as following for brevity:

(6.2.6) =
∑

j

tr
(
LjG

−1
j

[
∂

∂qγ

Sq(λ(b)
j , λ

(a)
0 )(λj − λ0)√

dλj

√
dλ0

]
ab

)
(6.2.7)
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The differential
√
dλj is independent of qγ so we move it out of the differentiation and

then write G−1
j in its matrix form:

(6.2.7) =
∑

j

(λj − λ0) tr
(
Lj

[
G−1

j

]
ba

1√
dλj

√
dλ0

[
∂

∂qγ
Sq(λ(b)

j , λ
(a)
0 )

]
ab

)
(6.2.8)

We apply the variational formula of Szegö kernel with respect to qγ :

(6.2.8) = −
∑

j

(λj − λ0) tr
(
Lj

[
G−1

j

]
ba

1√
dλj

√
dλ0

[ ∮
t∈aγ

Sq(λ(b)
j , t)Sq(t, λ(a)

0 )
]

ab

)
(6.2.9)

Now use the lemma 2 identity for G−1
j in terms of Szegö kernel and merge the two

√
dλj

and
√
dλ0 ’s

(6.2.9) =
∑

j

(λj − λ0)2 tr
(
Lj

[
Sq(λ(a)

0 , λ
(b)
j )

dλj dλ0

]
ba

[ ∮
t∈aγ

Sq(λ(b)
j , t)Sq(t, λ(a)

0 )
]

ab

)
(6.2.10)

and move the term
Sq(λ(a)

0 , λ
(b)
j )

dλj
to the inside of the integral since it does not depend

on the integral parameter t:

(6.2.10) =
∑

j

(λj − λ0)2 tr
(
Lj

∮
t∈aγ

[
Sq(λ(a)

0 , λ
(b)
j )
]

ba

[
Sq(λ(b)

j , t)Sq(t, λ(a)
0 )

]
ab

dλj dλ0

)
(6.2.11)

expanding the trace, we get:

(6.2.11) =
∑

j

(λj − λ0)2
N∑

a,b=1
(Lj)bb

∮
aγ

Sq(λ(a)
0 , λ

(b)
j )Sq(λ(b)

j , t)Sq(t, λ(a)
0 )

dλj dλ0
(6.2.12)

We now use lemma 4 to continue (6.2.12). First we rearrange the summation by sepa-

rating the terms only depending on b and writing the summation over a and b separately.

Hence:

(6.2.12) =
∑

j

(λj − λ0)2
N∑

b=1
(Lj)bb

∮
aγ

Sq(λ(b)
j , t)

∑
a Sq(t, λ(a)

0 )Sq(λ(a)
0 , λ

(b)
j )

dλj dλ0
(6.2.13)
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and swapping the place between integral and summations:

(6.2.13) =
∮

aγ

∑
j

(λj − λ0)2
N∑

b=1
(Lj)bb

Sq(λ(b)
j , t)

dλj dλ0

N∑
a=1

Sq(t, λ(a)
0 )Sq(λ(a)

0 , λ
(b)
j ) (6.2.14)

Now substitute the last sum using lemma 4:

(6.2.14) =
∮

aγ

∑
j

(λj − λ0)2
N∑

b=1
(Lj)bb

Sq(λ(b)
j , t)

dλj dλ0
Sq(t, λ(b)

j )
( 1
λ(t)− λ0

− 1
λ(λ(b)

j )− λ0

)
dλ0

(6.2.15)

The Lax matrix L(λ) has the diagonalization diag(µ1, ..., µN ) for µi eigenvalues of L(λ)

at the point λ. So the diagonal matrix Lj , the diagonalization of L(λ) near λj , can be

identified with diag(µ(1)
j , ..., µ

(N)
j ) given by the residues of µdλ at the points λ(b)

j above λj .

(6.2.15) =
∮

aγ

∑
j

(λj − λ0)2
N∑

b=1
(res

x=λ
(b)
j

µ(x)dλ(x))
{Sq(λ(b)

j , t)
dλj

Sq(t, λ(b)
j )
( 1
λ(t)− λ0

− 1
λ(λ(b)

j )− λ0

)}
(6.2.16)

The term in { } does not have a residue at λ(b)
j because its parameter t comes from aγ

so we move it into the res
λ

(b)
j

(6.2.16) =
∮

aγ

∑
j

(λj − λ0)2
N∑

b=1
res

x=λ
(b)
j

(
µ(x)dλ(x)Sq(x, t)

dλ(x) Sq(t, x)
( 1
λ(t)− λ0

− 1
λ(x)− λ0

))

=
∮

aγ

∑
j

N∑
b=1

res
x=λ

(b)
j

(
(λ(x)− λ0)2µ(x)Sq(x, t)Sq(t, x)

( 1
λ(t)− λ0

− 1
λ(x)− λ0

))
(6.2.17)

Given that Sq(x, t) has a simple pole at x = t, and the fact that the sum of residues

over the points λj plus the sum of residues over other poles is zero, (6.2.17) would be equal

to the residue of the expression at x = t

(6.2.17) =
∮

aγ

− resx=t

((
λ(x)− λ0

)2
µ(x)Sq(x, t)Sq(t, x)

( 1
λ(t)− λ0

− 1
λ(x)− λ0

))
=
∮

aγ

− resx=t

((
λ(x)− λ0

)2
µ(x)

√
dλ(x)

√
dλ(t)

λ(x)− λ(t)

√
dλ(t)

√
dλ(x)

λ(t)− λ(x)
( λ(x)− λ(t)

(λ(t)− λ0)(λ(x)− λ0)
))
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=
∮

aγ

resx=t

(
µ(x)dλ(x) dλ(t)

λ(x)− λ(t)

)
(6.2.18)

where we used the local expansion of Szegö kernel at x → t for Sq(x, t). Then move

dλ(t) out of residue to obtain

(6.2.18) =
∮

t∈aγ

dλ(t) resx=t
µ(x)

λ(x)− λ(t)dλ(x)

=
∮

t∈aγ

dλ(t).µ(t) =
∮

aγ

µdλ = Iγ (6.2.19)

6.3 Differentiation of symplectic potential w.r.t. action vari-

ables

The next step is to calculate the variation with respect to action variables Iγ . This

proves to be more challenging than the case of angle variables but the overall procedure is

the same. First, we need the variational formula below:

Lemma 5:([12], eq. 2.42) The variational formula for Szegö kernel with respect to the

action variables is:

∂Sq(x, y)
∂Iγ

= −πi2
∑

xk br. pts
res

t=xk

ωγ(t)
Wt
[
Sq(x, t), Sq(t, y)

]
dλ(t)dµ(t) (6.3.1)

where the sum is over all branch points and ωγ are the basis of holomorphic differentials

on the spectral curve. Wt is the Wronskian. For two functions f, g it is locally defined by

Wt[f, g] = f ′g − fg′ where f and g are functions of t.

We will apply this formula to the partial derivative ∂Gj

∂Iγ
. The result will be

Proposition: The following equality holds:

∑
j

tr
(
LjG

−1
j

∂Gj

∂Iγ

)
= 0 (6.3.2)
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Proof. we start by again using the identification of Gj and Szegö kernel:

∑
j

tr
(
LjG

−1
j

∂Gj

∂Iγ

)
=
∑

j

tr
(
LjG

−1
j

∂
[
Gj

]
ab

∂Iγ

)
(6.3.3)

and lemma 2 to write
[
Gj
]
ab

in terms of Szegö kernel:

(6.3.3) =
∑

j

tr
(
LjG

−1
j

[
∂

∂Iγ

Sq(λ(b)
j , λ

(a)
0 )(λj − λ0)√

dλj

√
dλ0

]
ab

)
(6.3.4)

then applying the variational formula of Szegö kernel w.r.t. Iγ results the following:

(6.3.4) = −πi2
∑

j

tr
(
Lj

[
G−1

j

]
ba

λj − λ0√
dλj

√
dλ0

[ ∑
xk BP

res
t=xk

ωγ(t)
W
[
Sq(λ(b)

j , t), Sq(t, λ(a)
0 )

]
dλ(t)dµ(t)

]
ab

)
(6.3.5)

We apply lemma 2 once more to
[
G−1

j

]
ba

to get:

(6.3.5) = πi

2
∑

j

tr
(
Lj

[
Sq(λ(a)

0 , λ
(b)
j )(λj − λ0)2

dλj dλ0

]
ba

[ ∑
xk BP

res
t=xk

ωγ(t)
W
[
Sq(λ(b)

j , t), Sq(t, λ(a)
0 )

]
dλ(t)dµ(t)

]
ab

)
(6.3.6)

we now rewrite and substitute the Wronskian by its definition

(6.3.6) = πi

2
∑

j

tr
(
Lj

[
Sq(λ(a)

0 , λ
(b)
j )(λj − λ0)2

dλj dλ0

]
ba

[ ∑
xk BP

res
t=xk

ωγ(t)
Sq(λ(b)

j , t)′Sq(t, λ(a)
0 )− Sq(λ(b)

j , t)Sq(t, λ(a)
0 )′

dλ(t)dµ(t)

]
ab

)
(6.3.7)

then we expand the trace to obtain

(6.3.7) = πi

2
∑

j∑
a,b

[
Lj
]
bb

Sq(λ(a)
0 , λ

(b)
j )(λj − λ0)2

dλj dλ0

∑
xk BP

res
t=xk

ωγ(t)
Sq(λ(b)

j , t)′Sq(t, λ(a)
0 )− Sq(λ(b)

j , t)Sq(t, λ(a)
0 )′

dλ(t)dµ(t)

(6.3.8)
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The terms Sq(λ(a)
0 , λ

(b)
j ) is independent of t so we can move it into the sum over branch

points

(6.3.8) = πi

2
∑

j

∑
a,b

[
Lj
]
bb

(λj − λ0)2

dλj dλ0

∑
xk BP

res
t=xk

ωγ(t)
Sq(λ(b)

j , t)′Sq(t, λ(a)
0 )Sq(λ(a)

0 , λ
(b)
j )− Sq(λ(b)

j , t)Sq(t, λ(a)
0 )′Sq(λ(a)

0 , λ
(b)
j )

dλ(t)dµ(t)

(6.3.9)

and rearrange the summations to put the sums over a exactly before the terms where

the a indices appear. Also the term Sq(λ(a)
0 , λ

(b)
j ) does not depend on t so we can push it

under the derivation ′. Thus

(6.3.9) = πi

2
∑

j

∑
b

[
Lj
]
bb

(λj − λ0)2

dλj dλ0

∑
xk BP

res
t=xk

ωγ(t)

Sq(λ(b)
j , t)′(∑

a

Sq(t, λ(a)
0 )Sq(λ(a)

0 , λ
(b)
j )
)
− Sq(λ(b)

j , t)
(∑

a

[
Sq(t, λ(a)

0 )Sq(λ(a)
0 , λ

(b)
j )
]′)

dλ(t)dµ(t)
(6.3.10)

Now using lemma 4 to simplify the sums over a and keeping in mind that the derivative ′

is with respect to t (more precisely, λ(t)), we can rewrite the last fraction:

(6.3.10) = πi

2
∑

j

∑
b

[
Lj
]
bb

(λj − λ0)2

dλj dλ0

∑
xk BP

res
t=xk

ωγ(t)
Sq(λ(b)

j ,t)′Sq(t,λ(b)
j )
(

1
λ(t)−λ0

− 1
λ(λ

(b)
j

)−λ0

)
dλ0−Sq(λ(b)

j ,t)
[
Sq(t,λ(b)

j )
(

1
λ(t)−λ0

− 1
λ(λ

(b)
j

)−λ0

)
dλ0
)]′

dλ(t)dµ(t)

(6.3.11)

Expand the derivative
[
Sq(t, λ(b)

j )
(
λ(t)− λ(λ(b)

j )
)]′ :

[
Sq(t, λ(b)

j )
(
λ(t)− λ(λ(b)

j )
)]′ = dλ(t)Sq(t, λ(b)

j ) + (λ(t)− λj)Sq(t, λ(b)
j )′

We also cancel out dλ0’s, hence

(6.3.11) = −πi2
∑

j

∑
b

[
Lj
]
bb

(λj − λ0)2

dλj
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∑
xk BP

res
t=xk

ωγ(t)Sq(λ(b)
j ,t)′Sq(t,λ(b)

j )(λ(t)−λj) − Sq(λ(b)
j ,t)

[
Sq(t,λ(b)

j )′(λ(t)−λj)+dλ(t)Sq(t,λ(b)
j )
]

(λ(t)−λ0)(λj−λ0)dλ(t)dµ(t)

(6.3.12)

Notice that here ′ acts as the exterior derivative so
(
λ(t)−λj

)′ = dλ(t). We then isolate(
λ(t)− λj

)
to get

(6.3.12) = −πi2
∑
j,b

[Lj ]bb
(λj − λ0)2

dλj∑
xk BP

res
t=xk

ωγ(t)−Sq(λ(b)
j ,t)Sq(t,λ(b)

j )dλ(t) +
(

λ(t)−λj

)[
Sq(λ(b)

j ,t)′Sq(t,λ(b)
j )−Sq(λ(b)

j ,t)Sq(t,λ(b)
j )′
]

(λ(t)−λ0)(λj−λ0)dλ(t)dµ(t)

(6.3.13)

Now substitute
[
Sq(λ(b)

j , t)′Sq(t, λ(b)
j ) − Sq(λ(b)

j , t)Sq(t, λ(b)
j )′

]
with the Wronskian of

Sq(λ(b)
j , t) and Sq(t, λ(b)

j ). As before, we have
[
Lj
]
bb

= res
λ

(b)
j

µdλ, therefore

(6.3.13) = πi

2∑
j,b

( res
x=λ

(b)
j

µdλ)(λj − λ0)2

dλj

∑
xk BP

res
t=xk

ωγ(t)
Sq(x, t)Sq(t, x)dλ(t)−

(
λ(t)− λ(x)

)
W
[
Sq(x, t), Sq(t, x)

]
(λ(t)− λ0)(λj − λ0)dλ(t)dµ(t)

(6.3.14)

At branch points t = xk, we have dλ(t) = 0. We are going to rearrange the summations,

so

(6.3.14) = πi

2∑
xk BP

res
t=xk

∑
j,b

res
x=λb

j

(
λ(x)− λ0

)2
µ(x)ωγ(t)

Sq(x, t)Sq(t, x)dλ(t)−
(
λ(t)− λ(x)

)
W
[
Sq(x, t), Sq(t, x)

]
(λ(t)− λ0)(λ(x)− λ0)dλ(t)dµ(t)

(6.3.15)

The sum of the residues in the second summation can now be written as the negate of

the sum of the residues over the rest of the poles {p}, hence:

(6.3.15) = πi

2
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∑
xk BP

res
t=xk

∑
p

−res
x=p

(
λ(x)− λ0

)2
µ(x)ωγ(t)

Sq(x, t)Sq(t, x)dλ(t)−
(
λ(t)− λ(x)

)
W
[
Sq(x, t), Sq(t, x)

]
(λ(t)− λ0)(λ(x)− λ0)dλ(t)dµ(t)

(6.3.16)

The other poles of the last expression are when x = t so we write Sq(x, t) in local

coordinates as x→ t. Doing so, the Wronskian becomes

W
[
f(t)
√
dt, g(t)

√
dt
]

= (f ′g − fg′)(dt)2

so

W

[√
dx

x− t
√
dt,

√
dx

t− x
√
dt

]
=
( √

dx

(x− t)2

√
dx

t− x
− −

√
dx

(t− x)2

√
dx

x− t

)
(dt)2 = 0

thus

(6.3.16) = πi

2
∑

xk BP
res

t=xk

(
− res

x=t

(
λ(x)− λ0

)2
µ(x)ωγ(t)

√
dx
√
dt

x− t

√
dt
√
dx

t− x
dλ(t)

(λ(t)− λ0)(λ(x)− λ0)dλ(t)dµ(t)

)

= πi

2
∑

xk BP
res

t=xk

(
− res

x=t
µ(x)ωγ(t)

dxdt

(x− t)2

dµ(t)

)
(6.3.17)

The residue of µ(x)
(x− t)2dx part at x = t is µ′(t), so

(6.3.17) = −πi2
∑

xk BP
res

t=xk

(
µ′(t)ωγ(t) dt

dµ(t)
)

= −πi2
∑

xk BP
res

t=xk

ωγ(t) (6.3.18)

Since ωγ are holomorphic differentials forming a basis of holomorphic differentials on

the surface Γ, they have no poles on Γ therefore the last sum in (6.3.18) is zero. Thus the

claim of the theorem is proved.

Combining the last two propositions, we have:

Theorem 9. The canonical symplectic potential ΘM in action-angle coordinates is

ΘM =
g∑

γ=1
Iγdqγ (6.3.19)
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The main take-away of (6.3.19) is that the set of action-angle variables introduced here

indeed provide a set of Darboux coordinates that canonically parameterize the phase space,

and the symplectic form ωM has the following canoncial epression in terms of action-angle

variables

ωM =
g∑

j=1
dIj ∧ dqj

The implications of this result from the spectral transform perspective will be reviewed

in the following chapter.
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Chapter 7

Spectral transform

We will now provide a different viewpoint to the solution of the Gaudin system revolving

around the inverse spectral problem, which reconstructs the Lax matrix from a set of spectral

data. This is essentially what we did in section (3.4) where we reconstructed the Lax matrix

from the dynmaical data of the system. Here, we will step further back and revisit the

problem via the space of spectral data standpoint. Starting from the phase space M of the

system, which is defined as:

M =
{

(Gj , Lj)m
j=1,

m∑
j=1

GjLjG
−1
j = 0

}
/ ∼ (7.0.1)

where Gj ∈ sl(N,C) and Lj are diagonal N × N matrices such that the eigenvalues of

each Lj are all different. ∼ is the equivalence relation that identifies the sets whose Gj

components differ by a simultaneous multiplication Gj → GjS for S ∈ sl(N,C) and Lj are

kept unchanged. To an arbitrary point of M such as
{
Gj , Lj}mj=1, we associate the Lax

matrix

L(λ) =
m∑

j=1

Aj

λ− λj
, Aj = GjLjG

−1
j

The condition
∑m

j=1GjLjG
−1
j = 0 ensures the regularity of L(λ) at∞. The phase space

M has the symplectic form ωM with the symplectic potential ΘM as discussed before.

The form ωM is invariant under the simultaneous transformation Gj → SGj and it is also

non-degenerate.
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We now introduce the space of spectral data S, defined as

S =
{
{Qj}Nj=2, q ∈ Cg, {Rj}mj=1

}
(7.0.2)

where Qj(z) are arbitrary rational functions with poles of order j at λj such that the

j-differential Qj(z)(dz)j is holomorphic at z =∞ and Rj are diagonal matrices.

To avoid certain technical complications, we require the spectral curve det(L(λ)−µ1) =

0 to have simple branch points and also be non-nodal. A nodal curve is an algebraic curve

such that all of its points are either smooth or have a neighbourhood which is analytically

isomorphic to a neighbourhood of the origin in the locus of the equation xy = 0 in C2, i.e.

nodal points. The subspace of M defined by the condition of spectral curve being nodal is

a subspace of comdimension 1 and we denote it by D. Now the direct spectral transform

F :M\D → S

depending on the m points λj is now defined as follows. Take a point inM and its associated

Lax matrix L(λ). Define Qj as the j-th invariant polynomial of L(λ), i.e. Qj = tr
(
L(λ)j

)
.

The curve Γ defined by the polynomial det(L(λ) − µ1) has invariant polynomials of L(λ)

as the coefficients of terms in µ which we set as Qj . The genus of Γ is calculated in (3.2.3).

The vector q ∈ Cg will be defined similarly to the angle variables q before as in (5.0.3),

hence q = A(D) + K . As for the diagonal matrices Rj , the choice is not unique. Notice

that Aj are invariant under the multiplication of Gj by a diagonal matrix Gj → GjD. We

can fix a reference matrix G0
j , then define Rj as Gj = G0

jRj .

The inverse spectral transform can also be constructed explicitly. Given a point in S,

i.e. a set of rational functions Qj , N ×N diagonal matrices Rj and a vector q ∈ Cg, choose

a basepoint z0 ∈ C (it can be shown later that the inverse spectral transform does not

depend on the choice of z0). Define the curve Γ by

Γ(λ, µ) = µN +Q2(λ)µN−2 + ...+Qn(λ) = 0 (7.0.3)

The key object on this curve as we saw in previous sections is the meromorphic differential

µdλ. Denote the theta function on Γ by θ and the locus θ(q) = 0 by (θ). We shall define
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the inverse spectral transform

F−1 : S \ (θ)→M

using the Szegö kernel (see (6.1.3)) with characteristic q, which is

Sq(x, y) = θ(A(x)−A(y) + q)
θ(q)E(x, y)

By following the steps in section 6.2, we will be able to write Gj and Lj in terms of Szegö

kernel. Define Ψ̂ (basically, the matrix of eigenvectors) via

Ψ̂jk(λ) = ψ(λ(k), λ
(j)
0 ), ψ(x, x0) = Sq(x, x0) x− x0√

dx
√
dx0

Now the point {Gj , Lj} ∈ M associated to the point {Qj , q, Rj} ∈ S \ (θ) by the inverse

spectral transform F−1 is given by

(Lj)kk = res |
λ

(k)
j

µdλ, Gj = Ψ̂(λj)Rj (7.0.4)

where λ(k)
j are the points above λj on the curve Γ.

The moduli space of the spectral curves described by (7.0.3) is also a matter of interest

since it is central to understanding the deformations of spectral curve. Fixing the points λj ,

we will show that the moduli space is of the dimension g+m(N−1). To construct the local

coordinates on this space, first we have m(N − 1) variables in the form of the independent

residues of the differential µdλ at the points λ(k)
j , denoted by

z
(k)
j = res |

λ
(k)
j

µdλ, j = 1, ...,m, k = 1, ..., N − 1

We now define the coordinates µ(k)
j for j = 1, ...,m, k = 1, ..., N − 1 as

µ
(1)
j = z

(1)
j

µ
(k)
j = z

(k)
j − z(k−1)

j

Next, consider a homology basis {ai, bi}gi=1, {l
(k)
i } on Γ \ {λ(k)

j }, j = 1, ...,m, k = 1, ..., N

with {l(k)
i } being small loops around {λ(k)

j }, the points above λj . The a-periods of the
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differential µdλ, i.e. the action variables as discussed in (5.0.5),

Ir =
∮

ar

µdλ, r = 1, . . . , g

alongside the variables µ(k)
j , the set {Ir, µ

(k)
j } gives us local coordinates on the moduli space

of curves described by (7.0.3).

By adding the vector q and the diagonal matrices Rj , we obtain the local coordinates

on the space of spectral data S. Le qj be the components of the vector q ∈ Cg, and the

variables ρ(k)
j , j = 1, . . . ,m, k = 1, . . . , N − 1 such that

log r(k)
j = ρ

(k)
j − ρ

(k−1)
j

where Rj = diag(r(1)
j , . . . , r

(N)
j ). Then the following gives us the full set of coordinates on

S

{
{qr, Ir}gr=1, {µ

(k)
j , ρ

(k)
j }, j = 1, . . . ,m, k = 1, . . . , N − 1

}
and the symplectic form on S is now given by

ωS =
g∑

r=1
dIr ∧ dqr +

m∑
j=1

N−1∑
k=1

dρ
(k)
j ∧ dµ

(k)
j (7.0.5)

hence the pairs (Ii, qi) and (ρ(k)
j , µ

(k)
j ) form a canonical set of Darboux coordinates.

7.1 Spectral transform as symplectomorphism

The consequence of the main result of chapter 6 (6.3.19) is that the spectral transform

between the spaces M and S (both equipped with a symplectic structure) can be regarded

as a symplectomorphism, i.e. a diffeomorphism preserving the symplectic structure (see

section 2.4). All we need to do is to show that the pullback of ΘS , the symplectic potential

on S under the map :M→ S (which sends the coordinates {Gj , Lj} to {qr, Ir.ρ
(k)
j , µ

(k)
j })

is equal to ΘM, the symplectic potential on M. In other words,
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Theorem 10. The symplectic potential ΘM is given by

ΘM = F ∗ΘS = F ∗
( g∑

r=1
Irdqr +

m∑
j=1

N−1∑
k=1

µ
(k)
j dρ

(k)
j

)
(7.1.1)

Proof. We provide a quick sketch of the proof. We have already shown in chapter 6 that

the contribution of dIr and dqr terms are given by the first sum. The overall procedure

to calculate the contribution of µ(k)
j and ρ

(k)
j terms will follow the same steps, only that

this time the basis of holomorphic differentials ωj should be replaced by the differentials

ω
λ

(k)
j ,λ

(k−1)
j

and instead of the variational formula (6.3.1) for the variation of Szegö kernel

with respect to Ij , we apply the following one

1
2πi

∂

∂µ
(k)
j

Sq(x, y)
∣∣∣
z(x),z(y)

= −πi2
∑

br. pts.
res|t=xj

w
λ

(k)
j ,λ

(k−1)
j

(t)Wt
[
Sq(x, t), Sq(t, y)

]
dz(t)dy(t)

where ωx,y(t) is the Abelian differential of the third kind with residues ±1 at x and y.

ωx,y(t) is also normalized by
∮

ak
ωx,y = 0. Using this variational formula, the contribution

of dµ(k)
j term is given by

ΘS
(
dµ

(k)
j

)
= π

2
∑

br. pts.
rest=xi ωλ

(k)
j ,λ

(k−1)
j

which is zero due to the assumption of genericity for the spectral curve that none of the

branch points project to the poles λj .

The following corollary provides a set of canonical Darboux coordinates on the spaceM:

Corollary: The symplectic form ωM = dΘM on the space M coincides with the

pullback of the symplectic form ωS (7.0.5) on the space of spectral data S.

ωM = F ∗ωS

Therefore ωM can be written as below in terms of spectral variables:

ωM = F ∗
( g∑

r=1
dIr ∧ dqr +

m∑
j=1

N−1∑
k=1

dµ
(k)
j ∧ dρ

(k)
j

)
(7.1.2)
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Chapter 8

Variations of vector of Riemann

constants

In this section, we will be discussing the variation of vector of Riemann constants with

respect to the action variables. This is based on an observation made earlier while studying

the symplectic properties of the system but here, we will look into it directly without relying

on any previous result. First, we consider the hyperelliptic case and show that the vector

of Riemann constants in this case is the gradient of some function on the moduli space of

the spectral curve. The general case of results obtained here is to be pursued in the future.

8.1 Hyperelliptic case

The natural expectation and requirement rising while studying the symplectic structure

of the phase space is that both {Ij , qj}gj=1 and {Ij , qj −Kj}gj=1 be sets of Darboux coordi-

nates. In other words, the symplectic form ωM have the same canonical expression in terms

of both, so:

∑
j

dIj ∧ dqj =
∑

j

dIj ∧ d(qj −Kj)

which implies

∑
j

dIj ∧ dKj =
∑

j

dIj ∧
(∑

i

∂Kj

∂Ii
dIi
)

=
∑
j,i

∂Kj

∂Ii
dIj ∧ dIi = 0 (8.1.1)
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The terms j = i vanish in the last sum, and having dIj ∧ dIi = −dIi ∧ dIj yields:

∑
j,l

∂Kj

∂Ii
dIj ∧ dIi =

∑
j<i

(∂Kj

∂Ii
− ∂Ki

∂Ij

)
dIj ∧ dIi = 0 (8.1.2)

For this to hold, the following variational identity needs to be true:

∂Kj

∂Ii
= ∂Ki

∂Ij
(8.1.3)

We wish to prove (8.1.3) via direct calculation. In order to simplify the matters, we

will first compute an alternative expression for the vector of Riemann constants in the case

of Γ being a hyperelliptic surface. We then apply known variational formulas on the space

of holomorphic differentials to the explicit expression of K. Let us recall a few ingredients

first, the matrix of b-periods:

τij :=
∮

bi

ωj (8.1.4)

and the vector of Riemann constants:

Kj = τjj

2 −
g∑

l=1

∫
al

AjdAl (8.1.5)

where A is the Abel map. Given Aj(P ) =
∫ P

P0
ωj , (8.1.5) can be alternatively written as

Kjj = τjj

2 −
g∑

l=1

∮
al

(
ωl

∫ x

P0
ωj
)

(8.1.6)

where x is the parameter from the integral over al.

Theorem 11. The variation of the components of vector of Riemann constants with respect

to the action coordinates is index-symmetric, i.e.

∂Kj

∂Ii
= ∂Ki

∂Ij

Proof. We first need to find an explicit expressions for the Abel map. Given the genus

g of Γ, the number of branch points would be 2g + 2 by Riemann-Hurwitz formula, let

Pj , j = 1, ..., 2g + 2 be these branch points. The hyperelliptic surface has an involution J

which can be viewed as a rotation by π about the axis that passes though 2g + 2 branch
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points. Let βk be an oriented curve from P2k−1 to P2k for k = 1, ..., g+ 1. The cycle bk can

now be defined as βk followed by Jβk but in the opposite direction or −Jβk. We also set

ak to be the curve connecting a point on bk to bg+1 and then back to the initial point on

bk. The set {ak, bk}gk=1 forms a canonical basis of homology on Γ.

To simplify the calculation of Abel map as much as possible, We set P1 as its basepoint

to. At the end, we will show that all the calculations would remain valid if we change

the basepoint of the Abel map. First we need to establish a few identities to do so (see

[7], VII.1.1). Let τ (k) denote the k-th column of the period matrix τ and ω⃗ = (ω1, ..., ωg);

by the fact that J essentially acts as a multiplication by −1 on the space of holomorphic

differentials, for k = 1, ..., g we have:

τ (k) =
∫

bk

ω⃗ =
∫

βk

ω⃗ −
∫

Jβk

ω⃗ =
∫

βk

ω⃗ −
∫

Jβk

Jω⃗ = 2
∫

βk

ω⃗ = 2
∫ P2k

P2k−1
ω⃗ (8.1.7)

To calculate the k = g + 1 case, we need the intersection numbers of the cycles. For

j = 1, ..., g we have

î(aj , bg+1) = −1, î(bj , bg+1) = 0

so up to homology we have −bg+1 = b1 + ...+ bg which in conjunction with (8.1.7) implies

∫ P2g+2

P2g+1
ω⃗ = 1

2
(
τ (1) + ...+ τ (g)) (8.1.8)

We also introduce the curves α̂j joining P2j to P2j+1 and set αj = α̂j − Jα̂j . Having the

intersection numbers

î(αj , ak) = 0, î(αj , bk) = 0, î(αj , bj) = 1, î(αj , bj+1) = −1

for j ̸= k, k + 1, we get αj = aj − aj+1 for j = 1, ..., g (ag+1 = 0). Thus:

2
∫ P2k+1

P2k

ω⃗ = 2
∫

α̂k

ω⃗ =
∫

α̂k

ω⃗ −
∫

Jα̂k

Jω⃗ =
∫

α̂k

ω⃗ −
∫

Jα̂k

ω⃗ =
∫

αk

ω⃗

=
∫

ak

ω⃗ −
∫

ak+1
ω⃗ = e(k) − e(k+1) k = 1, ..., g − 1 (8.1.9)

and 2
∫ P2g+1

P2g

ω⃗ = e(g), using the normalization
∮

ak

ωj = δkj . We can now compute the Abel
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map at branch points:

A(P1) = 0

A(P2) =
∫ P2

P1
ω⃗ = 1

2τ
(1)

A(P3) =
∫ P2

P1
ω⃗ +

∫ P3

P2
ω⃗ = 1

2(τ (1) + e(1) − e(2))

A(P4) = A(P3) +
∫ P4

P3
ω⃗ = 1

2(τ (1) + τ (2) + e(1) − e(2))

A(P5) = A(P4) +
∫ P5

P4
ω⃗ = 1

2(τ (1) + τ (2) + e(1) − e(3))

...

A(P2k+1) = 1
2(τ (1) + ...+ τ (k) + e(1) − e(k+1)), k = 1, ..., g − 1

A(P2k+2) = 1
2(τ (1) + ...+ τ (k+1) + e(1) − e(k+1)), k = 1, ..., g − 1

...

A(P2g+1) = 1
2(τ (1) + ...+ τ (g) + e(1))

A(P2g+2) = 1
2e

(1) (8.1.10)

subsequently:

g∑
j=1
A(P2j+1) = 1

2
(
gτ (1) + (g − 1)τ (2)...+ τ (g) + ge(1) − e(2) − ...− e(g)

)
(8.1.11)

We will now show that:

K = −
g∑

j=1
A(P2j+1) (8.1.12)

Recall that we have θ(0) ̸= 0 for the theta-function. So θ ◦A does not vanish identically

on Γ. As discussed previously, we know that θ ◦ A has g zeros on Γ, say Q1, ..., Qg. By

Riemann’s theorem, these zeros satisfy:

g∑
j=1
A(Qj) +K = 0 (8.1.13)

A(Pj) are half-periods so they can be written as 1
2(ϵ+ τϵ′) for the characteristic [ ϵ

ϵ′ ]. The
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half-periods can be classified as odd or even depending on the parity of the characteristic.

We have

θ
(ϵ+ τϵ′

2
)

= θ

 ϵ
ϵ′

 (0)

hence θ vanishes at odd half-periods. Notice that A(P2j+1), j = 1, ..., g are odd half-periods

so these g points are the zeros of θ on Γ therefore (8.1.13) implies that:

g∑
j=1
A(P2j+1) = −K (8.1.14)

Combining with (8.1.11), we can write the j-th component of vector K as

−Kj = 1
2
(
gτj1 + (g − 1)τj2 + ...+ τjg

)
+ cj (8.1.15)

where cj = −1/2 if j = 2, ..., g and c1 = g/2.

We now have the following variational formula ([3], eq. 4.2) for the period matrix with

respect to the a-periods of the differential v = µdλ:

∂ταβ

∂Aγ
= −2πi

∑
xi br. pts.

ωγ

d ln(v/ξ)(xi) resxi

ωαωβ

v
(8.1.16)

where the sum is taken over the branch points and ξ is the local coordinate at xi. (8.1.16)

can be rewritten in the more convenient form:

∂ταβ

∂Aγ
= −2πi

∑
xi br. pts.

res
xi

ωαωβωγ

dξd(v/dξ) (8.1.17)

In our context, Aγ is the same as Iγ so by (8.1.15), the partial derivaties of K with respect

to the action variables will be:

−∂Kj

∂Iγ
= 1

2
(
g
∂τj1
∂Iγ

+ (g − 1)∂τj2
∂Iγ

+ ...+ ∂τjg

∂Iγ

)
(8.1.18)

and by (8.1.17) we can see that the partials ∂τjk

∂Iγ
are symmetric with respect to permutating
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indices, specifically j ↔ γ so we conclude that:

∂Kj

∂Iγ
= ∂Kγ

∂Ij
(8.1.19)

Our next objective is to find a scalar ’potential’ function in terms of which the vector

of Riemann constants can be expressed.

Theorem 12. There exists a function F of the moduli of the spectral curve, i.e. the action

variables, whose gradient is the vector of Riemann constants, that is, K = ∇F .

Proof. Let us denote the b-periods of v by Bj so Bj =
∮

bj

µdλ. Define the function F̃ as

F̃ = 1
2

g∑
j=1

IjBj (8.1.20)

First, we show that the period matrix τ can be obtained by the second derivatives of F̃ :

ταβ = ∂2F̃

∂Iα∂Iβ
(8.1.21)

Notice that by the variational formula ∂v/∂Aα = ωα we get:

∂Bβ

∂Iα
=
∂
∫

bβ
v

∂Iα
=
∫

bβ

∂v

∂Iα
=
∫

bβ

ωα = τβα = ταβ (8.1.22)

Thus,

∂F̃

∂Iα
= 1

2
(
Bα +

∑
j

Ij
∂Bj

∂Iα

)
= 1

2
(
Bα +

∑
j

Ijταj

)
(8.1.23)

and taking the second derivatives leads to

∂2F̃

∂Iα∂Iβ
= 1

2
(∂Bα

∂Iβ
+ ταβ +

∑
j

Ij
∂ταj

∂Iβ

)
= ταβ + 1

2
∑

j

Ij
∂ταj

∂Iβ
(8.1.24)

The last sum turns out to be zero; Notice that using the symmetry of derivatives of τ with

respect to the indices, it can be written as

∑
j

Ij
∂ταj

∂Iβ
=
∑

j

Ij
∂ταβ

∂Ij
=
(∑

j

Ij
∂

∂Ij

)
ταβ (8.1.25)
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and
∑

j Ij
∂

∂Iβ
is in fact the scaling operator which generates the map λ 7→ cλ. The period

matrix is invariant under such scaling hence (8.1.25) equals zero. We then get

ταβ = ∂2F̃

∂Iα∂Iβ
(8.1.26)

Therefore by (8.1.15), K can be expressed as

−Kj = 1
2
(
g
∂2F̃

∂Ij∂I1
+ (g − 1) ∂2F̃

∂Ij∂I2
+ ...+ ∂2F̃

∂Ij∂Ig

)
+ cj (8.1.27)

So by defining F as

F = −1
2
(
g
∂F̃

∂I1
+ (g − 1)∂F̃

∂I2
+ ...+ ∂F̃

∂Ig

)
−

g∑
k=1

ckIk (8.1.28)

and having Kj = ∂F
∂Ij

, we can express K in gradient form:

K = ∇F (8.1.29)

It finally remains to show that if we change the basepoint of the Abel map to any other

arbitrary point, the index symmetry of partial derivatives and the scalar potential function

can still be established in a similar way. We know that the change of basepoint results in a

translation of Abel map in the Jacobian of the curve so essentially for each of the equalities

in (8.1.10), we get an extra constant term. Suppose we change the basepoint from P1 to P̃ ,

then:

Ã(Pj) =
∫ Pj

P̃
ω⃗ =

∫ Pj

P1
ω⃗ −

∫ P̃

P1
ω⃗ = A(Pj)− R⃗ (8.1.30)

the extra constant term being R⃗ =
∫ P̃

P1
ω⃗. Going back to the definition of Riemann vector:

Kj = τjj

2 −
g∑

l=1

∫
al

AjdAl (8.1.31)

substituting A by Ã leads to an extra −Rjωl term in the integrand so K̃j gets an extra∑
l

∫
al
Rjωl = gRj constant term. Therefore the index symmetry property still holds and we
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can similarly use the scalar function F to express K̃ in terms of its gradient as in (8.1.29),

this time the extra terms gRjIj should be included in (8.1.28) too.

8.2 Generic case

Proving the variational identity (8.1.3) in the case of the spectral curve being a generic

Riemann surface requires establishing a variational formula by combining the results from

[3] and [13]. First, we need to define the following (multi-valued) g(1−g)
2 -differential

c(x) = 1
W [ω1, . . . , ωg](x)

g∑
α1,...,αg=1

∂gθ(Kx)
∂zα1 . . . ∂zαg

ωα1(x) . . . ωαg (x) (8.2.1)

where the sum is taken over the permutations of α1, ..., αg and W is the Wronskian deter-

minant of g holomorphic differentials at at the point x, defined by

W [ω1, ..., ωg](x) = det
1≤α,β≤g

∥ ω(α−1)
β (x) ∥

where ωβ here represents ωβ = ωβdλ in slight abuse of notation. Now define the multi-valued

differential of two variables σ(x, y) by

σ(x, y) =
(c(x)
c(y)

)1/(1−g)
(8.2.2)

The following variational formula can be established:

Proposition: Assume x ∈ Γ such that its projection on the moduli space of the curve

is independent of Iα. Then the variational formula

∂Kβ

∂Iα

∣∣∣
λ(x)

=
p∑

j=1
rest=xj

ωα(t)ωβ(t)dt log σ(t,x0)E(t,x)g−1√
µ(t)dλ(t)

dλ(t) dµ(t) (8.2.3)

Proof. By the equation (2.55) of [13], we have the following formula for the variation of

vector of Riemann constants with the basepoint P with respect to the coordinates of the

space of holomorphic Abelian differentials on Γ, rewritten in the notation of this work:

∂KP
α

∂Ik

∣∣∣
λ(P )

= 1
2πi

∮
t∈ak

ωα(t)
µ(t)dλ(t)dt log σ(t, x0)E(t, P )g−1√

ωα(t)
(8.2.4)
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This can be extended to the space of meromorphic differentials with simple poles as de-

scribed in [12]. Using the same framework as [4], the variational formula (8.2.3) can be

obtained from (8.2.4).

The formula (8.2.3) immediately shows the symmetry of variation with respect to α and

β, hence proving the general case of variational identity (8.1.3).
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