Synthetic Approaches for Accessing Rare-Earth Analogues of UiO-66

P. Rafael Donnarumma,¹ Sahara Frojmovic,¹ Hudson de Aguiar Bicalho,¹ Hatem M. Titi,² Ashlee J. Howarth^{*1}

¹Department of Chemistry and Biochemistry, and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montréal, QC, H4B 1R6

² Department of Chemistry, McGill University, 801 Sherbrooke St W., Montréal, QC, H3A 0B8

Supplementary information

S.1 Materials

All solvents and reagents were purchased from commercial sources. N,N'-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), acetone, and nitric acid (70%) were purchased from Fisher Scientific (Fisher Chemical). $Y(NO_3)_3$ · GH_2O , $Eu(NO_3)_3$ · GH_2O , $Gd(NO_3)_3$ · xH_2O , $Tb(NO_3)_3$ · xH_2O , $Ho(NO_3)_3$ · xH_2O , $Er(NO_3)_3$ · xH_2O , $Tm(NO_3)_3$ · xH_2O , and $Yb(NO_3)_3$ · xH_2O were purchased from Alfa Aesar. 2,6-difluorobenzoic acid (2,6-DFBA) was purchased from Combi-Blocks. Terephthalic acid (BDC) was purchased from Acros Organics. NMR solvents D_2SO_4 and DMSO-d₆ were purchased from Alfa Aesar. All solvents and chemicals were used without further treatment.

S.2 Instrumentation

Single crystal X-ray diffraction (SCXRD) data for Tm-UiO-66 was measured on a Bruker D8 Venture diffractometer equipped with a Photon 200 area detector, and $I\mu S$ microfocus X-ray source (Bruker AXS, CuK α source). Measurements were carried out at 253K. The crystal diffracted weakly at high angles. Structure solution was carried out using the SHELXTL package from Bruker.¹ The parameters were refined for all data by full-matrix-least-squares or F2 using SHELXL.² It should be noted that disordered molecules (water, DMA and dimethylammonium) in the MOF pores, which could not be reliably modelled using discrete atoms, were subtracted by SQUEEZE, using the PLATON software.³ All of the nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in calculated positions and allowed to ride on the carrier atoms. All hydrogen atom thermal parameters were constrained to ride on the carrier atom.

Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D2 Phaser diffractometer (measurements made over a range of $4^{\circ} < 2\theta < 20^{\circ}$ in 0.02° step with a 0.200 s scanning speed) equipped with a LYNXEYE linear position sensitive detector (Bruker AXS, Madison, WI). Neat samples were smeared directly onto the silicon wafer of a proprietary low-zero background sample holder. Data was collected using a continuous coupled $\theta/2\theta$ scan with CuK α ($\lambda = 1.54178$ Å). No important reflections can be observed after 20° 2 θ for all the samples.

Variable temperature (VT) PXRD patterns were collected on a Bruker D8 Advance diffractometer (measurement made over a range of $2^{\circ} < 2\theta < 40^{\circ}$ in 0.02° step with a 0.200 s scanning speed) equipped with a LYNXEYE linear position sensitive detector (Bruker AXS, Madison, WI). Neat samples were smeared directly onto the silicon wafer of a proprietary low-zero background sample holder. Data was collected using a continuous coupled $\theta/2\theta$ scan with Ni-filtered CuK α ($\lambda = 1.54178$ Å). The setup was

equipped with an Anton Paar CHC⁺ chamber. Diffractograms were collected in a stepwise fashion, and after each collection (ca. 7 min), the temperature in the chamber was raised in intervals of 5 °C at a rate of 1 °C min⁻¹ and a new collection started.

¹H-NMR spectra were recorded on a 300 MHz Bruker spectrometer and the chemical shifts were referenced to the residual solvent peaks.

Inductively coupled plasma - mass spectrometry (ICP-MS) data was measured on an Agilent 7500 Series.

Diffuse reflectance infrared spectra were recorded using a Thermo Scientific Nicolet 6700 FT-IR equipped with a MCT detector with a resolution of 1 cm⁻¹ in the range of 4000-450 cm⁻¹.

Thermogravimetric analysis (TGA) was carried out in a TGA/DSC 1 from Mettler Toledo, from room temperature to 800 °C at a rate of 5 °C/min under air.

Scanning electron microscopy (SEM) images were collected on a Phenom ProX desktop SEM.

MOF samples were activated using a Micromeritics SmartVacPrep instrument equipped with a hybrid turbo vacuum pump. Nitrogen adsorption-desorption isotherms were measured at 77K on a Micromeritics TriStar II Plus instrument.

S.3 Synthesis

RE-UiO-66 in DMF (RE = Y, Ho, Er, Tm, Yb): Y-, Ho-, Er-, Tm- and Yb-UiO-66 were synthesised solvothermally in 6-dram vials containing the corresponding $RE(NO_3)_3 \cdot xH_2O$ (0.174 mmol, assuming hexahydrate for all of them), BDC (28.5 mg, 0.171 mmol), and 2,6-DFBA (440 mg, 2.78 mmol), suspended in DMF (8 mL). The vials were sealed and placed into a preheated oven at 120 °C for 36 h. The precipitates were separated via centrifugation, washed three times with fresh DMF over the course of 24 h, and later three times with fresh acetone over the course of 24 h. The material was then air-dried and activated under vacuum at 80 °C, except for Ho-UiO-66.

RE-UiO-66 in DMF:DMA (RE = Eu, Gd, Tb): Eu-, Gd-, Tb-UiO-66 were synthesised solvothermally in 6-dram vials containing the corresponding RE(NO₃)₃·xH₂O (0.174 mmol, assuming hexahydrate for both), BDC (28.5 mg, 0.171 mmol), and 2,6-DFBA (440 mg, 2.78 mmol), suspended in 8 mL of a DMA:DMF mixture with ratios of 7:1(Eu), 3:5(Gd) and 1:7(Tb). The vials were sealed and placed into a preheated oven at 120 °C for 48 h. The precipitates were separated via centrifugation, washed three times with fresh DMF over the course of 24 h, and later three times with fresh acetone over the course of 24 h. The material was then air-dried and activated under vacuum at 80 °C, except for Gd-UiO-66.

RE-UiO-66 in DMF with HNO₃ (RE = Y, Ho, Er, Tm, Yb): Y-, Ho-, Er-, Tm- and Yb-UiO-66 were synthesised solvothermally in 6-dram vials containing the corresponding $RE(NO_3)_3 \cdot xH_2O$ (0.174 mmol, assuming hexahydrate for all of them), BDC (28.5 mg, 0.171 mmol), 2,6-DFBA (440 mg, 2.78 mmol), concentrated HNO₃ (50 µL) suspended in DMF (8 mL). The vials were sealed and placed into a preheated oven at 120 °C for 36 h. The precipitates were separated via centrifugation, washed three times with fresh DMF over the course of 24 h, and later three times with fresh acetone over the course of 24 h. The material was then air-dried.

RE-UiO-66 in DMA (RE = Y, Eu, Gd, Tb, Ho, Er, Tm, Yb): the RE-UiO-66 were synthesised solvothermally in 6-dram vials containing the corresponding $RE(NO_3)_3 \cdot xH_2O$ (0.174 mmol, assuming hexahydrate for both), BDC (28.5 mg, 0.171 mmol), and 2,6-DFBA (440 mg, 2.78 mmol), suspended in DMA (8 mL). The vials were sealed and placed into a preheated oven at 120 °C for 72 h. The precipitates

were separated via centrifugation, washed three times with fresh DMF over the course of 24 h, and later three times with fresh acetone over the course of 24 h. The material was then air-dried.

Tm-UiO-66 single crystals: single crystals of Tm-UiO-66 were synthesised solvothermally in 6-dram vials containing $Tm(NO_3)_3 \cdot xH_2O$ (0.087 mmol, assuming hexahydrate), BDC (14.3 mg, 0.085 mmol), 2,6-DFBA (220 mg, 1.39 mmol), HCl 35.5% (300 µL), in DMA (8 mL). The vials were sealed and placed into a preheated oven at 120 °C for 72 h. Octahedral crystals of approx. 80 µm crystals suitable for SCXRD were collected from the walls of the vial.

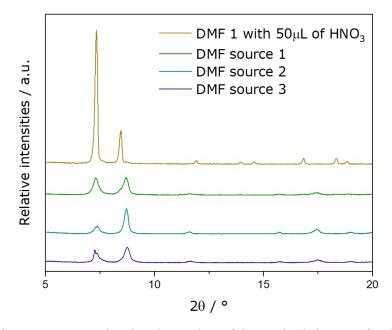
Some optimal ratios that can be used for a DMF:DMA mixture for the synthesis of RE-UiO-66 (RE = Y, Ho, Er, Tm and Yb) are 6:2 and 4:4, in case DMF alone does not give the expected product.

Zr-UiO-66 for reference was synthesised according to previously reported procedures.⁴

S.4 Diffuse reflectance infrared Fourier transform spectroscopy

Diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) was used to confirm the presence of the carboxylate group from the linker. The samples were run after activation with no further treatment.

S.5¹H-NMR


 \sim 5 mg of activated sample was digested in D₂SO₄ and diluted with DMSO-d₆. The digestion was carried on in a vial wherein the sample was attacked first with around 10 drops of D₂SO₄ and sonicated for 10 min. The slurry was then diluted with DMSO-d₆ and loaded into an NMR tube. This experiment was done only to confirm the presence of BDC in the structure of the synthesised material.

S.6 ICP-MS

For ICP-MS, ~ 1 mg of the activated RE-UiO-66 (RE = Y, Tb, Er, Tm, Yb) was weighed and digested in 750 μ L H₂SO₄ at high temperatures in a sand bath for 24 h. This solution is diluted with deionised H₂O to a final volume of 10 mL. Finally, an aliquot of this solution is diluted by 50 times and injected in the equipment. Calculations were done assuming the following formula for the activated sample: [(CH₃)₂NH₂]₂[RE₆(OH)₈(BDC)₆]. A higher experimental percentage of metal in the material than theoretical percentage is indicative of the presence of linker defects in the structure.

S.7 TGA

For TGA analysis, ~ 5 mg of the activated RE-UiO-66 (RE = Y, Eu, Tb, Er, Tm, Yb) was weighed with no further treatment. The final percentage of the RE₂O₃ residue is adjusted for the presence of humidity below 100 °C and then compared to the expected value for the perfect formula, $[(CH_3)_2NH_2]_2[RE_6(OH)_8(BDC)_6]$. Figure S8.1 shows the procedure use to estimate the experimental percentage. A higher experimental percentage RE₂O₃ than the expected value is indicative of the presence of missing linkers.

Figure S1 Stacked PXRD patterns showing the product of the synthesis in DMF for the as-synthesised Tm-UiO-66. The bottom three patterns are not the desired product. Upon the addition of HNO₃ to the synthesis, Tm-UiO-66 is obtained (top).

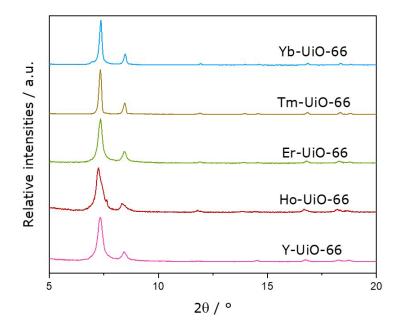
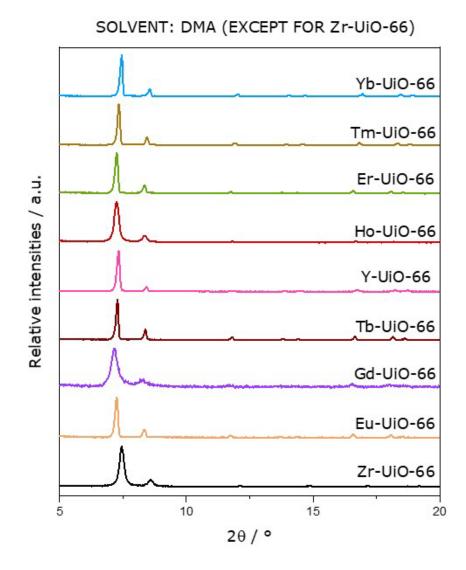



Figure S2 Stacked PXRD patterns showing the product of the synthesis in DMF with HNO₃ for assynthesised RE-UiO-66 (RE = Y, Ho, Er, Tm, Yb).

Figure S3 Stacked PXRD patterns showing the product of the synthesis in DMA for RE-UiO-66 (RE = Eu, Gd, Tb, Y, Ho, Er, Tm, Yb). Zr-UiO-66 can be found at the bottom for comparison.

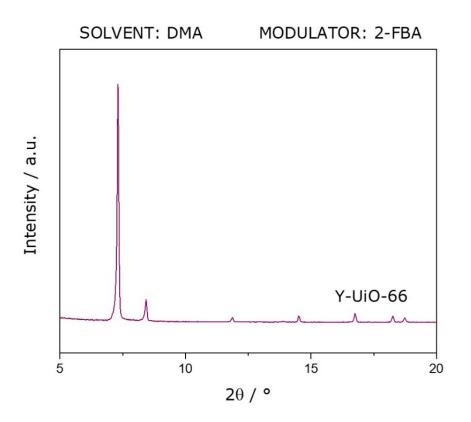
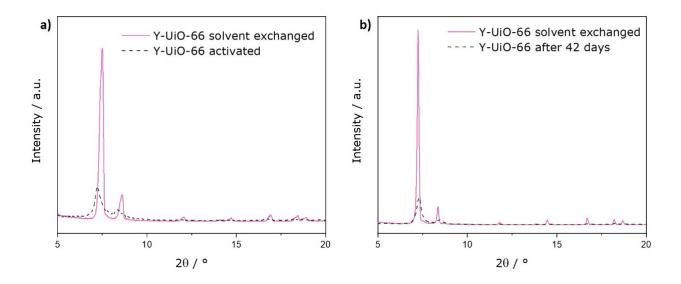



Figure S4 PXRD of Y-UiO-66 synthesised in DMA with 2-FBA as the modulator.

Temperature (°C)	Time (h)	Surface area (m ² /g)
150	24	1060
130	24	1350
120	24	1350
80	20	1370

Table S1 Activation conditions attempted for Y-UiO-66.

Figure S5. PXRDs showing loss of crystallinity of Y-UiO-66 (a) after activation, and (b) when sitting in the vial air-exposed for 42 days.

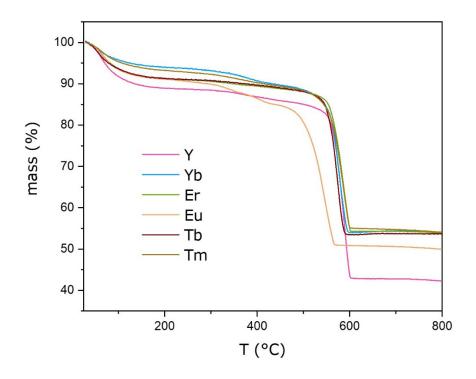


Figure S6 TGA plots for RE-UiO-66 (RE = Y, Yb, Er, Eu, Tb, Tm).

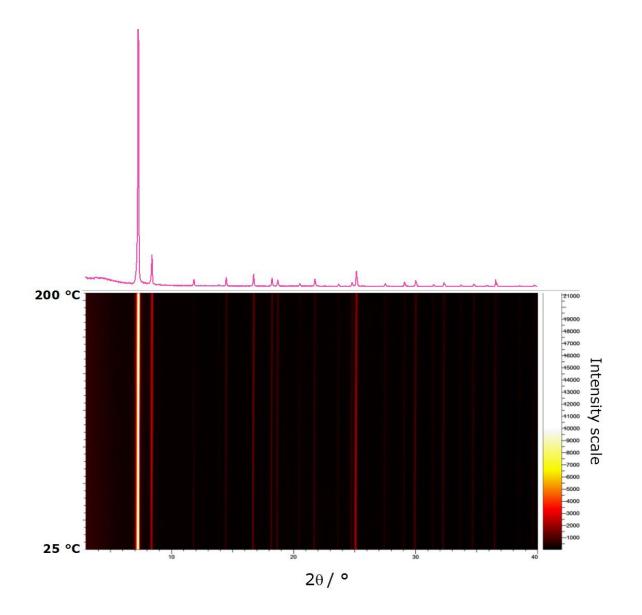
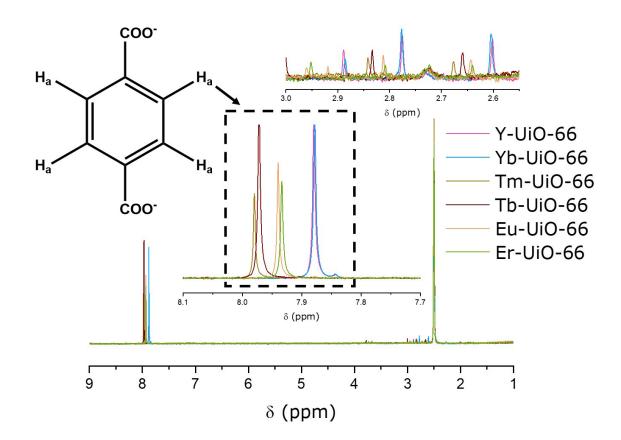



Figure S7 VT-PXRD of Y-UiO-66 from 25 °C to 200 °C.

Figure S8 ¹H-NMR spectrum for RE-UiO-66 (RE = Y, Yb, Tm, Tb, Eu, Er) digested in D_2SO_4 and solubilized in DMSO-d₆. All the samples show the corresponding peak for the aromatic proton of BDC as well as the presence of some DMF in their structure. Differences in shift might be due to varying amounts of deuterated sulfuric acid changing solvent polarity.

RE	%RE theoretical	%RE ICP
Y	30.55	32.47
Tb	44.02	49.65
Er	44.99	48.43
Tm	45.53	50.44
Yb	46.12	46.93

Table S2 ICP values for the RE-UiO-66 (except Eu).

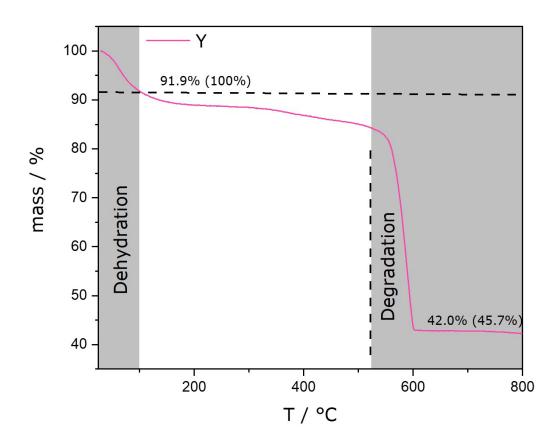


Figure S9 TGA plot for Y-UiO-66 detailing how the experimental Y₂O₃ percentage is estimated.

RE	%REoxide theoretcial	%REoxide TGA
Y	38.8	45.7
Eu	49.7	55.2
Tb	50.7	57.0
Er	51.5	57.2
Tm	52.0	57.6
Yb	52.5	56.6

Table S3 TGA %_{REoxide} for RE-UiO-66.

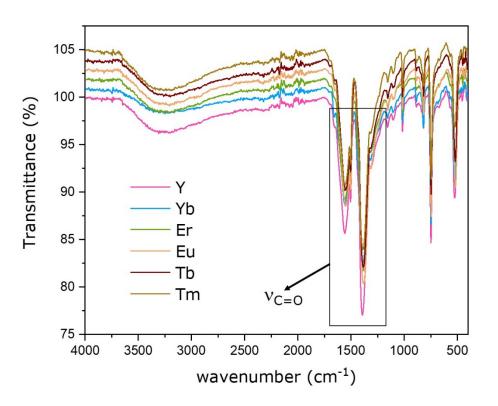


Figure S10 DRIFTS spectra for the RE-UiO-66 (RE = Y, Yb, Er, Eu, Tb, Tm,). All the samples show similar peaks, confirming that they are all isostructural. Spectra are stacked for clarity.

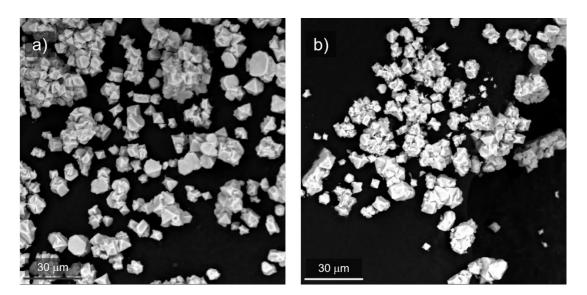


Figure S11 SEM of (a) Yb-UiO-66 and (b) Er-UiO-66. Octahedral shapes can be distinguished in the images.

S.8 Crystallographic data

184 e⁻ were squeezed from the structure due to an impossibility to solve the molecules in the pores due to the high level of disorder. To this point the structure was solved yielding the following formula: $Tm_3(OH)_4(BDC)_3$. This framework is anionic, and its charge needs to be countered with a counterion. $(CH_3)_2NH_2^+$ is the only possible present counterion needed to balance the charge so, 26 e⁻ have to belong to it. The remaining 158 e⁻ are assigned to 3 DMA molecules (48e⁻ each) and 1.5 H₂O molecules (10 e⁻ each). The final formula for this compound ends up being would then be $[(CH_3)_2NH_2]_1[Tm_3(OH)_4(BDC)_3]$ · (DMA)₃.(H₂O)_{1.5}.

Empirical formula	$C_{24}H_{12}O_{16}Tm_3$
Formula weight	1062.13
Temperature/K	253(2)
Crystal system	Cubic
Space group	$Fm\overline{3}m$
a/Å	21.2553(16)
b/Å	21.2553(16)
c/Å	21.2553(16)
$\alpha^{\prime \circ}$	90
β°	90
y/°	90
Volume/ Å ³	9603(2)
Z	8
$ ho_{ m calc}/ m g/ m cm^3$	1.471
μ/mm^{-1}	10.408
F(000)	3928.0
2θ range for data collection/°	7.204 to 144.87
Index ranges	-26<=h<=26 -26<=k<=26 -26<=l<=26
Reflections collected	43503
Independent reflections	539 [Rint = 0.1137, Rsigma = 0.0208]
Data/restraints/parameters	539/12/27
Goodness-of-fit on F ²	1.173
Final R indexes [I>= 2σ (I)]	R1 = 0.0369, WR2 = 0.0950
Final R indexes [all data]	$R_1 = 0.0433, wR_2 = 0.1065$
Largest diff. peak/hole / e Å ⁻³	1.09/-1.08

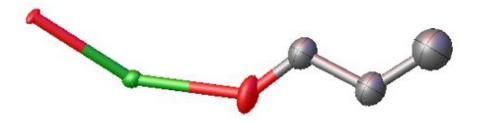


Figure S12 Asymmetric unit of Tm-UiO-66.

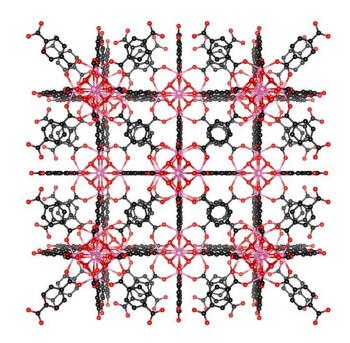


Figure S13 Overall representation of Tm-UiO-66 framework (empty pores).

S.9 References

- 1. G. M. Sheldrick, Acta Cryst. C., 2015, C71, 3-8.
- 2. G. M. Sheldrick, Acta Cryst. A., 2015, A71, 3-8.
- 3. A. L. Spek, Acta Cryst. C., 2015, C71, 9–18.

4. M. J. Katz, Z. J. Brown, Y. J. Colón, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, O. K. Farha, 2013, *Chem. Commun.*, **49**, 9449-9451.