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Abstract 

Fault detection and diagnosis (FDD) of multiple-dependent faults of chillers 

 

Hongwen Dou, Ph.D.  

Concordia University, 2023 

 

As an indispensable system in modern buildings, the heating, ventilation, and air conditioning 

(HVAC) system usually takes a large proportion of building energy usage. However, faults of 

HVAC system in modern buildings are becoming a growing issue. These faults can aggravate 

equipment degradation or even damage equipment, and sequentially lead to the increase of 

maintenance cost and the significant energy waste. Therefore, it is paramount for the HVAC system 

to run as effectivity and fault free as possible; as a result, research and development into HVAC 

faults turns to an effective approach to improve building energy efficiency. This dissertation is a 

contribution to the research of fault detection and diagnosis with a new topic of chiller multiple 

dependent faults in a real building.  

The forward fault detection model and the backward fault diagnosis model are developed to 

identify and isolate chiller system-level and component-level faults respectively, based on the 

measurement data from an institutional building. The second law of thermodynamics is applied to 

analyse the energy flow over an electric chiller, for the purpose of selecting target variables. 

Benchmarking grey-box models are developed to predict target variables, and sequentially to 

estimate the impacts of regressor variable faults on target variables. A fault symptom is detected 

when the residual of a target variable, the difference between the measured value and the predicted 

value, exceeds the corresponding threshold. Then, a backward rule-based approach is presented to 

identify if (i) the fault symptom is correct (i.e., a variable has abnormal values), or (ii) the fault 

symptom is incorrect (i.e., the symptom of target variable is caused by impacts generated by other 

faulty variables due to the dependency between variables), or (iii) both target and regressor 

variables are abnormal. The proposed model for chiller multiple-dependent faults is validated by 

a case study with a cooling plant serving an institutional building, where some faults are artificially 

inserted into the measurement data file. This dissertation also explored the effectiveness of transfer 

learning method in the application of improving deep learning model performance.  
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Chapter 1: Introduction 

The concerns of rising energy usage are becoming a serious issue worldwide. The global 

primary energy consumption raised to 583.90 EJ in 2020 with an average growth rate of 2.09% 

per year for the past decade [1]. As an energy leader, Canada consumed 13.63 EJ (3% of the global 

energy consumption) in 2020 [2]. The energy used for buildings reached to 2.79 EJ in 2018, 

accounting for 28.78% of Canada’s overall energy usage [3]. The percentage for energy 

consumption of buildings is greater inside Quebec, accounting for 30% of Quebec’s overall energy 

consumption in 2016 [4]. According to Natural Resources Canada, 63.20% of secondary energy in 

the building sector is used for space heating and cooling across Canada  [3]. In the USA, 70% of 

electricity is primarily used for heating, cooling, and lighting [5].  

As an indispensable system, the heating, ventilation, and air conditioning (HVAC) system in 

modern buildings may consume roughly 50% of a building’s energy to keep the indoor 

environment within a certain level [6]. Faults of HVAC system are responsible for part of energy 

waste and impacts. It is reported that building faults lead to (1) energy waste, 0.4-1.8EJ of energy 

for commercial buildings in USA is squandered [7], (2) increased maintenance cost [8], and (3) 

the degradation or even possible damage to equipment [9,10].  Hence, maintaining HVAC system 

at optimum working status becomes one of the most important approaches to improve energy 

efficiency, especially when faults could occur in HVAC systems [11]. But faults of HVAC systems 

are becoming increasingly frequent. A study about building maintenance reported there were 11 

fault cases every year per 1,000 m2 floor area, for both chillers and boilers [12]. Worse, these faults 

might occur simultaneously, interact with each other, or even induced new faults, which may be 

aggravated due to the building automation system. As such, the ever-changing conditions are 

making fault detection and diagnosis (FDD) a challenging endeavor, especially for the topic of 

multiple faults (MFs). 

As the core component, chillers account for around 40% of the service resources and around 

25% of the repair costs [13]. However, the research on chiller FDD has mainly focused on single 

fault (SF) problems to date. Only a small number of papers were found to study chiller MFs or 

multiple-dependent faults (MDFs), which is in-sufficient and deserves more attentions. This 

dissertation contributes to the study of FDD for chiller MDFs.    
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Chapter 2: Literature review 

The literature review in this dissertation starts with the definition of common terms of FDD 

(e.g., multiple dependent faults) in the field of HVAC, followed by the research on single fault. 

Then, publications with the topic of multiple/simultaneous faults are reviewed to conclude on the 

research gaps, to indicate the research goals.  

2.1. Term definitions and a classification scheme for multiple faults  

2.1.1. Definitions for fault, simultaneous fault, fault detection, and fault diagnosis  

This section defines the terms used in the FDD field for HVAC systems, including fault, 

simultaneous faults, fault detection, fault diagnosis, etc. The sources of these definitions are from 

published work and the author. 

Two definitions for a fault are found from published papers:   

I. A departure from an acceptable range on an observed variable or calculated parameter 

associated with the equipment [14].  

II. An abnormal condition or defect at the component, equipment, or sub-system level 

which may lead to a failure [15]. 

Simultaneous faults were defined as two or more faults occurring at the same time, but at 

different locations [16]. The key characteristic of this definition is that faults that occur 

simultaneously within a system. However, it lacks the specified scope or location, for instance, a 

study for FDD within an air handling unit (AHU) also treated faults as simultaneous faults [17]. 

Hence, this dissertation defines simultaneous faults as two or more faults occurring at the same 

time with respect to a component or a system.  

Collins Dictionary illustrates the word detection as the act of discovering or the fact of being 

discovered [18]. Thus, the act of identifying a symptom that is/was occurring in a 

system/component is termed as fault detection.   

Fault diagnosis can be defined as a search for the causal origin of an observed pattern of 

abnormal system behavior [14].  
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2.1.2. Definition for multiple faults and a classification scheme 

MFs can be defined as more than two faults that happen simultaneously or sequentially, and 

they can be classified as the following four categories [19]:  

I. Induced fault: a fault is induced by another fault. 

II. Independent multiple faults: different faults have effects on different variables. 

III. Masked multiple faults: some faults from fault group A can explain all symptoms from 

another fault group B.  

IV. Dependent multiple faults: these are the faults that interact with each other, resulting in 

mixed symptoms. 

This definition [19] comes from the industry of chemical processes. It describes MFs from 

the view of causal relationship between a fault source and corresponding symptoms. However, this 

definition limits the number of faults to more than two faults, which might contradict to many 

publications [20–22]. Besides, though masked multiple faults are treated as a separate category, 

rare case in HVAC systems fall into this group.  

This dissertation terms MFs as two or more faults that occur simultaneously or sequentially 

with respect to a system/component. As MFs consists of, at least, two faults, the joint effect on a 

target variable may act as an accumulative impact or not. The case of MFs differs to another one 

if the condition that the interaction effect exists holds. Therefore, cases of MFs can be generally 

classified based on whether the impact of one (or more) fault could propagate to other variable(s), 

which is described as dependency relationship and used to distinguish independent faults from 

dependent faults. For instance, within a system (e.g., chiller system), the case of sensor fault is 

under the category of independent fault and the case of variable fault is under the category of 

dependent fault, as a sensor normally does not propagate to other variables, but only shows 

abnormal measurement values. An experimental study shows the case of independent fault, where 

no connection was found between supply air temperature sensor fault and supply fan pressure 

sensor fault [17]. Dependent faults are those in which one variable fault (abnormal value) could 

propagate to other variables. Another experimental study of fault impacts of a vapor compression 

rooftop unit reveals the dependent relation, where a physical artificial variable fault usually led to 

abnormal values of other multiple variables [23].  

Further, dependent faults can be categorized by the consequence of dependency relationship, 

when the impact of one variable (called a regressor variable) was assessed on the other subsequent 
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variable(s) (called the target variable) that are measured or simulated. Apart from the dependency 

relation between a regressor and a target variable, the following discussion applies when the impact 

between regressor variables exist.  

I. General dependent faults: the fault on a target variable depends on the fault of a 

regressor variable.  

II. Aggravated faults: faults of multiple regressor variables have the same impact trend on 

a target variable, as a result, the joint-impact on the target variable is aggravated, 

regardless of relation (independent or dependent) between individual regressor 

variables. For example, simultaneous outdoor air damper fault and supply air damper 

fault together could aggravate the heating power fault. Therefore, the sum of two 

individual faults is nearly the same with a joint impact on the heating power [17]. 

Author clarifies that a new fault might occur due to the aggravated effect, thus, such 

cases (new fault occurs) should be classified into this category.  

III. Counteracted faults: faults of multiple regressor variables have different impact trends 

on a target variable. As a result, the joint-impact on the target variable is counteracted, 

regardless the relation (independent or dependent) between individual regressor 

variables. For example, condenser fouling fault of the chiller leads to the decrease of 

Tcdwl; and valve stuck of condenser water loop rises Tcdwl. If both the faults occur 

simultaneously, the counteracted impact might lead to a ‘normal’ state of Tcdwl.  

 

 

Figure 2-1. Classification scheme of multiple faults. 

Thus, a classification scheme is proposed to summarize the relationship between each fault 

in the case of multiple simultaneous faults (MSFs), as shown in Figure 2-1.  
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From this paragraph on, literature review about SF and MSFs is presented. In terms of 

research models for FDD, Katipamula and Brambley [24] proposed a classification scheme (see 

Figure 2-2) for building systems, which is well acknowledged in this field and used to classify the 

reviewed publications in this dissertation. The reviewed articles on each topic are discussed in a 

chronological order.  

 

 

Figure 2-2. The classification scheme for FDD methods [24]. 

2.2. Literature review for single fault 

The review for SF was conducted over a period spanning twenty-four years, from 1998 to 

2022, with key words of HVAC, building system, fault detection and diagnosis. 

2.2.1. Quantitative model-based method 

Keir and Alleyne [25] developed a detailed physical-based model to describe the vapor 

compression system (VCS), and applied it with experiment data to calculate the residual. When 

the residual exceeds a threshold, a fault symptom is detected.   

Weimer et al. [26] proposed a thermodynamic model, derived through a spatial discretization 

of heat transfer equation for a room, to evaluate indoor air temperature. After the calibration with 

experiment data, case study results indicated this model was accurate and robust for FDD.   
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2.2.2. Qualitative model-based method 

Initially, a rule-based method was presented to research the common refrigerator SF by 

experiments [27]. Comparisons of data derived from experiments under fault and fault-free 

conditions was used for FDD.   

Fernandez et al. [28] generated rules to detect and isolate faults of sensor, controller, and 

damper, based on laboratory tests of a HVAC system. The work was adopted by [29] to study 

economic impacts due to faults for the VAV system and AHU. Coupled with self-correcting 

controls, results indicated that the packaged HVAC system realized 15% energy savings per year 

[29].  

An expert rule system was presented based on the on-site survey for eighteen AHUs, 

operating under fault or fault-free status, to improve the energy efficiency [30]. Case study reported 

that over €104,000 per year of energy savings were achieved.  

In summary, the qualitative model-based method relies on expert knowledge. Though the 

qualitative model-based method is computationally effective and easy to use, its universality is 

limited as each system is case-independent. A review paper indicated that the rule-based approach 

accounts for 78% of all the 52 pieces of research within qualitative model-based methods after 

they went through 197 publications [31].   

2.2.3. Process history-based method 

The literature review for SF problems finds that research utilizing the black-box model takes 

most studies among the category of process history-based methods. Therefore, this section starts 

with the grey-box models (a type of process history-based method) and ends with black box models.   

A grey-box model is a data-driven model that couples a physical model, and then identifies 

important parameters representative of certain key or aggregated physical parameters by statistical 

analysis [32]. The research, using the grey-box model for FDD, includes publications focusing on 

the evaporator and the condenser fouling fault for a heat pump system [33], root top unit (RTU) 

equipment faults [34], and the gradual and the sudden fault of chiller and cooling tower [35], etc. 

For instance, Yu et al. [34] selected input variables identified by experimental analysis and the 

coefficients identified by genetic algorithm to build a grey-box for a RTU, which was applied for 

the detection of RTU dirty indoor filter fault and slipping supply fan belt fault.  

A black-box method is a data-driven model, derived from the mathematical relationship, 
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between inputs and outputs with a strict parameter tuning process [32]. Ren et al. [36] proposed a 

multi-class support vector machine (SVM) model, where each of eight features was assigned with 

a specific fault [37,38]. The model was applied to perform FDD to a refrigerant system with the 

experiment data, and reported a high diagnostic accuracy of 98%.    

Youming and Lili [39] presented a principal component analysis (PCA) model to detect 

condenser fouling fault for an air-source heat pump. The data, collected from experiments under 

faulty and fault-free conditions, was projected into PCA space to generate the residual for fault 

detection. Results indicated that condensing fouling fault with 20% and 60% levels was identified 

successfully. 

FDD model developed with artificial neural network (ANN), focusing on HVAC, has received 

much attention [40–42]. For instance, [42] established ANN models to detect the total electricity 

consumption fault and as a diagnostic tool to isolate the fault of a subsystem. 

2.2.4 Summary of literature review for single fault 

To summarize, the literature review for FDD covers the application from whole-building-

level fault to component-level or sensor-level fault. Research on the whole building system attracts 

the least attention (6.25%), and research on HVAC equipment take the largest proportion (46.25%) 

[43]. Apart from the HVAC system, application of FDD has been expanded to improve the quality 

and throughput in industrial processes [44], robot work systems [45], nuclear power plants [46], 

etc.  

2.3. Literature review for multiple/simultaneous faults 

A single fault is usually much simpler to deal with, compared with the multiple/simultaneous 

faults that occur at the same time but at different locations [16,47]. Detection and diagnosis of 

multiple/simultaneous faults in HVAC systems is still a challenge, since the combination of several 

faults makes it difficult to separate the individual faults. MFs and MDFs are two related but distinct 

topics. Both refer to multiple faults, but differ in whether dependency among faults exists. A fault 

symptom might not reveal a real fault, but could be the result of another fault in the system. 

The review for multiple/simultaneous faults and MDFs was conducted over a period spanning 

eighteen years, from 2004 to 2022, with key words of HVAC, building system, fault detection and 

diagnosis, and multiple/simultaneous faults. 
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2.3.1. Quantitative model-based method 

Li and James [48] presented a decoupling-based approach, between target variable and 

potential source of fault, to detect and diagnose MDFs. They used an air-cooled roof top unit, 

installed in a laboratory-controlled environment, as a case study. Based on the theoretical analysis 

of physical processes in the system and within each equipment (e.g., compressor, condenser), and 

the experimental measurements, they proposed a decoupling-based method. The decoupling-based 

method simplifies the diagnosis by assuming that abnormal target variable (e.g., the discharge 

refrigerant temperature Tdis) is caused exclusively by one regressor variable, while the role of all 

other possible regressor variables is neglected. For instance, they concluded that the abnormal 

deviation of Tdis is only caused by the compressor valve leakage. The situation of a faulty target 

variable (e.g, faulty sensor of Tdis) was not considered. This method is applied to research MFs for 

packaged air conditioners [49], and air conditioners [50,51].  

 

 

Figure 2-3. Decoupling scheme of rooftop system faults [48]. 

 

Thumati et al. [52] utilized the time-discrete HVAC model [53] to investigate a simultaneous 

cooling coil degradation fault and insulation leakage fault for an AHU, using measurement data. 

The faults could be diagnosed if the residual between the outputs of the developed models and 

system states exceeded a pre-defined threshold, which was identified by the system uncertainties 

and fault magnitudes [54].  

Subramaniam et al. [55] presented a physical model to estimate zone temperature to study 
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VAV damper lock-in-place MFs. Cases studies were introduced to study multiple faults occurring 

sequentially and simultaneously in different zones, using SIMBAD simulation toolbox [56].  

Kim and Braun [57] expanded previous work on FDD methods [48–51] and developed a 

MDFDD system that decouples the impacts of individual faults to estimate multiple faults that 

occur simultaneously. They developed virtual sensors for the compressor, expansion valve, 

condenser, evaporator, and refrigerant charge, using measurements from a four-ton rooftop unit in 

a laboratory-controlled environment, and the compressor map. When two simultaneous faults 

occur (e.g., the reduction of airflow rate due to condenser fouling, and compressor valve leakage), 

the impact ratio of each fault on the system performance (e.g., COP) degradation is isolated.   

In summary, the physical-based model is built based on first principles and applied to topics 

of multiple/simultaneous faults and MDFs. Physical models show strength to capture the transients 

in a dynamic system [31]. However, the model relies on rich and deep physical knowledge. For 

large and complex systems, the detailed quantitative model could be quite complex or could not 

be solved.    

2.3.2. Qualitative model-based method 

Breuker and Braun [23] used measurements from a three-ton packaged rooftop unit along 

with polynomial models to develop a statistical, rule-based classifier for faults. Such rules show 

whether a particular measurement increases or decreases in response to a particular fault at steady-

state conditions. For instance, the compressor valve leakage generally increases the discharge 

refrigerant temperature (Tdis) from the compressor above the normal value under steady-state 

condition. If measurements in a real rooftop units show the increase of Tdis, the detection rule 

indicates that the fault is caused by the compressor valve leakage, whereas all other possible causes 

are neglected. 

Qin and Wang [20] integrated performance indexes with expert rules to study the 

multiple/simultaneous faults for the VAV system terminal. Following the working sequence of 

VAV system, to ensure a fault has no impact on the subsequential fault, a rule was set for a 

component (e.g., coil) fault. The method was limited to the condition that independent fault holds. 

Wang and Chen [58] developed expert rules to diagnose MSFs of AHU, where the residual-

based exponential weighted moving average chart was used to detect the fault.  

Apart from the application above, the expert rule was also used as an assistant tool to a pre-
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diagnose fault [21,59].  

To summarize, the expert rule is the only method that can be found in the literature review 

applied for the topic of multiple/simultaneous faults among qualitative model-based methods and 

usually is combined with other models (e.g., black-box model). Though rule-based model has some 

limitations, such as it requires prior expert knowledge, expert rule is interpretable, computational-

efficient, and easy to use.  

2.3.3. Process history-based method 

A multiple-level FDD system was built based on PCA and joint angle analysis (JAA) 

algorithms to solve MFs of an AHU, under the assumption that multiple faults could not occur 

simultaneously in one subsystem (e.g., supply air control loop) [21]. Another two papers integrate 

PCA with fisher discriminant analysis (FDA) [59] and joint angle plot analysis [60] to diagnose 

the faults in two subsystems of an AHU. Combined with cluster analysis, another application of 

PCA model for MSFs was FDD for sensor faults of an AHU [61], where PCA model served as a 

feature extraction tool to select features.  

Han et al. [62] proposed a SVM model to detect and diagnose multiple chiller faults, based 

on the conclusion of [63] where each chiller fault was assigned with a unique feature. The model 

was trained with several datasets (each dataset included one fault) and tested with one dataset with 

MSFs. Case study results indicated high accuracy of FDD for MSFs. As the author claimed, 

however, the model was not feasible to deal with MDFs.  

To summarize, as an effective dimension-reduction algorithm, PCA was widely used to 

perform fault detection for MFs. But it is weak in diagnosing faults, as the orthogonal relationship 

disconnects the principal components. To apply PCA model for FDD, additional algorithms are 

usually required to isolate the fault source [31].  

To author’s best knowledge, ANN was first used to study MFs in 2005 [17]. To estimate 

dynamic system operation, recurrent neural network was established to study multiple sensor and 

actuator faults for AHU and VAV box based on experiments  [64]. Later in 2020, Elnour et al. [65] 

used an auto-associative neural network to solve multiple sensor faults in a HVAC system. Case 

study results with data from TRNSYS program indicated the proposed model successfully 

diagnosed multiple-sensor faults and outperformed PCA-based model by an improvement of 40% 

in terms of FDD accuracy. However, the model may fail to detect simultaneous sensor and actuator 
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faults, as they lead to a very similar fault symptom.  

In summary, ANN is a mathematical model and capable of dealing with complex and non-

linear systems. It is highly modulable, and convenient researchers or engineers to flexibly shape 

ANN architecture based on the need.  

2.3.4. Conclusion of literature review for multiple/simultaneous faults 

To summarize the literature review for MSFs in the field of HVAC, Table 2-1 lists the main 

information for the reviewed publications in a chronological order. Process-history based methods 

(data-driven models) take the most proportion of 76.9% during the reviewed publications and 

mainly focus on black-box models because of simplicity. Other methods of MDFDD includes rule-

based approaches, physical model-based approach, etc.  

Table 2-1. Details of MSFs research literature review. 

Method Target system Target component Data source Ref. 

Expert Rule RTU Variable Laboratory data [23] 

First principles RTU Variable Laboratory data [48] 

First principles AC Variable Laboratory data [49] 
ANN AHU Variable and sensor  Laboratory data [17] 

Expert rule VAV system Variable and sensor Simulation [20] 

First principles AC Variable Laboratory data [51] 

First principles AC Variable  Laboratory data [50] 

PCA and JAA VAV system Variable and sensor Simulation [21] 

PCA, FDA AHU Sensor Simulation [59] 

SVM and ML Chiller Variable Laboratory data [62] 

First principles AHU Variable Simulation [52] 

PCA and JAP VAV system Sensor Simulation [60] 

Expert Rule VAV system Variable and sensor On-site data [58] 

PCA and cluster analysis AHU Sensor Simulation [61] 

Recurrent ANN 
AHU and VAV 

box 
Actuator and Sensor  

Laboratory data and 

On-site data 
[64] 

Auto-associative ANN HVAC system Sensor Simulation [65] 

First principles VAV system Variable Simulation [55] 

First principles and 

Bayesian classifier 
RTU Variable Laboratory data [57] 

 

Figure 2-4 shows the findings of multiple/simultaneous faults in terms of system, target 

component, and data source. Six papers focus on MSFs of the VAV system [20,21,55,58,60,64] 

among the eighteen papers. By comparison, there is only one paper focusing on chiller MSFs [62]. 

As for data type, the research based on laboratory experiment data takes a proportion of 47% 
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[17,48–51,57,62,64]. Seven papers [20,21,52,55,59,61,65] are found to utilize simulation data to 

study MSFs. By comparison, the research based on on-site measurements takes the least: only two 

papers used measured data [58,65], as Figure 2-4(c) shows. 

 

    

(a)                                          (b) 

 

(c) 

Figure 2-4. Summary for the literature review of multiple/simultaneous faults. (a) target system; (b) target 

component; (c) data type. 

Some publications ignore the dependency of multi-faults. For example, [21] assumed the case 

when independent faults occur simultaneously in two separate loops of a variable air volume (VAV) 

system: (i) the sensor of supply air temperature control loop, and (ii) the sensor of outdoor air 

control loop. Reference [66] proposed a set of 26 rules for the isolation of multiple single faults of 

air handling units. For instance, faults of mixed air temperature, chilled water circulating pump, 

0

1

2

3

4

5

6

7

RTU AC AHU VAV Chiller HVAC

0

2

4

6

8

10

12

14

Variable Sensor Actuator

0

2

4

6

8

10

Laboratory

data

Simulation On-site data



 

  13 

 

and cooling coil valve controller can be detected.  However, the interactions between the individual 

faults are not analyzed in this work.  

Only a small number of publications deal with methods for MDFs in HVAC systems 

[23,50,51,57,67]. Based on the literature review, one can conclude that methods presented by 

[23,50,51,57,67] are forward methods, which detect the impact of some faults (e.g., compressor 

valve leakage) on the next sensors or equipment performance (e.g., chiller COP). These methods 

could be used as reference rules for the reverse detection of single faults. However, such rules can 

be applied only to an HVAC equipment used in the laboratory-controlled environment. The level 

of detailed measurements of all variables used in laboratory work is not feasible for an HVAC 

equipment in existing buildings. Additional research is needed for the generalization of 

decoupling-based method to HVAC systems with limited information. 

The literature review concludes the research on chiller multiple dependent faults using 

measurement data is lacking. The research on multiple/simultaneous faults is still in its infancy, 

due to the natural nonlinear property of multiple faults, which makes it challenging to be solved 

and deserves more attention [47,68].  

2.4. Literature review for chiller grey-box models 

Table 2-1 indicates that the FDD research on multiple/simultaneous faults utilizing grey-box 

models is rare. However, as a type of model derived from physical principles, grey-box models 

have several advantages: (1) robust [24], (2) require less data and are fast to train [31], (3) 

physically traceable parameters [32], and (4) the grey-box model extrapolates well to operating 

conditions outside the range of training dataset. The critical literature review in this section 

presents existing chiller grey-box models, aiming to explore potential models for the application 

of chiller MDFDD. This review investigates publications spanning from 1980 to 2021 with key 

words of chiller, fault detection and diagnosis, and grey-box model. Generally, the existing grey-

box models can be classified into two groups: physical-based models (Table 2-2), and correlation-

based models (Table 2-3).  

 

Table 2-2. Physical-based grey-box models for chillers, extracted from literature 

review spanning from 1980 to 2021. 
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Equation 

Number 
Equation Order 

Parameter 

identification 
Data source Ref. 

(2-1) 
1

𝐶𝑂𝑃
= −1+

𝑇𝑐𝑑𝑤𝑟
𝑇𝑐ℎ𝑤𝑙

+
1

𝑄𝑒𝑣
(𝑎0 + 𝑎1𝑇𝑐𝑑𝑤𝑟 + 𝑎2

𝑇𝑐𝑑𝑤𝑟
𝑇𝑐ℎ𝑤𝑙

) 1 
Linear 

regression 

Laboratory 

data [69] 

(2-2) 
1

𝐶𝑂𝑃
= −1+

𝑇𝑐𝑑𝑤𝑟
𝑇𝑐ℎ𝑤𝑙

+
1

𝑄𝑒𝑣
(𝑏0 + 𝑏1

𝑇𝑐𝑑𝑤𝑟
𝑇𝑐ℎ𝑤𝑙

) + 𝑏2 1 NA 
Laboratory 

data 
[70] 

(2-3) 
1

𝐶𝑂𝑃
= −1+

𝑇𝑐𝑑𝑤𝑟
𝑇𝑐ℎ𝑤𝑟

+
1

𝑄𝑒𝑣
(−𝑐0 + 𝑐1𝑇𝑐𝑑𝑤𝑟 − 𝑐2

𝑇𝑐𝑑𝑤𝑟
𝑇𝑐ℎ𝑤𝑟

) 1 
Regression 

analysis 

Laboratory 

data [71] 

(2-4) 

{
 
 

 
 Y = 𝑋1∆𝑆𝑇 + 𝑋2𝑅

𝑌 = 
𝑇𝑐ℎ𝑤𝑟

𝑇𝑐𝑑𝑤𝑟
(1 +

1

𝐶𝑂𝑃
) − 1

𝑋1 = 
𝑇𝑐ℎ𝑤𝑟

𝑄𝑒𝑣
 , 𝑋2 =

𝑄𝑒𝑣

𝑇𝑐𝑑𝑤𝑟
(1 +

1

𝐶𝑂𝑃
)

    1 
Linear 

regression 

Laboratory 

data [72] 

Table 2-3. Correlation-based grey-box models for chiller, extracted from literature 

review spanning from 1980 to 2021. 

Equation 

Number 
Equation Order 

Parameter 

identification 

Data 

source 
Ref. 

(2-5) 
𝐶𝑂𝑃 = 𝑑0 + 𝑑1𝑄𝑒𝑣 + 𝑑2𝑇𝑐ℎ𝑤𝑟 + 𝑑3𝑇𝑐𝑑𝑤𝑟 + 𝑑4𝑄𝑒𝑣

2 + 𝑑5𝑇𝑐ℎ𝑤𝑟
2

+ 𝑑6𝑇𝑐𝑑𝑤𝑟
2 + 𝑑7𝑄𝑒𝑣𝑇𝑐ℎ𝑤𝑟 + 𝑑8𝑄𝑒𝑣𝑇𝑐𝑑𝑤𝑟

+ 𝑑9𝑇𝑐ℎ𝑤𝑟𝑇𝑐𝑑𝑤𝑟 
2 NA NA [73] 

(2-6) 

{
 
 

 
 𝐸

𝐸𝑑𝑒𝑠 
= 𝑒0 + 𝑒1𝐴 + 𝑒2𝐴

2 + 𝑒3𝐵 + 𝑒4𝐵
2 + 𝑒1𝐴𝐵

𝐴 = 𝑃𝐿𝑅,𝐵 =
𝑇𝑐𝑑𝑤𝑙 − 𝑇𝑐ℎ𝑤𝑙

𝑇𝑐𝑑𝑤𝑙,𝑑𝑒𝑠 − 𝑇𝑐ℎ𝑤𝑙,𝑑𝑒𝑠
  

 2 Least square 
NA 

 
[74] 

(2-7) 
𝐸

𝐸𝑑𝑒𝑠.
= 𝑓0 + 𝑓1𝑃𝐿𝑅 + 𝑓2𝑃𝐿𝑅

2 + 𝑓3𝑇𝑐𝑑𝑤𝑟 + 𝑓4𝑇𝑐𝑑𝑤𝑟
2 +

𝑓5𝑃𝐿𝑅𝑇𝑐𝑑𝑤𝑟 + 𝑓6𝑃𝐿𝑅
2𝑇𝑐𝑑𝑤𝑟 + 𝑓7𝑃𝐿𝑅𝑇𝑐𝑑𝑤𝑟

2 + 𝑓8𝑃𝐿𝑅
2𝑇𝑐𝑑𝑤𝑟

2                        
4 

Regression 

analysis 

Manufact

urer data [75] 

(2-8) 𝐶𝑂𝑃 = 𝑔1𝑄𝑒𝑣 + 𝑔2𝑇𝑐ℎ𝑤𝑟 + 𝑔3𝑇𝑐𝑑𝑤𝑟 1 Least square 
On-site 

data [76] 

(2-9) 
𝐸𝐼𝑅 = 2.208266 + 0.009742𝑇𝑐𝑑𝑤𝑟  − 5.14097𝑃𝐿𝑅

+ 5.428211𝑃𝐿𝑅2 − 1.78486𝑃𝐿𝑅3 3 NA 
On-site 

data  [77] 

(2-10) {
𝑃𝐿𝑅 = ℎ0 + ℎ1𝑇𝑐ℎ𝑤𝑙 + ℎ2𝑇𝑐ℎ𝑤𝑙

2 + ℎ3𝑇𝑐𝑑𝑤𝑟 + ℎ4𝑇𝑐𝑑𝑤𝑟
2 + ℎ5𝑇𝑐ℎ𝑤𝑠𝑇𝑐𝑑𝑤𝑟

𝐸𝐼𝑅 = 𝑖0 + 𝑖1𝑃𝐿𝑅 + 𝑖2𝑃𝐿𝑅
2  2 NA NA  [78] 

(2-11) 

{
 
 

 
 

𝐸 = 𝑗1𝑃𝐿𝑅 + 𝑗2𝑇𝑐𝑑𝑤𝑙 + 𝑗3𝑇𝑜𝑎

𝐶𝑂𝑃 = 𝑘1
1

𝑃𝐿𝑅
+ 𝑘2𝑇𝑐𝑑𝑤𝑙 + 𝑘3𝑇𝑜𝑎

𝐸 = 𝑙0 + 𝑙1𝑃𝐿𝑅 + 𝑙2𝑃𝐿𝑅
2 + 𝑙3𝑇𝑐𝑑𝑤𝑙 + 𝑙4𝑇𝑐𝑑𝑤𝑙

2 + 𝑙5𝑇𝑜𝑎
𝐶𝑂𝑃 = 𝑚1𝑃𝐿𝑅 +𝑚2𝑃𝐿𝑅

2 +𝑚3𝑇𝑐𝑑𝑤𝑙 +𝑚4𝑇𝑐𝑑𝑤𝑙
2 +𝑚5𝑇𝑜𝑎

 1,2 Least square 
On-site 

data [79] 

(2-12) 𝐶𝑂𝑃 = 1.1760 + 1.2843 × ∆𝑇𝑐ℎ𝑤 − 0.7216∆𝑇𝑐𝑑𝑤 1 
Recursive 

least-squares 

On-site 

data [80] 

2.4.1. Physical-based grey-box models 

Gordon and Ng [69] built a thermodynamic model to evaluate the performance of the 

reciprocating chiller, as shown in Equation 2-1 (Table 2-2). Tcdwr and Tchwl are in K, and Qev is in 

kW. Compared with data from eighty reciprocating chillers (including 897 experimental data 

samples and data from two manufacturers), the model achieved the maximum RMSE= 0.0066. The 

model was later extended to centrifugal chillers, and it turned out to work well [81].  

Gordon et al. [70] proposed another thermodynamic model to describe the chiller operation 

based on first principles, shown in Equation 2-2 (Table 2-2). Tcdwr and Tchwl are in K, and Qev is in 
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kW. The heat energy balance between the refrigerant loop and the water loop, heat leakage, and 

entropy produced in VCS was taken into consideration. This model could estimate the chiller 

performance over a wide range of operating conditions and is the source of many studies, such as 

a study focusing on chiller efficiency versus ambient wet bulb temperature [82], regression models 

development [71,72], etc.  Besides, it serves as the main model in many research topics, including 

the control of ground source heat pump [83], thermal energy storage [84], optimal sequencing 

control for chiller [85], etc.  

Lee [71] investigated the chiller energy and entropy balance relation [86], and proposed a 

grey-box model to estimate chiller COP with Tcdwr, Tchwr, and Qev, as shown in Equation 2-3 (Table 

2-2). Tcdwr and Tchwr are in ℃, and Qev is in kW. The model was validated by the experiment data 

and achieved a high correlation with R2 = 98.87%. 

Jayaprakash and Kim [72] introduced a grey-box model-based approach to study the fault of 

a centrifugal chiller, as shown in Equation 2-4 (Table 2-2). Tcdwr and Tchwr are in K, and Qev is in 

kW. ΔST (kW/K) and R (K/kW) are coefficients representing expansion valve and compressor, and 

heat exchangers, respectively. To apply this model, ΔST (kW/K) and R (K/kW) need to be identified 

first.  

2.4.2. Correlation-based grey-box models 

The first correlation-based model, to the author's knowledge, came from the DOE-2 reference 

manual in 1980 [73], which is listed in Equation 2-5 (Table 2-3). Tcdwr and Tchwr are in K, and Qev 

is in kW. If this model is used for fault diagnosis, additional target variables, rather than COP, are 

required, as COP is only an index representing system-level performance.  

Braun [74] developed a correlation-based model to predict E, as shown in Equation 2-6 (Table 

2-3). Tcdwl, Tchwl, Tcdwl,des, and Tchwl,des are in ℉, and E is in kW. The coefficients of the model could 

be identified by the least square algorithm.   

Yik and Lam [75] presented a bi-quadratic equation to predict the normalized power input to 

a chiller, as shown in Equation 2-7 (Table 2-3). E is in kW, and Tcdwr is in ℃. The utilization of 

normalized variables for E and Qev enlarges E prediction range regardless of the chiller capacity.  

Swider [76] proposed a linear regression model, as shown in Equation 2-8 (Table 2-3). Here, 

Tchwr and Tcdwr are in K, and Qev is in kW. Experimental measurements of two vapor compression 

chillers were used for model validation, along with another three COP models: DOE-2 regression 
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model [73], bi-quadratic regression model [75], and physical-based model [81]. The results 

indicated that DOE-2 regression model Equation 2-5 (Table 2-3) was the most accurate model with 

R2 = 99.11% and RMSE = 0.0806.   

Chan [77] proposed a cubic regression model with two input variables (PLR and Tcdwr) to 

predict the chiller efficiency, as shown in Equation 2-9 (Table 2-3). EIR is in kW/ton and Tcdwr is 

in ℃.  

The EnergyPlus program provided a bi-quadratic regression model [78] to predict the PLR 

using Tchwl and Tcdwr, as listed in Equation 2-10 (Table 2-3). Tchwl and Tcdwr is in ℃. The model was 

validated by Shrestha and Maxwell [87] using the manufacture's data for an air-cooled chiller, 

which covered PLR within a range of 25% to 100%. The results reported a high R2 value of 0.9962.  

Monfet and Zmeureanu [79] proposed correlation-based models to predict E and COP of 

water-cooled electric chillers, as listed in Equation 2-11 (Table 2-3). Tcdwl and Toa are in ℃, E and 

Qev are in kW. The work used the measurements from building automation system (BAS) to train 

and test models. The model is capable of COP-oriented or E-oriented fault detection at system-

level.  

Zhao et al. [80] developed an online predictive model to predict the global COP of a cooling 

plant, as listed in Equation 2-11 (Table 2-3). ΔTchw and ΔTcdw are in ℃. The model was built, 

starting from the energy balance equation, and used Pearson correlation coefficients to eliminate 

the redundant input variables. The coefficients are identified by the recursive least-square approach 

with measurement data recorded every 5 minutes.  

2.4.3. Summary for chiller grey-box literature review 

In summary, physically-based grey-box models [69–72] are derived from first principles, 

while correlation-based grey-box models [73–80] usually select input variables related to a 

physical process. These models are proposed to predict chiller system-level performance (e.g., 

COP) [69–80], and validated by the data either from experiments or manufactures. Such models 

derived from experiments or manufacturer’s data can be very powerful to predict the behavior of 

a chiller, but they might not be practical when it is desired to apply them in real buildings, where 

BAS only cover very limited information for monitoring or control purpose [88]. Furthermore, the 

information of design conditions with respect to a HVAC system or a component (e.g., chiller) 

might not always be available for existing buildings. Thus, new grey-box models that are based on 
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the research purpose should be developed, using only the parameters available in the databases 

collected from BAS.  

2.5. Literature review for artificial faults  

The literature review was conducted with the scope of how to insert artificial faults in the 

field of HVAC systems. The literature survey covers thirty-six publications covering chiller, AHU, 

VCS (including RTU, HP and AC) and HVAC systems. The number of publications with respect 

to each research target is listed in Table 2-4.  

Table 2-4. Number of publications in the literature review for different systems, 

based on both measurements and simulation.  

System Chiller AHU HVAC system VCS Summary 

Number of 

publications 
12 5 15 6 36 

2.5.1 Fault insertion methods  

The literature review finds HVAC systems attract the most research with eighteen 

publications [17,20,21,52,55,60,64,65,68,89–94], followed by chillers with ten publications 

[22,72,95–104], six papers for VCS [33,39,48,51,57,67], and four papers for AHU [59,66,104–

106]. It was observed that experimental data from ASHRAE project 1043-RP [107] is the source 

of other seven papers [22,72,95–99] for the chiller fault studies. A few examples of fault insertion 

approaches are shown in Table 2-5, where NM means not mentioned in the publication.  

 

 

 

 

 

 

 

Table 2-5. Approaches to generate faults in the reviewed publications . 

System Data source Ways to generate faults Ref. 
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HVAC 

system 

Laboratory 

experiment 

Measurement signals are replaced with errors for supply 

flow rate and supply fan. 
[17] 

Field measurement 

Mechanically tighten up the actuator mechanism of a VAV 

box. 

Manually add bias to measurement data for VAV flow rate. 

[21] 

TRNSYS 

simulation 
Integrate a fault generator into simulation for VAV box. [60] 

TRNSYS 

simulation 
Integrate a fault generator in the HVAC simulator. [91] 

Field measurement Add bias to sensor measurements [93] 

TRNSYS 

simulation 
Insert fault into the normal operation data [65] 

Experiment Insert fault into the normal measurement data [64] 

Field measurement Add bias to sensor measurements [108] 

AHU 

Field measurement Replace sensor reading in SQL server artificially [66] 

TRNSYS 

simulation 
Apply a sensor reading bias generator  [61] 

Field measurement 
Inject a constant voltage to a damper driver to keep its 

position unchanged 
[104] 

Chiller 

DeST simulation NM [103] 

Synthetic data and 

measurement data 
Add bias to the measurements data [109] 

Laboratory 

experiment 

1. Reduce pressure head of chilled water pump  

2. Remove refrigerant 

3. Block tubes in the condenser 

4. Add nitrogen to the refrigerant 

[107] 

DeST simulation Reduced CT fan speed in DeST program  [103] 

Measurement data Add bias error via software to chiller control panel [104] 

Note*: NA means not available.  

2.5.2 Fault levels  

The inserted faults levels for chiller studies, found in the literature review, are summarized in 

Table 2-6. The maximum amplitude of fault is 68% for excess oil fault [72,97,99], while the 

minimum amplitude with 1% is found for non-condensable gas fault [72,95,97,99].  

As for sensor faults studies, HVAC system attracts most attentions [17,20,21,60,64,65,91–

94]. In addition, chiller sensor faults [103,109] and AHU sensor faults [61]  are also noticed in the 

literature review. The levels of artificial sensor faults are listed in Table 2-7. Here, Vsa is the supply 

air flow rate in m3/s, Voa is the outdoor air flow rate in m3/s, Vra is the return air flow rate in m3/s, 

Tchws is the chilled water supply temperature in ℃, Tchwr is the chilled water return temperature 

in ℃, Toa is the outdoor air temperature in ℃, Tsa is the supply air temperature in ℃, Troom is the 

room temperature in ℃, Vchw is the chilled water flow rate in L/s.    
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Table 2-6. Common chiller variable faults in the literature review.  

Chiller variable faults Fault level 

Reduced chilled water flow rate (Vchw) Reduction by 10% to 40% [22,95–97,99] 

Reduced condenser water flow rate (Vcdw) Reduction by 10% to 40% [22,72,95–99] 

Refrigerant undercharge Reduction by 10% to 40% [22,95,97–99] 

Refrigerant overcharge Addition of 10% to 40% [22,72,95,97,99] 

Excess oil Addition of 14% to 68% [72,97,99] 

Condenser fouling Addition of 12% to 45% [22,72,95,97,99] 

Non-condensable gas Addition of 1% to 5.7% [72,95,97,99] 

Reduced air follow rate for CT Reduction by 10%  [103] 

Table 2-7. Artificial sensor faults insertion in the literature review.  

System 

Faults 

Sensor  Bias fault Drifting fault 
Complete 

failure 

HVAC 

system 

Vsa 
Addition of +10% [17], reduced by -20% 

[21] 
 [20] 

Vra Reduced by -20% [60]   

Tchws Addition of 7% [21], 1℃[91], 1℃ [93] 0.3℃/h [65]  

Tchwr 
Addition of 7% [21],  1℃[91], with a range 

of (1℃, 30℃) [65], reduced by -1℃ [93] 
0.3℃/h [65]  

Toa Addition with a range of (1℃, 30℃) [65] 0.3℃/h [65]  

Tsa 
Addition of 8% [21,60], and 2.8℃ [64], 

reduced by -8% [60], and -1.5℃ [91] 
-0.004℃/min [91] [91] 

Troom 
Addition with a range of (1%, 20%) [66], 

Addition with a range of (1℃, 30℃) [65] 
0.3℃/h [65] [20] 

AHU  

Vsa Reduced by 20% [60], and 10%[61] 0.004(kg/s)/min [60]  

Voa Addition of 20% [59,60] and 25% [59]  [59,60] 

Tsa Addition 5% [66]  [59,66] 

Tchws Addition of 7.1%[61]   

Tchwr Addition of 7% [60], 4.2% [61]   

Vchw Reduced by -10%[61]   

Chiller 

Tcdwr  1℃ per month [103]  

Tchwl 
Random bias with a range of (-0.54℃, 

0.81℃) 
  

 

The complete failure means sensor reading keeps constant in Table 2-7. The maximum 

injected bias faults for Tchws and Tchwr sensor are 30 ℃ for cooling coil of a HVAC system [65]. 

Sun et, al. [103] investigated the gradual degradation fault of chiller capacity in an 1800-hour 

period, and a drifting fault of 1℃ per month for Tcdwr sensor.  
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Literature review finds diverse approaches to inserting faults with no standard, guideline, or 

general rule for how/where to inject a fault. Injecting a fault in the reviewed publications is case-

independent.  

2.6. Conclusions from literature review  

Literature review finds most studies have used experimental data or synthetic data, and 

applied different machine learning models to detect and diagnose faults in the field of HVAC. 

Three gaps are found including:  

1. Lack of research for chiller FDD based on measurement data from a real building.  

2. Lack of research for chiller MSFs study. As the core component of the HVAC system, 

chiller accounted for 42% of service resources and 26% repair cost [110], which deserves 

more attentions. Though dependent relationships exist in most HVAC system which 

increases the complexity of faults and their respective symptoms [111], there are no 

publications that focus directly on chiller MDFs. 

3. Lack of grey-box models to predict the behavior of chiller components in a real building. 

Existing grey-box models of chiller, derived from laboratory experiments, are powerful 

to predict target variables, since laboratory experiments can provide very strict conditions 

and enough information required by a specific research project. But they are not practical 

when it is desired to apply them in real buildings, where the instrumentation is the 

minimum needed to monitor and control the building process [88]. 

2.7. Dissertation scope 

First, we clarify the difference between sensor fault and variable fault. The fault of a sensor 

normally does not propagate to other variables, but only shows abnormal measurement values. The 

variable fault (abnormal value) could propagate to other variables.  

This dissertation focuses on detecting and diagnosing dependent variable faults of a water-

cooled chiller, using a grey-box model-based approach with measurements from a real building. 

The study of independent sensor fault(s) is beyond the scope of this dissertation. Grey-box models 

are time-efficient (fast to be trained) and resource-efficient. Such merits are beneficial for 

implementation, therefore, can easily be integrated with BAS to provide automated/online FDD.  
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FDD can be coupled with many different approaches as it underpins many applications for 

the decision/strategy-making of operators, energy-efficient improvements, system maintenance 

plan etc. Furthermore, there are many additional task/applications which could incorporate this 

work; however, they are beyond the scope of this dissertation.   
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Chapter 3: Evidence-based assessment of energy performance of 

two large centrifugal chillers over nine cooling seasons 

The evaluation of energy performance changes of large centrifugal chillers over long-term 

periods is seldom presented in the literature. This chapter assesses the variation of energy 

performance over nine years of two identical (at design conditions) vapor-compression water-

cooled large capacity centrifugal chillers. Both chillers serve the cooling system of a university 

campus, where measurements are recorded at 15-min time intervals and data was extracted over a 

period from 2009 to 2017 [112]. The measurement uncertainty estimation of direct and derived 

variables, extracted form BAS during the summer of 2016, are presented as an example. First, the 

hypothesis that weekly values of coefficient of performance (COP) of these large chillers does not 

change significantly over the summer of 2016 is verified. Second, the t-test also verifies the 

hypothesis of no significant change of seasonal COP values from 2009 to 2017. Third, a linear 

correlation-based model shows a variation of COP values by 1-2% per year between 2009 and 

2017. The results show that the seasonal variation of COP is not statistically significant.  

3.1. Introduction of long-term performance analysis of large centrifugal chillers 

Vapor-compression electric centrifugal chillers, installed in commercial and institutional 

buildings, have an important contribution to the whole building energy use. Chillers of capacities 

of 264 to 2640 kW (75- to 750-ton refrigeration) have a median service life of more than 25 years 

[113]. They are usually designed for a lifetime of 40 years or more [114], and they can exceed this 

lifetime if operations, maintenance, service water, and operating environment are properly 

managed and controlled. For comparison, window-type air conditioners have a lifetime of 10 years, 

residential single or split package 15 years, residential and commercial air-to-air heat pumps 15 

years, and commercial water-to-air heat pumps have more than 24 years [113]. 

The long-term performance of such large capacity chillers used in heating, ventilation, and 

air-conditioning (HVAC) systems plays a major role on the energy costs over the equipment 

lifetime. Long-term energy performance could change from the design performance due to the 

degradation with time, faults, and failures. Relevant information about degradation with time can 

help for (i) setting preventive maintenance plans, (ii) proper sizing of required cooling capacity at 
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the design stage, and (iii) estimation of lifetime energy consumption and cost. However, such 

information is rarely available as it depends on many factors such as chiller type and cooling 

capacity, manufacturer, operation and maintenance conditions. 

3.2. Information of the cooling plant and maintenance strategy 

3.2.1. Cooling plant information  

This cooling plant is composed of two water-cooling centrifugal chillers at design conditions 

and serves, with chilled and hot water, several AHUs and fan coils installed in building of 

Concordia Loyola Campus, Montreal, Canada. The two centrifugal chillers, EarthWiseTM 

CenTraVacTM Water Chillers (TRANE), Model CVHF910, use low-pressure R-123 refrigerant, 

and are identical at design conditions (Table 3-1) [115]. They are named as CH#1 and CH#2 in 

this dissertation, and cooled down by two cross flow cooling towers (B.A.C.), CT-1 and CT-2, 

having a capacity of 4540 kW (1290 tons) each, at design conditions.  

Table 3-1. Design conditions. 

Description of variable  Symbol of variable  Value  Unit 

Evaporator cooling load at design 

condition 
Qev,des  3,165 kW 

Chiller COP at design condition COPdes  5.76 NA 

Electric power input to chiller at 

design condition 
Edes  549.5  kW 

Chilled water leaving temperature at 

design condition 
Tchwl,des   5.6 °C 

Chilled water return temperature at 

design condition 
Tchwr,des  13.3  °C 

Condenser-water leaving 

temperature at design condition  
Tcdwl,des  35.0  °C 

Condenser-water return temperature 

at design condition 
Tcdwr,des  29.4  °C 

Cooling tower load at design 

condition 
QCT, des  4,540  kW 

Volumetric flow rate of chilled 

water at design condition 
Vchw,des  72.6  L/s 

Volumetric flow rate of condenser-

water at design condition 
Vcdw,des  131.5  L/s 
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The cooling plant operates in three different scenarios: (1) Scenario 1: only chiller 1 works 

(CH#1); (2) Scenario 2: only Chiller 2 works (CH#2); and (3) Scenario 3: both CH#1 and CH#2 

work simultaneously (CH#1+CH#2). When the first chiller starts, the corresponding chilled-water 

and condenser-water pumps start too. The fans of the cooling towers start when the condenser 

pumps start. The second chiller starts only if the first chiller cannot meet the chilled-water demand, 

and therefore it cannot keep the set point of the supply chilled water temperature. Chiller CH#1 or 

CH#2 starts first by rotation, in order to balance the number of operating hours over the life span 

for each chiller.  

Figure 3-1 presents a schematic of the cooling plant and main measurements, where the blue 

line represents the condenser-water loop, red line represents the refrigerant loop, and green line 

represents the chilled-water loop. BAS records the cooling plant operation every 15 minutes, and 

the raw measurements are assigned into three groups based on the three-scenario status. The 

measured variables from BAS are listed in Table 3-2. Each of the three data groups is further 

divided into two datasets, i.e., working days (WD) and weekend/holidays (WH). 

 

 

Figure 3-1. Schematic of the cooling plant. 
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Table 3-2. Available variables from measurements for the cooli ng plant in BAS. 

Variable 

type 
Description of points Symbol Unit Reliability 

Directly 

measured 

variables 

from BAS 

Relatively humidity of outdoor air RHoa %  

Outdoor air temperature Toa ℃ 

Chilled water return temperature Tchwr ℃  

Chilled water leaving temperature *Tchwl ℃  

Condenser-water return temperature Tcdwr ℃  

Condenser-water leaving temperatures *Tcdwl ℃  

Chilled water volumetric flow rate Vchw gpm  

Power input to chiller *E kW  

Saturated refrigerant temperature in 

evaporator 
Tev ℃  

Refrigerant pressure in evaporator Pev kPa  

Saturated refrigerant temperature in 

condenser 
Tcd ℃  

Refrigerant pressure in condenser  Pcd kPa  

Derived 

variables  

Refrigerant temperature at compressor 

suction  
Tsuc ℃ 

Refrigerant temperature at compressor 

discharge 
Tdis ℃ 

Refrigerant liquid line temperature Tll ℃ 

Coefficient of performance *COP ~ 

Refrigerant mass flow rate *mev,refr kg/s 

Delta-T of chilled water *ΔTchw  ℃ 

Delta-T of condenser water *ΔTcdw ℃ 

3.2.2. Maintenance strategy  

Regular maintenance of chillers is composed of annual maintenance and 5-year verifications. 

Annual maintenance, which is performed during the fall, is composed of the following tasks. 

1. When the system is shut down: 

a. Cleaning of condenser tubes.  

b. Testing for refrigerant leaks in compliance with the provincial regulation on 

halocarbons. 

c. Revision and cleaning of primary and secondary electric connections of chillers. 

2. When the system is turned on:  

a. Spectrographic oil analysis. 
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b. Measurement of pressure loss in the evaporator and condenser for the validation of 

water flow with the manufacturer’s design specifications. 

c. Measurement of operation pressure of evaporator, and the evaporator approach.  

d. Measurement of electric current for the validation with the manufacturer’s design 

specifications. 

e. Measurement of oil pressure. 

f. Test of vibration. 

g. Measurement of temperature of major electric components. 

h. Verification of refrigerant and oil levels. 

i. Verification of warning and alarm signals from the controller. 

3. Every five years, the following tasks are undertaken. 

a. Cleaning of condenser and evaporator tubes. 

b. Eddy current (Foucault) testing of all tubes of condenser and evaporator. 

3.3. Analysis of energy performance of two chillers during the summer of 2016 

3.3.1. Uncertainty analysis of measurements  

The uncertainty of a measured variable (Um) is consisted of bias uncertainty (BUm) and 

random uncertainty (RUm) [116,117], as described by Equation 3-1: 

 

𝑈𝑚 = √𝐵𝑈𝑚2 + 𝑅𝑈𝑚2                                                                        (3-1)  

     

Where BUm is the bias uncertainty, and RUm is the random uncertainty. The author clarifies 

that for a measured variable without the information of bias error, the uncertainty only contains 

the random uncertainty.  

The bias uncertainty of direct variables of Tchwl, Tchwr, and Vchw are: 

 

𝐵𝑈𝑇𝑐ℎ𝑤𝑙 = 𝑇𝑐ℎ𝑤𝑙
̅̅ ̅̅ ̅̅ ̅ × 0.005 + 0.3                                               (3-2)        

 

    𝐵𝑈𝑇𝑐ℎ𝑤𝑟 = 𝑇𝑐ℎ𝑤𝑟
̅̅ ̅̅ ̅̅ ̅ × 0.005 + 0.3                                              (3-3)        
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𝐵𝑈𝑉𝑐ℎ𝑤 = 𝑉𝑐ℎ𝑤
̅̅ ̅̅ ̅̅ × 0.05                                                             (3-4)    

 

The random uncertainty, due to random fluctuations in measurements of a variable x, is: 

 

𝑅𝑈𝑥 =
𝑡∙𝑆𝑥

√𝑛
                                                                               (3-5)      

                 

Where t-statistic value = 1.96, for a 95% confident level, for two-sided interval, and Sx is the 

standard deviation.  

As for the derived variables, they are affected by the errors propagated from directly measured 

variables. An example for the measurement uncertainty of Qev,chw (UQev,chw) is presented here to 

show the error propagation. Based on the calculation of Qev,chw (Equation 3-8) with multiplication 

algorithm, Qev,chw is derived based on three direct measurements, Tchwl, Tchwr, and Vchw. Hence, 

UQev,chw is calculated by Equation 3-6, and such a method is also applied for the derived variable 

with division algorithm:  

 

𝑈𝑄𝑒𝑣,𝑐ℎ𝑤

𝑄𝑒𝑣,𝑐ℎ𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= √(

𝑈𝑇𝑐ℎ𝑤𝑟

𝑇𝑐ℎ𝑤𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅
)2 + (

𝑈𝑇𝑐ℎ𝑤𝑙

𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅̅
)2 + (

𝑈𝑉𝑐ℎ𝑤

𝑉𝑐ℎ𝑤̅̅ ̅̅ ̅̅ ̅
)2                           (3-6) 

 

3.3.2 Measurement data of the summer of 2016 

Before comparing the energy performance of those two chillers over nine seasons of operation 

(section 3.4), the author opted for the discussion of results from measurements recorded at 15 min 

time intervals during the summer of 2016. That summer had the greatest cooling load among the 

last three years of data collected. This section presents the uncertainty of direct and derived 

measurements, and discusses some relationships of interest extracted from measurements: (a) 

change of weekly COP values; (b) variation of COP versus cooling load Qev; (c) variation of COP 

versus outdoor air temperature Toa; and (d) variation of power input ratio to compressor versus 

part load ratio at evaporator. 

Dataset extracted from BAS contains measurements of 14 weeks from May 30, 2016 until 

August 28, 2016, recorded at 15 min time intervals. There are three operation scenarios: (1) only 
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chiller CH#1 is on, (2) only chiller CH#2 is on, and (3) both chillers CH#1 and CH#2 are on. Only 

measurements recorded during chillers operations were extracted from BAS and used for the long-

term chiller operational analysis. The authors used BAS trend data collected over nine years. The 

issue of periodic recalibration of thousands of sensors on a large campus is beyond the authors’ 

control. 

The cooling load of evaporator(s) is calculated for the three scenarios using the measurements 

at the exit of central plant. The chilled water volumetric flow rate (Vchw) is the summation of 

chilled water flow rates from both chillers. The mean value of Vchw is 88 L/s when only one chiller 

is on, and 156 L/s when both chillers are on. The average difference between the measurements 

of chilled water supply temperature at the exit of central plant and corresponding values measured 

at chiller CH#1 is negligible, while at chiller #2 is about 0.5°C. The COP value is calculated 

separately for CH#1 and CH#2 respectively, for scenarios (1) and (2). The average COP of both 

chillers working simultaneously is calculated for scenario (3).  

The entire dataset is divided into three different datasets according to the three scenarios. 

Chiller CH#1 worked 51.3% of the total operation time, chiller CH#2 worked 19.8% of time, and 

both chillers CH#1 and CH#2 worked together 28.9% of time.  

The cooling plant serves with chilled and hot water several air-handling units and fan coils 

installed in buildings of this campus. This thesis presents the COP of chillers. The analysis of 

COP of whole system that should take into account the electric power input to supply and return 

fans, circulating pumps, and controls, is beyond the scope of this dissertation. The data processing 

follows the approaches presented in Chapter 5.  

Cooling load at evaporator Qev,chw, in kW, is calculated at each time step (Equation 3-8):  

 

𝑄𝑒𝑣,𝑐ℎ𝑤 = 𝑐𝜌𝑉𝑐ℎ𝑤(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙)                                      (3-8) 

 

Where Qev,chw is the evaporator cooling load on chilled water side in kW, c is water heat capacity 

in kJ/(kg·℃), ρ is water density in kg/m3, Vchw is the volumetric flow rate of chilled water in m3/s, 

Tchwr is the chilled water return temperature in ℃, Tchwl is the chilled water leaving temperature 

in ℃,  

The mean value of COP is calculated over the selected time interval (e.g. day, week, season) 

with Equation 3-9: 
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𝐶𝑂𝑃 =
1

𝑛
∑

𝑄𝑒𝑣,𝑖

𝐸𝑖

𝑛
𝑖=1                                                            (3-9) 

3.3.3. Change of weekly COP values during the summer 2016 

This section presents the use of classical method of statistical inference, in the area of tests of 

hypotheses [118] to verify if the weekly COP values of scenarios 1 and 3 change over the summer 

of 2016. Section 4 applies the method to seasonal COP values over nine years. Table 3-3 presents 

as an example the weekly values (mean ± uncertainty) from the simultaneous operation of chillers 

CH#1 and CH#2 (scenario 3) over the summer of 2016. For completeness of data presentation, 

Table B1 of Appendix B presents the measurements from the operation of chiller CH#1 (scenario 

1). Measurements from the operation of chiller CH#2 in the summer of 2016 are not presented 

because only four weeks of data are available.  

Table 3-3. Weakly values (mean ± uncertainty) of direct and derived measurements 

from the simultaneous operation of chillers CH#1 and CH#2 (scenario 3) over 13 

weeks, from May 30 to August 28,  2016. 

Week Tchwl (℃) Tchwr (℃) Vchw (L/s) E (kW)  Qev,chw (kW) COP (-) 

1 6.88±0.33 11.70±0.39 156.48±7.86 557.87±32.31 3144.82±243.98 5.64±0.55 

4 7.18±0.37 12.33±0.47 156.06±7.90 607.79±43.93 3351.92±273.54 5.51±0.60 

5 6.58±0.33 12.00±0.40 155.97±7.85 614.47±36.78 3525.63±277.72 5.74±0.57 

6 6.58±0.33 11.84±0.39 156.39±7.85 602.15±34.55 3422.99±268.99 5.68±0.55 

7 6.71±0.34 12.69±0.40 157.40±7.89 696.11±39.92 3916.21±304.51 5.63±0.54 

8 6.58±0.33 11.94±0.39 155.79±7.81 617.12±35.88 3479.03±272.84 5.64±0.55 

9 6.58±0.33 11.86±0.37 156.18±7.83 605.84±32.79 3436.13±267.86 5.67±0.54 

10 6.58±0.33 11.76±0.37 155.16±7.77 595.67±32.04 3351.33±261.21 5.63±0.53 

11 6.57±0.33 12.40±0.39 157.37±7.87 674.86±38.01 3812.01±296.75 5.65±0.54 

12 6.58±0.33 11.43±0.37 155.60±7.80 566.23±30.95 3145.41±246.60 5.56±0.53 

13 6.58±0.33 12.24±0.38 157.74±7.90 649.36±35.45 3708.80±288.05 5.71±0.54 

 

The method is first presented for the operation under scenario 3 (Table 3-3). Two populations 

of weekly COP values, calculated from 15 min time intervals data, are considered. The first 

population is generated by assuming that the COP value (COPwk1) of first week of data set does 

not change over the following weeks (from week 2 to 13). The second population is composed of 

derived weekly COP values of weeks j=2 to 13 (Table 3-3). Since the measurements came from 

the same chiller, the two populations are interdependent or paired. In this case, the t-test applies 
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for testing the mean of differences of these two paired-populations, rather than testing the 

differences of means as in the case of independent populations [117].  

The null hypothesis H0 states that the weakly COP values do not change over time: 

 

H0: 𝑑𝑚𝑒𝑎𝑛 = 0                                                (3-10) 

 

where dmean is the mean of the individual differences dj between the weekly COP values of 

two populations; and dj = COPwk1 – COPwkj, with j=2 to 13. 

The alternative hypothesis H1 states that weekly COP values change with time: 

 

H1: 𝑑𝑚𝑒𝑎𝑛 ≠ 0     (3-11) 

 

The t-statistic is calculated as follows (Equation 3-12): 

 

 𝑡 = 𝑑𝑚𝑒𝑎𝑛/(𝑠/√𝑛)     (3-12) 

 

where dmean and s are random variables that represent the mean and standard deviations of dj 

values; and n is the number of paired COP values [117]. 

The critical region of the Student’s t-distribution for the two-tailed test is defined as: t > 

tCR,α/2,n-1, and t < - tCR, α/2, n-1. The critical value tCR is selected by using the significance level α/2 

=0.025 (2.5% probability of committing a Type I error, or rejection of null hypothesis when it is 

true); and number of degrees of freedom d.f. = n - 1. The null hypothesis is rejected if t is in the 

critical region of the Student’s t-distribution.  

Table 3-4. Results of t-test for comparison of weekly COP values during the 

summer 2016. 

Dataset dmean s d.f. t 
Critical region 

t> tCR,α/2,n-1 t <- tCR,α/2,n-1 

Scenario 1 CH#1 -0.112 0.059 8 -0.635 2.306 -2.306 

Scenario 3 CH#1+CH#2 -0.002 0.067 9 -0.10 2.262 -2.262 

 

The results from scenarios 1 and 3 (Table 3-4) show that the null hypothesis is true because 
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t-statistic is not in the critical region. In conclusion, there is not significant statistical evidence to 

say that the weekly COP values have changed from the COP value of the first week of available 

data during the summer of 2016, for the operation under scenarios 1 and 3. 

3.3.4. COP versus cooling load Qev,chw at evaporator using 15 min time intervals data 

Since the t-test concluded that the weekly COP values of chillers have not changed during 

the summer of 2016, Section 3.4 uses the whole data set of 15 min time intervals of summer 2016 

for the subsequent analysis.  

Under normal operation conditions, COP increases with the rise of Part Load Ratio 

(PLR=Qev,chw/Qdes), and has the maximum value at PLR=1.0. As shown by from the measurements 

of a cooling plant with four chillers rated at 1758 kW each, the highest degree of correlation was 

obtained between the chiller COP and PLR, and less degree of correlation with other operation 

variables [119]. 

The measurements of chillers of this study show that the maximum COP values of CH#1 and 

CH#2 are recorded in the flat region of cooling load curves between 2,000 kW and 2,500 kW, 

which corresponds to PLR between 0.63 and 0.79 (Figure 3-2.a), and decreases after. When both 

chillers are used simultaneously, their maximum COP corresponds to 3,000 kW to 5,000 kW 

cooling load Qev,chw, or PLR between 0.47 and 0.79, and slightly decreases after. Other operation 

variables, not measured in this study, and the uncertainty of measurements could be the reason of 

such a variation of COP versus Qev,chw.  

The results of other studies support the results of this paper. The measurements by [120] of a 

cooling plant, composed of five air-cooled chillers of rated cooling capacity of 1,400 kW each, 

revealed also that the majority of COP values were significantly below the manufacturer’s curve 

in the PLR range above 0.5. The reduction in chilled water flow rate from the rated value could 

be the main reason for the degradation in chiller performance. In another study, [121] showed that 

the Part Load Factor (PLF=COP/COPdes) of a centrifugal chiller has the maximum value in an 

almost flat region of PLR between 0.6 and 0.9. 

Chillers CH#1 and CH#2 reached maximum cooling load of about 3,000 kW each or PLR = 

0.95 (Figure 3-2.a and 3-2.b). When both chillers work in parallel, they do not reach the maximum 

capacity; they work at PLR of about 0.87 each.   
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(a) Chiller CH#1 

 
(b) Chiller CH#2 

 
(c) Chillers CH#1 + CH#2 

Figure 3-2. Variation of COP versus chiller cooling load (Qev) using 15 min time intervals data recorded 

during the summer of 2016. (a) Chiller CH#1, (b) Chiller CH#2, (c) Chillers CH#1+CH#2. 
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Let us take some data from the operation of chiller CH#1 alone (scenario 1) on two operation 

periods of the summer 2016 to explain the variance presented in Figure 3-2.a (same comments 

apply to Figure 3-2.b and 3-2.c). Data extracted correspond to almost constant PLR = 0.51±0.01 

(Table 3-5).  

1. Direct measured variables (E, Tchwl, Tchwr) have variations around the mean values, which can 

be observed in Table 3-5, and Figure 3-3 where E/Edes is plotted against Qev,chw/Qdes.   

2. The uncertainties of direct measurements propagate through the corresponding defining 

formulas of the derived measurements (Qev,chw, PLR, COP) (Appendix A). To simplify the 

explanation, Table 3-5 shows only the mean and standard deviation of each variable. At 

constant PLR value, the derived measurements show variation about the mean value. 

3. As an example, by considering the COP uncertainty of 0.57 (Table 3-3) the maximum COP 

value calculated for July 4-10, 2016 is 6.54, which is within the range of Figure 3-2.a. 

Table 3-5. Mean and standard deviation of direct and derived measurements when 

PLR=0.51±0.01. 

Time interval P, kW Tchwl, °C Tchwr, °C Qev,chw, kW COP (-) 

July 4-10, 2016  271.95±10.13 6.85±0.07 11.33±0.13 1621.16±38.36 5.97± 0.27 

July 25-31, 2016 271.96± 9.01 6.84±0.09 11.30±0.13 1610.328±42.37 5.93± 0.19 

 

4. Another situation that adds variance to normal pattern is when the operation changes from one 

chiller (CH#1) to two chillers (CH#1+CH#2). This is due to the difference between the system 

response time and recording data of variables change. In this case study, measurements are 

recorded at 15 min time intervals. For instance, on July 5, 2016 at 13:15:00, only chiller CH#1 

was on, and Tchwr was too high (15.75°C). The chiller was unable to maintain the Tchwl setpoint, 

and the control system turned on the second circulating pump. The effect of second chiller on 

Tchwl was not yet noticed. As a consequence, at that time interval Tchwl was almost equal with 

Tchwr, and the cooling load Qev,chw was small, which led to low calculated PLR. At 13:30:00 

when the operation was recorded again, the operation of two chillers (CH#1 + CH#2) was 

recorded, and Tchwl was within the control range, and PLR=0.71. This kind of situation occurs 

only for short recording time intervals, of 15-30 min. When the integration of results is carried 

out for longer time periods of days, weeks or cooling season, this kind of variation is 

unnoticeable, and has no effect on the long-term variation of COP.  
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3.3.5. COP versus outdoor air temperature using 15 min time intervals data 

When the outdoor air temperature Toa is between 20°C and 40°C, the mean COP value of 

each operation scenario does not vary with Toa: mean COP = 5.9 when CH#1 is on, 5.8 when CH#2 

is on, and 5.7 when both CH#1 and CH#2 are on. When Toa is between 15°C and 20°C, the COP 

value increases by about 0.37 per 1°C of increase of outdoor air temperature.  

3.3.6. Power input ratio (PIR) versus part load ratio (PLR) at evaporator 

Since the operation at part load (PLR= Qev,chw/Qev,des) at evaporator has an important impact 

on the electric power input ratio (PIR= E/Edes) at the compressor, this section evaluates their 

relationship from measurements at 15 min time intervals over summer 2016. Any abnormal pattern 

between these two normalized variables could bring the attention on some possible operation 

issues, before the long-term analysis is carried out. 

The quadratic form of correlation-based model of PIR= f(PLR) used by two well-known 

building energy analysis programs, eQUEST and EnergyPlus, is used in this section as the starting 

point (Equation 3-13). The coefficients B1, B2 and B3 are identified by using 15 min time intervals 

data of summer 2016 (Table 3-6).  

 

𝑃𝐼𝑅 = 𝐵1 + 𝐵2 ∙ 𝑃𝐿𝑅 + 𝐵3 ∙ 𝑃𝐿𝑅
2                                                  (3-13) 

Table 3-6. Coefficients B1, B2 and B3 of Equation 3-13 from measurements at 15 

min time intervals of summer 2016. 

Model B1 B2 B3 

CH#1, Measurements 0.1951 0.3464 0.4577 

CH#2, Measurements 0.157 0.6248 0.2233 

CH#1+CH#2, Measurements 0.2167 0.3065 0.5544 

eQUEST 0.1715 0.5882 0.2374 

EnergyPlus 0.2229 0.3134 0.4637 
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(a) Chiller CH#1 

 
(b) Chiller CH#2 

 
(c) Chillers CH#1 + CH#2 

Figure 3-3. Variation of PIR=P/Pdes versus PLR = Q/Qev from measurements of 15 min. 
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Figures 3-3.a to 3-3.c show the data points distribution from the three scenarios, and reveal 

normal pattern of operation. There is good agreement between the correlation-based models 

obtained from the measurements and two defaults models from eQuest and EnergyPlus programs 

(Figure 3-4), with some minor differences of values of coefficients B1, B2 and B3 (Table 3-6). The 

coefficients B1, B2 and B3 that are identified from the operation of CH#1 alone, and those from the 

simultaneous operation of chillers CH#1+CH#2 are close to the default coefficients used by 

EnergyPlus; while the coefficients identified from the operation of CH#2 alone are close to the 

default values of eQUEST. 

 

 

Figure 3-4. Variation of PIR=P/Pdes versus PLR = Q/Qev. Comparison of correlation-based models from 

measurements of 15 min time interval of summer 2016 with default models from eQUEST and EnergyPlus 

programs. 

3.4. Change of seasonal COP values from 2009 to 2017 

Figure 3-5 reveals a small increasing trend of the seasonal average COP of chillers over nine 

years from 2009 until 2017, which was not presented so far in any publication. Tables B2 to B4 

show detailed data. 

Since results presented in Figure 3-5 contradict the literature, additional investigation was 

carried out to support the conclusions, and results are presented in this section (from Figure 3-6 to 

Figure 3-12). Measurements on the refrigerant loop were available from 2013 (Figure 3-6 and 

Figure 3-7). The average refrigerant pressure in the condensers of CH#1 and CH#2 was smaller in 
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2016-2017. The average refrigerant pressure in both evaporators was almost constant over five 

years, with the exception of CH#1 in 2013. Since chillers use low-pressure refrigerant R123, the 

pressure in the evaporator is lower that the atmospheric pressure. 

 

 

Figure 3-5. Seasonal average COP of chillers versus year of measurements. 

 

Figure 3-6. Seasonal average pressures of condenser and evaporator of chiller CH#1 versus year of 

measurements. 
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Figure 3-7. Seasonal average pressures of condenser and evaporator of chiller CH#2 versus year of 

measurements 

One useful metric for assessing the chiller operation is the compressor lift or head pressure, 

which is calculated as the difference between the condenser and evaporator refrigerant pressures. 

Under the conditions presented in this paper, the compressor lift was smaller by about 10% in 

CH#1 and CH#2 in 2016-2017 compared with 2014-2015 (Figure 3-8). This reduction is expected 

to increase the COP, because of smaller compressor work, if other variables of interest remain 

constant (e.g., evaporator load, water temperature to and from the cooling towers, etc.).  

 

 
Figure 3-8. Seasonal average compressor lift versus year of measurements. 
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However, measured values of other variables also changed: (1) the evaporators load slightly 

increased since 2013 (Tables B2 to B4); and (2) the average temperature difference of water 

through condensers was about 4.3°C in both chillers (Figure 3-9 and Figure 3-10), compared with 

design temperature difference of 5.6°C. 

 

 

Figure 3-9. Water temperature leaving the condenser of chiller CH#1 and returning from the cooling tower 

CT-1. 

 

Figure 3-10. Water temperature leaving the condenser of chiller CH#2 and returning from the cooling tower 

CT-2. 
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Additionally, the average Tchwl was about 7.0°C, that is higher than the design temperature of 

5.6°C; and the chilled water temperature difference through the evaporators was about 4.1°C, that 

is smaller than 7.7°C at design conditions.  

The second useful metric is the condenser approach that is calculated as the difference between 

the liquid refrigerant (measured on the liquid line) and leaving condenser water temperature. The 

condenser approach in this study (Figure 3-11) has values between 0°C and 2.09°C for CH#1, and 

between 0°C and 0.35°C for CH#2, compared with practical recommendations of 0°C-3°C for 

water-cooled chillers [122].  

 

 

Figure 3-11. Seasonal average condenser approach versus year of measurements. 

 

Figure 3-12. Seasonal average evaporator approach versus year of measurements. 
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The third useful metric is the evaporator approach that is calculated as the difference between 

the leaving chilled water temperature and saturated refrigerant temperature leaving the evaporator. 

The evaporator approach in this study (Figure 3-12) has values between 0°C and 0.64°C for CH#1, 

and between 0.15°C and 0.87°C for CH#2, compared with practical recommendations of 0°C-2°C 

for water-cooled chillers [123]. 

One can conclude that the condenser and evaporator approaches, calculated from 

measurements of 2013-2017, are within the acceptable limits. 

The analysis of measurements indicates that the reduction of the compressor lift, variation of 

evaporator cooling load, and operation of chilled and condenser water temperatures at different 

values compared with design conditions, along with regular maintenance of chillers at the 

beginning of a cooling season, might be the reason of offsetting the chillers ageing. The authors 

do not have other information about chillers design and operation variables that possibly 

contributed to the trend of Figure 3-5.  

Only the visual display of COP variation over nine years (Figure 3-5) cannot prove the paper 

hypothesis that the seasonal energy performance of these two centrifugal chillers does not change 

significantly over nine seasons of operation. Section 3.4.1 and Section 3.4.2 present two different 

approaches to conclude if the change of COP is statistically significant or not: (1) using the 

hypothesis testing as discussed in section 3, and (2) using linear correlation-based model between 

seasonal COP values and time. 

3.4.1. Hypothesis testing 

The t-test presented in section 3.3.3 is also used in this section to verify if the seasonal COP 

values of each scenario have changed significantly from 2009 to 2017. Although the operation of 

chillers started in 2007, the measurements of electric power input E, required for COP calculations, 

became available only in 2009. Tables B2 to B4 (Appendix B) present direct and derived 

measurements of summers of 2009 to 2017 under the three scenarios, displayed as the seasonal 

mean value ± uncertainty. 

The null hypothesis H0 states that the seasonal COPs values do not change over time from 

2009 to 2017: 

 

𝐻0: 𝐷𝑚𝑒𝑎𝑛 = 0     (3-14) 
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The alternative hypothesis H1 states that seasonal COPs values change with time: 

 

𝐻1: 𝐷𝑚𝑒𝑎𝑛 ≠ 0                    (3-15) 

 

where Dmean is the mean of the individual differences dj between the seasonal COPs2009 value 

of summer 2009 and the seasonal COPsj value of each subsequent year j (from 2010 to 2017); and 

dj = COPs2009 – COPsj, with j=2010 to 2017. 

The t-statistic is calculated as (Equation 3-16): 

 

 𝑡 =  𝐷𝑚𝑒𝑎𝑛 (𝑠 √𝑛⁄ )⁄     (3-16) 

 

where Dmean and s are random variables that represent the mean and standard deviations of dj 

values; and n is the number of paired COP values [117].  

The results (Table 3-7) prove that the null hypothesis is true because t-statistic is not in the 

critical region of Student t-distribution (as selected for the two-sided test, and the significance level 

α/2 = 0.025). In conclusion, there is not significant statistical evidence to say that the seasonal COP 

values have changed from 2009 to 2017 for all three scenarios of operation. 

Table 3-7. Results of t-test for comparison of seasonal COP values between 2009 

and 2017  

Data set Dmean s d.f. t 
Critical region 

t> tCR,α/2,n-1 t <- tCR,α/2,n-1 

Scenario 1: CH#1 -0.357 0.312 5 -0.443 2.571 -2.571 

Scenario 2: CH#2 -0.406 0.123 6 -1.253 2.447 -2.447 

Scenario 3: CH#1+CH#2 -0.416 0.195 6 -0.080 2.447 -2.447 

3.4.2. Linear correlation-based model 

A linear trend model is assumed for the relationship between the seasonal COPsj of year j 

(with j = 1 to 9) and year that is counted from 2007 (Equation 3-17): 

 

 𝐶𝑂𝑃𝑠 = 𝑎 ∙ (𝑌𝑒𝑎𝑟 − 2007) + 𝑏      (3-17) 
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The regression coefficient a shows the slope of variation of COPs with the number of years, 

while b shows the COPs value at year = 2007 (Table 3-8).  

Table 3-8. Regression coefficients a and b of correlation-based model COPs = 

f(year) under three scenarios. 

 Scenario a b R2 

COPs  

(1) CH#1 0.02 0.85 0.63 

(2) CH#2 0.01 0.85 0.58 

(3) CH#1+CH#2 0.01 0.85 0.80 

 

When chillers CH#1 and CH#2 work separately, the slope of linear regression of COPs is 0.02 

per year (for scenario CH#1), and 0.01 per year (for scenario 2) from 2009 to 2017. The coefficient 

of determination R2 of 0.63 and 0.58, respectively, indicates a moderate positive linear relationship 

between COPs and time (year).  

When both chillers work in parallel (scenario 3), the slope of linear regression of COPs is 

0.01 per year from 2009 to 2017. The coefficient of determination R2 = 0.80 indicates a strong 

positive linear relationship. 

The results of this case study show that the seasonal COPs value increased slightly by 1% per 

year for scenarios 2 and 3, and by 2% per year for scenario 1. This result over nine years contradicts 

all publications that conclude on the annual reduction of COPs.  

The results of this study of 1-2% of seasonal change of COPs per year are 25 to 50 times 

smaller than the calculated measurement uncertainty of COP of about 0.5 (Tables B2 to B4). 

Therefore, one can easily conclude that the seasonal change of COPs is negligible. 

The results of sections 3.4.1 and 3.4.2 converge on the same conclusion: there is not evidence 

to prove that the seasonal COP values of two chillers of this case study, working under three 

different scenarios, have significantly changed from 2009 until 2017. Annual changes of COP of 

1% to 2% do not have a statistical significance. 

3.4.3. Conclusions of long-term chiller energy performance assessment 

This chapter concludes that there is not evidence to prove that the seasonal COP values of 

two chillers of this case study, working under three different scenarios, have changed over nine 

years (from 2009 to 2017). Though other operation and control variables, not measured in this 
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study, might be source of such in-significant degradation of long-term energy performance, in the 

absence of other explanations, the authors concluded that the reduction of the compressor lift, 

variation of evaporator cooling load, and operation of chilled and condenser water temperatures at 

different values compared with design conditions, along with regular maintenance at the beginning 

of cooling season, have offset the chillers ageing. As a result, the COP value has not changed 

significantly over the nine cooling seasons of measurements.  

3.5. Experience learnt about the need of FDD  

As the chiller energy performance can keep unchanged over a long-term, one of the most 

likely explanations for a malfunction of chiller system is a fault occurs due to various reasons, 

which calls for the need to detection the fault and finally isolate the source of fault, if possible.  

Measurements of this cooling plant were obtained directly from building automation system, 

without authors’ participation in sensors calibration. Authors have doubts that on a large campus 

most sensors are periodically re-calibrated, when other urgent actions are needed for proper 

operation of HVAC systems. In an ideal world, a dedicated monitoring system periodically re-

calibrated should be installed, and results of analysis, over many years of data, should be compared 

with those obtained from using BAS trend data.  

However, in a real world, noise, inaccuracy, etc., are the intrinsic properties of measurements, 

which reduces the performance of a derived model, or even add barriers to formulate a model. 

Therefore, measurement data of this cooling plant should be well calibrated to assess its feasibility 

in the application of model development. A study for the same cooing plant [124] dispels this 

concern, where the default EnergyPlus model was calibrated with measurements, and compared 

with measurement data and TRNSYS simulation data. The study indicated it is possible to develop 

a calibrated model using measurement data without modifying by trial-and-error some variables 

or using stochastic approaches. Thus, measurements, extracted from BAS for this cooling plant, 

are readily feasible for model development.  
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Chapter 4: Methodology for the development of MDFDD models 

This dissertation focuses on the development of benchmarking grey-box model-based method 

to detect and diagnose chiller MDFs, using measurement data from a real building. The monitored 

variables from BAS were extracted as the input of benchmarking grey-box models. The forward 

fault detection model and the backward diagnosis model underpin the main structure of MDFDD 

model in this dissertation. Different from the experiment data from laboratory in a controlled 

environment or the synthetic data from simulation programs, measurements from BAS in a real 

building usually cover limited information. Thus, establishing grey-box models with measurement 

data to achieve good performance requires many endeavors. If the benchmarking grey-box models 

are successfully developed, they are then integrated into the forward model to detect a fault 

symptom, when the difference between measurements and predictions of a target variable exceeds 

a threshold value. Once the fault symptom is detected, the rule-based backward fault diagnosis 

model is applied. The proposed method can be generalized by updating the model parameters with 

measurements from other chillers. Such an alternative method can be integrated in BAS for 

continuous commissioning of HVAC equipment.    

4.1. Measurement data   

This dissertation used the monitored variables from the available trend data of BAS (Table 3-

2) and applied the data preprocessing steps prior to the model development stage and the model 

application stage. Data preprocessing includes corrective actions and the removing actions. 

Missing recordings are replaced by the publicly available sources or removed. Outliers identified 

by a commonly recognized criteria are also removed. Apart from the direct variables (directly 

measured variables), derived variables are also used in this dissertation.  

4.2. Forward residual-based model for fault detection   

The feedforward fault detection model works in a way following three sequential steps: (1) 

establish benchmarking grey-box models to predict target variables, (2) calculate the residual 

between the predicted variable and the measured variable, and (3) compare the residual with a 

corresponding threshold. If the residual of a variable exceeds the corresponding threshold, a fault 
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symptom is detected. The strategy, using forward-sequential steps to finalize the identification of 

fault symptoms, underpins the feedforward structure of the fault detection model. To fully describe 

the chiller operation, target variables representing both the system-level behaviors and local-level 

behaviors are selected for model development. 

4.2.1. Benchmarking grey-box models   

The grey box model contains many benefits similar to physical based models; however, such 

models differ in that the parameters of grey-box models can be identified through statistical 

analysis. Thus, grey-box models tend to be robust [24]. Compared with other data-driven models, 

grey-box models can provide limited extrapolation outside the range of training data [24]. Besides, 

the form of grey-box model is usually simple, and are, therefore, scrutable, and easy to use.  

Within this dissertation, grey-box models are developed with input variables (called regressor 

variables) that show impacts on subsequential variables (called target variables), which are 

available in BAS measurements and presented in Chapter 5. A grey-box model is regarded as a 

benchmarking grey-box model if results of model training and testing, due to both the static 

window approach and the dynamic window approach, verify the accuracy and robustness of the 

proposed grey-box model. Thus, a benchmarking grey-box model characterizes for accurate and 

robust, and could provide reference values for the corresponding target variable. 

Benchmarking grey-box models are then applied within this dissertation for the following 

three purposes:   

I. Predict the chiller operation status under normal conditions (e.g., E and Tcdwl). 

II. Predict the refrigerant enthalpy at three key points in a refrigerant loop within the vapor 

compression system, using the information only from the refrigerant side (e.g., Tev and Pev). 

Consequently, the predicted enthalpy are used to estimate some derived variables (e.g., 

Qev,chw). 

III. After benchmarking grey-box models are validated by measurement data under normal 

conditions, artificial faults are inserted into the testing dataset. Then, the benchmarking 

grey-box models are applied to generate the impact on target variables due to artificial 

regressor faults. 
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4.2.2. Symptom models  

Symptom models are developed to detect faults within the chiller. As defined in Chapter 2, a 

fault means this deviation/difference exceeds an acceptable tolerance of a variable in terms of the 

research target; herein, this toleration is estimated by the threshold. Several target variables are 

selected for the symptom model development.  

This dissertation establishes symptom models for the purpose of detecting MDFs. The 

symptom models are defined as residuals, describing the deviation/difference between the 

predicted variables and the measured variables. If this deviation/difference falls out of a threshold, 

a fault symptom is identified.  

4.2.3 Insertion of artificial fault 

As measurement data with faults are not available, in this dissertation, some faults are 

manually inserted in the measurement dataset (e.g., 5℃ increase bias for Tchwl), after the model 

validation with fault-free data is completed. Sequentially, the impact on a target variable is 

generated by the corresponding benchmarking grey-box model.  

4.3. Backward rule-based model for fault diagnosis  

After fault symptoms are detected, the backward rule-based approach is applied to diagnose 

the fault source. Since the fault diagnosis model needs and relies on the detected fault symptoms 

to trace the fault source, it follows a backward process.   

Figure 4-1 summarizes the workflow of MDFDD model, where three main modules are 

included: (1) model validation module, (2) forward fault detection module, and (3) backward fault 

diagnosis module. Processes in black blocks are with respect to normal conditions, while processes 

in red blocks are related to the conditions with faults. The workflow of MDFDD model follows 

six sequential steps:      

I. Extract data from BAS, preprocess them, and split training and testing datasets. 

II. Key target variables that give essential information about the chiller system-level and 

component-level status are selected.  

III. Grey-box models that predict the expected operation values of selected target variables, 

under normal operation conditions, are developed. Validate the accuracy and robustness of 

grey-box models with both the static window approach and the dynamic window approach 
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to identify whether these models can be regarded as benchmarking grey-box models. These 

models use measurements from input variables (regressor variables) that could be the 

source of abnormal performance of target variables.   

IV. Insert artificial faults into the dataset, and calculate the impacts using benchmarking grey-

box models. If the residual between a measured variable and a predicted variable exceeds 

the threshold, the fault symptom is detected.  

V. A fault symptom might not reveal a real fault, but could be the result of abnormal values 

of regressors, which are in the loop prior to the target variable. The backward fault 

diagnosis method looks for the diagnosis of regressor faults. Thus, the target variable could 

be dependent of regressors. The faulty target variable itself can also generate the fault 

symptom. 

VI. The MDFDD method concludes with three possible outcomes: (1) the target variable is 

faulty, (2) the regressor variables are faulty, and (3) both target and regressor variables are 

faulty. 

 

 

Figure 4-1. Workflow chart of dependent fault detection and diagnosis model. 
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4.4. Transfer learning  

Transfer learning (TL) can be defined as the ability of a system to recognize and apply 

knowledge and skills learned in previous tasks to novel tasks [125]. TL is an efficient approach to 

a new task without developing new models, which is a time-efficient and resource-saving approach 

utilized by many studies in the field of HVAC [126–129]. 

Within this dissertation, Deep neural network (DNN) models are developed to predict chiller 

target variables with the application of different TL strategies. A DNN model, learnt on one chiller 

(called source chiller), is transferred to another chiller (called target chiller) with weights fine-

tuned. The model performance is evaluated on the target chiller. The derived DNN models with 

different TL strategies are examined under diverse chiller operation conditions and different data 

distribution characters (e.g., small size of training dataset and large size of testing dataset) of the 

target chiller. This transfer is the generalized methodology that will be applied to all DNN models. 

The application of TL is conducted for the purpose of identifying the best TL strategy in improving 

DNN model performance on the target chiller.  
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Chapter 5: Development of the multiple dependent fault detection 

and diagnosis models 

This chapter presents the model development for the feedforward fault detection models and 

the backward fault diagnosis models. The MDFDD model is established with the available 

variables extracted from BAS, including water-side and refrigerant-side information. Grey-box 

models are developed to predict system-level and component-level chiller operation status, for the 

purpose of generating residuals once predictions are compared with measurements, which are used 

for fault detection. Based on the results of fault symptom detection and dependency of target 

variables and regressor variables, backward fault diagnosis models are developed to isolate the 

fault source.   

5.1 Data preprocessing 

Due to the inaccuracy, incompleteness, and inconsistency of real-world databases, it is 

necessary to verify and, if needed, correct raw data quality [130]. The preprocessing of data 

includes corrective and removing actions of raw measurements. For the corrective action, the 

missed data for Toa and RHoa are replaced by values recorded by Environment Canada [131]. Due 

to possible factors of the sensor itself, the recording system, and/or the periodic maintenance [132], 

the noise and other abnormal data are unavoidable, which should be removed. For the removing 

actions, it follows the three sequential steps listed below.  

Step 1: Samples with missing data (related cells in Excel file are filled with ‘No Data’) are 

removed. The variables with obviously abnormal values (e.g., negative values of Vchw) are also 

removed, when the cooling plant was operating in the normal condition.  

Step 2: For the data rejection, measurements under transient conditions (start-up and shut-

down periods of a chiller) are eliminated.  

Step 3: Erase outliers. Chauvenet’s criterion [116] is used to identify outliers. Any 

measurement will be eliminated if the value of deviation from the mean value divided by the 

standard deviation exceeds the criterion determined by Equation 5-1.   

 
𝑑𝑚𝑎𝑥

𝑆
= 0.819 + 0.544𝐼𝑛(𝑛) − 0.02346𝐼𝑛(𝑛2)                                      (5-1)  
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Where dmax is the deviation from the mean of a variable, S is the standard deviation, and n is 

the number of data points.  

5.2. Development of benchmarking grey-box models 

The second law of thermodynamics reveals how energy flows through a chiller, from building 

to the outdoor environment, which follows the three sequential steps: (1) the building heat flows 

to the chiller evaporator, which is represented by the process that the chilled water is cooled down 

and the refrigerant evaporates. (2) the energy of evaporator flows to the condenser, driven by the 

work of a compressor, which is represented by the process that the low-pressure and low-

temperature refrigerant is compressed to the high-pressure and high-temperature refrigerant. (3) 

the heat flows to the condenser water and is rejected to the outdoor environment through a cooling 

tower, which is represented by the process that the temperature of condenser water increases.  

The above energy flow analysis indicates the subsequential variables (e.g., E, Tcdwl, etc.) can 

be affected by variables like Tchwl, Vchw, etc. As this dissertation focuses on dependent faults, the 

subsequential variables are preferred to be selected as target variables to describe system-level 

operation status of chiller. As for the local-level status, delta-T of chilled water (∆Tchw) and delta-

T of condenser water (∆Tcdw) are two derived variables to describe the operation status of 

evaporator and condenser, respectively. Thus, variables of E, COP, and Tcdwl are selected to 

describe system-level status, and variables of ΔTchw, and ΔTcdw are selected to describe local-level 

status (evaporator and condenser). Tchwl and mev,refr,ref are also selected as target variables. All these 

target variables are marked with ‘*’ in Table 3-2. The primary unit for Vchw (gpm) is transferred to 

L/s in this dissertation with a conversion factor of 0.063.   

5.2.1. Model of the electric power input to a chiller 

The grey-box model for electric power input to the chiller (E) development starts with the 

analysis for the estimation of refrigerant mass flow rate, which is used as a regressor variable for 

the grey-box model of Eb. In most examples, the electric power input to the compressor, but not 

the electric power input to a chiller, is used to estimate the refrigerant mass flow rate. Li and Braun 

[50] proposed a virtual sensor to estimate the mass flow rate of refrigerant, where the power input 

to compressor was used in calculations; they assumed that 5% of electric power input is lost 
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through heat exchange with environment and results reported that 93.33% of prediction fell within 

a range of ±3% of experiment data. Furthermore, references [133–136] also estimated the 

refrigerant mass flow rate of chiller with respect to electric power input to compressor.  

The estimation of refrigerant mass flow rate, using electric power input to the chiller may 

ignore factors like the heat exchange between the compressor and environment, motor efficiency, 

etc [137]. However, the information of these factors is rarely available in real buildings. Therefore, 

it is necessary to develop a model to estimate the refrigerant mass flow rate, using only the 

available variables in the BAS trend data. 

This dissertation assumes the refrigeration cycle starts with the heat removed from the chilled 

water loop at the evaporator, where the refrigerant mass flow rate is controlled by expansion valve. 

For most chillers in real buildings, Tchwl is a controlled variable and used as the reference for sizing 

equipment of the secondary HVAC system (AHU, fan coil, etc.). The measurements of case study 

indicate Tchwl varies around a setpoint temperature within a very limited variance (Section 6.3, 

Chapter 6). As the information of setpoint temperature of Tchwl is not available in BAS, it is 

replaced by the mean value of Tchwl over the training dataset (𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅ ). Thus, Equation 5-2 is 

proposed to estimate the reference cooling load of evaporator (Qev,chw,ref) on water side with respect 

to 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅. Correspondingly, mev,refr,ref is the reference refrigerant mass flow rate at the evaporator 

(Equation 5-3).  

 

𝑄𝑒𝑣,𝑐ℎ𝑤,𝑟𝑒𝑓 = 𝑐𝜌𝑉𝑐ℎ𝑤(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅)                                      (5-2) 

 

𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 =
𝑄𝑒𝑣,𝑐ℎ𝑤,𝑟𝑒𝑓

ℎ𝑠𝑢𝑐 − ℎ𝑙𝑙
                                                (5-3) 

 

The chiller compressor consumes electricity and compresses the refrigerant vapor to the 

super-heated status, for this reason, variable of mev,refr,ref is selected as one regressor for the grey-

box model of Eb. Another two variables, Tchwl and Vchw, also show potential impact on E, thus, a 

correlation based grey-box model is proposed to predict the electric power input to a chiller:  

                                

𝐸𝑏 = 𝛼1(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅) + 𝛼2𝑉𝑐ℎ𝑤 + 𝛼3𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 𝛼0                 (5-4) 
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5.2.2. Model of the coefficient of performance (COP) 

A correlation-based benchmarking grey-box model is proposed with regressors showing 

potential impact on the COP. 

 

 𝐶𝑂𝑃𝑏 = 𝛽1𝑇𝑐ℎ𝑤𝑙 + 𝛽2𝑉𝑐ℎ𝑤 + 𝛽3𝑃𝐿𝑅 + 𝛽4𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 𝛽0                           (5-5) 

 

Where βi (i = 0, 1,…,4) are the parameters to be identified during the training phase. 

5.2.3. Model of the condenser-water leaving temperature  

The development of grey-box models for Tcdwl starts with a chiller energy balance equation, 

which is introduced by Equation 5-6:  

 

𝑄𝑒𝑣,𝑐ℎ𝑤 + 𝐸 = 𝑄𝑐𝑑,𝑐𝑑𝑤                                                                        (5-6)      

 

𝑄𝑐𝑑,𝑐𝑑𝑤 = 𝑐𝜌𝑉𝑐𝑑𝑤(𝑇𝑐𝑑𝑤𝑙 − 𝑇𝑐𝑑𝑤𝑟)                                      (5-7) 

 

Where Qcd,cdw is the condenser load on condenser water side in kW, Vcdw is the volumetric 

flow rate of condenser water in m3/s, Tcdwr is the condenser-water return temperature in ℃, Tcdwl is 

the condenser-water leaving temperature in ℃.  

Based on Equation 3-8, Equation 5-6, and Equation 5-7, Tcdwl can be derived from:  

 

𝑇𝑐𝑑𝑤𝑙 =
𝑉𝑐ℎ𝑤

𝑉𝑐𝑑𝑤
(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙) +

𝐸

𝑐𝜌𝑉𝑐𝑑𝑤
+ 𝑇𝑐𝑑𝑤𝑟                                  (5-8)      

 

Equation 5-8 is affected by the following three factors: (1) heat leakage, from the compressor 

to the environment, (2) the heat exchanger efficiency of the condenser, and (3) the heat exchanger 

efficiency of the evaporator. However, the information for the three factors is not available in 

measurements. To integrate the three factors, a grey-box model for Tcdwl can be developed with 

independent input variables in Equation 5-8. Besides, an experiment study found the refrigerant 

mass level has a direct impact on Tcdwl [138]. Thus, mev,refr,ref is added as another independent 

variable for the grey-box model of Tcdwl. Therefore, a grey-box model for Tcdwl is proposed as 

Equation 5-9:  
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𝑇𝑐𝑑𝑤𝑙,𝑏 = 𝛿1(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙) + 𝛿2𝑉𝑐ℎ𝑤 + 𝛿3𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 𝛿4𝐸 + 𝛿5𝑇𝑐𝑑𝑤𝑟 + 𝛿0          (5-9) 

 

Where δi (i = 0, 1, …5) are the parameters to be identified during the training phase. 

5.2.4. Model of the delta – T of chilled water  

The heat exchange, between chilled water and refrigerant, in the evaporator is separated by 

the evaporator tubes and complies with the forced heat convection process [139]: (1) the refrigerant 

absorbs the heat from chilled water (separated by evaporator tubes) and evaporates at a constant 

temperature, while (2) the chilled water, returning from the building (Tchwr), releases the heat to 

the evaporator tube and is cooled down. Then chilled water leaves the evaporator at a lower 

temperature (Tchwl). Figure 5-1 provides a schematic for the temperature distribution within a 

general evaporator.  

 

 

Figure 5-1. Schematic for temperature distributions of refrigerant loop and water loop in evaporator and 

condenser.   

As refrigerant usually goes through the evaporating process within an evaporator, the 

evaporating temperature keeps constant and the subsequential surface temperature of evaporator 

tubes is constant, which generates a temperature difference, between the refrigerant in evaporator 
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and chilled water temperature, as Tchwr – Tev (ignoring the thermal resistance of evaporator tubes). 

On the chilled water side, water properties related to heat convection like thermal diffusivity, 

dynamic viscosity depend on the chilled water velocity (uchw).  

Though uchw is not available in measurements, the normalized uchw,norm can be approximated. 

Equation 5-10 indicates uchw is proportional to Vchw, where Asec is the cross-sectional area of chilled 

water flow in the evaporator. In the absence of the information of Asec, uchw,norm is calculated by 

Equation 5-11: 

 

𝑢𝑐ℎ𝑤 =
𝑉𝑐ℎ𝑤

𝐴𝑠𝑒𝑐
                                                                                       (5-10) 

 

𝑢𝑐ℎ𝑤,𝑛𝑜𝑟𝑚 = 
𝑢

𝑢𝑚𝑎𝑥
=

𝑉𝑐ℎ𝑤

𝑉𝑐ℎ𝑤,𝑚𝑎𝑥
                                                            (5-11) 

 

Where Vchw,max is the maximum chilled-water flow rate in measurements. 

The above analysis indicates uchw can be used to estimate the un-available variables related to 

the forced heat convection process. Coupling with another term, Tchwr - Tev, a grey-box model is 

proposed to estimate the delta-T of chilled water, where a multiplication algorithm is assumed:  

 

∆𝑇𝑐ℎ𝑤,𝑏 = (𝜖1𝑢𝑛𝑜𝑟𝑚 + 𝜖2)(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑒𝑣)                                   (5-12)  

 

Where 𝜖1 and 𝜖2 are parameters to be identified during the training phase. Equation 5-12 can 

be transformed to predict other variables (e.g., Tchwr), if needed.   

5.2.5. Model of the delta-T of condenser-water 

The general process for the condenser water circulating via the condenser follows the 

temperature increase, as the chiller rejects the heat to the condenser-water. The heat exchange, 

between condenser water and refrigerant, in the condenser is separated by the condenser tube and 

complies with the forced heat convection process: (1) the refrigerant releases the heat to the 

condenser tube, while (2) the condenser water absorbs this heat via the condenser tube. Then 

condenser water leaves the condenser with a higher temperature. The temperature distribution 

within a general water-cooled condenser and a schematic for the corresponding heat exchange 

process is displayed in Figure 5-1. 
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Heat transfer on the water side in a condenser complies with forced convection processes. 

The temperature difference between condenser tube (Tcd,tube) and condenser water return 

temperature (Tcdwr) is the driving force of heat transfer, as Tcd,tube - Tcdwr. As the mass flow rate of 

condenser water is always set as a constant value in a common water-cooled chiller system, 

therefore, let’s assume variables affecting heat transfer rate, like condenser configurations 

(condenser tube area, characteristic length, etc.) and condenser water properties (thermal 

diffusivity, dynamic viscosity, etc.), can be integrated into coefficients of a grey-box model.  

Thus, the temperature difference of Tcd,tube - Tcdwr turns to the most important term affecting 

the heat transfer rate of the condenser, which subsequently determines the delta-T of condenser 

water, ΔTcdw = Tcdwl – Tcdwr. The refrigerant status in a condenser can be divided into three 

sequential processes [140]: (1) the superheated refrigerant vapor at a temperature of Tdis, 

discharged by the compressor, is cooled to the saturated vapor, (2) the saturated vapor condenses 

to the saturated liquid (Tcd), and (3) the saturated liquid is sub-cooled (Tll). Hence, a grey-box 

model is proposed to estimate Tcd,tube considering the three processes:  

 

𝑇𝑐𝑑,𝑡𝑢𝑏𝑒 = 𝑐1𝑇𝑑𝑖𝑠 + 𝑐2𝑇𝑐𝑑 + 𝑐3𝑇𝑙𝑙 + 𝑐0                                           (5-13) 

 

Where: 

 

𝑇𝑙𝑙 = 𝑇𝑐𝑑 − ∆𝑇𝑙𝑙                                                                            (5-14) 

 

Here, Tll is refrigerant liquid line temperature in °C, and ∆Tll is 1°C [141]. Then, Tll can be 

represented by Tcd by integrating it into the coefficient of Tcd and the bias term of the grey-box 

model, presented by Equation 5-15:  

 

∆𝑇𝑐𝑑𝑤,𝑏 = 𝜃1𝑇𝑑𝑖𝑠 + 𝜃2𝑇𝑐𝑑 − 𝜃3𝑇𝑐𝑑𝑤𝑟 + 𝜃0                                           (5-15) 

 

Where 𝜃𝑖 ( i = 0, 1,…3) are the parameters to be identified during the training phase. Equation 

5-15 can be transformed to predict other variables (e.g., Tcdwl), if needed. 

5.2.6. Grey-box models for enthalpy at key points of the chiller refrigerant loop 

Figure 5-2 maps four key points of the refrigerant cycle, where Point 1 is at the compressor 
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suction manifold, Point 2 is at the compressor discharge, Point 3 is at the liquid line after the 

condenser, and Point 4 is after the expansion valve at the entrance of the evaporator. The refrigerant 

enthalpy keeps unchanged when it flows through the expansion valve: the refrigerant enthalpy at 

Point 3 equals to that at Point 4 (h4 = h3). In this dissertation, hsuc = h1 in kJ/kg, hdis = h2 in kJ/kg, 

and hll = h3 in kJ/kg. The state equation indicates refrigerant enthalpy is defined by state variables 

of refrigerant pressure and temperature, as described by:   

 

ℎ𝑠𝑢𝑐 = 𝑓(𝑃𝑒𝑣, 𝑇𝑠𝑢𝑐)                                                                                 (5-16) 

 

ℎ𝑑𝑖𝑠 = 𝑓(𝑃𝑐𝑑, 𝑇𝑑𝑖𝑠)                                                                                  (5-17) 

 

ℎ𝑙𝑙 = 𝑓(𝑃𝑐𝑑, 𝑇𝑙𝑙)                                                                                      (5-18) 

 

Where Pev in kPa is the refrigerant absolute pressure at the evaporator, Pcd in kPa is the 

refrigerant absolute pressure at the condenser. The superheating, ΔTsuc = 2 ℃, and sub-cooling, 

ΔTll = 1 ℃  [141]. Tsuc is defined by Equation 5-19, and Tll is defined by Equation 5-14: 

 

𝑇𝑠𝑢𝑐 = 𝑇𝑒𝑣 + 𝛥𝑇𝑠𝑢𝑐                                                                                (5-19) 

 

The compressor discharge temperature (Tdis in ℃) is estimated by Equation 5-20 [142]:  

 

𝑇𝑑𝑖𝑠 = 𝑇𝑠𝑢𝑐(
𝑃𝑐𝑑

𝑃𝑒𝑣
)
𝛾−1

𝛾                                                                                (5-20) 

 

Where γ is the heat capacity ratio. The thermodynamic property of the refrigerant in ideal 

conditions is only affected by state variables like temperature and pressure [32]. Refer to the 

PREFPROP program [143], the value of γ, within the range of refrigerant state in this work, has 

only very small variations. Thus, γ = 1.1 is used in this study. 

 



 

  58 

 

 

Figure 5-2. T-S diagram of the refrigeration cycle. 

Then, the PREFPROP program are used to calculate the refrigerant enthalpy, since case study 

of this dissertation contains two R-123 electric chillers. PREFPROP, developed by the National 

Institute of Standards and Technology (NIST)  [144], is a program to calculate the thermodynamic 

and transport properties of industrial fluids, and has been proven to be an extremely useful tool 

used by industry, government, and academia [145]. Enthalpy values derived from the PREFPROP 

program are used as the measurements for the grey-box model development of enthalpy at three 

key locations (hsuc, hdis, and hll).   

Since refrigerant enthalpy is mainly affected by the refrigerant temperature and pressure, this 

dissertation proposes the following three modes to estimate the refrigerant enthalpy of R-123 at 

three key locations: 

 

ℎ𝑠𝑢𝑐,𝑏 = 𝜗1𝑃𝑒𝑣 + 𝜗2𝑇𝑠𝑢𝑐 + 𝜗0                                              (5-21) 

 

ℎ𝑑𝑖𝑠,𝑏 = 𝜏1𝑃𝑐𝑑 + 𝜏2𝑇𝑑𝑖𝑠 + 𝜏0                                               (5-22) 

 

ℎ𝑙𝑙,𝑏 = 𝜑1𝑃𝑐𝑑 + 𝜑2𝑇𝑙𝑙  + 𝜑0                                                  (5-23) 
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Where 𝜗𝑖, 𝜏𝑖, and 𝜑1 (i = 0, 1, 2) are the parameters to be identified during the training phase. 

Enthalpy values derived from PREFPROP program are used as the ground truth data for model 

training and testing.  

5.2.7. Summary of grey-box models 

To summarize, eight grey-box models are proposed to predict chiller operation status at 

system level and local level, which are listed in Table 5-1. These grey-box models with coefficients 

in Table 5-1 are trained with three model training approaches that are introduced in Section 5.6 of 

this chapter.  

Table 5-1. Summary of grey-box models. 

Variables Grey-box models Equation  

Eb 𝐸𝑏 = 𝛼1(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅) + 𝛼2𝑉𝑐ℎ𝑤 + 𝛼3𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 𝛼0    5-4 

COPb  𝐶𝑂𝑃𝑏 = 𝛽1𝑇𝑐ℎ𝑤𝑙 + 𝛽2𝑉𝑐ℎ𝑤 + 𝛽3𝑃𝐿𝑅 + 𝛽4𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 𝛽0   5-5 

Tcdwl,b 𝑇𝑐𝑑𝑤𝑙,𝑏 = 𝛿1(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙) + 𝛿2𝑉𝑐ℎ𝑤 + 𝛿3𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 𝛿4𝐸 + 𝛿5𝑇𝑐𝑑𝑤𝑟 + 𝛿0  5-9 

∆Tchw,b ∆𝑇𝑐ℎ𝑤,𝑏 = (𝜖1𝑢𝑛𝑜𝑟𝑚 + 𝜖2)(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑒𝑣)                                    5-12 

∆Tcdw,b ∆𝑇𝑐𝑑𝑤,𝑏 = 𝜃1𝑇𝑑𝑖𝑠 + 𝜃2𝑇𝑐𝑑 − 𝜃3𝑇𝑐𝑑𝑤𝑟 + 𝜃0        5-15 

hsuc,b ℎ𝑠𝑢𝑐,𝑏 = 𝜗1𝑃𝑒𝑣 + 𝜗2𝑇𝑠𝑢𝑐 + 𝜗0                                                     5-21 

hdis,b ℎ𝑑𝑖𝑠,𝑏 = 𝜏1𝑃𝑐𝑑 + 𝜏2𝑇𝑑𝑖𝑠 + 𝜏0  5-22 

hll,b ℎ𝑙𝑙,𝑏 = 𝜑1𝑃𝑐𝑑 + 𝜑2𝑇𝑙𝑙  + 𝜑0   5-23 

5.3. Forward residual-based fault detection model  

A fault symptom is detected when the residual, calculated as the difference between the 

measured value and predicted value, of a variable is greater than the corresponding threshold (ε). 

The following seven fault symptoms are considered in this dissertation. The threshold, used for 

fault symptom detection, equals to the measurement uncertainty of the corresponding variable. 

The discussion for measurement uncertainty analysis is presented in Section 5.5 of this chapter. 

5.3.1. Symptom model for chilled water leaving temperature  

A fault symptom is detected for the chilled water leaving temperature, if the following 

condition holds: 

If 𝑅𝑒𝑠 (𝑇𝑐ℎ𝑤𝑙) = 𝑎𝑏𝑠(𝑇𝑐ℎ𝑤𝑙,𝑚 − 𝑇𝑐ℎ𝑤𝑙)̅̅ ̅̅ ̅̅ ̅̅ > 휀(𝑇𝑐ℎ𝑤𝑙),  then Symp(Tchwl) = 1     
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Otherwise:  Symp(Tchwl) = 0   

5.3.2. Symptom model for electric power input to the chiller    

A fault symptom is detected for the electric power input, if the following condition holds: 

If 𝑅𝑒𝑠(𝐸) = 𝑎𝑏𝑠(𝐸𝑚 − 𝐸𝑏) > 휀(𝐸), then Symp(E) = 1     

Otherwise: Symp(E) = 0                                        

5.3.3. Symptom model for coefficient of performance   

A fault symptom is detected for the derived measurement of COP, if the following condition 

holds: 

If 𝑅𝑒𝑠(𝐶𝑂𝑃) = 𝑎𝑏𝑠(𝐶𝑂𝑃𝑚 − 𝐶𝑂𝑃𝑏) > 휀(𝐶𝑂𝑃), then Symp(COP) = 1     

Otherwise: Symp(COP) = 0                                        

5.3.4. Symptom model for condenser water leaving temperature  

A fault symptom is detected for the condenser water leaving temperature, if the following 

condition holds: 

If 𝑅𝑒𝑠 (𝑇𝑐𝑑𝑤𝑙) = 𝑎𝑏𝑠(𝑇𝑐𝑑𝑤𝑙,𝑚 − 𝑇𝑐𝑑𝑤𝑙,𝑏) > 휀(𝑇𝑐𝑑𝑤𝑙),  then Symp(Tcdwl) = 1     

Otherwise:  Symp(Tcdwl) = 0   

5.3.5. Symptom model for delta-T of chilled water  

A fault symptom is detected for the delta-T of chilled water, if the following condition holds: 

If 𝑅𝑒𝑠 (∆𝑇𝑐ℎ𝑤) = 𝑎𝑏𝑠(∆𝑇𝑐ℎ𝑤,𝑚 − ∆𝑇𝑐ℎ𝑤,𝑏) > 휀(∆𝑇𝑐ℎ𝑤),  then Symp(ΔTchw) = 1     

Otherwise:  Symp(ΔTchw) = 0   

5.3.6. Symptom model for delta-T of condenser water 

A fault symptom is detected for the delta-T of condenser water, if the following condition 

holds: 

If 𝑅𝑒𝑠 (∆𝑇𝑐𝑑𝑤) = 𝑎𝑏𝑠(∆𝑇𝑐𝑑𝑤,𝑚 − ∆𝑇𝑐𝑑𝑤,𝑏) > 휀(∆𝑇𝑐𝑑𝑤),  then Symp(ΔTcdw) = 1     

Otherwise:  Symp(ΔTcdw) = 0   

5.3.7. Symptom model for refrigerant 

A fault symptom of refrigerant flow rate, Symp(mev,refr), at the evaporator is detected, if the 
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following condition holds: 

If 𝑅𝑒𝑠(𝑚𝑒𝑣,𝑟𝑒𝑓𝑟) = abs(𝛥𝑚𝑒𝑣,𝑟𝑒𝑓𝑟)  > ɛ(𝑚𝑒𝑣,𝑟𝑒𝑓𝑟),  then Symp(mev,refr) = 1   

Otherwise: Symp(mev,refr) = 0                                                     

Where Δmev,refr  is the derived variation of refrigerant mass flow rate around a reference value 

(Equation 5-3), which is calculated with respect to the mean value of Tchwl  (or 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅). ε(mev,refr) is 

the threshold of mev,refr,ref.     

 

𝛥𝑚𝑒𝑣,𝑟𝑒𝑓 =
𝜌𝑉𝑐ℎ𝑤( 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅̅  − 𝑇𝑐ℎ𝑤𝑙)

ℎ𝑠𝑢𝑐 − ℎ𝑙𝑙
                                             (5-24) 

5.3.8. Analysis for the forward dependent fault detection model 

The dependency between regressor variables and target variables, or even between only 

regressor variables, makes the fault detection complex. Figure 5-3 elaborates the dependency 

relation and the structure of forward fault detection model.  

As shown in Figure 5-3, the variable dependency between Column Direct variables and 

Column Target variables is defined, including (1) the relationship between direct variables and 

target variables, and (2) the relationship between direct variables and derived variables (e.g., COP, 

mev,refr,ref, etc.). Please note that as the regressor variable mev,refr,ref of three grey-box models (Eb, 

COPb, and Tcdwl,b), they are connected on the other side in Figure 5-3. For instance, three regressor 

variables Tchwl, Vchw, and mev,refr,ref of the grey-box model for electric power input are connected to 

the Eb (marked with an orange dot ●) with arrowed lines.  

The fault detection model, as shown in Figure 5-3, follows a forward process: (1) establish 

grey-box models to predict target variables, (2) calculate residuals between measurements and 

predictions of grey-box models, (3) compare the residual with the corresponding threshold, and (4) 

a fault system is detected if the residual exceeds the corresponding threshold. Thus, the fault 

detection model is called the forward model.  

This forward ‘map’ (Figure 5-3) navigates how one regressor variable fault propagates to a 

target variable and potentially trigs a fault symptom. Let’s take the impact of Tchwl fault on Symp(E) 

as an instance: Tchwl fault propagates to Eb, and sequentially leads to the increases of Res(E), which 

results in Symp(E) might be detected potentially. Following another path in Figure 5-3, Tchwl fault 

propagates to the derived variable of ΔTchw, and sequentially leads to the increases of Res(ΔTchw), 

which results in Symp(ΔTchw) might be detected potentially. Thus, this forward fault detection ‘map’ 
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illustrates well the dependency between regressor and target variables, and gives an overall view 

of fault propagation from regressor variables to target variables.  

 

 

Figure 5-3. Dependency of variables and flowchart of forward fault detection model, mapping from measured 

variables to fault symptoms. 

Within this dissertation, a fault symptom only indicates the possibility of a real fault, as fault 

symptoms on target variables might depend on regressor variables. Therefore, it requires the fault 

diagnosis. A question naturally comes up: when a fault symptom is detected, is the target variable 

faulty or regressor variable faulty, or both are faulty? To respond this question, the backward fault 

diagnosis model is presented in Section 5.4.  

5.4. Backward rule-based fault diagnosis model  

Diagnosis of MDFs is an even more difficult task than the diagnosis of a single fault. This 

dissertation proposes a backward rule-based approach to diagnose multi-dependent faults (MDFs).  
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To simplify the explanation of the rule-based backward approach, only the diagnosis of fault 

symptom with respect to a target variable (e.g., E) is discussed. The analysis discusses the 

relationship between target variable (E) and regressor variable (Tchwl). All other regressor variables 

are assumed normal.  

Rule A. If the fault symptom is detected, i.e., Symp(E) = 1, the status of regressor variables 

used in Equation 5-4 should be verified.   

Rule A1. If, for instance, the variable of Tchwl is not faulty, i.e., it does not exceed its 

threshold of normal operation (Symp(Tchwl) = 0), Res(Tchwl) < ɛ(Tchwl), then the target 

variable E is faulty. Thus, Symp(E) is independent of regressor variables. 

Rule A2. If, for instance, the variable of Tchwl is faulty, i.e., it exceeds its threshold of 

normal operation (Symp(Tchwl) = 1), Res(Tchwl) > ɛ(Tchwl), then faults could occur with the 

regressor variable of Tchwl and/or the target variable E. Thus, additional investigation is 

required to verify the dependence between E and Tchwl, because the fault symptom of E 

could be induced (i) by abnormal operation of regressor variable of Tchwl, (ii) by target 

variable E itself, or (iii) by both.  

To explicit the fault diagnosis model well, this section takes the case study results from 

Chapter 8 as an instance. Two cases could occur here: 

▪ For instance, at 14:00 on July 26, Tchwl is 12.25°C instead of 7.25°C under normal 

operation (Figure 8-1); the predicted benchmark value Eb = 562.18 kW instead of 

measured value Em = 440 kW, with Res(E)= 122.18 kW that is greater than the 

threshold of 19.02 kW (Table 6-5). Thus, both variables Tchwl and E appear to be faulty. 

Additional investigation by the operation team is needed.   

▪ However, if Eb = 562.18 kW and the measured value Em = 560 kW, the residual of E = 

2.18 kW is smaller than the threshold of 19.02 kW. The measurement error of Tchwl 

propagates through Equation 5-4, and Eb = 562.18kW is almost equal with Em. Thus, 

only Tchwl is faulty. The false fault symptom of E is dependent of Tchwl. Thus, the electric 

power E is not faulty.  

Rule B. If the fault symptom is not detected Symp(E) = 0, then variable E is normal. 

This method for developing fault diagnosis rules can be generalized to create rules for the 

case of another regressor variable mev,refr,ref, which are not presented here because of space 

limitation. 



 

  64 

 

5.5. Threshold identification with measurement uncertainty and prediction uncertainty  

This dissertation applies forward residual-based model to detect faults, when the residual of 

a variable exceeds the threshold. The threshold should be well defined. Generally, the residual of 

a variable includes two parts: one is a measured variable, and the other is a predicted variable by 

a benchmarking model. 

5.5.1. Uncertainty of a measured variable  

The measurement uncertainty (Um) of direct variable (e.g., E) and derived variable (e.g., ΔTchw) 

follows the method presented in Section 3.3 of Chapter 3. Here, an example for the measured 

uncertainty of ΔTchw (UΔTchw) is presented to show the uncertainty calculation for a derived variable 

with respect to the subtraction/summation algorithm:  

 

𝑈∆𝑇𝑐ℎ𝑤 = √(𝑈𝑇𝑐ℎ𝑤𝑟)
2 + (𝑈𝑇𝑐ℎ𝑤𝑙)

2                                                    (5-25)     

 

Appendix B presents the calculation of Um for all other direct measurements and derived 

variables used in this dissertation.  

5.5.2. Evaluation of prediction uncertainty of a grey-box model 

The prediction uncertainty (Up) refers to the variability in model predictions due to plausible 

alternative input values (input uncertainty) and plausible alternative model structures (structural 

uncertainty) [146] . A simple way to estimate the variance of prediction is the usual propagation-

of-error method, which is based on the first order expansion of Taylor series [146]. This method is 

also adopted by Reddy [117] to estimate the prediction variance.  

 

𝑀𝑆𝐸(𝑦𝑝) = ∑ (
𝜕𝑦(𝑥)

𝜕𝑥𝑖
)
2

𝑀𝑆𝐸(𝑥𝑖)𝑖                                                 (5-26) 

 

Where MSE is the mean square error, yp is the output of a prediction model. 

Relate this method to the grey-box model, the term 
𝜕𝑦(𝑥)

𝜕𝑥𝑖
 represents a parameter of a grey-box 

model.  
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The uncertainty of a predicted variable (Up) can be calculated by: 

 

𝑈𝑝 = 𝑡
𝑆𝑦𝑝

√𝑛
                                                                                     (5-27) 

 

                       𝑆𝑦𝑝 = √𝑀𝑆𝐸(𝑦𝑝)                                                                (5-28) 

 

Where Up is the uncertainty of a predicted variable, Syp is the standard deviation of the 

predicted yp, and t is the t-value at the specified confident level. Within this dissertation, 95% 

confidence level is selected for every predicted variable and t = 1.96.  

5.5.3. Identification of threshold for the fault detection model 

I. Method A 

The residual of a variable determines whether a status is identified as a fault symptom or not 

as described by the fault detection model. A common way to evaluate the threshold is to define it 

as the measurement uncertainty (Method A):  

 

 휀 = 𝑈𝑚                                                                   (5-29) 

 

II. Method B 

As a residual is defined as the difference between the predicted value and the measured value 

of a variable. Naturally, the threshold should be estimated with the information from both the 

measurement side and the prediction sild, where the latter is usually ignored in most studies. This 

dissertation proposes another method to identify the threshold (Method B), covering both 

prediction and measurement sides uncertainty information. Method B calculates the overall 

uncertainty (OU) of a variable (measured and predicted) according to the approach of measurement 

uncertainty calculation with respect to the subtraction algorithm [117]: 

 

휀 = 𝑂𝑈                                                                                         (5-30) 
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𝑂𝑈 = √𝑈𝑚2 + 𝑈𝑝2                                                                          (5-31)                                               

 

Where OU is the overall uncertainty with respected to the measurement and prediction of a 

variable.  

This dissertation presents the case study results mainly with Method A, results based on 

Method B are also presented for comparison.  

5.6. Model training, testing, and evaluation 

5.6.1. Strategy for model training and testing 

To start a modelling project, one of the first decisions is how to utilize the existing data. One 

common way is to split the data into two groups typically referred as the training dataset and the 

testing dataset. Estimating parameters is one of the main activities in terms of the training dataset. 

Besides, the training dataset is also used for model comparison, feature sets development, and all 

the other needs to reach a final model. While testing dataset is used only to assess the performance 

of a final model. It is critical that testing dataset not be used prior to this point [147].   

Decision making for the division of the training and testing dataset is affected by many factors 

like the size of original samples and the total number of predictors. For this reason, there is not a 

uniform guideline to split datasets. The most common strategy is to use the straightforward random 

sampling. However, this strategy could be problematic when (1) the response is not evenly 

distributed, or (2) if there is time stamp since it may fail to grasp the inherent patterns of trend data. 

Hence, this dissertation uses sequential splitting to divide the time series measurement data and 

the following three approaches are presented:  

I. Single split approach (SSA) divides the time-series dataset into one training dataset and 

one testing dataset, without the actions of model retaining. Hence, the model development 

solely by single split approach (SSA) may lead to the biased model [148,149]. 

II. Augmented window approach (AWA) adds the new data to the initial dataset before the 

model is retrained. The models are then retrained with the larger historical dataset and 

applied for testing. Thus, the window size increases periodically for this method. 

III. For the sliding window approach (SWA), the window size is kept constant throughout the 

whole training dataset. As new data become available, the oldest training data of equal 
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length are dropped before the model is retrained. Then, the models are retrained 

periodically with the newest available data. 

The three approaches are adopted by [79,106,108,149,150], which successfully validated the 

robustness of correspondingly proposed models. Model robustness usually represents the 

prediction of a model are consistently accurate even if one or more of regressors changes 

drastically [151,152]. In general, the performance metric derived from AWA and SWA is more 

robust than SSA [153,154]. This dissertation utilizes the three approaches (SSA, AWA, and SWA), 

aiming to avoid underfitting or overfitting of models, and validate the model robustness and 

generalization.  

5.6.2. Evaluation of benchmarking grey-box models 

Reddy [117] recommended five metrics to evaluate the performance of a model, which are 

coefficient of determination (R2), root mean square error (RMSE), coefficient of variation of the 

RMSE (CV), mean bias error (MBE), and normalized MBE (NMBE). R2 is unitless, which eases 

the comparison between different models. Another benefit of R2 is the straightforward 

interpretation since it is the proportion of total variability in the outcome that can be explained by 

the model. However, R2 could be a deceiving metric when used to evaluate a model with multiple 

regressors, since it tends to increase when a new regressor (regardless of the correlation to model 

outcome) is added to the model. Another disadvantage of R2 is it ignores the model number of 

degree of freedom [117]. Hence, this work replaces R2 with Pearson coefficient (r) to evaluate the 

correlation between the prediction and ground truth. The value of r is less than or equal to 1. r = 1 

implies a perfect correlation, while r < 0 usually means a weak correlation [117].  

 

𝑟 =
𝐶𝑜𝑣(𝑦,�̂�)

𝑆(𝑦)∙𝑆(�̂�)
                                                                      (5-32) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑖)

2𝑛
𝑖=1

𝑛
                                                     (5-33) 

 

𝐶𝑉(𝑅𝑀𝑆𝐸) =  
√
∑ (𝑦�̂�−𝑦𝑖)

2𝑛
𝑖=1

𝑛

�̅�
× 100%                                  (5-34) 
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𝑀𝐵𝐸 = 
∑ (𝑦�̂�−𝑦𝑖)
𝑛
𝑖=1

𝑛
                                                             (5-35) 

 

𝑁𝑀𝐵𝐸 =

∑ (𝑦�̂�−𝑦𝑖)
𝑛
𝑖=1

𝑛

�̅�
                                                            (5-36) 

 

Where yi is the measured value, 𝑦�̂� is the predicted value, �̅� is the mean value of measurements, 

𝐶𝑜𝑣(𝑦, �̂�) is the covariance of y and �̂�, and S is the standard deviation, n is the number of samples. 

5.6.3. Evaluation of MDFDD models 

In statistics, confusion matrix is a synthetic approach to fully evaluate a classifier, which 

assesses both the correctly classified side and misclassified side [130]. This matrix is widely used 

to evaluate the FDD models in the field of HVAC system [155,156]. Figure 5-4 illustrates the 

compositions of a confusion matrix in terms of a binary classifier [130].  

 

I. True positives (TP): These points are the positive points that are correctly labeled by the 

classifier. In this dissertation, TP represents the number of true positives.  

II. False positives (FP): These points are the negative points that are incorrectly labeled by the 

classifier. In this dissertation, TP represents the number of false positives. 

III. False negatives (FN): These points refer to the positive points that are incorrectly labeled 

by the classifier. In this dissertation, FN represents the number of false negatives.  

IV. True negatives (TN): These points refer to the negative points that are correctly labeled by 

the classifier. In this dissertation, TN represents the number of true negatives.  
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Figure 5-4. Schematic of confusion matric compositions [157].  

The application of forward fault detection model returns a binary result: whether a condition 

is normal or faulty. Thus, to differentiate a fault from a normal condition of a variable is a 

classification problem. As illustrated by Figure 5-5, there are four classes of results (points): true 

positive (TP), false positive (FP), false negative (FN), and true negative (TN). TP and FN show 

the points when a system operates with a fault. Here, TP indicates the points above a threshold, 

and FN indicates the points below a threshold. TN and FP show the situation when a system 

operates with fault-free status; TN indicates the points below a threshold, and FP indicates the 

points above a threshold.   

 

 

Figure 5-5. Confusion matric compositions in the field of fault detection and diagnosis.  
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 Three metrics are usually applied to evaluate fault detection models [158,159]: accuracy (AC) 

(Equation 5-37), hit rate (HR) (Equation 5-38), and false alarm rate (FAR) (Equation 5-39), which 

corresponds to accuracy, precision, and sensitivity in the confusion matrix [130]. AC is defined as 

the percentage of points that are correctly classified by the model over the whole testing dataset, 

during both faulty time and fault-free time. HR is defined as the percentage of fault points that are 

successfully detected when a system is operating with a fault during only faulty time. FAR indicates 

the percentage of points that are misclassified during only fault-free time. Therefore, the three 

metrics cover all the time intervals over the test dataset. AC gives an overall view of the model, 

HR focuses on the intervals when faults are injected to a system, and FAR considers the time when 

a system operates under fault-free condition.  

  

 AC =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                               (5-37) 

 

 HR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (5-38) 

 

 FAR =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (5-39) 
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Chapter 6: Case study datasets for multiple-dependent fault 

detection and diagnosis 

6.1. A short dataset with one month cooling period – July 2013 

The short dataset consists of measurements of the cooling plant for approximately one month, 

from June 24 to July 28, 2013. A summary of the raw measurements and results after data 

preprocessing is listed in Table 6-1.  

Following the data preprocessing presented in Chapter 5, missing data corresponded to “No 

data” for Toa and RHoa were replaced by data recorded by Environment Canada [131]. Obvious 

abnormal values (e.g., negative values of Vchw when the chiller operates normally), as well as data 

under transient condition (e.g., chiller start-up) were removed. Outliers that exceed Chauvenet’s 

criterion [32] were removed. Measurements numbers after dataset preprocessing are listed in Table 

6-1. As more measurements are available from the chiller CH#2 under working days, it is selected 

for model development.   

Table 6-1. Measurement summary over five weeks recorded at 15-min interval, from 

June 24, 2013, to July 28, 2013. 

Year 

2013 

Raw measurements  After preprocessing 

CH#1 CH#2 CH#1+ CH#2  CH#1 CH#2 CH#1+ CH#2 

WD WH WD WH WD WH  WD WH WD WH WD WH 

6/24-6/30 106 177 0 0 319 0  100 168 0 0 315 0 

7/1-7/7 144 96 0 0 240 192  141 95 0 0 239 190 

7/8-7/14 107 0 102 59 267 106  94 0 100 0 181 100 

7/15-7/21 1 0 51 108 422 84  0 0 44 154 385 79 

7/22-7/28 0 0 313 159 83 33  0 0 301 155 79 31 

Summary 358 273 466 326 1331 415  335 263 445 309 1199 400 

 

The selected dataset (CH#2) expands from July 11 to July 26, 2013, under working days, 

where its distribution is displayed in Figure 6-1. Totally, there are 445 data points. Three 

distribution characters of this dataset are summarized as the following:  

I. Measurements distribution on each day is not homogenous in terms of the data number: 

For example, there are 96 points on July 12, 2013, but only 11 points on July 17, 2013. 
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II. Gaps exist due to (1) shunt-down period of Chiller CH#2 and (2) the removed data that are 

on weekends and holidays.  

III. Missing points: For example, the data during 19:15 and 21:30 on 25 July 2013 are missing.  

 

 

Figure 6-1. Data distribution of Chiller CH#2 under working days of July 2013. 

6.2. A long dataset with the cooling season of 2016 

The long dataset is composed of measurements of the cooling plant for a whole cooling season, 

from May 23 to September 04, 2016. A summary of the raw measurements and results after data 

preprocessing is listed in Table 6-2. The data preprocessing follows the approach presented in 

Chapter 5. As more measurements are available from the chiller CH#1, the dataset of chiller CH#1 

under working days is selected for model development.  

The selected dataset (CH#1) expands from May 23 to September 4, 2013, under working days, 

where its distribution is displayed in Figure 6-2. Totally, there are 2,876 data points.  
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Table 6-2. Measurement summary over fifteen weeks recorded at 15-min interval, 

from May 23 to September 04, 2016. 

Year 

2016 

Raw measurements  After preprocessing 

CH#1 CH#2 CH#1+ CH#2  CH#1 CH#2 CH#1+ CH#2 

WD WH WD WH WD WH  WD WH WD WH WD WH 

5/23-5/29 192 142 152 2 105 48  186 141 143 0 94 46 

5/30-6/05 0 0 368 192 95 0  0 0 364 192 91 0 

6/6-6/12 0 0 213 99 0 0  0 0 212 96 0 0 

6/13-6/19 0 0 365 192 0 0  0 0 357 192 0 0 

6/20-6/26 142 268 172 0 50 7  138 260 152 0 39 6 

6/27-7/03 225 267 0 0 159 0  222 267 0 0 155 0 

7/04-7/10 341 192 0 0 139 0  330 192 0 0 133 0 

7/11-7/17 184 192 0 0 296 0  174 192 0 0 265 0 

7/18-7/24 285 136 1 0 193 56  280 136 0 0 187 55 

7/25-7/31 192 192 0 0 288 0  183 192 0 0 280 0 

8/01-8/07 179 145 0 0 301 47  170 145 0 0 294 46 

8/08-8/14 239 156 0 0 241 0  233 155 0 0 239 0 

8/15-8/21 291 84 1 0 187 50  282 84 0 0 179 47 

8/22-8/28 271 158 0 0 209 34  265 157 0 0 205 30 

8/29-9/04 420 192 0 0 60 0  413 192 0 0 57 0 

Summary 2961 2124 1272 485 2323 242  2876 2113 1228 480 2218 230 

 

 

 

Figure 6-2. Distribution of measurement data from the chiller CH#1 during the cooling season of 2016. 
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6.3. Comparison of chilled water temperature measured at two positions 

Temperatures of the chilled water loop are measured at two positions: (i) the common exit of 

central cooling plant (POS1), where the total chilled water flow from two chillers is measured, and 

(ii) at each chiller (POS2). This section verifies whether significant difference of measurements 

for the same variable (e.g., chilled water leaving temperature) collected at two positions, exists, 

using measurements of chiller CH#2 of July 2013.   

The chilled water leaving temperature measured at POS1 is marked as Tchwl, while the variable 

measured at POS2 of chiller CH#2 is marked as Tchwl,#2. Similarly, chilled water return temperature 

measured at POS1 is marked as Tchwr, and measured at POS2 of chiller CH#2 is marked as Tchwr,#2. 

Delta-T of chilled water at POS1 is marked as ΔTchw, while this variable measured at POS2 of 

chiller CH#2 is marked as ΔTchw,#2. Table 6-3 lists the statistical information and measurement 

uncertainty of variables related to the chilled water, using measurement data of chiller CH#2, 

derived from July 11 to July 26, 2013. 

 Table 6-3. Statistical information of Tchwl, Tchwl#2, Tchwr and Tchwr#2. 

Variables Mean (℃) Standard deviation (℃) Overall uncertainty (℃)  

Tchwl 7.17 0.34 ±0.34 

Tchwl,#2 6.71 0.08 ±0.33 

Tchwr 11.58 1.84 ±0.40 

Tchwr,#2 11.26 1.70 ±0.39 

∆Tchw 4.42 1.76 ±0.52 

∆Tchw,#2 4.56 1.71 ±0.66 

  

Besides, the derived variables of refrigerant mass flow rate at three main components 

(evaporator, compressor and condenser) of a chiller are also compared using measurements at two 

positions:  

 

𝑚𝑒𝑣,𝑟𝑒𝑓𝑟 = 
𝑐𝜌𝑉𝑐ℎ𝑤(𝑇𝑐ℎ𝑤𝑟−𝑇𝑐ℎ𝑤𝑙)

ℎ𝑠𝑢𝑐−ℎ𝑙𝑙
                                                                   (6-1) 

 

𝑚𝑐𝑜𝑚𝑝,𝑟𝑒𝑓𝑟 = 
𝐸

ℎ𝑑𝑖𝑠−ℎ𝑠𝑢𝑐
                                                                                (6-2)  
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𝑚𝑐𝑑,𝑟𝑒𝑓𝑟 = 
𝑐𝜌𝑉𝑐𝑑𝑤(𝑇𝑐𝑑𝑤𝑙−𝑇𝑐𝑑𝑤𝑟)

ℎ𝑑𝑖𝑠−ℎ𝑙𝑙
                                                                   (6-3) 

 

Where Vcdw is the volumetric flow rate of condenser-water in m3/s, Tcdwr is the condenser-

water return temperature in ℃, Tcdwl is the condenser-water leaving temperature in ℃, mev,refr is the 

refrigerant mass flow rate in evaporator in kg/s, mcomp,ref is the refrigerant mass flow rate in 

compressor in kg/s, mcd,ref is the refrigerant mass flow rate in condenser in kg/s. Author clarifies 

that Equation 6-1, Equation 6-2, and Equation 6-3 are derived from the energy balance of three 

components of a chiller, and ignore the factors that affect energy balance, like the energy exchange 

between a component (e.g., condenser) with environment. The calculations are conducted with 

measurements of chiller CH#2, from July 11 to July 26, 2013, and results are listed in Table 6-4. 

Since the uncertainty information for Vcdw is not available in case study, it is not included in the 

calculation for measurement uncertainty of mcd,ref.   

Table 6-4. Estimation of refrigerant mass flow rate at evaporator, condenser, and 

compressor. 

Refrigerant mass flow rate mev,refr mcomp,refr mcd,refr 

POS1  

Mean (kg/s) 11.11 15.52 11.01 

Standard deviation (kg/s) 4.85 3.8 4.14 

Measurement uncertainty (kg/s) ±0.87 ±0.95 ±0.30 

POS2 

Mean (kg/s) 11.45 15.52 11.01 

Standard deviation (kg/s) 4.73 3.8 4.14 

Measurement uncertainty (kg/s) ±0.91 ±0.95 ±0.30 

 

        Table 6-3 indicates that the mean value of ΔTchw and that of ΔTchw,#2 are very close, and fall 

into the range of measurement uncertainty. As for refrigerant mass flow rate at three components 

(evaporator, compressor and condenser), the results (Table 6-4) indicate an obvious difference 

between mcomp,refr and mev,refr (or mcd,refr). The greater value of mcomp,refr is caused by the electric 

power input E, which ignores the efficiency of electric motor and energy loss through the 

compressor envelope. Values of mev,refr, based on measurements at two positions, are very close 

and within the uncertainty.  

Thus, one can conclude there is no significant difference of variables, collected at the central 

exist and entrance of cooling plant and at the evaporator of chiller CH#2. The same conclusion is 
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drawn with respect to the dataset of whole cooling season of 2016. This dissertation selects 

measurement at the central exist and entrance of cooling plant for model development.  

6.4. Threshold identification 

Based on threshold identification Method A (measurement uncertainty) in Chapter 5, the 

threshold ε values derived from the dataset of 2013 is listed in Table 6-5, and threshold ε values 

with respect to the dataset of 2016 is listed in Table 6-6.   

Table 6-5. Statistic information of direct/derived variables and measurement 

uncertainty of these variables, derived from the training dataset of 2013 with 

respect to the chiller CH#2 (Method A).  

Variables Average 
Bias 

error 

Standard 

deviation 

Random 

error 

Overall 

Uncertainty 

Threshold  

ε  

E (kW) 324.67 16.23 106.68 9.91 19.02 19.02 

COP 5.02 NA 0.68 0.06 0.48 0.48 

Tcdwl (℃) 32.70 0.46 1.58 0.15 0.49 0.49 

Tchwl (℃) 7.19 0.34 0.08 0.01 0.34 0.34 

ΔTchw (℃) 4.31 NA 1.76 NA 0.52 0.52 

ΔTcdw (℃) 4.07 NA 1.56 NA 0.66 0.66 

mev,refr,ref (kg/s) 10.83 NA 4.93 NA 0.68 0.68 

Table 6-6. Statistic information of direct/derived variables and measurement 

uncertainty of these variables, derived from the training dataset of 2016 with 

respect to the chiller CH#1 (Method A).  

Variables Average 
Bias 

error 

Standard 

deviation 

Random 

error 

Overall 

Uncertainty 

Threshold  

ε  

E (kW) 311.91 15.59 100.34 4.71 16.29 16.29 

COP 5.77 NA 0.62 NA 0.53 0.53 

Tcdwl (℃) 28.63 0.44 2.11 0.10 0.45 0.45 

Tchwl (℃) 6.88 0.33 0.19 0.01 0.33 0.34 

ΔTchw (℃) 4.96 NA 1.67 NA 0.50 0.50 

ΔTcdw (℃) 4.53 NA 1.64 NA 0.62 0.62 

mev,refr,ref (kg/s) 11.73 NA 4.38 NA 0.91 0.69 
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Chapter 7: Grey-box models derived with both a short dataset and a 

long dataset 

This chapter presents the grey-box model development with both the short dataset (July 2013) 

and the long dataset (whole cooling season of 2016), for the purpose of validating these grey-box 

models. Then, these grey-box models would be used for the subsequential application of fault 

detection and diagnosis. Eight grey-box models for Eb, COPb, Tcdwl,b, ΔTchw,b, ΔTcdw,b, hsuc,b, hdis,b, 

and hll,b are trained and tested by the static window strategy. The dynamic window approach, 

including augmented window approach and sliding window approach, is applied to validate 

robustness of five grey-box models of Eb, COPb, Tcdwl,b, ΔTchw,b, and ΔTcdw,b. The benchmarking 

grey-box models are developed using Python (version 3.9.12) [160] with open-source libraries 

(e.g., Scikit-learn [161]). 

7.1. Grey-box models derived with static window regarding the dataset of July 2013 

7.1.1. Dataset splitting using single split approach 

The single split approach (SSA) divides the time-series data into training dataset and testing 

dataset, based on sequential splitting [147]. Specifically, measurements collected at first seven 

days (326 data points), starting at 23:00 on July 11, 2013, and ending at 19:15 on July 24, 2013, 

are used for model training. Measurements collected at last two days (119 data points), starting at 

10:30 on July 25, 2013, and ending at 23:45 on July 26, 2013, are used for model testing.  

7.1.2. Results of model training and testing  

7.1.2.1. Model training  

The eight grey-box models are developed from measurements of normal operation without 

known problems. Parameters of these grey-box models are identified by least-square algorithm 

using the training dataset of SSA with respect to the measurements of July 2013.  

 

Grey-box model of the electric power input to the chiller  
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𝐸𝑏 = 22.60(𝑇𝑐ℎ𝑤𝑙 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅) − 0.92 𝑉𝑐ℎ𝑤 + 22.09 𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 162.49                               (7-1)                                    

 

Grey-box model of the coefficient of performance (COP)  

 

𝐶𝑂𝑃𝑏 = 0.80 𝑇𝑐ℎ𝑤𝑙 + 0.03 𝑉𝑐ℎ𝑤 + 37.81 𝑃𝐿𝑅 − 1.64 𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 − 5.02                        (7-2)                                               

 

                             

Grey-box model of the condenser-water leaving temperature 

 

𝑇𝑐𝑑𝑤𝑙,𝑏 = 0.47 (𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙) + 0.02 𝑉𝑐ℎ𝑤 − 0.09 𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 0.01 𝐸 + 0.90 𝑇𝑐𝑑𝑤𝑟 + 0.63      (7-3)                      

 

Grey-box model of Delta-T of chilled water 

 

∆𝑇𝑐ℎ𝑤.𝑏 = (0.70𝑢𝑛𝑜𝑟𝑚 + 0.02)(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑒𝑣)                                                               (7-4)                                                                                      

 

Grey-box model of Delta-T of condenser-water 

 

∆𝑇𝑐𝑑𝑤,𝑏 = 0.19𝑇𝑑𝑖𝑠 + 0.48𝑇𝑐𝑑 − 0.46𝑇𝑐𝑑𝑤𝑟 − 6.55                                                                             (7-5) 

 

Grey-box model of suction enthalpy of refrigerant  

 

ℎ𝑠𝑢𝑐,𝑏 = −0.03𝑃𝑒𝑣 + 0.66𝑇𝑠𝑢𝑐 + 379.29                                                                      (7-6) 

 

Grey-box model of discharge enthalpy of refrigerant 

 

ℎ𝑑𝑖𝑠,𝑏 = −0.02𝑃𝑐𝑑 + 0.71𝑇𝑑𝑖𝑠 + 378.47                                                                      (7-7) 

 

Grey-box model of liquid line enthalpy of refrigerant 

 

ℎ𝑙𝑙,𝑏 = 0.01𝑃𝑐𝑑 + 1.01𝑇𝑙𝑙 + 199.93                                                                            (7-8) 

 

7.1.2.2. Model testing results 

The measured Tchwl, over the testing dataset, fluctuates around chilled water setpoint 

temperature as shown in Figure 7-1. Equations 7-1 to 7-5 are used to predict other target variables 
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over the test dataset. The comparison between measured values and predicted values, over testing 

dataset, for other predicted variables (Eb, COPb, Tcdwl,b, ΔTchw,b, and ΔTcdw,b) are displayed from 

Figure 7-2 to Figure 7-6.  The performance metrics of grey-box models, over both the training and 

testing datasets of July 2013 is listed in Table 7-1, where values of performance metrics are 

rounded. 

 

 

Figure 7-1. Tchwl VS time, derived from testing dataset of July 2013 under normal operation conditions. 

 

Figure 7-2. Benchmarking values of the electric power input E versus measured values over testing data of 

July 2013 under normal operation conditions. 
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Figure 7-3. Benchmarking values of the coefficient of performance COP versus measured values over testing 

data of July 2013 under normal operation conditions. 

 

 

Figure 7-4. Benchmarking values of the condenser water leaving temperature Tcdwl versus measured 

values over testing data of July 2013 under normal operation conditions. 
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Figure 7-5. Benchmarking values of the delta-T of chilled water ∆Tchw versus measured values over testing 

data of July 2013 under normal operation conditions. 

 

 

Figure 7-6. Benchmarking values of the delta-T of condenser water ∆Tcdw versus measured values over testing 

data of July 2013 under normal operation conditions. 
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Table 7-1. Performance metrics of grey-box models regarding the dataset of July 

2013. 

Model 
Training dataset  Testing dataset 

r RMSE CV (%) MBE NMBE  r RMSE CV (%) MBE NMBE 

E (kW), 

Equation 5-4 
0.99 16.67 5.24 0 0  0.98 20.13 5.89 2.40 0.01 

COP (-), 

Equation 5-5 
0.92 0.29 5.77 0 0  0.86 0.34 6.69 -0.02 0 

Tcdwl(°C), 

Equation 5-9 
0.99 0.23 0.70 0 0  0.98 0.25 0.76 0.02 0.00 

ΔTchw (℃) 

Equation 5-12 
1.00 0.20 4.56 -0.04 -0.01  0.99 0.21 4.38 0.02 0.00 

ΔTcdw (℃) 

Equation 5-15 
0.98 0.29 7.12 0.00 0.00  0.98 0.30 6.80 0.01 0.00 

hsuc(kJ/kg), 

Equation 5-21 
1.00 2.60×10-3 0 0 0  1.00 2.90×10-3 0 3.74×10-4 0 

hdis(°C), 

Equation 5-22 
1.00 6.42×10-3 0 0 0  1.00 8.33×10-3 0 -2.01×10-3 0 

hll (kJ/kg), 

Equation 5-23 
1.00 3.34×10-3 0 0 0  1.00 3.29×10-3 0 -5.50×10-4 0 

 

Evaluation metrics values for the grey-box model of E (Equation 5-4) indicate good 

performance. Though the RMSE of 20.13kW, over the testing dataset, is slightly greater than the 

measurement uncertainty of E (19.91kW), one can still conclude the grey-box model of E 

(Equation 5-4) is accurate.  

The comparison between the measured COP and the predicted COP (Equation 5-5), over the 

testing dataset, shows that RMSE value is less than the measurement uncertainty of COP (0.48), 

indicating Equation 5-5 can predict COP well.  

As for the grey-box model for Tcdwl, evaluation metrics show RMSE = 0.25, over testing 

dataset, which is less than the measurement uncertainty of Tcdwl (0.49°C). Besides, with high 

Pearson Coefficient value, r = 0.98, one can conclude Equation 5-9 is reliable to predict Tcdwl. 

Evaluation metrics of the grey-box model of ∆Tchw (Equation 5-12) indicate good 

performance, over both training and testing datasets. Besides, the RMSE value of 0.21 is less than 

half of the measurement uncertainty of ∆Tchw ( 0.52°C), and take 3.58% of the testing dataset range. 

A study for statistics model evaluation regards a model is accurate if RMSE value takes a 

proportion of less than 10% of testing dataset range [162]. In addition, high Pearson Coefficient 

values, r = 1.00 for Equation 5-12 (Table 7-1), are observed for the grey-box model of E.  By 

comparison, a previous study, predicting the chilled water return temperature setpoint using a 

general regression neural network model, reported r = 0.98 on training dataset and r = 0.95 on 

testing dataset [163]. As a result, one can conclude that the proposed grey-box model for ∆Tchw are 
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accurate.  

As for the grey-box model of ∆Tcdw (Equation 5-15), over the testing dataset, r = 0.98 

indicating the model fits well. The RMSE value of Equation 5-15 is 0.30°C, which is less than half 

of the measurement uncertainty of ∆Tcdw (0.66°C), and accounts for 5.37% over the testing dataset 

range. Hence, the prediction model for ∆Tcdw is accurate.  

For the enthalpy prediction models of hsuc, hdis, and hll, all r values equal to 1 indicating high 

correlation. Besides, small RMSE values for the three enthalpy models (Equation 5-21, Equation 

5-22, and Equation 5-23), over the testing dataset, prove they are accurate.  

The grey-box models derived with the dataset of July 2013 are summarized in Table 7-2. 

Table 7-2. Summary of benchmarking grey-box models with single split approach 

based on the dataset of July 2013. 

Variables Benchmarking grey-box models 

E 𝐸𝑏 = 22.60(𝑇𝑐ℎ𝑤𝑙 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅) − 0.92 𝑉𝑐ℎ𝑤 + 22.09 𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 162.49 

COP 𝐶𝑂𝑃𝑏 = 0.80 𝑇𝑐ℎ𝑤𝑙 + 0.03 𝑉𝑐ℎ𝑤 + 37.81 𝑃𝐿𝑅 − 1.64 𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 − 5.02 

Tcdwl 𝑇𝑐𝑑𝑤𝑙,𝑏 = 0.47 (𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙) + 0.02 𝑉𝑐ℎ𝑤 − 0.09 𝑚𝑒𝑣,𝑟𝑒𝑓𝑟,𝑟𝑒𝑓 + 0.01 𝐸 + 0.90 𝑇𝑐𝑑𝑤𝑟 + 0.63 

∆Tchw ∆𝑇𝑐ℎ𝑤.𝑏 = (0.70𝑢𝑛𝑜𝑟𝑚 + 0.02)(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑒𝑣) 

∆Tcdw ∆𝑇𝑐𝑑𝑤,𝑏 = 0.19𝑇𝑑𝑖𝑠 + 0.48𝑇𝑐𝑑 − 0.46𝑇𝑐𝑑𝑤𝑟 − 6.55 

hsuc ℎ𝑠𝑢𝑐,𝑏 = −0.03𝑃𝑒𝑣 + 0.66𝑇𝑠𝑢𝑐 + 379.29 

hdis ℎ𝑑𝑖𝑠,𝑏 = −0.02𝑃𝑐𝑑 + 0.71𝑇𝑑𝑖𝑠 + 378.47 

hll ℎ𝑙𝑙,𝑏 = 0.01𝑃𝑐𝑑 + 1.01𝑇𝑙𝑙 + 199.93 

 

7.1.2.3. Comparison of residual and threshold 

Figures 7-7 to 7-13 display residuals, with respect to seven symptoms (Section 5.3, Chapter5), 

over the testing dataset, under fault-free conditions. It is noticed that some measurements exceed 

the threshold under fault-free time for the five variables: E, Tcdwl, COP, ∆Tchw, and ∆Tcdw. These 

singular points might be due to the following factors, concluded from the investigation of the 

measurement trend data and grey-box models.  

I. Rotation of chiller working status 

Since this cooling plant consists of two chillers, the control system is designed to 

start one chiller when there is the cooling demand, and start the second chiller only if the 

first chiller cannot meet the chilled water demand. The recording system may sample at 

this rotation period, which adds variance to measurements. In this case study, 
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measurements are recorded at a 15-min time interval. For instance, the cooling plant 

started working at 10:00 on July 26, 2013, after it stopped for a few hours and Tchwr was 

high (14.09 °C). At this time, though Tchwl was under control due to chiller CH#2 was 

working at full load, the effect of high Tchwr on Tcdwl was noticed (Tcdwl =29.61°C). 

However, simultaneously, the building load was low. Thus, the chiller adjusted its load to 

decrease to the building load in a very short time. When BAS sampled again at 10:15 on 

July 26, 2013, obvious changes of variables (E and Tcdwl) were noticed.  

II. Large building load and chiller load 

Building load is usually high in the afternoon. At 17:30 on July 26, 2013, high Vchw 

was noticed due to the large cooling load demand of building. As a result, the chiller 

worked at full load, and Tchwl deviated the setpoint a lot, though it was still within the 

measurement uncertainty of Tchwl. Chiller COP usually decreases slightly when the 

cooling load exceed a certainty region [112], which means chiller consumed more 

electricity to maintain Tchwl at the setpoint temperature. This condition was verified by the 

occurrence of peak of E, at the same time. Besides, the large Tchwl value propagated to 

other subsequential variables and might be with the time-lag effect. For example, Tcdwl 

peaked at 18:00:00 on July 26, 2013, two times intervals delay. The results of other studies 

support this phenomenon. In the work for chiller control optimization, simulation results 

showed an obvious delay effect between Tchwl and E [164]. Another study, based on 

TRANSYS program, revealed that low Tchwl usually lead to high Tcdwl for a water-cooled 

chiller, and the occurrence of Tcdwl peak fell behand the lowest Tchwl [165]. 

III. Short-term malfunction of mechanical system or sensors. 

IV. Prediction models: the ideal model does not exist [166]. Though the proposed prediction 

models are accurate, errors still exist, which adds the variance to the residuals.  
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Figure 7-7. The comparison between the residual of Tchwl and the threshold of Tchwl over the testing dataset of 

July 2013 under normal operation conditions. 

 

 

Figure 7-8. The comparison between the residual of E and the threshold of E over the testing dataset of July 

2013 under normal operation conditions. 
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Figure 7-9. The comparison between the residual of COP and the threshold of COP over the testing dataset 

of July 2013 under normal operation conditions. 

 

 

Figure 7-10. The comparison between the residual of Tcdwl and the threshold of Tcdwl over the testing dataset 

of July 2013 under normal operation conditions. 
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Figure 7-11. The comparison between the residual of ∆Tchw and the threshold of ∆Tchw over the testing dataset 

of July 2013 under normal operation conditions. 

 

Figure 7-12. The comparison between the residual of ∆Tcdw and the threshold of ∆Tcdw over the testing dataset 

of July 2013 under normal operation conditions. 
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Figure 7-13. The comparison between the residual of mev,refr and the threshold of mev,refr over the testing dataset 

of July 2013 under normal operation conditions. 

In summary, some singular points, exceeding the threshold, could occur when the cooling 

plant system operates under normal conditions. The variance of Tchwl can lead to instant impacts 

on certain variables (e.g., E), or very-shortly delay impacts on other variables (e.g., Tcdwl). 

Therefore, such irregular points are not regarded as faults and the collected trend data from BAS 

system are considered as fault-free. In this dissertation, only continuous points that are greater than 

threshold are considered as faults.  

7.2. Grey-box models derived with dynamic window regarding the dataset of July 2013 

The dataset of July 2013 is divided into five equal-size subsets, where each subset contains 

89 data points. The start time and end time, and the number of data points of each subset is listed 

in Table 7-3, where Subset 5 is dedicated for the model testing. This division of the dataset of July 

2013 is used for the model re-training and testing of five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, 

and ∆Tcdw,b) for the purpose of verification of model robustness over a month (July 2013). 
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Table 7-3. Information of the five subsets, during July 2013 (excluding weekends 

and holidays). 

Dataset Dataset Size Start End 

Training 

dataset 

Subset 1 89 23:00:00 July 11, 2013 21:00:00 July 12, 2013 

Subset 2 89 21:15:00 July 12, 2013 08:30:00 July 22, 2013 

Subset 3 89 08:45:00 July 22, 2013 06:45:00 July 23, 2013 

Subset 4 89 07:00:00 July 23, 2013 17:45:00 July 25, 2013 

Testing 

dataset 
Subset 5  89 18:00:00 July 25, 2013 23:45:00 July 26, 2013 

In total  445 23:00:00 July 11, 2013 23:45:00 July 26, 2013 

 

7.2.1. Results of augmented window approach with the dataset of July 2013 

The augmented window approach (AWA) uses four augmented windows to retrain each of 

the five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b), and the dataset of each augmented 

window is shown in Figure 7-14, where the information of subsets is listed in Table 7-3. AW1 

(augmented window 1) means the training is conducted with the first subset (Subset 1) and tested 

with Subset 5, while AW2 means the model is trained again with the first two subsets (Subtest 1 

and Subset 2) and tested again with Subset 5. The same method for model retaining and testing is 

applied to AW3 and AW4. 

 

 

Figure 7-14. Schematic of augmented window approach. 

Retrain the five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) with one AW each 

time, and test them with Subset 5. The parameters, derived with each AW of July 2013, are listed 

in Table C-1 of Appendix C. The average performance metrics values over both the training and 



 

  90 

 

testing datasets, resulting from the model retraining with four AWs, are listed in Table 7-4. The 

detailed performance metrics, over both the training and testing datasets, for each AW are listed in 

Table C-2 of Appendix C.  

Table 7-4. Average performance metrics values for grey-box models derived from 

AWA, using measurements of July, 2013. 

Model 
 Training dataset    Testing dataset  

r RMSE CV (%) MBE NMBE  r RMSE CV (%) MBE NMBE 

E (kW), 

Equation 5-4 
0.99 18.42 5.58 0.03 0.00  0.98 20.64 6.04 6.90 0.02 

COP (-), 

Equation 5-5 
0.92 0.27 5.31 0.00 0.00  0.89 0.36 7.18 -0.12 -0.02 

Tcdwl(°C), 

Equation 5-9 
0.99 0.22 0.68 0.00 0.00  0.99 0.25 0.77 0.00 0.00 

ΔTchw (℃) 

Equation 5-12 
1.00 0.19 4.31 -0.03 -0.01  0.99 0.20 4.39 -0.02 0.00 

ΔTcdw (℃) 

Equation 5-15 
0.99 0.25 5.82 0.00 0.00  0.98 0.33 7.59 -0.01 0.00 

 

Generally, each set of parameter values (Table C-1) of a grey-box model does not show 

significant difference against the augmented training dataset. Besides, the performance metrics 

values of each grey-box model against the augmented training dataset (Table C-2), over the testing 

dataset, also do not show significant difference. Table 7-4 indicates RMSE of each grey-box model 

over the testing dataset is less than the corresponding measurement uncertainty (Table 6-5) of 

variables except Eb, which is very close to the measurement uncertainty of E. Therefore, one can 

conclude the five grey-box models are robust against training dataset size.  

7.2.2. Results of sliding window approach with the dataset of July 2013 

The sliding window approach (SWA) uses four sliding windows to retrain each of five grey-

box models, and the dataset of each sliding window is shown in Figure 7-15, where the information 

of each subset is listed in Table 7-3. The size of each sliding window (SW) is fixed at a constant: 

89 data points. SW1 means the model is trained with the first subset (Subset 1) and tested with 

Subset 5, while SW2 means the model is trained with the next equal-sized subset (Subset 2) and 

tested with Subset 5. The same method for model retaining and testing is applied to SW3 and SW4. 

Retrain the five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) with one subset each 

time and test them with Subset 5. Repeat this process until all sliding windows are used for model 

training. The parameters, derived with each SW of July 2013, are listed in Table C-3. The average 
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performance metrics values over both the training and testing datasets, resulting from the model 

retraining with four SWs, are listed in Table 7-5. The detailed performance metrics, over both the 

training and testing datasets, derived from each SW, are listed in Table C-4 of Appendix C.  

 

 

Figure 7-15. Schematic of sliding window approach. 

Table 7-5. Average performance metrics values for grey-box models, derived from 

SWA. 

Model 
 Training dataset    Testing dataset  

r RMSE CV (%) MBE NMBE  r RMSE CV (%) MBE NMBE 

E (kW), 

Equation 5-4 
0.98 17.75 5.66 0.01 0.00  0.98 20.74 6.07 3.98 0.01 

COP (-), 

Equation 5-5 
0.87 0.26 5.24 0.00 0.00  0.88 0.39 7.85 -0.15 -0.03 

Tcdwl(°C), 

Equation 5-9 
0.99 0.21 0.65 0.00 0.00  0.98 0.28 0.85 -0.02 0.00 

ΔTchw (℃) 

Equation 5-12 
0.99 0.17 4.07 -0.02 0.00  0.99 0.22 4.75 -0.01 0.00 

ΔTcdw (℃) 

Equation 5-15 
0.98 0.26 6.72 0.00 0.00  0.97 0.36 8.25 0.00 0.00 

 

Based on Table C-3, each set of parameters of a grey-box model, over the four sliding 

windows, have only slight variances. The performance metrics values of each grey-box model 

against the sliding training dataset (Table C-4), over the testing dataset, also do not show 

significant difference. Over the testing dataset (Table 7-5), all RMSE values of four grey-box 

models (COP, Tcdwl, ΔTchw, and ΔTcdw) are less than the corresponding measurement uncertainty 

(Table 6-5), except RMSE of the grey-box model for Eb, which is only slightly greater than the 

measurement uncertainty of E. Hence, one can conclude the five grey-box models (Eb, COPb, 

Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) are robust over different chiller operation periods.    

7.3. Conclusion of model development with measurements of July 2013  

Based on the results of model training and testing with static window (SSA) and dynamic 

window (AWA and SWA) approaches over July 2013, the five grey-box models (Eb, COPb, Tcdwl,b, 
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∆Tchw,b, and ∆Tcdw,b) are reliable and robust. Thus, one can conclude the proposed five grey-box 

models can capture the monthly chiller operation characters well and can be regarded as 

benchmarking grey-box models.  

As the dataset length of measurements of July 2013 is small, for safety, benchmarking grey-

box models derived with static window (Equations 7-1 to 7-5) are selected to conduct the fault 

detection and diagnosis since they cover the most training data (most chiller operation 

characteristics). 

7.4. Grey-box models derived with the dataset of 2016  

The derived benchmarking grey-box models with respect to measurements of July 2013 

represent the monthly trend of chiller operation. Though the model accuracy and robustness over 

a short period are validated by the static window approach and dynamic window approach, the 

model performance and robustness over a long term is worth exploring. Thus, this section presents 

the model validation over a whole cooling season with the measurements of 2016. The comparison 

of grey-box models, derived from a short-term dataset and a long-term dataset (measurements of 

2013 and 2016), representing different operation characteristics of the chiller, is shown at the end 

of this section.  

Three approaches, including one static window approach (SSA) and two dynamic window 

approaches (AWA and SWA), are used to train and test the five grey-box models (Eb, COPb, Tcdwl,b, 

ΔTchw,b, and ΔTcdw,b.). As a model derived solely by SSA may lead to the biased model [148,149], 

the dynamic window approaches are needed to erase this concern and validate the model 

robustness over diverse chiller operation conditions. Augmented window and sliding window are 

two common dynamic model retraining approaches, models derived with them are generally more 

robust than that derived with SSA [167,168].  

7.4.1. Grey-box models derived with static window regarding the dataset of 2016 

As the dataset of CH#1 of 2016 under WD is selected for model development (Section 6.2, 

Chapter 6), it is separated into the training dataset and the testing dataset based on sequential 

splitting [147]. For the single split approach (SSA), the training dataset is composed of 

measurements during working days of the first 13 weeks (2198 data points), from 07:45 on May 

25, 2016, to 23:45 on August 19, 2016, while the testing dataset is composed of measurements of 
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the last two weeks (678 data points), from 0:00 on August 22, 2016, to 23:45:00 on September 2, 

2016 (Table 6-2). Data recorded on weekends and holidays are excluded.         

The five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) are developed from 

measurements of normal operation without known problems. Based on the measurements of 2016, 

the five grey-box models are derived with the training dataset of SSA, and parameters are identified 

by least-square algorithm.  

 

Benchmarking model of the electric power input to the chiller  

 

𝐸𝑏 = −39.86(𝑇𝑐ℎ𝑤𝑙 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅) + 0.22 𝑉𝑐ℎ𝑤 + 22.16 𝑚𝑒𝑣,𝑟𝑒𝑓 + 32.65                                                 (7-9) 

                     

Benchmarking model of the coefficient of performance (COP)  

 

𝐶𝑂𝑃𝑏 = 0.85 𝑇𝑐ℎ𝑤𝑙 + 0.03 𝑉𝑐ℎ𝑤 + 74.78 𝑃𝐿𝑅 − 3.45𝑚𝑒𝑣,𝑟𝑒𝑓 − 5.59                   (7-10) 

 

                             

Benchmarking model of the condenser-water leaving temperature 

 

𝑇𝑐𝑑𝑤𝑙,𝑏 = 0.37 (𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑐ℎ𝑤𝑙) + 0.01𝑉𝑐ℎ𝑤 − 0.05 𝑚𝑒𝑣,𝑟𝑒𝑓 + 0.01 𝐸 + 0.89 𝑇𝑐𝑑𝑤𝑟 + 1.40              (7-11) 

 

Benchmarking model of Delta-T of chilled water 

 

∆𝑇𝑐ℎ𝑤,𝑏 = (0.19𝑢𝑛𝑜𝑟𝑚 + 0.53)(𝑇𝑐ℎ𝑤𝑟 − 𝑇𝑒𝑣)                                                                                      (7-12) 

 

Benchmarking model of Delta-T of condenser-water 

 

∆𝑇𝑐𝑑𝑤,𝑏 = 0.15𝑇𝑑𝑖𝑠 + 0.58𝑇𝑐𝑑 − 0.74𝑇𝑐𝑑𝑤𝑟 − 0.25                                                                           (7-13) 

 

Graphical relationships between predicted and measured values of the five selected target 

variables (Figures 7-16 to 7-20), and the performance metrics of grey-box models, over both the 

training and testing datasets, show good prediction performance (Table 7-6), where values of 

performance metrics are rounded.  
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Figure 7-16. Benchmarking values of the electric power input E versus measured values over testing data 

under normal operation conditions of 2016. 

 

Figure 7-17. Benchmarking values of the coefficient of performance COP versus measured values over 

testing data under normal operation conditions of 2016. 



 

  95 

 

 

Figure 7-18. Benchmarking values of the condenser water leaving temperature Tcdwl versus measured values 

over testing data under normal operation conditions of 2016. 

 

 

Figure 7-19. Benchmarking values of the delta-T of chilled water ΔTchw versus measured values over testing 

data under normal operation conditions of 2016. 
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Figure 7-20. Benchmarking values of the delta-T of condenser water ΔTcdw versus measured values over 

testing data under normal operation conditions of 2016. 

Table 7-6. Performance metrics of grey-box models over both training and testing 

datasets, based on measurements of  2016. 

Model Training dataset  Testing dataset 
r RMSE CV(%) MBE NMBE  r RMSE CV(%) MBE NMBE 

E (kW), 

Equation 5-4 0.99 15.20 4.90 0.00 0.00  0.99 17.19 5.96 -3.82 -0.01 

COP (-), 

Equation 5-5 0.95 0.21 3.68 0.00 0.00  0.97 0.26 4.55 -0.01 0.00 

Tcdwl(°C), 

Equation 5-9 1.00 0.17 0.58 0.00 0.00  1.00 0.14 0.48 -0.06 0.00 

ΔTchw (℃) 

Equation 5-12 1.00 0.17 3.39 -0.02 0.00  1.00 0.20 4.35 -0.03 -0.01 

ΔTcdw (℃) 

Equation 5-15 0.99 0.26 5.68 0.00 0.00  1.00 0.20 4.73 -0.13 -0.03 

 

Single split approach (SSA) is a static model training approach, the disadvantages for the 

application of SSA are (1) the user needs to have data over at least a few weeks for training before 

using, and (2) it might lead to biased model. The training dataset of SSA may cover only one 

certainty chiller operation character, other model retraining approaches, being able to represent 

diverse chiller operation characters, are needed to verify the model robustness.   
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7.4.2. Grey-box models derived with augmented window regarding the dataset of 2016 

The augmented window approach (AWA) is used to explore the sensitivity of model 

performance against dataset size. Grey-box models can be retrained periodically by a set of 

augmented data when new measurements are available [169]. The application of AWA for model 

training has the obvious advantage of being able to validate whether the model predicts well over 

both the local (e.g., monthly) and the global (e.g., seasonal) trends of chiller operation [170]. 

Besides, augmented data can cover unexplored input space, prevent overfitting, and improve the 

generalization ability [171]. The disadvantage of AWA is the data accumulation, which might 

become too large to be manageable. Due to the quantity of recent addition of new data is less 

compared to the older data, it is also likely that the latest changes in the augmented training dataset 

have smaller impact on the model training.  

Table 7-7. Duration and dataset size of each augmented window, from measurements 

of Chiller CH#1 of 2016.  

Dataset 
Training dataset  Testing dataset 

Date Dataset Size  Date Dataset Size 

AW1  05/23 – 07/03 546  07/04 – 07/10 330 

AW2  05/23 – 07/10 876  07/11 – 07/24 454 

AW3  05/23 – 07/17 1050  07/18 – 07/31 463 

AW4  05/23 – 07/24 1330  07/25 – 08/07 353 

AW5  05/23 – 07/31 1513  08/01 – 08/21 685 

AW6  05/23 – 08/07 1683  08/08 – 08/28 780 

AW7  05/23 – 08/14 1916  08/15 – 09/04 960 

 

The chiller CH#1 works for 12 weeks during the whole cooling season of 2016. Totally, seven 

augmented windows are divided, and the duration of training dataset and testing dataset of each 

augmented window are listed in Table 7-7, where the ratio of training dataset size to testing dataset 

size in each augmented window is kept around 2. The first augmented window (marked as AW1 

in Table 7-7) covers measurements of the first four weeks, where the training dataset of AW1 is 

composed of the first 546 data points and the testing dataset of AW1 is composed of the last 330 

data points. The second augmented window (marked as AW2 in Table 7-7) spans from May 23 to 

July 24, where the first 876 data points are used for model training and the last 454 data points are 

used for model testing. As the size of augmented window increases successively, the last 
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augmented window (marked as AW7 in Table 7-7) includes measurements of the whole cooling 

season, where the first 1,916 data points compose the training dataset of AW7, and the last 960 

data points compose the testing dataset of AW7.  

Retrain and testing the five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) with all 

the seven augmented windows (Table 7-7). The parameters of the five grey-box models, derived 

with the training dataset of each augmented window, are listed in Table C-5. The average 

performance metrics values over both the training and testing datasets, resulting from the retraining 

approaches of AWA, are listed in Table 7-8. The performance metrics of each AW, over both the 

training and testing datasets, are listed in Table C-6 of Appendix C.  

Table 7-8. Average performance metrics values of grey-box models, derived from 

each augmented window with the measurements of the chiller CH#1 during the 

summer of 2016.  

Model 
 Training dataset    Testing dataset  

r RMSE CV (%) MBE NMBE  r RMSE CV (%) MBE NMBE 

E (kW), 

Equation 5-4 
0.99 15.78 5.19 0.00 0.00  0.99 15.57 5.04 -1.96 -0.01 

COP (-), 

Equation 5-5 
0.95 0.24 4.30 0.00 0.00  0.94 0.20 3.42 0.00 0.00 

Tcdwl(°C), 

Equation 5-9 
1.00 0.18 0.63 0.00 0.00  1.00 0.15 0.54 -0.05 0.00 

ΔTchw (℃) 

Equation 5-12 
1.00 0.17 3.50 -0.03 -0.01  1.00 0.17 3.48 -0.03 -0.01 

ΔTcdw (℃) 

Equation 5-15 
0.99 0.22 5.08 0.00 0.00  0.99 0.27 5.86 -0.16 -0.03 

 

Generally, each set of parameters (Table C-5) of a grey-box model does not show significant 

difference as the training dataset increases. Performance metrics values of each grey-box model 

(Table C-6), over the testing dataset, also do not show significant difference as the training dataset 

increases. Table 7-8 indicates the average RMSE value of each grey-box model is less than the 

corresponding measurement uncertainty of a target variable. Thus, one can conclude the five grey-

box models, derived with the measurements of whole cooling season of 2016, are accurate and 

robust against training dataset size.   

7.4.3. Grey-box models derived with sliding window regarding the dataset of 2016 

The sliding window approach (SWA) is used to explore the sensitivity of model performance 

against periodically updated measurements. SWA can be represented graphically as repeatedly 
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sliding a time window across a time series dataset to choose the training data. SWA has the strength 

of keeping track of latest operation data, but it loses previous data. The prediction results may not 

well represent the annual or seasonal trend of chiller operation [169]. The advantages of SWA are 

performing model retraining is feasible with a relatively small and constant size of the training 

dataset. The application of SWA helps to verify the model robustness over diverse chiller operation 

conditions.  

Six sliding windows (SW) are derived from the measurements of 2016, and each sliding 

window contains measurements of seven weeks, as listed in Table 7-9. The starting and ending 

dates of both the training and testing datasets of each SW are also listed in Table 7-9. For instance, 

the first sliding window (marked as SW1 in Table 7-9), includes the training dataset composed of 

1050 data points (from May 23 to July 17, 2016) and testing dataset composed of 463 data points 

(from July 18 to July 31, 2016).  

Table 7-9. Duration and dataset size of each sliding window, from measurements of 

Chiller CH#1 of 2016.  

Dataset 
 Training dataset  Testing dataset 

 Date Dataset Size  Date Dataset Size 

SW1   05/23 – 07/17 1050  07/18 – 07/31 463 

SW2   06/20 – 07/24 1144  07/25 – 08/07 353 

SW3   06/27 – 07/31 1189  08/01 – 08/14 403 

SW4   07/04 – 08/07 1137  08/08 – 08/21 515 

SW5   07/11 – 08/14 1040  08/15 – 08/28 547 

SW6   07/18 – 08/21 1148  08/22 – 09/04 678 

 

Retrain and test the five grey-box models (Eb, COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) with all the 

six augmented windows (Table 7-9). The parameters of the five grey-box models, derived with 

training dataset of each SW of 2016, are listed in Table C-7. The average performance metrics 

values over both the training and testing datasets, resulting from the retraining approaches of SWA, 

are listed in Table 7-10. The performance metrics of each SW are listed in Table C-8 of Appendix 

C.  

Based on Table C-7, there are only slight variances in terms of each set of parameter values 

of a grey-box model, in terms of all the six sliding windows. The performance metrics values of 

each grey-box model over each sliding window (Table C-8), on both training and testing datasets, 
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also do not show significant difference. Over the testing dataset, all the average RMSE values of 

each of the five grey-box models (Table 7-10) are less than the corresponding measurement 

uncertainty (Table 6-6). Hence, one can conclude the five grey-box models are robust against the 

sliding dataset, which means the proposed models are not sensitive to the dataset that represents 

the chiller operating status at different periods. For instance, the training dataset of SW3 are mainly 

composed of measurements of July 2016 and the testing dataset of SW3 are mainly composed of 

measurements of the first two weeks of August, 2016, where [112] indicates the average chiller 

cooling load of July 2016 (1623.14kW) is about 225kW less than that of the first two weeks of 

August, 2016 (1845.74kW). Even though, performance metrics (Table C-8) of the five grey-box 

models over the testing dataset of SW3 still indicate these models are accurate. Thus, based on the 

results of measurements of 2016, the five grey-box models can extrapolate to operation conditions 

outside the range of training dataset.   

Table 7-10. Average performance metrics values of grey-box models, derived from 

each sliding window with the measurements of the chiller CH#1 during the summer 

of 2016. 

Model 
 Training dataset    Testing dataset  

r RMSE CV (%) MBE NMBE  r RMSE CV (%) MBE NMBE 

E (kW), 

Equation 5-4 
0.99 14.27 4.63 0.00 0.00  0.99 15.09 4.87 0.83 0.00 

COP (-), 

Equation 5-5 
0.95 0.19 3.27 0.00 0.00  0.95 0.19 3.24 0.02 0.00 

Tcdwl (°C), 

Equation 5-9 
1.00 0.16 0.55 0.00 0.00  1.00 0.15 0.52 -0.05 0.00 

ΔTchw (℃) 

Equation 5-12 
1.00 0.16 3.31 -0.02 0.00  1.00 0.17 3.49 -0.03 -0.01 

ΔTcdw (℃) 

Equation 5-15 
0.99 0.18 3.95 0.00 0.00  0.99 0.27 5.86 -0.18 -0.04 

7.4.4. Conclusion of model development with measurements of 2016 

Based on the results of model training and testing with static window (SSA) and dynamic 

window (AWA and SWA) over the whole cooling season of 2016, the five grey-box models (Eb, 

COPb, Tcdwl,b, ∆Tchw,b, and ∆Tcdw,b) are reliable and robust, as all the RMSE values are less than 

corresponding threshold values. Thus, one can conclude the five grey-box models can capture the 

seasonal chiller operation status well and can be regarded as benchmarking grey-box models. As 

the models (Equations 7-9 to 7-13) derived with SSA contain the most training data among the 

three model approaches, reflecting well the seasonal operation trend of a chiller, they are selected 
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to proceed MDFDD.  

7.5. Comparison of grey-box models derived with datasets of July 2013 and 2016.  

The comparison of model training and testing results is conducted for the performance metrics 

and parameters of benchmarking grey-box models, derived with measurements of July 2013 and 

the whole cooling season of 2016, with respect to the three model training approaches (SSA, AWA, 

and SWA).  

For the five performance metrics: r, RMSE, CV, MBE, NMBE (listed in in Table 7-1, Table 7-

6, Table C-2, Table C-4, Table C-6, and Table C-8), there is no significant difference in terms of 

each benchmarking grey-box model over both the short dataset (measurements of July 2013) and 

the long dataset (whole cooling season of 2016), whatever model training approach (static window 

or dynamic window) is used.  

The benchmarking grey-box models derived with the short dataset and the long dataset, 

describing the chiller monthly and the seasonal operation trends, show some similar behavior, 

while, in reality, there might be some different behaviors. For instance, a significant difference is 

noticed for the parameter (α1) of the regressor 𝑇𝑐ℎ𝑤𝑙 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅ of the benchmarking grey-box model 

Eb regarding the dataset of July 2013 and the dataset of 2016. Though this difference might indicate 

different physical meanings, the value of the regressor 𝑇𝑐ℎ𝑤𝑙 − 𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅ is very small. Thus, one can 

conclude the proposed five benchmarking grey-box models can represent well both the monthly 

trend and the seasonal trend of chiller operation, and are robust.  
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Chapter 8: Results of MDFDD using artificial faults  

Detailed records of known equipment faults in existing HVAC system are usually unavailable 

for research purposes. The building operation team, due to potential disturbances in the operation 

and occupants’ discomfort, does not easily accept the insertion of artificial physical faults in the 

operation of existing HVAC systems. Several publications present the insertion of numerical 

artificial faults in the computer simulation models. For instance, a fixed bias of 1°C was added to 

the chilled water return temperature sensor in TRANSYS simulator to generate data with a fault 

[91]. A bias fault of 10°C and a drifting fault of 0.9℃/h were injected into simulation results for 

fault detection using the neural network model [65].  

Since there are no faults recorded by the BAS during the chiller operation of this case study, 

numerical artificial faults are inserted in the measurement data file: (ⅰ) the increase of bias error of 

the chilled water leaving temperature, and (ⅱ) the reduction of refrigerant mass flow rate at the 

evaporator. The results of fault detection, in this chapter, are mainly derived with the threshold 

identification Method A (sole measurement uncertainty). Fault detection results based on threshold 

identification Method B, including both the measurement uncertainty and prediction uncertainty, 

are also presented for comparison purposes. The back ward fault diagnosis rules are also applied 

to isolate the fault source.  

8.1. Results of inserting artificial faults with threshold identification Method A 

8.1.1. Artificial fault of the measured chilled water leaving temperature 

A bias of 5℃ increase is inserted into the testing dataset for Tchwl over eight-time steps, 

starting at 13:15:00 on July 26, 2013 and ending at 15:00:00 on July 26, 2013 (Figure 8-1). The 

bias value of 5 ℃ is selected to exceed the measurement uncertainty of Tchwl.  
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Figure 8-1. Artificial increase of 5℃ for Tchwl over eight-time steps, starting at 13:15:00 on July 26, 2013 and 

ending at 15:00:00 on July 26, 2013.   

Totally, six symptoms (Symp(Tchwl), Symp(E), Symp(COP), Symp(Tcdwl), Symp(∆Tchw), and 

Symp(mev,refr)) are successfully detected, and they are displayed from Figure 8-2 to Figure 8-7. The 

detected six symptoms all start from 13:15:00 on July 26, 2013, and end at 15:00:00 on July 26, 

2013, which is the same time interval as the artificial Tchwl fault. The MDFDD model performance 

metrics are listed in Table 8-1.  

 

 

Figure 8-2. Impact of artificial fault of Tchwl on the fault symptom of Tchwl. 
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Figure 8-3. Impact of artificial fault of Tchwl on the fault symptom of E. 

 

 
Figure 8-4. Impact of artificial fault of Tchwl on the fault symptom of COP. 
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Figure 8-5. Impact of artificial fault of Tchwl on the fault symptom of Tcdwl. 

 

 

Figure 8-6. Impact of artificial fault of Tchwl on the fault symptom of ΔTchw. 



 

 106 

 

 

Figure 8-7. Impact of artificial fault of Tchwl on the fault symptom mev,refr. 

Table 8-1. Model performance metrics for artificially inserted Tchwl fault, derived 

from test dataset from July 25, 2013, to July 26, 2013.  

Assessment 

metrics 

Symptoms  

Symp(Tchwl) Symp(E) Symp(COP) Symp(Tcdwl) Symp(∆Tchw) Symp(mev,refr) 

AC 100% 78.99% 89.08% 95.80% 99.16% 100% 

HR 100% 100% 100% 100% 100% 100% 

FAR 0.00% 22.52% 11.71% 4.50% 0.90% 0.00% 

 

HR values for all the six symptoms (Symp(Tchwl), Symp(E), Symp(Tcdwl), Symp(COP), 

Symp(∆Tchw), and Symp(mev,refr)) are 100%. Thus, all the fault symptoms during the period of 

artificially inserted Tchwl fault, are successfully detected.  

Some singular points, exceeding the threshold under fault-free time, are observed for E, Tcdwl, 

COP, and ∆Tchw, which results in the relative lower AC (e.g., AC value of E is 78.99%, Table 8-1). 

As explained in Chapter 7, they might be caused by the short-term malfunction of mechanical 

system or sensors, and are not continuous. Therefore, such abnormal measurements are not 

considered as fault symptoms. Similar conditions are also noticed in the case study of artificial 

mev,refr,ref fault (e.g., Figure 8-9).  

As Symp(Tchwl), Symp(E), Symp(COP), Symp(Tcdwl), Symp(∆Tchw), and Symp(mev,refr) are 
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detected simultaneously, the variables Tchwl, E, COP, Tcdwl, ∆Tchw, and mev,refr,ref appear to be faulty 

according to fault diagnosis rules. Additional investigation by the operation team is needed. 

8.1.2. Artificial fault of the measured refrigerant mass flow rate 

The refrigerant mass flow rate at the evaporator is reduced by 40% due to a fault starting at 

13:15:00 on July 26, 2013 and ending at 15:00:00 on July 26, 2013 (Figure 8-8). The value of 40% 

is selected to exceed the measurement uncertainty of mev,refr,ref.   

 

 

Figure 8-8. Artificial decrease by 40% of refrigerant mass flow rate starting at 13:15:00 on July 26, 2013 and 

ending at 15:00:00 on July 26, 2013.   

Symp(E), Symp(Tcdwl), Symp(COP), and Symp(mev,refr) are successfully detected and they all 

start at 13:15:00 on July 26, 2013 and end at 15:00:00 on July 26, 2013 (Figure 8-9 to Figure 8-

12), which is the same time period of artificial mev,refr,ref fault. The MDFDD model performance 

metrics are listed in Table 8-2. 
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Figure 8-9. Impact of artificial fault of mev,refr,ref on the fault symptom of E. 

 

 

Figure 8-10. Impact of artificial fault of mev,refr,ref on the fault symptom of COP. 
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Figure 8-11. Impact of artificial fault of mev,refr,ref on the fault symptom of Tcdwl. 

 

 

Figure 8-12. Impact of artificial fault of mev,refr,ref on the fault symptom of mev,refr. 

 



 

 110 

 

Table 8-2. Model performance metrics for artificially inserted mev,refr,ref fault, 

derived from test dataset from July 25, 2013, to July 26, 2013.  

Assessment 

metrics 

Symptoms 

Symp(E) Symp(COP) Symp(Tcdwl) Symp(mev,refr) 

89.08% 78.99% 89.08% 94.96% 100% 

100% 100% 100% 87.50% 100% 

11.71% 22.52% 11.71% 4.50% 0.00% 

 

The impact of artificial fault of mev,refr propagates to the three variables of Eb, COPb and Tcdwl,b, 

which sequentially leads to the detection of Symp(E), Symp(COP), and Symp(Tcdwl). The impact of 

artificial mev,refr,ref fault on itself is also identified as Symp(mev,refr) is detected.  

In this example, the fault symptoms of E, COP, Tcdwl, and mev,refr are detected. According to 

fault diagnosis rules, the three variables E, COP, Tcdwl, and mev,refr,ref are faulty. Additional 

investigation by the operation team is needed. 

8.1.3. Conclusion of case study with threshold identification Method A 

The results, obtained from the case study with threshold identification Method A (sole 

measurement uncertainty), demonstrate that MDFDD model can detect and diagnose these 

dependent symptoms successfully. Due to some singular points occur during fault-free time, the 

accuracy of the proposed fault detection model is affected. Even though, the lowest AC for Symp(E) 

of case study results can still reach to 78.99%. Faulty variables are also isolated by the fault 

diagnosis rules. Therefore, one can conclude that the proposed MDFDD model is reliable.  

The proposed MDFDD model can detect and diagnose MDFs with high accuracy regarding 

the dataset of 2016. Due to the space limitation and for the purpose of simplification, 

corresponding results are not presented here.  

8.2. Results of artificial faults with threshold identification Method B  

Based on threshold identification Method B, including both the measurement uncertainty (Um) 

and prediction uncertainty (Up), in Chapter 5 and the benchmarking grey-box models derived with 

measurements of chiller CH#2 in July, 2013, the prediction uncertainty is calculated (Table 8-3). 

As Up is not applicable to variables of Tchwl, and mev,refr,ref, corresponding cells are marked with NA 

in Table 8-3.   



 

 111 

 

Table 8-3. Measurement uncertainty, prediction uncertainty, and threshold with 

respect to target variables, derived from the training dataset of 2013 of chiller 

CH#2.  

Variables 

Method A  Method B 

Measurement 

uncertainty (Um) 

Prediction 

uncertainty (Up) 

Overall 

uncertainty (OU) 

E (kW) 19.02 11.98 23.22 

COP 0.48 1.30 1.39 

Tcdwl (℃) 0.49 0.17 0.52 

Tchwl (℃) 0.34 NA 0.34 

ΔTchw (℃) 0.52 0.18 0.56 

ΔTcdw (℃) 0.66 0.13 0.68 

mev,refr,ref (kg/s) 0.68 NA 0.68 

 

Based on Table 8-3, for the five target variables (E, COP, Tcdwl, ΔTchw, and ΔTcdw), it is noticed 

that (1) all the values of Up are less than the values of Um except for COP, and (2) threshold values 

identified by Method B are greater than the corresponding values identified by Method A. The 

prediction uncertainty for E, COP are very large, especially for COP with a Up value of 1.30 that 

is greater than the measurement uncertainty of COP (Um of COP is 0.48).  

As described in Chapter 2, benchmarking grey-box models for E, COP, and Tcdwl are 

correlation-based grey-box models, and benchmarking grey-box models for ΔTchw and ΔTcdw are 

physical-based grey-box models. Results in Table 8-3 indicate the prediction uncertainty of 

physical-based grey-box models tends to be small. Compare performance metrics (Table 7-1) and 

Up (Table 8-3) of five grey-box models, it is noticed that a model with a small CV usually has small 

prediction uncertainty (e.g., grey-box models for Tcdwl and ΔTchw). Only based on the results of this 

case study, the author is not sure whether an intrinsic relation exists between model performance 

and model prediction uncertainty. But the results indicate a grey-box model with good performance 

tends to have small prediction uncertainty. 

8.2.1. Fault detection and diagnosis with threshold identification Method B 

The case study is conducted with benchmarking grey-box models derived with the dataset of 

July, 2013, and threshold identification Method B, including both the measurement uncertainty 

and prediction uncertainty. The artificial fault is inserted to the refrigerant mass flow rate at 

evaporator with a reduction of 40% starting at 13:15:00 on July 26, 2013 and ending at 15:00:00 
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on July 26, 2013, as listed in Figure 8-8. The residual value of each target variable is compared 

with the corresponding threshold, identified by Method B, for fault detection, and the results are 

displayed from Figure 8-13 to Figure 8-16. Performance metrics of fault detection are listed in 

Table 8-4.    

Results indicate Symp(E), Symp(COP), Symp(Tcdwl), and Symp(mev,refr) are successfully 

detected and they all start at 13:15:00 on July 26, 2013 and end at 15:00:00 on July 26, 2013 

(Figure 8-13 to Figure 8-16), which is the same time interval of artificial mev,refr,ref fault. Compared 

with the case and corresponding results presented in Section 8.1.2, the only change in this case 

study is threshold values, thus, the detected symptoms for the two case study are the same, which 

are as expected.  

 

 

Figure 8-13. Impact of artificial fault of mev,refr,ref on the fault symptom of E. 
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Figure 8-14. Impact of artificial fault of mev,refr,ref on the fault symptom of COP. 

 

 

Figure 8-15. Impact of artificial fault of mev,refr,ref on the fault symptom of Tcdwl. 
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Figure 8-16. Impact of artificial fault of mev,refr,ref on the fault symptom of mev,refr. 

Table 8-4. Model performance metrics for artificially inserted mev,refr,ref fault, 

derived from test dataset from July 25, 2013, to July 26, 2013 , based on threshold 

identification Method B.  

Assessment 

metrics 

Dependent symptoms 

Symp(E) Symp(COP) Symp(Tcdwl) Symp(mev,refr) 

AC 84.03% 100% 94.96% 100% 

HR 100% 100% 87.50% 100% 

FAR 17.12% 0.00% 4.50% 0.00% 

 

Compare the performance metrics of MDFDD model, resulting from threshold identification 

Method A (Table 8-2) and Method B (Table 8-4), it is noticed that the fault detection performance 

regarding Method B improves for Symp(E) and Symp(COP) with the increase of AC and the 

decrease of FAR.  

However, AC and FAR for Symp(Tcdwl) don’t show significant improvement. One possible 

reason is ε(Tcdwl) derived with Method B only increases very slightly as of ε(Tcdwl) derived with 

Method A, which is not enough to contribute a significant improvement. Another possible reason 

is the relatively small size of testing dataset with non-homogenous data distribution with respect 
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to the dataset of July 2013.  

8.2.2. Conclusion of case study with threshold Method B 

In conclusion, the physical-based grey-box model and the grey-box model with good 

performance tend to have small prediction uncertainty. Apart from the threshold Method A, case 

study results of forward fault detection model with respect to the threshold Method B also show 

good performance. Thus, one can conclude that the threshold Method B can also be considered as 

an effective approach to identify the threshold for fault detection.  
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Chapter 9: Application of transfer learning 

This chapter introduces the application of transfer learning approach to the prediction of target 

chiller variables (E, COP, Tcdwl, ∆Tchw, and ∆Tcdw), using deep neural network models. Transfer 

learning (TL) is applied by transferring a DNN model learnt from one chiller (called source chiller) 

to another chiller (called target chiller). The model performance is evaluated with the target chiller.  

9.1. Transfer learning and deep learning  

9.1.1. Introduction to transfer learning  

Transfer learning (TL) can be defined as the ability of a system to recognize and apply 

knowledge and skills learned in previous tasks to novel tasks [125]. Motivated by satisfying the 

need for lifelong machine learning methods that retain and reuse previous learnt knowledge, the 

transfer learning methods aim to improve the performance of target learners to target models by 

transferring the knowledge identified in different but related models [172]. It contributes to solving 

the defects that can occur, such as lack of data for a model and/or the time required to train a new 

model. TL has been successfully used for regularization of learner’s objective function [173,174], 

parameter sharing [175,176], parameter restriction [177], and model ensemble etc [178].  

The application of transfer learning methods used in the building field was used for predicting 

building energy use [126–128]. An instance-based transfer learning strategy (e.g., instance-based 

TrAdaBoost) was applied to forecast the energy consumption of HVAC system [126]. The results 

indicated that the transfer learning strategy could improve the forecasting accuracy. Fan et al [127] 

transferred features of an ANN model (e.g., Toa, RHoa, etc.) to another one to predict the short-term 

building energy use. TL achieved a decrease of 67% in terms of RMSE. Yun and Cheol [128] 

transferred a pre-trained ANN model to estimate the target building properties, and fine tune the 

parameters with a training dataset from the target building. They reported that the TL strategy 

could improve the CV(RMSE) value by 10%, compared with the conventional ANN approach.   

TL was also applied to study FDD in HVAC systems [129,179]. Chase and Baosen [179] used 

a transferable naïve Bayesian classifier, trained with the source HVAC system, to detect faults 

resulting from component degradation in the target HVAC system. For the chiller FDD, a domain 

adaptive model derived from a source chiller was migrated to a target chiller [129]. This work 
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proved the feasibility of TL for FDD, by migrating existing models to a new chiller model without 

the time and resource requirements associated with the development of a new model.  

In summary, as a time-efficient and source-efficient approach, transfer learning (TL) applies 

the knowledge learnt in previous tasks to new tasks.  

9.1.2. Introduction to deep learning 

Deep learning (DL) is a kind of machine learning method coupling the representation learning, 

aiming to solve a source of difficulty in the real-word applications of artificial intelligence, where 

many of the factors of variation influence every single piece of data that we are able to observe 

[180]. The quintessential example of a DL model is a multilayer perceptron, composed of a 

mathematical function (consist of many simpler function) mapping some set of input values to 

output values, where each application of a different mathematical function can be regarded as 

providing a new representation of the input.  

DL, from the perspective of concept, refers to machine learning models that include multi-

levels of nonlinear transformation; deep neural network (DNN) models are the application of such 

strategies to neural networks [150]. Apart from multiple layer perceptron, common DNN models 

may include convolutional neural networks (CNNs), Long-short term memory networks (LSTMs), 

etc.    

To start a modelling project in the field of artificial neural networks (ANN), one of the first 

decisions is how to select the suitable model from diverse ANN models. Measurements of case 

study in this dissertation indicate the time leg effect is not significant. For this reason, the time-

series model (e.g., LSTMs) is not selected, instead, multiple layer perceptron is selected as the 

DNN model to predict five chiller variables, including E, COP, Tcdwl, ΔTchw, and ΔTcdw.  

 Figure 9-1 shows a fully connected DNN model, as an example, for the prediction task with 

three sequential layers: (1) one input layer including n inputs, (2) three hidden layers, and (3) one 

output layer including m outputs. Each layer is composed of adjustable neurons, where the number 

of neurons of the input layer usually depends on the number of independent inputs and the number 

of neurons of the output layer depends on the target.     
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Figure 9-1. Deep neural network model architecture. 

DNN is a type of feed-forward neural network, the summation of inputs with corresponding 

weights and bias (e.g., W(1) and b(1) in Figure 9-1) is sent to the first hidden layer and goes through 

a non-linear transformation, complying with the activation function applied. Sequentially, the 

information of the first hidden layer is sent to the next hidden layer for another non-linear 

transformation along with corresponding weights and bias, following the feedforward process. 

Equation 9-1, Equation 9-2, and Equation 9-3 are listed here to show, as an example, the governing 

equations of a DNN model in Figure 9-1.   

 

ℎ(1) = 𝑔(1)(𝑊(1)𝑋 + 𝑏(1))                                                             (9-1) 

 

ℎ(2) = 𝑔(2)(𝑊(2)ℎ(1) + 𝑏(2))                                                                    (9-2) 

 

�̂� = 𝑊(4)ℎ(3) + 𝑏(4)                                                                      (9-3) 
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where h(1) and h(2) are the outputs of the first and second hidden layers, g is the activation 

function, �̂� is the output of the output layer, W(2) and b(2), for instance, are weights and bias of the 

second hidden layer.  

A short critical literature review is conducted focusing on DNN application in the field of 

HVAC, and covers the publications in recent years (from 2015 to 2022), which are listed in a 

chronological order in Table 9-1. These papers are focusing on either the prediction task or the 

classification task. One of the most important hyperparameters of a DNN model is the 

configurations of hidden layers, including the number of hidden layers and the number of neurons 

in each hidden layer. A DNN model with more hidden layers usually outperforms the one with 

only a single hidden layer in some aspects like more accurate, avoiding overfitting, etc. Results of 

literature review might support this point as all the reviewed papers use at least two hidden layers. 

Literature review finds 4 out of the 11 reviewed papers utilize three hidden layers, which takes the 

most in terms of hidden layer numbers of a DNN model. However, based on Table 9-1, there is not 

a general rule to set the number of hidden layers except one proposed in reference [181]. As for 

the neuron numbers of a hidden layer, both the uniform and the non-uniform neuron numbers of 

each hidden layer are observed. The activation function of the rectified linear unit (ReLU) is used 

by seven papers; four other papers omit this information (marked as NA in Table 9-1).  

Table 9-1. Architecture of deep neural network in the literature review. 

Neuron number 

of input layer 

Number of hidden 

layers/neurons 

Neuron number 

of output layer 

Activation 

function 
Year Ref. 

4 2/18, 9 1 NA 2015 [181] 

6 5/ 200 each layer 6 ReLU 2019 [182] 

8 3/ 5, 1, 8 2 NA 2019 [183] 

6 2/ 8, 8 4 ReLU 2019 [184] 

9 
6/ 20, 100, 100, 

100, 100, 100 
2 ReLU 2019 [185] 

43 2/ 50, 50 4 NA 2020 [186] 

12 3/ 100, 80, 50 1 ReLU 2021 [187] 

4 2/ 65, 256 1 ReLU 2021 [188] 

8 5/ 20 each 2 NA 2021 [189] 

9 3/ 64, 64, 64 1 ReLU 2022 [190] 

78 3/ 128 each 1 ReLU 2022 [191] 

Note*: The column of Number of hidden layers/neurons shows the number of hidden layers and 

the number of neurons of each layer. For instance, 2/18,9 indicates a DNN model with two hidden 

layers, the first hidden layer with 18 neurons and the second hidden layer with nine neurons.    
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Miriam et al. [181] proposed a method to create a suitable structure of a DNN model based 

on the number of neurons of the input layer. The study compared three structures, with different 

numbers of hidden layers and the number of neurons, to predict the electric energy consumptions 

of real buildings. Results indicated that the DNN model with the configurations of (1) two hidden 

layers, (2) the number of neurons in the first hidden layer of 2×(2×n +1), and (3) the number of 

neurons in the second hidden layer of 2×n +1, achieved the best performance and is the most robust. 

Here, n is the number of neurons of the input layer.  

9.2. Methodology of the application of transfer learning 

9.2.1. Transfer learning strategies 

Transfer learning usually includes the transfer of information between two domains: (1) the 

source domain (SD) that contains data of previous tasks, which can be used for the model pre-

training and testing, and (2) the target domain (TD) that contains data of the new task, which is 

used for the fine-tuning of a model (e.g., in the case of DNN model, the weights are changed), and 

the testing of updated model. This dissertation introduced three transfer leaning strategies: TLS0, 

TLS1, and TLS2: 

1. TLS0: The DNN model is trained and tested with the dataset of SD, and then used directly 

with the dataset of TD, without changes of initial model weights. The DNN model 

performance is evaluated with the testing dataset of TD. TLS0 is also called direct TL.  

2. TLS1: The DNN model is first pre-trained and tested with the dataset of SD, and then it 

is updated by using the dataset of TD. The weights of all DNN model layers are fine-

tuned with the training dataset of TD. Finally, the updated DNN model is evaluated with 

the testing dataset of TD.  

3. TLS2: The DNN model is first pre-trained and tested with the dataset of SD, and then it 

is updated with the dataset of TD. Only the weights of the output layer are updated. Finally, 

the updated DNN model is evaluated with the testing dataset of TD. 

In addition to the above three transfer learning strategies, another DNN model is developed 

by using the so-called self-learning (SelfL) strategy. This model is trained and tested only with the 

dataset of TD.  
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9.2.2. Deep-neural network model structure and evaluation 

This dissertation used DNNs as a tool to conduct TL. Five DNN models were built and each 

one was used to predict one selected target variable. The input variables and the output variable of 

a DNN model are selected as the corresponding regressor variables and the target variable of a 

benchmarking grey-box model (Chapter 5). For instance, the benchmarking grey-box model of 

Equation 5-4 for E includes three regressor variables: Tchwl, Vchw, and mev,refr,ref, which are selected 

as the inputs of the DNN model of E. The structure of each DNN model, including hidden layer 

number and corresponding number of neurons, refers to the guide of [181], as listed in Table 9-2.  

Table 9-2. Architecture of each deep neural network model. 

DNN 

model 

Input layer Hidden layer (HL) Output layer 
Target 

variable Input variables 
Input 

neurons 

HL1 

neurons 

HL2 

neurons 

Output 

neurons 

DNN1 Tchwl, Vchw, mev,refr,ref 3 14 7 1 E 

DNN2 Tchwl, Vchw, PLR, mev,refr,ref 4 18 9 1 COP 

DNN3 
Tchwr, Tchwl, Vchw, mev,refr,ref, E, 

Tcdwr 
6 26 13 1 Tcdwl 

DNN4 Vchw, Tchwl, Tev  3 14 7 1 ΔTchw 

DNN5 Tdis, Tcd Tcdwr 3 14 7 1 ΔTcdw 

 

As the scale of diverse variables differs a lot, data normalization is required. Otherwise, such 

condition might lead to weights of a DNN model that are too small and/or too large, which in turn 

affects the model performance. The min-max normalization method is used in this dissertation, as 

it was suitable for data with known bounds and without many outliers [192]. The equation for the 

min-max normalization of each variable is provided in Equation 9-4: 

 

𝑋𝑖,𝑛𝑜𝑟𝑚 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                             (9-4) 

 

Where Xi,norm is the normalized value of Xi, Xi is a data point of a variable within 

measurements, Xmin is the minimum value, and Xmax is the maximum value. The min-max 

normalization method adjusts values of a variable to a range of 0 and 1.  

The five DNN models are developed using Python (version 3.9.12) [160] with open libraries 

like TensorFlow (version 2.10.0) [193]. The trial-and-error method is applied to identify the 

optimum hyper-parameters of five DNN models, i.e., the activation function and learning rate. For 
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each DNN model, the iteration is set for 10,000 epochs, and the optimum activation function (Table 

9-3) is selected from the following list: 'relu' [194], 'elu', 'gelu' [195], 'selu' [196,197], 'sigmoid', 

'tanh' (Equations 9-5 to 9-10). The optimum learning rate (Table 9-3) is selected from the following 

list: 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 1.  

Table 9-3. The selected activation function and learning rate for each DNN model.  

DNN model 
Optimum activation function 

and learning rate Criterion to stop model 

training Model 

number 

Output 

variable 

Activation 

function 

Learning 

Rate 

DNN1 E ReLU 0.1 1.4×10-3 

DNN2 COP SeLU 0.01 3.7×10-3 

DNN3 Tcdwl GeLU 0.1 1.2×10-3 

DNN4 ΔTchw GeLU 0.2 1.3×10-4 

DNN5 ΔTcdw SeLU 0.01 1.4×10-3 

  

1. Rectified Linear Unit (ReLU) 

 

𝑓(𝑥) = max(0, 𝑥) =  {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

                                               (9-5) 

 

2. Exponential Linear Unit (ELU) 

 

𝑓(𝑥) =  {
𝐸𝑋𝑃(𝑥) − 1, 𝑥 < 0

𝑥, 𝑥 ≥ 0
                                               (9-6) 

 

3. Gaussian Error Linear Unit (GeLU) 

 

𝑓(𝑥) = 0.5𝑥 [1 + 𝑡𝑎𝑛ℎ (√
2

𝜋
(𝑥 + 0.044715𝑥3))]                 (9-7) 

 

4. Scaled Exponential Linear Unit (SeLU) 

 

𝑓(𝑥) =  𝜆 {
𝛼(𝑒𝑥 − 1)𝑥, 𝑥 > 0

𝑥, 𝑥 ≤ 0
                                                  (9-8) 

 

with α ≈ 1.6733 and λ ≈ 1.0507 [196]. 
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5. Sigmoid function 

 

𝑓(𝑥) =  
1

1+𝑒−𝑥
                                                           (9-9) 

 

6. Tangent function (tanh) 

 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                       (9-10) 

 

Within this work, the algorithm of stochastic gradient descent with momentum [198,199] 

(Equations 9-11 to 9-12) is applied to tune the weights of DNN models. The loss function 

(Equation 9-13) is used to estimate the loss of the model over the training dataset so that the 

weights can be updated iteratively to reduce the loss [200]. 

 

𝑀𝑡 = 𝑀𝑡−1 − 𝑙𝑣𝑡                                                (9-11) 

 

Where: 

𝑣𝑡 =  𝛽𝑣𝑡−1 + (1 − 𝛽)∇𝑀𝐿                                (9-12) 

  

𝐿 = ∑ (𝑦�̂� − 𝑦𝑗
𝑛
𝑗=1 )                                              (9-13) 

 

Where M represents weights, l is the learning rate, β is the momentum constant, ∇𝑀𝐿 is the 

gradient, n equals to the length of training dataset, j is indicator.  

The model training stops once one of the two criteria has been met: (1) the mean square error 

of the output (target) variable over the training dataset has fallen under the value listed in Table 9-

3 (identified by trial-and-error method), or (2) the maximum number of iterations of 10,000 epochs 

has been reached.  

The prediction results are compared with measurements, and the model performance is 

evaluated with three performance metrics (r, RMSE, and CV) that are introduced in Chapter 5. In 

addition, mean absolute deviation (MAD) [117] is presented as another performance metric to 

evaluate DNN models, as shown in Equation 9-14. 

 

𝑀𝐴𝐷 =  
∑ |𝑦�̂�−𝑦𝑖|
𝑛
𝑖=1

𝑛
                                                             (9-14) 
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According to ASHRAE Guideline 14 [201], the calibration of a computer model is acceptable 

if the CV between the predictions and measurements of prediction of the whole building energy 

use is smaller than 30%, when using hourly data, or smaller 15% when using monthly data. The 

author estimated, with measurements of 15-minute time, the acceptable CV value should be greater 

than 30% due to larger variation of measurements.  

By extension of such recommended values of CV, some authors have applied the 

recommendations to other variables of HVAC systems. Reference [202] reported a range between 

19.09% and 19.40%, reference [203] reported 5.58%, and reference [204] reported 15%. Another 

study reported an acceptable prediction of the ventilation temperature of a nearly zero energy 

building when CV was 20% [205].  

This dissertation evaluates the model by comparison with the measurement uncertainty, and 

with the metrics presented above. 

9.3. Two case studies  

9.3.1. Case study #1 

The implementation of TL within this dissertation is to verify whether a DNN model learnt 

from a SD of a chiller (source chiller) performs well for the prediction of another chiller (target 

chiller). For this purpose, measurements of chiller CH#2 (source chiller) in July 2013 are used as 

SD. Three target domains are extracted from measurements of chiller CH#1 (target chiller) in 2016 

(Table 6-2, Chapter 6). The information of training dataset and testing dataset of SD and three TDs 

is listed in Table 9-4. The five DNN models were first pre-trained with the training dataset of 

source chiller (CH#2, 2013) and, then, transferred to the target chiller (CH#1, 2016).  

Table 9-4. Information of source domain and target domain for case study #1. 

Datasets 
Source domain 

(CH#2, 2013) 

Target domain (CH#1, 2016) 

TD1 TD2 TD3 

Training 

dataset 

Duration 7/11-7/24 6/22 - 6/23 7/4 – 7/8 8/1 – 8/4 

Dataset size 326 138 330 170 

Testing 

dataset 

Duration 7/25-7/26 6/27 - 6/30 7/11 -7/15 8/8 – 8/12 

Dataset size 119 222 174 233 

 

The training dataset of SD under normal operation, composed of first 326 measurements (73% 
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of the whole data set) was recorded by BAS every 15 minutes, from July 11, 2013 to July 24, 2013, 

is used for the identification of model weights. The remaining 119 measurement data (27% of the 

whole dataset), from July 25, 2013 to July 26, 2013, are used for the model testing.  

It is worth noticing that, in TD1 and TD3, the length of the training dataset is smaller than the 

testing dataset. This is especially valid for TD1, were the training set consists of 138 data points 

while the testing set consists of 222 data points.  

Measurements indicate that the main characteristic of case study #1 contains diverse chiller 

operation conditions (loads) over three target domains (TD1, TD2, and TD3). The average values 

of E over the training datasets of TD2 and TD3 are 315.11kW and 328.24kW (Figure 9-2), which 

are greater than that of TD1 (253.41kW).  

 

 

Figure 9-2. Average values of measured E over the training dataset and the testing dataset of SD and three 

TDs in case study #1. 

9.3.2. Case study #2 

The source domain of case study #2 is the same as that of case study #1 (Table 9-4); however, 

the three TDs are different. They were also extracted from measurements of chiller CH#1 (target 

chiller) in 2016 (Table 6-2, Chapter 6), but the testing dataset of each TD contains almost the rest 

of the summer for 2016. The three TDs of case study #2 are marked with TD4, TD5, and TD6 

(Table 9-5), respectively. Case study #2 represents the condition when only very limited data 

(training dataset) of TD are available for updating weights of a DNN model by using TL to improve 
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model performance over the rest of data of a summer.  

Table 9-5. Information of source domain and target domain for case study #2.  

Datasets 
Source domain  

(CH#2, 2013) 

Target domain (CH#1, 2016) 

TD4 TD5 TD6 

Training 

dataset 

Duration 7/11-7/24 6/22 - 6/23 7/4 – 7/8 7/11 – 7/13 

Dataset size 326 138 330 144 

Testing 

dataset 

Duration 7/25-7/26 6/27-8/12 7/11-8/12 7/15-8/12 

Dataset size 119 1592 1040 896 

 

Based on the approach to calculate measurement uncertainty (Chapter 5), Table 9-6 presents 

the values (mean ± uncertainty) of directly measured and derived variables with respect to training 

datasets of six target domains (TD1 to TD6). The chiller operation characteristics with respect to 

SD and TDs are compared in Table 9-6.  

Table 9-6. Mean and measurement uncertainty of directly measured and derived 

variables identified with the training datasets of source domain and target domains.  

Variables 

Source domain  

(CH#2, 2013) 
Target domains (CH1, 2016) 

SD TD1(TD4) TD2(TD5) TD3 TD6 

E (kW) 324.67±19.02 253.41±16.50 315.11±20.36 328.24±21.81 273.28±23.49 

COP (-) 5.02±0.48 5.54±0.57 5.84±0.59 5.96±0.61 5.56±0.67 

Tcdwl (℃) 32.70±0.49 27.13±0.48 28.56±0.52 28.80±0.54 27.67±0.60 

ΔTchw (℃) 4.31±0.52 3.99±0.54 5.04±0.54 5.28±0.54 4.31±0.59 

ΔTcdw (℃) 4.07±0.66 3.61±0.64 4.65±0.67 4.83±0.69 3.91±0.73 

Vchw (L/s) 91.15±4.56 86.31±4.33 88.47±4.43 88.90±4.46 87.56±4.42 

PLR (-) 0.52±0.04 0.45±0.04 0.59±0.05 0.62±0.05 0.50±0.04 

Tev (℃) 4.91±0.33 5.06±0.44 4.79±0.33 4.78±0.33 5.02±0.34 

Tcd (℃) 33.59±0.53 27.99±0.51 29.52±0.55 30.20±0.58 28.50±0.65 

Tcdwr (℃) 28.62±0.44 23.52±0.42 23.90±0.43 23.96±0.43 23.76±0.43 

Tchwr (℃) 11.50±0.40 10.81±0.42 11.93±0.42 12.22±0.43 11.16±0.49 

Tchwl (℃) 7.19±0.34 6.82±0.33 6.89±0.34 6.94±0.34 6.86±0.34 

mev,refr,ref 

(kg/s) 
10.83±0.68 9.09±0.73 11.97±0.94 12.59±0.98 10.12±0.84 
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9.3. Results  

9.3.1. DNN model training and testing results regarding the source domain 

The five DNN models are trained and tested with the optimum hyperparameters, including 

activation function and learning rate, using measurements of SD (chiller CH#2 of July 2013). The 

performance metrics of the DNN models, calculated over both the training and the testing datasets, 

are listed in Table 9-7, where the measurement uncertainty (Um) of five target variables is also 

included.  

Table 9-7. Performance metrics of five DNN models and measurement uncertainty 

with respect to SD (CH#2, 2013). 

Target 

variables 

Training dataset  Testing dataset 

r RMSE CV (%) MAD Um  r RMSE CV (%) MAD 

E (kW) 0.99 16.93 5.31 16.39 19.02  0.98 23.48 6.89 12.45 

COP (-) 0.96 0.21 4.16 0.19 0.48  0.92 0.26 5.17 0.15 

Tcdwl (°C) 0.99 0.25 0.76 0.21 0.49  0.99 0.28 0.84 0.19 

ΔTchw (℃)  1.00 0.08 1.75 0.07 0.52  1.00 0.08 1.76 0.06 

ΔTcdw (℃)  0.99 0.23 5.62 0.17 0.66  0.98 0.27 6.16 0.15 

 

It is noticed that RMSE values (Table 9-7) of four DNN models (COP, Tcdwl, ΔTchw, and ΔTcdw) 

over the testing dataset are smaller than corresponding measurement uncertainty. Furthermore, the 

RMSE of the DNN model predicting the target variable E is 23.48kW over the testing dataset; 

which is only slightly greater than the measurement uncertainty of E (19.02kW). One possible 

reason for the result of E is the average chiller load of the testing dataset is greater than that of the 

training dataset (Figure 9-2). The DNN model of E, derived with the training dataset of SD, may 

miss some high-load chiller operational conditions.  

Overall, the evaluation metrics (Table 9-7) indicate the five DNN models derived with SD 

perform well. 

9.3.2. Self-learning results based on case study #1 and case study #2 

The five DNN models are pre-trained and tested with the optimum hyperparameters, 

including the activation function and the learning rate, on six target domains (TD1 to TD6). The 

performance metrics of DNN models, calculated over TD1, TD2, and TD3 (case study #1), are 

listed in Appendix D (Table D-1). Results with respect to TD4, TD5, and TD6 (case study #2) are 
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listed in Appendix D (Table D-2). 

For the results of case study #1 (Table D-1), all RMSE values of five DNN models over the 

testing dataset of TD2 are less than the corresponding measurement uncertainties. However, RMSE 

values over testing datasets of TD1 and TD3 show different results. For instance, over the testing 

datasets of TD3, the RMSE value for E is significantly greater than the measurement uncertainty 

of E. RMSE values of three DNN models (E, COP, and ΔTcdw) over the testing dataset of TD1 are 

greater than corresponding measurement uncertainties.  

For the results of case study #2 (Table D-2), all RMSE values of five DNN models over the 

testing dataset of TD5/TD6 are less than the corresponding measurement uncertainties. However, 

RMSE values of four DNN models (E, COP, Tcdwl, and ΔTcdw) in TD4 are greater than the 

corresponding measurement uncertainties.  

9.3.3. Results of transfer learning with respect to case study #1 

The five DNN models (E, COP, Tcdwl, ΔTchw, and ΔTcdw), derived with the training dataset of 

SD, are transferred to the target chiller with three TDs (TD1, TD2, and TD3) by using three TL 

strategies (TLS0, TLS1, and TLS2). TLS0 directly transfers the five DNN models, trained on SD, 

to the target chiller (CH#1, 2016) and the model performance is evaluated with testing datasets of 

three TDs (TD1, TD2, and TD3), as shown in Table D-3. Both TLS1 and TLS2 transfer the five 

DNN models, pre-trained on SD, to the target chiller (CH#1, 2016) and, then, fine-tune weights 

with the training dataset of three TDs (TD1, TD2, and TD3). The difference is TLS1 updated the 

weights of all the layers of a DNN model, while TLS2 only updated the weights of the output layer 

of a DNN model. Then, the model performance is evaluated with testing datasets of three TDs 

(TD1, TD2, and TD3), as shown in Table D-4 and Table D-5. 

The RMSE values obtained by the four strategies (SelfL, TLS0, TLS1, and TLS2) are 

compared in Table 9-8. RMSE of SelfL for E in TD1, COP in TD1, and E in TD3 are significantly 

greater than corresponding measurement uncertainty. Over the six RMSE values of TLS0 (Table 

9-8), three of them are greater than their corresponding measurement uncertainty (e.g., E in TD1). 

Thus, TLS1 and TLS2 perform better than TLS0 and SelfL, as all RMSE of TLS1 and TLS2 are 

smaller than corresponding measurement uncertainty, except for the case of E in TD1. One possible 

explanation for this result with respect to TD1 is the average E over the training dataset is a small 

value (Figure 9-2), which leads to a small value of measurement uncertainty of E.   
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Table 9-8. RMSE of SelfL, TLS0, TLS1, and TLS2 over the testing dataset of three 

TDs (TD1, TD2, and TD3).  

Strategy 
Target dataset 

TD1 TD2 TD3 

 E (kW) COP (-) E (kW) COP (-) E (kW) COP (-) 

SelfL 69.71 0.94 19.19 0.37 30.47 0.58 

TLS0 23.46 0.54 22.45 0.63 20.87 0.48 

TLS1 21.05 0.33 11.82 0.42 11.34 0.28 

TLS2 21.06 0.33 11.88 0.41 12.61 0.24 

Measurement uncertainty (Um) 16.50 0.57 20.36 0.59 21.81 0.61 

Table 9-9. CV of SelfL, TLS0, TLS1, and TLS2 over the testing dataset of three TDs 

(TD1, TD2, and TD3).  

Strategy 
Target dataset 

TD1 TD2 TD3 

 E (%) COP(%) E (%) COP(%)  E (%) COP(%)  

SelfL 20.48 15.83 6.60 6.51 9.39 9.90 

TLS0 6.89 9.11 7.72 11.07 6.43 8.26 

TLS1 6.18 5.50 4.07 7.35 3.50 4.76 

TLS2 6.35 5.48 4.08 7.18 3.89 4.12 

Table 9-10. MAD of SelfL, TLS0, TLS1, and TLS2 over  the testing dataset of three 

TDs (TD1, TD2, and TD3).  

Strategy 
Target dataset 

TD1 TD2 TD3 

 E (kW) COP (-) E (kW) COP (-) E (kW) COP (-) 

SelfL 49.11 0.69 13.97 0.25 26.65 0.16 

TLS0 19.34 0.43 16.22 0.52 15.15 0.41 

TLS1 16.13 0.26 8.69 0.29 9.00 0.22 

TLS2 16.51 0.25 8.80 0.28 9.56 0.19 

Measurement uncertainty (Um) 16.50 0.57 20.36 0.59 21.81 0.61 

 

The CV and MAD values obtained by the four strategies (SelfL, TLS0, TLS1, and TLS2) with 

respect to three target domains (TD1 to TD3) are compared in Table 9-9 and Table 9-10, 

respectively. Table 9-9 indicates all CV values of the four strategies (SelfL, TLS0, TLS1, and TLS2) 

with respect to three target domains (TD1 to TD3) are far less than the recommended 30% [201]. 

Besides, CV values with respect to TLS1 and TLS2 over three target domains (TD1 to TD3) are 

less than corresponding values with respect to SelfL and TLS0. The trend observed on Table 9-8 

and Table 9-9 is also noticed in Table 9-10. Thus, TLS1 and TLS2 perform better than SelfL and 
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TLS0 in general in case study #1. 

Table 9-11. Summary of comparison of each performance metrics with respect to 

case study #1.  

Performance 

metrics 

Condition 

TLS1 > TLS2 TLS1 = TLS2 TLS1 < TLS2 

RMSE 3 5 7 

CV 6 1 8 

MAD 5 4 6 

Total 14 10 21 

 

Table 9-11 is derived with the comparison of performance metrics (RMSE, CV, and MAD) on 

three target domains (TD1, TD2, and TD3), resulting from TLS1 and TLS2. For instance, 3 in the 

second column means three RMSE values of DNN models with the application of TLS1 over three 

TDs of case study #1 are greater than corresponding RMSE values with TLS2. Usually, a DNN 

model with a smaller RMSE or CV or MAD indicates the model performance is better. Therefore, 

if the condition of TLS1<TLS2 (or TLS1>TLS2) has the largest number in the row of total in Table 

9-11, it represents TLS1 (or TLS2) performs better than TLS2 (or TLS1) in general.   

The largest number in Table 9-11 is twenty-one with the condition of TLS1<TLS2, which 

indicates twenty-one RMSE, CV, and MAD values of DNN models applying TLS1 over three target 

domains (TD1, TD2, and TD3) are smaller than that with respect to TLS2. Thus, TLS1 performs 

better than TLS2 over case study #2. 

9.3.4. Results of transfer learning with respect to case study #2 

The five DNN models (E, COP, Tcdwl, ΔTchw, and ΔTcdw), derived with the training dataset of 

SD, are transferred to the target chiller with three TDs (TD4, TD5, and TD6) by using three TL 

strategies (TLS0, TLS1, and TLS2). TLS0 directly transfers the five DNN models, trained on SD, 

to the target chiller (CH#1, 2016) and the model performance is evaluated with testing datasets of 

three TDs (TD4, TD5, and TD6), as shown in Table D-6. TLS1 and TLS2 transfer the five DNN 

models, pre-trained on SD, to the target chiller (CH#1, 2016) and, then, fine-tune weights with the 

training dataset of three TDs (TD4, TD5, and TD6). The difference is TLS1 updated weights of all 

layers of a DNN model, while TLS2 only updated weights of the output layer of a DNN model. 

Then, the model performance is evaluated with testing datasets of three TDs (TD4, TD5, and TD6), 
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as shown in Table D-7 and Table D-8. 

The RMSE values obtained by the four strategies (SelfL, TLS0, TLS1, and TLS2) are 

compared in Table 9-12. RMSE of SelfL for E in TD4 and COP in TD4 are significantly greater 

than corresponding measurement uncertainty. Over the six RMSE values of TLS0 (Table 9-12), 

two of them are greater than corresponding measurement uncertainty (e.g., E in TD4). For the 

results of TLS1 or TLS2, only the RMSE of E in TD4 is greater than the corresponding 

measurement uncertainty throughout the three target domains (TD4, TD5, and TD6). Thus, TLS1 

and TLS2 perform better than TLS0 and SelfL in terms of RMSE in case study #2. 

Table 9-12. RMSE of SelfL, TLS0, TLS1, and TLS2 over the testing datasets of 

three TDs (TD4, TD5, and TD6) with respect to DNN models of E and COP. 

Strategy 
Target dataset 

TD4 TD5 TD6 

 E (kW) COP (-) E (kW) COP (-) E (kW) COP (-) 

SelfL 69.45 0.91 13.92 0.30 20.55 0.34 

TLS0 20.81 0.69 19.65 0.69 19.36 0.66 

TLS1 18.06 0.39 18.57 0.31 15.67 0.31 

TLS2 29.00 0.40 25.77 0.41 16.52 0.29 

Measurement uncertainty (Um) 16.50 0.57 20.36 0.59 23.49 0.67 

Table 9-13. CV of SelfL, TLS0, TLS1, and TLS2 over the testing datasets of three 

TDs (TD4, TD5, and TD6) with respect to DNN models of E and COP. 

Strategy 
Target dataset 

TD4 TD5 TD6 

 E (%) COP(%) E (%) COP(%)  E (%) COP(%)  

SelfL 22.03 15.51 4.49 5.16 6.50 5.78 

TLS0 6.60 11.82 6.34 11.81 6.13 11.30 

TLS1 5.73 6.70 5.99 5.32 4.96 5.21 

TLS2 9.20 6.88 8.31 6.97 5.23 4.94 

 

The CV and MAD values obtained by the four strategies (SelfL, TLS0, TLS1, and TLS2) with 

respect to three target domains (TD4 to TD6) are compared in Table 9-13 and Table 9-14, 

respectively. Table 9-13 indicates all CV values of the four strategies (SelfL, TLS0, TLS1, and 

TLS2) with respect to three target domains (TD4 to TD6) are far less than the recommend 30% 

[201]. Besides, CV values with respect to TLS1 and TLS2 over three target domains (TD1 to TD3) 

are less than corresponding values with respect to SelfL and TLS0 (Table 9-13). The trend observed 
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on Table 9-12 and Table 9-13 is also noticed in Table 9-14. Thus, TLS1 and TLS2 perform better 

than SelfL and TLS0 in general in case study #2. 

Table 9-14. MAD of SelfL, TLS0, TLS1, and TLS2 over the testing datasets of three 

TDs (TD4, TD5, and TD6) with respect to DNN models of E and COP. 

Strategy 
Target dataset 

TD4 TD5 TD6 

 E (kW) COP (-) E (kW) COP (-) E (kW) COP (-) 

SelfL 43.45 0.60 10.23 0.24 15.40 0.27 

TLS0 15.85 0.56 14.66 0.56 14.53 0.54 

TLS1 16.50 0.57 20.36 0.59 23.49 0.67 

TLS2 25.99 0.32 22.91 0.33 11.64 0.23 

Measurement uncertainty (Um) 16.50 0.57 20.36 0.59 23.49 0.67 

 

Table 9-15 is derived with the comparison of performance metrics (RMSE, CV, and MAD) on 

three target domains (TD4, TD5, and TD6), resulting from TLS1 and TLS2. The largest number 

in Table 9-15 is twenty-nine with the condition of TLS1<TLS2, which is significantly greater than 

that with the condition of TLS1>TLS2. The number twenty-nine indicates there are twenty-nine 

RMSE, CV, and MAD values of DNN models with respect to TLS1 over three target domains (TD1, 

TD2, and TD3) are smaller than that with respect to TLS2. Therefore, TLS1 performs better than 

TLS2 over case study #2. 

Table 9-15. Summary of comparison of each performance metrics with respect to 

case study #2.  

Performance 

metrics 

Condition 

TLS1 > TLS2 TLS1 = TLS2 TLS1 < TLS2 

RMSE 4 1 10 

CV 5 0 10 

MAD 4 2 9 

Total 13 3 29 

9.4. Conclusions of transfer learning  

Based on the results of case study #1 and case study #2, one can conclude: 
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1. TLS1 or TLS2 performs better than TLS0 or SelfL in both case study #1 and case study 

#2. Updating weights of DNN models with the information of new task helps to improve 

performance of DNN models over testing dataset of TD.  

2. TLS1 (fine-tune weights of all DNN model layers) is the best strategy to conduct TL.  

3. Results with respect to case study #2 indicate updating model weights with even very 

limited data of new task, TL can help to improve the DNN model performance over almost 

the whole summer.  

Such kind of model with TL shows great potentials and feasibility to conduct fault detection.  
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10. Main contributions and recommendations 

10.1. Summary of contributions  

This dissertation is a contribution to multiple-dependent faults detection and diagnosis 

chillers using benchmarking grey-box models along with measurements from a real building. The 

benchmarking grey-box models for three system-level target variables (Eb, COPb, and Tcdwl.b), and 

two component-level target variables (∆Tchw and ∆Tcdw) perform well:  

1. Accurately and robustly predict target variables under normal conditions over a short 

dataset (July 2013) and a long dataset (whole cooling season of 2016),  

2. Propagate impacts to target variables due to regressor variables faults, when artificial 

faults are injected into the dataset. Case study results verify the effectiveness of the 

forward fault detection approach and the backward fault diagnosis approach.  

This dissertation also studied the effectiveness of different transfer learning strategies in 

improving the performance of DNN models for the prediction of target variables.  

Towards the goal of this dissertation, the main contributions are: 

1. Present a classification scheme to distinguish individual faults and dependent faults. This 

classification scheme indicates the intrinsic relationship between regressor variables, and 

between regressor variable(s) and target variable(s).    

2. Present five benchmarking grey-box models to predict target variables with respect to 

chiller operation. Three grey-box models in simple format, instead of state equations with 

a complex format, are developed to estimate refrigerant enthalpy with high accuracy at 

three key positions of a refrigerant cycle.  

3. Present a forward fault detection model to detect chiller MDFs, using measurements from 

BAS of a real building.  

4. Present a backward fault diagnosis model to decouple the dependency relationship of 

target variables and regressor variables, and isolate the fault source successfully.  

5. Present a new approach to estimate the prediction uncertainty of a model. 

Correspondingly, a new method is developed to identify threshold for fault detection, 

which covers the uncertainty information from both the measurement side and the 

prediction side.  
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6. The transfer learning strategy is proved to be a feasible and efficient approach to develop 

an accurate DNN model for a new task. Initializing the weights of the a new model, based 

on a previous site, and then update the all the weights based on the secondary site is the 

best strategy to conduct transfer learning.  

10.2. Recommendations for future work 

This section summarizes the limitations of MDFDD model, based on which the 

recommendations for future work are presented.   

1. Benchmarking grey-box models, under normal conditions, are verified by measurements, 

which supports a solid conclusion of accurate and robust models. Though MDFs are 

detected successfully, whether the model complies well with chiller real responses under 

faulty conditions is not verified, as measurement data with faults are not available. Future 

work should focus on designing and conducting chiller experiments with physical faults 

as recognised by BAS, for the purpose of verifying existing chiller FDD models or 

developing new models based on needs. 

2. The relationship between proper model training and the subsequential application in FDD 

should be well studied. If a model is underfit or overfit, its performance on detecting or 

diagnosing faults would be highly affected. Different from prediction/forecasting models 

dealing with only normal conditions, a reliable model used for FDD should perform well 

under both the normal condition and the faulty condition (able to generate significant 

impact on target variables). Further, a perfect model should comply well with the real 

chiller response to a fault. 

3. Although one regressor variable fault (e.g., Tchwl) might have impact on other regressors 

such as Vchw or/and mev,refr,ref, this dissertation considers only the significant impact on the 

target variable (e.g., E). The impact on other regressor variables is neglected. Future work 

should consider the combined effects.  

4. The time interval of BAS recordings is 15 minutes, which is not enough for the fault 

detection under transient regimes. Thus, the proposed method could miss the impact of 

shorter-time disturbances. The advanced monitoring system with shorter time steps could 

be able to capture transient operation characteristics of a chiller. Data collected by such 

advanced monitoring system could be used to develop FDD models under chiller transient 
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operations or starting-up/shutting-down periods. The cost-effectiveness of installing a 

dedicated monitoring system should be compared with the BAS. 

5. Literature review finds only one study, ASHRAE project 1043-RP [107], that used data 

from laboratory experiments of a chiller with faults. However, corresponding experiments 

were conducted more than twenty years ago, and only limited fault types were 

investigated. The lack of database with faults is the main barrier restricting the FDD study 

for HVAC systems. Along with the recent development of intelligent buildings, more 

faults of new types have emerged. State-of-the-art models should meet new challenges, 

as a results, more open databases with HVAC system faults are expected in the future 

work.  

6. Benchmarking grey-box models, presented in this dissertation, are easy to be deployed, 

as they need less data to derive an accurate model (resource-efficient) and are fast to be 

trained (time-efficient), compared with other general black box models (e.g., deep 

learning models). As grey-box models usually have a simple format, they are easily to be 

accepted by the building facility management team. Thus, such models show great 

potentials to realize the automation of FDD and commercialization of related 

product/software. Future work can focus on upgrading BAS, by integrating a program 

with MDFDD model, to realize automatic online FDD.
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Appendix A: Uncertainty estimation of direct and derived 

measurements  

For the measurement uncertainty of derived variables and direct variables in this dissertation, 

they are listed here: 

 

𝐵𝑈𝐸 = �̅� × 0.05                                                                             (A14)    

 

𝐵𝑈𝑇𝑒𝑣 = 𝑇𝑒𝑣̅̅ ̅̅ × 0.005 + 0.3                                                            (A15)        

 

𝐵𝑈𝑇𝑐𝑑 = 𝑇𝑐𝑑̅̅ ̅̅ × 0.005 + 0.3                                                           (A16)        

 

𝑈𝑇𝑠𝑢𝑐 = 𝑈𝑇𝑒𝑣                                                                                    (A17) 

 

𝑈𝑇𝑑𝑖𝑠

𝑇𝑑𝑖𝑠̅̅ ̅̅ ̅̅
= √(

𝑈𝑇𝑠𝑢𝑐

𝑇𝑠𝑢𝑐̅̅ ̅̅ ̅̅
)2 + (

𝑈𝑃𝑒𝑣

𝑃𝑒𝑣̅̅ ̅̅ ̅
)2 + (

𝑈𝑃𝑐𝑑

𝑃𝑐𝑑̅̅ ̅̅ ̅
)2                                        (A18)       

 

𝑈𝑇𝑙𝑙 = 𝑈𝑇𝑐𝑑                                                                                    (A19) 

 

𝑈𝑄𝑒𝑣,𝑐ℎ𝑤

𝑄𝑒𝑣,𝑐ℎ𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= √(

𝑈𝑇𝑐ℎ𝑤𝑟

𝑇𝑐ℎ𝑤𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅
)2 + (

𝑈𝑇𝑐ℎ𝑤𝑙

𝑇𝑐ℎ𝑤𝑙̅̅ ̅̅ ̅̅ ̅̅
)2 + (

𝑈𝑉𝑐ℎ𝑤

𝑉𝑐ℎ𝑤̅̅ ̅̅ ̅̅ ̅
)2                            (A20)    

 

𝑈𝐶𝑂𝑃

𝐶𝑂𝑃̅̅ ̅̅ ̅̅
= √(

𝑈𝑄𝑒𝑣,𝑐ℎ𝑤

𝑄𝑒𝑣,𝑐ℎ𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)2 + (

𝑈𝐸

�̅�
)2                                                       (A21) 

 

𝑈ℎ𝑠𝑢𝑐
ℎ𝑠𝑢𝑐̅̅ ̅̅ ̅̅

= √(
𝑈𝑇𝑠𝑢𝑐

𝑇𝑠𝑢𝑐̅̅ ̅̅ ̅̅
)2 + (

𝑈𝑃𝑒𝑣

𝑃𝑒𝑣̅̅ ̅̅ ̅
)2                                                        (A22)                                                                                        
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𝑈ℎ𝑑𝑖𝑠
ℎ𝑑𝑖𝑠̅̅ ̅̅ ̅̅

= √(
𝑈𝑇𝑑𝑖𝑠

𝑇𝑑𝑖𝑠̅̅ ̅̅ ̅̅
)2 + (

𝑈𝑃𝑐𝑑

𝑃𝑐𝑑̅̅ ̅̅ ̅
)2                                                             (A23)                                                                                        

 

𝑈ℎ𝑙𝑙

ℎ𝑙𝑙̅̅ ̅̅
= √(

𝑈𝑇𝑙𝑙

𝑇𝑙𝑙̅̅ ̅̅
)2 + (

𝑈𝑃𝑐𝑑

𝑃𝑐𝑑̅̅ ̅̅ ̅
)2                                                                  (A24)   

                                                                                        

𝑈𝑇𝑑𝑖𝑠

𝑇𝑑𝑖𝑠̅̅ ̅̅ ̅̅
= √(

𝑈𝑇𝑠𝑢𝑐

𝑇𝑠𝑢𝑐̅̅ ̅̅ ̅̅
)2 + (

𝑈𝑃𝑒𝑣

𝑃𝑒𝑣̅̅ ̅̅ ̅
)2 + (

𝑈𝑃𝑐𝑑

𝑃𝑐𝑑̅̅ ̅̅ ̅
)2                                              (A25)       

 

𝑈∆𝑇𝑐𝑑𝑤 = √(𝑈𝑇𝑐𝑑𝑤𝑟)
2 + (𝑈𝑇𝑐𝑑𝑤𝑙)

2                                                    (A26)     

 

𝑈𝑇𝑐𝑑,𝑎𝑝𝑝𝑟 = √(𝑈𝑇𝑐𝑑)
2 + (𝑈𝑇𝑐𝑑𝑤𝑙)

2                                                    (A27)     

 

𝑈𝑇𝑒𝑣,𝑎𝑝𝑝𝑟 = √(𝑈𝑇𝑒𝑣)
2 + (𝑈𝑇𝑐ℎ𝑤𝑙)

2                                                      (A28)   

                                                       

Where the symbol with ‘ˉ’, above a variable, represents the mean value if this variable. 
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Appendix B: Direct and derived measurements with measurement 

uncertainty of summers of 2009 to 2017 under the three scenarios 

Table B1. Weakly values (mean ± uncertainty) of direct and derived measurements 

from the operation of chiller CH#1 (scenario 1) over 10 weeks, from June 22 to 

August 28, 2016  

Week Tchwl, ℃ Tchwr, ℃ Vchw, L/s E, kW Qev,chw, kW COP 

4 6.88±0.33 11.28±0.39 86.52±4.33 276.5±16.1 1589.7±123.8 5.75±0.56 

5 6.88±0.33 11.28±0.39 87.25±4.37 277.4±16.2 1607.5±125.0 5.79±0.56 

6 6.87±0.33 11.33±0.39 87.96±4.40 281.49±16.4 1638.8±127.4 5.82±0.57 

7 6.86±0.33 11.53±0.39 87.32±4.37 286.2±16.4 1700.7±131.9 5.94±0.57 

8 6.85±0.33 11.47±0.39 87.88±4.40 280.1±16.7 1691.4±131.5 5.87±0.57 

9 6.88±0.33 11.79±0.38 87.68±4.39 303.1±17.1 1792.1±138.0 5.91±0.56 

10 6.91±0.34 11.94±0.39 88.14±4.41 310.3±17.5 1842.1±141.5 5.94±0.57 

11 6.88±0.33 11.94±0.40 87.81±4.39 314.9±18.4 1849.4±142.8 5.87±0.57 

12 6.92±0.34 12.08±0.40 89.00±4.46 330.7±19.7 1916.0±147.9 5.79±0.60 

13 6.86±0.33 11.29±0.39 87.62±4.39 278.0±16.0 1621.6±126.2 5.83±0.60 

 

Table B2. Direct and derived measurements of summers of 2009 to 2017 f rom the 

operation of chiller CH#1 (scenario 1)  

Year Tchwl, ℃ Tchwr, ℃ Vchw, L/s E, kW Qev,chw, kW COP 

2009 7.07±0.34 11.84±0.39 82.58±4.15 324.1±18.6 1658.0±126.7 5.09±0.49 

2010 6.99±0.34 11.5±0.39 84.91±4.25 303.1±17.2 1591.6±122.4 5.22±0.5 

2011 N/A N/A N/A N/A N/A N/A 

2012 6.86±0.33 11.6±0.4 87.78±4.39 325.1±19.1 1733.1±135.0 5.33±0.52 

2013 6.84±0.34 10.92±0.4 88.31±4.42 290.0±17.7 1505.7±119.2 5.15±0.51 

2014 6.83±0.33 10.99±0.39 88.72±4.44 299.8±17.3 1540.3±120.5 5.12±0.50 

2015 7.12±0.34 12.31±0.42 89.68±4.49 340.1±20.5 1948.5±150.5 5.71±0.56 

2016 6.88±0.33 11.56±0.39 87.7±4.39 293.1±17.0 1714.5±132.8 5.85±0.57 

2017 6.69±0.33 10.77±0.39 85.79±4.3 255.0±15.4 1468.2±116.8 5.75±0.57 
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Table B3. Direct and derived measurements of summers of 2009 to 2017 from the 

operation of chiller CH#2 (scenario 2)  

Year Tchwl, ℃ Tchwr, ℃ Vchw, L/s E, kW Qev,chw, kW COP 

2009 7.22±0.34 11.30±0.38 84.66±4.27 300.0±17.6 1460.0±111.7 4.83±0.47 

2010 7.16±0.34 11.32±0.38 87.47±4.38 297.9±16.9 1521.6±116.2 5.09±0.49 

2011 7.02±0.34 11.36±0.38 88.46±4.43 294.4±16.5 1530.2±116.4 5.19±0.49 

2012 7.26±0.34 11.63±0.04 90.83±4.55 311.4±18.3 1657.6±126.5 5.32±0.51 

2013 7.19±0.34 11.37±0.39 91.60±4.59 309.5±18.3 1597.9±122.4 5.16±0.50 

2014 7.21±0.34 11.83±0.39 92.70±4.64 341.4±19.4 1787.6±135.5 5.23±0.50 

2015 7.25±0.34 11.44±0.39 92.72±4.66 316.1±18.5 1619.4±124.3 5.11±0.49 

2016 7.12±0.34 11.31±0.40 89.93±4.51 293.9±17.3 1581.9±123.1 5.36±0.52 

2017 7.22±0.34 11.30±0.38 90.44±4.53 312.0±17.4 1696.2±136.0 5.43±0.53 

 

Table B4. Direct and derived measurements of summers of 2009 to 2017 from the 

simultaneous operation of chillers CH#1+CH#2 (scenario 3)  

Year Tchwl, ℃ Tchwr, ℃ Vchw, L/s E, kW Qev,chw, kW COP 

2009 7.05±0.34 11.77±0.37 146.54±7.40 581.4±31.8 2882.8±219.8 4.96±0.46 

2010 7.01±0.34 12.09±0.37 144.85±7.29 588.0±31.6 3078.0±233.7 5.23±0.49 

2011 6.97±0.34 11.71±0.39 145.37±7.48 559.9±34.1 2877.5±224.2 5.12±0.51 

2012 6.97±0.33 11.95±0.38 154.65±7.76 603.5±33.4 3207.8±245.3 5.31±0.50 

2013 6.96±0.34 12.33±0.39 157.19±7.87 646.9±35.6 3517.8±268.0 5.43±0.51 

2014 6.94±0.33 11.89±0.39 157.94±7.92 619.3±35.6 3256.2±250.9 5.25±0.51 

2015 6.95±0.34 12.32±0.40 156.99±7.88 654.8±38.0 3511.7±269.6 5.36±0.52 

2016 6.62±0.33 12.02±0.39 156.37±7.84 622.9±35.1 3517.7±274.8 5.65±0.54 

2017 6.03±0.33 11.73±0.38 153.41±7.74 613.9±34.0 3477.5±277.3 5.66±0.55 
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Appendix C: Performance metrics of model training and testing 

using measurements of July 2013 and the cooling season of 2016.  

Table C-1. Parameters of grey-box models identified from each augmented window, 

using measurements of July, 2013.  

Model  Parameters 

E(kW), 

Equation 

5-4 

 α1 α2 α3 α0   

AW1 20.44 -0.74 22.03 146.96   

AW2 29.83 -1.53 22.26 214.48   

AW3 33.37 -1.86 22.72 239.93   

AW4 29.50 -1.50 22.31 212.11   

COP, 

Equation 

5-5 

 β1 β2 β3 β4 β0  

AW1 1.00 0.08 77.30 -3.49 -11.85  

AW2 0.68 0.02 33.49 -1.44 -3.76  

AW3 0.52 0.03 44.22 -1.95 -3.61  

AW4 0.51 0.03 39.86 -1.74 -3.47  

Tcdwl(°C), 

Equation 

5-9 

 

 δ1 δ2 δ3 δ4 δ5 δ0 

AW1 0.31 0.02 -0.04 0.01 1.01 -2.22 

AW2 0.43 0.02 -0.07 0.01 0.91 0.78 

AW3 0.46 0.02 -0.08 0.01 0.92 0.36 

AW4 0.39 0.02 -0.08 0.01 0.90 0.91 

ΔTchw(°C), 

Equation 

5-12 

 𝜖1 𝜖2     

AW1 1.28 -0.52     

AW2 0.60 0.10     

AW3 0.56 0.14     

AW4 0.70 0.02     

ΔTcdw(°C), 

Equation 

5-15 

 θ1 θ2 θ3 θ0   

AW1 0.19 0.49 -0.28 -12.26   

AW2 0.10 0.60 -0.41 -8.16   

AW3 0.12 0.56 -0.41 -7.88   

AW4 0.18 0.49 -0.46 -6.55   
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Table C-2. Performance metric values based on each augmented window for each 

grey-box model, using measurements of July 2013.  

Model  

Training dataset   Testing dataset  

r RMSE CV (%) MBE 
NMB

E 
 r RMSE CV (%) MBE 

NMB

E 

E(kW), 

Equation 

5-4 

AW1 0.99 15.18 4.49 0.03 0.00  0.98 20.20 5.91 5.90 0.02 

AW2 0.98 20.68 6.38 0.03 0.00  0.98 21.00 6.14 7.89 0.02 

AW3 0.98 19.24 5.66 0.03 0.00  0.98 20.83 6.09 7.26 0.02 

AW4 0.98 18.59 5.80 0.03 0.00  0.98 20.52 6.00 6.57 0.02 

COP, 

Equation 

5-5 

AW1 0.96 0.19 3.77 0.00 0.00  0.86 0.47 9.45 -0.17 -0.03 

AW2 0.91 0.31 6.07 0.00 0.00  0.91 0.31 6.19 -0.09 -0.02 

AW3 0.90 0.28 5.45 0.00 0.00  0.90 0.33 6.71 -0.12 -0.02 

AW4 0.91 0.30 5.94 0.00 0.00  0.91 0.32 6.37 -0.10 -0.02 

Tcdwl(°C), 

Equation 

5-9 

 

AW1 0.99 0.17 0.50 0.00 0.00  0.99 0.26 0.78 0.00 0.00 

AW2 0.99 0.26 0.81 0.00 0.00  0.99 0.25 0.76 0.01 0.00 

AW3 0.99 0.23 0.70 0.00 0.00  0.99 0.25 0.76 0.00 0.00 

AW4 0.99 0.23 0.70 0.00 0.00  0.99 0.25 0.77 0.00 0.00 

ΔTchw(°C)

, 

Equation 

5-12 

AW1 1.00 0.16 3.48 -0.02 -0.01  0.99 0.21 4.60 -0.06 -0.01 

AW2 0.99 0.22 5.00 -0.04 -0.01  0.99 0.20 4.36 0.01 0.00 

AW3 0.99 0.20 4.21 -0.03 -0.01  1.00 0.20 4.29 -0.02 0.00 

AW4 1.00 0.20 4.56 -0.03 -0.01  0.99 0.20 4.29 0.00 0.00 

ΔTcdw 

(℃) 

Equation 

5-15 

AW1 0.99 0.20 4.52 0.00 0.00  0.97 0.35 7.97 -0.01 0.00 

AW2 0.99 0.27 6.59 0.00 0.00  0.98 0.32 7.30 -0.02 0.00 

AW3 0.99 0.24 5.36 0.00 0.00  0.98 0.33 7.39 -0.02 0.00 

AW4 0.98 0.28 6.80 0.00 0.00  0.98 0.34 7.72 0.00 0.00 
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Table C-3. Parameters of grey-box models identified from each sliding window, 

using measurements of July 2013.  

Model  Parameters 

E(kW), 

Equation 

5-4 

 α1 α2 α3 α0   

SW1 20.44 -0.74 22.03 146.96   

SW2 27.15 -1.31 22.04 195.21   

SW3 14.77 -0.58 23.97 106.20   

SW4 18.70 -0.53 21.32 134.45   

COP, 

Equation 

5-5 

 β1 β2 β3 β4 β0  

SW1 1.00 0.08 77.30 -3.49 -11.85  

SW2 0.63 0.01 21.99 -0.91 -2.31  

SW3 -0.04 0.05 55.87 -2.51 -1.14  

SW4 0.65 0.12 3.09 -0.04 -12.21  

Tcdwl(°C), 

Equation 

5-9 

 

 δ1 δ2 δ3 δ4 δ5 δ0 

SW1 0.31 0.02 -0.04 0.01 1.01 -2.22 

SW2 0.43 0.02 -0.07 0.01 0.88 1.01 

SW3 -0.16 -0.04 0.16 0.01 1.09 0.81 

SW4 -0.01 0.02 -0.03 0.02 0.88 0.79 

ΔTchw(°C), 

Equation 

5-12 

 𝜖1 𝜖0     

SW1 1.28 -0.52     

SW2 0.64 0.06     

SW3 0.35 0.34     

SW4 1.70 -0.92     

ΔTcdw(°C), 

Equation 

5-15 

 θ1 θ2 θ3 θ0   

SW1 0.19 0.49 -0.28 -12.26   

SW2 0.02 0.67 -0.44 -6.95   

SW3 0.20 0.45 -0.56 -2.96   

SW4 0.39 0.24 -0.50 -5.12   
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Table C-4. Performance metric values based on each sliding window for each grey-

box model, using measurements of July 2013.  

Model  
Training dataset   Testing dataset  

r RMSE CV (%) MBE NMBE  r RMSE CV (%) MBE NMBE 

E(kW), 

Equation 

5-4 

AW1 0.99 15.18 4.49 0.03 0.00  0.98 20.20 5.91 5.90 0.02 

AW2 0.98 24.90 8.02 0.01 0.00  0.98 21.61 6.32 9.40 0.03 

AW3 0.98 15.00 4.05 0.00 0.00  0.98 22.85 6.68 8.71 0.03 

AW4 0.98 15.93 6.08 0.01 0.00  0.98 20.82 6.09 6.99 0.02 

COP, 

Equation 

5-5 

AW1 0.96 0.19 3.77 0.00 0.00  0.86 0.47 9.45 -0.17 -0.03 

AW2 0.88 0.36 7.28 0.00 0.00  0.92 0.30 6.08 -0.08 -0.02 

AW3 0.74 0.18 3.34 0.00 0.00  0.87 0.40 8.05 -0.20 -0.04 

AW4 0.92 0.30 6.56 0.00 0.00  0.89 0.39 7.80 -0.15 -0.03 

Tcdwl(°C), 

Equation 

5-9 

 

AW1 0.99 0.17 0.50 0.00 0.00  0.99 0.26 0.78 0.00 0.00 

AW2 0.98 0.33 1.03 0.00 0.00  0.99 0.25 0.77 0.02 0.00 

AW3 0.99 0.13 0.40 0.00 0.00  0.98 0.32 0.96 -0.06 0.00 

AW4 0.99 0.21 0.66 0.00 0.00  0.98 0.29 0.89 -0.04 0.00 

ΔTchw(°C), 

Equation 

5-12 

AW1 1.00 0.16 3.48 -0.02 -0.01  0.99 0.21 4.60 -0.06 -0.01 

AW2 0.99 0.23 5.63 -0.03 -0.01  0.99 0.23 5.01 0.09 0.02 

AW3 0.99 0.13 2.43 -0.01 0.00  1.00 0.21 4.43 -0.06 -0.01 

AW4 0.99 0.16 4.77 -0.01 0.00  0.99 0.23 4.95 0.00 0.00 

ΔTcdw (℃) 

Equation 

5-15 

AW1 0.99 0.20 4.52 0.00 0.00  0.97 0.35 7.97 -0.01 0.00 

AW2 0.98 0.33 8.36 0.00 0.00  0.98 0.32 7.17 -0.03 -0.01 

AW3 0.99 0.12 2.51 0.00 0.00  0.97 0.35 7.94 -0.03 -0.01 

AW4 0.96 0.37 11.48 0.00 0.00  0.96 0.44 9.94 0.07 0.02 
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Table C-5. Parameters of grey-box models identified from each augmented window, 

using the measurements from the chiller CH#1 during the summer of 2016.  

Model Dataset Parameters 

E(kW), 

Equation 

5-4 

 α1 α2 α3 α0   

AW1  -68.22 -0.04 21.76 63.07   

AW2  -53.74 -0.05 22.07 59.30   

AW3  -52.83 -0.46 22.26 91.83   

AW4  -51.83 -0.17 22.00 68.29   

AW5  -49.55 -0.08 22.05 59.97   

AW6  -44.34 0.12 22.00 42.25   

AW7  -44.32 -0.06 22.19 56.35   

COP, 

Equation 

5-5 

 β1 β2 β3 β4 β0  

AW1  0.59 0.02 67.01 -3.06 -2.47  

AW2  0.68 0.01 71.16 -3.27 -2.81  

AW3  0.69 0.02 74.31 -3.42 -3.75  

AW4  0.79 0.03 73.92 -3.41 -4.85  

AW5  0.82 0.03 74.02 -3.41 -5.21  

AW6  0.78 0.03 74.71 -3.45 -4.97  

AW7  0.82 0.03 75.02 -3.47 -5.43  

Tcdwl(°C), 

Equation 

5-9 

 δ1 δ2 δ3 δ4 δ5 δ0 

AW1  0.38 0.03 -0.07 0.01 0.88 0.07 

AW2  0.36 0.02 -0.06 0.01 0.88 0.52 

AW3  0.39 0.02 -0.07 0.01 0.89 0.45 

AW4  0.39 0.02 -0.06 0.01 0.89 0.80 

AW5  0.39 0.02 -0.06 0.01 0.89 0.78 

AW6  0.38 0.01 -0.06 0.01 0.89 0.98 

AW7  0.37 0.01 -0.05 0.01 0.89 1.02 

ΔTchw(°C), 

Equation 

5-12 

 𝜖1 𝜖0     

AW1  0.30 0.43     

AW2  0.25 0.47     

AW3  0.25 0.47     

AW4  0.28 0.45     

AW5  0.25 0.48     

AW6  0.21 0.52     

AW7  0.22 0.50     

ΔTcdw(°C), 

Equation 

5-15 

 θ1 θ2 θ3 θ0   

AW1  0.12 0.65 -0.82 0.77   

AW2  0.07 0.71 -0.84 0.94   

AW3  0.08 0.71 -0.84 0.90   

AW4  0.09 0.69 -0.83 0.76   

AW5  0.11 0.66 -0.80 0.51   

AW6  0.10 0.66 -0.79 0.37   

AW7  0.11 0.65 -0.78 0.25   
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Table C-6. Performance metric values based on each augmented window for each 

grey-box model, using measurements of the whole cooling season of 2016.  

Model  
Training dataset   Testing dataset  

r RMSE CV(%) MBE NMBE  r RMSE CV(%) MBE NMBE 

E (kW), 

Equation 

5-4 

AW1  0.99 16.27 5.41 0.00 0.00  0.99 17.34 5.50 -4.84 -0.02 

AW2  0.99 16.28 5.32 0.00 0.00  0.99 14.52 5.07 -6.15 -0.02 

AW3  0.99 16.18 5.33 0.00 0.00  0.99 14.56 4.80 -4.60 -0.02 

AW4  0.99 15.55 5.19 0.00 0.00  0.99 15.40 4.66 -1.97 -0.01 

AW5  0.99 15.63 5.15 0.00 0.00  0.99 14.92 4.59 2.13 0.01 

AW6  0.99 15.43 5.04 0.00 0.00  0.99 15.51 5.03 2.35 0.01 

AW7  0.99 15.12 4.90 0.00 0.00  0.99 16.75 5.61 -0.63 0.00 

Tcdwl(°C), 

Equation 

5-5 

AW1  1.00 0.20 0.70 0.00 0.00  1.00 0.15 0.51 -0.01 0.00 

AW2  1.00 0.18 0.64 0.00 0.00  1.00 0.16 0.58 -0.01 0.00 

AW3  1.00 0.18 0.63 0.00 0.00  1.00 0.16 0.55 -0.02 0.00 

AW4  1.00 0.18 0.62 0.00 0.00  1.00 0.15 0.52 -0.04 0.00 

AW5  1.00 0.17 0.61 0.00 0.00  1.00 0.16 0.55 -0.07 0.00 

AW6  1.00 0.17 0.60 0.00 0.00  1.00 0.15 0.53 -0.08 0.00 

AW7  1.00 0.17 0.59 0.00 0.00  1.00 0.15 0.55 -0.10 0.00 

COP, 

Equation 

5-9 

AW1  0.94 0.28 5.02 0.00 0.00  0.92 0.24 4.04 -0.01 0.00 

AW2  0.94 0.25 4.50 0.00 0.00  0.95 0.23 3.96 -0.01 0.00 

AW3  0.95 0.25 4.50 0.00 0.00  0.95 0.18 3.08 0.00 0.00 

AW4  0.95 0.24 4.28 0.00 0.00  0.92 0.14 2.27 0.04 0.01 

AW5  0.95 0.23 4.08 0.00 0.00  0.94 0.16 2.67 0.01 0.00 

AW6  0.95 0.22 3.91 0.00 0.00  0.96 0.21 3.71 -0.01 0.00 

AW7  0.95 0.22 3.77 0.00 0.00  0.97 0.24 4.18 0.01 0.00 

ΔTchw(°C), 

Equation 

5-12 

AW1  1.00 0.17 3.71 -0.03 -0.01  1.00 0.16 3.12 -0.04 -0.01 

AW2  1.00 0.17 3.47 -0.03 -0.01  1.00 0.17 3.78 -0.02 0.00 

AW3  1.00 0.17 3.49 -0.02 -0.01  1.00 0.17 3.49 -0.01 0.00 

AW4  1.00 0.17 3.57 -0.03 -0.01  0.99 0.15 2.87 0.00 0.00 

AW5  1.00 0.17 3.49 -0.03 -0.01  1.00 0.17 3.23 -0.04 -0.01 

AW6  1.00 0.17 3.41 -0.02 0.00  1.00 0.18 3.71 -0.04 -0.01 

AW7  1.00 0.16 3.36 -0.02 0.00  1.00 0.19 4.14 -0.04 -0.01 

ΔTcdw(°C), 

Equation 

5-15 

AW1  0.99 0.27 6.39 0.00 0.00  1.00 0.15 3.20 0.07 0.01 

AW2  0.99 0.23 5.26 0.00 0.00  1.00 0.11 2.64 -0.02 -0.01 

AW3  0.99 0.22 4.96 0.00 0.00  0.99 0.23 5.15 -0.12 -0.03 

AW4  0.99 0.20 4.59 0.00 0.00  0.99 0.31 6.40 -0.25 -0.05 

AW5  0.99 0.22 4.87 0.00 0.00  0.99 0.38 7.99 -0.28 -0.06 

AW6  0.99 0.22 4.88 0.00 0.00  0.99 0.34 7.65 -0.23 -0.05 

AW7  0.99 0.21 4.64 0.00 0.00  0.99 0.34 8.03 -0.26 -0.06 
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Table C-7. Parameters of grey-box models identified from training dataset of each 

sliding window, using the measurements from the chiller CH#1 during the summer 

of 2016.  

Model Dataset Parameters 

E(kW), 

Equation 

5-4 

 α1 α2 α3 α0   

SW1  -52.83 -0.46 22.26 91.84   

SW2  -39.85 0.63 21.70 -0.68   

SW3  -38.32 1.38 21.72 -67.70   

SW4  -35.77 1.43 21.71 -72.74   

SW5  -35.43 0.40 22.14 13.49   

SW6  -35.91 2.20 21.81 -139.61   

COP, 

Equation 

5-5 

 β1 β2 β3 β4 β0  

SW1  0.69 0.02 74.31 -3.42 -3.75  

SW2  1.13 0.04 85.84 -3.99 -8.60  

SW3  1.07 0.04 81.51 -3.78 -7.48  

SW4  0.96 0.04 81.95 -3.80 -7.27  

SW5  0.97 0.06 82.41 -3.83 -8.68  

SW6  0.99 0.04 76.54 -3.55 -7.19  

Tcdwl(°C), 

Equation 

5-9 

 δ1 δ2 δ3 δ4 δ5 δ0 

SW1  0.39 0.02 -0.07 0.01 0.89 0.45 

SW2  0.37 0.01 -0.05 0.01 0.85 2.25 

SW3  0.35 0.01 -0.04 0.01 0.85 2.46 

SW4  0.33 0.00 -0.03 0.01 0.86 2.45 

SW5  0.34 0.00 -0.03 0.01 0.86 2.40 

SW6  0.21 -0.02 0.02 0.01 0.83 5.27 

ΔTchw(°C), 

Equation 

5-12 

 𝜖1 𝜖0     

SW1  0.25 0.47     

SW2  0.24 0.48     

SW3  0.17 0.55     

SW4  0.16 0.56     

SW5  0.19 0.53     

SW6  0.13 0.59     

ΔTcdw(°C), 

Equation 

5-15 

 θ1 θ2 θ3 θ0   

SW1  0.08 0.71 -0.84 0.90   

SW2  0.09 0.69 -0.73 -1.33   

SW3  0.15 0.59 -0.68 -1.87   

SW4  0.13 0.60 -0.65 -2.11   

SW5  0.12 0.60 -0.66 -1.65   

SW6  0.12 0.58 -0.67 -1.16   
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Table C-8. Performance metric values based on each sliding window for each grey-

box model, using measurements of the whole cooling season of 2016.  

Model  
Training dataset   Testing dataset  

r RMSE CV(%) MBE NMBE  r RMSE CV(%) MBE NMBE 

E (kW), 

Equation 

5-4 

SW1  0.99 16.18 5.33 0.00 0.00  0.99 14.56 4.80 -4.60 -0.02 

SW2  0.99 14.38 4.77 0.00 0.00  0.99 14.25 4.31 -0.27 0.00 

SW3  0.99 14.31 4.59 0.00 0.00  0.99 12.55 3.85 1.92 0.01 

SW4  0.99 13.80 4.47 0.00 0.00  0.99 14.82 4.58 5.57 0.02 

SW5  0.99 13.45 4.34 0.00 0.00  0.99 16.78 5.57 5.13 0.02 

SW6  0.99 13.51 4.27 0.00 0.00  0.99 17.56 6.09 -2.75 -0.01 

Tcdwl(°C), 

Equation 

5-5 

SW1  1.00 0.18 0.63 0.00 0.00  1.00 0.16 0.55 -0.02 0.00 

SW2  1.00 0.15 0.54 0.00 0.00  1.00 0.15 0.53 -0.04 0.00 

SW3  1.00 0.15 0.53 0.00 0.00  1.00 0.15 0.51 -0.03 0.00 

SW4  1.00 0.15 0.53 0.00 0.00  1.00 0.16 0.56 -0.08 0.00 

SW5  1.00 0.15 0.53 0.00 0.00  1.00 0.14 0.50 -0.08 0.00 

SW6  1.00 0.15 0.51 0.00 0.00  1.00 0.13 0.47 -0.04 0.00 

COP, 

Equation 

5-9 

SW1  0.95 0.25 4.50 0.00 0.00  0.95 0.18 3.08 0.00 0.00 

SW2  0.96 0.19 3.34 0.00 0.00  0.90 0.16 2.74 0.07 0.01 

SW3  0.95 0.18 3.17 0.00 0.00  0.95 0.13 2.27 0.01 0.00 

SW4  0.95 0.18 3.05 0.00 0.00  0.95 0.17 2.88 0.04 0.01 

SW5  0.96 0.17 2.87 0.00 0.00  0.96 0.22 3.95 0.00 0.00 

SW6  0.95 0.16 2.72 0.00 0.00  0.97 0.26 4.55 -0.02 0.00 

ΔTchw(°C), 

Equation 

5-12 

SW1  1.00 0.17 3.49 -0.02 -0.01  1.00 0.17 3.49 -0.01 0.00 

SW2  1.00 0.16 3.34 -0.02 0.00  0.99 0.15 2.83 0.00 0.00 

SW3  1.00 0.16 3.20 -0.02 0.00  1.00 0.15 2.88 -0.02 0.00 

SW4  1.00 0.16 3.25 -0.02 0.00  1.00 0.17 3.36 -0.04 -0.01 

SW5  1.00 0.16 3.25 -0.02 0.00  1.00 0.19 4.04 -0.06 -0.01 

SW6  1.00 0.17 3.30 -0.02 0.00  1.00 0.20 4.37 -0.03 -0.01 

ΔTcdw(°C), 

Equation 

5-15 

SW1  0.99 0.22 4.96 0.00 0.00  0.99 0.23 5.15 -0.12 -0.03 

SW2  1.00 0.13 3.01 0.00 0.00  0.99 0.33 6.73 -0.26 -0.05 

SW3  0.99 0.16 3.55 0.00 0.00  1.00 0.20 4.21 -0.15 -0.03 

SW4  0.99 0.18 3.88 0.00 0.00  0.99 0.37 7.85 -0.25 -0.05 

SW5  1.00 0.16 3.41 0.00 0.00  0.99 0.34 7.87 -0.26 -0.06 

SW6  0.99 0.23 4.90 0.00 0.00  1.00 0.14 3.37 -0.05 -0.01 
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Appendix D: Measurement uncertainty and performance metrics of 

DNN models with respect to transfer learning   

Table D-1. Measurement uncertainty of target variables and performance metrics of 

five DNN models over three target domains (TD1, TD2, and TD3) based on self-

learning.   

Target 

variables 

Training dataset  Testing dataset 

r RMSE CV (%) MAD Um  r RMSE CV (%) MAD 

TD1 

E (kW) 0.97 12.93 5.10 10.30 16.5  0.90 69.71 20.48 49.11 

COP (-) 0.94 0.29 5.31 0.23 0.57  0.64 0.94 15.83 0.69 

Tcdwl (°C) 0.96 0.27 1.01 0.22 0.48  0.98 0.42 1.45 0.31 

ΔTchw (℃)  1.00 0.07 1.83 0.06 0.54  1.00 0.15 2.81 0.12 

ΔTcdw (℃)  0.98 0.23 6.35 0.18 0.64  0.97 0.89 17.33 0.69 

TD2 

E (kW) 0.99 13.91 4.42 9.79 20.36  0.99 19.19 6.60 13.97 

COP (-) 0.90 0.24 4.10 0.18 0.59  0.93 0.37 6.51 0.25 

Tcdwl (°C) 0.99 0.25 0.88 0.20 0.52  0.99 0.28 1.00 0.22 

ΔTchw (℃)  1.00 0.08 1.58 0.06 0.54  1.00 0.10 2.24 0.08 

ΔTcdw (℃)  1.00 0.17 3.65 0.13 0.67  0.99 0.30 7.19 0.23 

TD3 

E (kW) 0.99 12.29 3.74 9.88 21.81  0.98 30.47 9.39 26.65 

COP (-) 0.84 0.58 9.65 0.12 0.61  0.92 0.58 9.90 0.16 

Tcdwl (°C) 0.99 0.32 1.11 0.18 0.54  0.98 0.50 1.75 0.47 

ΔTchw (℃)  1.00 0.16 2.95 0.09 0.54  1.00 0.20 3.91 0.13 

ΔTcdw (℃)  0.99 0.20 4.10 0.14 0.69   0.99 0.43 8.96 0.38 
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Table D-2. Measurements uncertainty of target variables and performance metrics of 

five DNN models over three target domains (TD4, TD5, and TD6) based on self -

learning.   

Target 

variables 

Training dataset  Testing dataset 

r RMSE CV (%) MAD Um  r RMSE CV (%) MAD 

TD4 

E (kW) 0.97 15.8 6.24 12.06 16.5  0.90 69.45 22.03 43.45 

COP (-) 0.94 0.29 5.39 0.23 0.57  0.71 0.91 15.51 0.60 

Tcdwl (°C) 0.96 0.35 1.30 0.28 0.48  0.98 0.57 2.01 0.39 

ΔTchw (℃)  1.00 0.14 3.56 0.12 0.54  1.00 0.22 4.33 0.18 

ΔTcdw (℃)  0.98 0.61 17.03 0.56 0.64  0.99 1.01 21.90 0.92 

TD5 

E (kW) 0.99 13.60 4.32 9.74 20.36  0.99 13.92 4.49 10.23 

COP (-) 0.91 0.28 4.77 0.22 0.59  0.92 0.30 5.16 0.24 

Tcdwl (°C) 0.99 0.30 1.05 0.24 0.52  0.99 0.30 1.06 0.23 

ΔTchw (℃)  1.00 0.10 2.07 0.09 0.54  1.00 0.11 2.27 0.09 

ΔTcdw (℃)  1.00 0.40 8.66 0.38 0.67  0.99 0.31 6.82 0.27 

TD6 

E (kW) 0.99 14.01 5.13 10.03 23.49  0.98 20.55 6.50 15.40 

COP (-) 0.93 0.33 5.93 0.24 0.67  0.74 0.34 5.78 0.27 

Tcdwl (°C) 0.99 0.33 1.18 0.25 0.60  0.98 0.43 1.51 0.29 

ΔTchw (℃)  1.00 0.09 2.08 0.07 0.59  1.00 0.09 1.85 0.08 

ΔTcdw (℃)  0.99 0.24 6.13 0.18 0.73  0.99 0.25 5.41 0.21 
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Table D-3. Measurements uncertainty of target variables and performance metrics of 

five DNN models over testing dataset of three target domains (TD1, TD2, and TD3) 

based on TLS0.  

Target variable r RMSE CV (%) MAD Um 

TD1 

E (kW) 0.98 23.46 6.89 19.34 16.5 

COP (-) 0.76 0.54 9.11 0.43 0.57 

Tcdwl (°C) 0.99 0.43 1.48 0.39 0.48 

ΔTchw (℃)  1.00 0.32 5.84 0.28 0.54 

ΔTcdw (℃)  0.98 0.51 10.07 0.43 0.64 

TD2 

E (kW) 0.99 22.45 7.72 16.22 20.36 

COP (-) 0.88 0.63 11.07 0.52 0.59 

Tcdwl (°C) 0.99 0.42 1.51 0.38 0.52 

ΔTchw (℃)  1.00 0.30 6.54 0.25 0.54 

ΔTcdw (℃)  0.95 0.60 14.28 0.49 0.67 

TD3 

E (kW) 0.99 20.87 6.43 15.15 21.81 

COP (-) 0.86 0.48 8.26 0.41 0.61 

Tcdwl (°C) 0.99 0.49 1.73 0.44 0.54 

ΔTchw (℃)  1.00 0.38 7.28 0.31 0.54 

ΔTcdw (℃)  0.98 0.48 10.11 0.39 0.69 
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Table D-4. Measurements uncertainty of target variables and performance metrics of 

five DNN models over testing datasets of three target domains (TD1, TD2, and 

TD3) based on TLS1.  

Target variables r RMSE CV (%) MAD Um 

TD1 

E (kW) 0.98 21.05 6.18 16.13 16.5 

COP (-) 0.80 0.33 5.50 0.26 0.57 

Tcdwl (°C) 0.99 0.42 1.44 0.34 0.48 

ΔTchw (℃)  1.00 0.17 3.03 0.12 0.54 

ΔTcdw (℃)  0.96 0.51 9.94 0.34 0.64 

TD2 

E (kW) 0.99 11.82 4.07 8.69 20.36 

COP (-) 0.92 0.42 7.35 0.29 0.59 

Tcdwl (°C) 0.99 0.30 1.08 0.25 0.52 

ΔTchw (℃)  1.00 0.11 2.46 0.09 0.54 

ΔTcdw (℃)  0.97 0.51 12.17 0.38 0.67 

TD3 

E (kW) 0.99 11.34 3.50 9.0 21.81 

COP (-) 0.91 0.28 4.76 0.22 0.61 

Tcdwl (°C) 0.99 0.28 0.98 0.23 0.54 

ΔTchw (℃)  1.00 0.10 1.87 0.08 0.54 

ΔTcdw (℃)  0.98 0.44 9.19 0.33 0.69 
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Table D-5. Measurements uncertainty of target variables and performance metrics of 

five DNN models over testing datasets of three target domains (TD1, TD2, and 

TD3) based on TLS2.  

Target variables r RMSE CV (%) MAD Um 

TD1 

E (kW) 0.98 21.60 6.35 16.51 16.5 

COP (-) 0.79 0.33 5.48 0.25 0.57 

Tcdwl (°C) 0.99 0.42 1.44 0.34 0.48 

ΔTchw (℃)  1.00 0.18 3.24 0.13 0.54 

ΔTcdw (℃)  0.96 0.52 10.17 0.32 0.64 

TD2 

E (kW) 0.99 11.88 4.08 8.80 20.36 

COP (-) 0.92 0.41 7.18 0.28 0.59 

Tcdwl (°C) 0.99 0.29 1.02 0.24 0.52 

ΔTchw (℃)  1.00 0.11 2.38 0.09 0.54 

ΔTcdw (℃)  0.97 0.52 12.44 0.38 0.67 

TD3 

E (kW) 0.99 12.61 3.89 9.56 21.81 

COP (-) 0.92 0.24 4.12 0.19 0.61 

Tcdwl (°C) 0.99 0.28 0.99 0.24 0.54 

ΔTchw (℃)  1.00 0.10 1.97 0.08 0.54 

ΔTcdw (℃)  0.98 0.45 9.32 0.35 0.69 
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Table D-6. Measurements uncertainty of target variables and performance metrics of 

five DNN models over testing datasets of three target domains (TD4, TD5, and 

TD6) based on TLS0.  

Target 

variables 
r RMSE CV (%) MAD Um 

TD4 

E (kW) 0.99 20.81 6.60 15.85 16.5 

COP (-) 0.83 0.69 11.82 0.56 0.57 

Tcdwl (°C) 1.00 0.45 1.56 0.39 0.48 

ΔTchw (℃)  1.00 0.37 7.29 0.31 0.54 

ΔTcdw (℃)  0.98 0.74 15.88 0.69 0.64 

TD5 

E (kW) 0.99 19.65 6.34 14.66 20.36 

COP (-) 0.85 0.69 11.81 0.56 0.59 

Tcdwl (°C) 0.99 0.45 1.57 0.39 0.52 

ΔTchw (℃)  1.00 0.36 7.17 0.30 0.54 

ΔTcdw (℃)  0.98 0.69 15.14 0.64 0.67 

TD6 

E (kW) 0.99 19.36 6.13 14.53 23.49 

COP (-) 0.83 0.66 11.30 0.54 0.67 

Tcdwl (°C) 0.99 0.44 1.55 0.38 0.60 

ΔTchw (℃)  1.00 0.36 7.11 0.30 0.59 

ΔTcdw (℃)  0.99 0.68 14.51 0.63 0.73 
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Table D-7. Measurements uncertainty of target variables and performance metrics of 

five DNN models over testing datasets of three target domains (TD4, TD5, and 

TD6) based on TLS1.  

Target 

variables 
r RMSE CV (%) MAD Um 

TD4 

E (kW) 0.99 18.06 5.73 14.80 16.5 

COP (-) 0.87 0.39 6.70 0.32 0.57 

Tcdwl (°C) 1.00 0.53 1.87 0.49 0.48 

ΔTchw (℃)  1.00 0.11 2.19 0.09 0.54 

ΔTcdw (℃)  0.93 2.29 49.16 2.19 0.64 

TD5 

E (kW) 0.99 18.57 5.99 15.17 20.36 

COP (-) 0.88 0.31 5.32 0.24 0.59 

Tcdwl (°C) 0.99 0.49 1.72 0.35 0.52 

ΔTchw (℃)  1.00 0.10 2.05 0.08 0.54 

ΔTcdw (℃)  0.99 0.38 8.32 0.31 0.67 

TD6 

E (kW) 0.99 15.67 4.96 11.06 23.49 

COP (-) 0.82 0.31 5.21 0.24 0.67 

Tcdwl (°C) 0.99 0.22 0.79 0.17 0.60 

ΔTchw (℃)  1.00 0.10 1.93 0.08 0.59 

ΔTcdw (℃)  0.99 0.26 5.52 0.20 0.73 
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Table D-8. Measurements uncertainty of target variables and performance metrics of 

five DNN models over testing datasets of three target domains (TD4, TD5, and 

TD6) based on TLS2.  

Target 

variables 
r RMSE CV (%) MAD Um 

TD4 

E (kW) 0.99 29.00 9.20 25.99 16.5 

COP (-) 0.87 0.40 6.88 0.32 0.57 

Tcdwl (°C) 1.00 0.61 2.15 0.57 0.48 

ΔTchw (℃)  1.00 0.12 2.36 0.09 0.54 

ΔTcdw (℃)  0.93 2.24 48.07 2.14 0.64 

TD5 

E (kW) 0.99 25.77 8.31 22.91 20.36 

COP (-) 0.88 0.41 6.97 0.33 0.59 

Tcdwl (°C) 1.00 0.45 1.59 0.38 0.52 

ΔTchw (℃)  1.00 0.12 2.49 0.10 0.54 

ΔTcdw (℃)  0.88 2.43 53.37 2.29 0.67 

TD6 

E (kW) 0.99 16.52 5.23 11.64 23.49 

COP (-) 0.82 0.29 4.94 0.23 0.67 

Tcdwl (°C) 0.99 0.22 0.76 0.16 0.60 

ΔTchw (℃)  1.00 0.09 1.85 0.07 0.59 

ΔTcdw (℃)  0.99 0.27 5.84 0.21 0.73 

 

 


