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Abstract

Fault detection and diagnosis (FDD) of multiple-dependent faults of chillers

Hongwen Dou, Ph.D.
Concordia University, 2023

As an indispensable system in modern buildings, the heating, ventilation, and air conditioning
(HVAC) system usually takes a large proportion of building energy usage. However, faults of
HVAC system in modern buildings are becoming a growing issue. These faults can aggravate
equipment degradation or even damage equipment, and sequentially lead to the increase of
maintenance cost and the significant energy waste. Therefore, it is paramount for the HVAC system
to run as effectivity and fault free as possible; as a result, research and development into HVAC
faults turns to an effective approach to improve building energy efficiency. This dissertation is a
contribution to the research of fault detection and diagnosis with a new topic of chiller multiple
dependent faults in a real building.

The forward fault detection model and the backward fault diagnosis model are developed to
identify and isolate chiller system-level and component-level faults respectively, based on the
measurement data from an institutional building. The second law of thermodynamics is applied to
analyse the energy flow over an electric chiller, for the purpose of selecting target variables.
Benchmarking grey-box models are developed to predict target variables, and sequentially to
estimate the impacts of regressor variable faults on target variables. A fault symptom is detected
when the residual of a target variable, the difference between the measured value and the predicted
value, exceeds the corresponding threshold. Then, a backward rule-based approach is presented to
identify if (i) the fault symptom is correct (i.e., a variable has abnormal values), or (ii) the fault
symptom is incorrect (i.e., the symptom of target variable is caused by impacts generated by other
faulty variables due to the dependency between variables), or (iii) both target and regressor
variables are abnormal. The proposed model for chiller multiple-dependent faults is validated by
a case study with a cooling plant serving an institutional building, where some faults are artificially
inserted into the measurement data file. This dissertation also explored the effectiveness of transfer

learning method in the application of improving deep learning model performance.
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Chapter 1: Introduction

The concerns of rising energy usage are becoming a serious issue worldwide. The global
primary energy consumption raised to 583.90 EJ in 2020 with an average growth rate of 2.09%
per year for the past decade [1]. As an energy leader, Canada consumed 13.63 EJ (3% of the global
energy consumption) in 2020 [2]. The energy used for buildings reached to 2.79 EJ in 2018,
accounting for 28.78% of Canada’s overall energy usage [3]. The percentage for energy
consumption of buildings is greater inside Quebec, accounting for 30% of Quebec’s overall energy
consumption in 2016 [4]. According to Natural Resources Canada, 63.20% of secondary energy in
the building sector is used for space heating and cooling across Canada [3]. In the USA, 70% of
electricity is primarily used for heating, cooling, and lighting [5].

As an indispensable system, the heating, ventilation, and air conditioning (HVAC) system in
modern buildings may consume roughly 50% of a building’s energy to keep the indoor
environment within a certain level [6]. Faults of HVAC system are responsible for part of energy
waste and impacts. It is reported that building faults lead to (1) energy waste, 0.4-1.8EJ of energy
for commercial buildings in USA is squandered [7], (2) increased maintenance cost [8], and (3)
the degradation or even possible damage to equipment [9,10]. Hence, maintaining HVAC system
at optimum working status becomes one of the most important approaches to improve energy
efficiency, especially when faults could occur in HVAC systems [11]. But faults of HVAC systems
are becoming increasingly frequent. A study about building maintenance reported there were 11
fault cases every year per 1,000 m? floor area, for both chillers and boilers [12]. Worse, these faults
might occur simultaneously, interact with each other, or even induced new faults, which may be
aggravated due to the building automation system. As such, the ever-changing conditions are
making fault detection and diagnosis (FDD) a challenging endeavor, especially for the topic of
multiple faults (MFs).

As the core component, chillers account for around 40% of the service resources and around
25% of the repair costs [13]. However, the research on chiller FDD has mainly focused on single
fault (SF) problems to date. Only a small number of papers were found to study chiller MFs or
multiple-dependent faults (MDFs), which is in-sufficient and deserves more attentions. This

dissertation contributes to the study of FDD for chiller MDFs.



Chapter 2: Literature review

The literature review in this dissertation starts with the definition of common terms of FDD
(e.g., multiple dependent faults) in the field of HVAC, followed by the research on single fault.
Then, publications with the topic of multiple/simultaneous faults are reviewed to conclude on the

research gaps, to indicate the research goals.

2.1. Term definitions and a classification scheme for multiple faults

2.1.1. Definitions for fault, simultaneous fault, fault detection, and fault diagnosis

This section defines the terms used in the FDD field for HVAC systems, including fault,
simultaneous faults, fault detection, fault diagnosis, etc. The sources of these definitions are from
published work and the author.

Two definitions for a fault are found from published papers:

I. A departure from an acceptable range on an observed variable or calculated parameter
associated with the equipment [14].
II.  An abnormal condition or defect at the component, equipment, or sub-system level

which may lead to a failure [15].

Simultaneous faults were defined as two or more faults occurring at the same time, but at
different locations [16]. The key characteristic of this definition is that faults that occur
simultaneously within a system. However, it lacks the specified scope or location, for instance, a
study for FDD within an air handling unit (AHU) also treated faults as simultaneous faults [17].
Hence, this dissertation defines simultaneous faults as two or more faults occurring at the same
time with respect to a component or a system.

Collins Dictionary illustrates the word detection as the act of discovering or the fact of being
discovered [18]. Thus, the act of identifying a symptom that is/was occurring in a
system/component is termed as fault detection.

Fault diagnosis can be defined as a search for the causal origin of an observed pattern of

abnormal system behavior [14].



2.1.2. Definition for multiple faults and a classification scheme

MFs can be defined as more than two faults that happen simultaneously or sequentially, and
they can be classified as the following four categories [19]:

I.  Induced fault: a fault is induced by another fault.
II.  Independent multiple faults: different faults have effects on different variables.
III.  Masked multiple faults: some faults from fault group A can explain all symptoms from
another fault group B.
IV.  Dependent multiple faults: these are the faults that interact with each other, resulting in

mixed symptoms.

This definition [19] comes from the industry of chemical processes. It describes MFs from
the view of causal relationship between a fault source and corresponding symptoms. However, this
definition limits the number of faults to more than two faults, which might contradict to many
publications [20-22]. Besides, though masked multiple faults are treated as a separate category,
rare case in HVAC systems fall into this group.

This dissertation terms MFs as two or more faults that occur simultaneously or sequentially
with respect to a system/component. As MFs consists of, at least, two faults, the joint effect on a
target variable may act as an accumulative impact or not. The case of MFs differs to another one
if the condition that the interaction effect exists holds. Therefore, cases of MFs can be generally
classified based on whether the impact of one (or more) fault could propagate to other variable(s),
which is described as dependency relationship and used to distinguish independent faults from
dependent faults. For instance, within a system (e.g., chiller system), the case of sensor fault is
under the category of independent fault and the case of variable fault is under the category of
dependent fault, as a sensor normally does not propagate to other variables, but only shows
abnormal measurement values. An experimental study shows the case of independent fault, where
no connection was found between supply air temperature sensor fault and supply fan pressure
sensor fault [17]. Dependent faults are those in which one variable fault (abnormal value) could
propagate to other variables. Another experimental study of fault impacts of a vapor compression
rooftop unit reveals the dependent relation, where a physical artificial variable fault usually led to
abnormal values of other multiple variables [23].

Further, dependent faults can be categorized by the consequence of dependency relationship,

when the impact of one variable (called a regressor variable) was assessed on the other subsequent
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variable(s) (called the target variable) that are measured or simulated. Apart from the dependency

relation between a regressor and a target variable, the following discussion applies when the impact

between regressor variables exist.

L

II.

III.

General dependent faults: the fault on a target variable depends on the fault of a
regressor variable.

Aggravated faults: faults of multiple regressor variables have the same impact trend on
a target variable, as a result, the joint-impact on the target variable is aggravated,
regardless of relation (independent or dependent) between individual regressor
variables. For example, simultaneous outdoor air damper fault and supply air damper
fault together could aggravate the heating power fault. Therefore, the sum of two
individual faults is nearly the same with a joint impact on the heating power [17].
Author clarifies that a new fault might occur due to the aggravated effect, thus, such
cases (new fault occurs) should be classified into this category.

Counteracted faults: faults of multiple regressor variables have different impact trends
on a target variable. As a result, the joint-impact on the target variable is counteracted,
regardless the relation (independent or dependent) between individual regressor
variables. For example, condenser fouling fault of the chiller leads to the decrease of
Teaw; and valve stuck of condenser water loop rises Tcaws. If both the faults occur

simultaneously, the counteracted impact might lead to a ‘normal’ state of Tcau.

| Multiple/Simultaneous Faults |

Independent faults | | Dependent faults

|

General Aggravated Counteracted
dependent faults faults faults

Figure 2-1. Classification scheme of multiple faults.

Thus, a classification scheme is proposed to summarize the relationship between each fault

in the case of multiple simultaneous faults (MSFs), as shown in Figure 2-1.
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From this paragraph on, literature review about SF and MSFs is presented. In terms of
research models for FDD, Katipamula and Brambley [24] proposed a classification scheme (see
Figure 2-2) for building systems, which is well acknowledged in this field and used to classify the
reviewed publications in this dissertation. The reviewed articles on each topic are discussed in a

chronological order.

Diagnostic
Methods
Quantitative Qualitative Process
Model-Based Model-Based History Based
Detailed Simplified .
. . - Qualitative -
Physical Physical Rule-Based Physical-Based Black- Gray-Box
Models Models Box
Expert First-Principles Limits and @ Artificial Neural | | Other Pattern
Systems Based Alarms atistiea Networks Recognition
Technologies

Figure 2-2. The classification scheme for FDD methods [24].

2.2. Literature review for single fault

The review for SF was conducted over a period spanning twenty-four years, from 1998 to

2022, with key words of HVAC, building system, fault detection and diagnosis.

2.2.1. Quantitative model-based method

Keir and Alleyne [25] developed a detailed physical-based model to describe the vapor
compression system (VCS), and applied it with experiment data to calculate the residual. When
the residual exceeds a threshold, a fault symptom is detected.

Weimer et al. [26] proposed a thermodynamic model, derived through a spatial discretization
of heat transfer equation for a room, to evaluate indoor air temperature. After the calibration with

experiment data, case study results indicated this model was accurate and robust for FDD.



2.2.2. Qualitative model-based method

Initially, a rule-based method was presented to research the common refrigerator SF by
experiments [27]. Comparisons of data derived from experiments under fault and fault-free
conditions was used for FDD.

Fernandez et al. [28] generated rules to detect and isolate faults of sensor, controller, and
damper, based on laboratory tests of a HVAC system. The work was adopted by [29] to study
economic impacts due to faults for the VAV system and AHU. Coupled with self-correcting
controls, results indicated that the packaged HVAC system realized 15% energy savings per year
[29].

An expert rule system was presented based on the on-site survey for eighteen AHUs,
operating under fault or fault-free status, to improve the energy efficiency [30]. Case study reported
that over €104,000 per year of energy savings were achieved.

In summary, the qualitative model-based method relies on expert knowledge. Though the
qualitative model-based method is computationally effective and easy to use, its universality is
limited as each system is case-independent. A review paper indicated that the rule-based approach
accounts for 78% of all the 52 pieces of research within qualitative model-based methods after

they went through 197 publications [31].

2.2.3. Process history-based method

The literature review for SF problems finds that research utilizing the black-box model takes
most studies among the category of process history-based methods. Therefore, this section starts
with the grey-box models (a type of process history-based method) and ends with black box models.

A grey-box model is a data-driven model that couples a physical model, and then identifies
important parameters representative of certain key or aggregated physical parameters by statistical
analysis [32]. The research, using the grey-box model for FDD, includes publications focusing on
the evaporator and the condenser fouling fault for a heat pump system [33], root top unit (RTU)
equipment faults [34], and the gradual and the sudden fault of chiller and cooling tower [35], etc.
For instance, Yu et al. [34] selected input variables identified by experimental analysis and the
coefficients identified by genetic algorithm to build a grey-box for a RTU, which was applied for
the detection of RTU dirty indoor filter fault and slipping supply fan belt fault.

A black-box method is a data-driven model, derived from the mathematical relationship,



between inputs and outputs with a strict parameter tuning process [32]. Ren et al. [36] proposed a
multi-class support vector machine (SVM) model, where each of eight features was assigned with
a specific fault [37,38]. The model was applied to perform FDD to a refrigerant system with the
experiment data, and reported a high diagnostic accuracy of 98%.

Youming and Lili [39] presented a principal component analysis (PCA) model to detect
condenser fouling fault for an air-source heat pump. The data, collected from experiments under
faulty and fault-free conditions, was projected into PCA space to generate the residual for fault
detection. Results indicated that condensing fouling fault with 20% and 60% levels was identified
successfully.

FDD model developed with artificial neural network (ANN), focusing on HVAC, has received
much attention [40—42]. For instance, [42] established ANN models to detect the total electricity

consumption fault and as a diagnostic tool to isolate the fault of a subsystem.

2.2.4 Summary of literature review for single fault

To summarize, the literature review for FDD covers the application from whole-building-
level fault to component-level or sensor-level fault. Research on the whole building system attracts
the least attention (6.25%), and research on HVAC equipment take the largest proportion (46.25%)
[43]. Apart from the HVAC system, application of FDD has been expanded to improve the quality
and throughput in industrial processes [44], robot work systems [45], nuclear power plants [46],

etc.

2.3. Literature review for multiple/simultaneous faults

A single fault is usually much simpler to deal with, compared with the multiple/simultaneous
faults that occur at the same time but at different locations [16,47]. Detection and diagnosis of
multiple/simultaneous faults in HVAC systems is still a challenge, since the combination of several
faults makes it difficult to separate the individual faults. MFs and MDFs are two related but distinct
topics. Both refer to multiple faults, but differ in whether dependency among faults exists. A fault
symptom might not reveal a real fault, but could be the result of another fault in the system.

The review for multiple/simultaneous faults and MDFs was conducted over a period spanning
eighteen years, from 2004 to 2022, with key words of HVAC, building system, fault detection and

diagnosis, and multiple/simultaneous faults.



2.3.1. Quantitative model-based method

Li and James [48] presented a decoupling-based approach, between target variable and
potential source of fault, to detect and diagnose MDFs. They used an air-cooled roof top unit,
installed in a laboratory-controlled environment, as a case study. Based on the theoretical analysis
of physical processes in the system and within each equipment (e.g., compressor, condenser), and
the experimental measurements, they proposed a decoupling-based method. The decoupling-based
method simplifies the diagnosis by assuming that abnormal target variable (e.g., the discharge
refrigerant temperature 7yis) is caused exclusively by one regressor variable, while the role of all
other possible regressor variables is neglected. For instance, they concluded that the abnormal
deviation of 7y;s is only caused by the compressor valve leakage. The situation of a faulty target
variable (e.g, faulty sensor of 7uis) was not considered. This method is applied to research MFs for

packaged air conditioners [49], and air conditioners [50,51].
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Figure 2-3. Decoupling scheme of rooftop system faults [48].

Thumati et al. [52] utilized the time-discrete HVAC model [53] to investigate a simultaneous
cooling coil degradation fault and insulation leakage fault for an AHU, using measurement data.
The faults could be diagnosed if the residual between the outputs of the developed models and
system states exceeded a pre-defined threshold, which was identified by the system uncertainties
and fault magnitudes [54].

Subramaniam et al. [55] presented a physical model to estimate zone temperature to study
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VAV damper lock-in-place MFs. Cases studies were introduced to study multiple faults occurring
sequentially and simultaneously in different zones, using SIMBAD simulation toolbox [56].

Kim and Braun [57] expanded previous work on FDD methods [48-51] and developed a
MDEFDD system that decouples the impacts of individual faults to estimate multiple faults that
occur simultaneously. They developed virtual sensors for the compressor, expansion valve,
condenser, evaporator, and refrigerant charge, using measurements from a four-ton rooftop unit in
a laboratory-controlled environment, and the compressor map. When two simultaneous faults
occur (e.g., the reduction of airflow rate due to condenser fouling, and compressor valve leakage),
the impact ratio of each fault on the system performance (e.g., COP) degradation is isolated.

In summary, the physical-based model is built based on first principles and applied to topics
of multiple/simultaneous faults and MDFs. Physical models show strength to capture the transients
in a dynamic system [31]. However, the model relies on rich and deep physical knowledge. For
large and complex systems, the detailed quantitative model could be quite complex or could not

be solved.

2.3.2. Qualitative model-based method

Breuker and Braun [23] used measurements from a three-ton packaged rooftop unit along
with polynomial models to develop a statistical, rule-based classifier for faults. Such rules show
whether a particular measurement increases or decreases in response to a particular fault at steady-
state conditions. For instance, the compressor valve leakage generally increases the discharge
refrigerant temperature (7uis) from the compressor above the normal value under steady-state
condition. If measurements in a real rooftop units show the increase of Tuis, the detection rule
indicates that the fault is caused by the compressor valve leakage, whereas all other possible causes
are neglected.

Qin and Wang [20] integrated performance indexes with expert rules to study the
multiple/simultaneous faults for the VAV system terminal. Following the working sequence of
VAV system, to ensure a fault has no impact on the subsequential fault, a rule was set for a
component (e.g., coil) fault. The method was limited to the condition that independent fault holds.

Wang and Chen [58] developed expert rules to diagnose MSFs of AHU, where the residual-
based exponential weighted moving average chart was used to detect the fault.

Apart from the application above, the expert rule was also used as an assistant tool to a pre-



diagnose fault [21,59].

To summarize, the expert rule is the only method that can be found in the literature review
applied for the topic of multiple/simultaneous faults among qualitative model-based methods and
usually is combined with other models (e.g., black-box model). Though rule-based model has some
limitations, such as it requires prior expert knowledge, expert rule is interpretable, computational-

efficient, and easy to use.

2.3.3. Process history-based method

A multiple-level FDD system was built based on PCA and joint angle analysis (JAA)
algorithms to solve MFs of an AHU, under the assumption that multiple faults could not occur
simultaneously in one subsystem (e.g., supply air control loop) [21]. Another two papers integrate
PCA with fisher discriminant analysis (FDA) [59] and joint angle plot analysis [60] to diagnose
the faults in two subsystems of an AHU. Combined with cluster analysis, another application of
PCA model for MSFs was FDD for sensor faults of an AHU [61], where PCA model served as a
feature extraction tool to select features.

Han et al. [62] proposed a SVM model to detect and diagnose multiple chiller faults, based
on the conclusion of [63] where each chiller fault was assigned with a unique feature. The model
was trained with several datasets (each dataset included one fault) and tested with one dataset with
MSFs. Case study results indicated high accuracy of FDD for MSFs. As the author claimed,
however, the model was not feasible to deal with MDFs.

To summarize, as an effective dimension-reduction algorithm, PCA was widely used to
perform fault detection for MFs. But it is weak in diagnosing faults, as the orthogonal relationship
disconnects the principal components. To apply PCA model for FDD, additional algorithms are
usually required to isolate the fault source [31].

To author’s best knowledge, ANN was first used to study MFs in 2005 [17]. To estimate
dynamic system operation, recurrent neural network was established to study multiple sensor and
actuator faults for AHU and VAV box based on experiments [64]. Later in 2020, Elnour et al. [65]
used an auto-associative neural network to solve multiple sensor faults in a HVAC system. Case
study results with data from TRNSYS program indicated the proposed model successfully
diagnosed multiple-sensor faults and outperformed PCA-based model by an improvement of 40%

in terms of FDD accuracy. However, the model may fail to detect simultaneous sensor and actuator
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faults, as they lead to a very similar fault symptom.
In summary, ANN is a mathematical model and capable of dealing with complex and non-
linear systems. It is highly modulable, and convenient researchers or engineers to flexibly shape

ANN architecture based on the need.

2.3.4. Conclusion of literature review for multiple/simultaneous faults

To summarize the literature review for MSFs in the field of HVAC, Table 2-1 lists the main
information for the reviewed publications in a chronological order. Process-history based methods
(data-driven models) take the most proportion of 76.9% during the reviewed publications and
mainly focus on black-box models because of simplicity. Other methods of MDFDD includes rule-

based approaches, physical model-based approach, etc.

Table 2-1. Details of MSFs research literature review.

Method Target system Target component Data source Ref.
Expert Rule RTU Variable Laboratory data [23]
First principles RTU Variable Laboratory data [48]
First principles AC Variable Laboratory data [49]
ANN AHU Variable and sensor Laboratory data [17]
Expert rule VAV system Variable and sensor Simulation [20]
First principles AC Variable Laboratory data [51]
First principles AC Variable Laboratory data [50]
PCA and JAA VAV system Variable and sensor Simulation [21]
PCA, FDA AHU Sensor Simulation [59]
SVM and ML Chiller Variable Laboratory data [62]
First principles AHU Variable Simulation [52]
PCA and JAP VAV system Sensor Simulation [60]
Expert Rule VAV system Variable and sensor On-site data [58]
PCA and cluster analysis AHU Sensor Simulation [61]
Recurrent ANN AHU and VAV ) - uator and Sensor Laboratory data and [64]
box On-site data
Auto-associative ANN HVAC system Sensor Simulation [65]
First principles VAV system Variable Simulation [55]

First principles and

Bayesian classifier RTU Variable Laboratory data [57]

Figure 2-4 shows the findings of multiple/simultaneous faults in terms of system, target
component, and data source. Six papers focus on MSFs of the VAV system [20,21,55,58,60,64]
among the eighteen papers. By comparison, there is only one paper focusing on chiller MSFs [62].

As for data type, the research based on laboratory experiment data takes a proportion of 47%
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[17,48-51,57,62,64]. Seven papers [20,21,52,55,59,61,65] are found to utilize simulation data to
study MSFs. By comparison, the research based on on-site measurements takes the least: only two

papers used measured data [58,65], as Figure 2-4(c) shows.
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(c)
Figure 2-4. Summary for the literature review of multiple/simultaneous faults. (a) target system; (b) target
component; (c) data type.

Some publications ignore the dependency of multi-faults. For example, [21] assumed the case
when independent faults occur simultaneously in two separate loops of a variable air volume (VAV)
system: (i) the sensor of supply air temperature control loop, and (ii) the sensor of outdoor air
control loop. Reference [66] proposed a set of 26 rules for the isolation of multiple single faults of

air handling units. For instance, faults of mixed air temperature, chilled water circulating pump,
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and cooling coil valve controller can be detected. However, the interactions between the individual
faults are not analyzed in this work.

Only a small number of publications deal with methods for MDFs in HVAC systems
[23,50,51,57,67]. Based on the literature review, one can conclude that methods presented by
[23,50,51,57,67] are forward methods, which detect the impact of some faults (e.g., compressor
valve leakage) on the next sensors or equipment performance (e.g., chiller COP). These methods
could be used as reference rules for the reverse detection of single faults. However, such rules can
be applied only to an HVAC equipment used in the laboratory-controlled environment. The level
of detailed measurements of all variables used in laboratory work is not feasible for an HVAC
equipment in existing buildings. Additional research is needed for the generalization of
decoupling-based method to HVAC systems with limited information.

The literature review concludes the research on chiller multiple dependent faults using
measurement data is lacking. The research on multiple/simultaneous faults is still in its infancy,
due to the natural nonlinear property of multiple faults, which makes it challenging to be solved

and deserves more attention [47,68].

2.4. Literature review for chiller grey-box models

Table 2-1 indicates that the FDD research on multiple/simultaneous faults utilizing grey-box
models is rare. However, as a type of model derived from physical principles, grey-box models
have several advantages: (1) robust [24], (2) require less data and are fast to train [31], (3)
physically traceable parameters [32], and (4) the grey-box model extrapolates well to operating
conditions outside the range of training dataset. The critical literature review in this section
presents existing chiller grey-box models, aiming to explore potential models for the application
of chiller MDFDD. This review investigates publications spanning from 1980 to 2021 with key
words of chiller, fault detection and diagnosis, and grey-box model. Generally, the existing grey-
box models can be classified into two groups: physical-based models (Table 2-2), and correlation-

based models (Table 2-3).

Table 2-2. Physical-based grey-box models for chillers, extracted from literature

review spanning from 1980 to 2021.
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Equation

Parameter

Equation rder . . . Data I Ref.
Number quatio Orde identification souree ¢
1 Tcdwr 1 Tcdwr Linear Laboratory
2-1 ——=-1+—+ ag+ a1 Tequr + @ 1 .
(2-1) Cop Tonwt  Qew (@ + @1 Ty + 22 Tchwl) regression data [69]
1 Tcdwr 1 Tcdwr Laboratory
2-2 —==—1+—+——(by+b +b 1 NA
( ) cop Tchwl Qev ( 0 ! Tchwl) g data [70]
1 Teawr Teawr Regression Laboratory
2-3 ——=-1+—+ (—c + 1 Teawr — € ) 1 .
( ) cop Tchwr Qev 0 1edwr g Tchwr analySIS data [7 1 ]
( Y = X,AS; + X;R
= Tenwr S Linear Laborat
(2-4) Y Tedwr (1 + COP) 1 1 N . aboratory [72]
T 1 regression data
X, = chwr X, = Qev (1 +_)
1 Qev "% Teawr cop

Table 2-3. Correlation-based grey-box models for chiller, extracted from literature

review spanning from 1980 to 2021.

Equation . Parameter Data
Equation Order . . . Ref.
Number q identification source
COP = dO + dl Qev + dz Tchwr + d3Tcdwr + d4Q§u + dSTCZhwr
(2_5) + déTchwr + d7QeuTchwr + dSQevTcdwr 2 NA NA [73]
+ dQTchercdwr
=t e, A+ e,A> + e;B +e,B? + e, AB NA
(2-6) des _ 2 Least square [74]
A=PLR B = Tcdwl Tchwl
l ’ Tcdwl,des - Tchwl,des
@7 % = fo + fiPLR + foPLR* + fuTequr + fiT 200r + 4 Regression Manufact [7 5]
fsPLRT 4 + fePLR?T 4, + fPLRT?, + fePLR?TZ,,, analysis urer data
On-site
(2-8) COP = g1Qep + GoTenwr + I3 Teawr 1 Least square data [76]
EIR = 2.208266 + 0.009742T,,,,, — 5.14097PLR On-site
29 + 5.428211PLR? — 1.78486PLR? 3 NA data [77]
PLR = ho + hyTenut + haTu + hsTeawr + RaTopur + RsTens
(2-10) { EIR =iy + i, PLR + i, PLR? 2 NA NA [78]
E = jiPLR + j;Teqawi + JsToa
1
COP = ky——+ kyToqui + k3T, On-site
(2-11) tpLR TR cawt T 3 toa 1,2 Least square d [79]
E =1y + L,PLR + l,PLR? + Ly Toq + T2 + IsT)q ata
COP = m PLR + myPLR?* + m3T gy + MyT2 + msT,g
(2-12) COP = 1.1760 + 1.2843 X ATy, — 0.7216AT,q,, j  Recursive On-site [80]
least-squares data

2.4.1. Physical-based grey-box models

Gordon and Ng [69] built a thermodynamic model to evaluate the performance of the

reciprocating chiller, as shown in Equation 2-1 (Table 2-2). Tcawr and Tenw are in K, and Qe is in

kW. Compared with data from eighty reciprocating chillers (including 897 experimental data

samples and data from two manufacturers), the model achieved the maximum RMSE= 0.0066. The

model was later extended to centrifugal chillers, and it turned out to work well [81].

Gordon et al. [70] proposed another thermodynamic model to describe the chiller operation

based on first principles, shown in Equation 2-2 (Table 2-2). Teawr and Tenws are in K, and Qe 1s in
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kW. The heat energy balance between the refrigerant loop and the water loop, heat leakage, and
entropy produced in VCS was taken into consideration. This model could estimate the chiller
performance over a wide range of operating conditions and is the source of many studies, such as
a study focusing on chiller efficiency versus ambient wet bulb temperature [82], regression models
development [71,72], etc. Besides, it serves as the main model in many research topics, including
the control of ground source heat pump [83], thermal energy storage [84], optimal sequencing
control for chiller [85], etc.

Lee [71] investigated the chiller energy and entropy balance relation [86], and proposed a
grey-box model to estimate chiller COP with Teawr, Tenwr, and Qey, as shown in Equation 2-3 (Table
2-2). Teawr and Tepwr are in °C, and Q.y is in kW. The model was validated by the experiment data
and achieved a high correlation with R° = 98.87%.

Jayaprakash and Kim [72] introduced a grey-box model-based approach to study the fault of
a centrifugal chiller, as shown in Equation 2-4 (Table 2-2). Tcawr and Tenwr are in K, and Qe is in
kW. ASt (kW/K) and R (K/kW) are coefficients representing expansion valve and compressor, and
heat exchangers, respectively. To apply this model, AS7 (kW/K) and R (K/kW) need to be identified
first.

2.4.2. Correlation-based grey-box models

The first correlation-based model, to the author's knowledge, came from the DOE-2 reference
manual in 1980 [73], which is listed in Equation 2-5 (Table 2-3). Tcawr and Temwr are in K, and Qey
is in kW. If this model is used for fault diagnosis, additional target variables, rather than COP, are
required, as COP is only an index representing system-level performance.

Braun [74] developed a correlation-based model to predict £, as shown in Equation 2-6 (Table
2-3). Teawt, Tenwt, Teawl,des, and Tenwides are in °F, and E is in kW. The coefficients of the model could
be identified by the least square algorithm.

Yik and Lam [75] presented a bi-quadratic equation to predict the normalized power input to
a chiller, as shown in Equation 2-7 (Table 2-3). E is in kW, and Tcawr is in °C. The utilization of
normalized variables for £ and Q.. enlarges E prediction range regardless of the chiller capacity.

Swider [76] proposed a linear regression model, as shown in Equation 2-8 (Table 2-3). Here,
Tenwr and Teawr are in K, and Q. is in kW. Experimental measurements of two vapor compression

chillers were used for model validation, along with another three COP models: DOE-2 regression
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model [73], bi-quadratic regression model [75], and physical-based model [81]. The results
indicated that DOE-2 regression model Equation 2-5 (Table 2-3) was the most accurate model with
R?>=99.11% and RMSE = 0.0806.

Chan [77] proposed a cubic regression model with two input variables (PLR and Tcawr) to
predict the chiller efficiency, as shown in Equation 2-9 (Table 2-3). EIR is in kW/ton and Tcawr 18
in °C.

The EnergyPlus program provided a bi-quadratic regression model [78] to predict the PLR
using Tenw and Teawr, as listed in Equation 2-10 (Table 2-3). Tepw and Teawr 1s in °C. The model was
validated by Shrestha and Maxwell [87] using the manufacture's data for an air-cooled chiller,
which covered PLR within a range of 25% to 100%. The results reported a high R? value of 0.9962.

Monfet and Zmeureanu [79] proposed correlation-based models to predict £ and COP of
water-cooled electric chillers, as listed in Equation 2-11 (Table 2-3). Tcaws and 7o, are in °C, E and
Qev are in kW. The work used the measurements from building automation system (BAS) to train
and test models. The model is capable of COP-oriented or E-oriented fault detection at system-
level.

Zhao et al. [80] developed an online predictive model to predict the global COP of a cooling
plant, as listed in Equation 2-11 (Table 2-3). AT and ATcaw are in °C. The model was built,
starting from the energy balance equation, and used Pearson correlation coefficients to eliminate
the redundant input variables. The coefticients are identified by the recursive least-square approach

with measurement data recorded every 5 minutes.

2.4.3. Summary for chiller grey-box literature review

In summary, physically-based grey-box models [69-72] are derived from first principles,
while correlation-based grey-box models [73—-80] usually select input variables related to a
physical process. These models are proposed to predict chiller system-level performance (e.g.,
COP) [69-80], and validated by the data either from experiments or manufactures. Such models
derived from experiments or manufacturer’s data can be very powerful to predict the behavior of
a chiller, but they might not be practical when it is desired to apply them in real buildings, where
BAS only cover very limited information for monitoring or control purpose [88]. Furthermore, the
information of design conditions with respect to a HVAC system or a component (e.g., chiller)

might not always be available for existing buildings. Thus, new grey-box models that are based on
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the research purpose should be developed, using only the parameters available in the databases

collected from BAS.

2.5. Literature review for artificial faults

The literature review was conducted with the scope of how to insert artificial faults in the
field of HVAC systems. The literature survey covers thirty-six publications covering chiller, AHU,
VCS (including RTU, HP and AC) and HVAC systems. The number of publications with respect

to each research target is listed in Table 2-4.

Table 2-4. Number of publications in the literature review for different systems,

based on both measurements and simulation.

System Chiller AHU HVAC system VCS Summary
Number of 12 5 15 6 36
publications

2.5.1 Fault insertion methods

The literature review finds HVAC systems attract the most research with eighteen
publications [17,20,21,52,55,60,64,65,68,89-94], followed by chillers with ten publications
[22,72,95-104], six papers for VCS [33,39,48,51,57,67], and four papers for AHU [59,66,104—
106]. It was observed that experimental data from ASHRAE project 1043-RP [107] is the source
of other seven papers [22,72,95-99] for the chiller fault studies. A few examples of fault insertion

approaches are shown in Table 2-5, where NM means not mentioned in the publication.

Table 2-5. Approaches to generate faults in the reviewed publications.

System Data source Ways to generate faults Ref.
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Laboratory
experiment

Measurement signals are replaced with errors for supply
flow rate and supply fan.

Field measurement

Mechanically tighten up the actuator mechanism of a VAV
box.

Manually add bias to measurement data for VAV flow rate.

HVtAC Fsl;};}jlsa Egn Integrate a fault generator into simulation for VAV box. [60]
system
g T.RNSYS Integrate a fault generator in the HVAC simulator. [91]
simulation
Field measurement  Add bias to sensor measurements [93]
T.RNSYS Insert fault into the normal operation data [65]
simulation
Experiment Insert fault into the normal measurement data [64]
Field measurement  Add bias to sensor measurements [108]
Field measurement  Replace sensor reading in SQL server artificially [66]
TRNSYS Apply a sensor reading bias generator [61]
AHU simulation
Field measurement Inj ect a constant voltage to a damper driver to keep its [104]
position unchanged
DeST simulation NM [103]
Synthetic data and Add bias to the measurements data [109]
measurement data
1. Reduce pressure head of chilled water pump
Chiller  Laboratory 2. Remove refrigerant [107]
experiment 3. Block tubes in the condenser
4. Add nitrogen to the refrigerant
DeST simulation Reduced CT fan speed in DeST program [103]
Measurement data  Add bias error via software to chiller control panel [104]

Note*: NA means not available.

2.5.2 Fault levels

The inserted faults levels for chiller studies, found in the literature review, are summarized in

minimum amplitude with 1% is found for non-condensable gas fault [72,95,97,99].

Table 2-6. The maximum amplitude of fault is 68% for excess oil fault [72,97,99], while the

As for sensor faults studies, HVAC system attracts most attentions [17,20,21,60,64,65,91—

room temperature in °C, Veny 1s the chilled water flow rate in L/s.
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94]. In addition, chiller sensor faults [103,109] and AHU sensor faults [61] are also noticed in the
literature review. The levels of artificial sensor faults are listed in Table 2-7. Here, V, is the supply
air flow rate in m’/s, Vo, is the outdoor air flow rate in m’/s, V;4 is the return air flow rate in m’/s,
Tenws 1s the chilled water supply temperature in °C, Tenwr 1s the chilled water return temperature

in °C, T,q is the outdoor air temperature in °C, Ty, is the supply air temperature in °C, Troom is the



Table 2-6. Common chiller variable faults in the literature review.

Chiller variable faults Fault level

Reduced chilled water flow rate (Venw) Reduction by 10% to 40% [22,95-97,99]
Reduced condenser water flow rate (Veaw) Reduction by 10% to 40% [22,72,95-99]
Refrigerant undercharge Reduction by 10% to 40% [22,95,97-99]
Refrigerant overcharge Addition of 10% to 40% [22,72,95,97,99]
Excess oil Addition of 14% to 68% [72,97,99]
Condenser fouling Addition of 12% to 45% [22,72,95,97,99]
Non-condensable gas Addition of 1% to 5.7% [72,95,97,99]
Reduced air follow rate for CT Reduction by 10% [103]

Table 2-7. Artificial sensor faults insertion in the literature review.

Faults
System Sensor Bias fault Drifting fault Corpplete
failure
it 0 700
V., Addition of +10% [17], reduced by -20% [20]
[21]
Via Reduced by -20% [60]
Toins Addition of 7% [21], 1°C[91], 1°C [93] 0.3°C/h [65]
Addition of 7% [21], 1°C[91], with a range
HVAC 71, . o o 0.3°C/h [65
system " of (1°C, 30°C) [65], reduced by -1°C [93] [65]
Toa Addition with a range of (1°C, 30°C) [65] 0.3°C/h [65]
Addition of 8% [21,60], and 2.8°C [64], o
T reduced by -8% [60], and -1.5°C [91] -0.004°C/min [91] o1]
Addition with a range of (1%, 20%) [66], o
Troom Addition with a range of (1°C, 30°C) [65] 0.3°C/h [65] [20]
Via Reduced by 20% [60], and 10%][61] 0.004(kg/s)/min [60]
Voa Addition of 20% [59,60] and 25% [59] [59,60]
T Addition 5% [66] [59,66]
AHU
Tetws Addition of 7.1%[61]
Tehwr Addition of 7% [60], 4.2% [61]
Venw Reduced by -10%][61]
Teawr 1°C per month [103]
Chiller Random bias with a range of (-0.54°C,

Tt g1oC)

The complete failure means sensor reading keeps constant in Table 2-7. The maximum
injected bias faults for 7ciws and Tenwr sensor are 30 °C for cooling coil of a HVAC system [65].
Sun et, al. [103] investigated the gradual degradation fault of chiller capacity in an 1800-hour

period, and a drifting fault of 1°C per month for Tcaw- sensor.
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Literature review finds diverse approaches to inserting faults with no standard, guideline, or
general rule for how/where to inject a fault. Injecting a fault in the reviewed publications is case-

independent.

2.6. Conclusions from literature review

Literature review finds most studies have used experimental data or synthetic data, and
applied different machine learning models to detect and diagnose faults in the field of HVAC.
Three gaps are found including:

1. Lack of research for chiller FDD based on measurement data from a real building.

2. Lack of research for chiller MSFs study. As the core component of the HVAC system,
chiller accounted for 42% of service resources and 26% repair cost [110], which deserves
more attentions. Though dependent relationships exist in most HVAC system which
increases the complexity of faults and their respective symptoms [111], there are no
publications that focus directly on chiller MDFs.

3. Lack of grey-box models to predict the behavior of chiller components in a real building.
Existing grey-box models of chiller, derived from laboratory experiments, are powerful
to predict target variables, since laboratory experiments can provide very strict conditions
and enough information required by a specific research project. But they are not practical
when it is desired to apply them in real buildings, where the instrumentation is the

minimum needed to monitor and control the building process [88].

2.7. Dissertation scope

First, we clarify the difference between sensor fault and variable fault. The fault of a sensor
normally does not propagate to other variables, but only shows abnormal measurement values. The
variable fault (abnormal value) could propagate to other variables.

This dissertation focuses on detecting and diagnosing dependent variable faults of a water-
cooled chiller, using a grey-box model-based approach with measurements from a real building.
The study of independent sensor fault(s) is beyond the scope of this dissertation. Grey-box models
are time-efficient (fast to be trained) and resource-efficient. Such merits are beneficial for

implementation, therefore, can easily be integrated with BAS to provide automated/online FDD.
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FDD can be coupled with many different approaches as it underpins many applications for
the decision/strategy-making of operators, energy-efficient improvements, system maintenance
plan etc. Furthermore, there are many additional task/applications which could incorporate this

work; however, they are beyond the scope of this dissertation.
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Chapter 3: Evidence-based assessment of energy performance of

two large centrifugal chillers over nine cooling seasons

The evaluation of energy performance changes of large centrifugal chillers over long-term
periods is seldom presented in the literature. This chapter assesses the variation of energy
performance over nine years of two identical (at design conditions) vapor-compression water-
cooled large capacity centrifugal chillers. Both chillers serve the cooling system of a university
campus, where measurements are recorded at 15-min time intervals and data was extracted over a
period from 2009 to 2017 [112]. The measurement uncertainty estimation of direct and derived
variables, extracted form BAS during the summer of 2016, are presented as an example. First, the
hypothesis that weekly values of coefficient of performance (COP) of these large chillers does not
change significantly over the summer of 2016 is verified. Second, the t-test also verifies the
hypothesis of no significant change of seasonal COP values from 2009 to 2017. Third, a linear
correlation-based model shows a variation of COP values by 1-2% per year between 2009 and

2017. The results show that the seasonal variation of COP is not statistically significant.

3.1. Introduction of long-term performance analysis of large centrifugal chillers

Vapor-compression electric centrifugal chillers, installed in commercial and institutional
buildings, have an important contribution to the whole building energy use. Chillers of capacities
of 264 to 2640 kW (75- to 750-ton refrigeration) have a median service life of more than 25 years
[113]. They are usually designed for a lifetime of 40 years or more [114], and they can exceed this
lifetime if operations, maintenance, service water, and operating environment are properly
managed and controlled. For comparison, window-type air conditioners have a lifetime of 10 years,
residential single or split package 15 years, residential and commercial air-to-air heat pumps 15
years, and commercial water-to-air heat pumps have more than 24 years [113].

The long-term performance of such large capacity chillers used in heating, ventilation, and
air-conditioning (HVAC) systems plays a major role on the energy costs over the equipment
lifetime. Long-term energy performance could change from the design performance due to the
degradation with time, faults, and failures. Relevant information about degradation with time can

help for (1) setting preventive maintenance plans, (ii) proper sizing of required cooling capacity at
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the design stage, and (iii) estimation of lifetime energy consumption and cost. However, such
information is rarely available as it depends on many factors such as chiller type and cooling

capacity, manufacturer, operation and maintenance conditions.

3.2. Information of the cooling plant and maintenance strategy

3.2.1. Cooling plant information

This cooling plant is composed of two water-cooling centrifugal chillers at design conditions
and serves, with chilled and hot water, several AHUs and fan coils installed in building of
Concordia Loyola Campus, Montreal, Canada. The two centrifugal chillers, EarthWise™
CenTraVacTM Water Chillers (TRANE), Model CVHF910, use low-pressure R-123 refrigerant,
and are identical at design conditions (Table 3-1) [115]. They are named as CH#1 and CH#2 in
this dissertation, and cooled down by two cross flow cooling towers (B.A.C.), CT-1 and CT-2,
having a capacity of 4540 kW (1290 tons) each, at design conditions.

Table 3-1. Design conditions.

Description of variable Symbol of variable Value Unit
Evap.o.rator cooling load at design Oondes 3.165 W
condition

Chiller COP at design condition COPges 5.76 NA
Electric power input to chiller at Euee 549 5 o

design condition

Chilled water leaving temperature at
design condition

Chl}led water return temperature at Tomondes 13.3 °C
design condition
Condenser-water leaving

T chwl,des 5.6 °C

temperature at design condition Tedui des 350 ¢
Condc?nser-wa‘Fe'r return temperature Toondes 29.4 °C
at design condition

Cool%n'g tower load at design Ot des 4,540 o
condition

Volumetric ﬂow rate.O.f chilled Vmdes 76 In
water at design condition

Volumetric flow rate of condenser- Vdides 1315 In

water at design condition
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The cooling plant operates in three different scenarios: (1) Scenario 1: only chiller 1 works
(CH#1); (2) Scenario 2: only Chiller 2 works (CH#2); and (3) Scenario 3: both CH#1 and CH#2
work simultaneously (CH#1+CH#2). When the first chiller starts, the corresponding chilled-water
and condenser-water pumps start too. The fans of the cooling towers start when the condenser
pumps start. The second chiller starts only if the first chiller cannot meet the chilled-water demand,
and therefore it cannot keep the set point of the supply chilled water temperature. Chiller CH#1 or
CH#2 starts first by rotation, in order to balance the number of operating hours over the life span
for each chiller.

Figure 3-1 presents a schematic of the cooling plant and main measurements, where the blue
line represents the condenser-water loop, red line represents the refrigerant loop, and green line
represents the chilled-water loop. BAS records the cooling plant operation every 15 minutes, and
the raw measurements are assigned into three groups based on the three-scenario status. The
measured variables from BAS are listed in Table 3-2. Each of the three data groups is further
divided into two datasets, i.e., working days (WD) and weekend/holidays (WH).

CT#1 aAA cT#2| &~ A 7

Condenser

7:1;’.11‘

] Py Ty 1 E, E,
X  cum O ol
p, T,
Evaporator |— Evaporator
: Venn
T s ot

Figure 3-1. Schematic of the cooling plant.
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Table 3-2. Available variables from measurements for the cooling plant in BAS.

Vi;;lgle Description of points Symbol Unit  Reliability

Relatively humidity of outdoor air RHoq % v
Outdoor air temperature Tou °C v
Chilled water return temperature Tenwr °C v
Chilled water leaving temperature *Tehwi °C X
Condenser-water return temperature Teawr °C 4

Directly Condenser-water leaving temperatures *Teaw °C 4

measured  Chilled water volumetric flow rate Venw gpm 4

variables —~pqwer input to chiller *E kW v

from BAS Saturated refrigerant temperature in T °C v
evaporator ev
Refrigerant pressure in evaporator P, kPa v
Saturated refrigerant temperature in
condenser ¢ i Tea < Y
Refrigerant pressure in condenser Pea kPa v
Refrigerant temperature at compressor o v
suction Tsue ¢
Rpfngerant temperature at compressor T °C v
discharge

Delrived Refrigerant liquid line temperature Tu °C v

variables e fficient of performance *COP ~ v
Refrigerant mass flow rate *Mevrefr kg/s X
Delta-T of chilled water *ATehw °C v
Delta-T of condenser water *ATcaw °C v

3.2.2. Maintenance strategy
Regular maintenance of chillers is composed of annual maintenance and 5-year verifications.
Annual maintenance, which is performed during the fall, is composed of the following tasks.
1. When the system is shut down:
a. Cleaning of condenser tubes.
b. Testing for refrigerant leaks in compliance with the provincial regulation on
halocarbons.
c. Revision and cleaning of primary and secondary electric connections of chillers.
2. When the system is turned on:

a. Spectrographic oil analysis.
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b. Measurement of pressure loss in the evaporator and condenser for the validation of
water flow with the manufacturer’s design specifications.
Measurement of operation pressure of evaporator, and the evaporator approach.
d. Measurement of electric current for the validation with the manufacturer’s design
specifications.
Measurement of oil pressure.
Test of vibration.

Measurement of temperature of major electric components.

= @ oo

Verification of refrigerant and oil levels.

— .

Verification of warning and alarm signals from the controller.
3. Every five years, the following tasks are undertaken.
a. Cleaning of condenser and evaporator tubes.

b. Eddy current (Foucault) testing of all tubes of condenser and evaporator.

3.3. Analysis of energy performance of two chillers during the summer of 2016

3.3.1. Uncertainty analysis of measurements
The uncertainty of a measured variable (Unx) is consisted of bias uncertainty (BU») and

random uncertainty (RUy) [116,117], as described by Equation 3-1:

U, = /BUZ, + RUZ, (3-1)

Where BU,, is the bias uncertainty, and RU,, is the random uncertainty. The author clarifies
that for a measured variable without the information of bias error, the uncertainty only contains
the random uncertainty.

The bias uncertainty of direct variables of Terwi, Tehwr, and Ve are:

BUTCth = TCth X 0005 + 03 (3-2)

BUr,, . = Tomyr X 0.005 + 0.3 (3-3)
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BUy._, = = Vopy X 0.05 (3-4)

The random uncertainty, due to random fluctuations in measurements of a variable x, is:

RU, == (3-5)

Where t-statistic value = 1.96, for a 95% confident level, for two-sided interval, and S is the
standard deviation.

As for the derived variables, they are affected by the errors propagated from directly measured
variables. An example for the measurement uncertainty of Qeyciw (Ugev,ciw) 18 presented here to
show the error propagation. Based on the calculation of Qey,ciw (Equation 3-8) with multiplication
algorithm, Qeycnw 1s derived based on three direct measurements, Tepwi, Temwr, and Veny. Hence,
Ugev,chw 18 calculated by Equation 3-6, and such a method is also applied for the derived variable

with division algorithm:

Qev chw Tchwr Tchw Vchw

Qevchw \/( Tchwr 2 Tchwiy2 (UVchW)Z (3_6)

3.3.2 Measurement data of the summer of 2016

Before comparing the energy performance of those two chillers over nine seasons of operation
(section 3.4), the author opted for the discussion of results from measurements recorded at 15 min
time intervals during the summer of 2016. That summer had the greatest cooling load among the
last three years of data collected. This section presents the uncertainty of direct and derived
measurements, and discusses some relationships of interest extracted from measurements: (a)
change of weekly COP values; (b) variation of COP versus cooling load Qe.; (c) variation of COP
versus outdoor air temperature 7o.; and (d) variation of power input ratio to compressor versus
part load ratio at evaporator.

Dataset extracted from BAS contains measurements of 14 weeks from May 30, 2016 until

August 28, 2016, recorded at 15 min time intervals. There are three operation scenarios: (1) only
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chiller CH#1 is on, (2) only chiller CH#2 is on, and (3) both chillers CH#1 and CH#2 are on. Only
measurements recorded during chillers operations were extracted from BAS and used for the long-
term chiller operational analysis. The authors used BAS trend data collected over nine years. The
issue of periodic recalibration of thousands of sensors on a large campus is beyond the authors’
control.

The cooling load of evaporator(s) is calculated for the three scenarios using the measurements
at the exit of central plant. The chilled water volumetric flow rate (Venw) is the summation of
chilled water flow rates from both chillers. The mean value of Veny is 88 L/s when only one chiller
is on, and 156 L/s when both chillers are on. The average difference between the measurements
of chilled water supply temperature at the exit of central plant and corresponding values measured
at chiller CH#1 is negligible, while at chiller #2 is about 0.5°C. The COP value is calculated
separately for CH#1 and CH#2 respectively, for scenarios (1) and (2). The average COP of both
chillers working simultaneously is calculated for scenario (3).

The entire dataset is divided into three different datasets according to the three scenarios.
Chiller CH#1 worked 51.3% of the total operation time, chiller CH#2 worked 19.8% of time, and
both chillers CH#1 and CH#2 worked together 28.9% of time.

The cooling plant serves with chilled and hot water several air-handling units and fan coils
installed in buildings of this campus. This thesis presents the COP of chillers. The analysis of
COP of whole system that should take into account the electric power input to supply and return
fans, circulating pumps, and controls, is beyond the scope of this dissertation. The data processing
follows the approaches presented in Chapter 5.

Cooling load at evaporator Qey,ciw, in kW, is calculated at each time step (Equation 3-8):

Qev,chw = CpVChW(TChwr - Tchwl) (3-8)

Where Qe cnwis the evaporator cooling load on chilled water side in kW, ¢ is water heat capacity
in kJ/(kg-°C), p is water density in kg/m’, Venw is the volumetric flow rate of chilled water in m*/s,
Tenwr 1s the chilled water return temperature in °C, Tenwr 1s the chilled water leaving temperature
in °C,

The mean value of COP is calculated over the selected time interval (e.g. day, week, season)

with Equation 3-9:
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COP = %Z" Qevi (3-9)

i=17p,

3.3.3. Change of weekly COP values during the summer 2016
This section presents the use of classical method of statistical inference, in the area of tests of
hypotheses [118] to verify if the weekly COP values of scenarios 1 and 3 change over the summer
of 2016. Section 4 applies the method to seasonal COP values over nine years. Table 3-3 presents
as an example the weekly values (mean + uncertainty) from the simultaneous operation of chillers
CH#1 and CH#2 (scenario 3) over the summer of 2016. For completeness of data presentation,
Table B1 of Appendix B presents the measurements from the operation of chiller CH#1 (scenario
1). Measurements from the operation of chiller CH#2 in the summer of 2016 are not presented

because only four weeks of data are available.

Table 3-3. Weakly values (mean £ uncertainty) of direct and derived measurements
from the simultaneous operation of chillers CH#1 and CH#2 (scenario 3) over 13

weeks, from May 30 to August 28, 2016.

Week T (°C) Terr (°C) Veme (L/s) E (kw) Qev,chw (kW) COP (-)
1 6.88+0.33  11.70+0.39  156.48+7.86  557.87+32.31  3144.82+243.98  5.64+0.55
4 7.1840.37  12.33+£0.47 156.06£7.90  607.79+43.93  3351.92+273.54  5.5140.60
5 6.58+0.33  12.00+0.40 155.97+£7.85 614.47+£36.78  3525.63+277.72  5.74+0.57
6 6.58+0.33  11.84+0.39  156.39+£7.85  602.15+34.55  3422.99+268.99  5.68+0.55
7 6.71+£0.34  12.69+£0.40 157.40+£7.89  696.11£39.92  3916.21+304.51  5.63+0.54
8 6.58+0.33  11.94+0.39  155.79+£7.81 617.12+£35.88  3479.03+272.84  5.64+0.55
9 6.58+0.33  11.86+0.37 156.18+7.83  605.84+32.79  3436.13+£267.86  5.67+0.54
10 6.58+0.33  11.76+0.37  155.16+£7.77 595.67+£32.04  3351.33+£261.21  5.63+0.53
11 6.57£0.33  12.40+0.39  157.37+£7.87 674.86+38.01  3812.01+296.75  5.65+0.54
12 6.58+0.33  11.43+0.37 155.60+£7.80  566.23+30.95  3145.414+246.60  5.56+0.53
13 6.584+0.33  12.244+0.38  157.74+£7.90  649.36+35.45  3708.80+288.05  5.714+0.54

The method is first presented for the operation under scenario 3 (Table 3-3). Two populations
of weekly COP values, calculated from 15 min time intervals data, are considered. The first
population is generated by assuming that the COP value (COPwk]I) of first week of data set does
not change over the following weeks (from week 2 to 13). The second population is composed of
derived weekly COP values of weeks j=2 to 13 (Table 3-3). Since the measurements came from

the same chiller, the two populations are interdependent or paired. In this case, the t-test applies
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for testing the mean of differences of these two paired-populations, rather than testing the
differences of means as in the case of independent populations [117].

The null hypothesis Hy states that the weakly COP values do not change over time:

Ho: dypogn = 0 (3-10)

where dnean 1s the mean of the individual differences dj between the weekly COP values of
two populations; and dj = COPwkl — COPwkj, with j=2 to 13.
The alternative hypothesis H; states that weekly COP values change with time:

Hi: dypogn # 0 (3-11)

The t-statistic is calculated as follows (Equation 3-12):

t= dmean/(s/\/n) (3-12)

where dmean and s are random variables that represent the mean and standard deviations of dj
values; and # is the number of paired COP values [117].

The critical region of the Student’s t-distribution for the two-tailed test is defined as: ¢ >
tcr,a/2n-1, and t < - fcr, a2, n-1. The critical value tcr is selected by using the significance level a/2
=0.025 (2.5% probability of committing a Type I error, or rejection of null hypothesis when it is
true); and number of degrees of freedom d.f. = n - 1. The null hypothesis is rejected if ¢ is in the

critical region of the Student’s t-distribution.

Table 3-4. Results of t-test for comparison of weekly COP values during the

summer 2016.

Critical region

D mean J
ataset d 5 d/ ! 1> tcraan-1 L <-tCRa/2n-1
Scenario 1 CH#1 -0.112 0.059 8 -0.635 2.306 -2.306
Scenario 3 CH#1+CH#2 -0.002 0.067 9 -0.10 2.262 -2.262

The results from scenarios 1 and 3 (Table 3-4) show that the null hypothesis is true because
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t-statistic is not in the critical region. In conclusion, there is not significant statistical evidence to
say that the weekly COP values have changed from the COP value of the first week of available

data during the summer of 2016, for the operation under scenarios 1 and 3.

3.3.4. COP versus cooling load Qev,chw at evaporator using 15 min time intervals data

Since the t-test concluded that the weekly COP values of chillers have not changed during
the summer of 2016, Section 3.4 uses the whole data set of 15 min time intervals of summer 2016
for the subsequent analysis.

Under normal operation conditions, COP increases with the rise of Part Load Ratio
(PLR=Qev,chw/Ques), and has the maximum value at PLR=1.0. As shown by from the measurements
of a cooling plant with four chillers rated at 1758 kW each, the highest degree of correlation was
obtained between the chiller COP and PLR, and less degree of correlation with other operation
variables [119].

The measurements of chillers of this study show that the maximum COP values of CH#1 and
CH#2 are recorded in the flat region of cooling load curves between 2,000 kW and 2,500 kW,
which corresponds to PLR between 0.63 and 0.79 (Figure 3-2.a), and decreases after. When both
chillers are used simultaneously, their maximum COP corresponds to 3,000 kW to 5,000 kW
cooling load Qeyciw, or PLR between 0.47 and 0.79, and slightly decreases after. Other operation
variables, not measured in this study, and the uncertainty of measurements could be the reason of
such a variation of COP versus Qey,chw-

The results of other studies support the results of this paper. The measurements by [120] of a
cooling plant, composed of five air-cooled chillers of rated cooling capacity of 1,400 kW each,
revealed also that the majority of COP values were significantly below the manufacturer’s curve
in the PLR range above 0.5. The reduction in chilled water flow rate from the rated value could
be the main reason for the degradation in chiller performance. In another study, [121] showed that
the Part Load Factor (PLF=COP/COPu.:s) of a centrifugal chiller has the maximum value in an
almost flat region of PLR between 0.6 and 0.9.

Chillers CH#1 and CH#2 reached maximum cooling load of about 3,000 kW each or PLR =
0.95 (Figure 3-2.a and 3-2.b). When both chillers work in parallel, they do not reach the maximum
capacity; they work at PLR of about 0.87 each.
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Figure 3-2. Variation of COP versus chiller cooling load (Qe) using 15 min time intervals data recorded

during the summer of 2016. (a) Chiller CH#1, (b) Chiller CH#2, (c) Chillers CH#1+CH#2.
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Let us take some data from the operation of chiller CH#1 alone (scenario 1) on two operation
periods of the summer 2016 to explain the variance presented in Figure 3-2.a (same comments
apply to Figure 3-2.b and 3-2.c). Data extracted correspond to almost constant PLR = 0.51+0.01
(Table 3-5).

1. Direct measured variables (E, Teiw, Tenwr) have variations around the mean values, which can
be observed in Table 3-5, and Figure 3-3 where E/Eq. is plotted against Qey, ciw/Qdes.

2. The uncertainties of direct measurements propagate through the corresponding defining
formulas of the derived measurements (Qev,chw, PLR, COP) (Appendix A). To simplify the
explanation, Table 3-5 shows only the mean and standard deviation of each variable. At
constant PLR value, the derived measurements show variation about the mean value.

3. As an example, by considering the COP uncertainty of 0.57 (Table 3-3) the maximum COP
value calculated for July 4-10, 2016 is 6.54, which is within the range of Figure 3-2.a.

Table 3-5. Mean and standard deviation of direct and derived measurements when
PLR=0.51+0.01.

Time interval P, kW Tenwt, °C Tenwr, °C Qeveiw, KW COP ()
July 4-10, 2016 271.95+10.13 6.85+0.07 11.33+0.13 1621.16+38.36 5.97£0.27
July 25-31, 2016 271.96+9.01 6.84+0.09 11.30+0.13 1610.328+42.37 5.93+0.19

4. Another situation that adds variance to normal pattern is when the operation changes from one
chiller (CH#1) to two chillers (CH#1+CH#2). This is due to the difference between the system
response time and recording data of variables change. In this case study, measurements are
recorded at 15 min time intervals. For instance, on July 5, 2016 at 13:15:00, only chiller CH#1
was on, and 7w was too high (15.75°C). The chiller was unable to maintain the 7. setpoint,
and the control system turned on the second circulating pump. The effect of second chiller on
Tenwi was not yet noticed. As a consequence, at that time interval 7.4 was almost equal with
Tehwr, and the cooling load Qey,cmy Was small, which led to low calculated PLR. At 13:30:00
when the operation was recorded again, the operation of two chillers (CH#1 + CH#2) was
recorded, and 7w was within the control range, and PLR=0.71. This kind of situation occurs
only for short recording time intervals, of 15-30 min. When the integration of results is carried
out for longer time periods of days, weeks or cooling season, this kind of variation is

unnoticeable, and has no effect on the long-term variation of COP.
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3.3.5. COP versus outdoor air temperature using 15 min time intervals data

When the outdoor air temperature 75, is between 20°C and 40°C, the mean COP value of
each operation scenario does not vary with 7,,: mean COP = 5.9 when CH#1 is on, 5.8 when CH#2
is on, and 5.7 when both CH#1 and CH#2 are on. When T, is between 15°C and 20°C, the COP

value increases by about 0.37 per 1°C of increase of outdoor air temperature.

3.3.6. Power input ratio (PIR) versus part load ratio (PLR) at evaporator

Since the operation at part load (PLR= Qey,cin/Qevdes) at evaporator has an important impact
on the electric power input ratio (PIR= E/E4s) at the compressor, this section evaluates their
relationship from measurements at 15 min time intervals over summer 2016. Any abnormal pattern
between these two normalized variables could bring the attention on some possible operation
issues, before the long-term analysis is carried out.

The quadratic form of correlation-based model of PIR= f(PLR) used by two well-known
building energy analysis programs, €QUEST and EnergyPlus, is used in this section as the starting
point (Equation 3-13). The coefficients B, B> and B3 are identified by using 15 min time intervals

data of summer 2016 (Table 3-6).

PIR = B, + B, - PLR + By - PLR? (3-13)

Table 3-6. Coefficients B/, B2 and B3 of Equation 3-13 from measurements at 15

min time intervals of summer 2016.

Model B B; B;
CH#1, Measurements 0.1951 0.3464 0.4577
CH#2, Measurements 0.157 0.6248 0.2233
CH#1+CH#2, Measurements 0.2167 0.3065 0.5544
eQUEST 0.1715 0.5882 0.2374
EnergyPlus 0.2229 0.3134 0.4637
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Figures 3-3.a to 3-3.c show the data points distribution from the three scenarios, and reveal
normal pattern of operation. There is good agreement between the correlation-based models
obtained from the measurements and two defaults models from eQuest and EnergyPlus programs
(Figure 3-4), with some minor differences of values of coefficients B;, B> and B; (Table 3-6). The
coefficients B;, B2 and B; that are identified from the operation of CH#1 alone, and those from the
simultaneous operation of chillers CH#1+CH#2 are close to the default coefficients used by
EnergyPlus; while the coefficients identified from the operation of CH#2 alone are close to the

default values of eQUEST.
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Figure 3-4. Variation of PIR=P/Pgcs versus PLR = Q/Qey. Comparison of correlation-based models from

measurements of 15 min time interval of summer 2016 with default models from eQUEST and EnergyPlus

programs.

3.4. Change of seasonal COP values from 2009 to 2017

Figure 3-5 reveals a small increasing trend of the seasonal average COP of chillers over nine
years from 2009 until 2017, which was not presented so far in any publication. Tables B2 to B4
show detailed data.

Since results presented in Figure 3-5 contradict the literature, additional investigation was
carried out to support the conclusions, and results are presented in this section (from Figure 3-6 to
Figure 3-12). Measurements on the refrigerant loop were available from 2013 (Figure 3-6 and

Figure 3-7). The average refrigerant pressure in the condensers of CH#1 and CH#2 was smaller in
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2016-2017. The average refrigerant pressure in both evaporators was almost constant over five
years, with the exception of CH#1 in 2013. Since chillers use low-pressure refrigerant R123, the

pressure in the evaporator is lower that the atmospheric pressure.
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Figure 3-5. Seasonal average COP of chillers versus year of measurements.
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Figure 3-6. Seasonal average pressures of condenser and evaporator of chiller CH#1 versus year of

measurements.
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Figure 3-7. Seasonal average pressures of condenser and evaporator of chiller CH#2 versus year of

measurements

One useful metric for assessing the chiller operation is the compressor lift or head pressure,
which is calculated as the difference between the condenser and evaporator refrigerant pressures.
Under the conditions presented in this paper, the compressor lift was smaller by about 10% in
CH#1 and CH#2 in 2016-2017 compared with 2014-2015 (Figure 3-8). This reduction is expected
to increase the COP, because of smaller compressor work, if other variables of interest remain

constant (e.g., evaporator load, water temperature to and from the cooling towers, etc.).
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Figure 3-8. Seasonal average compressor lift versus year of measurements.
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However, measured values of other variables also changed: (1) the evaporators load slightly
increased since 2013 (Tables B2 to B4); and (2) the average temperature difference of water
through condensers was about 4.3°C in both chillers (Figure 3-9 and Figure 3-10), compared with

design temperature difference of 5.6°C.
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Figure 3-9. Water temperature leaving the condenser of chiller CH#1 and returning from the cooling tower

CT-1.
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Figure 3-10. Water temperature leaving the condenser of chiller CH#2 and returning from the cooling tower
CT-2.
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Additionally, the average 7enw was about 7.0°C, that is higher than the design temperature of
5.6°C; and the chilled water temperature difference through the evaporators was about 4.1°C, that
is smaller than 7.7°C at design conditions.

The second useful metric is the condenser approach that is calculated as the difference between
the liquid refrigerant (measured on the liquid line) and leaving condenser water temperature. The
condenser approach in this study (Figure 3-11) has values between 0°C and 2.09°C for CH#1, and
between 0°C and 0.35°C for CH#2, compared with practical recommendations of 0°C-3°C for
water-cooled chillers [122].
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Figure 3-11. Seasonal average condenser approach versus year of measurements.

BCH#! mCH#2

Evaporator approach (°C)

05 I
. | | |

2013 2014 2015 2016 2017
Year

Figure 3-12. Seasonal average evaporator approach versus year of measurements.
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The third useful metric is the evaporator approach that is calculated as the difference between
the leaving chilled water temperature and saturated refrigerant temperature leaving the evaporator.
The evaporator approach in this study (Figure 3-12) has values between 0°C and 0.64°C for CH#1,
and between 0.15°C and 0.87°C for CH#2, compared with practical recommendations of 0°C-2°C
for water-cooled chillers [123].

One can conclude that the condenser and evaporator approaches, calculated from
measurements of 2013-2017, are within the acceptable limits.

The analysis of measurements indicates that the reduction of the compressor lift, variation of
evaporator cooling load, and operation of chilled and condenser water temperatures at different
values compared with design conditions, along with regular maintenance of chillers at the
beginning of a cooling season, might be the reason of offsetting the chillers ageing. The authors
do not have other information about chillers design and operation variables that possibly
contributed to the trend of Figure 3-5.

Only the visual display of COP variation over nine years (Figure 3-5) cannot prove the paper
hypothesis that the seasonal energy performance of these two centrifugal chillers does not change
significantly over nine seasons of operation. Section 3.4.1 and Section 3.4.2 present two different
approaches to conclude if the change of COP is statistically significant or not: (1) using the
hypothesis testing as discussed in section 3, and (2) using linear correlation-based model between

seasonal COP values and time.

3.4.1. Hypothesis testing

The t-test presented in section 3.3.3 is also used in this section to verify if the seasonal COP
values of each scenario have changed significantly from 2009 to 2017. Although the operation of
chillers started in 2007, the measurements of electric power input £, required for COP calculations,
became available only in 2009. Tables B2 to B4 (Appendix B) present direct and derived
measurements of summers of 2009 to 2017 under the three scenarios, displayed as the seasonal
mean value + uncertainty.

The null hypothesis Hy states that the seasonal COPs values do not change over time from

2009 to 2017:

Hy: Dpean = 0 (3-14)
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The alternative hypothesis H; states that seasonal COP; values change with time:
Hi:Dpegn # 0 (3-15)

where Dyeqn 1s the mean of the individual differences dj between the seasonal COPs2009 value
of summer 2009 and the seasonal COPy; value of each subsequent year j (from 2010 to 2017); and
dj = COPs2009 — COPg, with j=2010 to 2017.

The t-statistic is calculated as (Equation 3-16):

t= Dmean/(s/\/ﬁ) (3-16)

where Dyean and s are random variables that represent the mean and standard deviations of dj
values; and 7 is the number of paired COP values [117].

The results (Table 3-7) prove that the null hypothesis is true because t-statistic is not in the
critical region of Student t-distribution (as selected for the two-sided test, and the significance level
a/2 =0.025). In conclusion, there is not significant statistical evidence to say that the seasonal COP

values have changed from 2009 to 2017 for all three scenarios of operation.

Table 3-7. Results of t-test for comparison of seasonal COP values between 2009

and 2017

Critical region

Data set Dinean s df. t
1> 1R o0/2,n-1 ! <-tcra2n1
Scenario 1: CH#1 -0.357 0.312 5 -0.443 2.571 -2.571
Scenario 2: CH#2 -0.406 0.123 6 -1.253 2.447 -2.447
Scenario 3: CH#1+CH#2  -0.416 0.195 6 -0.080 2.447 -2.447

3.4.2. Linear correlation-based model
A linear trend model is assumed for the relationship between the seasonal COPy; of year j

(withj =1 to 9) and year that is counted from 2007 (Equation 3-17):

COP, = a- (Year — 2007) + b (3-17)
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The regression coefficient a shows the slope of variation of COP; with the number of years,

while b shows the COPs value at year = 2007 (Table 3-8).

Table 3-8. Regression coefficients a and b of correlation-based model COPs =

f(year) under three scenarios.

Scenario a b R?

(1) CH#1 0.02 0.85 0.63
COP; (2) CH#2 0.01 0.85 0.58
(3) CH#1+CH#2 0.01 0.85 0.80

When chillers CH#1 and CH#2 work separately, the slope of linear regression of COPs is 0.02
per year (for scenario CH#1), and 0.01 per year (for scenario 2) from 2009 to 2017. The coefficient
of determination R? of 0.63 and 0.58, respectively, indicates a moderate positive linear relationship
between COPs and time (year).

When both chillers work in parallel (scenario 3), the slope of linear regression of COP; is
0.01 per year from 2009 to 2017. The coefficient of determination R’ = 0.80 indicates a strong
positive linear relationship.

The results of this case study show that the seasonal COP; value increased slightly by 1% per
year for scenarios 2 and 3, and by 2% per year for scenario 1. This result over nine years contradicts
all publications that conclude on the annual reduction of COP;.

The results of this study of 1-2% of seasonal change of COP;s per year are 25 to 50 times
smaller than the calculated measurement uncertainty of COP of about 0.5 (Tables B2 to B4).
Therefore, one can easily conclude that the seasonal change of COP; is negligible.

The results of sections 3.4.1 and 3.4.2 converge on the same conclusion: there is not evidence
to prove that the seasonal COP values of two chillers of this case study, working under three
different scenarios, have significantly changed from 2009 until 2017. Annual changes of COP of

1% to 2% do not have a statistical significance.

3.4.3. Conclusions of long-term chiller energy performance assessment
This chapter concludes that there is not evidence to prove that the seasonal COP values of
two chillers of this case study, working under three different scenarios, have changed over nine

years (from 2009 to 2017). Though other operation and control variables, not measured in this
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study, might be source of such in-significant degradation of long-term energy performance, in the
absence of other explanations, the authors concluded that the reduction of the compressor lift,
variation of evaporator cooling load, and operation of chilled and condenser water temperatures at
different values compared with design conditions, along with regular maintenance at the beginning
of cooling season, have offset the chillers ageing. As a result, the COP value has not changed

significantly over the nine cooling seasons of measurements.

3.5. Experience learnt about the need of FDD

As the chiller energy performance can keep unchanged over a long-term, one of the most
likely explanations for a malfunction of chiller system is a fault occurs due to various reasons,
which calls for the need to detection the fault and finally isolate the source of fault, if possible.

Measurements of this cooling plant were obtained directly from building automation system,
without authors’ participation in sensors calibration. Authors have doubts that on a large campus
most sensors are periodically re-calibrated, when other urgent actions are needed for proper
operation of HVAC systems. In an ideal world, a dedicated monitoring system periodically re-
calibrated should be installed, and results of analysis, over many years of data, should be compared
with those obtained from using BAS trend data.

However, in a real world, noise, inaccuracy, etc., are the intrinsic properties of measurements,
which reduces the performance of a derived model, or even add barriers to formulate a model.
Therefore, measurement data of this cooling plant should be well calibrated to assess its feasibility
in the application of model development. A study for the same cooing plant [124] dispels this
concern, where the default EnergyPlus model was calibrated with measurements, and compared
with measurement data and TRNSY'S simulation data. The study indicated it is possible to develop
a calibrated model using measurement data without modifying by trial-and-error some variables
or using stochastic approaches. Thus, measurements, extracted from BAS for this cooling plant,

are readily feasible for model development.
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Chapter 4: Methodology for the development of MDFDD models

This dissertation focuses on the development of benchmarking grey-box model-based method
to detect and diagnose chiller MDFs, using measurement data from a real building. The monitored
variables from BAS were extracted as the input of benchmarking grey-box models. The forward
fault detection model and the backward diagnosis model underpin the main structure of MDFDD
model in this dissertation. Different from the experiment data from laboratory in a controlled
environment or the synthetic data from simulation programs, measurements from BAS in a real
building usually cover limited information. Thus, establishing grey-box models with measurement
data to achieve good performance requires many endeavors. If the benchmarking grey-box models
are successfully developed, they are then integrated into the forward model to detect a fault
symptom, when the difference between measurements and predictions of a target variable exceeds
a threshold value. Once the fault symptom is detected, the rule-based backward fault diagnosis
model is applied. The proposed method can be generalized by updating the model parameters with
measurements from other chillers. Such an alternative method can be integrated in BAS for

continuous commissioning of HVAC equipment.

4.1. Measurement data

This dissertation used the monitored variables from the available trend data of BAS (Table 3-
2) and applied the data preprocessing steps prior to the model development stage and the model
application stage. Data preprocessing includes corrective actions and the removing actions.
Missing recordings are replaced by the publicly available sources or removed. Outliers identified
by a commonly recognized criteria are also removed. Apart from the direct variables (directly

measured variables), derived variables are also used in this dissertation.

4.2. Forward residual-based model for fault detection

The feedforward fault detection model works in a way following three sequential steps: (1)
establish benchmarking grey-box models to predict target variables, (2) calculate the residual
between the predicted variable and the measured variable, and (3) compare the residual with a

corresponding threshold. If the residual of a variable exceeds the corresponding threshold, a fault
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symptom is detected. The strategy, using forward-sequential steps to finalize the identification of
fault symptoms, underpins the feedforward structure of the fault detection model. To fully describe
the chiller operation, target variables representing both the system-level behaviors and local-level

behaviors are selected for model development.

4.2.1. Benchmarking grey-box models

The grey box model contains many benefits similar to physical based models; however, such
models differ in that the parameters of grey-box models can be identified through statistical
analysis. Thus, grey-box models tend to be robust [24]. Compared with other data-driven models,
grey-box models can provide limited extrapolation outside the range of training data [24]. Besides,
the form of grey-box model is usually simple, and are, therefore, scrutable, and easy to use.

Within this dissertation, grey-box models are developed with input variables (called regressor
variables) that show impacts on subsequential variables (called target variables), which are
available in BAS measurements and presented in Chapter 5. A grey-box model is regarded as a
benchmarking grey-box model if results of model training and testing, due to both the static
window approach and the dynamic window approach, verify the accuracy and robustness of the
proposed grey-box model. Thus, a benchmarking grey-box model characterizes for accurate and
robust, and could provide reference values for the corresponding target variable.

Benchmarking grey-box models are then applied within this dissertation for the following
three purposes:

I.  Predict the chiller operation status under normal conditions (e.g., £ and Tecawr).

II.  Predict the refrigerant enthalpy at three key points in a refrigerant loop within the vapor
compression system, using the information only from the refrigerant side (e.g., 7ev and Pey).
Consequently, the predicted enthalpy are used to estimate some derived variables (e.g.,
QOev,chw)-

II.  After benchmarking grey-box models are validated by measurement data under normal
conditions, artificial faults are inserted into the testing dataset. Then, the benchmarking
grey-box models are applied to generate the impact on target variables due to artificial

regressor faults.
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4.2.2. Symptom models

Symptom models are developed to detect faults within the chiller. As defined in Chapter 2, a
fault means this deviation/difference exceeds an acceptable tolerance of a variable in terms of the
research target; herein, this toleration is estimated by the threshold. Several target variables are
selected for the symptom model development.

This dissertation establishes symptom models for the purpose of detecting MDFs. The
symptom models are defined as residuals, describing the deviation/difference between the
predicted variables and the measured variables. If this deviation/difference falls out of a threshold,

a fault symptom is identified.

4.2.3 Insertion of artificial fault

As measurement data with faults are not available, in this dissertation, some faults are
manually inserted in the measurement dataset (e.g., 5°C increase bias for Teiwi), after the model
validation with fault-free data is completed. Sequentially, the impact on a target variable is

generated by the corresponding benchmarking grey-box model.

4.3. Backward rule-based model for fault diagnosis

After fault symptoms are detected, the backward rule-based approach is applied to diagnose
the fault source. Since the fault diagnosis model needs and relies on the detected fault symptoms
to trace the fault source, it follows a backward process.

Figure 4-1 summarizes the workflow of MDFDD model, where three main modules are
included: (1) model validation module, (2) forward fault detection module, and (3) backward fault
diagnosis module. Processes in black blocks are with respect to normal conditions, while processes
in red blocks are related to the conditions with faults. The workflow of MDFDD model follows
six sequential steps:

I.  Extract data from BAS, preprocess them, and split training and testing datasets.
II.  Key target variables that give essential information about the chiller system-level and
component-level status are selected.
III.  Grey-box models that predict the expected operation values of selected target variables,
under normal operation conditions, are developed. Validate the accuracy and robustness of

grey-box models with both the static window approach and the dynamic window approach
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to identify whether these models can be regarded as benchmarking grey-box models. These
models use measurements from input variables (regressor variables) that could be the
source of abnormal performance of target variables.

IV. Insert artificial faults into the dataset, and calculate the impacts using benchmarking grey-
box models. If the residual between a measured variable and a predicted variable exceeds
the threshold, the fault symptom is detected.

V. A fault symptom might not reveal a real fault, but could be the result of abnormal values
of regressors, which are in the loop prior to the target variable. The backward fault
diagnosis method looks for the diagnosis of regressor faults. Thus, the target variable could
be dependent of regressors. The faulty target variable itself can also generate the fault
symptom.

VI. The MDFDD method concludes with three possible outcomes: (1) the target variable is

faulty, (2) the regressor variables are faulty, and (3) both target and regressor variables are
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Figure 4-1. Workflow chart of dependent fault detection and diagnosis model.
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4.4. Transfer learning

Transfer learning (TL) can be defined as the ability of a system to recognize and apply
knowledge and skills learned in previous tasks to novel tasks [125]. TL is an efficient approach to
anew task without developing new models, which is a time-efficient and resource-saving approach
utilized by many studies in the field of HVAC [126-129].

Within this dissertation, Deep neural network (DNN) models are developed to predict chiller
target variables with the application of different TL strategies. A DNN model, learnt on one chiller
(called source chiller), is transferred to another chiller (called target chiller) with weights fine-
tuned. The model performance is evaluated on the target chiller. The derived DNN models with
different TL strategies are examined under diverse chiller operation conditions and different data
distribution characters (e.g., small size of training dataset and large size of testing dataset) of the
target chiller. This transfer is the generalized methodology that will be applied to all DNN models.
The application of TL is conducted for the purpose of identifying the best TL strategy in improving

DNN model performance on the target chiller.
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Chapter 5: Development of the multiple dependent fault detection

and diagnosis models

This chapter presents the model development for the feedforward fault detection models and
the backward fault diagnosis models. The MDFDD model is established with the available
variables extracted from BAS, including water-side and refrigerant-side information. Grey-box
models are developed to predict system-level and component-level chiller operation status, for the
purpose of generating residuals once predictions are compared with measurements, which are used
for fault detection. Based on the results of fault symptom detection and dependency of target
variables and regressor variables, backward fault diagnosis models are developed to isolate the

fault source.

5.1 Data preprocessing

Due to the inaccuracy, incompleteness, and inconsistency of real-world databases, it is
necessary to verify and, if needed, correct raw data quality [130]. The preprocessing of data
includes corrective and removing actions of raw measurements. For the corrective action, the
missed data for 7,, and RH,. are replaced by values recorded by Environment Canada [131]. Due
to possible factors of the sensor itself, the recording system, and/or the periodic maintenance [132],
the noise and other abnormal data are unavoidable, which should be removed. For the removing
actions, it follows the three sequential steps listed below.

Step 1: Samples with missing data (related cells in Excel file are filled with ‘No Data’) are
removed. The variables with obviously abnormal values (e.g., negative values of V) are also
removed, when the cooling plant was operating in the normal condition.

Step 2: For the data rejection, measurements under transient conditions (start-up and shut-
down periods of a chiller) are eliminated.

Step 3: Erase outliers. Chauvenet’s criterion [116] is used to identify outliers. Any
measurement will be eliminated if the value of deviation from the mean value divided by the

standard deviation exceeds the criterion determined by Equation 5-1.

dné_ax = 0.819 + 0.544In(n) — 0.02346In(n?) G-D
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Where dax is the deviation from the mean of a variable, S is the standard deviation, and # is

the number of data points.

5.2. Development of benchmarking grey-box models

The second law of thermodynamics reveals how energy flows through a chiller, from building
to the outdoor environment, which follows the three sequential steps: (1) the building heat flows
to the chiller evaporator, which is represented by the process that the chilled water is cooled down
and the refrigerant evaporates. (2) the energy of evaporator flows to the condenser, driven by the
work of a compressor, which is represented by the process that the low-pressure and low-
temperature refrigerant is compressed to the high-pressure and high-temperature refrigerant. (3)
the heat flows to the condenser water and is rejected to the outdoor environment through a cooling
tower, which is represented by the process that the temperature of condenser water increases.

The above energy flow analysis indicates the subsequential variables (e.g., E, Tcaw, €tc.) can
be affected by variables like Tenwi, Venw, etc. As this dissertation focuses on dependent faults, the
subsequential variables are preferred to be selected as target variables to describe system-level
operation status of chiller. As for the local-level status, delta-T of chilled water (A7) and delta-
T of condenser water (ATcaw) are two derived variables to describe the operation status of
evaporator and condenser, respectively. Thus, variables of E, COP, and Tcaw are selected to
describe system-level status, and variables of A7y, and 4T.qv are selected to describe local-level
status (evaporator and condenser). Tciw and me, refi.rer are also selected as target variables. All these
target variables are marked with “*’in Table 3-2. The primary unit for Ven, (gpm) is transferred to

L/s 1n this dissertation with a conversion factor of 0.063.

5.2.1. Model of the electric power input to a chiller

The grey-box model for electric power input to the chiller (E) development starts with the
analysis for the estimation of refrigerant mass flow rate, which is used as a regressor variable for
the grey-box model of Ep. In most examples, the electric power input to the compressor, but not
the electric power input to a chiller, is used to estimate the refrigerant mass flow rate. Li and Braun
[50] proposed a virtual sensor to estimate the mass flow rate of refrigerant, where the power input

to compressor was used in calculations; they assumed that 5% of electric power input is lost
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through heat exchange with environment and results reported that 93.33% of prediction fell within
a range of £3% of experiment data. Furthermore, references [133—-136] also estimated the
refrigerant mass flow rate of chiller with respect to electric power input to compressor.

The estimation of refrigerant mass flow rate, using electric power input to the chiller may
ignore factors like the heat exchange between the compressor and environment, motor efficiency,
etc [137]. However, the information of these factors is rarely available in real buildings. Therefore,
it is necessary to develop a model to estimate the refrigerant mass flow rate, using only the
available variables in the BAS trend data.

This dissertation assumes the refrigeration cycle starts with the heat removed from the chilled
water loop at the evaporator, where the refrigerant mass flow rate is controlled by expansion valve.
For most chillers in real buildings, 7esw is a controlled variable and used as the reference for sizing
equipment of the secondary HVAC system (AHU, fan coil, etc.). The measurements of case study
indicate 7enw varies around a setpoint temperature within a very limited variance (Section 6.3,
Chapter 6). As the information of setpoint temperature of 7.4 is not available in BAS, it is
replaced by the mean value of Tumw over the training dataset (T,p,,;). Thus, Equation 5-2 is
proposed to estimate the reference cooling load of evaporator (Qey,ciw,rer) On water side with respect
t0 Typwi- Correspondingly, mieyrefirer is the reference refrigerant mass flow rate at the evaporator

(Equation 5-3).

Qev,chw,ref = Cchhw (Tchwr - Tchwl) (5'2)
_ Qev,chw,ref
Meyrefrref = hsuc — huy (5—3)

The chiller compressor consumes electricity and compresses the refrigerant vapor to the
super-heated status, for this reason, variable of mey,efrer 1s selected as one regressor for the grey-
box model of E». Another two variables, T¢mw and Venw, also show potential impact on E, thus, a

correlation based grey-box model is proposed to predict the electric power input to a chiller:

Ep = a1(Tenwr — Tenwt) + @2Vepw + A3Mey,refrref T Ao (5-4)
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5.2.2. Model of the coefficient of performance (COP)
A correlation-based benchmarking grey-box model is proposed with regressors showing

potential impact on the COP.

COPy = B1Tchwi + B2Venw + BsPLR + B4mev,refr,ref + Bo (5-5)
Where 6; (i =0, 1,...,4) are the parameters to be identified during the training phase.

5.2.3. Model of the condenser-water leaving temperature
The development of grey-box models for Tcaw starts with a chiller energy balance equation,

which is introduced by Equation 5-6:

Qev,chw +E = ch,cdw (5-6)

Qedcaw = PV caw(T cawt = T cawr) (5-7)

Where Qcqcaw is the condenser load on condenser water side in kW, Veay 1s the volumetric
flow rate of condenser water in m°/s, T.ayr is the condenser-water return temperature in °C, Teayw is
the condenser-water leaving temperature in °C.

Based on Equation 3-8, Equation 5-6, and Equation 5-7, Tcaw can be derived from:

Teawr = % (Tenwr — Terwt) + ﬁ + Teawr (5-8)

Equation 5-8 is affected by the following three factors: (1) heat leakage, from the compressor

to the environment, (2) the heat exchanger efficiency of the condenser, and (3) the heat exchanger
efficiency of the evaporator. However, the information for the three factors is not available in
measurements. To integrate the three factors, a grey-box model for Tcaw can be developed with
independent input variables in Equation 5-8. Besides, an experiment study found the refrigerant
mass level has a direct impact on Teawr [138]. Thus, meyrefirer 1s added as another independent
variable for the grey-box model of 7¢s. Therefore, a grey-box model for Teaws is proposed as

Equation 5-9:

53



Tcdwl,b = 61 (Tchwr - Tchwl) + 62Vchw + 63mev,refr,ref + 64E + 65Tcdwr + 80 (5'9)

Where 0, (1=0, 1, ...5) are the parameters to be identified during the training phase.

5.2.4. Model of the delta — T of chilled water

The heat exchange, between chilled water and refrigerant, in the evaporator is separated by
the evaporator tubes and complies with the forced heat convection process [139]: (1) the refrigerant
absorbs the heat from chilled water (separated by evaporator tubes) and evaporates at a constant
temperature, while (2) the chilled water, returning from the building (7¢xw-), releases the heat to
the evaporator tube and is cooled down. Then chilled water leaves the evaporator at a lower
temperature (7.nw). Figure 5-1 provides a schematic for the temperature distribution within a

general evaporator.
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Figure 5-1. Schematic for temperature distributions of refrigerant loop and water loop in evaporator and

condenser.

As refrigerant usually goes through the evaporating process within an evaporator, the
evaporating temperature keeps constant and the subsequential surface temperature of evaporator

tubes 1s constant, which generates a temperature difference, between the refrigerant in evaporator
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and chilled water temperature, as Tciw-— Tev (ignoring the thermal resistance of evaporator tubes).
On the chilled water side, water properties related to heat convection like thermal diffusivity,
dynamic viscosity depend on the chilled water velocity (ueiw).

Though ucnw 1s not available in measurements, the normalized #chw,norm can be approximated.
Equation 5-10 indicates uciw is proportional to Venw, where Asec 1S the cross-sectional area of chilled
water flow in the evaporator. In the absence of the information of Agec, Uchwnorm 18 calculated by

Equation 5-11:

_ Vehw
Uchw = Asec (5' 1 O)
u 1’4
Uchw,norm = = e (5-11)
! Umax Vchw,max

Where Venwmax 1s the maximum chilled-water flow rate in measurements.
The above analysis indicates u.n can be used to estimate the un-available variables related to
the forced heat convection process. Coupling with another term, Teiwr - Tev, @ grey-box model is

proposed to estimate the delta-T of chilled water, where a multiplication algorithm is assumed:

ATchw,b = (€1Unorm t+ €2) Tehwr — Tev) (5-12)

Where €, and €, are parameters to be identified during the training phase. Equation 5-12 can

be transformed to predict other variables (e.g., Tenwr), 1f needed.

5.2.5. Model of the delta-T of condenser-water

The general process for the condenser water circulating via the condenser follows the
temperature increase, as the chiller rejects the heat to the condenser-water. The heat exchange,
between condenser water and refrigerant, in the condenser is separated by the condenser tube and
complies with the forced heat convection process: (1) the refrigerant releases the heat to the
condenser tube, while (2) the condenser water absorbs this heat via the condenser tube. Then
condenser water leaves the condenser with a higher temperature. The temperature distribution
within a general water-cooled condenser and a schematic for the corresponding heat exchange

process is displayed in Figure 5-1.
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Heat transfer on the water side in a condenser complies with forced convection processes.
The temperature difference between condenser tube (7cimbe) and condenser water return
temperature (7cawr) 1s the driving force of heat transfer, as Tecq upe - Teawr. As the mass flow rate of
condenser water is always set as a constant value in a common water-cooled chiller system,
therefore, let’s assume variables affecting heat transfer rate, like condenser configurations
(condenser tube area, characteristic length, etc.) and condenser water properties (thermal
diffusivity, dynamic viscosity, etc.), can be integrated into coefficients of a grey-box model.

Thus, the temperature difference of Teqmpe - Teawr turns to the most important term affecting
the heat transfer rate of the condenser, which subsequently determines the delta-T of condenser
water, ATcaw = Teawi — Teawr. The refrigerant status in a condenser can be divided into three
sequential processes [140]: (1) the superheated refrigerant vapor at a temperature of Ty,
discharged by the compressor, is cooled to the saturated vapor, (2) the saturated vapor condenses
to the saturated liquid (7%s), and (3) the saturated liquid is sub-cooled (77). Hence, a grey-box

model is proposed to estimate 7cqupe considering the three processes:

Tcd,tube = C1Tqis + 3Teq + 3Ty + ¢ (5-13)

Where:

Ty =Teq — ATy (5-14)

Here, 77 is refrigerant liquid line temperature in °C, and AT} is 1°C [141]. Then, Ty can be
represented by 7.4 by integrating it into the coefficient of 7.; and the bias term of the grey-box
model, presented by Equation 5-15:

ATcdw,b = 01Tgis + 02Tcq — 03Tcawr + 6o (5-15)

Where 6; (1=0, 1,...3) are the parameters to be identified during the training phase. Equation

5-15 can be transformed to predict other variables (e.g., Tcawr), if needed.

5.2.6. Grey-box models for enthalpy at key points of the chiller refrigerant loop

Figure 5-2 maps four key points of the refrigerant cycle, where Point 1 is at the compressor
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suction manifold, Point 2 is at the compressor discharge, Point 3 is at the liquid line after the
condenser, and Point 4 is after the expansion valve at the entrance of the evaporator. The refrigerant
enthalpy keeps unchanged when it flows through the expansion valve: the refrigerant enthalpy at
Point 3 equals to that at Point 4 (4 = h3). In this dissertation, Ag.c = h; in kl/kg, hais = h2 in kl/kg,
and h; = hs in kJ/kg. The state equation indicates refrigerant enthalpy is defined by state variables

of refrigerant pressure and temperature, as described by:

hsue = f(Pev, Tsuc) (5-16)
hais = f(Pear Tais) (5-17)
hy = f (Pea, Tu) (5-18)

Where P., in kPa is the refrigerant absolute pressure at the evaporator, Pcs in kPa is the
refrigerant absolute pressure at the condenser. The superheating, 47s.. = 2 °C, and sub-cooling,

ATy =1°C [141]. Ty is defined by Equation 5-19, and 77 is defined by Equation 5-14:

Tsuc = Tep + ATy (5-19)

The compressor discharge temperature (7uis in °C) is estimated by Equation 5-20 [142]:

Peg Y22

Tais = Tsuc (ﬁ)_ (5-20)

Where y is the heat capacity ratio. The thermodynamic property of the refrigerant in ideal
conditions is only affected by state variables like temperature and pressure [32]. Refer to the
PREFPROP program [143], the value of y, within the range of refrigerant state in this work, has

only very small variations. Thus, y = 1.1 is used in this study.
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Figure 5-2. T-S diagram of the refrigeration cycle.

Then, the PREFPROP program are used to calculate the refrigerant enthalpy, since case study
of this dissertation contains two R-123 electric chillers. PREFPROP, developed by the National
Institute of Standards and Technology (NIST) [144], is a program to calculate the thermodynamic
and transport properties of industrial fluids, and has been proven to be an extremely useful tool
used by industry, government, and academia [145]. Enthalpy values derived from the PREFPROP
program are used as the measurements for the grey-box model development of enthalpy at three
key locations (/suc, hais, and hu).

Since refrigerant enthalpy is mainly affected by the refrigerant temperature and pressure, this
dissertation proposes the following three modes to estimate the refrigerant enthalpy of R-123 at

three key locations:

hsuc,b =9,1Py + 9,Tgy + 9, (5-21)
haisp = T1Pea + T2Tqis + 7o (5-22)
hip = @1Pca + ©2Ty + @q (5-23)
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Where 9;, 1;, and ¢4 (i =0, 1, 2) are the parameters to be identified during the training phase.
Enthalpy values derived from PREFPROP program are used as the ground truth data for model

training and testing.

5.2.7. Summary of grey-box models

To summarize, eight grey-box models are proposed to predict chiller operation status at
system level and local level, which are listed in Table 5-1. These grey-box models with coefficients
in Table 5-1 are trained with three model training approaches that are introduced in Section 5.6 of

this chapter.

Table 5-1. Summary of grey-box models.

Variables Grey-box models Equation

Ep Ep = a1 (Tepwr — m) + a3 Vepw + A3Meyrefrref T Ao 5-4
COPy COP, = B1Tchwi + B2Venw + B3PLR + ﬁ4mev,refr,ref + Bo 5-5
Teawib Teawts = 61 (Tenwr — Tenwt) + 62Venw + 83Mevrefrires + 64E + SsTcawr + 8o 5-9
ATchwp ATehw,p = (ExUnorm + €2) Tenwr — Tev) 5-12
ATcawp  ATeawp = 61Tais + 02Tca — O3Tcawr + 6o 5-15
Rsuc,b hsuep = U1Pey, + 95Tsyc + 9 5-21
hais,b haisp = T1Peq + T2Tgis + 7o 5-22
By hyup = @1Pca + 2Ty + @0 5-23

5.3. Forward residual-based fault detection model

A fault symptom is detected when the residual, calculated as the difference between the
measured value and predicted value, of a variable is greater than the corresponding threshold (¢).
The following seven fault symptoms are considered in this dissertation. The threshold, used for
fault symptom detection, equals to the measurement uncertainty of the corresponding variable.

The discussion for measurement uncertainty analysis is presented in Section 5.5 of this chapter.

5.3.1. Symptom model for chilled water leaving temperature
A fault symptom is detected for the chilled water leaving temperature, if the following

condition holds:

If Res (Tchwl) = abS(Tchwl,m = Tepwi) > S(Tchwl)' then Symp(Tem) = 1
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Otherwise: Symp(Teiwi) =0

5.3.2. Symptom model for electric power input to the chiller
A fault symptom is detected for the electric power input, if the following condition holds:
If Res(E) = abs(E,, — Ep) > €(E), then Symp(E) = 1
Otherwise: Symp(E) =0

5.3.3. Symptom model for coefficient of performance

A fault symptom is detected for the derived measurement of COP, if the following condition
holds:

If Res(COP) = abs(COP,, — COPy) > (COP), then Symp(COP) =1

Otherwise: Symp(COP) =0

5.3.4. Symptom model for condenser water leaving temperature

A fault symptom is detected for the condenser water leaving temperature, if the following
condition holds:

If Res (Teawi) = abs(Teawim — Teawip) > €(Teawr), then Symp(Teaw) =1

Otherwise: Symp(Teaw;) =0

5.3.5. Symptom model for delta-T of chilled water
A fault symptom is detected for the delta-T of chilled water, if the following condition holds:
If Res (AT.py) = abs(ATcpywm — ATepwp) > €(ATcny), then Symp(ATen) =1
Otherwise: Symp(ATemw) =0

5.3.6. Symptom model for delta-T of condenser water

A fault symptom is detected for the delta-T of condenser water, if the following condition
holds:

If Res (AT qy) = abs(ATcqwm — ATcawp) > €(ATcqy), then Symp(ATeay) =1

Otherwise: Symp(ATcaw) =0

5.3.7. Symptom model for refrigerant

A fault symptom of refrigerant flow rate, Symp(mevrefi), at the evaporator is detected, if the
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following condition holds:

If Res(Mey refr) = abs(AMey repr) > €(Meyrerr), then Symp(meyrer) = 1

Otherwise: Symp(mev,refi) = 0

Where Ame,,ref 1s the derived variation of refrigerant mass flow rate around a reference value
(Equation 5-3), which is calculated with respect to the mean value of Tenwi (OF Topy)- &(Mevrefi) i

the threshold of mey, refi;ref.

R (5-24)
5.3.8. Analysis for the forward dependent fault detection model

The dependency between regressor variables and target variables, or even between only
regressor variables, makes the fault detection complex. Figure 5-3 elaborates the dependency
relation and the structure of forward fault detection model.

As shown in Figure 5-3, the variable dependency between Column Direct variables and
Column Target variables is defined, including (1) the relationship between direct variables and
target variables, and (2) the relationship between direct variables and derived variables (e.g., COP,
Mevrefiref, €tC.). Please note that as the regressor variable ey efrer Of three grey-box models (Ep,
COPy, and Teawip), they are connected on the other side in Figure 5-3. For instance, three regressor
variables Tciwi, Venw, and meyrefirer of the grey-box model for electric power input are connected to
the £ (marked with an orange dot @) with arrowed lines.

The fault detection model, as shown in Figure 5-3, follows a forward process: (1) establish
grey-box models to predict target variables, (2) calculate residuals between measurements and
predictions of grey-box models, (3) compare the residual with the corresponding threshold, and (4)
a fault system is detected if the residual exceeds the corresponding threshold. Thus, the fault
detection model is called the forward model.

This forward ‘map’ (Figure 5-3) navigates how one regressor variable fault propagates to a
target variable and potentially trigs a fault symptom. Let’s take the impact of Tesw; fault on Symp(E)
as an instance: T¢nw fault propagates to Ep, and sequentially leads to the increases of Res(E), which
results in Symp(E) might be detected potentially. Following another path in Figure 5-3, Tenw fault
propagates to the derived variable of 47y, and sequentially leads to the increases of Res(4Tcnw),

which results in Symp(4T.ny) might be detected potentially. Thus, this forward fault detection ‘map’
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illustrates well the dependency between regressor and target variables, and gives an overall view

of fault propagation from regressor variables to target variables.

Direct Target ® Measured )
variables variables ® Benchmarking Residuals Symptoms
E o —— Res(E) Symp(E)
COP :>' Res(COP) Symp(COP)
]:‘a'h‘l'
T Tcdu‘l' > Res(rca'u‘l) Symp (?Z'dn'l)
cdwr
- ATy, o= Res(dT,,) | Symp(dT,,,)
T, AT 4, :> Res(AT.,,) Symp (A1)
P,
me\',reﬁ;ref.—. Res(ntm;reﬁ) Symp (me\af'eﬁ)
Pc'd o

Figure 5-3. Dependency of variables and flowchart of forward fault detection model, mapping from measured

variables to fault symptoms.

Within this dissertation, a fault symptom only indicates the possibility of a real fault, as fault
symptoms on target variables might depend on regressor variables. Therefore, it requires the fault
diagnosis. A question naturally comes up: when a fault symptom is detected, is the target variable
faulty or regressor variable faulty, or both are faulty? To respond this question, the backward fault

diagnosis model is presented in Section 5.4.

5.4. Backward rule-based fault diagnosis model

Diagnosis of MDFs is an even more difficult task than the diagnosis of a single fault. This

dissertation proposes a backward rule-based approach to diagnose multi-dependent faults (MDFs).
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To simplify the explanation of the rule-based backward approach, only the diagnosis of fault
symptom with respect to a target variable (e.g., F) is discussed. The analysis discusses the
relationship between target variable (£) and regressor variable (7eiwi). All other regressor variables
are assumed normal.

Rule A. If the fault symptom is detected, i.e., Symp(E) = 1, the status of regressor variables
used in Equation 5-4 should be verified.

Rule Al. If, for instance, the variable of T.xw is not faulty, i.e., it does not exceed its
threshold of normal operation (Symp(Tenw) = 0), Res(Tenw) < €(Tenwi), then the target
variable E is faulty. Thus, Symp(E) is independent of regressor variables.

Rule A2. If, for instance, the variable of e s faulty, i.e., it exceeds its threshold of
normal operation (Symp(Tenwi) = 1), Res(Tenw) > e(Tenwi), then faults could occur with the
regressor variable of Teuws and/or the target variable E. Thus, additional investigation is
required to verify the dependence between E and 7eiwi, because the fault symptom of E
could be induced (i) by abnormal operation of regressor variable of Teuwi, (i1) by target
variable E itself, or (iii) by both.

To explicit the fault diagnosis model well, this section takes the case study results from
Chapter 8 as an instance. Two cases could occur here:

= For instance, at 14:00 on July 26, Tenw 1s 12.25°C instead of 7.25°C under normal
operation (Figure 8-1); the predicted benchmark value E, = 562.18 kW instead of
measured value £, = 440 kW, with Res(E)= 122.18 kW that is greater than the
threshold of 19.02 kW (Table 6-5). Thus, both variables 7ciw and E appear to be faulty.
Additional investigation by the operation team is needed.

= However, if £, = 562.18 kW and the measured value £, = 560 kW, the residual of £ =
2.18 kW is smaller than the threshold of 19.02 kW. The measurement error of 7ciw
propagates through Equation 5-4, and £, = 562.18kW is almost equal with E,. Thus,
only Tenwi 1s faulty. The false fault symptom of £ is dependent of 7¢i. Thus, the electric
power E is not faulty.

Rule B. If the fault symptom is not detected Symp(E) = 0, then variable £ is normal.

This method for developing fault diagnosis rules can be generalized to create rules for the
case of another regressor variable mieyrefie, Which are not presented here because of space

limitation.
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5.5. Threshold identification with measurement uncertainty and prediction uncertainty

This dissertation applies forward residual-based model to detect faults, when the residual of
a variable exceeds the threshold. The threshold should be well defined. Generally, the residual of
a variable includes two parts: one is a measured variable, and the other is a predicted variable by

a benchmarking model.

5.5.1. Uncertainty of a measured variable

The measurement uncertainty (U,) of direct variable (e.g., £) and derived variable (e.g., 4 Tchw)
follows the method presented in Section 3.3 of Chapter 3. Here, an example for the measured
uncertainty of AT cmw (Uszenw) 18 presented to show the uncertainty calculation for a derived variable

with respect to the subtraction/summation algorithm:

UATChW = \/(UTchwr)2 + (UTchwl)2 (5'25)

Appendix B presents the calculation of U, for all other direct measurements and derived

variables used in this dissertation.

5.5.2. Evaluation of prediction uncertainty of a grey-box model

The prediction uncertainty (U,) refers to the variability in model predictions due to plausible
alternative input values (input uncertainty) and plausible alternative model structures (structural
uncertainty) [146] . A simple way to estimate the variance of prediction is the usual propagation-
of-error method, which is based on the first order expansion of Taylor series [146]. This method is

also adopted by Reddy [117] to estimate the prediction variance.

MSE(y,) = ¥ (";i’i‘))z MSE (x;) (5-26)

Where MSE is the mean square errort, ), is the output of a prediction model.

Relate this method to the grey-box model, the term 6(39/_(35) represents a parameter of a grey-box

Xi

model.
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The uncertainty of a predicted variable (U,) can be calculated by:

‘é/)
=

Uy =t

Sy, = /MSE (yp) (5-28)

Where U, is the uncertainty of a predicted variable, Sy, is the standard deviation of the

(5-27)

3|

predicted y,, and ¢ is the t-value at the specified confident level. Within this dissertation, 95%

confidence level is selected for every predicted variable and ¢ = 1.96.

5.5.3. ldentification of threshold for the fault detection model
. Method A

The residual of a variable determines whether a status is identified as a fault symptom or not
as described by the fault detection model. A common way to evaluate the threshold is to define it

as the measurement uncertainty (Method A):

e=U, (5-29)

II. Method B

As aresidual is defined as the difference between the predicted value and the measured value
of a variable. Naturally, the threshold should be estimated with the information from both the
measurement side and the prediction sild, where the latter is usually ignored in most studies. This
dissertation proposes another method to identify the threshold (Method B), covering both
prediction and measurement sides uncertainty information. Method B calculates the overall
uncertainty (OU) of a variable (measured and predicted) according to the approach of measurement

uncertainty calculation with respect to the subtraction algorithm [117]:

£=0U (5-30)
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oU = JUZ + UZ (5-31)

Where OU is the overall uncertainty with respected to the measurement and prediction of a
variable.
This dissertation presents the case study results mainly with Method A, results based on

Method B are also presented for comparison.

5.6. Model training, testing, and evaluation

5.6.1. Strategy for model training and testing
To start a modelling project, one of the first decisions is how to utilize the existing data. One
common way is to split the data into two groups typically referred as the training dataset and the
testing dataset. Estimating parameters is one of the main activities in terms of the training dataset.
Besides, the training dataset is also used for model comparison, feature sets development, and all
the other needs to reach a final model. While testing dataset is used only to assess the performance
of a final model. It is critical that testing dataset not be used prior to this point [147].
Decision making for the division of the training and testing dataset is affected by many factors
like the size of original samples and the total number of predictors. For this reason, there is not a
uniform guideline to split datasets. The most common strategy is to use the straightforward random
sampling. However, this strategy could be problematic when (1) the response is not evenly
distributed, or (2) if there is time stamp since it may fail to grasp the inherent patterns of trend data.
Hence, this dissertation uses sequential splitting to divide the time series measurement data and
the following three approaches are presented:
I.  Single split approach (SSA) divides the time-series dataset into one training dataset and
one testing dataset, without the actions of model retaining. Hence, the model development
solely by single split approach (SSA) may lead to the biased model [148,149].

II.  Augmented window approach (AWA) adds the new data to the initial dataset before the
model is retrained. The models are then retrained with the larger historical dataset and
applied for testing. Thus, the window size increases periodically for this method.

II.  For the sliding window approach (SWA), the window size is kept constant throughout the

whole training dataset. As new data become available, the oldest training data of equal
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length are dropped before the model is retrained. Then, the models are retrained

periodically with the newest available data.

The three approaches are adopted by [79,106,108,149,150], which successfully validated the
robustness of correspondingly proposed models. Model robustness usually represents the
prediction of a model are consistently accurate even if one or more of regressors changes
drastically [151,152]. In general, the performance metric derived from AWA and SWA is more
robust than SSA [153,154]. This dissertation utilizes the three approaches (SSA, AWA, and SWA),
aiming to avoid underfitting or overfitting of models, and validate the model robustness and

generalization.

5.6.2. Evaluation of benchmarking grey-box models

Reddy [117] recommended five metrics to evaluate the performance of a model, which are
coefficient of determination (R?), root mean square error (RMSE), coefficient of variation of the
RMSE (CV), mean bias error (MBE), and normalized MBE (NMBE). R’ is unitless, which eases
the comparison between different models. Another benefit of R’ is the straightforward
interpretation since it is the proportion of total variability in the outcome that can be explained by
the model. However, R’ could be a deceiving metric when used to evaluate a model with multiple
regressors, since it tends to increase when a new regressor (regardless of the correlation to model
outcome) is added to the model. Another disadvantage of R’ is it ignores the model number of
degree of freedom [117]. Hence, this work replaces R’ with Pearson coefficient () to evaluate the
correlation between the prediction and ground truth. The value of r is less than or equal to 1. » =1

implies a perfect correlation, while » < 0 usually means a weak correlation [117].

_ Cov(y,9) )
"= 50)s®) (5-32)
n 5 )2
RMSE = |2z (5-33)
[, i-y)?
CV(RMSE) = *—— x 100% (5-34)
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MBE — Zi:l(:;]\l_yi) (5_35)

T -y

NMBE = —2— (5-36)

Where y; is the measured value, ¥, is the predicted value, y is the mean value of measurements,

Cov(y, ¥) is the covariance of y and ¥, and S is the standard deviation,  is the number of samples.

5.6.3. Evaluation of MDFDD models

In statistics, confusion matrix is a synthetic approach to fully evaluate a classifier, which
assesses both the correctly classified side and misclassified side [130]. This matrix is widely used
to evaluate the FDD models in the field of HVAC system [155,156]. Figure 5-4 illustrates the

compositions of a confusion matrix in terms of a binary classifier [130].

I.  True positives (TP): These points are the positive points that are correctly labeled by the
classifier. In this dissertation, TP represents the number of true positives.
II.  False positives (FP): These points are the negative points that are incorrectly labeled by the
classifier. In this dissertation, TP represents the number of false positives.
III.  False negatives (FN): These points refer to the positive points that are incorrectly labeled
by the classifier. In this dissertation, FN represents the number of false negatives.
IV.  True negatives (TN): These points refer to the negative points that are correctly labeled by

the classifier. In this dissertation, TN represents the number of true negatives.
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Figure 5-4. Schematic of confusion matric compositions [157].

The application of forward fault detection model returns a binary result: whether a condition

is normal or faulty. Thus, to differentiate a fault from a normal condition of a variable is a

classification problem. As illustrated by Figure 5-5, there are four classes of results (points): true

positive (TP), false positive (FP), false negative (FN), and true negative (TN). TP and FN show

the points when a system operates with a fault. Here, TP indicates the points above a threshold,

and FN indicates the points below a threshold. TN and FP show the situation when a system

operates with fault-free status; TN indicates the points below a threshold, and FP indicates the

points above a threshold.
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Figure 5-5. Confusion matric compositions in the field of fault detection and diagnosis.
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Three metrics are usually applied to evaluate fault detection models [158,159]: accuracy (AC)
(Equation 5-37), hit rate (HR) (Equation 5-38), and false alarm rate (F4R) (Equation 5-39), which
corresponds to accuracy, precision, and sensitivity in the confusion matrix [130]. AC is defined as
the percentage of points that are correctly classified by the model over the whole testing dataset,
during both faulty time and fault-free time. HR is defined as the percentage of fault points that are
successfully detected when a system is operating with a fault during only faulty time. FAR indicates
the percentage of points that are misclassified during only fault-free time. Therefore, the three
metrics cover all the time intervals over the test dataset. AC gives an overall view of the model,
HR focuses on the intervals when faults are injected to a system, and /4R considers the time when

a system operates under fault-free condition.

TP+TN

AC= — TN (5-37)
TP+TN+FP+FN
HR = —2 (5-38)
TP+FN
FAR = —~ (5-39)
FP+TN
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Chapter 6: Case study datasets for multiple-dependent fault

detection and diagnosis

6.1. A short dataset with one month cooling period — July 2013

The short dataset consists of measurements of the cooling plant for approximately one month,
from June 24 to July 28, 2013. A summary of the raw measurements and results after data
preprocessing is listed in Table 6-1.

Following the data preprocessing presented in Chapter 5, missing data corresponded to “No
data” for T,, and RH,, were replaced by data recorded by Environment Canada [131]. Obvious
abnormal values (e.g., negative values of Ve, when the chiller operates normally), as well as data
under transient condition (e.g., chiller start-up) were removed. Outliers that exceed Chauvenet’s
criterion [32] were removed. Measurements numbers after dataset preprocessing are listed in Table
6-1. As more measurements are available from the chiller CH#2 under working days, it is selected

for model development.

Table 6-1. Measurement summary over five weeks recorded at 15-min interval, from

June 24, 2013, to July 28, 2013.

Raw measurements After preprocessing

gg?g CH#1 CH#2 CH#1+ CH#2 CH#1 CH#2 CH#1+ CH#2

WD WH WD WH WD WH WD WH WD WH WD WH
6/24-6/30 106 177 0 0 319 0 100 168 0 0 315 0
7/1-7/7 144 96 0 0 240 192 141 95 0 0 239 190
7/8-7/14 107 0 102 59 267 106 94 0 100 0 181 100
715721 1 0 51 108 422 84 0 0 44 154 385 79
7/22-728 0 0 313 159 83 33 0 0 301 155 79 31
Summary 358 273 466 326 1331 415 335 263 445 309 1199 400

The selected dataset (CH#2) expands from July 11 to July 26, 2013, under working days,
where its distribution is displayed in Figure 6-1. Totally, there are 445 data points. Three
distribution characters of this dataset are summarized as the following:

I.  Measurements distribution on each day is not homogenous in terms of the data number:

For example, there are 96 points on July 12, 2013, but only 11 points on July 17, 2013.
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II.  Gaps exist due to (1) shunt-down period of Chiller CH#2 and (2) the removed data that are
on weekends and holidays.

III.  Missing points: For example, the data during 19:15 and 21:30 on 25 July 2013 are missing.

24:00:00 ' ¢ l

22:00:00
20:00:00 I
18:00:00

16:00:00

14:00:00 .

Time

12:00:00

10:00:00

08:00:00

06:00:00

04:00:00

02:00:00

00:00:00

Date (July, 2013)

Figure 6-1. Data distribution of Chiller CH#2 under working days of July 2013.

6.2. A long dataset with the cooling season of 2016

The long dataset is composed of measurements of the cooling plant for a whole cooling season,
from May 23 to September 04, 2016. A summary of the raw measurements and results after data
preprocessing is listed in Table 6-2. The data preprocessing follows the approach presented in
Chapter 5. As more measurements are available from the chiller CH#1, the dataset of chiller CH#1
under working days is selected for model development.

The selected dataset (CH#1) expands from May 23 to September 4, 2013, under working days,
where its distribution is displayed in Figure 6-2. Totally, there are 2,876 data points.
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Table 6-2. Measurement summary over fifteen weeks recorded at 15-min interval,

from May 23 to September 04, 2016.

Raw measurements After preprocessing
Year
2016 CH#1 CH#2 CH#1+ CH#2 CH#1 CH#2 CH#1+ CH#2
WD WH WD WH WD WH WD WH WD WH WD WH
5/23-5/29 192 142 152 2 105 48 186 141 143 0 94 46
5/30-6/05 0 0 368 192 95 0 0 0 364 192 91 0
6/6-6/12 0 0 213 99 0 0 0 0 212 96 0 0
6/13-6/19 0 0 365 192 0 0 0 0 357 192 0 0
6/20-6/26 142 268 172 0 50 7 138 260 152 0 39 6
6/27-7/03 225 267 0 0 159 0 222 267 0 0 155 0
7/04-7/10 341 192 0 0 139 0 330 192 0 0 133 0
7/11-7/17 184 192 0 0 296 0 174 192 0 0 265 0
7/18-7/24 285 136 1 0 193 56 280 136 0 0 187 55
7/25-7/31 192 192 0 0 288 0 183 192 0 0 280 0
8/01-8/07 179 145 0 0 301 47 170 145 0 0 294 46
8/08-8/14 239 156 0 0 241 0 233 155 0 0 239 0
8/15-8/21 291 84 1 0 187 50 282 84 0 0 179 47
8/22-8/28 271 158 0 0 209 34 265 157 0 0 205 30
8/29-9/04 420 192 0 0 60 0 413 192 0 0 57 0
Summary 2961 2124 1272 485 2323 242 2876 2113 1228 480 2218 230
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Figure 6-2. Distribution of measurement data from the chiller CH#1 during the cooling season of 2016.
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6.3. Comparison of chilled water temperature measured at two positions

Temperatures of the chilled water loop are measured at two positions: (i) the common exit of
central cooling plant (POS1), where the total chilled water flow from two chillers is measured, and
(i1) at each chiller (POS2). This section verifies whether significant difference of measurements
for the same variable (e.g., chilled water leaving temperature) collected at two positions, exists,
using measurements of chiller CH#2 of July 2013.

The chilled water leaving temperature measured at POS1 is marked as Tcxwi, while the variable
measured at POS2 of chiller CH#2 is marked as e #2. Similarly, chilled water return temperature
measured at POS1 is marked as Tcqwr, and measured at POS2 of chiller CH#2 is marked as Tenwr#.
Delta-T of chilled water at POS1 is marked as A47¢nw, while this variable measured at POS2 of
chiller CH#2 is marked as AT #2. Table 6-3 lists the statistical information and measurement
uncertainty of variables related to the chilled water, using measurement data of chiller CH#2,

derived from July 11 to July 26, 2013.

Table 6-3. Statistical information of Tenwi, Tenwiz2, Tenwr and Tepwrss.

Variables Mean (°C) Standard deviation (°C)  Overall uncertainty (°C)
Tehwi 7.17 0.34 +0.34
Tehwi 2 6.71 0.08 +0.33
Tenwr 11.58 1.84 +0.40
Tchwr,#Z 11.26 1.70 +0.39
ATehw 4.42 1.76 +0.52
AT chw#2 4.56 1.71 +0.66

Besides, the derived variables of refrigerant mass flow rate at three main components
(evaporator, compressor and condenser) of a chiller are also compared using measurements at two

positions:

_ cpVerw(Tchwr—Tchwl)
mev,refr - Rsuc—huy (6'1)
E
mcomp,refr - hais—hsuc (6'2)

74



_ cpVeaw(Teawt—T cawr)
mcd,refr - (6'3)

hgis—hy

Where Vs is the volumetric flow rate of condenser-water in m’/s, Teawr is the condenser-
water return temperature in °C, Teaws 1s the condenser-water leaving temperature in °C, mey, s s the
refrigerant mass flow rate in evaporator in kg/s, mcomprer 1S the refrigerant mass flow rate in
compressor in kg/s, meqrr 1s the refrigerant mass flow rate in condenser in kg/s. Author clarifies
that Equation 6-1, Equation 6-2, and Equation 6-3 are derived from the energy balance of three
components of a chiller, and ignore the factors that affect energy balance, like the energy exchange
between a component (e.g., condenser) with environment. The calculations are conducted with
measurements of chiller CH#2, from July 11 to July 26, 2013, and results are listed in Table 6-4.
Since the uncertainty information for V.4, is not available in case study, it is not included in the

calculation for measurement uncertainty of mcd ef.

Table 6-4. Estimation of refrigerant mass flow rate at evaporator, condenser, and

compressor.
Refrigerant mass flow rate Mey,refr Mcomp,refi Med, refi

Mean (kg/s) 11.11 15.52 11.01

POSI1 Standard deviation (kg/s) 4.85 3.8 4.14
Measurement uncertainty (kg/s) +0.87 +0.95 +0.30

Mean (kg/s) 11.45 15.52 11.01

POS2 Standard deviation (kg/s) 4.73 3.8 4.14
Measurement uncertainty (kg/s) +0.91 +0.95 +0.30

Table 6-3 indicates that the mean value of A7, and that of AT,y # are very close, and fall
into the range of measurement uncertainty. As for refrigerant mass flow rate at three components
(evaporator, compressor and condenser), the results (Table 6-4) indicate an obvious difference
between mcomp,refr ANd Meyrefi- (OT Mearef). The greater value of mcomp re- s caused by the electric
power input E, which ignores the efficiency of electric motor and energy loss through the
compressor envelope. Values of meyes, based on measurements at two positions, are very close
and within the uncertainty.

Thus, one can conclude there is no significant difference of variables, collected at the central

exist and entrance of cooling plant and at the evaporator of chiller CH#2. The same conclusion is
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drawn with respect to the dataset of whole cooling season of 2016. This dissertation selects

measurement at the central exist and entrance of cooling plant for model development.

6.4. Threshold identification

Based on threshold identification Method A (measurement uncertainty) in Chapter 5, the
threshold ¢ values derived from the dataset of 2013 is listed in Table 6-5, and threshold ¢ values
with respect to the dataset of 2016 is listed in Table 6-6.

Table 6-5. Statistic information of direct/derived variables and measurement
uncertainty of these variables, derived from the training dataset of 2013 with

respect to the chiller CH#2 (Method A).

. Bias Standard Random Overall ~ Threshold
Variables Average - :
error deviation error Uncertainty 5

E (kW) 324.67 16.23 106.68 9.91 19.02 19.02
CcoP 5.02 NA 0.68 0.06 0.48 0.48
Teawi (°C) 32.70 0.46 1.58 0.15 0.49 0.49
Teni (°C) 7.19 0.34 0.08 0.01 0.34 0.34
ATenw (°C) 4.31 NA 1.76 NA 0.52 0.52
ATeaw (°C) 4.07 NA 1.56 NA 0.66 0.66
Meyrefirer (Kg/s)  10.83 NA 4.93 NA 0.68 0.68

Table 6-6. Statistic information of direct/derived variables and measurement
uncertainty of these variables, derived from the training dataset of 2016 with

respect to the chiller CH#1 (Method A).

) Bias Standard Random Overall Threshold
Variables Average - .
error deviation error  Uncertainty e

E (kW) 311.91 15.59 100.34 4.71 16.29 16.29
copr 5.77 NA 0.62 NA 0.53 0.53
Teaw (°C) 28.63 0.44 2.11 0.10 0.45 0.45
Tenwi (°C) 6.88 0.33 0.19 0.01 0.33 0.34
AT enw (°C) 4.96 NA 1.67 NA 0.50 0.50
ATeaw (°C) 4.53 NA 1.64 NA 0.62 0.62
Mev,refiref (kg/s) — 11.73 NA 4.38 NA 0.91 0.69
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Chapter 7: Grey-box models derived with both a short dataset and a

long dataset

This chapter presents the grey-box model development with both the short dataset (July 2013)
and the long dataset (whole cooling season of 2016), for the purpose of validating these grey-box
models. Then, these grey-box models would be used for the subsequential application of fault
detection and diagnosis. Eight grey-box models for Ep, COPp, Teawib, ATehwpy ATcawb, Rsucb, Rdisb,
and Ay are trained and tested by the static window strategy. The dynamic window approach,
including augmented window approach and sliding window approach, is applied to validate
robustness of five grey-box models of E», COPp, Teawib, ATechwpb, and ATcawps. The benchmarking
grey-box models are developed using Python (version 3.9.12) [160] with open-source libraries

(e.g., Scikit-learn [161]).

7.1. Grey-box models derived with static window regarding the dataset of July 2013

7.1.1. Dataset splitting using single split approach

The single split approach (SSA) divides the time-series data into training dataset and testing
dataset, based on sequential splitting [147]. Specifically, measurements collected at first seven
days (326 data points), starting at 23:00 on July 11, 2013, and ending at 19:15 on July 24, 2013,
are used for model training. Measurements collected at last two days (119 data points), starting at

10:30 on July 25, 2013, and ending at 23:45 on July 26, 2013, are used for model testing.

7.1.2. Results of model training and testing
7.1.2.1. Model training

The eight grey-box models are developed from measurements of normal operation without
known problems. Parameters of these grey-box models are identified by least-square algorithm

using the training dataset of SSA with respect to the measurements of July 2013.

Grey-box model of the electric power input to the chiller
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Ey = 22.60(Tenui — Torwt) — 0:92 Ve + 22.09 My refrres + 162.49

Grey-box model of the coefficient of performance (COP)

COPy = 0.80 Ty + 0.03 Vopyy + 37.81 PLR — 1.64 My refrros — 5.02

Grey-box model of the condenser-water leaving temperature

Teawp = 047 (Tepwr — Tepwi) + 0.02 Vepy, — 0.09 My refrrer + 0.01 E + 0.90 Teyyyy + 0.63

Grey-box model of Delta-T of chilled water

ATchw.p = (0.70Upprm + 0.02) (Tepwr — Tev)

Grey-box model of Delta-T of condenser-water

ATCdW,b = 0'19Tdi5 + 048TCd - 0'46TCdW1" - 655

Grey-box model of suction enthalpy of refrigerant

hsucy = —0.03P,;, + 0.66Tyy. + 379.29

Grey-box model of discharge enthalpy of refrigerant

hdiS,b = —OOZPCd + 0'71Tdi5 + 378.47

Grey-box model of liquid line enthalpy of refrigerant

hll,b = OOlPCd + 101Tll + 19993

7.1.2.2. Model testing results

(7-1)

(7-2)

(7-3)

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)

The measured T.nw, over the testing dataset, fluctuates around chilled water setpoint

temperature as shown in Figure 7-1. Equations 7-1 to 7-5 are used to predict other target variables
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over the test dataset. The comparison between measured values and predicted values, over testing
dataset, for other predicted variables (E», COPp, Tcawip, ATchwp, and ATcawp) are displayed from
Figure 7-2 to Figure 7-6. The performance metrics of grey-box models, over both the training and
testing datasets of July 2013 is listed in Table 7-1, where values of performance metrics are

rounded.
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—— Mean value of T, (°C)
7.4 1

Al
i

7.0 4

Residual of T, (°C)

T T T T T T T T T

6.9 T T
7/25/2013 7/26/2013
10:30 14:00 17:45 21:30 00:00 05:00 08:45 12:30 16:15 20:00 23:45

Date and time

Figure 7-1. Temu VS time, derived from testing dataset of July 2013 under normal operation conditions.
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Figure 7-2. Benchmarking values of the electric power input £ versus measured values over testing data of

July 2013 under normal operation conditions.
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Figure 7-3. Benchmarking values of the coefficient of performance COP versus measured values over testing

data of July 2013 under normal operation conditions.
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Figure 7-4. Benchmarking values of the condenser water leaving temperature 7.4 versus measured

values over testing data of July 2013 under normal operation conditions.
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Figure 7-5. Benchmarking values of the delta-T of chilled water AT versus measured values over testing

data of July 2013 under normal operation conditions.
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Figure 7-6. Benchmarking values of the delta-T of condenser water A Ta versus measured values over testing

data of July 2013 under normal operation conditions.
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Table 7-1. Performance metrics of grey-box models regarding the dataset of July

2013.

Model Training dataset Testing dataset
r RMSE __CV (%) MBE _ NMBE r RMSE __ CV (%) MBE NMBE
gq(lljft/i)(’)n 54 0.99 16.67 524 0 0 0.98 20.13 5.89 2.40 0.01
gzzgh 5.5 0.92 0.29 5.77 0 0 0.86 0.34 6.69 -0.02 0
g;ula(ngfl 5.9 0.99 0.23 0.70 0 0 0.98 025 0.76 0.02 0.00
églfatl(ot?)S 1 1.00 0.20 456  -0.04  -0.01 0.99 021 438 0.02 0.00
égudan(of)sl s 0.98 0.29 712 000  0.00 098 030 6.80 0.01 0.00
}Izjqu(gf)kng)SZI 100 2.60x10° 0 0 0 100 2.90x10° 0 3.74x10% 0
}Ezzgagfm 503 1.00  642x10° 0 0 0 1.00  833x10° 0 -2.01x107 0
hu (kJ/kg), 100 334x10° 0 0 0 100 329%10° 0 5 50x104 o

Equation 5-23

Evaluation metrics values for the grey-box model of £ (Equation 5-4) indicate good
performance. Though the RMSE of 20.13kW, over the testing dataset, is slightly greater than the
measurement uncertainty of £ (19.91kW), one can still conclude the grey-box model of E
(Equation 5-4) is accurate.

The comparison between the measured COP and the predicted COP (Equation 5-5), over the
testing dataset, shows that RMSE value is less than the measurement uncertainty of COP (0.48),
indicating Equation 5-5 can predict COP well.

As for the grey-box model for T.aw, evaluation metrics show RMSE = (.25, over testing
dataset, which is less than the measurement uncertainty of Tcaw (0.49°C). Besides, with high
Pearson Coefficient value, » = 0.98, one can conclude Equation 5-9 is reliable to predict Tecaw:.

Evaluation metrics of the grey-box model of AT (Equation 5-12) indicate good
performance, over both training and testing datasets. Besides, the RMSE value of 0.21 is less than
half of the measurement uncertainty of A7 ( 0.52°C), and take 3.58% of the testing dataset range.
A study for statistics model evaluation regards a model is accurate if RMSE value takes a
proportion of less than 10% of testing dataset range [162]. In addition, high Pearson Coefficient
values, r = 1.00 for Equation 5-12 (Table 7-1), are observed for the grey-box model of £. By
comparison, a previous study, predicting the chilled water return temperature setpoint using a
general regression neural network model, reported » = 0.98 on training dataset and » = 0.95 on

testing dataset [163]. As a result, one can conclude that the proposed grey-box model for A7¢;,, are
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accurate.

As for the grey-box model of ATcsw (Equation 5-15), over the testing dataset, » = 0.98
indicating the model fits well. The RMSE value of Equation 5-15 is 0.30°C, which is less than half
of the measurement uncertainty of A7 (0.66°C), and accounts for 5.37% over the testing dataset
range. Hence, the prediction model for A7cq4y 1s accurate.

For the enthalpy prediction models of Asuc, hais, and Ay, all » values equal to 1 indicating high
correlation. Besides, small RMSE values for the three enthalpy models (Equation 5-21, Equation
5-22, and Equation 5-23), over the testing dataset, prove they are accurate.

The grey-box models derived with the dataset of July 2013 are summarized in Table 7-2.

Table 7-2. Summary of benchmarking grey-box models with single split approach
based on the dataset of July 2013.

Variables Benchmarking grey-box models
E Ep = 22.60(Tenwi — Tenwt) — 0.92 Ve + 22.09 Mgy o frres + 16249
COP COPy = 0.80 Topyy + 0.03 Vopyy + 37.81 PLR — 1.64 Moy refr ey — 5.02
Tl Teawtp = 047 (Tenwr — Tenwt) + 0.02 Vepyy — 0.09 Moy rofrrer + 0.01 E + 0.90 Tegyyr + 0.63
ATehw ATchwp = (0.70Unorm + 0.02) (Tenwr — Tev)
AT caw ATogyp = 0.19Ty;5 + 0.48T,y — 0.46T,4,,, — 6.55
Hsuc Ry = —0.03P,, + 0.66T,,c + 379.29
Nais Raisp = —0.02Pgq + 0.71T4;5 + 378.47
hi hyp = 0.01P + 1.01Ty + 199.93

7.1.2.3. Comparison of residual and threshold

Figures 7-7 to 7-13 display residuals, with respect to seven symptoms (Section 5.3, Chapter5),
over the testing dataset, under fault-free conditions. It is noticed that some measurements exceed
the threshold under fault-free time for the five variables: E, Tcawi, COP, ATchw, and ATcqw. These
singular points might be due to the following factors, concluded from the investigation of the
measurement trend data and grey-box models.

L. Rotation of chiller working status
Since this cooling plant consists of two chillers, the control system is designed to
start one chiller when there is the cooling demand, and start the second chiller only if the
first chiller cannot meet the chilled water demand. The recording system may sample at

this rotation period, which adds variance to measurements. In this case study,
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1I.

111
IV.

measurements are recorded at a 15-min time interval. For instance, the cooling plant
started working at 10:00 on July 26, 2013, after it stopped for a few hours and Tcsw- was
high (14.09 °C). At this time, though 7.nw was under control due to chiller CH#2 was
working at full load, the effect of high Teuwr on Teawr was noticed (Teawr =29.61°C).
However, simultaneously, the building load was low. Thus, the chiller adjusted its load to
decrease to the building load in a very short time. When BAS sampled again at 10:15 on
July 26, 2013, obvious changes of variables (£ and 7.aw) were noticed.
Large building load and chiller load

Building load is usually high in the afternoon. At 17:30 on July 26, 2013, high Venw
was noticed due to the large cooling load demand of building. As a result, the chiller
worked at full load, and 7w deviated the setpoint a lot, though it was still within the
measurement uncertainty of 7¢p. Chiller COP usually decreases slightly when the
cooling load exceed a certainty region [112], which means chiller consumed more
electricity to maintain 7 at the setpoint temperature. This condition was verified by the
occurrence of peak of E, at the same time. Besides, the large T, value propagated to
other subsequential variables and might be with the time-lag effect. For example, Tcaw
peaked at 18:00:00 on July 26, 2013, two times intervals delay. The results of other studies
support this phenomenon. In the work for chiller control optimization, simulation results
showed an obvious delay effect between Temws and E [164]. Another study, based on
TRANSYS program, revealed that low 7¢ny usually lead to high Teaws for a water-cooled
chiller, and the occurrence of T.4w peak fell behand the lowest Tesr [165].
Short-term malfunction of mechanical system or sensors.
Prediction models: the ideal model does not exist [166]. Though the proposed prediction

models are accurate, errors still exist, which adds the variance to the residuals.
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Figure 7-7. The comparison between the residual of 7 and the threshold of Tis over the testing dataset of

July 2013 under normal operation conditions.
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Figure 7-8. The comparison between the residual of £ and the threshold of E over the testing dataset of July

2013 under normal operation conditions.
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Figure 7-9. The comparison between the residual of COP and the threshold of COP over the testing dataset

of July 2013 under normal operation conditions.
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Figure 7-10. The comparison between the residual of 7us. and the threshold of 7 over the testing dataset

of July 2013 under normal operation conditions.
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Figure 7-11. The comparison between the residual of A7¢s, and the threshold of A7, over the testing dataset

of July 2013 under normal operation conditions.

3.0

—— Threshold of AT 4,

g
wn
1

N
[
1

b
wh
1

._.
(=]
1

|
o] IJ\.AIAVW W

712572013 " 7262013
10:30 14:00 17:45 21:30 00:00 05:00 08:45 12:30 16:15 20:00 23:45

Date and time

Residual of AT 4, (°C)

<o
()]
1
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Figure 7-13. The comparison between the residual of 7., and the threshold of 7., over the testing dataset

of July 2013 under normal operation conditions.

In summary, some singular points, exceeding the threshold, could occur when the cooling
plant system operates under normal conditions. The variance of 7¢iw can lead to instant impacts
on certain variables (e.g., E), or very-shortly delay impacts on other variables (e.g., Tecawr).
Therefore, such irregular points are not regarded as faults and the collected trend data from BAS

system are considered as fault-free. In this dissertation, only continuous points that are greater than

threshold are considered as faults.

7.2. Grey-box models derived with dynamic window regarding the dataset of July 2013

The dataset of July 2013 is divided into five equal-size subsets, where each subset contains
89 data points. The start time and end time, and the number of data points of each subset is listed
in Table 7-3, where Subset 5 is dedicated for the model testing. This division of the dataset of July
2013 is used for the model re-training and testing of five grey-box models (E», COPp, Teawib, AT chw,b,

and ATecaw») for the purpose of verification of model robustness over a month (July 2013).
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Table 7-3. Information of the five subsets, during July 2013 (excluding weekends

and holidays).

Dataset Size

Start

End

&9
89
&9
89

23:00:00 July 11, 2013
21:15:00 July 12,2013
08:45:00 July 22, 2013
07:00:00 July 23,2013

21:00:00 July 12, 2013
08:30:00 July 22,2013
06:45:00 July 23, 2013
17:45:00 July 25, 2013

&9

18:00:00 July 25, 2013

23:45:00 July 26, 2013

Dataset
Subset 1
Training Subset 2
dataset  Subset 3
Subset 4
Testin
datase% Subset 5
In total

445

23:00:00 July 11, 2013

23:45:00 July 26, 2013

7.2.1. Results of augmented window approach with the dataset of July 2013

The augmented window approach (AWA) uses four augmented windows to retrain each of
the five grey-box models (E», COPp, Teawt,b, ATchwb, and ATcawp), and the dataset of each augmented
window is shown in Figure 7-14, where the information of subsets is listed in Table 7-3. AW1
(augmented window 1) means the training is conducted with the first subset (Subset 1) and tested
with Subset 5, while AW2 means the model is trained again with the first two subsets (Subtest 1
and Subset 2) and tested again with Subset 5. The same method for model retaining and testing is

applied to AW3 and AW4.

Training 1 Testing

] ]
|F Dataset T Dataset _b:
1 1 I
Subset 1 | Subset2 | Subset3 | Subset4 | Subset5
o) i
: AW 1 :
[= 1
1 AW 2 1
] ]
] ]
1 1
I ]
1 AW 3 1
1 1
] ]
1 1
' AW 4 '

Figure 7-14. Schematic of augmented window approach.

Retrain the five grey-box models (E», COPp, Teawib, ATciwp, and ATcawy) with one AW each
time, and test them with Subset 5. The parameters, derived with each AW of July 2013, are listed

in Table C-1 of Appendix C. The average performance metrics values over both the training and
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testing datasets, resulting from the model retraining with four AWs, are listed in Table 7-4. The
detailed performance metrics, over both the training and testing datasets, for each AW are listed in

Table C-2 of Appendix C.

Table 7-4. Average performance metrics values for grey-box models derived from

AWA, using measurements of July, 2013.

Model Training dataset Testing dataset
RMSE CV (%) MBE  NMBE r RMSE CV (%) MBE NMBE

£ . (km), 0.99 18.42 5.58 0.03 0.00 0.98 20.64 6.04 6.90 0.02
Equation 5-4
cop . ), 0.92 0.27 5.31 0.00 0.00 0.89 0.36 7.18 -0.12 -0.02
Equation 5-5
Teawi( .C)’ 0.99 0.22 0.68 0.00 0.00 0.99 0.25 0.77 0.00 0.00
Equation 5-9
ATC”W. O 1.00 0.19 4.31 -0.03  -0.01 0.99 0.20 4.39 -0.02  0.00
Equation 5-12
ATeaw O 0.99 0.25 5.82 0.00 0.00 0.98 0.33 7.59 -0.01 0.00

Equation 5-15

Generally, each set of parameter values (Table C-1) of a grey-box model does not show
significant difference against the augmented training dataset. Besides, the performance metrics
values of each grey-box model against the augmented training dataset (Table C-2), over the testing
dataset, also do not show significant difference. Table 7-4 indicates RMSE of each grey-box model
over the testing dataset is less than the corresponding measurement uncertainty (Table 6-5) of
variables except E», which is very close to the measurement uncertainty of E. Therefore, one can

conclude the five grey-box models are robust against training dataset size.

7.2.2. Results of sliding window approach with the dataset of July 2013

The sliding window approach (SWA) uses four sliding windows to retrain each of five grey-
box models, and the dataset of each sliding window is shown in Figure 7-15, where the information
of each subset is listed in Table 7-3. The size of each sliding window (SW) is fixed at a constant:
89 data points. SW1 means the model is trained with the first subset (Subset 1) and tested with
Subset 5, while SW2 means the model is trained with the next equal-sized subset (Subset 2) and
tested with Subset 5. The same method for model retaining and testing is applied to SW3 and SW4.

Retrain the five grey-box models (Ep, COP», Teawib, ATchwp, and ATcaw) with one subset each
time and test them with Subset 5. Repeat this process until all sliding windows are used for model

training. The parameters, derived with each SW of July 2013, are listed in Table C-3. The average
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performance metrics values over both the training and testing datasets, resulting from the model
retraining with four SWs, are listed in Table 7-5. The detailed performance metrics, over both the

training and testing datasets, derived from each SW, are listed in Table C-4 of Appendix C.

Training
Dataset

Testing I
Dataset

-—— -

Subset 1 | Subset2 | Subset3 | Subset4 | Subset5

SW1 Sw2 SW3 Sw4

Figure 7-15. Schematic of sliding window approach.

Table 7-5. Average performance metrics values for grey-box models, derived from

SWA.

Model Training dataset Testing dataset
r RMSE  CV (%) MBE NMBE r RMSE CV (%) MBE NMBE

E . (km), 0.98 17.75 5.66 0.01 0.00 0.98 20.74 6.07 3.98 0.01
Equation 5-4
cop . ) 0.87 0.26 5.24 0.00 0.00 0.88 0.39 7.85 -0.15 -0.03
Equation 5-5
T"‘dWl(.C)’ 0.99 0.21 0.65 0.00 0.00 0.98 0.28 0.85 -0.02 0.00
Equation 5-9
ATC}'W. O 0.99 0.17 4.07 -0.02 0.00 0.99 0.22 4.75 -0.01 0.00
Equation 5-12
ATcaw §©)

. 0.98 0.26 6.72 0.00 0.00 0.97 0.36 8.25 0.00 0.00
Equation 5-15

Based on Table C-3, each set of parameters of a grey-box model, over the four sliding
windows, have only slight variances. The performance metrics values of each grey-box model
against the sliding training dataset (Table C-4), over the testing dataset, also do not show
significant difference. Over the testing dataset (Table 7-5), all RMSE values of four grey-box
models (COP, Teawi, ATchw, and ATcay) are less than the corresponding measurement uncertainty
(Table 6-5), except RMSE of the grey-box model for E», which is only slightly greater than the
measurement uncertainty of £. Hence, one can conclude the five grey-box models (E», COPp,

Teawt,by ATenwb, and ATeawp) are robust over different chiller operation periods.

7.3. Conclusion of model development with measurements of July 2013

Based on the results of model training and testing with static window (SSA) and dynamic

window (AWA and SWA) approaches over July 2013, the five grey-box models (Ep, COPp, Teawip,
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ATechwp, and ATcawp) are reliable and robust. Thus, one can conclude the proposed five grey-box
models can capture the monthly chiller operation characters well and can be regarded as
benchmarking grey-box models.

As the dataset length of measurements of July 2013 is small, for safety, benchmarking grey-
box models derived with static window (Equations 7-1 to 7-5) are selected to conduct the fault
detection and diagnosis since they cover the most training data (most chiller operation

characteristics).

7.4. Grey-box models derived with the dataset of 2016

The derived benchmarking grey-box models with respect to measurements of July 2013
represent the monthly trend of chiller operation. Though the model accuracy and robustness over
a short period are validated by the static window approach and dynamic window approach, the
model performance and robustness over a long term is worth exploring. Thus, this section presents
the model validation over a whole cooling season with the measurements of 2016. The comparison
of grey-box models, derived from a short-term dataset and a long-term dataset (measurements of
2013 and 2016), representing different operation characteristics of the chiller, is shown at the end
of this section.

Three approaches, including one static window approach (SSA) and two dynamic window
approaches (AWA and SWA), are used to train and test the five grey-box models (E», COP», Tcawi,b,
AT ehwp, and ATeawp.). As a model derived solely by SSA may lead to the biased model [148,149],
the dynamic window approaches are needed to erase this concern and validate the model
robustness over diverse chiller operation conditions. Augmented window and sliding window are
two common dynamic model retraining approaches, models derived with them are generally more

robust than that derived with SSA [167,168].

7.4.1. Grey-box models derived with static window regarding the dataset of 2016

As the dataset of CH#1 of 2016 under WD is selected for model development (Section 6.2,
Chapter 6), it is separated into the training dataset and the testing dataset based on sequential
splitting [147]. For the single split approach (SSA), the training dataset is composed of
measurements during working days of the first 13 weeks (2198 data points), from 07:45 on May
25,2016, to 23:45 on August 19, 2016, while the testing dataset is composed of measurements of
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the last two weeks (678 data points), from 0:00 on August 22, 2016, to 23:45:00 on September 2,

2016 (Table 6-2). Data recorded on weekends and holidays are excluded.

The five grey-box models (E», COPp, Tcawib, ATchwp, and ATeawp) are developed from

measurements of normal operation without known problems. Based on the measurements of 2016,

the five grey-box models are derived with the training dataset of SSA, and parameters are identified

by least-square algorithm.

Benchmarking model of the electric power input to the chiller

Ey = —39.86(Tonui — Torwt) + 0.22 Vepyy + 22.16 My rof + 32.65

Benchmarking model of the coefficient of performance (COP)

COPb = 0.85 TCth + 0.03 VChW + 74.78 PLR — 3.45mev’ref —5.59

Benchmarking model of the condenser-water leaving temperature

Teawsp = 037 Tenwr — Tenwt) + 0.01Vpy, — 0.05 Mgy o + 0.01 E + 0.89 Togyy, + 1.40

Benchmarking model of Delta-T of chilled water

ATchw,b = (0.1%uporm + 0.53) (Tehwr — Tev)

Benchmarking model of Delta-T of condenser-water

ATequwp = 0.15T 455 + 0.58T, — 0.74T g, — 0.25

(7-9)

(7-10)

(7-11)

(7-12)

(7-13)

Graphical relationships between predicted and measured values of the five selected target

variables (Figures 7-16 to 7-20), and the performance metrics of grey-box models, over both the

training and testing datasets, show good prediction performance (Table 7-6), where values of

performance metrics are rounded.
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Figure 7-16. Benchmarking values of the electric power input £ versus measured values over testing data

under normal operation conditions of 2016.
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Figure 7-17. Benchmarking values of the coefficient of performance COP versus measured values over

testing data under normal operation conditions of 2016.
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Figure 7-18. Benchmarking values of the condenser water leaving temperature 74, versus measured values

over testing data under normal operation conditions of 2016.
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Figure 7-19. Benchmarking values of the delta-T of chilled water 474, versus measured values over testing

data under normal operation conditions of 2016.
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Figure 7-20. Benchmarking values of the delta-T of condenser water A7.4, versus measured values over

testing data under normal operation conditions of 2016.

Table 7-6. Performance metrics of grey-box models over both training and testing

datasets, based on measurements of 2016.

Model Training dataset Testing dataset
r RMSE  CV(%) MBE  NMBE r RMSE CV(%)  MBE NMBE

E (kW.)’ 0.99 15.20 4.90 0.00 0.00 0.99 17.19 5.96 -3.82  -0.01
Equation 5-4
COP (), 0.95 0.21 3.68 0.00 0.00 0.97 0.26 4.55 -0.01 0.00
Equation 5-5
Tean(°C), 1.00 0.17 0.58 0.00 0.00 1.00 0.14 0.48 -0.06 0.00
Equation 5-9
ATons .( ©) 1.00 0.17 3.39 -0.02 0.00 1.00 0.20 4.35 -0.03  -0.01
Equation 5-12
ATea (°C) 0.99 0.26 5.68 0.00 0.00 1.00 0.20 4.73 -0.13  -0.03

Equation 5-15

Single split approach (SSA) is a static model training approach, the disadvantages for the
application of SSA are (1) the user needs to have data over at least a few weeks for training before
using, and (2) it might lead to biased model. The training dataset of SSA may cover only one
certainty chiller operation character, other model retraining approaches, being able to represent

diverse chiller operation characters, are needed to verify the model robustness.
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7.4.2. Grey-box models derived with augmented window regarding the dataset of 2016

The augmented window approach (AWA) is used to explore the sensitivity of model
performance against dataset size. Grey-box models can be retrained periodically by a set of
augmented data when new measurements are available [169]. The application of AWA for model
training has the obvious advantage of being able to validate whether the model predicts well over
both the local (e.g., monthly) and the global (e.g., seasonal) trends of chiller operation [170].
Besides, augmented data can cover unexplored input space, prevent overfitting, and improve the
generalization ability [171]. The disadvantage of AWA is the data accumulation, which might
become too large to be manageable. Due to the quantity of recent addition of new data is less
compared to the older data, it is also likely that the latest changes in the augmented training dataset

have smaller impact on the model training.

Table 7-7. Duration and dataset size of each augmented window, from measurements

of Chiller CH#1 of 2016.

Training dataset Testing dataset
Dataset ; ;
Date Dataset Size Date Dataset Size
AW1 05/23 —07/03 546 07/04 —07/10 330
AW?2 05/23 -07/10 876 07/11 —07/24 454
AW3 05/23 -07/17 1050 07/18 —07/31 463
AW4 05/23 - 07/24 1330 07/25 — 08/07 353
AWS 05/23 - 07/31 1513 08/01 — 08/21 685
AWG6 05/23 —08/07 1683 08/08 — 08/28 780
AW7 05/23 - 08/14 1916 08/15 —09/04 960

The chiller CH#1 works for 12 weeks during the whole cooling season of 2016. Totally, seven
augmented windows are divided, and the duration of training dataset and testing dataset of each
augmented window are listed in Table 7-7, where the ratio of training dataset size to testing dataset
size in each augmented window is kept around 2. The first augmented window (marked as AW1
in Table 7-7) covers measurements of the first four weeks, where the training dataset of AW1 is
composed of the first 546 data points and the testing dataset of AW 1 is composed of the last 330
data points. The second augmented window (marked as AW2 in Table 7-7) spans from May 23 to
July 24, where the first 876 data points are used for model training and the last 454 data points are

used for model testing. As the size of augmented window increases successively, the last
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augmented window (marked as AW7 in Table 7-7) includes measurements of the whole cooling
season, where the first 1,916 data points compose the training dataset of AW7, and the last 960
data points compose the testing dataset of AW7.

Retrain and testing the five grey-box models (Ey, COPp, Teawip, ATchwp, and ATeawy) with all
the seven augmented windows (Table 7-7). The parameters of the five grey-box models, derived
with the training dataset of each augmented window, are listed in Table C-5. The average
performance metrics values over both the training and testing datasets, resulting from the retraining
approaches of AWA, are listed in Table 7-8. The performance metrics of each AW, over both the
training and testing datasets, are listed in Table C-6 of Appendix C.

Table 7-8. Average performance metrics values of grey-box models, derived from
each augmented window with the measurements of the chiller CH#1 during the

summer of 2016.

Model Training dataset Testing dataset
r RMSE CV (%) MBE  NMBE r RMSE CV (%) MBE NMBE

£ . (km), 0.99 15.78 5.19 0.00 0.00 0.99 15.57 5.04 -1.96 -0.01
Equation 5-4
cop . ) 0.95 0.24 4.30 0.00 0.00 0.94 0.20 3.42 0.00 0.00
Equation 5-5
Teawi( .C)’ 1.00 0.18 0.63 0.00 0.00 1.00 0.15 0.54 -0.05 0.00
Equation 5-9
AT"hw. O 1.00 0.17 3.50 -0.03  -0.01 1.00 0.17 3.48 -0.03  -0.01
Equation 5-12
AT et ) 0.99 0.22 5.08 0.00 0.00 0.99 0.27 5.86 -0.16  -0.03

Equation 5-15

Generally, each set of parameters (Table C-5) of a grey-box model does not show significant
difference as the training dataset increases. Performance metrics values of each grey-box model
(Table C-6), over the testing dataset, also do not show significant difference as the training dataset
increases. Table 7-8 indicates the average RMSE value of each grey-box model is less than the
corresponding measurement uncertainty of a target variable. Thus, one can conclude the five grey-
box models, derived with the measurements of whole cooling season of 2016, are accurate and

robust against training dataset size.

7.4.3. Grey-box models derived with sliding window regarding the dataset of 2016
The sliding window approach (SWA) is used to explore the sensitivity of model performance

against periodically updated measurements. SWA can be represented graphically as repeatedly
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sliding a time window across a time series dataset to choose the training data. SWA has the strength
of keeping track of latest operation data, but it loses previous data. The prediction results may not
well represent the annual or seasonal trend of chiller operation [169]. The advantages of SWA are
performing model retraining is feasible with a relatively small and constant size of the training
dataset. The application of SWA helps to verify the model robustness over diverse chiller operation
conditions.

Six sliding windows (SW) are derived from the measurements of 2016, and each sliding
window contains measurements of seven weeks, as listed in Table 7-9. The starting and ending
dates of both the training and testing datasets of each SW are also listed in Table 7-9. For instance,
the first sliding window (marked as SW1 in Table 7-9), includes the training dataset composed of
1050 data points (from May 23 to July 17, 2016) and testing dataset composed of 463 data points
(from July 18 to July 31, 2016).

Table 7-9. Duration and dataset size of each sliding window, from measurements of

Chiller CH#1 of 2016.

Training dataset Testing dataset
Dataset ; )
Date Dataset Size Date Dataset Size
SW1 05/23 - 07/17 1050 07/18 —07/31 463
SW2 06/20 — 07/24 1144 07/25 — 08/07 353
SW3 06/27—-07/31 1189 08/01 —08/14 403
SW4 07/04 — 08/07 1137 08/08 — 08/21 515
SW5 07/11 —08/14 1040 08/15 — 08/28 547
SW6 07/18 — 08/21 1148 08/22 —09/04 678

Retrain and test the five grey-box models (Ep, COPp, Teawi,b, ATchwp, and ATcawp) with all the
six augmented windows (Table 7-9). The parameters of the five grey-box models, derived with
training dataset of each SW of 2016, are listed in Table C-7. The average performance metrics
values over both the training and testing datasets, resulting from the retraining approaches of SWA,
are listed in Table 7-10. The performance metrics of each SW are listed in Table C-8 of Appendix
C.

Based on Table C-7, there are only slight variances in terms of each set of parameter values
of a grey-box model, in terms of all the six sliding windows. The performance metrics values of

each grey-box model over each sliding window (Table C-8), on both training and testing datasets,
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also do not show significant difference. Over the testing dataset, all the average RMSE values of
each of the five grey-box models (Table 7-10) are less than the corresponding measurement
uncertainty (Table 6-6). Hence, one can conclude the five grey-box models are robust against the
sliding dataset, which means the proposed models are not sensitive to the dataset that represents
the chiller operating status at different periods. For instance, the training dataset of SW3 are mainly
composed of measurements of July 2016 and the testing dataset of SW3 are mainly composed of
measurements of the first two weeks of August, 2016, where [112] indicates the average chiller
cooling load of July 2016 (1623.14kW) is about 225kW less than that of the first two weeks of
August, 2016 (1845.74kW). Even though, performance metrics (Table C-8) of the five grey-box
models over the testing dataset of SW3 still indicate these models are accurate. Thus, based on the
results of measurements of 2016, the five grey-box models can extrapolate to operation conditions

outside the range of training dataset.

Table 7-10. Average performance metrics values of grey-box models, derived from
each sliding window with the measurements of the chiller CH#1 during the summer

of 2016.

Model Training dataset Testing dataset
r RMSE CV (%) MBE NMBE r RMSE CV (%) MBE NMBE

E (kW.)’ 0.99 14.27 4.63 0.00 0.00 0.99 15.09 4.87 0.83 0.00
Equation 5-4
cop (')’ 0.95 0.19 3.27 0.00 0.00 0.95 0.19 3.24 0.02 0.00
Equation 5-5
Teaut (°C), .00 0.16 0.55 0.00  0.00 1.00 0.15 0.52 -0.05 0.00
Equation 5-9
AT"hW.( ) 1.00 0.16 3.31 -0.02  0.00 1.00 0.17 3.49 -0.03  -0.01
Equation 5-12
AT (°C) 0.99 0.18 3.95 0.00 0.00 0.99 0.27 5.86 -0.18  -0.04

Equation 5-15

7.4.4. Conclusion of model development with measurements of 2016

Based on the results of model training and testing with static window (SSA) and dynamic
window (AWA and SWA) over the whole cooling season of 2016, the five grey-box models (£,
COP»y, Teawipy ATchwp, and ATcawp) are reliable and robust, as all the RMSE values are less than
corresponding threshold values. Thus, one can conclude the five grey-box models can capture the
seasonal chiller operation status well and can be regarded as benchmarking grey-box models. As
the models (Equations 7-9 to 7-13) derived with SSA contain the most training data among the

three model approaches, reflecting well the seasonal operation trend of a chiller, they are selected
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to proceed MDFDD.

7.5. Comparison of grey-box models derived with datasets of July 2013 and 2016.

The comparison of model training and testing results is conducted for the performance metrics
and parameters of benchmarking grey-box models, derived with measurements of July 2013 and
the whole cooling season of 2016, with respect to the three model training approaches (SSA, AWA,
and SWA).

For the five performance metrics: , RMSE, CV, MBE, NMBE (listed in in Table 7-1, Table 7-
6, Table C-2, Table C-4, Table C-6, and Table C-8), there is no significant difference in terms of
each benchmarking grey-box model over both the short dataset (measurements of July 2013) and
the long dataset (whole cooling season of 2016), whatever model training approach (static window
or dynamic window) is used.

The benchmarking grey-box models derived with the short dataset and the long dataset,
describing the chiller monthly and the seasonal operation trends, show some similar behavior,
while, in reality, there might be some different behaviors. For instance, a significant difference is
noticed for the parameter (a;) of the regressor T,y — Tenwi Of the benchmarking grey-box model
E) regarding the dataset of July 2013 and the dataset of 2016. Though this difference might indicate
different physical meanings, the value of the regressor Topyw; — Tenwt 1S Very small. Thus, one can
conclude the proposed five benchmarking grey-box models can represent well both the monthly

trend and the seasonal trend of chiller operation, and are robust.
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Chapter 8: Results of MDFDD using artificial faults

Detailed records of known equipment faults in existing HVAC system are usually unavailable
for research purposes. The building operation team, due to potential disturbances in the operation
and occupants’ discomfort, does not easily accept the insertion of artificial physical faults in the
operation of existing HVAC systems. Several publications present the insertion of numerical
artificial faults in the computer simulation models. For instance, a fixed bias of 1°C was added to
the chilled water return temperature sensor in TRANSYS simulator to generate data with a fault
[91]. A bias fault of 10°C and a drifting fault of 0.9°C/h were injected into simulation results for
fault detection using the neural network model [65].

Since there are no faults recorded by the BAS during the chiller operation of this case study,
numerical artificial faults are inserted in the measurement data file: (i) the increase of bias error of
the chilled water leaving temperature, and (ii) the reduction of refrigerant mass flow rate at the
evaporator. The results of fault detection, in this chapter, are mainly derived with the threshold
identification Method A (sole measurement uncertainty). Fault detection results based on threshold
identification Method B, including both the measurement uncertainty and prediction uncertainty,
are also presented for comparison purposes. The back ward fault diagnosis rules are also applied

to isolate the fault source.

8.1. Results of inserting artificial faults with threshold identification Method A

8.1.1. Artificial fault of the measured chilled water leaving temperature
A bias of 5°C increase is inserted into the testing dataset for 7¢nw over eight-time steps,
starting at 13:15:00 on July 26, 2013 and ending at 15:00:00 on July 26, 2013 (Figure 8-1). The

bias value of 5 °C is selected to exceed the measurement uncertainty of 7.
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Figure 8-1. Attificial increase of 5°C for T over eight-time steps, starting at 13:15:00 on July 26, 2013 and

ending at 15:00:00 on July 26, 2013.
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Totally, six symptoms (Symp(Tciwi), Symp(E), Symp(COP), Symp(Tcaw), Symp(ATcny), and
Symp(mevre)) are successfully detected, and they are displayed from Figure 8-2 to Figure 8-7. The
detected six symptoms all start from 13:15:00 on July 26, 2013, and end at 15:00:00 on July 26,
2013, which is the same time interval as the artificial 7¢y fault. The MDFDD model performance

metrics are listed in Table 8-1.
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Figure 8-2. Impact of artificial fault of 7 on the fault symptom of Tem.
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Figure 8-3. Impact of artificial fault of 7tz on the fault symptom of £.
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Figure 8-4. Impact of artificial fault of 7 on the fault symptom of COP.
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Figure 8-6. Impact of artificial fault of 7t on the fault symptom of A 7.
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Figure 8-7. Impact of artificial fault of 7t on the fault symptom 71, -

Table 8-1. Model performance metrics for artificially inserted 7Tecnw; fault, derived

from test dataset from July 25, 2013, to July 26, 2013.

Assessment Symptoms
metrics Symp(Teww)  Symp(E)  Symp(COP)  Symp(Tcaw) — Symp(ATeny) — Symp(Meyrefi)
AC 100% 78.99% 89.08% 95.80% 99.16% 100%
HR 100% 100% 100% 100% 100% 100%
FAR 0.00% 22.52% 11.71% 4.50% 0.90% 0.00%

HR values for all the six symptoms (Symp(Tciwi), Symp(E), Symp(Tcawi), Symp(COP),
Symp(ATeny), and Symp(mevrer)) are 100%. Thus, all the fault symptoms during the period of
artificially inserted 7cnws fault, are successfully detected.

Some singular points, exceeding the threshold under fault-free time, are observed for E, T¢awi,
COP, and ATchw, which results in the relative lower AC (e.g., AC value of E is 78.99%, Table 8-1).
As explained in Chapter 7, they might be caused by the short-term malfunction of mechanical
system or sensors, and are not continuous. Therefore, such abnormal measurements are not
considered as fault symptoms. Similar conditions are also noticed in the case study of artificial
Mev,refiref fault (e.g., Figure 8-9).

As Symp(Teiwi), Symp(E), Symp(COP), Symp(Tcaw), Symp(ATchw), and Symp(meyrefi) are
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detected simultaneously, the variables Teiwi, E, COP, Teawt, ATcnw, and me,refi.rer appear to be faulty

according to fault diagnosis rules. Additional investigation by the operation team is needed.

8.1.2. Artificial fault of the measured refrigerant mass flow rate
The refrigerant mass flow rate at the evaporator is reduced by 40% due to a fault starting at
13:15:00 on July 26, 2013 and ending at 15:00:00 on July 26, 2013 (Figure 8-8). The value of 40%

is selected to exceed the measurement uncertainty of mey,refi;ref-
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Figure 8-8. Attificial decrease by 40% of refrigerant mass flow rate starting at 13:15:00 on July 26, 2013 and
ending at 15:00:00 on July 26, 2013.

Symp(E), Symp(Tcaw), Symp(COP), and Symp(mer.s) are successfully detected and they all
start at 13:15:00 on July 26, 2013 and end at 15:00:00 on July 26, 2013 (Figure 8-9 to Figure 8-
12), which is the same time period of artificial e, efi.rer fault. The MDFDD model performance

metrics are listed in Table 8-2.
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Table 8-2. Model performance metrics for artificially inserted mey, refr,rer fault,

derived from test dataset from July 25, 2013, to July 26, 2013.

Assessment Symptoms
metrics Symp(E) Symp(COP) Symp(Tcawi) Symp(mey,ref)
89.08% 78.99% 89.08% 94.96% 100%
100% 100% 100% 87.50% 100%
11.71% 22.52% 11.71% 4.50% 0.00%

The impact of artificial fault of me. s propagates to the three variables of E», COPp and Tecawi b,
which sequentially leads to the detection of Symp(E), Symp(COP), and Symp(Tcaw). The impact of
artificial mey,re:rer fault on itself is also identified as Symp(mey,res) is detected.

In this example, the fault symptoms of E, COP, Tcawi, and me, s are detected. According to
fault diagnosis rules, the three variables E, COP, Tcawi, and meyrefirer are faulty. Additional

investigation by the operation team is needed.

8.1.3. Conclusion of case study with threshold identification Method A

The results, obtained from the case study with threshold identification Method A (sole
measurement uncertainty), demonstrate that MDFDD model can detect and diagnose these
dependent symptoms successfully. Due to some singular points occur during fault-free time, the
accuracy of the proposed fault detection model is affected. Even though, the lowest AC for Symp(E)
of case study results can still reach to 78.99%. Faulty variables are also isolated by the fault
diagnosis rules. Therefore, one can conclude that the proposed MDFDD model is reliable.

The proposed MDFDD model can detect and diagnose MDFs with high accuracy regarding
the dataset of 2016. Due to the space limitation and for the purpose of simplification,

corresponding results are not presented here.

8.2. Results of artificial faults with threshold identification Method B

Based on threshold identification Method B, including both the measurement uncertainty (U,,)
and prediction uncertainty (U,), in Chapter 5 and the benchmarking grey-box models derived with
measurements of chiller CH#2 in July, 2013, the prediction uncertainty is calculated (Table 8-3).
As U, is not applicable to variables of Teawi, and mey,refiref, corresponding cells are marked with NA

in Table 8-3.
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Table 8-3. Measurement uncertainty, prediction uncertainty, and threshold with
respect to target variables, derived from the training dataset of 2013 of chiller

CH#2.

Method A Method B
Variables Measurement Prediction Overall
uncertainty (Un) uncertainty (U,) uncertainty (OU)

E (kW) 19.02 11.98 23.22
CoP 0.48 1.30 1.39
Teaw1 (°C) 0.49 0.17 0.52
Tenwi (°C) 0.34 NA 0.34
AT enw (°C) 0.52 0.18 0.56
ATecaw (°C) 0.66 0.13 0.68
Mey,refizref (Kg/S) 0.68 NA 0.68

Based on Table 8-3, for the five target variables (£, COP, Tcawi, ATchw, and AT ay), it is noticed
that (1) all the values of U, are less than the values of U,, except for COP, and (2) threshold values
identified by Method B are greater than the corresponding values identified by Method A. The
prediction uncertainty for £, COP are very large, especially for COP with a U, value of 1.30 that
is greater than the measurement uncertainty of COP (U, of COP is 0.48).

As described in Chapter 2, benchmarking grey-box models for E, COP, and Tcqw are
correlation-based grey-box models, and benchmarking grey-box models for 47 and ATcq are
physical-based grey-box models. Results in Table 8-3 indicate the prediction uncertainty of
physical-based grey-box models tends to be small. Compare performance metrics (Table 7-1) and
U, (Table 8-3) of five grey-box models, it is noticed that a model with a small C} usually has small
prediction uncertainty (e.g., grey-box models for 7cqw and 4Tesw). Only based on the results of this
case study, the author is not sure whether an intrinsic relation exists between model performance
and model prediction uncertainty. But the results indicate a grey-box model with good performance

tends to have small prediction uncertainty.

8.2.1. Fault detection and diagnosis with threshold identification Method B

The case study is conducted with benchmarking grey-box models derived with the dataset of
July, 2013, and threshold identification Method B, including both the measurement uncertainty
and prediction uncertainty. The artificial fault is inserted to the refrigerant mass flow rate at

evaporator with a reduction of 40% starting at 13:15:00 on July 26, 2013 and ending at 15:00:00
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on July 26, 2013, as listed in Figure 8-8. The residual value of each target variable is compared
with the corresponding threshold, identified by Method B, for fault detection, and the results are
displayed from Figure 8-13 to Figure 8-16. Performance metrics of fault detection are listed in
Table 8-4.

Results indicate Symp(E), Symp(COP), Symp(Tcaw), and Symp(meyrefr) are successfully
detected and they all start at 13:15:00 on July 26, 2013 and end at 15:00:00 on July 26, 2013
(Figure 8-13 to Figure 8-16), which is the same time interval of artificial mey,efi.rer fault. Compared
with the case and corresponding results presented in Section 8.1.2, the only change in this case
study is threshold values, thus, the detected symptoms for the two case study are the same, which

are as expected.

200 —
—— Threshold of E : :
l
1
150 - I
= Fault symptom Fault symptom
% starts at 13:15 ends at 15:00
S 1001 —p —
E |
‘@B I
(] I 1
& 50 A ]
1 |
1 1 L 1 : : A |
AT A W
0 : 11

72512013 7126/2013
10:30 14:00 17:45 21:30 00:00 05:00 08:45 12:30 16:15 20:00 23:45

Date and time

Figure 8-13. Impact of artificial fault of 72¢,e,r0n the fault symptom of E.
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Table 8-4. Model performance metrics for artificially inserted mey, refr,rer fault,
derived from test dataset from July 25, 2013, to July 26, 2013, based on threshold
identification Method B.

Assessment Dependent symptoms

metrics Symp(E) Symp(COP) Symp(Teaw) Symp(mey; refi)
AC 84.03% 100% 94.96% 100%
HR 100% 100% 87.50% 100%
FAR 17.12% 0.00% 4.50% 0.00%

Compare the performance metrics of MDFDD model, resulting from threshold identification
Method A (Table 8-2) and Method B (Table 8-4), it is noticed that the fault detection performance
regarding Method B improves for Symp(E) and Symp(COP) with the increase of AC and the
decrease of FAR.

However, AC and FAR for Symp(Tcaw) don’t show significant improvement. One possible
reason is &(7Tcaw) derived with Method B only increases very slightly as of ¢(7caw) derived with
Method A, which is not enough to contribute a significant improvement. Another possible reason

is the relatively small size of testing dataset with non-homogenous data distribution with respect
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to the dataset of July 2013.

8.2.2. Conclusion of case study with threshold Method B

In conclusion, the physical-based grey-box model and the grey-box model with good
performance tend to have small prediction uncertainty. Apart from the threshold Method A, case
study results of forward fault detection model with respect to the threshold Method B also show
good performance. Thus, one can conclude that the threshold Method B can also be considered as

an effective approach to identify the threshold for fault detection.

115



Chapter 9: Application of transfer learning

This chapter introduces the application of transfer learning approach to the prediction of target
chiller variables (£, COP, Tcawi, ATchw, and ATcaw), using deep neural network models. Transfer
learning (TL) is applied by transferring a DNN model learnt from one chiller (called source chiller)

to another chiller (called target chiller). The model performance is evaluated with the target chiller.

9.1. Transfer learning and deep learning

9.1.1. Introduction to transfer learning

Transfer learning (TL) can be defined as the ability of a system to recognize and apply
knowledge and skills learned in previous tasks to novel tasks [125]. Motivated by satisfying the
need for lifelong machine learning methods that retain and reuse previous learnt knowledge, the
transfer learning methods aim to improve the performance of target learners to target models by
transferring the knowledge identified in different but related models [172]. It contributes to solving
the defects that can occur, such as lack of data for a model and/or the time required to train a new
model. TL has been successfully used for regularization of learner’s objective function [173,174],
parameter sharing [175,176], parameter restriction [177], and model ensemble etc [178].

The application of transfer learning methods used in the building field was used for predicting
building energy use [126—128]. An instance-based transfer learning strategy (e.g., instance-based
TrAdaBoost) was applied to forecast the energy consumption of HVAC system [126]. The results
indicated that the transfer learning strategy could improve the forecasting accuracy. Fan et al [127]
transferred features of an ANN model (e.g., Tou, RHoa, €tc.) to another one to predict the short-term
building energy use. TL achieved a decrease of 67% in terms of RMSE. Yun and Cheol [128]
transferred a pre-trained ANN model to estimate the target building properties, and fine tune the
parameters with a training dataset from the target building. They reported that the TL strategy
could improve the CV(RMSE) value by 10%, compared with the conventional ANN approach.

TL was also applied to study FDD in HVAC systems [129,179]. Chase and Baosen [179] used
a transferable naive Bayesian classifier, trained with the source HVAC system, to detect faults
resulting from component degradation in the target HVAC system. For the chiller FDD, a domain

adaptive model derived from a source chiller was migrated to a target chiller [129]. This work
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proved the feasibility of TL for FDD, by migrating existing models to a new chiller model without
the time and resource requirements associated with the development of a new model.
In summary, as a time-efficient and source-efficient approach, transfer learning (TL) applies

the knowledge learnt in previous tasks to new tasks.

9.1.2. Introduction to deep learning

Deep learning (DL) is a kind of machine learning method coupling the representation learning,
aiming to solve a source of difficulty in the real-word applications of artificial intelligence, where
many of the factors of variation influence every single piece of data that we are able to observe
[180]. The quintessential example of a DL model is a multilayer perceptron, composed of a
mathematical function (consist of many simpler function) mapping some set of input values to
output values, where each application of a different mathematical function can be regarded as
providing a new representation of the input.

DL, from the perspective of concept, refers to machine learning models that include multi-
levels of nonlinear transformation; deep neural network (DNN) models are the application of such
strategies to neural networks [150]. Apart from multiple layer perceptron, common DNN models
may include convolutional neural networks (CNNs), Long-short term memory networks (LSTMs),
etc.

To start a modelling project in the field of artificial neural networks (ANN), one of the first
decisions is how to select the suitable model from diverse ANN models. Measurements of case
study in this dissertation indicate the time leg effect is not significant. For this reason, the time-
series model (e.g., LSTMs) is not selected, instead, multiple layer perceptron is selected as the
DNN model to predict five chiller variables, including E, COP, Tcawi, ATciw, and ATca.

Figure 9-1 shows a fully connected DNN model, as an example, for the prediction task with
three sequential layers: (1) one input layer including » inputs, (2) three hidden layers, and (3) one
output layer including m outputs. Each layer is composed of adjustable neurons, where the number
of neurons of the input layer usually depends on the number of independent inputs and the number

of neurons of the output layer depends on the target.
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Figure 9-1. Deep neural network model architecture.

DNN is a type of feed-forward neural network, the summation of inputs with corresponding
weights and bias (e.g., W and b” in Figure 9-1) is sent to the first hidden layer and goes through
a non-linear transformation, complying with the activation function applied. Sequentially, the
information of the first hidden layer is sent to the next hidden layer for another non-linear
transformation along with corresponding weights and bias, following the feedforward process.
Equation 9-1, Equation 9-2, and Equation 9-3 are listed here to show, as an example, the governing

equations of a DNN model in Figure 9-1.

A = g(l)(W(l)X + b(l)) (9-1)
h@ = g(Z)(W(Z)h(l) + b(Z)) (9-2)
Y =W®hG) 4 p* (9-3)
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where AV and h® are the outputs of the first and second hidden layers, g is the activation
function, Y is the output of the output layer, W@ and b, for instance, are weights and bias of the
second hidden layer.

A short critical literature review is conducted focusing on DNN application in the field of
HVAC, and covers the publications in recent years (from 2015 to 2022), which are listed in a
chronological order in Table 9-1. These papers are focusing on either the prediction task or the
classification task. One of the most important hyperparameters of a DNN model is the
configurations of hidden layers, including the number of hidden layers and the number of neurons
in each hidden layer. A DNN model with more hidden layers usually outperforms the one with
only a single hidden layer in some aspects like more accurate, avoiding overfitting, etc. Results of
literature review might support this point as all the reviewed papers use at least two hidden layers.
Literature review finds 4 out of the 11 reviewed papers utilize three hidden layers, which takes the
most in terms of hidden layer numbers of a DNN model. However, based on Table 9-1, there is not
a general rule to set the number of hidden layers except one proposed in reference [181]. As for
the neuron numbers of a hidden layer, both the uniform and the non-uniform neuron numbers of
each hidden layer are observed. The activation function of the rectified linear unit (ReLU) is used

by seven papers; four other papers omit this information (marked as NA in Table 9-1).

Table 9-1. Architecture of deep neural network in the literature review.

Neuron number  Number of hidden Neuron number Activation

of input layer layers/neurons of output layer  function Year Ref.
4 2/18,9 1 NA 2015 [181]
6 5/ 200 each layer 6 ReLU 2019 [182]
8 3/5,1,8 2 NA 2019 [183]
6 2/8,8 4 ReLU 2019 [184]
9 %0,2(1)60,1(1)86 109, 2 ReLU 2019  [185]
43 2/ 50, 50 4 NA 2020 [186]
12 3/ 100, 80, 50 1 ReLU 2021 [187]
4 2/ 65,256 1 ReLU 2021 [188]
8 5/ 20 each 2 NA 2021 [189]
9 3/ 64, 64, 64 1 ReLU 2022 [190]
78 3/ 128 each 1 ReLU 2022 [191]

Note*: The column of Number of hidden layers/neurons shows the number of hidden layers and
the number of neurons of each layer. For instance, 2/18,9 indicates a DNN model with two hidden
layers, the first hidden layer with 18 neurons and the second hidden layer with nine neurons.
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Miriam et al. [181] proposed a method to create a suitable structure of a DNN model based
on the number of neurons of the input layer. The study compared three structures, with different
numbers of hidden layers and the number of neurons, to predict the electric energy consumptions
of real buildings. Results indicated that the DNN model with the configurations of (1) two hidden
layers, (2) the number of neurons in the first hidden layer of 2x(2xn +1), and (3) the number of
neurons in the second hidden layer of 2xn +1, achieved the best performance and is the most robust.

Here, n is the number of neurons of the input layer.

9.2. Methodology of the application of transfer learning

9.2.1. Transfer learning strategies

Transfer learning usually includes the transfer of information between two domains: (1) the
source domain (SD) that contains data of previous tasks, which can be used for the model pre-
training and testing, and (2) the target domain (TD) that contains data of the new task, which is
used for the fine-tuning of a model (e.g., in the case of DNN model, the weights are changed), and
the testing of updated model. This dissertation introduced three transfer leaning strategies: TLSO,
TLS1, and TLS2:

1. TLSO: The DNN model is trained and tested with the dataset of SD, and then used directly
with the dataset of TD, without changes of initial model weights. The DNN model
performance is evaluated with the testing dataset of TD. TLSO is also called direct TL.

2. TLS1: The DNN model is first pre-trained and tested with the dataset of SD, and then it
is updated by using the dataset of TD. The weights of all DNN model layers are fine-
tuned with the training dataset of TD. Finally, the updated DNN model is evaluated with
the testing dataset of TD.

3. TLS2: The DNN model is first pre-trained and tested with the dataset of SD, and then it
is updated with the dataset of TD. Only the weights of the output layer are updated. Finally,
the updated DNN model is evaluated with the testing dataset of TD.

In addition to the above three transfer learning strategies, another DNN model is developed
by using the so-called self-learning (SelfL) strategy. This model is trained and tested only with the
dataset of TD.
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9.2.2. Deep-neural network model structure and evaluation

This dissertation used DNNs as a tool to conduct TL. Five DNN models were built and each
one was used to predict one selected target variable. The input variables and the output variable of
a DNN model are selected as the corresponding regressor variables and the target variable of a
benchmarking grey-box model (Chapter 5). For instance, the benchmarking grey-box model of
Equation 5-4 for £ includes three regressor variables: Tciwi, Venw, and meyrefi;rer, Which are selected
as the inputs of the DNN model of E. The structure of each DNN model, including hidden layer

number and corresponding number of neurons, refers to the guide of [181], as listed in Table 9-2.

Table 9-2. Architecture of each deep neural network model.

DNN Input layer — Hllfllie;n layerH(IIJ{2L) Oug)utt latyer Target
model Input variables fpu utbu variable
neurons neurons neurons neurons
DNNI1 Tchwl, Vchw, Mey, refi;ref 3 14 7 1 E
DNN2 T chwls Venw, PLR, Mev,refi;ref 4 18 9 1 cor
DNN3 ; cZwr, T chwl, Vchw, Mey,refi;ref E . 6 26 13 1 Tde[
cdwr

DNN4 Vchw, Tchw[, Tev 3 14 7 1 A Tchw
DNNS T, dis, T cd T cdwr 3 14 7 1 AT, cdw

As the scale of diverse variables differs a lot, data normalization is required. Otherwise, such
condition might lead to weights of a DNN model that are too small and/or too large, which in turn
affects the model performance. The min-max normalization method is used in this dissertation, as
it was suitable for data with known bounds and without many outliers [192]. The equation for the
min-max normalization of each variable is provided in Equation 9-4:

Xi—Xmin

Xi,norm = Xmar—Xmin 9-4)

Where X;,orm 1s the normalized value of X, X; is a data point of a variable within
measurements, Xy, is the minimum value, and X, 1s the maximum value. The min-max
normalization method adjusts values of a variable to a range of 0 and 1.

The five DNN models are developed using Python (version 3.9.12) [160] with open libraries
like TensorFlow (version 2.10.0) [193]. The trial-and-error method is applied to identify the

optimum hyper-parameters of five DNN models, i.e., the activation function and learning rate. For
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each DNN model, the iteration is set for 10,000 epochs, and the optimum activation function (Table
9-3) is selected from the following list: 'relu’ [194], 'elu’, 'gelu’ [195], 'selu' [196,197], 'sigmoid',
'tanh' (Equations 9-5 to 9-10). The optimum learning rate (Table 9-3) is selected from the following
list: 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 1.

Table 9-3. The selected activation function and learning rate for each DNN model.

Optimum activation function

DNN model and learning rate Criterion to stop model

Model Output Activation Learning training
number variable function Rate

DNNI1 E ReLU 0.1 1.4x107
DNN2 copr SeLU 0.01 3.7x107
DNN3 Teawt GeLU 0.1 1.2x1073
DNN4 ATenw GeLU 0.2 1.3x10*
DNNS5 AT caw SeLU 0.01 1.4x1073

1. Rectified Linear Unit (ReLU)

x, x>0
f(x) = max(0,x) = {O,x <0 (9-5)
2. Exponential Linear Unit (ELU)
_ (EXP(x)—1,x<0
f = {FPO L 9-6)
3. Gaussian Error Linear Unit (GeLU)
f(x) = 0.5x |1+ tanh (\E (x+ 0.044715x3)>] (9-7)
4. Scaled Exponential Linear Unit (SeLU)
o fa(e* —1Dx, x>0
fl = 2{®e - D 9-8)

with o= 1.6733 and L = 1.0507 [196].
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5. Sigmoid function

1

fG) = = 9-9)
6. Tangent function (tanh)
_ eX — g%
fO) == (9-10)

Within this work, the algorithm of stochastic gradient descent with momentum [198,199]
(Equations 9-11 to 9-12) is applied to tune the weights of DNN models. The loss function
(Equation 9-13) is used to estimate the loss of the model over the training dataset so that the

weights can be updated iteratively to reduce the loss [200].

Mt = Mt — [yt (9-11)
Where:

vt = By + (1= BVyl (9-12)

L=, - ) (9-13)

Where M represents weights, / is the learning rate, £ is the momentum constant, VL is the
gradient, n equals to the length of training dataset, j is indicator.

The model training stops once one of the two criteria has been met: (1) the mean square error
of the output (target) variable over the training dataset has fallen under the value listed in Table 9-
3 (identified by trial-and-error method), or (2) the maximum number of iterations of 10,000 epochs
has been reached.

The prediction results are compared with measurements, and the model performance is
evaluated with three performance metrics (r, RMSE, and CV) that are introduced in Chapter 5. In
addition, mean absolute deviation (MAD) [117] is presented as another performance metric to

evaluate DNN models, as shown in Equation 9-14.

MAD = W (9-14)
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According to ASHRAE Guideline 14 [201], the calibration of a computer model is acceptable
if the CV between the predictions and measurements of prediction of the whole building energy
use is smaller than 30%, when using hourly data, or smaller 15% when using monthly data. The
author estimated, with measurements of 15-minute time, the acceptable CV value should be greater
than 30% due to larger variation of measurements.

By extension of such recommended values of CV, some authors have applied the
recommendations to other variables of HVAC systems. Reference [202] reported a range between
19.09% and 19.40%, reference [203] reported 5.58%, and reference [204] reported 15%. Another
study reported an acceptable prediction of the ventilation temperature of a nearly zero energy
building when CV was 20% [205].

This dissertation evaluates the model by comparison with the measurement uncertainty, and

with the metrics presented above.

9.3. Two case studies

9.3.1. Case study #1

The implementation of TL within this dissertation is to verify whether a DNN model learnt
from a SD of a chiller (source chiller) performs well for the prediction of another chiller (target
chiller). For this purpose, measurements of chiller CH#2 (source chiller) in July 2013 are used as
SD. Three target domains are extracted from measurements of chiller CH#1 (target chiller) in 2016
(Table 6-2, Chapter 6). The information of training dataset and testing dataset of SD and three TDs
is listed in Table 9-4. The five DNN models were first pre-trained with the training dataset of
source chiller (CH#2, 2013) and, then, transferred to the target chiller (CH#1, 2016).

Table 9-4. Information of source domain and target domain for case study #1.

Datasets Source domain Target domain (CH#1, 2016)
(CH#2, 2013) TDI TD2 TD3
Training Duration 7/11-7/24 6/22 - 6/23 7/4 —17/8 8/1 - 8/4
dataset  Dataset size 326 138 330 170
Testing  Duration 7/25-7/26 6/27-6/30  7/11 -7/15 8/8 —8/12
dataset  Dataset size 119 222 174 233

The training dataset of SD under normal operation, composed of first 326 measurements (73%
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of the whole data set) was recorded by BAS every 15 minutes, from July 11, 2013 to July 24, 2013,
is used for the identification of model weights. The remaining 119 measurement data (27% of the
whole dataset), from July 25, 2013 to July 26, 2013, are used for the model testing.

It is worth noticing that, in TD1 and TD3, the length of the training dataset is smaller than the
testing dataset. This is especially valid for TD1, were the training set consists of 138 data points
while the testing set consists of 222 data points.

Measurements indicate that the main characteristic of case study #1 contains diverse chiller
operation conditions (loads) over three target domains (TD1, TD2, and TD3). The average values
of E over the training datasets of TD2 and TD3 are 315.11kW and 328.24kW (Figure 9-2), which
are greater than that of TD1 (253.41kW).

Training dataset Testing dataset

350
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~ 250
=
< 200
m
& 150
s
()
100
Z
50
0

SD (CH#2) TDI (CH#1) TD2 (CH#1) TD3 (CH#1)

Figure 9-2. Average values of measured E over the training dataset and the testing dataset of SD and three
TDs in case study #1.

9.3.2. Case study #2

The source domain of case study #2 is the same as that of case study #1 (Table 9-4); however,
the three TDs are different. They were also extracted from measurements of chiller CH#1 (target
chiller) in 2016 (Table 6-2, Chapter 6), but the testing dataset of each TD contains almost the rest
of the summer for 2016. The three TDs of case study #2 are marked with TD4, TDS5, and TD6
(Table 9-5), respectively. Case study #2 represents the condition when only very limited data
(training dataset) of TD are available for updating weights of a DNN model by using TL to improve

125



model performance over the rest of data of a summer.

Table 9-5. Information of source domain and target domain for case study #2.

Source domain Target domain (CH#1, 2016)

Datasets (CH#2, 2013) TD4 TD5 TD6
Training Duration 7/11-7/24 6/22-6/23  7/4-7)8  711-7/13
dataset  Dataset size 326 138 330 144
Testing  Duration 7/25-7/26 6/27-8/12  7/11-8/12  7/15-8/12
dataset Dataset size 119 1592 1040 896

Based on the approach to calculate measurement uncertainty (Chapter 5), Table 9-6 presents
the values (mean + uncertainty) of directly measured and derived variables with respect to training
datasets of six target domains (TD1 to TD6). The chiller operation characteristics with respect to

SD and TDs are compared in Table 9-6.

Table 9-6. Mean and measurement uncertainty of directly measured and derived

variables identified with the training datasets of source domain and target domains.

Source domain Target domains (CH1, 2016)

Variables (CH#2, 2013)
SD TD1(TD4)  TD2(TD5) TD3 TD6

E (kW) 324.67+19.02  253.41£16.50 315.11420.36 328.24+21.81 273.28+23.49
COP (-) 5.02+0.48 5.54+0.57 5.84:0.59 5.96+0.61 5.56+0.67
Teant (°C) 32.70+0.49 27.13+0.48  28.56+0.52  28.80+0.54  27.67+0.60
AT (°C) 4.3140.52 3.99+0.54 5.04+0.54 5.28+0.54 4.31£0.59
ATea (°C) 4.07+0.66 3.61+0.64 4.65+0.67 4.83+0.69 3.91+0.73
Ve (LIs) 91.15+4.56 86.31+4.33  88.47+4.43  88.90+4.46 87.56+4.42
PLR (-) 0.52+0.04 0.450.04 0.59+0.05 0.62+0.05 0.50+0.04
T, (°C) 4.91+0.33 5.06:£0.44 4.79+0.33 4.78+0.33 5.02+0.34
T.q (°C) 33.59+0.53 27.99+0.51  29.52+0.55  30.20+0.58 28.50+0.65
Teanr (°C) 28.62+0.44 23.52+40.42  23.90+0.43  23.96+0.43 23.76+0.43
Tt (°C) 11.50+0.40 10.81+0.42  11.93+0.42  12.22+0.43 11.16+0.49
T et (°C) 7.19+0.34 6.82+0.33 6.89:£0.34 6.94+0.34 6.860.34
’(’i’(g/sf)f 10.83+0.68 9.09+0.73 11.97£0.94  12.59+0.98 10.12+0.84
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9.3. Results

9.3.1. DNN model training and testing results regarding the source domain

The five DNN models are trained and tested with the optimum hyperparameters, including
activation function and learning rate, using measurements of SD (chiller CH#2 of July 2013). The
performance metrics of the DNN models, calculated over both the training and the testing datasets,
are listed in Table 9-7, where the measurement uncertainty (U,) of five target variables is also

included.

Table 9-7. Performance metrics of five DNN models and measurement uncertainty

with respect to SD (CH#2, 2013).

Target Training dataset Testing dataset
variables r RMSE  CV (%) MAD Un r RMSE CV (%) MAD
E (kw) 0.99 16.93 5.31 16.39 19.02 098 2348 6.89 12.45

COP (-) 0.96 0.21 4.16 0.19 048 092  0.26 5.17 0.15
Teaw (°C) 0.99 0.25 0.76 0.21 049 099 0.28 0.84 0.19
AT ey (°C) ~ 1.00 0.08 1.75 0.07  0.52 1.00  0.08 1.76 0.06
ATeaw (°C)  0.99 0.23 5.62 0.17  0.66 098  0.27 6.16 0.15

It is noticed that RMSE values (Table 9-7) of four DNN models (COP, Teawi, ATenw, and AT caw)
over the testing dataset are smaller than corresponding measurement uncertainty. Furthermore, the
RMSE of the DNN model predicting the target variable E is 23.48kW over the testing dataset;
which is only slightly greater than the measurement uncertainty of £ (19.02kW). One possible
reason for the result of £ is the average chiller load of the testing dataset is greater than that of the
training dataset (Figure 9-2). The DNN model of E, derived with the training dataset of SD, may
miss some high-load chiller operational conditions.

Overall, the evaluation metrics (Table 9-7) indicate the five DNN models derived with SD

perform well.

9.3.2. Self-learning results based on case study #1 and case study #2

The five DNN models are pre-trained and tested with the optimum hyperparameters,
including the activation function and the learning rate, on six target domains (TD1 to TD6). The
performance metrics of DNN models, calculated over TD1, TD2, and TD3 (case study #1), are
listed in Appendix D (Table D-1). Results with respect to TD4, TDS, and TD6 (case study #2) are

127



listed in Appendix D (Table D-2).

For the results of case study #1 (Table D-1), all RMSE values of five DNN models over the
testing dataset of TD2 are less than the corresponding measurement uncertainties. However, RMSE
values over testing datasets of TD1 and TD3 show different results. For instance, over the testing
datasets of TD3, the RMSE value for E is significantly greater than the measurement uncertainty
of E. RMSE values of three DNN models (£, COP, and A4Tc4v) over the testing dataset of TD1 are
greater than corresponding measurement uncertainties.

For the results of case study #2 (Table D-2), all RMSE values of five DNN models over the
testing dataset of TD5/TD6 are less than the corresponding measurement uncertainties. However,
RMSE values of four DNN models (E, COP, Tcawi, and ATcaw) in TD4 are greater than the

corresponding measurement uncertainties.

9.3.3. Results of transfer learning with respect to case study #1

The five DNN models (E, COP, Tcaw, ATchw, and ATcaw), derived with the training dataset of
SD, are transferred to the target chiller with three TDs (TD1, TD2, and TD3) by using three TL
strategies (TLSO, TLS1, and TLS2). TLSO directly transfers the five DNN models, trained on SD,
to the target chiller (CH#1, 2016) and the model performance is evaluated with testing datasets of
three TDs (TD1, TD2, and TD3), as shown in Table D-3. Both TLS1 and TLS2 transfer the five
DNN models, pre-trained on SD, to the target chiller (CH#1, 2016) and, then, fine-tune weights
with the training dataset of three TDs (TD1, TD2, and TD3). The difference is TLS1 updated the
weights of all the layers of a DNN model, while TLS2 only updated the weights of the output layer
of a DNN model. Then, the model performance is evaluated with testing datasets of three TDs
(TD1, TD2, and TD3), as shown in Table D-4 and Table D-5.

The RMSE values obtained by the four strategies (SelfL, TLSO, TLS1, and TLS2) are
compared in Table 9-8. RMSE of SelfL for £ in TD1, COP in TD1, and E in TD3 are significantly
greater than corresponding measurement uncertainty. Over the six RMSE values of TLSO (Table
9-8), three of them are greater than their corresponding measurement uncertainty (e.g., £ in TD1).
Thus, TLS1 and TLS2 perform better than TLSO and SelfL, as all RMSE of TLS1 and TLS2 are
smaller than corresponding measurement uncertainty, except for the case of £in TD1. One possible
explanation for this result with respect to TD1 is the average E over the training dataset is a small

value (Figure 9-2), which leads to a small value of measurement uncertainty of E.

128



Table 9-8. RMSE of SelfL, TLSO, TLS1, and TLS2 over the testing dataset of three
TDs (TD1, TD2, and TD3).

Target dataset

Strategy TDI TD2 TD3
E(W) COP(- EGW) COP() EGW) COP()
SelfL 69.71 094 1909 037 3047 058
TLSO 2346 054 2245 063 2087 048
TLSI 2105 033 1182 042 1134 028
TLS2 2106 033 1188 041 1261 024

Measurement uncertainty (U,)  16.50 0.57 20.36 0.59 21.81 0.61

Table 9-9. CV of SelfL, TLSO, TLS1, and TLS2 over the testing dataset of three TDs
(TD1, TD2, and TD3).

Target dataset

Strategy

TDI TD2 TD3

E(%) COP(%) E(%) COP(%) E(%) COP(%)
SelfL 2048 1583  6.60 6.51 9.39 9.90
TLSO 6.89 9.1 772 1107 643 8.26
TLSI 6.18 5.50 4.07 7.35 3.50 4.76
TLS2 6.35 5.48 4.08 7.18 3.89 4.12

Table 9-10. MAD of SelfL, TLSO, TLS1, and TLS2 over the testing dataset of three
TDs (TDI1, TD2, and TD3).

Target dataset
Strategy DI D2 D3
E(&W) COP(-) EkW) COP(-) E(kW) COP(-)
SelfL 49.11 0.69 13.97 0.25 26.65 0.16
TLSO 19.34 0.43 16.22 0.52 15.15 0.41
TLS1 16.13 0.26 8.69 0.29 9.00 0.22
TLS2 16.51 0.25 8.80 0.28 9.56 0.19

Measurement uncertainty (U,)  16.50 0.57 20.36 0.59 21.81 0.61

The CV and MAD values obtained by the four strategies (SelfL., TLSO, TLS1, and TLS2) with
respect to three target domains (TD1 to TD3) are compared in Table 9-9 and Table 9-10,
respectively. Table 9-9 indicates all CV values of the four strategies (SelfL, TLSO, TLS1, and TLS2)
with respect to three target domains (TD1 to TD3) are far less than the recommended 30% [201].
Besides, CV values with respect to TLS1 and TLS2 over three target domains (TD1 to TD3) are
less than corresponding values with respect to SelfL and TLS0. The trend observed on Table 9-8
and Table 9-9 is also noticed in Table 9-10. Thus, TLS1 and TLS2 perform better than SelfL. and
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TLSO in general in case study #1.

Table 9-11. Summary of comparison of each performance metrics with respect to

case study #1.

Performance Condition
metrics TLS1 > TLS2 TLS1 =TLS2 TLS1 <TLS2
RMSE 3 5 7
cv 6 1 8
MAD 5 4 6
Total 14 10 21

Table 9-11 is derived with the comparison of performance metrics (RMSE, CV, and MAD) on
three target domains (TD1, TD2, and TD3), resulting from TLS1 and TLS2. For instance, 3 in the
second column means three RMSE values of DNN models with the application of TLS1 over three
TDs of case study #1 are greater than corresponding RMSE values with TLS2. Usually, a DNN
model with a smaller RMSE or CV or MAD indicates the model performance is better. Therefore,
if the condition of TLSI<TLS2 (or TLS1>TLS2) has the largest number in the row of total in Table
9-11, it represents TLS1 (or TLS2) performs better than TLS2 (or TLS1) in general.

The largest number in Table 9-11 is twenty-one with the condition of TLS1<TLS2, which
indicates twenty-one RMSE, CV, and MAD values of DNN models applying TLS1 over three target
domains (TD1, TD2, and TD3) are smaller than that with respect to TLS2. Thus, TLS1 performs
better than TLS2 over case study #2.

9.3.4. Results of transfer learning with respect to case study #2

The five DNN models (E, COP, Tcaw, ATchw, and ATcaw), derived with the training dataset of
SD, are transferred to the target chiller with three TDs (TD4, TDS5, and TD6) by using three TL
strategies (TLSO, TLS1, and TLS2). TLSO directly transfers the five DNN models, trained on SD,
to the target chiller (CH#1, 2016) and the model performance is evaluated with testing datasets of
three TDs (TD4, TDS, and TD6), as shown in Table D-6. TLS1 and TLS2 transfer the five DNN
models, pre-trained on SD, to the target chiller (CH#1, 2016) and, then, fine-tune weights with the
training dataset of three TDs (TD4, TDS, and TD6). The difference is TLS1 updated weights of all
layers of a DNN model, while TLS2 only updated weights of the output layer of a DNN model.
Then, the model performance is evaluated with testing datasets of three TDs (TD4, TDS, and TD6),
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as shown in Table D-7 and Table D-8.

The RMSE values obtained by the four strategies (SelfL, TLSO, TLS1, and TLS2) are
compared in Table 9-12. RMSE of SelfL for £ in TD4 and COP in TD4 are significantly greater
than corresponding measurement uncertainty. Over the six RMSE values of TLSO (Table 9-12),
two of them are greater than corresponding measurement uncertainty (e.g., £ in TD4). For the
results of TLS1 or TLS2, only the RMSE of E in TD4 is greater than the corresponding
measurement uncertainty throughout the three target domains (TD4, TD5, and TD6). Thus, TLSI
and TLS2 perform better than TLSO and SelfL in terms of RMSE in case study #2.

Table 9-12. RMSE of SelfL, TLSO, TLS1, and TLS2 over the testing datasets of
three TDs (TD4, TDS5, and TD6) with respect to DNN models of £ and COP.

Target dataset

Strategy

TD4 TDS5 TD6

E(W) COP(-) EW) COP(-) E(kW) COP(-)
SelfL 6945 091 1392 030 2055 034
TLSO 2081  0.69 1965 069 1936  0.66
TLS1 18.06 039 1857 031 1567 031
TLS2 2900 040 2577 041 1652 029

Measurement uncertainty (U,)  16.50 0.57 20.36 0.59 23.49 0.67

Table 9-13. CV of SelfL, TLSO, TLS1, and TLS2 over the testing datasets of three
TDs (TD4, TDS5, and TD6) with respect to DNN models of £ and COP.

Target dataset
Strategy TD4 D5 TD6
E (%) COP(%) E (%) COP(%) E (%) COP(%)
SelfL 22.03 15.51 4.49 5.16 6.50 5.78
TLSO 6.60 11.82 6.34 11.81 6.13 11.30
TLS1 5.73 6.70 5.99 5.32 4.96 5.21
TLS2 9.20 6.88 8.31 6.97 5.23 4.94

The CV and MAD values obtained by the four strategies (SelfL, TLS0, TLS1, and TLS2) with
respect to three target domains (TD4 to TD6) are compared in Table 9-13 and Table 9-14,
respectively. Table 9-13 indicates all CV values of the four strategies (SelfL, TLSO, TLS1, and
TLS2) with respect to three target domains (TD4 to TD6) are far less than the recommend 30%
[201]. Besides, CV values with respect to TLS1 and TLS2 over three target domains (TD1 to TD3)
are less than corresponding values with respect to SelfL and TLSO (Table 9-13). The trend observed
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on Table 9-12 and Table 9-13 is also noticed in Table 9-14. Thus, TLS1 and TLS2 perform better
than SelfL and TLSO in general in case study #2.

Table 9-14. MAD of SelfL, TLSO, TLS1, and TLS2 over the testing datasets of three
TDs (TD4, TDS5, and TD6) with respect to DNN models of £ and COP.

Target dataset
Strategy TD4 TD5 TD6
E(W) COP(-) E(W) COP() EGW) COP()
SelfL 43.45 0.60 10.23 0.24 15.40 0.27
TLSO 15.85 0.56 14.66 0.56 14.53 0.54
TLS1 16.50 0.57 20.36 0.59 23.49 0.67
TLS2 25.99 0.32 22.91 0.33 11.64 0.23

Measurement uncertainty (U,)  16.50 0.57 20.36 0.59 23.49 0.67

Table 9-15 is derived with the comparison of performance metrics (RMSE, CV, and MAD) on
three target domains (TD4, TDS, and TD6), resulting from TLS1 and TLS2. The largest number
in Table 9-15 is twenty-nine with the condition of TLS1<TLS2, which is significantly greater than
that with the condition of TLSI>TLS2. The number twenty-nine indicates there are twenty-nine
RMSE, CV, and MAD values of DNN models with respect to TLS1 over three target domains (TD1,
TD2, and TD3) are smaller than that with respect to TLS2. Therefore, TLS1 performs better than
TLS2 over case study #2.

Table 9-15. Summary of comparison of each performance metrics with respect to

case study #2.

Performance Condition
metrics TLS1 >TLS2 TLS1 =TLS2 TLS1 <TLS2
RMSE 4 1 10
cv 5 0 10
MAD 4 2 9
Total 13 3 29

9.4. Conclusions of transfer learning

Based on the results of case study #1 and case study #2, one can conclude:
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1. TLSI or TLS2 performs better than TLSO or SelfL in both case study #1 and case study
#2. Updating weights of DNN models with the information of new task helps to improve
performance of DNN models over testing dataset of TD.

2. TLS1 (fine-tune weights of all DNN model layers) is the best strategy to conduct TL.

3. Results with respect to case study #2 indicate updating model weights with even very
limited data of new task, TL can help to improve the DNN model performance over almost

the whole summer.

Such kind of model with TL shows great potentials and feasibility to conduct fault detection.
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10. Main contributions and recommendations

10.1. Summary of contributions

This dissertation is a contribution to multiple-dependent faults detection and diagnosis

chillers using benchmarking grey-box models along with measurements from a real building. The

benchmarking grey-box models for three system-level target variables (E», COPyp, and Tcawis), and

two component-level target variables (AT¢ny and ATcaw) perform well:

1.

2.

Accurately and robustly predict target variables under normal conditions over a short
dataset (July 2013) and a long dataset (whole cooling season of 2016),

Propagate impacts to target variables due to regressor variables faults, when artificial
faults are injected into the dataset. Case study results verify the effectiveness of the

forward fault detection approach and the backward fault diagnosis approach.

This dissertation also studied the effectiveness of different transfer learning strategies in

improving the performance of DNN models for the prediction of target variables.

Towards the goal of this dissertation, the main contributions are:

1.

Present a classification scheme to distinguish individual faults and dependent faults. This
classification scheme indicates the intrinsic relationship between regressor variables, and
between regressor variable(s) and target variable(s).

Present five benchmarking grey-box models to predict target variables with respect to
chiller operation. Three grey-box models in simple format, instead of state equations with
a complex format, are developed to estimate refrigerant enthalpy with high accuracy at
three key positions of a refrigerant cycle.

Present a forward fault detection model to detect chiller MDFs, using measurements from
BAS of a real building.

Present a backward fault diagnosis model to decouple the dependency relationship of
target variables and regressor variables, and isolate the fault source successfully.

Present a new approach to estimate the prediction uncertainty of a model.
Correspondingly, a new method is developed to identify threshold for fault detection,
which covers the uncertainty information from both the measurement side and the

prediction side.
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6. The transfer learning strategy is proved to be a feasible and efficient approach to develop

an accurate DNN model for a new task. Initializing the weights of the a new model, based
on a previous site, and then update the all the weights based on the secondary site is the

best strategy to conduct transfer learning.

10.2. Recommendations for future work

This section summarizes the limitations of MDFDD model, based on which the

recommendations for future work are presented.

1.

Benchmarking grey-box models, under normal conditions, are verified by measurements,
which supports a solid conclusion of accurate and robust models. Though MDFs are
detected successfully, whether the model complies well with chiller real responses under
faulty conditions is not verified, as measurement data with faults are not available. Future
work should focus on designing and conducting chiller experiments with physical faults
as recognised by BAS, for the purpose of verifying existing chiller FDD models or
developing new models based on needs.

The relationship between proper model training and the subsequential application in FDD
should be well studied. If a model is underfit or overfit, its performance on detecting or
diagnosing faults would be highly affected. Different from prediction/forecasting models
dealing with only normal conditions, a reliable model used for FDD should perform well
under both the normal condition and the faulty condition (able to generate significant
impact on target variables). Further, a perfect model should comply well with the real
chiller response to a fault.

Although one regressor variable fault (e.g., Terwi) might have impact on other regressors
such as Venw or/and mey, refi- ref, this dissertation considers only the significant impact on the
target variable (e.g., E£). The impact on other regressor variables is neglected. Future work
should consider the combined effects.

The time interval of BAS recordings is 15 minutes, which is not enough for the fault
detection under transient regimes. Thus, the proposed method could miss the impact of
shorter-time disturbances. The advanced monitoring system with shorter time steps could
be able to capture transient operation characteristics of a chiller. Data collected by such

advanced monitoring system could be used to develop FDD models under chiller transient
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operations or starting-up/shutting-down periods. The cost-effectiveness of installing a
dedicated monitoring system should be compared with the BAS.

Literature review finds only one study, ASHRAE project 1043-RP [107], that used data
from laboratory experiments of a chiller with faults. However, corresponding experiments
were conducted more than twenty years ago, and only limited fault types were
investigated. The lack of database with faults is the main barrier restricting the FDD study
for HVAC systems. Along with the recent development of intelligent buildings, more
faults of new types have emerged. State-of-the-art models should meet new challenges,
as a results, more open databases with HVAC system faults are expected in the future
work.

Benchmarking grey-box models, presented in this dissertation, are easy to be deployed,
as they need less data to derive an accurate model (resource-efficient) and are fast to be
trained (time-efficient), compared with other general black box models (e.g., deep
learning models). As grey-box models usually have a simple format, they are easily to be
accepted by the building facility management team. Thus, such models show great
potentials to realize the automation of FDD and commercialization of related
product/software. Future work can focus on upgrading BAS, by integrating a program

with MDFDD model, to realize automatic online FDD.
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Appendix A: Uncertainty estimation of direct and derived

measurements

For the measurement uncertainty of derived variables and direct variables in this dissertation,

they are listed here:

BU; = E x 0.05

BUr,, = Tgy X 0.005 + 0.3

BUr_, = Toq X 0.005 + 0.3

Urge = Ur,,

UTdis \/ UTgyc 2 UPey 2 UPcd 2
Tais (Tsuc) (Pev) (Pcd)

UQev chw __ J Tchwr 2 Tchwl 2 UVChW 2
Qevchw (Thwr) Thl) (Vh )

Ucorp _ UQev,chw 2 E 2
Seor . |Genatya . (2

Q ev,chw

Uhsyc — J(UTsuC)z + (UPlV)Z
TS'LI.C Pev

hsuc
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suc ev cd
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UTcd,appr = J(UTcd)z + (UTcdwl)2

UTev,appr = \/(UTev)Z + (UTchwl)2
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Where the symbol with ‘°, above a variable, represents the mean value if this variable.
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Appendix B: Direct and derived measurements with measurement

uncertainty of summers of 2009 to 2017 under the three scenarios

Table B1. Weakly values (mean + uncertainty) of direct and derived measurements

from the operation of chiller CH#1 (scenario 1) over 10 weeks, from June 22 to

August 28, 2016

Week T. chwls °C T. chwrs °C Vchw, L/s E . kW Qev,chw, kw copr
4 6.88+0.33  11.28+0.39 86.52+4.33 276.5+16.1 1589.7+£123.8 5.75+0.56
5 6.88+0.33  11.28+0.39 87.25+4.37 277.4+16.2 1607.5+£125.0 5.79+0.56
6 6.87+0.33  11.33+0.39 87.96+4.40 281.49+16.4 1638.8£127.4 5.82+0.57
7 6.86+0.33  11.53+0.39 87.32+4.37 286.2+16.4 1700.7+£131.9 5.94+0.57
8 6.85+0.33  11.47+0.39 87.88+4.40 280.1+16.7 1691.4+131.5 5.87+0.57
9 6.88+0.33  11.79+0.38 87.68+4.39 303.1+17.1 1792.1+£138.0 5.91+0.56
10 6.91+0.34  11.94+0.39 88.14+4.41 310.3£17.5 1842.1+£141.5 5.94+0.57
11 6.88+0.33  11.94+0.40 87.81+4.39 314.9+18.4 1849.4+142.8 5.87+0.57
12 6.92+0.34  12.08+0.40 89.00+4.46 330.7+19.7 1916.0+147.9 5.79+0.60
13 6.86+0.33  11.29+0.39 87.62+4.39 278.0+16.0 1621.6+£126.2 5.83+0.60

Table B2. Direct and derived measurements of summers of 2009 to 2017 from the

operation of chiller CH#1 (scenario 1)

Year Tenwr, °C Tenwr, °C Venw, L/s E, kW Oev.chw, KW CcoP
2009 7.07£0.34 11.84+0.39  82.58+4.15 324.1+18.6 1658.0+126.7 5.09+0.49
2010 6.99+0.34 11.5+0.39 84.91+4.25 303.1+17.2 1591.6+122.4 5.224+0.5
2011 N/A N/A N/A N/A N/A N/A
2012 6.86+0.33 11.6+0.4 87.78+4.39 325.1+19.1 1733.1£135.0 5.334+0.52
2013 6.84+0.34 10.92+0.4 88.31+4.42 290.0+17.7 1505.7£119.2 5.15+0.51
2014 6.83+0.33 10.99+0.39  88.72+4.44 299.8+17.3 1540.3+120.5 5.12+0.50
2015 7.12+0.34 12.31+£0.42  89.68+4.49 340.1+20.5 1948.5+150.5 5.71£0.56
2016 6.88+0.33 11.56+0.39  87.7+4.39 293.1+17.0 1714.5+132.8 5.85+0.57
2017 6.69+0.33  10.77+0.39  85.79+4.3 255.0+15.4 1468.2+116.8 5.75+0.57
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Table B3. Direct and derived measurements of summers of 2009 to 2017 from the

operation of chiller CH#2 (scenario 2)

Year  Tepu, °C Tenwr, °C Venw, L/s E, kw Oev,chw, kKW COP

2009 7.22+0.34 11.30+0.38  84.66+4.27 300.0+17.6 1460.0+111.7 4.83+0.47
2010 7.16£0.34 11.32+0.38  87.47+4.38 297.9+16.9 1521.6+116.2 5.09+0.49
2011 7.02+0.34 11.36+0.38 88.46+4.43 294.4+16.5 1530.2+116.4 5.19+0.49
2012 7.26+0.34 11.63+0.04  90.83+4.55 311.4+18.3 1657.6£126.5 5.32+0.51
2013 7.19+0.34 11.37+£0.39  91.60+4.59 309.5+18.3 1597.9+122.4 5.16+0.50
2014 7.21+0.34  11.83+0.39  92.70+4.64 341.4+19.4 1787.6+£135.5 5.23+0.50
2015 7.25+0.34 11.44+0.39 92.72+4.66 316.1£18.5 1619.4+124.3 5.11+0.49
2016 7.12+0.34 11.31+0.40 89.93+4.51 293.9+17.3 1581.9+123.1 5.36+0.52
2017 7.22+0.34 11.30+0.38  90.44+4.53 312.0+17.4 1696.2+136.0 5.43+0.53

Table B4. Direct and derived measurements of summers of 2009 to 2017 from the

simultaneous operation of chillers CH#1+CH#2 (scenario 3)

Year Tenwi, °C Tenwr, °C Venw, L/s E, kW Oev.chw, KW (6(0)

2009 7.05£0.34 11.77£0.37 146.54+7.40  581.4+31.8 2882.8+219.8 4.96+0.46
2010 7.01+£0.34 12.09+0.37 144.85+7.29  588.0+31.6 3078.0+233.7 5.23+0.49
2011 6.97+0.34 11.71£0.39  145.37+£7.48 559.9+34.1 2877.5+£224.2 5.12+0.51
2012 6.97+£0.33 11.95£0.38 154.65+7.76  603.5£33.4 3207.84245.3 5.31+0.50
2013 6.96+0.34 12.33+0.39 157.19£7.87 646.9+£35.6 3517.84+268.0 5.43+0.51
2014 6.94+0.33 11.89+0.39 157.94+7.92 619.3£35.6 3256.2+250.9 5.25+0.51
2015 6.95+£0.34 12.3240.40 156.99+7.88  654.8+38.0 3511.7£269.6 5.36+0.52
2016 6.62+0.33  12.02+0.39  156.37+7.84  622.9+35.1 3517.7+£274.8 5.65+0.54
2017 6.03+0.33 11.73£0.38 153.41+£7.74 613.9£34.0 3477.5+277.3 5.66+0.55
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Appendix C: Performance metrics of model training and testing

using measurements of July 2013 and the cooling season of 2016.

Table C-1. Parameters of grey-box models identified from each augmented window,

using measurements of July, 2013.

Model Parameters
aj 0.2 03 0.0
E(kW), AW1 20.44 -0.74 22.03 146.96
Equation AW?2 29.83 -1.53 22.26 214.48
5-4 AW3 33.37 -1.86 22.72 239.93
AW4 29.50 -1.50 22.31 212.11
b1 Ji3) b3 P4 Bo
COP AW1 1.00 0.08 77.30 349  -11.85
Equation AW?2 0.68 0.02 33.49 -1.44 3.76
5-5 AW3 0.52 0.03 44.22 -1.95 -3.61
AW4 0.51 0.03 39.86 -1.74 3.47
o 01 02 03 04 05 00
écﬁ;(t 121 AW 031 0.02 20.04 0.01 10l 222
5.0 AW2 0.43 0.02 -0.07 0.01 091  0.78
AW3 0.46 0.02 -0.08 0.01 092  0.36
AW4 0.39 0.02 -0.08 0.01 090 091
€] [
AT (°C), AW1 1.28 -0.52
Equation AW2 0.60 0.10
5-12 AW3 0.56 0.14
AW4 0.70 0.02
0, 0, 03 0o
ATean(°C), AW1 0.19 0.49 -0.28 -12.26
Equation AW2 0.10 0.60 -0.41 -8.16
5-15 AW3 0.12 0.56 -0.41 -7.88
AW4 0.18 0.49 -0.46 -6.55
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Table C-2. Performance metric values based on each augmented window for each

grey-box model, using measurements of July 2013.

Training dataset

Testing dataset

Model r  RMSE CV(%) MBE gMB r  RMSE CV(%) MBE gMB
) AWI 099 1518 449 003 000 098 2020 591 590 0.2
gguz)i’on AW2 098 2068 638 003 0.00 098 2100 614 789 002
- AW3 098 1924 566 003 000 098 2083 609 726 _ 0.02
AW4 098 1859 580 _ 0.03 000 098 2052 600 657 _ 0.02

o AWI 096 009 377 000 000 086 047 945 0.7 -0.03
b P TAW2 091 031 607 000 000 091 03 619 009 002
o AW3 090 028 545 000 000 090 033 671 0.2 -0.02
AW4 091 030 594 000 000 091 032 637 010 -002
To(°C)_AWL__ 099 0.7 __ 0.0 _ 0.00 000 099 026 _ 078 _ 0.00 _ 0.00
Equaton _AW2 099 026 _ 0.8 _ 000 _ 0.00 099 025 076 _ 0.0l _ 0.00
5-9 AW3 099 023 070 000 000 099 025 076 _ 000 _ 0.00
AW4 099 023 070 000 000 099 025 077 000 _ 0.00

ATom(°C) _AWI__1.00__0.16 348 _ -0.02__-0.0 099 021 _ 460 _ -0.06 _-0.01
, AW2 099 022 500 004 001 099 020 436 00l _ 0.00
Equation _AW3 099 020 421 003 _-001 100 020 429 _ 002 0.00
5-12 AW4 100 020 456 003 001 099 020 429 000 _ 0.00
AToan AWI 099 020 452 000 000 097 035 797 __-00l___0.00
°C) AW2 099 027 659 000 000 098 032 730 002 0.00
Equation _AW3 099 024 536 000 000 098 033 739 _ 002 0.00
5-15 AW4 098 028 680 000 000 098 034 772 000 000
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Table C-3. Parameters of grey-box models identified from each sliding window,

using measurements of July 2013.

Model Parameters
(09 o2 o3 o
E(kW), SW1 20.44 -0.74 22.03 146.96
Equation SW2 27.15 -1.31 22.04 195.21
5-4 SW3 14.77 -0.58 23.97 106.20
SW4 18.70 -0.53 21.32 134.45
b1 12 b3 b4 Lo
COP, SW1 1.00 0.08 77.30 -3.49 -11.85
Equation SW2 0.63 0.01 21.99 -0.91 231
5-5 SW3 -0.04 0.05 55.87 251 -1.14
SW4 0.65 0.12 3.09 -0.04 -12.21
o o1 02 03 04 s 00
g;;”;(t 121 SW1 031 002 -0.04 0.01 1.01 222
5.0 SW2 0.43 0.02 -0.07 0.01 0.88 1.01
SW3 -0.16 -0.04 0.16 0.01 1.09 0.81
SW4 -0.01 0.02 -0.03 0.02 0.88 0.79
€] €0
ATaw(°C),  SWI 1.28 -0.52
Equation SW2 0.64 0.06
5-12 SW3 0.35 0.34
SW4 1.70 -0.92
0, 0, 03 0o
ATean(°C),  SWI 0.19 0.49 -0.28 -12.26
Equation SW2 0.02 0.67 -0.44 -6.95
5-15 SW3 0.20 0.45 -0.56 -2.96
SW4 0.39 0.24 -0.50 -5.12
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Table C-4. Performance metric values based on each sliding window for each grey-

box model, using measurements of July 2013.

Training dataset

Testing dataset

Model r  RMSE __CV(%) MBE NMBE  r RMSE __CV(%) MBE _ NMBE
AWI 099 1518 449 _ 0.03 _ 0.00 098 2020 591 590  0.02
g(];z?i)on AW2 098 2490 802 0.0l _ 0.00 098 2161 632 940 0.3
) AW3 098 1500 405 _ 0.00 _ 0.00 098 2285 668 871  0.03
AW4 098 1593 608 0.0l _ 0.00 098 2082 609 699  0.02
AWI 096 019 377 000 _ 0.00 086 047 945 017 -0.03
ggl’zﬁon AW2 088 036 728 0.00 _ 0.00 092 030 608  -008 -0.02
s AW3 074 0.8 334 000 0.00 087 040 805 -020 -0.04
AW4 092 030 656 0.00 _ 0.00 089 039 780 -0.15 -0.03
Tm(°C). _AWI__ 099 017 050 _ 0.00 _ 0.00 099 026 078 000 0.0
Equaton _AW2 098 _ 0.33 1.03 000 0.0 099 025 077 002 0.0
5-9 AW3 099  0.13 040 000 _ 0.00 098 032 096  -0.06 0.0
AW4 099 021 066 000 _ 0.00 098 029 089  -0.04 0.0
AWI_1.00 016 348 002 -0.01 099 021 460 -0.06 -001
éTf{l:{(io?’ AW2 099 023 563 -0.03  -0.01 099 023 501 009 002
s AW3 099 0.13 243 001 0.00 1.00 021 443 -0.06 -0.01
AW4 099 016 477 001 0.00 099 023 495 000 0.00
C__AWL_099 020 452 0.00 _ 0.00 097 035 797 001 0.00
gT ;d:ﬁf)nc) AW2 098 0.33 836 0.00 _ 0.00 098 032 717 -003 -001
s AW3 099 0.2 251 000 _ 0.00 097 035 794  -0.03 -00l
AW4 096 037 1148 0.00 _ 0.00 096 044 994 007 002
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Table C-5. Parameters of grey-box models identified from each augmented window,

using the measurements from the chiller CH#1 during the summer of 2016.

Model Dataset Parameters
aj (%] a3 a0
AW1 -68.22 20.04 21.76 63.07
AW?2 -53.74 20.05 22.07 59.30
ggfl Z)i’on AW3 -52.83 20.46 22.26 91.83
54 AW4 51.83 0.17 22.00 68.29
AW5 ~49.55 20.08 22.05 59.97
AW6 _44.34 0.12 22.00 4225
AW7 ~44.32 20.06 22.19 56.35
bi % L3 L4 bo
AW1 0.59 0.02 67.01 -3.06 .47
AW?2 0.68 0.01 71.16 3.27 2.81
ggf;tion AW3 0.69 0.02 74.31 -3.42 -3.75
5.5 AW4 0.79 0.03 73.92 3.41 -4.85
AW5 0.82 0.03 74.02 -3.41 521
AW6 0.78 0.03 74.71 -3.45 4.97
AW7 0.82 0.03 75.02 -3.47 -5.43
o1 07 03 04 05 )
AW1 0.38 0.03 -0.07 0.01 0.88 0.07
i AW?2 0.36 0.02 -0.06 0.01 0.88 0.52
é“‘ﬁ;(ﬁg)l’ AW3 0.39 0.02 -0.07 0.01 0.89 0.45
5?9 AW4 0.39 0.02 -0.06 0.01 0.89 0.80
AW5 0.39 0.02 -0.06 0.01 0.89 0.78
AW6 0.38 0.01 -0.06 0.01 0.89 0.98
AW7 0.37 0.01 -0.05 0.01 0.89 1.02
€] €0
AW1 0.30 0.43
o AW?2 0.25 0.47
E‘Zz’:&? ’ AW3 0.25 0.47
512 AW4 0.28 0.45
AWS5 0.25 0.48
AW6 0.21 0.52
AW7 0.22 0.50
0; 1) 03 B
AW1 0.12 0.65 0.82 0.77
. AW?2 0.07 0.71 -0.84 0.94
E’Z ;d:tgo?, AW3 0.08 0.71 -0.84 0.90
515 AW4 0.09 0.69 -0.83 0.76
AW5 0.11 0.66 -0.80 0.51
AW6 0.10 0.66 -0.79 0.37
AW7 0.11 0.65 -0.78 0.25
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Table C-6. Performance metric values based on each augmented window for each

grey-box model, using measurements of the whole cooling season of 2016.

Training dataset

Testing dataset

Model r  RMSE __CV(%) _MBE _NMBE r RMSE __CV(%) MBE __ NMBE
AW1 099 1627 541 000 0.00 099 1734 550 -484  -0.02
AW2 099 1628 532 000  0.00 099 1452 507 -6.15  -0.02
E (kW) AW3 099 1618 533 0.00 _ 0.00 099 1456 4.80 -4.60  -0.02
Equation AW4 099 1555  5.19 _ 0.00 _ 0.00 099 1540 466 -197  -0.01
5-4 AW5 099 1563 515 000  0.00 099 1492 459 213 0.0l
AW6 099 1543 504 000 0.00 099 1551 503 235 0.0l
AW7 099 1512 490 000  0.00 099 1675 561 -0.63  0.00
AWI 100 020 070 000 0.0 100 015 051 -0.01 _ 0.00
AW2 100 018 064 000 0.0 100 016 058 -0.01 _ 0.00
Taw(°C), _AW3  1.00  0.I8 063 _ 0.00 0.0 100 016 055 -0.02 _ 0.00
Equation AW4 1.00 018  0.62 _ 0.00 _ 0.00 100 015 052 -0.04  0.00
55 AW5 100 017 061 000 0.0 1.00 0.16 055 -007 000
AW6 100 017 060 000 0.0 100 015 053 -0.08 _ 0.00
AW7 100 017 059 000 0.0 100 015 055 -0.10 _ 0.00
AW1 094 028 502 000 0.0 092 024 404 -001 _ 0.00
AW2 094 025 450 000 0.0 095 023 396 -001 0.0
COP AW3 095 025 450 0.00 0.00 095 0.8 3.08 0.00 _ 0.00
Equation AW4 095 024 428  0.00 _ 0.00 092 014 227 004 001
5.9 AW5 095 023 408 000 0.0 094 0.6 267 001  0.00
AW6 095 022 391 000 0.0 096 021 371 -001 0.0
AW7 095 022 377 000 0.0 097 024 418 001 _ 0.00
AWI 100 017 371 -003 -0.01 100 016 3.12 -0.04 -0.01
AW2 100 017 347 -003 -0.01 100 017 378 -0.02 _ 0.00
ATon(°C), _AW3 1.00  0.17 349  -0.02  -0.01 100 017 349 -0.01 _ 0.00
Equation AW4 1.00 0.17 357 -0.03 -0.01 099 0.5 287 000 _ 0.00
5-12 AW5 100 017 349 -003 -0.01 .00 0.17 323 004 -001
AW6 100 017 341 -0.02 0.0 1.00 018 371 -0.04 -0.01
AW7 100 016 336 -0.02 0.0 100 019 414 004 -0.01
AWI 099 027 639 000 0.0 100 0.15 320 007 001
AW2 099 023 526 000 0.0 100 0.11 264 -002 -0.01
ATen(°C), _AW3 099 022 496  0.00 0.0 099 023 515 -0.12  -0.03
Equation AW4 099 020 459  0.00 _ 0.00 099 031 640 -025  -0.05
5-15 AW5 099 022 487 000 0.0 099 038 799 028 -0.06
AW6 099 022 488 000 0.0 099 034 765 -023  -0.05
AW7 099 021 464 000 0.0 099 034 803 -026 -0.06
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Table C-7. Parameters of grey-box models identified from training dataset of each

sliding window, using the measurements from the chiller CH#1 during the summer

of 2016.
Model Dataset Parameters
ol a2 03 0
SWI1 -52.83 -0.46 22.26 91.84
E&w), SW2 -39.85 0.63 21.70 -0.68
Equation SW3 -38.32 1.38 21.72 -67.70
5-4 SW4 -35.77 1.43 21.71 -72.74
SW5 -35.43 0.40 22.14 13.49
SW6 -35.91 2.20 21.81 -139.61
b1 B2 b3 B4 Po
SW1 0.69 0.02 74.31 -3.42 -3.75
COP, SW2 1.13 0.04 85.84 -3.99 -8.60
Equation SW3 1.07 0.04 81.51 -3.78 -7.48
5-5 SW4 0.96 0.04 81.95 -3.80 -7.27
SW5 0.97 0.06 82.41 -3.83 -8.68
SW6 0.99 0.04 76.54 -3.55 -7.19
0; 02 03 04 05 00
SW1 0.39 0.02 -0.07 0.01 0.89 0.45
Teawi(°C), SW2 0.37 0.01 -0.05 0.01 0.85 2.25
Equation SW3 0.35 0.01 -0.04 0.01 0.85 2.46
5-9 SW4 0.33 0.00 -0.03 0.01 0.86 2.45
SW5 0.34 0.00 -0.03 0.01 0.86 2.40
SW6 0.21 -0.02 0.02 0.01 0.83 5.27
€] €0
SWI 0.25 0.47
ATen(°C), SW2 0.24 0.48
Equation SW3 0.17 0.55
5-12 SW4 0.16 0.56
SW5 0.19 0.53
SW6 0.13 0.59
0, 6> 63 6o
SW1 0.08 0.71 -0.84 0.90
AT ean(°C), SW2 0.09 0.69 -0.73 -1.33
Equation SW3 0.15 0.59 -0.68 -1.87
5-15 SW4 0.13 0.60 -0.65 -2.11
SW5 0.12 0.60 -0.66 -1.65
SW6 0.12 0.58 -0.67 -1.16
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Table C-8. Performance metric values based on each sliding window for each grey-

box model, using measurements of the whole cooling season of 2016.

Training dataset

Testing dataset

Model r  _RMSE __CV(%) _MBE NMBE  _r RMSE _ CV(%) __MBE _ NMBE
SWI 099 16.18 533 000 0.0 099 1456 480 460 -0.02
SW2 099 1438 477 000 0.0 099 1425 431 027 0.0
Equagﬁ?’ SW3 099 1431 459 000 000 099 1255 385 192 00l
s SW4 099 1380 447 000 0.0 099 1482 458 557 0.2
SW5 099 1345 434 000 0.0 099 1678 557 5.3 0.2
SW6 099 1351 427 000 0.0 099 1756 609 275 -0.01
SWI_ 1.00 0.8 063 000 0.0 100 0.16 055 -0.02 0.0
), —SW2_100 015 054 0.00 0.0 1.00 0.15 053 004 0.0
E‘qgaﬁon’ SW3  1.00 0.5 053 000 0.0 1.00 0.15 051 003 0.0
55 SW4 1.00 0.5 053 000 0.0 1.00 0.16 056  -0.08 0.00
SW5 1.00 0.5 053 000 0.0 100 0.14 050 -0.08 0.00
SW6 1.00 0.5 051 000 0.0 1.00 0.13 047 004 0.0
SWI 095 025 450 0.00 0.0 095 0.18  3.08 000 0.0
cor SW2 096 0.19 334 000 0.0 090 0.16 274 007 001
Eouition —SW3 095 018 317 000 000 095 0.3 227 001 0.0
s SW4 095 0.8 305 000 0.0 095 0.7 288 004 001
SW5 096 0.17 287 000 0.0 096 022 395 000 0.0
SW6 095 0.6 272 000 0.0 097 026 455 -0.02 0.0
SWI_ 1.00 0.7 349 002 -0.01 1.00 0.17 349 0.0l 0.0
ATeC), —SW2_ 100016 334 002 0.00 099 0.5 283 0.00 000
Eq;:tion’ SW3  1.00 0.16 320 002 0.0 1.00 0.5 288  -0.02 0.0
s 15 SW4 1.00 0.16 325 002 0.0 .00 0.17 336 004 -0.01
SW5 1.00 0.16 325 002 0.0 1.00 0.19 404 006 -0.01
SW6 1.00 0.7 330 002 0.0 1.00 020 437 003 -0.01
SWI 099 022 496 000 000 099 023 515 -0.12 -0.03
AToaC) SW2 100 013 301 000 0.00 099 033 673 -026 -0.05
qul:tion’ SW3 099 0.16 355 000 0.00 100 020 421 015 -0.03
515 SW4 099 0.18 388 000 0.0 099 037 785 -025 -0.05
SW5 1.00 0.16 341 000 0.0 099 034 787 026 -0.06
SW6 099 023 490 0.00 0.0 1.00 0.14 337 005 -0.01
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Appendix D: Measurement uncertainty and performance metrics of

DNN models with respect to transfer learning

Table D-1. Measurement uncertainty of target variables and performance metrics of

five DNN models over three target domains (TD1, TD2, and TD3) based on self-

learning.
Target Training dataset Testing dataset

variables r RMSE  CV (%) MAD Un r RMSE CV (%) MAD

TD1
E (kW) 0.97 12.93 5.10 10.30 16.5 090 69.71 2048 49.11
COP (-) 0.94 0.29 5.31 0.23 057 0.64 0.94 15.83 0.69
Teaw (°C) 0.96 0.27 1.01 0.22 048 098 042 1.45 0.31
ATy (°C)  1.00 0.07 1.83 0.06 0.54 1.00  0.15 2.81 0.12
ATeaw (°C)  0.98 0.23 6.35 0.18 0.64 097 0.89 17.33 0.69

TD2
E (kW) 0.99 13.91 4.42 9.79 2036 099 19.19 6.60 13.97
COP (-) 0.90 0.24 410 0.18 0.59 093 037 6.51 0.25
Teaw (°C) 0.99 0.25 0.88 0.20  0.52 099 028 1.00 0.22
ATy (°C)  1.00 0.08 1.58 0.06 0.54 1.00  0.10 2.24 0.08
ATeaw (°C)  1.00 0.17 3.65 0.13 0.67 099 0.30 7.19 0.23

TD3
E (kW) 0.99 12.29 3.74 9.88 21.81 098 3047 9.39 26.65
COP (-) 0.84 0.58 9.65 0.12  0.61 092  0.58 9.90 0.16
Teawi (°C) 0.99 0.32 1.11 0.18 0.54 098  0.50 1.75 0.47
ATy (°C)  1.00 0.16 2.95 0.09 0.54 1.00 0.20 3.91 0.13
ATeaw (°C)  0.99 0.20 4.10 0.14  0.69 099 043 8.96 0.38
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Table D-2. Measurements uncertainty of target variables and performance metrics of

five DNN models over three target domains (TD4, TDS5, and TD6) based on self-

learning.
Target Training dataset Testing dataset
variables r RMSE  CV (%) MAD Un r RMSE CV (%) MAD
TD4
E (kW) 0.97 15.8 6.24 12.06 16.5 0.90 69.45 2203 4345

COP (-) 0.94 0.29 5.39 023  0.57 0.71 0091 15.51 0.60
Tean (°C) 0.96 0.35 1.30 028 0.48 098 0.57 2.01 0.39
ATy (°C)  1.00 0.14 3.56 0.12  0.54 1.00  0.22 4.33 0.18
ATeaw (°C) ~ 0.98 0.61 17.03  0.56  0.64 099 101 2190 0.92
TD5
E (kW) 0.99 13.60 4.32 9.74 20.36 099 1392 449 10.23
COP () 0.91 0.28 477 0.22 0.59 092 0.30 5.16 0.24
Teaw (°C) 0.99 0.30 1.05 024  0.52 0.99 0.30 1.06 0.23
AT (°C) ~ 1.00 0.10 2.07 0.09 0.54 1.00  0.11 2.27 0.09
ATeay (°C)  1.00 0.40 8.66 0.38  0.67 099 0.31 6.82 0.27
TD6
E (kW) 0.99 14.01 5.13 10.03  23.49 098 20.55  6.50 15.40
COP () 0.93 0.33 5.93 024 0.67 0.74 0.34 5.78 0.27
Teaw (°C) 0.99 0.33 1.18 0.25 0.60 098 043 1.51 0.29
AT (°C)  1.00 0.09 2.08 0.07  0.59 1.00  0.09 1.85 0.08
ATeaw (°C)  0.99 0.24 6.13 0.18 0.73 0.99 0.25 541 0.21
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Table D-3. Measurements uncertainty of target variables and performance metrics of
five DNN models over testing dataset of three target domains (TD1, TD2, and TD3)
based on TLSO.

Target variable r RMSE CV (%) MAD Un
TDI1
E (kW) 0.98 23.46 6.89 19.34 16.5
COP (-) 0.76 0.54 9.11 0.43 0.57
Teaw1 (°C) 0.99 0.43 1.48 0.39 0.48
ATene (°C) 1.00 0.32 5.84 0.28 0.54
ATeaw (°C) 0.98 0.51 10.07 0.43 0.64
TD2
E (kW) 0.99 22.45 7.72 16.22 20.36
COP (-) 0.88 0.63 11.07 0.52 0.59
Teaw1 (°C) 0.99 0.42 1.51 0.38 0.52
AT e (°C) 1.00 0.30 6.54 0.25 0.54
ATaw (°C) 0.95 0.60 14.28 0.49 0.67
TD3
E (kW) 0.99 20.87 6.43 15.15 21.81
COP (-) 0.86 0.48 8.26 0.41 0.61
Teawi (°C) 0.99 0.49 1.73 0.44 0.54
ATenw (°C) 1.00 0.38 7.28 0.31 0.54
ATeanw (°C) 0.98 0.48 10.11 0.39 0.69
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Table D-4. Measurements uncertainty of target variables and performance metrics of
five DNN models over testing datasets of three target domains (TD1, TD2, and
TD3) based on TLSI.

Target variables r RMSE CV (%) MAD Un
TD1
E (kW) 0.98 21.05 6.18 16.13 16.5
COP (-) 0.80 0.33 5.50 0.26 0.57
Teaw1 (°C) 0.99 0.42 1.44 0.34 0.48
ATemy (°C) 1.00 0.17 3.03 0.12 0.54
ATeaw (°C) 0.96 0.51 9.94 0.34 0.64
TD2
E (kW) 0.99 11.82 4.07 8.69 20.36
COP (-) 0.92 0.42 7.35 0.29 0.59
Teaw1 (°C) 0.99 0.30 1.08 0.25 0.52
ATeny (°C) 1.00 0.11 2.46 0.09 0.54
ATean (°C) 0.97 0.51 12.17 0.38 0.67
TD3
E (kW) 0.99 11.34 3.50 9.0 21.81
COP (-) 0.91 0.28 4.76 0.22 0.61
Teaw1 (°C) 0.99 0.28 0.98 0.23 0.54
AT (°C) 1.00 0.10 1.87 0.08 0.54
ATeaw (°C) 0.98 0.44 9.19 0.33 0.69
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Table D-5. Measurements uncertainty of target variables and performance metrics of
five DNN models over testing datasets of three target domains (TD1, TD2, and
TD3) based on TLS2.

Target variables r RMSE CV (%) MAD Un
TD1
E (kW) 0.98 21.60 6.35 16.51 16.5
COP (-) 0.79 0.33 5.48 0.25 0.57
Teaw1 (°C) 0.99 0.42 1.44 0.34 0.48
ATemy (°C) 1.00 0.18 3.24 0.13 0.54
ATeaw (°C) 0.96 0.52 10.17 0.32 0.64
TD2
E (kW) 0.99 11.88 4.08 8.80 20.36
COP (-) 0.92 0.41 7.18 0.28 0.59
Teaw1 (°C) 0.99 0.29 1.02 0.24 0.52
ATeny (°C) 1.00 0.11 2.38 0.09 0.54
ATean (°C) 0.97 0.52 12.44 0.38 0.67
TD3
E (kW) 0.99 12.61 3.89 9.56 21.81
COP (-) 0.92 0.24 4.12 0.19 0.61
Teaw1 (°C) 0.99 0.28 0.99 0.24 0.54
AT (°C) 1.00 0.10 1.97 0.08 0.54
ATeaw (°C) 0.98 0.45 9.32 0.35 0.69
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Table D-6. Measurements uncertainty of target variables and performance metrics of
five DNN models over testing datasets of three target domains (TD4, TDS5, and
TD6) based on TLSO.

Target . RMSE CV (%) MAD U,
variables
TD4
E (W) 0.99 2081 6.60 15.85 16.5
COP () 0.83 0.69 11.82 0.56 0.57
Teant (°C) 1.00 0.45 1.56 0.39 0.48
ATom (°C) 1.00 0.37 7.29 031 0.54
AT et (°C) 0.98 0.74 15.88 0.69 0.64
TD5
E (W) 0.99 19.65 6.34 14.66 2036
COP () 0.85 0.69 11.81 0.56 0.59
Tetni (°C) 0.99 0.45 1.57 0.39 0.52
AT (°C) 1.00 0.36 7.17 0.30 0.54
AT et (°C) 0.98 0.69 15.14 0.64 0.67
TD6
E (W) 0.99 19.36 6.13 14.53 23.49
COP (-) 0.83 0.66 11.30 0.54 0.67
Tetnt (°C) 0.99 0.44 1.55 0.38 0.60
AT (°C) 1.00 0.36 711 0.30 0.59
ATean (°C) 0.99 0.68 1451 0.63 0.73
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Table D-7. Measurements uncertainty of target variables and performance metrics of
five DNN models over testing datasets of three target domains (TD4, TDS5, and
TD6) based on TLSI.

Target . RMSE CV (%) MAD U
variables
TD4
E (W) 0.99 18.06 5.73 14.80 16.5
COP (-) 0.87 0.39 6.70 0.32 0.57
Tetnt (°C) 1.00 0.53 1.87 0.49 0.48
ATom (°C) 1.00 0.11 2.19 0.09 0.54
AT et (°C) 0.93 2.29 49.16 2.19 0.64
TD5
E (W) 0.99 18.57 5.99 15.17 2036
COP (-) 0.88 031 5.32 0.24 0.59
Tetnt (°C) 0.99 0.49 172 0.35 0.52
AT (°C) 1.00 0.10 2.05 0.08 0.54
AT et (°C) 0.99 0.38 8.32 031 0.67
TD6
E (W) 0.99 15.67 4.96 11.06 23.49
COP (-) 0.82 031 521 0.24 0.67
Totnt (°C) 0.99 0.22 0.79 0.17 0.60
AT (°C) 1.00 0.10 1.93 0.08 0.59
ATt (°C) 0.99 0.26 5.52 0.20 0.73
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Table D-8. Measurements uncertainty of target variables and performance metrics of

five DNN models over testing datasets of three target domains (TD4, TDS5, and
TD6) based on TLS2.

Target . RMSE CV (%) MAD U,
variables
TD4
E (W) 0.99 29.00 9.20 25.99 16.5
COP (-) 0.87 0.40 6.88 0.32 057
Teant (°C) 1.00 0.61 2.15 0.57 0.48
ATom (°C) 1.00 0.12 2.36 0.09 0.54
AT et (°C) 0.93 224 48.07 2.14 0.64
TD5
E (W) 0.99 25.77 831 2291 2036
COP () 0.88 0.41 6.97 0.33 0.59
Tetnt (°C) 1.00 0.45 1.59 0.38 0.52
AT (°C) 1.00 0.12 2.49 0.10 0.54
AT et (°C) 0.88 2.43 53.37 2.29 0.67
TD6
E (W) 0.99 16.52 5.23 11.64 23.49
COP (-) 0.82 0.29 4.94 0.23 0.67
Tetnt (°C) 0.99 0.22 0.76 0.16 0.60
AT (°C) 1.00 0.09 185 0.07 0.59
ATean (°C) 0.99 027 5.84 021 0.73

175



