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Abstract

Latent Spaces for Antimicrobial Peptide Design

Samuel Renaud

Current antibacterial treatments cannot overcome the growing resistance of bacteria to an-

tibiotic drugs, and novel treatment methods are required. One option is the development of new

antimicrobial peptides (AMPs), to which bacterial resistance build-up is comparatively slow. Deep

generative models have emerged as a powerful method for generating novel therapeutic candidates

from existing datasets; however, there has been less research focused on evaluating the search

spaces associated with these generators. In this research I employ five deep learning model archi-

tectures for de novo generation of antimicrobial peptide sequences and assess the properties of their

associated latent spaces. I train a RNN, RNN with attention, WAE, AAE and Transformer model

and compare their abilities to construct desirable latent spaces in 32, 64, and 128 dimensions. I

assess reconstruction accuracy, generative capability, and model interpretability and demonstrate

that while most models are able to create a partitioning in their latent spaces into regions of low

and high AMP sampling probability, they do so in different manners and by appealing to different

underlying physicochemical properties. In this way I demonstrate several benchmarks that must be

considered for such models and suggest that for optimization of search space properties, an ensem-

ble methodology is most appropriate for design of new AMPs. I design an AMP discovery pipeline

and present candidate sequences and properties from three models that achieved high benchmark

scores. Overall, by tuning models and their accompanying latent spaces, targeted sampling of

anti-microbial peptides with ideal characteristics is achievable.
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Chapter 1

Introduction

With the rise in prominence of deep learning in recent years there is a growing interest utilizing

it in the field of biophysics. A biomolecular researcher who might have required years to develop

a new candidate drug, iteratively selecting candidate compounds, can now leverage computational

resources to greatly accelerate the filtering process and find new candidates for drug development.

The astounding pace of research in the field of deep learning has left in its wake many unanswered

problems, one of which is the interpretability crisis. While deep learning models have been setting

records across disciplines, there is yet to be a concise theoretical development on exactly what

is being ªlearnedº by these models. To elucidate the inner workings of these models for antibi-

otic design we build, train and compare different generative deep learning architectures, and their

respective search spaces.

Specifically in this thesis I present a thorough investigation of 5 generative deep learning mod-

els tasked with de novo antimicrobial peptide (AMP) generation. One objective of this research is

to elaborate on how different generative models construct representational spaces when learning

about antimicrobial peptides. It is of interest to map the complex high dimensional representations

learned by deep learning models down to lower dimensions that are more readily interpretable and

comparable. Once understood a deep learning models strengths and weaknesses can be properly

assessed and downstream AMP candidate generation can be performed with greater precision and

quantified uncertainty.

In Chapter 2, I briefly introduce the crucial deep learning models and overarching architectures

featured throughout this research. In Chapter 3, I will provide context for this research through an

overview of previous research on AMPs and de novo AMP design using deep learning. In Chapter

4, I will present the work I have done on leveraging deep generative models for informed de novo

AMP design. In this research I comparatively investigate the differences between the constructed

latent spaces, their respective interpretability and their ability to be efficiently sampled for de novo

design of AMP candidates. Finally I will finish with closing thoughts and remarks for future AMP

researchers using deep learning models.
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Chapter 2

Deep Learning and Generative Models

Overview

This chapter introduces the background on various deep learning models I investigated during

my thesis work. The main goal of this chapter is not to elaborate on all the details and inner work-

ings of these models but to present the frameworks on which they operate and the main differences

between each model. The chapter first introduces machine learning and deep learning broadly, and

then introduces the concept of a neural network with a brief description of their objectives and

training methodology. Using the basic neural network as a starting point, I introduce important

neural networks such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks

(RNN). Finally I introduce the concept of a generative deep learning model and outline popular

architectures such as the Variational Autoencoder (VAE), Adversarial Networks and the Trans-

former. The distinction between the neural networks and the architectures is that architectures are

composed of neural networks and feature a variety of the aforementioned fully connected, CNN

and RNN networks as blocks within their designs.

2.1 Deep Learning

Machine learning is an optimization procedure that makes use of large quantities of data to

minimize objective functions and achieve a goal [1]. A machine learning model is typically used

when a researcher wants to find patterns in large quantities of data. To implement a machine

learning model it is necessary to establish what the over-arching goal, model-type, input data,

objective function and optimizer are. The goal serves to direct the researcher towards a particular

framework and objective function and joined with the input data they will be the basis for the

model-type. Examples of input data are: text, images, audio and sensor data.

I begin by introducing the notion of a linear regression model from machine learning and show

that a fully connected neural network, a simple deep learning model, is a twist on linear regression.

Linear regression models have as objective function the minimization between a learned linear

curve and a dataset. The relation captured by a linear regression model is given by equation 1,

y = WTX + b (1)

Where W is the learned parameter matrix of the model, b is a learned bias constant and X is an

2



Figure 2.1: A visualisation of a neural network as a directed graph (top), along with its mathe-

matical matrix equivalent (bottom). The bias, bi, is omitted from the graph representation but is

implied through the passing of the Wi layer.

input data matrix. We can discern from this function that a linear regression model can adapt to fit

linear trends in data.

While traditional machine learning models are capable of tasks beyond linear fits, they have

struggled to solve complex high dimensional problems such as voice or image recognition [4].

Deep learning models have been introduced to address the shortcomings of traditional machine

learning and have been very successful. Neural networks are deep learning models that approxi-

mate a function y = f(X;W ), where X is the input data and W are the learned weights. A fully

connected neural network is a network that can be represented as a directed graph with each node

from the previous layer being connected to all nodes in the following layer (Fig. 2.1). Each node

in the graph represents a multiplication operation between input data and learned parameters. The

matrix view of Fig. 2.1 clearly depicts the similarities between the linear regression model and the

fully connected model where an input X is multiplied by a weight matrix W and a bias is added at

the end. The key distinction between fully connected networks and linear models is the stacking

of linear layers, two in the model shown in Fig. 2.1, and the non-linear activation function applied

after the multiplication of the inputs X by the parameters, shown as the red dot at the end of the

weight circle in Fig. 2.1.

Non-linearities or activation functions are non-linear functions that serve to augment the com-

plexity of the models. Examples of commonly used activation functions are the Rectified Linear

Unit (ReLU), ReLU(x) = Max(0, x), the Sigmoid function, σ(x) = 1
1+e−x , and the hyperbolic

tangent function, tanh(x). The use of a non-linear activation function transforms the linear net-

work into a non-linear model that is now capable of mapping the input X to a non-linear output y.

The sacrifice made by switching to a non-linear activation function is that the optimization prob-

lem is no longer convex and can no longer be solved in closed form [1]. The advantage of learning

non-linear mappings usually outweighs the cost of having to solve the optimization problem itera-

tively.

The iterative solution to the optimization problem is typically a form of Stochastic Gradient

3



Descent (SGD). Intuitively SGD is like rolling a ball down a mountainous region with the height

of the ball representing the minimization of the objective function. SGD is composed of three main

steps,

(1) The forward pass, performing the multiplications on the input x by the randomly initialized

parameters θ and applying the activation functions.

(2) The loss function calculation, calculates the difference between the model output ŷ and the

true data label y.

(3) The backpropagation, calculates the gradient of the loss function with respect to the model

parameters and iteratively update all the parameters θ, of the model, by taking a fixed-

distance step in the direction opposing the gradient.

The backpropagation step is intuitively understood with the mountainous region example since it

is desirable to find the direction of steepest descent at any given step. In the following sections I

will present neural network variations that were used in the research for this thesis. The variations

typically place an emphasis on learning useful representations of different input-data modalities by

modifying the underlying connections in the network graphs.

2.1.1 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) were inspired by the animal vision system [5]. When

compared to fully connected neural networks convolutional neural networks have sparse local con-

nections between the inputs and model parameters (Fig. 2.2). CNN’s start with randomly initialized

weight matrices called kernels. A kernel is a sliding window that passes over the input data and

multiplies the data values within the window frame by the fixed kernel values. CNN’s optimise

the kernel weights to enforce learning useful representations of the data. In Fig. 2.2 data is passed

from the input layer at the bottom to the following layer above. The grey coloring shows both

the kernel, of size k = 3, applied to nodes, x2, x3, x4, and how the following layer node, s3, only

receives information from these three preceding nodes. This is in contrast to the fully connected

network underneath which receives input from all preceding nodes. In this manner CNN’s extract

local features from the data while fully connected networks extract global features.

While CNN’s have been shown to perform well on images, they can also be applied to 1-

dimensional data such as a sequence of text or characters. It is in this context we apply CNN’s

in this research, to learn patterns and features from peptide sequences, see the methods section of

chapter 4.

2.1.2 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNN) are specialised in sequential data processing [6]. Sequential

data has the shape xt, where x is a vector and t denotes the index in the sequence. An example

of sequential data is a sentence, where each word in the sentence can be represented by a unique

vector and ordered with an integer, t, determined by its respective position in the sentence. An

RNN takes as input a vector ht−1 as a hidden state and a sequence vector xt and outputs an updated

4



Figure 2.2: A graphical comparison of a CNN (top) with a kernel of size 3, and a fully connected

neural network (bottom). The grey coloring indicates the information that is passed from the

bottom layer to the center node, s3 on the top layer, The figure was edited from [1].

hidden state ht. It is typical to set the initial hidden state, h0 to be a zero-vector.

ht = f(ht−1, xt) (2)

The recurrent aspect is visualized by unrolling equation 2 over multiple iterations, revealing each

update of the network from an initial hidden node, h0, to the final node, ht, where t is an integer

number of iterations. In contrast to CNN’s the parameters of the RNN are shared between each

hidden state update (Fig. 2.3). This also means that the backpropagation step will repeatedly update

the same weight matrix at each hidden node which leads to exploding and vanishing gradients, a

known issue in RNN’s where the numerical values of the gradients will become either very large

(explode) or very small (vanish). The shared nature of the weights of RNN’s lead them to be

referred to as the network’s memory. Sharing weights over all hidden states results in a lossy

memory, stemming from the inability for models to output an identical copy of the input text due to

the limited capacity of the model to simultaneously store all the feature information of the previous

input vectors. Of the five models built for the AMP research project 4 of them feature a kind of

RNN called a Gated-Recurrent-Unit (GRU), introduced by Cho et al. [7] as a successor to RNN’s,

addressing prevailing RNN issues such as memory loss and vanishing or exploding gradients.

2.2 Generative Deep Learning

Generative deep learning enables the synthesis of new data from a known dataset. Generative

models work by using deep neural networks to learn representations of an otherwise intractable

probability distribution of the original dataset [1]. Formally, given a dataset X d = {xd
1, x

d
2, ..., x

d
n},
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Figure 2.3: A graphical representation of a rolled RNN (left) and its unrolled form (right), The

figure was edited from [1].

where d is the dimensions of the samples, assumed to be independently and identically distributed,

the generative model must learn about the probability distribution of the original X d space and

construct an analogous space Zh, where h denotes the dimensions of the samples in the new repre-

sentation. Once trained, sampling from a generative model should give new data-points as though

they had been sampled from the original X d dataset. The analogous space, Zh, is commonly re-

ferred to as the ªlatent spaceº. It should be noted that the dimensions of the input data d do not

need to be equal to the latent representation shape h. It is often desirable for h < d such that both

the computational efficiency and interpretability in the Zh space are improved. The model that

learns the mapping from X d −→ Zh, is commonly referred to as the encoder, and can be used to en-

code inputs into their latent representations. The model that learns the mapping from Zh −→ X d, is

commonly referred to as the decoder and once trained can be used to effectively generate samples

from the complex X d distribution. The following section introduces widely used deep learning

architectures such as VAE’s, GAN’s and Transformers.

2.2.1 VAE

The variational autoencoder (VAE) is a latent variable model first introduced in Kingma and

Welling [8] that combines an ªencoderº and a ªdecoderº to form a generative model. The VAE

has two objective functions that must crucially be balanced for a model to operate as intended.

The first objective function measures the accuracy of the reconstructed outputs, with respect to the

original inputs. This measures the VAE’s ability to effectively compress data with the encoder and

decompress it with the decoder. The second objective function measures the distribution of the

encoded data in the latent space and compares it to a chosen prior distribution. The inclusion of

a chosen prior stems from the mathematical derivation of VAE’s and is explained in detail below.

The second objective function can be thought of as a latent space regularization function that brings

the latent probability distribution closer to the desired true data distribution. The VAE model is

based on a bayesian statistics derivation of the sought after true data distribution p(x), x ∈ X . The

problem is introduced as follows, we can approximate the true data distribution p(x) by a joint

distribution over the data, x, and the latent variables, z.

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x|z)pθ(z) dz (3)

Where pθ(x) is a model approximation of the true data distribution with parameters θ and pθ(x, z)
is the joint distribution over both the data x and z the latent variables. While the joint distribution,
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pθ(x, z), is computable, The integral on the right hand side of equation 3 is intractable.

Instead of dealing with this integral we can approach the problem from a bayesian inference

perspective, given a neural network that learns an approximation qϕ(z|x) of the true posterior

pθ(z|x), where ϕ are the parameters of the neural network, such that qϕ(z|x) ≈ pθ(z|x). The

error in the approximation can be evaluated using the Kullback-Leibler divergence, KL(q||p) =∫
q(x)log q(x)

p(x)
dx. We will momentarily turn our attention to this error term and find our way back

to the true data distribution, pθ(x), through it.

KL(qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x) log(
qϕ(z|x)
pθ(z|x)

) dz (4)

making use of the following probability product rule,

pθ(z|x) =
pθ(x, z)

pθ(x)
(5)

The KL error term can be re-written as,

KL(qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x) log(
qϕ(z|x)pθ(x)

pθ(z, x)
) dz (6)

Using log properties we can split the product in the integral,

KL(qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x) log(
qϕ(z|x)
pθ(z, x)

) dz +

∫
qϕ(z|x) log(pθ(x)) dz (7)

The first term, on the right of the equal sign, is called the Evidence Lowerbound, (ELBO)

and while the equation has gotten more complicated, we have managed to isolate the true data

distribution, pθ(x) on the right side. If we now solve for the rightmost term we get,

∫
qϕ(z|x) log(pθ(x)) dz = −

∫
qϕ(z|x) log(

qϕ(z|x)
pθ(z, x)

) dz +KL(qϕ(z|x)||pθ(z|x)) (8)

Since pθ(x) is independent of qϕ(z|x) we can remove it from the integral and we can get rid of the

negative in front of the ELBO using log properties giving,

log(pθ(x)) =

∫
qϕ(z|x) log(

pθ(z, x)

qϕ(z|x)
) dz +KL(qϕ(z|x)||pθ(z|x)) (9)

Thus using the KL-error term we have managed to obtain an equation for the true data distribution

in terms of the latent variable z and the original variables x.

log(pθ(x)) = ELBOθ,ϕ +KL(qϕ(z|x)||pθ(z|x)) (10)

Moving the KL to the left side of the equation it is observed that the ELBO is actually a lower

bound on the desired data distribution pθ(x) and as KL goes to 0 the ELBO becomes equal to
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log(pθ(x)).
ELBOθ,ϕ = log(pθ(x))−KL(qϕ(z|x)||pθ(z|x)) (11)

Having identified the ELBO as a tractable optimization objective we now need to elaborate on

the optimization details. In order to optimize over the network parameters θ and ϕ found in the

ELBO we need to compute the gradients with respect to said parameters ∇θ,∇ϕ. The gradient

with respect to the θ parameters presents no difficulties, by definition we can expand the KL term

as,

KL(qϕ(z|x)||pθ(z|x)) = qϕ(z|x) log(
pθ(z, x)

qϕ(z|x)
) (12)

∇θELBOθ,ϕ = ∇θ

∫
qϕ(z|x) log(

pθ(z, x)

qϕ(z|x)
) dz (13)

∇θELBOθ,ϕ =

∫
qϕ(z|x) (∇θlog(pθ(z, x))−∇θlog(qϕ(z|x))) dz (14)

∇θELBOθ,ϕ = ∇θlog(pθ(z, x)) (15)

However the gradient with respect to the ϕ parameters is more challenging due to the qϕ(z|x) in

the integral. The solution to this problem was coined the reparameterization trick and expresses

the expectation found in the ELBO, Eqϕ(z|x)[f(qϕ(z|x))] =
∫
z
qϕ(z|x)f(qϕ(z|x)) as found in the

integral in equation 14, as a transformation of a new differentiable and invertable function of the

latent parameter z,

z = g(ϵ, x, ϕ) ; ϵ ∼ p(ϵ) (16)

where ϵ ∼ p(ϵ) is a noise sample from a selected random distribution.

Eqϕ(z|x) = Ep(ϵ) (17)

Now the gradient can now be brought into the expectation Ep(ϵ),

∇ϕELBOθ,ϕ = ∇ϕEp(ϵ)[f(z)] = Ep(ϵ)[∇ϕf(z)] ∼ ∇ϕf(z) (18)

Where z = g(ϵ, x, ϕ) is the new function with random noise sampled from p(ϵ).
Making use of the reparameterization trick and canceling the ELBO with the pθ(x) term, as

we would like for them to be equal once the model is optimized, the optimization objective is

re-written as,

ELBOθ,ϕ − log(pθ(x)) = Lmin = Eqϕ(z|x)[log(
pθ(z, x)

qϕ(z|x)
)] (19)

Lmin = Eqϕ(z|x)[log(pθ(z, x))− log(qϕ(z|x))] (20)

Lmin = Ep(ϵ) [log(pθ(x, z))− log(qϕ(z|x))] (21)

Where z is now a differentiable and invertible transformation of another random variable ϵ,

z = g(ϵ, ϕ, x) (22)

This new estimate of Lmin provides an equation whose partial derivatives with respect to both θ
and ϕ can be readily computed because the pθ and qϕ terms are now separate inside the expectation.
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It is common to discretize the problem and form a Monte-Carlo estimate of Lmin by sampling ϵ(l),
where l = 1, 2, 3, ..., L, and the expression for Lmin now takes the form,

Lmin =
1

L

L∑
l=1

[log pθ(x, z)− log qϕ(z|x)] (23)

While VAE’s are well grounded with a foundation in bayesian statistics the introduction of the

reparameterized latent space, with a commonly applied gaussian prior, resulted in blurry images on

image generation tasks. The blurry image problem has since been addressed with various new and

more complex architectures but is still an active area of research [9], [10]. In the context of VAE’s

for antimicrobial peptide design the gaussian prior enforced on the latent space results in a single

peptide being encoded as a distribution over a subset of similar peptides, and has a noticeable effect

on reconstruction accuracy.

2.2.2 Adversarial-Models

Adversarial deep learning models such as Generative Adversarial Networks (GAN) [11], and

Adversarial Autoencoders (AAE) [12], are deep learning models that, in the simplest case, feature

two competing neural networks (Fig. 2.4). Both networks have cost functions that when minimized

will improve overall performance while increasing the difficulty for the opposing network. GAN

architectures feature so-called ªgeneratorº and ªdiscriminatorº models. The generator model will

receive noise as input and attempt to construct a realistic sample similar to those featured in the

training dataset. The discriminator model will receive ªrealº and ªgeneratedº data and attempt to

discern which is which. Corresponding loss functions will evaluate the generator’s performance

and the discriminator’s performance individually, and training both models concurrently will result

in a competition to produce realistic samples similar to the training data. GAN’s can be difficult

to train because the discriminator and generator must always be kept performing at approximately

the same level. If the discriminator significantly outperforms the generator a ªcollapseº effect

will be seen causing the discriminator to overfit and the generator to essentially give-up. The

reverse is also true, if the generator outperforms the discriminator the discriminator will also stop

improving. Another limitation of GAN’s is that they do not directly encode input data to a latent

representation, making the default sampling a randomized process using a random noise seed. This

will be remedied with AAE models introduced next.

The AAE in contrast is built on top of the VAE framework, where an encoder model embeds

input data to a latent space and a decoder model transforms latent data back into data samples.

The AAE adds an additional model named the discriminator (Fig. 2.5). The AAE discriminator

functions in a similar manner to the GAN discriminator but instead of receiving two samples in the

form of the training data, it receives latent vectors, from encoder-embeded input data, and artificial

latent vectors created by sampling numbers from a gaussian distribution. The discriminator learns

to discern between the true gaussian-sampled vector and the encoder generated latent vectors. This

forces the AAE encoder to generate latent vectors that match the desired prior distribution, which

in the trivial case, is the gaussian distribution.
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Figure 2.4: The GAN architecture featuring the generator and discriminator neural network blocks.

The generator receives a noise sample from which it generates an imposter sample as close to data

drawn from the true dataset. The discriminator will attempt to correctly determine which is the

imposter data and will receive feedback on this choice for training.

Figure 2.5: The AAE architecture featuring the encoder and decoder neural network blocks as well

as the adversarial discriminator network. The encoder receives a data sample as input and passes

it through the encoder that transforms the data to its the latent representation. As in the traditional

autoencoder a decoder layer will transform the latent vector back into the original data. A separate

latent vector copy will be passed to the discriminator model along with a noise sample intended

to enforce the prior distribution on the latent representation as discussed in the VAE model. The

discriminator must now predict whether the latent vector or the random noise vector is the real

noise sample, thus regularizing the learned encoder representations.

2.2.3 Transformers

The Transformer model originally introduced by Vaswani et al. [2] established a paradigm

shift in the field of deep learning. Specifically the Transformer model addressed challenges in the

domain of natural language processing where, at the time, recurrent neural networks dominated.

The typical framework for a language model was to leverage RNN encoder and decoder blocks to

process sequences of text. The Transformer model sets aside RNN’s entirely and solely leverages

the attention mechanism for both the encoder and the decoder parts of the model. The model

architecture presented in [2] is shown in Fig. 2.6. Since the Transformer was introduced there

have been countless variations on the architecture, most of which have also opted to use the label

ªTransformerº, even when the models only feature either the encoder or decoder portions of the

original transformer model, and in some cases it is sufficient that the idea be based on the paper

by [2] to label the model a variant of the Transformer. This has been the source of confusion for

many in the field, trying to make sense of the significance and order of the many architectures.

The attention mechanism emerges from the world of seq-2-seq, or sequence-to-sequence, mod-

els where a deep neural network receives a text prompt and must return an appropriate sentence
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Figure 2.6: The transformer model as presented in [2]. The left side unit is the encoder and the

right side unit is the decoder.

as output [13]. The attention mechanism attributes weights between words in a sentence creat-

ing weighted connections between pairs of words (Fig. 2.7). Formally the attention mechanism

operates through a set of matrix dot products between embeddings of words in a sentence. The

embedded words are linked to query-key-value vectors, see equation 24.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (24)

Where Softmax() is the softmax activation function, Q is the query vector, K is the key

vector and V is the value vector. The factor
√
dk in the denominator normalizes the results to

prevent the dot products from becoming too large given it is an unbounded operation. The initial

dot product between the query, a word embedded as a vector, and a key, another word embedded

as a vector, can be conceptualized by imagining vectors, with a magnitude and direction, who’s dot
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Figure 2.7: A visualisation of the attention mechanism. Here the attention mechanism identifies

the important relation between the words ºTheº and ºcatº and attributes a greater weight to this

word-pair. The attention connections for subsequent words in the sentence are hidden for ease of

view.

product will reveal the distance between these word embedding vectors. The Softmax function

sets strong query-key pairs to 1 and weak pairs to 0. The value vector serves as a learned weight

scaling feature, hence the use of the word ªvalueº, it establishes whether or not the model should

care about a given pair connection.

When referring to the Transformer model it is useful to break it into its constituent encoder

and decoder parts, and it should be noted that often only one of the two units are necessary for a

particular task. For brevity I will omit mention of the fully connected layers featured after each

attention layer, these layers serve to aggregate the outputs from the multiple attention heads after

all attention blocks.

The encoder model, shown on the left side of Fig. 2.6, takes in embedded sequences of text and

attends to all the words in the input sentence. Once the output is passed to a fully connected layer

we have completed the encoding phase and now have text embeddings as featured in the BERT

encoder model [14] [15].

The decoder model, shown on the right side of Fig. 2.6, is more complex and can be broken

down into 3 separate pieces. The self-attention over the output (the bottom right masked attention

layer in Fig. 2.6), The attention over the embedded inputs and self-attention-outputs (the top right

attention layer in Fig. 2.6), and finally the output predictions (the softmax block at the top right of

Fig. 2.6).

The decoder self-attention, (bottom right), receives an embedding of the output sequence. If

this is the first pass through the decoder the first token will be the sequence start token and subse-

quent sequence positions will be padded empty, up to the max sequence length. This first part of

the decoder also usually features a mask over the padded future-words to be predicted to prohibit

the model from attending to words beyond the word immediately following the previous token.

The embedding is passed through the masked self-attention layer and the output is sent to the fol-

lowing decoder part. This first block can be thought of as a staircase, where at the base of the stairs
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you pick up a <start> token, but cannot see what lies on the upcoming steps. With each step you

pick up a new token, (the one the model has just predicted), and, while looking at all the pieces you

have picked up on the lower steps, use attention to find relationships between these words. With

these initial relations established you are now ready to move to the next attention block, where you

will receive the unmasked input-sentence embeddings and try to make sense of the all information

gathered so far.

The middle attention block of the decoder receives the decoder self-attention as keys and the

embedded encoder self-attention, as queries and values, (see Section 2.1.3 for the attention equa-

tion). The key, query and value distinction here emphasizes what is being attended to in this block,

namely the connection between the input sequence and the currently generated output sequence. It

is interesting to note that while the embedded outputs were masked the embedded inputs that are

attended over in this part are not. This allows the decoder to attend over the entire input sentence

to generate the most appropriate following output token.

Following the input-output attention layer the outputs are sent to a Softmax function that will

generate probabilities for words that will fill the next token position.

Examples of well-known decoder only models are GPT-1 and GPT-2 models from OpenAI

which formed the foundation for GPT-3 [16] and the Chat-GPT chat-bot model that has seen

widespread popularity as of early 2023.
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Chapter 3

Review of Generative Deep Learning for

AMP Design

Growing antibiotic resistance is a major threat to global health, turning infections that were

once easy to treat into life-threatening illnesses [17][18]. Such rapidly increasing resistance to tra-

ditional antibiotic regimens has led to the necessity of finding new and unique treatment methods

[19]. One possible recourse is the use of antimicrobial peptides (AMPs) [20][21], which have been

identified within the innate immune systems of a multitude of species, including humans, and act

to modulate the proliferation of infectious diseases [22]. AMPs comprise a candidate class of short

proteins, generally no longer than 100 amino acids and often much shorter [23]. Many of them

preferentially partition onto prokaryotic (bacterial) over eukaryotic (mammalian) cell membranes

and cause bacterial cell death through destabilization of the membrane and expulsion of the intra-

cellular contents[24][25]. Because of the indiscriminate manner with which they attack an integral

part of the cell, build-up of resistance to AMPs is relatively slow. Databases of around 10,000

discovered AMP sequences [26][27][28][29], have been made publicly available, but there there

remains significant need for further cataloging and disparate analyses.

One tool of growing importance in the arsenal of the biomolecular designer is generative deep

learning, a subset of deep learning [30]. Deep learning, in which a computer optimizes the pa-

rameterization of a neural network model in a data-rich regime, has become a powerful player in

recent years by leveraging the increasing amounts of scientific data and the phenomenal growth

in computational power over the last decades. Neural networks are formed by connecting simple

functional units known as ªperceptronsº through their inputs and outputs to form complex func-

tion approximators. Non-linear activation functions between the linear operations increase model

representational capacity at the cost of having to solve a non-convex optimisation task [1]. Gen-

erative deep learning in specific refers to the use of a model trained from a large body of data to

sample new datapoints from an underlying probability distribution intended to mimic as closely

as possible that of the training data. One particular variety of generative deep learning model

demonstrating competitive performance in the sphere of biomolecular design is the variational

auto-encoder (VAE) and its variants [8, 31], in which data points are explicitly embedded in a

smooth, continuous ªlatent spaceº that can function as a search space for optimization [32].

In the past five years, there has been an explosion of research in the field of deep generative

models for small molecule drug design [32][33][34][35][36]. Most work in this area has, until now,

has been focused on the design of small molecules, with only a few studies on the design of short
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peptides [37][38][39], but in the last year or two research in this area has begun to grow [37]. For

example, Das et al. [37] constructed a Wasserstein Autoencoder (WAE) model that formed a com-

plete pipeline for de-novo protein design and identified two sequences with potent antimicrobial

activity against E.coli. In another paper by the same team[38], they created a tool, (IVELS), for

analysing VAE models, throughout the training process, with which they could select models that

perform best. Two other relevant recent studies have reported on the use of an Long Short-Term

Memory (LSTM) model to design peptides with experimentally-verified activity against multi-

drug resistant pathogens, and the use of generative Recurrent Neural Networks (RNNs) to design

non-hemolytic AMPs [40][41].

One primary point of interest that is beginning to attract attention is the quality of the latent

space itself. Because in data-rich regimes, VAEs and other generative models can be extremely

powerful, the focus in past work has been primarily on improving performance [33][42][43]

[44][45][46]. However, construction of an interpretable and well-organized latent space not only

tends to make targeted feature sample generation easier, it also significantly improves the ability

of the user to apply domain expertise to the problem at hand. Therefore, although we do not

ignore model performance, a major focus of this article is on interpretability, trustworthiness, and

organization of the latent spaces themselves.

In work by GÂomez-Bombarelli et al. [32][47][45], the authors demonstrated that training a

property predictor on the latent space and forcing the model to consider the quality of its pre-

dictions as part of its overall goal leads to an ordering of the latent space, which is desirable for

generating candidates with particular features. Because latent spaces tend towards dimensionali-

ties on the order of 30 or above, this orderedness has been visually presented through projection

onto a two-dimensional space, often by using principal components analysis (PCA) to identify the

most relevant variables. Since PCA is a linear projection, it remains unclear how well this visual

orderedness is preserved in the high-dimensional space, and therefore we make a point to address

the trustworthiness of this simple, rapid, and useful analytic technique.
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Chapter 4

Latent Spaces for Antimicrobial Peptide

Design

4.1 Introduction

While previous methods have focused on the longer proteins that represent a larger fraction

of the known proteome this research focuses on small antimicrobial peptides (AMPs). Much of

the previous work discovering protein embeddings with deep neural networks has used large latent

space representations [48][49][50] to maximize data throughput or graph-based representations

which require the use of graph neural networks to process the protein graphs. In this work we

emphasize small latent representations and model interpretability in order to construct interpretable

search spaces for AMP design.

More generally, in this chapter, we focus on the question of latent space quality and inter-

pretability for the relevant test case of generation of novel antimicrobial peptide sequences. We

train five different deep generative models with VAE-like latent spaces and assess and compare

their different behaviors in terms of reconstruction accuracy, generative capacity, and interpretabil-

ity. We demonstrate that, as expected, a property predictor leads to an ordering in the latent space.

We quantify this ordering and assess how well a PCA projection captures the properties of the

original latent space. We argue that the better the PCA projection, the more interpretable the latent

space, because we can apply a ranking to linear combinations of the latent space dimensions, al-

lowing us to more easily identify bridge variables that tell us what the model considers important.

We also show that the models are capable of generating unique and diverse sequences that grow

more AMP-like in specific regions of the latent space.

4.2 Methods

We trained five different models of three different latent-space sizes on a dataset of approxi-

mately 300,000 short peptides. In the following sections, we describe and justify the dataset and

its properties, the model architectures and the training procedure with relevant hyperparameters.
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Figure 4.1: Histogram of the StarPep database peptides according to their bio-active functions.

Peptides featuring multiple functions appear multiple times. The right most bar combines peptides

featuring function labels not shown in the histogram.

4.2.1 AMP Dataset Construction

The datasets used in this study are a subset of peptides from the Uniprot database [51], com-

posed of 268,195 short peptide sequences with a maximum sequence length of 50 residues, com-

bined with a set of 35,806 sequences from the StarPep database, which features short bio-active

peptides [52]. We restrict our training set to sequences of lengths 2-50 amino acids because a sig-

nificant majority of AMPs are short peptides with length < 50, and 85% of the peptides featured

in StarPep are between 2 and 50 amino acids long [53]. Preliminary testing demonstrated that

retaining peptides up to 100 amino acids in length led to worse performance, presumably due to

the heightened sparsification of the dataset in that regime.

Out of the total 45,120 peptides in the StarPep database, 13,437 of them are labelled as having

antimicrobial properties (Fig. 4.1). StarPep aggregates bioactive peptides from over 40 existing

datasets featuring peptides with sequence lengths between 2 and 100 amino acids. After removing

from the dataset the 15% of the peptides featured in StarPep with sequence lengths greater than

50 amino acids and peptides with non-standard amino acids, we retained 35,806 of the original

45,120 sequences, of which 10,841 are labelled as having antimicrobial properties. The remaining

24,965 peptides from Starpep did not have the label Antimicrobial.

Although certain deep learning algorithms can perform well when trained on ªsmallerº datasets

of tens of thousands of datapoints [40][41], these are more typically classifiers rather than gener-

ators. When we trained our models on the 35,806 datapoints from the StarPep database alone,

we found that the models demonstrated poor reconstruction accuracy, low robustness, and high

error. One method for solving this is to pretrain on a large corpus and fine-tune on a smaller one;

however, we chose instead to train all at once on a larger corpus, as has previously been done for

natural language models and chemical language models [32][33][34][35][36].

Since preliminary analysis on the StarPep database sequences indicated that 35,806 was not a

large enough dataset to properly train our generative VAE-based models, we expanded the dataset

by adding negative examples from Uniprot. After executing the query [(length:[2 TO 50]) AND

(keyword:(KW-0929))], we found 714 of unreviewed peptide sequences with the label ªantimicro-

bialº and, placing ªNOTº before the keyword, found 3,713,736 of unreviewed peptide sequences

without the label ªantimicrobial.º We also found 1,108 of reviewed peptide sequences with the

label ªantimicrobialº and 11,941 reviewed peptides without the label ªantimicrobialº. Since we

would not have been able to significantly expand our dataset by using solely reviewed sequences,
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Figure 4.2: Length distribution of the entire peptide dataset used in this study.

we choose to include some non-reviewed sequences. We recognize that in the worse case it is

possible that this may include a potentially substantial number of AMPs that have not been iden-

tified as such. We considered the possibility of utilizing an existing sequence predictor for AMPs

to identify these possibly unlabeled AMPs; however, we decided against it to avoid introducing

unknown assumptions into the data at this stage. Instead we consider a different goal for ordering

the space. We employ a property predictor that classifies as hits peptides with experimentally-

verified antimicrobial properties (which we label with integer 1) and as misses peptides without

experimentally-verified antimicrobial properties (which we label with integer 0) and demonstrate

that training such a predictor enforces an ordering of the space that allows generation of AMP-like

sequences.

To avoid having a prohibitively small percentage of experimentally-verified AMPs in the dataset

and to match the sizes of datasets used in previous experiments with similar architectures, we sub-

sampled 10% of the 3 million unreviewed datapoints of Uniprot and selected 268,195 to form an

additional set of datapoints. Subsampling was done at random, subject to the constraint of retain-

ing a roughly equal number of peptide sequences of each length to ameliorate the extent to which

the models focused on this aspect, though there are fewer very short sequences due combinatoric

constraints (Fig. 4.2).

Together the 268,195 peptides from Uniprot and 35,806 from StarPep form our full dataset of

304,001 peptides, of which 10,841 were labeled ºverified AMPsº (all from StarPep) and 293,160

were labeled ªnon-verified-AMPsº (a mixture of Uniprot and Starpep sequences). We note here

again that we only labeled those sequences as AMPs that are experimentally verified as such.

Although this could introduce a bias into the property predictor from the unreviewed sequences,

we believe that this choice is justified because our goal is not to classify sequences but to or-

der the space in a sensible manner. After ensuring there was no sequence redundancy between

the merged datasets, we inspected various physicochemical properties of the ªverified AMPº and
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ªnon-verified-AMPº labeled data sets to ensure they represented a broad distribution over pep-

tide sequence space and had largely similar distributions of various physico-chemical properties

(Fig. 4.3A-J).

4.2.2 Deep Learning Models

Deep generative models are powerful research tools for de novo drug design. Throughout the

training process these models can construct smooth latent space embeddings. Once fully trained

the learned latent spaces can be explored, and information-rich clusters can be identified. Such

continuous latent spaces allow users to sample and decode novel molecules with desirable features.

We investigated five different deep learning architectures applied to the task of generating new

peptide sequences from a learned distribution, all of which incorporate a variational autoencoder

(VAE) element, along with a VAE-like latent space.

The variational autoencoder is a model introduced in Kingma and Welling [8] that combines an

ªencoderº and a ªdecoderº to form a variational inference model. In specific, given a dataset with

a marginal likelihood pθ(x), the objective of the VAE is to learn the parameter set {θ} that most

closely reproduces the data’s distribution p(x) [31][54][55]. VAEs operate under an evidence lower

bound (ELBO) maximization objective that leads to a joint maximisation of the marginal likelihood

pθ(x) and a minimization of the Kullback-Leibler (KL) divergence of the decoder-approximated

posterior qϕ(z|x) from the true posterior pθ(z|x), where z represents the embedding variables of

the latent space and pθ(z) is the latent space prior, which for the standard VAE is a Gaussian

distribution.

There are multiple types of generative models; the two most well-known and often-used are

VAEs and Generative Adversarial Networks (GANs). We choose to employ VAE-based models

because VAEs boast a number of properties of particular relevance for our specific case of devel-

oping smooth, interpretable latent spaces with potential use as search spaces for computer-aided

biomolecular design. In comparison to GANs, VAEs have a more natural formulation of an as-

sociated latent space, with a rigorous mathematical derivation from Bayesian probability theory

[31]. The assumption of a Gaussian prior enforces a certain level of smoothness and continuity

that is desirable in a design space, and allows for the sampling of Gaussian distributions ªnearº

any defined point in the space. Finally, on a practical note, they have demonstrated utility in the

field of de novo small molecule design [32], and we wanted to determine their utility for sequence-

based AMP design as well. VAE’s also feature an encoder which can directly map new samples of

interest to their respective latent vectors, a feature not present, out of the box, in GAN architectures.

The architectures in this research all feature a latent space comparable to that of a VAE, which

in theory should constitute the minimal explanation of the data. It is also desirable for the latent

space to be ordered in such a way that it is understandable or interpretable for a subject-matter

expert. This latent space is used to interpret the model’s latent mapping of inputs from the prior

distribution. The latent space also allows for visualisation of embeddings and feature clustering of

proteins.

In what follows, we introduce the VAE models and their unique differences. Briefly the RNN,

RNN-Attention and Trans-VAE models all employ the typical VAE bottleneck with mean (µ) and

log of the variance (σ) network layers while the AAE and WAE employ unique loss functions

which regularize the latent space to match a set distribution.
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Figure 4.3: Density based distributions for the AMP labelled peptides (blue) and the unlabelled

peptides (orange), for all investigated physicochemical properties, namely the aliphatic index (A),

Boman index (B), charge at pH=3 (C), charge at pH=7 (D), charge at pH=11 (E), hydrophobicity

(F), instability index (G), isoelectric point (H), molecular weight density plot (I) and molecular

weight by count (J).
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We started with three publicly available models modified from work by Dollar et al. [42], in

which the authors compared a recurrent neural network (RNN), a RNN with an attention layer

and a Transformer to assess their respective capabilities for generating SMILES strings describing

novel molecular compounds for drug design. The models all made use of a VAE architecture that

generated smooth latent spaces. The results demonstrated the benefits of including self-attention to

deep generative models, and the authors concluded there is a trade-off between variational models

in terms of their ability to properly reconstruct input data and their ability to embed complex

information about the inputs into a continuous latent space. We modified these three models to

take as input and output sequences of up to fifty amino acids rather than SMILES strings. In

addition, we derived two more models, an adversarial autoencoder (AAE) [12], and a Wasserstein

autoencoder (WAE) [56], by modifying the latent spaces and architectures of the original three.

The RNN model (Fig. 4.4A) is a traditional VAE featuring a Gated Recurrent Unit (GRU)-

based Recurrent Neural Network (RNN) as the encoder and as the decoder [7]. The RNN model

first embeds the input sequences into fixed length vectors of length 128. The embedded vectors are

then passed to the GRU, with N=3 layers, that generates a hidden layer vector of length 128. The

hidden layer is layer-normalized and sent to two separate linear layers, the mean layer (µ) and the

log-variance layer(σ). The linear layers act as the ªbottleneckº and changes±where necessary±the

GRU output shape to the appropriate latent space vector shape±either 32, 64 or 128 dimensions,

depending on which architecture is being trained. The mean and logvar output are then combined

according to the reparametrization trick and Gaussian noise is added [8]. A ReLU unit followed by

a layernorm is then applied to the noisy memories. The resulting vector is sent to the decoder GRU.

The decoder outputs a 128 dimensional hidden vector that passes through a layernorm. Finally,

this hidden vector is sent through a linear layer that generates token predictions. All models except

the Transformer implement a GRU with teacher forcing during training. Teacher forcing passes

the true sequence to the decoder along with the latent vector and improves training stability by

removing the requirement of learning entire sequences and instead prohibits the accumulation of

errors on individual tokens.

The Adversarial Autoencoder (AAE) model (Fig. 4.4B) uses the same GRU model as the RNN

but exchanges the re-parameterized latent space proposed in Kingma and Welling [8] for an adver-

sarial counterpart Makhzani et al. [12]. As proposed in [12] this model regularizes the latent space

with an attached neural network, named the discriminator, that matches the aggregated posterior

q(z) to the desired prior p(z), which in this model is a Gaussian prior. The discriminator is a

fully connected network with 256 hidden layers, each with a fixed hidden vector of size 640. The

encoder network acts as the embedder for the decoder and the ªgeneratorº for the discriminator.

The decoder learns to reconstruct original data, as in the RNN model case, and the discriminator

discriminates between an ideal prior, modeled by a vector filled with normally distributed noise as

a proxy for a Gaussian prior, and the current latent vector. This model is hypothesised to perform

well on reconstruction tasks given the relative success of adversarial models on the task of image

generation [57] [58].

The WAE model proposed in Tolstikhin et al. [56] introduced a new family of regularized au-

toencoders under the name Wasserstein Autoencoders that minimize the optimal transport Wc(p(x), p
′(x)),

where p(x) is the true data distribution and p′(x) is the generative model data distribution, for a

cost function c. The WAE’s regularizer, computed as part of the overall loss function, forces the

continuous mixture qϕ(z) =
∫
qϕ(z|x)dp(x) to match the prior p(z) instead of forcing each input
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Figure 4.4: Schematic of the five deep learning model architectures, highlighting their similarities

and differences. The RNN features a GRU encoder, a variational latent space and a GRU de-

coder. The RNN-Attention inserts an attention layer after the encoder GRU and uses convolutional

layers as input and output from the variational latent space. The AAE features a non-variational

latent space but inserts a discriminator network at the latent space. The WAE also features a non-

variational latent space but calculates the maximum mean discrepancy between gaussian noise and

the encoder generated latent space. The Transformer model implements the generic architecture

with a first self-attention layer then a convolutional layer into the latent space followed by decon-

volution into the masked attention and the final self-attention layer.
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to match the prior as done in the VAE, where qϕ(z|x = xi) for all input i in x. The WAE con-

structed in this work, (Fig. 4.4C), uses the MMD penalty for prior regularization [59]. The WAE

implemented uses the same model as the RNN but exchanges the split latent space with a single

linear layer. The regularization is performed in the loss function, where the inverse multi-quadratic

kernel basis function is used and the MMD is computed between this latent vector and a vector

with values sampled from a normal distribution.

The RNN-Attention (RNN-Attention) model, (Fig. 4.4D), attaches a single self-attention head

after the GRU of the RNN model to leverage the attention mechanism [13]. The attention mech-

anism allows a model to store sequence wide connection weights between tokens in a sequence.

Each token in the sequence is made to ªattendº and give a weight to all other tokens in the sequence

thus creating an attention map over all the tokens in the sequence. The single attention layer has

been shown to increase interpretability and improve reconstructions over longer sequences [42].

The VAE-Transformer (Transformer) model, (Fig. 4.4E), integrates a VAE reparameterization

into a full Transformer model as proposed in Vaswani et al. [2] and implemented in Dollar et al.

[42]. Transformers have taken the world of sequence2sequence learning by storm and have demon-

strated their abilities to create extended relationships between sequence tokens that can be readily

interpreted through attention head visualisations [60][16][61]. The Transformer no longer makes

use of the GRU and instead first sends the inputs to a self attention head layer that outputs attention

weights that are matrix multiplied onto the output vector. The output is then sent to a convolutional

bottleneck that filters over the joined attention weights and embedded sequence before sending the

output to the mean and log-variance linear bottleneck layers which reduce the dimensionality of

the latent vector to one of 32, 64 or 128 dimensions. Once the VAE section is passed and noise

has been added to the latent vector the result is sent back to a convolutional layer followed by the

masked attention and source attention layers as originally outlined in Vaswani et al. [2].

All models feature an associated property predictor in the form of a binary classifier that pre-

dicts whether the latent representation of a given peptide is an verified-AMP or not. This classifier

is a two layer fully connected neural network trained with a binary cross-entropy loss that is joined

to the KL-divergence loss and the peptide reconstruction accuracy loss of each model.

4.2.3 Model Training Procedure and Hyperparameter Configuration

The different subsets were collated into a total dataset with 304,001 peptides with lengths be-

tween 2 and 50 amino acids. This total dataset was split into a 80-20, train-test split, resulting

in a training set of 243,201 training sequences and a test set of 60,800 sequences. The model

hyperparameters were set to be identical for all 15 models and their three respective latent dimen-

sions. We fixed the parameters to maintain consistency between the different models and allow

authentic comparison of the fully trained networks. The RNN, RNN-Attn and Transformer feature

a Kullback-Leibler divergence annealing term β (see Table. 4.1). β starts small and increases in

weight as training progresses to avoid posterior collapse. Batch Sizes of 200 were found to be

ideal in that they fit on the NVIDIA Tesla P100 graphics cards used for training and results in good

performance. 300 epochs was found to be an appropriate number by a posteriori inspection of the

loss curves.

Model training hyperparameters are outlined in Table. 4.1.
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Table 4.1: Hyperparameter table with batch size, initial and final annealing values, learning rate

and number of training epochs.
Hyperparameter Value

Batch Size 200

β final 5e-2

β initial 1e-8

Adam learning rate 3e-4

Epochs 300

4.3 Results

We assess and compare the models and their associated latent spaces in a number of ways.

We begin by performing a traditional assessment through model reconstruction accuracies on the

training and testing datasets. To assess the generalizability of the models, we benchmark their

generative capacities in terms of the distributions they are capable of sampling, a process which is

becoming more and more imperative as generative models become more commonplace [33][42].

To assess the meaningfulness of associated distance metrics, we perform a quantitative and quali-

tative assessment of the models’ ability to cluster the data in a low-dimensional space produced by

principal components analysis (PCA) and a detailed analysis of the top five principal components.

To assess model interpretability and address a longstanding problem in the field, we employ met-

rics from manifold theory to assess the extent to which PCA distorts the latent space embedding.

Leveraging PCA’s enhanced interpretability we connect latent representations to peptide proper-

ties through bridge variables. Finally, we demonstrate the use of our models in a pipeline. Unless

otherwise noted, all analyses are performed on the test set data.

4.3.1 Verification of Model Reconstruction Accuracy

We verify the basic performance of the five trained models through two metrics that demon-

strate the ability of the models to recapitulate the input data as they were trained to do. We consider

the position-based reconstruction accuracy and the overall sequence reconstruction accuracy.

In Fig. 4.5, we plot the average position-based reconstruction accuracy ⟨Racc
i ⟩ versus amino

acid index for the five models and for three different latent space sizes, and, in Fig. 4.6, we plot

the entire-sequence accuracy. The position-based reconstruction accuracy measures the model’s

ability to predict the correct amino acid at a given index in the sequence and is defined as,

⟨Racc
i ⟩ =

∑N−1
n=0 δ(Sni

= k)

N
(25)

where the sum evaluates whether the correct amino acid, k, was predicted for the ith index of the

nth sequence, Sni
, and N = 50 is the maximum length of the sequence string in the model.

The mean overall sequence accuracy ⟨Racc⟩ is a measure of how many full sequences the model

was able to correctly reconstruct in their entirety,

⟨Racc⟩ =
∑N

n=1(Sn = Strue)

N
, (26)
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where Sn is the nth reconstructed sequence and Strue is the original sequence.

Models of 64 dimensions or greater generally display moderate to high performance on the

reconstruction task. They exhibit an accuracy of at least 60% for tokens up to position twenty

(Fig. 4.5), of interest because most AMPs have sequence lengths of under twenty amino acids.

The entire-sequence reconstruction accuracy (Fig. 4.6), is between 50% and 70% for the 128-

dimensional AAE, RNN, RNN-Attention, and WAE, and about 97% for the Transformer, although

reconstruction accuracy diminishes with decreasing latent space dimensionality.

It is of interest to note that in all models except the 128-dimensional Transformer, we observe

an almost monotonic decrease in reconstruction accuracy for tokens later in the sequence. All 32

dimensional models, except the Transformer approach the accuracy of a random guess (5% for

any one of twenty possible amino acids) near the 50th position. This clear length-dependent effect

on accuracy is expected behavior arising from the increasing difficulty of the predictive task for

each successive token position: the prediction depends primarily on the previous tokens in the

sequence, leading to a compounding error effect. The difficulty of this task is also exacerbated by

model training with teacher forcing, which corrects mistakes earlier in the sequence during training

but not during testing. The 128-dimensional Transformer clearly has the capacity to represent and

retain entire sequences in a holistic manner, as it was intended to do.

Indeed, the Transformer model achieves by far the highest accuracy (97%, 128 dimensions) but

is also most affected by a diminishing latent dimensionality: the mean accuracy drops precipitously

from 97% to 26% when going from 128 dimensions to 64 dimensions, whereas the AAE and the

RNN both achieve nearly 50% reconstruction accuracy with 64 dimensions. All models display

increasing accuracy with increasing dimensionality. All attention based models display a greater

improvement when increasing from a dimensionality of 64 to a dimensionality of 128 than when

increasing from a dimensionality of 32 to a dimensionality of 64.

4.3.2 Analysis of Top Principal Components Quantifies Differences in the

Latent Space

It has been shown that the simultaneous training of a property predictor on a latent space

leads to a desirable ªorderingº of that space visually identified in the top principal components.

Although there are many such dimensionality reduction techniques available, we employ PCA

here because it provides an interpretable and invertible mapping to a visualization-friendly space

and has been previously used in the field of de novo molecular generation [32]. In this section, we

identify ordering in the top principal components (PCs) in our models and go one step further by

quantifying the extent of the ordering and the PCs in which it appears.

We employ a simple binary classifier trained to predict whether or not a given sequence falls

within the experimentally validated AMPs category, or the unvalidated category. Although such

a predictor can be of use in terms of assessing the specific properties of some given sequence

of interest, in this case we use it rather as a tool to order the space such that we may expect

interpolation between points in the latent space to generate sequences with desirable properties. In

other words, for our case the property predictor primarily functions to ensure that the neighboring

points of an experimentally-verified AMP in the latent space will display similar properties. We

can consider this to be a way of enforcing a meaningful distance metric and quantifying how well

we have done so. In Sec. 4.3.5, we will also address the question of how meaningful it is for us to
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Figure 4.5: The position-based average reconstruction accuracies, Racc
i with corresponding con-

fidence intervals for the five models. The x-axis refers to the token position along the sequence,

running from the first generated token to the last generated token. Each model features three

variants with latent space sizes of 32, 64 or 128 dimensions, respectively. Error bars are 95% con-

fidence intervals on the respective index-wise means computed with the assumption of Bernoulli

sampling. As expected, model performance decreases with distance along the sequence in most

cases.
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Figure 4.6: The entire-sequence reconstruction accuracies, Racc for the five models and their re-

spective three latent space size variants. Error bars are 95% confidence intervals on the mean

computed with the assumption of Bernoulli sampling. All error bars are less than 0.5% from sam-

pling 20,000 sequences.

identify this ªorderingº in a linear projection rather than in the full latent space.

After model training with the binary classifier, we perform principal components analysis on

the associated latent space of each model (32-dimensional, 64-dimensional, or 128-dimensional,

respectively) and project into the top five highest-variance components of the PCA decomposition.

Based on previous studies that employed PCA for two-dimensional projections, we expected to

observe latent space ordering±that is a partitioning of the data points according to the label pre-

dicted by the property predictor±in the top one or two principal components of each model. To

our surprise, this was not the case (Fig. 4.7). Further investigation revealed at least some ordering

in one or two of the top five principal components for 4/5 of the models. The fifth model, the

RNN-Attn, performs so poorly we do not expect to observe ordering no matter how many PCs

we analyze. This indicates that despite being explicitly ªinstructedº±via the loss function±of the

importance of the verified-AMP/non-verified-AMP labeling, most models do not ªpay attentionº

to this to the exclusion of other characteristics of the sequences. We may quantify this idea further

by investigating the fractional variance explained by different PCs as a proxy for the amount of

information contained. When the extent to which these different components capture the overall

latent space variance is assessed (Fig. 4.8), we observe that the models differ significantly in how

much fractional variance explained (FVE) is contained within the top five PCs, ranging from only

about 10% in the Transformer-128 model to over 40% in the AAE-128 model. The more variance

is contained within the top five PCs, the more it seems to be concentrated in the first PC (AAE,

RNN demonstrate a much more significant drop from PC1 to PC2 compared to the other three

models±overall we observe 12% (min) and 35% (max), for the AAE, 4.5% (min) and 5.5% (max),

for the RNN FVE respectively, and closer to 1-2% for the other models. Trends are largely inde-

pendent of latent space dimensionality. In general, the Transformer and WAE models of various

sizes contain the least FVE in their top five components, whereas the AAE models contain the

most. We observe that in all models other than the Transformer, PC1 is correlated with molecular

weight or length (see Sec. 4.3.5), with all other variances being of roughly equivalent magnitudes.

Overall, we may interpret this as telling us that the models place greatest importance on length,

while other descriptive variables, even those we attempt to emphasize a priori, are assigned similar

levels of importance.
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Figure 4.7: The maximal Silhouette scores, SS, for the five models with corresponding three

latent sizes. Silhouette scores are shown for the principal components pairs featuring the largest

score of the top five PCs calculated with PCA. The PC combinations from left to right are, AAE:

[2,3], [1,5], [3,4], RNN: [4,5], [1,2], [1,2], RNN-Attention: [3,4], [3,4], [2,3], Transformer: [1,5],

[2,4], [1,3], WAE: [2,5], [2,4], [2,5]. The error bars are generated by bootstrapped sampling of the

latent space and calculating a 95% confidence interval computed with the assumption of Bernoulli

sampling. The flier points indicate outliers from the interquartile range of the whiskers.

We quantitatively assess the extent to which the clusters of AMPs and non-AMPs are sepa-

rated from one another in the model latent spaces and pairs of the top five principal components

(Fig. 4.7). We do so through the use of the Silhouette score [62] applied to the known labeling of

the dataset peptides, which is a well-known metric for assessing cluster distinctness.

SS =
⟨rout⟩ − ⟨rin⟩

max (⟨rout⟩, ⟨rin⟩)
, (27)

We use the Silhouette score as our metric because its boundedness gives it a natural interpre-

tation in this context. Scores that are too close to zero indicate that no clustering has occured,

whereas scores too close to one indicate a disconnected latent space, which might mean the model

had failed at satisfying the Gaussian prior. Ideally, therefore, we would observe moderate Sil-

houette scores, and indeed we do. The silhouette score for each PC pair is calculated by taking

subsamples of PC pair vectors and computing their Silhouette Score relative to the known verified-

AMP/non-verified-AMP properties. Once this has been computed for all pairs of PC’s [1 − 5] we

then find the pair that has the highest silhouette score.

If we rank the models by maximum Silhouette score in all pairs of the top five PCs, the Trans-

former and AAE perform the best, reaching a maximum of SS = 0.51± 0.02 for the Transformer

at 128 dimensions, and a maximum of SS = 0.3 ± 0.03 for the AAE at 128 dimensions, in PC’s

[1,3] and PC’s [2,3] respectively, with both of them demonstrating moderate maximal clustering

ability and an increase in clustering ability with latent space dimensionality. The WAE demon-

strates poorer performance, displaying a maximum of SS = 0.24 ± 0.02 in PC’s [2,4] at 64

dimensions this performance is largely independent of latent space dimensionality. The RNN and
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Figure 4.8: The percentage variance explained by each respective PC computed with PCA on the

test set data.
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RNN-Attention demonstrate the worst abilities as measured by the Silhouette score, with a maxi-

mum of SS = 0.1 ± 0.02 in any of the top five PCs for the RNN and SS = 0.02 ± 0.02 for the

RNN-Attention.

To better visualize the latent space, in Fig. 4.9, we plot the test set of sequences embedded in

the reduced latent representation for each model and color the scatter points according to whether

they feature verified-AMPs (orange), or non-verified-AMPs (blue), characteristics. We observe

an agreement between the Silhouette scores previously discussed and the visual clustering in the

scatter plots. The AAE-128 and Transformer-128 models form more distinct clusters than the other

models, though all clusters still overlap as desired.

In summary, the latent spaces of the models were found to exhibit ordering. We quantified the

ordering with the Silhouette score. Surprisingly, we found that AMP correlations are not always

present in the first or second PC pairs and as such it is important to investigate downstream PCs

before ruling out potential correlations in the model latent space. Once a correlation has been

identified, the variance explained per PC can serve as an approximate weight factor indicating the

importance attributed to this ordering by the model. For the 128-dimensional AAE, summing the

variance of the two top PCs, this is about 10%; for the 128-dimensional Transformer, it is about

4%.

4.3.3 Latent Space Sampling and Generative Performance Evaluation

Reconstruction accuracy and clustering of test set embeddings are both useful metrics to ensure

that model training is proceeding as expected; however, a more important question for a generative

model is whether it is capable of accurately recapitulating the underlying distribution of the data

and whether the resultant overall distribution associated with the latent space is appropriate for

novel data generation. In this section, we demonstrate the capacity of the model to generate unique

and diverse AMP sequences in localized portions of the latent space.

In contrast to the previous section, where we focused on PC pairs, in this section, for ease

of calculation and visualization, we employ only a single variable per model variant. We choose

the principal component (PC) having the largest Silhouette Score with verified-AMP/non-verified-

AMP labeling (see Fig. 4.14A and further discussion of PC identification in Sec 4.3.5). We identify

the ªwidthº of the latent space by calculating the mean and standard deviation over the embedded

sequences. Then we sample from ten evenly spaced regions that form a ªline acrossº the latent

space, limiting the min and max values of the region centers to ±4 times the standard deviation.

The random sampling performed in each region follows a normal distribution with the mean de-

termined by the region center and the standard deviation set to 20% of the standard deviation of

the latent space. For external validation on a large number of generated sequences±difficult to

perform experimentally±we assess in each neighborhood the probability of generating AMPs ρAMP

(Fig. 4.10) by employing a previously published QSAR model. AMPlify is a deep neural network

AMP classifier that has been shown to achieve 93.71% accuracy on the task of AMP classification

[3].

As in the previous section, where we demonstrated clustering of the test set embedded in the

latent space, we expected to observe partitioning of each PC into areas of low and high AMP

probability, and indeed in most cases we did. Because the task given to the models by the property

predictor was essentially one of partitioning but there was no constraint on the manner in which to

perform the partitioning, a partitioning of the latent space in any direction is equally expected; that
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Figure 4.9: Scatter plot of maximally AMP-separating PCs presented as a visualization of the dif-

ferent latent spaces. We embed the test sequences into the latent space, perform PCA, and illustrate

the PC pair corresponding to the largest Silhouette score (cf. Fig. 4.7). The PC combinations are

as follows, AAE: [2,3], [1,5], [3,4], RNN: [4,5], [1,2], [1,2], RNN-Attention: [3,4], [3,4], [2,3],

Trans-former: [1,5], [2,4], [1,3], WAE: [2,5], [2,4], [2,5]. Orange points denote verified-AMP

sequences, and blue points denote known non-verified-AMP sequences. Different models corre-

spond to different visible separations in the latent space, though most models demonstrate at least

some separation of AMPs and non-AMPs.
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is, higher probability of AMPs could be localized in various different areas across the PC.

We observe little or no (ρAMP < 0.4 for all tested values) partitioning for the 32- and 64-

dimensional AAE and RNN-Attention. We observe a semi-linear partitioning±as the PC is in-

creased or decreased, an area of zero AMP probability is followed by a monotonic, almost linear

rise in probability±for all other models except the 128 dimension RNN-Attention. Interestingly,

the 64 dimensional RNN-Attention model shows a non-linear partitioning of its space with a re-

gion of high AMP probability, even though the PCA visualisation and the silhouette score for this

model did not demonstrate a clustering of AMPs in its latent space. Thus, we show that predicting

experimentally-verified antimicrobial properties, even though many of the non-hits may also be

AMP-like in nature, is in many cases sufficient to partition the space into regions of high and low

antimicrobial peptide probability in general.

We next evaluate the local properties of the latent space as we interpolate across the individ-

ual PCs. In addition to demonstrating generative partitioning in the latent space, we assess the

following quantities in each neighborhood and take a global average across the neighborhoods to

gain a general understanding of latent space properties in the vicinity of the AMPs: (i) sequence

similarity ρsim, and (ii) Jaccard similarity of 2-mers (J2) and 3-mers (J3) in the sequence.

We assess the ability of the model to generate sequences that are dissimilar to one another

through the uniqueness [33], ⟨µ⟩, which we compute as an average probability by generating a

random sample si of 100 sequences and counting the number that are distinct from one another,

⟨µ⟩ =
∑

n(Sgenn
/∈ Sgenm ̸=n

)

Ngen

. (28)

We compute the pairwise similarity between all generated sequences in the neighborhood using

the pairwise2 command from the Biopython [63] package, with the Blosum62 [64] substi-

tution matrix as the scoring function. Pairwise similarity is measured by identifying an optimal

sequence alignment from bioinformatics arguments and then computing the scores of amino acids

that exhibit matching physicochemical classes.

The Jaccard similarity of two sets is defined as follows,

J(A,B) =
|A ∩B|
|A ∪B| . (29)

We assess the Jaccard similarity between all pairs of peptides in the local neighborhood by con-

sidering the sets of overlapping k-mers that describe the sequence, where a k-mer of a peptide is a

subsequence of length k, and the spectrum of k-mers has previously been demonstrated to contain

significant information about AMP properties [65]. We consider k-mers of lengths two and three

in this analysis. 0 ≤ J(A,B) ≤ 1 by design, and a Jaccard similarity of zero implies that two

sequences share no subsequences of length k whereas a Jaccard similarity of one implies that two

sequences are composed of identical subsequences.

The sequence similarity score is a relative evaluation based on the Blosum62 matrix scores,

whereas the Jaccard similarity score is an absolute measure of the similarity between two sequences

where identical sequences return a score of one. It should be noted, however, that the number of

matches grows more quickly than the size of the set±i.e. the numerator of the Jaccard score grows

more quickly than the denominator. This means that a comparatively low Jaccard score can still

indicate a reasonable amount of similarity. Very roughly, for the 2-mers, a Jaccard score of 0.06
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Figure 4.10: Traversing the PC’s with highest AMP correlation from the smallest embedded value

of each PC (min) to the largest embedded value (max), scaled to the same axis for comparison.

The AMPlify QSAR 48 classifier [3] is a binary classifier that returns True or False and an average

AMP probability is taken over the 100 local samples. All 5 models and their respective latent

dimension variants are plotted. The error bars are generated by calculating a 95% confidence

interval on the AMP probabilities computed with the assumption of Bernoulli sampling.
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is the expected value for two random sequences of length 50, and it is significantly lower than that

for the 3-mers.

The size of the latent space is not seen to have a drastic impact on the sequence similarity of

peptides found in a local neighbourhood for any of the models. An interesting dynamic is displayed

for the some models, in which as the center of the latent space is approached the samples become

slightly more diverse. This is seen by the ªUº shape seen especially in the RNN, and WAE models.

This is likely due to the Gaussian nature of the space packing more peptides near the center thus

increasing sampling diversity.

The Jaccard similarities for the 2-mers and 3-mers are rather low, but still significantly higher

than would be predicted by random chance. Due to the nature of the Jaccard score, this indicates a

balance between shared and dissimilar fragments, particularly for the Transformer model. The 128

dimensional Transformer has significantly higher 2-mer and 3-mer similarity scores, from 0.24 to

0.34 for 2-mer, and 0.11 to 0.26 for 3-mer, than all other models < 0.22. This is a good indica-

tion that local points in the space share similar constituent sequence fragments. Interestingly, we

observe heightened similarity for the RNN and WAE models in the region corresponding to height-

ened AMP probability (i.e. towards the PC maximum value), whereas for the Transformer-128, the

trend is opposed: there is a region of heightened similarity near the minimum corresponding to a

low probability of AMP-like sequence generation, and a region of somewhat lower probability near

the maximum corresponding approximately to the region of heightened probability of AMP-like

sequence generation.

Overall, most models perform similarly when reconstructing peptides in a local neighbourhood

and this applies to both entire sequences and local k-mer segments. In Sec. 4.3.4, we also show

that the models generate disparate peptides not found in the testing or training sets, as desired.

4.3.4 Novelty and Uniqueness of the Entire Generator

We assess the ability of the models to generate AMPs distinct from the training set through the

novelty ⟨η⟩, which we compute as an average probability by generating Ngen = 1000 new peptide

sequences si from random points in the latent space and counting the number that are not also

found in the entire training set {Strain},

⟨η⟩ =
∑Ngen

i=1 (si /∈ {Strain})
Ngen

. (30)

In principle, we expect that the novelty should be high in the absence of overfitting, and that is

what we observe (cf. Fig. 4.12).

We assess the ability of the model to generate sequences that are dissimilar to one another

through the uniqueness, ⟨µ⟩, which we compute as an average probability by generating a random

sample si of 1000 sequences and counting the number that are distinct from one another,

⟨µ⟩ =
∑

n(Sgenn
/∈ Sgenm ̸=n

)

Ngen

. (31)

All of the models show a strong uniqueness,

(⟨η⟩ ≈ 1) demonstrating that, when the latent space is randomly sampled, they are capable of

generating novel peptides not found in the training set. The latent space is also found to be diverse
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Figure 4.11: Metrics evaluating the generative capacities of models near AMPs in the latent space.

The average sequence similarity (top), the Jaccard similarity of the k-mers for k=2 (middle) and the

Jaccard similarity of the k-mers for k=3. The error bars are one standard deviation from the mean.

Peptides are generated by sampling from the PC with highest AMP correlation from minimum to

maximum value.
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Figure 4.12: The metrics evaluating the uniqueness, novelty and sequence similarity of random

samples from the latent space. Error bars for uniqueness and novelty are 95% confidence intervals

on the mean. Error bars are not visible because they are below 1% from sampling 1000 latent

points.
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with high uniqueness of the generated sets, (⟨µ⟩ ≈ 1) meaning the models do not produce repetitive

samples across the latent space.

4.3.5 Model Interpretability through Linearity and Bridge Variables

A perennial and very difficult problem to solve in deep learning is the question of how to

interpret what the model is learning. We address this issue in the following manner: by recognizing

that PCA performed on the latent space both creates a lower-dimensional representation which is

more easily visualized and also creates a ranking of linear superpositions of the latent dimensions,

we argue that a latent space that is less distorted by a PCA analysis is a more interpretable one,

and we assess the models on this basis. This also addresses the question of how meaningful the

observation of ordering in a linear projection of the latent space is, which, as far as we are aware,

has not previously been addressed in the literature. Finally, we consider a set of physicochemical

variables of interest and identify potential ªbridge variablesº associated with different PCs, to aid

in their interpretation.

We measure PCA distortion of the latent space with four metrics: trustworthiness T , continuity

C, steadiness S , and cohesiveness H [66]. Trustworthiness is a measure of the introduction of false

neighbors and the loss of true neighbors by a point k when projected from high to low dimensions,

T (k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Ui

max (0, r(i, j)− k) , (32)

where N is the number of samples, k is the size of the neighborhood in the reduced space, Ui is

the set of points that are not neighbours in the original space but are now neighbors in the reduced

space and r(i, j) is the rank of the sample j according to its distance from i in the original space .

Continuity is a measure of the introduction of false members into a group±a cluster of points±or

the loss of true members from a group when projected from high to low dimensions,

C(k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Vi

max (0, r(i, j)− k) , (33)

where N , k and r(i, j) are as previously defined for Trustworthiness, Vi is the set of points that are

neighbours in the original space but are no longer neighbors in the reduced space.

Steadiness is a measure of the loss of existing groups, and cohesiveness is a measure of the

introduction of false groups. Briefly, the steps to calculate the steadiness and cohesiveness are

are outlined below. We direct the interested reader to Jeon et al. [66] for further details. First,

one computes the shared-nearest neighbor distance between points in the original space and in the

projected space and constructs a dissimilarity matrix identifying compression and stretching of

point pairs. Then average partial distortions are computed by randomly extracting clusters from

one space and evaluating their dispersion in the opposite space. Once such partial distortions are

known one can aggregate the results into steadiness and cohesiveness,

S =
1−

∑nSt

i=1 wim
compress
i∑nSt

i=1 wi

, (34)
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H =
1−∑nCo

i=1 wim
stretch
i∑nCo

i=1 wi

, (35)

where wim
compress|stretch
i denote the iterative partial distortion measurements and their correspond-

ing weights. Steadiness and Cohesiveness differ from trustworthiness and continuity in that they

evaluate the authentic transformation of clusters of points in the reduced space as opposed to eval-

uating neighbor-by-neighbor values. All scores run from 0 to 1, where 1 indicates maximum

authenticity or minimum spatial distortion.

For all models except the Transformer. all scores are ¿0.5 for all four metrics and the scores tend

to hover around 0.75, with some exceptions. While the 128-dimensional Transformer performs

best according to the steadiness score(∼ 0.8), the Transformer model in general performs worse on

all other metrics than the other models, particularly cohesiveness, for which all three Transformer

models perform worse than any other model, and in particular the 128-dimensional Transformer

displays an exceedingly poor performance of just over 0.25.

Overall we observe it is possible to construct linear projections of model latent spaces with

comparatively low overall distortions; however, the model that has thus far performed particularly

highly on other metrics (the 128-dimensional Transformer) has the greatest distortion, particularly

in terms of cohesiveness, meaning it potentially introduces a significant number of false groupings.

The Transformer’s comparatively high distortion overall underscores one of the traditional trade-

offs of machine learning: with greater power comes lessened interpretability.

Now that we have an idea of how confident we may be in the representation of the PCs for the

model latent space, we investigate the identification of ªbridge variablesº for further interpretation

of the latent space. Bridge variables are known quantities of relevance in a scientific problem that

show correlations with unknown variables, allowing heightened interpretability of many nonlinear

problems [67]. We consider a series of physicochemical properties of peptides that are measurable

from sequence alone: Aliphatic Index, Boman Index, Isoelectric Point, Charge pH=3, Charge

pH=7, Charge pH=11, Hydrophobicity, Instability Index, and Molecular Weight. We measure

each of these properties for the test set sequences using the peptides python package [68]. We

employ the Silhouette Score in one dimension to measure correlation between individual PCs and

verified-AMP/non-verified-AMP labeling, and we use the Pearson correlation coefficient (r) to

measure correlation between individual PCs and the continuous physicochemical properties.

The Aliphatic Index [69] is defined as the relative volume occupied by the aliphatic side chains,

Aliphatic Index = X(Ala) + aX(V al) + b(X(Ile) +X(Leu)), (36)

where X(Ala), X(Val), X(Ile), X(Leu) are mole percent of alanine, valine, isoleucine and leucine.

The constants a and b are the relative volume of aliphatic side chains to that of alanine side chain

where, a ≈ 2.9 and b ≈ 3.9. The Boman Index [70] is equal to the sum of the solubility values for

all residues in a sequence. It gives an estimate of the peptides’ likelihood to bind to membranes

or other receptors. Peptides with Boman Index > 2.48 are said to exhibit high binding potential.

Isoelectric point [71] is the pH at which the net charge of a protein becomes zero. The charges at

various pH levels [71] are determined according to the known isoelectric points of the amino acids.

The hydrophobicity is a measure of the degree to which the peptide is hydrophobic, calculated

by averaging the hydrophobicity values of each residue by using the scale proposed in Kyte and

Doolittle [72]. The instability index predicts whether a peptide will be stable in a test tube as
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Figure 4.13: The Trustworthiness T , Continuity C, Steadiness S and Cohesiveness H projection

scores for the five models and three corresponding latent space size variants. The error bars are

generated by bootstrapped sampling of the latent space and calculating a 95% confidence interval.

The flier points indicate outliers from the interquartile range of the whiskers.
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Figure 4.14: Top PC bridge variable correlation scores for all five models and their three latent

sizes. (A) The AMP Spearman correlation coefficients (ρ). (B)-(J) The Pearson correlation coeffi-

cients (r) for the (B) Charge pH=7, (C) Instability Index, (D) Aliphatic Index, (E) Charge pH=11,

(F) Isoelectric Point, (G) Boman Index, (H) Hydrophobicity, (I) Molecular Weight and (J) Charge

pH=3. Shown in order for latent sizes 32-128 for each model.
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presented in Guruprasad et al. [73]. The molecular weight [74] is the average molecular weight of

the peptide found by summing the individual masses of its amino acids and is directly correlated

with sequence length.

In Fig. 4.14, we identify the single PC with the highest correlation to each one of the potential

bridge variables and illustrate the value of that maximal correlation. We note that although there is

a comparatively low Silhouette score in one dimension indicating that the score in two dimensions

is a more appropriate quantification of ordering in the system, we may use it to indicate which PC

the models consider ªmostº relevant for verified-AMP ordering, and thus identify whether those

PC’s simultaneously correlate with physicochemical properties. For example, The 32-dimensional

AAE, 64-dimensional WAE, RNN, Transformer and 128-dimensional AAE and RNN models em-

ploy one of the top 5 PC’s most strongly for AMP ordering (Fig. 4.14A), and the same PC is

also correlated with Charge pH=7 (Fig. 4.14B) and Isoelectric Point (Fig. 4.14F) for this model

(Fig. 4.14H).

For all models but the Transformer, the first principal component is highly correlated with

molecular weight (Fig. 4.14I), which makes sense for the RNN, AAE, and WAE, as all are length-

dependent models. That the RNN-Attention model also exhibits this behavior demonstrates the

need to commit fully to a Transformer model to avoid a significant component of the model’s

variance being devoted to sequence length. The comparative performance of the AAE with the

Transformer shows, however, that it is not necessary to remove the length dependence to enforce

ordering capability in the model, as long as more than the first and second PC are considered. In a

more general sense, any model with a high-variance component built in as part of the architecture

will likely demonstrate this behavior.

In these plots we find that the models will distribute the correlation across all of the first 5

PC’s. Generally the transformer model is observed to make use of the first PC more often and this

is expected to be because it does not feature a length based correlation in the first PC.

Using these correlation coefficients it is possible to further characterise the ordering of the la-

tent space and define directions along which interpolation should occur such that desirable charac-

teristics will emerge from generated peptides. Each PC can be interpreted as a linear combination

of the respective model’s latent dimensions (32, 64 or 128). From this interpretation it is possible

to construct a direct relation between the latent dimensions of the model and the physicochem-

ical properties investigated through the PCA mapping; we have made the PCA mappings them-

selves available on the project Github repository, https://github.com/Mansbach-Lab/

latent-spaces-amps.

4.4 Case study: Pipeline for denovo AMP discovery using PCA

components

Our pipeline consists of three of the best performing models. We suggest the simultaneous

exploration of the Transformer-128 (high reconstruction accuracy, good clustering separation in

two dimensions, linear generated sequence partitioning and low interpretability), AAE-128 (mod-

erate reconstruction accuracy, good clustering separation in two dimensions, non-distorted PCA

space linear generated sequence partitioning, moderate linearity, medium interpretability±bridge
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variables identified for AMP PCs), and WAE-128 models (moderate reconstruction accuracy, mod-

erate clustering separation in two dimensions, moderate distortion in PCA space, linear generated

sequence partitioning, moderate linearity, high interpretability).

The pipeline takes an AMP of interest as input. The AMP is passed through the encoders of

the different models and transformed into a model-specific latent representation. The AMP latent

vector is appended to the embedded training data and is transformed into linear representations

with PCA (Fig. 4.15).

We then proceed to choose variables of interest to hold constant in the latent space and per-

turb the others. This will allow us to find new peptides with the properties of interest maintained.

We choose to maintain the verified-AMP-correlated PC and the hydrophobicity-correlated PC, to

produce the sequences likelier to share experimental AMP-likeness and hydrophobicity± an impor-

tant AMP property± with GL13K. We note that this procedure could be done with any identified

property near any input point of interest. We use the previously mentioned correlation coefficients

(Sect. 4.3.5), to find the verified-AMP correlating PC and the top hydrophobicity correlating PC.

Having kept track of the PCA vector for our AMP of interest, we perform sampling by keeping our

two PC’s of interest, AMP and hydrophobicity correlated, fixed and adding gaussian noise to all

other PC’s. The added noise variance must be tuned individually for each model as the latent space

organization is different for each model. The variance tuning is performed by identifying the mean

and standard deviation of all training dataset points in PCA space and then sampling Gaussian

noise centered at the mean with 1/5 the standard deviation. This noise vector is then summed with

the PCA vector of our AMP of interest, thus shifting the sampling location to be near the AMP of

interest. Once we have the noisy nearby PCA samples we perform an inverse PCA transformation

returning to our latent space vector representation, demonstrating one particular valuable property

of the PCA approach. We then pass the noisy latent samples to the decoder which will generate

the desired candidate peptide sequences.

We demonstrate the use of the pipeline on GL13K. For each model, we generate five different

sequences and display their properties (Figs. 4.16,4.17,4.18). In the ideal case we should ob-

serve little change in Hydrophobicity of the samples while the other physicochemical properties

should vary and in general this is what we observe. We observe that certain properties of ran-

dom sequences generated in the neighborhoods tend to remain more constant irrespective of model

(Aliphatic Index, Charge at pH=3, Molecular Weight, Isoelectric Point) and certain properties tend

to be more variable (Boman index, Charge at pH=11, Instability Index), while certain properties

are more dependent on the model. Hydrophobicity varies the most in the AAE model, and the least

in the WAE model. One benefit of employing multiple models is the ability to sample different

local neighborhoods of GL13K, with potentially different properties; another benefit is including

both more interpretable and more high-performing models to generate samples.

The results from the pipeline for the AAE-128, Transformer-128 and WAE-128 presented in

the figures (Figs. 4.16,4.17,4.18) show that by locking PC’s of interest and sampling nearby points

along other PC’s we can generate novel peptides that have similar properties to the original GL13K.

While some generated samples feature drastic changes in certain properties such as the fourth

peptide from the AAE-128 with a charge of 1 at pH 11 or both generated peptides with −1 charges

at pH 11 for the Transformer-128 and WAE-128 models, most properties fall near the original

GL13K sequence properties.

This general pipeline can be extended to any peptide function by identifying the top PC’s

correlating with the desired function and keeping those fixed as noise is added to the remaining
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Figure 4.15: Schematic of the suggested pipeline for generation of sequences of interest.
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Figure 4.16: Pipeline sampling for the AAE-128 model. The top three rows plot the physicochem-

ical properties of the six generated sequences and the properties of GL13K (right-most bar). The

bottom row first plots the PCA reduced latents of the test set for the AMP correlating PC and the

Hydrophobicity correlating PC and colors the NON-AMP points as green, AMP points as grey and

GL13K as a red point (left). Then the PCA reduced latents of the test set for the AMP correlat-

ing PC and the Hydrophobicity correlating PC and colors the points according to their respective

hydrophobicities and GL13K as a red point (center). The final rightmost plot shows two different

PC’s and colors the test set a dark blue, the randomly sampled points in light blue and GL13K as

a red point. Having locked the PC’s of interest we plot different PC’s such that sampled points do

not overlap GL13K.
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Figure 4.17: Pipeline sampling for the Transformer-128 model. The top three rows plot the physic-

ochemical properties of the six generated sequences and the properties of GL13K (right-most bar).

The bottom row first plots the PCA reduced latents of the test set for the AMP correlating PC and

the Hydrophobicity correlating PC and colors the NON-AMP points as green, AMP points as grey

and GL13K as a red point (left). Then the PCA reduced latents of the test set for the AMP correlat-

ing PC and the Hydrophobicity correlating PC and colors the points according to their respective

hydrophobicities and GL13K as a red point (center). The final rightmost plot shows two different

PC’s and colors the test set a dark blue, the randomly sampled points in light blue and GL13K as

a red point.Having locked the PC’s of interest we plot different PC’s such that sampled points do

not overlap GL13K.
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Figure 4.18: Pipeline sampling for the WAE-128 model. The top three rows plot the physicochem-

ical properties of the six generated sequences and the properties of GL13K (right-most bar). The

bottom row first plots the PCA reduced latents of the test set for the AMP correlating PC and the

Hydrophobicity correlating PC and colors the NON-AMP points as green, AMP points as grey and

GL13K as a red point (left). Then the PCA reduced latents of the test set for the AMP correlat-

ing PC and the Hydrophobicity correlating PC and colors the points according to their respective

hydrophobicities and GL13K as a red point (center). The final rightmost plot shows two different

PC’s and colors the test set a dark blue, the randomly sampled points in light blue and GL13K as

a red point.Having locked the PC’s of interest we plot different PC’s such that sampled points do

not overlap GL13K.
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PCA vectors in order to sample in the functional neighbourhood it could be employed for.

4.5 Discussion and Conclusions

We have trained five deep learning models with VAE-like latent spaces on a library of sequences

of short proteins and assessed the characteristics of the resultant models, including a careful exam-

ination of the properties of the latent spaces associated with them. We show that the models have

the capability to create smooth, continuous latent spaces that can be sampled for de novo AMP gen-

eration and optimization. The inclusion of a simultaneously-trained property prediction network

disentangles verified-AMP and non-verified-AMP sequences; however, to our surprise we find that,

unlike in previous studies, this is not always apparent in the first two principal components derived

by PCA. Different models associate different information with highly-varying PCs, and different

models vary drastically in the ways in which they encode variance, and, hence, information. It is

important to note that this presents a challenge for the incorporation of domain knowledge, since

we see that the model does not necessarily place greater emphasis on user-provided information.

Furthermore, it sounds a note of caution in the interpretation of latent space orderings, since ob-

served orderings may occupy only a small fraction of the informational content in the model latent

space. We have also addressed the question of how meaningful the use of PCA is as a tool for

indicating properties of VAE-like latent spaces and argued that the less distortion imposed by PCA

upon the different neighborhoods and interactions between points in the manifold, the more clearly

interpretable the latent space is. The analysis that we present here may be applied to other short

peptides of interest, such as anti-cancer peptides. Based on our results, we would suggest retraining

our Transformer, AAE, and WAE models in conjunction with a new cancer/anti-cancer property

predictor that relates to the property of interest. One could then employ a similar analysis and

pipeline to assess the quality of the resultant latent spaces and generate sequences of interest.

We have investigated the use of the principal components with the highest clustering of verified

AMP properties for de novo AMP generation and showed that our models generate highly diverse

and unique sequences, with comparatively low sequence similarity in local neighborhoods. Despite

the low similarity and the use of a predictor trained on experimentally-verified AMP properties

rather than direct knowledge of AMP-like-ness, all models but the 32 and 128-dimensional RNN-

Attention and 64-dimensional AAE are capable of successfully partitioning a single coordinate in

the latent space into regions that generate AMP-like sequences with high probability and regions

that generate non-AMP-like sequences with high probability. We observe that the capacity of the

model to reconstruct input sequences is not clearly linked to its ability to partition the space, and

we add our voices to a number of cautions against the over-use of reconstruction accuracy as a

metric for generative models.

We have evaluated the extent to which models order their latent spaces according to standard

peptide physicochemical properties that they are not trained on and identify the principal compo-

nents most strongly correlated to given properties. We find that the models will order any of the

first five principal components investigated according to physicochemical properties but when a

model needs to assign a larger proportion of the variance to learning peptide length the first com-

ponent is usually correlated with length / molecular weight. Indeed, only the 128-dimensional

Transformer eschews length as a consideration almost entirely (no length dependence observed in

the reconstruction accuracy, small correlation between any top five PC and molecular weight). The
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Transformer in general clearly has the capacity to function independent of the length but demon-

strates a more rapid drop in performance as the latent space dimensionality is decreased than the

RNN, WAE, or AAE. We speculate that this is due to the nature of the task being that discriminat-

ing between lengths can actually discourage models from overfitting; that is, from simply ªmem-

orizingº the answers, and may encourage a more meaningful lower-dimensional representation,

although we also note that the 128-dimensional Transformer shows by far the most heightened lo-

cal fragment-based similarity in its verified-AMP-relevant PC. This could suggest a model relying

on fundamentally different information from the others.

In terms of other relevant physicochemical variables, we observe moderate correlations (0.35 ≲

rPearson ≲ 0.65) between at least one PC and isoelectric point / charge at pH 7 in the AAE-64,

RNN-32, RNN-64, Transformer-64 and all WAE models and moderate correlation between at least

one PC and hydrophobicity in all but the RNN-Attention-32. As these are traditional hallmarks

employed for AMP design, this is desirable behavior, and in particular aids in the interpretability

of the models through a linear mapping of the latent space variables to straightforward ªbridge

variablesº for most models. It also shows that the models are capable of identifying relevant

properties from sequences alone, despite being trained only with a binary property predictor.

We may further employ the bridge variables in conjunction with the probability of AMP gen-

eration in a single PC (Fig. 4.10) to aid in the interpretability of the models. In our case mod-

els demonstrating a monotonic linear increase in probability, especially those reaching a predic-

tion probability of > 0.6 (128-dimensional AAE, 64-dimensional RNN, 64-dimensional RNN-

Attention, 64 and 128-dimensional Transformer and 32 and 64-dimensional WAE models) are

arguably the easiest to interpret, since we now essentially have a single linear mapping from the

latent space to AMP probability, which for the RNNs and WAEs are comparatively non-distorted

from the original space (cf. Sec. 4.3.5).

We demonstrate a trade-off between model complexity and model interpretability under this

paradigm and suggest that for optimized design of AMPs in a continuous latent space, it may be

appropriate to perform the optimization in multiple different latent spaces, using a similar phi-

losophy to that of ensemble voting. We do a short case study to show one way this might be

implemented, and indeed, in future work we plan to use this as a starting point for an active learn-

ing procedure to traverse these spaces and perform multi-scale molecular dynamics simulations

upon relevant points.

In the future, we plan to investigate a phenomenon termed selective latent memories due to

Kullback-Leibler Divergence constraining. This effect is observed during training and causes a

drop in the entropy of certain latent dimensions when the KLD is minimized. In addition, we will

generalize from a binary AMP/non-AMP classifier to a multi-class predictor capable of grouping

sequences by expected mechanism of action. Finally, as a prelude to the previously mentioned

active learning traversal of the space, we plan to investigate the incorporation of structural data

into the models, perhaps leveraging the recent success of AlphaFold2 [30] and similar structural

prediction algorithms.

The models developed in this research used deep learning to discover embeddings for se-

quences of amino acids but future work should investigate other peptide representations such as

protein structure distance graphs which can embed structural information and SMILES strings used

in the world of small drug design. SMILES strings encode chemical information into a sequence

of characters thus allowing the models to learn chemical distinctions between the amino acids.

Overall, we have performed a thorough qualitative and quantitative analysis of the latent spaces
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of five different generative models for AMP design, identifying strengths and weaknesses of each,

as well as developing a suite of analysis methods for latent space design and sampling in the context

of generative deep learning of AMP sequences. We provide a much-needed set of benchmarking

protocols in this nascent area of research.
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Chapter 5

Final Remarks and Future Work

The research presented in Chapter 4 demonstrated the power of generative models on the task

of de novo antimicrobial peptide generation as well as their limitations, especially in terms of

interpretability. While it is still early days for generative deep learning in the past few months

alone the sub-field of deep learning has grown incredibly fast with significant progress in many

biophysics topics including, large-language-models as biology experts [75], protein structure pre-

diction [30][23], protein simulation [76] and protein docking [77].

The recent release of the Alphafold2 model [30], with code made publicly available on github,

has served as a basis for further developments relating to protein structure prediction. Alongside

Alphafold2 the release and open sourcing of Stable Diffusion a text-to-image generative model has

inspired biophysicists to look into ªdiffusionº models as powerful generative tools [76], [77].

Graph neural networks are models that use deep learning on graph data [78]. Throughout train-

ing a graph neural network will learn how to update graph nodes and edges to achieve the desired

goal. Models that incorporate graph neural networks, often through Transformers, seem partic-

ularly promising as their representational capacity is not bound by the limitations of a sentence-

based sequence, as found in the 5 models presented in this research. Instead each protein could

be represented as a unique graph and the attention mechanism can now act over the entire graph.

These models are particularly interesting in their structural representations of proteins given it is

now possible to input one sequence with multiple corresponding structures, a feature relevant for

analysis of different folding states as investigated through molecular dynamics simulations. A

future project we would like to work on trains a graph neural network on simulation data from

AMPs in order to predict folding states and relate the deep learning component to the simulation

counterpart.

Overall the the research presented in this thesis is to serve as a stepping stone on the path to

solving AMP design with generative deep learning models. Signs of the tremendous capability of

the models involved joined with palpable excitement pushing the field forward fill me with hope

that a day will come in the near future where we can work with these systems, in a cooperative and

transparent manner, to help humanity guide biological processes in their interest.
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