
USING ASSL AS A METHOD FOR INTENT EXPRESSION TO

ENACT AUTONOMIC NETWORKING

Solmaz Jaberi

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science (Computer Science) at

Concordia University
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Abstract

Using ASSL as a Method for Intent Expression to Enact Autonomic

Networking

Solmaz Jaberi

The term “Intent” is used in network management to designate the specification of goals

or outcomes, without specifying how to achieve them. Ideally, intent should be specified in a

natural language (e.g., English), but it must then be transformed into a representation that

can be interpreted by the network devices.

The term “Autonomic Network” is used to describe a network that assumes many

management functions “on its own”. Such networks are well-suited to being “intent-driven”.

This thesis provides a comprehensive definition of Intent, in the form of a set of Intent

Objectives.

A set of Intent examples (expressed in English) is then presented, chosen to reflect intents

from three distinct network environments (Carrier networks, Data Center networks, and

Enterprise networks), and all of the Intent Objectives. Transformations of the examples into

the Autonomic System Specification Language (ASSL) are given. ASSL was designed for

the specification and verification of autonomic systems.

We show that, in spite of being designed for autonomic systems, ASSL is capable of

expressing network intents. The expressiveness of ASSL is evaluated by demonstrating that

it can cover almost all of the Intent Objectives, for the three network environments.

We conclude with discussion of the expressiveness of ASSL, with respect to each of the

Intent Objectives, and the ways in which the current ASSL development environment could

be improved.
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Chapter 1

Introduction

In today’s world, computer networks are essential in different aspects of our life, from

residential internet to businesses. Managing networks more flexibly and productively is

necessary to improve the quality of services and to reduce expenditures. The phrase computer

network management describes some operations that govern a network and its resources.

Computer networks should be adaptable to changes based on modifications to business goals.

This is due to the dynamic nature of business requirements. Network administration is

carried out by monitoring and controlling network components to ensure that it achieves its

goals. The complexity of network management activities has been continuously increasing

due to different factors, e.g.: (1) the development of new network technologies, (2) the

development of new technologies that require telecommunication, (3) the increase in size of

the networks, and (4) the increase in traffic flowing over the networks.

It is frequently apparent in many research studies that there needs to be a uniform

understanding and definition of network goals due to their broad range. For example, for

some technologies, speed is the priority in network communications, while in others, the

quality of the service is the most critical goal. Another area for improvement regarding

network management is the gap between stakeholders and network technicians. This gap

exists because the stakeholders’ perspective about network goals is much higher than network

technicians’ perspective. In order to reduce this gap, it is crucial to modernize network
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management with tools to bridge this gap, to create a more coherent experience for all

network users, and to clarify any ambiguity in goals to meet the users’ expectations.

Early networks were straightforward due to the limited number of devices or services that

needed to be maintained, making network management relatively simple. However, network

management advanced along with the scale and complexity of networks. As a result, several

strategies have been created to simplify network management. Intent-based networking is a

recent innovation in network management that enables the network to automatically adapt

to changing conditions and requirements by using declarative statements or expressions to

indicate the desired behavior or state of the network. The high-level needs from a business

view can be expressed using the concept of intent , which focuses on the intended result but

not on the methods for achieving it. Intent as high-level network goals cover a flexible,

vast context that can be used as a definitive objective to define network goals acceptable

for both technical and non-technical network users. However, a method must be developed

to express the purpose simply for non- technical users to understand. Intent can also be

translated into the specific commands of unique devices. Thus, this study tries to define

the concept of intent more adequately, based on its most straightforward meaning, which

is the network goal. Network goals are composed of diverse objectives, from having more

secure communications to maintaining high performance and increasing efficiency or any

other desirable outcomes. Some studies worked on formalizing systems and the activities

that must be taken, which theoretically can be mapped to the specific commands needed by

various devices. In order to ascertain if they may be used to represent intent and for what

types of intent , this thesis investigates such formal systems.

Notably, autonomic systems can support the idea of intent to facilitate its application

to networks. Autonomic systems can manage and operate themselves with minimized or

zero human intervention. These systems can adapt automatically to changing conditions

and requirements since they are self-managing and self-regulating. Considering the human

nervous system as an example, where it consists of a complex network of cells and pathways.

The nervous system is responsible for diverse tasks to make the human body functional;

4



however, this system does not require a controller outside the body. Without an outside

controller, the human body can cure itself while experiencing health issues or perform

different responsibilities, such as breathing and digesting. This inspired autonomicity feature

can be added to networks to facilitate their management, based on appropriately expressed

intent. Autonomic networks , analogous to autonomic systems , can manage themselves in any

situation to maintain the goals that are defined for them based on their requirements. Also,

if an undesirable situation occurs, they can take appropriate action to solve the problem to

normalize their situation. This leads network management to intent-based networking where

a network is managed based on a unified declared goal through different technologies.

1.1 Objectives and Motivation

The combination of intents as the objectives to construct desirable outcomes for the network

and autonomic network as the infrastructure to apply those objectives can modernize

network management efficiently and productively. Attaining this goal requires to have the

following parameters:

• A comprehensive definition of intent.

• A means to express intents using a high-level language that can be executed as an

operational control system.

This research focuses on the following essential questions, which we found that need to be

better covered in the literature: (1) What is the definition of intent objectives? (2) In what

language should the intents expressed? (3) How can these intents relate to an autonomic

system independently of the underlying networking infrastructure? Following an extensive

literature study, we concluded that there is a shortcoming of an adequate, comprehensive

definition for intent as the main idea of conducting the network’s operation based on our

observation of attempts toward goal-driven networking. To address this issue, our first

challenge was to create such a definition based on different sources in the literature.
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Ideally, the level of abstraction to define intents as the operational purpose of a network

should be using a high-level language by focusing on what should be achieved rather than

how to achieve those goals. However, it is an assiduous task due to the dynamic nature of

business requirements and human language features to describe them. Thus, focusing on

high-level languages, which are close to natural language and easy to understand by users

with any level of networking knowledge, is more logical. Then, besides the expressiveness

and understandability of higher-level languages, it should be able to cover a wide variety of

intents.

1.2 Methodology

Following our in-depth analysis of the various definitions of intent-based networking, we

shall first provide a detailed description of what constitutes intent-based networking and its

required operational characteristics. In addition, we investigate specification languages and

frameworks to find the most appropriate one that can express intents. This specification

language should have a hierarchical basis. The hierarchical structure helps the autonomic

network to define different levels of declaration to distinguish public and private behaviors

of the system. Moreover, this framework should be able to achieve desired outcomes of the

network by specifying autonomic behaviors under self-management regulations. Therefore,

the intent specification shall combine with the characteristics of an autonomic system. This

strategy can facilitate the management of the network by applying intents. After finding

such a language/framework as the solution, we shall describe it as an autonomic network

specification platform and then demonstrate conceptually and by examples how it can be used

to express networking intents. Finally, we shall evaluate our solution by demonstrating that

applying the solution framework to intent-based autonomic networking meets our definition,

objectives, and characteristics of such systems.
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1.3 Thesis Contributions

This study addresses deficiencies in intent-based network management approaches to make

the following contributions.

• Provide an integrated definition of intent, and its objectives.

• Find a specification language as the solution to express intents under the context of

autonomic networks through numerous and diversified concrete examples.

• Investigate advantages and deficiencies of the proposed solution as an intent expression

language in autonomic networks.

1.4 Thesis Scope

Our main goal is to show the coverage and expressiveness of the possible solution to define

intents and autonomic networks based on our defined intent objectives. Our focus is more

on the expression of the intents rather than the operational details of their deployment.

1.5 Thesis Outline

After presenting an overview of our research in Chapter 1, Chapter 2 reviews the related

work in the intent-based networking area to explore the shortages in this research area.

Then we initiate our research solution by recommending our definition of intent objectives

in Chapter 3, followed by a description of our suggested solution to the stated problem, along

with experimental examples to validate it with different scenarios. In Chapter 4, we analyze

the concrete examples, advantages, and shortcomings of the proposed intent specification

language as the solution. Finally, in Chapter 5, we conclude the whole research and present

possible future avenues of this research work.
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1.6 Summary

There needs to be a more adequate and integrated intent definition that covers all aspects

of network goals acceptable for different user types. Despite the progress in intent-based

networking, the necessity of a unified intent expression specification language still needs to

be resolved.
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Chapter 2

Background

In this chapter, we introduce the concepts used in this research and pre-existing research

solutions related to our study or upon which our proposed solution is built.

2.1 Autonomic and Intent-Based Networking

The notion of autonomic networking comprises concepts described in the following sections.

It is essential to understand that different definitions and terminologies describe autonomic

networking. We present only some of them that relate most to our point of view in this

thesis.

2.1.1 Autonomic Computing and Autonomic Networking

Autonomic computing was first described in a white paper manifesto by IBM in 2001, later

published as a paper [21]. Autonomic computing is conceptually based on the notion of

the human autonomic nervous system in which any modification to the system’s state

is determined, analyzed, and managed by the system itself to achieve self-regulation, or

homeostasis [3, 23, 42]. Regarding this purpose, an autonomic computing system typically

includes the following properties [15, 21], which are often referred to as the self-chop or self-*

properties of autonomic computing:
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• Self-Awareness: The system’s capability to develop models that record information

about itself and its surroundings and reason using these models to extrapolate new

data that it can use to act to attain high-level goals, provided that the data, the

model, and the goal can all change over time [8].

• Self-Protection: The system’s ability to be aware of potential threats or security issues

and how to handle them.

• Self-Optimization: The system’s ability to improve its functionality and performance

towards an optimum state.

• Self-Healing: The system’s ability to restore itself in case of any problem that might

be hampering its functionality or to predict and avoid any such potential problems.

• Self-Configuration: The system’s ability to automatically and appropriately re-arrange

itself after any modification or change happens that makes the current configuration

inappropriate for the situation.

When applied to computer networking, these goals refer to self-management of a computer

network aiming to minimize low-level human operator intervention. Each network has a

purpose of achieving its business goals. The expression of autonomic behavior is to be defined

at a high level of abstraction, possibly but not necessarily close to human language. It aims to

express business goals that need to be more directly understood by the underlying networking

infrastructure it seeks to control. Hence, there needs to be some language that describes the

autonomic behavior, which is then translated into actions or configuration changes that are to

be applied to the underlying networking infrastructure. However, designing such a language

is difficult since the range of network business goals is vast and diverse. The formulation of

low-level network policies, defined by predetermined static rules, is currently made possible

by various methods. These kinds of solutions frequently concentrate on the static expression

of a policy. However, they are unable to dynamically monitor more complicated policies that

must be monitored due to their inherently dynamic nature or the fact that they must be

enforced in a networking environment that is constantly changing.
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Rather than relying on a formal language to allow the user to express the required

autonomic behavior directly, some existing solutions for autonomic networking concentrate

on a mechanism to extract the autonomic specifications from human language or other

information. For example, some patterns can be found in the human language or additional

information, which are then matched with specific predefined categories of behavior identified

on the service provider side.

2.1.2 Policy-Based and Intent-Based Networking

Policy-Based Networking Management (PBNM) is a push-based approach for entering the

network policies separating the instructions for ruling a system from its functionality [10].

Inherently, policies define conditions for an action to happen, and PBNM is a systematic

injection of policies into a system, which aims to regulate the system by triggering certain

actions when certain predefined conditions are met. Using PBNM, each rule contains a

set of conditions or control loops that triggers a goal or action. The policy rules are

provided by users or knowledge systems, and the control loops can be executed without

outside intervention. Thus, policy-based approaches help the automation of management

procedures.

On the other side, the concept of intent is a high-level abstract definition of business and

operational goals to manage a network [45]. Inherently, the processing of intent implies a

learning phase compared to the execution of policies, as they are defined with the highest level

of abstraction. Policies are easier to be transformed into lower-level networking instructions

since they are more precisely aimed. In fact, policies can be considered a subset of intents,

a concept that aims to cover a more comprehensive range of network management goals.

In other words, policies are Event-Condition-Actions (ECA) entities, and intents are

high-level, abstract, and declarative objectives unaware of hardware details [45]. Eventually,

intents should be translated into low-level network actions and configurations applied to

network devices. There are different approaches to this purpose [27]:

• The machine learning approach such as [17] to intent-based networking focuses
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on creating a bridge between network management and natural language to analyze

administrators’ utterances as input through Natural Language Processing (NLP)

to extract key-value pairs to create machine-understandable commands. The NLP

pipeline starts from lexical analysis, parsing the syntax to find the semantics based on

the domain, and finally, to the mapping of a particular operational meaning in the form

of networking tasks that constitute the operational version of the intent. This approach

requires enormous data sets of vocabulary from different languages and networking

goals, which is a negative aspect due to the need for such resources. Furthermore,

another drawback of this method is vagueness, since users can express their intents to

the system in many different ways. To alleviate this problem, the definition of a unified

well-structured specification language can be beneficial.

• The mathematical approach views network management as a bottom-up procedure

with networking conditions and goals as finite states [5, 29]. By converting intents

and network states to logical predicates, this approach tries to guide the network to a

proper reaction. However, mathematical or graph-based strategies are limited to some

specific types of intent. Also, they are categorized as low-level approaches that require

several other technologies to complete their deployment.

• The intent refinement approach can complete the two previous approaches by

developing refinement steps to complement other approaches and methods [18]. This

approach allows users to modify reactions or intents in case of dissatisfaction with the

network management. Another refinement method is achievable by adding a feedback

system to the previous approaches.

Some example technologies using these three approaches are discussed in Section 2.2.
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2.2 Advanced Network Management Technologies

2.2.1 SDN

In traditional low-level networking, the routing devices are responsible for both routing

decisions and the actual process of packet forwarding. Dividing the network management

architecture into different planes and adding programmability features to traditional network

management added more flexibility to traditional management methods. Software-Defined

Networking (SDN) architecture is one of the most paramount evolutions in this category [12].

SDN divides the networks into three abstraction layers: the control plane, the data plane,

and the application plane. It centralizes routing decisions in the control plane layer and

adds programmability features for operators to conduct the network based on network

applications. This feature enhances the flexibility, implementation, and performance of

networks on the one hand and diminishes the possibility of error occurrence on the other

hand. The data plane handles forwarding the packets based on the control plane’s decision-

making, and the application layer helps developers to connect to lower-level devices to

program network goals as instructions based on business requirements. The connection

between the application layer and the control plane is handled by northbound interfaces

such as Application Programming Interfaces (API) and Command Line Interfaces (CLI).

Southbound interfaces such as OpenFlow handle the connection between the control and

data planes. Despite the advantages of approaches similar to SDN, the gap between SDN

APIs and network management as they are implemented at a lower level resulted in some

challenges for its combination with intent-based networking. Northbound APIs can only

partially support autonomic network management’s complexity since business requirements

are more complex than simple policies to be converted to machine language. Therefore,

some pragmatic solutions are required to develop SDN-based architecture to meet different

aspects of autonomic network management. Then some other technologies like ONOS were

developed to provide an open-source control plane for SDN networks to alleviate issues

regarding scalability and reliability [13].
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2.2.2 ONOS

The Open Network Operating System (ONOS) [24, 4, 13] provides an infrastructure

to implement Software-Defined Networks (SDN) that can deploy networking intents.

It facilitates communication between network components and end hosts and adjacent

networks and their management by providing a control plane through a network operating

system. ONOS allows defined high-level goal-oriented networking specifications using an

intent framework. Intent specifications are expressed as objects that are then compiled

and translated to network low-level configuration called installable intents that can be

dynamically installed and executed.

In ONOS, the Intent is an immutable object expressing an application’s request to

alter the network’s behavior to provide autonomic networking capabilities. Intents can be

described in terms of network resources, constraints, criteria, and instructions [24]. Also,

the intent framework working with ONOS evaluates some metrics from the network under

specific scopes to create intent objects to modify network behavior [24]. These intent objects

are unchangeable, and the system can process the installation by converting them to flow

rules model objects. Although intents are immutable, ONOS has a built-in mechanism to

avoid conflicts between intents by prioritizing one intent over others in case of incompatibility

between different intents.

ONOS is an open-source platform that prepares modular and distributed control planes

for SDN-based networks. This platform has a layered architecture and can collaborate with

other technologies like Merlin and Nile (see below). ONOS can be used as an infrastructure

for an autonomic system in association with other technologies, but it cannot specify

intents from business requirements. Therefore, specification modeling is required to take

responsibility for the intent specification. For this reason, an intent framework subsystem

was created in ONOS, which assesses intent objects derived from policies to compile and

install them on ONOS.

The fact that ONOS might not offer as much flexibility or adaptability as an intent-based

networking platform should be one possible restriction. For instance, it can be challenging
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to modify or extend ONOS to satisfy particular needs or to support new technologies or

protocols since this platform’s intents are considered immutable objects. Notably, ONOS

does not have a feature or language to express intents. Another potential restriction of ONOS

is its need for adaptability with other intent-based networking platforms or technologies.

Not all networking infrastructures can handle the ONOS dependencies to install and deploy

intents. Thus, although ONOS is a robust and scalable platform, there might be better

options for some use cases.

2.2.3 Merlin

Merlin is a language to implement network policies through mathematical logic and

regular expressions [5, 29]. The input to the Merlin compiler, including network policy,

physical topology, and mappings, are processed to provide static configuration for low-

level networking devices such as switches. It was designed to mitigate the shortcomings of

northbound APIs by classifying the packets, controlling forwarding paths, and specifying

packet transformation and bandwidth limitations. Although this framework lacks the

dynamism to modify defined policies, it can reduce this shortcoming by using negotiators

as middleboxes in the network. Negotiators are run-time components designed to transform

policies in run-time by communicating workload parameters among themselves. However,

this can be an issue for the system’s integrity in its implementation since some extra

components are required to complete the processes that an autonomic network should

manage. This issue can be resolved through a controller. Merlin uses a mixed-integer

programming approach that concentrates mainly on integer-valued conditions. Thus, from

the point of view of using Merlin as a general autonomic networking system, more elaborated

quality models such as quality-based metrics or quality of service might not be feasible in

Merlin.
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2.2.4 Lumi

Lumi is a modular system for intent-based networking that helps intent users demonstrate

their intent through natural language and refine it through its feedback system. It completes

the procedures in four different steps [17]. In the first step, the information is extracted

and tagged to be prepared for the next stage, where Nile intents are composed of the

previous input. Nile and Merlin contribute to making an integer autonomic system with

more dynamic features. Nile handles the intent expression by adding a layer of abstraction

between natural language intents and network commands. Its integration with Merlin [5, 29]

and Nile [5] can result in the highest level of abstraction. Lumi is of the most recent

technologies in intent-based networking, which uses machine learning approaches and intent

refinement to create a complete package. Lumi has a feedback system using DialogFlow

(chatbot), which helps users enter instructions based on human language. Then this feedback

is processed through Long Short-Term Memory (LSTM) to modify any intents based on

user requirements. LSTM refers to sequential data modeling and other natural language

processing activities to process human language input as intent based on keywords. For

example, a keyword such as “Location” is helpful to process intents during directing network

traffic to specific places. Lumi provides a chatbot for human operators to modify commands

when required to enable more dynamism through intent refinement. Nevertheless, the most

crucial shortcoming of these approaches is the need for a public and comprehensive database

of commands, network intents, and human language to train the modeling based on that.

Also, it might be challenging to adapt the combination of these systems, including Lumi

with its chatbot interface for intent refinement, Nile to process intent through NLP, and

Merlin to handle lower-level configuration policies as a package to all current technologies.

2.2.5 NEMO

The NEMO (NEtwork MOdeling) language is a domain-specific language to specify

networking intents with a minimum number of commands based on intent-based

primitives [30]. Intent-based primitives refer to high-level abstract concepts extracted from
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policies, topologies, and services to define intents for networks. The structure of this language

consists of three parts, including (1) objects to express network elements and resources, (2)

operations for acting upon those objects, and (3) results for checking if the conditions of the

networking environment are met or not. These objects are divided into nodes, connections,

and flow.

This language was inspired by SQL logic in that its fundamental components are derived

from Event-Condition-Action (ECA) rules, which means that following the occurrence of

an Event , an appropriate Action is executed within a particular Constraint . It declares

desired network behaviors or states based on declarative expressions to be adaptable by

modifications in the system. To simplify intent expression, various groups of instructions are

supplied by NEMO to define models and behaviors, prepare accessibility to resources, and

connection regulation.

This language requires other technologies, such as data modeling languages, to form and

execute its actions on the network. Moreover, it has built-in data types, keywords, predefined

network models, and base methods of functionality abstraction like Create, Import , or Update

to form the actions that can be taken into account by its defined actors, which are the nodes

concerning the intent operators. These requirements can be a drawback since the integration

of the whole network system might be affected negatively due to adding heterogeneity by

different technologies on the one hand, and compatibility of the current network with all

these NEMO requirements is another challenge. Other potential shortcomings of NEMO

would be:

• Less granularity than traditional management to apply certain changes to the network.

• Dependency on the centralized management system and databases, or modeling

languages such as YANG [44] to model and interpret intents. Yang models networking

data similar to a tree-based construct which can be used to shape intents. Networking

data includes network states and configurations.

• Limited to specific scenarios and intent types, such as traffic rerouting.
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It is noticeable that this analysis of NEMO is based on the limited documentation of this

framework that was accessible. This is a new approach, and its documentation needs to be

improved; therefore, it was impossible to find more documents to investigate the detailed

implementation of this technology.

2.3 IRTF/IETF Approaches

The Internet Engineering Task Force (IETF) [3] is the standards development organization

for the Internet. According to the IETF itself, “The overall goal of the IETF is to make the

Internet better.” [1]. The Internet Research Task Force (IRTF) [16] is a sister organization,

which“focuses on longer term research issues related to the Internet” [16]. Documents from

the IETF and the IRTF are published as a Request for Comments (RFC).

The IETF has many “Working Groups”, of which the Autonomic Networking Integrated

Model and Approach (ANIMA) Working Group is pertinent to this thesis. The IRTF has

several “Research Groups”, of which the Network Management Research Group (NMRG) is

pertinent to this thesis. NMRG has produced RFCs that address research issues related to

Autonomic Networks [3, 19], and research issues related to the concept of Intent [10, 26].

ANIMA has produced RFCs that define the reference model, operation, and protocols for

an Autonomic Network adhering to the concepts specified by NMRG [2, 6, 9, 11, 20, 28].

Further discussion of some of these RFCs will be given in subsequent sections.

2.3.1 RFC 7575: Autonomic Networking Design Goals

RFC 7575 [3] from NMRG determines autonomic network design goals and common

terminologies and concepts of the subject to form an abstract modeling reference for other

intent-based autonomic networking-related works. RFC 7575 outlines the design goals of

autonomic networking:

• Self-* properties : Self-management policies, including self-chop policies, should be

handled by autonomic functions and with minimal human or zero human intervention.
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Autonomic functions are autonomic activities to drive a network without any

requirement for configuration.

• Coexistence with Previous Network Management Approaches : Modernized autonomic

management should be compatible with previous management methods. This goal can

be achieved by setting management priorities for node management technologies and

autonomic management, respectively.

• Default Security : Secure infrastructure through domain certifications and cryptogra-

phy.

• Decentralization and Distribution: Both central and decentralized management

methods should be available.

• User-friendly Autonomic Northbound Interfaces : Any interface designed for human

interaction with network infrastructure should be simple to use.

• Autonomic Reporting : Information about the network performance and information

should be gathered and reported to the users.

• Abstraction: The interactions between humans and the network should be designed

at the highest possible level, with the lowest amount of detail about configuration or

machine language.

• Autonomic Control Plane and Common Autonomic Networking Infrastructure: Cre-

ation of a common autonomic infrastructure with standard autonomic functionalities

for the management of networks.

• Decoupling of Function from Layer : Autonomic functions are separated from the layers

of networks which results in the possibility of creating them by all the devices from

different layers, e.g., switches from layer two or routers from layer three.
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• Supporting Full Life-cycle of Devices : This knowledge is required for the autonomic

networks to reduce any requirement for inputs from outside the system. Thus, the

network operates itself based on the defined goals and devices’ life cycles.

In the third chapter, these design goals help us to form our solution regarding an

integrated definition of network goals.

2.3.2 RFC 9315: Intent-Based Networking Concepts

RFC 9315 [10] from NMRG defines the term “intent” and gives a general overview of

the functionality that goes along with it. The objective is to help create a consistent

description of concepts and terms to serve as the basis for further defining related research

and engineering problems and their solutions. Intent defines objectives and results in an

utterly descriptive approach, outlining what must be achieved but not how. Thus, intent

employs data abstraction to reduce the need for low-level device configuration and functional

abstraction to encapsulate the logic behind the management of devices to accomplish a

specific objective [10]. Abstraction means that the autonomic network can accomplish the

desired objectives (i.e., a desired state or behavior) without requiring the user to define the

specific technical methods for doing so. The autonomic network can recognize and ingest

the intent of an operator or user and configure and modify itself in accordance with the user

intent. An intent-based network can determine how to accomplish the goal independently.

Also, users may need a single conceptual point of engagement with the network instead of

modifying the entire network goal. Procedures that initiate remedial measures are required

when network activity deviates from desired intent to prevent any risk of conflicting intents.

Mechanisms such as restoring network compliance, notifying, and reporting to assist the

network in articulating any changes in the original intent can reduce potential conflicts

between the changes. Users should be able to verify and track whether the network is

following and complying with intent using the services and interfaces provided by intent

assurance. This is required to evaluate the success of actions made in the fulfillment process,

providing crucial input that enables those functions to be taught or tweaked over time to
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get the best results. Thus, since there might be multiple intents in one system or some

particular intents to affect a specific part of the network without any effects on other parts,

some mechanism to avoid the risk of conflicting intents or goals should be considered, such

as the prioritizing mechanism in [24]. Southbound interfaces provides the feature of applying

the same network configuration to diverse networking technologies. ONOS and southbound

interfaces provide an infrastructure to model configurations with languages such as YANG.

This method of implementing networks can result in a portability feature for intent-based

networking. SDN enables scalable intents for intent-based networking and enables central

management and control of network devices through an SDN controller. This scalability is

because SDN separates the control and data planes. Manual configuration of every device

is omitted, and thus the controller can utilize high-level “intents” to define the desired

state of the network. This enables localization, on the one hand, and quicker adaptation

to shifting network circumstances and requirements, as well as more effective and scalable

network administration, on the other hand. Therefore, adding more devices or resources to

the network is more manageable as the controller should adapt to the changes rather than

the entire system components individually. Also, intent-based networks require principles,

guidelines, or standards regarding security considerations. This security can include the

security of the intent-based network architecture, reducing the effects of false and malicious

intents, and creating statements about security policies. To summarize, RFC 9315 provides

some characteristics of intent-based networking with general examples of what can or cannot

be categorized as intent. Other current technologies, such as ONOS and SDN, can also

complete the scheme of an intent-based network.

2.3.3 RFC 9316: Networking Intent Examples and Classification

Intents are high-level policies to conduct an autonomic network and to abstract an intent;

three principles should be considered since an intent model is composed of these concepts,

namely, “context”, “capabilities”, and “constraints” [23], which are the fundamentals for

intent classification. Context justifies the applicability of an intent model to an autonomic
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network, and capabilities refer to the operational aspect of an intent model, which relies

on how declarative the intent and its programming language are, where the capabilities can

be regulated through conditions by the constraints. Depending on the context, tasks and

magnitude of the intents can be deduced, which results in a more explicit class determination

for intent solutions like carrier, or DC network, intent users, and scope. The system can

then determine some properties of the intent by recognizing its resources and capabilities.

These systems’ capabilities then aid in identifying some properties of the intent, such as

intent types, users, scope, and network scope. The system may identify rules for various

intended users or solutions due to constraints that specify the intent’s restrictions. RFC

9316 [23] focuses on the intent classification to categorize this concept based on an intent

classification methodology. This categorization helps narrow the wide range of network goals

into groups more expressible by network technologies. It also gives a clearer view of what

can be categorized as an intent Intent Types, and who can use these intents as Intent Users.

In general, using this methodology, the actions listed below can be used to classify an intent:

• Determine the solution’s intent type (e.g., carrier, enterprise, and data center). Carrier

network solutions are for high-volume, wide-area communication services run by

telecommunications firms, also known as service providers, that offer voice, data, and

video communication services to end consumers. Data center network solutions are

used for managing and processing enormous amounts of data. They frequently employ

technologies like Software-Defined Networking (SDN) and virtualization to facilitate

communication between servers, storage devices, and other data center hardware.

Enterprise network solutions are used for corporate operations and organizational

communication. These networks securely and dependably connect workers and systems

within the organizations across several locations, such as various offices or distant sites.

• Determine the intent user types (e.g., customer, network operators, service operators).

The network’s aims and objectives are defined and used by the intent user. A human

network administrator, a network user, an automated system, or a hybrid of the two

may be involved. These users can be professionals aware of networking concepts or
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non-professionals without networking knowledge.

• Determine the intended concept of various intents based on the networking context

(e.g., network intent, customer service intent). This refers to the different

categories or types of intents that can be defined and managed within a network.

Examples of this categorization are as follows. Customer service intents refer

to the network intents constructed based on service-level agreements to satisfy

customer needs. Network and underlay network service intents refer to the goals

and objectives for managing and maintaining the underlying network infrastructure

services, configuration, optimization, and other tasks in an intent-oriented network

provided by underlay network administrators and service operators. Network and

underlay network intent types refer to objectives for network configuration and other

tasks related to network resources such as switches and routers and their life-cycle

management. Cloud management intent types are the intents created to manage

resources and their configuration in DC networks. Cloud resource management intent

types can be formed to handle the life cycle of these resources. The goal of the security,

quality of service (QoS), and traffic engineering as strategy intents is to ensure that

users can receive a secure, high level of service from the network. The goal of the

configuration and monitoring policies and auto-recovery is to ensure that the network is

functioning correctly and that any problems are found immediately as another strategy

intent type. In order to make the prospect of an immediate recovery, this would

include putting up monitoring systems to track the performance of the network and

its services and automatically producing alarms if any faults are discovered. Ensuring

that the network is developed and designed to provide the greatest possible service is

the strategy intent for design models and rules for networks and network service design.

By taking into account variables like scalability, performance, security, and reliability,

as well as the types of services that will be provided on the network, the design models

and policies for networks and network service design aim to make sure that the network

is built in a way that will provide the best service to users. In order to ensure that
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tasks like network maintenance, troubleshooting, and upgrades are carried out quickly

and with the least amount of user disruption possible, the strategy intent for designing

workflows, models, and policies for operational task intents would be to ensure that

the network is operated effectively and efficiently. Operational task intents are defined

as the particular goals and objectives for actions carried out by network administrators

or operators to maintain and administer a network. For instance, operations should

be performed with the least disruption possible for users during network migration to

a new platform or location, device replacements, and software upgrades.

• Determine the intent scope based on the intent solution (such as connectivity and

application). Intents are applied within a specific scope dependent on the granularity

level to regulate the intended networks’ behavior. If the intent impacts a connection,

it refers to connectivity scope. It refers to the application scope if it specifies the

apps affected by the intent request. It is security/privacy scope if the intent specifies

the security characteristics of the network, consumers, or end users. When the intent

specifies the network’s QoS characteristics, it is the QoS scope.

• Determine the network scope based on the intent scope (e.g., campus, radio access).

Regardless of the intent user type, the network, or network components, that represent

the intent targets are impacted by the user’s intent request. The network scope refers

to the target that the declarative policy affects in the network. Some examples are

physical network elements, campus networks, cloud edges, and cores.

• Determine the abstraction concepts (e.g., technical, non-technical). The level of

technical detail in intent and whether or not technical network information must be

disclosed to the user after the intent is implemented is referred to as intent abstraction.

• List the criteria for the life cycle (e.g., persistent, transient). Persistent intents have

a longer life cycle compared to transient intents that are policies temporarily effective

to the network.
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Figure 1: ANIMA abstract representation of autonomic network components

2.3.4 ANIMA Documents and Goals

As discussed in Section 2.3, NMRG has given a set of design goals for autonomic networks [3].

The ANIMA Working Group of the IETF has subsequently developed a set of five

documents [2, 6, 9, 11, 28] that define how to achieve these design goals in a coherent

way. The various nodes in an autonomic network (switches, routers, computers), called

Autonomic Network Elements, are members of a domain [2].

Each node in that domain contains a number of Autonomic Service Agents (ASA), which,

either alone or in collaboration with peer ASAs in other nodes, express the actions required

to achieve a particular autonomic function. The ASAs obtain services from an underlying

Autonomic Network Infrastructure (ANI), as depicted in Figure 1.

The ANI depends in turn on the underlying services provided by the local operating

system of the node, including access to the physical networking devices. One

component of the ANI is the Autonomic Control Plane (ACP), which provides for inter-

node communication [11]. This communication is carried by a purpose-built protocol

called GeneRic Autonomic Signaling Protocol (GRASP) [6]. The GRASP Application
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Programming Interface (API) [9] provides access to the ACP, offering functionalities that

are especially useful in Autonomic Networks, specifically: Discovery, Synchronisation, and

Negotiation. An ASA will use these functionalities to achieve the goal(s) of the autonomic

function(s) that it implements.

GRASP introduces the concept of GRASP Objectives to support communication of the

necessary data among the autonomic nodes. A GRASP objective can carry any arbitrary

data structure, and includes a set of flags to determine the purpose of the data, i.e., for

negotiation or synchronization. The data in a GRASP exchange are encoded using the

Concise Binary Object Representation (CBOR) [7]. This minimizes the “on-the-wire” cost,

which will be especially important in low-power environments such as the Internet of Things.

As one of the design goals of RFC7575 is Default Security, enrolment of a node into a

domain is performed by a zero-touch bootstrapping protocol called Bootstrapping Remote

Secure Key Infrastructure (BRSKI) [28]. This ensures that all members of a domain have

the ability to trust each other, and to verify that that trust remains valid.

While the ANIMA design has as its target the support of “Intent-Based Networks”, the

ANIMA documents do not provide any specification of how to represent “Intent”. However,

the flexibility built into GRASP objectives and CBOR ensure that GRASP objectives will

be able to transport any such representation that may be developed in the future.

2.4 ASSL

The Autonomic System Specification Language (ASSL) is a declarative specification language

used to represent the structure, behavior, and communication of a group of elements aiming

to achieve a common task by expressing system-level and element-level goals [14, 31, 35, 42].

ASSL creates the formal design of autonomic systems based on the self-management

characteristics of the system. In the ASSL paradigm, autonomic elements are compared to

software agents that can control their actions and interactions with other autonomic elements

to produce or utilize computing services. This framework simulates the autonomic behavioral

models through its unique formal notation, which results in a Java code skeleton as its output.
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Figure 2: ASSL components abstract view

Moreover, this framework contains a validation procedure as a part of its toolkit to check the

consistency of the specified code against the semantics of the framework grammar. Generally,

ASSL views autonomous systems (ASs) as being made up of autonomic elements (AEs) that

communicate via interaction protocols. ASSL is defined through formalizing multi-tier levels

with a hierarchical approach to specify these building blocks. The ASSL tiers and their

associated sub-tiers are abstractions of various elements of the intended autonomic system,

as depicted in Figure 2.

Operationally, upon compilation, an ASSL specification is translated into an event-driven

reactive system specification language that enables the expression of the structure of a

collectivity of elements that participate in standard behavior that is achieved by orchestrating

each of their local behavior. ASSL has been used to represent the autonomic behavior for

NASA multi-agent-based exploratory space probes collaborative missions [32, 33, 37, 38],

group-based space probes telecommunication behavior [34, 36], the specification of real-time

reactive systems [25, 39, 41], self-scheduling robotics [26], autonomic pattern-recognition

systems [40].

The most fundamental parts of an autonomic system expressed using ASSL are managed
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elements or managed resources and the autonomic manager as its controller. The controller

manages the autonomic system based on the high-level goals for the system to reach and the

metrics, events, and actions related to attaining these goals, as expressed by the specification

of the role of each managed element in the system.

In order to express autonomicity, the system as a whole is defined with its higher-level

goals and behavior, which enables it to dynamically keep meeting its goals through the event-

driven monitoring of metrics and triggering actions when the metrics go out of acceptable

boundaries. In the same way, each autonomic element involved in the system is defined with

its own goals, metrics, and actions.

Suppose a system or element action requires another element to be notified or prompted

into action. In that case, a message is sent to this element, triggering an event, which then

triggers an action to be taken by this element. The specification of the actions aims at

changing the system’s state or an element’s state so that the metrics and goals of the system

go back to the desired state as measured by the expressed metrics. This mechanism, in

turn, requires the specification of interaction protocols between the elements and an event-

handling mechanism that enables the elements to react to messages, metrics going out of

bounds, or goals ceasing to be met. Each of the different tiers of the specification is expressed

in more detail in the sections below.

The Autonomic System (AS) tier provides the infrastructure for the entire system to

handle self-chop mechanisms at the highest system level. The autonomic system’s general

rules, architecture, and policies are defined at this level of abstraction. To construct the

autonomic system, three main components are required: (1) the general rules or plans of the

system as a whole, (2) the building blocks as autonomic elements, and (3) an interaction

protocol as the means of communication between these components to enable collective

behavior. Three different approaches are available to achieve these components. First, using

a top-down approach, events and metrics can be determined from a global perspective of the

system view. In addition, with the bottom-up approach, details from low-level configuration

can be extracted to shape condition measurements. The final approach consists of the
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contribution of the previous two, which leads us to build an autonomic system by considering

both abstract and detailed-level properties.

In a manner analogous to multi-agent system specifications, autonomic system

specifications are composed of individual components called Autonomic Elements (AE),

which are capable of managing themselves by running local autonomic behavior of their

own. In order to achieve collective behavior, the autonomic system and the autonomic

elements need a means of communication between them which can be expressed as Interaction

Protocols (IP). There are two levels of interaction protocols, one for the AS tier for general

system-level communications called the Autonomic System Interaction Protocol (ASIP) and

the other protocol for the AE tier to handle communication between the autonomic elements,

called the Autonomic Element Interaction Protocol (AEIP).

ASSL focuses on two primary architectural styles, namely, decentralized and centralized.

For the first one, aptly referred to as Grid, autonomic elements are directly connected in a

linear/grid format. For the second style, autonomic elements form a centralized node through

grouping, where an AE proxy will represent the collectivity of autonomic elements in the

group council. The list of all autonomic elements (AEs) belonging to the same autonomic

system and groups with their members and their direct and transitive dependencies are to

be specified to express the architecture. Autonomic elements can interact with each other

directly when declared as Friends by forming a private negotiation group since they are

connected as neighbors or in the same group. Declaring autonomic elements as friends gives

each other access to their internally declared tiers.

Suppose we have a network domain including a router that can be named as registrar

to enroll other devices into this domain through certificates. The network topology can

be depicted through a concept called Group in the ASSL specification, where devices are

considered autonomic elements or the group members of the topology. These devices depend

on each other from different aspects of their collective behavior. These dependencies can

be direct or transitive, and the groups and a device can be mentioned as the council of the

autonomic domain. In this scenario, the registrar router should be assumed as the council
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since it has all the information gathered from other devices and is the domain’s central

management.

Another central aspect of ASSL specifications is Metric. Metrics are measurable

quantities or qualities from an autonomic system that can be monitored that can be beneficial

for controlling the system [42]. Related to the notion of metrics, the Threshold Classes specify

ranges of metric values of particular interest or meaning for the system specification. Based

on these classes of values, a metric is, in turn, determined as valid or invalid. For example,

once a metric is deemed as invalid by its value belonging to one of the threshold classes,

an event can be triggered, which is then trapped by a related Fluent, upon which Mappings

are defined that map them to an Action that will, in turn, hopefully, rectify the situation

to make the system state to go back to a desirable state. Some examples of the metrics

can be message size, specific time measurements, or information extracted from the quality

of service purposes. In order to extract the value of the metrics, the metric Source can

be specified, which is expected to be available from a managed element to provide specific

information for an autonomic element’s state. The metric controller module is responsible

for handling metric operations for both metrics and metric sources.

As an ASSL specification essentially declares a system of somehow independent agents

to collaborate on a collective problem to solve, communication between these elements

is necessary. Messages are defined at both tiers of interaction protocols as a means

for negotiation between autonomic nodes since information can be transmitted between

autonomic elements through messages. Negotiation in ASSL consists of predefined messages

for general purposes, such as initiating and terminating an information exchanging session,

and particular empty messages to exchange data to achieve specific goals. For instance, if an

autonomic element requires a metric, it sends an empty message to the targeted autonomic

element, which fills the message skeleton with the required Metric it has and returns it to

the previous autonomic element.

Channels are a communication interface between autonomic nodes to provide a link

simulation for transferring messages. Each message can be exchanged through a Channel.
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Channels are often unidirectional; however, they can be grouped as channel buses and

transfer messages concurrently. Also, a controller module provides different functionalities to

create, manage or adjust channels and their settings. Channels can express communication

between autonomic elements in two private and a public mode where the former transfer the

public messages and the latter transmit the private messages among autonomic elements,

which are members of a trusted group specified as friends, to improve privacy and reduce the

risk of malicious attacks. To complete the communication procedure, Functions facilitate

the channel utilization by conducting the stream of defined messages to the correct channel

or channels.

Behavioral specifications specified as one or more conditional boolean expressions that can

monitor and measure system performance are service-level objectives. A set of executable

activities or responses of the system to any service level objectives, policies, or behavior

models defined by the autonomic system are called Actions. These actions can contribute to

different tiers and sub-tiers of ASSL, such as the AE tier, after meeting a specific condition

regulated through a particular “action contract”. States (situations or cycles of incidents)

of the autonomic system based on a specific duration of time are Fluents, which are at

the essence of the concept to determine self-management policies. Fluents can be initiated

or terminated by Events. They represent a specified timed sequence that tracks when a

defined condition is fulfilled, then allows an attached Mapping to specify an Action to be

triggered in order for the fluent to be deactivated through a fluent-deactivating event. Each

event is evoked by a specific duration related to timing or processes in the system. Mapping

clauses map the conditions presented in the fluents to the desired actions that, in turn, will

eventually change the system’s state.

Autonomic elements rule one or more Managed Elements through managed resource

interface as its communication model. These interface functions can specify four clauses

such as Parameters to introduce attributes or functionality to the interface. In essence, the

managed elements are the non-autonomic elements used and controlled by the autonomic

system specification. The manageability interface is the means for communication with
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other autonomic elements and entities in the autonomic system. An autonomic element can

be responsible for one or more managed elements. This management is handled through

defining a Java-like interface, or a named set of functions without implementation, for each

managed resource where the function’s return type and its parameter types are predefined

in the ASSL framework.

One of the characteristics of an autonomic system that can be expressed in ASSL is Self-

Healing, which helps the system to correct itself in case any undesirable state is reached and

to prevent any possible problems or system errors related to this undesirable state. In this

case, errors are internal and related to system functionality or failure; therefore, different

possible undesired states can be considered in this specification.

Self-management capability divided into self-chop objectives is the primary purpose of

autonomic computing, and its policies can be determined through fluent. Self-management

policies can be expressed for both the AS tier in general, as well as each of the AE tiers in

particular. For the general tier, the self-chop policies are specified based on the general and

public rules. Regarding the AE tier, these characteristics are specified in more detail from

the perspective of a specific autonomic element. At the same time, each of the autonomic

elements is represented and managed as a minor autonomic system with its policies and

conditions, such as fluents that should not conflict with the whole system. ASSL provides

a collection of tools as ASSL toolset to form an appropriate environment for developing,

maintaining, and executing autonomic behaviors. This toolset includes:

• ASSL Editor and ASSL Grammar Modules including the syntax of ASSL that equip

the autonomic system to express autonomic behavioral models. Also, Graphical User

Interface (GUI) is another tool that supplies the modeling system with a means for

interaction between the user and autonomic system models,through which the user can

write, edit, and compile the specifications.

• ASSL Compiler Module allows the compilation and parsing of the specified autonomic

behaviors into an intermediate code to analyze the logic based on the semantics.
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• ASSL Java Generator Module supplies a means for verifying the autonomic behaviors

through consistency checking and then converting them to executable code.

The ASSL toolset generally creates integrity for the whole autonomic system, while

specification, maintenance, and verification are handled in a unified system.

2.5 Problem Statement

Intent is a high-level construct, which will be expressed in some sort of problem-specific

(high-level) language. In RFC9316 [23], several intent examples are given, each of which is

written in English. To achieve the desired effect of the intents, it is necessary to transform

the declarative form of these intents into commands that can be understood by the existing

software on individual network devices (switches, routers, hosts, etc.). This requires a set

of procedures, which will take declarative information from the point of interaction with the

(human) user, and distribute specific commands to the affected devices. Many of the actions

required to give effect to an intent can be carried out independently by network devices,

which suggests that organizing an Intent-Based Network as an Autonomic Network will be

an effective approach. Clearly, however, other actions will require coordination among a set

of devices, so a desirable property of a proposed solution will be the provision of controlled

information exchange within a group of related devices.

Intent has different meanings in different application areas. Various approaches to

expressing intent have been investigated, along with their advantages and shortcomings.

Once a definition of intent is accepted for a particular domain, it is necessary to determine

how to effectively express this intent, so that the desired outcomes can be achieved within the

intent-based network. Our exploration and analysis of the existing intent-based management

technologies have led us to two major problems, which we identify as our problem statement

for this thesis:

• There is a variety of definitions of intent, as different research groups and network

users have their own specific descriptions of the network goal. For the purposes of
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this thesis, we will adopt the definition in RFC 9315 [10], and then formulate a more

comprehensive set of Intent Objectives, which will cover the core characteristics of a

networking goal from different perspectives.

• The set of examples in RFC 9316 [23] is written in English. The concepts of

autonomic systems in ASSL are expressed in a high-level language. To demonstrate

that autonomic systems (as represented by ASSL) are, in fact, a good basis for

constructing an Intent-Based Network, we will show that the mapping from English to

ASSL is feasible, for a wide range of intents, which are chosen to ensure that all of the

Intent Objectives can be met.
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Chapter 3

Solution

A definition of intent is given in RFC 9315 [10]:

A set of operational goals (that a network should meet) and outcomes (that a

network is supposed to deliver) defined in a declarative manner without specifying

how to achieve or implement them.

In order to evaluate the expressiveness of a chosen representation for intent, we require a

more detailed description of the essential features of intent. Development of this set of Intent

Objectives is the first goal of this chapter.

A definition of an Intent-Based Network (IBN) is also given in RFC 9315 [10]:

A network that can be managed using intent.

Note that this definition does not imply that the network is also autonomic.

Finally, a definition of an Intent-Based System (IBS) is given in RFC 9315 [10]:

A system that supports management functions that can be guided using intent.

In such a system, there will be:

1. a point of interaction with the user or administrator, thorough which the intent will

be specified;
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2. a transformation of the form in which the intent is given into an intermediate form

that can be interpreted by the IBN;

3. a distribution of the transformed intent to the device(s) that have to alter their state

in order to produce the desired effect.

Given that we could find no detailed documentation for NEMO, we demonstrate that ASSL

is a suitable intermediate form, and is able to express most of the intent objectives. This is

the second goal of this chapter.

3.1 Intent Objectives

An autonomic system (AS) can use the objectives, such as intents in autonomic networks,

and features as generic characteristics. AS objectives are considered system needs, while AS

properties could be considered standards outlining fundamental implementation processes.

As we discussed in Chapter 1, the vagueness of the definition of “intent” in intent-based

network management has led us to delineate our definition. This characterization can be

viewed from three main perspectives: language aspects, execution, and deployment criteria.

The characterization is inspired by the positive aspects of current intent-based networking

technologies, and by documents focusing on intent-oriented concepts, as summarized

in Section 2.3.2.

Since different crucial characteristics were mentioned for intent-based networking and

intent, in diverse documents, and existing studies, we created our list by gathering the

crucial aspects of intent-based networking from different resources as an integrated list. The

intent objectives are mandatory requirements for a solution that enables the expression and

deployment of networking intents, which includes the fact that the underlying intent-based

network should be able to respect these properties.

To summarize, the characteristics of intent-driven networking expression and

implementation are the following as discussed in Section 2.3.2:
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• Abstract Formulation [3, 10]: The intent expression language should enable the

expression of intents in a language somehow close to human language and enable the

user to express high-level intents without relying on low-level technical networking

terminology.

• Declarative Outcome Formulation [10]: The intent expression language should enable

the declaration of a goal for a network instead of a procedure to be followed to achieve

this goal. The compilation/interpretation of the intent implemented in the intent-

driven networking system should automatically translate the desired goals/outcomes

into an operational solution that enables the network to achieve the stated goals.

• Portability: The operation of the intent-driven networking system should have a

minimal dependency concerning lower-level configurations and be minimally bound

to platform-specific considerations. It should minimally rely on specific tools to be

installed outside of its operation. If it does depend on any of these, the intent-driven

networking system should automatically adapt its configuration when the intents are

deployed. An intent’s formulation should not need to be changed when it is deployed

in a different context.

• Distributed and Local Behavior Management [3]: The operation of the intent-driven

networking system should orchestrate the synergy of distributed networking elements

that participate in the execution of intent. The operation of the intent-driven

networking system should also enable each networking element to express and execute

its own local goals independently from the system-level goals in which they participate.

• Composability [10]: An intent can be expressed as a module that clearly defines its

interactions with the exterior, i.e., its interface, in a way that (1) allows other intents

to interact with it in order to provide composite intents that can express and deliver

more than if they would not be combined and (2) allows the intent to be seamlessly

replaced by another intent that exposes the same interface.
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• Efficiency [42]: The intent expression language should allow the succinct expression of

intents, whose translated meaning corresponds to the execution of complex operations

inferred from the original intent expression. The implementation of these operations

should aim for efficiency of execution.

• Scalability [22]: The operation of the intent-driven networking system should consider

scalability when deploying an intent in a context where the scale of the controlled

network is changing. Scaling up the complexity of the controlled network, in either

number of member nodes or number of intents, should not require the execution of the

intent to increase resource consumption or reaction time to unacceptable levels.

• Monitoring Capabilities [42]: An intent-based network should monitor its behavior

to verify if the network is working based on the defined autonomic behavior. The

operation of the intent-driven networking system should enable deployment of intents

that not only constitute static commands to be executed once upon deployment

but should also enable the deployment of dynamically deployed intents that require

constant monitoring of a situation and ensure that a goal is constantly met over time.

• Security [3]: The operation of the intent-driven networking system should rely on secure

interactions in the deployment of intents. Any member of an autonomic domain must

be authorized by identification, such as a certificate granted by a domain certification

authority. Nodes in the autonomic system use these certificates to identify their

surrounding nodes, define the domain’s edges, and secure cryptographic communication

in their domain. Also, different domains can securely verify and communicate with each

other by relying on a mutually agreed trust anchor.

• Autonomic Reporting [3]: The operation of the intent-driven networking system should

offer network visibility through reporting that ought to take place across the entire

network. These reports should be narrowed to the events important to the user, not

the unnecessary lower-level details. The network itself should gather and aggregate

network-related data, including metrics, and deliver it to the administrator or user in
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a consolidated manner, which can then be used to measure the effectiveness of the

deployed intents.

3.2 Using ASSL to Express Intents

The ASSL [42] framework can cover the intent specification in a structure where the

characteristic of an autonomic system is considered. This results in a unified view of the

autonomic network, which eases the procedures for modification or managing the network

based on the intent. The other positive aspect of using the ASSL framework for an intent-

based autonomic network is to reduce the use of data-based driven technologies causing

human intervention, such as NEMO, which requires queries as a part of its procedures.

ASSL is designed to provide autonomic computing for autonomic systems, and it has not

been used for expressing networking problems. In this chapter, we will demonstrate that we

can use this framework for the expression of networking problems. Since ASSL is a simulation

of an autonomic system with its communication channels and building blocks, the concept of

the Autonomic Control Plane (ACP) as the logical control plane of the autonomic network

can be included in the intent specification. As well as simulating all the previously described

ANIMA notions as stated in Section 2.3 and Section 2.3.4, ASSL also provides us with the

means of expressing our intent objectives as explained in Section 3.1.

To resolve the lack of an intent specification language, we can use the ASSL framework

since it provides the means of expressing intents in a formalized simulation-only manner

for the autonomic networks. Analogous to an autonomic system, an autonomic network

can be developed from behavioral models and a control loop to manage the network in an

autonomic manner. The hierarchy of ASSL allows us to construct the autonomic network in

the following steps. Firstly, the AS tier provides the means to create a global AS perspective

for the autonomic network by presenting the general network rules and metrics necessitated

to define the public characteristics of the intent, which is accessible by all the network

nodes. To construct a communication tool under this layer, the AS-level interaction protocol

(ASIP) can be specified. The network topology can be shaped by the AS’s individual
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components stated as AEs with their autonomic behavior handling the general network

rules from AS perspective. A set of rules particular to an AE tier which can include SLO

and self-management policies, an AEIP as the private communication protocol, friends as a

circle of trusted autonomic nodes, recovery protocols, behavioral models, network states, and

intent metrics for particular autonomic nodes. Moreover, it is possible to define interaction

interfaces presented as managed elements AEIP to form particular methods to manage the

devices connected to the autonomic network.

The ASSL perspective on autonomic systems is based on multi-agent systems, in which

the autonomic elements are designed for managing resources and providing services as

individual components under the AS level. Considering an autonomic network similar to an

autonomic system, its architecture topology can comprise the relationship between separate

or groupings of autonomic nodes. This architecture topology contains two models; First,

the grid architecture as shown in Figure 3 where the autonomic nodes connect in a non-

hierarchical and decentralized manner, and the second style as shown in Figure 4, autonomic

nodes can be managed by a centralized node called AE Council composed of conceptual AE

proxies as representative of AEs and help us to build a more flexible architecture. AEs can

be the representatives of autonomic nodes as they abstract their autonomic behaviors. Also,

it is notable that, in some scenarios of networking the devices, or in other words AEs are

connected to each other directly, however, they may need centralized management to take

their orders from.

The fundamental basis for coordinating the autonomic networks is the intent of high-level

abstract policies, including conditions and specific measurements to evaluate the network’s

performance. These intents should be driven in an autonomic network environment capable

of providing AC self-management policies (also known as the self-chop properties): self-

configuring, self-healing, self-optimizing, and self-protecting. ASSL formal model supplies

these capabilities in its hierarchical architecture for both node and system levels.

Self-management policies can be expressed with fluents driven by events and mapped

to actions via mappings. To explicate more, fluents are the means to define diverse states
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Figure 3: ASSL grid architecture

Figure 4: ASSL centralized architecture
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or conditions that can occur in the autonomic network during a node or intent life cycle

where these states can be initiated and terminated by events which are the means to specify

time duration for any context in ASSL. Besides Self-management policies, there are service-

level objectives (SLO) to measure the performance of the autonomic network based on

particular metrics. The conditions stated by self-management policies can cause different

operations under the intent consideration, which actions can express over AS, AE, and ASIP

tiers based on the privacy level. In other words, actions can be demonstrated as responses

to behavioral models of the autonomic network based on the intent and expressed as SLOs

or self-management policies. Also, the coordination between the mentioned conditions or

states and corresponding actions are handled through Mapping specifications.

Reactive and proactive self-healing are the two modalities under autonomic computing

consideration. When operating in reactive mode for autonomic networks, an AS should detect

network faults, recover from them, and, if applicable, fix them. In proactive mode, an AS

keeps an eye on vital signs to identify and prevent health issues before they arise or reach

unfavorable levels.

Autonomic elements serve as the foundation of autonomic systems. Therefore, they

can simulate the abstract version of autonomic networking nodes as a basis for autonomic

networks with the capability of simulating autonomic functionalities. The AE architecture

is depicted in Figure 5. An AE typically extends programming constructs such as objects

and services to form a software unit to encapsulate a node-level self-management mechanism

with its rules and conditions, clear conceptual dependencies, and stated interfaces.

Public interaction protocol (ASIP) and private interaction protocol (AEIP) are indicated

by the ASSL framework to provide abstract connectivity between autonomic nodes in two

levels. For AEIP, when two AEs have an “agreement” on it, they can communicate across

their AEIP channel and send private messages to each other.

Channels can simulate a conceptual communication link between the autonomic nodes to

provide an abstract negotiation protocol, which is one of the fundamental contexts defined

under autonomic networking. Negotiation is essential in autonomic network infrastructure
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Figure 5: Autonomic element architecture

to allow networking nodes to exchange information about different subjects, like their states

or intent metrics. In ASSL specification, messages, as the fundamental component for its

negotiation mechanism between autonomic elements, are responsible for transmitting data of

different types over private or public channels. A message format is specifically designed for

negotiation concepts in ASSL that can be formed by beginning and end messages between

the expression of autonomic nodes. To complete the negotiation process among autonomic

nodes, we need to connect messages to channels through the functions of ASSL.

Intents in autonomic networks can be composed of different conditions at different levels,

and to satisfy this characteristic of intent, there are more condition statements available

in the ASSL framework. Guards are another possible conditional statement that can be

expressed to limit the execution of particular actions or events. To explain more, this clause

can enhance the adequacy of other clauses by adding more details to restrict that prompt
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for certain conditions or metrics derived from intent objectives.

Any measurable content or parameter in autonomic networks extracted from monitoring

or other resources can be equivalent to metrics from the ASSL framework. The notion of

metric in autonomic networks can be amalgamated with intent definition since the intent is

declarative operational policies including different measurements, which can be categorized

based on intent classification criteria [23]. The metrics extracted from this classification

can be quantified, qualified, or a composition of both, and ASSL provides different types

of metrics to cover quantitative measurements, such as variables extracted from managed

resources, and qualified metrics, such as performance or timing of the responses, which

can be specified in ASSL based on Quality of Service or other intent scope properties. In

ASSL, threshold classes specify the acceptable ranges for metrics to be assessed by the

ASSL compiler. Therefore, this capability is beneficial to evaluate if the autonomic network

is performing based on the specified intent, which results in network assurance.

The managed element is the resource working with ASSL such as network, server, or other

software entities, which can be managed through a manageability interface made up of sensors

and effectors, where the former gathers information about the managed element’s current

state and state transitions, and the latter alters the AE’s state. The interface functions

for network-managed resources can be used by ASSL actions to control managed elements

or by ASSL metrics to acquire data on managed elements’ characteristics, such as network

performance. These empty generated skeletons add more flexibility to the design of the

autonomic network, particularly if the entire network is not autonomic, the non-autonomic

devices can be controlled based on the network intent as these managed resources without

any interference with the autonomic control loop.

One or more managed elements in collaboration with an autonomic manager controller

make up a primary control loop, which is the fundamental aspect of the logic behind

autonomic network management. Based on observed measurements and events defined by

the intent conditions and objectives in the autonomic network management criteria, the

autonomic manager decides how to manage its related resources. The monitor, analyzer,
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Figure 6: AE generic architecture and control loop

planner, and executor are the stages to form the functionality of the control loop. In our

case, the monitor collects data from managed elements or networking nodes. The Planner

provides the learning phase for the autonomic network through the arrangement of actions

required for achieving the intent objectives. While the Analyzer determines whether the more

complicated system policies and their impact on the system’s environment are in place, the

Executor ensures that the actions from the Planner stage are carried out per the models

of the Planner. The basis for all the mentioned units is the knowledge gathered from the

managed resources to extract the appropriate metrics to construct the intent to be measured

for the performance of the autonomic network. The AE generic architecture for its control

loop is illustrated in Figure 6. In the current version of ASSL, the decision-making logic for

the control loop is constructed based on the control flow of different sequential events, from

gathering information to performing the appropriate actions.

The main benefit of modeling with ASSL is that it is designed explicitly for modeling

autonomic systems, allowing us to express the autonomic system’s attributes and behaviors
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at an abstract level. The abstract formulation is a well-known method to reduce complexity.

To further explain, abstraction refers to hiding unnecessary features and encapsulating

as many possible details to achieve a particular purpose, which can be completed with

generalization and aggregation. To formulate intent abstractly, ASSL provides formal

expressions representing the desirable network goals. AS tiers, ASARCHITECTURE, and fluents

are sub-components that shape formal expressions. These intent specifications can be verified

through the ASSL consistency check engine as they are formal methods. The concept of

having tier-based architecture is ASSL’s primary feature that facilitates the classification of

components of an autonomic network in an abstract manner. For instance, some hosts are

connected through links in an autonomic network. Each of these nodes and links between

them as means of communication has its implementation details, which are diverse due to

manufacturer-based attributes and optional to determine for different scenarios. An AE tier

can encapsulate these node attributes and emphasize a specific metric, or GUARD, based

on the intent requirements to define the conditions. Similarities between these tiers and

sub-tiers depend on each other to form the integrated autonomic network. This abstract

hierarchical design also allows the users to reuse a block of specification since each block

can be considered a black box with its encapsulated intent-based characteristics. A group

of related AEs organized as a unified abstraction is called generalization in ASSL AECLASS.

The AE classes or abstract AEs can be utilized to generalize any similarities among the

AEs in an AS. As a result, AE classes specify attributes, such as AE policies and behavior

models, inherited by actual AEs under its autonomic system. This feature of ASSL brings

the possibility of defining a template autonomic behavior specification for the autonomic

nodes with similar characteristics, such as a group of hosts in a university laboratory, to

inherit their behavioral models from one central autonomic node specification resulting in

the simplification of an intent expression. Even though an AS is considered a unit in the

intent expression procedure, this AS abstraction comprises one component ASIP, multiple

component AEs, and an aggregate of both, including many sub-component objects.

The segregation of the AC (autonomic computing) features, such as self-management

46



properties, into manageable sub-domains, referred to as ASSL tiers and sub-tiers, forms the

hierarchical abstraction and, therefore, less crucial details of the autonomic network, such

as those regarding vendor-specific implementation details, can be concealed and focus the

specification based on the high-level abstract intent. Thus, in general, the ASSL specification

provides two levels of abstraction. The high-level abstractions form tiers in the ASSL

hierarchy, while contextualized subdomains (sub-tiers), which comprise low-level system

modules, are called low-level abstractions. Also, a managed resource is a distinct software

system like networks, servers, or databases that provides services. At the same time, their

functionality and architecture have not been emphasized by ASSL, unlike the autonomic

computing properties. However, they are accessible with specified interfaces through an

abstract version of the managed resource resulting in a low level of intrusion since the AC

features are wrapped for previous configurations or systems on the network devices.

To conclude, the concrete architecture of the components in the autonomic network

architecture is not addressed by ASSL. Instead, ASSL specification models an autonomic

wrapper in the form of an autonomic element through a set of managed resource interface

functions that can be designed to encapsulate the target network as a managed resource and

grants it autonomic capabilities and intent specification objectives. In addition, regarding

implementation, the framework creates the AEs as building blocks of the autonomic network

simulation as logical collections of Java classes known as Java packages, which causes

a direct relationship between the specified models and the actual system architecture.

The comparisons between the implementation and the high-level ASSL standards result

in abstraction at the implementation level. High-level, human-readable ASSL abstract

constructs can also be translatable for machine language to be used in networking devices.

The ASSL compiler can semantically verify all abstract autonomic behaviors specified by

ASSL to ensure the reliability of the specifications for the autonomic network. This

experimental phase should be completed by connecting ASSL specifications to software

agents.

Like abstract formulation, ASSL has the means to define the declarative outcomes of
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the intents. Unlike abstract formulation, the declarative outcome of intents should be

determined with more details. Since this framework can demonstrate conceptual definitions

of the specified intents that impact network state and these declarations can contain more

detail through metrics, variables, and custom types in its semantics, ASSL is declarative.

These metrics combine to create a complex variable construct that serves as the foundation

for an ASSL tier instance that can alter model contexts after being received by AS operational

model. As a result, ASSL investigates its tier clauses as micro semantic environments to build

a declarative specification tree out of their internal rule definitions, which are descriptions

of concepts rather than actual actions. The ASSLTierToken class in the Compiler module

completes this tree of declarative tiers. Then, its result is used to estimate the model’s

consistency by assessing the relationships between any identifier and its declaration. Also,

this assessment checks the accurate assignments of AE properties to prepare it for parsing

by the ASSLParser class to create an intermediate code required to generate the skeleton

of Java output without mentioning all the steps to achieve the specified intent in the ASSL

model specification in the outcome. An example of an intent declarative outcome can be

maintaining a particular bandwidth limitation. This example can be defined through ASSL

constructs such as fluents that guide the autonomic network to actions, including numeric

variables or metrics to express the bandwidth condition and sub-actions to complete the

desired autonomic behavior. The self-management policies as a part of the ASSL specification

model follow the state-transition machine paradigm, and fluents play the role of states

or situations that an autonomic network node can accept. Specified EVENTS cause the

transitions between these network states.

Portability can be assessed from two angles: the portability of ASSL specification

language in case of execution of the language and the portability of intent specifications

in terms of modeling and connecting those intents to the networking environment. ASSL

is designed platform independent and needs a system that can run Java. Moreover, the

ASSL toolset’s environment for developing intent specifications contains a grammar compiler,

consistency checker, and specification editor, which omits any dependency between the ASSL
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and the underlying platform. Thus, in the case of execution, this framework is portable.

Abstract ASSL constructs enable intent users to describe the desired behavior of a network,

such as service level agreements (SLAs) and traffic engineering policies, independent of the

underlying network infrastructure and technology. As a result, the intent can be applied to

various vendors and platforms without modification. This portability is in terms of intent

definition or modeling. To explain more, by considering the primary conditions of the intent

at an abstract level, these conditions are the same for diverse vendors. For instance, if based

on an intent, there is a bandwidth limitation of 50% for all video streaming traffic, the

intent declaration of ASSL for all vendors is the same to keep this amount as the metric

to measure for video streaming without considering the configuration of this policy. Thus,

the modeling of the intent at the highest level of abstraction can be portable. On the

other hand, communicating with devices and software agents is required to complete the

intent application procedure. Managed resources such as networking devices are separated

from ASSL in terms of the configuration since it is a simulation model of the autonomic

problem. To connect the managed resources, such as network nodes that contain the low-

level configuration, to ASSL specification, we can define the Java-like interface functions

skeleton, which can return ASSL predefined types. This decoupling between the low-level

devices and ASSL specifications outlines this language’s potential portability and platform-

agnostic characteristic. However, the portability of intent specification can be challenging

since to interpret the ASSL specifications to different vendor-based configurations, there

might be different interpretation requirements that might affect the intents. This potential

challenge might be reduced though having a template set of interpretations to be used for

different vendors. This means that the features of ASSL resulting in abstraction for intent

specification minimize the modification of the core intent specification. Because instead of

changing the core intent specification, we can adjust the software agents connecting to ASSL

interface functions when there is a need to apply intents to devices from different vendors.

The hierarchical design of ASSL, consisting of different tiers, allows us to define the

distributed and local autonomic network behaviors. Any autonomic behavior under the
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AS tier is accessible for the entire autonomic network, and any desirable network goal

defined under the AE tiers is localized for the AE. The distribution concept is covered by

ASSL’s specification, miming the network as an integrated autonomic system. However, after

producing the Java code, all the packages and classes are included in a single file, making

it inconvenient for dispersed execution in the current version of ASSL. Another aspect to

discuss this objective is the network’s central and distributed management. A centralized

management system that is in charge of regulating the behavior of the system or network

is referred to as distributed behavior management. The centralized management system

is in charge of deciphering the ASSL specification and creating the unified configuration

commands or actions connected to the system or network’s components in a distributed

behavior management system. Local control systems or agents that regulate the behavior of

specific components or systems inside a system or network are referred to as local behavior

managers. Each element or subsystem in a local behavior management system has its local

control system or agent, which is in charge of deciphering the pertinent section of the ASSL

specification and producing the necessary configuration commands or actions.

Starting at the low-abstract levels (supplied by the sub-tiers), where we provide

functionally linked AS characteristics, is one method for developing autonomic networks

through ASSL. As a result, ASSL permits us to initiate the structure of autonomic elements

such as autonomic networking nodes by lower-level details, including metrics for the intent

specification, and then add other functionalities or adjust the previous one to shape the

precise intent specification. On the other hand, different self-management policies such

as self-configuring, self-healing, and self-optimizing can be specified separately and then

combined with working together with minimal modification in the core of the intent

specification. Thus, ASSL features provide the potential of having composability for the

intent specification at a functional and internal level. Nevertheless, it should be considered

that there is a risk of composability failure if we have different ASSL specifications that aim

to rule the same autonomic network. This can not be estimated in this thesis scope since the

current version of ASSL, as the suggested solution, focuses on the simulation-only nature of
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ASSL. However, it is undeniable that formal verification of ASSL constructs can ensure the

autonomic networks that different policies can work together under the same domain if the

specification is consistent.

ASSL is efficient due to different reasons. Since the framework is a formal specification

language, it verifies the consistency of the intent expressions by its toolset. Therefore, the

autonomic network can be ensured that the network can adapt itself based on the conditions

specified in ASSL. The autonomic desired behavior expressed with ASSL is understandable

in terms of language. Also, since this language encapsulates the complexities, the generated

Java output is greater than the specified intents in the case of the number of lines of the

code. Since the ASSL design provides modular specification code blocks that are reusable in

different scenarios with minimal modifications, and due to its abstract level of specification,

it is easier to maintain specification by this framework, which increases efficiency.

The scalable essence of the ASSL design hastens the AS development process and,

consequently, the autonomic network for which ASSL specifies its intent. This is achievable

because the ASSL architecture scales effectively, allowing for sub-system modularity and

the capacity to grow the developing autonomic network by consistently including AEs

(autonomous elements). Moreover, this scalability is possible under the internal blocks to

add more metrics, as was described in the description of the Composability intent objective.

To explicate more, it is possible to specify an autonomic node as an AE in ASSL with core

concepts and then add other autonomic nodes to the system to increase the number of

AEs with minimal disruption in the whole autonomic behavior structure. Also, a reverse

proof would be decomposition as a strategy for abstraction when the autonomic network

expression initiates by the high-level representation of the system and then develop low-

level abstractions of the specified intent details, such as metrics to show how features and

operations are synchronized. Nevertheless, the current ASSL architecture is static, and by

adding components to the system, the code should be regenerated.

ASSL implements self-monitoring as a feature of the ASSL control loop algorithm for

various metrics and SLOs, or other measurements to determine whether or not they adhere to
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their threshold and limitations. For instance, it uses the ASSLMONITOR class as the foundation

for all AS monitors. Another illustration is AE ASSLMONITOR, which keeps track of the classes

in the AE control loop. The ASSL internal control loop begins with monitoring by determining

whether each service-level objective (SLO) has been accomplished and whether each metric

is accurate. Thus, any measurable construct or policy defined by ASSL can be monitored

to estimate and verify if it works based on the specified conditions. Also, proactive external

monitoring can be performed by having each autonomic node submit a notification message,

including a brief demonstration of the node state regularly. Another external monitoring is

applicable if the monitoring tool or software is considered a managed element working under

the control of the autonomic network specification with ASSL. However, software agents

should be developed for this purpose to complete the interaction of ASSL with the actual

networking devices.

Autonomic networks should protect themselves against any external attacks, and

security is a critical component of both software and hardware. Security in ANIMA’s

perspective is defined based on the domain of authority for network nodes authorized by

a similar certificate [28]. The devices under these domains can contribute to each other as

adjacent whose connections are secure through certificates and cryptographic methods. In

general, ANIMA discusses security under two main categories, including creating a secure

infrastructure through cryptography and making domain-based architecture to establish

authorized domains and adjacency for a group of nodes [28]. The former is not covered

by an intent specification language similar to ASSL since this security is mainly concerned

with low-level devices or managed elements. However, regarding the latter, the abstract

simulation of the security concepts to form an adjacency is achievable in ASSL. On the one

hand, due to the grouping capability of ASSL centralized architecture, autonomic elements

can become group members to simulate a domain structure. For this purpose, autonomic

elements can form a group as an AE council. This can be referred to as a simulation of a

central node that can include AE proxies generated from groups and councils. The AE proxy

concept plays the role of a representative for each autonomic element from the group for
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any required negotiation between the council and that autonomic element. They can be

treated as normal AEs. The advantages of the proxy concept to the architecture should

be summarized as the flexibility of the abstract design of the domain. However, coupled

with a recovery protocol, they can enhance some security aspects since they can facilitate

the gathering and analyzing of information related to malfunctioning of autonomic networks

either as a result of network failure or malicious attacks.

Interaction Protocols (IP) can specify messages and communication functions under the

ASIP or AEIP to connect these elements. ASSL interaction protocol features shape this

abstract communication based on the required level of accessibility, which can be public

for the whole AS or private for an AE. Also, reliable autonomic nodes can be listed under a

static concept called FRIENDS in ASSL to form groups of adjacent nodes with the capability of

private communication through private CHANNELS that are only accessible by the autonomic

nodes under FRIENDS member lists. Therefore, the abstract domain-specific security between

autonomic nodes can be simulated through ASSL group architecture and completed with

private interaction protocols through private CHANNELS.

3.3 Concrete Intent Examples Expressed Using ASSL

To assess the expressiveness of the ASSL framework as a specification language for

autonomic networks with the capability of representing intents abstractly, in this section, we

demonstrate some intents based on the intent classification presented in RFC9316 [23].

The main key to using ASSL as a solution to intent-based autonomic networks is dividing

the network architecture and the intent into ASSL components. This process facilitates

extracting an intent model subsuming context, capabilities, and conditions. There are

different components to model intent-driven autonomic networks with ASSL. The following

four categories can be considered to formulate autonomic behavior in ASSL based on intent:

• Goals and objectives: The network’s goals and objectives are used to describe the

network’s general purpose and desired behavior, such as minimizing the downtime of
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a network.

• Policies and rules: Policies and rules are used to specify the specific activities the

network must take in order to accomplish its goals and objectives. Resource allocation,

security, and traffic routing policies are a few examples of policies.

• Constraints and requirements: Requirements and constraints are used to specify the

requirements that must be met for the network to operate correctly. Limitations may

include things like the maximum permitted delay, the minimum bandwidth needs, or

the maximum permitted energy consumption.

• Management functions: The steps that the network should do to govern its operation

are defined by management functions. Monitoring the state of the network, making

configuration changes, or creating warnings are some examples of management tasks.

All the four mentioned categories can be shaped through a chain of fluents and events,

with metrics as their core constraint, to form desirable self-management policies for the

autonomic network. ASSL builds the intents as logical predicates that can change over

time to implement intents. The logical predicates can form through fluents representing the

status of a networking device or a particular element, such as the bandwidth utilization of a

link. To maintain the autonomic network in the desired state, actions can perform the intent

objectives. Applying configuration changes to network components and creating alarms when

a problem is found are examples of these actions. An autonomic management framework

or a software agent must connect these actions to the network to interpret them into

commands. Messaging in ASSL can be used to request and transmit configuration commands

or operations, as well as to transmit and request information about the status and behavior

of the network. In the following sections, we provide concrete examples of networking intents,

and we provide an implementation in ASSL to demonstrate the appropriateness of ASSL as

a solution to express intents. The existing ASSL compiler does not provide any mechanism

to access specific metrics on an individual network device. Thus, coding of the concept of

accessing this metric on a managed element is specified as function calls that return a specific

54



value or values. This implementation strategy allows the representation of “access a metric”

in a way that can be compiled using the existing ASSL compiler, which does not invalidate

any of the examples presented.

3.3.1 INTENT 1

INTENT 1
Intent : Always maintain a high quality of service and high bandwidth for

gold-level subscribers.
Solutions : Carrier Networks

Intent User : Customer/Subscriber
Intent Type : Customer Service Intent

Source : [23]

Table 1: Specification/classification for INTENT 1

The first network management intent we chose to represent is related to the quality of

service (QoS) as one of the most important criteria for assessing the network’s performance.

The specifications/classification of this intent is presented in Table 1. From a conceptual

perspective, there are five steps to achieve QoS implementation in the network: (1) Traffic

Classification, (2) QoS Labeling, (3) Policing, (4) Marking, and (5) Evaluating. Network

operators configure these steps of QoS with various vendor-based details, from categorizing

access lists to grouping similar packets to mapping policies to each of these categories

based on technical measurements in queuing interfaces. However, based on RFC 9316 [23],

customers or subscribers who might not be aware of these technical details can be named

as users of this intent. Thus, defining QoS goals at an abstract level can solve this issue.

The other important note for choosing QoS as a strategy intent type to specify is its impact

on boosting the network performance. It also can be beneficial in optimization and Service

Level agreements (SLA) between network providers and their customers since the main goal

for all these concepts is to improve the network performance. Network traffic is shaped

based on IP packets that transmit various kinds of information, including video, voice, and

data, over the network. Each of these traffic types can have a priority based on their
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characteristics or, in particular cases, the network management requirements defined by

network owners. In general, packets containing video should be prioritized since missing

one packet can negatively affect the whole frame of video received at the destination device.

With similar logic, voice over IP and data packets are the following priorities in the packet

transmission procedure. By classifying traffic types, each group is labeled to be in the queue

of the traffic transmission process based on their priority. Therefore, packet loss or other

network quality issues will be reduced. Also, these classifications can be transferred based

on policies created by network operators who determine the appropriate policy regarding the

bandwidth or other relevant network performance measurements. Labeled traffic is marked

after estimating if it behaves according to the defined policy, and those packets that do not

respect the policies will be dropped. Finally, the whole process is evaluated to check the

quality of service performance.

There should be an autonomic controller node to manage the autonomic computing

of QoS requirements and a customer autonomic node to serve as the gold-level service

subscriber. The QoS steps can be defined as self-configuring policies in the Controller node,

where any other customer node can use the services based on their needs.

ASSL provides the means to simulate the QoS implementation steps under the context

of autonomic networks. Therefore, without considering the exact details of the technical

implementation, we can concentrate on intents outcomes to express them through formal

declarative statements. The high-level abstraction of ASSL encapsulates the details of the

procedures to achieve the intent. Regarding the general logic of this specification, AS and AE

perspectives construct that the hierarchy of this specification consists of general and private

rules. The former includes the self-configuring policy to configure the whole autonomic

network using an IMPL action called ConfigureAutonomicNetwork as depicted in Figure 7.

The latter includes network stages to simulate QoS specification under the Controller

autonomic element that is only accessible for the autonomic elements, which are grouped with

the Controller defined in the ASARCHITECTURE. This hierarchical view provides an abstract

security in case of accessibility of policies for autonomic elements. Also, this design helps
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Figure 7: Controller AS in Intent 1.

the system to share distributed autonomic behavior under the AS level while allowing the

customers to have their local autonomic behaviors under the AE level to meet the Distributed

and Local Behavior Management intent objective. The ASSL architecture design of the

intent is shown in Figure 7.

Two abstract links provide interaction between the autonomic elements and complete the

logic flow: public link for public messages shared among the whole autonomic network and
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Figure 8: Controller AEIP in Intent 1.

Gold link for the private interaction through messages between the Controller and Gold-

level subscriber. This private channel makes the interaction between the autonomic elements

more secure since the private interactions are not accessible unless autonomic elements are

defined as members of each other’s FRIEND list group. The AEIP, including the messaging,

channels, and managed elements, is illustrated in Figure 8.

To express Intent 1 with ASSL, the network’s goals are divided into two main sub-goals,

including maintaining a high quality of service and high bandwidth. The intent is specified

into two steps. The first step starts with the autonomic network configuring itself according
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to the inAutonomicConfiguration fluent specified under AS block. Then required phases to

achieve QoS as a self-configuration policy are specified under the autonomic element called

Controller, as the abstraction for the central management autonomic node. The specification

of fluents guiding the autonomic element to required actions to attain QoS for the network

traffic is shown in Figure 9. The self-configuring policy models traffic type identification

through the checkHeader interfaces function of the monitoringTool that is recognized as

the managed element as shown in Figure 8 working with the autonomic network and then

classified as VideoTag, VoiceTag, and DataTag as depicted in Figure 21. These taggings are

the conditions to create access lists for grouping packets to prepare them for QoS labeling.

The Intent 1 is specified in two steps to show the potential of ASSL to provide scalability

at an abstract level. In the first step, only the Controller and the AS tier are defined

and executed. Then the expression of the gold-level subscriber is added as another AE and

executed. In both cases, the execution trace of autonomic behavior shows that all the

specified parts of the autonomic behavior work; thus, adding the second AE does not disturb

the functionality of the whole structure of the autonomic network. The first lines of the

output trace are shown in Figure 11 where there is a gold-level subscriber and in Figure 10

where besides gold-level subscriber trace of specifications such as fluents is started from line

78 besides the previous trace of the Controller.

Figure 12, and Figure 13 illustrate the generated packages of the specified intent for

the AS tier before, and after addition of the subscriber’s AE. The modification of the AS

package for this addition is the creation of ASARCHITECTURE to form a grouping between

the Controller and Gold-level subscriber AEs to have access to the messaging interaction

through the AEIP.

Before abstractly scaling the autonomic network, AEs tier generates the packaging for

the Controller only as seen in Figure 14, and after this abstract scaling, the packages for

the Controller and Gold-level subscriber are generated as shown in Figure 13, Figure 15,

and Figure 16. The modification that are caused by adding the specification for a new AE

are marked with red shapes.
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Figure 9: Self-configuring in Intent 1.
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Figure 10: Controller output trace for Intent 1.

Figure 11: Controller and gold-level subscriber output traces for Intent 1.
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Figure 12: AS generated package before adding the gold-level subscriber in Intent 1.

QoS steps are specified, besides considering high bandwidth measurement as the metric

value to be set in the Controller AE. During the InPolicing fluent, the autonomic network

does the policing action as depicted in Figure 17 where the bandwidth metric value is

set at an abstraction level, and expressing source, and destination IP address checkers as

interface functions such as checkSource are called to differentiate the ingress traffic from

the egress traffic. The bandwidthPolicer metric defined in the previous state is used in

MarkTraffic caused by inMarking fluent for the simulation of packet marking. If packets

respect the metric, the PassPacket IMPL action is called; otherwise, the DropPacket IMPL

action provides the abstraction to drop the erroneous packets. MarkTraffic, and other

related actions are depicted in Figure 18.

After this state, InEvaluation fluent occurs to help the system self-monitor its

functionality at an abstract level, as shown in Figure 19. The performance rate can be

reported through the reportPerformanceRate interface function that connects the system
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Figure 13: AS generated package after adding the gold-level subscriber in Intent 1.

to the monitoring tool managed element. This is designed to show the expressiveness of

ASSL in meeting the Monitoring intent objective. However, the simulation-only nature of

the current version of ASSL does not allow direct reading of the performance rate from the

monitoring tool, which results in entering the performance rate manually. Nevertheless, since

this modeling of monitoring is consistent after formalized checking of the specification, the

metrics and the monitoring capability is valid.

The self-healing policy depicted in the Controller in Figure 20 helps the autonomic

network to reconfigure itself as a solution if the quality of service for the Gold-level does not

have a high performance. While two self-management policies, such as self-configuring and

self-healing, can work individually but under one autonomic element, the potential capability

of ASSL to support the Composability objective is outlined.

The abstract formulation of Intent 1 is met with network states, including no details

about metrics, precise details, or sub-steps to perform an action. An example is shown
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Figure 14: AE generated package before adding the gold-level subscriber in Intent 1.
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Figure 15: AE gold-level subscriber added to the controller package in Intent 1.
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Figure 16: AE gold-level subscriber package added in Intent 1.

Figure 17: Policing process specification in Intent 1.
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Figure 18: Marking process specification in Intent 1.

Figure 19: Evaluation process specification in Intent 1.
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Figure 20: Self-healing policy in Intent 1.

in Figure 17 where the input and output traffic to the autonomic node are distinguished;

however, the details of the procedure are not mentioned since this is an IMPL action, where

details of it are computed out of the scope of the ASSL specification level.

The Declarative Outcome Expression intent objective is met in several parts of the

autonomic behavior, as QoS intensively depends on various metrics. Some examples can be

seen in Figure 21, which depicts the actions where the packets are identified and classified.

Each of these actions includes parameters to categorize protocol numbers or set metric values

called CoS referring to the class of service metric in QoS to classify groups of packets based

on their tags. Due to the simulation-only essence of ASSL, the metrics were set manually.

Metrics that are useful to maintain the high quality and high bandwidth to demonstrate the

expressiveness of ASSL for the Declarative Outcome Expression intent objective are depicted

in Figure 22. The bandwidth threshold is defined between 5 and 10. Suppose the metric’s

value is less than this threshold, like what is declared as an example in Figure 22 as 3. In

that case, it results in bandwidth metric violation guiding the autonomic network to perform

increaseBandWidth action to set the metric value to a number within the threshold range

to maintain the high bandwidth as depicted in Figure 23.
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Figure 21: Identification and classification procedures in Intent 1.

3.3.2 INTENT 2

INTENT 2
Intent : Request automatic rapid detection of device failures and pre-alarm

correlation
Solutions : Carrier Networks, DC Networks

Intent User : Underlay Network Administrator
Intent Type : Operational Task Intent

Source : [23]

Table 2: Specification/classification for INTENT 2

In networking, device failure and quick detection are crucial for various factors, including
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Figure 22: Network metrics in Intent 1.

Figure 23: Action to increase bandwidth in Intent 1.
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cost, performance, and reliability. We have selected an intent falling into this category,

whose specification/classification is depicted in Table 2. Network reliability is crucial for

users and applications to access the resources and services they require. Rapid device failure

detection and alert generation allow the network to respond quickly to problems and resume

functioning. Device malfunctions can harm network performance because they obstruct

traffic flow and result in delays or errors. This detrimental effect can be reduced, and users

and programs can experience failures as little as feasible. It is possible to reduce the price of

equipment repair and replacement by immediately identifying problems and sounding alerts.

Creating autonomous alarms for device failures can enhance network performance in several

ways, including quicker detection, reaction, proactive maintenance, and increased reliability.

The increase in speed in procedures is due to faster failure pattern identification.

Some actors and roles could be included in a system for automatic rapid detection

of device failures and pre-alarm correlation, including network devices, alarm generation

processes, and monitoring tools. The first one is equivalent to autonomic elements, the

second one can be formed through states and functionalities of the network, and the third

one refers to managed resources of the autonomic network.

The ASSL structure to express this scenario contains a self-healing policy to simulate

the procedures, a Controller autonomic element as the coordinator, and a host as a user

device. Self-healing policy is about overcoming network failures, such as any crash caused

by an external source. Each device regularly communicates with the coordinating device,

and notifications are sent to the coordinator. The latter can use these notifications to

ascertain when a device can no longer function owing to a crash or equipment issue. Thus, a

device encounters an issue if the coordinating device does not receive the regular notification

message GeneralNotifMsg and receives the broken device message ToolProblemMsg. Both

messages are depicted in Figure 24. Transmission of these messages form a notification

system for the autonomic network.

An ASSL specification provides the self-healing behavior of devices at the global and

individual levels. For instance, for the dependent devices, we can consider if the device is
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Figure 24: Messages from host AE for Intent 2.

lost through a crash or shut down to be omitted from the network. Therefore, we can express

the failure network states through fluents initiated by the CrashHappen event, terminated by

the ToolChecked event to map it to checkDevice an IMPL action to assess the functionality of

the device. The crashHappen event is initiated in case of threshold violation and modification

in this metric NetworkMetric by showing less amount of bandwidth accepted in the node

specified as in GUARDS in this event. As seen in Figure 25, the link bandwidth metric can

have a threshold from 5 to an infinite number, and if the value of the NetworkMetric is

chosen as 5. The network metric is violated if the value is less than 5, which is selected as

the minimum bandwidth rate. The bandwidth violation shows that a crash occurred in the

network. This logic also is an example of Declarative Outcome Expression intent objective.

The procedure starts with a failure in the autonomic node and conducts the autonomic

element to check if the device’s software is functional. This fluent, shown in Figure 26, checks

whether the coordinating device is crashed. Figure 27, and Figure 28 show mappings and

actions for InCrashed fluent, respectively. This expression also needs an interface function

to connect the metric source with the dependent managed elements.

The other fluent is inGeneralNotif activated by the timeTosendGeneralNotif event,

72



Figure 25: Network metric referring to bandwidth measurement for Intent 2.

Figure 26: Fluent that monitors a network device failure for Intent 2.

Figure 27: Mapping a fluent to the proper action when a device fails in Intent 2.

Figure 28: Actions of the autonomic network when a device failure occurs in Intent 2.
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Figure 29: Fluent that manages the crash notification in Intent 2.

Figure 30: Action to send a notification as the alarm in Intent 2.

which is a time-periodic loop and eliminated after the message is received by a coordinating

device by the event called isMsgGeneralNotifSent. The fluent should be mapped to

NotifyForGeneralNotif action that uses sendGeneralNotifMsg as the AEIP Function to

transmit generalNotifMsg through the AEs link channel as shown in Figure 24, which is

an abstract link between the autonomic elements. Figure 28 and Figure 29 show the fluent

and action related to the general notification to the system to check if autonomic elements

are functional.

The fluents in the implementation illustrate how network states are encapsulated based

on the abstract formulation to hide any intricate complexity of machine language, such as

network device configuration commands. The fluents are the state machines to conduct

the autonomic network to react correspondingly. For instance, since the intent focuses on

alarm generation, if any device failure happens because of reasons such as metric violation,

there are actions like notifyManagement defined as the response of the autonomic network

to the failure state which illustrated under self-healing policy in Figure 31. Self-monitoring

capability of the metric in ASSL helps the intent become more adequate by rapidly detecting

any faults.

ASSL can monitor the metrics, although it is rare to read the metric value from

actual managed elements directly because of the simulation-only essence of it. However,

the conditions under which a metric should be measured or collected and the actions

conducted in response to the metric’s value can be specified and monitored using ASSL. This
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Figure 31: AS self-healing policy in Intent 2.

internal monitoring capability of ASSL to set metric values similar to the implementation

of NetworkMetric allows the system to estimate if the autonomic network works based

on the set values for the metric to take proper actions in case of violation of the values.

As an illustration, an ASSL specification might provide that a specific metric’s value

should be periodically measured for a specific time duration and that if the measurement

goes above a specified limit, a warning should be created, or remedial action should be

taken. Alternatively, it is necessary to employ some monitoring or management tool to

gather and process the metric data to read the value of a metric from controlled items.

This might be a monitoring tool that operates independently or a part of an autonomic

management framework that controls how the managed elements function. This refers to

software agents, management policy servers, or consoles that can be developed to interpret

ASSL to appropriate commands. The intent objective that allows the autonomic network

to have distributed local and global autonomic behavior occurs when there is a hierarchy

to implement the general perspective of the autonomic network like inCrashingDevice for

the AS tier to make it accessible for the entire autonomic network. Also, the ASIP tier is

considered for public messaging through an abstract link simulation called Public Link, as

shown in Figure 32.

On the other hand, the states of crashes in each device are evaluated individually under

the AE tiers. For example, if a host software encounters a problem, the InToolProblem fluent
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Figure 32: ASIP tier for Intent 2.

Figure 33: Failure state for a tool or software in an AE in Intent 2.

is initiated shown in Figure 33.

Also, the messages related to the software problem of networking autonomic elements like

ToolProblemMsg are not accessible for all the autonomic elements unless they are defined

in the FRIEND list of the Host. Figure 34 shows the local messaging accessible for the host’s

FRIEND list with access to AEs link. If the FRIEND list is not declared, the specification

compiling encounters an error for accessibility as depicted in Figure 35.

This separation of the local and global autonomic behaviors and limitations in the

accessibility of different autonomic elements results in a secure interaction at an abstract

level. The execution of this specification is portable since it can be executed on any device

regardless of the system on that device capable of running Java.
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Figure 34: AEIP in Intent 2.
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Figure 35: FRIEND accessibility error Intent 2.

3.3.3 INTENT 3

INTENT 3
Intent : Add a new host!

Solutions : Carrier Networks
Intent User : Network Operators
Intent Type : Network and underlay network intent

Source : [23]

Table 3: Specification/classification for INTENT 3

The most fundamental intent of a network is tackling modifications without any

disturbance to the network operations. We have selected such a simple yet fundamental

intent, whose specification/classification is depicted in Intent 3. Any adjustments, such

as adding a new device, can result in a reconfiguration process for the whole system. If

the network handles modifications through autonomic behaviors, time management will be

optimized, and the risk of any human error will be reduced. The autonomic reconfiguration
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of the network is a vital intent since applying all the adjustments separately in all the

devices and tracking the dependent setting modification can take time, particularly in

large-scale and complex networks. Adding a new host pragmatically is an operational task

intent type, and reconfiguration of the system based on this intent can benefit all different

intent users and solutions based on RFC 9316 [23], because the reconfiguration aspect is

an autonomic behavior useful after any adjustment in the autonomic network. This intent

is a fundamental goal for the autonomic network; however, it primarily refers to the two

categories of network and underlay network service intent and network and underlay network

intent types. Furthermore, technical or non-technical users of intent can use this autonomic

behavior to enhance their network operations. Moreover, the messaging section that shows a

new host is detected and transferred to all the autonomic network act as an alarm generation

for network infrastructure under the network intent category. Due to the accessibility level

of an autonomic reconfiguration behavior, it should be specified on a general basis, so all

devices in the autonomic network can achieve this state of the network. It can be specified

in a Controller autonomic node or the top-level hierarchy of the autonomic system as a

general rule. Also, the autonomic network can have a metric that, if it changes, refers to

detecting a new host. A managed element, like a monitoring tool, can track metric changes.

Although this intent is simulated, we can omit the managed element section for the current

implementation.

Self-reconfiguration properties of the network are an autonomic behavior for the entire

system, and as a result, the AS tier should express it. Self-configuring under the self-

management characteristics of an autonomic system can help the network to add a new host

with ASSL specification language. The ASSL hierarchy for this specification also has an ASIP

tier to help the autonomic network for the transmission of modification messages. In the

self-configuring policy, the newHostDetected activates the inReconfigurationForNewHost

fluent to lead the autonomic network to an action called reconfigureNetwork. The

IMPL action named as reconfigurationForNewHost is implemented to extend the action’s

functionality for operators who can manually implement the generated code for any further
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Figure 36: Elements of self-configuring properties in the autonomic network topology sample,
as used to implement Intent 3.

complexity based on the system requirements. Also, if the reconfiguration fails for any

reason, the reconfigurationForNewHostDenied event will show up. Figure 36 shows the

procedures for moving the autonomic network to the state of reconfiguration.

The action calls functions of the ASIP tier, which are defined to transfer

msgNewDeviceFound as a general notification message to the system to inform it about

the new device. Figure 37 illustrates the ASIP tier. The metric numberOfHost for this intent

counts the number of hosts that have been found.

3.3.4 INTENT 4

It is crucial to check networks in terms of device collapse since this issue is one of the most

fundamental reasons for network failure. Device failures can occur for different reasons,

such as errors in configuration, hardware incompatibilities, and network connection and link
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Figure 37: ASIP tier specification used for Intent 3.

INTENT 4
Intent : Remove non-functional device X!

Solutions : Carrier Networks
Intent User : Network Operators
Intent Type : Network and Underlay Network Intent

Source : [23]

Table 4: Specification/classification for INTENT 4

damage. Both software and hardware issues can involve device crashing. From a low-level

troubleshooting perspective, monitoring tools and packet tracing can estimate which device

might be problematic. Low-level troubleshooting to recognize the exact device failure causes

can take time, mainly if the network topology is complex or large-scale. A solution is to

remove the nonfunctional device from the network topology and reconfigure it to adapt to

the new topology. This convolution is due to the dependence of different devices on each

other, and in case of removing the failed device from the system, whole devices should be

reconfigured individually. Autonomic management of the network can facilitate the process
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by considering Intent 4 as the solution to device failure. Intent 4 covers critical autonomic

behaviors for network management. Removing a nonfunctional device from a network

includes the following procedures. First, the recognition of the inoperable device; second,

handling required notifications to inform the whole network about the failure; and third,

removing the problematic device. Removing a device causes a modification in the network

configuration, and thus a reconfiguration procedure is also necessary. Although Intent 4

is mainly categorized under the Network and Underlay Network Intent types rubric, it is

notable that parts of the approach contain configuration that can be used as a basis in

both Networks and Underlay Network Service Intent types. Also, since this intent results

in the automation of tasks which can be removing a device, it can cover operational task

intent types too. The section referring to notifying other nodes in the network is relevant to

strategy intents since the goal is analogous to creating an alarm during a failure occurrence.

Regarding intent users, the autonomic control of the procedures in Intent 4 speeds up and

simplifies the responsibilities of network operators and administrators.

Two primary autonomic nodes can make up the infrastructure to achieve Intent 4.

One Controller node for the central management of the procedures takes responsibility for

notifications and removing the crashed device. Another autonomic node is the Host, which

plays the role of the crashed device. The general rules shared among the nodes are related to

the Host failure state, and this failure should be announced to the Controller. Furthermore,

the autonomic policy for Intent 4 is self-healing since there is a network failure, and omitting

the problematic device is the solution to solve the issue.

ASSL specification can formulate the states of the autonomic network for a self-healing

policy where the crashed device is first recognized. Then two main reactions of the

system to this state can occur. Firstly, The whole autonomic network, particularly the

management node, is informed about the situation. In addition, the software’s functionality

on the device is checked to identify if the software is problematic. Finally, the removal

occurs by shutting down the device. Intent 4 contains a self-healing policy because the

removal scenario is a healing method for the system to remove the crashed device from the
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network with minimum disruption or interference to the network’s general performance. This

definition of Intent 4 guides the scenario to have both Abstract Formulation and Declarative

Outcome Expression intent objectives. ASSL can abstractly formulate this objective without

considering machine-level instructions. This abstract formulation is shaped by designing

fluents based on the logic of the scenario in a high-level representation and mapping the

fluents to the appropriate actions to construct a desired autonomic behavior. The hierarchy

of ASSL specification for Intent 4 consists of AS, ASIP, and AE tiers. In the AS tier, if

a device crashes, it will be flagged by the inCrashingDevice fluent, the management is

notified through the transmission of msgdeviceCrashed designed for this issue in ASIP tier

by senddeviceCrashedMsg, and receivedeviceCrashedMsg functions through Public Link

channel. The AS fluents and actions and ASIP tiers are shown in Figure 38, and Figure 39.

Since these specifications do not include specific details, such as a network metric, they can

refer to the abstract formulation.

There are some fluents and actions in this specification with more detail, such as network

metric or a call to a managed element. These parts of the specification demonstrate the

Declarative Outcome Expression intent objective, such as in the removal procedure that starts

with InCheckingHostTool fluent mapping the autonomic network to CheckHostToolStatus

action as shown in Figure 40 where the system calls another action shutDown as depicted

in Figure 41 to connect the autonomic network to the managed element called Host to use the

shutDownDevice interface function. Figure 42 illustrates the managed element for shutting

down the device. The simulation-only nature of the ASSL considers the device shutdown as

the remedy to to remove the non-functional device from the autonomic network.

Furthermore, the Controller AE contains both a self-configuring policy for reconfiguration

and a self-healing policy for adjusting the network operations to deal with the problem in a

device by removing it. This illustrates the capability of the ASSL to handle composability

by combining different policies to work together.
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Figure 38: AS fluent, and action in Intent 4.
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Figure 39: Fluent that manages the crash notification in Intent 4.

Figure 40: Fluent for checking the status of the host in Intent 4.
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Figure 41: Action to shut down a failed device in Intent 4.

Figure 42: Shut down interface function in Intent 4.

INTENT 5
Intent : Provide service S with guaranteed bandwidth for customer A.

Solutions : Carrier Networks
Intent User : Service Operators
Intent Type : Customer Service Intent

Source : [23]

Table 5: Specification/classification for INTENT 5

3.3.5 INTENT 5

Service provisioning is a Customer Service Intent, and service operators are one of its users.

Intents can benefit the networks by providing services to network customers. Network metrics

such as bandwidth can directly impact the performance of this intent, and the context

of autonomicity enables the network to respond quickly and adapt to the demands and

expectations of its users. Besides ensuring the users receive the services, this intent is essential
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to stakeholders allowing them to increase their financial benefits by providing various services

to their users.

A central autonomic node should control service provisioning as the management or

controller node. This central management node is helpful to the system in case of

composability and potential scalability. This is because it is possible to add new autonomic

elements to the system to work with the central management when required. Also, there

should be a customer node to handle the procedures related to customer A as mentioned

in intent Intent 5, and the network metric in this intent is link bandwidth which should be

guaranteed.

It is possible to guarantee that the network can deliver the services reliably and efficiently,

even when the network is subjected to changing conditions or requirements, by describing

the desired behavior and needs of the services using ASSL specification. To specify the

intent Intent 5, there is AS and ASIP tier as shown in Figure 43 to express a general logical

predicate or network state for the autonomic network. The AS level consists of a self-healing

policy for when the network is in trouble, and the management should be notified through

public messages defined in the ASIP tier. In the AE tier, the Controller is defined as the

autonomic node to manage a self-healing policy to guide the autonomic network to the

appropriate action of checking the device if the autonomic network is in a state where the

bandwidth requirement is not met.

In intent Intent 5, most of the specifications happen on the customer side since this is the

customer who should be satisfied with the service. Therefore, states occur under the self-

healing policy of the CustomerA AE. Firstly, the service is run under the InServiceS fluent;

then, there are three states to describe an undesirable condition for the autonomic element

with their corresponding actions. The fluents as shown in Figure 44 for the unpleasant

state for intent Intent 5 are fluents: InUnsatisfiedBandwidth, InInterfaceInActive,

InUnsatisfiedBandwidthSimulation.

With the fluents, different aspects of the autonomic behavior based on the intent are

handled by mapping the autonomic network to the corresponding reaction to each state. To
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Figure 43: AS and ASIP tiers for Intent 5

Figure 44: Customer A self-Healing for Intent 5

88



Figure 45: Service S action for Intent 5

Figure 46: Bandwidth metric for Intent 5

provide service S as the first requirement of the intent, as can be seen in Figure 45 action

ServiceSinProgress is in charge that calls ServiceSInt managed element which connects

the specification to the interface designed for service S in an abstract manner.

The undesirable state for the CustomerA occurs when the network metric defined

as BandwidthA falls outside of the acceptable threshold. In our example, the

InUnsatisfiedBandwidthSimulation fluent is designed to show what happens if the metric,

as shown in Figure 46 is violated due to the incompatibility of BandwidthA threshold range

and the set value of it the simulation of an undesirable state for the customer A node.

Figure 47 illustrates the reactions of CustomerA AE to the violation of metric or any other

undesirable behaviors of the autonomic node to handle the situation.

The system checks if there is an issue with the bandwidth through the

CheckBandwidthIssues action. The action completes by checking if the device is

active, leading the system to check the interface issues through checkInterface.

Then, if the interface is not functional, a notification message InterfaceInActiveMsg

is sent to the private link between the Controller and CustomerA through the
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Figure 47: Customer A actions in Intent 5

SendInterfaceInActiveMsg function. The AEIP for CustomerA is depicted in Figure 48.

Also, it is shown in the figure that the sender of the messages is the CustomerA AE to

Controller AE.

This design to have a hierarchy of specific actions and states for a particular customer

node, but only for some of the autonomic elements, demonstrate the properties of ASSL

to create a local network management procedure for each autonomic element. This local

autonomic behavior is also accessible in terms of interactions with other autonomic elements

if they are defined as FRIENDS to that element. Furthermore, in this way, abstract security

is possible for the autonomic network.

3.3.6 INTENT 6

The ability of virtual machines (VMs) to communicate with one another and with other

network devices within a data center is referred to as the connectivity of virtual machines in a
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Figure 48: Customer A AEIP for Intent 5

INTENT 6
Intent : Request connectivity between VMs A, B, and C in network N1.

Solutions : DC Networks
Intent User : Cloud Administrator
Intent Type : Cloud Management Intent

Source : [23]

Table 6: Specification/classification for INTENT 6

data center (DC) network. The connection simulation refers to specifying intent connectivity

scope for DC network solutions. The purpose of linking virtual machines in a data center

network is typically to give the VMs a way to share resources and interact with one another,

as well as to enable management and monitoring of the VMs and the data center network

as a whole. In a nutshell, the intent of networking VMs in a data center is to increase the

data center’s manageability and performance while allowing the VMs, as the fundamental

components of the network, to share resources and communicate with one another. Virtual

switches and network interfaces, which may be set up to give different degrees of connectivity

and security, can be used to do this task. Intent 6 focuses on the connectivity area since

the goal of the autonomic network N1 is to connect three virtual machines in a data center.

The main actors are the virtual machines, and the main activity is their communication.
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The abstract states of this implementation are requesting connectivity, processing these

requests, and adjusting VM settings. Due to the abstract formulation of connectivity

with ASSL, there is no requirement to consider exact details related to lower-level network

configurations, like how to create a network bridge between the physical infrastructure of

the network. Creating fluents for connectivity requests and mapping them to the proper

action based on the connection name parameter to process the connectivity request is

used to encapsulate the configuration details for this level of intent expression, proving

one of the declarative outcomes of Intent 6 as shown under the VM CONNECTION policy

in Figure 49 besides its action as shown in Figure 50. The specification contains AS

and ASIP tiers for general and distributed autonomic behavior, four AEs including one

Controller, and three VMs as the actors to represent the local autonomic behavior. The

distributed autonomic behavior is expressed under the AS tier as depicted in Figure 49.

The InConnectionsReqProcessed that verifies the connections are processed is formulated

abstractly. At the same time, it does not include detailed information on implementation

and directly conducts the system to VerifyConnectionsProcessed as shown in Figure 50.

The functions of this declarative outcome to process the connections on the AE sides also

investigate the parameter names to determine the destination of AEIP messages as depicted

in Figure 51.

This autonomic network specification has four autonomic elements to apply distributed

and local autonomic behaviors, including a Controller and three others as representations

of the virtual machines A, B, and C as dependent AEs to construct the AS architecture

as outlined in Figure 52. In the AS tier, the request for connectivity is handled through

inConnectivityReq fluents mapping the autonomic network to ProcessConnectivity IMPL

action that works based on the connection name. These network states start when each of

the AEs except the Controller sends an initiation message such as Msg InitiateVM A as

shown in Figure 53 message through abstract Connectivity Link created under the ASIP

block to be shared among the whole architecture. The message is received on the other side

of this channel to initiate RunVM events. After processing all the connections, a fluent called
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Figure 49: AS OTHER-POLICIES for Intent 6.
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Figure 50: AS actions for Intent 6.

Figure 51: ASIP functions for Intent 6.
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Figure 52: AS architecture for Intent 6.

InConnectionsReqProcessed is triggered, meaning that the event TimeToSetVM is activated

to initiate the network state where VM settings can be adjusted through an IMPL action called

AdjustVMSetting. The IMPL action provides the possibility of further implementation in

more detail from a technical perspective for the intent users who are Cloud administrators

knowledgeable about technical information in this case. More details about the Controller

specification are depicted in Figure 54.

3.3.7 INTENT 7

INTENT 7
Intent : Request video conference between end users A and B.

Solutions : Enterprise Networks
Intent User : End Users
Intent Type : Customer Service Intent

Source : [23]

Table 7: Specification/classification for INTENT 7

One of the most useful network technologies is video conferencing, and different

networking providers have unique techniques and equipment to make this technology
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Figure 53: ASIP messages for Intent 6.

Figure 54: Controller OTHER-POLICIES for Intent 6.
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available to their users. There are different intent types in intent classification for this

technology, subsuming strategy, customer service, and network service intents. This policy

is crucial to cover in the autonomic network area because of its vast usability and its different

user types who might be knowledgeable about networking, like Enterprise Administrators, or

Nontechnical users, such as End users. Also, the autonomic management of video conference

events reduces the risk of dissatisfaction among its users since it is a real-time network policy.

In real-time network events, autonomic behavior control increases the reaction time to any

problem. It decreases the risk of human operator errors or time-consuming troubleshooting

procedures that can cause hesitations which are not allowed in real-time events.

Meeting software on connected devices primarily makes up the infrastructure for video

conferencing. Users may encounter incompatibility problems if they use infrastructure

from different companies; therefore, an integrated abstract video conferencing policy can

reduce this problem. The main actors involved in a video conference intent with autonomic

management are the autonomic node to play the role of the central administration to take

the responsibility of managing the initiation of the intent and processing it. To complete

its duties, it should have access to the users that use this intent as other autonomic nodes

as the subset of this system. The accessibility can be achieved by defining a managed

element for each user in the management node. To represent each user, there should be

an individual autonomic node. Generally, intents Intent 7 and Intent 8 are derived from

a video conferencing policy; there are similar actors; however, based on the intent details,

roles might differ in each case. To clarify how assignments are categorized, the controller

node takes the responsibility of performing joint session messages between its multiple end

users. Also, it can create video conferences, where in Intent 8, this feature is specified.

To complete a video conferencing policy, the end users have similar activities, including

initiating a meeting in their node, recording the meeting, and sending the meeting record

to the central management. End users can request the initiation of a video conference from

the central node, expressed in Intent 7.

The equivalent term for an autonomic node in ASSL is an autonomic element. The
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procedures contributed in video conferencing can be formulated through ASSL fluents and

then mapped to the proper actions resulting in abstract and declarative outcome formulation.

The declarative outcome refers to creating a conceptual package as a goal for the network

consisting of different states that occur while achieving the goal without considering how

these goals are achieved. The abstract formulation is possible if details about the low-

level configuration, like setting IP prefixes and configuring port numbers to connect devices,

are viewed as a finite state of creating a link in the autonomic network domain for video

conferencing. The autonomic network components required for video conferencing policy,

as the abstract simulation of the infrastructure for Intent 7, are a Controller and two other

autonomic elements as the end users A and B. The steps a network enters to establish

videoconferencing are designed as fluents to shape the general abstract policy of processing

a video conference.

The video conferencing policy contains fluents like inProcessingVideoConference A

initiated by the event VideoConference AReceived when msgVideoConferenceUser A is

received from the end user A, and then this fluent is mapped to processVideoConference

action. The self-configuring and VideoConferencing policies with their fluents can be

seen in Figure 55.

The declarative outcomes for Intent 7 can be defined by the policies guiding the autonomic

network to do different actions in an abstract manner and with the minimum amount of

parametric details. Processing a meeting type, whether a scheduled or instant meeting, is

an example to show the capability of ASSL to respect the Declarative Outcome Expression

intent objective. To explicate more, the autonomic behavior resulting in such an outcome

starts when the network is in inProcessingVideo fluent as shown in Figure 56. Then the

network is conducted to ProcessVideo action where based on the meeting type, another

action processMeetingType is called to guide the system to call the appropriate interface

function of the managed element, which is a monitoring tool defined for each of the meeting

types. The actions to complete these procedures are depicted in Figure 57. To attain

Abstract Formulation, an example is defining an autonomic behavior to start the video for
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Figure 55: AS self-configuring and VideoConferencing for Intent 7

video conferencing. This is expressed through inStartingVideo guiding the network to

perform StartVideo action as outlined in Figure 58. This procedure does not include any

details such as metrics or parameters.

The inProcessingVideoConference fluents in the AS tier for both users abstract the

processing of video conferences by doing the processVideoConference action according to

the user name parameter. These fluents are initiated when msgVideoConferenceUser for

each user is received through an abstract video conference link specified under the ASIP tier

to transmit public messages. The packages created by the ASSL toolset for ASIP tiers are

shown in Figure 59.
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Figure 56: The controller video conferencing policy for Intent 7.

Under the AES level, the Controller handles central management of the video conferencing

policy through the states called inStartingVideo and inProcessingVideo which are

illustrated in Figure 56. The former initiates the video conference to start the video, then

processes the meeting type, including scheduled and instant meetings. The specification

also allows for a connection between the abstract simulation and meeting software towards

managed elements. The managed elements are called Meeting tools for each user with their

interface functions for starting the video in each user and bringing about accessibility to

interfaces expressed for the scheduled and instant meeting types. The Controller outlines

negotiation messages to form interaction sessions with the End users. Thus, the End users

and the Controller can exchange beginning session messages to initiate the interaction, send

the video messages during this session, and then exchange the end session message to finish
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Figure 57: The controller actions for Intent 7.
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Figure 58: Action to model start video for Intent 7.

Figure 59: AS and ASIP tiers structures for Intent 7
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Figure 60: Friends of the controller AE in Intent 7.

Figure 61: Accessibility error in Intent 7.

the process. The message session procedure is expressed for both scheduled and instant

meeting types. The Controller link, as a private channel between the Controller and

the End users, transmits these messages, resulting in a simulation for a secure message

interaction. At the same time, none of the AEs have access to the message unless they are

defined as friends of the Controller as shown in Figure 60.

If the FRIEND list is not declared for autonomic elements that have interaction, the

consistency error will occur, showing an accessibility error as depicted in Figure 61.

However, the definition of a FRIEND list is a static process. In case of adding new

autonomic elements as friends to the list, the ASSL specification should regenerate the
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Figure 62: Video conferencing policy session messages in the controller AE in Intent 7.

output. To explain more about the messaging sessions, after processing the meeting

type in the Controller, the sendBeginMsgs function is called for each meeting type.

Then sendVideoConferenceMsg is called to send a video conference message to the

Controller link. The sendEndSessionMsgs function is called to end the beginning

sessions, and this procedure completes on the End users’ sides through receiving these

messages. Negotiation messages, related functions, and channel are depicted in Figure 62,

and Figure 63, respectively.

On the End users’ sides, the autonomic network turns into start meeting session states

for both meeting types after the Controller sends the begin session messages for each

meeting type. After this initiation state, the recording stage begins, where the video

messages are transmitted based on the meeting type parameter by a function call to

receiveVideoConferenceMsg followed by ending messages. The fluent to complete these

transactions is inSendingVideo to call the VideoPrepration IMPL action to add any

required coding, which is impossible to specify in the ASSL to the generated Java output.

To show that the video is sent through this action, sending and receiving video conference
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Figure 63: Functions and channel in the controller for Intent 7.
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message functions are called for each end user to connect them to the ASIP video conference

simulated channel.

ASSL specification can bring about Composability and Modularity intent objectives,

meanwhile, logical Scalability is another aspect of this specification language. Intent 7

and Intent 8 specifications are used to demonstrate this capability of ASSL. Intent 7 refers

to requesting the video conference policy, and Intent 8 refers to creating a weekly meeting

between the End users A and B. These intents can be specified by adding a self-configuring

policy module to the video conferencing policy module without interfering with the whole

structure of the autonomic network. Specifying a requesting state to process requests for

video conferencing from both End users helps us to achieve the intent.

During requesting state, authentication as a security simulation is also expressed as an

IMPL action with a boolean return type as depicted in Figure 65. In the current ASSL

specification, abstracting the autonomic behaviors related to security is the fundamental

logic of the implementation for security objectives.

3.3.8 INTENT 8

INTENT 8
Intent : Create a video conference type for a weekly meeting.

Solutions : DC Networks
Intent User : End Users
Intent Type : Strategy Intents

Source : [23]

Table 8: Specification/classification for INTENT 8

Another sample proof of the potential composability of intents is when we use the previous

specification of Intent 7 to form Intent 8 by adding a self-configuring policy module to the

Controller. See Table 8 for the specification/classification for this new intent. Since the

Controller manages the video conference infrastructure, it can create recurring meetings if it

transfers the autonomic network to the state of InVideoConferenceCreation as illustrated

in Figure 66 compared to Figure 56 where both are the Controller self-management policies.
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Figure 64: Self-configuring and other-policies in the AS tier in Intent 7

Figure 65: Authentication IMPL action in Intent 7
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Figure 66: Controller policies for Intent 8.

However, in Intent 8 a self-configuring policy to create a weekly video conference is added.

Also, as shown in Figure 67, the packages created from the controller based on the

specifications for Intent 7 and Intent 8 are similar except for those sections that an arrow

point to them. These minor modifications only add to the functionality of Intent 7 without

disrupting the previous expressions. For instance, inRecurringMeeting fluent and its related

action called ProcessRecurringMeeting, with required message, events are added to form
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Figure 67: Controller package comparison between Intent 7 and Intent 8.

the autonomic behavior related to the creation of a video conference under the self-configuring

policy. This addition does not interfere with previous expressions, and new autonomic

behavior can work with the previous model. This composability logic is similar on the

user sides as shown in Figure 68.

As depicted in Figure 66, to inform the whole network of this weekly meeting,

msgWeeklyMeeting transmits from the Controller to the End users through the Controller’s

private channel, and the End users can receive the message on their side when they call

receivemsgWeeklyMeeting function in the ProcessRecurringMeeting action as shown

in Figure 69. This action is the result of abstract formulation of an autonomic behaviour

to create a recurring meeting for end users, since it does not include any details and only
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Figure 68: User A package comparison between Intent 8 and Intent 7.

Figure 69: Action of users Intent 8.

focuses on what should be happened.

Logical scalability is possible if the specification allows for adding new autonomic elements

as users without a negative effect on the logic and resources of the autonomic network.
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The potential of Scalability intent objective is met through the hierarchical design of end-

user definition as AEs, controlled by the Controller and division of responsibilities between

them. Video conferencing procedures are divided into shared and individual basis tasks.

The Controller’s functionality focuses on the shared duties between the end users to respect

video conferencing related policies. The end users take the local responsibilities, such as

requesting video conferences. Therefore, this separation of tasks and hierarchical design

results in the system’s modularity on the one hand and allows the addition of other end

users to the autonomic network without any concerns for the interference of their task to

integrated policy specifications on the other hand.

3.3.9 INTENT 9

INTENT 9
Intent : Request automatic life-cycle management of VM cloud resources.

Solutions : DC Networks
Intent User : Cloud Administrator
Intent Type : Cloud Resource Management Intent

Source : [23]

Table 9: Specification/classification for INTENT 9

Our next selected intent is related to cloud computing resource management. See

Table 9 for the specifications/classification of this intent. Cloud computing comprises

physical infrastructure and virtual instances of the software to create complex and scalable

networks. In particular, data centers are the most critical users of this technology since

virtualization can optimize physical hardware and help companies to make an enormous

amount of network resources without actually adding more physical networking devices.

Due to the remarkable capacity of this technology, it is critical to have intent-based

management to reduce the management complexity caused by cloud computing. Intent-

based management can encapsulate the complex configuration of the low-level devices, which

are the infrastructure for the virtual machines. In addition, expanding the number of virtual

instances is essential due to data centers’ growing demand for new networking resources.
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These constant adjustments require autonomic management to check the life cycle of the

instances to handle the modifications without any interruptions in the network performance.

Since intent-based networking focuses on the network goal rather than the procedures to

achieve the goal, the flexibility of network management increases because adding new virtual

instances will not interfere with the network performance. In any case of issues, the network

can handle its problems through autonomic behavior. Cloud administrators are the users

of the intent that request an automatic life-cycle of virtual resources to meet the Cloud

Resource Management intent type.

In general, the life cycle of a virtual instance contains four stages: (1) provisioning

the resources, (2) staging to initiate any preliminary tasks before starting the instances,

(3) running to boot the instances, and (4) repairing to give the possibility of stopping,

suspension, and termination of the virtual instances. The stages are the states to form the

control loop for the appropriate autonomic behavior. The life-cycle states are shared among

the virtual instances. Therefore, a central conductor autonomic node like a Controller can

operate the autonomic behavior in the shared control loop. Other virtual instances can

be the dependent autonomic elements to this Controller to request the life-cycle or other

individual activities.

The implementation design for this scenario consists of two steps. First, the AS tier

specifies a general self-configuration state for the whole network rules, the ASIP tier for

the public interactions among the network, and the AE called the Controller to provide the

life-cycle procedure is designed. The encapsulation of any technical low-level configuration

details in this hierarchy refers to the abstract formulation of the autonomic behaviors by

ASSL. The autonomic system can perform the autonomic behavior related to the life cycle

under three self-chop policies: self-configuring to specify life-cycle fluents, self-healing to

prepare a repair state to prepare the possibility of recovering states for the instances such

as stopping, suspending, or terminating a VM instance, and self-scheduling to record the

whole life-cycle. Having all the policies to achieve the intent demonstrates the declarative

outcome of ASSL because fluents are the finite states for the autonomic node to be mapped
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Figure 70: AS self-configuring policy for Intent 9

to actions. The actions also perform their activities by calling functions to transfer messages

and other actions; however, the detailed procedure of achieving the intent is encapsulated.

Then by the Composability and potential Scalability intent objectives offered by ASSL, a

virtual machine instance is created as the dependant autonomic element of the Controller.

The dependent devices can express the network state where they request the autonomic life

cycle. As a result, adding a state to the whole logic does not interfere with the previous

tasks done by the Controller. AS tier contains the self-configuring policy to operate a

general management action called Manage accessible for the entire network by transmitting

the msgStartLifeCycle designed in the ASIP tier through abstract Public link. Figure 70

depicts the action in the AS tier, and Figure 71 depicts the functions for transferring messages

in the ASIP tier.

The separation of AS from AE tier based on the essence of the rules divided into public

and private demonstrate the local management characteristics of the ASSL. This means

that the AS-specified regulations provide a general autonomic behavior. In contrast, the AE

regulations are the means for local management of the AE, where the rules are expressed

individually and not shared among all the AEs.

In the AE tier, there are three policies defined. First, self-configuring policy to handle

InProvisioning, InStaging, InRunning fluents that guide the autonomic control loop to

actions for AllocateResources to allocate resources for the VM instances, StartBooting

to initiate the VM instances for staging state, and RunInstances to send a message related

to the running of the VM instances called msgRun. Figure 72 shows the implementation of
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Figure 71: ASIP tier for Intent 9.

Figure 72: Controller self-configuring policy for Intent 9.

the fluents in the Self-configuring policy block and their corresponding actions.

Secondly, the Self-healing policy, as seen in Figure 74, takes the responsibility of

modifying the VM instances by moving the autonomic network to InRepairing state where

there is a possibility of transmission for three messages regarding stopping, suspension, and

termination of the VM instances. Finally, the Self-scheduling policy defined under other

policies expresses the fluent inLifeCycle where the recording of the VM instances’ life-

cycle is simulated with its action.

Figure 75 shows Repair action transferring the specified messages by calling the
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Figure 73: Controller actions for self-configuring policy for Intent 9.

Figure 74: Controller self-healing and other-policies for Intent 9.

115



Figure 75: Controller actions for self-healing and other-policies for Intent 9.

Figure 76: Self-configuring policy for Intent 9.

sendStopMsg, sendSuspendMsg, sendTerminateMsg unctions.

The composability feature of ASSL specification allows the addition of VM instances

as autonomic elements under the AE tier. Also, other VM instances can be added to the

current AE tier with a similar design resulting from the scalability potential for the ASSL.

However, due to the static structure of the grouping architecture in the current version of

the ASSL, the additional VM instances should be added statically to the ASARCHITECTURE

section, and the output should be regenerated. In this scenario, one VM instance is the

dependent AE to the Controller. Its Self-configuring policy includes two fluents: InRunningVm

to initiate the VM instance through its action runVM, and InRequestLifeCycle to receive

the life-cycle of the VM instance with its action RequestLifeCycle that calls function

receiveLifeCycleMsg. Figure 76, and Figure 77 illustrate the procedures, and action of the

self-configuring policy of the VM INSTANCE AE.

Figure 78 shows the self-healing policy for the VM INSTANCE AE that leads the
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Figure 77: Action for self-configuring policy for Intent 9.

Figure 78: Self-healing policy for Intent 9.

Figure 79: Action for self-healing policy for Intent 9.

system to a InStateSimulation fluent where there is a simulation of VM state

modification through the action modifyState. During this action, messages for stopping,

suspension, and termination of the VM are received by Function calls, receiveStopMsg,

receiveSuspendMsg, receiveTerminateMsg, respectively.

Also, as seen in Figure 79, after each function call, there is another call to the

corresponding managed element defined as VM INSTANCE Interface, and shown in Figure 80,

which connects the ASSL specification to the actual VM instance system. This connection in

the current version of the ASSL is an abstract simulation, and its consistency can be verified

by the consistency checker of the ASSL compiler.
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Figure 80: Interface for the VM INSTANCE managed element for Intent 9.

3.3.10 INTENT 10

INTENT 10
Intent : Inspect traffic for the dorm!

Solutions : Enterprise Networks
Intent User : Application Developer
Intent Type : Operational Task Intent

Source : [17]

Table 10: Specification/classification for INTENT 10

Many intent classifications [23] include monitoring policies mainly in strategy intents, and

also these policies are also crucial for network service and underly network service intents.

In practice, Network administrators or operators use monitoring tools under flow-based and

deep packet inspection tools to do the monitoring. SNMP configuration, and open-source

monitoring software like Wireshark[43] are examples of monitoring tools. These tools require

a technician aware of networking knowledge for management, which makes the monitoring

process not autonomic. Therefore, creating autonomic behaviors to use these tools or systems

to make the process autonomic is beneficial to many networks because monitoring is a

continual task that alleviates extra failure expenditures as it tracks the network and detects

any abnormal behavior to prevent network down times. Also, Intent 10 is used to observe

network traffic usage for planning network strategies. A monitoring tool or software can

take the responsibility of monitoring, and an autonomic behavior can be specified to express

monitoring properties by controlling these devices. For instance, Intent 10 determines this

autonomic behavior for a location which is the dormitory.
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Figure 81: Controller OTHER-POLICIES named as monitoring policy for Intent 10.

The abstract formulation of this intent with ASSL results in inStartMonitoringTool

in the Controller when StartMonitoringTool actions performed without specifying any

parametric details as the fluent is shown in Figure 81, and the action is shown in Figure 82.

The declarative outcome of Intent 10 with ASSL specification is to define a monitoring

policy conducting the system to the desired autonomic behavior to reduce the need for
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Figure 82: Action in the controller for Intent 10.

a network operator to manage the monitoring tools in more detail compared to abstract

formulation. Thus, SelectDataSource, and InspectTraffic as shown in Figure 82

expressed with parametric details to support more complex conditions.

Furthermore, to formulate the monitoring procedure in a high-level abstract policy, the

system should self-configure the autonomic network and consider a monitoring tool as its

managed resource. This monitoring tool can be called during the monitoring phase, while

other required circumstances to monitor traffic can form different stages that the network

should pass. From this high-level perspective, there is no need to directly run the monitoring

configuration on all of the systems connected to a network and estimate the procedures

for monitoring tools in detail for all the nodes. ASSL specification meets this condition

to view the autonomic network besides the states it can have to achieve a policy. The
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main component of this specification is the Controller as the autonomic element to manage

the monitoring phase. The hierarchy of Intent 10 comprises a self-configuring policy in

its AS tier as the general step of self-configuration of the network and the ASIP tier to

transmit a monitoring message through its public channel. Also, the Controller forms three

states for the monitoring policy under the OTHER-POLICIES block. The abstract phases

to define monitoring are fluents called inStartMonitoringTool to start the initiation of

the monitoring tool and inDataSourceSelection to check the data source location where

its traffic should be monitored where the location parameter is Dorm in this case, and

inTrafficInspection to inspect the traffic. As the managed element, the monitoring tool

defines three interface functions to run the monitoring program and check ingress and egress

traffic separately. If it is egress or ingress, the traffic type is defined as a parameter for

InspectTrafficType, and this action is called by the InspectTraffic action. All the

actions are shown in Figure 82.

3.3.11 INTENT 11

INTENT 11
Intent : Manage this network.

Solutions : Enterprise Networks
Intent User : Enterprise Administrator
Intent Type : Network Intent

Source : [23]

Table 11: Specification/classification for INTENT 11

The practice of overseeing and controlling a computer network’s performance and

administration is known as network management. This entails responsibilities including

keeping an eye out for difficulties on the network, resolving the issues and configuring the

network while it is safe and adheres to all applicable regulations. Policies forming network

management goals help the network to preserve its dependability. In particular, in terms

of having autonomicity, the autonomic network is capable of performing the appropriate

actions based on the network status. Although, enterprise administrators can use Intent 11
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in enterprise networks to reduce the complexity of network management in the large-scale

network, this intent can be beneficial to smaller networks, too. Despite the scale and

complexity of a network, all networks need management. Therefore, covering Intent 11

in network management is vital since it can boost performance on the one hand and perform

time-consuming tasks such as troubleshooting on the other hand with minimized human

interaction. The flexibility to select which policy to apply as a self-management policy

to the network can be defined based on the network scale and business requirements of

that particular network. Thus, besides enterprise networks and their administrators, other

technical users can use Intent 11 in different network solutions or scope, based on [23]. Since

the management goal is the most vital and fundamental goal of an autonomic network, this

concept is helpful for all three network solutions, Carrier, DC, and Enterprise network. Each

solution can adjust the policies based on their particular scope or scale.

In managing and administering a network, several actors play roles: Network

administrators, network management software, protocols, and network devices. By reducing

the human role in management procedure, policies should be formed to create the structure

of desirable autonomic behavior according to the intent. Self-chop policies: self-configuration

for configuring the network devices, self-healing for resolving a potential issue in the network,

self-optimization to enhance the performance, and other policies to control the different

aspects of the system are among the applicable policies in network management. A controller

device can take responsibility for the system’s main reactions and contributions. Therefore,

this central management can handle the main instructions of the policies. The centralized

control of the autonomic behaviors facilitates the controlling procedure of the policies as the

primary policies are in one autonomic node, and their related instructions are sent to the

dependent hosts as other autonomic nodes. Each Host can have its self-regulation properties

derived from the primary management behavior.

ASSL architecture for Intent 11 consists of AS tier for a general ALARM process to

handle public notification among the entire autonomic domain. ASIP tier provides the

messaging interactions of notification procedures. The AES tier has one Controller AE to

122



Figure 83: Troubleshooting action for self-healing policy for Intent 11.

Figure 84: Action for self-regulation policy for Intent 11.

control self-management policies, and the Host AE is the dependent node to the Controller,

which can be any device in the network that should be managed. Under the Controller

AE, there are three self-chop policies defined for different aspects of the management

procedure: Self configuring, Self healing, and Self optimizing. Self protection

is not considered in this implementation directly because security is a low-level mechanism

resolved by ANIMA’s work [28]. Different intent types are covered in this specification based

on [23]. Self configuring policy refers to the Network and Underlay Network Intent and

Network and Underlay Network Service Intent types. Self optimizing refers to strategy

intent type since it includes traffic engineering through fluents called inHighTraffic,

inTransferTraffic as shown in Figure 87. Operational task intent types, such as updating

the system’s software, are covered in the Host as part of the system’s reactions when the

network encounters a problem, and it should start troubleshooting. The action Tshoot is

shown in Figure 84.

Each self-management policy, such as self-configuring related to the configuration

of the autonomic network, has a significant amount of implementation details in low-

level concepts from vendor-based commands designed for different devices, like switches
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and routers. Nevertheless, ASSL encapsulates the details and complexity of low-level

configurations. Intent 11 in the context of ASSL can demonstrate both Abstract Formulation

and Declarative Outcome Expression intent objectives. These two objectives refer to the

capability of ASSL to express the intent in a high-level language. The abstract formulation

properties of ASSL express three self-chop policies under the AS tier to maintain the high

performance for the autonomic network without mentioning the exact details. The autonomic

network should configure itself, resolve problems, and optimize its performance in a network

resource such as bandwidth by transferring extra traffic. ASSL can simulate these autonomic

behaviors by fluents in the Host: inConfig, inTshoot, and inTransfer under the self-

regulation policy as shown in Figure 85. There are no precise details about a metric or

variable in this part of the expression.

The declarative outcome is attained when there is a deeper look with more concrete

details from the intent. For instance, Intent 11 has fluents to specify network states besides

the system’s actions to each state in the formation of the Controller’s autonomic behavior.

Some of these fluents result in actions consisting of more details, such as network metrics

or variables, to observe and modify the system’s behavior based on the specific variables

defined in the AE tier shown in Figure 86.

The fluents consist of three self-chop policies to form the autonomic behavior based on

Intent 11 is shown in Figure 87, and then using the declared variables in one of the actions

called recomputeSysParams, and IMPL action called generateTrafficLoad are depicted

in Figure 88 as examples to show Declarative Outcome Expression intent objective by ASSL

expression. It is noticeable that due to the simulation-only nature of the ASSL we injected

metrics manually when it was needed.

In terms of distributed and local behavior management, Intent 11 has a hierarchical

architecture with AS, ASIP, and AES. NotificationManagement is an AS policy to provide

a general notification for the system named as ALARM distributed among the entire network

as shown in Figure 89. Unlike the autonomic policy similar to self regulation in the Host

as depicted in Figure 85 is the Host’s local policy and not accessible by the whole network.
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Figure 85: AE host for Intent 11.

Figure 86: AS variables for Intent 11.
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Figure 87: AE controller for Intent 11.

Figure 88: Recompute action for Intent 11.
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Figure 89: AS notification management policy for Intent 11.

Another example of local and distributed network management behaviors can be outlined

through fluents related to troubleshooting. Troublshoot state expressed as a self-healing

feature of the Controller fluent called inTroubleshoot shown in Figure 87 guides the

autonomic network to an action called troubleshoot. This action sends a function

sendTroubleshootMsg to the Private Link as the abstract communication channel between

the AEs. On the other hand, The Host expresses a inTshoot fluent depicted in Figure 85,

which is similar to the troubleshooting state; however, the functionality of its corresponding

action Tshoot can be localized. Thus, besides receiving the troubleshooting message through

receiveTroubleshootMsg, it can perform other tasks such as UpdateSoftware, which is

only specified in the Host but not the Controller. The actions related to this description

troubleshoot, and Tshoot are shown in Figure 83, and Figure 84.

The architecture of the intent specification is shown in Figure 90. This architecture

illustrates the dependencies between the Controller and the Host, where the Controller is

the central management autonomic node. This means that only devices listed as a friend of

the Controller can have access to the policies of the Controller, which results in an abstract

security level. Furthermore, with this architecture, the local and distributed management

policies accessibility can be distinguished.

Intent 11 provides the Composability intent objective since different autonomic behaviors

forming policies can accompany each other without interfering with each other’s tasks. These
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Figure 90: AS architecture for Intent 11.

policies can handle different aspects of network management, while there is no limitation to

adding more policies to the autonomic network specified by ASSL. An example of multiple

policies working together is depicted in Figure 87. ASSL can potentially add more hosts to

its architecture to provide the Scalability intent objective in terms of adding resources to the

system without interfering with the main intent expression at an abstract level. However,

the shortcoming of ASSL in creating a dynamic architecture causes the regeneration of

code after adding a new autonomic element. Regarding monitoring capabilities, ASSL can

self-monitor its metrics and other autonomic behaviors through features like ASSLMONITOR

package [42]. In case of any modifications in the observations, the autonomic network is

conducted to the proper reaction. This internal monitoring is also achieved through analyzing

the GUARDS as conditions to be checked before performing an action. However, due to the

lacking of an actual connection between the managed elements and the ASSL specification,

these observations are internal to check formal statements declared as intents inside the

ASSL.

3.4 Summary

In Chapter 3, the intent objectives as stated Section 3.1 are suggested to solve the lack of

an integrated intent definition under the context of the autonomic network. In addition, the

possibility of using ASSL is scrutinized in Section 3.2. Finally, how ASSL can be used to

express intents under the context of autonomic networks are studied by specifying concrete
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examples based on [23] in Section 3.3. Also, this section assesses the features of ASSL

specifications that match with intent objectives.
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Chapter 4

Evaluation

In Chapter 2, we investigated current technologies in intent-based network management,

and we identified two main problems: (1) There is a lack of a comprehensive definition of

Intent that integrates the different perspectives as expressed by different research groups

on the topic, and (2) there is a solution gap for an Intent expression method/language

and an associated intent deployment solution within the context of Autonomic Networks.

In Chapter 3, we defined a set of intent objectives to solve the first problem (Section 3.1)

and suggested the Autonomic System Specification Language (ASSL) as the solution to

the second problem. Then we specified different concrete examples in ASSL, based on

the intent classification in RFC 9316 [23], to demonstrate how this formal language can

express a wide variety of network management intents (Section 3.3). It is important to

note that we do not compare our solution with other technologies since each of them

focused on narrow and particular criteria of intent, whereas we are focusing on breadth

of application as a solution. The exception to this narrow focus was NEMO [30]. However,

there was insufficient documentation available for this technology to permit us to formulate

a meaningful comparison.

In this chapter, we proceed to evaluate the appropriateness of ASSL to express and

deploy intents based on the examples that we gave in Section 3.3 with regards to each of the

objectives that we have identified in Section 3.1.
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4.1 Intent-Based Autonomic Networking Using ASSL

The Autonomic System Specification Language (ASSL) is a formal language used to specify

the behavior and requirements of autonomic systems. Considering an autonomic network

as an autonomic system, ASSL can express the goals, objectives, internal organization, and

behavior of the autonomic network at an abstract level. It can also outline the limitations

and needs that must be satisfied for the network to operate correctly and the laws and

regulations that direct how the system should be run. The main objective of employing

ASSL is to make it possible to develop and implement autonomic systems that are more

dependable, efficient, and adaptable to changing circumstances. ASSL can be used to define

the actions and specifications of an autonomic network. ASSL is an appropriate solution to

autonomic networking driven by intents since it makes it possible to build and deploy more

dependable, efficient, and responsive networks to changing conditions. ASSL can express

self-chop, and other policies to simulate the self-management of an autonomic network by

guiding the network to take proper actions during different network states, such as failure. In

addition, there is a possibility to define other policies if an intent contains policies rather than

the four self-chop policies. By defining these policies in the ASSL specification, it is possible

to ensure that the autonomic network can adapt to changing conditions and maintain its

reliability, availability, and performance based on the intent objectives. In general, ASSL

can specify intent as self-chop or other policies under the autonomic network.

Self-configuring policies specify the steps an autonomic network should take to adjust

itself automatically in response to changing circumstances or demands. A self-configuring

policy is mainly about the configuration states; for instance, when the system should

add extra resources (such as bandwidth or processing power as network metrics) to meet

the demand for those resources when it surpasses a specific limit. Some examples of

self-configuring policy are depicted in Figure 7 and Figure 9, to model general device

configuration, and QoS configuration steps in Intent 1. Figure 36 in Intent 3, Figure 55

and Figure 64 in Intent 7, Figure 66 in Intent 8, Figure 72, and Figure 76 in Intent 9 show

other examples of self-configuring policy expressed by ASSL.
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Self-healing policies specify what steps the network or system should take to identify and

resolve issues as they arise automatically. A self-healing policy may mandate that the system

shut down, restart a broken component, or reconfigure to fix a failed configuration such as

what is designed in Figure 20 for Intent 1. Figure 38 in Intent 4, Figure 43 and Figure 44

in Intent 5,and Figure 74 in Intent 9 illustrate examples of self-healing policy expressed by

ASSL.

Self-optimization policies outline a system or network’s steps to autonomously optimize

performance in response to shifting circumstances or demand. For instance, a self-

optimization strategy may state that the system should modify traffic routing to reduce

delays or increase energy efficiency, such as the specification of traffic transferring due to

high volume in Figure 87 for Intent 11.

Self-protection policies outline a system or network’s steps to defend itself from outside

threats or attacks. An example of a self-protection policy would be to mandate that

the system automatically deploys security patches to guard against hostile intrusions,

unauthorized access, or security threats. Security patches should be designed as software

to connect with our ASSL specification as managed elements. Due to the shortcoming of

the current ASSL regarding actual distribution, and connection with managed resources,

this policy is not designed completely in the thesis scope, while security is also handled by

ANIMA [28]. However, some examples to cover security are implemented such as Figure 65

in Intent 7, and also security is abstracted through AEIP, and ASIP interactions to limit the

accessibility of messages, defining FRIEND lists. Two examples of ASIP and AEIP expressions

are Figure 32 and Figure 34, with their FRIEND list in Intent 2. If we do not declare the

FRIEND accessibility, the accessibility error as Figure 35 is shown. Another example for

FRIEND list is Figure 60 for Intent 7.

If a policy cannot be categorized under the self-chop properties, OTHER-POLICES, another

self-management category, is designed in ASSL to fulfill those policies. Intent 6, and Intent 7

are two concrete examples expressing VM CONNECTION, and videoconference policies as

specific self-management policies. Figure 49 and Figure 54 in Intent 6, Figure 55, Figure 56
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and Figure 64 in Intent 7, Figure 66 for Intent 8, Figure 81 in Intent 10, Figure 85

and Figure 89 in Intent 11 outline the examples expressing other self-management policies.

4.2 Mapping Intent Objectives vs. ASSL Intent

Examples

Intent objectives are aims or objectives that users or administrators set in autonomic

networks to control how the network behaves and ensure that it fulfills its users’ needs

and demands. Multiple granularity levels can be used to specify intent objectives depending

on the network’s requirements. It is essential to consider that the current version of ASSL

provides a simulation of the problem, and to ensure that the objectives are achieved, the

network elements must be subjected to the proper configuration commands or actions, which

are generated by a tool like a software agent and applied to them. It means that, in this

thesis scope, our evaluation showed the practical aspect of the ASSL specification has a

deficiency to connect to the software and devices outside of ASSL due to the shortcoming of

ASSL that the current compiler does not offer a functional distributed specification to work

with software agents. This should be handled in future work. Thus, the intent problems are

modeled at an abstract level as simulations, and the consistency and the models are verified

through formal consistency checkers inside the ASSL compiler.

As stated in Section 3.1, the solution to the intent specification language should cover the

intent objectives to fulfill autonomic network goals. In the following, we list all the intent

objectives that we had identified and argue that each objective is met by using ASSL as a

solution to express and deploy intents, as evidenced by the concrete examples that we gave

in Section 3.3.

• Abstract Formulation [3]: Almost all the specification examples can meet this criterion

since abstract formulation refers to the expression of desired autonomic behavior at

the highest level of abstraction. This is attained by separating the low-level technical

configurations from the autonomic behavior. Thus, instead of focusing on what
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configuration should be done in the network to achieve an intent, we focused on the

goals we should plan for the network by converting the goals and their conditions into

formal statements in ASSL. Examples of the abstract formulation are all the fluents as

high-level representations of autonomic network states mapped to specific actions that

did not include details like metrics or calls to other actions or the interface functions

of managed elements that might contain details such as metrics. Omitting details such

as metrics or other action calls as sub-steps of a procedure in this objective is due to

focusing on results without achieving them. In all the concrete examples, policies are

defined as the desired autonomic behavior for the system that has some fluents without

directing the system to simple actions without numeric details, such as in some fluents

from Intent 9; thus, all the related cells in Table 12 are checked with a positive sign.

• Declarative Outcome Formulation: This objective refers to formal declarative

statements to define a desirable autonomic behavior, however, in more detail compared

to abstract formulation. In the ASSL specification for our concrete examples, fluents

conduct the autonomic network simulation to actions with more detailed information,

such as metrics. Concrete examples such as Intent 1 and Intent 5 contain metric

declarations such as Figure 22 and Figure 46 to demonstrate the capability of ASSL to

express declarative outcomes. Other examples are Figure 25 for Intent 2, and Figure 86

for Intent 11, including metrics or variables that can declare the outcome of an in intent

through more detailed measurements compared to abstract formulation, although they

are highly abstracted compared to low-level configurations, and do not include any

technical details related to the networking devices. Thus, details of measurements to

achieve an intent are considered as metrics and variables to be monitored to check

if the intent is respected or not, without any concern for the low-level configuration.

Since all the concrete examples include at least one state that leads the autonomic

network to a more detailed procedure, like metrics, calls to interface functions, and

parameters, all the related cells in Table 12 are checked with a positive sign.

• Portability: First, ASSL being implemented using Java, all the ASSL specifications
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can be run on all operating systems. We successfully tested them on Linux and

Windows. The only requirement for the system to run the ASSL specifications is its

ability to run Java, by having the Java Virtual Machine (JVM) installed. Therefore,

intents expressed in ASSL are portable from a simple execution perspective. However,

portability, in the case of the intent, is an ideal concept to attain because an intent

expression method should be able to run all the intents without any modifications to

control networking elements that operate technologies that are developed by different

vendors. Vendors have diverse command modeling, making the portability objective

challenging. In order to deal with this problem, ASSL has some features to abstract

the portability by minimizing the adjustment of the intent: the managed elements

controlled by ASSL are abstract Java objects that can simulate the actual software

interfaces of the controlled devices. Thus, if a set of generic commands is designed to

be compatible with all the vendors, to be considered under the control of the managed

elements as proxies, in case of a change between vendors, only the managed elements

should adjust to the new vendor. This procedure will remove the requirement to modify

the intent specification itself. Since this concept applies to all the concrete examples,

all the related cells in Table 12 are checked with a negative sign as there is a potential

for ASSL to achieve it, but it is not achieved yet.

• Distributed and Local Behavior Management: Since ASSL has a hierarchical

architecture, and each of the actions has its specific block separate from other actions,

this objective can be demonstrated through almost all concrete examples. Public

autonomic behaviors like alarm generation statements were defined under the AS tier

in a distributed autonomic manner accessible by the whole autonomic network. In

contrast, the actions specified under each AE block are the means to determine the

localized autonomic behaviors of that AE. Because all the concrete examples have

the AS, AE, and ASIP hierarchy at least, each of these levels has its functionalities

where AS and ASIP specifications demonstrate the distributed management. As of

right now, ASSL is simulating a distributed system, but not practically. To execute it
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as a distributed system, however, only code generation needs to be implemented. The

AE sections refer to localization, and all the related cells in Table 12 are checked with

a positive sign.

• Composability: Composability needs to be demonstrated from two different angles.

First, the combination of different intents. Intents are composed of policies to define

autonomic behaviors, so the possibility of adding policies to a current specified policy

with minimal disruption in the whole specification results in composability. In some

concrete examples like Intent 7, first, we created an intent with its own policy and then

added other policies to that previous specification, and those separate policies could

work together under the same autonomic system with no interference. The capability of

policies working beside each other also brings the potential Modularity of ASSL formal

specifications. Secondly, in some examples, such as Intent 9, intent functionality was

created for the autonomic behavior, which was extended by adding more actions to

complete the autonomic behavior in some other aspects. Thus, ASSL specification

provides a simulation of autonomic behaviors, which are composable by adding two

intents together as different policies or adding functionality to the behaviors defined

in the ASSL to increase or modify the tasks based on the intent requirement. To

implement Intent 7, first, a policy is specified for video conferencing for a Controller

AE and its user AEs. Then, a state is added to cover requesting action in this intent.

Then to achieve Intent 8, another group of functionalities is added to the previous

intent structure, which results in the combination of intents showing the composability

feature of ASSL. With the same logic, Intent 2, Intent 3, and Intent 4 can be in one

group. To prove the claim with the execution of specifications, we combined some

intents together and ran the specifications before and after this combination. The

results of further assessment of composability through execution of different intents

together are stated in Section 4.2.1. Another way to demonstrate composability was

to create AEs with some autonomic behavior and then add other policies, such as the

process that happens for all other intents, where different policies can work together
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but separately. This specification type allows adding more policies to the autonomic

system when required. Therefore, since all the intent specifications have one of the two

reasons to demonstrate the composability objective, their cells are checked as positive

in Table 12. The only exception is Intent 6, which has no signs in the cell. This is

because the essence of this intent focused on the connectivity of the AEs. It was not

required to specify this intent in a composable manner. Although its cell is empty,

there is no reason not to allow adding other policies to this intent. To conclude this

analysis, in the future version of the ASSL, where all the specifications are distributed

pragmatically, there might be conflict in running more than one separate ASSL intent

specifications aiming to control the same network system since each of the intents’

actions can potentially affect another intent’s specified goal. However, it might be

possible to reduce this potential risk by creating a self-healing policy to recognize and

resolve the conflict. Notably, we would need a mechanism to make each of the intents

either: (1) automatically integrated or (2) have a centralized orchestrator to execute

many different individually defined intents in one system.

• Efficiency [42]: Since ASSL provides a high-level specification of intent and the

autonomic network concepts together in one formal language without requiring other

modeling languages such as YANG, it is efficient from an expressiveness perspective.

Also, it encapsulates many complexities from the intent users through its level of

abstraction. Additionally, it is also efficient from the programming perspective in terms

of expressiveness and developer time. It means that to express an autonomic behavior

with ASSL there is a lower amount of coding required compared to expressing that

with other programming languages such as Java. For instance, in all of the concrete

examples, the number of lines of generated Java code as the output of ASSL is far

greater than the number of lines of the ASSL specification code. This evaluation

applies to all the specification examples, and thus, all the related cells in Table 12 are

checked with a positive sign.

• Scalability [22]: The ASSL specification of almost all concrete examples shows the
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potential structural scalability of ASSL. This is demonstrated when in all the scenarios,

we could define an autonomic element as the Controller to define central autonomic

behaviors and then add other autonomic elements as its users with minimum disruption

to the tasks done by the system. For instance, in Intent 1 and Intent 9, we

implemented the intent with only the Controller as the autonomic element and then

involved the autonomic elements named as Host by adding their specifications. The

autonomic network intent specification could work in both states, and adding the new

specifications added newly specified behaviors. This addition of autonomic elements

outlined that without changing the primary resource, we can add a simulation of a new

autonomic element. However, we should mention that this feature was demonstrated

only at a formal specification of simulated autonomic behaviors. Thus, we mentioned it

as potential scalability, although it can be proven practically when the ASSL compiler

is improved to a real distributed system to work with software agents. This also shows

the minimum intrusion level of ASSL components for each other when adding a new

autonomic element to the structure. We only had to add some minimal tasks like calls

to the new element to make it synchronized with the previous system specification.

However, the static essence of ASSL architecture led us to regenerate the code after

adding new elements. As an example, the results of packet generation for the abstract

scalability of Intent 1 are shown in Figure 12, Figure 13, Figure 14, Figure 15,

and Figure 16. Also, the lack of dynamism in ASARCHITECTURE as the grouping

ASSL structure caused us to consider only the simulation of the reconfiguration state

in Intent 3 by defining the corresponding fluents and actions. The current version

of ASSL cannot dynamically and practically add the new device to the topology.

Nevertheless, considering the simulation of the intent, the lack of dynamism in grouping

nodes and the practical addition of the new device can be resolved in the future

version of ASSL because there is no impediment to the improvement of the ASSL

compiler. In conclusion, ASSL’s static design is a dynamism issue since it depicts the

system architecture in a static manner that does not accurately reflect the dynamic
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character of the network and its surroundings in case of adding or removing autonomic

elements. Designing and putting into practice an autonomic network that may change

with the environment and react to unforeseen events may be challenging as a result

since after each addition or removal of autonomic elements, this situation will affect the

relationships defined between the autonomic nodes and the system should regenerate

the specification code to adapt to the change. The regeneration after these changes

may also affect the speed of management to react to these situations. All the

concrete examples except Intent 10 are implemented with one Controller and Hosts

or other AEs that depend on them. Therefore, they can demonstrate the potential

structural scalability of ASSL. This realization is due to the minimum disruption of

the primary autonomic behavior designed in the central autonomic element, which

results in minimized impacts on the intent specification. For Intent 10, the cell is

empty in Table 12 since it only expresses the goal through the Controller; however,

there is no obstacle to adding other AEs to this specification. To conclude, ASSL can

express scalability in terms of specifying more resources, such as AEs, or managed

elements at an abstract level. Real scalability refers to either (1) deploying an intent

on networks of varying scales without having to change the formulation of the intent,

or (2) deploying a large number of intents on a network. As we focused on intent

expression rather than deployment, the actual deployment on a networking testbed

is out of scope for this thesis, and we were thus not able to test for neither of these

aspects of scalability.

• Monitoring Capabilities: In ASSL, there is a capability of internal observation of

conditions so that the autonomic system can track if the autonomic behavior is executed

based on the output provided by the ASSL control loop. In the case of metrics, also we

could observe that if the metric was violated, the GUARD as the preconditions of action

was not met, and therefore the action was not executed. However, this monitoring is

only a simulation since ASSL cannot directly read the metric from actual networking

devices. After an enhancement in the ASSL compiler, when it can practically connect
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to networking devices as its managed element through a software agent, besides the

internal monitoring capabilities of ASSL, monitoring software can work with it to

improve this aspect of ASSL. Therefore, these criteria are met partially in the current

version of ASSL since it depends on the ASSL connection to actual networking devices.

This realization applies to all the concrete examples, and all the related cells in Table 12

are checked with a negative sign. This refers to the potential of ASSL to support

monitoring tools if its compiler is improved to work with actual software agents, on

the one hand, and the internal observation capability it has to check its control loop.

To conclude, ASSL can monitor any intent condition or metrics specified. Although,

in terms of working with a monitoring tool outside of ASSL as a managed element,

there should be a software agent to connect them.

• Security [3]: This objective primarily concerns low-level configuration, which is

investigated in ANIMA’s work as they build a secure infrastructure for autonomic

networks in [28]. This infrastructure might be combined with ASSL specifications in

its enhanced version. However, in the current ASSL specification of concrete examples,

there was an abstract simulation secure interaction concept where autonomic behaviors

defined in one autonomic element were not accessible by others unless they were

described as FRIENDS. Also, private channels between AEs were the abstract means

to transmit messages between AEs but not the whole autonomic system, similar to

public messages expressed in ASIP tiers. As a result, this capability was partially

met in the ASSL specifications that we evaluated. This realization applies to all the

concrete examples, and as a result, all the related cells in Table 12 are checked with a

negative sign. This means that ASSL applies abstract security based on some features

that it has to limit accessibility. To conclude, although security is a much lower-level

concept than what ASSL focuses on, there are security aspects that ASSL can provide

regarding accessibility. An example of consistency error because of lack of FRIEND

declaration is Figure 61 for Intent 7.

• Autonomic Reporting [3]: This objective depends on the ability of ASSL to connect
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Table 12: Intent objectives and concrete examples comparison

Intent Objective

Intent Number
Intent 1 Intent 2 Intent 3 Intent 4 Intent 5 Intent 6 Intent 7 Intent 8 Intent 9 Intent 10 Intent 11

Abstract Formulation + + + + + + + + + + +

Declarative Outcome + + + + + + + + + + +

Formulation

Portability − − − − − − − − − − −

Distributed and Local + + + + + + + + + + +

Behavior Management

Composability + + + + + + + + + +

Efficiency + + + + + + + + + + +

Scalability + + + + + + + + + +

Monitoring Capabilities − − − − − − − − − − −

Security − − − − − − − − − − −

Autonomic Reporting − − − − − − − − − − −

(+) Support, (-) Partially Support, or Potentially.

to the actual networking devices to monitor real metrics, assess autonomic behaviors

based on them, and report them to the users. Although the output of ASSL is the

generated Java code that can show if the autonomic behaviors are executed correctly

based on the specification, we could not achieve this objective. For the current ASSL

compiler, there is a possibility to check if the autonomic statements work appropriately

based on the design, but there is not a dynamic report of the real autonomic network

devices. This explanation applies to all the concrete examples; all the related cells

in Table 12 are checked with a negative sign. It means that ASSL has the potential to

apply this objective if its compiler is enhanced.

4.2.1 Further Evaluation of Composability

We demonstrated our further evaluations for composability through the combination

of Intent 2 and Intent 3. First, we compiled the specifications for each of these intents,

where the results of generated AS packages can be seen in Figure 91 and Figure 92. Then

we added these two intents without modifying any part of the individual specifications and

compiled the code. The result of package generation can be seen Figure 93. Before and after
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Figure 91: AS generated package in Intent 2.

the combinations, the codes were consistent, and therefore the packages could be generated.

In Figure 93 the SELF CONFIGURING is extracted from Intent 3 with its related actions which

are marked with green shapes, and SELF HEALING is extracted from Intent 2 with its related

actions marked with red shapes.

Moreover, the following figures demonstrate some parts of the execution of the generated

Java code where there is a trace of formal statements that we defined to form the intent-based

autonomic behaviors. Figure 94 and Figure 95 show some lines from Intent 2 and Intent 3

individually, and Figure 96 illustrates the execution of the specification where the two

previous intent are combined to form a new intent. In this trace, lines 53 to 65 and 68 are

traces related to detecting and notifying a new host and reconfiguring the system because

of this event. Also, lines 66 and 68 are sample traces caused by the self-healing policy

from Figure 95.
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Figure 92: AS generated package in Intent 3.

4.3 Coverage of Different Categories of Intent

As stated in Section 3.3, the concrete examples were chosen from different intent

classifications to evaluate the expressiveness and coverage of ASSL for intent specification as

much as possible. Different classifications are mentioned in [23] to categorize the intents

as groups based on various criteria. The first categorization is based on the solutions

and intent of users. The solution network is divided into Carrier Networks, Data Center

Networks, and Enterprise Networks. Carrier networks refer to telecommunication companies

to provide services to customers. Data Center networks are responsible for a larger scale

of networking requiring a higher-performance and more complex computing like cloud

computing. Enterprise networks cover networking for specific organizations. Intent users

143



Figure 93: AS generated package after the combination of Intent 2 and Intent 3.

Figure 94: Excerpt of ASSL controller output execution Intent 2.
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Figure 95: Excerpt of ASSL controller output execution Intent 3.

Figure 96: Excerpt of ASSL controller output execution Intent 2 and Intent 3.
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Table 13: Mapping of RFC9316 intent classification vs. ASSL intent examples.

Intent Solution Intent Users Intent Number

Carrier Networks Network Operators, Service Designers, Intent 1

Intent 3

App Developers, Service Operators, Intent 4

Intent 5

Customers / Subscribers Intent 10

Intent 11

DC Networks Cloud Administrators, Underlay Network Intent 2

Intent 4

Administrators, Application Developers, Intent 6

Intent 9

Customers / Tenants Intent 11

Enterprise Networks Enterprise Administrators, Intent 3

Intent 4

Application Developers, End Users Intent 7

Intent 8

Intent 11

in all three groups vary from professional users like administrators and operators to non-

professional users like customers and end users. The concrete examples are designed to

cover all these categories as depicted in Table 13. In this table, Intent 11 is considered as an

example for all the categories. This is due to the essence of this intent that aims to manage

the network, as management is the most fundamental intent that applies to all networks.

However, this intent is considered to be used by technical intent users who are aware of

networking concepts.

We assessed ASSL capabilities as an intent expression language by evaluating the

expressiveness of ASSL in concrete examples chosen from various intent classifications. We

also tried to select the intents from different categories to investigate the shortcoming of

ASSL. Based on our analysis of specified intents, ASSL can specify almost every intent,

at least at its highest abstract level. However, the most challenging part is related to the

steps where there is a requirement to have interaction with actual networking devices and

other tools as managed resources. In other words, we could specify policies and autonomic

behaviors as a simulation but not an actual distributed specification code that can run the
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system pragmatically. This also affects the specification of two intent categories. Firstly, in

intents related to application developers as intent users and second in intents categorized

as operational tasks such as adding a new device to the system. In both cases, there is a

requirement to interact with actual networking devices, applications, or software. Despite

the simulation-only nature of current ASSL specifications of intent, due to the capability

of ASSL to check the consistency of specifications and show the tracking of the autonomic

behavior when we ran generated Java code as the output of the specification, we could verify

that the autonomic behavior is respected based on the chain of events and states that we

specified to create self-management policies as intents. The vital classification for selecting

the scenarios to specify with ASSL relates to the context of intents. In [23], a classification

divides various networking concepts into intent types used by diverse users. The classification

contains practical concepts, such as configuration, or network migration, as well as abstract

concepts, such as creating design models. All the intent types are extracted from different

scenarios that might happen in different scales of network solutions. We selected scenarios

from all different groups to cover almost every category and adequately analyze the ASSL

specifications’ pros and cons. All the scenarios can be studied in two phases:

• Modeling Level: This is the highest abstract level where we modeled and expressed

states, contexts, timings, and actions as formal statements.

• Practical Level: The applicability of the expressions on the networking devices by

focusing on filling the gap between the specifications and real network scenarios.

For the first phase, we could express all the context at an abstract level by simulating the

concepts as fluent, actions and events with their specified conditions. Therefore, theoretically,

there is no lack of expressiveness power of the ASSL. Also, in two stages, we analyzed the

consistency of the expressions through the consistency checker property of ASSL. An example

of this test, and the code generation after this step are shown in Figure 97, and Figure 98

for Intent 10. Then, we assessed if the autonomic system can respect the autonomic behavior

by running the generated Java code and tracking the traces of it. The results are concluded

as Table 14.
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Figure 97: Consistency check example for Intent 10.

Figure 98: Code generation example for Intent 10.
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Table 14: Mapping of RFC9316 intent contexts classification vs. ASSL intent examples.

Intent Type Intent Contexts Intent Number
Customer Service Intent Self-service or SLA based services, Intent 1

Intent 5
Service operator orders

Network and Underlay Network Service operator orders, Intent-driven network Intent 5
Intent 2

Service Intent Intent 3
Configuration, Verification, Correction, Intent 4

Intent 11
Optimization, Intent created by the underlay

network administrator

Network and Underlay Network Intent Network configuration, Automated Intent 2
Intent 3

life-cycle management of network configuration, Intent 4
Intent 9

Network resources (switches, routers, routing, etc.) Intent 11

Cloud Management Intent DC configuration, VMs, DB servers, Intent 2
Intent 6

Application servers, Communication between VMs Intent 7
Intent 8

Cloud Resource Management Intent Cloud resource life-cycle management Intent 9

(Policy-driven self-configuration,

Auto-scaling, Recovery/optimization)

Strategy Intent Security, QoS, Application policies, Traffic Intent 1
Intent 2

steering, Configuring and monitoring policies, Intent 3
Intent 5

Alarm generation for non-compliance, Intent 10
Intent 11

Auto-recovery, Design models and policies for

network, Network service design

Design workflows, Design Models, Policies

Operational Task Intents Network migration, Device replacements Intent 3
Intent 11

Network software upgrades, Task Automation
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4.4 Summary

In Chapter 4, we brought some examples of intent specifications to show the capabilities of

ASSL to express self-management policies in Section 4.1. Then, we analyzed if ASSL could

meet the intent objectives from Section 3.1 and brought different specification examples for

analysis in Section 4.2. Moreover, we categorized the results of the evaluations in Table 12,

and Table 13. Additionally, we scrutinized mapping the concrete examples to RFC 9316 [23]

intent classifications and presented the results in Table 14.
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Chapter 5

Conclusion and Future Work

In this final chapter, we present an overview of all the arguments made in this thesis, followed

by representing the limits we encountered in our suggested solution during this research and

how future work can be done to solve each of them.

5.1 Conclusion

The growing complexity and dynamic nature of contemporary computer networks created

a demand for intent-based networking, where networks can be managed based on Intent,

which is the desirable network goal. On the other hand, Autonomic Networking aims to

facilitate network management by applying self-management policies while minimizing the

need for human involvement in management procedures. Instead of manually configuring

the network’s low-level components, autonomic networks can govern the networks based on

the Intent. By automating network management and facilitating operators’ expression and

enforcement of their desired network behavior, intent-based networking under autonomic

networking seeks to address these issues. To achieve this purpose, there are two problems:

• Lack of a Comprehensice Intent Definition: To solve this issue, Intent Objectives are

introduced in Section 3.1.
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• Lack of a Language or Framework to Express and deploy Intents in Autonomic

Networks: To solve this problem, Autonomic System Specification Language (ASSL)

is suggested as the framework designed for autonomic systems to specify Intent

in Chapter 3.

There are various advantages to intent specification in autonomic networks using

Autonomic System Specification Language (ASSL). Firstly, ASSL is a framework designed

specifically for autonomic systems, as it allows the specification of self-management policies

to create autonomic behaviors through features like control loops. Due to its features

as mentioned in Section 3.2, and illustrated by concrete intent examples selected from

different categories of intent classification from RFC 9316 [23] in Section 3.3, ASSL can

provide the means to achieve an appropriate range of the Intent Objectives described

in Section 3.1. Mapping of Intent Objectives to ASSL intent specification examples is

evaluated in Section 4.2, and depicted in Table 12. Also, for some Intent Objectives such as

Portability and Security, ASSL has the potential to handle them, or provide them to some

extent, although the current version has some shortcomings.

Also, ASSL can have an appropriate coverage of diverse intent classifications from

RFC 9316 [23], in terms of Intent Users and Intent Solutions, as illustrated in Table 13

and Table 14 in Section 4.3. It is essential to mention that the ASSL coverage of intent

classification in terms of modeling different intents in a high-level abstraction is appropriate;

however, in the case of operational tasks, or interaction with actual networking devices

through software agents, it requires some improvements in its compiler.

In conclusion, utilizing ASSL for intent specification in autonomic networks as a top-down

approach has several advantages, including covering a reasonable number of Intent Objectives

and Intent Classifications. At least in almost every case, it can handle the modeling and

high-level specifications. However, to make it practical for autonomic networks, there are

gaps in a software agent to connect ASSL interface functions to networking devices on the

one hand and the ability to distribute ASSL specification components from each other.

• Abstract Formulation can be attained by ASSL specification since all the intent concrete
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examples can represent abstract network goals without concerns for the steps to achieve

that specific goal. Self-management policies, fluents, and actions help the autonomic

network to formulate such abstraction for autonomic network behaviors.

• Declarative Outcome Formulation can be achieved since network goals as intents

and constraints as metrics as foundations of autonomic network behaviors can be

represented by ASSL features in more detail. Declarative outcome formulation contains

more detail compared to the abstract formulation. ASSL can assess if the defined

constraints are met and if the autonomic behavior respects the intent criteria. To

formulate declarative outcomes, self-managed policies, fluents, actions, and metrics

are some useful ASSL components.

• Portability is a potential for ASSL specification at an intent specification perspective

due to the abstraction level of ASSL specifications, which does not consider any low-

level configurations. As a result, different vendors can use this specification language

to define high-level network goals. However, for the interaction of managed elements

interfaces from ASSL with actual networking devices, some vendor-based commands

might be required based on the device settings or configurations. On the other hand, at

an execution level, ASSL can be executed on all devices capable of running Java. This

operational view is out of the scope of this thesis that focuses on the expressiveness

of ASSL for intent-based autonomic networking. Nevertheless, portability will be

enhanced if a template of commands is considered for these interactions to be

interpreted for all different managed element interactions.

• Distributed and Local Behavior Management is achieved by ASSL since we expressed

two levels of private and public autonomic behaviors in all the concrete intent examples.

The private autonomic behaviors refer to AE blocks localized for autonomic elements.

The global perspective is specified under the AS and ASIP tiers to cover the autonomic

rules shared among the whole autonomic network.

• Composibilty was discussed in two different perspectives as mentioned in Section 4.2.
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It is possible to consider ASSL as a specification language with the potential of

composability since it can define different self-management policies in one autonomic

network without conflicts. However, injecting diverse ASSL intent specifications to

rule one autonomic network at an operational level in a real networking test bed was

not in the scope of this thesis.

• Efficiency is provided by ASSL as this specification language does not require modeling

languages such as YANG as a part of it, and it has the tools to express network intents

under the autonomic network scheme and verify the autonomic behavioral models

through its consistency checking. Also, its generated code is efficient in several code

lines compared to the coding required to specify the autonomic network behaviors.

• Scalability is achievable at an abstract level as we could define different concrete

intent examples that have the potential to add more AEs to the specification with

minimal modification in the intent specification. Although this potential is proven

theoretically, the operational estimations to assess scalability while there is a large

number of networking devices or intents are outside the scope of this thesis.

• Monitoring Capabilities are attained by the ASSL concrete examples as all of the

defined autonomic behaviors were verified through inner control loops of the ASSL to

verify the consistency of the specifications based on the semantics of the ASSL, which

apply to autonomic systems.

• Security is a low-level concern. Nevertheless, ASSL can define some abstract features,

such as friends, to control the accessibility of the interaction between autonomic

elements in an autonomic system.

• Autonomic Reporting refers to the ability of the specification to connect to the actual

networking devices. Since we chose another direction in this thesis, we do not focus on

concrete autonomic reports. However, through the generated Java code after execution,

the autonomic behaviors can be traced in all of the concrete examples.
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5.2 Limitations

Based on our evaluation of different concrete intent examples specified with ASSL, there

are some challenges to using this framework for intent expression under the autonomic

networking context.

• Static Architecture: ASSL lacks the dynamism to add or remove an autonomic element

to a specified structure, which results in the regeneration of code after a change in the

architecture. Examples are Intent 2, and Intent 4. This also can impact the evaluation

of the scalability objective. We encountered this challenge as we added or removed

an AE for the specification we tried to design during the implementation of Intent 1

and Intent 9.

• Lack of Distribution in Practice: ASSL specification provides autonomic behavior,

which is distributed abstractly, but since the final generation of code is compiled as one

unified package, each intent specification model cannot be injected into an autonomic

node separately. This means that the whole specification, including all the hierarchy

components, should be executed in all the devices. This shortcoming can affect the

evaluation of scalability and composability because although we could express these

objectives through all the concrete examples, we encountered the challenge of testing

these objectives in a real networking test bed due to lack of resources like timing and

a pragmatic distributed ASSL compiler to interact with the test bed devices.

• Lack Practical Interaction with Managed Resources: Managed elements in ASSL model

an interface function to connect the ASSL specification to the actual networking

devices or software. However, ASSL only simulates this modeling, requiring a software

agent to create the communication for real interaction. The shortcoming of ASSL

in the distribution of specification blocks impedes the system from using a software

agent connection for its interface functions because of the dependency between ASSL

compiling structures. Therefore, ASSL does not directly read metrics from other

resources, and we had to define the metric values manually. Nevertheless, if the
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distribution problem is resolved through compiler enhancement, this problem can be

resolved.

5.3 Future Work

As pointed out in Section 5.2, ASSL has shortcomings that cause a challenge to test intent

specification at a practical level in a real distributed networking test bed. Nevertheless, the

ASSL compiler does not impede alleviating these problems to ameliorate its capabilities.

The possible future solution to ASSL shortcomings that might improve the functionalities

of ASSL are as follows:

• Distributed Execution of ASSL Specification of Components: The ASSL specification

for autonomic elements should become modular in terms of being able to be compiled

individually from other specification blocks. To explain more, in the current version of

ASSL, all the specifications for the autonomic elements are compiled together under

one file and generate one integrated packaging as its output. Thus, to make each

AE specification applicable to individual devices, the ASSL compiler should add this

modularity to its compiling procedure. This improvement also allows software agents

to work with ASSL specifications on each device to connect the device by interpreting

the specifications.

• Dynamic Autonomic System Architecture: ASSL has a static architecture. It is not

possible to represent dynamic addition or removal of Autonomic Elements at run

time. Adding this dynamic capability would require changes to the semantics of

ASSL, and to the supporting run-time system. This improvement could also positively

affect attaining other intent objectives that rely on dynamism, such as scalability and

composability.

As the ASSL will be extended toward better capacities for autonomic networking, it can

also be implemented to integrate other existing solutions for autonomic networking, such as
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ANIMA and the GRASP protocol. In doing so, not only could ASSL express and execute

the network intent through its formal statements independent of the underlying network

infrastructure and technology but this high-level specification capacity can be combined

with ANIMA and GRASP if it is translated into the configuration for network devices by a

software agent or an Autonomic Service Agent (ASA) when ASSL shortcomings are resolved.

As a result, ASSL can apply intent specifications to the autonomic network domain, which

is also secured through ANIMA low-level mechanisms.
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