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ABSTRACT 

Exploring Pedestrian Road Safety in Public Transit Locations 

Reza RiahiSamani 

This thesis studies the magnitude of pedestrian road collisions in public transit locations 

and addresses how the road and built-environment elements affect pedestrian safety at public 

transit access points (PTAPs). Collision count models and hotspot identification methods are 

utilized to address the research questions. Chapter 1 and Chapter 2 provide an introduction and 

literature review over pedestrian road safety in general, and specifically in public transit locations. 

Chapter 3 explains the methodologies that will be utilized in this research study. Chapter 4 

establishes a relationship between pedestrian-vehicle collision counts and public transit services. 

Pedestrian collisions occur more frequently at intersections with the presence of a PTAP and with 

a higher bus traffic volume, a higher number of bus routes, and a higher public transit accessibility 

index. Hence, Chapter 5, explores how road geometry and built environment elements affect 

pedestrian-vehicle collision counts at PTAPs. The analysis shows that strategies such as road 

narrowing, sidewalk width increase, median refuges, presence of signal’s walk interval, and 

vehicle stop signs could improve pedestrian safety at PTAPs. Moreover, pedestrians are at more 

risk in PTAP where there are roads with higher road grades and more two-way streets than one-

way streets. Chapter 5 continues with Empirical Bayes collision hotspot identification and 

examines a couple of collision hotspots in PTAPs in the case study of Montreal City. The study 

findings point out the need to improve pedestrian road safety at PTAP locations and offer 

engineering countermeasures for addressing this problem. 
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Chapter 1: Introduction 

1.1 Background 

Sustainable Cities heavily rely on public transit services for the daily travel of their 

inhabitants. Most transit riders walk to reach the public transit access points (PTAPs); in particular, 

walking is the basic mode of transport that a person may take for one or more portions of the trip. 

Based on Canada Census 2016, in the city of Montreal 34% and 8% of daily trips to work are done 

by public transit and walking respectively(“Census Profile, 2016 Census” 2017). Using transit 

leads to interaction with vehicle traffic flow at public transit access points (PTAPs). Therefore, it 

is required to provide a safe road environment at these locations. Moreover, provision of safe 

public transit influences the users’ assessment of transit quality, and consequently, their future 

decision to use public transit again (Amadori and Bonino 2012; Corazza and Favaretto 2019). 

Hence, it is essential to provide a safe environment for pedestrians at PTAPs which in turn 

promotes sustainable transportation. 

 Pedestrian collisions hinder the achievement of a sustainable urban transportation. Road 

collisions result in various costs, including, direct costs, human capital costs and willingness-to-

pay costs, and when it comes to vulnerable road users, i.e., pedestrians and cyclists, there is a 

higher risk of collision injuries and consequently higher social and financial burden (Leur 2010).  

In the case study of Montreal city, which is one of the top ranking cities in terms of sustainable 

transportation (Batten 2017), the number of pedestrian collisions is noticeable. As figure 1-1 shows 

there is no downward promising trend in the count of pedestrian vehicle collision between 2012 

and 2019, which indicates the need to further efforts in this domain. Similarly, Figure 1-2 shows 
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no promising trend in the collision count in the proximity of public transit in the 8-year period. 

Between 2012 and 2019, there are 11,120 pedestrian-vehicle collision reports of which half (49%) 

of total counts are within 30 m proximity of public transit access points. Although there have been 

several efforts to decrease collision counts, further investigation and analysis is needed to improve 

the pedestrian safety levels. 

 

Figure 1-1Montreal Pedestrian Vehicle collision count between 2012 and 2019. 
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Figure 1-2Montreal Pedestrian Vehicle collision counts in the proximity to PTAPs. 

 

 

Pedestrian collisions, like all road traffic crashes, should not be accepted as inevitable, because 

they are, in fact, both predictable and preventable (Who 2013). There is a close relationship 

between pedestrian safety and the walking environment. The risk of pedestrian collisions increases 

in an environment without pedestrian infrastructure and when more motor vehicles interact with 

pedestrians (Yi Zhang, Zhang, and Su 2021). In other words, inadequate or deficient engineering 

elements (road geometry, traffic control, and built environment) can exacerbate the pedestrian 

crash risk (P. Chen and Zhou 2016; Ukkusuri et al. 2012). The necessity to provide adequate safety 

for pedestrians has led to the development of engineering countermeasures such as the provision 

of pedestrian-friendly geometric designs and crossing facilities, effective traffic control, safety 

education programs, and implementation of pedestrian-friendly intelligent transportation systems 

(Zegeer and Bushell 2012; Yi Zhang, Zhang, and Su 2021). 
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1.2 Problem Statement 

Previous studies reviewed the relation between public transit and pedestrian-vehicle 

collisions considering the presence of bus stops (Srinivas Subrahmanyam Pulugurtha and Penkey 

2010; Shirani-bidabadi et al. 2020b; PASHKEVICH and NOWAK 2017), or the average of bus 

frequency at PTAPs or transit corridors (Ye et al. 2016). However, establishing a robust 

complementary examination of the possible relation between pedestrian road collisions and public 

transit locations requires evaluating the effect of exposure characteristics of public transit services, 

such as bus average daily traffic and public transit accessibility index. Moreover, limited studies 

addressed the role of road elements and built-environment factors on pedestrian safety, particularly 

at public transit access points. In these studies, characteristics of PTAPs are examined by utilizing 

qualitative categorical variables of the surveyed sites (Lakhotia et al. 2020a), and some studies are 

irrespective of traffic exposure and pedestrian factors (Mukherjee, Rao, and Tiwari 2022). Finally, 

previous studies on the quality of public transit access are typically based on a limited number of 

surveyed sites, e.g., 46 sites (Ye et al. 2016), 117 sites (Quistberg et al. 2015), and 70 intersections 

near to 15 rail transit stations (Srinivas S. Pulugurtha and Srirangam 2021); however, small sample 

sizes are likely to be biased in safety analysis (Afghari et al. 2019). This study attempts to address 

these problems through the research objective which will be shortly explained in the following. 

1.3 Research Objective 

1.3.1 Overall Goal 

This research addresses pedestrian road safety in the proximity of public transit service 

locations. According to the problem statement, three research objectives lead the study to this main 
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goal. The first objective of this study is to incorporate spatial investigation and add statistical 

analysis on public transit exposure variables considering transit service characteristics to establish 

a robust examination of the possible relation between pedestrian road collisions and public transit 

locations. The second objective of this thesis is to utilize quantitative road geometry characteristics 

and built-environment factors while controlling for pedestrian and vehicle traffic exposure to 

evaluate pedestrian safety at PTAPs. This research aims to establish the analysis based on a wide 

range of PTAPs located at midblocks and intersections and overcome the possible bias due to the 

small sample sizes. Finally, this thesis incorporates hotspot identification methods to nominate public 

transit stops with a high concentration of collisions and investigates how much applicable are suggested 

countermeasures to improve pedestrian safety at these hotpots. 

 

1.3.2 First Research Task 

The first research objective is to establish a robust examination on the possible relation 

between the pedestrian’s vehicle collision counts and public transit service. Therefore, this study 

incorporates polygon level, intersection level, and public transit site level spatial investigation and 

conducts statistical analysis on public transit exposure characteristics. Public transit features 

include presence of public transit stop, bus traffic, number of transit routes, and public transit 

accessibility index at the locations. The finding of this research task could emphasise and 

determine whether there is a need to conduct further studies on pedestrian safety at PTAPs. 

1.3.3 Second Research Task 

The second objective of this study is to incorporate safety performance factors on 

pedestrian vehicle collisions in proximity to public transit locations to figure out the effect of 
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engineering elements on pedestrian’s safety levels at public transit access point. Engineering 

elements include road geometry, traffic calming, and built environment factors playing part in 

pedestrian road safety. The statistical analysis suggests applicable counter measures improving 

pedestrian safety based on the results of the models. To overcome possible bias due to the small 

sample size (Afghari et al. 2019), this research aims to establish the analysis based on a wide range 

of PTAPs and provides separate analysis for PTAPs located at midblocks and intersections, and 

particularly, at signalized and non-signalized intersections. 

 

1.3.4 Third Research Task 

The third research objective of this study is to utilize collision hotspot identification 

methods to prioritize hazardous sites and identify public transit stops with high potential for 

improvement. The results could indicate if the hotspots require further investigations and field 

specific studies. This research task addresses some hot spots example to figure out whether the 

findings suggested in previous analysis could be applicable to improve pedestrian safety levels at 

the hotspot site. 

 

1.4 Scope and Limitations 

This research study targeted pedestrian road safety in the proximity area to public transit 

services, considering pedestrian vehicle collisions at these locations, considering PTAPs located 

nearby intersections and at midblocks. This thesis takes into account aggregated collision counts in an 

eight-year time period between 2012 and 2019, in the defined locations. A buffer size of 30 meters 
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(100 foot) is suggested in the literature as an appropriate influence area for transit stops (Srinivas 

S. Pulugurtha and Vanapalli 2008). Therefore, 30 meters buffers around bus stops and metro access 

points are considered in this research study. Due to the shortage of transit ridership data, studies 

on the safety of individual transit users are limited (Ulak et al. 2021), however,  it has been shown 

that pedestrian-vehicle collisions nearby public transit (PT) could be considered a surrogate 

measure of transit users' safety(Hess, Moudon, and Matlick 2004). Hence this research study 

explored reducing pedestrian vehicle collision risk in the proximity of PTAPs which in turn 

enhances pedestrians and PT users' road safety. 

This study utilizes the short term traffic count at 1850 intersections in the city of Montreal as 

for traffic count data. Although the dataset provides a proper approximation of pedestrian and vehicle 

traffic exposure at the studied sites, the analysis could be performed based on long term traffic counts 

or short term traffic counts using hourly, daily, and monthly expansion factors (Stipancic et al. 2020a). 

The Montreal traffic count dataset provides the count of vehicles and pedestrian at the intersections, 

however, in this research the values are assigned to the corresponding intersections’ legs which 

expands the traffic count to the road network (Please referee to data description section and Appendix 

I for further explanation). 

It is assumed that pedestrian road safety at public transit access points behaves the same at 

bus stops and metro stations access. Therefore, PTAPs in this research study include bus stops and 

metro stations. The analysis in this thesis are limited in considering how safety models would vary 

regarding the type of PTAP, i.e., bust stop, metro station, or an multimodal interchange point. 

The analysis in this thesis includes statistical inference based on Negative Binomial 

statistical models. Although the models show an association between the response variable, count 
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of collisions, and the variants, such relations do not necessarily mean causality. While we can say 

there is an association between those variables, we cannot say that one variable caused the other. 

For example, the analysis shows the statistical significance of the relation between the road grades 

and the count of collisions; however, this statistical inference should be distinguished from a casual 

relation. 

1.5 Research Significance 

This thesis contributes to the previous studies by, first, establishing a robust relation 

between pedestrian collisions and public transit locations; second, by providing a comprehensive 

insight into the impact of quantified road geometry and built-environment characteristics on 

pedestrian road safety at PTAPs; and third, by conducting statistical analysis on the road 

configuration and geometric factors considering a wide range of PTAPs, 950 at mid-blocks, and 

1700 at intersections, in order to provide more inclusive results and conclusions for city authorities 

and transit agencies to improve pedestrian safety at PTAPs. 

1.6 Organization of the Thesis 

This thesis is presented in six chapters as follows. Chapter 1 defines the problem and 

presents the objectives of the research and structure of the thesis. Chapter 2 contains a review of 

the safety performance models, particularly collision frequency models and presents the previous 

studies considering pedestrian safety and public transportation. This chapter ends with the 

literature gap in the thesis topic in which accordingly research objectives are defined. Chapter 3 

presents the methodology employed in this thesis. Chapter 4 presents the research covered under 

research task 1. This chapter establish the need to provide safe road environment for pedestrian at 
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public transit access points. Accordingly, in Chapter 5, the work under research task 2 is presented. 

This chapter suggests how road environment and traffic calming strategies could improve 

pedestrian safety in public transit locations. It ends with assessing the proposed safety 

measurements at collision hotspots in public transit locations. Chapter 6 presents the conclusions 

and lessons learnt from the analysis and modeling experience and, make recommendations for 

future research. The work described in Chapter 4 and part of the analysis in Chapter 5 could be 

find as publication in the Canadian Journal of Civil Engineering (“Exploring Road Safety of 

Pedestrians in Proximity to Public Transit Access Points (Bus Stops and Metro Stations), a Case 

Study of Montreal, Canada, R Riahisamani, Amador, L, Canadian Journal of Civil Engineering, 

Jun 2022, https://doi.org/10.1139/cjce-2022-0281”). 
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Chapter 2:  Literature review 

2.1 Introduction 

This chapter aims to review the previous research studies on pedestrian road safety in 

general and with a focus on the proximity area of public transit locations. It discusses the existing 

literature gap that this dissertation will address. The review includes previous methods, 

approaches, and results and critically discusses the studies. First, section 2.2 provides an overview 

of general findings and an analysis on the topic of pedestrian road safety and public transit. The 

section reviews the background, and possible reasons for the relation between pedestrian road 

collisions and the presence of public transit. It will be followed by section 2.3, which reviews 

collision count models and provides a comprehensive insight into statistical collision count models 

and it discusses the weaknesses and strengths of the methods. Section 2.4 provides an overview of 

collision hotspot identification methods, including GIS-based and statistical-model-based hotspot 

identification. Section 2.5 provides the latest updates on pedestrian road safety and road geometry 

and built environment elements, which enables comparing the finding of this research with 

previous studies. Finally, Section 2.6 discusses the literature gap which will be addressed in this 

dissertation. 

2.2 Pedestrian Vehicle Collisions at Public Transit Locations 

The safety of pedestrians and transit riders and the presence of bus stops have been studied 

with different approaches (Jaeyoung Lee et al. 2015a; Xie et al. 2017; Ulak et al. 2021).  Some 

research studies have addressed the topic within the zonal level aggregated approach (Jaeyoung 
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Lee et al. 2015b), while others studies considered corridors with and without transit services (Hess, 

Moudon, and Matlick 2004). Pulugurtha and Penkey (S. Pulugurtha and Penkey 2010) compared 

pedestrian crashes in 30 different segments, some with public transportation corridors, and others 

without public transit services, with control for other variables. Pedestrians' safety was higher in 

segments without public transit access points (PTAP) than in those with PTAPs. It was found that 

segments with more PTAPs, transit ridership increases and impacts the pedestrian's road safety 

performance (S. Pulugurtha and Penkey 2010). In addition, the number of boarding and bus 

frequency were shown to increase pedestrian and vehicle collisions in the proximity of PTAPs (Ye 

et al. 2016). Therefore, a strong correlation between the presence of public transportation (PT) and 

road collisions involving pedestrians has been asserted in the literature (Quistberg et al. 2015). 

Previous research discussed the probable reasons behind the relation between pedestrian 

safety and the presence of public transit stops. The research shows that public transit ridership is 

significantly associated with the location of commercial centers and education buildings and the 

presence of facilities such as hospitals, supermarkets, and religious facilities (Zhao et al. 2013; 

Ulak et al. 2018). More pedestrian traffic is expected around bus stops with higher ridership; hence 

bus ridership might impact pedestrian crashes due to higher pedestrian traffic. However, some 

interrelated factors might negatively impact the pedestrian road safety in the vicinity of PTAPs. 

For example, the presence of bus stops could create sight distance issues as stationary buses could 

be an obstacles for the moving traffic and lead to higher traffic conflicts (Shirani-bidabadi et al. 

2020a; PASHKEVICH and NOWAK 2017; Chin and Quddus 2003). Also, the presence of PTAP 

as a pedestrian attraction might influence a pedestrian to commit a violation to avoid missing a 

transit connection (Cinnamon, Schuurman, and Hameed 2011). Another study asserted the poorer 
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yielding behavior of vehicles near bus stops (Craig et al. 2019). In regards to this behavior, some 

psychological factors were studied, such as an increase in driver’s confusion as to whether the 

pedestrian intends to cross or is waiting for a bus as well as driver distraction due to increased 

signage at public transit stops (Craig et al. 2019).  

There are studies focused on pedestrian road safety at transit stops, particularly bus stops, 

by applying statistical analysis. Pedestrian safety at transit stops was studied by considering socio-

demographic factors(Ulak et al. 2021), the quality of access to the stop(Lakhotia et al. 2020a), and 

geometric and traffic characteristics of the PTAP(Ye et al. 2016). Due to the shortage of transit 

ridership data, studies on the safety of individual transit users are limited (Ulak et al. 2021). 

However, pedestrian-vehicle collisions nearby PT could be considered a surrogate measure of the 

safety of transit users (Hess, Moudon, and Matlick 2004). Hence, addressing pedestrian-vehicle 

collision risks at PTAPs improves pedestrian safety in general and enhances the safety of public 

transit users in particular. 

2.3 Collision Count Modelling 

Studying collision count models requires an understanding of the primary characteristics 

of crash data that influence the modeling phase. The following characteristics of collision count 

data are described, followed by a review of the collision counts statistical models. 

2.3.1 Characteristics and challenges in Collision Count Data 

There are four main challenges in collison count modeling: over-dispersion, unobserved 

heterogeneity, the low sample mean and small sample size, and endogenous variables. The main 
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goal of researchers has been to address these challenges through the collision count models. In the 

following sections, each characteristic is described separately. 

2.3.1.1 Over-dispersion  

Crash data are usually characterized by over-dispersion, which indicates that the variance 

is greater than the sample mean. When there is over-dispersion in data, the Poisson model is not 

recommended for crash count analysis as it leads to biased and inconsistent parameter estimations. 

This, in turn, leads to erroneous inferences on the models’ factors that determine crash frequencies 

(Mannering, Shankar, and Bhat 2016). Generally, the source of over dispersion could be 

considered on two sides, namely overdispersion due to unobserved heterogeneity and 

overdispersion due to the excess count of zeros, both of which are explained specifically.  

2.3.1.2 Unobserved heterogeneity  

In the real world, crashes are a result of multi-interrelated factors. The crash data typically 

does not include all of the factors that could lead to capturing the variance of road collision counts. 

This could be due to the omission of important site attributes, implicit randomness of crash 

occurrence, inaccuracy of traffic volumes, and unmeasured variations (weather conditions, 

visibility, driver behavior, etc.). Hence, unobserved covariates or immeasurable variations are 

often the source of the heterogeneity in the data and are responsible for the over-dispersion. 

Moreover, in panel data (data gathered on the same spatial elements through different periods of 

time, e.g., months, and years), there also exists a temporal and spatial correlation in crash count 

data. In other words, to get a sufficient number of observations of accidents, data is collected over 
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time and/or space which creates additional unobserved heterogeneity issues (Mannering, Shankar, 

and Bhat 2016).  

2.3.1.3 Low sample mean and small sample size  

Large costs associated with the data collection process, and the uniqueness of entities, such 

as rural intersections or the number of metro station, could lead to data characterized by a small 

sample size and low sample mean. The crash is inherently a rare event, which could lead to a high 

proportion of zero recordings of crash data. This problem can be observed in the large number of 

locations that report zero accidents for a given time period, producing an accident frequency 

distribution with a high proportion of zeros. With low sample means (and dominance of zeros), 

the distribution of crash counts will be excessively skewed to zero, leading to incorrect estimations 

of parameters. Hence, when the observed zero counts exceed the zero counts that the standard 

Poisson model can produce, it is known as over-dispersion due to the excess number of zeros 

(Mannering, Shankar, and Bhat 2016)(Lord, Washington, and Ivan 2005). 

2.3.1.4 Endogenous variables  

An endogenous variable refers to an explanatory variable whose value is influenced or 

determined by one or more variables in the model. For example, in exploring the effectiveness of 

ice warning signs in reducing the frequency of ice-related crashes, models may show a higher 

collision rate at locations where ice warning signs are installed. However, the endogeneity problem 

should be considered, as in the example, ice-warning signs are more likely to be installed at 

locations with high numbers of ice-related crashes. Ignoring the endogeneity may lead to an 

erroneous conclusion on the endogenous variables (Mannering, Shankar, and Bhat 2016). 
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2.3.2 Collision count statistical models 

2.3.2.1 Background 

Collision counts are nonnegative and discrete road incidents. They need specific analytical 

tools and techniques to study the road safety of a target zone. Crash frequency models are known 

as safety performance functions (SPFs) which can be used for different applications. For example, 

SPFs are used for the identification of relations, screening variables, the sensitivity of variables, 

prediction, and causal relationships. In this research, SPFs are mainly used to conduct association 

analysis between the built-environment covariates and collision counts. 

The traditional accident modeling analysis is based on the accidents reported during a time 

period of observation and various site-specific attributes such as traffic volumes, geometry 

features, warning devices, weather conditions, etc. The input data for collision count modeling can 

be represented as the following: 

Input data at site 𝑖 = {𝑦𝑖 , 𝐹𝑖1, 𝐹𝑖2, 𝑥𝑖 , 𝑇𝑖} 

where 𝑖 = 1, 2, … , 𝑛 is the total number of locations under analysis, 𝑦𝑖 is the observed 

number of accidents at site 𝑖, and 𝐹𝑖1, 𝐹𝑖2 are traffic volumes in interactive directions for each site, 

commonly defined as the average annual daily traffic (AADT). It could also be defined as traffic 

volume of different road users, such as pedestrians average daily count, bicycles average daily 

count, or AADT of special vehicles such buses and emergency vehicles. 𝑥𝑖 is a vector of site-

specific attributes such as geometry features, road assets, speed limits, location type, land use 

characteristics, and built-environment elements. 𝑇𝑖 is the time period of observation for site 𝑖 which 
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typically is considered constant between all entities. For example, this research considers 

pedestrian-vehicle collision counts between 2012 and 2019. 

Based on the research purpose, accidents can be modeled by accident frequency, severity, 

or severity-frequency models. This research follows collision count models (frequency approach). 

As there is a lack of annual-based traffic data, geometry modifications, and other possible changes 

in built-environment, models are usually limited to cross-sectional data analysis. In the following 

section, different collision frequency models are discussed. 

2.3.2.2 Progress in Statistical Collision Count Models 

The developments in statistical count models lead to the application of these techniques to 

model the occurrence of road accidents and develop safety performance functions. Theoretically, 

an accident is a binary process of whether a road user experiences an accident or not. That is a 

Bernoulli trial in which each time a road user enters an intersection, road segment, highway 

segment, bridge, tunnel, or any other type of entity, it is assumed as a trial either crash (successes) 

or not crash (failure) with unequal crash probability (Barbour, Holst, and Janson 1992; Olkin, 

Gleser, and Derman 1980). It was shown that when there are many trials and a low probability of 

success (collision occurrence), the Bernoulli process can be well approximated as the Poisson trial 

(Paul P Jovanis 1986; Lord, Washington, and Ivan 2005). Poisson models perform well under 

nearly homogenous conditions. This is when there is a total number of crashes occurring on a given 

set of roads over a given time period rather than crashes from different sets of roads or from the 

same set of roads over different time periods. The Poisson process works well when the mean and 

variance of the sample are equal in the crash data, while in practice, the variance of crash data is 
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by far larger than the mean. Moreover, the Poisson model assumes the same crash risk in all sites 

with the same characteristics (same covariates), which is theoretically impossible. 

As one of the most popular crash count models, Negative Binomial (NB) has been applied 

in many research and practical projects (Shaik and Hossain 2020). NB is one of the most popular 

extentions of the standard Poisson model by assuming the Poisson parameter follows a gamma 

distribution. This assumption strengthens the NB to overcome the over-dispersion issue in Poisson 

models (Hilbe 2011). Therefore, in addition to the mean parameter of the standard Poisson model, 

there is an overdispersion parameter of α following the Gamma distribution. It has a closed-form 

equation, and the mathematics to control the relationship between the mean and the variance 

structures are relatively simple. Since overdispersion is a common characteristic in crash data, and 

NB properly deals with overdispersion, several studies have shown the significance of 

overdispersion parameter in NB. Therefore, the superiority of NB to the Poisson model in crash 

data analysis has been studied in several research studies (T.T 2019; Arévalo-Támara, Orozco-

Fontalvo, and Cantillo 2020; Khattak et al. 2021). NB is recognized as the most frequently used 

model in crash count modeling in recent years among practitioners and researchers (Lord, Qin, 

and Geedipally 2021).  

The Poisson-lognormal (PLN) model is another extension of the Poisson model, which 

provides a similar parameterization as NB, but the error term follows lognormal distribution rather 

than a gamma distribution. Compared to the Poisson-gamma model (NB), the PLN model is more 

flexible for observations located at the tail end of the distribution, and on the other side, the NB 

tends to fit the data better near the zero counts (Khazraee, Johnson, and Lord 2018). Following the 

introduction of the NB model, several other Poisson extension models have been studied in the 
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context of crash data analysis, for example, PoissoneWeibull(Cheng, Geedipally, and Lord 2013), 

and Poisson-Inverse Gaussian(Zha, Lord, and Zou 2016).   

Moreover, finite mixture models were introduced to capture the unobserved heterogeneity 

more efficiently. They assume overall data are generated from several distributions that are mixed 

together. In other words, individual observations are generated from an unknown number of 

distributions. Examples of finite mixture models are Zero-inflated models such as Zero Inflated 

Negative Binomial and Negative Binomial-Lindley. In these models one of the two latent classes 

has a long-term mean equal to zero which theoretically is questionable. It is obviously not possible 

to expect sites with no crashes while there is road traffic on the facilities (Lord, Washington, and 

Ivan 2007). However, there are recent studies that addressed such limitations and suggested the 

advantages of developed modes of zero inflated models (Islam, Shirazi, and Lord 2022).  

Random-effects or multilevel models were introduced to address the assumption of Poisson 

mixtures that the effect size of the variables is fixed. In other words, in the above-discussed models, 

one true effect works the same for all the observations, and the unobserved heterogeneity between 

observations is a purely random error. However, practically, the unobserved heterogeneity may 

not be solely a purely random error but could also be partly explained by the differences in the 

observations themselves and between groups or levels of observations (Gelman and Hill 2006). 

Random effect (RE) models allow the variance that may exist within different levels of the data to 

be better depicted. It adds one random effect or random intercept term to capture the between 

observations variance. In fact, the RE model modifies the mean of the observation, i.e. the mean 

of collision count for one site, by manipulating the intercept value. It was found that the Random 

Effect Negative Binomial model was the best fit for the data and outperformed the other models 



 

20 

 

according to goodness-of-fit measures (Yan et al. 2020; Hosseinpour, Yahaya, and Sadullah 2014). 

As an extention of Random Effect models, Random Parameters (RP) models were introduced. In 

addition to only incorporating randomness to the models’ intercept, estimated coefficients of the 

RP model vary across each observation to better capture unobserved heterogeneity across all 

observations (Anastasopoulos and Mannering 2009). 

Moreover, some research mixed more than two distributions, such as the Negative 

Binomial-Lindley model, which is the mixture of NB and the Lindley distribution (Lord and 

Geedipally 2011). As mentioned previously, the NB is the mixture of Poisson-Gamma distribution, 

and the Lindley is the mixture of exponential and Gamma distribution. NB-L has a thick tail which 

can be used when there is a large number of zeros in the data. It has been studied to define a 

threshold for the skewness that the NB-L models outperform the conventional NB mode(Shirazi 

et al. 2017). 

Most recently, models with multi sources of risk factors have been proposed. These models 

support the idea that the crash count could be generated by multiple simultaneous and inter-

dependent sources of risks. This is compared to the previous frequency models which are based 

on a single linear equation enhanced by a variety of distributional assumptions (Afghari et al. 

2018). For example, a crash occurrence is well approximated using three sources of risk: 

engineering, unobserved spatial, and driver behavioral factors, in which, at each site, the hierarchy 

of risk sources could change (Afghari et al. 2018). As the results of these models, instead of a 

single crash frequency outcome, there could be source-specific crash count models which is based 

on each crash source (Afghari et al. 2018). 
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Table 2-1 Summary of Collision Frequency Models 

Model Main Characteristics Initial Example of 

Research 

Standard Poisson 

Distribution 
 Start point for Poisson family Collision 

Frequency Models 

 Restricted to equal mean and variance 

 Incapable of dealing with over dispersion 

(Olkin, Gleser, and 

Derman 1980) 

Negative Binomial  Variance to mean ratio larger than one  

 Capable of dealing with overdispersal 

data  

(Paul P Jovanis 1986) 

Zero Inflated Negative 

Binomial 
 Dual state data generating process 

 Deal with excess count of zeroes through 

a separate distribution 

 Assuming perfectly safe and unsafe 

entities (theoretically questionable) 

(V. Shankar, Milton, 

and Mannering 1997) 

Poisson Lognormal 

(PLN) 
 Poisson Parameter follows a lognormal 

distribution 

 Flexible for observations located at the 

tail end of the distribution 

(Miaou, Bligh, and 

Lord 2005) 

Negative Binomial-

Lindley 
 Multi-distribution statistical model 

 Analyzing data characterized by a large 

number of zeroes 

 Maintaining similar characteristics as the 

traditional negative binomial 

(Lord and Geedipally 

2011) 

Random Effect  Argue a not purely random error 

 Adding one or more random intercept 

terms to deal with spatial-temporal 

unobserved heterogeneity 

 Capturing within observations variance 

(V. N. Shankar et al. 

1998) 

Random Parameter  Extension of randomness from intercept 

only to all model’s coefficients 

 Improve capturing unobserved 

heterogeneity 

(Anastasopoulos and 

Mannering 2009) 

Multiple Sources of 

Risk 
 Multi sources of risk such as engineering, 

unobserved spatial, and driver behavioural 

 Source-specific crash count modelling 

 

(Afghari et al. 2018) 
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2.4 Network Screening 

 The process to identify hazardous points, known as network screening, is the primary task in 

transportation safety management (AASHTO 2010). Hazardous sites or hotspot sites are crash-

prone locations and refer to high-risk sites that are experiencing more crashes compared to the 

expected counts in the other sites with similar characteristics. Network screening primarily 

assesses the conditions of an existing safety level of infrastructure and provides transportation 

agencies with decision support clues for short-term and long-term countermeasures. Moreover, the 

identification of hazardous sites leads to the efficient dedication of limited agency resources by 

implementing safety improvements with the objective of reducing the number of crashes in 

selected hotspot sites (Meng et al. 2020). In the following section, two primary approaches, 

namely, statistical models-based and GIS-based hotspot identification, are explained.  

2.4.1  Observed Crash Methods  

The first edition of the Highway Safety Manual (HSM) provides several types of network 

screening methods (AASHTO 2010). The basic methods are based on the raw data of collision 

observations. For example, the popular crash observation-based methods are average Crash 

Frequency, Crash Rate, Equivalent Property Damage Only (EPDO), and relative severity index 

(RSI) (AASHTO 2010). The simplest of all network screening methods is the crash frequency 

which considers the count of observed collisions in a period of time. It does not take into account 

the underlying impact of traffic volumes which leads to a bias toward locations with higher traffic 

volume. However, Crash Rate overcomes the mentioned problem by considering the traffic 

volumes and returns crash frequency in proportionate to traffic volumes. Therefore, the Crash Rate 
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method enables identifying low-volume sites that may not necessarily experience a high number 

of crashes but are high-risk sites. However, the Crash Rate method is biased towards lower traffic 

volume sites, while sites with low traffic count inflate the ratio between crash count and volume. 

Finally, the Severity Index method is the standardized form of EPDO method, which takes into 

account both the frequency and severity level of collisions.  

2.4.2 Predicted Crash Method  

A crash occurrence is naturally a random process, and it changes over time at any given 

site. The observed crash method misses the randomness and crash fluctuation over time. Therefore, 

the expected crash frequency is used, which is the outcome of collision frequency models and 

safety performance functions (SPFs). SPFs take into account all factors such as traffic exposure 

and built-environment elements that influence the site safety rather than the raw information of 

observed crashes. When the observed safety at the entity is worse than the expected safety obtained 

from the SPFs, the site is considered a hotspot or high risk of collision. Thus, the Potential for 

Improvement (PI) is defined as the difference between the expected and observed crash count at 

the entity. The sites with larger PI could be considered as hazardous sites. Although SPFs address 

the randomness of collisions by providing the expected crash count, the PI in this method does not 

provide information on the random nature of PI. Moreover, this method does not provide a specific 

performance threshold (AASHTO 2010).  

2.4.3 Bayesian Methods  

The basic observed crash frequency and crash-rate-based hotspot identification (HSID) 

methods are not reliable due to the missing regression-to-the-mean bias (Carriquiry and Pawlovich 
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2004). The regression to mean (RTM) bias poses a challenge to the identification of hotspots. It is 

when the count of collisions is extreme, and the next sampling of the random variable of count is 

likely to be closer to its mean. It stems from the fact that collision frequency on a roadway is 

stochastic in nature, which means that it may experience fluctuations at a particular site in a short 

period of time without reflecting any changes in factors that affect the true underlying safety (J 

Lee et al. 2016). To deal with the RTM bias associated with empirical crash data, some researchers 

proposed and implemented the Empirical Bayesian (EB) framework (Wu et al. 2014). The EB 

method incorporates the observed crash counts at sites with the expected collision count result of 

an SPF that relates crash frequency as a function of variables such as road characteristics (Hauer 

1997). The EB method significantly outperforms in the estimation precision and correction for the 

regression to mean bias (AASHTO 2010). In the EB approach, information on past safety 

performance is combined with information concerning existing safety conditions, therefore, 

entities’ estimations are combined to determine an improved site's long-term safety (A. S. Lee et 

al. 2018). 

The EB method solves one of the problems with the crash frequency and crash rate by 

considering the random fluctuation in crash counts, however, it requires an abundance of samples 

to develop the safety analysis model (X. Wang et al. 2021). Full Bayes  (FB) method was 

developed to estimate the posterior distribution of crashes and then taking the estimate as an index 

to identify hotspots. A comparison between EB and FB showed similar results when the number 

of samples was sufficient, however, when the sample size is small, the FB could outperform EB 

method (Miranda-Moreno and Fu 2007). Moreover, the complexity of the FB’s model enables 
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using a hierarchical model in a Bayesian framework considering spatial and temporal correlation, 

and results in a better hotspot identification than EB (Huang et al. 2009). 

2.4.4 GIS based Collision Hotspot Analysis  

Geographic Information System technologies (GIST) have been commonly used for safety 

analysis and are considered the most popular tools for the visualization of crash data and hotspot 

analysis. Geospatial methods consider the effects of unmeasured variables by accounting for 

spatial autocorrelation between the crash events over geographic space. The GIS-based hotspot 

identifications use various methods and techniques, such as the traditional kernel density 

estimations, nearest neighbor analysis, K-functions, Moran’s I index, and Getis-Ord (Truong and 

Somenahalli 2011)(Rahman, Jamal, and Al-Ahmadi 2020). Ulak et al compared four network-

based hotspot detection methods namely, Getis-Ord , Local Moran's I, KLINCS (K-function local 

indicators of network-constrained clusters), and KLINCS-IC (Inverse Cost) to give insight into the 

similarities and differences between the methods using different spatial weights (Ulak et al. 2019). 

Using the crash prediction accuracy index, it was shown that, the Getis-Ord Gi* and Local Moran's 

I with distance-based spatial weights perform better than other spatial weights such as free flow 

travel time and congested flow travel time (Ulak et al. 2019). The Gi* method was shown to be 

the most precise and reliable method among Average Nearest Neighbor, Global Moran’s I, kernel 

density estimation (KDE), mean centre, and Getis-Ord Gi* (Amiri et al. 2021).  Getis-Ord Gi * 

was used to identify vehicle road accidents at expressways (Borhan, Razuhanafi, and Yazid 2019) 

and to identify bus stops hotspots in terms of pedestrian vehicles collisions severity (Truong and 

Somenahalli 2011). 
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2.5 Traffic Calming and Road Geometry Strategies 

Traffic Calming Strategies are a set of measurements for roads that try to slow down the 

speed of motor vehicles and restore roads for pedestrians and cyclists’ users. Traffic calming 

deliberately slows down the traffic speed, typically in areas with a high volume of non-motorized 

users. It is mostly done by applying physical measures including: speed bumps, roundabouts, 

raised pavement at intersections, reducing road areas allotted for motor traffic, traffic diversion, 

signalization, and so on (Litman 1999). 

Various research studies have explored the effect of different traffic calming strategies on 

pedestrian safety levels. Speed reduction as one of the main objectives of traffic calming strategies 

was addressed in many research studies (Distefano and Leonardi 2019). Previous studies show that 

the higher the speed limit or the operating speed is, the higher the risk of collision occurrence and 

severity is for pedestrians (Ewing and Dumbaugh 2009; Fridman et al. 2020). Lowering speed 

limits would bring better conditions for looking out, for avoidance actions, and for communication 

between different users.fa Although collision occurrence could also be reduced by traffic speed 

reduction, in the case of collision, lower speed mitigates the severity of the accident (Distefano 

and Leonardi 2019; Ziakopoulos and Yannis 2020). 

Road median type providing safe refuge for pedestrians crossing is shown as an effective 

improvement for pedestrian safety (Vignali et al. 2019; Lakhotia et al. 2020b). Some researchers 

argue that the driver’s perception of a built-environment as an urban district is due to the presence 

of certain road medians. Medians could significantly increase the proportion of pedestrians who 
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look for vehicles before crossing the road (S. Pulugurtha et al. 2012). It also increases the 

proportion of drivers who yield to pedestrians (S. Pulugurtha et al. 2012). 

Road narrowing is one common traffic calming measurement that is applied to reduce 

speed profile. A before-after study showed a 33% reduction in pedestrian collision injuries by road 

narrowing (Distefano and Leonardi 2019). Some studies showed a correlation between wider lane 

width and higher pedestrian road safety (Tulu et al. 2015; T. Chen et al. 2020; Lakhotia et al. 

2020a). They assert that the extra space would work as a buffer between pedestrian and vehicular 

traffic. While some other researchers advocate to increase pedestrian safety through speed 

reduction achieved by the drivers’ perception of narrower lanes (Gomaa Mohamed et al. 2012). 

The effect of traffic control measurement, specifically the signal’s walk intervals, rarely 

have been studied in collision count models (Stipancic et al. 2020). Previous research shows that 

traffic signal walking intervals decreases the probability of pedestrian conflicts and collisions 

(Yaohua Zhang et al. 2015).  

Characteristics of road networks and geometric features such as the road length and the 

number of intersections have also been argued in the literature (Ukkusuri, Hasan, and Aziz 2011; 

Y. Wang and Kockelman 2013; Jaeyoung Lee et al. 2015a). Pedestrian collision severity at 

intersections will decrease with curb extensions, raised medians, and exclusive left turn lanes and 

will increase with the total number of lanes and the number of commercial entrances (Stipancic et 

al. 2020). 
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2.6 Literature gap and Contributions 

The literature review showed that studies analyzed the relation between public transit and 

pedestrian-vehicle collisions considering the presence of bus stops (Srinivas Subrahmanyam 

Pulugurtha and Penkey 2010; Shirani-bidabadi et al. 2020b; PASHKEVICH and NOWAK 2017), 

or the average of bus frequency at bus stop locations or corridors with PT services (Ye et al. 2016). 

While, establishing a robust complementary examination of the possible relation between 

pedestrian road collisions and public transit locations requires evaluating the effect of other 

characteristics of public transit services, such as average daily traffic volume, public transit 

accessibility index, public transit routes characteristics, and presence of the services. Hence, the 

first objective of this paper is to incorporate spatial investigation and add statistical analysis on 

public transit exposure variables, considering transit service characteristics. Moreover, limited 

studies addressed the role of road design and built-environment factors on pedestrian safety, 

particularly at public transit access points. In these studies, characteristics of PTAPs are examined 

by utilizing qualitative categorical variables of the surveyed sites (Lakhotia et al. 2020a; 2020b), 

and some studies do not consider traffic exposure and pedestrian factors (Mukherjee, Rao, and 

Tiwari 2022). Therefore, the second objective of this paper is to utilize continuous road geometry 

and built-environment factors, taking into account pedestrian and vehicle traffic exposure to 

evaluate pedestrian safety at PTAPs. Finally, previous studies on the quality of public transit access 

are typically based on a limited number of surveyed sites, e.g., 46 sites (Ye et al. 2016), 117 sites 

(Quistberg et al. 2015), and 70 intersections near 15 rail transit stations (Srinivas S. Pulugurtha 

and Srirangam 2021). As small sample sizes are likely to be biased (Afghari et al. 2019), this 
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research aims to establish the analysis based on a wide range of PTAPs located at midblocks and 

intersections. 

This paper contributes to the literature by, first, establishing a robust relation between 

pedestrian collisions and the presence of public transit; second, providing a comprehensive insight 

into the impact of quantitative road geometry and built-environment characteristics on pedestrian 

road safety at PTAPs; and third, conducting a statistical analysis on these elements, considering a 

wide range of PTAPs, 950 mid-blocks, and 1700 intersections, in order to provide more inclusive 

and reliable conclusions. Therefore, the contribution of this thesis is to provide information for 

city authorities and transit agencies to improve pedestrian safety at public transit access points 

(PTAP). 
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Chapter 3: Methodology 

3.1 Introduction 

This chapter presents the methodology employed in this dissertation. The chapter is divided 

into two sections. First the statistical model, namely, Negative Binomial (NB) applied for 

developing safety performance functions, is discussed in detail. The aim of using this methodology 

is to identify the key traffic, transit, road, and built-environment factors that influence pedestrian-

vehicle crash frequency at PTAPs. Secondly, two hotspot analysis approaches, namely, Empirical 

Bayes (EB) method and Getis Ord spatial hotspot identificatoin, are explained which are used to 

address network screening in this dissertation. 

3.2 Collision frequency model 

3.2.1 Negative Binomial (NB) 

In the transportation safety analysis, the Poisson-gamma regression model (Negative 

Binomial) is the popular extension of the Poisson model developed to overcome the limitations of 

standard Poisson regression. As discussed in chapter 2, crash occurrence initially was considered 

as a series of Bernoulli trials, known as the binomial distribution under the assumption of equal 

probability of events, which the formulation is given as follows:  

𝑃 (𝑌 = 𝑛) =  (𝑁
𝑛

) 𝑃𝑛 (1 − 𝑝)𝑁−𝑛        3-1 

Where N is the count of trials (count of road users), and n= 0,1,2,..,N refers to the number 

of collisions (success cases) and P is the probability of success (collision occurrence). The mean 
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and variance of the binomial distribution are respectively 𝐸(𝑌) = 𝑁𝑝 and 𝑉𝐴𝑅(𝑌) = 𝑁𝑝(1 − 𝑝). 

It was shown that the Bernoulli process approaches Poisson distribution in crash count analysis 

(Olkin, Gleser, and Derman 1994). Therefore, the mean and variance of a collision count for each 

entity follows a Poisson distribution as the following formulation: 

𝑌𝑖 | 𝜇𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖) , 𝜇𝑖 = 𝑓(𝐹𝑖1, 𝐹𝑖2, 𝑥𝑖; 𝛽)                                                             3-2 

Where 𝑌𝑖  is the random variable represents estimated collision counts, 𝜇𝑖  is the mean of 

crash counts which follows Poisson distribution, 𝜇𝑖  commonly specified as an exponential 

function of site-specific attributes or covariates, and 𝛽 = (𝛽0, … , 𝛽𝑘) is the vector of regression 

parameters to be estimated from the data and 𝐹𝑖1, 𝐹𝑖2 are traffic volumes in interactive directions. 

In addition, 𝑥𝑖 is a vector of covariates representing site-specific attributes. 𝑌  =   (𝑌1, . . . , 𝑌𝑛) is 

the number of  accidents  at  site  𝑖  (𝑖  = 1, . . . , 𝑛) represents  random  variables  corresponding  to  

the  n  sites  under  analysis. 

The illustrated Poisson distribution is restricted to the assumption of equal variance and 

mean, while it is not valid in the real world. Therefore, Negative Binomial provides random 

variations in the mean of the Poisson model through a two-stage mixed Poisson model such as the 

Poisson/Gamma:  

𝑌𝑖 | 𝜃𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖  . 𝑒𝜀𝑖  ) 

𝑒𝜀𝑖  ~ 𝐺𝑎𝑚𝑚𝑎 (𝜙, 𝛿) 

𝑒𝜀𝑖| 𝜙 ~ 𝐺𝑎𝑚𝑚𝑎 (𝜙, 𝜙) 
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where 𝐺𝑎𝑚𝑚𝑎() denotes a Gamma probability density function with parameters 𝜙>0 and 𝛿 

>0, which ensures 𝜃𝑖 > 0 and 𝑒𝜀𝑖>0, and specifying 𝜙 = 𝛿 the classical NB model is obtained. 𝑒𝜀𝑖  

follows a Gamma distribution with 𝐸[𝑒𝜀𝑖]  =  1 and 𝑉𝑎𝑟[𝑒𝜀𝑖] = 1
𝜙⁄ . The term 𝜙 is defined as the 

inverse dispersion parameter of NB model. The α = 1 𝜙⁄  is defined as the dispersion parameter of the 

over-dispersion and is considered constant. The mean and variance of collision counts are respectively 

as the following: 

𝐸(𝑦𝑖|𝜇𝑖 , 𝛼) =  𝜇𝑖                                                                          3-3 

𝑉𝑎𝑟(𝑦𝑖|𝜇𝑖 , 𝛼) =  𝜇𝑖 +  𝛼𝜇𝑖
2            3-4 

And The Negative Binomial regression can be formulated as follows: 

𝜇𝑖 =  𝐹1𝑖
𝛽1 . 𝐹2𝑖

𝛽2 . exp (𝛽0 + 𝛽3𝑋3𝑖 + ⋯ +  𝛽𝑘𝑋𝑘𝑖)  or 

 𝜇𝑖 =  𝑒𝑥𝑝 (𝛽0 + 𝛽1𝑙𝑛 (𝐹1𝑖)  + 𝛽2𝑙𝑛 (𝐹2𝑖) +  𝛽3𝑋3𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)    3-5 

Where 𝜇𝑖 is the  mean number of accidents at site 𝑖 as a function of site specific variables of 𝑋𝑖 

and traffic volume of vehicles (𝐹1) and pedestrians (𝐹2) in each site i, and β is the vector of 

regression coefficients estimated in max likelihood process. 

The elasticity of variables in the regression models is defined as the percentage change in the 

response variable due to one percentage change in the models’ variables. The value of measuring 

in percentage terms is that the units of measurement do not play a role in the value of the 

measurement and thus it allows direct comparison between elasticities. We can write the 

calculation for elasticity as: 

𝐸𝑋𝑘𝑖

𝜇𝑖 =  
ɗ𝜇𝑖 

ɗ𝑋𝑘𝑖
 (

𝑋𝑘𝑖

𝜇𝑖
)         3-6 
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Considering the equation 3-5 and 3-6, the elasticity of variables, for example 𝐹1 and 𝑋3 are 

equal to 𝛽1, and 𝛽3𝑋3 where 𝛽𝑘 is the regression coefficients and 𝑋𝑘 is the mean of each variable. 

Therefore, it is possible to calculate the elasticity of variables whether they are traffic count 

variables (log format) or they are site specific variables (integer and float format). 

3.2.2 Model performance and evaluation metrics 

In the Negative Binomial (NB) model, the variables’ coefficients are estimated using the 

maximum likelihood procedure. There are three steps to this procedure. Estimates from each step 

are used as initial values for the next parameter estimate iteration. First, a standard Poisson model 

is applied to the data. Second, the maximum likelihood is estimated for the mean and dispersion 

parameter of the response variable, using the constant-only model. The dispersion parameter is 

plugged in as the starting value for the dispersion parameter for the next iterations. Third, using 

the starting values obtained in the previous steps, the negative binomial model iterates until the 

algorithm converges. The final log-likelihood of the applied model is used in the calculation of the 

AIC measure, which will be discussed shortly. 

The NB model estimates the variables’ coefficients. The coefficients could be interpreted 

as follows: for a one-unit change in the predictor variable, the difference in the logs of expected 

counts of the response variable is expected to change by the respective regression coefficient, given 

the other predictor variables in the model are held constant.  The intercept term is the negative 

binomial regression estimate when all variables in the model are evaluated at zero. The model 

shows the estimate of the dispersion parameter. If the dispersion parameter equals zero, the model 
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reduces to the simpler Poisson model. If the dispersion parameter is significantly greater than zero, 

then the data is over dispersed and the negative binomial model outperforms the Poisson model. 

As mentioned before, safety performance functions (collision count models) can be used 

for different applications, including screening variables, the sensitivity of variables, estimation and 

prediction, identification of relations and causal relationships. In this thesis, SPFs are developed 

mainly to conduct association analysis between the traffic volume and built-environment 

covariates and collision counts to figure out the relation between these variables. Thus, statistics 

metrics, namely, hypothesis testing (p-value), z-test statistics, and Akaike Information Criterion 

(AIC) are used to evaluate the models. The Figure 3-1 shows an example of NB model estimated 

in R programing language using the MASS library (Venables and Ripley 2002). The evaluation 

metrics and parameters are discussed below. Appendix II is provided for further investigation on 

how the table of coefficients and models’ performance metrics were generated for NB in RStudio 

script. 
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Figure 3-1 An Example of Negative Binomial output in R Software 

In figure 3-1, the columns z and P>|z| are the z-test and p-value, respectively. These are the 

measurement for the test on the null hypothesis which is if an individual predictor’s regression 

coefficient is zero, given that the rest of the predictors are in the model. The test statistic z is the 

ratio of the coefficient to the standard error of the respective predictor. The z value follows a 

standard normal distribution which is used to test against a two-sided alternative hypothesis that 
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the coefficient is not equal to zero. The probability that a particular z test statistic is as extreme as, 

or more so than what has been observed under the null hypothesis is defined by P>|z|. 

Hypothesis testing determines the truth of a hypothesis using statistics based on the sample 

data. There are four steps in the hypothesis testing test. First, null and alternative hypotheses are 

explained in a mutually exclusive manner, which means, if the null is false, then the alternative is 

true or vice versa. In the chapter 5 analysis, the null hypothesis (𝐻0) is that a single variable is no 

different than its mean, and the alternative hypothesis (𝐻𝑎) is the variation of the variable is 

different that its mean. Secondly, a confidence level should be considered which many studies 

select a confidence level of 95% leading to a significance level of 0.05. Third, the two-sided test 

method is selected and the probability (P-value) that provides sufficient evidence whether to accept 

or reject the null hypothesis is considered. Finally, the P-value is compared with the selected 

threshold for the statistical significance of the hypothesis testing. If the P-value is greater than 1 −

𝑐, confidence level, then the null hypothesis cannot be rejected. However, when the P-value is less 

than the threshold, there is evidence to reject the null hypothesis and consider the alternative 

hypothesis as statistically significant. When the P-value becomes smaller, there is stronger 

evidence against the null hypothesis. As can be seen in figure 3-1, there are codes like three stars 

or two stars, respectively for p-values equal to zero or less than 0.001, which in our analysis, p-

values less than 0.05 is regarded as statistically significant. 

Akaike information criterion (AIC) is presented in figure 3-1. When several non-nested models 

are calibrated based on the same data using maximum likelihood, we can compare their 

performance using the Akaike Information Criterion (Cameron and Trivedi 1998). The Akaike 

information criterion (AIC) is one of the most commonly used measures for the comparison of 



 

38 

 

non-nested models based on maximum likelihood. AIC is defined as the following formula, where 

k is the number of parameters in the model, and L is the maximum value of the likelihood function 

for the model. The regression model with the lowest AIC is preferred. 

𝐴𝐼𝐶 =  −2𝑙𝑛(𝐿) +  2𝑘                                                                                                         3-7 

 

3.3 Hotspot Identification 

3.3.1 Empirical Bayes Method 

Consider 𝑌𝑖 as the count of crashes at entity 𝑖, which can be estimated with the probability 

density function of 𝑓(𝑌𝑖|𝜃𝑖). In the Negative Binomial model, the mean crash count 𝜃𝑖 is assumed 

fixed and it is estimated through the Maximum Likelihood method. However, the Bayesian 

approach assumes a prior distribution to 𝜃𝑖  which enables making inferences on the variable crash 

means (Lord, Qin, and Geedipally 2021). Therefore, Bayesian approaches can provide posterior 

information on the mean count of collisions (𝜃𝑖) as the following Bayes’ theorem: 

𝑝(𝜃𝑖|𝑌𝑖 , 𝜂)  =  
𝑓(𝑌𝑖|𝜃𝑖) .  𝜋(𝜃𝑖|𝜂)

𝑚(𝑌𝑖|𝜂)
                                                                                               3-8 

Where, 𝑓(𝑌𝑖|𝜃𝑖) is the likelihood of accident count at the entity, 𝜋(𝜃𝑖|𝜂) is the prior 

information on the parameter 𝜃𝑖, where 𝜂 is the vector of prior parameters. 𝑚(𝑌𝑖|𝜂) is referred to 

as the marginal distribution of 𝑌𝑖, which is constant among all sites, hence the Bayes equation can 

be simplified as: 

𝑝(𝜃𝑖|𝑌𝑖 , 𝜂) ~ 𝑓(𝑌𝑖|𝜃𝑖) .  𝜋(𝜃𝑖|𝜂) 
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Therefore, performing the Bayes approach requires two primary steps. First, select a prior 

distribution, 𝜋(. |𝜂), second, regular Bayes update with the historical accident data to achieve the 

posterior distribution of crash counts. Selection of prior distribution can be challenging, however, 

commonly conjugate priors are selected the context of road safety. In Bayesian theory, when the 

posterior distribution is in the same distribution family as the prior distribution, the prior and 

posterior are conjugate distributions, and the prior is called a conjugate prior for the likelihood 

function. For example, when the likelihood function is a Poisson-Gamma distribution (NB), and 

the prior is Gamma, the posterior follows the same distribution as the prior, Gamma distribution, 

in which NB and Gamma distribution are called conjugate models. Therefore, the formulation 

could be as the fowling: 

𝑌𝑖 |𝜇𝑖 , 𝑒𝜀  ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖 𝑒𝜀), 

𝑒𝜀~ 𝐺𝑎𝑚𝑚𝑎(𝜙, 𝜙) 

We know that when 𝑋~ 𝐺𝑎𝑚𝑚𝑎(𝜙, 𝜙), then 𝑘𝑋~Gamma(𝜙,
𝜙

𝑘
), therefore: 

𝑌𝑖 | 𝜃𝑖 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖), 

𝑌𝑖 | 𝜃𝑖 ~Gamma(𝜙,
𝜙

𝜇𝑖
) 

Now, applying Bayes Theorem: 

𝑝(𝜃𝑖|𝑦𝑖) ~ 𝑓(𝑌𝑖|𝜃𝑖) .  𝜋(𝜃𝑖) 



 

40 

 

~ 
𝑒−𝜃𝑖 . 𝜃𝑖

𝑦𝑖

𝑦𝑖!
 .

(
𝜙

𝜇𝑖
⁄ )

𝜙

Ґ(𝜙)
. 𝜃𝑖

𝜙−1𝑒
−(

𝜙
𝑡𝜇𝑖

)𝜃𝑖
 

~ 𝑒𝜃𝑖
[1+

𝜙
𝜇𝑖

⁄ ]

. 𝜃𝑖
[𝑦𝑖+𝜙−1]

 

 Knowing that the posterior is Gamma distribution (conjugate prior): 

𝜃𝑖 | 𝑦𝑖~ 𝐺𝑎𝑚𝑚𝑎 (𝑦𝑖 + 𝜙, 1 +
𝜙

𝜇𝑖
⁄ )                                                                                               3-9 

Where the posterior mean follows the Gamma distribution with the shape parameter of 

𝑦𝑖 + 𝜙 and scale parameter 1 +
𝜙

𝜇𝑖
⁄ . In fact, the Empirical Bayes approach implicitly uses the 

data twice, once in providing the prior distribution in which the 𝜇𝑖 and 𝜙 are the parameters of the 

Negative Binomial model, and EB again uses the number of the observed crash (𝑦𝑖) to make an 

inference on the posterior mean of collision (Lord, Qin, and Geedipally 2021). Commonly, 𝑤𝑖 =

 
𝜙

(𝜇𝑖+𝜙)
 and, 1 − 𝑤𝑖  =

𝜇𝑖

(𝜇𝑖+𝜙)
  are defined, where the posterior mean of 𝜃𝑖 is as: 

𝐸(𝜃𝑖|𝑦𝑖) =  
𝜇𝑖(𝑦𝑖 + 𝜙)

𝜇𝑖 + 𝜙
=

𝜇𝑖𝑦𝑖

𝜇𝑖 + 𝜙
+

𝜇𝑖𝜙

𝜇𝑖 + 𝜙
= (1 − 𝑤𝑖)𝑦𝑖 +  𝑤𝑖𝜇𝑖                                   3-10 

 

3.3.2 Getis Ord (𝐺∗) Spatial Hotspot Identification 

Getis and Ord defined a family of G statistics is applied to investigate spatial patterns 

(Songchitruksa and Zeng 2010a; Ord and Getis 1995; Getis and Ord 1992). The 𝐺𝑖
∗ (pronounced 
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G-i-star) index is highly useful as it could identify hotspots as points, lines or regions on a global 

scale and makes clusters of high or low concentration among observations. 

Consider that there are 1,2,3,…,i identified spatial elements, that a random variable of 

incidents (X), i.e., pedestrian crashes count or public transit accessibility index, is associated to 

each spatial element i as xi. The goal is to figure out the existence of a spatial pattern among spatial 

elements i which are weighted by the random variable xi (explanatory feature in each of the 

regions). It could be asserted that there is a spatial autocorrelation of variable X over the region i 

when xi exhibit similarities between contiguous elements. The following 𝐺𝑖
∗ equation could be 

mentioned: 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗(𝑑) 𝑥𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
𝑛
𝑗=1

                                                                                                           3-11 

Where Gi
∗ is the statistic that describes the spatial dependency of incident X in region i, n is 

the number of regions, xj is a random variable X in the entity j (j may equal i), and wij is the weight 

value between region i and j that represents their spatial interrelationship. 𝑤𝑖𝑗 is usually associated 

with the conceptualized spatial relationship and is dependent on the distance 𝑑. The value of 

𝑑 could be defined as a user-specific threshold to study the incident in the threshold distance. In 

this study, two thresholds are used. The conceptualized spatial relationship based on zone of 

indifference in which features within the specified critical distance (distance band or threshold 

distance) of a target feature receives a weight of one and influence computations for that feature. 

Once the critical distance is exceeded, weights (and the influence a neighboring feature has on 

target feature computations) diminish with distance. Moreover, the second threshold is the 

conceptualized spatial relationship based on Contiguity Edges Corners Polygon features that share 
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a boundary, share a node, or overlap will influence computations for the target polygon feature. 

The 𝑤𝑖𝑗 factor could be defined as a non-binary value as well. The sum of weights for each region 

i  is defined as equation 3-11 and the expectation (𝐸) of 𝐺𝑖
∗ and the variance of 𝐺𝑖

∗ is defined as 

equation 3-12 and 3-13 respectively. 

𝑊𝑖 = ∑ 𝑤𝑖𝑗  𝑥𝑗
𝑛
𝑗=1          3-12 

 𝐸(𝐺𝑖
∗) =

𝑊𝑖

𝑛
          3-13 

𝑉𝑎𝑟(𝐺𝑖
∗) =

𝑠2

�̅�
=

𝑊𝑖(𝑛−𝑊𝑖)

𝑛−1
  where 𝑠2 =

∑ 𝑥𝑗
2𝑛

𝑗=1

𝑛
−  �̅�2  𝑎𝑛𝑑 �̅� =  

∑ 𝑥𝑗
𝑛
𝑗=1

𝑛
  3-14 

 

When the distribution of variable 𝑋 is normal the 𝐺𝑖
∗ distribution is similarly normal, 

however, if the underlying distribution is nonnormal (e.g. heavily skewed), the 𝐺𝑖
∗ statistic 

becomes nonnormal correspondingly. In such cases, an increase in the number of spatial units in 

the cluster analyzed will help the distribution of the Gi
∗ statistic approach normality. One common 

method is to raise the value of d to include more xj (Songchitruksa and Zeng 2010b). 

Under the exact or asymptotical normal conditions, 𝐺𝑖
∗ is usually standardized based on its 

sample mean and variance:  

𝑍(𝐺𝑖
∗) =

∑ 𝑤𝑖𝑗  𝑥𝑗
𝑛
𝑗=1 − �̅� ∑ 𝑤𝑖𝑗

2𝑛
𝑗=1

𝑠  ∗   √𝑛 ∑ 𝑤𝑖𝑗
2 − (∑ 𝑤𝑖𝑗

𝑛
𝑗=1 )2𝑛

𝑗=1

𝑛 − 1

                                                                 3-15 
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The standardized 𝐺𝑖
∗ is essentially a 𝑍 score and can be associated to being statistical 

significance. A close-to-zero 𝐺𝑖
∗ implies random distribution of the observations (incidents), 

however, negative and positive 𝐺𝑖
∗ statistics with high absolute values implies for low and high 

statistically significant of observations (incidents) occurrence. 
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Chapter 4: Pedestrian-Vehicle Collisions and Public Transit 

Abstract: Public transit is an underlying component of sustainable urban transportation. 

Urban residents walk or cycle to reach public transit for their daily trips. PTAPs are primary 

elements of public transit where ridership interacts with vehicle traffic flow and could result in 

road conflicts and collisions. Examining the magnitude of pedestrian vehicle collision risk at 

public transit locations would show whether there is a potential pedestrian vehicle collision risk at 

these locations. It would also show if there is a need to conduct further safety analysis focusing on 

these locations. Chapter 4 studies the potential relationship between pedestrian vehicle collision 

counts and public transit exposure and attempts to figure out if there is a spatial relation between 

pedestrian vehicle collisions and public transit service locations. The analysis results in this chapter 

prove that there is a higher risk of pedestrian collision at locations where there are public transit 

services. Moreover, pedestrian collision risk increases when public transit exposure 

characteristics, such as bus daily traffic volume, public transit accessibility index, and the number 

of transit routes increase. Therefore, it is proposed to conduct further safety analysis to study 

pedestrian vehicle collisions at PTAPs. 
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4.1 Introduction 

Public transportation a dominant part of a sustainable urban transportation. It enables urban 

dwellers to commute to their work, education institutes, or recreational centres through a 

sustainable form of transportation. Transit users primarily walk or cycle to reach the public 

transportation access points, i.e., transit stops. Hence, public transit promotes walking and cycling 

which in turn leads to sustainable transportation. Public transit stops are typically located in 

proximity to urban spots with a high concentration of urban activities and consequently a higher 

pedestrian traffic volume. Transit users may interact with vehicle traffic flow, particularly in the 

proximity of public transit stops, which could result in pedestrian-vehicle collisions. Therefore, it 

is hypothesized that, there would be a higher pedestrian vehicle collision risk where there are 

public transit services. 

4.2 Objective 

Chapter 4 research objective is to establish a robust examination on the possible relation 

between the pedestrian-vehicle collision counts and public transit services. This study incorporates 

spatial investigations with polygon levels, intersection levels, and public transit sites and adds 

statistical analysis on public transit exposure characteristics. Public transit exposure features 

include the presence of public transit stops, bus traffic volume, the number of transit routes, and 

the public transit accessibility index. The finding of this research task emphasizes the need for 

further consideration on pedestrian safety at public transit locations. 
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4.3 Methodology 

To address the research objective of this chapter, two methodologies are applied in the 

analysis. G* hotspot analysis is primarily used to identify spatial hotspots within a zonal level. 

Moreover, Negative Binomial statistical analysis is utilized to find whether there is a statistical 

association between public transit exposure variables and the counts of pedestrian-vehicle 

collisions. In the following sections, the two research methodologies applied in this chapter will 

be reviewed. Please refer to chapter 3, Methodology, for further details and explanations. 

4.3.1 Spatial Hotspot Analysis, Getis-Ord Method 

Getis-Ord spatial hotspot identification method, known as G* (G-star) hotspot analysis, 

returns hotspots where features are either high or low value clusters spatially. It considers each 

feature within the context of neighboring features, and therefore, the G* returns the spatial hotspot 

of the feature considering the spatial relation with the neighborhood. 

Consider that there are 1,2,3,…,i identified spatial elements, such as the urban region, 

dissemination area units, or defined influential zone of intersections or public transit access points. 

There is a random variable of incident (X),  is associated to each spatial element i as xi. In this 

chapter, you will find pedestrian crash counts and public transit accessibility index (PTAI) as the 

features under the focus of the study. The existence of a spatial pattern among spatial elements i 

needs to be investigated given the value of the random variable xi. It could be asserted that there 

is a spatial autocorrelation of pedestrian collision counts or the PTAI over the region i when the 

variable exhibits similarities between contiguous elements. The 𝐺𝑖
∗ metric can be defied as the 

formula 3-1 explained in the chapter 3. 
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To determine the neighbor of the spatial elements and the corresponding spatial weights, 

two kinds of thresholds are utilized, namely, the conceptualized spatial relationship based on the 

zone of indifference and the conceptualized spatial relationship based on Contiguity Edges 

Corners. The former considers a specified critical distance (distance band or threshold distance) 

and gives a weight of one to the features in the threshold and once the critical distance is exceeded, 

weights diminish with distance. The latter, the conceptualized spatial relationship based on 

Contiguity Edges Corners Polygon considers the spatial elements that share a boundary, or overlap 

with the target spatial element. The spatial analysis in figures 4-4 and 4-5 are utilizing the above 

methods. 

4.3.2 Negative Binomial regression 

Negative Binomial model is one the most applied statistical models in safety studies which 

performs well both in practical and scientific objectives (Lord, Qin, and Geedipally 2021). In this 

chapter, the Negative Binomial model is used to build up the statistical analysis on the counts of 

pedestrian-vehicle collisions at the intersection level, taking into account public transit exposure 

variables. Hence, the Negative Binomial establishes the possible association between the higher 

pedestrian road risk at the locations with public transit exposure. There could be a formulation as 

the following: 

𝜇𝑖 =  𝑒𝑥𝑝 (𝛽0 + 𝛽1𝑙 𝑛(𝐹1𝑖) + 𝛽2𝑙 𝑛(𝐹2𝑖) + 𝛽2𝑙 𝑛(𝐹3𝑖) + 𝛽4𝑋4𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)4-1 

Where 𝜇𝑖 is the  mean number of pedestrian vehicle collisions at intersection 𝑖 as a function 

of site specific variables which includes public transit exposure variables including PTAI, number 

of bus routes, and presence of PT stop nearby the intersection. The logarithm of pedestrian traffic 
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volume (𝐹1) and vehicle traffic volume (𝐹2) and bus traffic volume (𝐹3) in each site i, and β is the 

vector of regression coefficients estimated in the max likelihood process. 

The Negative Binomial distribution takes into account an additional parameter to the 

standard Poisson distribution, namely, over dispersion parameter, to address the over dispersion in 

collision data. This leads to the privilege of Negative Binomial to standard poison model, as 

collision data is typically over dispersed. The formulation of the Negative Binomial could be 

reviewed as the following: 

𝑌𝑖 | 𝜃𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖  . 𝑒𝜀𝑖  )      4-2 

𝑒𝜀𝑖| 𝜙 ~ 𝐺𝑎𝑚𝑚𝑎 (𝜙, 𝜙)          4-3 

where 𝐺𝑎𝑚𝑚𝑎() denotes a Gamma probability density function with parameters 𝜑 >0 and 𝛿 

>0, which ensures 𝜃𝑖 > 0 and 𝑒𝜀𝑖>0, and 𝑒𝜀𝑖  follows a Gamma distribution with 𝐸[𝑒𝜀𝑖]  =  1 and 

𝑉𝑎𝑟[𝑒𝜀𝑖] = 1
𝜙⁄ . The term 𝜙 is defined as the inverse dispersion parameter of NB model. The α = 1 𝜙⁄  

is defined as dispersion parameter of over-dispersion parameter and is considered constant. Numeric 

optimizations could likelihood function and estimate the parameters of each variable and the possible 

association between the response, pedestrian vehicle collision count, and the dependent variables 

public transit exposure variables. 

4.4 Data Description 

This case study utilizes data from various online open sources datasets from the island of 

Montreal. The data sources are available online and the links are provided in the references. The 

following sections provide a detailed description of the data collection procedure of this research. 
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4.4.1 Sites 

There are two spatial levels in this chapter: (1) spatial analysis on the zonal level in 

which Dissemination Area Units (DAUs) are incorporated for the analysis. DAU is the smallest 

Canada census area, and there are 3200 dissemination area units (DAU) in the city of Montreal. 

(2) an intersection level analysis is utilized to address the research question in this chapter. 

Figure 4-1 demonstrates the Montreal base map with DAUs and the 1850 intersections where 

traffic data is available for these sites. 

 

  
Figure 4-1Montreal Dissemination Area Units, Road Network, and Intersection with traffic counters. Maps were created using 

ArcGIS® software by Esri (“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022). 

4.4.2 Traffic Count 

Vehicle daily traffic count, bus daily traffic count, and pedestrian daily traffic volume are 

available online for 1850 intersections in the city of Montreal (“Traffic Lights — Vehicle and 

Pedestrian Counts at Intersections with Lights - Open Government Portal” 2021a). Figure 4-1 
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(right-hand side) shows the location of the intersections that have been equipped with traffic count 

facilities. 

4.4.3 Count of collisions 

Montreal Road Collision Dataset is available online(“Road Collisions - Open Government 

Portal” 2021). It provides the location and type of collisions including pedestrian-vehicle 

collisions. Figure 4-2 shows 11,120 pedestrian-vehicle collisions between 2012 and 2019 in the 

city of Montreal. 

 
Figure 4-2Pedestrian Vehicle Collisions in the City of Montreal. Maps were created using ArcGIS® software by Esri 

(“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022). 
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4.4.4  

4.4.5 Public Transit 

Montreal public transit network datasets provide the public transit links and transit stop 

locations in the city of Montreal. There are 8950 stops through 220 transit service routes. Figure 

4-3 shows the Montreal public transit network. 

 
Figure 4-3Montreal Public Transit Network. Maps were created using ArcGIS® software by Esri (“GIS Mapping 

Software, Location Intelligence & Spatial Analytics | Esri” 2022). 
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Public Transit Accessibility Index (PTAI) is used to quantify the level of accessibility of 

public transit services in a target region. PTAI is a measure of connectivity showing how well the 

zone is connected to the public transit network. It takes into account the walking distance to the 

nearest station, waiting time at the transit stop, the frequency of services and the presence of rail 

transit, and returns access index as a quantitative measure (Transport for London 2014). The first 

step is to calculate walking time to PTAPs. Next, the scheduled waiting time for each access points 

is calculated and average waiting time for each route will be calculated for each access point. A 

reliability factor of two minutes and 0.75 minutes is used respectively for buses and metro stations. 

The total access time at each access point is the summation of walking time and the average waiting 

time at the access point. Finally, the equivalent doorstep frequency is calculated at each PTAP 

which could be aggregated for a neighborhood. The calculation process is done in ArcGIS software 

by defining a central point as the representative of the polygon (DAUs), and then following the 

above steps to calculate the PTAI for each polygons. Also, intersections located inside the 

polygons get the PTAI of their region. 

Aggregating the mentioned datasets provides us with the dataset addressing the research 

objective of this chapter. Table 4-1 provides the descriptive statistics of the variables of the dataset 

used through the analysis in this chapter. 

Table 4-1. Descriptive Statistics of Variables in the Analysis of the relation between public transit and Pedestrian collisions. 

Public Transit Presence and Accessibility Type  Mean SD Min Max 

Counts of Collisions in Proximity of Intersections Integer 2.27 0.07 0 25 

Vehicle Daily Traffic Logarithm Float 9.39 0.02 5.7 11.25 

Pedestrians Volume Logarithm Float 6.86 0.04 0.0 10.95 

Bus Daily Traffic Logarithm Float 4.86 0.03 0.0 7.28 
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Public Transit Presence and Accessibility Type  Mean SD Min Max 

Public Transit Accessibility Level at the Intersection Float 10.4 0.29 0.0 7.42 

Presence of Public Transit Access Points Within 30 meters of the 

Intersection, (Yes or No) 
Binary 0.62 0.01 0.0 1.00 

Number of Bus Routes at the Intersection Integer 2.09 0.06 0 12 

 

4.5 Analysis and Results 

The analysis of this chapter follows two approaches: firstly, the spatial comparison and the 

spatial analysis on pedestrian-vehicle collisions and PTAI. Secondly, a statistical approach is 

incorporated to cover the previous analysis. Getis-Ord G* spatial hot spot analysis is mainly used 

to study the spatial relationship between pedestrian-vehicle collision occurrence and PTAI. 

Moreover, the Negative Binomial model is utilized to study a statistical approach and cover the 

previous spatial hotspot analysis regarding the relation between pedestrian collisions and public 

transit services locations. 

In the city of Montreal, there are almost 3200 dissemination area units (DAUs), which are the 

smallest standard geographic unit in Canada. Figure 4-3(left side) shows the distribution of the 

PTAI through DAUs. The index is ranged between 0 and 70 and the darker in color the DAU is, 

the higher PTAI it has. Besides, Figure 4-3 (right side) demonstrates the Pedestrian-Vehicle 

Collision Counts (2012-2019) per area unit (𝑘𝑚2).
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Figure 4-4Public Transit Accessibility level and Collision Counts per Area in the Montreal Dissemination Area Units. Maps were created using ArcGIS® software by Esri 

(“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022)
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 In the following, Getis-Ord (G*) spatial hotspot analysis is used for analysis on DAUs (polygons) 

and PTAPs (points). Figure 4-5 shows the hotspot analysis on the dissemination area unit to find 

DAUs which are spatially statistical significant concerning PTAI (left side) and collision counts 

(right side). Moreover, Figure 4-6 shows G* applied on the PTAPs pedestrians-vehicles collision 

counts with the zone of indifference criterion. The dark red crosses ( ) show PTAPs that are 

statistically significant hotspots with regard to the number of collisions.
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Figure 4-5 Hotspot Analysis on Public Transit Accessibility level and Collision Counts per Area in the Montreal Dissemination Area Units, hotspot analysis is based on 

Contiguity Edges Corners. Maps were created using ArcGIS® software by Esri (“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022).
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Figure 4-6Public Transit Access Points with statistically significant high collision counts are located inside 

Dissemination Area Units with high PTAI, hotspot analysis is based on zone of indifference criterion. Maps were created using 

ArcGIS® software by Esri (“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022).
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Table 2 is the Negative Binomial model on 1638 intersections of the city of Montreal. Among the 

1638 intersections, 1018 have at least one PTAP in proximity (30 meters). The model found the 

logarithm of daily bus traffic count at intersections, the presence of PTAP at the intersection, the 

PTAI at the intersection, and the number of bus routes as statistically significant variables with a 

positive coefficient.  In the following section, the discussion on the analysis is provided. 

Table 4-2 Negative Binomial Model, Statistical Analysis on intersections to study the relation between Public Transit Access Points 

and Pedestrian Collision Counts, Number of observations = 1637 intersections, Log-likelihood= -2900.3 

Collision Count Coef Std. Err. z P>z 

Vehicle Daily Traffic Logarithm 0.55 0.04 12.850 0.000 

Pedestrians Volume Logarithm 0.35 0.02 15.880 0.000 

Bus Daily Traffic Logarithm 0.07 0.03 2.400 0.016 

Public Transit Accessibility Level at the Intersection 0.01 0.002 2.960 0.003 

Presence of PublicTransit Access Points Within 30 meters of 

Intersectoin, (Yes or No) 
0.20 0.08 2.650 0.008 

Number of Bus Routes at the Intersection 0.05 0.01 3.610 0.000 

Constant -7.36 0.37 -19.720 0.000 

 

 

4.6 Discussion 

An initial investigation on PTAI and collision counts on DAUs, demonstrated in figure 4-

4 (left side) and figure 4-4 (right side), shows the substantial similarities between the distribution 

pattern of PTAI and collision counts per area unit. This is accompanied by figure 4-5 (left side) 

and figure 4-5 (right side), which demonstrate similar patterns through G* spatial hotspot analysis. 

Figure 4-6 shows the collision count hotspots of PTAPs located within the DAUs with statistically 

significant PTAI (dark blue regions). Aligned with the previous analysis, Table 2 shows more 

pedestrian collisions occur at intersections with a higher volume and number of bus routes (which 
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together contribute towards higher PTAI) and with the presence of a PTAP within 30 meters of 

the intersection. The abovementioned analysis supports the hypothesis that PTAPs as a daily 

origin-destination of pedestrians suffers from higher counts of pedestrian collisions. Providing a 

safe environment for pedestrians in the proximity of PTAPs implies the necessity of further 

analysis to enhance the safety index of the pedestrians in these areas. Therefore, urban 

transportation planners should take into account pedestrian safety at the current PTAP locations 

and when developing public transit. 

4.7 Conclusions 

Chapter 4 argued the potential relationship between the increase in pedestrian collision risk 

at the locations with public transit services. The spatial investigation and statistical analysis 

revealed the significance of pedestrian-vehicle collisions at locations where there are public transit 

services. The statistical approach in this chapter showed an association between pedestrian-vehicle 

collision counts and public transit exposure characteristics such as bus average daily traffic, public 

transit accessibility index, and the number of public transit routes. Pedestrians are at higher 

collision risk at intersections where there is PTAP rather than the intersections with no PTAPs. 

Hence, it is needed to conduct further research to examine pedestrian road safety at PTAPs. The 

next chapter analyses and discusses the role of road geometry and built environment elements on 

pedestrian-vehicle collision counts at PTAPs and proposes applicable countermeasures to address 

this problem. 
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Chapter 5: Road Geometry, and Built-Environment Effect on Public 

Transit Pedestrian Safety 

Abstract: Public Transit Access Points (PTAP) are the origin and destination of daily trips 

of urban residents in urban regions. Public transit promotes sustainable transportation and it is 

necessary to provide safe transit access points for transit users as they interact with vehicle traffic 

at PTAPs. Therefore, it is needed to study pedestrian road safety at these locations. The role of 

engineering elements, namely, traffic calming, road geometry and built-environment are studied 

in this chapter. It was found that shows that traffic calming strategies such as road width reduction, 

sidewalk width increase, median refuges, separate pedestrian crossing (walk) intervals, and vehicle 

stop signs could improve pedestrian safety of PTAP. Moreover, the statistical models in this 

chapter found that pedestrians are at more risk in PTAP at locations where high road grades and 

in proximity to intersections with more two way streets than one way streets. The Empirical Bayes 

collision hotspot identification method is applied to the PTAPs and it studied how proposed 

engineering elements would improve pedestrian road safety in public transit hotspots. 

5.1 Introduction 

As discussed in chapter 4, public transit locations are likely to face a higher risk of 

pedestrian vehicle collisions. Through two geographical study areas namely, intersection level and 

polygon level (dissemination area units), pedestrian vehicle collision was found to be associated 

with public transit exposure and accessibility factors. Hence, pedestrian road safety should be 

studied at public transit access points. 
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In recent years, numerous studies investigated the role of road geometry and built 

environment factors on pedestrian safety. Those studies showed that such engineering factors 

could influence pedestrian safety levels in the intersection level (Stipancic et al. 2020a) and road 

segments (T. Chen et al. 2020). Hence, in the analysis performed in this chapter, it is expected that 

road geometry and built environment factors affect pedestrian road safety at the proximity of public 

transit access points and reduce the risk of pedestrian vehicle collision in these locations. 

This chapter first studies the role of traffic calming, road geometry, and built-environment 

factors on pedestrian vehicle collisions in the proximity of public transit access points located 

nearby intersections and at midblock. Furthermore, top ranking pedestrian collision hotspots at 

public transit locations will be studied to figure out the potential of traffic calming and built 

environment elements, such as, road narrowing, sidewalk curb extension, road median, and 

pedestrian crossing facilities at intersections on improving pedestrian safety at the public transit 

hotspots. 

5.2 Objective 

Chapter 5 research objective is to incorporate pedestrian collision models on pedestrian 

vehicle collisions in proximity to public transit locations to figure out the effect of engineering 

elements on pedestrian safety levels at public transit access points. Engineering elements include 

continuous road geometry, traffic calming, and built environment factors playing part in pedestrian 

road safety. The statistical analysis proposed in this chapter suggests countermeasures improving 

pedestrian safety. To overcome possible bias due to the small sample size (Afghari et al. 2019), 

this research aims to establish the analysis based on a wide range of PTAPs and provide separate 
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analysis for PTAPs located at midblock and intersections, particularly, at signalized and non-

signalized intersections. Moreover, this chapter aims to utilize collision hotspot identification 

methods to prioritize hazardous sites, identify public transit stops with high potential for 

improvement. The hotspot identification suggest the sites need to have further investigations and 

field studies specific for each point. Moreover, the research task addresses the question of whether 

the findings suggested in the previous analysis could be applicable to improve pedestrian safety 

levels at the hotspot site. 

 

5.3 Methodology 

This chapter builds up statistical safety analyses to assess the effect of road geometry and 

built-environment elements on the count of pedestrian vehicle collisions in the vicinity of public 

transit locations. Negative Binomial statistical models are mainly incorporated to conduct the 

pedestrian safety analysis at these locations. The analysis will follow by Empirical Bayes collision 

hotspot identification which sorts the sites with higher concentration of pedestrian vehicle 

collisions. Firstly, Empirical Bayes model is reviewed in the following section and the reader is 

referred to the methodology in chapters 3 and 4 for the Negative Binomial (NB) model. 

5.3.1 Empirical Bayes Method 

Estimating the mean expected count of collisions through the conventional NB model, the 

crash count mean is assumed fix and there is no statistical inference on the parameter, however, 

applying the Empirical Bayes approach, in addition to the expected mean count of collisions, there 
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could be a statistical inference on the value leading to valuable information on the network 

screening phase and hotspot identification. 

The Empirical Bayes approach assumes having prior knowledge (often called “prior 

information”) of the mean count of collisions, which will be updated by the collision data leading 

to the posterior value on the crash counts. In other words, thanks to Bayesian statistics, the 

likelihood function is calculated by the fitting of an NB distribution on the collision data, and is 

merged with the “prior information” leading to the “posterior information” on the mean crash 

count. In this study, the prior information on the mean count of collisions is assumed to follow a 

Gamma distribution. The Gamma function is a conjugate prior to the NB likelihood function 

𝑓(𝑌𝑖|𝜃𝑖) which could result in a Gamma distribution in the posterior probability (𝑝(𝜃𝑖|𝑌𝑖 , 𝜂) (for 

more explanations please refer to the Chapter 3).  The following formulation shows the Empirical 

Bayes framework: 

𝑝(𝜃𝑖|𝑌𝑖 , 𝜂) ~ 𝑓(𝑌𝑖|𝜃𝑖) .  𝜋(𝜃𝑖|𝜂)                                                                                     5-1 

Where, 𝑓(𝑌𝑖|𝜃𝑖) is the likelihood of the accident count at the entity, 𝜋(𝜃𝑖|𝜂) is the prior 

information on the accident count 𝜃𝑖, where 𝜂 is the vector of prior parameters. Commonly, 𝑤𝑖 =

 
𝜙

(𝜇𝑖+𝜙)
 and, 1 − 𝑤𝑖  =

𝜇𝑖

(𝜇𝑖+𝜙)
  are defined, to calculate the expected posterior mean of 𝜃𝑖, 𝐸(𝜃𝑖|𝑦𝑖), 

as the following: 

𝐸(𝜃𝑖|𝑦𝑖) = (1 − 𝑤𝑖)𝑦𝑖 + 𝑤𝑖𝜇𝑖                                                                                                                 5-2 

Where 𝜇𝑖 and 𝜙 are respectfully the estimated collision count mean at the site 𝑖 and the over 

dispersion parameter of the Negative Binomial model. 
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5.4 Data Description 

The analysis in this chapter utilizes data from various online open sources and a closed 

source dataset from the island of Montreal. The majority of data sources are available online and 

the links are provided in the references. The following sections provide a detailed description of 

the data gathering procedure of this research. 

5.4.1 Site Selection 

Sites were selected across the Public Transit Access Points, where bus stops and metro 

stations were found, in the city of Montreal. A buffer size of 30 meters (100 foot) is suggested in 

the literature as an appropriate influence area for transit stops (Srinivas S. Pulugurtha and 

Vanapalli 2008). Bus stops and metros access points, in the vicinity to each other, were clustered 

with a Euclidean distance of 60 meters which ensures 30 meter buffers are left as separate PTAP 

instances. Then, PTAPs within 20 meters of an intersection are considered as part of a single 

PTAPs instance at such intersection, and PTAPs located more than 20 meters further from 

intersections are considered as midblock stops. Among the access points, daily traffic count of 

pedestrians and vehicles is available for 2650 sites, out of which 1709 access points are classified 

as “nearby intersections”, and 941 access points are classified as “midblock locations”. Figure 5-

1 illustrates the public transit access points which are the targets of safety performance models in 

this chapter. 
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Figure 5-1Selected sites, 2650 Public Transit Access Points (PTAPs) in the Montreal Island. The map was created using ArcGIS® 

software by Esri (“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022) 

 

5.4.2 Count of collisions 

Montreal road collisions data set (“Road Collisions - Open Government Portal”, 2020) 

provides the location of pedestrian vehicle collisions. For the PTAPs located nearby intersections, 

the counts of pedestrian collisions are aggregated in the 30 meters’ buffer around access points 

(bus stops and metro station entrances). For the PTAPs further from intersections (20 meters), the 

count of Pedestrian vehicle collisions at the road segments is associated to the PTAPs, as 
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pedestrians might be influenced to commit jaywalking where there is public transit access at 

midblock (Zheng et al. 2015; Cinnamon, Schuurman, and Hameed 2011). The collisions between 

2012 and 2019 are aggregated on the sites. 

5.4.3 Traffic Count  

Vehicle Traffic Count and Pedestrians’ volume are calculated for 6100 road segments 

based on the available traffic count for intersections in Montreal city which is available online 

(“Traffic Lights — Vehicle and Pedestrian Counts at Intersections with Lights - Open Government 

Portal” 2021b). The available dataset provides the count of vehicle traffic count at intersections 

with the detail of vehicles’ trajectories. That is, vehicle traffic count is available at intersections 

with respect to the 4 cardinal coordinates of intersections legs. Therefore, the azimuth (angle to 

the north) of intersections was measured to find the cardinal direction and correspondingly to 

assign the traffic count to the road segment. The figure below demonstrates Montreal road 

networks with the measured directions which are used in the intersections traffic assignment. The 

procedure of assigning intersections traffic count to the legs of the intersection is done using 

python codes which are available in appendix 1 of this dissertation.  
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Figure 5-2Color map for Montreal daily vehicle traffic volume at intersections (top) and intersections legs (bottom). The maps 

were created using ArcGIS® software by Esri (“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022) 



 

70 

 

 Expanding the single values of traffic counts at intersections to the corresponding 

intersections’ legs, and road segments, expands the available traffic data on PTAPs, which in turn,  

increase the count of PTAPs studied in the analysis. The analysis in this chapter is not limited to 

PTAP nearby intersections with traffic counters, but it also includes the PTAPs nearby other 

intersections or at mid-block locations. 

5.4.4 Road Geometrics and Road Assets 

The open source dataset of Montreal road assets (Complete database) (“Road Assets 

(Complete Database - Pavement, Island, Intersection, Sidewalk, Area) - Open Government Portal” 

, 2020) gives the geometric detail of the roads segments, intersections, road medians and 

sidewalks. Besides, the Canadian Geospatial data from DMIT provides access to the characteristics 

of road way such as the number of directions (one-way or two-way). Based on the sources, the 

Average Road and Sidewalk Width, Presence of Certain Road Median, average number of vehicle 

flow directions (an indicator of one-way and two-way roads), presence of signals’ walk interval, 

and stop signs are gathered for the entities (“Geoindex - Public” n.d.; “Traffic Lights — Pedestrian 

Lights - Open Government Portal” n.d.; “Road Signs (Excluding Parking) - Open Government 

Portal” n.d.). Figure 5-3 shows the overview of road geometry and built-environment datasets in 

the case study of Montreal. 
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Figure 5-3Montreal Road Infrastructure, with a close view of three example of sites. The map was created using ArcGIS® 

software by Esri (“GIS Mapping Software, Location Intelligence & Spatial Analytics | Esri” 2022) 

Stop ID 51345 

Stop ID 51950 

Stop ID 52881 
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Table 4-1 summarizes the descriptive statistics of the variables used in the analyses in this 

chapter. 

Table 5-1 Descriptive Statistics of Variables in the Analysis 

Variables Type Mean S.D. Min Max 

Counts of collision in proximity of PTAPs Integer 1.55 0.05 0 25 

Logarithm of vehicle average daily traffic in the proximity of PTAPs Float 9.06 0.02 7.02 11.22 

Logarithm of pedestrian daily volume Float 5.86 0.03 0.69 10.94 

Average number of traffic flow directions per road in the proximity of 

PTAPs, (one-way vs two way, indicator) 

Integer 1.54 0.01 1 2 

Average road width Float (m) 9.32 0.09 1.96 20.55 

Average sidewalk width Float (m) 5.55 0.09 0.09 8.87 

Presence of island (median refuge) Binary 0.18 0.01 0.00 1.00 

PTAP’s road grade Float 0.55 0.75 0.00 7.83 

Signalized Intersection Binary 0.66 0.01 0.00 1.00 

Presence of signal’s walk interval in proximity of PTAPs Binary 0.55 0.02 0.00 1.00 

Presence of stop sign in proximity of PTAPs Binary 0.50 0.02 0.00 1.00 

 

5.5 Analysis and Results 

5.5.1 Safety Performance Functions 

Safety performance functions are developed using Negative Binomial statistical models to 

study pedestrian safety at PTAPs. Sites are divided based on their position regarding the nearest 

intersection. That is, the sites through the study are PTAPs at midblock and the PTAPs in the 

proximity to the intersection. PTAPs at intersections are studied more specifically by developing 

further analysis whether the PTAP is near to signalized intersections or nearby a non-signalized 

intersection. Figure 5-4 shows an overview of analysis in chapter 4 which is accompanied by the 

analysis in this chapter. 
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Figure 5-4High level overview of the analysis in Chapter 4 and 5. 

 

Negative Binomial models confirm the statistical significance of vehicle traffic and 

pedestrian volume with positive coefficients in all the analyses in Table 5-2:5. The analysis on the 

geometrics and built environment characteristics of PTAPs at intersections and mid-blocks is 

shown in Table 5-2 and Table 5-3 respectively. The model found that both: (1) average road width 

and (2) sidewalk width in the proximity of PTAP as statistically significant (95% confidence level) 
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factors with positive and negative coefficients respectively. Moreover, road medians and road 

grades are significant variables. In the PTAP nearby intersections, the average number of 

directions of vehicle traffic flow (an indicator of one-way vs two way) at the intersection, with 

coefficient +0.29, and the PTAP’s distance to the intersections found statistically significant with 

coefficient +0.01, in the PTAPs at road segments. 

Table 5-2 Negative Binomial Regression on Pedestrians Vehicle Collision Counts in the proximity of Public Transit Access Points  
nearby intersections- Road Geometrics, Number of observations  = 1709, Log Likelihood = -714.7 

Pedestrian Vehicle Collision Counts Coef Std. Err. z P>z 

Logarithm of vehicle average daily traffic 0.12 0.03 3.56 0.00 

Logarithm of pedestrian daily volume 0.34 0.02 14.45 0.00 

Average road width in proximity of PTAP 0.08 0.01 6.05 0.00 

Average sidewalk width in proximity of PTAP -0.06 0.02 -4.06 0.00 

Presence of median in proximity of PTAP (Yes or No) -0.14 0.08 -1.82 0.07 

Signalized intersections (Yes or No) 0.61 0.08 8.07 0.00 

Average number of traffic flow directions in proximity of PTAP, (an  

indicator of one-way vs two way) 
0.29 0.11 2.61 0.01 

Average road grade in proximity of PTAP 0.06 0.04 1.66 0.10 

Constant -4.00 0.35 -11.39 0.00 

Alpha (NB extra parameter) 0.72    0.05  

* Public Transit Access Point (PTAP)    
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Table 5-3 Negative Binomial Regression on Pedestrians Vehicle Collision Counts in the proximity of Public Transit Access Points 

at Road Segments (Mid-blocks), number of observations = 941, Log Likelihood = -3061.3 

Pedestrian Vehicle Collision Counts Coef Std. Err. z P>z 

Logarithm of vehicle average daily traffic 0.17 0.08 2.21 0.03 

Logarithm of pedestrian daily volume 0.30 0.06 5.35 0.00 

Average road width in proximity of PTAP 0.06 0.03 2.25 0.02 

Average sidewalk width in proximity of PTAP -0.04 0.03 -1.48 0.14 

Presence of median in proximity of PTAP (Yes or No) -0.50 0.24 -2.04 0.04 

Average road grade of PTAP 0.29 0.10 2.79 0.01 

Distance to the nearest intersection 0.01 0.00 4.23 0.00 

Constant -4.85 0.74 -6.56 0.00 

Alpha 2.69 0.38   

* Public Transit Access Point (PTAP)     

 

Table 5-2 shows PTAPs at signalized intersections are more at risk of pedestrian-vehicle collisions 

compared to PTAPs at non-signalized intersections, with a coefficient of +0.61. This motivated 

further analysis on PTAP in the vicinity of intersections. Hence, PTAP at signalized and non-

signalized intersections were studied respectively in Table 5-4 and Table 5-5. Table 5-4 shows 

pedestrian crossing light in Proximity to PTAPs is statistically significant with a negative 

coefficient (-0.13). Besides, Table 5-5 shows the statistical significance of stop signs in the 

proximity of a PTAP located at non-signalized intersection with a negative coefficient (-0.33).  

Table 5-4 Negative Binomial Regression on Pedestrians Vehicle Collision Counts, PTAP nearby Signalized intersections- Crossing 

Facilities, number of observations  = 926, Log Likelihood = -1847.4 

Pedestrian Vehicle Collision Count Coef Std. Err. z P>z 

Logarithm of vehicle average daily traffic 0.50 0.06 8.38 0.00 

Logarithm of pedestrian daily volume 0.51 0.03 17.24 0.00 

Presence of signal’s walk interval in proximity of PTAPs (Yes or No) -0.13 0.07 -2.00 0.05 
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Presence of median in the proximity of PTAP (Yes or No) -0.17 0.08 -2.08 0.04 

Average number of traffic flow directions in proximity of PTAP, (an , 

indicator of one-way vs two way) 

0.09 0.01 6.69 0.00 

Constant -8.03 0.54 -14.77 0.00 

Alpha 0.41 0.04   

* Public Transit Access Point (PTAP) 
    

 

Table 5-5 Negative Binomial Regression on Pedestrians Vehicle Collision Counts, PTAP nearby Non-signalized intersections- 

Crossing Facilities, number of observations = 638, Log Likelihood = -714.7 

Pedestrian Vehicle Collision Count Coef Std.Err. z P>z 

Logarithm of vehicle average daily traffic 0.12 0.05 2.19 0.03 

Logarithm of pedestrian daily volume 0.35 0.06 5.89 0.00 

Presence of stop sign (Yes or No) -0.33 0.15 -2.25 0.03 

Presence of median in the proximity of PTAP (Yes or No) -0.34 0.19 -1.78 0.08 

Constant -2.76 0.51 -5.44 0.00 

Alpha 1.96 0.26   

* Public Transit Access Point (PTAP)     

 

5.5.2  Hotspot Identification and Site Selection 

As discussed before, site selection and hotspot identification is one of the significant steps 

in the transportation safety management process. In this section, hotspots of pedestrian vehicle 

collisions are identified based on Empirical Bayes estimation. Table 5-6 and Table 5-7 show the 

potential improvements and the hotspots ranking based on the mentioned methods and provide the 

collision count, the estimated count, and the Empirical Bayes estimation at these sites. Public 

Transit hotspots are ranked based on the EB potential improvement. 
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Table 5-6 Site Hotspot Identification, top ranking based on Empirical Bayes method, public transit access points nearby 

intersections. 

Site Close intersection 
Collision 

Count 

Estimated 

Count 

EB Potential 

Improvement (PI) 

EB Method 

Ranking 

51392 Saint Michel/ Jarry 25 5.28 18.70 1 

53010 de Lorimier/ Rue Logan 20 4.42 14.09 2 

52129 Pie-IX / Beaubien 20 2.66 11.86 3 

9 du Mont-Royal / Berri St. 16 5.79 11.84 4 

52329 Guy / René-Lévesque 14 7.55 10.82 5 

34 Guy / Saint Catherin 13 8.84 10.26 6 

50556 Sauvé / Papineau 16 3.35 10.10 7 

15 Gauchetière / Cathedrale 13 7.97 10.07 8 

34 Guy / De Maisonneuve 12 11.31 9.75 9 

51 Vanhorn/  Victoria 13 5.67 9.37 10 

 

Table 5-7 Site Hotspot Identification, top ranking based on Empirical Bayes method, public transit access points 

at midblock. 

Site Closest intersection 
Collision 

Count 

Estimated 

Count 

EB Potential 

Improvement (PI) 

EB Method 

Ranking 

51950 Sherbrook / Atwater 11 0.79 7.29 1 

61896 Saint Denis Mont-Royal Ave 8 0.70 5.04 2 

50820 Vanhorn/Victoria 7 1.01 4.97 3 

51049 Côte-sainte-catherine/ CDN 6 1.38 4.61 4 

52238 Guy / Saint Catherin 5 2.34 4.23 5 

52330 Guy / René-Lévesque 5 2.23 4.19 6 

57930 Sources Blvd/ Salaberry 8 0.40 3.89 7 

51050 Queen-Mary / Circle 6 0.76 3.85 8 

57947 Sauvé / Papineau 8 0.38 3.78 9 

54019 Vanhorn/  Victoria 6 0.47 3.15 10 

 

In the following section, first, the results of NB models built in this research study are 

interpreted. The discussion explains how road elements could improve the pedestrian safety level 

of PTAPs. Moreover, the usefulness of the safety analysis findings is discussed in a couple of 

hotspot examples in Table 5-6 and Table 5-7. 
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5.6 Discussion 

5.6.1 Road Elements and Pedestrians Collision count at PTAPs 

Statistical analysis on pedestrian vehicle collisions in the proximity of public transit 

locations shows road geometry and built environment factors play part in the count of collisions 

in these areas. Engineering elements such as road and sidewalk presence, presence of certain road 

medians, road configuration, and pedestrian crossing facilities were found statistically significant 

variables in the analysis which are discussed shortly in the following. Moreover, Empirical Bayes 

collision hotspot identification methods sorted PTAPs regarding the EB collision risk. In the 

following, the discussion of the analysis is provided. 

All the negative binomial models show the significance of traffic calming strategies in 

PTAP’s pedestrian safety while controlling for pedestrian vehicle exposure variables. Average 

daily vehicle traffic and pedestrian daily volume are statistically significant with positive 

coefficients in all models. That is higher pedestrian vehicle collisions where there is higher traffic 

of vehicles and higher pedestrian volume. 

The negative binomial models show the effectiveness of traffic calming strategies in 

PTAP’s pedestrian safety. Table 5-2 shows as the width of the sidewalk increases and the road 

width decreases, a lower count of pedestrian collisions are expected for the PTAPs. This is 

consistent with the objectives of traffic calming strategies reviewed in the literature (Distefano and 

Leonardi 2019; Gomaa Mohamed et al. 2012). The NB models in Table 3 proved the positive role 

of road medians in pedestrian safety. Certain road medians could channelize vehicle traffic flow 

and provide refuges for pedestrians to cross the road safely. Besides, the presence of a road median 
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could increase the distance drivers stop or yield for pedestrians before the crosswalk, and can 

significantly increase the share of pedestrians who look for vehicles before crossing the street (S. 

Pulugurtha et al. 2012).  

Table 3 confirms the statistical significance of road grade for the safety of PTAP at 

intersections and mid-blocks. Analysis shows that more pedestrian-vehicle collisions are expected 

in the proximity of PTAPs on roads with higher grade levels. High road grades would lead to 

higher speed on the down flow of vehicles, reduced visibility if vehicles are coming from a crest 

and then going downslope, or if vehicles are coming from a sag at night time and then going 

upslope. Besides, Table 3, and Table 4 confirm the positive effect of two-way to one-way 

conversion or reduction of traffic directions to improve the safety of pedestrians in the proximity 

of public transit. When the number of traffic flow directions increases, the expected number of 

pedestrian-vehicle collisions increases.  

Table 3 suggests locating PTAP close to the intersections and decreasing the distance 

between the PTAP and the nearest intersection. As PTAP distance to intersections increases, the 

expected count of collisions increases, possibly because of more pedestrians attempting to cross 

the street at locations where formal crossings do not exist. This implies the priority to locate PTAPs 

near intersections rather than road segments and possibly the need to add pedestrian fencing in 

certain locations. 

PTAPs at signalized intersections are more at risk of pedestrian-vehicle collisions than 

PTAPs at non-signalized intersections (Table 3). This suggested further analysis of PTAP in the 

vicinity of intersections. Table 4 shows a pedestrian crossing signal as a traffic calming device that 
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provides temporal separation for the vehicle traffic flow and pedestrian crossing in proximity to 

PTAPs. It is highly recommended to equip PTAPs nearby signalized intersections with a separate 

pedestrian crossing interval to address pedestrian collision risk at these locations, as found in Table 

3. More, for the PTAP nearby non-signalized intersections, Table 4 confirms the positive role of 

stop signs since it implies vehicles’ full stop at the intersections leading to providing a safe 

environment around PTAP nearby non-signalized intersections. 

5.6.2 PTAP Hotspots and Countermeasures 

The safety analysis in Table 5-2 and Table 5-3 shows the effect of the built environment 

and road elements on the count of collisions in the vicinity of public transit locations. In the 

network screening phase, the hotspot sites are identified to conduct a further field study and 

examine how engineering metrics could improve the safety level at the fields. Hence, in the 

following a couple of examples of the hotspots sites in the Table 5-6 and Table 5-7 will be 

presented. 

Figure 5-5 shows the stop ID 53010, located nearby the intersection Lorimier/ Rue Logan 

in the case study of Montreal city. As can be seen in the top aerial photo, one of the intersection 

legs stems from an arterial road, the Jacques-Cartier bridge, which the data shows the average 

daily traffic of 9900 vehicles and 800 pedestrians at this location. The GIS database and the Google 

Map source show this intersection as a non signalized intersection in which the bus stop is located 

in the proximity of the intersection. Vehicle Traffic flow is properly separate due to the presence 

of certain road median, however, a pedestrian crossing is not secured with proper pedestrian 

crossing facilities. Since the analysis in Table 5-2 and Table 5-3 shows the positive effect of stop 
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signs and signalized intersections on pedestrian safety, the feasibility of such crossing facilities 

could be studied for this site. Further site specific investigations could be conducted to improve 

pedestrian road safety at this site.   

 

 

   
Figure 5-5 Transit stop de Lorimier/ Rue Logan Stop, ID 53010, hotspot of pedestrian vehicle collisions among transit 

stops. The top picture is the aerial photo of the site, and the two photos at bottoms are the field photos. Photo Source: Google 

Earth. 

The hotspot analysis in Table 5-6 found the transit stop Gauchetière / Cathedrale, stop ID 

15, as a pedestrian vehicle collision hotspot. Figure 5-6 shows an initial field investigation by 
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providing the Google Maps 3D photos of the site.  The noticeable point at this site is the recent 

change that has been applied to the road geometry and design at this location. As can be seen in 

Figure 5-6, the top picture demonstrates the site before the recent changes in which the 

intersections used to be a four leg intersections, however, in the new road design, one of the 

intersection’s leg is removed and pedestrian pavement was installed instead. The new design, 

reduce the interaction between pedestrian and vehicles which in turn reduce the pedestrian 

collision risk at this site. This site instance shows the positive and negative sides of the hotspot 

analysis through this study. On the positive side, the analysis is capable of finding and introducing 

sites that lack proper road design and the safety level could be enhanced by a field study and site 

specific engineering countermeasures. However, on the other hand, this example shows the 

weakness of analysis due to the aggregated approach of the analysis which could miss the built 

environment changes through the analysis period.  
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Figure 5-6 Transit stop Gauchetière / Cathedrale, Stop ID 15, hotspot of pedestrian vehicle collisions among transit 

stops. The top picture refers to the site before the road redesign. The two bottom picture shows the contemporary situation which 

road elements has been redesigned and one of the roads changed to pedestrian pavement. Photo Source: Google Earth. 

 

Figure 5-7 shows the transit stop nearby the intersection of Sources Blvd/ Salaberry. The 

transit is located at the side of an arterial road with 4 lanes including 3 main lanes and one left turn 

lane. The bottom picture in figure 5-7 shows a proper demonstration of the built-environment 

around this stop. Although the stop is located at a location further from the intersection, the road 

median at this site can be improved to lead pedestrians to the intersection area to cross the road 

rather than jaywalk in the proximity of the transit stop. Moreover, it would be helpful to relocate 

the stop to a closer location to the intersection crossing. This would tempt the transit users to not 

jaywalk in the proximity of the PTAP. 
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Figure 5-7 Transit stop Sources Blvd/ Salaberry, Stop ID 57930, hotspot of pedestrian vehicle collisions among transit 

stops. The top picture is the aerial photo of the site, and the photo at bottoms shows the  field. Photo Source: Google Earth. 

 

5.7 Conclusions 

The safety analysis presented in this chapter showed the effectiveness of road and built 

environment elements on pedestrian road safety in the proximity of PTAPs. The Negative 

Binomial collision count models suggested the strategies like road narrowing, sidewalk curb 

extension (increasing sidewalk width), and installing road medians to improve pedestrian road 

safety at PTAPs. Moreover, pedestrian crossing facilities like the walking intervals in signalized 
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intersections and the vehicle stop sign at non-signalized intersections were found effective to 

improve pedestrian road safety at the PTAPs. The number of vehicle traffic flow directions could 

influence the risk of traffic conflicts between pedestrians and vehicles, hence, strategies like two 

ways to one-way conversion were found statistically significant to provide a safer built 

environment for pedestrians to access public transit.  

Collision hotspot identification is one of the most important steps in road safety 

management. Hotspot identification suggests the sites with a high concentration of pedestrian-

vehicle collisions and sorts out the sites with a higher potential for improvement. Based on the EB 

hotspot analysis conducted in this chapter, there are PTAPs with a high pedestrian-vehicle collision 

risk, so further site-specific investigations will be necessary to determine how to implement 

appropriate countermeasures. The road element and built environment strategies proposed by this 

chapter’s safety analysis could also be considered as an effective countermeasure for the sites. 
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusions 

This master thesis addressed pedestrian road safety in the proximity of public transit access 

points. First, this research study emphasizes the significance of pedestrian road safety at locations 

where there are public transit services. In a zonal level approach, higher pedestrian-vehicle 

collision density (count of collisions per area units) was found associated with the polygons with 

higher public transit accessibility index. Moreover, at an intersection level, higher pedestrian-

vehicle collision risk is expected where there is higher bus transit daily traffic, higher number of 

public transit routes, and higher public transit accessibility index. Intersections where there is a 

PTAP suffer higher pedestrian collision risk than the intersections with no PTAPs. Hence, it is 

concluded that there is a potential relation between the pedestrian vehicle collision counts and 

public transit services, and public transit access points suffer pedestrian vehicle collision risk; 

therefore, these locations require further pedestrian safety measures to reduce the collision risk. 

Furthermore, this thesis studied the effect of road and built-environment elements to 

improve pedestrian safety at PTAPs. Certain road geometry and built-environment characteristics 

could provide safer pedestrian environment at PTAPs. City authorities should incorporate the 

findings of this study to improve the pedestrian safety at PT locations. In particular, road geometry 

and traffic calming strategies, namely road narrowing and side walk extension, are highly 

recommended for both PTAPs located nearby intersections or at midblock. In the case of PTAPs 

nearby intersections, curb side extension could meet this suggestion as it simultaneously could 

decrease road width and extend pedestrian side walk, which in turn, would reduce the chance of 
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pedestrian vehicle exposure and collision risk. Traffic signals equipped with a walk interval 

improve pedestrian safety at public transit access points nearby signalized intersection. Therefore, 

it is suggested to add certain walk intervals to traffic signals nearby public transit stops. Moreover, 

if a public transit stop is located nearby a non-signalized intersection, it is recommended to 

improve pedestrian road safety by adding vehicle stop signs at the non-signalized intersection near 

by the PTAPs.  

It is recommended to located PTAPs nearby intersection compared to the locations in a 

further distance to the nearest intersection. if the PTAP is located at midblock locations, it is highly 

recommended to utilize certain road medians as a refuge providing proper pedestrian crossing 

facilities at the location, or as for channeling pedestrian traffic to cross the road using the nearest 

intersection or crossing facilities. PTAPs located in roads with high grades and high number of 

vehicle traffic directions (two way roads) are exposed to higher pedestrian vehicle collision risk. 

Hence, it is recommended to convert two way streets to one way streets, particularly where there 

are streets with high grades descending from a hill nearby the PTAP. 

Incorporating Empirical Bayes hotspot identification suggests the PTAPs which are in a 

high risk of pedestrian-vehicle collision. Suggested hotspot sites require further field and site 

specific studies to utilize the applicable countermeasures to improve pedestrian safety at the 

hotspots of PTAPs. The finding of safety analysis in chapter 5 of this thesis showed the potential 

to be considered for alleviating the collision risk at the sites. 
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6.2 Lessons Learned and Recommendations for Future Research 

This study established the potential relationship between the pedestrian collision counts 

and public transit service locations by taking into account public transit exposure characteristics. 

The analysis utilized bus traffic count and pedestrian volume derived from short term traffic 

counters at intersections, however, future research could explore more how the safety analysis vary 

by utilizing passenger count and vehicle location datasets from public transit agencies.  

This thesis studies the role of road geometry on pedestrian road safety at PTAPs, and 

argued decreasing the road width and increasing the sidewalk width would lead to the lower 

pedestrian collision risk is at PTAPs. This would provide a general idea behind the relation 

between road width and pedestrian road safety at the locations, however, the analysis could be 

improved if the dataset is potential for considering lane width and the number of lane in addition 

to the road width parameter. Therefore, it is recommended that future research study how lane 

width change would affect pedestrian road safety at PTAPs, and simultaneously, if there could be 

further details on the lane width providing a safer PTAP.  

This research study showed and discussed the effectiveness of presence of walk interval in 

the traffic signal in proximity of PTAPs on improving pedestrian safety at these locations, 

however, the analysis is incapable of discussing walk interval specifications like walk interval and 

clearance duration. Therefore, future research could study how the pedestrian walk interval 

specifications affect pedestrian road safety at PTAPs near by the intersection. Moreover, this study 

discussed the effectiveness of presence of stop signs where PTAPs is nearby a non-signalized 

intersection. However, this question was not answered that whether these stop signs are for the 

streets being crossed by pedestrians or stop signs on the side streets. Hence, it is recommended 
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that future studies focus on the specifications of these two traffic control devices on the pedestrian 

road safety at PTAPs. 

The current study found the presence of road median as an effective element to improve 

pedestrian road safety at both PTAPs nearby intersection and located at midblock. It was argued 

that certain road medians would channelize pedestrian traffic to cross the road at a proper crossing 

facility, and it may provide pedestrian a refuge when they are crossing the road. Therefore, future 

research could study how different types of road median, with different configurations, would play 

part in providing a safer road environment at the PTAPs. 

Moreover, although the current study addresses the role of road geometry and built 

environment elements on pedestrian road safety, it does not take into account the effect of the factors 

on traffic operation and network performance. Therefore, future research could establish safety 

analysis considering both road safety geometry and built-environment measurements and traffic 

operation through an integrated research study. 

  Future research could explore and compare other collision count models and hot spot 

identifications in investigating pedestrian road safety at PTAPs. This research study utilized NB 

collision count model and EB collision hotspot identification method to address the research tasks. 

Although Negative Binomial is widely used in both research and practice, future research could 

assess and compare the performance of other collision count models and hotspot identification 

methods to study the pedestrian road safety at these locations. 

This research study incorporated an aggregated temporal and spatial approach in the safety 

analysis. The analysis considers an eight year aggregated collision count between 2012 and 2019, 
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which could miss the built environment changes during this time. Therefore, it is recommended 

that future research studies consider shorter time periods, for example, four or six years of 

aggregated collision counts, and compare how the analysis performance would change. Moreover, 

the analysis in this thesis does not distinguish the sites whether are bus stops only, metro station 

access points or they are multi-modal interchange points. Hence, for future research, it is 

recommended to determine how the pedestrian safety models could vary considering the type of 

PTAP. In the case of data availability, applying before-after safety analysis is also recommended 

as it could provide specific knowledge on the effectiveness of the suggested countermeasures 

leading to improve road safety management at PTAPs.  

It is highly recommended that future research studies take into account the type of 

pedestrian-vehicle collision, namely, midblock dart/dash, intersection turning/ through vehicle, 

bus-related, failure to yield at non-signalized location, walking along the roadway, working in the 

road, crossing expressway. This would provide crash-type-specified inferences and accordingly 

pave the way to address the count of collisions based on the collision type and enhance the safety 

levels at the zones. 

It is recommended that future research studies take into account the temporal variation in 

collision counts. That is, collision risk would vary based on the time and date of crashes. For 

example, whether the collisions occurred in the morning or evening rush hours compared to the 

other time steps during weekdays or weekends. This also could include monthly and seasonal 

timing and the potential countermeasures accordingly. Therefore, city authorities would have a 

timeline to take the proposed counter measurements. 
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Appendix I 

In this section, the codes for assigning intersections’ traffic count values to the 

intersections’ legs are provided. The following is the Python script, when the cardinal Azimuths 

of intersections’ legs were calculated in ArcGIS direction tool and it is used to assign the values 

to the corresponding legs. 

 

import pandas as pd 

import numpy 

import math 

df = pd.read_csv("G:/Master's of Applied Science in Civil 

Engineering/Research/repository/Export_Output_105_TableToExcel.csv") 

print(df.columns) 

 

df['Ab_Vec'] = (df['Deltha_X'] ** 2 + df['Deltha_Y'] ** 2) ** 0.5 

df['Costheta'] = df['Deltha_Y'] / df['Ab_Vec'] 

df['ArCosthet'] = numpy.arccos(df['Costheta']) * (180 / math.pi) 

df['ArcTan'] = numpy.arctan(df['Deltha_Y'] / df['Deltha_X']) * (180 / 

math.pi) 

df['appcomp'] = 0 

df['miss']=0 

df['appcomp_MidPoint']=0 

df['difference']=0 

 

'''refine3''' 

for i in range(len(df)): 

    if ((df['CompassA'][i] < 45) 

          and ((df['ArCosthet'][i] > 90))): 

        df['appcomp'][i] = df['CompassA'][i] + 180 

    elif ((df['CompassA'][i] > 315) 

          and ((df['ArCosthet'][i] > 90))): 

        df['appcomp'][i] = df['CompassA'][i] - 180 

    elif ((135<df['CompassA'][i] < 180) 

          and ((df['ArCosthet'][i] < 90))): 

        df['appcomp'][i] = df['CompassA'][i] + 180 

    elif ((180<df['CompassA'][i] <225) 

          and ((df['ArCosthet'][i] < 90))): 

        df['appcomp'][i] = df['CompassA'][i] - 180 

    elif ((45 < df['CompassA'][i] < 135) 

          and (((df['ArCosthet'][i] < 90) and (df['ArcTan'][i] < 0))or 

((df['ArCosthet'][i] > 90) and (df['ArcTan'][i] > 0)))): 

        df['appcomp'][i] = df['CompassA'][i] + 180 

    elif ((225 < df['CompassA'][i] < 315) 

          and (((df['ArCosthet'][i] < 90) and (df['ArcTan'][i] > 0)) or 



 

93 

 

((df['ArCosthet'][i] > 90) and (df['ArcTan'][i] < 0)))): 

        df['appcomp'][i] = df['CompassA'][i] - 180 

    else: 

        df['appcomp'][i] = df['CompassA'][i] 

 

# refined 2 for i in range(len(df)): 

#     if ((df['CompassA'][i] < 90) 

#           and ((df['ArCosthet'][i] > 90) and (df['ArcTan'][i] > 0) or 

((df['ArCosthet'][i] < 90) and (df['ArcTan'][i] < 0)))): 

#         df['appcomp'][i] = df['CompassA'][i] + 180 

#     elif ((90 < df['CompassA'][i] < 180) 

#           and (((df['ArCosthet'][i] < 90) and (df['ArcTan'][i] < 0))or 

((df['ArCosthet'][i] > 90) and (df['ArcTan'][i] > 0)))): 

#         df['appcomp'][i] = df['CompassA'][i] + 180 

#     elif ((180 < df['CompassA'][i] < 270) and 

#             (((df['ArCosthet'][i] < 90) and (df['ArcTan'][i] > 0)) or ( 

#                     (df['ArCosthet'][i] > 90) and (df['ArcTan'][i] < 0)))): 

#         df['appcomp'][i] = df['CompassA'][i] - 180 

#     elif ((270 < df['CompassA'][i] < 360) 

#           and ((df['ArCosthet'][i] > 90) and (df['ArcTan'][i] < 0) or ( 

#                     (df['ArCosthet'][i] < 90) and (df['ArcTan'][i] > 0)))): 

#         df['appcomp'][i] = df['CompassA'][i] - 180 

#     else: 

#         df['appcomp'][i] = df['CompassA'][i] 

 

for i in range(len(df)): 

    if df['ArCosthet'][i] < 90 and df['ArcTan'][i] > 0: 

        df['appcomp_MidPoint'][i] = df['ArCosthet'][i] 

    elif df['ArCosthet'][i] > 90 and df['ArcTan'][i] < 0: 

            df['appcomp_MidPoint'][i] = df['ArCosthet'][i] 

    elif (df['ArCosthet'][i] > 90) and (df['ArcTan'][i] > 0): 

            df['appcomp_MidPoint'][i] = 360-df['ArCosthet'][i] 

    elif (df['ArCosthet'][i] < 90) and (df['ArcTan'][i] < 0): 

            df['appcomp_MidPoint'][i] = 360-df['ArCosthet'][i] 

 

for j in range(len(df)): 

    df['difference'][j] = abs(df['appcomp'][j] - df['appcomp_MidPoint'][j]) 

    if 300>df['difference'][j]>50: 

                df=df.drop([j]) 

 

 

 

import queue as Q 

print('start') 

angel = 60 

dir = {} 

for i in range(len(df)): 

    if df['Id_Interse'][i] == 0: 

        continue 

    if df['Id_Interse'][i] not in dir: 

        dir[df['Id_Interse'][i]] = {} 

        dir[df['Id_Interse'][i]]['To_N1'] = Q.PriorityQueue() 

        dir[df['Id_Interse'][i]]['To_E'] = Q.PriorityQueue() 

        dir[df['Id_Interse'][i]]['To_S'] = Q.PriorityQueue() 

        dir[df['Id_Interse'][i]]['To_W'] = Q.PriorityQueue() 
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    if abs(df['appcomp'][i] - 0) < angel: 

        dir[df['Id_Interse'][i]]['To_N1'].put((abs(df['appcomp'][i] - 0), i, 

'N', df['appcomp'][i])) 

    if abs(df['appcomp'][i] - 360) < angel: 

        dir[df['Id_Interse'][i]]['To_N1'].put((abs(df['appcomp'][i] - 360), 

i, 'N', df['appcomp'][i])) 

    if abs(df['appcomp'][i] - 90) < angel: 

        dir[df['Id_Interse'][i]]['To_E'].put((abs(df['appcomp'][i] - 90), i, 

'E', df['appcomp'][i])) 

    if abs(df['appcomp'][i] - 180) < angel: 

        dir[df['Id_Interse'][i]]['To_S'].put((abs(df['appcomp'][i] - 180), 

i,'S', df['appcomp'][i])) 

    if abs(df['appcomp'][i] - 270) < angel: 

        dir[df['Id_Interse'][i]]['To_W'].put((abs(df['appcomp'][i] - 270), i, 

'W', df['appcomp'][i])) 

 

print('next step') 

finaldir = {} 

import sys 

for dot in dir.keys(): 

    if dot == 0: 

        continue 

 

    finaldir[dot] = Q.PriorityQueue() 

    if not dir[dot]['To_N1'].empty(): 

        finaldir[dot].put(dir[dot]['To_N1'].get()) 

    if not dir[dot]['To_E'].empty(): 

        finaldir[dot].put(dir[dot]['To_E'].get()) 

    if not dir[dot]['To_S'].empty(): 

        finaldir[dot].put(dir[dot]['To_S'].get()) 

    if not dir[dot]['To_W'].empty(): 

        finaldir[dot].put(dir[dot]['To_W'].get()) 

 

final = {} 

 

df['dir'] = 0 

for dot in finaldir.keys(): 

    while not finaldir[dot].empty(): 

        street = finaldir[dot].get() 

        if dot not in final: 

            final[dot] = {} 

        if street[2] not in final[dot].keys() and street[1] not in 

final[dot].values(): 

            final[dot][street[2]] = street[1] 

            df['dir'][street[1]] = street[2] 

df.to_csv("G:/Master's of Applied Science in Civil 

Engineering/Research/repository/Export_Output_105_TableToExcel_Refined7.csv") 
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Appendix II 

In this section the codes for developing safety performance functions (collision count 

models) are provided. The following is the R script which usese statistical libraries to build up 

Negative Binomial models and in the next phase, the Empirical Bayes hotspot analysis. 

 

# Crash Count Statistical Models, Negatice Binomial Aapproach on Pedestrain 

Vehicle Collisons at PTAPs 

 

 

#Loading Libraries 

 

library("MASS")    

library("stats") 

library("sjPlot") 

library("ggplot2") 

 

library("GGally") 

library("lmtest") 

 

 

rm(list=ls()) 

 

#the current directory as the active direcory of R-studio 

current_directory = dirname(rstudioapi::getSourceEditorContext()$path) 

setwd(current_directory) 

 

dir.create("results", showWarnings = TRUE, recursive = FALSE, mode = "0777") 

dir.create("results/general", showWarnings = TRUE, recursive = FALSE, mode = 

"0777") 

dir.create("results/negative_binomial", showWarnings = TRUE, recursive = 

FALSE, mode = "0777") 

 

 

#*** loading dataset 

 

 

db1 <- read.csv("Join_Output_246_20mINsct.csv", header = TRUE)   

 

View(db1) 

#check for NA and Missing 

db1[which(is.na(db1)),] 

db1 <- na.omit(db1) 
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#library(readxl)   

# db_x <- read_excel("Crash Frequency.xlsx", sheet = "Crash_Dataset") 

 View(db1) 

 

 

# column names and check for model input variables 

colnames_db <- colnames(db1) 

colnames_db 

 

db <- subset(db1, select = c(Ln_V_TrfSum30,Ln_P_VolSum30, 

Avg_Road_W,SIgnalzed,Count_4,Ave_SideWa, _Med_,Sum_grad_a,Avg_Num_Di )) 

 

 

#Negateive Binomial Regression, using MASS library 

glm_nb_0 <-  MASS::glm.nb(Count_4 ~ ., data = db, link = "log") 

# glm_nb_0$ 

 

beta_nb_0 = glm_nb_0[["coefficients"]][["(Intercept)"]] 

 

#~ Dispersion parameter PHI 

phi_nb_0 = glm_nb_0$theta 

 

#~ In thesis we saw alpha, which is the inverse of PHI: 

alpha_nb_0 = 1/phi_nb_0 

# we will use phi in most of the equation. 

 

#~ Mean and Variance of NB is equal to: 

mu_nb_0 = exp(beta_nb_0) 

variance_nb_0 = mu_nb_0 + (1/phi_nb_0)*mu_nb_0^2 

 

#~ Probability of crashes using NB distribution: 

# Pr_Y_NB_0 <- dnbinom(crash_count, mu=mu_nb_0, size=phi_nb_0, log = FALSE) 

 

 

source("Customized_Writing_Functions.R") 

 

 

generating_NegativeBinomial_results(glm_nb_0, "NB-SPF0") 

 

 #Hotspot Identification_ based on Potential Improvement in expected count of 

collisions 

 

 

db_hotspot <- data.frame(ID=db1[["stop_id"]]) 

 

 

db_hotspot$ACC <- db[["Count_4"]] 

 

 

db_hotspot$mu <- glm_nb_0$fitted.values 

 

mu_rp <- mean(db_hotspot$mu) 
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db_hotspot$PI_mu <- db_hotspot$mu - mu_rp 

db_hotspot$rank_mu <- rank(-db_hotspot[["PI_mu"]], ties.method="min") 

 

 

 

##Hotspot Identification_ based on EB Method: 

 

phi = glm_nb_0[["theta"]] 

db_hotspot$w <- phi / (phi + db_hotspot[["mu"]]) 

 

db_hotspot$EB <- ((1 - db_hotspot[["w"]]) * db_hotspot[["ACC"]]) 

+(db_hotspot[["w"]] * db_hotspot[["mu"]]) 

 

EB_rp <- mean(db_hotspot$EB) 

 

db_hotspot$PI_EB <- db_hotspot$EB - EB_rp 

 

db_hotspot$rank_EB <- rank(-db_hotspot[["PI_EB"]], ties.method="min") 

 

#Method: Posterior Probability of Excess ==== 

alpha = db_hotspot[["ACC"]] + phi         # shape 

beta = 1/(1 + phi/db_hotspot[["mu"]])     # scale 

 

db_hotspot$Pr_Theta_1_n <- 1 - pgamma(8, shape=alpha, scale = beta, log = 

FALSE) 

 

db_hotspot$PI_Pr_Theta <- db_hotspot[["Pr_Theta_1_n"]] - 0.95 

 

db_hotspot$rank_Pr_Theta <- rank(-db_hotspot[["PI_Pr_Theta"]], 

ties.method="min") 

 

 

write.csv(db_hotspot, "results/Hotspot_Identification_Results.csv") 

View(db_hotspot) 

 

################################################### 

 

db2 <- read.csv("Join_Output_251_noninsectt.csv", header = TRUE)   

 

db2[which(is.na(db2)),] 

db1 <- na.omit(db1) 

 

 

 

 

#Extracting column names 

colnames_db <- colnames(db2) 

colnames_db 

 

db <- subset(db2, select = c(LN_V100, LN_P100,Dis_INscti ,Avg_grad_a, 

Grn_MedB30, CC_at_Segs, AV_SidWE2, AV_RWPD  )) 

 

#Negateive Binomial Regression, using MASS library 

glm_nb_Non <-  MASS::glm.nb(CC_at_Segs ~ ., data = db, link = "log") 
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# glm_nb_0$ 

generating_NegativeBinomial_results(glm_nb_Non, "glm_nb_Non") 

 

beta_nb_Non = glm_nb_Non[["coefficients"]][["(Intercept)"]] 

 

#~ Dispersion parameter PHI 

phi_nb_Non = glm_nb_Non$theta 

 

#~ In thesis we saw alpha, which is the inverse of PHI: 

alpha_nb_Non = 1/phi_nb_Non 

# we will use phi in most of the equation. 

 

#~ Mean and Variance of NB is equal to: 

mu_nb_Non = exp(beta_nb_Non) 

variance_nb_Non = mu_nb_Non + (1/phi_nb_Non)*mu_nb_Non^2 

 

#~ Probability of crashes using NB distribution: 

# Pr_Y_NB_0 <- dnbinom(crash_count, mu=mu_nb_0, size=phi_nb_0, log = FALSE) 

 

 

source("Customized_Writing_Functions.R") 

 

 

generating_NegativeBinomial_results(glm_nb_Non, "NB-SPFNon") 

 

#Hotspot Identification_ based on Potential Improvement in expected count of 

collisions 

 

 

db_hotspot2 <- data.frame(ID=db2[["Stop_ID_1"]]) 

 

 

db_hotspot2$ACC <- db2[["CC_at_Segs"]] 

 

 

db_hotspot2$mu <- glm_nb_Non$fitted.values 

 

mu_rp <- mean(db_hotspot2$mu) 

 

db_hotspot2$PI_mu <- db_hotspot2$mu - mu_rp 

db_hotspot2$rank_mu <- rank(-db_hotspot2[["PI_mu"]], ties.method="min") 

 

 

 

##Hotspot Identification_ based on EB Method: 

 

phi = glm_nb_Non[["theta"]] 

db_hotspot2$w <- phi / (phi + db_hotspot2[["mu"]]) 

 

db_hotspot2$EB <- ((1 - db_hotspot2[["w"]]) * db_hotspot2[["ACC"]]) 

+(db_hotspot2[["w"]] * db_hotspot2[["mu"]]) 

 

EB_rp <- mean(db_hotspot2$EB) 

 

db_hotspot2$PI_EB <- db_hotspot2$EB - EB_rp 
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db_hotspot2$rank_EB <- rank(-db_hotspot2[["PI_EB"]], ties.method="min") 

 

#Method: Posterior Probability of Excess ==== 

alpha = db_hotspot2[["ACC"]] + phi         # shape 

beta = 1/(1 + phi/db_hotspot2[["mu"]])     # scale 

 

db_hotspot2$Pr_Theta_1_n <- 1 - pgamma(8, shape=alpha, scale = beta, log = 

FALSE) 

 

db_hotspot2$PI_Pr_Theta <- db_hotspot2[["Pr_Theta_1_n"]] - 0.95 

 

db_hotspot2$rank_Pr_Theta <- rank(-db_hotspot2[["PI_Pr_Theta"]], 

ties.method="min") 

 

 

write.csv(db_hotspot2, "results/Hotspot_Identification_Results2.csv") 

View(db_hotspot2) 
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