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ABSTRACT

Modeling and Analysis of Self-similar
Traffic in ATM Networks

Rajab M. A. Faraj, Ph.D.
Concordia University, 2000.

ATM is considered by the International Consultative Committee for Telephone
and Telegraph (CCITT) as the preferred transfer mode for B-ISDN. Both the need
for flexible networks and the progress in technology and system concepts led to
the definition of the ATM principle. ATM will provide the means to transport, at
broadband rates, the traffic generated by a wide range of multimedia services.
ATM is suitable for the multimedia traffic environment because it offers a great

flexibility and efficiency in the use of available resources.

In this thesis we generate, model and find performance measures of self-sim-
ilar traffic, which is frequently encountered in the ATM environment. We study the
modeling and performance measures of Ethernet and VBR video data. However,
the main emphasis in the dissertation is VBR video data. In addition, we propose
a model that can be applied to this kind of correlated traffic. The model is based
on multiple type ON-OFF sources. We compare the model with those that are
available to correlated traffic. Finally, we apply the proposed model to congestion

and admission control.
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CHAPTER 1

Introduction

The increased demand for communications services of all kinds, has
engendered the development of Broadband Integrated Services Digital Networks
(B-ISDN) which is expected to provide a single and efficient transport for voice,
video-conferencing, video-phone, high speed data transfer, home education,
video on demand as well as a number of services which are yet to be developed.
The integration of these vastly different types of traffic in a common medium with
common switching and multiplexing is possible due to the development of asyn-
chronous transfer mode (ATM). At the present time, the traffic volume for existing
and new services is increasing. Figure 1.1 shows the growth of different services,
voice, data, video, and multimedia [ONV94]. As can be seen, the growth is explo-
sive in the non-voice traffic particularly video. The growth is spurred by the growth
of technology. There are two aspects to this growth. First, applications, e.g. com-
puter capability, video technology, and email have burgeoned. Second, hand in
hand with the growth of applications has been the growth of telephone technol-
ogy, in particular digital processing and optical fiber transmission.

This thesis examines some of the important aspects in the modelling and
performance analysis of ATM systems. In particular, this thesis is concerned with
the generation, modelling and performance analysis of self-similar traffic, which is
frequently encountered in the ATM environment. But first, we give a brief survey

on how ATM originated and on the main features which made it possible for the
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ATM to be the transfer mode of choice for future telecommunications networks. In

addition, we present an introduction for the characterization of broadband traffic.

* Volume of Information
Data Traffic

| Voice Traffic

l Video Traffic

Multimedia

|
_l___/
T l —

1975 1985 1995 2005 Year

!
I
|

FIGURE.1.1. Growth of service [DEP95].

1.1 The evolution towards ATM

The services supported by the original ISDN concept are limited to voice
and non-voice applications based on a 64 Kbit/s transmission rate. This is referred
as Narrowband ISDN (N-ISDN). However, the data rates associated with N-ISDN
are inadequate for many applications of interest. Accordingly, B-ISDN has been
developed for higher rate services [HAN89]. B-ISDN is conceived as an all-pur-
pose digital network. It includes 64 Kbit/s ISDN capabilities and opens the door to
applications utilizing bit rates above 1.5 Mbit/s or 2 Mbit/s. The upper limit of the
bit rate available to a broadband user will be somewhat above 100 Mbit/s. The
services supported in a fully evolved muitimedia network such as B-ISDN can be

expected to produce a wide range of traffic flow characteristics, and have a wide
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range of performance requirements. Figure 1.2 provides some rough ranges of
the maximum bit-rate and the utilization of a channel at this rate for some general
services categories [WOQ90]. As shown there is a large range of services, with
estimated bit rate of few Kbits/s to some hundreds of Mbits /s. Also channel utiliza-

tion ranging from 0.001 (bursty traffic) to 1.0 (continuous traffic).

Channel Utilization

1.0
Voice and Sound
0.1_] Video
Low Speed Data
0.0L_ P _ =
Image and File Transfer

0.001 Channel

' i 1 i i R (bits/s)

I0K 100 K IM IOM 100 M

FIGURE.1.2. Multimedia traffic characteristics [WOQO90].

Unlike traditional data networks, in a multimedia environment there are
requirements on cell delay and cell loss performance, defined as the number of
lost cells divided by the total number of cells transmitted. A wide range of applica-
tions must be supported: from delay-sensitive applications such as voice, to loss-
sensitive applications such as data and image transfer. Figure 1.3 shows the traf-

fic performance requirements for different services [WOOQ890].
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FIGURE.1.3. ATM traffic performance requirements [WOQ90]

The data networks of the 2000's are inadequate to handle the applications
and capabilities required by the1990’s. Today’s packet switched data networks
have a number of problems: high cost, low-speed links, slow processors and
switching delays. Tomorrow’s broadband networks require new architectures to
handle the changing requirements. Table 1.1 compares the present and the future

of some packet network characteristics [DEP95].

TABLE 1.1 Comparison between present and future of some packet network

characteristics [DEP95]
Present Future
Bandwidth 64 Kbit/s 51.84 (OC*-1)- 9953.28 (OC-192)Mbit/s
Bandwidth allocation | Fixed Dynamic
Services Voice, data Integrated voice, data, image and video.
Switch delay 50 - 100 ms 10 ms
Propagation delay Insignificant Dominant

An important building block for broadband technology is the Synchronous
Optical Network (SONET). SONET [HOL92, BAE91], originally proposed by

Bellcore (Bell Communication Research), defines optical interface, rate, and for-

‘OC = Optical Carrier level
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mat specification for broadband optical signal transmission. It is compatible with
existing circuit-switched networks and can be used to carry ATM based payload,
which will be discussed below, as well as those of the existing networks. There-
fore, SONET makes the transition from existing networks to ATM networks.

Another building block for broadband technology is the Synchronous Digital
Hierarchy (SDH). It should be clear that SONET and SDH are nearly synony-
mous. The definition of the SDH standards signals the beginning of the next stage
in the evolution of the world’s telecommunications network. SDH will facilitate a
revolution in telecommunications services which will have far reaching effects for
end users, operators, and equipment manufacturers alike. SDH has been
designed to support future services such as Metropolitan Area Networks (MANs),
Broadband ISDN, and personal Communications. As for SONET, SDH defines a
structure which enables signals to be combined together and encapsulated within
a standard SDH signal.

The SONET and SDH standards were set up for the transmission of time
division muitiplexing (TDM) digital signals in the 1980s. With TDM, a data stream
at a higher bit rate is generated directly by multiplexing lower bit rate channels.
High capacity TDM systems operate at levels up to OC-192 (10 Gbit/s), through

the use of high speed optical technology.

1.2 ATM and B-ISDN

Traditional telecommunication networks are specialized; there are clear
relations between services and networks. The salient example is the voice net-

work which constituted virtually all of the common carrier services for many years.
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Many of the telecommunication services have their own networks and those net-
works are typically not very well suited for supporting other services than those
initially intended to be supported.

Our society is becoming more and more information intensive, and both the
number of services and the number of users are expected to grow dramatically.
The new services will require higher bit rates per user than the existing networks
can offer. It would be ineffective to build a new network for every new service.
Therefore, the new technology should also be able to support future services; ser-
vices that we know nothing about when the technology is developed. The new
system should also be able to support all the services provided by the existing
specialized networks.

The B-ISDN vision is to support all kinds of services in a single network. B-
ISDN needs an extremely flexible switching technology. The ATM technology has
been developed to be able to fulfil the needs of the B-ISDN. While ATM consid-
ered as a transfer mode fc;r transmission very high data rates, B-ISDN is a net-

work specification exploiting ATM technology.

1.3 ATM architecture

ATM [BAES1, DEPS5, ONV94] is considered by the International Consulta-
tive Committee for Telephone and Telegraph (CCITT) as the preferred transfer
mode for B-ISDN. Both th= need for flexible networks and the progress in technol-
ogy and system concepts led to the definition of the ATM principle. ATM will pro-
vide the means to transport, at broadband rates, the traffic generated by a wide

range of muitimedia services. ATM is suitable for the multimedia traffic environ-
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ment because it offers a great flexibility and efficiency in the use of available
resources. All available resources in the network are shared by all services, so the
statistical sharing of the resources can lead to greater efficiency. The fundamental
building block for ATM is the fixed-size cell which consists of 48 octets carrying
user information plus 5 octets for overhead and control. The reason for choosing a
fixed-size cell is to ensure that switching and multiplexing function could be car-
ried out quickly and easily. ATM is a connection-oriented technology (similar to the
telephone networks) in the sense that before two systems on the network can
communicate, they should inform all intermediate switches about their service
requirements and traffic parameters.

In ATM networks, each connection is called a virtual circuit or virtual chan-
nel (VC) because it allows the capacity of each link to be shared by connections
using that link on a demand basis rather than by fixed allocations. The connec-
tions allow the network to guarantee the quality of service (QoS) requirements by
limiting the number of VCs. Typically, a user declares key service requirements at
the time of connection setup, declares the traffic parameters and may agree to
control these parameters dynamically as demanded by the network.

In figure 1.4 a layered model of ATM is shown. The physical-medium layer is
responsible for the proper bit transmission. This layer is also responsible for elec-
tro-optical conversion since, in B-ISDN, the physical medium may be optical fiber.
The ATM layer contains all the details of the ATM technique, and it is common to
all services. The data unit of this layer is an ATM cell. This layer performs the cell
header functions and cell-based multiplexing/ demultiplexing. The ATM adaptation

layer (AAL) provides the higher service layers with the necessary functions which
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are not provided by the ATM layer, such as, preserving timing, data frame bound-
aries. Four types of AALs were proposed, each supporting a different type of traf-
fic or service expected to be used on ATM networks. The service classes and the
corresponding types of AALs were as follows: Class A - constant bit rate (CBR)
service such as uncompressed video, Class B - variable bit rate (VBR) services
such as compressed packetized voice or data, Class C - connection-oriented data
service such as connection oriented file CBR transfer, and Class D - connection-
less data service such as datagram traffic and in general, data network applica-
tions. The higher layers are network layer, transport layer, session layer,
presentation layer, and application layer. The higher service layers provides sepa-
rate functions for the User Plane and Control Plane. It supports services such as
network terminal signalling and information source coding. The Control Plane is

responsible for the signalling, whereas the User Plane is responsible for the trans-

/ Management

Control User

fer of user information.

Higher layers Higher layers

ATM Adaptation Layer (AAL)

ATM Layer /

Physical-Medium layer

FIGURE.1.4. Layered model of ATM [ONV94]



Figure 1.5 is the cell format in ATM networks. The format of the header for
ATM cells has two different forms, one for use at the user-to-network interface
(UNI) and the other for use internal to the network, the network-to-node interface
(NNI). The header of each cell contains, 4-bit generic flow control (GFC), a 16 bit
virtual circuit identifier (VCI) and a 8 bit virtual path identifiers (VPI). The remain-
ing fields are, a 2 bit payload type(PT) field, a 1 bit reserved field, a 1 bit priority

(PR) field, and an 8 bit header error check (HEC).

User-Network Interface (UNT) Network-Node Interface (NNI)
1 4 8 bit 4 8 bit
1| GFC VPI - "f - VPI 1
2 VPI VCI t VPI VCI 2
3 VCI Header VCI 3
4 VCI PT| RES |PR . VCI PT |RES PR{ 4
5 HEC X HEC 5
(48 octets)) Payload (48 octets)

VPI: Virtual Path Identifier HEC: Header Error Control

VCI: Virtual Circuit identifier PT: Payload Type

GFC: Generic Flow Control RES: Reserved

CLP: Cell Los Priority PR : Priority field

FIGURE.1.5. ATM cell format [ONV94)

The function of the GFC is to control the amount of traffic entering the net-
work. This allows the UNI to limit the amount of data entering the network during
periods of congestion. The VCI and the VPI together form the routing field, which
associates each cell with a particular channel or circuit. The VCl is a single-chan-
nel identifier; the VPI allows grouping of VCs with different VCls and allows the
group to be switched together as an entity. The payload contains all the user data

and ATM adaptation layer information.
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1.4 How ATM works

1. ATM network uses fixed-length cells to transmit information. The cell con-
sists of 48 bytes of payload and 5 bytes of header. The flexibility needed to sup-
port variable transmission rates is p}ovided by transmitting the necessary number
of cells per unit time.

2. ATM network is connection-oriented. It sets up a virtual channel connec-
tion (VCC) going through one or more virtual paths (VP) and virtual channels (VC)
before transmitting information. The cells is switched according to the VP or VC
identifier (VPI/VCI) value in the cell head, which is originally set at the connection
setup and is translated into new VPI/VCI value while the cell passes each switch.

3. ATM resources such as bandwidth and buffers are shared among users,
they are allocated to the user only when they have something to transmit. So the
network uses statistical muitiplexing to improve the effective throughput.

After this introductory background material on ATM networks and their traffic
characterization, we are ready now to focus more on some of the main ATM per-

formance analysis issues which will be dealt with in this dissertation.

1.5 Congestion control in ATM networks

The concept of congestion in the network layer is a very simple one. The
performance of any system will degrade if the amount of work that the system is
forced to do is more than it can cope with. In this context, if there are too many
packets present in a given part of the subnet, we say that the subnet is congested.
This situation is shown graphically in figure 1.6 [HAY84]. It is clear from the dia-

gram that performance degrades very sharply when congestion occurs.
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Packet delivered

Max Carrying Capacity Perfect
of Network Desirable
Congested

Packet Sent

FIGURE.1.6. lllustration of the effect of flow control [HAY84]

Congestion control is a particular challenge in the ATM environment [BAI91]
because of its unique traffic characteristics, high link speed, diverse service
requirement and the diverse characteristics of the traffic ATM is expected to sup-
port. Most traffic sources in ATM networks are bursty. A bursty source generates a
large amount of traffic (cells) at some high peak rate for a short period of "active"
time and generates little or no traffic for some "“idle" time. If bandwidth were allo-
cated based on peak rate (deterministic multiplexing), network resources would
be wasted when the source is ideal. Since an ATM network supports a large num-
ber of such bursty traffic sources, statistical multiplexing is more efficient, aliowing
more traffic sources to share the bandwidth. However, severe network congestion
may occur if a large number of traffic sources become active at the same time.

A layered and distributed congestion-control framework has been proposed
to apply to the design of congestion control in ATM networks, which is portioned

into three control domains, the call layer, the burst layer and the cell layer. In the
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call layer, connection admission control (CAC) should be used, by examining the
load, service requirements and traffic characteristics. Since the time scale is
larger than the propagation delay, link by link closed loop negotiation can be
implemented. In the cell layer, bandwidth enforcement preventive control must be
used, since the time scale is small. In section 1.5.2 and 1.5.3 we will discuss the
two main levels of congestion, call level and cell level, in ATM networks. In section
1.5.4, we present a mechanism used to reduce the level of traffic burstiness. In
[HONS1, HUA95, PER97] the following congestion control schemes at the various

levels have been advocated.

1.5.1 Preventive control, reactive (conventional) control and
proactive control.

There are three types of congestion control schemes, which have been
developed for ATM networks, namely preventive congestion control, reactive con-
gestion control and proactive congestion control. As its name indicates preventive
congestion control takes any action necessary to prevent congestion (i.e., before
congestion occurs). Reactive congestion control is responsible for any necessary
action to recover from a congested situation. Proactive congestion control on the
other hand is based on the prediction of congestion (overload) before it occurs at
a node. A forecast on the future of the overload is generated for one round trip
propagation delay ahead and feedback signals are send back to the source. Traf-
fic adjustment at the network input take place in response to these feed back sig-
nals [AME91, PER97].

The congestion control schemes used for existing networks react to the con-

gestion after it happens and tries to bring the degree of network congestion to an
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acceptable level. In many of the conventional packet switching networks, for
example, the applied congestion control schemes are rate-based or credit-based
mechanisms, which will be discussed in section 1.6, are under the category of
reactive control. A major problem with reactive control in high-speed networks is
the propagation delay. Because of this delay, there can be a significant amount of
traffic in transient in the links. Since the speed of ATM is very high, any action the
sources taken may be too late to resolve the buffering and switching congestion.
Hence, most reactive congestion control schemes are effective over short dis-
tances only. Therefore, some of the congestion control schemes available for
existing networks are no longer applicable.

Congestion control in ATM networks is based on preventing congestion
rather than reacting to it. Preventive congestion control does not wait until conges-
tion actually occurs, but rather tries to prevent the network from reaching an unac-
ceptable level of congestion. Most often, preventive congestion control is
implemented at the access nodes of the ATM network. There are also two ways to
implement preventive control, namely admission control and bandwidth enforce-
ment which is part of traffic policing function that will be discussed shortly.

Proactive congestion control scheme is an alternative to reactive control
algorithms because of the high transmission speed and the high bandwidth-delay
product of multimedia networks. Proactive congestion control is based on the pre-
diction of overload, given a current underload network state and the subsequent
transmission of feedback signals to the network input in the case of anticipated
congestion; traffic adjustment at the network input take place in response to these

feed back signals [PER97, HU95, AME91)].
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1.5.2 Admission control (call-level congestion control)

Congestion can occur when the network accepts too many calls, which
causes the QoS to deteriorate. However, reducing the number of calls is not
always the solution, since there is also a need to maintain the network utilization
[SAI91]. Call-level is the first of two main levels of congestion prevention in ATM
networks. At this level, it is required to avoid long-term congestion and maintain
the traffic load at a manageable level.

Admission control determines whether to accept or reject a new connection
at the time of call setup. When a new call requests connection, the network should
first decide whether it can admit the call or not. The factors that affect the admis-
sion of a call include the availability of network resources (network bandwidth), the
traffic characteristics of the new call and of existing calls sharing the same
resources, and the QoS requirements (such as the probability of loss and delay)
of the new and existing calls. If the network does not have enough bandwidth
available along the path connecting this call to support the QoS requirements of

the new call and the existing calls, the service request should be rejected.

1.5.3 Traffic policing (cell-level congestion control)

Cell-level is the second main level of congestion prevention in ATM net-
works. At this level, the objective is to avoid short-term congestion. After a con-
nection is set up, some flow control is still required to provide good performance
and guarantee fairness among the users and eliminate the possibility of conges-
tion. This kind of congestion is based on the declared parameters; consequently a
policing procedure is needed to ensure that any change in the user's traffic char-

acteristics will not affect the overall performance of the network. The main empha-
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sis in policing function is bandwidth enforcement. Bandwidth enforcement is
implemented at the edge of the network. Once a violation is detected, the traffic
flow is enforced by discarding or buffering violating cells. A good survey on these
policing mechanisms is available in [GAL90]

A well-known example of policing mechanism is the so-called leaky bucket
[HONB91]. Figure 1.7 shows the leaky bucket policing scheme. The leaky bucket
scheme uses tokens to enforce the authorized source traffic pattern. Token are
generated at a fixed rate determined by the bandwidth granted to the call. An ATM
cell must capture a token before it is transmitted; otherwise it must wait in the
queue until a token is generated. A cell is discarded if it encounters a full buffer on
arrival. If the number of tokens in the token pool exceeds some predefined thresh-
old value, the process of token generation stops. This threshold value corre-
sponds to the burstiness of the transmission; the larger the threshold value, the
higher the burstiness. This method enforces the average input rate while allowing

for a certain degree of burstiness.

Threshold Cells
Output Cells (to Net k
N — CCCC utput Cells (to Network)
Armmving
Cells Tokens
Data Buffer
Token Pool

Token Generator

FIGURE.1.7. Leaky bucket combined with cell buffering for both policing
and smoothing [HON91]

The leaky Bucket method can also enforce the peak bandwidth by generat-

ing tokens at the rate corresponding to the peak rate. One disadvantage of this
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policing mechanism is that, it is not adaptive to the network load, where violating
cells are discarded even when the network load is light, and thus network
resources are wasted.

In order to adapt to network congestion, a virtual leaky bucket is proposed
[GAL8Y], where instead of discarding excessive cells, they are simply marked with
tags in their cell header. Using this method, if the network is not overloaded, none
of the cells will be dropped and the network throughput can be improved. In the
case of congestion, however, the marked cells will be dropped. One possible dis-
advantage of this marking scheme is that processing time in each node is
increased slightly because each node has to distinguish tagged cells from nonvio-
lating cells when the node is in congested state. Also, network resources are used

on cells that are eventually dropped.

1.5.4 Traffic smoothing
While traffic policing emphasizes bandwidth enforcement, traffic smoothing

emphasizes traffic shaping to reduce burstiness and improve network throughput
[HON91]. Traffic smoothing as traffic policing is also performed at the cell level.
However, unlike policing functions which work on the network side, this smoothing
function works on the user side. The basic premise of traffic smoothing is the use
of buffering to achieve a certain transmission bits per smoothing interval. The
smoothing function allows the users to control their traffic parameters, typically the
cell’'s minimum interarrival time (maximum bit rate) and the maximum source
activity (fraction of time during which the source transmits) allowed in a given time

period. Policing can be combined with smoothing in a system in which cells queue
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instead of being discarded when the token pool is empty (see figure 1.7). It is
noted that smoothing the traffic entering the network is achieved at the cost of

increased delay and occasional cell losses to maintain overall performance

throughout the network [CID88].

1.6 Rate based control and credit based control

In most data networks, such as the typical Ethernet LAN or X.25 WAN, there
is no explicit contract between the network and the user specifying the traffic pro-
file and QoS expected. Rather, the network is expected to provide each user with
a fair share of the available bandwidth. However, in an ATM network, fair allocation
of bandwidth requires users to adjust their transmission rates according to the
feedback from the network. Unlike other packet networks, ATM networks also
carry fixed bandwidth services required for multimedia applications constant bit
rate (CBR) traffic and guaranteed bandwidth services for high-priority data appli-
cations-variable bit rate (VBR) traffic. The remaining bandwidth, not used by guar-
anteed bandwidth services, must be shared fairly across all users. Typically, the
CBR and VBR classes are assigned higher priority by the network switches and
get a share of the link bandwidth first. The ATM Forum refers to services that
make use of the left over bandwidth as available bit rate (ABR) services. The ATM
traffic tracking is shown in figure 1.8. Table 1.2 shows network traffic types and

their requirements.
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FIGURE.1.8. Constant bit-rate (CBR) traffic is guaranteed a fixed amount
of bandwidth. Bandwidth is also guaranteed for variable bit-rate (VBR)
traffic, although in this case the amount varies. Whatever bandwidth
remains is dedicated to available bit-rate (ABR) traffic with no guarantees.

TABLE 1. 2 Network Traffic Types and their requirements

Traffic Type Example Bandwidth required
Constant Voice Guaranteed

Variable Compressed Video Guaranteed
Available Data Not Guaranteed

The CBR service is aimed at supporting voice and other asynchronous
applications. The VBR service is designed to support video and audio applica-
tions while ABR service is designed to primarily support data applications.

ABR is to support best effort applications by dynamically sharing the avail-
able network resources (left over by other sources) among all ABR users. It relies
on the feed back control mechanism to throttle the source rate according to the
current load of the network. As we have discussed for reactive control in section
1.5.1, the distance between the source and the destination should not be large in

order to avoid having a significant amount of traffic in transit. To implement the
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flow-control for ABR services, two approaches has been developed: One is “rate-
based" scheme, the other a "credit-based" approach.

In the rate-based approach, the ATM network sends information to the user
specifying the bit rate at which the user should be transmitting. When the network
becomes congested, the end-stations sending ABR traffic are told to slow down.
In the credit-based approach, switches and end-stations exchange information
about the available buffer space on each link of the network. End-stations sending
ABR traffic would send only when sufficient buffer space was available.

Rate-based flow-control schemes are end-to-end feedback mechanisms.
That is, they have one source and one destination station for each feedback ioop.
Within the feedback loop, the destination end alerts the source end to slow trans-
mission when congestion begins to occur. If there are ATM switches between the
loop's source and destination, these devices simply forward and augment the
flow-control information moving between the destination and the source.

Credit-based flow-control schemes also make use of a feedback loop, but
they use hop-by-hop loops rather than end-to-end loops. Each link maintains its
own independent control loop; when traffic moves across a network, it moves
through a series of hop-by-hop feedback loops. The receiving end of each link
issues “credits” to the transmitting end indicating the number of cells the transmit-
ting station is allowed to send. Source end-stations transmit only when they have
permission to do so from the network.

Under the credit-based approach, each link in the network runs the flow-
control mechanism independently for each virtual circuit. A certain number of cell

buffers are reserved for each virtual circuit at the receiving end of each link. One
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round-trip's worth of cell buffers must be reserved for each connection, so the
amount of buffering required per connection depends on the propagation delay of
the link and the required transmission rate of the virtual connection.

The main differences between rate-based and credit-based approaches are

shown in the Table 1.3.

TABLE 1. 3 Comparison of rate-based and credit-based schemes

Rate based control Credit based control

Does not need per VC queueing Require per VC queueing

Does not guarantee zero cell loss Guarantees zero cell loss

Can not easily handle loss of RM cells Loss of credit control cells does not cre-
ate a problem., the previous value of
credit is used

1.7 Characterization of broadband traffic
1.7.1 Burstiness

Variability in the rate of arrival processes has been a characteristic of data
communication between or among computers from the earliest days of network-
ing. The primary cause of variability was human: for example, users paused for
different lengths of time to think before typing intervals. The new range of traffic
types have a wide range of characteristics as well as a range of performance
requirements (see figures 1.2 and 1.3). The introduction of networking technology
has directly led to an increase in the variability of arrival processes. The appear-
ance of real computer networks, file transfer protocols, and computer mail
resulted in more variability, as users could now instruct a system to send a mes-
sage to a remote location, or copy data from one location to another. Measure-
ment studies showed that local-area traffic is bursty [LEL91],variable bit rate

(VBRY) video traffic is also bursty [BER95]. The advent of high-speed local-area
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networks, and, the development of the computer workstations, opened new doors
for data communication; remote file systems, more sophisticated protocols, e-
mail, world wide web, and others. All of these advances contribute to increasing
variability since faster protocols allowed for transmission of more data in a shorter
time.

While the networking research community began to experience congestion
and to think about ways to cope with it, telecommunication researchers, who had
long been studying telephone voice channels, had already understood the effects
of bursty arrival processes on queues. Briefly, the packet arrival process is highly
correlated and that Poisson approximation for the arrival process gives in errone-
ous results since it fails to account for the burstiness. That is to say, the Poisson
model does not fit a wide range of traffic types because of burstiness and is no
longer useful to model such a new class of traffic. Beyond this, traffic may be

short-range dependent (SRD ) or long-range dependent (LRD).

1.7.2 Short and long-range dependence

Stochastic traffic models of packet networks currently considered in the lit-
erature are almost exclusively Markovian in nature, or more generally, result in
short-range dependent (SRD) traffic processes for which the correlation falls
exponentially. Long-range dependence (LRD) is represented by a single parame-
ter H, after H.E. Hurst [HUR51] who studied the long term storage in water reser-
voirs. The simplest models with LRD are self-similar processes. Self-similar
processes (or fractal processes) means that any portion of the curve, if blown up

in scale, would appear identical to the whole curve. The Hurst parameter H
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implies a certain relationship of autocorrelations over all time scales. Thus, the
LRD process is a second order self-similar process. A Wide Sense Stationary
(WSS) process™ X is said to be exactly second-order seif-similar if the corre-
sponding aggregated process x™ (obtained by averaging the process X over
successive non-overlapping blocks of size n ) have the same autocorrelation func-
tion as X, for all n> 1 [LEL93, BER93]. Moreover, a process is called asymptoti-
cally second-order self-similar if the covariance function of the aggregated
process X" for large k and n is given by p." = p,, i.e, the covariance function
of the aggregated process does not depend on the block size n, but depend on
the lag k.

The presence of LRD in a time series indicates that while long-term correla-
tions (large lags) are individually small, their cumulative effect is non-negligible
and produces scenarios which are drastically different from those experienced
with traditional SRD models such as Markovian processes. While the commonly
made assumptions require that observations separated by a large time span are
roughly independent, in practice, it is not the case and long time series measure-
ments violate this independence assumption and exhibit long-range dependence
instead (for example, variable-bit-rate video, and Ethernet local area network traf-
fic).

The idea of SRD and LRD can be made explicit by examining the correla-
tion of the processes. Let X = (X, : r=1,23,.......... ) be a WSS process with mean
u = E(X,), variance 6 = E{[X,—u]z}and autocorrelation coefficient at lag «,

pr = Cov(X, X,,1)/6° = E{(X,~u)X,, ~m)}/6° = (y,/6%), k = 0,1, .. that

depends only on & and noton .

“The literature does contain studies which show stationerity, e.g. [GUS9T]
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We can think of a packet traffic process X consisting of a set {X,}, where

X, is the number of packets that arrive in the t-th time unit. The variance of the

sum of » identically distributed random variables X,, X,, ........ » X,_1» X, isgiven
by:
n n
”
Var(X; + .......... +X,) = no” + Z z Cov(X, X)) (1.1).
j=li=1
FEX)
But,
n n
D Y Cov(X,p X)) =2n=1)-y;+2(n=2) Yy + 2 - Y, _, (1.2).
j=li=1
j#i

Using the relation p, = v,/ cz, (1.2) can be written in the following form,

n-1

> Y covx,Xx)=2-6>Y (n-kp, (1.3).
j=tli=1 k=1
j#i

Substitute (1.3) in (1.1),

n-1
Var(X,+ . +X,) = n6°+2-0° ¥ (n-k)p, (1.4).
k=1

n
letS, =X, +X,+ ...... +X,= Y X;,and v, = Var(§,/n)

i=1

As indicated above we may classify processes into two categories short- and
long-range dependence [COX84]:
1) short-range dependent processes such as, Markov chains and auto-regression

moving average of finite order. These processes satisfy the following conditions:

i) p~r", Y pp<e=,0<r<l.
k=1

. -1
iyforn—e v, ~n .
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oo

i) fA) = Y pge™ <o, £(0) = ¥ p,=constant (positive and finite).

k=1 k=1
Condition /, indicates that the autocorrelation coefficient p, is summable.
Condition ji, indicates that the variance v, decays like the reciprocal of the sample
mean.
Condition jii, indicates that the spectral density f(1) converges at the origin.

2) long-range dependent processes such as, self-similar traffic. These pro-
cesses satisfy the following conditions:

iv) p,~ k"2, Y pp=,05<H<1.
k=1

2H -2
wiorn—e v, ~n .

vi) spectral density f(A) ~A'" asa—o0.

Condition iv, indicates that the autocorrelation coefficient p, is non-summable.
Condition v, indicates that the variance v, decays more slowly than the recporical
of the sample size.

Condition vi, indicates that the spectral density f(A) diverges at the origin
(1722,

For SRD, the Hurst parameter H = 0.5. For LRD traffic 0.5<H < 1.

1.7.3 Measurements of burstiness and dependencies

Knowledge of information source characteristics is important in ATM net-
works because of traffic control. Therefore, some measures are necessary for

characterizing the burstiness [GUS91].
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1.7.3.1 Burstiness measurements

There are three commonly used definitions to measure burstiness, the peak
to mean ratio (PMR), the coefficient of variations and the index of dispersion for
counts. The PMR for the observed traffic depends critically on the time interval
over which the bandwidth (or bit rate) is determined. As the interval over which
traffic is observed is decreased, the PMR increases. Such behavior differs
extremely from the “burstiness” of simple arrival models such as that for Poisson
arrival process.

Other measure of bursty traffic is the coefficient of variation (COV). It is
defined as the ratio of standard deviation to the mean. This measure gives more
information than the PMR about the trends in the traffic, since it represents the
deviation from the mean. The COV for arrivals for the Ethernet traffic decreases
as the interval length over which arrivals occurs increases. However, the COV of
Poisson (also batch Poisson, hyperexponential, or Markov modulated Poisson
processes (MMPP)) varies very little as the interval length over which arrivals
occurs increases.

The index of dispersion for counts (/DC) is used as a measure for capturing
the variability of traffic over different time scales. For a given time interval of length
k, the IDC, which will be derived in section 1.7.3.3, is defined as the variance of
the number of arrivals during this interval divided by the mean value of the same
quantity. The IDC for the self-similar traffic increases monotonically as the interval
length over which arrival occurs increases. Conventional traffic models, such as

MMPP, hyperexponential and batch Poisson process distributions, have /D C that
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converge to a constant over a time scale on the order of the time constant of the
model. The large range of monotonically increasing dispersion observed for actual
traffic indices indicates that even fairly sophisticated MMPP models may not char-
acterize the actual traffic behavior well over a large range of time scales.

The LAN traffic measurements show a high level of variability on every time
scale. For this kind of traffic, both the PMR and the COV are unsatisfactory mea-
sures. Although indexes of dispersion can capture more information than other
measures, the complexity of the analysis and the arbitrary selection of vital
parameters, such as the sequence length, makes it too complex for the real-time
traffic characterization of systems. The Hurst parameter H (slope of IDC=
2H - 1) provides a more satisfactory measure of “burstiness” for self-similar traffic
than the above commonly used measures. It implies a certain correlation of the
process over all time scales. In the following two sections, we discuss the indices

of dispersion for interval and for count.

1.7.3.2 Index of dispersion for intervals (IDl)

Let us define for packet-arrival processes, the length of intervals between
successive arrivals as the length of time between the beginning of the transmis-
sion of a given packet and the beginning of the transmission of the previous
packet and denote it by X;. Under this definition, the transmission time of the pre-
vious packet is included in the interarrival time. The variance of the sum of n iden-
tically distributed random variables X; is given by (1.4), and it is again given by,

n-1

Var(X| + .......... +X ) = ng-+2-6° E (n-k) p, (1.5).
k=1
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where o’ = Var(X),andp, = Cov(X, X, )/ Var(X) is the autocorrelation coef-

ficient at lag k.

The variance of the sum of intervals is useful in describing the arrival pro-
cess because of the dependency on the autocorrelation coefficient as shown
below. The IDI at lag n is the variance of the sum of n successive interarrival
times normalized by the factor nEz(X ).

Var(X,+ ......... +X,)
= n = l, 2, cees (16)-

nEX(X)

n
Where E(X) is the common mean.
The IDI can be expressed in terms of the squared coefficient of variation
(SCOV) of intervals J, = Var(X )/E2 (X) and the autocorrelation coefficient at lag
n,ie.p, = Cov(X, X;,,)/Var(X), as

J, = Jll:l+2nil(l—']-;)pj] (1.7).

j=1
The IDI given by (1.7) is used as a measure of the variability of packet
arrival processes. Packet-arrival processes normally have positive autocovariance
(or positive autcorrelations coefficients) since interarrival shorter than the mean
interarrival time and those longer than the mean interarrival time tend to occur in
separate bursts. Therefore, in packet arrival processes, the IDI of a sequence
increases with increasing n . Further, the limit of equation (1.7) is:

nlgnm.ln = 11[1 +2 ) pj:| (1.8).

j=1
equation (1.8) indicates that, the value of the /D! when n — - is proportional to

the sum of the autocorrelation coefficients.
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1.7.3.3 Index of dispersion for counts (IDC)
The index of dispersion for counts (IDC) at time ¢ is the variance of the
number of arrivals in an interval of length ¢ divided by the mean number of arrivals
inz.

_ var(number of arrivals in_an interval of length 1) _ var(N,) (1.9)
d E(number of arrivals in an interval of length 1) E(N)) -

]

where N, indicates the number of arrivals in an interval of length .

In estimating the IDC of the real data, we will only consider the time at dis-
crete and equally spaced instants. Let ¢, denote the number of arrivals arrived
within an interval of length t,—t,_; (t;’s are equally spaced instants), we define

the IDC as:

I = (1.10).

‘ n T E(cy)
{2

i=1

va'{ﬁ:ci] n-1 ,
25 g

j=1

Where var(c,) and E(c;) are the common variance and mean of the ¢;’s and &;

is the autocorrelation coefficient of the ¢;’s at lag j. The limit of equation (1.10) is

lim I, = var(c’)[l +2 Y gj] (1.11).

t— oo E(c,) oy
As for the IDI case of equation (1.8), equation (1.11) indicates that the IDC
is proportional to the sum of autocorrelation coefficients.
IDC for Poisson process has a constant value equal to one. The IDC given
by equation (1.10) suggests that packet count process can never regarded as a
Poisson process. For some other processes, such as the batch Poisson process,

it is also constant but has a value greater than one. For correlated processes such
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as MMPP, the IDC is an increasing function until it reaches a constant value after
some lag n. For self-similar processes, the IDC is monotonically increasing func-
tion as the lag n increases. This monotonic increase in the self-similar /IDC can
be observed from the summation term of equation (1.10), where the autocorrela-
tion coefficients are not summable. However, for Markov processes such as
MMPP, the autocorrelation coefficients are summable.

Although indexes of dispersion can capture more information than other
measures, the complexity of the analysis and the arbitrary selection of vital
parameters, such as the sequence length, makes it too complex for the real-time
traffic characterization of systems. The Hurst parameter, H (slope of IDC=
2H - 1) provides a more satisfactory measure of “burstiness” for self-similar traffic
than the above commonly used measures. It implies a certain correlation of the

process over all time scales.

1.8 Outline and organization of the dissertation

The intent of this dissertation is to generate, model and find performance
measures of self-similar traffic. We study the modeling and performance mea-
sures of Ethernet and VBR video data. However, the main emphases in our dis-
sertation is the VBR video data. In addition, as we will show, we propose a model
that can be applied to this kind of correlated traffic. The model is based on muiti-
ple type ON-OFF sources. We compare this model with the models that are avail-
able to correlated traffic. Finally, we apply congestion and admission control to the

proposed model.

In the first part of this thesis, we consider traffic measurements of Ethernet

and video data that are available to us. We calculate some statistical characteris-
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tics for both kinds of data. We also investigate some methods of generating self-
similar traffic. From these, autocorrelation (or covariance since the two are
related), index of dispersion for counts, probability of loss and mean queue length
are calculated. In addition, we propose a method for matching the index of disper-
sion for counts of some models with that of the real data. Given the estimated traf-
fic parameters, we generate synthetic traffic using OPNET and Matiab software
and compare the autocorrelation (or covariance), index of dispersion for counts,

probability of loss and mean queue length with that of the real traffic.

in the second part of this thesis, we use PMPP, MMPP and Markov chain
models to model and investigate their accuracy to the real Ethernet and video
data. We match some statistical indices, such as, covariance, IDC to the real
data and use the generated traffic based on the matching to find performance
measures such as proability of loss and mean queue length. The results obtained
in the first two parts of this dissertation can be used to answer some significant

questions which arise in the design and performance analysis of ATM systems,

such as:
-How is bursty traffic characterized?.

-Which of the techniques for generating self-similar traffic in a simulation give

the most accurate results over the wide range of traffic types?.
-Which analytical models are effective?.
-What statistical models characterize the data accurately?

-How well do synthetic traffic models preform as predictors of cell loss rates or
delays?.

In the third part of this thesis, we propose a model for characterizing corre-

lated cell arrival of real self-similar video data. Based on a second order statistical
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analysis, we have used heterogeneous ON-OFF source model to characterize the
traffic. The model consists of m class ON-OFF sources. We find traffic indices
such as, covariance and /DC, and calculate performance measures such as pro-
ability of loss and mean queue length of the data and the model. We also com-
pare the results of the traffic characteristic indices and performance measures of
the data and the model with that of the Maglaris model [MAG88]. We apply our
model to congestion control. The probability distributions for the time to overload
in a round trip delay for different VBR video data using a heterogeneous ON-OFF
source model are found. Admission control is also considered. The number of

admitted sources is adjusted in order to have a certain performance criterion.

We have organized this thesis as follows:

In the next chapter we present traffic measurements of Ethernet and video
data. We calculate some statistical characteristics of the Ethernet and video data
that will be used in the subsequent chapters, to handie the correlation in the
arrival process. In chapter 3, we present an overview of some analytical and simu-
lation models that can be used in generating self-similar traffic. We also, generate
self-similar traffic based on some of these simulation models. We calculate /DC,
autocorrelation (or covariance), probability of loss and mean queue length and
discuss the effect of self-similarity on them. In chapter 4 and chapter 5, we investi-
gate the effectiveness of modeling self-similar traffic using conventional models
such as FGN, FBM, F-ARIMA, PMPP, MMPP and Markov chains. In chapter 6, we
present our proposed model and apply the model to the real data. We calculate
the parameters that characterize the model from matching the data and find the

most important traffic indices and performance measures. We compare the mod-
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els investigated in chapter 4, and 5 with our model in terms of covariance, IDC,
probability of loss and mean queue length. In chapter 7, we apply congestion and
admission control to the proposed model. Finally, in chapter 8, we give a conclu-
sion, followed by a summary of the main contributions of the thesis and some sug-

gestions for future research.
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CHAPTER Il

Traffic Measurements

2.1 Introduction

Before modern broadband networks can be a reality, various issues need
to be resolved. In order to design and develop network functions, it is necessary to
comprehend the characteristics and requirements of the traffic to be carried. In
order to study the traffic characteristics of broadband network effectively, it is nec-
essary to obtain measurements which facilitate the identification of traffic descrip-
tors. Leland, et. al. [LEL91] performed traffic measurements and identified
important characteristics associated with LANs.

Traffic measurements taken from real data are highly desirable for validating
traffic models, designing congestion control algorithms, and developing switch
architectures. In addition network QoS control algorithms such as call admission
mechanisms, routing algorithms, and bandwidth allocation policies depend
heavily on the characteristics of ATM traffic. in this chapter we consider traces for
the real Ethernet data and VBR video. There have been several traffic surveys
which exhibit LRD, such as Ethernet LAN'’s, and VBR video [LE94,BE94]. We
have calculated various statistics for the LAN data and VBR video. Packet length
distributions, interarrival time distributions, autocorrelation functions, /DC and

variance-time analyses for LAN traces are presented. The distribution of the num-
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ber of cells per frame, autocorrelation function, /DC and variance-time analysis

for VBR sequences are also presented.

2.2 LAN traces

The traces of actual Bellcore Ethernet traffic data are available with ftp from
Bellcore.com, directory pub/lan_traffic. They consist of the time stamp (represent-
ing the time in seconds since the start of a trace) and an integer length (represent-
ing the Ethernet packet length in bytes). Four Ethernet traces that are widely
referenced in the literature will be considered. These traces are part of traffic mea-
surements that was done by Lelend, et. al. The traces are referenced as pOct.TL,
pAug.TL, OctExt.TL and OctExt4.TL [LEL91].

In the following, we consider packet length, interarrival distributions, auto-
correlation, IDC and variance-time analysis of the four traces. Traces pOct.TL and
pAug.TL are internal traffic and consists of all packets on a LAN. Traces OctExt.TL
and OctExt4.TL are remote or external Ethernet traffic, consisting of all those
Ethernet packets that originate on one LAN but are routed to another LAN, that is,
WAN. The maximum packet size in Ethernet is 1518 bytes, used mostly during file
transfer applications. Ethernet peak rate is 10 Mbps. Table 2.1 shows the Ethernet

traces, their packet length and type.

TABLE 2.1 Traces of Ethernet Traffic Measurements [LEL91]

Ethernet trace Length in packets in [sec] Trace type
pOct. TL 100,000 [210] LAN
pAug. TL 100.000 [252] LAN
OctExt.TL 100,000 [28148] WAN
OctExt4.TL 100,000 [4935.8] WAN
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2.2.1 Packet length

Statistics of our estimates for the four Ethernet traces are shown in Table
2.2. Figures 2.1 - 2.4 display, respectively, the histograms of the packet length dis-
tribution as a function of the packet data field length for the above given traces.
The Ethernet protocol forces all packets to have at least the minimum size of 64
bytes and at most the maximum size of 1518 bytes. The change in the packet size
scale of figure 2.3 is because the maximum packet length in bytes for the

OctExt.TL trace is 594 while for the other traces it is 1518.

TABLE 2. 2 Statistics of the Ethernet packet length for pOct.TL, pAug.TL,

OctExt4.TL, and OctExt.TL.

Parameter Maximum Mean Median Minimum Mean Peak / Hurst
Packet Packet Packet Packet Arrival Mean Parameter
length in Length Length Length in rate in Ratio
Bytes in Bytes in Bytes Bytes Bytes/sec

pOct. TL 1518 537.22 174 64 254920.0 2.826 0.78

pAug.TL 1518 464.17 162 64 184140.0 3.270 0.80

OctExt.TL 594 160.15 64 64 568.9533 3.71 0.88

OctExt4.TL 1518 191.59 64 64 2116.60 7.92 0.90
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FIGURE.2.1. Histogram of packet length distribution for pOct.TL
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2.2.2 Interarrival time

Interarrival time is computed as the difference between the times when the
transmission of two packets in a sequence began. Figure 2.5 shows our estimate
of the histogram of packet interarrival time distribution for LAN internal traces
pdct.TL and pAug.TL, while figure 2.6 shows the histogram of packet interarrival
time distribution for WAN external traces OctExt.TL and OctExt4.TL. Notice that,
the time scale in figure 2.6 is approximately two orders of magnitude larger than
that of figure 2.5. This is due to that the external traces OctExt.TL and OctExt4.TL
have interarrival times correspondingly larger than internal traces pOct.TL and
pAug.TL. The mean interarrival time for the internal traffic pOct.TL and pAug.TL is
smaller than that for the external traffic OctExt.TL and OctExt4.TL, which results
in higher mean arrival rate for the internal traffic (see Table 2.1). Moreover, histo-
grams of the packet interarrival time for both internal and external traces have
large mass at the beginning. This is because of the large number of packets arrive

with small interarrival times.
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FIGURE.2.5. Histogram of packet interarrival time distribution for
pOct.TL, and pAug.TL internal traces
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2.2.3 Autocorrelation, IDC and variance-time analysis

In figure 2.7 we show our caiculation of the autocorrelation function of the

12

four traces. The autocorrelation function of OctExt4.TL is larger than that of

OctExt.TL, pAug.TL and pOct.TL, respectively. As can be seen, the autocorrela-

tion functions decays at less than exponential rate and exhibits a heavy tail prop-

erty (LRD), however, they have a large correlation at low lags (SRD). OctExt.TL

and OctEx4.TL traces have an autocorrelation functions that decays more slowly

than the other two traces pOct.TL and pAug.TL which indicates that the former

traces are more bursty than the later ones
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FIGURE.2.7. Estimated autocorrelation function for the four traces,
pOct. TL, pAug.TL, OctExt.TL, and OctExt4.TL

Our estimation for the /DC normalized by its value at lag 1 is shown in figure
2.8. Leland, et. al. [LEL94] estimate the Hurst parameter H of pOct.T, pAug.TL
and OctExt.TL to be 0.78, 0.80 and 0.86 respectively and are approximately the
same as our estimate shown in the most right column of Table 2.2. Our estimation
of the H parameter for OctExt4.TL is 0.904. As can be seen in figure 2.8, the
slope of OctExt4.TL is larger (which means larger Hurst parameter # and more
bursty trace as shown in Table 2.2) than that of the other traces OctExt.TL,

pAug.TL and pOct.TL, respectively.
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FIGURE.2.8. Estimated /DC for the four traces, pOct.TL, pAug.TL,
OctExt.TL, and OctExt4.TL.

The so-called variance-time plots are obtained by plotting log lO(var(X(k)))
against log 10(k). See section 1.7.2 for the definition of X' . The relationship
between the slope of the variance B and H parameteris B = 2-2H [COX84].
The variance time analysis for the four sets of Ethernet data are shown in figure
2.9. The variance time curves are normalized by the sample variance at lag 1. As
shown, we have a slowly decaying variance for the four traces. That is, the vari-
ance of the sample mean decreases more slowly than the reciprocal of the sam-
ple size. Refer to condition v of section 1.72. The results are in agreement with
that of the autocorrelation and the /DC where WAN OctExt4.TL and OctExt.TL

are more correlated than LAN pAug.TL and pOct.TL
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FIGURE.2.9. Estimated variance-time analysis for the four traces,
pOct.TL, pAug.TL, OctExt.TL, and OctExt4.TL.

2.3 Video traces

Video is expected to be among the dominant services of future broadband
networks™, with respect to both the number of users and the resulting traffic vol-
ume as we have shown in figure 1.1. Video data is a hot area of research and stiil
its behavior is not well known as we will discuss in the next chapter. The statistics
of the traffic generated by a video source are greatly influenced by the nature of
the pictures transmitted, by the QoS provided, and by the coding technique
adopted. The video traces that available to us are generated at a rate of 25
frames/sec. Four different video sequences worth of actual video, representing
different kinds of scenes, and recorded using different types of VBR video codes
are considered. The sequences consist of frame number and the number of cell-

sper frame. For a summary description of the different sequences, including

‘For these reasons, most of our modeling and performance studies will be on video
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length of the sequence, number of bytes/cell, provider and scene type, see Table

2.3.
TABLE 2. 3 Qualitative description of available VBR video sequences.

VBR Video Length in Frames [in bytes / cell Provider Scene Type
sequence Minutes]
confcam 48497 [32.4] 64 Siemens video-conferencing
eva 48600 [32.4] 64 Siemens Video-phone
issaural 50151 [33.4] 14 Alcatel Popular TV series
film 51364 [34.2] 14 Alcatel Movie

2.3.1 The distribution of the number of cells per frame

Some statistics of our estimation for the four video traces are shown in Table
2.4. Our estimation of the number of cells per frame histograms for video
sequences video-conferencing, video-phone, TV series and Movie are shown in
figures 2.10 - 2.13, respectively. In these figures the distribution of the number of
cells per frame follows similar histograms and resembles a Gamma function
[HEY92]. As can be seen from column 6 of Table 2.4 and from these figures, as
the median to mean ratio increases the histogram of the number of cells per frame
has a smaller mass at the beginning. TV series sequence has smaller mass at the
beginning than other sequences because it has the largest median to mean ratio,
however, sequence video-phone has the largest mass at the beginning because
of its smaller median to mean ratio. Furthermore, all sequences have number of
cells per frame distributing that is skewed to the right (tail on the right) and the
mean lies to the right of the median. For symmetrical distribution, the mean and
median are equal. Column 7 of Table 2.4 shows the peak-to-mean ratio of the four
sequences. Figure1 of [HEY96] shows the peak-to-mean ratio for different VBR

video sequences including Movie and TV series of values about 2.24 and 2.21
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respectively. Our estimation for video-conferencing and video-phone are shown in

Table 2.4. The two sets of results are certainly well within statistical variation.

TABLE 2. 4 Estimated statistics of the number of cells per frame for traces video-
conferencing, video-phone, TV series and Movie.

Parameter Maximum | Mean Median Minimum | Median | Peak/ Hurst
number number number number to Mean Parameter
of cells of cells of cells of cells Mean ratio
per frame | per frame | perframe | per frame | ratio
video-con- 629.0 130.2967 113.0 23.0 0.867 4.827 0.72
ferencing
video-phone | 897.0 170.62 146.0 21.0 0.856 5.257 0.74
TV series 11801.0 5336.4 5108.0 2523 0.957 2211 0.90
Movie 13325.0 5948.4 5690.0 3649 0.957 2.240 0.96

It is clear from the last two columns of Table 2.4 that it is not appropriate to

compare teleconferencing data with entertainment data, because of the wide dif-

ferences in their statistical characteristics. Also as shown in the table, entertain-

ment data such as TV series and Movie have higher; maximum number of cells

per frame, minimum number of cells per frame, median number of cells per frame

and Hurst parameter than teleconferencing data, video-conferencing and video-

phone. However, teleconferencing data have higher peak to mean ratio than

entertainment data does. That is teleconferencing data have larger peak to mean

ratio but they are less correlated than entertainment data. This is a clear indication

that it is not appropriate to compare the two kinds of traffic in terms of their QoS

and other congestion control criteria which we will discuss in due course.
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3.2 Autocorrelation, IDC and variance-time analysis

The importance of long-range dependence is determined by the importance

of autocorrelation, /DC and variance of the traffic for very large values of lag. In
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figure 2.14 the autocorrelation functions that we have calculated for the four
sequences are shown. Figure 2a - b, figure 4 and figure 5 of [HEYM96] shows the
autocorrelation functions of video-conferencing, video-phone, Movie and TV
series sequences, respectively, and are exactly the same as that based on our
calculations which shown in figure 2.14. The Movie sequence has a larger auto-
correlation function than that of TV series, video-phone, and video-conferencing,
respectively. As can be seen, all sequences have a large autocorrelation at low
lags (strong SRD at low lags). As the lag increases, the correlation decreases in a
non-exponential decay. The rate of decay has to do with the type of the video data

and therefore with its burstiness.
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FIGURE.2.14. Estimated autocorrelation function plots for the four video
sequences, video-conferencing, video-phone, TV series and Movie.

In figure 2.15, we plot the /DC normalized to its value at lag 1 for the VBR
video data. Beran, et. al. [BERZ5] (see also [HEYM96)) estimate the Hurst param-
eter H for video-conferencing and video-phone to be about 0.7, and for TV series
to be about 0.9; their estimate for the Hurst parameter H for Movie is greater than
one. As shown in Table 2.4, our estimates for video-conferencing, video-phone
and TV series are 0.72, 0.74, and 0.9 respectively. For Movie it is 0.96 which is dif-
ferent from the value estimated by Beran, et. al. of value greater than 1.0. As
shown in figure 2.15, the slope of the IDC for Movie is larger than that of TV

series, video-phone and video-conferencing respectively. The most right column
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of Table 2.4 shows the estimated H parameter for the four sequences. These
results show that Movie sequence is more bursty than the TV series, video-phone

and video-conferencing, respectively, which results in higher Hurst parameter H.
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FIGURE.2.15. Estimated /DC plots for the four video sequences video-
conferencing, video-phone, TV series and Movie.

Figure 2.16 depicts the variance-time plots corresponding to the four VBR
video data. The variance time curves are normalized by the sample variance at
lag 1. As shown, highly bursty traffic such as Movie and TV series decrease more
slowly than the sample size as compared with the medium correlated traffic such
as video-phone and video-conferencing (see condition v of section 1.7.2).

From the above resuits, it is clear that self-similar traffic mathematically man-
ifests itself in a number of equivalent ways; autocorrelations decay hyperbolically
rather than exponentially and variance of the sample mean decrease more slowly
than the reciprocal of the sample size. This difference in the autocorrelations rate
of decay, slope of IDC, and rate of decrease of the variances, suggest that long-
range dependence parameters such as H -value might be useful for differentiating

between types of VBR scenes
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FIGURE.2.16. Estimated variances-time plots for the four video
sequences, video-conferencing, video-phone, TV series and Movie.

2.4 Discussion

We investigated different Ethernet LAN, WAN and video data traces. We cal-
culated different traffic statistics for both kinds of data. As the interarrival time dis-
tribution gets longer for the Ethernet packets, the traffic becomes more bursty.
This can be seen from the autocorrelation, /DC and variance-time plots, where
traffic with long interarrival times such as OctExt.TL and OctExt4.TL have autocor-
relations that decay more slowly than the traffic with short interarrival times such
as pOct.TL and pAug.TL. Moreover, the slope of the IDC of the long interarrival
times traffic is larger than the traffic with short interarrival times traffic. The distri-
bution of the number of cells per frame for the video data has the form of the
Gamma distribution. We calculated the autocorrelation, IDC and the variance
time plots. From the observation, we found that entertainment traffic is more
bursty than teleconferencing traffic. Entertainment traces exhibits a larger H-
value. The autocorrelation and variance decay rate of the entertainments traces
are less than that of the teleconferencing traces. This difference in the H -value,

the rate at which autocorrelation and variance decay suggest that long-range
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dependence parameters such as H might be useful for differentiating between
types of VBR scenes. As shown in Table 2.2 for Ethernet data and Table 2.4 for
video data, the Hurst parameter can be used as a rough indication of scene activ-
ity. For video telconferencing, for example, H tends to be smaller, typically
between 0.7 and 0.75. Entertainment data have higher H -values often greater

than 0.9. LAN have H -values around 0.8 while WAN has H -values around 0.9.
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CHAPTER Il

Characterization and Modeling of Self-Similar Traffic in
ATM Networks

3.1 Introduction

As we have discussed in chapter 1, ATM networks are expected to support
a diverse set of applications with a wide range of characteristics. See figure 1.2.
Our interest in source characterization and modelling is focused on models that
are good predictors of cell losses and queue lengths in ATM networks transporting
many traffic connections. Figure 3.1 shows the current state of understanding of-
source characterization in ATM networks [ONV94].

Most understood

Voice S S S S S S S S S S S/
CBR video I I

Packet data

/\/\/VM

Least understood

FIGURE.3.1. Current state of information on source characterization in
ATM networks [ONV94].

Voice source characterization have been studied for several decades and
are well understood [BRA69,DAI86,SRI86]. A voice source alternates between

talk spurts (active) and silent period (idle). In the normal conversation the active
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period fits the exponential distribution reasonably well while the duration of the
silent periods is less well approximated by the exponential distribution. CBR video
is a continuous bit stream of constant rate and can be simply described by their
peak rate. The burstiness of a CBR source is equal to one, and the source is
active during the duration of the connection (or the silent periods are also trans-
mitted at the peak rate). The CBR video QoS and the amount of bandwidth
required in the network increases as the rate that the data flowing into the network
increases. The difficulty for CBR video is that in estimating the constant bit rate to
provide the desired QoS. Typical examples of CBR services includes voice, video
and audio.

Conventionally, the term data is used for any applications that is not voice,
audio or video. Data networks have been operational for decades; however, traffic
characteristics of data sources are not well understood. The main difficulty arises
due to the fact that there is no typical data connection. Large amounts of data are
transmitted in a file transfer on a continuous basis during the duration of the con-
nection, whereas only a few hundreds bytes are generated by an e-mail. The
problem of characterizing the source characteristics of data applications is further
complicated by the fact that it is difficult to predict in advance the traffic character-
istics of a connection, even if the particular application type is known. A common
data application is LAN interconnections. As we have seen in our discussion of
Ethernet traffic in chapter 2, LAN sources are very bursty with very long bursts.
These characteristics emphasize correlations in the arrival streams, causing a

deterioration of QoS. The serious implications for ATM networks design is that
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conclusions based on traditional models may not be applicable because of the
self-similar nature of the traffic models.

VBR video and image are new research area. The current knowledge on
their source behavior is limited and based on different system implementations. In
general, the traffic generated by a typical source either alternates between the
active and silent periods or has a varying bit rate generated continuously. The
peak to average bit rate of a VBR is often greater than one. Video applications
generate traffic in a continuous manner at varying rate. As mentioned above,
video is a relatively a new service in communication networks and its traffic char-
acteristics are not well understood. It is also quite different from voice or data in
that its bit streams exhibit various types of correlations between consecutive
frames. As we have seen in the discussion of section 2.3 of chapter 2, VBR video
traffic exhibits the self-similarity properties and the traffic is bursty over long time
intervals. Recent extensive measurements of real traffic data [BER95, LEL93],
have led to the conclusion that VBR video traffic cannot be sufficiently repre-
sented by traditional models, but instead can be more accurately matched by self-
similar models.

Conventional characterizations assumes that packet traffic consists of alter-
nating active and silent periods with well defined statistics. In contrast, studies
have noted that there is no natural burst length, and bursts occur over many time
scales [LEL94]. At every scale, bursts resolve into bursts over smaller time scales,
and so on, over many time scales. It is this “burst within burst” structure that

underlies the self-similarity properties observed in actual traffic data. The chal-
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lenge is to capture this complexity in a way that can be analyzed and applied in
practice.

Fowler and Leland [FOW91] examine the burstiness of data traffic over a
wide range of time scales, and discusses the impact of burstiness on network
congestion. Norros [NOR94] proposed a stochastic process as a model for the
content of storage having self-similar input and being emptied at a constant rate.
The tail behavior of the steady-state queue-length distribution, for large buffer, in a
single server, infinite-capacity queue is derived. Huang, et. al. [HUA95] presented
a unified approach which, in addition to accurately modeling the marginal distribu-
tion of empirical records, also models directly both the short-range dependence
and long-range dependence of empirical autocorrelation structures. Veitch
[VEIS3] provided models which are capable of describing the long-term correla-
tions and self-similar burstiness found in packet networks and in VBR video. Two
processes designed to capture the self-similarity are presented; the fractal arrival
processes (continuous and discrete), and the WSS processes. Gusella [GUS91]
propose a fitting procedure based on measurements of both intervals and counts
for the MMPP. His approach is simpler than that of Heffes [HEF86). Gusella did
not find the performance measures of the traffic, while in [HEF86] their models
predicts the mean and the variance of queueing delays; however, the QoS param-

eter that is of greatest interest is cell loss.
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3.2 Traffic modeling in ATM networks

Modeling of the arrival process is an essential part of ATM network design
and performance evaluation. Three major categories of traffic models have been
considered; input traffic models for voice sources, input traffic models for data
sources, and input traffic models for video sources (l[HEF86, SRI86, MAGSS,
BAI91, BER9S5)). For voice sources, delay is the most critical QoS requirement;
while moderate cell loss can be tolerated (see figure 1.3). Data sources have QoS
requirements different from voice. These services are usually very sensitive to cell
loss (thus, demanding a very small cell loss rate), while their delay requirements
are not so strict. Video is sensitive to both cell loss and delay. Small cell loss and
delay are required such that required QoS and small delay jitter, (the variance of

the delays), are achieved.

In this section we survey commonly used traffic models. Such models are
employed in two fundamental ways: either as part of an analytical model, or to
drive a discrete-event simulation. We treat each in turn. The most common model-
ing context is queueing, where traffic is offered to a queue or a network of queues

and various performance measures are caiculated.
3.2.1 Analytical models

The most general model of an ATM traffic source would be one taking into
count the entire past history of cell generation so as to determine the time of the
next cell to be generated. Such a model would be very complicated to describe,
as well as very hard to fit to actual sources. It would also be analytically intracta-
ble. It is required to have models that have a small number of fitting parameters to
make them analytically tractable and at the same time have the same properties
as the actual sources. However, such models cannot possibly fit satisfactorily to
all kind of sources. Nevertheless, general models have attracted significant atten-

tion, and have been applied successfully in several contexts. In the following we
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discuss some general models, Poisson and its discrete-time analog Bernoulli
models, Markov chain model, Markov-modulated Poisson process models, and

the fluid-flow model.

3.2.1.1 Poisson processes

Poisson models are the oldest traffic models, dating back to the advent of
telephony [PAP84]. A Poisson process can be characterized as a renewal process
whose interarrival times { A, } are independent and exponentially distributed with
rate parameter A .

P{A, <t} = 1—exp(-At) (3.1).
equivalently, the arrival process, satisfies the Poisson distribution,

P{N(t) =n} = exp(-At)((At)"/n!) (3.2).
where N(r) is the number of arrivals in (0, ) which in disjoint intervals are statisti-
cally independent (a property known as independent increments).

Poisson processes have some elegant analytical properties. First, the super-
position of independent Poisson process results in a new Poisson process whose
average rate is the sum of the component average rates. Second, the indepen-
dent increment property renders Poisson a memoryless process. This, in turn,
greatly simplifies queueing problems involving Poisson arrivals.

Generation of data from a single data source is frequently characterized by a
Poisson arrival process (continuous time case) or by a geometric arrival process
(discrete time case). An extension to this is the compound Poisson model, where
arrivals are generated in batches; the batch generation times still form a Poisson
process. The batch size may assume a general distribution; however, when
restricted to the geometric distribution, analytical expressions can be obtained

more easily.
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3.2.1.2 Bernoulli processes

Bernoulli processes are the discrete-time analog of Possion processes.
Here the probability of an arrival in any time slot is p, independent of any other
one. It follows that for & slots, the probability distribution for the number of arrivals

is binomial,
kN n k—n
pi{N,=n} = (n)p (l-p) ", n=0,.... k. (3.3).

On taking the limit £k — « and p — 0 while keeping kp — A, the number of

arrivals is Poisson. The time between arrivals is geometric with parameter p:
P{A,=j} = p(1-p), j=20 (3.4).

The Bernoulli model, very often used in analytical and simulation studies, is
inappropriate for modeling bursty traffic data because it assumes that there is no
correlation between arrivals [HEF86,SRI86]. There are alternative approaches to

describe bursty traffic which will be discussed in the sequel.

3.2.1.3 The Markov chain model

The Markov chain models can be used to approximate the self-similar traffic,
even if they do not have the LRD that self-similar traffic exhibits. In [HEY96] it is
shown that LRD is not a crucial property in determining acceptable QoS when the
load is not heavy as would be the case when delay is important. We assume that
the state transitions occur only at the end of a time slot. A complete description of
the system is given by the state transition probability matrices. The conditional
probabilities P [X, = j/X, _, = i]] are called the single-step transition probabili-
ties or just the transition probabilities. If these probabilities are independent of n,
then the chain is said to be homogenous and the probabilities
P.[X,=j/X,_, =i]] can be written as p;;. The matrix formed by placing p;; in
the (i, j) location is known as the transition probabilities matrix or chain matrix
(call it P). Therefore, for the homogenous chains, the 1-step transition probabili-

ties are given by,
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P = pij = Pr[anj/Xn—l =i]/Pr[Xn—l =17] (3.5).
In the limit; we have
p;j=number of transition from i to j / number of transitions out of i

when the denominator is greater than zero.

These transition probabilities are estimated from the data which allow the calcula-

tion of the steady-state probability vector & = [, ®,, ........ ,y] by solving the fol-
lowing:

P =n (3.6).

T+ T+ e, +ny =1 (3.7).

Once the steady-state probability vector  has been obtained, the computa-
tion of most of the interesting performance measures, such as the cell loss proba-
bility and the average delay, is straightforward. The drawbacks to the Markov
chain model are that it has too many parameters and there is no apparent connec-
tion between the parameters and some easily measured statistics of the data
[HEY92]. This limits the use of Markov chain in analysis, however, it can also be

used in simulation.

3.2.1.4 Markov-modulated Poisson processes

The Markov-modulated Poisson process (MMPP) is a model of bursty traffic
that has received much attention in recent years [HEF86,SRI86]. It is a powerful,
analytically tractable model that can represent aggregate traffic generated by the
superposition of several point processes. The MMPP process is a doubly stochas-
tic Poisson process where the rate process is determined by the state of a contin-

uous-time Markov chain.

FIGURE.3.2. Two-state MMPP model.
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An MMPP with higher number of states can represent traffic with higher
burstiness. However, for analytical tractability, we are restricted to a small number
of states. In the two-state MMPP model of figure 3.2, an aggregate arrival process
is characterized by two alternating states. When the Markov chain is in state i,
(i = 1, 2) the arrival process is Poisson with rate A, and the transition rate of
going out of state i is given by o;. The two states of the switched Poisson pro-
cess correspond to the long and short burst rates. It is usually assumed that the
duration of each state follows exponential (continuous time case) or a geometric
(discrete time case) distribution with different rates. Therefore, four parameters
are necessary to describe an MMPP: the mean duration of each state, and the
Poisson rate in each state. The infinitesimal generator Q associated with the
Markov chain and the rate matrix A are given by:

0= -0, O, A = AL O
o, -0, 0 A,

In voice traffic correlations exist only over short intervals. A common
approach for modeling aggregate arrivals from a number of ON-OFF sources is to
use a two-state MMPP [SRI86,HEF86]. Moreover, as shown in [MAG88] video
traffic may be characterized by a MMPP model based on many independent iden-
tical ON-OFF minisources.

The Matrix geometric technique is used to deal with models such as MMPP.
It proported to be a very powerful technique compared to the classical probability
generating function approach in solving queueing systems problems [NEU79]. In
[HUAQS] heterogeneous multimedia traffic sources are modeled as an MMPP.
Analytical model based on matrix analytical techniques is developed to evaluate
the performance of a broadband satellite communication system for multimedia

services. One advantage of characterizing the superposition of different sources
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streams as an MMPP is that, once we obtain the parameters of the process, we
can feed it into any system. The main objective behind the selection of certain fit-
ting parameters is to capture the correlation effects in the arrival process. MMPP
has the property of capturing the time-varying arrival rates and correlation

between interarrival times. However, this is only possible over a limited time scale.

3.2.1.5 Fluid-flow processes

Another technique that models bursty traffic is stochastic fluid models
[ANI82,MIT88, MAGS88] where for general stochastic fluid model, the arrival rate,
service rate are state dependent and the buffer content is a non-negative continu-
ous random variable. The bursty traffic sources are modeled as Markov modu-
lated fluid sources in which the state of the controlling continuous time Markov
chain determines the rate of fluid generation. In this discussion, we will give the
fluid flow more emphasis as compared with the MMPP and Markov chain pro-
cesses in as much as these studies will be used later in our work.

The fluid flow approximation method has been applied successfully in vari-
ous ATM traffic studies. Anick, Mitra and Sondhi [ANI82] made one of the earliest
contributions, obtaining analytical models for homogenous traffic by treating the
flow of cells from each active bursty source as a continuous fluid flow. Others have
extended this work to muiltiple source types and different bursty source models. in
[SENB89] this model used to capture the long term behavior of a video source cor-
responding to scene changes in video signals.

Typical fluid models assume that sources are bursty of the ON-OFF type
shown in figure 3.3. While in the OFF state, traffic is switched OFF, whereas in the
ON state traffic arrives deterministically at a constant rate R. For analytical tracta-

bility, the duration of ON and OFF periods are assumed to be exponentially distrib-
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uted and mutually independent with means B~' and o' respectively. N such

ON-OFF sources are used and this will lead to figure 3.4 naturally.

FIGURE.3.3. ON-OFF source model.

There are two fundamental reasons why fluid flow models are appropriate in
an ATM environment. The small and uniform cell size (53 bytes), the constant
interarrival time between cells for several contiguous cells at the time of genera-
tion fits easily in the fluid framework. The numerical complexity of solving fluid
modeils with finite buffers does not depend on buffer size.

The equilibrium queue distribution is described by a set of differential equa-
tions together with a set of boundary equations describing the queue behavior at
its limit. These equations can be solved to yield equilibrium distributions of delay
and packet loss. A differential equation can be derived which governs the birth-
death process shown in figure 3.4 [ANI82]. Let p;(t, u) be the probability that, the
queue length does not exceed « and i sources are active at time ¢, ¢ is the chan-
nel capacity and N is the number of ON-OFF sources. Then at time ¢, two ele-
mental events can take place during the next interval Ar, i.e., a new source can

start or a source turn off with probabilities (N - i)aAr and ifAr respectively.

(N-1a (N=2)a 2a o
2 38 (N-1)B NB
FIGURE.3.4. Birth-Death model for the superposition of N ON-OFF
sources

The probability of no change is:
2
1 -{(N-iDa+ip}Ar+ O(Ar7).

Now,
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pi(t +At,u) = (N-i+1)aAr P;_ l(t, u—(i—c)Ar)+(i+1).
B P; 4 l(t, u—-(i—-c)Ar)+[1 - {(N-iDa+iB}Ar]. (3.8).
pi(t, u—(i—c)Ar) + O((Ar)), i=0,1, ..., N

Moving p(t,u—(i—c)Ar) term to the L.H.S,, dividing both sides by Ar,

using Taylor expansion around the point « and finally letting Ar — 0 gives,

%Pi(t, u) + (i—C)-a%pi(t, w) = (N-i+hop; (1, u)-

[(N-i) a+ iB]pi(t, w)+ (i + I)BP,-+ l(t, 1)

(3.9).

As we are interested only in time-independent, equilibrium probabilities,
define Fi(“) = lim pi(t, u), 0<i<N,u=20 as the stationary probability that ;
I — oo

sources are active and the buffer content is not greater than u« . Setting F,(u) = 0

for ig [0, 1, ......... N1, the following linear differential equation is obtained

(i—c)%Fi(tl) = (N~i+ Do F; _ (u)=[(N-i) a+iBIF (u) +

(i+ DBF, , (w)

(3.10).

Substituting for the values of i = 0, 1, 2, .....N in equation (3.10), we have the fol-

lowing in matrix notation
dF
—_ = >
du(u) AF (1) =0 (3.11).

which has a solution of the form:

F(u) = e*"b (3.12).
where F(u) = (Fg(te), Fy(1), cooeroeee.. Fyw) ;A = D'M,
D =dg(-c,1-c, ... N -c), b is a constant column vector and M, an NxN
matrix, is the transpose of the infinitesimal generator matrix for the underlying

Markov process and is given by:



62

-No B
Nao —[(N - o + B] 2B 0
(N-Da  -[(N-2)o+2B]
M=
0 [+ (N-1)B] NB
a -NB

The _joint source and queue length distribution F(«) has a spectral expansion
solution,

F(u) = Zexp(zi-u) a;Q; (3.13).

i
a; are the coefficients in the spectral expansion solution. (z;, ¢;)are the eigenval-
ues and the corresponding eigenvectors of a generalized eigensystem represent-
ing the differential equations about F(u), which satisfies the following eigenvalue
problem: '

oD = oM (3.14).
The coefficients a; are obtained from the boundary conditions. Decomposition

results for the model allow the eigenvalue and eigenvector pairs (z;, @;) to be

accurately computed [KOS86].

From F(u), various performance measures can be obtained. The probability
of overflow beyond « (probability an arrival that is blocked by a finite buffer), which
is a measure of cell loss probability in ATM networks, can be found from the queue
length distribution:

G(u) = Pr(buffercontent >u) = 1 - ITF(u) =
N-c-1 (3.15).

- 2 exp(zi - u) ai(lr(pi), (x=0)
i=0

where 1 denotes the vector with unity for all its components and T denotes trans-

posing.
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The nth moment of the queue length can be expressed as:

[= =] (==

E(un) = J.un d{ ITF(u) }= nJ‘un- L G(ue) du (3.16).
0 0

The equilibrium probability distribution for the queue length is given by the mar-
ginal probability

F(u) = zFi(") u=0 (8.17).
[

Quantities of interest for QoS evaluation are expected values of queue length

and average queueing time.The expected value of the queueing length is given by,

0 = fudF(u) (3.18).
0

Knowing the average queue length Q0 = E(u), the average queueing time can be

found using Little’s formula.

3.2.2 Simulation models

In the previous section, we have discussed analytical models some of which
approximately characterize the LRD . Analytically tractable models for LRD traffic
are an area of active research and many of the results are from simulations. While
there are numerous stochastic simulation models which exhibit the LRD property,
they are useful in simulation but not analysis. Among these are the autoregressive
processes, the Pareto modulated Poisson processes (PMPP), the exactly self-
similar fractional Gaussian noise (FGN) and its continuous version known as Frac-
tional Brownian Motion (FBM) and the asymptotically self-similar fractional autore-
gressive integrated-moving average (F-ARIMA). One of the objectives of our work
is to compare these techniques for generating LRD traffic and to find out which
techniques gives the most accurate measures of QoS. This will be discussed in
chapter 4 and chapter 5. Moreover, the synthetic traffic generated using these
models is used in simulation studies for gaining a better understanding of queue-

ing and network-related QoS issues.



3.2.2.1 Autoregressive traffic process

The class of linear autoregressive models is the most common example of
autoregressive processes. It has the form:

X = a X, ,+be, n>0 (3.19).

r=1
where X, X,,....X p-1 are random variables, the a,, b are real constants, and the
€, are zero mean, identically independent distributed (1ID) random variables,
called residuals, which are independent of the X, . Equation (3.19) describes the
simplest form of a linear autoregression scheme called AR (p), where p is the
order of the autoregression.

The recursive form of the equation makes it clear how to randomly generate
the next random element in the sequence X, from a previous one. For a first
order model AR(1), equation (3.19) has the following form:

X, = a,X,_, +be, (3.20).

Taking the expectation of both sides of (3.20) and denoting the mean of €, by n,
the steady-state average of the AR(1) is given by

E(X) = bn/(1-a,) (3.21).

The discrete autocovariance C(n) = E{(Xn —E(X))(Xn +x—EX))} is given by
2 n 2
C(n) = (b al)/(l—al) n=0 (3.22).

Matching equations (3.21) and (3.22) to the real data, the AR(1) parameters a,, b
and n are easily obtained [MAG88].

This model provides a rather accurate approximation of VBR video sources
[HEY92]. Going for higher order AR models will give more accurate results but
with complexity trade-off. However, analysis of a queueing model with the above
arrival process can be very complex and may not be tractable; therefore, this

model is suitable only for use in simulations.
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3.2.2.2 Pareto-modulated Poisson process

The Pareto-modulated Poisson process (PMPP) can also be used to charac-
terize self-similar traffic [SUB95]. Similar to the MMPP case, the two state PMPP
model is shown in figure 3.5. In each of the two states, the traffic is modeled as a
Poisson process with rates A,, i = 1 2. However, the duration of each state is
independent and identically distributed with Pareto distribution of parameter o.
The duration of the states are chosen to have a Pareto distribution of probability
density function f,(1) = aa®/t**', a>0,1=a which have the thick-tailed prop-
erty in order to capture the long term dependency in the arrival process. Three
parameters are necessary to describe the two-state PMPP: the mean duration of

the state a and the Poisson rate in each state A, and A, .

e

FIGURE.3.5. Two state PMPP model

No analytical results exist for finding the performance measures such as the
loss probabilities and the queue length distribution of the Pareto model. All the
work done is based on simulation by matching the IDC of the symmetric two-
state PMPP to the real data to find the parameters and then generating synthetic
traffic. In the following we consider matching /DC to the real data:

The relationship between o and H is given by [COX84]:

H=(G-a)/2. (3.23).

For the symmetric case of PMPP, it is shown in [SUB95] that the IDC is
given by:

2
Ay =257, _
I =1+ 1 27 (a l).t2 o

. rh, o (3.24).

The mean arrival rate A is given by:
Ay +A,
A= > (3.25).
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The procedure that we developed of finding the PMPP parameters Ay Ay,
and o will be discussed in section 4.2.2 when we fit the Pareto model to the Ether-
net data. Given «, A, and A, synthetic traffic is generated, using OPNET (a short
review of OPNET will be presented in section 3.6), and then the performance
measures of the generated and real data are compared.

As we have presented in chapter 2 and as shown in [LEL91], data traffic is
highly bursty. A traffic model which takes into account the LRD characteristic is
needed. It is shown in [SUB95] that the PMPP model is well suited to the charac-
terization of the data. Application of this model to the real Ethernet data will be

considered in the next chapter.

3.2.2.3 Fractional Gaussian noise (FGN), Fractional Brownian Motion (FBM)
and Fractional Autoregressive Moving average (F-ARIMA) processes

As we have discussed in section 1.7 the crucial feature of self-similar pro-
cesses is that they exhibit LRD, i.e.; their autocorrelation function decays less
than an exponential rate. Fractional Gaussian Noise (FGN) is a stationary Gauss-
ian process. The autocorrelation function of the exactly second-order self-similar
FGN with 0.5 < H < 1 is given by:

2H
=1[7)

2 2
rky = aclke+ 177 -2 H i k=12 (3.26).

where k is the lag and H is the Hurst parameter.
In [MANG8] Fractional Brownian Motion (FBM) was introduced. It is a contin-
uous time analogue of FGN. It has a correlation function of the form

2 2 2
r(ty, 1y) = %{tl-H+tz-H—ltl —tzl“H}, 1,,1,>0 (3.27).

where 0<H < 1

Fractional Autoregressive Moving Average (F-ARIMA) was introduced in
[HOSB84]. Itis a function of three parameters; p, d, q, where p and g are non-neg-
ative integers and 4 is real. These processes are examples of independent

asymptotically second-order self-similar processes with self-similarity parameter



67

H = d +0.5, where the parameter 4 measures the strength of long-range depen-
dence. The properties of an F-ARIMA(p, d, q) process at high lags or low fre-
quencies are similar to those of an F-ARIMA(0, d, 0) process with the same value
of d. F-ARIMA(0, 4, 0) processes are the simplest of the fractionally differenced
ARIMA processes. The F-ARIMA(0, 4, 0) autocorrelation function is given by

(DU +d)e(k-1+d)

T (-2 -dyk—d) k=12, .. (3.28).

r(k)

whered = H-05,05<H<1

In the following, we are going to present an algorithm for generating three
classes of traffic FGN, FBM and F-ARIMA processes [HOS84]. The differences
among them their autocorrelation functions as given by (3.26), (3.27) and (3.28).
The long synthetic FGN trace X = {X(k): k= 1,2,.....}is generated according to
Hosking’s procedure [HOS84]. This method is applicable to any Gaussian process
as long as the autocorrelation function r(k) is known. The initial point in the gen-
erated sequence, X(0) is a sample from the Normal distribution with zero mean
and variance v(0) denoted by N(0, v(0)). Set M(0) = 0 and D(0) = 1; the
mean and the variance of n points are generated by the following iteration for

k=12,..n:

M(k) = r(k)- kzlq)(k— L, j)r(k - j) (3.29).
j=1
D(k) = D(k-1)-M*(k—1)/D(k - 1) (3.30).
Ok, k) = M(k)/D(k) (3.31).
Ok, j) = 0Ck—1, j) =0k, K)O(k—1, k=), k = 1, ...k—1 (3.32).

The mean and the variance are given by,

k
m(k) = Y, 0k, ))X(k- j) (3.33).
j=1

v(k) = (L -0°(k, k))v(k—1) (3.34).
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where ¢(k, k) is the kth partial correlation coefficient of X « and o(k, j) are partial
linear regression coefficients. The points are generated by choosing each X (k)
independently from N(m(k), v(k)).

3.3 Generation and the simulation study of self-similar

traffic

In this section we use the methods discussed in the previous section to gen-
erate self-similar traffic, in particular FGN, FBM and F-ARIMA. We consider in our
simulation experiments three cases, one with # = 0.5, which represent short
range dependence (Poisson process) and one with H = 0.7, which represents
medium bursty traffic and finally # = 0.9 representing highly bursty traffic.

We show in figure 3.6, figure 3.7 and figure 3.8 FGN, FBM and F-ARIMA
traces with input H = 0.5, 0.7 and 0.9. We can see that, as the H value increases,
the FGN, FBM and F-ARIMA traces indeed become more and more correlated.

We investigate the traffic characteristics of the models with the goal of identi-
fying traffic descriptors and performance measures and formulating a traffic model
designed to generate traffic for simulation. Several basic statistics for the FGN,
FBM and F-ARIMA are examined. An important traffic descriptor is the burstiness,
expressed here as covariance, /IDC, and the variances-time analysis. To decide
whether our model is acceptable or not is to find how its performance measures
behave. The most important of these performance measures are, the probability
of loss and the mean queue length from which the average queueing delay can be

found using basic queueing theory.
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JLFGN i FBM D F-ARIMA
FIGURE.3.6. FGN and FBM, F-ARIMA traces for H=0.5.
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FIGURE.3.7. FGN, FBM and F-ARIMA traces for H=0.7.
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FGN, H = 0.9 FBM, H = 0.9 F-ARIMA, H = 0.9

FIGURE.3.8. FGN, FBM and F-ARIMA traces for H=0.9.

3.3.1 Covariance, IDC and variance-time analysis

Based on the values of the Hurst parameter H, using Matlab software, sim-
ulated traffic is generated and measured for consistency. Figure 3.9 shows the
given and the estimated values of the covariance functions of FGN, F-ARIMA and
FBM. The given values are the input to model and the estimated values are those
based on the data generated from the model. As can be seen, for low lag, all mod-
els have a very strong SRD. As the lag increases, and for H-values of 0.6 the
covariance functions decay more quickly as compared with high H -values of 0.9.
That is, highly correlated traffic has larger time constant than uncorrelated traffic.

Figure 3.10 shows the given and the estimated values of the /DC’s normal-
ized by its value at lag 1 for FBN, FGN, and F-ARIMA. The IDC is directly propor-
tional to the Hurst parameter H through the relation (slope of IDC=2H —1). As
can be seen, as the H-value increases, the slope of the IDCincreases. For

H=0.5, the slope of the IDC is 0, which means non-correlated traffic. The accu-
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racy of the traffic generators is measured in terms of the difference between the

given and the estimated value of H. Good results are obtained and the error, the

difference between the given and estimated value of H, is very small and in the

range of 5%.

Covanance
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0.9 F-ARIMA

FIGURE.3.9. Simulation results for covariance function of FGN, F-ARIMA
and FBM for different given values of H.
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FIGURE.3.10. IDC’s for FGN, FBM, and F-ARIMA for different given
values of H.
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Figure 3.11 shows the given and the estimated values of the var

iances nor-

malized by the sample variance at lag 1 for FBN, FGN, and F-ARIMA. As the

Hurst parameter H increases, the variance of the sample size decreases more

slowly than the reciprocal of the sample size, which is the case when

shown in figure 3.11.
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FIGURE.3.11. Variances-Time plots for FGN, FBM, and F-ARIMA for

different given values of H .

3.4 Performance analysis

In an ATM network, the sources access the buffer through statistical multiplex-

ing and when the buffer size is finite, cells can be discarded if the buffer becomes

full. The real test of the utility of a model is its ability to predict probability of loss in

which the size of the buffer is finite. Therefore the probability of cell

buffer overflow is among the most important performance measures

loss due to

in an ATM

muitiplexer, especially when dealing with loss-sensitive traffic such as data and

video [TSY97].
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3.4.1 Probability of loss

Using Matlab software, we generated different traces of 100000 samples
long, almost the same number as thaf for the real Ethernet data discussed in
chapter 2 and shown in Table 2.1, for FGN, FBM and F-ARIMA models. The input
to the models are, mean value, variance and the Hurst parameter. The traces
have different Hurst parameter. The idea here is to see how the loss in ATM muiti-
plexer is affected by the level of the correlation as a function of the load and con-
stant buffer size or vice versa. We compare the probabilities of loss for the traces
as a function of the load. The comparison is based on the same buffer size but dif-
ferent Hurst parameter. The traffic that we simulated has a mean value of 5 pack-
ets/sec. However, it is possible to fix the mean value to any desired value; it
depends mainly on the input parameters to the simulator that generate the traffic.
We choose to have a buffer size of 2 packets, which is reasonable compared to

the mean value of the simulated trace of 5 packets/sec.

The probabilities of losses for simulated FGN, FBM and F-ARIMA traffics for
different Hurst parameter H as a function of the traffic intensity with finite buffer of
size 2 packets are shown in figure 3.12. As can be seen, as the Hurst parameter
increases, the probability of loss increases. That is, more loss occurs for highly
correlated traffic assuming the same buffer size. Moreover, as the load increases
the probability of loss increases. The three models perform aimost the same when
the traffic intensity and the correlation index are not large. However, as the traffic
intensity and the correlation index of the traffic increases, the three models

become slightly different.

This is an important observation; as the correlation effect between the sam-

ples increases, the probability of loss of traffic flowing through a buffer of fixed size
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increases. This observation of the effect of the Hurst parameter values on the traf-

fic can be used later in our work when we deal with real data.
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FIGURE.3.12. Simulation results for probability of loss of FGN, FBM and
F-ARIMA for buffer size = 2 packets for different given values of H .

3.4.2 Mean queue length

In figure 3.13 we show the mean queue length for the FGN, FBM and F-
ARIMA traffic that we generated. The generated traces have the same mean
value of 5 packets/sec but different Hurst parameter H. The buffer size is fixed
and has a value of 2 packets. As for the proability of loss, the mean queue length
as a function of the traffic intensity increases as the traffic becomes more bursty.
As the traffic intensity and the index of the correlation increases, the three simula-
tion models, FGN, FBM and F-ARIMA become slightly different in their prediction
of the mean queue length. For low traffic intensity and low correlation index, the

three models behave almost the same.



75

'l — - L 1 'l
0.6 Q.65 0.7 0.75 0.8 0.85 0.
Traftfic Intensity

FIGURE.3.13. Simulation results for mean queue length of FGN, FBM
and F-ARIMA for buffer size = 2 packets for different given values of H.

3.5 Modeling multiplexed sources

In the previous section we discussed how the probability of loss and mean
queue length for self-similar processes behave as the index of correlation
increases. In this section, we show that by multiplexing several statistically inde-
pendent and identical highly correlated sources will result in a reduction of the
probability of loss and mean queue length. With this model, the advantage of mul-
tiplexing is due to smoothing the peaks and valleys of traffic as a result of averag-

ing. We present multiplexing of the FGN, FBM and F-ARIMA source models.

The objective here is to show how the probability of loss and mean queue
length of a self-similar process behave as the number of muitiplexed sources
increases. The values of the probability of loss and mean queue length is not an
issue here. Smaller values of probability of loss can be simulated only by using
very long traces and this will take a long simulation time. The number of samples

of the self-similar processes that we generated are about the same as the number
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of packets for Ethernet traces and number of frames for video sequences that are
available to us which we discussed in the previous chapter. That is our work is
based on generating number of self-similar process samples that is comparable to

the length of the data traces.

It is clear from figure 3.14 and figure 3.15 that, as the number of multiplexed
sources N increases, the probability of loss and the mean queue length of the
process is reduced. This is an interesting result, since increasing the number of
multiplexed source will reduce the correlation between the samples of the process
and in turn the traffic will be smoother. Smoother traffic obviously will be much

easier to deal with when it is fed to an ATM multiplexer of finite buffer.
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FIGURE.3.14. Probability of loss for multiplexed FGN, FBM and F-ARIMA
sources, N=1,2,4 and 8, forH = 0.7.

—_— FGN
—  Fam
F—ARIMA

o.a 0.85 0.75
Trattic Intensaity

FIGURE.3.15. Mean queue length for multiplexed FGN, FBM and F-
ARIMA sources, N=1,2,4and 8,for H = 0.7.
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FIGURE.3.16. Probability of loss for multiplexed FGN, FBM and F-ARIMA
sources, N=1,2,4 and 8, forH = 0.9
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FIGURE.3.17. Mean queue length for muitiplexed FGN, FBM and F-
ARIMA sources, N=1,2,4and 8,for H = 0.9

Figure 3.16 and 3.17 shows the probability of loss and mean queue length for
FGN, FBM and F-ARIMA for high Hurst parameter of value 0.9. As expected,

higher values of Hurst parameter will reduce the accuracy of the prediction, espe-
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cially when the load is high, as compared to the case of low or medium Hurst

parameter that we show in figure 3.14 and figure 3.15.

We have the following interesting results. First, as the correlation index
increases, the proability of loss and the mean queue length becomes larger; and
second, as the number of multiplexed sources increase, the correlation in the traf-
fic reduced, which has the impact of havi’ng smoother traffic and this will lead to
reduction in both the probability of loss and the mean queue length. Another
important fact that comes out because of multiplexing is that, in some cases, very
highly correlated traffic is very difficult to model using the models that are avail-
able to us. However, multiplexing several sources together, which is the case in
practice, will smooth the traffic and this will make it possible to model this kind of
traffic. The results we obtained in this section will be used throughout the presen-
tation. In the next chapter we will compare the QoS of the simulation models along

the analytical models to the real data.

3.6 The OPNET model

In this section we present a short review for the OPNET modeler that we will
use in generating different traffic such as MMPP, PMPP and ON-OFF sources,
which will be introduced in the following chapters. This generated traffic will be
used to compare some traffic statistical indices and performance measures with
that of the real data. OPNET is a modeling and simulation tool [MIL31] that pro-
vides an environment for analysis of communication networks. The tool provides a
three layer modeling hierarchy. The highest layer is called the network domain,
which allows the definition of the network topologies. The second layer known as
the node domain, which allows definition of node architectures (data flow within
the node). The third layer is the process domain, which specifies logic or control
flow among components in the form of a finite state machine. Figure 3.18 shows

OPNET phases of the modelling and simulation cycle.
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Typical simulation studies of ATM networks involve either the use of a Pois-

son process, an ON-OFF model, or an MMPP to generate the network traf-
fic.While these traffic models vary in many fundamental aspects, they rely on

different assumptions for determining essential parameters.

Define Problem
Gather Data

Build Models

i

Run Simulation

7

Analyzed Results

C Make Decision )

FIGURE.3.18. OPNET phases of the modelling and simulation cycle.

We will use OPNET to generate different traffic data based on the estimated
parameters of the models. The output generated data is fed into an ATM multi-
plexer to find out statistical indices and performance measures; i.e., the IDC,

covariance, probability of loss and mean queue length.

3.7 Discussion

In this chapter we presented the most common analytically tractable models,
Poisson processes, Bernoulli processes, Markov chain models, MMPP and fluid
flow models, that are used to model traffic in ATM networks. We also discussed
simulation models that exhibits long-range dependent behavior such as autore-
gressive processes, PMPP, FGN, FBM and F-ARIMA. We presented the genera-
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tion of long-range dependent stochastic traffic using the simulation models, FGN,
FBM and F-ARIMA. We plane to asses the effectiveness of each of the mod-
els.We presented FGN, FBM and F-ARIMA traces with input H = 0.5, 0.6, 0.7, 0.8
and 0.9. Comparison of the autcorrelations, IDC’s and variances for the three
models shows their self-similar behavior. The covariance decays less exponen-
tially, the IDC increases monotonically and the variance decays more slowly than
the inverse of the size. As the correlation between samples increases, the slope of
the IDC increases which affects both the value of the slope of the /DC and the
variance. As the samples become more correlated, the time constant of the cova-
riance increases, which affects the rate of the decay of the covariance function.
Moreover, we presented how the probability of loss and the mean queue length for
FGN, FBM and F-ARIMA reacts to the variation of the Hurst parameter. As the
Hurst parameter increases, the probability of loss and the mean queue length
increases. Moreover, increasing the number of sources to be multiplexed, will
reduce the correlation in the stream and this will reduce the probability of loss and
the mean queue length. As the traffic intensity and the index of the correlation
increases, the three simulation models, FGN, FBM and F-ARIMA becomes
slightly different in their prediction of the probability of loss and mean queue
length. For low traffic intensity and low correlation index, the three models behave
almost the same. We ended this chapter by giving a brief introduction to the
OPNET simulation package that will be used to generate traffic of different models
throughout the next chapters. In the next chapter, we will present a comparison of

the simulation and analytical techniques with the traces from the real data.
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CHAPTER IV

Modeling of Ethernet and VBR Video data

The source modelling of Ethernet and VBR video is an active area of
research. This is because Ethernet and video services are forecast to be a large
portion of the traffic on emerging broadband digital networks. There are several
issues that must be solved for broadband digital networks. Two main issues are
the problem of deciding whether a new connection can be admitted into an ATM
network and the determination of the bandwidth that must be allocated to the con-
nection to ensure adequate QoS, which will be discussed in chapter 7. This
requires the finding of models that accurately characterize the traffic flows through
ATM networks.

In this chapter we will consider how to model real Ethernet data and VBR
video data as an MMPP and PMPP. We also consider how simulation models
such as FGN, FBM and F-ARIMA fit the real data. We calculate and compare the
index of dispersion for counts, covariances, probability of loss, mean queue length
of the Ethernet and VBR video data with that of the models.

4.1 Introduction

In section 3.2.1.4, we have presented a brief introduction to the MMPP pro-
cesses. We have shown that for this kind of model, we need to know the mean
duration of each state, and the Poisson rate in each state. Knowing these param-
eters will completely lead to the characterization of the traffic.

As has been observed, it is the variability of the variance that makes the pro-
cess deviate significantly from that of Poisson random process [LEL91]. A promis-
ing approach to characterize the variability of the arrival process is to approximate
the superposition non-renewal point process by a renewal process characterized

by the indices of dispersion for intervals and counts.
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The index of dispersion for counts (IDC) of an MMPP increases with the
observation time but eventually approaches a fixed value. However, as we have
discussed, recent measured studies, indicates that data traffic is self-similar. Its
IDC is monotonically increasing with the observation time. However, as we will
show in our study that, the MMPP can adequately represent the burstiness of the
real video data when the correlation index is not large. For this reason and the
simplicity of the analysis, we will restrict our self to the two-state MMPP. In section
3.2.2.2 we also introduced the PMPP process, which is similar to the MMPP, but
the duration of the transition from one state to the other is Pareto. in the following,
we show how to model Ethernet and video data. We fit the two state MMPP,
PMPP, FGN, FBM and F-ARIMA* to the Ethernet and video data. We show that
Ethernet can be modeled as FGN, FBM, F-ARIMA and PMPP but not MMPP. On
the other hand, medium correlated video traces are modeled as MMPP.

4.2 Fitting a two-state MMPP, two-state PMPP, FGN and
FBM to the Bellcore data

In this section we consider the statistical analysis for the real Ethernet data.
In the analysis, we compare the MMPP, and PMPP, FGN and FBM generated traf-
fic process with a trace of actual Belicore Ethernet LAN traffic data from October
1989 and August 1989 discussed in chapter 2. We calculate and compare statisti-
cal and performance measures of the generated traffic and the real data.

We choose to consider the two LAN traces, pOct.TL and pAug.TL shown in
Table 2.1 of chapter 2. We have estimated the packets counts for the traces
pOct.TL and pAug.TL in slots of size 10 ms for LAN interconnection
[GUS91,HEY96] resulting in estimated H parameter of 0.781 and 0.80 respec-

tively as shown in Table 4.1. We have found that estimating the packets over dif-

*We chose to consider FGN and FBM only since F-ARIMA has similar results.
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ferent intervals (10 ms, 25 ms, 50 ms,...) does not change the slope of the IDC
and therefore the value of H. However, the value of the IDC itself becomes larger
as the interval over which we make the estimation becomes larger. Moreover, in
Table 4.1 we show our estimation over an intervals of 10 ms each, for the peak
arrival rate, mean arrival rate, ratio of peak arrival rate to mean arrival rate, vari-
ance, the autocorrelation coefficient and the Hurst parameter. These statistics are
presented here to give an idea of the LAN traffic averaged over 10 ms intervals
and see how it differs from the original LAN traces given in Table 2.2. In section
4.2.1 and section 4.2.2 we present, respectively, the procedures that are used to
estimate MMPP and PMPP parameters. In section 4.2.3, the autocorrelation, and
IDC for MMPP and PMPP, FGN and FBM are presented. The performance mea-

sures of the four traffic models are presented in section 4.2.4.

TABLE 4. 1 Estimated peak arrival rate, mean arrival rate, ratio of peak arrival
rate to the mean arrival rate, variance, autocorrelation coefficient and Hurst
parameter for pOct.TL and for pAug.TL traces averaged over 10 ms intervals.

Parameter Peak arrival Meanarrival Peak arrival Variance Autocorre- Hurst
rate rate rate / Mean lation coef- Parameter
(packet/ (packet /10 arrival rate ficient
10ms) ms)
pOct. TL 20 4.876 4.101 13.460 0.765 0.781
pAug.TL 20 3414 5.858 7.361 0.838 0.80

4.2.1 Estimation of the two state MMPP parameters

The MMPP process was discussed in section 3.2.1.4, where an aggregate

arrival process is characterized by two alternating states. When the Markov chain
is in state i, (i = 1, 2) the arrival process is Poisson with rate 4,, and the transi-
tion rate of going out of state i is given by o;. The IDC for the two state MMPP is

derived by Heffes and Lucantoni [HEF86] and it is given by:
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The mean arrival rate A is given by:

A.10'2+}»20’1

A= (4.2).

Gy +0,

In the following, we show how to find the four parameters that are needed to

characterize the MMPP model. First, we estimate the mean A, variance v and the
third moment u; of the arrival rate for the two state MMPP from the video data.

The four parameters are given below through equations 4.3-4.6 [HEF80],

_ 1
0’1 = m (43).
_ |
o, = m (4.4).
o= he 2 (4.5).
and
Ay = A—W0C (4.6).
where
= 1+208-J4+8] 4.7).
and

Th ~3av-2>

1.5
\Y

5 = (4.8).
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The quantity 5 corresponds to a measure of skewness, and t. is the time
constant and equal to the reciprocal of the sum of 6, and o, .

The covariance function is given by:

[4
c

C(t) = ve (4.9).
The discrete covariance C(n) is obtained by sampling equation (4.9) at intervals

of Tﬁ , which has the following form:

(o
n

C(n) = ve e (4.10).
Let n(T) denote the number of arrivals over time interval of duration 7. The
IDC at infinity is given by:

. Var[n(T)]_ _ v
Tll_l;nw-E—[n-m—— I°° = 1+2)"‘fc (411)

Thus for a given time constant the variability of the number of arrivals is directly
related to the variability of the arrival rate. Also, for a given arrival rate variability, a
longer time constant simply implies more variability in the number of arrivals.

Our procedure for finding the two state MMPP parameters A, &,, o, and

o, is as follows:

1. Estimate the mean A, variance v, third moment u; and /7, of the arrival rate

from the real data.

2. Given I, A and v, find . using (4.11). Calculate { and & using (4.7) and
(4.8).

3. Find the MMPP parameters ¢, 6,, A; and A, using equations (4.3)-(4.6).
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Table 4.2 shows, along with some statistical values, the resuiting two state MMPP
parameters (packets are averaged over intervals of 10 ms). That is, all of them
rates with dimensions [ 10 ms]"l

TABLE 4. 2 Estimated values of pOct.TL and pAug.TL for two stalge MMPP parameters (all
of them rates with dimension [ 10 ms]™ )

Parameter | (A (v) T I, T, c, c, Ay A,
pOct. TL 4.876 | 13.46 342.79 254.3 [ 459 | 0.012 {0010 |8.86 | 149
pAug. TL 3.414 | 7.36 132.70 209.3 1483 | 0015 [ 0006 |7.56 | 1.64

4.2.2 Estimation of the two state PMPP parameters

The Pareto-modulated Poisson process (PMPP), which was presented in
section 3.2.2.2, can be used to characterize the self-similar traffic [SUB95]. As in
the MMPP case, the traffic is modeled as a Poisson process with rate
Ar; i =1, 2. However, the duration of each state is independent and identically
distributed with Pareto distribution of parameter o« (symmetric case), which
denotes the thickness of the tail of the distribution [ARNB85]. The relationship
between o and H is given by [COX84]:

H=3B-0)2. (4.12).

For the symmetric case of PMPP, the IDC is given by [SUB95]:

2
A2 w1 2-a
I, =1+ ll+l, o ! (4.13).

The mean arrival rate A is given by:

A‘l+}‘2

5 (4.14).

A=

Our procedure for finding the PMPP parameters is as follows:

/) Estimate the mean arrival rate A, and the IDC for the real data.
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iiy From the IDC time plot, estimate the Hurst parameter H, from which a can be
found using (4.12).

iiy From the estimate IDC curve of the real data, choose a value I1,, the IDC at
time r.

iv) Substitute the estimated value of the mean arrival rate A in (4.14), and find Ay
in terms of A, or vice versa.

V) Using (4.13) find the two parameters A, and A,.

vi) Compute based on the current values of the parameters, the goodness of fit of
the approximation by comparing the estimated /DC with the theoretical one cal-
culated by (4.13).

vii) Repeat iii, iv, v, and vi until a satisfactory approximation is obtained.

Table 4.3 shows the resulting PMPP parameters for LAN traces, pOct.TL
and pAug.TL, all of them rates with dimensions [10 ms]_l as we have mentioned

in section 4.2 [GUS91].

TABLE 4. 3 Estimated values of pOct.TL and pAug.TL for two state PMPP
parameters (all of them rates with dimension [ 10 ms] )

Parameter | Mean A Hurst parameter H | o A, Ay
pOct. TL 4.874 0.781 1.438 | 8.717 [ 1.030
pAug.TL 3414 0.80 1417 | 6.123 | 0.705

4.2.3 Autocorrelation and IDC for MMPP, PMPP, FGN and FBM
Given the MMPP and PMPP parameters shown in Table 4.2 and Table 4.3,

respectively, we used OPNET to generate the synthetic traffic. MMPP and PMPP
traffic are those obtained from matching to the real data, while FGN and FBM are
generated from simulation using Matlab software with input to the model, the
Hurst parameter, mean value and variance estimated from the traces pOct.TL and

pAug.TL all averaged over intervals of 10 ms as given in Table 4.1.
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Figure 4.1 and figure 4.2 shows a comparison of the autocorrelation function
for the real Ethernet pOct.TL and pAug.TL sequences averaged over intervals of
10 ms with that of the synthetic MMPP, PMPP, FGN and FBM. Simulation models
FGN and FBM have good prediction for the autocorrelation function of the Ether-
net data. The PMPP prediction of the real data autocorrelation is clear and is not
as good as the prediction of the FGN and FBM models. The autocorrelation func-
tion of the MMPP is larger than the autocorrelation functions of the real Ethernet

traffic. However, it matches the real data for the first few lags.
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FIGURE.4.1. Autocorrelation function for pOct.TL Ethernet data averaged
over 10 ms intervals, MMPP, PMPP, FGN and FBM.
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FIGURE.4.2. Autocorrelation function for pAug.TL Ethernet data
averaged over 10 ms intervals, MMPP, PMPP, FGN and FBM.
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Figure 4.3 and figure 4.4 shows, respectively, the IDC’s for pOct.TL and
pAug.TL averaged over 10 ms intervals, fitted MMPP, fitted PMPP, FGN and FBM
models for values of H=0.781 and 0.80 respectively. It is clear that FBM and FGN
as well as PMPP are good predictors of the Ethernet data /D C . However, MMPP

overestimates the /DC of the traffic.
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FIGURE.4.3. IDC’s of pOct.TL Bellcore data averaged over 10 ms
intervals, FGN, FBM, and fitted MMPP, PMPP model, H= 0.781.
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FIGURE.4.4. IDC'’s of pAug.TL Bellcore data averaged over 10 ms
intervals, FGN, FBM, and fitted MMPP, PMPP model, H= 0.80.
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4.2.4 Performance analysis of the modeled MMPP, PMPP, FGN
and FBM for Ethernet data

Given the estimated MMPP and PMPP parameters from the real Ethernet
data, OPNET is used to generate synthetic traffic. In addition, we consider how
simulation models such as FGN and FBM are tracking the data. We compare the
performance measures such as the probability of loss and the mean queue length

of the generated MMPP, PMPP, FGN and FBM traffic with the real data.

4.2.4.1 Probability of loss
The MMPP, PMPP, FGN and FBM estimation of the probability of loss for the

trace pOct.TL and pAug.TL averaged over 10 ms intervals with a buffer capacity of
10 packets over a large scale of traffic intensity are shown in figure 4.5 and figure
4.6, respectively. The PMPP prediction for the probability of loss of the Ethernet
traces is satisfactory for practical engineering design, however, the MMPP is not
and has the tendency to underestimate the probability of loss. As shown in both
figures, the MMPP does not perform well for the Ethernet data regarding the prob-
ability of loss, especially when the traffic intensity is high. FGN and FBM make a
good estimation for the probability of loss over the entire range of traffic intensity.
The results are expected from those we obtained when we discussed the autocor-
relation and IDC in the previous section, where FGN, FBM and PMPP autocorre-

lation and /DC make a good approximation of the data, but not MMPP.



91

.08

o.0sl- POCt.TL averaged over 10 ms intervals
buffer size = 10 packets

FIUGADNY (1 LUSS

0.04 |-

.02 -

O.1 0.2 0.3 o.a o.5
Trattic Intensity

FIGURE.4.5. Probability of loss for the real pOct.TL Bellcore data
averaged over 10 ms intervals compared with that using MMPP, PMPP,
FGN and FBM models
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FIGURE.4.6. Probability of loss for the real pAug.TL Bellcore data
averaged over 10 ms intervals compared with that using MMPP, PMPP,
FGN and FBM models.

4.2.4.2 Mean queue length

The estimation of the mean queue length is now discussed. As for the proba-
bility of loss, the mean queue length estimation of the Ethernet traces, pOct.TL
and pAug.TL averaged over 10 ms intervals, based on the PMPP model is also

good for practical engineering design. See figure 4.7 and figure 4.8. The MMPP
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does not preform as well as the PMPP. However, the MMPP prediction of the
queue length is much better than that for the probability of loss. This is in agree-
ment with the results that were obtained by Heffes and Lucantoni used to predict
queuing delay of a packet speech multiplexer [HEF86). Moreover, as for the prob-
ability of loss, FGN and FBM makes a better prediction for the queue length as

compared with PMPP and MMPP.
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FIGURE.4.7. Mean queue length for the real pOct.TL Bellcore data
averaged over 10 ms intervals compared with that using MMPP, PMPP,
FGN and FBM models.
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FIGURE.4.8. Mean queue length for the real pAug.TL Bellcore data
averaged over 10 ms intervals compared with that using MMPP, PMPP,
FGN and FBM models.
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4.3 Modeling multiplexed sources

in this section, we show that multiplexing several statistically independent and
identical highly correlated sources will result in a good prediction and reduction of
the probability of loss and mean queue length. We present multiplexing of the

Ethernet data pOct.TL and pAug.TL averaged over 10 ms intervals.

As shown in figure 4.9 and figure 4.10, it is clear how multiplexing improves
the accuracy of the matching when several sources are muiltiplexed. The paths of
the muitiplexed FGN and FBM traces tracks the path of the real data, which indi-
cates that FGN and FBM are good models for characterizing data traffic. PMPP
estimation is not as good as FGN and FBM, however, its prediction is reasonable
for practical engineering design. Good improvement is achieved when comparing
the results of the probability of loss and the mean queue length obtained when
multiplexing 10 sources with that when we have only a single source as shown in
figures 4.5 - 4.8. Multiplexing of many sources has the advantages of reducing the
probability of loss and the mean queue length, which we discussed in section
3.4.3, as shown below for the Ethernet traces pOct.TL and pAug.TL averaged

over 10 ms intervals.
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FIGURE.4.9. Comparison of probability of loss and mean queue length

for10 multiplexed sources MMPP, PMPP, FGN and FBM with that of the

original 10 multiplexed pOct.TL sequence averaged over 10 ms intervals,
buffer capacity =10 packets
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FIGURE.4.10. Comparison of probability of loss and mean queue length
for10 multiplexed sources MMPP and PMPP with that of the original 10
multiplexed pAug.TL sequence averaged over 10 ms intervals, buffer
capacity =10 packets

4.4 Fitting a two-state MMPP and FBM* to the video data

In section 4.2, we have shown that Ethernet data can be modeled as PMPP
but not MMPP. We also showed that simulation models such as FGN, FBM and F-
ARIMA are good models in characterizing and modeling Ethernet data. In this
section we will present how we can fit an MMPP model to the real video data.
However, PMPP, FGN, FBM and F-ARIMA are not good models for characterizing
video data, which will be shown below. We use the procedure that was introduced
in section 4.2.1 to fit the MMPP model to the real video data. Since the simulation
models FGN, FBM and F-ARIMA have similar results as we have seen in section
3.3, we only concentrate on using one of them in modeling video data. We chose
the FBM model. Therefore, in this section we concentrate on studying how to
model video data as FBM and as an MMPP. The video traces are presented in
section 2.3 of chapter 2. The FBM traffic is generated using Matlab software with
Hurst parameter H, mean and variance (see Table 2.4) as inputs to the model.
For the MMPP case, the mean A, variance v and the third moment u, of the
arrival rate for the two state MMPP are estimated from the video data. Some of

*We chose to consider FBM only since FGN and F-ARIMA have similar results.
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statistical values and MMPP parameters for four video traces are shown in Table

4.4.

TABLE 4. 4 Description of some statistical values and MMPP parameters for video

data

Video mean variance third
sequence moment

m \ [T I, . | O, o, A Ay
video- 130.3 5.54e+03 4.898e+06 6071.6 | 71.4 | 0.010 0.003 2635.5 894
confer-
encing
video- 170.6 1.15e+04 1.254e+07 9751.6 | 72.5 | 0.011 0.003 374 114
phone
TV series | 5336 [.35e+06 1.754e+011 | 96365 190 0.004 0.001 7342 4662
Movie 5948 1.56e+06 2.407e+011 13512 257 0.003 0.001 8195 5254

Given the Hurst parameter H, mean and variance of the video traces, we
generate FBM using Matlab software. Moreover, given the estimated MMPP
parameters 6, 6,, A, and A, of the video traces shown in Table 4.4, we generate
the MMPP traffic using OPNET. Then, we compare the covariance, IDC, proba-
bility of loss, mean queue length for the FBM, MMPP and for the real video data.
In Table 4.4 and according to our estimation of the Hurst parameter shown in
Table 2.4 of chapter 2, we see that as the variance to mean ratio increase, the traf-
fic becomes more bursty and this will lead to a larger value of Hurst parameter.
Also in Table 4.4, and as we have presented in section 4.2.1, we see that as the
traffic becomes more bursty, the time constant . of the processes becomes
larger, which means that, the autocorrelation (or covariance) function of the highly
correlated traffic will decay more slowly than uncorrelated traffic. This is an impor-
tant observation, which can be used to see how the traffic is correlated by looking
at their time constants. The autocorrelation functions for the video traces are

shown in figure 2.14 of chapter 2.
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4.4.1 Covariance and IDC

The covariance of generated FBM, MMPP traffic models and that of the real
video-conferencing and video-phone video data are shown in figure 4.11 and fig-
ure 4.12, respectively. The approximation for the MMPP is very good over a large

range of lag. However, the FBM covariance falls far below the covariance of the

real data.
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FIGURE.4.11. Covariance functions of FBM and MMPP compared with
that of histogram of the original video-conferencing sequence
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FIGURE.4.12. Covariance functions of FBM and MMPP compared with
that of histogram of the original video-phone sequence

For highly correlated traffic such as TV series and Movie and as shown in fig-

ure 4.13 and figure 4.14, the covariance of the FBM, also as the case for the tele-
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conferencing data, falls far below that of the real data. The MMPP model
underestimates the covariance of real data. However, for small lag, the covariance
of the generated MMPP traffic accurately predicts the covariance of the highly cor-

related entertainment traffic.
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FIGURE.4.13. Covariance functions of FBM and MMPP compared with
that of histogram of the original TV series sequence.
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FIGURE.4.14. Covariance functions of FBM and MMPP compared with
that of histogram cf the original Movie sequence.

As for the covariance of the video-conferencing and video-phone, the IDC for
the generated FBM does not match that of the real data. However, the IDC of the

MMPP traffic model and that of the real data video-conferencing and video-phone
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data are in good agreement over a large range of frames. This is shown in figure

4.15 and figure 4.16, respectively, for video-conferencing and video-phone.
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FIGURE.4.15. IDC of FBM and MMPP compared with that of histogram
of the original video-conferencing sequence
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FIGURE.4.16. IDC of FBM and MMPP compared with that of histogram
of the original video-phone sequence.

The IDC for the TV series and Movie are shown in figure 4.17 and 4.18
respectively. Generated traffic FBM IDC for TV series and Movie also does not

match that of the real data. The IDC of the MMPP slightly overestimates the /DC
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of the TV series and Movie data. However, the discrepancy between the model

and the data is less than that based on FBM mode.
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4.4.2 Performance analysis of the modeled FBM and MMPP video
data

Given the Hurst parameter H, mean and variance of the video traces, we
generate FBM using Matlab software. Moreover, given the estimated MMPP
parameters from the real data, which is shown in Table 4.4, OPNET is used to

generate synthetic traffic. We compare the performance measures such as the
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probability of loss and the mean queue length of the generated FBM and MMPP

traffic and that for the real data.

4.4.2.1 Probability of loss

In our analysis, we consider the probability of loss for the video traces, which
we discussed in chapter 2, as a function of the traffic intensity. The buffer capacity
is constant. Figure 4.19 and figure 4.20 shows, respectively, the probability of loss
for a number of muitiplexed video-conferencing and video-phone calls as a func-
tion of the traffic intensity with the buffer size treated as a parameter of value 100
cells. The FBM largely underestimates the real traces. The prediction of the
MMPP model is good over a large interval of traffic intensity. The probability of
loss for the video-phone trace is larger than that of the video-conferencing trace.
This is due to the fact that, video-phone trace is more bursty than the video-con-
ferencing trace. As the load increases, the discrepancy between the MMPP model
and the real data increases. This is expected since heavy load means the chance
of losing cells becomes more. As the number of multiplexed sources increases,
the matching between the real data and the MMPP model is more accurate. How-
ever, increasing the number of multiplexed sources for the FBM model has no
effect on the accuracy of the matching. In figure 4.21 and figure 4.22, we show the
probability of loss for a number of multiplexed TV series and Movie sources and
the buffer size is 4000 cells. For small number of multiplexed sources, the discrep-
ancy between the model and the data is clear. As the number of multiplexed
sources increases, the prediction of the model probability of loss to the TV series
and Movie data improves. As for the teleconferencing data, FBM does not do well
for entertainment video data such as TV series and Movie. In other words, FBM

shows poor prediction for the telconferencing and entertainment data that we con-
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sidered. Moreover, multiplexing a number of FBM sources has no effect on

improving the matching.
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4.4.2.2 Mean queue length

The same thing applies to the mean queue length for a number of muiti-
plexed sources as shown in figures 4.23 and figure 4.24, where the queue length
is a function of the traffic intensity and the buffer capacity is infinite. The FBM
queue length does not match the mean queue length of the real data. However, as
can be seen, the mean queue length for the generated MMPP traffic and that of
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the real data are in agreement when the load is not large. Moreover, the mean
queue length increases as the correlation index increases. Video-phone is more
correlated than video-conferencing and as shown video-phone has larger mean
queue length than video-conferencing given the same capacity, which is fixed at a
very large number for both cases. Figure 4.25 and figure 4.26 show the mean
queue length for a number of generated multiplexed sources of FBM and MMPP
model and that of the real TV series and Movie video data as a function of the traf-
fic intensity. The buffer size is infinite. The results of the mean queue length for the

two entertainment video data based on MMPP and FBM are similar to that of

probability of loss.
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FIGURE.4.23. Comparison of the mean queue length of real video-
conferencing data. and that of FBM and MMPP for N =1, 4 multiplexed
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4.5 Discussion

The covariance and IDC are used to characterize arrival processes consist-
ing of packets in an Ethernet LAN and frames in VBR video data. A procedure is

introduced for utilizing index of dispersion for counts to fit a PMPP model to the
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measured Ethernet data. We have fitted the IDC for FGN, FBM, F-ARIMA, PMPP,
and MMPP modeils to the Bellcore data. FGN, FBM and F-ARIMA fitting is quite
good over a large time scale, while PMPP prediction is reasonable for practical
engineering design. The IDC for MMPP overestimates that of the Ethernet data.
However, the fitting is reasonable when the lag is not large. Therefore, over a
short time interval, MMPP matchs the Ethernet traffic. Simulation models FGN,
FBM and F-ARIMA have the best matching of the probability of loss and mean
queue length for the Ethernet data. We also showed that PMPP can reasonably
predict the probability of cell loss and mean queue length for the Bellcore data
over a large range of traffic intensity. However, the analytical performance mea-
sures for the PMPP are still unknown. MMPP estimation of the mean queue length
as a function of traffic intensity is better than its estimation of the probability of
loss. This is in agreement with the results that obtained by [HEF86, TUC88). How-
ever, the matching of the probability of loss is reasonable when the traffic intensity
is not large and the deviation of the MMPP prediction from that of the real Ether-
net data increases when the traffic becomes more correlated and the buffer size is
large.

Simulation models FGN, FBM, F-ARIMA and PMPP are not good models to
characterize and predict video traffic. Their covariance, IDC, probability of loss
and mean queue length largely fall below that of the real video traffic. The MMPP
gives an excellent estimate of the covariance and the IDC of the teleconferencing
VBR video data over a large number of frames. It fails to predict the covariance of
the highly correlated entertainment traffic such as TV series and Movie. MMPP
covariance underestimates the covariance of the real data, although, the MMPP
prediction of the IDC for the highly correlated traffic is good. Moreover, MMPP
accurately predicts the proability of loss and the mean queue length of the VBR

video traffic when the number of multiplexed sources is large.
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CHAPTER 'V

The Markov Chain and Self-Similar Traffic

5.1 Introduction

It the future evolution of the system depends only on its current state, the
system may be represented by a Markov process. The information that is most
often sought from such a model is the probability of being in a given state at a cer-
tain time after the system becomes operational. Often this time is taken to be suf-
ficiently long that all influence of the initial starting state has been erased. The
probabilities thus obtained are referred to as stationary probabilities. Probabilities
at a particular time are called transient probabilities. When the number of states is
small, it is relatively easy to obtain transient and stationary solutions quickly and
accurately and from these to predict the behavior of the system. However, as
models become more complex the process of obtaining these solutions becomes
much more difficult.

It is well known that Markov chains do not have long range dependence
behavior. The autocorrelation function for a Markovian chain decays exponentially.
The autocorrelation of the self-similar traffic decays hyperbolically (obeying some
power law) as the lag k increases rather than exponentially (see condition iv of
section 1.7.2) [LEL94]. However, it is possible to model self-similar traffic as a

Markov chain when the traffic correlation index is not large [HEY92] and be able to
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predict the cell-loss rate and the mean queue delay for this kind of correlated traf-
fic.

In this section, we show the results of approximating a given sequence by its
quantized equivalent, consisting of L levels. We calculate the marginal probability
distribution in two ways. First, we estimate the transition probabilities P from an
actual sequence and use these to calculate the steady-state probabilities n
according to equations (3.6) and (3.7) given in chapter 3:

P =m (5.1).
T+ Ty + e +7y = 1 (5.2).

Secondly, we compile a histogram of the samples. We perform these calculations
on the video trace data presented in chapter 2. The effect of the long-range
dependency on the estimate of the steady state probabilities, the performance
measures and traffic indices of the Markov chain will be considered.

Once the steady-state probability vector n has been obtained, the computa-
tion of most of the interesting performance measures, such as the cell loss proba-
bility and the average delay, is straightforward. The drawbacks to the Markov
chain model are that it has too many parameters and there is no apparent connec-
tion between the parameters and some easily measured statistics of the data
[HEY92]. This limits the use of Markov chain in analysis, however, it can also be
used in simulation.

Figure 5.1 shows part of the original and the quantized version of one of the
video traces, video-conferencing, presented in chapter 2 over an interval of 500
frames and L = 8 quantization levels. The video-conferencing trace has maximum
and minimum frame size of 629 and 23 cells per frame, respectively. For L = 8
quantization levels, the quantization step is calculated as:

A= (max(confcam) — min(confcam))/number of levels
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In this case, the quantization step A is approximately equal to 76 cells per

frame.
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FIGURE.5.1. video-conferencing sequence. original and quantized
version, 8 quantization levels.

5.2 Probability distribution

The Markov chain steady state probability distribution compared with the his-
togram of the original video-conferencing sequence is shown in figure 5.2 for L =
8, 16 and 32 quantization levels. As can be seen, as the number of levels
increases the closeness of the match also increases. From Table 2.4, we see that

the Hurst parameter H for the video-conferencing sequence is 0.72.
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Figure 5.3 shows the Markov chain steady state probability distribution com-
pared with the histogram of the original video-phone sequence for L = 8,16 and
32 quantization levels. As for the video-conferencing sequence, the matching is
very close especially when the number of quantization levels increases. The Hurst

parameter H for this sequence is 0.74.

The TV series Markov chain steady state probability distribution compared
with that of the histograms for different quantization levels is shown in figure 5.4
for L = 8,16 and 32 quantization levels. Movie Markov chain steady state probabil-
ity distribution compared with that of the histograms for different quantization lev-
els is shown in figure 5.5 for L = 6, 12, 18 and 24 quantization levels. The
matching for these two sequences is also as good as that for the video-conferenc-
ing and video-phone sequences. The Hurst parameter H for TV series and Movie

sequences are 0.9 and 0.96, respectively.
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5.3 Covariance and IDC

Given the transition probabilities for the Markov chain, we generate traffic
using Matlab software based on the values of the estimated transition matrix from
the real video data and compare the covariance and IDC of the generated

Markov chain traffic with the real video data. The number of Markov chain frames
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generated is 50000 frames, which is approximately the same as that of the real
video traces. See Table 2.3. The covariance and the IDC are considered over a
lag of length 1000 frames, which is 40 sec, since 25 frames are generated per
second.

Consider the covariance of two real video teleconferences data, video-con-
ferencing and video-phone, and the Markov chain model of the data. The covari-
ances for the video-conferencing and video-phone data compared with that of the
Markov chain counterpart quantized signal for L = 8, 16 are shown in figure 5.6
and figure 5.7, respectively. We see that the covariance of the Markov chains,
which is a short range dependent processes, matches the covariance of the data
especially when we increase the number of quantization levels. The covariance of
the Markov chain typically is smaller than those of the data. Very good matching is
achieved for this kind of data. We do the same for the two entertainment video
sequences, Movie and TV series. The covariance functions are shown in figure
5.8 and figure 5.9, respectively. The covariance function of the Markov chain mod-
els are not a good representation of the covariance function of the data. The cova-
riance functions of the Markov chain for the two entertainment video sequences
are much smaller than the covariance functions of the data even for a larger num-
ber of quantization levels, that we used for the teleconferencing data. Moreover,
the covariance function for TV series and Movie does not decline geometrically to
zero as the video conference and video-phone scenes do.

The approximation of the Markov chain covariance to the teleconferencing
video data becomes better as the number of quantization levels increases. This is

because video-phone and video-conferencing sequences have a medium long-
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range dependence parameter near 0.7. However, increasing the number of quan-

tization levels for the highly correlated TV series and Movie sequences, those

having a long range dependence parameter near 0.9, have very little effect on

improving the matching (see Table 2.4).
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The same thing applies to the IDC, where the Markov chain approximation
works for those with medium Hurst parameter such as teleconferencing as shown
in figure 5.10 and figure 5.11. The matching is very good for the whole range of
lags especially when we increase the number of quantization levels. However, for

entertainment video such as TV series and Movie sequences shown in figure 5.12
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and figure 5.13, the matching is good up to a small lag of value approximately 10
frames or 0.4 sec, since 25 frames are generated per second. Beyond this lag, the
matching is poor even for a large number of quantization levels. As shown for
entertainment data in figure 5.12 and figure 5.13, there is a little improvement for
the fitted /DC when we increase the number of quantization levels from 8 to 16
and then to 32 levels. However, we see in figure 5.10 and figure 5.11, for the tele-
conferencing data, there is a big improvement in the fitting of the IDC when

increasing the number of quantization levels from 8 to 16.
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5.4 Performance analysis

Given the transition probabilities for the Markov chain, to evaluate the cell
loss, we use Matlab software to generate synthetic Markov traffic based on the

values of the transition matrix and compare the performance measures with those

of the real data.
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5.4.1 Probability of loss

The mean number of cells per frame for video-conferencing and video-
phone are 130 and 170, respectively as shown in Table 2.4. In our analysis, we
consider the probability of loss for four video traces; video-conferencing, video-
phone, TV series and Movie. figure 5.14 and figure 5.15 shows, respectively, the
probability of loss for video-conferencing and video-phone as a function of the
traffic intensity with the buffer size treated as a parameter of value equal to 100
cells. The results shown are excellent over the entire range of the traffic intensity.
As the number of quantization levels increases, the approximation of the Markov
chain to the real data becomes more accurate. The probability of loss for video-
phone trace is larger than that of the video-conferencing trace, assuming the
same buffer size and same number of quantization levels. This is due to the fact
that the video-phone trace is more bursty (larger Hurst parameter H) than the
video-conferencing trace.

The simulation experiments we report have cell-loss rates larger than
10 °because the data do not have enough cells to reliably estimate cell-loss rates
any smaller. This result predicts that if we could do experiments with smaller cell-

loss rates, the accuracy of the Markov chain models would be better than the

accuracy we are achieving now.
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The mean number of cells per frame for TV series and Movie are, 5948 and
5336, respectively. See Table 2.4. We choose a buffer size for both entertainment
traces of 4000 cells. In figure 5.16 and figure 5.17, the probability of loss for the
highly correlated traffic TV series and Movie are shown, respectively. As
expected, from the comparison of the covariances and the IDC for these two data

shown in figures 5.8 - 5.9 and figures 5.12 - 5.13, the matching of the probability
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of loss between these two video sequences and the Markov chain is not in good
agreement. This is as pointed out above due to the high correlation index of the
traffic which is 0.9 and 0.96 for TV series and Movie sequences, respectively. It is
interesting to see that the matching of the covariance and the /DC seems to play
a major rule in the approximation of the probability of loss. In other words, if the
matching of the covariance or the IDC is good over a large interval of frames,

then the probabilities of loss also seems to be in good agreement.
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FIGURE.5.16. Comparison of the Markov chain probability of loss with
that of histogram of the original TV series sequence, 8 and16 and 32
quantization level.
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FIGURE.5.17. Comparison of the Markov chain probability of loss with
that of histogram of the original Movie sequence, 8, 16 and 32
quantization level.
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5.4.2 Mean queue length (finite and infinite buffer)
Another important performance measure that we discuss in this section is
the mean queue length, from which the mean queueing delay can be obtained

using Littie’s formula. We consider two cases: finite buffer and infinite buffer.

5.4.2.1 Finite buffer

We show in figure 5.18 and figure 5.19 the mean queue length for video-con-
ferencing and video-phone sequences as a function of the load with buffer capac-
ity of 100 cells. Two Markov chain paths are shown, along with a curve of the real
data. As the number of quantization levels increases, the prediction of the mean
queue length gets better. The 16-state Markov chain path follows the curve of the
data very well and the knee of the curves are aligned as shown in figure 5.18 and
figure 5.19 for video-conferencing and video-phone sequences, respectively. The
mean queue length for TV series and Movie Markov chain paths as a function of
the load and buffer size of 4000 cells does not match that of the original data even
for a large number of quantization levels (32 levels) as compared with the good
prediction of the teleconferencing sequences for smaller number of quantization
levels (16 levels). The results are shown in figure 5.20 and figure 5.21. As indi-

cated before, this is because of the high correlation index in this kind of traffic.
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FIGURE.5.18. Comparison of the Markov chain mean queue length
versus traffic intensity with that of the histogram of video-conferencing for
8 and 16 quantization levels.
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5.4.2.2 Infinite buffer

For the infinite buffer case and as shown in figure 5.22 and figure 5.23, the
Markov chain paths mean queue length becomes close to that of the real video-
conferencing and video-phone data as the number of quanization levels increases
and the load is not large. As the load increases, the matching becomes less accu-
rate. This mismatch in this case is because we have a large buffer, and therefore,
correlation is more dominant. However, for light loading of up to 0.7 and number of
quantization levels around 32 levels, the prediction is satisfactory for practical
engineering design. The Markov chain mean queue length paths of the real TV
series are shown in figure 5.24. As shown the paths are in agreement with that of
the real sequence load for small load values and beyond that the discrepancy
becomes clear. As the load increases, the discrepancy between the real path and
that of the Markov chain becomes larger than that when we have finite buffer as
shown in figure 5.16. The Markov chain paths mean queue length of the Movie
trace shown in figure 5.25 are matching the path of the real data for small loading.

That is, it broke earlier than the case for the TV series. This is because Movie has
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higher Hurst parameter than TV series. The large mismatch for TV series and
Movie, respectively, are due to the high correlation of this kind of video traffic and
to the large size of the buffer.
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FIGURE.5.22. Comparison of the Markov chain mean queue length for
infinite capacity versus traffic intensity with that of the histogram of video-
conferencing for 8,16 and 32 quantization levels
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phone for 8 and 16 quantization levels.
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5.5 Modeling multiplexed sources

In this section, we show that muitiplexing several statistically independent and

identical highly correlated sources will result in a good prediction of the probability
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of loss and mean queue length. We represent multiplexed sources by superpos-
ing them, i.e., by adding the number of cells that arrive in the same frame interval.
That is, when a new frames from a single source arrive every 40 ms, we model the
multiplexed sources by adding the number of cells that arrive in each 40 ms inter-
val. As we explained in chapter 3, with this mode! the advantage of multiplexing is
due to smoothing the peaks and valleys of traffic as a result of averaging. We
present muiltiplexing of the video sources video-conferencing, video-phone, TV
series and Movie. First we show how highly correlated sources discussed in the
previous section such as TV series and Movie can be modeled as a Markov chain
when several sources are multiplexed. We simulate many video sources in many
traffic environments such as, traffic intensities, number of muitiplexed sources,
and buffer size. We show the effect of multiplexing on the reduction of the proba-
bility of loss and the mean queue length for video-conferencing and video-phone

sequences.

For TV series data, figure 5.26 shows the IDC for 10 multiplexed real sources
and 10 muitiplexed 8-state Markov chains. As shown, the matching is excelient
over a long rang of lag. We also obtained good results for the Movie data, which is
shown in figure 5.27. In figure 5.27, we show the /DC for 10 muiltiplexed Movie
sources and 10 multiplexed 8-state Markov chains. We see that the model does
track the curve obtained from the data. This improvement in the matching of the
IDC as compared to those shown in figure 5.12 and 5.13, is because of reducing
the correlation between frames due to multiplexing. Our explanation was that, the
multiplexing of the sources distorts the correlation between frames, and when this

correlation is eliminated, the IDC for the model and the data agree.
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FIGURE.5.27. Comparison of /DC for10 muitiplexed sources 8-state
Markov chain with that of the original 10 multiplexed Movie sequence.

The probability of loss and the mean queue length for the TV series and
Movie sequence are shown in figure 5.28 and 5.29, respectively. We choose the
buffer size for both sequences to be a finite of value 4000 cells. As shown in the
figures, we see that the model does an excellent job of tracking the curve obtained

from the data. It is clear that the results we achieved because of muitiplexing are
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matching the probability of loses and mean queue lengths.
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FIGURE.5.29. Comparison of probability of loss and mean queue length
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In figure 5.30 and figure 5.31, we show the behavior of statistically multiplexed

sources. We chose the number of sources being muitiplexed N=1, 2, 4 and 8. We

considered the video-conferencing and video-phone sequences probability of loss

and mean queue length as a function of the traffic intensity. The mean number of

cells per frame of the two sequences are 130 and 170 cells, respectively. See
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Table 2.4. We choose in our simulation the buffer size of both sequences to be
finite of value150 cells. As shown in the figures, the reduction of the probability of
loss and the mean queue length increases as the number of multiplexed sources
increases. This is due to the fact that as we multiplex more sources the total traffic

stream becomes less bursty.
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FIGURE.5.31. Behavior of statistically multiplexed video-phone sources.
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constant buffer size =150 cells for number of sources N=1, 2, 4 and 8.
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5.6 Discussion

We examined four video data sequences. Two of them are video teleconfer-
ences and the cther two are video entertainment. The teleconferencing data has a
medium Hurst parameter, while the entertainment has a high Hurst parameter. It
should be noted that we make comparison between video data that has compara-
ble statistics such as mean, variance and number of cells per frame. That is we
compare video-conferencing and video phone on one hand and we compare TV
series and Movie on the other hand. See section 2.31 and Table 2.4 for more
detail of the video traffic data statistics.

When the Hurst parameter is not large, as when we have the teleconferenc-
ing data, Markov chain models have an excellent estimates of covariance, IDC,
cell loss probabilities and mean queue length. Moreover, as the number of quanti-
zation levels L increases, the accuracy of the matching between the Markov chain
and that of histogram of the original teleconferencing sequence increases. For
entertainment data, which has high Hurst parameter, the covariance, IDC, cell
loss probabilities and the mean queue length are not estimated well when the traf-
fic intensity is large. Moreover, increasing the number of quantization levels for the
entertainment data has little effect on improving the matching of the statistical
indices and the QoS. However, multiplexing several correlated video sources will
improve the characterization and the prediction of the real traffic.

From these resuits, we draw the tentative conclusion that there is a link
between the Hurst parameter and the utility of the Markov chain approximation.
Even if we have a good estimation for the steady state probabilities between the
Markov chain and the real data for different video sequences ranging from 0.72 to
0.96, the matching for the covariance, the index of dispersion for counts, probabil-
ity of loss and mean queue length works only for those of medium Hurst parame-
ter around 0.7. Multiplexing several highly correlated source will smooth the traffic
and good results are achieved regarding traffic characteristic indices and perfor-

mance measures.
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CHAPTER VI

Modeling of Self-Similar Traffic using Heterogeneous
ON-OFF Source model

6.1 Introduction

The criteria that determine the utility of a model are analytical tractability,
simplicity in terms of the number of parameters that are involved and goodness of
fit to actual data. In our work the goodness of fit is based on the ability of the
model to capture the covariance function of real data and then to predict probabil-
ity of loss and mean queue length for real data.

Until recently it has not been clear whether Markov based models could be
used to model self-similar traffic. It has been claimed that the large number of
states needed to model the traffic makes Markov models inapplicable for all prac-
tical purposes. This has initiated the search for other models that might be more
suitable for modeling self-similar traffic such as FGN, FBM, F-ARIMA and chaotic
maps [PRU95]. For these models, however, the analytical tools for analyzing
queueing behavior do not exist. However, they may be used in simulation.

There are basically two analytical models, Batch Markov Arrival Processes
(BMAP), which has MMPP [HEF86] as a special case, which we presented in
chapter 4 to model video data, and fluid flow models. Fluid models characterize
traffic as a continuous stream [ANI82]. A fluid model that is normally used to

model traffic is the Markov modulated fluid model. In this model, the current state
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of the underlying Markov chain determines the flow rate with a different rate for
each state of the chain. This model is a Markov modulated constant rate model
and is used to model variable bit rate video [MAGS88, ELW93].

The ON-OFF source model is the most popular model for voice. It was used
to model video traffic based on the minsources approach by Maglaris [MAG88].
Anick, Mitra and Sondhi [ANI82] used the ON-OFF sources to analyze bursty traf-
fic. The ON-OFF source model is tractable for analysis when the transitions from
the ON state to OFF state and from OFF state to ON state are exponentially dis-
tributed.

In our case, we will use m classes of heterogeneous ON-OFF sources to
mode! video data. This model is based on matching the total covariance of the
heterogeneous sources to the real data. The covariance of the m heterogeneous
sources is composed of m different exponential functions, while in the homoge-
nous case it is just one exponential [MAG88]. The model is very attractive,
because as we will see for a small number of ON-OFF sources it is possibie to get
a good results for the probability of loss and mean queue length. Moreover, the
small number of parameters makes the analysis in finding the covariance and the
parameters of the sources simple.

Anderson, et. al. [AND97] presented a fitting method for modeling second
order processes. The fitting method is based on fitting to the autocorrelation func-
tion of counts for a second order self-similar process. They have shown that it is
possible to match the autocorrelation function of counts for a second order self-

similar traffic over 3 - 5 time scales with 8 - 16 state Markovian Arrival Processes
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(MAPs). However, they have shown that the second order properties of counts for
the arrival process are not sufficient for predicting queueing performance.

The model we developed is different from that of Andersen, et. al. We used
the Feldmann algorithm [FEL97] for approximating a long-tail covariance function
by a finite mixture of exponentials. However, Feldman, et. al., used the algorithm
to fit probability distribution. Our model is simpler than Anderson’s model. The
matching of the covariance and IDC for the real data to the traffic generated
using the model is quite good. The prediction of the queueing performance such
as the probability of loss and mean queue length for different VBR video traffic is

fair.

6.2 The mathematical model

In this seqtion we consider m independent classes of ON-OFF sources, let
N, (i = 1, 2,...m) denote the number of sources in class i to model long-range
dependence traffic such as video. Within a class the sources are identical and
independent. In this model, for the ith class, packets are generated during talk
spurts which is the ON state, and no packets are generated during the OFF state.
The times spent in the ON and OFF states are exponentially distributed with
means I/Bi and l/al., i = 1,2,..m, respectively. When the source is in the ON
state it generates data at rate of R;,i=12..m.

The ATM multiplexer consists of a server transmitting cells at a specified line

rate and a buffer whose size is determined by the delay constraints on cell trans-



132

mission. Cells arrive at the multiplexer from a number N; (i=1,2,..m) of

sources. See figure 6.1.

The basic idea of the 3-class model is that there are three time frames for
transitions: short term, medium term and long term, respectively. The transition
rates are such that « 1 ? Oy > e, »a and Bl » Bz » erenns » Bm, where for our
model we have m = 3, so that the shorter the time frame, the more rapid the tran-
sition. For example, in the case of three level Markov chain the possible transitions
are illustrated in figure 6.2. From each state there are three possible transitions:
from state 1 there is a short term transition that will take us to state 2 given by o,
a medium term transition to state 3 given by a, and finally a long term transition
that will take us to state 5 given by . The most likely transition is to state 2. As
shown in figure 6.2, the three level two state model is complicated.
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FIGURE.6.1. m-class ON-OF source mode
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FIGURE.6.2. Three level Markov Chain
Using the state transition diagram, the 3 level Markov chain shown in figure
6.2 can be mapped into the simple three independent ON-OFF sources model
shown in figure 6.3. This can be verified by finding out the infinitesimal generator

matrix from figure 6.2 and that from figure 6.3.

FIGURE.6.3. Three independent ON-OFF sources

Let [nlnz....nm; u] be the state with n; source in class i ON and the buffer

content does not exceed « and pnln , (1) be its equilibrium probability. Pack-
m
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ets are served at a rate of C packets per time unit. We utilize the fluid flow approx-
imation [ANI82], which has shown much promise in the analysis of ATM networks.
Similarly to [ANI82], and as we have presented in section 3.2.1.5, we have the fol-
lowing:

m d P ( u) m

Rin;~C|l—5— = ¥ [oiN;=n;+ Dlp... _..(u)~
i=1 i=1 ! (6.1).

{o;(N;—n;)+ Bini}p....(u)+Bl.(ni+ l)p...ni+ 1)

We express equation (6.1) in the following familiar matrix form,

dp(u) _
D T = p(u)M (6.2).
where D is an (N1+1)x ....... X(N, +1) diagonal matrix, M is

(N +1)x.... X (N, +1) infinitesimal generator matrix and p(«) is a vector

equal to [poomo(x), .............. Pn,

In the next section, we introduce the covariance function of equation (6.2),
which will be used to derive the parameters that characterize the independent m
class ON-OFF sources. That is, the parameters determination is based on second
order statistics. Moreover, the importance of equation (6.2), when time comes into

play, will appear when we present our analysis for congestion control in chapter 7.

6.3 Model parameter determination

Our work is based on finding the total covariance of the independent m
classes N, N,, ...,N,, heterogeneous ON-OFF source model. Then by matching
to the real data we find out the parameters that characterize the ON-OFF sources
by adapting the Feldman algorithm to the fitting of the covariance [FEL97]. We

may view this algorithm as analogous to Gram-Schmidth orthogonalization over
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the time axis. The goal is to approximating a long-tail covariance distribution by a
finite mixture of exponentials over shorter time scales. That is, we approximate a
non-exponential function with a sum of exponential terms that we can easily deal
with. The quality of the approximation is based on goodness of fit of the approxi-
mation by comparing the covariance function of the model with that of the data.
The covariance CO of the number of packets of a long-tail process as a
function of the lag £ and the Hurst parameter H behaves asymptotically as

[COX84, LEL94]:

2H -2
cok) ~ k> =2 (6.3).
The covariance function given by equation (6.3) decays hyperbolically (obeying
some power law) as the lag k increases rather than exponentially, where k is the

lag and H is the Hurst parameter.

The covariance COV/(t) of independent m class ON-OFF sources described

by equation (6.2) is simply given by:

2
m R; —(a; +B,)t

cov(r)y = Y o;BN—————e (6.4).
i=1 (o;+B,)"

Applying the additivity property we find for the mean pu,

m aiNiR,-
i=1p
and for the variance Var,
2
m o NR
Var = z —t ! (6.6).

2
i=1(a;+p))
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Let,
ki = ai+Bl., i=1,2,....m (6.7).
and
2
R;
Kz = aiBiNilz , i=1,2, ... m (6.8).
{

Substitute equation (6.7) and equation (6.8) in to equation (6.4) and assume

that frames are generated at rate of f frames /sec:

CoV(1) = K e f +K,e f vk el = D Ke f (6.9).

Equation (6.9) is a finite mixture of exponentials that approximate the long-
tail distribution function given by equation (6.3). The idea is to approximate equa-
tion (6.3) by equation (6.9), because performance models with component long-
tail distributions tend to be difficult to analyze [NOR94, PRU95].

As can be seen from equation (6.9) we have 2m unknowns and therefore we
need 2m equations to find them. Since the covariance is composed of m expo-
nential componentsi,, A,, ...., A,,, and m arguments K|, K,, ...K,,, we match at
the quantiles: 0 <¢cy <cy <..... < C,, which represent how many classes that we
have. For example, for two classes we have two quantiles c,, ¢, and for three

classes we have three quantiles ¢, c,, c; and so on. In order to solve 2m equa-

ci-«-1

tions to find the 2m unknowns, let b be a scaling factor such that 1 <b < for
i
all i; e.g., we could have b=4,c = 10('_1)c1for 2<i<m.

c
—= = — = ..=—"—_ See figure 6.4 for the three source case.
Cy C> m-1
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FIGURE.6.4. lllustration of how to choose the quantiles c|, c,, c;and the
scaling factor b (c¢; = 1,¢c, = 10,c5 = 100, b = 4)

Given the real data and using the technique in [FEL97] we can obtain the
exponential components A, A,, ...,A,, and the arguments X, K,,...K,, in
reverse order by finding first A, and K, andthen A _, and X, _, and so on until
we find A, and K, . As mentioned above A,>>A,>>...A, . Therefore, at the
quantiles c,, and bc,,, only the terms of the covariance that have argument A,
count and those terms of covariance that have arguments A, _,, A _,, ..., A, are

negligibly small. Therefore,

—2Com
cov(c,) = Ke ' (6.10).
and
—Anbc,,
COV(bc,) = K,e * (6.11).

From equations (6.10) and (6.11), we find the two unknowns, A, and K, .

Now we proceed to find the other two unknowns A, _, and K, _, at the quantiles
¢, and bc,, _, . In this case only the terms of the covariance that have argument
An_yand A, count and the terms of the covariance that have arguments

A A _3 - Ay @re negligibly smail.

m-2*"m-—
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_)'mcm -1 —)'m —1%m-1
_ f f
COV(c,,_,) = k,e +k,_e (6.12).
—}‘mbcm -1 _)"m - lbcm -1
_ f f
COV(bc,,_ ) = k,,e +k, _ € (6.13).

where A, and K, are already known from equations (6.10) and (6.11).

Given A, .k, . A _ andk, , we find the next two unknowns A, , and k,,_,

m’ om’

at the quantiles ¢, _, and bc,,_»,

_A'lrx Cm-2 _A'm —1m-2 _}"m -2€m-2
. f f . f
COV(CM—'B) - Lme +km— 1€ +l”m—2e (6.14).
—}"mbcm -2 _)‘m - lbcm -2 _)"m - 2bcm -2
coVibe, ) =ke 1wk, _e 7 +k, e S (e.15).

and so on until we end up with the last two unknowns A, and K, .

The final step is to find the parameters that characterize the ON-OFF
sources, i.e., a, B, R ; &, By, Ry; ....i . B,,. R, . We have a system of 3m
(where m is the number of classes and the factor 3 comes from the fact that each
source has 3 parameters to be determined) parameters to be calculated, however
we have in hand only 2m known factors (A, k;; A5, k5i......; A, &, ). The basic
property of our model is given in section 6.2, where the transitions rates are
assumed to be such that a, >>a,>>....a, and B, >>p,>>....8,, (already from
6.7, we have A, >>A, >>...A, ). We use this assumption in such a way that we

have fewer unknowns to evaluate.



139

tett ;= 10 Vo, i=2,m

From (6.8) we find R, in terms of K j» 0 and Bi'

(6.16).

Substitute for R, , Bi (Bi = Ai— a;) in (6.5) we have, after some manipulation, the

following,
J allel J azNZka, aiNik[ a’nank," (6 17)
+ e A + j—t.......... + |— = . .
(;\'I —al) (A’Z’._a?.) (}'f_al) (Am_am) H

Since o; = TR a, , equation (6.17) can be written in the following form:

Jallel J o, Nk, o, Nk, o N,k &18)
+ — + ....... + - + ........ + .
(A —op)  (10A; - ay) (10" "%, — o) (10" A, — o)

The number of sources N,, N,, ....,N, is given in advance. Also, we know

the values of A, A,, .....A,, K, K>, .... K,, from matching to the data, and also we
know u the estimated mean value of the real data. Therefore, the non-linear
equation (6.18), which is a function of only one unknown parameter «,, can be
solved numerically. Knowing oy, the parameters
By, Ry &y Bo, Rys.eos @, B, R, can be obtained very easily using equations

(6.7) and (6.8).

6.4 Numerical results

The model can be applied to any number of classes and any number of
sources per class, however, as the number of sources increases the solution of
equation (6.18) becomes more difficult. Because of this, we apply the model to the
three classes and one source per class. Using the video data presented in section

2.3, we calculate the covariance function for the real data and apply the procedure

* We also assumed o, /8, = a,/By= ....... =a, /P __and similar results are obtained
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presented in section 6.3 to find the parameters for the heterogeneous ON-OFF
source model. These three heterogeneous ON-OFF source models are used to
generate video traces in OPNET program. We generate almost the same number
of real video data frames of approximately 50,000 frames for video-conferencing,
video-phone, TV series and Movie video sequences. From the real traffic we find
the covariance function, IDC, probability of loss and mean queue length and
compare them with that of the generated traffic. Also, as a reference, we calculate
covariance, I/DC, probability of loss and mean queue length based on the Mag-
laris model with 20 minisources [MAGS88].

The values of the parameters depends on the quantiles c;’s, the scaling fac-
tor 6 and the number of frames over which the matching is going to be done. As
the number of quantiles, the scaling factor and the number of frames over which
the matching is going to be done increases the accuracy will be increased. How-
ever, this is not always possible since increasing the number of quantiles means
increasing the number of classes (for the three class model, three quantiles are
needed), which makes the solution of equation (6.18) more difficult.

Tables 6.1 - 6.8 show, respectively, the estimated parameters o, B, R; for
two and three class single ON-OFF sources needed to model the video-confer-
encing, video-phone, TV series, and Movie data that we presented in chapter 2.
They also show the estimated exponential components A;'s and the arguments
K;'s. Given the parameters «;’s, B;’s and R;’s for ON-OFF sources for the VBR
video traffic traces, a replica of the traffic is generated using OPNET. From the

real traffic we find out the covariance function, /DC, probability of loss and mean
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queue length and compare them with that of the generated traffic. We also plot the

covariance based on equation (6.9).
TABLE 6. 1 Parameters for the two class single ON-OFF sources matched to the

video-conferencing trace over 768 frames with

I,co = 192and b = 4

c| =
Parameter | A k o4 B R
source | 0.588 5034.2 0.348 0.24 144.43
source 2 0.046 620.78 0.0348 0011 58.68

TABLE 6. 2 Parameters for the three class single ON-OFF sources matched to
the video-conferencing trace over 768 frames with
cy, =1l,¢c, =16,c5 =256andb = 3

Parameter A k (0 B R
source 1 2.156 401.69 1.79 0.36 53.81
source 2 0.39 48154 0.179 0.22 139.38
source 3 0.03 429.10 0.0179 0.016 41.55

TABLE 6. 3 Parameters for the two class single ON-OFF sources matched to the
video-phone trace over 768 frames with ¢, = l,¢c, = 192 and b = 4

Parameter | A k a B R
source 1 0.94 9346.0 0.494 0.445 193.599
source 2 0.08 2485.7 0.0494 0.026 104.953

TABLE 6. 4 Parameters for the three class single ON-OFF sources matched to
the video-phone trace over 768 frames with
¢y, =1¢c, =16,c5 =256 and b = 3

Parameter | A k (07 B R
source | 2.53 1883.4 1.75 0.779 94.035
source 2 0.42 8883.4 0.175 0.24 190.832
source 3 0.05 1042.6 0.0175 0.029 66.702

TABLE 6. § Parameters for the two class single ON-OFF sources matched to the
TV series video trace over 768 frames with ¢, = 1,c, = 192 and b = 4

Parameter | A k a B R
source | 3.033 746110.0 0.305 2.99 2980.9
source 2 0.031 700350.0 0.030 0.0008 5199.0
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TABLE 6. 6 Parameters for the three class single ON-OFF sources matched to

the TV series video trace over 768 frames with

¢, =1l,¢;, = 16,c; =256 and b = 3

Parameter | A k o B R

source | 16.47 461150.0 2.63 13.84 1853.4
source 2 0.408 505950.0 | 0.263 0.1451 1486.0
source 3 0.027 617570.0 0.0264 0.00097 42334

TABLE 6. 7 Parameters for the two class single ON-OFF sources matched to the
Movie video trace over 768 frames with c; = 1,c, = 192 and b = 4

Parameter | A k a B R
source | 2.8733 817700.0 0.08099 2.7923 5463.4
source 2 0.0083 830860.0 0.008099 0.000201 5937.7

TABLE 6. 8 Parameters for the three class single ON-OFF sources matched to
the Movie video trace over 768 frames with
¢;=1l,¢y = 16,c; =256and b = 3

Parameter A k a B R

source 1 21.53 469380.0 | 0.60 20.93 4147.2
source 2 0.46 592920.0 | 0.060 0.40 22829
source 3 0.006 779260.0 | 0.0060 0.00015 5674.0

As a reference, we compare the statistical and performance measures, cova-
riance, IDC, probability of loss and mean queue length of the real video data and
the generated video traffic based on heterogeneous ON-OFF source model with
that of the generated traffic based on Maglaris model. To do that we need to find
the parameters that characterize the Maglaris model. Using equations (8), (9),
(10) and (11) of [MAG88] we calculated the parameters of the Maglaris model for

the four video traces. These are shown in Table 6.9 below.

TABLE 6. 9 Maglaris model parameters for VBR traces, video-conferencing,
video-phone, TV series, and Movie. Each video source is characterized by 20

minisources.
Parameter o B R
video-conferencing 0.05 0.30 39.00
video-phone 0.04 0.30 75.81
TV series 0.07 0.06 520.41
Movie 0.05 0.05 559.59
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6.4.1 Covariance and IDC
In this section we consider the matching of the covariance and the IDC of

the generated traffic to the real data using heterogeneous sources. As a refer-
ence, we have generated traffic based on the Maglaris model of 20 minisources
[MAG88]. We compare the accuracy of our model with that based on the Maglaris
model. Also, we consider the effect of increasing the number of ON-OFF hetero-
geneous sources to the accuracy of the matching. Given the exponential compo-
nents A;'s and the arguments K;’s of the heterogeneous ON-OFF source model,
we see how well the covariance represented by equation (6.9) matches the cova-
riance of the real data and that based on the Maglaris model.

The covariances of the real video-conferencing and the generated 3 and 2
class single ON-OFF source are shown in figures 6.5. We also plot the covariance
based on Magalris model of 20 minisources. In figure 6.6, we plot the covariance
of real video-conferencing and that based on the formula given by equation (6.9)
and that given by Maglaris of one exponential term, which is given by equation (5)
[MAGS88]. We do the same for video-phone data which, are shown in figures 6.7
and figure 6.8, respectively. As expected, the accuracy increases as the number
of classes increases. Moreover, in comparison with the Maglaris model, the
matching based on the 3 class single ON-OFF source is shown to be better. For
both video telconferencing data, the match to the traces based on the generated

traffic and that using formula (6.9) is quite good over a large number of lags.
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FIGURE.6.5. Covariances functions of real video-conferencing data
compared with that of Magiaris and generated 3 and 2 class
heterogeneous source model, each class has 1 ON-OFF source.
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FIGURE.6.6. Covariance functions of real video-conferencing data, and
using formula (6.9) for 3 and 2 class heterogeneous source model, each
class has 1 ON-OFF source
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FIGURE.6.7. Covariances of real video-phone data compared with that of
Maglaris, and generated 3 and 2 class heterogeneous source model,
each class has 1 ON-OFF source.
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FIGURE.6.8. Comparison of the covariances of real video-phone data,
and using formula (6.9) for 3 and 2 class heterogeneous source model,
each class has 1 ON-OFF source.

The covariances for the highly correlated traffic real TV series and Movie and
that of the 3 and 2 class single ON-OFF source are shown in figure 6.9 and figure
6.11, respectively. Also in the figures we plot the covariance based on Maglaris

model. The results shows that our model has better matching of the covariances
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than that based on Maglaris model. However, the matching for this kind of enter-
tainment traffic is less accurate than that for the teleconferencing traffic shown in

figure 6.5 and figure 6.7. This due to the high value of the correlation index H.

In figure 6.10 and figure 6.12, we plot the covariance of real sequences TV
series and Movie, respectively, and that based on the formula given by equation
(6.9) and that given by Maglaris of one exponential term, which is given by equa-
tion (5) [MAG88]. The matching for both sequences and that based on formula
(6.9) is reasonable. The matching of the Maglaris covariance given by equation
(5) of [MAGB8S8] and the two real sequences TV series and Movie is reasonable
when the lag is not large. As the lag increases the deviation of the covariance of
the real data from that of the covariances given by formula (6.9) and that given by

Maglaris of one exponential term given by equation (5) [MAG88] becomes clear.

x 10°
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FIGURE.6.9. Covariances of real TV series data compared with that of
Maglaris, and generated 3 class heterogeneous source model, each
class has 1 ON-OFF source
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FIGURE.6.10. Comparison of the covariances of real TV series data, and
using formula (6.9) for 3 and 2 class heterogeneous source model, each
class has 1 ON-OFF source.
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FIGURE.6.11. Covariances of real Movie data compared with that of
Maglaris, and generated 3 and 2 class heterogeneous source model,

each class has 1 ON-OFF source
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FIGURE.6.12. Comparison of the covariances of real Movie data, and
using formula (6.9) for 3 and 2 class heterogeneous source model, each
class has 1 ON-OFF source.

The other part of matching the heterogeneous sources to the real data is the
IDC . As shown in figure 6.13 and figure 6.14, respectively, the IDC of the syn-
thetic video-conferencing and video-phone traffic matches the IDC of the real
data. As for the covariance, increasing the number of heterogeneous sources

from 2 to 3 will increase the accuracy of the matching. We also show the IDC

based on the Maglaris model.
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FIGURE.6.13. IDC of real video-conferencing data compared with that of
Maglaris and generated 3 and 2class heterogeneous source model, each
class has 1 ON-OFF source.
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FIGURE.6.14. IDC of real video-phone data compared with that of
Maglaris, and generated 3 and 2 class heterogeneous source model,
each class has 1 ON-OFF source

The IDC for the entertainment video data, TV series and Movie, are shown in

figure 6.15 and figure 6.16, respectively. The figures show the results for real data,

three heterogeneous ON-OFF source model, two heterogeneous ON-OFF source

model and that of Maglaris model. As the number of heterogeneous ON-OFF

sources increases, the accuracy of the matching becomes more accurate. More-

over, the matching for the three heterogeneous ON-OFF source model performs

better than that of the Maglaris model.
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FIGURE.6.15. IDC of real TV series data compared with that of
Maglaris, and generated 3 and 2 class heterogeneous source model,
each class has 1 ON-OFF source
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FIGURE.6.16. IDC of real Movie data compared with that of Maglaris,
and generated 3 and 2 class heterogeneous source model, each class
has 1 ON-OFF source

6.4.2 Performance analysis

6.4.2.1 Probability of loss

As can be seen from figure 6.17 and figure 6.18, the probability of loss versus
the traffic intensity for buffer capacity of 150 cells for the medium correlated traffic
video-conferencing and video-phone data and that obtained from the traffic gener-
ated by 3-heterogeneous ON-OFF source model in good agreement. We show
also the probability of loss based on Maglaris model of 20 minsources. The 3-het-
erogeneous ON-OFF source model performs better than the Maglaris model. The
prediction becomes more accurate when the number of heterogeneous ON-OFF
sources increases. However, going for a larger number of sources will make the

analysis more complicated, that is, we will have a larger number of equations to
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solve and more parameters to find and the model will lose the advantage of being

simple and tractable. The prediction is satisfactory for practical engineering design
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FIGURE.6.17. Probability of loss of real video-conferencing data
compared with that of Maglaris and generated 3 and 2 class
heterogeneous source model, each class has 1 ON-OFF source.

0.09 * T T x T
—— Real Data

— = 3 Heterogeneous ON-OFF Sourcos |1

o.08 | — 2 Heterogoneous ON-~OFF Sources '4

Magiaris Mode!

0.07 i~

Q.05 [~
0.04 I~

o.03f-video-phone
| H=0.74
buffer size = 150 cells

0.01

N " L
O.4 0.5 0.6 0.7 0.8 0.9
Tratfic Intensity

FIGURE.6.18. Probability of loss of real video-phone data compared with
that of Maglaris and generated 3 and 2 class heterogeneous source
model, each class has 1 ON-OFF source.

The probabilities of loss for the sequences TV series and Movie are shown in
figure 6.19 and figure 6.20, respectively. The effect of increasing the number of

heterogeneous sources from 2 to 3 is clear. Ailso, as can be seen, there is an
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improvement in the accuracy of the prediction of the probability of loss as com-

pared to that based on the Maglaris model.
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FIGURE.6.19. Probability of loss of real TV series data compared with
that of Maglaris and generated 3 class heterogeneous source model,
each class has 1 ON-OFF source.
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FIGURE.6.20. Probability of loss of real Movie data compared with that of
Magilaris and generated 3 class heterogeneous source model, each class
has 1 ON-OFF source.

6.4.2.2 Mean queue length
In figure 6.21 and figure 6.22, we show the mean queue length as a function
of traffic intensity for video-conferencing and video-phone data and that based on

3 and 2 heterogeneous ON-OFF source model and the Maglaris model. The
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buffer capacity is set to a fixed value of 150 cells. The prediction of the mean
queue length based on the 3-heterogeneous ON-OFF source model is better than
the prediction based on the Maglaris model. As shown, increasing the number of
heterogeneous ON-OFF sources from 2 to 3 will increase the accuracy of the pre-

diction.

In figure 6.23 and figure 6.24, the mean queue length as a function of the traf-
fic intensity for the entertainment video data, TV series and Movie, are shown.
The prediction is not as good as that for the telconferencing data, however, for
practical engineering design the results are satisfactory. Moreover, as for the tel-
conferencing video data, increasing the number of heterogeneous ON-OFF
sources will improve the prediction. In comparison with the results of the Maglaris
model, there is an improvement in the prediction of the queue length for both

video teleconferencing and video entertainment data.
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FIGURE.6.21. Mean queue length of real video-conferencing data
compared with that of Maglaris and generated 3 and 2 class
heterogeneous source model, each class has 1 ON-OFF source.
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FIGURE.6.22. Mean queue length of real video-phone data compared
with that of Maglaris and generated 3 and 2 class heterogeneous source
model, each class has 1 ON-OFF source.
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FIGURE.6.23. Mean queue length of TV series data compared with that
of Maglaris and generated 3 and 2 class heterogeneous source model,
each class has 1 ON-OFF source.
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FIGURE.6.24. Mean queue length of real Movie data compared with that
of Maglaris and generated 3 and 2 class heterogeneous source model,
each class has 1 ON-OFF source.

6.5 Modeling multiplexed sources

As we have presented in the previous chapters, multiplexing several statisti-
cally independent and identical highly correlated sources will result in a good pre-
diction and reduction of the probability of loss and mean queue length. With this
model, the advantage of multiplexing is due to smoothing the traffic as a resuit of
averaging. We present muiltiplexing of one medium correlated traffic and another
highly correlated traffic; namely video-phone and Movie since the other two video

data, video-conferencing and TV series have similar results to those we discuss.

As shown in figure 6.25 for video-phone, there is an improvement in multiplex-
ing a number of these video sources. The matching of the generated 3-heteroge-
neous ON-OFF source model traffic probability of loss and mean quevue length to

that of the data when N = 4 sources is quite good as compared to the case when
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probability of loss and the mean queue length for video-phone sequences.
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FIGURE.6.25. Comparison of the probability of loss and mean queue
length of real video-phone data and that of generated 3 class
heterogeneous source model, each class has 1 ON-OFF source, number
of muiltiplexed sources N =1, 2, 4

In figure 6.26, the multiplexing of several highly correlated traffic, Movie, are
shown. The improvement of the multiplexing in the prediction of the probability of
loss and mean queue length is more for Movie sequence as compared with the
video-phone sequence. Also, there is a reduction in the proability of loss and

mean queue length as the number of sources multiplexed increases.

° ’(’__T' Ak 1 M_] oo [ Seaema s .'
7 N - 1 = DSO - N = 1 : -4
-] N - 2 - 300 - N - 2 -
g s N = 4 e g‘zso L i
= - E g 200 |- N = 4
gs . Movie ] 3.0 . §
H =0.96 Movie
=} buffer size = 0ol H=0.96 |
4000 cells buffer size =
T I ser 4000 cells 1

o.4 0.6 o.4 .
Traffic intonaeity Traffic INntoneity

FIGURE.6.26. Comparison of the probability of loss and mean queue
length of real Movie data and that of generated 3 class heterogeneous
source model, each class has 1 ON-OFF source, number of multiplexed
sources N =1,2,4
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6.6 Comparison between heterogeneous ON-OFF source
models, Maglaris models, Markov chain models and
MMPP models

In this section we discuss the different models we used in characterizing and
predicting the performance measures of video traffic. We compare the covariance,
index of dispersion for counts for the models and the real data. Also we compare
the probability of loss, and mean queue length as a function of the traffic intensity
and constant buffer capacity for the models and the real video data.

Some models are too inaccurate to be of use, and conclusion based upon
them can be very misleading. These models fail because they assume arrivals are
uncorrelated, whereas in fact they are correlated. Other models take these corre-
lated arrivals into account and produce more accurate results [HEF86]. It is nec-
essary to look for the probability of loss and the mean queue length, which are the
statistics that matter. The choice of the best model is based on the best matching
of the probability of loss. Also it must have a small number of fitting parameters to
make it analytically tractable and at the same time have the same properties as
the actual sources

Before going into the comparison of the models and their prediction of the
traffic characteristics and performance measures compared to the real data, we
give a brief review of the models that we considered in the previous chapters. All
of them are based on the conventional traffic models. They are simple and analyt-
ically tractable. They have been used to model self-similar traffic data. They are:
Markov-modulated Poisson process, Maglaris model, Markov chain models, and
the three heterogeneous binary source model, which we have developed. How-
ever, the accuracy of the models in characterizing and predicting the performance
measures of the real data depends on how heavily the traffic is correlated.

As we have mentioned, video traffic may be characterized by a MMPP
model based on many independent identical ON-OFF minisources. The Maglaris

[MAGB88] model is a model that consists of a number of ON-OFF sources. Fluid
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flow in their queueing analysis. For most cases, one video source is modeled as a
sum of 20 minisources. Furthermore, the Markov chain models can be used to
approximate the self-similar traffic, even if they do not have the LRD that self-simi-
lar traffic exhibits. In [HEY96] it is shown that LRD is not a crucial property in
determining acceptable QoS when delay considerations limit the allowable load.
We present a discussion of some results obtained from different models we
considered in the previous chapters including our proposed heterogeneous ON-
OFF source model. We generated the traffic for heterogeneous ON-OFF source
model, Maglaris model, and MMPP using OPNET given the parameters obtained
from matching to the real data discussed in the previous chapters. The Markov
chain is generated using Matlab software based on estimating the transition prob-
abilities P from an actual sequence and then we use these probabilities to gener-

ate the synthetic data.

6.6.1 Comparison of traffic characteristics indices and
performance measures of the models

We compare the estimated values of the covariance and the IDC of the real
data with that of all the models under consideration. Also, we compare the proba-
bility of loss and mean queue length of the real data and that of the models as a
function of the traffic intensity given a fixed buffer size.

Figure 6.27 and figure 6.28 shows a comparison of the covariance functions
for video-conferencing and video-phone data and that based on 3-heterogeneous
ON-OFF source model, Maglaris model, MMPP and the Markov chain models.
Although the covariances of all models approximate the real data, the three heter-
ogeneous ON-OFF source model tracks the real data most closely over a long

interval of frames.
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In figure 6.29 and figure 6.30 we show a comparison of the covariance func-
tions for TV series and Movie and that based on 3-heterogeneous ON-OFF
source model, Maglaris model, MMPP and Markov chain. It is clear from the fig-
ures that the 3-heterogeneous model preforms better than the other models for

this kind of highly correlated traffic
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FIGURE.6.27. Comparison of the covariance of video-conferencing data,
3-heterogeneous ON-OFF source model, Maglaris model, 16 state
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FIGURE.6.28. Comparison of the covariance of video-phone data, 3-
heterogeneous ON-OFF source model, Maglaris model, 16 state Markov
chain and MMPP.
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Figure 6.31 and figure 6.32 show the /DC for video-conferencing and video-

phone data and that based on 3-heterogeneous ON-OFF source model, Maglaris
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model, MMPP and 16 state Markov Chain. The IDC for 3-heterogeneous ON-
OFF source model has the best matching over a long range of lags among the
other models that are under consideration. That is, in comparison with the other
models used, over the entire range of the lag, the IDC for the 3-heterogeneous

source model and the real data are in good agreement.
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FIGURE.6.31. Comparison of the IDC of video-conferencing data, 3-
heterogeneous ON-OFF source model, Maglaris model, 16 state Markov
chain and MMPP.
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In figure 6.33 and figure 6.34, we show the IDC for the entertainment video

data, Movie and TV series. The Markov chain does not work for this highly corre-
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lated traffic even for a large number of states, as we have discussed in the previ-
ous chapter. The 3-heterogeneous ON-OFF source model prediction is good as
shown in the figures. Moreover, there is an improvement in the matching using 3-

heterogeneous ON-OFF source model over that using Maglaris and MMPP mod-
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FIGURE.6.33. Comparison of the IDC of TV series data, 3-
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chain and MMPP.
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ON-OFF source model, Maglaris model, 32 state Markov chain and
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As for the covariance and the IDC, the probability of loss estimation based

on the 3-heterogeneous ON-OFF source mode!l and the real data are in good
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agreement as compared with the other models. The 3-heterogeneous ON-OFF
source model predicts the probability of loss over a substantial large range of traf-
fic intensities and with a buffer capacity of 150 cells. Comparison for the probabil-
ity of loss for real data, 3-heterogeneous ON-OFF source model, Maglaris model,
MMPP and Markov chain are shown in figure 6.35 - 6.38. It is clear that for the tel-
conferencing data that all the models give a reasonable prediction of the probabil-
ity of loss, however the 3-heterogeneous ON-OFF source model is more accurate.
For the entertainment data, Markov chain gives a poor prediction of the probability
of loss while the other models are less accurate than the 3-heterogeneous ON-

OFF source model.
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FIGURE.6.35. Probability of loss of real video-conferencing data
compared with that of generated 3 ON-OFF heterogeneous source
model, Maglaris model, 16 state Markov chain and MMPP.



Probabihy of Loss

164

0.09 ™ T T T s T
_— Real Data /7
- 3 Heterogeneous ON-OFF Sour¢es »
o.o8- - - - Maglaris Model
16 State Markov Chain
+ MMPP L
0.07 -
0.06 [
g
= o.05}-
o
=
g o.0af video-phone
o H=0.74
o.oat- buffer size = 150 cells
o.02-
0.01 -
o ; : . . .
o) 0.1 0.2 0.3 0.4 0.s 0.6 0.7 0.8 o.

traftic Intensity
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that of generated 3 ON-OFF heterogeneous source model, Maglaris
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The mean queue lengths for the teleconferencing video traces are shown in
figure 6.39 and figure 6.40. The 3-heterogeneous ON-OFF source model does a
very good job of tracking the mean queue length over a large range of traffic inten-
sities among all other models given that the buffer is finite of value 150 cells. Fig-
ure 6.41 and figure 6.42 show the mean queue length for the highly correlated
entertainment video traces. The 3-heterogeneous model prediction is good for

practical engineering design as compared with the other models.
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FIGURE.6.39. Mean queue length of real video-conferencing data
compared with that of generated 3 ON-OFF heterogeneous source
model, Maglaris model, 16 state Markov chain and MMPP.
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FIGURE.6.40. Mean queue length of real video-phone data compared
with that of generated 3 ON-OFF heterogeneous source model, Maglaris
model, 16 state Markov chain and MMPP.
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FIGURE.6.41. Mean queue length of TV series data compared with that
of generated 3 ON-OFF heterogeneous source model, Maglaris model,
32 state Markov chain and MMPP.
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FIGURE.6.42. Mean queue length of Movie data compared with that of
generated 3 ON-OFF heterogeneous source model, Maglaris model, 24
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6.7 Discussion

We have proposed a model for characterizing correlated cell arrival of real
self-similar video data. Based on a second order statistical analysis, we have
used heterogeneous ON-OFF source model to characterize the traffic. The model
consist of m classes of ON-OFF sources. Although the ON-OFF periods are
exponentially distributed and the number of sources is small, we have a good
matching for the covariance and the IDC. It is clear from the results we obtained,
as the number of classes and the number of ON-OFF sources per class
increases, the accuracy of the model will be increased especially for highly corre-
lated traffic. However, increasing the number of classes and number of sources
per class will result in analytical and computational complexities.

We showed that it is possible to predict the probability of loss and mean

queue length as a function of the traffic load with buffer capacity of constant value.
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As for the covariance and /DC, better results will be achieved if we use a larger
number of classes but with complexity trade-off. In a comparison with the Maglaris
scheme, the heterogeneous ON-OFF source model QoS may be significantly bet-
ter.

As we have presented in section 6.6, it is clear that the three heterogeneous
ON-OFF source model is the best model among the other models that we consid-
ered. We have seen that although some of the models approximately can predict
the IDC and covariance, they have less far predictive ability for the probability of
loss and mean queue length especially when the correlation index is large. This
means that models can predict covariance and IDC accurately but can have dif-
ferent QoS.

Using just the 3-heterogeneous ON-OFF source model gives good results
for matching the traffic characteristics indices and prediction of the QoS and at the
same time the analysis is simple. Going for a large number of classes and more
sources per class will give more accurate results, however, the analysis will be

more complicated.
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CHAPTER Vii

Congestion and Admission Control of Self-Similar
Traffic based on Multiple Types ON-OFF Sources

7.1 Introduction

Most traffic sources in ATM networks are bursty, which makes them ideal for
statistical multiplexing, which can be better achieved if effective congestion control
and traffic management schemes (i.e., the set of policies and mechanisms that
allow a network to efficiently satisfy a diverse range of service requests) can be
developed. The basic idea behind traffic management is that the users should be
able to tell the network what services they require for a connection. Conversely,
the network must be able to monitor and control traffic according to agreements
with users.

Congestion happens whenever the demand is more than the available
capacity:

) Demand; > Available Capacity

The success or failure of ATMl networks depends on the development of an
effective congestion-control framework. Some aspects of ATM networks that com-
plicate the control problem include:

- Traffic characteristics of various types of services are not well understood.

- Different services have different types of QoS requirements at considerably

varying levels.
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- Various B-ISDN VBR sources generate traffic at significantly different
rates from Kbps to Gbps.

- As the transmission speed increases, the ratio of call duration to the cell
transmission time increases. Due to large bandwidth-propagation delay product in
B-ISDN, there is a very large number of cells in transit at any time in the network.
Large propagation delays compared with the transmission times give rise to large
periods between the onset and the detection of the congestion conditions by the
network control elements.

In our approach there is feedback from the muitiplexer to the end system
which gives the source the information necessary to respond, by appropriately
modifying their submission rates, to changes in the available bandwidth, so that
congestion is controlied or even avoided and the available bandwidth is used. It is
a rate based flow control under the category of proactive control schemes.

Congestion can occur when the network accepts too many calls, which
causes the QoS to deteriorate. If feedback is employed, the throughput could be
improved, with improvements depending strongly on how large the feedback delay
is. If there is no feedback delay, the node may signal congestion to the sources
when transmission capacity is fully utilized. In this case, the rate at the source is
reduced and data is buffered at the source. When some feedback delay is
present, congestion signaling should occur within a round trip delay period.

Real time services can not tolerate long delays, and therefore buffering for
these services must be kept to a minimum,; accordingly, bandwidth is the principal

network resource that affects their performance, and connection admission con-
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trol, which is a set of actions taken by the ATM network to determine if the network
has sufficient resources to support a new connection request, can be based on
call bandwidth requirements. The characterization of bandwidth requirements can
be accomplished in different ways. For the CBR service category, peak bandwidth
admission control is applicable and can result in good bandwidth utilization. This
is identical to admission control applied to circuit switched networks. Applying
peak bandwidth admission control to real time VBR service category can result in
a low efficiency of bandwidth utilization. In this case, bandwidth is allocated on an
equivalent bandwidth basis defined as the bandwidth required for call-level perfor-
mance to satisfy the required QoS. The value stands between peak bandwidth
and its mean.

As we have presented in chapter 6, it is clear that the heterogeneous ON-
OFF source model is the best model among the other models that we considered.
Using just 3-heterogeneous ON-OFF sources gives good results for matching the
traffic characteristics indices and prediction of the QoS and at the same time the
analysis is simple.

Our concern here is with probability of time to overload in a round trip delay
time, defined as the probability that the multiplexer input bit rate is greater than the
output bit rate, and admission control for a number of heterogeneous sources.
The probability distribution for the time to overioad in a round trip delay can be
found as the first passage time distribution of a multidimensional birth and death
process to a set of states which define overload. Specifically, we advocate that the

probability distribution to overload in a network round trip time serve as a quantita-



172

tive measure of congestion imminence. This is in accordance with the fact, that
the network round trip time is the reaction time of the system. The probability dis-
tribution for the time to overload can be expressed as a summation of exponen-
tially decaying terms of order equal the product of the number of subscribed
sources over all source types.

The time scales that are invoived, allow us to use the fluid flow approxima-
tion technique. Fluid models characterize traffic as a continuous stream. As we
have discussed in chapter 3, a fluid model that is normally used to model traffic is
the Markov modulated fluid model. In this model, the current state of the underly-
ing Markov chain determines the flow rate. Anik, et. al. [ANI82] used the fluid
model to derive the steady state complementary probability distribution for the
buffer content. In a paper by [ELW93], they examined the admission control prob-
lem for arbitrary, possibly heterogeneous bursty traffic sources. By preventing
admission to an excessive number of calls or sources of the multiplexer, cali
admission balances between grade of services, as determined by delay, cell loss
probability, for instance, and efficient use of the network resources. They showed
that for general Markovian traffic sources, it is possible to assign an effective
bandwidth to each source, which is the maximal real eigenvalue of a matrix
derived from the source and the channel characteristics. As expected, the effec-
tive bandwidth of a source is shown to be bounded by peak rates and mean rates.

The analysis in [COL96] is similar to that of Elwalid and Mitra [ELW94] where
a fluid flow approximation is used. Their scheme involves rate control when a

queue threshold is passed. They assumed the existence of a statistical shaper
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that can, for instance, take traffic from a source with a given average burst length
and produce traffic with a lower average burst length, or perhaps even a longer
average burst length, but with a lower cell rate within the burst.

The fluid flow model for sets of homogenous sources was used by Tsingotji-
dis and Hayes [PER97] to predict the onset of congestion. The problem is formu-
lated as a first passage time to an overload state.The overload state is defined to
be input flow greater than the capacity of output lines. Since the traffic is real-time,
the role of buffering in smoothing fluctuation is limited. In view of the quantities of
flows that are involved, the time delays that are appropriate and the tractability of
the problem, we feel this definition of overload state is reasonable. The salient
result of this work is that the correlation time of video processes and the round-trip
time of links, such as LEO and MEO satellite, are such that a significant advan-
tage can be realized. The video model in this work is that of Maglaris. As we have
seen, the heterogeneous ON-OFF source model that we have developed is a con-
siderable improvement on the Maglaris model; accordingly it is applied to the con-

gestion control problem.

7.2 The general mathematical model

Based on a second order statistical analysis [FAR98], we have used heter-
ogeneous ON-OFF source model to characterize the VBR video self-similar traf-
fic. Alithough the ON-OFF periods are exponentially distributed and the number of
sources is small, we have a good matching for the covariance. We also showed

that it is possible to predict the probability of loss and mean queue length. In a
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comparison with the Maglaris scheme, the heterogeneous ON-OFF source model
QoS may be significantly better. The model can be generalized for any number of
levels, which we consider below.

In section 6.2 we have presented a model that characterizes heterogeneous
ON-OFF source model at equilibrium; i.e., time has no role in this case. We ended
for that case with an equation from which the covariance function was extracted
and the model parameters are calculated. In the following we use the same model
that was presented in section 6.2 having in this case two variables, time and buffer
content.

In this section we introduce the time dependency in order to find the proba-
bility distribution of time to overload in a round trip delay time. We have a system
of mn independent classes, let N, (i = 1, 2....m) denote the number of sources in
class /. Within a class the sources are identical and independent. Let
[nyn,....n,.; 1; u] be the state with n; source inclass i "ON" (i = 1, 2,...m) and the
The times spent in the ON and OFF states are exponentially distributed with
means VB:‘ and 1/a;, i = 1,2,..m, respectively. Also, any source from class i
is generating packets at fixed peak rate R;. Packets are served at a rate of C
packet per time unit. The string of indexes [nn,....n,,] is considered the normal
one in one differential equation. The string is indicated by dots ....... while only
deviations from the normal string are given explicitly. We utilize the fluid flow
approximation [ANI82], which has shown much promise in analysis of ATM net-

works. The computational complexity of this technique is independent of buffer
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size; accordingly, more complex (in terms of Markovian state space) traffic models
than other techniques are allowed. Therefore, similar to [ANI82], we have the fol-

lowing set of partial differential equations governing the model:

E-a—tp (:,u)+[2R,.n,.—cJ§; (tu) = Y [aqN;=n;+ D]pe, ot u) -

25l (0| 2 R Clagp.. _
(=1 i=1 (7.1)
{o;(N;=n))+Bn;}p...(1, u)+B(n; + Dp.p 4 1--(1 1)

O<sn;sN; i=12,.. m)

i=1

where the variables r and « are time and buffer contents, respectively. in the

sequel, we shall consider a particular order of states, which is useful in our study.

We express equation (7.1) in the following familiar matrix form,

%p(t, u) + Dé-a;p(t, u) = Op(t, u) (7.2).
p(t, w)is a column vector equal [pyo ot U), .ccucuc.... +Pnny....n, (b w)]", D is an
(N + D)X (Ny+ 1) x...... x (N, + 1) diagonal matrix and [0 is an
(N +1D)X(Ny+ 1) x...... x (N, + 1) infinitesimal generator matrix. Therefore, the

dimensionality of the problem is the product of the number of subscribed sources

over all source types.

For example, let us consider the bufferless case u = 0 and setting aa—up(t, u) =0,
and assuming we have three classes and each class has one source
(N, =N, =N; =1) as shown in figure 6.3. Let us consider the state

n n,n;=000. In this case, equation(7.1) becomes,

dpooo(?)

o = (0 + 0+ 03)Pogo(?) + B3poor (1) + B2Po10(r) + BiP1go(?)

For the state n,n,n,=001, equation (7.1) will be:
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dpgoi (1)
?zl = 03Pogo(?) = (O + 8y + B3)Pog1(2) + B2Po11 (1) + By P10 (7)

and so on for the other six states.

The infinitesimal generator matrix @ for the three heterogeneous binary ON-OFF

source model is given by,

-(al #azdra_.’) tx.j [+ 5%

5 0 a,; o 0 0
B3 -(Ql +a2+f33) 0 ©q V] 3 0 0
B‘.'. 0 -(czl +a3+52) ag 0 0 a, 0
Q= 0 B, By -, +B, +53) 0 o 0 a,
Bl 0 0 [V} ~(Bl ¢u2+a3) ay a, 0
0 By 0 ° Bs By ray+By) 0 e
[} Bl 0 B'.’. 4] -(Bl "52*’13) @,
0 0 0 B, 0 B, B, ~B, +B, +By)

. In the homogenous case, the problem is a simple birth-death process. For
our case we have a multidimensional birth and death process. The dimensionality
of the problem is the product of the number of subscribed sources over all source
types. For N sources three classes system, let q(k, [, p;x, y, z) =transition rates
from state k&, /, p to state x, y, z. The local state transition diagram for a three
types of source model is shown in figure 7.1.

The birth-death rates with £, /, p = 0, 1, ....N, are given by:

gk, I, psk—1,1, p) = kB, (7.3).
gk, I, psk,1-1,p) = IP, (7.4).
g(k, L, pik, I, p—1) = pPs (7.5).
gk, l,pk+ 1,1, p) = (N-k)o, (7.6).

gk, l, pik, 1+ 1,p) = (N-Da, (7.7).
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gk, L, pik, L, p+1) = (N - p)a, (7.8).
N
gk, I, pik, I, p) = - Yy g(k, 1, psk— 1,1, p)+ g(k, I, p;k, | — l,p)+(7 9)

k=0,l=0,p=0
gk, ,psk, Lp—1)+gk,l,pk+ 1,1, p)+ gk, L, psk, L+ 1, p)+g(k, I, psk, [, p+ 1)

equations (7.3) - (7.9) will be used in the next section to calculate the infini-

tesimal generator matrix Q of dimensionality (N+1D)"x(N+ D)™

-1a, (N +1)B, (N - p)a,

(N + 1)B,
—k)oy (N - l)a,

FIGURE.7.1. local state transition diagram for a three types of source
model

7.3 Prediction of probability to overioad in a round trip
delay time for a bufferless multiple class resources

The issue here is that we have real time traffic multiplexed on a channel of
capacity C and we want to find a way to prevent the system from going to an over-
load state in a round trip delay time. That is, we want to keep our system in the
underload region. Overload occurs when the sources input rates from all active

source are greater than the available output capacity C.
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In section 7.3.1, we find the matrix form that governs the bufferless multiple
class sources case. In section 7.3.2, we show how to arrange the matrix Q
according to increasing values of the rate. In section 7.3.3, we find the probability
of the system in reaching the overioad in a round trip delay using the heterdge-
neous ON-OFF source model or the multiclass ON-OFF source case. That is, we
treat the problem of multiplexer overload and give the probability for the time to
overload as a solution to a set of differential equations. In section 7.3.4, we find
the safe operating region that satisfies a certain probability of overioad in a round

trip delay.

7.3.1 Matrix form that governs the bufferless multiple class

resources case
There are m classes and within class the sources are identical. There can

be any number of sources within a class, however, for our case we assume there
is only three non-identical classes and one source per class. We have multidimen-
sional birth and death processes. Sources of the ith type are characterized by
transition probability rates o;and B;, and peak transmission rate during active
periods R;. Also, we assume the system has no buffer and the sources are fed

directly to the multiplexer with output channel capacity denoted by C.

Therefore, for the bufferless case, equation (7.1) becomes,

dr D [ (N;—n;+ DIpey (1) -

i=1 i=1 (7.10).
{0 ;(N;—n)) +Bn;}p....(1)+B;(n; + Dp..cp v 1--(2)

O0=<n,sN; i=12,... m)
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which can have the following matrix form,

dp(r) _
el 0p(1) (7.11).
where p(r) is a column vector equal to [pyg (1), --eveveneee Prn,.... nm(z)]T and Q0

is the infinitesimal generator matrix.

In the heterogeneous case, the matrix Q comes out in non-ordered form.
Each state is a combination of a number of sources that are active, which corre-
sponds to a unique total rate. We need to find a way to enumerate or order the
states based on numbering by rate. We may now speak about “row-numbering” or

“‘column-numbering”.

7.3.2 Row-column numbering of the matrix Q

Assuming that there are N sources, each described by three heterogeneous

binary ON-OFF source models. Let n;, i = 1, 2,...m indicate the number of type
i sources that are active, which have values of 0, 1, 2, ...., N . Also, let the binary
sources peak rates have values of R,R, R; .....R,. Moreover, let

R, <Ry,<R;..... <R, _,<R,. Let the number of active sources of each type

m

describe the state of our system. The state of the system S is given by,

S=(+1)+n,(N+1)+ny(N+ 1) +ng(N+1)>+ ... +n (N+1)"" ' (7.12).
The total rate R is,
Ry = nR +nyR, +nyRy+ ... +n_R (7.13).

For the three class system (m = 3), there are (N + l)3 states and rates.
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Forexample, let N = 1, m = 3,and R; = 1.3,R, = 2.2,R; = 3.1(R, <R, <R;).
Then, state number S, number of type i = 1,2,3 sources that are active

ny, n,, ny and the total rate R, are given below in Table 7.1.

state number § | n; n, ny total rate R
0 0 (o) 0 0.0
4 0 0 1 3.1
2 0 1 0 22
1 0 1 1 53
6 1 0 0 1.3
5 1 0 I 4.4
3 1 1 0 33
7 1 i 1 6.6
TABLE 7. 1

In general, for N source three class system (m = 3), state number S, the number
of type i = 1, 2,3 sources that are active n, n,, n; and the total rates R, are

given in Table 7.2.

State number S n, n, ny Total rate R

0 0 0 0 0

1 0 0 L R,

2 0 0 2 2R,

2N 0 | N R,+ NR,

2N +1 0 1 0 R,

2N +2 0 1 1 R,+R,
(N+DH(N+1)+1 1 0 0 R,
(N+1)(N+1)+2 1 0 l R|+R3
(IN+D)(IN+ DN+ 1) N N N NR;+ NR, + NR,4

TABLE 7.2
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As can be seen from Table 7.2, in contrast to the homegenous case, the
rates are not in increasing order. This complicates the task of calculating the prob-
ability distribution function for the time to overload in a round trip delay time since
there are multiple boundaries between overload and underload states. Our solu-
tion is simply to reorder the states so that increasing state number implies non-
decreasing rate.That is, all overload states are within the boundary. Now, in order
to proceed, we need a way to enumerate the states of our system so that the total
rate R, comes out in increasing order. To illustrate this, let us go back to the
example for the case when N =1 and show the enumerating states S and ordering
of the total rate R, . This is shown in Table 7.3. As shown, state 7 will go to over-

load first, then state 3, then state 5 and so on until state O which is the last to go to

overload.
State number § | n, n, ny Total rate R,

0 0 0 0 0

1 1 0 0 1.3
2 0 1 0 2.2
3 0 0 1 3.1
4 1 1 0 3.5
5 1 0 1 4.4
6 0 1 i 53
7 1 I 1 6.6

TABLE 7.3

The steps of evaluating the infinitesimal generator matrix in ordered form are as

follow,

a) Input: number of sources N, channel capacity C, and parameters «,, B;, R,

fori =1,2,..m.
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b) Compute the state number S using equation (7.12).
c) Compute the total rate R, using equation (7.13).

d) Compute the infinitesimal generator matrix ¢ using equations (7.3) - (7.9)

respectively. It has dimensionality of (N + 1)"x(N + 1)™.

e) Sort the rates such that Rr <Ry ,j=012 ..(N+ 1)". Denote the sorted

matrix by Q.
f) Enumerate the states of the new matrix Q° .

7.3.3 Probability distribution function for the time to overload in

a round trip time
The probability distribution for the time to overload is used as a characteriza-

tion of congestion imminence in a network round-trip delay. The probability distri-
bution for the time to overload evaluated at the network round-trip delay can be
expressed in terms of the system parameters o, §,, R;, i = 1, 2, ...m and the num-
ber of sources N. Equation (7.11) is a set of first order linear heterogeneous dif-
ferential equations; its solution has the following form,

P(t) = ¢2°P(0) (7.14).

where P(0) is the initial condition.

Substituting for the sorted infinitesimal generator matrix ¢° and the round trip

delay t,, in equation (7.14), we have,

Pz, = 2 “P) (7.15).
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¢2 " can be expressed as a sum involving the eigenvalues and eigenvectors of
matrix @° [KEI64], [PER97]. Let i+ J = 1,2, ...w+1 be the eigenvalues of Q°,

V; and U; its right and left eigenvectors respectively associated with the jth

eigenvaiue, normalized as

1 =k
vlv, = I/ (7.16).
J 0 J#k
Equation (7.15) now has the following solution,
w+ 1 .
P(t,) = Y &V,ULP(O) (7.17).

j=1

Equation (7.17) depends on the round trip delay of the network t,,, on the eigen-
values and eigenvectors of matrix Q°; and therefore on the number of sources N,
the channel capacity C, the number of underload states w, and on the source
parameters o, 8, R;, i = 1,2,..m. It gives a measure of the probability to over-
load in less than a round trip delay time z,,, which in turn is a measure of conges-
tion.

Of course, in order for the system to be in overioad, it is necessary that the
arrival rate from all active sources be greater than the channel capacity. To find

the probability distribution for the time to overload in a round trip delay, we use the

following steps,
a) Use steps a-f of section 7.3.2.

b) If total arrival rate from all active sources > channel capacity, then number of

underload states = w.
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d) Combine all other states above w into one state and call it the overload state.

Total number of states = w + 1 . Call the new matrix Q.. .1 .

f) Find probability distribution of time to overload in a round trip delay using equa-

tion (7.17) with the matrix equalto Q°, + 1 .

g) Repeat for the calculation for the probability distribution of time to overioad for

different round trip delays.

5

Including the overioad state, the matrix Q,.,, has w+1 column and w
rows. To make the matrix square, we augment a row of all zero elements at the
w+ 1 row. The computational complexity depends on the size of the matrix
Q’.+ 1, which depends on the number of sources N, the underload states w and
the channel capacity C. As N increases, the size of the matrix Q°,. .| increases.
Increasing C will increase w and therefore the size of the matrix Q°. +1. In the

sequel, we find the probability distribution for the time to overload for several VBR

video data traces.

Numerical example

Let us consider the application of equation (7.17) to several real video traffic
data traces. The data available to us is four VBR video traces that are of different
scene types, video-conferencing, video-phone, popular TV series, and Movie. The
video traces are generated at a rate of 25 frames/sec. If C, the channel capacity
is expressed in bits/s, then mean (peak) rate must be converted from cells per
frame by multiplying it by number of cells generated per frame, number of bytes

per cell and number of bits per byte. As we have seen in section 2.3.1, video-con-
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ferencing and video-phone have medium Hurst parameters 0.72 and 0.74 respec-
tively and low mean and peak rates. The other two, TV series and Movie have
high Hurst parameters of 0.9 and 0.96 respectively and large mean and peak
rates. For more detail, see Table 2.3 and Table 2.4.

To have an idea of the self-similarity effect of the video data, we reproduce
figure 2.14 of chapter 2 as in figure 7.2,. We show the autocorrelation function for
the four video data traces versus the lag. The autocorrelation function for Movie
has the lowest decay rate while video-conferencing has the highest decay rate.
Accordingly, Movie is the most correlated and video-conferencing is the least cor-

related in our video data traces.
1 T T

+

~ R 4 Tovie

T T <~ _._ Popular TV series\ -]

o 100 200 300 400 500 600 700 800 900 10C
Lag in Frames

FIGURE.7.2. Autocorrelation functions for four different video data
The two highly correlated traces, popular TV series and Movie, have larger
peak rate, mean rate and Hurst parameter as compared to the less correlated traf-
fic video-conferencing and video-phone. As can be seen from Table 7.4, the peak

(mean) rate for the highly correlated traffic such as Movie is more than 4 (10)
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times bigger than the peak rate of the medium correlated traffic such as video-
conferencing. So, because of their different scene types and statistics, compari-
son between teleconferencing and entertainment data is not useful in getting
information about the behavior of the multiplexed traffic such as comparing the
probability distribution to overload in a round trip delay time. We compare those
traces that have comparable peak (mean) rates and comparable Hurst parame-
ters; we compare video-conferencing with the video-phone and the popular TV

series with the Movie.

VBR Video mean number of | peak number of
sequence cells/frame cells/frame
[Mbits/s] [Mbits/s)
video-conferencing 130.29 [1.67] 629.0 [8.05]
video-phone 170.61 [2.18] 897.0[11.48]
TV series 5336.4 {14.94] 11801.0 [33.04]
Movie 5948.4 [16.7] 13325.0[37.31]

TABLE 7. 4 Mean and peak number of cells per frame of VBR video data

We consider multiplexing a number of video sources over a channel of
capacity C = 10 Mbits/s for video-conferencing, video-phone and on a OC-1 link
of channel capacity C = 51.84 Mbits/s for popular TV series and Movie. The
choice of the channel was based on the bit rate of the data; video-conferencing
and video-phone have low bit rates as compared to TV series and Movie. Each
video source can be modeled by three heterogeneous ON-OFF source model
with parameters o, B, R;, i = 1,2,3 [FAR98]. Figure 7.3 gives the probability
distribution for the time to overload for video-conferencing and video-phone data
for different values of n|, n,, n,, the number of active sources of each class with

N = 6 and C = 10 Mbits/s. Probability distribution for the time to overload for TV
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series and Movie data for different values of n,, n,, n; are shown in figure 7.4

with N = 5 multiplexed on a OC-1 link of channel capacity C = 51.84 Mbits/s.
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FIGURE.7.3. Probability distribution for the time to overioad in a round
trip delay for video-conferencing and video-phone data for different values
of n1, n2, n3; number of sources N = 6, channel capacity C = 10 Mbits/s.
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FIGURE.7.4. Probability distribution for the time to overload in a round
trip delay for popular TV series, and Movie data for different values of n1,
n2, n3; number of sources N =5, channel capacity C = 51.84 Mbits/s

There is a relation between round trip delay and time until overload. If round

trip delay is less than time until overload, then there is no problem and network

can operate safely. However, if round trip delay is

larger than time until overload,
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congestion can not be avoided and some correction action must be taken in order
to avoid congestion.

For networks with short round trip delays, low values for the probability to
overload are possible. As the round trip delay increases, the probability distribu-
tion for the time to overload increases. It is clear for the heterogeneous case that,
the probability distribution for the time to overload depends heavily on the mix of
the active sources of the different classes. Moreover, the round trip delay T, is
compatible with the time constant t_. (see Table 4.4 for more details on the time
constants of the VBR data); i.e, if the delay is within the time constant of the traffic,
then low values of probability to overload are possible.

It is interesting to see that the probability distribution to overload in round trip
delay increases for more correlated traffic; for the same probability to overload in a
round trip delay, highly correlated traffic goes to overload faster than low corre-
lated when multiplexed over the same channel capacity. This is can be seen from
figure 7.3, when we compare video-conferencing with video-phone (multiplexed
over 10 Mbits/s channel) or from figure 7.4 when we compare TV series with
Movie (muitiplexed over 51.84 Mbits/s channel). So, there is a difficulty in multi-

plexing highly correlated traffic compared to low correlated video data.

7.4 Admission control

The objective of admission control is to limit the number of admitted sources
into the network so the probability to overload in a round trip delay can be kept

below a specified threshold. To determine the threshold where service to an addi-
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tional call must be denied, resource characterization is required. The admission
control problem is to characterize sources for which the admission criterion
p(t,,) <t is satistied where p(t,,) denotes the probability to overload in less than
a network round trip time ¢, and € is a very small value. The problem here is to
characterize sources for which the buffer overflow probability p(¢) does not
exceed €. When the total input rate from the active sources to the network is
below the threshold there is no need to send feedback signals to the sources to
slow down since congestion is not immanent. However, above the threshold, sig-
nals must be sent back to the sources to slow down.

To find the safe operating region that satisfies a certain probability to over-
load in a round trip delay time €, we use steps that were used in section 7.3.3 with

minor modification and we end up with the following,
a) Use steps a-d of section 7.3.3.

b) Search for the rate that gives us probability to overload in less than a network

round trip time that satisfies the QoS criteria €.

d) Repeat for the calculation for the total rate that satisfies the QoS criteria for dif-

ferent round trip delays.
Numerical example

We consider the same VBR video data used in the example presented in sec-
tion 7.3.3. We consider two cases for the channel capacity. For video traffic that
has low bit rates such as video-conferencing and video-phone, we use channel of

capacity 10 Mbits/s, while for traffic with high bit rates such as TV series and
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Movie, we use OC-1 link of channel capacity C = 51.84 Mbits/s. Comparison for

other channel capacity is possible. Also, we consider two cases for the perfor-
mance index €; € = 10> and e = 107
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FIGURE.7.5. Operating regions for video-conferencing and video-phone
sources with parameters, N the number of multiplexing video sources;
channel capacity C = 10 Mbits/s; probability to overload in a round trip

delay time of value ¢ = 0.01

Figure 7.5 depicts the safe operating region for VBR video-conferencing
and video-phone as a function of the number of the input source N, N = 4,6, 8 to
the network of channel capacity C=10 Mbits/s and the probability to overioad in a
round trip delay time ¢ = 107, As shown, increasing the number of admitted
sources N to the network, resuits in shrinking the safe operating region. Also, as
the round trip delay decreases, the number of sources that can be admitted to the
network increases.

For a tighter criterion for the probability to overload, e.g; € = 107, the oper-
ating region shrinks and in this case correction measures are needed in a great
extent. Figure 7.6 depicts safe operating region for VBR video-conferencing and

video-phone as a function of the number of the input sources N, N = 4,6,8 to
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the network of channel capacity C=10 Mbits/s and the probability to overload in a

round trip delay time € = 107.
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FIGURE.7.6. Operating regions for video-conferencing and video-phone
sources with parameters, N the number of multiplexing video sources;
channel capacity C = 10 Mbits/s; probability to overload in a round trip

delay time of value ¢ = 0.00001

In figure 7.7, we show the safe operating region for VBR TV series and
Movie as a function of the number of the input sources N, N = 4, 6, 8 to the net-
work multiplexed on OC-1 link of channel capacity C = 51.84 Mbits/s and the
probability to overload in a round trip delay time € = 107, Figure 7.8 depicts the
safe operating region for VBR TV series and Movie as a function of the number of
the input sources N, N = 4, 6, 8 to the network multiplexed on channel capacity
C =20 Mbits/s and the probability to overload in a round trip delay time € = 1072
Comparison between TV series and Movie shows that, for the same channel
capacity and same number of admitted sources, the safe operating region for
Movie is less than that for TV series. This is mainly due to the fact that Movie bit
rates are larger than TV series. Also, this may be due to higher correlation of

Movie traffic as compared to TV series traffic. The same explanation mentioned
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above applies for the other two video data traces, video-conferencing and video-

phone.
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For the same number of input sources N and same QoS criteria €, increas-

ing the channel capacity C will increase the safe operating region. Therefore, it is

possible to have more sources admitted to the network if we increase the channel

capacity C to satisfy the same QoS criteria €. In figure 7.9, for N = 4 and
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e = 10~ safe operating regions are shown for the channel capacity C = 5 Mbits/

s, 7.5 Mbits/s and 10 Mbits/s.

800 T - T 800 - d
700 |- \ Cm=10 Mbits/s 700 7
600 |- 4 600 C=10 Mbits/s S
~
Soo - C=7.5 Mbits/s h soo 7
g ]
= a00 e < 400} Ca7.5 Mbitass E
= =
& &
300 e a00 e
C=S5 Mbitass
C=S5 Mbitsss
200+ b 200 E
100} Video-Conferncing - 100 Video—Phone -1
N=a " N=a
o € =10 o X ° € =10 N
o S0 100 150 200 250 o 50 100 150 200 250
it — Round trip detay (ms) trt — Round trip delay (ms)

FIGURE.7.9. Operating regions for video-conferencing and video-phone
sources for N = 4 sources; channel capacity C = 5 Mbits/s, 7.5 Mbits/
s,10 Mbits/s; probability to overload in a round trip delay time of value

e = 0.01

For a network with a given QoS criteria €, there is a trade-off between the
number of admitted sources and the round trip delay. Given ¢, if round trip delay
increases which affects the safe operating region, then number of sources admit-
ted has to be decreased such that the system meets the desired QoS criteria, and
vice versa. So, if we need to operate in a specific safe operating region to satisfy a
certain probability of overflow for a given network round trip delay, we need to con-
trol the number of admitted sources to the network by sending some corrective
actions back to the input of the muitiplexer. How much earlier the control action
should be taken depends mainly on propagation delay, traffic burstiness and the

rate that is in effect. Finally, as we have mentioned in section 7.3 when we dis-
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cussed the probability to overload in a round trip delay, for admission control the

round trip delay T, is compatible with the time constant ..

7.5 Discussion

We considered multiplexing a number of video source over a channel of
capacity C = 10 Mbits/s for video-conferencing, video-phone and on a OC-1 link
of channel capacity C = 51.84 Mbits/s for popular TV series and Movie. The prob-
abilities distributions for the time to overload in a round trip delay for different VBR
video data using a heterogeneous ON-OFF source model are found. For the
same round trip delay, highly correlated traffic have mora probability to overload
than low correlated traffic when multiplexed over the same channel capacity.
Admission control is also considered. We considered two cases for the perfor-
mance index €; ¢ = 107> and € = 107>, For a network with a given QoS criteria
g, there is a trade-off between the number of admitted sources and the round trip

delay. The number of admitted sources are adjusted in order to have a certain

QoS criteria.
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CHAPTER VIII

Conclusions and Further Research

In this thesis, we have presented modelling and simulation schemes for self-
similar traffic. We have generated synthetic self-similar traffic based on simulation
and analytical models of the real Ethernet and VBR video data that are available
to us. We presented the conventional traffic models in order to characterize and
predict the performance measures for real Ethernet and VBR video data. We have
extensively investigated the statistical properties of real Ethernet and video data.
We proposed two procedures to fit the PMPP model to the real Ethernet data and
MMPP model to the video data. The fitting of simulation models such as FGN,
FBM and F-ARIMA to the real Ethernet data is excellent and provides good pre-
diction for the probability of loss and mean queue length. Markov chain has good
fitting and performance prediction for teleconferencing video data, however, it is
not good for entertainment video data which has high correlation index. Multiplex-
ing a number of sources will improve the fitting and the prediction of the perfor-
mance measures. Moreover, we have proposed a new model, the heterogeneous
ON-OFF source model, to model VBR video. The proposed model has shown a
better characterization and better prediction of the QoS for the correlated video
traffic that we discussed, than the other conventional traffic models available in the
literature. The proposed model is very simple and tractable. The basic idea of the
3-class model is that there are three time frames for transitions: short term,
medium term and long term, respectively. The transition rates are such that
Oy » Oy » a0, @nd By » By» ... » B,,, where for our model we have m= 3,
so that the shorter the time frame, the more rapid the transition. Our analysis is

based on second order statistics. We approximated the non-exponential covari-
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ance function of the correlated traffic by exponential function. The idea of approxi-
mating equation (6.3) by equation (6.9), because performance models with
component long-tail distributions tend to be difficult to analyze. The number of
parameters that are needed for the model is not large. The small number of
parameters makes the analysis (finding the covariance and the parameters of the
sources) simple. The heterogeneous ON-OFF source model that we have devel-
oped is a considerable improvement on the Maglaris model; accordingly it is
applied to the congestion control problem. We have calculated the probability dis-
tributions for the time to overioad in a round trip delay time. We also considered

admission control where for a network the number of admitted sources is adjusted

in order to have a certain QoS.

The results that we obtained in chapter 2 through chapter 7 from applying the

different statistical and analytical models to the real Etherenet and real VBR video

data can conclude the following:

- Self -similar traffic can be characterized based on second order statistics,
the covariance and the IDC. If the matching of the covariance and the IDC to the
data is good then we will have a good prediction of the probability of loss and

mean queue length.

- Simulation models such as FGN, FBM and F-ARIMA models can accurately
characterize Ethernet data. Moreover, PMPP can be used to characterize the data
and give reasonable results for practical engineering design, however, it is not as

good as FGN, FBM and F-ARIMA

- Muitiplexing several statistically independent and identical highly correlated
sources will result in a reduction of the probability of loss and mean queue length.
The advantage of multiplexing is due to smoothing the peaks and valleys of traffic

as a result of averaging.
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- The choice of the best model is based on the best matching of the probabil-
ity of loss. Also it must have a small number of fitting parameters to make it analyt-
ically tractable and at the same time have the same properties of the actual

sources

- The best analytical model that is effective for video data is the heteroge-
neous ON-OFF source model. This model can characterize traffic that has differ-
ent Hurst parameter as compared with the other analytical models such as MMPP
and Markov chain models. The heterogeneous ON-OFF source model is analyti-
cally tractable and simple. However, MMPP and Markov chain models can pre-
form good prediction when the index of correlation is not high and the traffic is not

heavy.

This work can be explored in many directions and possible extensions of the

results obtained so far including the following:

- Working with real data what are the parameters that count in calculation of
performance? Two different self-similar traffic models with the same Hurst param-
eter H may result in very different tail asymptotic and very different probability of
loss and queue length.This indicates that we have to look at the impacts of other

factors, such as H combined with higher-order statistics.

- Given the self-similar traffic as an input, the concern is to look how it
behaves with the leaky Bucket. Further, studying leaky Bucket performance,
including characterizing its output process and deriving the cell loss probabilities
in the network.

- The existence of self-similar behaviour may require an examination

of current flow control mechanisms. As the amount of network traffic increases
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and data networks become even more and more common it is important that the
problems of packet delivery and error correction using flow control are addressed.

- Network protocol behaviour is extremely complicated in real life because
of the complex interaction within the operating system. A simple model of a net-
work and protocols which produces self-similar behaviour would be a valuable tool
in understanding what is happening.

- An obvious extension of this work will be to analyze more video and Ether-
net data to determine the consistency and generality of these results. Also, it
would be important to develop the admission control techniques more fully by

studying their effectiveness using simulation.
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Appendix A
Glossary

ABR Available Bit Rate

ATM Asynchronous Transfer Mode

AAL ATM Adaptation Layer

BELLCORE Bell Communication Research

B-ISDN Broadband Integrated Services Digital Networks
BMAP Batch Markov Arrival Processes

CAC Connection Admission Control

CBR Constant Bit Rate

COV Covariance of independent m class ON-OFF sources
CO Covariance of the number of packets of a long-tail process
CCITT International Consultative Committee for Telephone and Telegraph
CLP Cell Loss Priority

FARIMA Fractional Autoregressive Moving Average

FBM Fractional Brownian Motion

FGN Fractional Gaussian Noise

GEO Geosynchronous Earth Orbit

GFC Generic Flow Control

Gbit/s Gigabit per second

H Hurst parameter

HEC Header Error Check

IDC Index of Dispersion for counts

IDI Index of Dispersion for intervals

IID Independent Identically Distributed

ISDN Integrated Services Digital Networks

Kbit/s kilobit per second

LAN Local Area Network

LEO Low Earth Orbit

LRD Long Range Dependence

MAP Markov Arrival Processes

MEO Medium Earth Orbit

MMPP Markov Modulated Poisson Processes

Mbit/'s Megabit per second

N-ISDN Narrowband Integrated Services Digital Networks
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NNI Network-Node Interface

OC Optical Carrier

OPNET Optimized Network Engineering Tools
PMPP Pareto Modulated Poisson Process
PMR Peak to Mean Ratio

PR Priority field

PT Payload Type

QoS Quality of Service

RES Reserved

SCOV Squared Coefficient of Variation
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical Network
SRD Short Range Dependence

TDM Time Division Multiplexing

UNI User-Network Interface

Var Variance of independent m class ON-OFF sources
VBR Variable Bit Rate

VC Virtual Channel

VCI Virtual Channel Identifier

VP! Virtual Path Identifier

WAN Wide Area Networks
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Appendix B
List of Symbols

a;: Coefficient in the spectral expansion solution

A, : Poisson interarrival times

C: Channel capacity

C(n): Discrete covariance

D : Fluid flow diagonal matrix

F ;(u) : Equilibrium probabilities that i source are ON and buffer size < u
F(u) : Equilibrium probability distribution for the queue length

f: Number of frames generated per second

G(u) : Probability of buffer overflow beyond <«

H : Hurst parameter

1,:1DC atlag k

I : IDC at infinity

J.:IDl atlag k

k: Lag

L: Number of quantization levels

M : N x N transition matrix

m : Number of classes

N: Number of ON-OFF sources

N;: Number of ON-OFF sources in class i

n: Samples size

nny..n : State with n; source in class i ON

N(z) : Number of arrivals in (0, 1)

P Transition probabilities matrix

p;; - Number of transition from i to j / number of transitions out of i
p;(t, u): Probability that, the queue length does not exceed « and i sources are
active at time ¢

p: Order of the autoregression

p(z,,) : Probability to overload in less than a network round trip time ¢,
0 : Infinitesimal generator matrix

Q’ : Sorted Infinitesimal generator matrix

q(k, I, p;x, y, z) : Transition rates from state k, /, p to state x,y, z.
R: Data rate when source is in the ON state

R, : Total Rate
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r(k): Autocorrelation at lag
S, : State of the system

t: Time

U, : Left eigenvectors

u : Buffer size

Vv, : Right eigenvectors

w : Number of underload states
X: WSS process

x : Aggregated WSS process
z; - Eigenvalues

v: Variance

u : Mean value

U5 : Third moment

¢, : Eigenvectors

p, - Covariance

o : Standard deviation

C(n): Discrete covariance

A : Poisson arrival rate

A : Markov chain rate matrix

5 : Skewness

T.. Time constant

T, Round trip delay

n: Steady-state probability

o, : Transition rate of going out of state
At : Incremental time interval

o : Duration of ON state

B : Duration of OFF state

A : Quantization step

€ : Very small value
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