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Abstract

Ultra-Dense Networks in 5G and Beyond: Challenges

and Promising Solutions

Mohammed Elbayoumi, Ph.D.

Concordia University, 2023

Ultra-Dense Network (UDN) is one of the promising and leading directions in Fifth

Generation and beyond (5GB) networks. In UDNs, Small Cells (SCs) or Small Base

Stations (SBSs) such as microcells, picocells, or femtocells are deployed in high densities

where inter-site distances are within the range of few or tens of meters. UDNs also require

that SCs are typically deployed in relatively large densities compared to the Human-Type

Communication Users (HTCUs) such as smartphones, tablets, and/or laptops. Such SCs

are characterized by their low transmission powers, small coverage areas, and low cost.

Hence, the deployment of the SCs can be done either by the cellular network operators or

by the customers themselves within their premises to maintain certain levels of Quality

of Service (QoS). However, the randomness of the deployment of the SCs along with the

small inter-site distances may degrade the achievable performance due to the uncontrolled

Inter-Cell Interference (ICI). Therefore, idle mode capability is an inevitable feature in

the high-density regime of SCs. In idle mode, a SC is switched off to prevent ICI when no

user is associated to it. In doing so, we can imagine the UDN as a mobile network that

keeps following the users to remain as close as possible to them.
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In 5G, different use cases are required to be supported such as enhanced Mobile

Broad-Band (eMBB), Ultra-Reliable and Low-Latency Communication (URLLC), and

massive Machine-Type Communication (mMTC). On one hand, the inevitable upcoming

era of smart living requires unprecedented advances in enabling technologies to support the

main building blocks of this era which are Internet of Things (IoT) devices. Machine-Type

Communication (MTC), the cellular version of Machine-to-Machine (M2M) communica-

tion, constitutes the main enabling technology to support communications among such

devices with minimal or even without human intervention. The massive number of these

devices, Machine-Type Communication Devices (MTCDs), and the immense amount of

traffic generated by them require a paramount shift in cellular and non-cellular wireless

technologies to achieve the required connectivity. On the other hand, the sky-rocketing

number of data hungry applications installed on human-held devices, or HTCUs, such

as video conferencing and virtual reality applications require their own advances in the

wireless infrastructure in terms of high capacity, enhanced reliability, and reduced latency.

Throughout this thesis, we exploit the UDN infrastructure integrated with other

5G resources and enabling technologies to explore the possible opportunities in supporting

both HTC and MTC, either solely or simultaneously. Given the shorter distances between

transmitters and receivers encountered in UDNs, more realistic models of the path loss

must be adopted such as the Stretched Exponential Path Loss (SEPL) model. We use

tools from stochastic geometry to formulate novel mathematical frameworks that can be

used to investigate the achievable performance without having to rely on extensive time-

consuming Monte-Carlo simulations. Besides, the derived analytical expressions can be

used to tune some system parameters or to propose some approaches/techniques that can

be followed to optimize the performance of the system under certain circumstances.

Tackling practical scenarios, the complexity, or sometimes in-feasibility, of provid-

ing unlimited backhaul capacity for the massive number of SCs must be considered. In

this regard, we adopt multiple-association where each HTCU is allowed to associate with

multiple SCs. By doing so, we carefully split the targeted traffic among several backhaul

links to mitigate the bottleneck forced by limited backhaul capacities. It is notewor-

thy that for coexisting MTCDs with the HTCUs, activating more SCs would allow more
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MTCDs to be supported without introducing additional ICI towards the HTCUs.

Targeting different application, multiple-association can be also adopted to tackle

computation-intensive applications of HTCUs. In particular, for applications such as

augmented reality and environment recognition that require heavy computations, a task

is split and partially offloaded to multiple SCs with integrated Edge Computing Servers

(ECSs). Then, the task partitions are processed in parallel to reduce the end-to-end

processing delay. Based on relative densities between HTCUs and SCs, we use tools from

stochastic geometry to develop an offline adaptive task division technique that further

reduces the average end-to-end processing delay per user.

With the frequent serious data breaches experienced in recent years, securing data

has become more of a business risk rather than an information technology (IT) issue.

Hence, we exploit the dense number of SCs found in UDN along with Physical Layer

Security (PLS) protocols to secure data transfer. In particular, we again adopt multiple-

association and split the data of HTCUs into multiple streams originating from different

SCs to prevent illegitimate receivers from eavesdropping.

To support massive number of MTCDs, we deploy the Non-Orthogonal Multiple-

Access (NOMA) technique. Using power NOMA, more than one device can be supported

over the same frequency/time resource and their signals are distinguished at the receiver

using Successive Interference Cancellation (SIC). In the same scope, exploiting the avail-

able resources in 5G and beyond networks, we investigate a mMTC scenario in an UDN

operating in the Millimeter Wave (mmWave) band and supported by wireless backhaul-

ing. In doing so, we shed lights on the possible gains of utilizing the mmWave band where

the severe penetration losses of mmWave can be exploited to mitigate the significant ICI

in UDNs. Also, the vast bandwidth available in the mmWave band helps to allocate more

Resource Blocks (RBs) per SCs which corresponds to supporting more MTCDs.
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Chapter 1

Introduction

1.1 Overview

In order to achieve the smart living of the future, it is necessary for all objects to be

connected to the Internet. This infrastructure is called the Internet of Things (IoT), and

it is made up of devices such as sensors and actuators, known as IoT devices. The main

technology that enables these devices to communicate with each other is called Machine-

Type Communication (MTC), which is the cellular version of Machine-to-Machine (M2M)

communication [1]. With a large number of IoT devices and the huge amount of data

they generate, there must be a significant shift in both cellular and non-cellular wire-

less technologies to ensure the necessary level of connectivity. Hence, cellular networks,

which have become exploited mostly by data traffic, are expected to achieve tremendous

advances to keep up with these rising challenges. In particular, the coexistence of Human-

Type Communication (HTC) and MTC has become inevitable [2]. In this regard, the Fifth

Generation (5G) standard classifies the rising challenges to cellular communications into

three substantial directions, namely, Ultra-Reliable and Low-Latency Communications

(URLLC), Enhanced Mobile Broad-Band (eMBB), and massive Machine-Type Commu-

nication (mMTC) [3].
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Ultra-Dense Network (UDN) is intuitively one of the most promising approaches

to tackle such diverse requirements of massive connectivity and high throughput of the

coexisting HTC and MTC. In a UDN, a massive number of low-power and low-cost Small

Cells (SCs) are deployed with a density higher than that of the HTC users (HTCUs) [4].

With each HTCU associated with the closest SC, the cellular network acts as a mobile

network following the HTCUs to remain as close as possible to them. With shorter serv-

ing distances between the SCs and the users/devices, we obtain enhanced performance in

terms of achievable capacity. Besides, with the SC serving a smaller coverage area, more

devices can be supported. Hence, within the UDN architecture, we aim at exploiting di-

verse available resources and technologies in 5G and Beyond (5GB) networks to tackle the

above-mentioned challenges of higher capacity for the HTCUs and massive connectivity

of the MTC devices (MTCDs).

We propose multiple-association of an HTCU to multiple SCs in order to achieve

higher capacity by avoiding the bottleneck limitations of the backhaul capacities. By

activating more SCs, more MTCDs can be supported. In addition, we investigate the

possible gains in supporting computation-intensive applications by integrating edge com-

puting servers within the SCs. Physical Layer Security protocols are also applied to

secure the gigantic amount of data flying over the air. Applying Non-Orthogonal Mul-

tiple Access (NOMA) to support more MTCDs is considered as well. Finally, we utilize

the Millimeter wave (mmWave) band to support MTC while considering wireless back-

hauling for the SCs. In general, we use tools from stochastic geometry to investigate and

show the possible gains of deploying UDN along with the above-mentioned integrated

technologies, propose other additional techniques and approaches to further enhance the

achievable performance, and conclude by discussing the open problems for future research

directions.
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1.2 Motivation

UDN is a strong candidate for 5GB networks to satisfy the diverse requirements

of future cellular networks. However, many challenges have to be considered and inves-

tigated to achieve full utilization of network resources. For example, providing a wired

backhauling system such as optical fibers for the massive number of SCs may be practi-

cally infeasible and forces severe constraints on the achievable performance of UDNs [5].

Besides, the immense amounts of Inter-Cell Interference (ICI) found in UDNs may prevent

the targeted gains of higher capacities from being achieved [4]. The massive number of

MTCDs projected to coexist with HTCUs adds another dimension of complexity. With

the recent increase in the number of data breaches due to the higher computational pow-

ers of illegitimate receivers, securing data transfer through only traditional cryptographic

tools becomes questionable [6]. Finally, the increasing density of computation-intensive

applications requires bringing the processing nodes to the edge of the network [7]. In

addition to all of the aforementioned challenges, the large scale of UDNs in terms of

the massive number of SCs and users/devices necessitates finding an alternative to the

time-consuming simulations.

Hence, in this thesis, we aim at tackling the above-mentioned challenges accom-

panying the deployment of UDNs and supportive technologies. First, we use tools from

stochastic geometry to formulate novel mathematical frameworks that provide closed or

semi-closed analytical expressions of the average achievable performance against different

system parameters. By doing so, we provide an alternative to the heavy time-consuming

Monte-Carlo simulations and help network designers to better understand the network

operation. We consider multiple-association of HTCUs to many SCs to benefit from the

existing short distances between any HTCU and the set of the closest SCs. In doing so, we

overcome the backhaul limitations, allow for parallel processing of computation-intensive

applications through multiple Edge Computing Servers (ECSs), and exploit spatial diver-

sity of the different links to secure transmitted data against illegitimate eavesdroppers.
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In addition, to support a higher density of MTCDs, we apply NOMA to support multiple

MTCDs on the same time-frequency resources. Also, we utilize the mmWave band to

exploit the excess bandwidth available and the distinguished propagation characteristics

of mmWave signals to mitigate the severe ICI found in UDNs.

1.3 Contributions

In this thesis and motivated by the above, we tackle multiple challenges of UDN

deployment and explore the possible opportunities of integrating other supportive tools

and/or technologies. The contributions of this thesis are summarized as follows.

Limited Backhaul Capacity and Coexisting HTC and MTC: We tackle the

backhaul capacity limitations problem using multiple associations of SCs to an HTCU. By

doing so, the required downlink high data rates of HTCUs can be split and transmitted

through multiple SCs to match the available backhaul capacities. Besides, more SCs will

be activated which allows for a higher number of MTCDs to be supported. It is important

to note that the additionally activated SCs will serve the tagged HTCU on orthogonal

bands, i.e., no additional ICI will be introduced. In doing so, we study the effect of the

limited backhaul capacity on the system while considering a fixed bandwidth. Also, we

investigate the effect of multiple-association on MTC performance.

In particular, we show that an optimum MultiCell size exists which depends on the

backhaul link capacities, density of SCs, and density of users. Besides, to efficiently share

the available bandwidth among the multiple cells serving the same HTCU, we consider the

different scenarios of how the HTCUs may be associated with SCs including those scenarios

where a conflict may exist among the different users. In addition, we study the uplink

performance of both HTC and MTC. For the MTC, by employing the proposed multiple-

association scheme, we show the improvement in terms of both the density of supported

MTCDs and achievable ASE. However, for uplink HTC, a single association to the closest
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SC is considered sufficient since the required rates are much lower than the downlink

scenario. To accurately investigate the performance of a UDN environment, we consider

the SEPL model which takes into consideration the high probability of Line-of-Sight (LoS)

communications. Using tools from stochastic geometry, we provide analytical expressions

for the achievable ASE in HTC and MTC and the density of supported MTCDs.

Computation-Intensive Applications of HTCUs: We tackle the challenging

growth of computation-intensive applications of HTCUs such as face recognition, virtual

reality, and mobile augmented reality. In doing so, we exploit UDN and Multi-Access

Edge Computing (MEC) to reduce the end-to-end processing delay experienced by the

HTCUs. To the best of our knowledge, this is the first attempt to jointly consider edge

computing with UDN along with multiple associations of SCs to the HTCUs in order to

fully exploit the network resources.

In particular, each HTCU associates with multiple SCs equipped with ECSs and

partially offloads its task to be processed in parallel at the ECSs and the local processor.

We carefully mitigate the severe ICI experienced in UDNs by considering how adjacent

HTCUs compete to associate with the same SC. Links that produce larger ICI and/or

force significant offloading transmission delays are disconnected. Based on the relative

densities between HTCUs and SCs, we use tools from stochastic geometry to develop

an offline adaptive task division approach that further reduces the average end-to-end

processing delay per user. Besides, we derive novel analytical expressions for the average

end-to-end processing delay per user. The developed mathematical framework provides

significant insights into the system and can be used to tune several parameters to achieve

optimal performance.

Security Enhancement of HTC: To tackle data breaches, we adopt Physical

Layer Security (PLS) and propose a secure multiple-association scheme in which the data

traffic of an HTCU is split into different paths through the M closest cells. In doing, we

exploit the spatial diversity among the different paths to increase the achievable secrecy
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rate in the network. We show that exploiting the proposed multiple-association in a UDN

environment can mitigate the effect of several deteriorating factors such as the increasing

densities of both HTCUs and eavesdroppers.

NOMA and Excessive Density of MTCDs: We propose a system of hybrid

NOMA/OMA scheme to support a massive number of MTCDs in a UDN environment. We

divide the MTCDs into two groups according to their normalized Signal-to-Interference

Ratio (SIR) compared to a predetermined SIR threshold value. Then, two users, one

from each group, form a two-user NOMA cluster which can be extended to higher orders.

We show that an optimum SIR threshold value can be chosen to maximize the obtained

performance gain from the NOMA/OMA scheme compared to an only-OMA scheme. Us-

ing tools from stochastic geometry, we derive analytical expressions for the Area Spectral

Efficiency (ASE) gain and show that densifying the network by more cells compromises

the gain obtained from NOMA.

Millimeter Wave andWireless Backhaul for Excessive Density of MTCDs:

To fully exploit the available cellular network resources in 5GB, we jointly consider UDN

and mmWave to support mMTC. By doing so, mmWave can help mitigate the severe ICI

of UDNs thanks to the high penetration losses experienced in this frequency band. Be-

sides, the gigantic amount of available bandwidths in the mmWave band helps to allocate

a higher number of Resource Blocks (RBs) to the SCs that can be utilized to support more

MTCDs per SC. Using tools from stochastic geometry, we provide analytical expressions

for the achievable performance in terms of density of supported MTCDs, achievable SINR

per MTCD, and capacity per SC.

Considering a practical use case, we study the performance under a limited wire-

less backhaul scenario while taking into account the correlated effects of different system

parameters on both the access link (AL) and the backhaul link (BH). In doing so, we

consider a massive Multiple-Input Multiple-Output (mMIMO) microwave backhauling

system between the SCs and the Central Processing Units (CPUs) of the core network.
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Besides, We propose a sub-optimal calculation of SC density, at which the achievable

gains from the deployed SCs in terms of the limited capacity are maximized. Accordingly,

we offer network operators a reasonable estimation of the density of SCs that should be

activated. Moreover, we formulate a novel mathematical framework and derive analytical

expressions for the density of supported MTCDs, the achievable SINR per MTCD, and

the average capacity per SC (for both AL and BH) using tools from stochastic geometry

and we derive a tight lower bound of the achievable limited capacity.

The above contributions have been published in [8, 8–10]. Other research works

conducted during the tenure of this Ph.D. have been published in [11–13].

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide a concise

background of the different topics and technologies included in the thesis. In Chapter 3, we

consider multiple-association to overcome the challenge of backhaul capacity limitations

in UDNs and to support higher densities of MTCDs. Chapter 4 tackles the challenge

of computation-intensive applications of HTCUs through Edge Computing and multiple-

association. Enhancing the HTC secrecy performance through multiple-association in

UDNs is investigated in Chapter 5. In Chapter 6, we consider NOMA as a complementary

approach for supporting more MTCDs. The gains associated with the utilization of the

mmWave band while considering the wireless backhaul scenario are covered in Chapter

7. Finally, in Chapter 8, we draw the conclusions of the work conducted throughout this

thesis and highlight open problems for possible future research directions.
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Chapter 2

Background

2.1 HTC and MTC in 5G and Beyond Networks

The unprecedented growth in the number of connected users and/or devices and

their traffic requires revolutionary technologies in cellular communications in order to

cope with these requirements. According to [2], the number of connected devices by

2023 will be three times the global population. The fastest-growing mobile category

between 2018 and 2023 will be Machine-to-Machine (M2M) communications. It will grow

at a 19% Compound Annual Growth Rate (CAGR) or nearly 2.4 folds. This reflects an

increase from around 6.1 billion devices in 2018 to approximately 14.7 billion devices by

2023. Within the M2M category, connected car applications will be the fastest growing

category with 30% CAGR. In the same interval, smartphones will grow at a 7% CAGR

(or 1.4 fold) reflecting the second fastest-growing category with an increase from 4.9

billion devices to 6.7 billion. Hence, it becomes clear that the coexistence of Human-Type

Communication (HTC) and Machine-Type Communication (MTC), the cellular backbone

of M2M communications, is inevitable [1, 12, 14].

Accordingly, tremendous advances in enabling technologies are needed in the next

generations of cellular communications, fifth generation and beyond (5GB). In general,
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5G classifies the rising challenges to cellular communications into three substantial di-

rections, namely, Ultra-Reliable and Low-Latency Communications (URLLC), Enhanced

Mobile Broad-Band (eMBB), and massive Machine-Type Communication (mMTC) [1,3].

For HTC, International Mobile Telecommunications-2020 (IMT-2020 Standard) requires

enhanced peak data rates of 20 Gbits/sec [15]. For MTC, it is required to support a density

of at least one million devices per km2 [16]. Besides, computation-intensive applications

such as virtual reality, face recognition, and augmented reality need to be addressed by

bringing the processing servers to the edge of the network. Such architecture is referred

to as Edge Computing [7] or Multi-Access Edge Computing (MEC) according to the

European Telecommunications Standards Institute (ETSI) [17]. Also, with the frequent

serious data breaches experienced recently, securing data has become more of a business

risk rather than an information technology (IT) issue [2]. Hence, in this thesis, we aim at

tackling some of the diverse requirements of 5GB use cases such as supporting coexisting

HTC and MTC, handling computation-intensive applications of HTCUs, supporting a

massive number of MTCDs simultaneously, and enhancing communication secrecy.

2.2 Ultra-Dense Network

Ultra-Dense Network (UDN) is considered a paramount candidate for providing

the utmost growth of network capacity in 5GB [11]. In particular, a massive number of

Small Cells (SCs) are to be deployed with low cost, low transmission power, and small

coverage area [4]. Adding more cells, hence, reducing the serving area of each cell has

always been the trait to improve the performance of cellular networks, especially in urban

areas [4]. By doing so, the SCs get closer to the served users and/or devices. However,

when the distances between the users and their serving/neighboring cells are shortened,

the high probability of Line-of-Sight (LoS) should be taken into consideration. Besides, the

significant sensed amounts of Inter-Cell Interference (ICI), which form severe challenges
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to UDNs [12], must be tackled. Idle mode capability, where SCs with no associated

users/devices are switched-off, can be seen as one solution to tackle the severe ICI problem

[12, 18, 19]. It is noteworthy that densifying BSs was thought to have no effect on the

signal-to-interference-plus-noise ratio (SINR). However, it was proven recently that this

behavior will not continue beyond certain values of densities of SCs [20]. It is to be also

noted that deploying SCs can be done by customers themselves within their premises.

This can provide an optimal scenario in crowded areas to guarantee a certain quality of

service (QoS).

In fact, many surveys and tutorials already exist covering the different aspects of

UDNs. For example, [4] presents an extensive survey on UDNs, their modeling tech-

niques such as stochastic geometry and game theory; performance metrics like cover-

age/outage probability, rate coverage/outage, average spectral efficiency, area spectral

efficiency (ASE), network throughput, energy efficiency, and fairness among served users.

In addition, the authors therein discussed different user association techniques like range

expansion, dual connectivity, and multiple-association as well as the idle mode capabil-

ities. The pioneering work reported in [21] discussed the behavior of ASE in a UDN

environment with stretched exponential path loss (SEPL) model. This model takes into

consideration the effects of short distances and blockages in order to provide accurate

yet tractable analysis in contrast to the multi-slope path loss model. In the same scope,

the authors in [22] provided asymptotic analysis for the ASE in UDN for a general small

fading model and different feasible path loss models. Hence, in this thesis, we aim at ex-

ploiting the UDN architecture to tackle the raised challenges in 5GB towards supporting

HTC and MTC.

2.2.1 Multiple-Association

In a UDN environment, the cellular network can be seen as a mobile network

following the users. In other words, the serving SC will be always close to the user,
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which significantly enhances the quality of the radio link. However, with the very high

density of SCs, it becomes challenging to support all SCs by fiber links leading to limited

backhaul capacities [5]. Hence, to fully exploit the potentials of UDNs, a Human-Type

Communication User (HTCU) can be allowed to associate with multiple SCs [23–26]. It

is to be noted that the density of the HTCUs is typically lower than that of the SCs [24].

By doing so, HTCUs can achieve higher data rates by exploiting the offered diversity of

the different link qualities and the short distances between transmitters and receivers in a

UDN. Also, the limitations forced on the backhaul link capacities can be mitigated [5,23].

It is noteworthy that dual connectivity is already considered by the third generation

partnership project (3GPP) to boost user rates by receiving different streams of data

from different sources, to achieve robustness against errors by receiving the same data

from different sources, to enhance mobility support, or to provide seamless migration

from 4G to 5G [27].

In addition to the above, the integration between UDN and MEC can benefit from

multiple-association to tackle computation-intensive applications that can be partitioned

during the run-time. Such applications are referred to as elastic applications [28]. In

particular, partitioning is used to split the operational logic of the application into smaller

sub-tasks [28]. Then, the sub-tasks are processed in parallel at the local processor of

the HTCU and/or the multiple edge computing servers (ECSs) integrated within the

multiple associated SCs. In a different scope, multiple-association can also be exploited

to secure data traffic of HTCUs. In particular, the data traffic of the user can be split into

different paths through the multiple associated SCs. Then, the spatial diversity among

the different paths can be exploited to enhance the secrecy performance against existing

passive eavesdroppers.
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2.2.2 Wireless Backhaul

An inevitable bottleneck in the UDN performance is the backhauling system which

is responsible for communicating the data between the SCs and the core network [23,24].

Although providing backhaul links through optical fibers can provide a backhaul capacity

of more than ten Gbps with very limited latency in the order of hundreds of microseconds

[29], the accompanying cost and complexity would turn it into an infeasible solution [30].

Hence, wireless backhauling would be a promising alternative where SCs act as relays

from the core network to the targeted users/devices and vice-versa, however, with its own

accompanying challenges such as limited capacity. Besides, when adopting in-band self-

backhauling, self-interference must be carefully managed between the Access Link (AL)

and the Backhaul link (BH) [31, 32].

2.2.3 Stochastic Geometry

Stochastic geometry is one of the most commonly adopted tools to model UDNs [22,

33,34]. In particular, the very high densities of SCs in UDN yield very complex and time-

consuming Monte-Carlo simulations. Hence, providing closed or semi-closed mathematical

expressions which capture the achievable performance in UDN against several system

parameters is significantly needed. In other words, stochastic geometry offers the ability

to study the average performance of large-scale networks with an infinite number of nodes

while considering the effect of the ICI, a main limiting factor in the performance of UDNs

[4].

From a mathematical perspective, the random deployment of the SCs by operators

and customers as well as the locations of users/devices can be modeled by Point Pro-

cesses (PPs). A PP is a set of random nodes existing in a one, two, or three-dimensional

space. When the number of nodes follows a Poisson distribution, the PP is referred to as a

Poisson PP (PPP) which is one of the most commonly adopted PPs for its mathematical

tractability. Moreover, when the nodes are distributed independently and uniformly, the
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PPP is referred to as a Homogeneous PPP (HPPP). Otherwise, When the locations of the

deployed nodes are correlated, it becomes a Non-Homogeneous PPP. In stochastic geom-

etry, a typical node is a node located anywhere (typically at the origin for simplicity) and

reflects the average performance of all other nodes of the same type by applying Slivnyak’s

theorem [35]. In addition to the PPP, different applications may require different types

of PPs. For example, in a Poisson cluster process (PCP), there are parent points that are

distributed according to an HPPP while the off-springs generated for each parent point

are distributed uniformly around each parent point and independently from the parent

distribution. In this case, the set of all off-springs represents the PCP [36]. In this thesis,

we use stochastic geometry to formulate mathematical frameworks that characterize the

performance of the considered system models against several system parameters.

2.3 Edge Computing

With the explosive growth of computation-intensive applications moving to the

cloud, tremendous costs would exist to transfer the massive amounts of data between the

end nodes and the central processing clouds [7]. Recently, applications such as virtual

reality, face recognition, and augmented reality are gaining ubiquitous popularity. The

vast evolution of powerful mobile devices and communication infrastructure help to inten-

sify the growth of such applications, which in turn, require further advancements in the

supporting technologies [37]. As a consequence, the traditional cellular architectures may

no longer constitute a feasible solution, and the need for MEC becomes inevitable [17]. By

doing so, the end nodes (subscribers) would benefit from lower latency, and the backhaul

links would become less congested. Besides, additional benefits can be acquired in terms

of security compared to moving large amounts of data to a central cloud [7]. Hence, in

this thesis, we make use of the MEC and integrate it within the UDN architecture to

achieve enhanced performance for the HTCUs when processing computations-intensive
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applications.

2.4 Millimeter Wave

Millimeter wave (mmWave) band can be seen as a promising candidate to tackle

many challenges in 5GB networks [38, 39]. In particular, the tremendous amount of

bandwidth available in the mmWave band can be exploited to tackle the unprecedented

required data rates by complementing or even replacing some microwave bands like the

sub-6 GHz band. Besides, more RBs can be allocated for each SC to support more

connections/devices. Moreover, the short wavelengths of the mmWave signals allow a

massive number of antennas to be deployed in small areas [40]. Having a massive number of

antennas enhances the directional beamforming gain and helps to boost the received signal

power and mitigate ICI. It is noteworthy that 5G Release-15 and Release-16 standardized

by the 3GPP considered the mmWave band operation [41].

However, other factors have to be reconsidered, ahead of which is the blockage

effect on signal propagation. The mmWave signals can travel for only a few kilometers or

even less due to their short wavelengths and the accompanying severe path loss. In partic-

ular, the propagation characteristics of mmWave signals are distinguished by significant

penetration losses in the received signal powers. However, with large densities of SCs in

UDNs, there is a higher probability of shorter serving distances and Line of Sight (LoS)

links between each device and its serving SC. On the contrary, as the distance increases,

especially in a dense environment of blockages such as indoors, the probability of Non-LoS

(NLoS) links significantly increases. In this thesis, we utilize the mmWave band in UDNs

to mitigate the large amounts of sensed ICI and to support more MTCDs.
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2.5 Non-Orthogonal Multiple-Access

Orthogonal multiple access (OMA) schemes have been efficiently deployed to share

resources orthogonally in time, domain, or codes. In a different scope, multiple-input-

multiple-output (MIMO) has been used to obtain spatial diversity. Then, Non-Orthogonal

Multiple-Access (NOMA) has proven to add an extra dimension for efficient utilization of

spectrum through power and/or codes. In power-domain NOMA (PD-NOMA), different

power levels are used to differentiate the signals of different users. Then, successive

interference cancellation (SIC) is used to decode the signal with higher power and then

subtract it from the total signal, then, decode the lower power signal. For recent advances

in research regarding NOMA, the readers may refer to [42] and the references therein. The

authors clearly distinguish between dominant types of NOMA; power-domain NOMA and

code-domain NOMA. In [43], a unified model for NOMA-enabled heterogeneous-UDNs

was provided regarding user association and resource allocation.

NOMA has been considered extensively in academia and it was considered as a

study item of 5G New Radio (NR) [44]. In NOMA [42], several users (two or more)

share the same time-frequency-spatial resources simultaneously exploiting either the power

domain or code domain. However, the earned gains were not significant enough to continue

with NOMA as a work item for the NR and it was decided to be postponed for possible

next generations in order to tackle the existing challenges [45]. Amongst the challenges

obstructing the efficient deployment of NOMA is the NOMA clustering process [46]. In

particular, which users will share the same resource, what is the optimal cluster size, and

prior to these, what is the objective of a NOMA cluster, i.e., maximizing the network

throughput or achieving fairness among the different users? While SIC is responsible for

mitigating the intra-cell or Inter-NOMA Interference (INI), a non-negligible complexity is

added to the receiver. Also, imperfect SIC significantly degrades the gain obtained from

adopting NOMA [47]. In the same scope, ordering the users in the SIC process based

on either the instantaneous received power or on the mean received power (distance)
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should be considered. For the former, i.e., the instantaneous received power, Channel

State Information (CSI) should be acquired which increases the overhead in the system.

However, inaccurate or non-optimal performance may result from using distance-based

ordering. Hence, in this thesis, we aim at exploiting NOMA to support more MTCDs

without incurring additional costs on the network.

2.6 Physical Layer Security

Securing the gigantic amount of wireless information flying over the air has evolved

from just an information technology (IT) issue to more of a business threat [2]. With the

huge advances in computational capabilities and the increased scalability of networks, tra-

ditional cryptographic protocols may not be enough to secure wireless communications [6].

Hence, Physical Layer Security (PLS) protocols based on information-theoretic approaches

are seen as a promising alternative to complement the traditional cryptographic ones [34].

In doing so, the inevitable distinctions among the channels of legitimate and illegitimate

receivers are exploited to secure wireless communications [48]. With the introduction of

UDNs, the distances between transmitters and legitimate receivers are shortened and the

large-scale fading is significantly reduced. Such an environment existing in UDNs allows

for optimal application of the PLS protocols that require better links for the legitimate

receivers compared to the illegitimate ones [49]. In this thesis, we utilize PLS protocols

within a UDN environment to provide an additional layer of security for HTC.

16



Chapter 3

Coexisting HTC/MTC in

Limited-Backhaul Capacity UDNs

with Multiple-Association

3.1 Introduction

The coexistence of Human-Type Communications (HTCs) and Machine-Type Com-

munications (MTCs) is inevitable in future cellular communications [1,12,14]. However, a

Machine-Type Communication Device (MTCD) should be handled differently compared

to a Human-Type Communication User (HTCU) [11, 18]. In MTC, devices will com-

municate with each other with minimal human intervention. MTCDs with their small

packet sizes, their massive numbers, and their required massive number of simultaneous

connections impose significant challenges on the next generations of cellular networks.

While UDN can significantly enhance the radio link by shortening the distances

between transmitters and receivers, backhaul links may impose practical capacity limita-

tions. In particular, with the very high density of SCs, it becomes challenging to support

them by fiber links leading to limited backhaul capacities [5]. Hence, multiple associa-
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tions of SCs [24] can mitigate such limitations in the backhaul capacity, specifically, in

the downlink. However, the tremendous downlink Inter-Cell Interference (ICI) found in

a UDN must be mitigated by adopting idle mode capabilities of the SCs [12]. In other

words, only an HTCU should be allowed to activate one or more SCs. Although exploit-

ing the UDN environment requires MTCDs to be able to activate the closest SC as well,

this may lead to cases where almost all SCs are activated due to the very high density of

MTCDs.

In this chapter, we tackle two challenges of future cellular networks, namely, the

backhaul capacity limitations in UDNs and the coexistence of HTC and MTC. Using

multiple associations of SCs to an HTCU, the required downlink high data rates by HTCUs

can be split among multiple SCs to match the available backhaul capacities. Besides, more

SCs will be activated and a higher number of MTCDs can be supported. It is important

to note that the additionally activated SCs will serve the tagged HTCU on orthogonal

bands, i.e., no ICI. Unlike the work in [24], we study the effect of the limited backhaul

capacity on the system while considering a fixed bandwidth and we investigate the effect

of the multiple-association scheme on the MTC performance. The main contributions in

this chapter can be summarized as follows:

• We propose a multiple-association scheme for HTCUs under fixed bandwidth allo-

cation and limited backhaul capacity to improve the achievable ASE. We show that

an optimum MultiCell size exists which depends on the backhaul link capacities,

density of SCs, and density of users.

• To efficiently share the available bandwidth among the multiple cells serving the

same HTCU, we consider the different scenarios of how the HTCUs may be associ-

ated to SCs including those scenarios where a conflict may exist among the different

users.

• We study the uplink performance of both HTC and MTC. For the MTC, by employ-
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ing the proposed multiple-association scheme, we show the improvement in terms

of both the density of supported MTCDs and achievable ASE. However, for uplink

HTC, a single association to the closest SC is considered sufficient since the required

rates are much lower than the downlink scenario.

• To accurately investigate the performance of a UDN environment, we consider the

SEPL model which takes into consideration the high probability of LoS communi-

cations. Using tools from stochastic geometry, we provide analytical expressions for

the achievable ASE in HTC and MTC and the density of supported MTCDs.

3.1.1 Related Works

Limited backhaul capacities

Backhaul capacity constraints (or fronthaul capacity constraints in a Cloud Radio

Access Network (CRAN)) have been tackled in many works in the literature [30, 50–54].

For example, in [50], the authors investigated the effect of a limited fronthaul capacity

on the downlink performance of a heterogeneous CRAN. In doing so, they considered a

hybrid Millimeter-Wave (mmWave) and free space optical fronthaul links. It was shown

that different fronthaul capacities associated to the Remote Radio Heads (RRHs) require

different biasing factors of these RRHs to provide better coverage. Also, Integrated Access

and Backhaul (IAB) has been considered in [55–57]. In [55], the authors considered

mmWave bands and investigated both throughput and communication latency in an IAB

scenario. In [56, 57], the authors analyzed the downlink rate coverage probability using

mmWave for IAB under different bandwidth partitioning strategies. Alternatively, the

works in [58, 59] analyzed the performance of a finite fronthaul capacity cell-free massive

Multiple-Input Multiple-Output (MIMO) system in the downlink and uplink, respectively.

19



Coexistence of HTC and MTC

Although HTC and MTC have been tackled in many previous works, few works in-

vestigated their coexistence. For example, the authors in [60] investigated the performance

of a single type of user (HTCU) for both uplink and downlink in MIMO systems. They

compared between disjoint and user-centric clustering of cooperating base stations (BSs)

to boost the achievable performance. However, the authors therein assumed unbounded

backhaul capacity and a much higher density of users than BSs which are different from

our system model regarding the HTCUs. In [61], the author considered different scenarios

of user point processes served in the uplink. The author differentiated among three cases

of high, moderate, and low user densities and showed how the relative densities between

users and BSs may require different approaches in their mathematical analyses. Also, the

authors in [62] investigated the asymptotic downlink performance of very high BS and

user densities.

Considering the coexistence of HTC and MTC, the authors in [12] investigated the

performance of downlink NOMA Area Spectral Efficiency (ASE). They showed therein

the trade-offs between the two association schemes of SCs to MTCDs, namely, Connect-

to-Active (C2A) and Connect-to-closest (C2C). The downlink coverage and average cell

load have been studied in [18] in a similar scenario. Alternatively, the uplink NOMA per-

formance of coexistent HTC and MTC has been investigated in [19]. In [63], the authors

proposed a deep learning algorithm to optimize resource allocations between coexistent

HTCUs and MTCDs within a cognitive radio framework. HTCUs were considered as the

primary users while MTCDs were dealt with as the secondary users where NOMA was

adopted to differentiate between their messages at the BS.

The rest of the chapter is organized as follows. In Section 3.2.1, we describe the

system model and problem formulation. Section 3.3 provides the necessary analysis for

both HTC and MTC and concludes by giving closed-form expressions for the different

performance metrics. The obtained results and findings through Monte-Carlo simulation
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and analytical expressions are reported and discussed in Section 3.4.

3.2 System Model

3.2.1 Spatial Distributions

We consider a UDN environment with a massive number of limited-backhaul ca-

pacity SCs serving HTCUs and MTCDs. In our system model, we consider a downlink

scenario of HTC where each HTCU may associate to more than one cell. In parallel, we

study the effect of multiple-association on the performance of uplink MTC. Besides, the

performance of uplink HTC is investigated. Since the MTCs are usually directed in the

uplink where sensors upload data to the network, the downlink MTC is omitted. Hence,

the downlink MTC is omitted in this chapter. Such considered scenarios lie under the use

cases of both Enhanced Mobile Broad-Band (eMBB) and massive Machine-Type Com-

munication (mMTC) targeted in the 5G and beyond [11]. All of the SCs, HTCUs, and

MTCDs are spatially distributed according to three independent Homogeneous Poisson

Point Processes (HPPPs), Φs, Φh, and Φm with intensities ¼s, ¼h, and ¼m, respectively.

In a UDN environment, the density of SCs is higher than the density of HTCUs, i.e.,

¼s > ¼h [4]. However, this is not the case for the MTCDs where a heavily loaded regime

is assumed such that ¼m k ¼s coincides with the mMTC scenario even under the UDN

assumption. For a practical scenario, only a fraction of the existing MTCDs will be active

at a certain time instant [64]. Hence, we assume a fraction Äm of MTCDs will be active at

a certain time instant which yields a thinned HPPP Φa
m ¢ Φm with density ¼a

m = Äm¼m

for the active MTCDs. An illustration of the considered system model is shown in Fig.

3.1.
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attenuates with distance d as e−³dβ [21]. The SEPL model takes into account the high

probability of LoS communications when the distances between transmitters and receivers

are shortened. The two SEPL tunable parameters ³ and ´ are chosen in a way that cap-

tures different propagation scenarios [21]. For the multi-path fading, we assume Rayleigh

fading channels where the channel gains are exponentially distributed with unit mean. Be-

sides, we assume a block fading model such that the channel gain is fixed over a Transmit

Time Interval (TTI) and changes independently from one TTI to another. In addition,

we assume that all active transmitting nodes (SCs, HTCUs, and MTCDs) have infinitely

backlogged packets to transmit.

3.2.3 Limited Backhaul Capacity

Taking into consideration the difficulties and challenges in supporting the massive

number of SCs with sufficiently large capacities in the backhaul links, we assume limited

backhaul capacities for the SCs in the downlink traffic [29]. However, for the uplink,

both HTC and MTC traffic have relatively lower data rates. Hence, one does not need

to consider specific limitations on the backhaul link capacities. To further illustrate,

we assume that each SC is supported by a fixed limited normalized backhaul capacity

Ä (bps/Hz) in the radio link, i.e., the supported downlink rate by each SC per one Hz

allocated in the radio link is upper bounded by Ä. This assumption reflects a more practical

scenario where the provided backhaul capacity is proportional to the allocated bandwidth

in the radio link [59]. Hence, the instantaneous achievable rate per cell per one Hz is

R̂ = min(R, Ä) (3.1)

where R is the instantaneous achievable rate per cell per one Hz in the radio link.

23



Figure 3.2: Different scenarios in single association scheme.

3.2.4 Downlink HTC and Multiple-Association

We refer to the conventional association scheme where each HTCU connects to and

activates the closest SC as the single association scheme. In such a scheme, we expect

two different scenarios illustrated in Fig. 3.2. In the first scenario, S1, an active SC

serves exactly one HTCU while in the second scenario, S2, an active SC serves more

than one HTCU. In the latter, we assume that the multiple users served by the same SC

will share the available RBs orthogonally based on a Frequency Division Multiple Access

(FDMA) approach. In doing so, the achievable data rate from a specific SC is divided

among the multiple users such that no mutual interference exists among them. However,

the considered SC will generate ICI to the neighboring cells over the whole bandwidth

regardless of the number of served HTCUs.

For a double (multiple) association scheme, each HTCU connects to and activates

the first and the second (up to M) closest SCs. We refer to the group of two (or more

in case of multiple-association) cells as a MultiCell. Also, the set of the first closest SCs

to the HTCUs are denoted by tier-1, the second closest set of SCs by tier-2, and so on.

Low-ordered tiers refer to the near cells while higher-ordered tiers refer to further cells.

Since the available spectrum is fixed and the frequency reuse factor is one, we assume that
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the available frequency will be divided equally among the different tiers. It is noteworthy

that the more bandwidth given to tier-1, the higher the spectrum efficiency will be. In

other words, the highest spectrum efficiency can be achieved when the whole frequency

band is allocated to tier-1 (single association), however, the backhaul capacities will be

the limiting factor.

In this chapter, we investigate the system performance under equal frequency allo-

cation versus the MultiCell size. We assume that each HTCU is served via multiple traffic

streams, where each stream corresponds to a tier (i.e., an SC) on an orthogonal channel.

Then, we calculate the sum-rate achievable by a certain HTCU which requires the HTCU

to be equipped with M receivers with appropriately tuned filters to simultaneously decode

traffic streams corresponding to the M tiers. In a practical scenario, some sort of calibra-

tion should be considered for the different achievable SINRs from the different tiers to use

the appropriate corresponding encoding and decoding scheme. To overcome this problem,

one can employ look-up tables or the Effective Exponential SNR Mapping (EESM) tool

as in [65]. In our work, for mathematical tractability, we calculate the sum-rate of a user

by summing the rates achievable from the different tiers which represents an upper bound

of the actual achievable rates and area spectral efficiency.

3.2.5 Conflicting Small Cells

Similar to a single association, in a double association scheme, an active SC may

serve exactly one user or more shown in Fig. 3.3. Different from a single association, an

SC serving more than one user may be associated with users on different tiers (S3 ). We

refer to those users which associate to the same cell but on different tiers as conflicting

users and the cell as a conflicting SC. This will result in severe interference on the user(s)

served from that cell on the higher-ordered (further) tier(s), i.e., the interference will be

higher than the desired signal. That is, each tier-k (set of small cells corresponding to the

kth closest SCs to the HTCUs) is allocated a sub-band of bandwidth 1/M where these
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Figure 3.3: Different scenarios in double association scheme.

sub-bands are orthogonal and reused for all cells belonging to this tier. When a conflict

occurs such that a specific cell is of tier-k for one user and tier-m for another and tier-n

for a third user where k < m < n, then, the connections belonging to tier-m and tier-n for

this specific cell are disconnected. In other words, the cell operates as tier-k and transmits

only over the sub-band allocated to tier-k. Hence, other HTCUs that should have been

served from this cell on tier-m and tier-n are no longer served on the corresponding

frequencies. It is noteworthy that optimizing the frequency sub-band allocations to the

different cells with conflict will require optimization over the whole network which may

not be practically feasible and is out of the scope of this work. In our work, we switch

off (disconnect) the higher-ordered tier(s) of those conflicting users as illustrated in S3 in

Fig. 3.3. Note that when an SC serves more than one user on the same tier, the achievable

data rate is divided among multiple users similar to the single association scheme. It is

important to mention that our proposed model still achieves higher ASE under the limited

backhaul capacity constraints compared to a single association.

In multiple-association, a system with a MultiCell size M will have the active cells

clustered around each HTCU. Hence, the active cells form a point process Φa
s thinned

from the HPPP Φs. Fig. 3.4 illustrates how the active cells (dots) are distributed around

the HTCUs for different sets of small cell densities. The Voronoi tessellation of the active

cells is also illustrated where the coverage area of each active cell is represented by a
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color reflecting the order of the tier on which the SC is activated. The darkest cells are

those cells belonging to tier-1 and brighter cells represent higher-ordered tiers. In case of

a cell serving more than one HTCU on different tiers, the higher-ordered tier(s) will be

disconnected as explained earlier. As a consequence, we can note from Fig. 3.4(a) that

when the density of SCs ¼s is not much higher than that of the HTCUs ¼h, the majority

of the cells are activated as low-ordered (dark-colored) tiers. As ¼s increases, more cells

are activated on the different tiers while the cell coverage areas get smaller as clear from

Fig. 3.4(b).

3.2.6 Uplink HTC

For the uplink HTC, a fraction É of the available bandwidth is allocated for the

HTC while the remaining (1− É) fraction is allocated for the uplink MTC. Each HTCU

transmits its data and this data is received and only decoded by the closest SC. As

mentioned earlier, since the uplink HTC data rate is relatively lower than that of the

downlink, the backhaul capacity limitations would not incur constraints on the achievable

rates and thus are not considered. If two or more HTCUs are associated with the same SC

in the uplink, they transmit their data to that cell sequentially based on a Time Division

Multiple Access (TDMA) approach.

3.2.7 Machine-Type Communication (MTC)

Following the multiple-association scheme for the HTCUs, the active MTCDs will

connect to the closest-active cell to upload their data. In doing so, the MTCDs will

benefit from the additionally activated SCs to support their required massive number of

simultaneous connections and to boost their achievable ASE. It is important to note that

the additionally activated SCs in case of multiple-association do not generate severe ICI in

the downlink since they operate on orthogonal frequency bands. For the uplink, however,

a frequency reuse factor of one is adopted. In order to investigate the achievable gain, we
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Figure 3.4: Different active cells realizations for different ¼s, where ¼h = 500
(HTCUs/km2) and MultiCell size M = 5. Red squares indicate HTCUs and blue dots
denote active cells. Dark and bright cells reflect low and high ordered tiers, respectively

focus on a practical scenario where each cell has a limited allocated bandwidth. In other

words, we assume a fixed number of RBs, NRB, per each active cell where each MTCD

requires exactly one RB to transmit its data to the SC. As mentioned earlier, a fraction

É of these RBs is allocated to the HTCUs while the remaining (1 − É) fraction of RBs

is allocated to the MTCDs. In addition, we assume that the MTCDs associated with a

certain SC are randomly distributed over the available RBs in order to minimize the ICI

for the uplink MTC. Hence, one may conclude that the number of supported MTCDs per

cell is upper bounded by the number of allocated RBs for MTC.

The probability density function (pdf) of the cell size distribution of a randomly

selected (typical Voronoi) cell in an HPPP was derived empirically using Monte-Carlo

simulations in [66]. Furthermore, the authors in [67] exploited this cell size distribution

to derive the probability mass function (pmf) of the number of users/devices per such

typical cell as

fN(n) =
( 3.5
¼+3.5

)3.5

Γ(3.5)

( ¼

¼+ 3.5

)n Γ(n+ 3.5)

Γ(n+ 1)
. (3.2)

However, for the considered multiple-association scenario, the distribution of the cell sizes
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will differ from one tier to another since the sizes of the neighboring cells are correlated.

Hence, each tier should have its own cell size distribution as well as its corresponding

distribution of the number of associated MTCDs. For mathematical tractability, we will

assume that the distribution of the number of MTCDs in a randomly selected active cell

follows (3.2) which is originally derived for an HPPP. We show later in the obtained results

comparing simulations with the obtained analytical expressions that such approximation

can be ignored when the relative densities ¼s/¼h is not extremely large, i.e., ¼s/¼h < 10.

3.3 Performance Analysis

It is known that the main limiting factor for adopting a single association is the

limited backhaul capacity. If the achievable rate in the radio link per cell per Hz is R and

the backhaul capacity is Ä (bps/Hz), then, the actual achievable rate R̂ will be as given in

(3.1). Hence, we investigate the effect of the proposed multiple-association scheme under

such backhaul capacity limitations by providing closed-form expression for the achievable

downlink ASE for HTC. For completeness, we also study the uplink HTC performance.

In addition, we proceed with the analysis to study the effects of the proposed multiple-

association scheme on the MTC performance in terms of both the density of supported

connections and the achievable ASE.

3.3.1 Multiple-Association

In the proposed multiple-association scheme, the number of active cells depends

on the relative densities between SCs and HTCUs as well as the MultiCell size M . Since

the HTCUs are uniformly distributed according to an HPPP, it is possible to have some

HTCUs which are in close proximity to each other. Hence, these close-by HTCUs may

be associated with common cells either on the same or on different tiers. Following our

assumption illustrated in Fig. 3.3, any SC serving more than one user on different tiers
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will be disconnected from the higher-ordered tier(s). As a result, we expect that the

density of active cells on each tier will decrease as the tier order increases. It is to be

noted that the density of active cells on a certain tier k, ¼a
k will be independent of the

higher-ordered tiers. In other words, the density of active cells on tier-k is the same for

any M g k. For example, the density of active cells on tier-1, ¼a
1, is the same whether we

adopt single or multiple associations since in all cases they reflect the closest set of small

cells to the HTCUs. Hence, using the pmf of the number of users per cell given in (3.2),

the probability of cell activation on tier-1 can be approximated as

pa1 ≈ 1− fN(0) = 1−
(

3.5

3.5 + ¼h

¼s

)3.5

. (3.3)

For higher order tiers, Lemma 3.1 gives the density of active cells in each tier.

Lemma 3.1 The density of active cells on a specific tier-k, 1 f k f M can be approxi-

mated by

¼a
k ≈ C

(

3.5

3.5 + k¼h

¼s

)3.5

¼s, (3.4)

C =

(

3.5¼s + k¼h

3.5¼s + (k − 1)¼h

)3.5

− 1. (3.5)

Proof: Let ¼all
k represent the density of all active cells on all tiers up to tier-k. The

HTCUs are spatially distributed according to an HPPP such that each HTCU associates

to the closest k cells (k f M). Alternatively, we follow the assumption in [26] and replace

each HTCU with k users which are uniformly distributed such that each user associates

only with the closest cell. The density of HTCUs becomes k¼h and the activation proba-

30



bility of all active cells up to tier-k is

¼all
k = pallk ¼s =

[

1−
( 3.5

3.5 + k¼h

¼s

)3.5
]

¼s. (3.6)

Next, we find the density of active cells on tier-k by subtracting ¼all
k − ¼all

k−1 which gives

(3.4).

As the tier order increases in (3.6), the activation probability of all cells up to tier-k

increases. However, from (3.4) and (3.5), the density of active cells on tier-k gets smaller.

3.3.2 Downlink Human-Type Communication

To investigate the performance of HTC, we assume a typical HTCU located at the

origin which connects to and activates the closest M cells. This typical user reflects the

performance of all users existing in the network under the same conditions according to

Slivnyak’s theorem [35]. Hence, the achievable rate by this typical user from the kth closest

SC while assuming it is being solely served by that SC reflects the average achievable rate

per cell per one Hz on tier-k. From the HPPP distribution of the SCs, the probability

that a circle of radius r centered at the typical user (origin) includes exactly k SCs is

P(n = k; r) =
(Ã¼sr

2)
k

k!
e−Ã¼sr2 . (3.7)

Let rk be the distance between the typical user and the kth closest SC. Hence, the pdf of

the distance between the typical user and the kth closest SC is given by [35]

frk(r) =
2(Ã¼s)

k

(k − 1)!
r2k−1e−Ã¼sr2 . (3.8)
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The rate achievable by the typical user in the radio link from the kth tier is given by

Rk = log2(1 + µk), (3.9)

µk =
Phke

−³rβ
k

Ik + Ã2
=

hke
−³rβ

k

I ′k +
Ã2

P

, (3.10)

where µk is the instantaneous Signal-to-Interference plus Noise Ratio (SINR). P is the

transmission power of the SC and hk and rk are the channel gain and the distance be-

tween the typical user and its serving cell on the kth tier, respectively. ³ and ´ are the

SEPL parameters and Ã2 is the power of the Additive White Gaussian Noise (AWGN).

Furthermore, the term I ′k represents the normalized ICI at the typical user received from

tier k. Since the bandwidth is shared orthogonally among the different tiers, the normal-

ized ICI comes from only active cells on the same tier and is given by

I ′k =
∑

j∈Φa
k
\bk0

hje
−³rβj , (3.11)

where Φa
k is the set of all active cells on tier-k, bk0 is the serving cell on tier-k, and hj

and rj are the channel gain and distance between the typical user and the interfering cells

belonging to tier-k, respectively.

Theorem 3.1 In a multiple-association scheme with MultiCell sizeM , the average achiev-

able rate per cell on tier-k with ideal (infinite) backhaul capacity, is given by

R̄M
k =











∞
∫

0

∞
∫

0

A(t, r) dr dt ; connected on tier-k

0 ; disconn. on tier-k

, (3.12)

A(t, r) = e−(2Mt−1)σ
2

P
eαrβLI′

k

(

(2Mt − 1)e³r
β
)

frk(r), (3.13)
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LI′
k
(s) = exp



−2Ã¼a
k

∞
∫

r

(

1

1 + 1
s
e³vβ

)

v dv



 , (3.14)

where ¼a
k is obtained from (3.4) and frk(r) is given in (3.8).

Proof: Appendix B.1.

Corollary 3.1 For the special case when ´ = 2
n+1

where n is a non-negative integer, the

Laplace transform of the ICI given in (3.14) becomes

LI′
k
(·e³r

2
n+1

) = exp





n
∑

i=0

(

n

i

)

³i (n+ 1)Ã¼a
k

³(n+1)

∞
∫

0

−un−i

1 + 1
·
eu

du · r 2i
n+1



 . (3.15)

Proof: Appendix B.1.

It is worth noting that in (3.15), the distance r is not embedded in the integral as

in (3.14) which simplifies the subsequent integral calculations in (3.12).

3.3.3 Limited-Backhaul Capacity

In the previous subsection, we assumed infinite backhaul capacity between the

small cells and the core network. However, to account for the major challenge of limited

backhaul capacity in UDNs, we evaluate herein the instantaneous achievable rate under

such a scenario given in (3.1).

Corollary 3.2 In a multiple-association scheme with MultiCell size M and normalized

backhaul capacity Ä per one Hz in the radio link, the average achievable rate per cell on

tier-k is

R̂M
k =











Ä
∫

0

∞
∫

0

B(t, r) dr dt ; connected on tier-k

0 ; disconn. on tier-k

, (3.16)
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B(t, r) = e−(2Mt−1)σ
2

P
eαrβLI′

k

(

(2Mt − 1)e³r
β
)

frk(r), (3.17)

where frk(r) is given in (3.8), and LI′
k
(.) is given in (3.14) or (3.15) where the latter

corresponds to the special case of ´ = 2/(n+ 1).

Proof: Given Ä, the average achievable rate per cell on tier-k is given by,

R̂M
k = E

[

min
(

Ä,RM
k

)]

=

∞
∫

0

P

[

min

(

Ä,
1

M
log2(1 + µk)

)

> t

]

dt

=

∞
∫

0

P

[

Ä > t,
1

M
log2(1 + µk) > t

]

dt

=

∞
∫

0

P

[

1

M
log2(1 + µk) > t, t < Ä

]

dt

=

Ä
∫

0

P
[

µk > 2Mt − 1
]

dt. (3.18)

and the rest of the proof follows as in Appendix B.1.

Corollary 3.3 In a multiple association scheme with Multi-Cell size M and normalized

backhaul capacity Ä, the average achievable ASE of the HTCUs, Th is given by

T d
h =

M
∑

k=1

¼a
k

Ä
∫

0

∞
∫

0

e−(2Mt−1)σ
2

P
eαrβLI′

k

(

(2Mt − 1)e³r
β
)

frk(r) dr dt, (3.19)

where ¼a
k is the density of active cells on tier-k given in (3.4), and R̂M

k is the average

achievable rate per cell on tier-k under limited backhaul constraints given in (3.16).

Proof: The proof follows directly from (3.9) and the definition of ASE which is the

total network achievable rate per one Hz within a unit area of one km2.
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3.3.4 Uplink Human-Type Communication

For completeness, we briefly show the performance of uplink HTC. For the uplink,

each HTCU transmits its data while only the closest SC decodes and forwards this data

it to the core network. The limited backhaul capacity in such a scenario does not impose

notable constraints on the achievable rates since the uplink transmissions of both HTCUs

and MTCDs (discussed in the next subsection) are relatively smaller than those of the

downlink HTC. Hence, the scenario considered here reflects a single association scenario

previously investigated in [19] and other works (e.g., see [68,69]). A significant difference

exists in the interference calculations between downlink and uplink. Since each HTCU

connects to the closest SC, in the downlink, any interfering SC will be located further than

the serving SC. However, in the uplink, although a typical SC will receive a corresponding

signal from an HTCU located within its Voronoi cell, an interfering HTCU located in a

neighboring cell can be closer than the served HTCU. Hence, dealing with interference in

the uplink should be treated differently. In this regard, as in [61], we approximate the

interfering HTCUs by a Poisson Point Process with intensity

¼ppp(r) ≈ ¼h(1− e−
12

5
Ã¼hr

2

), (3.20)

where r is the distance from the receiving SC. Since the HTCUs reflect a low user density

scenario, the occupied cells are relatively larger than the typical cell [61] which is referred

to as the Crofton cell effect. However, the link distances between an SC and an associated

HTCU follow the standard Rayleigh distribution given in (3.8) with k = 1. It is note-

worthy that for the MTC scenario, the high density of MTCDs yields a similarly shaped

link distance distribution but with an empirical correction factor that will be illustrated

in the next subsection.

Theorem 3.2 The average achievable uplink ASE of HTCUs when a fraction É of the
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bandwidth is allocated for the HTC is given by

T u
h = É¼a

1

∞
∫

0

∞
∫

0

e
−(2t−1)σ

2

P0
eαrβ

LIup
h
((2t − 1)e³r

β

)fr1(r) drdt, (3.21)

LIup
h
(s) = exp



−2Ã¼a
1

∞
∫

0

(1− e−
12

5
Ã¼a

1
z2)(

z

1 + 1
s
e³zβ

) dz



 (3.22)

with ¼a
1 given in (3.4) and fr1(r) given in (3.8) by setting k = 1.

Proof: Appendix B.1.

3.3.5 Machine-Type Communication

The active MTCDs form a thinned HPPP Φa
m such that Φa

m ¦ Φm, and ¼a
m = Äm¼m.

These active devices are uniformly distributed over the area under study where each active

MTCD connects to the closest active cell. The active cells, however, form another thinned

point process from Φs with density ¼all
M given in (3.6). In this regard, we assume that each

active cell has a limited number of RBs and that each MTCD requires exactly one RB

to transmit its data. Hence, the number of supported devices by each active cell is upper

bounded by the number of available RBs allocated for the MTC NRB such that

N cell
m,s = min(N cell

m , NRB), (3.23)

where N cell
m is the number of associated MTCDs to a specific cell and N cell

m,s is the corre-

sponding number of supported devices by this cell. Note that the available bandwidth B

for uplink communications is divided orthogonally between the uplink HTC and uplink

MTC such that the NRB RBs exploits (1− É)B of the bandwidth.
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Density of Supported MTCDs

The density of supported MTCDs represents a key performance metric for MTC.

Although MTCDs tend to upload small packets of data, it is challenging to support

their required massive number of connections. Hence, increasing the density of supported

MTCDs constitutes a major challenge that can be tackled by adopting the proposed

multiple-association scheme. In doing so, as we increase the MultiCell size M , the density

of active cells ¼all
M given in (3.6) increases. Hence, the ability of the network to simultane-

ously support a higher number of MTCDs significantly improves. It is to be noted that

the activated cells on different tiers vary in both of their densities and cell size distribu-

tions as illustrated earlier in Fig. 3.4. Accordingly, the number of associated MTCDs

per cell will vary from one cell to another and the average number of MTCDs per cell

will also differ depending on the tier order. However, for the considered densities of SCs

and HTCUs where ¼s/¼h < 10, we assume that the randomly selected cell will have the

same distribution for the number of devices per cell given in (3.2) regardless of the tier

order. In particular, for mathematical tractability, when investigating the performance of

MTC, we assume that the active cells are uniformly distributed according to an HPPP Φa
s

with density ¼all
M evaluated from (3.6) and that their Voronoi cell sizes are Independently

and Identically Distributed (i.i.d.). Following this assumption, the pmf of the number of

MTCDs per an active cell N cell
m can be approximated by (3.2) with ¼ = ¼a

m

¼all
M

.

Lemma 3.2 The average density of supported MTCDs in a multiple-association scheme

with MultiCell size M , number of RBs for MTC NRB, MTCDs activation probability Ä,

and densities ¼s, ¼h, and ¼m for the SCs, HTCUs, and MTCDs, respectively, can be

approximated by

¼s
m ≈ J ¼all

M , (3.24)

J =

(

NRB −
NRB−1
∑

i=0

i
∑

n=0

fNcell
m

(n)

)

, (3.25)
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fNcell
m

(n) =
(

3.5¼all
M

Ä¼m+3.5¼all
M

)3.5

Γ(3.5)

( Ä¼m

Ä¼m + 3.5¼all
M

)n Γ(n+ 3.5)

Γ(n+ 1)
. (3.26)

where ¼all
M is given by (3.6).

Proof: Multiplying the density of supported devices per cell E[N cell
m,s] by the density

of all active cells ¼all
M gives (3.24). From (3.23), the density of supported MTCDs per cell

is calculated as follows,

J = E[N cell
m,s] =

∞
∑

i=0

(

1− FNcell
m,s

(i)
)

=
∞
∑

i=0

P
[

N cell
m,s > i

]

=
∞
∑

i=0

P
[

min
(

N cell
m , NRB

)

> i
]

=
∞
∑

i=0

P
[

N cell
m > i, i < NRB

]

=

NRB−1
∑

i=0

P
[

N cell
m > i

]

=

NRB−1
∑

i=0

(

1−
i
∑

n=0

fNcell
m

(n)

)

, (3.27)

where fNcell
m

(n) = P[N cell
m = n] is obtained from (3.23) by substituting ¼ = Ä¼m

¼all
M

leading to

(3.26) which completes the proof.

Area Spectral Efficiency for MTC

Using stochastic geometry with the aid of Slivnyak’s theorem [35], and without loss

of generality, we assume a typical MTCD located at the origin. This typical device may

or may not be supported by the network with certain probabilities. Thus, the achievable

rate by this device as well as the interference it causes to other devices will both be zero

when this typical device is not supported. Hence, when studying the MTC performance,

we only consider the supported MTCDs whose density is given in Lemma 3.2. In this
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regard, we assume the typical MTCD located at the origin which belongs to the thinned

HPPP Φs
m ¦ Φa

m with density ¼s
m given in (3.24). The achievable rate by this MTCD on

a specific RB is given by

Rm =
1− É

NRB

log2(1 + µm), (3.28)

µm =
P 0
mhme

−³rβm

Im + Ã2
=

hme
−³rβm

I ′m + Ã2

P 0
m

, (3.29)

where µm is the SINR, P 0
m is the transmission power of the typical MTCD which is assumed

fixed, and hm and rm are the channel gain and distance between the typical MTCD and

the tagged closest active cell, respectively. I ′m is the normalized ICI at the tagged SC

from all other supported MTCDs from neighboring cells transmitting their data on the

same frequency band of the tagged RB.

Since the typical MTCD is being served on a single RB, and all RBs are orthogonal

in frequency, the ICI is generated from only those MTCDs allocated the same RB. In order

to minimize the ICI, we assume that the supported MTCDs are randomly assigned to the

available RBs. When evaluating the ICI, we consider another thinned HPPP Φs
m,N ¦ Φs

m

which corresponds to the supported MTCDs on a specific RB such that ¼s
m,N = ¼s

m

NRB
.

Thus,

I ′m =
∑

j∈Φs
m,N

\d0

hje
−³rβj , (3.30)

where hj, rj are the channel gain and distance between the tagged cell of the typical

MTCD and the interfering MTCDs belonging to the neighboring cells, respectively. Taking

into consideration the Crofton cell effect [61, 70] which implies that the cell containing

the typical MTCD tends to have a larger size and more devices sharing the resources,

the obtained expression would not change since we consider only the MTCDs which are

supported and allocated an RB. However, as considered in the previous subsection, we

approximate the interfering MTCDs by a PPP with density ¼all
M (1− e−

12

5
Ã¼all

M r2). Different

from the uplink HTC scenario, the serving link distance distribution in the MTC scenario
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of a high user density regime should include an empirical correction factor of 13/10 in the

density of serving cells [61]. Hence,

frm(r) = 2aÃ¼all
M r e−aÃ¼all

M r2 . (3.31)

with a = 13/10 in traditional single association scheme and ¼all
M is given in (3.6).

Theorem 3.3 In a multiple-association scheme with MultiCell size M and a number of

available RBs per cell for MTC NRB utilizing a fraction (1−É) of the available bandwidth,

the average achievable rate per MTCD is given by

R̄m =











(1−É)
NRB

∞
∫

0

∞
∫

0

E(t, r) dr dt ;MTCD supported

0 ;MTCD not supp.

, (3.32)

E(t, r) = e
−(2t−1) σ2

P0
m

eαrβ

LI′m((2
t − 1)e³r

β

)frm(r), (3.33)

LI′m(s) = exp



−2Ã
J

NRB

¼all
M

∞
∫

0

(1− e−
12

5
Ã¼all

M z2)(
z

1 + 1
s
e³zβ

) dz



 (3.34)

where J is the average number of supported MTCDs per active cell given in (3.25) and

¼all
M is the density of all active cells given by (3.6).

Proof: Following the same steps in the proof of Theorem 3.2, then,

P[µm > ·] =

∞
∫

0

e
−· σ2

P0
m

eαrβ

LI′m(·e
³rβ)frm(r) dr, (3.35)

where rm is the distance between the typical MTCD and its tagged cell. Let r′ be the

minimum distance from the tagged cell to the closest interferer. Since the Voronoi cells do

not have uniform shapes, r′ can be larger or smaller than rm. However, we adopt the same

approximation followed in [61] which approximates the interfering nodes by a PPP with
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variable density. For a typical MTCD, the distribution of rm (the distance to the closest

active cell), following the same assumption of the active cells being uniformly distributed

is given in (3.31). Following the same steps in deriving (3.22) yields (3.34). Finally, the

average achievable rate per MTCD can be calculated from R̄m = 1−É
NRB

∫∞

0
P[µk > 2t− 1]dt

which gives (3.32) and completes the proof.

Corollary 3.4 In a multiple association scheme with Multi-Cell size M , the average

achievable ASE of the MTCDs, T u
m, is given by

T u
m = ¼s

m

(1− É)

NRB

∞
∫

0

∞
∫

0

e
−(2t−1) σ2

P0
m

eαrβ

LI′m((2
t − 1)e³r

β

)frm(r) dr dt (3.36)

where ¼s
m is the density of supported MTCDs given in (3.24), (1 − É) the fraction of

bandwidth allocated for MTC, NRB the number of RBs allocated for MTC, and frm(r) is

the pdf of the distance distribution between MTCDs and their serving SCs given in (3.31).

Proof: The proof follows directly from (3.32) and the definition of uplink ASE which

is the total network achievable rate per one Hz within a unit area of one km2.

3.4 Simulation Results

We report the impacts of different system parameters on the performance of both

HTC and MTC. In doing so, we simulate different scenarios by generating different re-

alizations of the point processes and averaging the performance over these realizations.

Unless otherwise stated, we consider the following parameters in Table 3.1.

3.4.1 Simulation Setup

We first generate the spatial realizations of the three different HPPPs Φs, Φh, and

Φm with their corresponding densities. Then, each HTCU associates with and activates
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Table 3.1: Simulation Parameters

Parameter Symbol Value
Simulation Area A 1× 1 km2

Spatial Realizations Nm 500
Time Realizations Nt 10
MultiCell size M 1 to 5
Small Cell density ¼s 5, 000 SC/km2

Norm. backhaul capacity Ä 1, 2, ∞
HTCU density ¼h 500 HTCUs/km2

Uplink HTC BW fraction É 0.5
MTCD density ¼m 1, 000, 000 MTCDs/km2

MTC activation probability Äm 0.1
Full Tx Power P 23 dBm
Noise Power Ã2 −174 dBm/Hz
Available RBs for MTC NRB 10
SEPL parameters ³ and ´ ³ = 0.94 and ´ = 1/2

the closest M SCs. All the remaining SCs are switched to idle mode. If one cell is found to

be serving more than one HTCU on different tiers, the higher tier is disconnected. For the

uplink HTC, each HTCU uploads its data to the closest SC only utilizing a fraction É of

the available bandwidth. The remaining 1−É fraction available in the uplink is allocated

for the MTC and divided into NRB RBs. A fraction Äm of the MTCDs is randomly selected

to become active and ready to transmit in correspondence to a real scenario where not

all MTCDs are simultaneously active. Then, each of those active MTCDs associates with

the closest active cell. If a cell has a number of associated MTCDs greater than the

available RBs NRB, a number of active MTCDs equal to NRB are randomly selected to be

supported. Alternatively, if the number of associated MTCDs is less than NRB, then, they

are randomly allocated RBs to transmit their data where each MTCD is allocated exactly

one RB. When the achievable traffic of the downlink HTC on the radio link exceeds the

available backhaul capacity Ä, the actual rate is then upper-bounded by this backhaul

capacity. Finally, the ASE is calculated by summing all the achievable actual rates over

the whole network in an area of one km2 with a normalized bandwidth of one Hz.
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3.4.2 Downlink Human-Type Communication

The achievable downlink ASE of HTCUs T d
h versus theMultiCell sizeM is shown in

Fig. 3.5 via both simulations and analysis (3.19). In Fig. 3.5(a), we show how theMultiCell

size affects the downlink ASE of HTCUs under different normalized backhaul capacities.

As evident from these results, with no limitation on backhaul capacity (i.e., Ä = ∞), a

single association (M = 1) represents the best alternative for HTC. This is due to the

high gain of the radio channel between the HTCU and its closest serving cell. However,

for the practical case when the capacity of the backhaul link is limited, increasing M can

benefit the HTCUs. One can notice from Fig.3.5 that different system parameters such

as Ä and ¼s result in different values for the optimum MultiCell size M = M∗ at which

the ASE is maximized. Note that for M < M∗, the backhaul capacity limitations yield

lower ASE T d
h . For M > M∗, the channel degradation with a larger distance between the

HTCU and the serving cell results in a lower ASE since the achievable rate on the radio

links can be supported by the backhaul links of the M∗ closest cells.

Fig. 3.6 shows the impact of increasing the backhaul capacity limit on the ASE

for different MultiCell sizes. For the specified system parameters of ¼s and ¼h, we note

that the double-association scheme (M = 2) achieves the highest ASE for the HTCUs

when the normalized backhaul capacity ranges from around 1.5 to 3 bps/Hz. However, if

Ä > 3 bps/Hz, the single association becomes the best alternative.

In Fig. 3.7, we show the impacts of varying the densities of both SCs and HTCUs

on the performance of the HTC. One can notice that densifying the network enhances the

achievable ASE for the HTCUs as shown in Fig. 3.7(a). However, when there exists back-

haul capacity constraints, this achievable gain while adopting single association vanishes

more rapidly as clear from the bottom curve. In Fig. 3.7(b), we show that the achievable

ASE for the HTCUs also increases with the density of HTCUs ¼h under a fixed density

of small cells ¼s = 5000 cells/km2. However, when ¼h further increases under backhaul

capacity limitations, one can notice that the ASE starts to decrease. Such behavior stems
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Figure 3.5: Achievable ASE for HTCUs versus MultiCell size M for different small cell
densities and normalized backhaul capacities with ¼h = 500 HTCUs/km2. Lines indicate
analysis while markers represent simulations.
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Figure 3.6: Achievable ASE for HTCUs versus normalized backhaul capacity Ä for different
MultiCell sizes M , ¼s = 5, 000 SCs/km2 and ¼h = 500 HTCUs/km2.
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Figure 3.7: Achievable ASE for HTCUs versus small cell density ¼s and HTCUs density
¼h for different MultiCell sizes M and normalized backhaul capacities Ä.

from the more disconnected links of higher-ordered tiers arousing from the fact that more

users will be sharing the same cells as previously discussed in Fig. 3.3. Doing so leaves

the connected tiers with only a portion of the available bandwidth compared to the whole

bandwidth in the case of a single association. However, when the density of HTCUs ¼h is

relatively small compared to the density of small cells ¼s, multiple-association improves

the achievable ASE under the same backhaul capacity limitations since more cells get

activated.

45



λs (SCs/km
2)

10
3

10
4

U
L
A
S
E

h
(b
p
s/
H
z/
k
m

2
)

0

200

400

600

800

1000

1200

ω =0.7
ω =0.5
ω =0.3

Figure 3.8: Achievable ASE for uplink HTC versus small cell density ¼s for different
bandwidth allocation factor É, and ¼s/¼h = 10. Lines indicate analysis while markers
represent simulations.

3.4.3 Uplink Human-Type Communication

Fig. 3.8 shows the achievable ASE for HTC in the uplink. The obtained results,

comparing simulation results and the obtained analytical expression given in Theorem.

3.2, show that for a fixed ratio between ¼s and ¼h, increasing both densities significantly

increases the achievable ASE. Besides, it is also clear that increasing the bandwidth frac-

tion allocated for HTC É yields higher uplink ASE for the HTCUs. It is noteworthy that

multiple-association in the downlink does not impose any impacts on the achievable ASE

in the uplink since HTCUs upload their data only to the closest SC.

3.4.4 Machine-Type Communication

In this subsection, we show the gains that can be attained by the MTCDs from

adopting the proposed multiple-association scheme for the HTCUs. In Fig. 3.9, we show

through both simulations and analyses, the impact of increasing the MultiCell size M

on both performance metrics of MTC, namely, the density of supported MTCDs ¼s
m

and the achievable ASE T u
m per 1 Hz allocated for MTC. As mentioned in the previous

section, for the heavily loaded regime of MTC, the serving link distances are distributed

according to (3.31) with a = 13/10 in case of single association [61]. For the M > 1,
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the value of a should be smaller to compensate for the larger distances experienced on

average for the MTCDs. We set a = 13/(10 + ε) where ε increases with ¼s/¼h and this

increment depends on M as well. A good fitting formula for a is found empirically as

ε = 0.16 (log2(b))
c/c; b = ¼s/2¼h, c =

√

log2 M . Clearly, one can notice from Fig. 3.9

that increasing M yields significant gains in both ¼s
m and T u

m under different densities of

small cells and HTCUs. Besides, one can notice from Fig. 3.10(a) that the higher the

MultiCell size is, the higher the achievable gain is in the ASE of MTC with the increasing

density of SCs ¼s.

When the density of active MTCDs ¼a
m is small, the achievable ASE is also small as

shown in Fig. 3.10(b). This occurs since the available RBs by all active cells can support

those active MTCDs while plenty of resources are not being utilized. However, one can

note that the achievable ASE is still higher with larger MultiCell sizes M . When M

increases while the ratio ¼s/¼h is fixed, more cells are activated which results in shorter

distances between the active MTCDs and the active SCs to which they are associated.

Since all supported MTCDs transmit with fixed power, shortening the distances between

the MTCDs and their serving SCs yields a higher Signal-to-Interference Ratio (SIR) and

achievable ASE. As ¼a
m increases, the ASE also increases until all the available RBs are

utilized, then, the ASE saturates when no additional MTCDs can be supported. For

higher M , there are more cells activated and the number of supported devices gets larger,

hence, higher ASE is achieved.

3.5 Summary

We investigated the gains achieved from associating a Human-Type Communication

User with multiple Small Cells in its vicinity. These gains are mainly obtained under

limited backhaul capacity constraints that can be found in a UDN environment where

fiber links require high deployment costs and time. Also, we show that the number
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Figure 3.9: Density of supported MTCDs and ASE of MTC versus M for different den-
sities of SCs and HTCUs where ¼s = 10¼h, and active MTCDs density ¼a

m = 100, 000
(devices/km2). Lines indicate analysis while markers represent simulations.

of associated cells can be optimized for different system parameters such as backhaul

capacities and cells and users’ densities. For practical scenarios of UDNs, the stretched

exponential path loss model is adopted. In parallel, we investigated the gains achieved by

the coexisting MTCDs. By adopting multiple-association, more cells are activated and a

higher density of MTCDs can be supported. Following the proposed multiple-association

scheme, we showed how UDN can be useful in supporting the different use cases targeted

in 5G and beyond such as Enhanced Mobile Broad-Band and massive Machine-Type

Communication. In this regard, we derived a mathematical framework analysis using tools

from stochastic geometry to obtain analytical expressions for the achievable Area Spectral
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Figure 3.10: ASE of MTC versus small cell density ¼s and active MTCDs density ¼a
m for

different MultiCell sizes (M) with HTCUs density ¼h = 500 (users/km2).

Efficiency under backhaul capacity limitations. Further extensions to this investigation

could be resource allocation optimization in terms of frequency, power, and MultiCell size.
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Chapter 4

Computation-Intensive Applications

Supported by Edge Computing and

Multiple-Association in UDNs

4.1 Introduction

With the explosive growth of computation-intensive applications moving to the

cloud, tremendous costs would exist to transfer the massive amounts of data between the

end nodes and the central processing clouds [7]. As a consequence, the traditional cellular

architectures may no longer constitute a feasible solution, and the need to bring the pro-

cessing servers to the edge of the network becomes inevitable. By doing so, the end nodes

(subscribers) would benefit from lower latency, and the backhaul links would become less

congested. Such architecture is referred to as Edge Computing [7] or Multi-Access Edge

Computing (MEC) according to the European Telecommunications Standards Institute

(ETSI) [17]. Besides, additional benefits can be acquired in terms of security compared

to moving large amounts of data to a central cloud [7].

Hence, in this chapter, we tackle the challenging growing computation-intensive
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applications of HTCUs in cellular networks such as face recognition, virtual reality, and

mobile augmented reality. In particular, we exploit UDN and MEC to reduce the end-

to-end processing delay experienced by the HTCUs. To the best of our knowledge, this

is the first attempt to jointly consider edge computing with UDN along with multiple-

association of SCs to the HTCUs in order to fully exploit the network resources. We use

tools from stochastic geometry [71] to derive novel analytical expressions that can be used

accurately and efficiently to evaluate the desired network performance against several

system parameters without resorting to the time-consuming Monte-Carlo simulations.

The main contributions can be summarized as follows:

• We jointly consider MEC and UDN with multiple-association to fully exploit the net-

work’s resources. In particular, each HTCU associates with multiple SCs equipped

with ECSs and partially offloads its task to be processed in parallel at the ECSs and

the local processor. Significant reduction in the average delay per user is achievable

conditioned on the proper selection of the (MultiCell size).

• We carefully mitigate the severe ICI experienced in UDNs by considering how adja-

cent HTCUs compete to associate with the same SC. Links that produce larger ICI

and/or force significant offloading transmission delays are disconnected.

• Based on the relative densities between HTCUs and SCs, we use tools from stochastic

geometry to develop an offline adaptive task division approach that further reduces

the average end-to-end processing delay per user.

• Using tools from stochastic geometry, we derive novel analytical expressions for

the average end-to-end processing delay per user. The developed mathematical

framework provides significant insights into the system and can be used to tune

several parameters to achieve optimal performance.
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4.1.1 Related Works

Interested readers may find plenty of works that jointly consider UDN with MEC

to improve the quality of service offered to the served users. The main objective of MEC

deployment varies between minimizing the energy consumption of the battery-limited

users and/or minimizing their task processing delays. In this regard, existing works ei-

ther develop optimization algorithms targeting the mentioned objective(s) or formulate

a mathematical framework using tools from stochastic geometry to investigate the effect

of different system parameters on achievable performance. It is noted that for feasibility

concerns, those works developing optimization algorithms always consider a limited num-

ber of nodes, i.e., SCs and users. In contrast, the main advantage of adopting stochastic

geometry is the ability to study the average performance of large-scale networks with an

infinite number of nodes while including the effect of the Inter-Cell Interference (ICI), a

main limiting factor in the performance of UDNs [4].

Focusing on MEC and UDN with the support of multiple-association, task par-

titioning techniques play a critical role in achieving the required gains. Computation-

intensive applications that can be partitioned during the run-time are referred to as elastic

applications [28]. In particular, partitioning is used to split the operational logic of such

applications into smaller sub-tasks [28]. In the field of parallel and distributed processing,

one can find several examples of divisible computation-intensive applications [72]. It is

noteworthy that a given application may be partitioned at different levels such as methods,

threads, classes, or tasks [72]. However, the way the task is divided is beyond the scope

of our work where we focus only on the total transmission and processing delays after the

task has been partitioned. Interested readers may refer to [28] for detailed investigations

on different partitioning techniques.

Examples of divisible applications include but are not limited to optical charac-

ter recognition (OCR), face recognition, environment recognition, matrix computations,

and signal processing applications. For example, in environment recognition, an HTCU
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may use the device’s camera to capture the surrounding environment. Then, the im-

age/video frame can be partitioned into smaller sub-frames and be parallelly processed.

The combinations of possible environments reported back for each sub-frame can be used

to determine the exact environment. The same analogy can be applied to OCR where im-

ages of handwritten or printed text can be partitioned into distinct slices to be processed

in parallel and transformed into digitized text [72]. Another example is object recognition

where videos taken by cameras of autonomous vehicles are used to identify an object [73].

Several works in the literature considered arbitrarily divisible tasks for computation of-

floading and parallel processing, in particular, when the task is divided between the local

processor and only one associated Edge Computing Servers ECS [74–77].

In [78], the authors proposed an algorithm to optimize task offloading decision

and channel allocation in order to minimize energy consumption under a limited delay

tolerance constraint. The simulated network consisted of one macro base station (MBS)

and multiple SCs with one MEC server located at the MBS. The authors therein assumed

an atomic task which cannot be partitioned, hence, the task is either computed locally or

offloaded to the MEC server. The authors assumed optical fiber links between the SCs

and the MBS and neglected the delays over these links. The work in [79] also considered

atomic tasks and proposed a heuristic task offloading algorithm to optimize the objective

function of weighted sum delay and energy consumption. In doing so, multiple MEC

servers were considered and the allocation of computing resources, channels, and upload

power were considered for optimization. Similarly, in [80], the authors investigated a

preliminary model of offloading computation-intensive atomic tasks from the IoT devices

to ECSs within a heterogeneous UDN environment. The authors proposed a heuristic

greedy offloading scheme where an IoT device is allowed only one out of three computation

schemes, namely, local processing, offloading to an ECS connected to the macro base

station, or offloading to an ECS connected to an SC. The proposed algorithm aims at

minimizing the energy consumption of the IoT devices while satisfying the processing
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time constraints.

Unlike the above works, Jing et al. [81] investigated a scenario where smart devices

split and offload their tasks simultaneously through multiple Radio Access Technologies

(RATs) to multiple ECSs to be processed in parallel. In particular, the authors proposed

an adaptive task splitting and resource allocation (communications and computation re-

sources) algorithm to maximize the minimum averaged utility of the devices. Using exten-

sive simulations, they showed that the proposed algorithm improves the fairness among

the multiple devices in terms of the number of processed tasks. In the same scope, the

authors in [82] considered a scenario where each user splits and offloads its task to multiple

SCs equipped with ECSs. In this, the authors proposed a multi-agent deep deterministic

policy gradient to jointly optimize task partitioning and uplink power control to maximize

the long-term system utility which includes execution delay, and energy consumption. In

both works [81,82], a limited number of SCs were considered with respect to users which

forces limitations on the available computational resources.

On the other hand, Ko et al. [83] investigated the performance of communication

latency and computation latency using tools from stochastic geometry, queuing theory,

and parallel computing. In particular, they provided scaling laws to quantify the trade-offs

in terms of network latency, connectivity, and stability. In their considered system model,

the authors assumed that each access point equipped with ECS has its serving zone with

a fixed radius while each user associates with at most one ECS to offload its task. Those

users outside of the serving zone of any ECS remain inactive. Similarly, the authors

in [84] considered a scenario of a massive number of mobile users with computation-

intensive tasks that can be either computed locally or offloaded to an access point with

a co-located ECS whenever the local computation buffer is full. The average end-to-end

latency is derived by integrating tools from stochastic geometry and queuing theory. The

obtained results therein show how the local computing capabilities of mobile users can

improve the performance of the network and give useful insights for network provisioning
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and planning. It is noteworthy that the works in [83,84] did not consider task partitioning

or parallel processing due to the higher density of users than the density of SCs.

Different from the above, Mei et al. [77] have recently considered a scenario of par-

allel computation where the user’s task is split and parallelly processed between the local

processor and the ECS. However, the authors therein considered only a single association

scheme under two orthogonal frequency division multiple access (OFDMA) strategies.

Using tools from stochastic network calculus and a Poisson Cluster Process (PCP) model,

the authors modeled and analyzed the delay performance in a multi-cluster cellular net-

work. In addition, the authors proposed a bisection search-based strategy for efficient

data offloading.

The rest of the chapter is organized as follows. In Section 4.2, we describe the

system model. Then, Section 4.3 provides the required mathematical analysis under two

task partitioning approaches, namely, equal and adaptive task division. The Monte-

Carlo simulation setup and the obtained results through both simulations and analytical

expressions are reported and discussed in Section 4.4.

4.2 System Model

4.2.1 Network and Channel Model

We consider a cellular network where HTCUs exist in a UDN environment. The

massively deployed SCs of the UDN are equipped with high computational capacity ECSs.

Hence, the HTCUs attempt to offload their computation-intensive tasks, whenever possi-

ble, to these ECSs in order to reduce their end-to-end processing delays calculated from

the instant when the task is generated until when its processing is completed. Thanks

to the very high density of the SCs (and co-located ECSs) compared to the density of

HTCUs [4], each HTCU is allowed to associate with multiple SCs (up to M) [23, 24] to

communicate, split, and offload tasks to be processed in parallel. For a fair comparison,
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typical node [85]. Such an assumption is widely adopted in the literature where the works

in [21,24,64,68,86–88] considered UDN environment and assumed that the SCs and users

are spatially distributed according to two independent HPPPs.

We assume that each HTCU u ∈ Φh can associate with up to M SCs to partially

offload its computation-intensive task after proper partitioning [28]. We refer to the set of

the closest SCs to the HTCUs as Tier-1, the set of the second closest SCs to the HTCUs

as Tier-2, and so on up to Tier-M . Whenever a specific SC has more than one associated

HTCU, only one user is selected by the SC to be served. In particular, when the different

users are associated on different tiers, the link of with a higher-ordered tier (corresponding

to an on-average further HTCU) is disconnected and denoted as non-associated. When

two or more users are associated with the same SC on the same tier, only one user is

randomly selected to be served and the remaining ones are non-associated. Hence, when

we select the MultiCell size to be M , this means that each HTCU may associate with up

to M SCs. However, some of these M SCs may not be associated due to competition from

other HTCUs. Moreover, for an already-associated SC to an HTCU, the link between them

is either active or inactive. Such link activation depends on whether the achievable signal-

to-interference plus noise ratio (SINR) of this link satisfies the minimum required SINR-

threshold µth or not. An illustration of the system model and the process of association

and activation of certain Tier-k, 1 f k f M is shown in Fig. 4.1 where the probabilities

of Tier-k association (pk) and activation (pactivationk ) are defined in the next Section.

We adopt the traditional path loss model in which the signal power attenuates with

the distance r according to r−¸. We assume that all channels suffer from Rayleigh fading

in which the channel power gain is exponentially distributed with unit mean. We also

assume that all nodes are equipped with single omnidirectional antennas.
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4.2.2 Task Offloading Model

The task of an HTCU u ∈ Φh can be defined as (Bu, Cu) where Bu is the task

transmit-size in bits and Cu is the required computational capacity in CPU cycles to

process the task. For a tractable analysis, the task (Bu, Cu) is assumed identical for

all users [83]. Also, each HTCU is equipped with a local processor with computational

capacity floc (cycles/s). Hence, the processing delay experienced when the whole task is

computed locally is

tloc =
Cu

floc
. (4.1)

Similarly, the ECSs integrated within the SCs each have computational capacities of fecs

(cycles/s). If the whole task of the HTCU is processed at one of the ECSs, the processing

delay becomes

tecs =
Cu

fecs
. (4.2)

It is intuitive to assume that fecs > floc which yields tecs < tloc. However, when a task is

offloaded for processing, the two-way transmission times of the task between the HTCU

and the ECS should be included in the total delay.

We assume computation-intensive applications that can be arbitrarily partitioned

during the run-time such as OCR [72], face recognition, or environment recognition. To

exploit the full potentials of UDNs, we adopt multiple-association such that a computation

task of certain HTCU can be arbitrarily partitioned to be processed in parallel at the local

processor and all connected ECSs to this HTCU, known as partial offloading [89,90]. By

doing so, the experienced task processing delay per user can be found as the maximum

of delays experienced over all connected links as well as the local processor. The delay

over a connected (associated and active) link is composed of three parts; the offloading

transmission time, the processing time at the ECS, and the transmission time of the

processed results back to the HTCU. Typically, the processed results of a task have very

small sizes compared to the task itself. Besides, the downlink rates are usually higher than
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their counterparts in the uplink. Hence, the transmission time of the processed results

back to the HTCU is neglected [84].

In general, we assume that both task transmit-size Bu and task required computa-

tional capacity Cu are partitioned proportionally, i.e., with a partition ³kBu of the task

requires ³kCu CPU cycles for processing. Such an assumption is acceptable for appli-

cations like OCR and environment recognition. Intuitively, we begin by assuming the

computation-intensive task to be partitioned into equal parts. Afterward, we propose

an adaptive task division that can significantly shorten the average experienced delay per

user. The task processing delay experienced by an HTCU u over a Tier-k, k ∈ {1, 2, ...,M}

link can be expressed as

tuk = tuk,tran + tuk,proc = ³u
k

(

Bu

Ru
k

+ tecs

)

, (4.3)

where tuk,tran is the offloading transmission time, tuk,proc is the processing time at the ECS,

³u
k is the fraction of the computational task allocated to Tier-k, and Ru

k is the uplink

transmission rate achievable on Tier-k.

For equal task division, ³u
k = 1/Éu where Éu = 1 + Nt is the number of the

computational task divisions to be processed at the local processor and the connected

ECSs such that Nt, 0 f Nt f M denotes the number of connected tiers (associated and

active). The achievable instantaneous rate by user u on Tier-k is given by

Ru
k =























W
M

log2(1 + µu
k ) ; T ier − k is connected

(associated and µu
k g µth)

0 ; otherwise

, (4.4)

where µu
k is the achievable instantaneous SINR by user u on Tier-k. For a given Tier-k,

the achievable SINR is mainly governed by the received signal power at the tagged Tier-k

SC of the HTCU, the sensed ICI at the tagged Tier-k SC of the HTCU on the frequency
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band allocated to Tier-k, and the thermal noise at the receiver, hence, given as

µu
k =

Pu,khuru,k
−¸

∑

j∈Φh,k\u
Pj,khjrj,k−¸ + Ã2

. (4.5)

Pu,k is the uplink transmission power of HTCU u on Tier-k, hu and ru,k are the channel

power gain and the distance between HTCU u and its tagged SC on Tier-k (the kth

closest SC), respectively, and ¸ is the path loss exponent such that ¸ > 2 to reflect an

urban environment. On the other hand, Φh,k is a thinned HPPP from Φh that includes

all HTCUs transmitting on Tier-k and causing interference to the tagged Tier-k SC of

HTCU u. Hence, hj and rj,k reflect the channel power gains and distances between all

interfering HTCUs j ∈ Φh,k\u and the tagged Tier-k SC of HTCU u, respectively. Finally,

Ã2 is the noise power density.

Note that the uplink transmission powers of HTCUs on different tiers Pu,k may

change from one tier k to another or from one HTCU u to another. However, we as-

sume Pu,k to be fixed for all HTCUs and all tiers while being large enough to meet the

required receiver’s sensitivity, i.e., Pu,k = P0 ∀ u, k. To justify this assumption, first,

let the transmit power varies from one tier to another while it remains fixed for all users

transmitting on the same tier, i.e. Pu,k = Pk ∀ u. Then, the change (gain/loss) in the de-

sired signal power would be neutralized by the change in the undesired interference power

given that the considered network is interference-limited which is the case in a UDN en-

vironment [4]. The matching between simulations (noise considered) and analysis (noise

neglected) in section 4.4 confirms that the considered scenario is interference-limited. Sec-

ond, if the transmit power varies from one HTCU to another, then, a power allocation

algorithm should be developed to optimize the achievable network performance towards

a predetermined objective such as minimizing the average delay of all HTCUs or maxi-

mizing the fairness among the different HTCUs. However, such an approach lies beyond

the scope of this work which aims at investigating the average performance using tools
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from stochastic geometry to avoid extensive time-consuming simulations that would force

additional undesired delay given the large scale of the UDN environment considered in

this work. It is noteworthy that such optimization problems of either power allocation or

channel allocation may be considered in future works while taking into consideration the

additional incurred delay of the optimization process.

4.3 Performance Analysis

The main objective of this section is to derive an analytical expression for the

average end-to-end processing delay per HTCU. Following the two considered task parti-

tioning approaches, equal and adaptive task division, the average delay per user is derived

for each approach separately. The different conditions of the links of different tiers specify

the distinct possible combinations that an HTCU may experience. Hence, we start by

calculating the association probability of each Tier-k as a function of the tier order, den-

sity of SCs, and density of HTCUs. Then, we calculate the link activation probability on

all tiers both individually and jointly. It is noteworthy that the joint link activation prob-

ability is inevitable to proceed accurately with the analysis. To do so, the joint distance

distribution among different tiers must be considered, which significantly complicates the

analysis. Finally, we enumerate all possible combinations that an HTCU would expe-

rience, calculate the probability of each combination, find its corresponding delay, and

average over all possible combinations.

4.3.1 Association Probability

First, to find the association probability on each Tier-k, k ∈ {1, 2, ...,M}, we

assume a typical HTCU located at the origin with a typical tagged Tier-k SC. According to

Slivnyak’s theorem [35], when the SCs are distributed according to a PPP, the achievable

performance of the typical HTCU reflects the performance of all HTCUs in the network.
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In the adopted multiple-association scheme, the typical HTCU attempts to as-

sociate with and activate the closest M SCs. For a single-association scheme, the SC

activation probability is acquired using an empirical formula derived in [67]. This for-

mula is widely used in the literature as in [9, 11, 13, 91]. Moreover, under the considered

multiple-association scheme and for a certain k f M , we assume that each user is re-

placed by k users that are uniformly and randomly distributed. However, with each user

associating with and activating only one SC [23,24]. By doing so, we compensate for the

additionally activated SCs such that for a given k, we substitute the density of users by

k¼h instead of ¼h when calculating the SC activation probability [26],

pallk ≈ 1−
(

3.5¼s

3.5¼s + k¼h

)3.5

, (4.6)

where pallk is the SC activation probability on all tiers including Tier-1, T ier − 2, ... and

up to Tier-k. The corresponding density of active SCs is ¼all
k = pallk ¼s. To obtain the SC

activation probability on a specific Tier-k, 1 < k f M , we subtract the SC activation

probability of all preceding tiers up to k − 1 from the SC activation probability of all

current tiers up to k [23],

pak = pallk − pallk−1. (4.7)

Intuitively, for k = 1, pa1 = pall1 where pall0 = 0.

Lemma 4.1 Association Probability: the probability that HTCU is associated with a Tier-

k SC

pk = pak ×
¼s

¼h

(4.8)

where pak is the density of active cells on Tier-k given in (4.7). Proof: Given that

the density of HTCUs is ¼h, (4.8) directly follows.
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4.3.2 Link Activation Probability

Individual and joint links’ activations are determined by the achievable SINRs on

the considered links with respect to a predetermined threshold µth. Hence, we begin by

deriving the individual Complementary Cumulative Distribution Function (CCDF) of the

achievable Tier-k SINR µu
k given in (4.5). For a simpler notation, we set u = 0 to denote

the typical HTCU, and is omitted afterward. Also, note that the thinned HPPP Φh,k

denoting the interfering HTCUs that are associated with Tier-k SCs has a corresponding

density pk¼h with pk given in (4.8).

The distance distribution between the typical user and its closest SC can be ob-

tained from the null probability of the HPPP and is given by fr1(r1) = 2Ã¼sr1e
−Ã¼sr21 .

However, in general, the distance distribution between the typical user and its kth closest

SC is given by [92]

frk(rk) =
2(Ã¼s)

k

(k − 1)!
r2k−1
k e−Ã¼sr2k , (4.9)

while the joint distance distribution of the closest k neighbours is given by [92]

fr1,r2,...,rk(r1, r2, ..., rk) = (2Ã¼s)
kr1r2...rke

−Ã¼sr2k . (4.10)

Lemma 4.2 Individual Link Activation: in a multiple-association scheme with MultiCell

size M and for 1 f k f M , the individual CCDF of the achievable Tier-k signal-to-

interference ratio (SIR) of the typical HTCU is

P (µk g ·k) =
1

(

1 +Qk(·k)
)k
, (4.11)

Qk(·k) = pak·
2
η

k

∞
∫

·
−2/η
k

1

1 + u
η
2

du, (4.12)

where pak is given in (4.7) and the link activation probability is obtained by setting ·k = µth.
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Proof: See Appendix B.2.

Using Lemma 4.2, the probability of Tier-k link activation and/or inactivation is

pactivationka = P(µk g µth), (4.13)

pactivationki
= P(µk < µth) = 1− P(µk g µth). (4.14)

4.3.3 Joint Link Activation Probability and Conditional Joint

CCDF

To accurately proceed with our mathematical analysis, the dependence among the

different tiers should be considered. Hence, one needs to obtain the joint probability of link

activation and/or inactivation on different tiers. In other words, the probability that the

links on Tier-1, Tier-2, ..., and Tier-k are simultaneously following specific combination

of activation and inactivation. When doing so, we must consider the joint distribution of

the distances between the typical HTCU and the closest up to Tier-k SCs which is given

in (4.10). For example, the joint link activation/inactivation probabilities on a two-tier

scenario, i.e., Tier-1 and Tier-2 are

pactivation1a,2a = P (µ1 g µth, µ2 g µth) , (4.15)

pactivation1a,2i
=P (µ1 g µth, µ2 < µth)

=P (µ1 g µth)− P (µ1 g µth, µ2 g µth) , (4.16)

pactivation1i,2a
=P (µ1 < µth, µ2 g µth)

=P (µ2 g µth)− P (µ1 g µth, µ2 g µth) , (4.17)
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pactivation1i,2i
=1− P (µ1 g µth)− P (µ2 g µth)

+P (µ1 g µth, µ2 g µth) , (4.18)

where the subscript ka denotes that link k is active while ki denotes inactive. Hence,

we need to find the joint CCDF of µ1 and µ2. In the next theorem, we give a general

expression for the joint CCDF of the SIRs over multiple tiers.

Theorem 4.1 Joint Link Activation: the joint CCDF of the achievable SIRs over multi-

ple tiers ..., i, j, k; 1 f ... < i < j < k f M is given by

P (..., µi g ·i, µj g ·j, µk g ·k) =

1
[

1 +Qk(·k)
]k−j[

1 +Qj(·j) +Qk(·k)
]j−i

...
, (4.19)

P (µi g ·i, µj g ·j, µk g ·k) =
1

[

1 +Qk(·k)
]k−j

× 1
[

1 +Qj(·j) +Qk(·k)
]j−i

× 1
[

1 +Qi(·i) +Qj(·j) +Qk(·k)
]i . (4.20)

where Qk(·k), ∀ k ∈ {1, 2, ...,M} is given in (4.12) and the joint link activation probability

(all active) is obtained by setting ·k = µth. Other joint activation/inactivation probabilities

can be obtained using axioms of probability as in (4.16)-(4.18).

Proof: See Appendix B.2.

In the following, we derive an expression for the conditional joint CCDF of SIRs which

is necessary for calculating the average delay in the following subsections. In particular,

given that certain tiers are connected (associated and active), we find the conditional joint

CCDF of the achievable SIRs on these tiers while the states of all remaining tiers are also

known in terms of association and activation. For example, P
(

µj g ·j, µk g ·k|..., µj g

µth, µk g µth, ...
)

. To illustrate, let us begin with a single tier, i.e., P
(

µk g ·k|µk g µth
)

. It
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is straightforward that if ·k f µth, then P
(

µk g ·k | µk g µth
)

= 1. Otherwise, if ·k > µth,

it follows that P
(

µk g ·k | µk g µth
)

=
P

(

µkg·k,µkgµth

)

P

(

µkgµth

) =
P

(

µkg·k

)

P

(

µkgµth

) . In the following

Theorem, we provide a general expression of the conditional joint CCDF.

Theorem 4.2 Conditional Joint CCDF: Given a MultiCell size of M , denote the set of

the M tiers as M. Let M0, M1, and M2 be the disjoint sets of the non-associated, associ-

ated and active, and associated but inactive tiers, respectively, such that M0

⋃M1

⋃M2 =

M. The conditional joint CCDF of the achievable SIRs on M1, given that the states of

the remaining tiers M0 and M2 are known, is given by

P

(

⋂

k∈M1

(µk g ·k)
∣

∣

∣

⋂

k∈M

Ak

)

=

P

(

⋂

k∈M′
1

(µk g ·k),
⋂

k∈M1∪M2\M′
1

Ak

)

P

(

⋂

k∈M1∪M2

Ak

) , (4.21)

where the joint CCDF of the SIRs on different tiers is given in (4.19) and M′
1 is the set

of tiers for which ·k > µth and Ak, ∀k ∈ M is defined as

Ak :=























µk g 0 ; k ∈ M0

µk g µth ; k ∈ M1

µk < µth ; k ∈ M2

. (4.22)

Proof: See Appendix B.2.

Corollary 4.1 For a fixed ·k = ·, the conditional joint CCDF of the achievable SIRs on

M1 is

P

(

⋂

k∈M1

(µk g ·)
∣

∣

∣

⋂

k∈M

Ak

)

=



















P

( ⋂

k∈M1

(µkg·),
⋂

k∈M2

Ak

)

P

( ⋂

k∈M1∪M2

Ak

) ; · g µth

1 ; · < µth

, (4.23)
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Proof: The proof follows directly from Theorem 4.2.

4.3.4 Partial Offloading and Equal Task Division Approach

For any HTCU and for a given MultiCell size M , each link of a Tier-k, k ∈ M

satisfies one of three states, namely, non-associated, associated-and-active, or associated-

but-inactive, which yields 3M different state combinations. Out of these 3M combinations,

there are 2M combinations corresponding to a scenario where no offloading occurs and the

whole task is processed locally. In particular, when all links of the M tiers are non-

associated or associated but inactive. Let us denote XM as the set of all possible state

combinations for a given M such that the number of elements in XM is |XM | = X = 3M .

Then, let xM
i ∈ XM , i ∈ {1, 2, ..., 2M , 2M + 1, ..., 3M} be a specific state combination

and define MxMi
0 , MxMi

1 , and MxMi
2 as the disjoint sets of the non-associated, associated

and active, and associated but inactive tiers, respectively, corresponding to the state

combination xM
i . Hence, we can define

ÉxMi = 1 +
∣

∣MxMi
1

∣

∣ (4.24)

as the number of task divisions corresponding to a certain combination xM
i ∈ XM . Con-

sequently, the average total delay experienced by the typical HTCU for a given M can be

expressed as

T̄M
h,s = EXM

(TM
h,s) =

X
∑

i=1

P(xM
i )E[t

xMi
h,s], (4.25)

where s refers to the adopted task division approach, i.e., s ∈ {eq, adp} denoting either

equal or adaptive task division, P(xM
i ) is the probability of the combination xM

i and t
xMi
h,s

is its corresponding processing delay given as follows:

P(xM
i ) =

∏

k∈M
xMi
0

(1− pk)×
∏

k∈M
xMi
1∪2

pk × P







⋂

k∈M
xMi
1∪2

AxMi
k






, (4.26)

67



where pk is given in (4.8), MxMi
1∪2 = MxMi

1 ∪MxMi
2 , and the last term can be obtained from

the joint link activation probability given in Theorem 4.1, and

t
xMi
h = max

(

t
xMi
0 , max

k∈M
xMi
1

t
xMi
k

)

, (4.27)

where t
xMi
0 = ³

xMi
0 tloc is the delay of partial processing of part ³

xMi
0 of the task at the local

processor and t
xMi
k = ³

xMi
k (t

xMi
k,tran + t

xMi
k,proc), k ∈ MxMi

1 , previously given in (4.3), is the sum

of the partial transmission and processing delays corresponding to offloading part ³
xMi
k of

the task to Tier-k for partial processing at the ECS therein. The final step is to derive

an expression for the average processing delay E[t
xMi
h,s] corresponding to a certain state

combination xM
i ∈ XM for each of the task division approaches. However, prior to this

final step, we first consider some special cases of M for further illustration of the above

discussion.

For example, M = 0 indicates the scenario where no offloading occurs and the

whole task will be processed at the local processor. In such a scenario, we have only one

combination x0
1 and the total processing delay for the typical HTCU would be t

x0
1

h,s = tloc

regardless of the densities of HTCUs and SCs or the task division approach s ∈ {eq, adp}.

For M = 1, we first enumerate the X = 31 different combinations as x1
1 corresponding to

the scenario where Tier-1 is non-associated, x1
2 where Tier-1 is associated but inactive,

and finally x1
3 reflecting a scenario where Tier-1 is associated and active. For both x1

1

and x1
2 (21 combinations), our system reduces to the scenario where no offloading occurs

such that t
x1
1

h = t
x1
2

h = tloc = Cu/floc and the probability sum of these two combinations

is P(x1
1) + P(x1

2) = (1 − p1) + p1 P(µ1 < µth) where p1 is calculated from (4.8) and

P(µ1 < µth) = 1 − P(µ1 g µth) is calculated from (4.11). For the third combination x1
3,

the computation task will be divided into Éx1
3 = 2 parts; one part ³

x13
0 to be processed

locally, and the remaining part ³
x13
1 to be offloaded and processed at the ECS integrated

within the SC of Tier-1. In this case, P(x1
3) = p1 P(µ1 g µth) and the processing delay
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experienced by the typical HTCU corresponding to this specific combination is given by

t
x1
3

h = max
k=0,1

t
x1
3

k = max

(

³
x1
3

0 tloc , ³
x1
3

1

( Bu

R
x1
3

1

+ tecs

)

)

, (4.28)

where k = 0 corresponds to the local processor and R
x1
3

1 is the achievable rate on the

link between the typical user and its closest SC given in (4.4). Then, the average delay

experienced by the typical HTCU corresponding to the combination x1
3 can only be cal-

culated based on how the task is to be divided between the local processor and the ECS

of Tier-1. In the following theorem, we calculate the average end-to-end processing delay

under an equal task division approach. Then, in the following subsection, we introduce the

proposed offline adaptive task division and calculate its corresponding average processing

delay.

Theorem 4.3 Assuming an SC can serve at most one HTCU, let XM denote the set of

all possible combinations in terms of tiers’ association and activation of the typical HTCU

for a given MultiCell size M . For a specific combination xM
i ∈ XM , let MxMi

0 , MxMi
1 , and

MxMi
2 be the disjoint sets of the non-associated, associated and active, and associated but

inactive tiers, respectively. Then, the average end-to-end task processing delay experienced

by the typical HTCU under an equal task division approach is given by (4.25) where

E[t
xMi
h,eq] =

tloc
ÉxMi

+
GM

ÉxMi
×

·0
∫

min(·0,µth)



1− P[
⋂

k∈M
xMi
1

(µk g ·),
⋂

k∈M
xMi
2

AxMi
k ]/P[

⋂

k∈M
xMi
1∪2

AxMi
k ]





(1 + ·) [log2(1 + ·)]2
d·,

(4.29)

and the joint CCDF, tloc, and ÉxMi are given in (4.19), (4.1), and (4.24), respectively.

GM = MBu

W ln(2)
, ·0 = 2

GM ln(2)

tloc−tecs − 1, MxMi
1∪2 = MxMi

1 ∪ MxMi
2 , and AxMi

k can be obtained from
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(4.22) for a given xM
i .

Proof: See Appendix B.2.

4.3.5 Adaptive Task Division

In this subsection, we propose a novel offline task division approach to enhance the

delay performance compared to equal task division. In the proposed technique, using tools

from stochastic geometry, we calculate adaptive ³k fractions that depend on the average

performance of each Tier-k ∈ M. It is noteworthy that similar to equal ³k, whenever a

Tier-k is non-associated or associated but inactive, the corresponding ³k will be set to

zero. However, in the proposed adaptive approach, the values of ³k will be predetermined

for a given combination xM
i ∈ XM based on the average relative distances between the

HTCUs and its serving SCs. It is noteworthy that optimizing the task division online

based on the actual distances and channels between each user and its serving cells would

force significant overhead and optimization delay which would affect the achievable gains

and is out of the scope of this work. In the proposed adaptive task division approach, we

aim at partitioning the task between the local processor and connected tiers M1 inversely

proportional to their average expected individual delays of processing the whole task.

Hence, we start by finding these individual delays, then, we calculate the corresponding

task fractions in order to have on-average equal delays across all in-parallel processing

resources.

Lemma 4.3 Assuming the typical HTCU offloading the whole computation-intensive task

to Tier-k, which is known to be associated and active i.e., k ∈ M1, while all other HTCUs

follow multiple-association to reflect actual interference scenario, then, Tier-k individual

70



delay is

T ind
k =











tloc ; k = 0

tecs +GM ×
∞
∫

µth

(

1− P[µkg·]
P[µkgµth]

)

d·

(1+·)[log2(1+·)]2
; k ∈ M1

(4.30)

where k = 0 denotes processing the whole task at the local processor, tloc and tecs are given

in (4.1) and (4.2), respectively, and GM = MBu

W ln(2)
.

Proof: See Appendix B.2.

Lemma 4.4 Given a link state combination xM
i ∈ XM , the fraction ³

xMi
k of the computation-

intensive task that should be allocated to Tier-k, k ∈ {0} ∪MxMi
1 is

³
xMi
k =



























∏

i∈{0}∪M
xMi
1 ,i ̸=k

T ind
i

∑

j∈{0}∪M
xMi
1

(

∏

i∈{0}∪M
xMi
1 ,i ̸=j

T ind
i

) ; k ∈ {0} ∪MxMi
1

0 ; otherwise

, (4.31)

where T ind
i is given in (4.30) and MxMi

1 denote the set of associated and active tiers for a

given combination xM
i ∈ XM .

Proof: Since the total delay is the maximum of the delays experienced over all tiers

and the local processor, we allocate ³k such that the delays are on average equal to each

other such that

³0T
ind
0 = ... = ³kT

ind
k = ... = ³∣

∣M
xMi
1

∣

∣

T ind
∣

∣M
xMi
1

∣

∣

; ∀k ∈ M1. (4.32)

Solving the set of equations in (4.32) simultaneously along with
∑

∣

∣M
xMi
1

∣

∣

k=0 ³k = 1, and after

some mathematical manipulations, the values of ³k, k ∈ {0} ∪ M1 can be obtained in

(4.31).

Theorem 4.4 Following Theorem 4.3 and Lemma 4.4, without loss of generality, let
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³
xMi
1′ g ³

xMi
2′ g ... g ³

xMi
M ′

1
, ∀1′, 2′, ...,M ′

1 ∈ MxMi
1 where M ′

1 =
∣

∣MxMi
1

∣

∣. Then, the average

end-to-end task processing delay experienced by the typical HTCU under the adaptive task

division approach is given by (4.25) where E(t
xMi
h,adp) is given in (4.33) and

E(t
xMi
h,adp) =

1

·xMi
0

+

k′=M ′
1

∑

k′=1′

min(·
xMi
k′+1

,·
xMi
0 )

∫

min(·
xMi
k′

,·
xMi
0 )

















1−

P





k=k′
⋂

k=1′
µk g Y xMi

k (y),
⋂

k∈M
xMi
1∪2\{1

′,...,k′}

AxMi
k





P





⋂

k∈M
xMi
1∪2

AxMi
k





















dy

y2
,

(4.33)

·
xMi
k =



























1

³
xMi
0 tloc

; k = 0

log2(1+µth)

³
xMi
k [MBu

W
+tecs log2(1+µth)]

; k ∈ MxMi
1

∞ ; k = M ′
1 + 1

, (4.34)

Y xMi
k (y) = 2

(

(MBu/W ).y

1/α
xMi
k

− tecs.y

)

− 1; k ∈ MxMi
1 , (4.35)

where AxMi
k is given in (4.22) and MxMi

1 denote the set of the associated and active tiers

for a given xM
i ∈ XM . Also, MxMi

1∪2 denote the set of all associated tiers regardless of link

activation state.

Proof: See Appendix B.2.

4.4 Simulation Results

In this section, we show the performance of the system considering the effect of

different system parameters. In particular, we verify the accuracy of the derived math-

ematical analysis by carrying out Monte-Carlo simulations and comparing the obtained

results with the derived analytical expressions.
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4.4.1 Simulation Setup

We consider a simulation area of one km2 with 1, 000 spatial realizations each of

10 different realization of the channels. We first distribute the HTCUs and SCs randomly

and uniformly in the considered area according to their corresponding densities. Each

HTCU attempts to associate with its M closest SCs. Each tier is allocated a portion

1/M of the available bandwidth, hence, no mutual interference exists among the different

tiers. Whenever more than one HTCU is competing for the same SC through different

tier orders, only one HTCU from the lower order tier will be served by the SC. If more

than one HTCU is competing on the same tier, the served user is selected randomly by

the SC. From the associated links, those which do not satisfy the minimum required SINR

µth are dropped. Afterward, each HTCU splits its computation-intensive task according

to the adopted division technique (equal or adaptive) among the local processor and the

connected tiers.

The processing delays of all HTCUs are then averaged over several spatial and

channel realizations. By comparing the obtained average delay with the derived analytical

expressions in the previous section, we make sure that the obtained analytical formulae

can be used later to study the performance of the system under different configurations

easily and efficiently. Unless mentioned otherwise, the set of system parameters adopted

in our simulations are as follows. The path loss exponent ¸ is set to 4 to reflect an

urban environment. The density of HTCUs ¼h is set to 500 HTCUs/km2. For a UDN

environment, the density of SCs and the co-located ECSs is taken as 5, 000 SCs/km2. The

order of the multiple-association M ranges from M = 1 and up to M = 5. The available

bandwidth is equal to 180 kHz, however, only a fraction ¹ = 0.5 of this bandwidth is

allocated for the intensive-computation task offloading while the remaining bandwidth is

left for the communication purposes, i.e., W = 0.5 × 180 kHz. The noise power density

is −174 dBm/Hz [93]. The processing capacities of local and ECS processors are set to

floc = 100 MHz and fecs = 1 GHz, respectively. The required computational capacity of
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Figure 4.2: Average delay per user versus M under equal task division for different densities of
small cells, γth = 0 dB, and Bu = 105 bits. Lines for analysis and markers for simulations.

the offloaded task is Cu = 108 CPU cycles which corresponds to tloc = 1 second.

4.4.2 Equal Task Division

We begin with the equal task division approach (Equal-³) in which the task is

divided equally among the local processor and the connected (associated and active)

tiers. Fig. 4.2 shows the possible achievable gains from multiple-association when the

density of SCs is much higher than that of HTCUs, which is the main characteristic of

a UDN environment. When ¼s k ¼h, one can see that increasing the MultiCell size

M significantly reduces the average overall delay of the HTCUs. However, when the

density of the SCs is in the same order as the density of the HTCUs, the traditional single

association where each HTCU associates with single SC results in the lowest delay. In

other words, increasing the MultiCell size M causes a degradation in the performance

since the low-order tiers (closer to the HTCUs) will be allocated smaller portions of the

bandwidth while the high-order tiers (further away from the HTCUs) will mostly not be

utilized due to the high competition among the HTCUs for the limited number of SCs.

In general, there exists an optimal value for the MultiCell size M which depends

on several system parameters including the relative densities of HTCUs and SCs. For

example, the middle curve in Fig. 4.2 shows that for a ratio of ¼s/¼h = 10, µth = 0 dB,
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Figure 4.3: Average delay per user versus γth under equal task division for different M and Bu.
Lines indicate analysis while markers represent simulations.

Bu = 105 bits, and fecs = 1 GHz, the minimum average delay can be achieved with double

associations (M = 2) where the task is divided equally among the local processor, Tier-1,

and Tier-2. On one hand, for a smaller value of M , i.e., M = 1, the whole bandwidth is

allocated to one tier which should reduce the transmission delay over that tier. However,

the task therein is divided equally between only the local processor and Tier-1 which

increases the task fraction allocated to each of them and yields higher processing times.

On the other hand, although increasing the MultiCell size M offers smaller processing

times on all tiers as well as the local processor, the transmission delays will dominate the

total processing delay since less bandwidth will be allocated to each tier. Besides, the

high-order tiers (further away from SCs) will suffer from poor channel conditions. Hence,

either their transmission times will increase or even some of their links will drop which

takes us back to the scenario of smaller M but with smaller bandwidth allocated to each

tier. As the density of SCs (¼s) increases, the optimal value of M gets larger since more

tiers become closer to the HTCUs which enhances the qualities of their links. In return,

more high-order tiers remain active and their transmission times get smaller.

In Fig. 4.3, we investigate the effect of the SINR threshold value µth. We show

how a careful choice of µth given certain MultiCell size M and transmit-task size Bu

significantly enhances the achievable delay performance. For example, one can notice
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that for a relatively large transmit-task size Bu = 105 (bits) and M = 3, there exists an

optimal value of µth around 5 dB which minimizes the average delay for given available

bandwidth W and densities of SCs and HTCUs. On one hand, when µth is very small, this

reflects a scenario where mostly all three tiers will be active regardless of the conditions of

their links. Hence, offloading the relatively large portions of the tasks through these links,

especially of the high-order tiers, will consume more time and increases the experienced

delay. On the other hand, when µth is very large, this will deactivate all tiers and the

whole task will be computed locally. The optimal value of µth will vary for different sets

of system parameters, which motivates the existence of an analytical expression that can

be accurately used to evaluate the performance of the system.

In addition, Fig. 4.3 also shows that for relatively small task sizes, decreasing µth

yields lower average delay as the transmission times for offloading the relatively small

portions of the tasks would be relatively small compared to the local processing time.

Hence, allowing more tiers to be active and utilized for offloading reduces the portion of

the tasks computed at the local processor. It is also clear from Fig. 4.3 that increasing

the MultiCell size M yields further improvement in the achievable average delay, however,

with the proper selection of the value of µth.

4.4.3 Adaptive Task Division

In this subsection, we show the additional gains that can be obtained by applying

the proposed adaptive task division approach. In Table-4.1 above, we use (4.25) and (4.33)

to show how the average delay per user can be optimized by the proper selections of the

MultiCell size M for each set of different system parameters. Fig. 4.4 compares the

average delay experienced when adopting Equal-³ versus Adaptive-³ for a fixed MultiCell

size M = 3. One can notice a significant gain when the transmit-task size Bu is relatively

small. Such behavior stems from the bottleneck delay being forced by the local processor

when the Equal-³ approach is adopted. In contrast, when the proposed Adaptive-³ is
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Table 4.1: Average delay per user versus MultiCell size M under the proposed adaptive
task division approach for different SC densities ¼s, SINR threshold µth, and transmit task
size B.

System Parameters
¼s (SCs/km

2) µth (dB) B (bits)
M=1 M=2 M=3

5, 000 0 105 0.4179 0.4382 0.4623
10, 000 0 105 0.3369 0.3444 0.3757
10, 000 5 105 0.3271 0.3098 0.3219
10, 000 10 105 0.3632 0.3194 0.3153
5, 000 −10 104 0.2005 0.1558 0.1545
10, 000 −10 104 0.1546 0.1128 0.1129
10, 000 0 104 0.1682 0.0987 0.0851
10, 000 10 104 0.2726 0.1599 0.1222

applied, smaller fractions of the tasks are allocated to the local processor. On the other

hand, when the transmit-task size is relatively large, the gain from the proposed adaptive

task division is not significant since the transmission delay dominates the total delay which

forces the HTCU to allocate a relatively large fraction of the task to the local processor to

reduce the transmission delay. It is noteworthy that the proposed adaptive task division

approach still acts as a lower bound for the equal task division in terms of the experienced

delay. Also, it is clear that µth still needs to be optimized under the proposed Adaptive-³

approach. In the same scope, Fig. 4.5 shows how the transmit-task size Bu can influence

the delays under different values of µth. Improper selection of µth (as discussed for Fig.

4.4) can lead to a longer delay when offloading the task compared to processing the whole

task at the local processor.

The matching between simulation and analysis can be noticed for both Equal-³

and Adaptive-³ approaches for different system parameters as can be noticed in Fig.

4.2 - Fig. 4.5. Hence, the derived analytical expressions allow us to investigate the

performance of the system under different conditions easily and efficiently. For example,

Fig. 4.6 shows the delay performance versus the transmit-task size Bu under both task

division approaches and for different values of M . Intuitively, the delay increases with

Bu. However, the absolute value of the average delay and the rate of its increment varies

from one scenario to another. On one hand, under equal task division, higher M gives
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Figure 4.4: Average delay per user versus γth under both equal and adaptive task division and
M = 3. Lines indicate analysis while markers represent simulations.

better performance when Bu is small (accordingly, transmission delay is small) thanks

to allocating smaller parts of the processing task to local processing. However, the delay

increases with Bu at much higher rate for largerM since the transmission delay of the high

order tiers significantly increases with Bu. On the other hand, the rate at which the delay

increases with Bu under adaptive task division remains within acceptable values thanks to

the flexibility it offers. In particular, this results in from allocating smaller parts of the task

to the high-order tiers, which have poor link conditions compared to the low-order ones.

It is noteworthy that although the adaptive task division offers better performance than

equal task division, the achievable gain starts to diminish with increasing the transmit-

task size Bu.

From a different perspective, Fig. 4.7 shows the performance of the system against

the ECS processing capacity fecs under fixed MultiCell size M = 3. For the equal task

division approach, the task is divided into at most four equal parts with corresponding

local processing delay of 0.25 seconds. However, some tiers may be disconnected due to

competence among multiple HTCUs or due to degraded link quality. It can be noticed that

when the transmit-task size is relatively small, no gain can be achieved from increasing

fecs since the bottleneck of the experienced delay will come from the local processing

delay. When the transmit-task size Bu increases, the transmission delay of offloading
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Figure 4.5: Average delay per user versus transmit-task size Bu in (bits) under adaptive task
division, M = 3, and different γth. Lines indicate analysis while markers represent simulations.
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Figure 4.6: Average delay per user versus transmit-task size Bu in (bits) under equal and
adaptive task division, different values of M , and γth = 10 (dB).

the task becomes the bottleneck for the system. Hence, we can initially observe some

gain from increasing the processing capacities of the ECSs since the total delay comprises

both transmission and processing delays. However, this gain diminishes swiftly with fecs

when the processing delay of the ECS becomes incomparable to the transmission delay.

On the other hand, for the adaptive task division approach, we can achieve significant

gains from increasing fecs when the transmit-task size is relatively small. In other words,

when the transmission delay is relatively small and the local delay can be also reduced

by allocating smaller fraction ³0 of the task to the local processor, the overall delay can

be significantly reduced by increasing fecs. Although for a larger transmit-task size there
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Figure 4.7: Average delay per user versus ECS processing capacity fecs (cycles/sec.) under
equal and adaptive task division, different Bu, M = 3, and γth = 0 (dB).

still exists some gain from applying the proposed adaptive task division technique, the

achievable gain is not significant when the transmission delay dominates the total delay

as discussed earlier. In particular, with higher values of fecs, the processing delay at the

ECS becomes insignificant compared to the offloading transmission delay. Besides, the

offloading transmission delay the and local processing delay become comparable, hence,

no significant gain can be noticed from adapting the task division ratios.

4.5 Summary

We investigated the achievable gains from simultaneously offloading computation-

intensive tasks of Human-Type Communication Users to multiple Small Cells equipped

with Edge Computing Servers. In particular, we investigated the total delay experienced

from the time instant of the task generation at the user until the whole task is fully pro-

cessed. By doing so, we showed that the MultiCell size can be optimized for different

system parameters including the densities of cells and users. In addition, we proposed

an offline adaptive task division technique to further enhance the achievable gains from

multiple-association compared to equal task division. We showed that an Ultra-Dense

Network environment can exaggerate the achievable gains to support different use cases
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targeted in 5G and beyond such as Ultra-Reliable Low-Latency Communications. Using

tools from stochastic geometry, we formulated a mathematical framework and derived

analytical expressions for the average experienced delay. Further extensions to this in-

vestigation could be optimizing resource allocation in terms of frequency, power, and

MultiCell size as well as task division based on the instantaneous network conditions.
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Chapter 5

Secrecy Performance in UDNs with

Multiple-Association

5.1 Introduction

According to [2], the user rates would triple from 13.2 Mbps in 2018 up to 43.9

Mbps in 2023. With the frequent serious data breaches experienced recently, securing

data has become more of a business risk rather than an information technology (IT)

issue [2]. In this regard, UDN is seen as one key factor in future cellular networks where

a UDN can provide the User Equipment UE with a virtual mobile network that follows

its position [4]. The UE will always find close-proximity cells to activate, connect to,

and be served. Physical Layer Security (PLS) is a promising approach to complement

the upper layer cryptographic techniques in securing the enormous amount of data flying

over the air [49]. Based on information-theoretic approaches, PLS exploits the inevitable

distinction between the links of legitimate and illegitimate receivers of radio signals [48]

to secure wireless data transfer.

In this chapter, we propose a secure multiple-association scheme in which the data

traffic of a UE is split into different paths through the M closest cells. In addition to
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mitigating the individual backhaul capacity limitations that can be found in UDNs [5]:

• we exploit the spatial diversity among the different paths to increase the achievable

secrecy rate in the network.

• we derive a lower-bound analytical expression for the average secrecy per user using

tools from stochastic geometry.

• We show that exploiting the proposed multiple-association in a UDN environment

can mitigate the effect of several deteriorating factors such as the increasing densities

of both UEs and eavesdroppers.

5.1.1 Related Works

Many recent investigations have been carried out in the context of PLS within a

UDN environment [34, 94–97]. For example, the authors in [34] provided a novel mathe-

matical framework for PLS in UDNs using tools from stochastic geometry. Considering

a UDN environment, idle mode capabilities of the SCs and high probabilities of Line-of-

Sight (LoS) communications were considered. In addition, the authors highlighted the

performance in the case of both active and passive eavesdroppers which differ in the avail-

ability of their Channel State Information (CSI) at the transmitter. In [97], the authors

proposed a new security metric called security pressure which is the maximum secured

area provided during a legitimate connection. Then, they proposed a new user association

policy in UDN to maximize the achievable security instead of the traditional association

policy targeting Signal-to-Interference plus Noise Ratio (SINR) maximization. The au-

thors in [97] considered a scenario of proactive eavesdroppers which are assumed to be

intelligent nodes in choosing the active cells to attack. Those eavesdroppers are assumed

to be non-uniformly distributed within a two-tiered heterogeneous UDN. In this regard, a

secure user association scheme was proposed to maximize the network secrecy throughput.
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Different from the above works, the authors in [94] considered PLS in the context of

downlink Simultaneous Wireless Information and Power Transfer (SWIPT) scenario with

both power splitting and time switching. The work presented therein was mainly focused

on the mmWave frequency band in a UDN environment for its suitability for wireless

power transfer. Using tools from stochastic geometry, the authors provided analytical ex-

pressions for the effective secrecy throughput in both cases of colluding and non-colluding

eavesdroppers. The author also showed that proper selection of different system parame-

ters such as power or time splitting ratio between data and power transfer, transmission

power, and confidential information rate can be optimized the system perform acne in

terms of security.

In [95], the authors proposed a secure user-centric clustering approach to serve

the users by multiple cooperating small cells within a UDN environment. Two jamming

strategies were suggested, namely, dedicated jamming in which a portion of the serving

cells are dedicated to transmitting jamming signals, and embedded jamming in which

the cells within the user-centric cluster jointly serve the user and produce jamming sig-

nals. The authors developed a set of heuristic greedy algorithms to maximize the secrecy

performance with or without CSI of the eavesdroppers known at the serving cells. In a

similar scenario in terms of cooperating SCs in UDN, the authors in [24] provided a novel

mathematical framework for multiple-association in UDN environment, however, without

consideration of secrecy performance in their system model.

The rest of the chapter is organized as follows. In section 5.2, we describe the

system model. Section 5.3 provides the necessary mathematical derivations for the main

and leakage link rates, respectively. The obtained results and discussion are reported in

Section 5.4.
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5.2 System Model

We consider a user-centric UDN where a massive number of deployed SCs are

used to serve the existing UEs under the threat of coexisting illegitimate users aiming at

eavesdropping the ongoing communications. SCs, UEs, and Eves are spatially distributed

according to three independent HPPPs Φs, Φu, and Φe with corresponding densities ¼s,

¼u, and ¼e, respectively. Taking into consideration the UDN environment, hence, we

assume that ¼s k ¼u [4]. Following a practical scenario, the density of eavesdroppers is

smaller than that of the legitimate users, i.e., ¼e f ¼u [34, 95]. In this investigation, we

adopt a user-centric multiple-association scheme where each UE connects to and activates

the closest M cells. The traffic of the served UE is split into a number of paths Nt,

1 f Nt f M , depending on the availability of SCs. In doing so, we mitigate the limited

backhaul capacities of the SCs and provide spatial diversity for the UEs in order to

protect them from the eavesdropping of any illegitimate receiver. In other words, even

if an eavesdropper has a relatively strong radio link with one of the serving SCs, the

probability of having strong radio links with the other serving cells will decrease with the

number of associated cells as illustrated in Fig. 5.1.

We assume that M orthogonal frequency bands are available in the network and

that they are reused for each UE such that each SC exploits exactly one frequency band.

In other words, each SC belongs to a specific tier where a Tier-j is the set of all SCs

that are jth closest to the UEs. For example, Tier-1 is the set of closest SCs to the UEs.

For the remaining SCs which do not belong to a specific tier, i.e., they do not serve any

UE, we assume idle mode capability in which the unused SC is switched-off to mitigate

the ICI [4, 12]. Hence, the received signal which is transmitted from an SC on a specific

tier suffers from Inter-Cell Interference (ICI) originating solely from those active cells on

the same tier. In our system model, we take into consideration the different scenarios of

an SC serving more than one UE. In such a scenario, when the different UEs associated

with the same SC are served on the same tier, then, the allocated frequency band is

85





fading model is considered in which the channel gains are fixed over a Transmit Time

Interval (TTI) and vary independently from one TTI to another. Finally, all SCs serving

a specific UE are assumed to be infinitely backlogged with data ready to transmit.

5.3 Average Secrecy Rate per User

The objective of this section is to derive a lower bound for the average secrecy

rate per user in a user-centric UDN with multiple-association. According to [35], the

probability density function (PDF) of the distance between a typical UE located at the

origin and the jth closest SC rj is

frj(r) =
2(Ã¼s)

j

(j − 1)!
r2j−1e−Ã¼sr2 , (5.1)

where ¼s is the density of SCs. The idle mode probability in a UDN is given in [99].

Taking into consideration that a typical UE can activate up to j, j f M , SCs in the

proposed multiple-association scheme instead of only one cell in single association, then,

the idle mode probability reduces to

P
j
idle =

(

1 +
j¼u

3.5 + ¼s

)−3.5

, (5.2)

with ¼u being the density of UEs. Hence, while keeping into consideration disconnect-

ing high-ordered tiers in case of conflict with low-ordered tiers, one can interpret the

probability of activation of SCs on a specific Tier-j as

P
j
a =

( 3.5

3.5 + (j−1)¼u

¼s

)3.5

−
( 3.5

3.5 + j¼u

¼s

)3.5

. (5.3)

Next, exploiting PLS to secure the communications of a typical UE on a specific
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Table 5.1: Probability of Non-negative Secrecy
¼e/¼s Tier-1 Tier-2 Tier-3 Tier-4 Tier-5
0.5 0.9781 0.9603 0.9449 0.9312 0.9181
0.25 0.9794 0.9644 0.9495 0.9380 0.9257
0.1667 0.9801 0.9655 0.9530 0.9409 0.9299
0.1 0.9813 0.9683 0.9560 0.9452 0.9354
0.0714 0.9823 0.9702 0.9590 0.9482 0.9374
0.05 0.9838 0.9718 0.9610 0.9501 0.9389

Tier-j, the achievable secrecy rate Rj
s can be given by [34]

Rj
s = max

(

Rj
m −Rj

e∗ , 0
)

, (5.4)

where Rj
m is the achievable rate on the main link for Tier-j and Rj

e∗ is the leakage rate

from Tier-j to the MDE, e∗. When ¼s k ¼u, ¼e and ¼u > ¼e, then, the probability of

Rj
m −Rj

e∗ > 0 gets very high as shown in Table-5.1 for ¼s = 5000 SCs/km2 and ¼e = 50

Eves/km2. Hence, (5.4) can be simplified to

Rj
s = Rj

m −Rj
e∗ , (5.5)

E(Rj
s) = E(Rj

m)− E(Rj
e∗), (5.6)

where E[.] denotes expectation of a random variable.

Hence, we aim next to finding the average rates of both main and leakage links

from each tier. For the expected value of the main link rate, it can be derived following

the same steps in [23].

Theorem 5.1 In a user-centric UDN with multiple-association, the average achievable

rate per user on Tier-j, 1 f j f M is given by

E(Rj
m) = Bj

P
j
a¼s

¼u

∫ ∞

0

1
(

Aj
m(t)

)j dt, (5.7)
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Aj
m(t) = 1 + P

j
a(2

t − 1)
2
η

∫ ∞

(2t−1)
− 2

η

1

1 + u
η
2

du, (5.8)

where B and P
j
a are the allocated bandwidth in Hz and the probability of active cells obtained

from (5.3) on Tier-j, respectively.

Proof: The achievable rate by a typical user on Tier-j exploiting the total available

bandwidth Bj is given by

Rj
m = Bj log2(1 +

Pjhjr
−¸
j

Ij + Ã2
), (5.9)

where Pj is the transmission power of the serving cell on Tier-j, hj, rj are the channel gain

and distance between the typical user and its serving cell on Tier-j, Ij is the ICI sensed

at the typical user from all active cells on Tier-j and Ã2 is the power of the Additive

White Gaussian Noise (AWGN) at the receiver. The fraction of UEs served on the total

bandwidth of Tier-j is given by P
j
a¼s

¼u
. Hence, the average achievable rate per user on

Tier-j

E(Rj
m) =

P
j
a¼s

¼u

Erj ,hj ,Ij [Rj], (5.10)

where

Ij =
∑

k∈Φa
j \bj0

Pjhkr
−¸
k . (5.11)

Φa
j is the thinned HPPP of all active cells on Tier-j, bj0 is the serving cell, Pj is the

transmission power of a cell on Tier-j which is assumed fixed, and hk and rk are the

channel gains and distances between an interfering cell k ∈ Φa
j\bj0 and the typical UE.

Following the same steps in [23],

Erj ,hj ,Ij [Rj] =

∫ ∞

0

P [Rj > t] dt

=

∫ ∞

0

∫ ∞

0

e−(2t−1)σ
2

P
rηLI′k

((2t − 1)r¸; r)frk(r) drdt, (5.12)
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and the Laplace transform of the normalized ICI I ′j =
Ij
Pj

is given by

LI′j
(s; r) = exp

(

−Ã P
j
a¼s s

2
η

∫ ∞

r2

s2/η

1

1 + u
η
2

du

)

. (5.13)

After some mathematical manipulations, (5.7) and (5.8) can be obtained, which completes

the proof.

For the leakage link rate, we consider a worst-case scenario for the MDE in which

we separately consider the closest eavesdropper to each serving cell as the MDE. By doing

so, we guarantee that the obtained formula for the secrecy rate constitutes a lower bound

for the actual achievable secrecy rate. The expected value of the leakage link rate from

each tier is given in the following theorem.

Theorem 5.2 In a user-centric UDN with multiple-association, the average maximum

leakage rate per user on Tier-j, 1 f j f M is given by

E(Rj
e) = Bj

P
j
a¼s

¼u

∫ ∞

0

1

Aj
e(t)

dt, (5.14)

Aj
e(t) = 1 +

P
j
a¼s

¼e

(2t − 1)
2
η

∫ ∞

(2t−1)
− 2

η

1

1 + u
η
2

du, (5.15)

where ¼e is the density of eavesdroppers and P
j
a is obtained from (5.3).

Proof: The most detrimental eavesdropper (MDE) is the one which causes the

typical UE to achieve the minimum secrecy-sum rate from all tiers. However, for the sake

of tractability, when deriving the achievable secrecy rate on a specific Tier-j, we consider

the MDE as the closest eavesdropper to the serving cell on Tier-j, and changes from one

tier to another. Hence, the PDF of the distance between the serving cell (regardless of its

tier order) and the MDE will be given as

fre(r) = 2Ã¼ere
−Ãr2 . (5.16)
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The achievable SINR of the MDE on Tier-j is given by

µj
e =

Pjhere
Ij,e + Ã2

, (5.17)

where Pj is the transmission power, he, re are the channel gain and distance between the

serving cell on Tier-j and the MDE, Ij,e is the ICI sensed at the MDE from all active cells

on Tier-j except the one on which it eavesdrops, and Ã2 is the power of the AWGN. The

Laplace transform of the PDF of the normalized ICI I ′j,e =
Ij,e
Pj

can be given as

LI′j,e
(s; r) = EI′j,e

[

e−sI′j,e

]

= EΦa
j ,he



exp



−s
∑

k∈Φa
j \bj0

her
−¸
e









= EΦa
j





∏

k∈Φa
j \bj0

Ehe

[

exp(−sher
−¸
e )
]





= exp



−P
j
a¼s

2Ã
∫

0

∞
∫

r

(

1− Ehe

[

e−sher
−η
e

])

re dre d¹





= exp

(

−Ã P
j
a¼s s

2
η

∫ ∞

r2

s2/η

1

1 + u
η
2

du

)

, (5.18)

For the sake of tractability, Ij,e is approximated by the interference sensed from those

active cells on Tier-j while assuming that they are further than rje. This will also give a

higher bound on the leakage rate since the actual interferes may be closer than rje. Similar
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to the proof of the main link rates,

P[µj
e > ϵ] = EIj,e,re

[

P

[

hj
e > ϵ(

Ã2

Pj

+ I ′j,e)re
¸
]

| I ′j,e, re
]

= EI′j,e,re

[

exp
(

− ϵ(
Ã2

Pj

+ I ′j,e)re
¸
)

| I ′j,e, re
]

=

∫

r>0

e
−ϵσ

2

Pj
rη

EI′j,e

[

exp
(

− ϵI ′j,er
¸
)

| I ′j,e, r
]

fre(r) dr

=

∫ ∞

0

e
−ϵσ

2

Pj
rηLI′j,e

(ϵr¸; r)fre(r) dr. (5.19)

Assuming an interference-limited scenario which is a common assumption in UDNs

for any path loss exponent ¸ [100], the average maximum leakage rate per user on Tier-j

can be calculated as follows

E(Rj
e) = Bj

∫ ∞

0

P
[

µj
e > 2t − 1

]

dt. (5.20)

Keeping in consideration that leakage rate is proportional to the fraction of UEs being

served on Tier-j, using (5.19) and performing some mathematical manipulations completes

the proof.

5.4 Results and Discussion

In this section, the verification of the obtained analytical expressions is derived.

The path loss exponent is set to ¸ = 4 to reflect an urban environment [22], the allocated

bandwidth per tier is fixed and equal to 180 kHz, transmission power per cell is set 23

dBm, and the thermal noise is set to −174 dBm/Hz. The small scale fading is assumed

Rayleigh where the channel gains are exponentially Independently and Identically Dis-

tributed (i.i.d.) with unity mean. We sweep different densities of small cells, users, and

eavesdroppers. Unless otherwise stated, the densities are set follows; the SCs’ density

¼s = 5, 000 SCs/km2, the users’ density ¼u = 500 users/km2, and the eavesdroppers’
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density ¼e = 50 Eves/km2. The number of SCs serving a UE is set to M = 1, 2, and

3. The Monte-Carlo simulations are averaged over 500 spatial realization each with 100

different channel realization and over an area of one km2.

Fig. 5.2 shows the total average secrecy rate per user from all associated tiers

for different numbers of serving cells (MultiCell sizes). The obtained results show the

significant gain achieved from the Ultra-Dense Network (UDN) environment where the

achievable average secrecy rate per user increases with the small cell density ¼s. This

gain stems from the shorter distances among the UE and its serving cells. In addition,

when the serving cells get closer to the UE, this guarantees better protection against

eavesdroppers which statistically get further from the cells. On the other hand, it is also

clear the increasing the MultiCell size M boosts the achievable secrecy rate. Although

a UE being served by the second or third (up to M th) closest cell degrades the channel

between the UE and its serving cells, it provides spatial diversity against the eavesdropper

and helps mitigate any backhaul capacity limitations that can be found in UDNs [5]. It is

to be noted that the achievable gains from network densification and multiple-association

come at the cost of increased network resource usage such as the deployment of extra

cells, energy consumption, and exploitation of additional frequency bands, respectively.

However, this cost represents a compromise that must be made to tackle the unprecedented

requirements in 5G networks and beyond in terms of user capacity and security.

In Fig. 5.3, we show that the total average secrecy rate per user from the M

different associated cells decreases when the density of UEs ¼u increases. Since we consider

a user-centric approach, it is important to study the average performance achievable

by an individual user. In this regard, we show that the proposed multiple-association

scheme with M = 3 can almost achieve the same performance as the traditional single

association scheme, however, with a 10-fold increase in the density of supported UEs from

100 UEs/km2 to 1000 UEs/km2 under the same other system parameters.

In Fig. 5.4, one can notice a slight degradation in the achievable secrecy perfor-
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Figure 5.2: Average secrecy rate per user versus the small cell density ¼s for different
MultiCell sizes M with density of users ¼u = 500 users/km2 and relative density of Eves
¼e/¼u = 0.01.
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Figure 5.3: Average secrecy rate per user versus the density of users ¼u for different
MultiCell sizes M with density of small cells ¼s = 5, 000 cells/km2 and density of Eves
¼e = 50 Eves/km2.

mance when the density of eavesdroppers ¼e increases. However, this slight decrease due

to 20-fold increase in ¼e can be fully mitigated by multiple-association with only M = 2

compared to a single association scheme.
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Figure 5.4: Average secrecy rate per user versus the density of eavesdroppers ¼e for
different MultiCell sizes M and small cells densities ¼s with density of users ¼u = 500
users/km2. Lines indicate analysis while markers represent simulations.

5.5 Summary

In this chapter, we propose a user-centric Physical Layer Security approach to

increase the average secrecy rate per user using multiple associations of small cells to

a User Equipment. In doing so, a typical UE connects to and activates the closest M

cells where the data traffic of this UE is split into multiple paths (f M). This approach

offers a double benefit for the network. First, it provides spatial diversity against the

possible eavesdroppers whose locations are not identified by the network. Second, it

helps mitigate the individual cell backhaul capacity limitations usually found in UDNs.

A mathematical framework is formulated using tools from stochastic geometry to derive

a lower bound for the average secrecy rate per user. The obtained results show how

the secrecy performance is improved by the increasing number of serving cells M and/or

density of small cells. On the other hand, the increasing densities of both users, and

eavesdroppers result in degradation in the average secrecy rate per user which can be

fully mitigated by increasing M . An important extension to this work would be the

integration of Multiple-Input Multiple-Output (MIMO) systems to direct the signals to

the targeted legitimate receiver.
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Chapter 6

A Hybrid NOMA/OMA Scheme to

Support mMTC in UDNs

6.1 Introduction

According to [2], amongst the different categories of mobile devices, Machine-to-

Machine (M2M) connections are anticipated as the fastest-growing category with a 30

percent Compound Annual Growth Rate (CAGR) between 2018 and 2023. Consequently,

tremendous advances in enabling technologies are needed in the next generations of cellular

communications. Recently, Non-Orthogonal Multiple-Access (NOMA) has been consid-

ered extensively in academia and it was considered as a study item of 5G New Radio

(NR) [44]. In NOMA [42], several users (two or more) share the same time-frequency-

spatial resources simultaneously exploiting either the power domain or code domain.

In this chapter, we propose a hybrid NOMA/OMA scheme to support a massive

number of MTCDs existing in a UDN environment. In particular:

• We divide the MTCDs into two groups based on their normalized Signal-to-Interference

Ratio (SIR) and pair them to form NOMA clusters.

• We show that a SIR threshold value exists to maximize the performance gain of the
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NOMA/OMA scheme compared to an only OMA-based scheme. However, densify-

ing the network with more cells can compromise the gain obtained from NOMA.

• Analytical expressions for the Area Spectral Efficiency (ASE) gain are derived using

tools from stochastic geometry and their accuracy is verified through simulation

results

6.1.1 Related Works

Despite the potential of NOMA, the earned gains were not significant enough to

continue with NOMA as a work item for the NR. It was decided to postpone NOMA

for possible next generations of cellular networks to tackle the existing challenges [45].

Amongst the challenges obstructing the efficient deployment of NOMA is the NOMA

clustering process [46]. In particular, which users will share the same resource, what is

the optimal cluster size, and prior to these, what is the objective of a NOMA cluster,

i.e., maximizing the network throughput or achieving fairness among the different users?

For example, the authors in [47] proposed a resource allocation scheme with a controlling

parameter that governs the trade-off between the two objectives. While Successive In-

terference Cancellation (SIC) is responsible for mitigating the intra-cell or Inter-NOMA

Interference (INI), a non-negligible complexity is added to the receiver.

Also, imperfect SIC significantly degrades the gain obtained from adopting NOMA

[47]. In the same scope, ordering the users in the SIC process based on either the instan-

taneous received power or on the mean received power (distance) should be considered.

For the former, i.e., the instantaneous received power, Channel State Information (CSI)

should be acquired which increases the overhead in the system. However, inaccurate

or non-optimal performance may result from using the distance instead. The authors

in [101] studied the probability that distance-based and instantaneous signal power-based

rankings of NOMA users will yield the same results. In that, they investigated how this

probability is affected by the different system parameters and its impact on the coverage
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probability of both uplink and downlink.

Back to the clustering process, many existing works consider random clustering of

users [68,101]. However, some other works proposed some sort of selective clustering based

on either average received power (distance) [102] or instantaneous received power [68], with

or without consideration of Inter-Cell Interference (ICI). It is noteworthy that clustering

and ordering of users for SIC are two independent operations [46].

The rest of the chapter is organized as follows. In Section 6.2, we describe the

system model. The analysis of the performance and the derived analytical expressions are

obtained in Section 6.3. Section 6.4 presents the obtained numerical results and gained

insights.

6.2 System Model

We consider a network of a massive number of Machine-Type Communication De-

vices (MTCDs) to be served in the downlink. Such a scenario lies under the use case of

mMTC targeted in the 5G and beyond. We consider a UDN scenario where a massive

number of Small Cells (SCs) are used to serve those MTCDs as shown in Fig. 6.1. Both

SCs and MTCDs are spatially distributed according to two independent Homogeneous

Poisson Point Processes (HPPPs), Φs and Φm with densities ¼s and ¼m, respectively.

We assume an activity profile with active probability Äm for the MTCDs. As a result,

we will have a thinned Homogeneous Poisson Point Process (HPPP) Φa
m with density

¼a
m = Äm¼m for the active MTCDs. In our model, we assume a heavily loaded regime

such that ¼a
m k ¼s which coincides with the mMTC scenario even in a UDN environment.

Note that only active cells where at least one user is served by the SC are considered for

both ICI and ASE calculations.

A hybrid NOMA/OMA system is deployed for the multiple access of the massive

number of active MTCDs. In OMA, each user is allocated one Resource Block (RB) with
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message of two or more devices simultaneously via exploiting the power domain. At the

receiver side, MTCDs perform SIC to decode their desired signals. Messages transmitted

with lower powers are treated as interference when decoding a specific message. In the

case of OMA, the achievable rate per user per unit bandwidth is given by

RO
i = log2

(

1 +
Phie

−³rβi

Ii + Ã2

)

, (6.1)

where P is the transmit power of the SC. hi, ri are the power gain and distance of the

channel between the SC and device i and Ii is the ICI sensed at device i. ³ and ´ are

the SEPL parameters and Ã2 is the Additive White Gaussian Noise (AWGN) power. For

the devices adopting NOMA, a user k within a NOMA cluster of size K will receive its

indicated message superposed with other messages of higher and/or lower allocated power

levels. Hence, the achievable rate per unit bandwidth would be

RN
k = log2

(

1 +
εkPhie

−³rβi

·INk,h + INk,l + Ii + Ã2

)

. (6.2)

· is the SIC error propagation factor, εk is the power fraction allocated to user k, and

INk,h =
∑k−1

i=0 εiPhie
−³rβi is the INI due to messages with higher allocated powers. This

interference should be ideally removed if · = 0. However, imperfect SIC may cause

residual interference reflected by · > 0. INk,l =
∑K

i=k+1 εiPhie
−³rβi is the INI caused by

messages with lower allocated powers and cannot be removed. The ASE can be then

calculated as

ASE = ¼aE[Rcell], (6.3)

where ¼a is the density of active SCs and Rcell is the achievable rate per cell. It is

noteworthy that assuming a typical MTCD at the origin which is allocated the whole

bandwidth, the achievable rate by this device reflects the cell rate. However, one must

take into consideration the different scenarios of this typical device. In our proposed

hybrid NOMA/OMA scheme, the existing users are divided into two groups based on
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their normalized SIR [68],

ci =
Phie

−³rβi

Ii
=

Phie
−³rβi

∑

Φs\b0
Pgie−³vβi

, (6.4)

where hi and ri correspond to the channel between user i and its serving cell while gi and

vi correspond to all other channels between user i and interfering cells. The first group

(Group1) contains all the users with ci > T and the second group (Group2) contains

all the users with ci < T where T is the normalized SIR threshold separating the two

groups. In our system model, we consider all existing users in contrast to [46, 68, 102],

which considers only those users adopting NOMA.

As we increase the SIR threshold T , the users in Group1 achieve higher normalized

SIR but the number of users significantly decreases. Hence, we show that an optimum

point of T exists, at which the average achievable rate is maximized. This optimal point

will depend on the different parameters of the system. However, the number of users

adopting NOMA will always be maximized when the users are divided into two statistically

equal groups i.e., T = C0; Fc(C0) = 0.5 and Fc(C) is the Cumulative Distribution

Function (CDF) of the normalized SIR of the existing users.

To this end, we aim to find an analytical expression that reflects the performance

of our proposed system model and show that an optimum point that maximizes the gain

of this hybrid NOMA/OMA scheme exists.

6.3 Performance Analysis

Since both SCs and MTCDs are spatially distributed according to two independent

HPPPs, we recall that the distribution of the number of users per cell (N) is random.

The probability density function (pdf) of the size of a typical Voronoi cell was derived

empirically using Monte-Carlo simulations in [66]. Then, this distribution was used in [67]

to obtain an expression for the probability mass function (pmf) of the number of users
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per cell N which depends solely on the average density of users per cell ¼ = ¼u

¼s
, where

fN(n) =
( 3.5
¼+3.5

)3.5

Γ(3.5)

( ¼

¼+ 3.5

)n Γ(n+ 3.5)

Γ(n+ 1)
. (6.5)

Note that fN(0) reflects the probability of an inactive cell referred to as idle mode capabil-

ity in UDNs. In idle mode, empty cells are switched off to mitigate the ICI. However, when

the number of devices increases as in the mMTC scenario, the probability of SCs switch-

ing off significantly decreases. Next, the normalized SIR distribution can be obtained by

following the steps in [22, 104]:

Fc(C) = P[c < C]

= 1− P[h > Ce³r
β

]

= 1−
∫

r>0

EI [exp (−Ce³r
β

)|r, I]fr(r)dr

= 1−
∫ ∞

0

LI(Ce³r
β

)fr(r)dr,

(6.6)

(6.7)

(6.8)

(6.9)

where fr(r) = 2Ãr¼se
−Ã¼sr2 is the pdf of the distance between the typical user and nearest

cell, h ∼ exp (1), and LI(s) is the Laplace transform of the ICI,

LI (s) = exp






−2Ã¼a

´³
2
β

e−αrβ

∫

0

s

1 + sx
(− ln(x))

2−β
β dx






, (6.10)

where ¼a = (1− fN(0))¼s is the density of active cells. LI(s) can be further simplified

for the special case when ´ = 2
n+1

such that

LI{Ce³r
β} = exp

(

n
∑

k=0

¼ar
2k
n+1 ¶k(C)

)

, (6.11)

¶k(C) =
Ã(n+ 1)!

k!³n−k+1

−C

Γ(n− k + 1)

∞
∫

0

xn−k

ex + C
dx. (6.12)
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Substituting (6.10) or (6.11) (in case of ´ = 2
n+1

) into (6.9), Fc(C) is obtained. The

probability p = Fc(T ) and 1 − p that a randomly selected user belongs to either Group2

or Group1, respectively. We define the number of users per cell in Group1 as N1 and in

Group2 as N2.

Lemma 6.1 For spatially distributed SCs and devices as two independent HPPPs with

an average density of users per cell ¼ and assuming that the users are divided into two

groups based on a normalized SIR threshold T , then, the CDF of the number of NOMA

pairs per cell (Z) is given by:

FZ(z) = FN1(z) + FN2(z)− FN1,N2(z, z), (6.13)

FN1(n1) =

n1
∑

i=0

∞
∑

n=i

(

n

i

)

(1− p)ipn−ifN(n), (6.14)

FN2(n2) =

n2
∑

i=0

∞
∑

n=i

(

n

i

)

pi(1− p)n−i fN(n), (6.15)

FN1,N2(n1, n2) =

n1
∑

i=0

n2
∑

j=0

(

i+ j

i, j

)

(1− p)ipj fN(i+ j), (6.16)

where FN1 , FN2 are the CDFs of number of users in Group1 and Group2, respectively, and

FN1,N2 is their joint CDF.

Proof: Given that the total number of users per cell N is known to be n, one

can model N1 and N2 as binomially distributed with parameters (n, 1 − p) and (n, p),

respectively. Hence, the conditional pmf of N1 is given as:

fN1|N(n1|n) =
(

n

n1

)

(1− p)n1(p)n−n1 (6.17)

and (6.14) follows directly by summing over all possible values of n. Similarly, (6.15) can
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be obtained. Taking into consideration that N1 and N2 are dependent, and given that the

total number of users per cell N is known to be n, we can model their conditional joint

pmf as a multinomial distribution with parameters (n, p1, p2) such that:

fN1,N2|N(n1, n2|n) =
(

n

n1, n2

)

pn1
1 (p2)

n2(1− p1 − p2)
n−n1−n2 , (6.18)

where
(

n
n1,n2

)

= n!
n1!n2!(n−n1−n2)

is the multinomial coefficient. Thus, the joint CDF when

the two groups are complementary (adjacent) can be expressed as in (6.16).

Theorem 6.1 The network rate gain per cell µ of the hybrid NOMA/OMA scheme over

the pure OMA scheme for an average density of devices per cell ¼ is given by

µ =
2

¼
(µ1 + µ2)× E[Z], (6.19)

µ1 = log2

(

1 + εT
1+·(1−ε)T√
1 + T

)

+

log2(1+
ε

ζ(1−ε)
)

∫

log2(1+
εT

1+ζ(1−ε)T
)

1− Fc

(

2t−1
ε−·(1−ε)(2t−1)

)

1− p
dt

− 1

2

∞
∫

log2(1+T )

1− Fc(2
t − 1)

1− p
dt, (6.20)

µ2 =

∫ log2(
1+T
1+εT

)

0

1−
Fc

(

2t−1
(1−ε)−ε(2t−1)

)

p
dt− 1

2

∫ log2(1+T )

0

1− Fc(2
t − 1)

p
dt, (6.21)

where µ1 and µ2 are the rate gains of NOMA over OMA in Group1 and Group2, re-

spectively. Z is the number of NOMA pairs per cell whose CDF is given in (6.13) and

E[Z] =
∑

allz(1− FZ(z)).

Proof: In the hybrid NOMA/OMA scheme, Group1 and Group2 are not necessarily

of the same size. Hence, some devices will not be paired and will adopt OMA instead of

NOMA. For a fair comparison, only half of the bandwidth allocated for a NOMA cluster

will be allocated for those OMA devices and the rate gain of NOMA over OMA for the
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users in Group1 can be found as:

µ1 = E

[

log2(1 +
εc1

·(1− ε)c1 + 1
)− 1

2
log2(1 + c1)

]

. (6.22)

The first term in the expectation can be calculated as follows:

E

[

log2(1 +
εc1

·(1− ε)c1 + 1
)

]

=

∫

t>0

P

[

log2(1 +
εc1

·(1− ε)c1 + 1
) > t

]

dt

=

∫

t>0

P

[

c1 >
2t − 1

ε− ·(1− ε)(2t − 1)

]

dt

=

∫ log2(1+
ε

ζ(1−ε)
)

0

1− Fc1

(

2t − 1

ε− ·(1− ε)(2t − 1)

)

dt

(a)
= log2

(

1 +
εT

1 + ·(1− ε)T

)

+

∫ log2(1+
ε

ζ(1−ε)
)

log2(1+
εT

1+ζ(1−ε)T
)

1− Fc

(

2t−1
ε−·(1−ε)(2t−1)

)

1− p
dt, (6.23)

where Fc1(C) = Fc(C)−Fc(T )
1−p

if C > T and Fc1(C) = 0 otherwise, is the CDF of the

normalized SIR of the users in Group1 and (a) follows directly from this. The second

term in the expectation can be obtained directly by setting ε = 1. Similarly, for the

devices in Group2,

µ2 = E

[

log2(1 +
(1− ε)c2
εc2 + 1

)− 1

2
log2(1 + c2)

]

, (6.24)

E

[

log2(1 +
(1− ε)c2
εc2 + 1

)

]

=

∫ log2(
1
ε
)

0

1− Fc2

(

2t − 1

(1− ε)− ε(2t − 1)

)

dt

(a)
=

∫ log2(
1+T
1+εT

)

0

1−
Fc

(

2t−1
(1−ε)−ε(2t−1)

)

p
dt (6.25)

where (a) follows from the CDF of the normalized SIR of users in Group2, Fc2(C) = Fc(C)
p

when C < T and Fc2(C) = 1 otherwise. The second term in the expectation in (6.24)

can be obtained by setting ε = 0. As a result, to evaluate the network rate gain, the

achievable gain of NOMA over OMA must be multiplied by the ratio of users adopting
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NOMA relative to the total number of users, namely, 2E( Z
N
). To proceed with the analysis,

we approximate E[ Z
N
] ≈ E[Z]

E[N ]
and E(N) = ¼ for a large enough number of cells and

realizations.

To investigate the effect of the UDN environment, we steer our focus to ASE as

a performance metric given in (6.3). Hence, the ASE gain obtained from the hybrid

NOMA/OMA scheme compared to OMA is given in the following corollary.

Corollary 6.1 The ASE gain of the hybrid NOMA/OMA scheme over pure OMA is

given by:

µASE = pa × ¼s × µ (6.26)

where pa is the cell activation probability, ¼s is the density of SCs, and µ is rate gain per

cell given in (6.19).

6.4 Simulation Results

The actual cell rate gain given in (6.19) is reported using both simulation and anal-

ysis versus different system parameters. Unless otherwise stated, the SEPL parameters

are set to ³ = 0.94 and ´ = 1/2. The obtained results show perfect matching between

the Monte-Carlo simulations and the derived analytical expressions. It is noteworthy that

the actual rate gain calculated via simulations is obtained via averaging over the rates of

all the users existing in the network either adopting NOMA or OMA. This proves that

the approximation of E[ Z
N
] ≈ E[Z]

E[N ]
is acceptable. Also, in the obtained results we adopt a

perfect SIC scenario.

Fig. 6.2 shows the number of NOMA users per cell versus the SIR threshold T for

different values of SC densities (¼s). The maximum number of users adopting NOMA is

expected when Group1 and Group2 have statistically equal sizes. Hence, we note from

Fig. 6.2 that the value of the SIR threshold T which maximizes the number of NOMA
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Figure 6.2: The average number of NOMA user per cell 2×Z versus the SIR threshold T ,
for different values of Small Cell densities (¼s), MTCD density of ¼m = 0.5 devices/m2,
and activation probability of Äm = 0.1.

devices per cell yields Fc(T ) = 0.5 for the corresponding system parameters. However,

the motivation behind optimizing the value of T is to maximize the achievable rate per

cell and ASE, not the number of NOMA devices.

Hence, Fig. 6.3 shows the achievable ASE of the hybrid NOMA/OMA scheme

for different values of power allocation factors ε and SC densities (¼s). Clearly, the

performance of the hybrid NOMA/OMA scheme is a function of the threshold T which

we need to optimize. In the remaining results reported in Figs. 6.4 and 6.5, we report the

performance of the hybrid NOMA/OMA scheme at the optimum value of the threshold

T obtained via numerical calculations.

From the obtained results in Fig. 6.3, we can see that increasing the density of

SCs to double its value increases the ASE significantly for either the hybrid NOMA/OMA

scheme or the pure OMA scheme. However, this increase is not linear with the SC density

(¼s). Although the hybrid NOMA/OMA scheme achieves a significant ASE gain compared

to pure OMA, this gain diminishes with either increasing SC densities (¼s) or decreasing

the power allocation factor ε. Given this observation, one can see that NOMA becomes

no longer valuable when the SC density increases in terms of the achievable ASE. Such

behavior is clearly illustrated in Fig. 6.5 where the ASE gain diminishes with the SC
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Figure 6.3: The network ASE of the hybrid NOMA/OMA scheme and pure OMA scheme
versus the SIR threshold T , for different ¼s and ε. (Lines correspond to analysis and
markers correspond to simulation.)

density (¼s). However, NOMA can still be of great significance if the number of users to

be simultaneously served exceeds the number of available resources per cell.

In Fig. 6.4, we show that the achievable ASE through both hybrid NOMA/OMA

(with optimized SIR threshold T ) and pure OMA schemes increases with the SC density

(¼s), which motivates the concept the UDN. The SEPL parameters ³ and ´ which describe

the nature of the practical environment significantly affect the performance of the network

which becomes obvious with higher ¼s. It is noteworthy that a real scenario with actual

measurements reported in [21] is approximately represented by the settings of ³ = 0.94

and ´ = 1/2.

In Fig. 6.6, we optimize the SIR threshold T to maximize the ASE gain of the

network. At this optimal T , we report the percentage gains of the users in Group1 and

Group2 separately, considering only users adopting NOMA in each group. We notice that

within the range of 0.2 < ε < 0.45, the users in both groups achieve gain when deploying

NOMA.

It is noteworthy that if we adopt the standard path loss model, the achievable rates

per cell for either NOMA or OMA schemes will not vary with the density of SCs. This

happens due to the fact that the gain obtained in the useful signal power due to shorter
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Figure 6.4: Achievable ASE of the optimized NOMA/OMA and pure OMA schemes versus
SC density (¼s), for different environmental parameters of the SEPL model and power
allocation factor ε = 0.5.
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Figure 6.5: The percentage ASE gain of the optimized NOMA/OMA over pure OMA
versus ¼s, for different power allocation factors (ε).
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Figure 6.6: The percentage ASE gain for users in Group1 and Group2 of the optimized
NOMA/OMA versus ε, for different Small Cell densities (¼s).
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distances will be exactly eliminated by the increase of the ICI. Consequently, the ASE

increases linearly with the density of SCs (¼s) in the case of a path loss model. However,

for a practical UDN scenario, the Stretched Exponential Path Loss yields the achievable

rates per cell to decrease as the ICI dominates the power gain in the useful signal, hence,

the ASE increases sub-linearly with the SC density.

6.5 Summary

A hybrid NOMA/OMA scheme for multiple access along with a suggested clustering

scheme based on SIR is proposed. We provided analytical expressions for the network ASE

gain over pure OMA. Our results show that an optimum value of the SIR threshold exists

such that the gain from the hybrid NOMA/OMA scheme is maximized where this optimum

value is a function of power allocation ratios, SEPL parameters, and SC density as well

as MTCDs density. Finally, we show that the gain obtained from NOMA vanishes with

the increasing density of SCs and that a range of the NOMA power allocation ratio exists

such that the performance of all users is lower bounded by the achievable performance in

the case of OMA.
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Chapter 7

Supporting mMTC in

mmWave-UDNs with Wireless

Backhauling

7.1 Introduction

In the same scope as the previous chapter, we tackle mMTC use case targeted in

5GB networks. In doing so, we exploit two leading technologies in 5G, namely, UDN

and mmWave. On one hand, in a UDN, a large number of SCs exists in the network

benefiting the MTCDs by reducing the number of MTCDs associated with the same SC

and by providing a shorter serving distance to the associated SC. However, the sensed ICI

dramatically increases. On the other hand, mmWave can help mitigate severe ICI thanks

to the high penetration losses experienced in this frequency band. Besides, the gigantic

available bandwidths in the mmWave band provide each SC with a higher number of

Resource Blocks (RBs) that can be utilized to support more MTCDs per SC. Taking into

consideration the challenge of supporting the backhaul of the massive number of SCs,

we consider a massive Multiple-Input Multiple-Output (mMIMO) microwave backhauling
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system between the SC and the Central Processing Units (CPUs) of the core network

that may be attached to a second tier of macro Base Stations (BSs). Using tools from

stochastic geometry, we provide analytical expressions for the achievable performance in

terms of density of supported MTCDs, achievable SINR per MTCD, and capacity per SC

under the considered limited wireless backhaul scenario. The main contributions can be

summarized as follows:

• To fully exploit the available cellular network resources in 5G and beyond, we jointly

consider UDN and mmWave to support MTC. In particular, both severe ICI of UDNs

and high penetration losses due to blockages in mmWave band are considered.

• Considering a practical use case, we study the performance under a limited wireless

backhaul scenario while taking into account the correlated effects of different system

parameters on both AL and BH.

• We propose a sub-optimal calculation of SC density, at which the achievable gains

from the deployed SCs in terms of the limited capacity are maximized. Accordingly,

we offer network operators a reasonable estimation of the density of SCs that should

be activated.

• We formulate a novel mathematical framework and derive analytical expressions for

the density of supported MTCDs, the achievable SINR per MTCD, and the average

capacity per SC (for both AL and BH) using tools from stochastic geometry. Besides,

we derive a tight lower bound of the achievable bounded capacity.

7.1.1 Related Works

MTC supported by UDN has been widely considered in the literature as an in-

evitable use case targeted in 5G and beyond [10, 12, 19, 23, 64, 105]. In [11], the authors

provided an extensive survey on the opportunities and challenges facing MTC while sup-

ported by Non-Orthogonal Multiple-Access (NOMA) and UDN. For instance, the authors

112



in [105] considered a downlink scenario for an ultra-dense user-centric IoT network sup-

ported by non-ideal optical fiber backhaul links. The authors aimed at minimizing energy

consumption over the whole network and investigated the significance of the non-ideal

backhaul on achievable performance. In the same scope, the authors in [23] considered

coexistent HTCUs and MTCDs in a UDN under limited backhaul capacity for the HTC. it

is noteworthy that the authors therein did not specify the type of the backhauling system.

Considering unlimited backhaul capacity, the authors in [12] considered a scenario

of coexistent HTCUs and MTCDs within a UDN and sharing the available spectrum

based on a NOMA scheme. The authors investigated the downlink capacity performance

of both types of users/devices while adopting a partial idle-mode activation scenario of

certain SCs. In particular, two association schemes were considered for MTCDs, namely,

connect-to-active (C2A) and connect-to-closest (C2C) where MTCDs either associate with

the closest already-activated SC by an HTCU or associate with the closest SC in general.

A trade-off between shorter serving distance and increased ICI was investigated therein.

In [10], however, the authors adopted a hybrid NOMA/OMA approach to support MTCDs

in an UDN. The works in [19,64] considered the uplink performance of MTC either solely

or coexistent with HTC with unlimited backhaul capacity.

In the above-mentioned works, the utilized spectrum is the traditional microwave

band. Advancing into the mmWave band, many factors have to be reconsidered, ahead

of which is the blockage effect on signal propagation. In this regard, many works in the

literature adopted tools from stochastic geometry to formulate a mathematical framework

for the achievable performance in the mmWave band. For instance, in [106], the authors

considered a realistic measurement-based mmWave channel models [107] and proposed

a Signal-to-Interference plus Noise Ratio (SINR) coverage analysis framework based on

different antenna radiation patterns. By doing so, the authors defined the aligned gain

corresponding to the desired signal and the misaligned gain corresponding to the inter-

fering signals. The obtained results therein showed that, with reasonable accuracy, both
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aligned and misaligned gains combined with the channel gain can be approximated by

exponential distributions such that their corresponding means depend solely on the num-

ber of transmitting and receiving antennas. Hence, we adopt this approximation in our

considered system model.

In a different scope, the work in [108] considered a mmWave network and in-

vestigated the blockage effect on the served devices. In particular, the authors proposed

equipping some blockages with Reconfigurable Intelligent Surfaces (RISs) to achieve higher

coverage probability and reduce the blind-spot areas of devices, i.e., the areas at which

the devices are in outage due to lack of LoS SCs. Similar to [106], the authors adopted

tools from stochastic geometry to derive an analytical framework for the achievable per-

formance. The work in [109] studied the uplink performance of cell-free massive MIMO

under a mmWave fronthaul network. It is assumed that the network includes multiple

CPUs to which APs are associated in a distance-based criterion. Also, each AP commu-

nicates with its serving CPU using point-to-point communication, however, it neglects

the impact of interference on the system performance on the access link between the AP

and user equipment. Tools from stochastic geometry are applied to derive closed-from

expressions for the average achievable uplink rates. In general, interested readers may

refer to [110, 111] for more detailed analyses of blockages based on a stochastic geometry

approach.

The rest of the chapter is organized as follows. Section 7.2 describes the system

model. In Section 7.3, we perform the required mathematical analysis for the AL and the

BH. Section 7.4 includes the simulation setup and shows the obtained results along with

their discussions and insights.
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respectively. For a practical scenario, we assume an activity profile for the MTCDs with

activation probability Äm such that only a fraction Äm of the MTCDs are simultaneously

active [10]. Hence, we assume a thinned HPPP Φa
m ¢ Φm with density ¼a

m = Äm¼m to

represent the set of active MTCDs at certain time instant. It is noteworthy that typical

densities of SCs and active MTCDs would result ¼a
m k ¼s and yields almost all SCs to

be active.

To support the massive number of MTCDs, we assume that the available fre-

quency/time resources are divided into a number NRB of orthogonal RBs. Then, each SC

can serve at most NRB MTCDs within a certain TTI across the whole available bandwidth

for the access link. In particular, for a given RB, we assume that an SC can serve at most

one MTCD. Hence, each SC causes ICI towards its neighboring SCs on each of its uti-

lized RBs. To further mitigate ICI and to enhance the received signal power, we assume

that each SC is equipped with a number of transmitting antennas Ns which are used to

deploy directional beamforming towards the served MTCD. The authors in [106] used the

measurement-based mmWave channel model of the New York University (NYU) Wire-

less Group [107] and applied some curve-fitting techniques to approximate the combined

channel power gain and antenna gain |hAL|2 as follows for both aligned and misaligned

scenarios:

|hAL
q |2 ∼ exp(1/Aq), q ∈ {alg,mis}, (7.1)

where {alg,mis} refer to the aligned and misaligned scenarios, respectively. The average

combined channel and antenna gain Aq is given in [106] by

Aalg = Ns, (7.2)

Amis = 1/ sin2

(

3Ã

2
√
Ns

)

, (7.3)

where Ns is the number of transmitting antennas while assuming that each antenna el-
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ement adopts an isotropic radiation pattern. In the same scope, the beamwidth of the

directed beam is ¹alg = 2Ã/
√
Ns which corresponds to the aligned scenario while the

misaligned beamwidth becomes ¹mis = 2Ã − ¹alg.

As mentioned earlier, the mmWave signals suffer from severe penetration loss when

passing through physical blockages. In our model, we assume that the centers of blockages

are distributed according to another independent HPPP Φb with density ¼b while the

blockage lengths are assumed to be distributed uniformly between Lmin and Lmax with an

average blockage length of L̄ = (Lmin+Lmax)/2 while the widths of blockages are neglected

[108]. According to [110], one can approximate the blockage effect by an exponentially

decaying function such that the probability of a LoS link between any two nodes separated

by a distance d is

PLoS(d) = exp(−Bbd), (7.4)

where Bb = 2¼bL̄
Ã

. Hence, the probability of non-LoS link between the two nodes is

PNLoS(d) = 1 − PLoS(d). It is noteworthy that the above assumption of exponential

blockage does not take into account the correlation effect between two nodes that are in

close proximity to each other. However, such an effect can be neglected [108], especially

when the density of SCs is relatively large as in the considered UDN environment.

For the experienced large-scale fading in the AL, the state of the link z ∈ {LoS, NLoS}

yields different path loss intercepts ´AL
z and path loss exponents ³AL

z depending on the

operating frequency band. Based on actual propagation measurements for mmWave com-

munications [107,113], the path loss between a typical transmitter-receiver pair is

·AL
z = ´AL

z d−³AL
z , z ∈ {LoS,NLoS}, (7.5)

where d is the distance between the two nodes and ´AL
z is the path-loss at a 1 m dis-

tance. Although it is a common assumption in the literature that a UDN environment

is interference-limited, we can not follow such an assumption herein due to the blockage
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effect in the mmWave band. In other words, the ICI may reduce to very small values

compared to thermal noise under certain circumstances such as high density of blockages

compared to the density of SCs. Hence, throughout our investigation, both interference

and noise are considered in both simulation and analysis.

Moving to the backhaul (BH) links between the SCs and their serving CPUs, we

consider a wireless mMIMO-based backhaul network in which each SC associates to its

closest CPU over a wireless backhaul link. As we consider an indoor deployment of UDN

system, we assume that there are no LoS links between SCs and their serving CPUs which

constitutes a worst-case scenario for the backhaul communications. In that, the channel

vector between the SC s and its serving CPU cs is modeled as a Rayleigh fading channel

as follows:

gBH
css =

√

·BH
css h

BH
css , (7.6)

where hBH
css represents the backhaul small-scale fading channels vector whose entries are

i.i.d CN(0, 1). Also, ·BH
css reflects the backhaul large-scale fading channel coefficient which

can be calculated as its counterpart in the access link, but with a different reference

path-loss ´BH
z and different path-loss exponent ³BH

z . Different from the access link com-

munication, and due to the high losses accompanying signal transmission over mmWave

band under NLoS conditions, we assume that the communication links between SCs and

CPUs are carried out over the microwave band. In this regard, we consider the microwave

band around fBH
carrier = 6.5 GHz is adopted for the backhaul communication due to the

high available bandwidth in this frequency band that can handle the data transfer in the

backhaul network [114]. Co-located mMIMO-based data transmission is considered for

the communication between each CPU and its associated SCs. To this end, we assume

that each CPU is equipped with Nc microwave antennas. Also, each SC is equipped with

a dedicated microwave antenna for the backhaul communication with its serving CPU.

Taking advantage of the multiple antennas at CPU, and considering superior number

of CPU antennas to the associated number of SCs, we adopt zero-forcing (ZF) beam-
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forming/detection technique for data transmission/reception between each CPU and its

associated SCs [115]. More specifically, ZF precoding is applied at CPUs to transmit the

data of its associated SC over the backhaul network. Also, ZF detection is applied at each

CPU to detect the transmitted pilots from its associated SCs over the backhaul network.

7.3 Performance Analysis

In this section, we derive analytical expressions for the achievable SINR and the

average achievable ASE under the considered bounded wireless backhaul scenario. We

begin by assuming a typical MTCD located at the origin. This typical MTCD, according

to Slivnyak’s theorem, reflects the average achievable performance of all MTCDs when

the SCs are distributed according to a PPP. The typical MTCD tries to associate with

the SC that provides the strongest average received power. In this case, the tagged SC

can either have a LoS or NLoS link with the typical MTCD. It is noteworthy that such

SC would not necessarily be the closest one in terms of distance. However, given the high

penetration loss experienced in the mmWave band, we assume that power received from

a SC with a LoS will always dominate. Given that the CDF of the distance between the

typical MTCD and its closest LoS SC is

FLoS
r (r) = 1− exp

(

−2Ã¼s

B2
b

(1− (1 + Bbr)e
−Bbr

)

, (7.7)

hence, the pdf of the distance between the typical MTCD and its tagged LoS SC, given

that the LoS exists, can be expressed as

fLoS
r|LoS(r) =

2Ã¼sr

1− poutm

exp

(

−Bbr − 2Ã¼s
1− (1 + Bbr)e

−Bbr

B2
b

)

, (7.8)

119



where poutm is the LoS SC outage probability for the typical MTCD calculated as

poutm = FLoS
r (∞) = exp(

−2Ã¼s

B2
b

). (7.9)

Then, the probability of the typical MTCD being associated with an SC would be

passocm = 1− poutm . (7.10)

7.3.1 Density of Served MTCDs

Similar to (7.9), the probability that a SC does not have any associated MTCD

can be expressed as pouts = exp(−2Ã¼a
m

B2
b

). It is clear that such probability approaches zero

when either the density of active MTCDs ¼a
m is very high or the blockage parameter Bb

is relatively small. In addition, in case of no blockage, the idle mode probability of a

SC defined as the probability of no associated MTCDs is pidles = (3.5¼s/(3.5¼s + ¼a
m))

3.5.

Although, the idle mode probability of SCs plays a vital role in an UDN environment

when calculating the ICI, in our system model, such probability can be neglected due

to the very high density of active MTCDs compared to the density of SCs. Hence, the

density of active SCs can be approximated by ¼a
s ≈ (1− pouts )¼s.

Then, to find the density of supported MTCDs, we need to calculate the number

of supported MTCDs by each active SC. First, we find the distribution of the number of

MTCDs N associated to the SC serving the typical MTCD. In doing so, we refer to [10],

in which the required pmf of N is given by

fN(n) =
( 35
¼+35

)3.5

Γ(3.5)

(

¼

¼+ 3.5

)n
Γ(n+ 3.5)

Γ(n+ 1)
; n g 0, (7.11)

where ¼ = passocm ¼a
m/¼

a
s is the average number of active and non-outage MTCDs associated

to an active SC and Γ(.) is the gamma function defined as Γ(x) =
∫∞
0

tx−1e−xdx. Then, the
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number of supported MTCDsMm per an active SC would be given byMm = min(N,NRB).

Since, w = min(x, y) yields Fw(w) = Fx(w) + Fy(w) − Fx,y(w,w), then, the distribution

of Mm, given that N and NRB are independent and NRB is constant, is

FMm(m) =











FN(m) =
∑m

n=0 fn(n) ; 0 f m < NRB

1 ; m g NRB

, (7.12)

fMm(m) =























fN(m) ; 0 f m < NRB

∑∞
n=NRB

fn(n) ; m = NRB

0 ; m > NRB

. (7.13)

Accordingly, the density of served MTCDs would be obtained as

¼supp
m = ¼a

s × E[Mm] = ¼a
s ×

NRB
∑

m=0

mfMm(m), (7.14)

where M̄m = E[Mm] is the average number of supported MTCDs per SC. Hence, the

probability that an active MTCD is allocated a RB by its associated SC is

pallocm =
M̄m

NRB

. (7.15)

7.3.2 Achievable SINR on Access Link

In this subsection, we provide the main mathematical analysis for the AL. An active

MTCD is denoted as a supported MTCD when it associated to a SC (with probability

passocm given in (7.10)) and allocated a RB (with probability pallocm given in (7.15)). After-

wards, the achievable SINR by the typical supported MTCD located at the origin would

be

µAL
0 =

S0

I0 + Ã2 ×WAL
RB

, (7.16)
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where S0 is the useful signal power received at the typical MTCD, I0 = Ialg0 + Imis
0 is the

sensed ICI generated from other active LoS SCs which are either aligned or misaligned

towards the typical MTCD, Ã2 is the power density of the thermal noise at the receiver,

and WAL
RB = WAL/NRB is the available AL bandwidth per RB. Following the previous

discussions, the useful signal power at the typical MTCD can be represented as

S0 = P 0
s ´AL

LoS |hAL
alg |2 r

−³AL
LoS

0 , (7.17)

where P 0
s is the transmission power level of the serving SC of the typical MTCD, ´AL

LoS

and ³AL
LoS are the path loss intercept and path loss exponent given in (7.5), respectively,

|hAL
alg |2 is combined aligned channel power and antenna gain given in (7.1), and r0 is the

distance between the typical MTCD and its serving SC for which its distribution is given

in (7.8).

Lemma 7.1 The CCDF of the received signal power at the typical supported MTCD can

be obtained as follows

P[S0 > Sth] =

∞
∫

0

exp

(

− Sth r³
AL
LoS

P 0
s ´

AL
LoS Aalg

)

fLoS
r|LoS(r) dr. (7.18)

Proof: Starting from (7.17), we have

P[S0 > Sth] = EΦLoS
s

[

P

(

|hAL
alg |2 >

Sth r
³AL
LoS

0

P 0
s ´AL

LoS

)

| r0

]

,

a
= EΦLoS

s

[

exp

(

− Sth r
³AL
LoS

0

P 0
s ´AL

LoS Aalg

)

| r0

]

, (7.19)

where ΦLoS
s is the thinned PPP of LoS active SCs with density ¼LoS

s (d) = PLoS(d) × ¼a
s

and (a) is obtained from the exponential distribution of |hAL
alg |2 given in (7.1). Then, (7.18)
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follows directly by using the pdf of the serving distance of the LoS SC given in (7.8).

Next, we move to deriving the CCDF of the achievable SINR for the typical sup-

ported MTCD. Following (7.16), we provide the SINR coverage probability in the following

theorem.

Theorem 7.1 The SINR coverage probability of supported MTCDs, i.e., MTCDs which

are associated with a LoS SC and allocated a RB, is given by

P[µAL > µth] =

∞
∫

0

e
− γthσ2WAL

RBr
αAL
LoS

P0
s βAL

LoS
Aalg

∏

q∈{alg,mis}
LIq

(

µth r³
AL
LoS

P 0
s ´

AL
LoSAalg

)

fLoS
r|LoS(r) dr, (7.20)

LIq

(

µth r³
AL
LoS

P 0
s ´

AL
LoSAalg

)

= exp











−Ã pallocm pq¼
a
s (

µthAq

Aalg

)
2
α r2

∞
∫

(
γthAq
Aalg

)−2/α

e
−Bb(

γthAq
Aalg

)1/α r
√
u

1 + u
α
2

du











,

(7.21)

where q ∈ {alg,mis} and palg = ¹alg/2Ã, pmis = 1− palg are the probabilities of the inter-

ferer being aligned or misaligned, respectively. pallocm is the probability that the considered

RB is being utilized given in (7.15).

It is noteworthy that for the inner integral given in (7.21) to be numerically solvable, we

had to approximate the variable (r) by stair function with fixed value through each step.

Proof: Appendix B.3

Having the SINR distribution at hand, we move to the next step which is deriving

the distribution of the AL achievable capacity per SC. First, we define the achievable rate

by the typical MTCD as [116],

Ä(µ′) =











Ä ′ ; µAL g µ′

0 ; otherwise
, (7.22)
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where Ä ′ = WAL
RB log2(1 + µ′) and µAL is the achievable SINR. P[µAL > µ′] can be

obtained from (7.20) where µ′ is determined based on the receiver sensitivity and the

required performance in terms of achievable rate and bit error rate. Hence, the achievable

rate per typical MTCD Ä(µ′) is a random variable that follows a Bernoulli distribution

with parameter p = P[µAL > µ′], however, it is multiplied by a constant value of Ä ′ =

WAL
RB log2(1 + µ′). Accordingly, for a fixed number of supported devices per SC, let it be

Mm
′, the number of MTCDs achieving non-zero rate would follow a binomial distribution

with parameters p andMm
′. However, the number of supported devices per SCMm, whose

distribution is given in (7.13), is not fixed. From the definition of a Bernoulli distribution,

the CCDF of Ä(µ′) is

P[Ä(µ′) > Äth] =























1 ; Äth < 0

P[µAL > µ′] ; 0 f Äth < Ä ′

0 ; Äth g Ä ′

. (7.23)

Hence, the distribution of the achievable capacity on the AL per SC is given in the

following theorem.

Theorem 7.2 The CCDF of the achievable capacity per active SC over the access link is

P[CAL
s > Cth] =

NRB
∑

m=1

P

[

Ä(µ′) >
Cth

m

]

P[Mm = m], (7.24)

where the CCDF of Ä(µ′) is given in (7.23) and the distribution of Mm is given in (7.13).

Proof: The achievable capacity per SC on the AL is determined by the number of

supported devices per SC Mm and ow many of them satisfy the threshold SINR value

µ′. Since the achievable rate by each of the supported devices is Ä(µ′), then, the total

achievable capacity of a specific SC will be CAL
s = Ä(µ′)×Mm. Hence, the CCDF of CAL

s
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is

P[CAL
s > Cth] = EMm

[

P
[

Ä(µ′)×Mm > Cth | Mm

]

]

,

= EMm

[

P
[

Ä(µ′) >
Cth

Mm

| Mm

]

]

, (7.25)

which directly leads to (7.24) by summing over all possible values of Mm g 1 and multi-

plying by its pmf correspondence given in (7.13), hence, completes the proof. Note that

for Mm = 0, this means no associated MTCDs, i.e., N = 0, and the SC would be inactive.

Consequently, one can obtain the average achievable capacity per active SC over

the access link CAL
s as follows,

C̄AL
s =

∞
∫

0

P[CAL
s > c]dc,

(a)
=

NRB
∑

m=1

P[Mm = m]

mÄ ′
∫

0

P[µAL > µ′]dc,

= pÄ ′
NRB
∑

m=1

mP[Mm = m], (7.26)

where p = P[µAL > µ′], Ä ′ = WAL
RB log2(1 + µ′), and (a) is obtained from (7.23).

7.3.3 Backhaul Communication

During the backhaul communication, a certain CPU should convey the correspond-

ing symbols of served users by one of its associated SCs. Consequently, each CPU is

required to send different symbols to its associated SCs over the backhaul network. This

problem can be considered as a beamforming problem in which each CPU exploits the

multiple antennas at its side to direct the different data to different SCs simultaneously

over the same time-frequency resources. In this regard, we assume that each CPU has

perfect channel state information of its associated SCs. This can be justified as both SCs

and CPUs are deployed at fixed locations with high-altitude antenna elements of the CPU.
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This leads to wireless backhaul links with long channel coherence time in which a perfect

channel estimation of the deployed SCs can be readily obtained. Moreover, to assure a

good backhaul performance, we apply ZF precoding for data transmission between CPU

and its associated SCs. Let us consider ȷs as the composite signal to be transmitted to

the sth SC from its serving CPU. Thus, the received signal at SC s is given by

ȷ̆s =
√

Pc

∑

s′∈Mc

√

µ̆s′(g
BH
css )

TQs′ȷs′ + ws, (7.27)

where Pc denotes the DL transmission power at CPUs and Mc being the set of associated

SCs to the CPU c. In addition, ws reflects the additive thermal noise at the sth SC. The

precoding vector Qs′ for the data to be transmitted to SC s′ ∈ Mc is given by

Qs′ =
(

GBH
cs

)∗
(

(

GBH
cs

)T (
GBH

cs

)∗
)

Inves′ , (7.28)

whereGBH
cs represents the backhaul channel matrix between the CPU cs and its associated

SCs. Also, em′ denotes the m′th column in the identity matrix IMcs
where Mcs represents

the number of associated SCs to the CPU cs. The term µ̆s′ denotes the power normalization

factor for the precoding vector of SC s′ ∈ Mcs that can be calculated as follows:

µ̆s′ =
1

McsE

{[(

(

GBH
cs

)T (
GBH

cs

)∗
)

Inv

]

(s′,s′)

} . (7.29)

Thus, the received signal at the sth SC can be rewritten as follows:

ȷ̆s =
√

Pcµsȷs + ws. (7.30)

Capitalizing on Lemma 2.9 in [117] for Mc × Mc central complex Wishart matrix with

Nc degree of freedom which satisfies Nc g Mc + 1, the power normalization factor for the
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precoding vector of SC s′ can be calculated as follows:

µ̆s′ =

(

Nc −Mcs

)

·BH
css

Mcs

. (7.31)

Consequently, the provided backhaul capacity in bps/Hz to SC s from its serving CPU

will be

CBH
s = WBH log2

(

1 +
Pc

(

Nc −Mcs

)

·BH
css

McsW
BH(Ãȷ

w)2

)

, (7.32)

whereNc is the number of transmitting antennas per CPU,Mcs is the number of associated

SC to the CPU, and WBH is available bandwidth for backhaul communications.

Theorem 7.3 The CCDF of the achievable capacity per active SC over the backhaul link

is

P[CBH
s > Cth] =

Nc−1
∑

mc=1,2,...



1− exp



−Ã¼c

(

Pc´
BH(Nc −mc)

mcWBH(Ãȷ
w)2
(

2Cth/WBH − 1
)

) 2

αBH







P [MCs = mc] , (7.33)

where the pmf of the number of SCs associated to the CPU MCs can be obtained from

(7.11) by setting ¼ = ¼a
s/¼c.

Proof: Appendix B.3

Similar to (7.26) but adopting a different approach for the continuous random

variable CBH
s , the average capacity per SC over the backhaul link can be obtained as

C̄BH
s =

∞
∫

0

P[CBH
s > c]dc,

=
Nc−1
∑

mc=1,2,...

P [MCs = mc]

∞
∫

0



1− exp



−Ã¼c

(

Pc´
BH(Nc −mc)

mcWBH(Ãȷ
w)2
(

2c/WBH − 1
)

) 2

αBH







 dc.

(7.34)
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Finally, the achievable capacity per active SC is the minimum capacity achievable

on both access link and backhaul link, i.e.,

Cbounded
s = min

(

CAL
s , CBH

s

)

, (7.35)

P[Cbounded
s > Cth] = P[CAL

s > Cth, C
BH
s > Cth]. (7.36)

It is noteworthy that CAL
s and CBH

s are not independent as they both depend on the

density of active SCs. However, for tractability, we will assume independence between

them to achieve an approximation for the achievable capacity per SC. In particular,

C̄bounded
s =

∞
∫

0

P[Cbounded
s > c]dc,

≈
Nc−1
∑

mc=1,2,...

NRB
∑

m=1,2,...

P [MCs = mc]P[Mm = m]

×
∞
∫

0



1− exp



−Ã¼c

(

Pc´
BH(Nc −mc)

mcWBH(Ãȷ
w)2
(

2c/WBH − 1
)

) 2

αBH







P

[

Ä(µ′) >
c

m

]

dc,

=
Nc−1
∑

mc=1,2,...

NRB
∑

m=1,2,...

P [MCs = mc]P[Mm = m]

× p ×
mÄ ′
∫

0



1− exp



−Ã¼c

(

Pc´
BH(Nc −mc)

mcWBH(Ãȷ
w)2
(

2c/WBH − 1
)

) 2

αBH







 dc, (7.37)

where last step is obtained similar to (7.26) such that p = P[µAL > µ′] and Ä ′ =

WAL
RB log2(1 + µ′).

7.4 Simulation Results

In order to verify the accuracy of the derived analytical expressions, we perform

Monte-Carlo simulations and compare the results from both simulations and analysis.

In the shown figures, lines indicate analysis and markers represent simulations unless
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mentioned otherwise. Thousands of spatial realizations are performed and averaged over

an area of 1× 1 km2. The simulation parameters are chosen to reflect practical scenarios.

Unless otherwise stated, the density of MTCDs is set as one device per square meter.

Amongst the existing MTCDs, only a fraction Äm = 10% are assumed to be active and

having data ready to be received. The number of transmitting antennas at the CPU and

SC are Nc = 250 and Ns = 10, respectively. The operating center frequency of the AL

is fAL
c = 73 GHz and the available bandwidth is WAL = 1 GHz with number of RBs

NRB = 10 or 100. For the BH, the operating frequency is fBH
c = 6.5 GHz with allocated

bandwidth of 200 MHz. The noise power is set to −174 dBm/Hz. The density of blockages

is assumed 1, 000 blockages per km2 with uniform length distribution between 5 m and

15 m. The SINR threshold is set to µ′ = 0 dB. The path loss exponents are chosen as

³AL
LoS = 3.1 and ³BH = 3 to reflect an urban environment. The corresponding path loss

intercepts are ´AL
LoS = 20 log10(4Ãd0f

AL
c /(c)) and ´BH = 32.4+20 log10(f

BH
c ×10−9) where

c = 3× 108 is the speed of light [113].

7.4.1 Density of supported MTCDs

In Fig.7.2, we show the effect of deploying more SCs on the density of MTCDs

that have LoS links with at least one SC. An MTCD with no LoS SC is considered at

outage. It can be seen that within an environment with dense blockages, increasing the

density of SCs to around 0.3 of the density of blockages, given the considered distribution

of blockage lengths, leads to a scenario where almost all MTCDs have an associated LoS

SC, i.e., no outage. However, depending on the number of RBs available at each SCs,

only limited number of such MTCDs with associated SCs can be supported.

Accordingly, in Fig.7.3, we show the density of MTCDs with allocated RBs. For

those MTCDs without allocated RBs at certain time interval, they can be prioritized in the

next time interval to be allocated a RB, however, such investigation of scheduling problem

is beyond the scope of this work. In Fig.7.3, we investigate the impact of increasing SC
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Figure 7.2: Density of MTCDs associated to a LoS SC.
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Figure 7.3: Density of MTCDs with an allocated RB.

density under different combinations of active MTCD density and available number of

RBs at each SC. One can expect and notice the positive impacts of increasing both the

density of SCs (¼s) as well as the number of RBs (NRB) available at each SC. However,

it should also be noted that increasing both ¼s and NRB may become useless beyond

certain limits depending on the density of active MTCDs ¼a
m. For example, in both top

and bottom curves of Fig.7.3, having a total density of RBs equal to the density of active

MTCDs (at ¼s = 1, 000 SCs/km2), i.e., NRB × ¼s = ¼a
m, would yield only 80 percent of

the active MTCDs to be allocated RBs.

On the other hand, increasing such total density of RBs to triple the density of

active MTCDs leads to all MTCDs being allocated RBs. Interestingly, one can also notice

that the impact of increasing the number of RBs per SC is equivalent to increasing the SC
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Figure 7.4: Density of SINR-active MTCDs, achieving SINR above the predetermined
threshold (µ′). Markers indicate simulation and lines represent analysis.

density on the density of MTCDs with allocated RBs. However, such trade-off between

density of SCs and number of RBs per SC would lead to different results in terms of the

achievable SINR as can be seen in next figures.

In Fig.7.4, we show the impacts of three different system parameters, namely, the

number of transmitting antennas per SC used to deploy beamforming in the mmWave

band Ns, the number of RBs available at each SC NRB, and the predetermined SINR

threshold used to define the modulation scheme and transmission rate for each MTCD

µ′. First, similar to ¼assoc
m in Fig.7.2 and ¼alloc

m in Fig.7.3, increasing the both ¼s and NRB

leads to higher density of SINR-active MTCDs (¼active
m ), however, until all MTCDs are

SINR-active. Interestingly, it can be noted that that when the product NRB ×¼s is fixed,

the case with larger NRB yields a slightly higher density of SINR-active MTCDs. This

can be resolved to the lesser ICI sensed when the number of RBs is large which yields

more MTCDs achieving the threshold SINR over their links. However, the allocated

bandwidth for each RB is smaller which means lower achievable rate by each MTCD.

Second, increasing Ns should improve received signal powers and reduce the ICI sensed at

the MTCDs, which can be easily noted under all scenarios. Finally, although increasing

the value of µ′ would yield higher achievable rate per active MTCD as given in (7.22), it

yields significantly lower density of SINR-active MTCDs ¼active
m .
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Figure 7.5: CDF of the sensed ICI obtained through Mont-Carlo simulations and com-
pared to the thermal noise level to show interference-limited regime versus noise-limited
regime (NRB = 10).

7.4.2 Achievable SINR on the Access Link

In a different scope, we show in Fig.7.5 how does the system move from noise-limited

regime to interference-limited regime and vice versa under different system conditions.

The thermal noise at the receiver is fixed and depends on the reception bandwidth which

in turn depends on the available bandwidth and number of orthogonal RBs. In Fig.7.5,

we can see that for a relatively high SC density ¼s and moderate density of blockages, the

system is interference-limited. However, when either the density of SC is relatively small

and/or the density of blockages (or equivalently, their average lengths) is high, the system

becomes noise-limited. Hence, such behavior confirms the importance of considering both

interference and noise when investigating the the performance of our system model. Since

there is no analytical expression for the ICI, the different curves shown therein are obtained

only through Mont-Carlo simulations.

Consequently, Fig.7.6 shows the accuracy of the obtained analytical expression of

the achievable SINR over the mmWave AL given in Theorem 7.1 under different com-

binations of the AL system parameters. It can be noted that increasing ¼s leads to a

slight improvement in the SINR thanks to the reduced serving distance and higher re-

ceived power from the associated SC compared to and despite the higher sensed ICI. Also,
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Figure 7.6: CDF of the achievable SINR of active MTCDs with allocated RBs. Markers
indicate simulation and lines represent analysis.

increasing the blockage density ¼b leads as well to a higher SINR due to the reduction in

the sensed ICI. Intuitively, increasing the number of transmitting antennas Ns helps to

improve the achievable SINR. Finally, increasing the number of RBs available at each SC

NRB yields significant SINR improvement for two reasons. First, the thermal noise level

decreases with the smaller bandwidth for each RB. Second, with higher NRB and the fact

that active MTCDs are randomly allocated the RBs, less number of RBs become utilized

which significantly reduces the amount of sensed ICI.

7.4.3 Average Capacity per SC

In Fig.7.7, we investigate the effect of different system parameters on the average

capacity per SC between the SC itself and its served MTCDs, referred to as the Access Link

(AL). First, consider the black curve with x-markers (µ′ = 0, NRB = 100, and Ns = 10) as

a reference set of parameters. In particular, one can notice the existence of an optimal ¼s

that maximizes the AL average capacity per SC. When ¼s is small, the serving distances

of MTCDs towards their serving SCs are relatively large, almost all available RBs will be

utilized, and the system lies in the noise-limited regime. While ¼s slightly increases, the

system remains in the noise-limited regime as explained in Fig.7.5, however, the SCs start

to get closer to the MTCDs which enhances the received signal power at MTCDs, the
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Figure 7.7: Average achievable capacity per SC on the Access Link (AL). Markers indicate
simulation and lines represent analysis.

achievable SINR per MTCD, and the number of SINR-active MTCDs per SC. Hence, the

AL average capacity per SC increases in return. As ¼s increases beyond certain limit, the

system switches to the interference-limited regime and no more gain can be achieved in

terms of the SINR since the gain in the received signal power would be mitigated by higher

interference levels. Moreover, as ¼s further increases, the number of MTCDs associated

with a SC decreases. When the available RBs per SC become unutilized, a reduction in

the AL average capacity per SC is encountered.

Increasing the number of transmitting antennas per SC Ns would improve the AL

average capacity per SC, however, with the added cost of the additional antennas to be

deployed. It is important to notice for large ¼s, the achievable gain from increasing Ns gets

negligible since more RBs become unutilized as shown by the square markers in Fig.7.7.

In a different scope, increasing the value of the predetermined SINR threshold µ′ leads to

decreasing the number of SINR-active MTCDs per SC while increasing the achievable rate

by each of those SINR-active MTCDs. The combined effects of the latter can be seen to

increase the total capacity per SC. In other words, it can be deduced from the right-most

curve in Fig.7.6 that the probability of MTCDs being SINR-active would reduce from

around 0.95 to only 0.8 when µ′ changes 0 dB to 10 dB. On the other hand, the average

achievable rate per MTCD would increase to log2(11)/ log2(2) of its initial value as can
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be derived from (7.22).

Finally, reducing the number of RBs per SC in Fig.7.7, i.e., NRB = 10 instead of

NRB = 100 results in some changes in the achievable performance. On one hand, when

the system operates in the noise-limited regime (i.e., ¼s is small), some degradation in

the average capacity per SC can be noted due to the increased bandwidth per RB and

consequently the higher value of thermal noise. On the other hand, when the system

operates in the interference-limited regime (i.e., ¼S is large), having fully utilized RBs,

even for larger densities of SCs, yields higher capacity per SC. However, such a scenario

means smaller density of supported MTCDs as shown in Fig.7.3 and Fig.7.4.

It is noteworthy that deploying more SCs is accompanied with additional costs.

Hence, maximizing the achievable capacity per SC would constitute a tempting and non-

negligible objective for network designers. Besides, it is to be noted that maximizing the

AL average capacity per SC would not necessarily lead to actual maximization of the

bounded capacity given the limited wireless backhaul capacity which depends on ¼s as

well. Consequently, in Fig.7.8 we show the average capacity per SC on the backhaul links.

The obtained results show the positive gains acquired by increasing both the number of

transmitting antennas per CPU Nc as well as the density of CPUs ¼c when the density of

SCs is fixed. It can be noted that increasing the number of CPUs has a more significant

effect than increasing the number of antennas per CPU on the BH average achievable

capacity per SC, however, with a higher cost.

Fig.7.9 concludes the results obtained in Fig.7.7 and Fig.7.8. In particular, we

investigate the effect of multiple system parameters on the actual achievable capacity per

SC which is bottle-necked by both the AL capacity and BH capacity. In our mathematical

analysis in the previous section, we were able to derive an analytical lower bound for the

average bounded capacity per SC. The achievable instantaneous capacity per SC is the

minimum between the AL and the BH, however, we show the average capacity per SC

in Fig.7.9. In this regard, one can notice how tight is the derived lower bound from the
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Figure 7.8: Average achievable capacity per SC on the Backhaul link (BH). Markers
indicate simulation and lines represent analysis.

actual results obtained through heavy simulations. Besides, we show the existence of an

optimal ¼s at which the network operator can achieve the maximum benefit from the

deployed SCs.

7.5 Summary

In this chapter, we investigate the performance of massive Machine-Type Commu-

nication (mMTC) in an Ultra-Dense Network (UDN) environment while utilizing the mil-

limeter Wave band and considering a wireless backhaul support for the SCs. In particular,

we take into account the significant effect of blockages over mmWave signal propagation

as well as the severe Inter-Cell Interference (ICI) of UDNs. In this regard, we show how

the system may vary between interference-limited and noise-limited regimes based on the

relative densities of small cells and blockages. Moreover, the implications of the limited

capacities of the wireless backhaul links and the correlation between the access link and

the backhaul link are investigated. The derived analytical expressions for the density of

supported MTCDs and the average capacity per SC can be used to tune different system

parameters to achieve enhanced performance. For instance, we show that an optimal

value of SC density can be determined to maximize the utilization of the deployed SCs.
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Figure 7.9: Average achievable bounded capacity per SC. Markers indicate simulation
and lines represent the analytical lower bound.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Ultra-Dense Network (UDN) is one of the leading technologies in 5G and be-

yond networks aiming at tackling different use cases such as enhanced mobile broadband

(eMBB), ultra-reliable and low-latency communication (URLLC), and massive machine-

type communication (mMTC). In this thesis, we explored some of the rising challenges in

future cellular networks and proposed promising solutions within the UDN architecture

while integrating other supportive technologies. In particular, we focused on supporting

both human-type communication (HTC) and machine-type communication (MTC) either

separately or simultaneously. For HTC, we targeted providing high data rates, support-

ing computation-intensive applications, and securing data transfer between the users and

their associated small cells (SCs). For MTC, we aimed at supporting a massive number

of devices simultaneously. In doing so, we took into account the accompanying challenges

of UDNs such as the limitations imposed on supporting an enormous number of SCs with

ideal backhaul links, the severe inter-cell interference (ICI) in UDNs, and the complexity

and time associated with performing system-level simulations. Significant contributions

have been made in this thesis, which is evident from the track record of publications that
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resulted from this research work. In the following, we briefly conclude the work presented

in this Ph.D. thesis:

1. The UDN architecture is used in 5G and beyond networks to support various use

cases, including enhanced mobile broadband, ultra-reliable and low-latency commu-

nication, and massive machine-type communication.

2. Our research focused on supporting both human-type communication and machine-

type communication separately or simultaneously.

3. To achieve high data rates for human-type communication, a multiple-association

scheme was adopted where each user associates with multiple small cells in its vicin-

ity. This scheme was shown to provide gains under limited backhaul capacity con-

straints, which are common in UDNs.

• The MultiCell size, or the number of associated small cells, was shown to be

able to be optimized for different system parameters such as backhaul capacities

and densities of small cells and human-type users.

• The potential gains that can be acquired by coexisting machine-type devices

from the excess number of activated small cells were investigated. It was shown

that a higher density of machine-type devices can be supported.

4. To reduce the total delay in processing computation-intensive tasks for human-type

users, edge computing servers were integrated within the small cells of the UDN,

and an offline adaptive task division technique was proposed.

• The MultiCell size was found to need to be optimized in relation to different

system parameters such as the densities of small cells and human-type users,

and the processing capabilities of the human-type users and edge computing

servers.
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5. A multiple-association physical layer security protocol was proposed to increase the

average secrecy rate per human-type user by splitting data traffic into multiple paths

to provide spatial diversity against potential eavesdroppers.

• The secrecy performance was shown to improve with increasing the MultiCell

size and/or the density of small cells. However, higher densities of human-type

users or eavesdroppers resulted in degradation of the average secrecy rate per

user, which could be fully mitigated by increasing the MultiCell size.

6. A hybrid non-orthogonal multiple-access (NOMA)/orthogonal multiple-access (OMA)

scheme was proposed for machine-type communication using a clustering process

based on the signal-to-interference ratio (SIR).

• An optimum value of the SIR threshold was found to exist that maximizes the

gain from the proposed scheme, and this value was shown to be a function of

the NOMA power allocation ratio, SEPL parameters, small cell density, and

machine-type device density.

• The gains obtained from NOMA were found to vanish with increasing density

of small cells, where the performance of all users was lower bounded by the

achievable performance in the case of OMA.

7. Our research also investigated a scenario of a UDN environment utilizing the mil-

limeter wave band and considering a wireless backhaul of the small cells.

• It was shown how the system can vary from an interference-limited regime to

a noise-limited regime and vice versa based on the relative densities of small

cells and blockages.

• The implications of the limited capacities of the wireless backhaul links and the

correlation between the access link and the backhaul link were also investigated.
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• Different system parameters can be adjusted to achieve enhanced performance.

For example, it was shown that an optimal value of small cell density can be

determined to maximize the utilization of deployed small cells.

8.2 Future Work

In this section, we shed light on some directions of future research that can further

extend the contributions of this thesis:

1. Stochastic geometry provided us with analytical expressions that can be used to tune

several system parameters in order to enhance the achievable performance. However,

resource allocation optimization in terms of frequency, power, andMultiCell size can

help us to achieve further significant enhancements. It is noteworthy that the large

scale of the number of nodes considered in this thesis requires careful selection of

the optimization technique to provide a practical implementation. For example,

machine learning techniques can be promising candidates.

2. Interference management is crucial for the deployment of UDN. ICI is seen as the

dominant limiting factor of achievable performance due to the large number of SCs.

In this thesis, we considered idle mode capability as one alternative for mitigating

the ICI. However, with the massive number of MTCDs that may yield activating

all SCs, other alternatives should be considered. The integration of a multiple-

input multiple-output (MIMO) system within the UDN architecture can significantly

boost the achievable performance and help to mitigate the severe ICI. A careful

design of the MIMO system and resource allocation towards HTC and MTC should

be investigated in future works.

3. In this thesis, we considered two use cases of 5G, namely, eMBB and mMTC with aid

of UDNs and other integrated technologies. Future works may be directed towards
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the third use case which is URLLC to show how the UDN resources can be ideally

exploited to enhance the reliability and latency performance of certain users.

4. Integrated access and backhaul (IAB) in UDNs may be challenging due to the severe

ICI in addition to the self-interference. However, it is impractical and/or infeasible

to support the massive number of SCs in UDNs with optical fiber backhaul links.

Further investigation should be allocated to IAB in UDNs with proper allocation of

resources and careful handling of the accompanying interferences.

5. Energy consumption or energy efficiency is crucial for the environment and for

limited-battery devices such as IoT devices. Special attention should be given to

energy consumption in UDNs where the massive number of SCs can exaggerate the

amount of energy dissipated into the network. On the other hand, with the SCs

getting closer to the MTCDs, less power may be needed for uplink transmissions

which helps to extend the battery lifetime of the MTCDs. The tradeoff between the

energy consumption of SCs and that of MTCDs should be carefully investigated in

future works.
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Appendix B

Proofs

B.1 Proofs of Chapter 3

Proof of Theorem 3.1

Given the equal bandwidth allocated to each tier, the instantaneous achievable rate

by the typical user from its associated cell on tier-k given that it is not disconnected is

given by

RM
k =

1

M
log2(1 + µk). (B.1)

With µk given in (3.10), one can evaluate the Complementary Cumulative Distribution

Function (CCDF) of µk as follows

P[µk > ·] = EI′k,rk
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where EX [.] denotes expectation over the random variable X and (a) follows from the

unit mean exponential distribution of the channel gain hk corresponding to the Rayleigh

small scale fading. LI′k
(s) = EI′k

[e−sI′k ] is the Laplace transform of the normalized ICI on

tier-k, I ′k, given in (3.11). Hence,

LI′k
(s) = EI′k

[

e−sI′k

]

= EΦa
k,hj
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where the last step is obtained given that all small scale fading coefficients are i.i.d.. From

the probability generating function of an HPPP, one can find that [22]
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= exp
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
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where ¼′ is the density of the HPPP Φ and R
2 is the two dimensional Euclidean space.

Since the power of the channel gain, h, is exponentially distributed with mean µ, then,
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[

e−ϱh
]
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. (B.5)

Using (B.3), (B.4), and (B.5),
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Finally, the average achievable rate per a user solely served by the kth closest and given

that the cell is connected is obtained as

R̄M
k = E

[

RM
k

]

=

∫ ∞

0

P
[

RM
k > t

]

dt

=

∫ ∞

0

P
[

µk > 2Mt − 1
]

dt. (B.7)

Using (B.2) with (B.7) yields (3.12) which completes the proof.

Proof of Corollary 3.1

Starting from (3.14) and following similar steps as in [21], we have
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(a) is obtained by setting x = e−³vβ and ´ = 2
n+1

and (b) by setting x = we−³r
2

n+1
. Using

the binomial expansion and setting u = − lnw and s = ·e³r
2

n+1
with some mathematical

manipulations, one can obtain (3.15) which completes the proof.
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Proof of Theorem 3.2

Following the same steps in the proof of Theorem 1, the CCDF of µu
hp is

P[µup
h > ·] = EIuph ,r1
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where the ICI experienced in the uplink HTC is Iuph =
∑

j∈Φa
1
hje

−³rβj . Note that we

considered Φa
1 not Φh since multiple users lying in the same Voronoi cell will share the

resources orthogonally, hence, will not cause interference simultaneously. The Laplace

transform of the ICI with the approximation considered in (3.20) and with replacing ¼h

by ¼a
1 is given by [61]
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Using (B.9) and (B.10) and the fact that only a fraction É of the bandwidth is allocated

for the HTC yields (3.21) which completes the proof.
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B.2 Proofs of Chapter 4

Proof of Lemma 4.2

Using (4.5) and (4.9), the CCDF on Tier-k is,
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where EZ [.] denotes expectation over random variable Z, (a) is obtained from the exponen-

tial distribution with unit mean of hk, and LIk(s) = EIk [e
−sIk ] is the Laplace transform of

the normalized ICI sensed at the tagged SC on Tier-k. Given that Ik =
∑

j∈Φh,k\u0
hjr

−¸
j ,

then,

LIk(s) = EΦh
k ,hj



exp



−s
∑

j∈Φh
k\u0

hjr
−¸
j









(a)
= EΦh

k





∏

j∈Φh
k\u0

Eh

[

exp(−s h r−¸
j )
]





(b)
= exp



−pk¼h

2Ã
∫

0

∞
∫

r′

(

1− Eh

[

e−shv−η
])

vdvd¹





(c)
= exp



−2Ãpak¼s

∞
∫

r′

(

1− 1

1 + sv−¸

)

v dv





(d)
= exp

(

−Ãpak¼s s
2
η

∫ ∞

r′2

s2/η

1

1 + u
η
2

du

)

. (B.12)
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where (a) is obtained assuming that all small scale fading coefficients are independently

and identically distributed (i.i.d.), (b) is derived using the probability generating function

of an HPPP [22], (c) is obtained using (4.8) and the mean of an exponential random

variable, and finally, (d) is derived by setting u = v2

s2/η
. Substituting by (B.12) and (4.9)

into (B.11) while considering an interference-limited scenario, i.e., neglecting the noise

power, and taking r′ ≈ rk for tractability which is valid in a UDN scenario (¼s > M¼h),

one can obtain

P (µk g ·k) =

∫ ∞

0

e

−






pak·

2
η
k

∞
∫

ζ
−2/η
k

1

1+u
η
2
du






Ã¼sr2k

× 2(Ã¼s)
k

(k − 1)!
r2k−1
k e−Ã¼sr2k drk. (B.13)

After some mathematical manipulations and using the integration by reduction technique,

(4.11) can be derived with the aid of the substitution in (4.12).

Proof of Theorem 4.1

P (..., µi g ·i, µj g ·j, µk g ·k)

= E...,ri,rj ,rk,...,Φh,i,Φh,jΦh,k

[

P

(

..., hi g ·i(Ii +
Ã2

P0

)r¸i , hj g ·j(Ij +
Ã2

P0

)r¸j ,

hk g ·k(Ik +
Ã2

P0

)r¸k | ..., ri, rj, rk, ..., Ii, Ij, Ik

)]

,

(a)
= E...,ri,rj ,rk,...,Φh,i,Φh,jΦh,k

[

...× exp

(

−·i(Ii +
Ã2

P0

)r¸i

)

× exp

(

−·j(Ij +
Ã2

P0

)r¸j

)

× exp

(

−·k(Ik +
Ã2

P0

)r¸k

)]

,

(b)
=

∞
∫

0

rk
∫

0

...

r3
∫

0

r2
∫

0

...LIi(·ir
¸
i )LIj(·jr

¸
j )LIk(·kr

¸
k)

× fr1,r2,...,rk(r1, r2, ..., rk) dr1dr2...drk−1drk,
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(c)
=

∞
∫

0

rk
∫

0

...

r3
∫

0

r2
∫

0

...e−Qi(·i)Ã¼sr2i × e−Qj(·j)Ã¼sr2j × e−Qk(·k)Ã¼sr2k × (2Ã¼s)
kr1r2...rk

× e−Ã¼sr2k dr1dr2...drk−1drk. (B.14)

(a) is obtained using the assumption that the small scale fading coefficients over the

links of Tier-1, Tier-2, and up to Tier-k are i.i.d. and exponentially distributed with unit

mean. (b) follows by assuming an interference-limited scenario where LIk′
(s) = EIk′

[e−sIk′ ]

is the Laplace transform of the normalized ICI sensed at the tagged Tier-k′ SC where

k′ ∈ {..., i, j, k}. (c) is obtained by substituting the joint distance distribution of the closest

k neighbours to the typical HTCU given in (4.10) and LIk′
(·k′r

¸
k′) = e−Qk′ (·k′ )Ã¼sr2k′ ; k′ ∈

{..., i, j, k} given by (B.12) and (4.12). Finally, rearranging the different terms and using

integration by parts and by reduction with some further mathematical manipulations, one

can obtain (4.19).

Proof of Theorem 4.2

First, since the link association and the achievable SIR on that link are independent,

then, the set of the non-associated tiers M0 will not affect the achievable SIRs on the

remaining tiers. Accordingly, we define Ak := µk g 0 to reflect a certain event, i.e.,

P(Ak) = 1, ∀ k ∈ M0. Using the definition of conditional probability, we follow the steps

in the derivation of (B.15)

P

(

⋂

k∈M1

(µk g ·k)
∣

∣

∣

⋂

k∈M
Ak

)

=

P

(

⋂

k∈M1

(µk g ·k),
⋂

k∈M
Ak

)

P

(

⋂

k∈M
Ak

)

=

P

(

⋂

k∈M1

(µk g ·k),
⋂

k∈M1

(µk g µth),
⋂

k∈M2

(µk f µth),
⋂

k∈M0

(µk g 0)

)

P

(

⋂

k∈M1

(µk g µth),
⋂

k∈M2

(µk f µth),
⋂

k∈M0

(µk g 0)

) ,
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=

P

(

⋂

k∈M′
1

(µk g ·k),
⋂

k∈M1\M′
1

(µk g µth),
⋂

k∈M2

(µk f µth)

)

P

(

⋂

k∈M1

(µk g µth),
⋂

k∈M2

(µk f µth)

) , (B.15)

where the last step is obtained using the fact that P(a > b, a > c) = P(a > max(b, c)) and

that (µk g 0) is a certain event. Combining the different terms leads directly to (4.21).

Proof of Theorem 4.3

Starting from (4.27) and using equal task division approach, i.e., ³
xMi
k = 1

ÉxMi
∀ k ∈

{0,MxMi
1 } where k = 0 denotes the local processor,

E[t
xMi
h ] =

∞
∫

0

P

[

t
xMi
h g z

]

dz

=

∞
∫

0

(

1− P

[

t
xMi
h < z

] )

dz,

=

∞
∫

0

(

1− P

[

t
xMi
0 < z,

⋂

k∈MxMi
1

(t
xMi
k < z)

])

dz,

(a)
=

tloc
ÉxMi

+

∞
∫

tloc/É
xMi

(

1− P

[

⋂

k∈MxMi
1

(t
xMi
k < z)

])

dz,

(b)
=

tloc
ÉxMi

+

∞
∫

tloc

ωx
M
i

(

1− P

[

⋂

k∈MxMi
1

(µ
xMi
k > 2

MBu/W

ωx
M
i z−tecs − 1)

])

dz,

(c)
=

tloc
ÉxMi

+
GM

ÉxMi

·0
∫

0

(

1− P

[

⋂

k∈MxMi
1

(µk g ·)
∣

∣

∣

⋂

k∈MxMi
1∪2

AxMi
k

])

× d·

(1 + ·) [log2(1 + ·)]2
, (B.16)

where (a) follows from the independence between the local processing time and the delay

over all tiers in MxMi
1 and the fact that P

[

t
xMi
0 < z

]

= 1 whenever z g tloc/É
xMi and zero

otherwise. (b) is obtained by substituting t
xMi
k from (4.3) and (4.4) and setting ³

xMi
k = 1

ÉxMi
.

Then, considering the dependency among the achievable SINRs over all tiers and the fact
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that for a given combination xM
i , the states of all tiers k ∈ M is already known, (c) is

obtained by substituting · = 2
MBu/W

ωx
M
i z−tecs − 1, GM = MBu

W ln(2)
, and ·0 = 2

GM ln(2)

tloc−tecs − 1. Finally,

using Using the results obtained in Theorem 4.2 and substituting (4.23) into (B.16) leads

directly to (4.29) which completes the proof.

Proof of Lemma 4.3

The average delay experienced by the typical HTCU when the whole task (Bu, Cu)

is offloaded to Tier-k, k ∈ M1 consists of two parts; the transmission time and the

processing time. Hence,

T ind
k = Eµk

[

tecs +
MBu/W

log2(1 + µk|µk>µth)

]

= tecs +
MBu

W
Eµk

[

1

log2(1 + µk|µk>µth)

]

= tecs +
MBu

W

∞
∫

0

P

[

1

log2(1 + µk|µk>µth)
g z

]

dz

= tecs +
MBu

W
×

∞
∫

0

(

1− P

[

log2(1 + µk) g
1

z

∣

∣

∣ µk g µth

])

dz

= tecs +
MBu

W

∞
∫

0

(

1− P

[

µk g 2
1
z − 1

∣

∣

∣ µk g µth

])

dz. (B.17)

Substituting · = 2
1
z − 1 into (B.17) and using (4.23) directly leads to (4.30).
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Proof of Theorem 4.4

Following the steps in the derivation of (B.16) while using an arbitrary value of ³
xMi
0 ,

E[t
xMi
h,adp] = ³

xMi
0 tloc +

∞
∫

³
xMi
0 tloc

(

1− P

[

⋂

k∈MxMi
1

(t
xMi
k < z)

])

dz,

(a)
= ³

xMi
0 tloc +

∞
∫

³
xMi
0 tloc

(

1− P

[

⋂

k∈MxMi
1

(

µ
xMi
k > 2

(

MBu/W

z/α
xMi
k

−tecs

)

− 1
)

])

dz,

(b)
=

1

·
xMi
0

+

·
xMi
0
∫

0






1− P







⋂

k∈MxMi
1

(µk g YxMi
k (y))

∣

∣

∣

⋂

k∈MxMi
1∪2

AxMi
k













dy

y2
. (B.18)

where (a) is obtained by substituting t
xMi
k from (4.3) and (4.4) and (b) is obtained by

substituting y = 1/z and setting ·
xMi
0 and YxMi

k (y) as given in (4.34) and (4.35), respectively,

and by considering the dependency among the achievable SINRs over all tiers and the fact

that for a given combination xM
i , the states of all tiers k ∈ M is already known.

Without loss of generality, given the task allocation fractions ³
xMi
k , k ∈ MxMi∞ derived

from (4.31), let ³
xMi
1′ g ³

xMi
2′ g ... g ³

xMi
M ′

1
where M ′

1 =
∣

∣MxMi
1

∣

∣. Then, using (4.34) and (4.35),

we can deduce that ·
xMi
1′ f ·

xMi
2′ f ... f ·

xMi
M ′

1
and YxMi

1′ (y) g YxMi
2′ (y) g ... g YxMi

M ′
1
(y). From

Theorem 4.2, one can conclude that whenever YxMi
1′ (y) < µth (i.e., y < ·

xMi
1′ ), the integral in

(B.18) reduces to zero. However, when ·
xMi
1′ < y < ·

xMi
2′ , only YxMi

1′ (y) g µth will be satisfied

which indicates that the set of tiers M′
1 in (4.21) will contain only Tier-1′ and the integral

in (B.18) will be

min(·
xMi
2′

,·
xMi
0 )

∫

min(·
xMi
1′

,·
xMi
0 )

















1−

P





k=1′
⋂

k=1′
µk g YxMi

k (y),
⋂

k∈MxMi
1∪2\1′

AxMi
k





P





⋂

k∈MxMi
1∪2

AxMi
k





















dy

y2
(B.19)

Following the same procedure with increasing values of y, (4.33) can be derived.
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B.3 Proofs of Chapter 7

Proof of Theorem 7.1

Starting from (7.16) and following the same steps as in the proof of Lemmma 7.1.,

one can obtain

P[µAL > µth] = EΦLoS
s

[

exp

(

− µth r
³AL
LoS

0

P 0
s ´AL

LoS Aalg

(I0 + Ã2 WAL
RB )

)

| r0, I0

]

. (B.20)

Hence, (7.20) directly follows by integrating over the serving distance distribution given

in (7.8) and given that LI0(s) = exp(−s I0) where I0 =
∑

q∈{alg,mis}
Iq is the sensed ICI at

the typical MTCD such that

Iq =
∑

j∈Φa,q,alloc
s,LoS \SC0

P 0
s ´

AL
LoS|hj|2r−³AL

LoS
j . (B.21)

The laplace transform of the pdf of Iq can be obtained as follows:

LIq(s) = EIq

[

e−sIq
]

,

= EΦa,q,alloc
s,LoS ,|h|2






exp






−s

∑

j∈Φa,q,alloc
s,LoS \SC0

P 0
s ´

AL
LoS|hj|2r−³AL

LoS
j












,

= EΦa,q,alloc
s,LoS







∏

j∈Φa,q,alloc
s,LoS \SC0

E|hj |2
[

exp(−s P 0
s ´AL

LoS |hj|2 r
−³AL

LoS
j )

]






,

(a)
= EΦa,q,alloc

s,LoS







∏

j∈Φa,q,alloc
s,LoS \SC0

1

1 + s Aq P 0
s ´AL

LoS r
−³AL

LoS
j






,

(b)
= exp



−
2Ã
∫

0

∞
∫

r

¼a,q,alloc
s,LoS (v)

(

1− 1

1 + s Aq P 0
s ´AL

LoS v−³AL
LoS

)

v dv d¹





(c)
= exp



−2Ãpallocm pq¼
a
s

∞
∫

r

v e−Bbv

1 + 1

s Aq P 0
s ´AL

LoS v
−αAL

LoS

dv




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=exp











−Ã pallocm pq¼
a
s (s Aq P

0
s ´AL

LoS)
2
α

∞
∫

r2

(s Aq P0
s βAL

LoS
)2/α

e−Bb(s Aq P 0
s ´AL

LoS)
1/α√u

1 + u
α
2

du











, (B.22)

where (a) is obtained from (7.1) and that for an exponentially distributed random vari-

able |hq|2 with mean Aq, we have E|hq |2 [e
−ϱ|hq |2 ] = 1/(1 +Aqϱ), (b) is derived using

the probability generating function (PGFL) of a PPP [22], where E
[
∏

x∈Φ′ f(x)
]

=

exp(−
∫∫

R2 ¼
′(x)(1 − f(x))dx) where ¼′ is the corresponding density of Φ′, and (c) is

obtained by substituting ¼a,q,alloc
s,LoS (v) = pallocm pqe

−Bbv¼a
s where ¼a

s is the density of active

SCs. Finally, setting u = v2(s Aq P 0
s ´AL

LoS v−³AL
LoS)−2/³, we obtain (B.22). Hence, by

setting s = µth rα
AL
LoS

P 0
s ´

AL
LoSAalg

, we can obtain (7.21) which completes the proof.

Proof of Theorem 7.3

P[CBH
s > Cth] = EΦc,Φs

[

P

(

·BH
css >

McsW
BH(Ãȷ

w)
2

Pc(Nc −Mcs)

(

2Cth/W
BH − 1

)

| Mcs

)]

,

=
Nc−1
∑

mc=1,2,...

P

[

·BH
css >

mcW
BH(Ãȷ

w)
2

Pc(Nc −mc)

(

2Cth/W
BH − 1

)

]

P [MCs = mc] ,

(a)
=

Nc−1
∑

mc=1,2,...

P

[

d−³BH

css >
mcW

BH(Ãȷ
w)

2

Pc´BH(Nc −mc)

(

2Cth/W
BH − 1

)

]

P [MCs = mc] ,

=
Nc−1
∑

mc=1,2,...

P



dcss <

(

Pc´
BH(Nc −mc)

mcWBH(Ãȷ
w)2
(

2Cth/WBH − 1
)

) 1

αBH



P [MCs = mc] , (B.23)

where (a) is obtained following that ·BH
css = ´BH d−³BH

css is the backhaul large-scale fading

channel coefficient and dcss is the distance between the CPU and the SC. Using the CDF

of the distance, Fdcss(d) = 1 − e−Ã¼cd2 , one can easily obtain (7.33) which completes the

proof.
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[66] J.-S. Ferenc and Z. Néda, “On the size distribution of poisson voronoi cells,” Physica

A: Statistical Mechanics and its Applications, vol. 385, no. 2, pp. 518 – 526, 2007.

[67] S. M. Yu and S.-L. Kim, “Downlink capacity and base station density in cellular

networks,” in 2013 11th International Symposium and Workshops on Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2013, pp. 119–124.

[68] Z. Zhang, H. Sun, and R. Q. Hu, “Downlink and uplink non-orthogonal multiple

access in a dense wireless network,” IEEE Journal on Selected Areas in Communi-

cations, vol. 35, no. 12, pp. 2771–2784, 2017.

[69] Y. Liang, X. Li, and M. Haenggi, “Non-orthogonal multiple access (noma) in uplink

poisson cellular networks with power control,” IEEE Transactions on Communica-

tions, vol. 67, no. 11, pp. 8021–8036, 2019.

[70] J. Mecke, “On the relationship between the 0-cell and the typical cell of a stationary

random tessellation,” Pattern Recognition, vol. 32, no. 9, pp. 1645 – 1648, 1999.

[71] Y. Hmamouche, M. Benjillali, and S. Saoudi, “On the role of stochastic geometry

in sixth generation wireless networks,” in 2020 10th International Symposium on

Signal, Image, Video and Communications (ISIVC), 2021, pp. 1–6.

165



[72] B. Li, M. He, W. Wu, A. K. Sangaiah, and G. Jeon, “Computation offloading algo-

rithm for arbitrarily divisible applications in mobile edge computing environments:

An OCR case,” Sustainability, vol. 10, no. 5, 2018.

[73] M. Feng, M. Krunz, and W. Zhang, “Joint task partitioning and user association

for latency minimization in mobile edge computing networks,” IEEE Transactions

on Vehicular Technology, vol. 70, no. 8, pp. 8108–8121, 2021.

[74] K. Li, M. Tao, and Z. Chen, “Exploiting computation replication for mobile edge

computing: A fundamental computation-communication tradeoff study,” IEEE

Transactions on Wireless Communications, vol. 19, no. 7, pp. 4563–4578, 2020.

[75] H. Sun, F. Zhou, and R. Q. Hu, “Joint offloading and computation energy efficiency

maximization in a mobile edge computing system,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 3, pp. 3052–3056, 2019.

[76] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing optimiza-

tion in wireless powered mobile-edge computing systems,” IEEE Transactions on

Wireless Communications, vol. 17, no. 3, pp. 1784–1797, 2018.

[77] M. Mei, M. Yao, Q. Yang, M. Qin, K. S. Kwak, and R. R. Rao, “Delay analysis of

mobile edge computing using poisson cluster process modeling: A stochastic network

calculus perspective,” IEEE Transactions on Communications, pp. 1–1, 2022.

[78] X. Chen, Z. Liu, Y. Chen, and Z. Li, “Mobile edge computing based task offload-

ing and resource allocation in 5g ultra-dense networks,” IEEE Access, vol. 7, pp.

184 172–184 182, 2019.

[79] S. Pang and S. Wang, “Joint wireless source management and task offloading in

ultra-dense network,” IEEE Access, vol. 8, pp. 52 917–52 926, 2020.

166



[80] H. Guo, J. Liu, and J. Zhang, “Computation offloading for multi-access mobile

edge computing in ultra-dense networks,” IEEE Communications Magazine, vol. 56,

no. 8, pp. 14–19, 2018.

[81] Z. Jing, Q. Yang, M. Qin, and K. S. Kwak, “Long term max-min fairness guar-

antee mechanism: Adaptive task splitting and resource allocation in mec-enabled

networks,” in 2019 IEEE 30th International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC Workshops), 2019, pp. 1–6.

[82] Z. Cheng, M. Min, Z. Gao, and L. Huang, “Joint task offloading and resource

allocation for mobile edge computing in ultra-dense network,” in GLOBECOM 2020

- 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[83] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile edge computing:

Spatial modeling and latency analysis,” IEEE Transactions on Wireless Communi-

cations, vol. 17, no. 8, pp. 5225–5240, 2018.

[84] Y. Gu, Y. Yao, C. Li, B. Xia, D. Xu, and C. Zhang, “Modeling and analysis

of stochastic mobile-edge computing wireless networks,” IEEE Internet of Things

Journal, vol. 8, no. 18, pp. 14 051–14 065, 2021.

[85] H. ElSawy, A. Sultan-Salem, M.-S. Alouini, and M. Z. Win, “Modeling and analysis

of cellular networks using stochastic geometry: A tutorial,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 1, pp. 167–203, 2017.

[86] S. Mukherjee, D. Kim, and J. Lee, “Base station coordination scheme for multi-tier

ultra-dense networks,” IEEE Transactions on Wireless Communications, vol. 20,

no. 11, pp. 7317–7332, 2021.

[87] J. Yoon and G. Hwang, “Distance-based inter-cell interference coordination in small

cell networks: Stochastic geometry modeling and analysis,” IEEE Transactions on

Wireless Communications, vol. 17, no. 6, pp. 4089–4103, 2018.

167



[88] Y. Teng, W. Sun, A. Liu, R. Yang, and V. K. N. Lau, “Mobility-aware transmit

beamforming for ultra-dense networks with sparse feedback,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 2, pp. 1968–1972, 2019.

[89] X. He, R. Jin, and H. Dai, “Physical-layer assisted secure offloading in mobile-edge

computing,” IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp.

4054–4066, 2020.

[90] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge

computing: The communication perspective,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[91] M. Ding, D. Lopez-Pérez, G. Mao, and Z. Lin, “Performance impact of idle mode ca-

pability on dense small cell networks,” IEEE Transactions on Vehicular Technology,

vol. 66, no. 11, pp. 10 446–10 460, 2017.

[92] D. Moltchanov, “Distance distributions in random networks,” Ad Hoc Networks,

vol. 10, no. 6, pp. 1146–1166, 2012.

[93] T. D. Novlan, H. S. Dhillon, and J. G. Andrews, “Analytical modeling of uplink

cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6,

pp. 2669–2679, 2013.

[94] X. Sun, W. Yang, Y. Cai, L. Tao, Y. Liu, and Y. Huang, “Secure transmissions

in wireless information and power transfer millimeter-wave ultra-dense networks,”

IEEE Transactions on Information Forensics and Security, vol. 14, no. 7, pp. 1817–

1829, 2019.

[95] Y. Lin, R. Zhang, L. Yang, and L. Hanzo, “Secure user-centric clustering for energy

efficient ultra-dense networks: Design and optimization,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 7, pp. 1609–1621, 2018.

168



[96] G. Su, M. Dai, X. Lin, B. Chen, and H. Wang, “Secure user association in ultra

dense heterogeneous cellular networks with non-uniformly distributed eavesdrop-

pers,” in 2019 Eleventh International Conference on Ubiquitous and Future Net-

works (ICUFN), 2019, pp. 164–168.

[97] D. Marabissi, L. Mucchi, and S. Casini, “Physical-layer security metric for user as-

sociation in ultra-dense networks,” in 2020 International Conference on Computing,

Networking and Communications (ICNC), 2020, pp. 487–491.

[98] M. Forouzesh, P. Azmi, A. Kuhestani, and P. L. Yeoh, “Covert communication and

secure transmission over untrusted relaying networks in the presence of multiple

wardens,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3737–3749,

2020.

[99] M. I. Kamel, W. Hamouda, and A. M. Youssef, “Coverage and capacity analysis

with stretched exponential path loss in ultra-dense networks,” in GLOBECOM 2017

- 2017 IEEE Global Communications Conference, 2017, pp. 1–6.

[100] M. D. Renzo, A. Guidotti, and G. E. Corazza, “Average rate of downlink hetero-

geneous cellular networks over generalized fading channels: A stochastic geometry

approach,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 3050–3071,

2013.

[101] M. Salehi, H. Tabassum, and E. Hossain, “Accuracy of distance-based ranking of

users in the analysis of NOMA systems,” IEEE Trans. Commun., vol. 67, no. 7, pp.

5069–5083, Jul. 2019.

[102] T. Lv, Y. Ma, J. Zeng, and P. T. Mathiopoulos, “Millimeter-wave NOMA transmis-

sion in cellular M2M communications for internet of things,” IEEE Internet Things

J., vol. 5, no. 3, pp. 1989–2000, Jun. 2018.

169



[103] Z. Zhang, Y. Hou, Q. Wang, and X. Tao, “Joint sub-carrier and transmission power

allocation for mtc under power-domain noma,” in 2018 IEEE International Confer-

ence on Communications Workshops (ICC Workshops), 2018, pp. 1–6.

[104] Z. Zhang, H. Sun, R. Q. Hu, and Y. Qian, “Stochastic geometry based performance

study on 5g non-orthogonal multiple access scheme,” in 2016 IEEE Global Commu-

nications Conference (GLOBECOM), 2016, pp. 1–6.

[105] L. Yu, J. Wu, and P. Fan, “Energy efficient designs of ultra-dense iot networks with

nonideal optical front-hauls,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.

7934–7945, 2019.

[106] M. Rebato, J. Park, P. Popovski, E. De Carvalho, and M. Zorzi, “Stochastic ge-

ometric coverage analysis in mmwave cellular networks with realistic channel and

antenna radiation models,” IEEE Transactions on Communications, vol. 67, no. 5,

pp. 3736–3752, 2019.

[107] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and

E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,”

IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164–1179,

2014.

[108] M. A. Kishk and M.-S. Alouini, “Exploiting randomly located blockages for large-

scale deployment of intelligent surfaces,” IEEE Journal on Selected Areas in Com-

munications, vol. 39, no. 4, pp. 1043–1056, 2021.

[109] M. Ibrahim, S. Elhoushy, and W. Hamouda, “Uplink Performance of MmWave-

Fronthaul Cell-Free Massive MIMO Systems,” IEEE Transactions on Vehicular

Technology, vol. 71, no. 2, pp. 1536–1548, 2022.

170



[110] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban cellular

networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp.

5070–5083, 2014.

[111] S. Aditya, H. S. Dhillon, A. F. Molisch, and H. M. Behairy, “A tractable analysis of

the blind spot probability in localization networks under correlated blocking,” IEEE

Transactions on Wireless Communications, vol. 17, no. 12, pp. 8150–8164, 2018.

[112] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, “Millimeter-wave

communications: Physical channel models, design considerations, antenna construc-

tions, and link-budget,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2,

pp. 870–913, 2018.

[113] S. Elhoushy, M. Ibrahim, and W. Hamouda, “Cell-Free Massive MIMO: A Survey,”

IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 492–523, 2022.

[114] M. E. Git Sellin et al., “Enhancing 5G with microwave,” Ericsson, Oct 2020.

[115] Albreem et al., “Massive MIMO detection techniques: A survey,” IEEE Communi-

cations Surveys & Tutorials, vol. 21, no. 4, pp. 3109–3132, 2019.

[116] M. Ibrahim and W. Hamouda, “Performance Analysis of Minimum Hop Count-

Based Routing Techniques in Millimeter Wave Networks: A Stochastic Geometry

Approach,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8304–8318,

2021.
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