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Abstract

Detection of COVID-19 using Deep Learning Techniques and Extraction
of the Infected Region using Lung Image Segmentation

Divyang Kapadia

The world at present is still suffering from corona virus disease of 2019 (COVID-

19) pandemic. COVID-19 is caused by severe acute respiratory syndrome corona virus

2 (SARS-CoV-2), which damages human lungs and results in pneumonia. Pneumonia is a

disease in which the lungs become filled with fluid and inflame, leading to breathing dif-

ficulties. Sometimes, breathing problems become very severe, requiring proper treatment,

including oxygen or a ventilator.

Though RT-PCR tests are the commonly used method to detect COVID-19 virus, ra-

diological tests are often used by doctors to diagnose the disease based on severity level

and risk factors. This thesis concentrates on two major issues, automatic detection of the

COVID-19 infection using deep learning techniques and the determination of the severity

level of the infection to help reduce the manual tasks and burden of the radiologist.

In the first part, different deep neural network architectures including convolutional

neural network-based ResNet50, DarkNet19, GoogLeNet, and VGG16 methods along with

a self-attention based vision transformer (ViT) approach called COViT-CT are implemented

to detect COVID-19 computed tomography (CT)-Scan images. The performance of the

various architectures are compared using various metrics, such as accuracy, precision, re-

call (sensitivity), specificity, F1-score and AUC, as well the confusion matrix, and the

best architecture with the highest accuracy, which is COViT-CT, is selected for automatic

COVID-19 detection.
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In the second part, if the CT-Scan image is COVID-19 positive during the first part,

then the image segmentation method is used to extract the COVID-19 infected region from

the Lung CT-Scan images. The infected region is useful in determining the severity level

of the COVID-19 infection, which helps in the diagnosis of the disease.

All the experiments are performed using the SARS-CoV-2 CT-Scan dataset. It is shown

that the self-attention based COViT-CT method provides the best performance on the test

sets of the above-mentioned dataset.
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Chapter 1

Introduction

1.1 Overview

The first case of COVID-19 was reported in December-2019, and after that on 30th Jan-

uary 2020, the World Health Organization (WHO) declared COVID-19 as an international

public health emergency [1]. During that time, researchers as well as medical industries

around the world have been searching for different methods and new modalities to diagnose

COVID-19. Due to the lack of COVID-19 testing kits around the world, many COVID-19

patients lost their lives. To overcome the issue of lack of testing kits, it is required to find

alternative methods based on image modalities and radiological techniques. Moreover,

currently, Artificial Intelligence (AI) research community is mainly focusing on the de-

velopment of deep learning techniques based on different medical imaging modalities for

diagnosing COVID-19. Here, in this work, different deep learning models are implemented

and compared for automatic detection of COVID-19 from CT-Scan images.

After detection of COVID-19, it is also necessary to take proper medication. For that

purpose, it is required to identify the severity level of the infection. Traditionally, an expe-

rienced doctor generally examines the medical images (such as CT-Scan or X-Ray images)

to identify the severity level of the diseases from the infected regions, and then, based on
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it, the doctor suggests possible treatments for reducing the infection of the disease. Due

to a large number of COVID-19 patients, it is required to develop an automatic method

to obtain the severity level, if the patient is detected as COVID-19 positive, to reduce the

diagnostic burden of the doctors. In this project, the image segmentation method is used to

identify the infected region and the severity level of the infection from the lung CT-Scan

image, only if it is classified as a COVID-19 positive using the deep learning method.

1.2 Literature Review

In this section, a brief summary of the different methods that have been developed by AI

research community for automatic detection of COVID-19 using various medical imaging

modalities is first given. It is then followed by a discussion of the image segmentation

methods applied on COVID-19 images to obtain the infected region of the human lung.

1.2.1 Automatic COVID-19 Detection using Deep Learning Methods

During the last two years, a large number of deep learning algorithms have been devel-

oped on various types of medical image modalities for automatic detection of COVID-

19. The deep CNN models including Residual Neural Network (ResNet)18, ResNet50,

ResNet101, Visual Geometry Group (VGG)16, and VGG19 were implemented on chest

X-Ray images for automatic COVID-19 detection by Ismael et al. in [2]. The above men-

tioned pretrained CNN models were used for the feature extraction. Furthermore, for the

classification of the extracted features, the support vector machines (SVM) classifier was

used. Ozturk et al. [3] have implemented the DarkNet model with 17 convolutional lay-

ers and gradually increased the number of filters for each layer. They developed the deep

learning model for automatic COVID-19 detection from the X-Ray images with binary

classification, namely, COVID-19 and No-Findings, as well as multi-class classification
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in terms of COVID-19, No-Findings and Pneumonia. The CNN models such as VGG19,

MobileNet v2, Inception, Xception, Inception ResNet v2 have been described briefly in

[4]. All these models are implemented on X-Ray images with 2-class and 3-class classi-

fications. According to [4], VGG19 and MobileNet v2, are the two best models from the

point of view of classification accuracy over the rest of the CNN models discussed in the

article. Sethy and Behera [5] have tested 13 pre-trained CNN models including AlexNet,

VGG16, VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, Inception v3, Inception-

ResNet v2, DenseNet201, XceptionNet, MobileNet v2 and ShuffleNet along with SVM

classifier. The method in [5] classifies the input X-Ray image into 3 classes as healthy peo-

ple, pneumonia patients and COVID-19 patients. Out of these 13 models, ResNet50 plus

SVM gives the best performance yielding the highest accuracy. Automated X-ray imaging

radiography systems (AXIRs) were introduced by S.H. Yoo et al. [6] in July 2020. Out of

the four AXIRs, AXIR1 is for classification of X-Ray images into abnormal/normal, while

AXIR2 is for classification as Tuberculosis (TB)/non-TB. If the input image is classified

as abnormal through AXIR1, then AXIR2 will be used to determine whether it is TB or

non-TB. Furthermore, AXIR3 and AXIR4 are used to classify the image into COVID-19

or non-COVID-19, with or without TB. The authors have used a two-dimensional CNN

algorithm with PyTorch frame for the purpose of training as well as testing, and the whole

architecture is based on pre-trained CNN model ResNet18 with ImageNet dataset. Panwar

et al. [7] have proposed an alternative fast screening method known as nCOVnet, which

is based on deep learning neural network. This method analyses the input X-Ray images

of the lungs and classifies them into Positive or Negative for COVID-19. Furthermore, it

uses a pre-trained CNN model VGG16 and is trained on the ImageNet dataset. Albahli [8]

has developed a deep convolutional model with 152 hidden layers, which is derived from

ResNet-152. The project mainly focuses on distinguishing COVID-19 from other lung dis-

eases using deep learning methods from X-Ray images of the lungs. These images are
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classified into eight major classes based on various chest diseases. In November 2021, Jain

and Medal [9] introduced the deep learning-based CORO-NET architecture for automatic

detection of COVID-19 from X-Ray images and classifies them into three classes namely

pneumonia patients, COVID-19 patients and normal subjects.

Singh et al. [10] have implemented a Multi-Objective Differential Evolution (MODE)

based CNN for automatic detection of COVID-19 from the chest CT-Scan images. They

compared the MODE model with CNN, Adaptive Neuro-Fuzzy Inference Systems (AN-

FIS), and Artificial Neural Network (ANN) models. A weakly-supervised framework from

3D chest CT volumes for COVID-19 classification and lesion localization was developed

by Wnag et al. [11]. The lung portion was first segmented through a pre-trained U-Net in

their method. Then, the 3D lung region was fed into a 3D deep neural network to determine

the COVID-19 infection probability. The method is known as 3D deep convolutional neu-

ral network (DeCoVNet) to detect COVID-19. Ahuja et al. [12] have tested four different

pre-trained CNN models such as ResNet18, ResNet50, ResNet101, and SqueezeNet for au-

tomatic detection of COVID-19 from lung CT-Scan images into 2 classes, namely, COVID

positive and COVID negative. They achieved the best performance using ResNet18 with

highest classification accuracy for training and validation.

Recently, attention based technique, Vision Transformer (ViT) [13] has been shown to

achieve remarkable performance compared to CNN. ViT, based on a self-attention, was

implemented by Shome et al. [14] for COVID-19 detection from chest X-Ray images.

They classify the images into 3 classes, Normal, COVID-19 and Pneumonia. Krishnan and

Krishnan et al. [15] implemented Vision Transformer (ViT)-based COVID-19 detection

using X-Ray images. As per their research, ViT-B/32 (ViT baseline model with 32 ×

32 input patch size) performed well compared to other CNN based approaches such as

Inception V3, DenseNet, and WideResNet101.

Till now most of the researchers have focused on either X-Ray or CT-Scan imaging
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modalities for COVID-19 diagnostic purpose. Generally, chest X-Ray or CT-Scan images

are used to cure lung diseases, and it has been always a debatable topic among researchers

concerning which medical imaging modality is best suitable for the diagnostic of lung dis-

eases. Both imaging modalities, X-Ray and CT-Scan have their own merits and demerits.

Compared to CT-Scan images, X-Ray images are less expensive and readily available but

have less visibility. According to the work of Aditya Borakati et al. [16], CT-Scan has

substantially improved the diagnostic performance over the chest X-Ray for COVID-19.

Moreover, it is very difficult to identify the infection levels from the chest X-Ray due to

poor visibility of the X-Ray images. Furthermore, Kunwei Li et al. [17] have also con-

cluded that the visual quantitative analysis of CT-Scan images provides good efficiency

along with high diagnostic ability. Hence, in this research work, CT-Scan images are pre-

ferred over the chest X-Ray images.

1.2.2 Lung Image Segmentation Methods for Different Imaging Modal-

ities

For a proper analysis of the Lung medical images, the image segmentation result is ben-

eficial in retrieving the area of interest from given radiological images. A. Mansoor et

al. [18] have explained the capabilities and performance of the current lung image seg-

mentation approaches along with challenges and future trends. They divided the currently

used segmentation methods for the lung CT images into five significant classes, namely,

thresholding-based, region-based, shape-based, neighboring anatomy-guided, and machine

learning-based methods. Amin et al. [19] have proposed a 3-D semantic segmentation and

classification approach for COVID-19 diagnosis using CT-Scan images. They used the

Gabor filter and thresholding for image pre-processing to improve the image quality. Then,

to separate the lung region, the marker-based watershed segmentation approach along with
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thresholding was used. In order to get COVID-19 infected region, an encoder/decoder-

based deep learning model was used in the segmentation phase. Finally, SVM, Ensemble

Tree, and Extreme Learning Machine (ELM) classifiers were used in the last phase to clas-

sify the segmented images into COVID-19 and non-COVID-19, based on the extracted

statistical and geometrical features. A three-stage segmentation framework known as Key

and Intermediate frame of Segmentation (KISEG) was introduced by Xiaohong Liu et al.

[20]. This approach is useful to enhance the performance on serial CT image segmentation

with multi-level acceleration. Moreover, for data augmentation, they proposed Gaussian

Kernel Dropout (GKD). Satapathy et al. [21] have introduced Cuckoo Search Algorithm

(CSA), which is based on Kapur [22] or Otsu [23] image thresholding method and Level-

Set (LS) [24] or Chan-Vese (CV) [25] image segmentation method to extract COVID-19

infected region from the input CT-Scan slices. Finally, they compared the results obtained

by all possible combinations of thresholding and image segmentation methods, namely,

Kapur+LS, Otsu+LS, Kapur+glsCV, and Otsu+CV. Rajinikanth et al. [26] have proposed

a firefly-Algorithm for COVID-19 infected region from lung CT-Scan images, which are

based on Shannon entropy and Markov Random Field (MRF). They used the firefly al-

gorithm along with Shannon entropy for image pre-processing to enhance the pneumonia

lesion. Then, during image post-processing, they used the MRF segmentation method to

extract the lesion with reasonable accuracy. Valizadeh and Shariatee [27] have discussed

various semantic segmentation methods, also known as pixel-level classification of medical

images for COVID-19 detection. The study was divided into two parts: traditional image

segmentation methods and deep neural network-based image segmentation methods. They

covered most of the traditional image segmentation approaches including Histogram of

Oriented Gradients (HOG), Scale-Invariant Feature Transform (SIFT), Local Binary Pat-

tern (LBP), SURF method, Harris Corner Detection, K-Mean algorithm, SVM, MRF, etc.
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along with a comparison of their performance. Furthermore, recent deep neural network-

based approaches such as ANN, Fully Convolutional Network (FCN), pyramid methods,

and various CNN models were also described with their advantages and disadvantages

related to COVID-19 diagnostic purpose. Harmony-search-optimization [28] and Otsu

thresholding-[23]based COVID-19 detection method from lung CT-scan images has been

introduced by Rajinikanth et al. [29] in April, 2020. This approach used a threshold filter

to separate the lung region and then used harmony-search-optimization and otsu threshold-

ing for image enhancement. Finally, they implemented the watershed image segmentation

method to obtain the COVID-19 infected region and the severity level of COVID-19 infec-

tion. N Khehrah et al. [30] have implemented the fully automatic framework for nodule

detection using image segmentation from lung CT-Scan images. The method is divided

into two phases; the first phase is lung segmentation, in which the histogram-based thresh-

olding along with morphological operations and connected components analysis is used to

extract the lung portion. The second phase is nodule detection, which comprises separation

of the inner structure followed by statistical and shape-based feature extraction, and SVM

classifier to separate the lung nodules from other lung components.

1.3 Motivation

The world is still struggling against COVID-19 and its different variants even after two

years of the first COVID-19 case. As of December-2021, a total of 275,790,573 COVID-19

cases have been reported over 224 countries and out of this, 5,376,566 people have died due

to COVID-19 during the past two years [31]. COVID-19 testing kit, which is also known

as RT-PCR, is not available universally. To overcome the issue of the lack of COVID-

19 testing kit, it is necessary to develop COVID-19 diagnosis methods, which are easily

available over the whole world, and at the same time that are fast, efficient, and based on

medical imaging modalities.
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Nowadays, AI is very popular for solving complex problems with automation along

with its subsets of machine learning and deep learning-based models. Deep learning mod-

els are useful for enhancing the image features that are not visible in the original med-

ical images and then classifying the images according to the extracted features. Many

research works have already been published on the automatic classification of the images

into COVID-19 positive and negative classes based on deep learning models.

Traditionally, the infected region from the various medical imaging modalities is iden-

tified by experienced doctors, and then further treatment suggested accordingly. However,

this process is very time-consuming and becomes tedious if there are very large number

of patients. The main aim of this study is to compare the different deep learning models

for the detection of COVID-19 CT-Scan images and then obtain the severity level of the

infection from the lung CT-Scan images based on image segmentation methods to reduce

the processing time and diagnostic burden of the physicians.

1.4 Objectives of the Thesis

Most of the research hitherto is on either deep learning-based COVID-19 classifications

or segmentation of COVID-19 images. In this thesis, we propose to combine these two

tasks, i.e., if a patient is identified to be COVID-19 positive, then the image segmentation

method is applied on the CT-Scan images to find the severity level of the infection for

further diagnosis. The main objective of this research work is to include automation for

both the identification of the disease and its severity level. This should save a lot of time

for the doctors.

The goal of this research work is to propose the use of a vision transformer (ViT)

for COVID-19 screening using CT-Scan images instead of using CNN methods. Hence,

we implement the self-attention-based ViT approach on the SARS-CoV-2 CT-Scan dataset
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[32] and call it COViT-CT. Moreover, we also implement various CNN methods, includ-

ing ResNet50, DarkNet19, GoogLeNet, and VGG16, to compare the results obtained by

the attention-based COViT-CT method with CNN methods. After comparing the results

through standard comparison metrics, we choose the best method for lung CT-Scan image

classification. Finally, to achieve the main goal, we implement the lung CT-Scan segmen-

tation model to identify the infected lung region and severity of the diseases of positive

COVID-19 patients. This will help the doctor to provide proper medications and further

treatment to the patients.

1.5 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 describes artificial neural network architecture along with convolutional neu-

ral network architecture with different layers. In this chapter, the transfer learning approach

which uses pre-trained CNN models is described for COVID-19 detection from lung CT-

Scan images. It provides a detailed description of the implementation of various CNN

networks, namely, ResNet50, DarkNet19, GoogLeNet, and VGG16.

Chapter 3 presents the vision transformer, a self-attention-based deep learning tech-

nique in detail. This chapter discloses the brief information on the self-attention network.

It provides a description of the implementation of the COViT-CT network along with vari-

ous stages such as patch and position embedding, and transformer encoder.

Chapter 4 discusses the image dataset used in this work, the experimental setup, and the

environments. The results obtained by various pre-trained CNN models and the COViT-

CT method are also presented. All the results are compared using the standard performance

evaluation metrics. Furthermore, the results obtained by the COViT-CT method are com-

pared with the recent state-of-art works in this chapter.
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Chapter 5, describes the image segmentation process for COVID-19 positive lung CT-

Scan images to obtain the severity level of the disease for further diagnosis. This chapter

describes the detailed steps and mathematical formulas for different stages of the over-

all segmentation task, including image enhancement, image pre-processing, image thresh-

olding, and finally, image segmentation using the watershed image segmentation method.

It also describes as how to compute the severity level of the disease after extracting the

infected region from the COVID-19 positive CT-Scan images. Moreover, the output of

segmentation of the COVID-19 positive lung CT-Scan images are also presented in this

chapter.

Chapter 6 concludes the thesis by summarizing the results obtained and discussing

possible future directions related to this research work.
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Chapter 2

Deep Learning Models for COVID-19

Detection

2.1 Deep Learning and Artificial Neural Networks

Artificial intelligence (AI) breaks the ceilings of all cutting-edge technologies, and involves

the technique that enables machines to mimic human intelligence using various logic and

rules. Machine learning is a subset of AI, which uses statistical approaches to analyze the

data to improve the performance. The term “Machine Learning” was first introduced by

Samuel in 1959 during the design of an algorithm for the game of checkers [33]. Moreover,

deep learning is a subset of machine learning and one of the many applications of artificial

neural networks (ANNs). Over two decades, deep learning has been a booming field in

medical imaging among the different techniques based on AI. The term “Deep Learning”

was first introduced by Rina Dechter to the machine learning community in 1986 [34],

and it was the first time mentioned for Artificial Neural Networks by Aizenberg et al. in

2000 [35]. Deep learning is generally focused on creating large neural network models

with multiple layers that are capable of making accurate data-driven decisions [36]. It is

very beneficial for complex and very large datasets. The term “Deep” in “Deep Learning”
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represents multiple layers between the input and output, and each layer produces the output

with its input from the previous layer. These multiple hidden layers help identify and extract

valuable features and patterns from a large complex dataset to produce the final data-driven

decisions.

Artificial neural networks, also known as neural networks, are biologically inspired

algorithms, modeled based on neurons of brains and nervous systems and designed to sim-

ulate the way in which the human brain processes the information [37], [38]. Hence, it is

required to understand how human brain works to model the ANN. Single neuron structure

was drawn by a Spanish neuroscientist, Santiago Ramón y Cajal, around 1900 is shown

in Figure 2.1 [39]. The figure shows that a typical neuron comprises three functionally

distinct parts: a large number of dendrites, the soma, and the axon. The dendrites are re-

sponsible for collecting the signals from other neurons and hence act as an input device.

The collected neurons are then transmitted to the soma, which acts as a central processing

unit and is responsible for performing a nonlinear processing step with a threshold function

to determine whether the total input arriving at the soma has a high enough potential to

trigger an output. If this threshold is passed, then the output signal is generated, and then it

passes to the other neurons through the axon, which acts as an output device.

2.2 Mathematical Model of Artificial Neural Networks

In 1958, Frank Rosenblatt [40] developed the very first artificial neural network called the

perceptron, which was a probabilistic model for information storage and organization in

the human brain. Figure 2.2 [41] describes the mathematical model of an artificial neural

network inspired by the function of a single neuron. Artificial neuron takes several inputs

x0, x1, ..., xi, processes them by summing them together, and finally applies an activation

function to obtain the output signal y that can be passed to the next hidden layer of the

network. As shown in Figure 2.2, summation of all the inputs is carried out in a weighted
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Figure 2.1: Structure of neurons by Ramón y Cajal (adapted from [39])

way, i.e., all the inputs are scaled up or scaled down based on the specific weight assigned to

that particular input. Along with these weight parameters, another parameter, the neuron’s

bias, is also trained and used for the summation process. All the inputs are summed up

and scaled using the weight parameters, and the final result is assigned to variable z. The

overall process can be expressed as

z = X ·W + b (2.1)

where X is a row vector consisting of the input signals, W denotes a column vector con-

taining weight parameters and b is a bias parameter. Hence, the dot product between these

two vectors can be denoted by:
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X ·W =

(
x0 x1 · · · xi

)
·



w0

w1

...

wi


=

∑
i

xiwi

= x0w0 + x1w1 + ...xiwi

(2.2)

Figure 2.2: Comparison between biological neuron with artificial neural network (adapted
from [41])

Finally, in order to get the neuron’s output, the activation function f is applied to output

z. As per the biological function of the neurons, the soma acts as a central processing unit.

By comparing biological neurons with the mathematical model of an artificial neuron, the

activation function would be a binary function, having an output 1 if z is greater than or

equal to a threshold value t, otherwise, the output is 0. Mathematically, it can be expressed

as the step function

y = f(z) =


0 if z < t

1 if z ≥ t

(2.3)
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Furthermore, for more advanced properties, other activation functions are also used

instead of step function, such as, the sigmoid function σ(z), the hyperbolic tangent tanh(z),

the REctified Linear Unit (ReLU) ReLU(z). All above mentioned activation functions can

be expressed mathematically as [38]

σ(z) =
1

1 + e−z
(2.4)

tanh(z) =
ez − e−z

ez + e−z
(2.5)

ReLU(z) = max(0, z) =


0 if z < 0

z if z ≥ 0

(2.6)

We have discussed the mathematical model of a simple artificial neuron, through which

the received input signal would be processed, and then generated output signal would be

forwarded to other neurons to build the network, which is known as the artificial neural

network. Deep ANN contains multiple layers, including one input layer, one output layer,

and multiple hidden layers between the input and output layers. Each layer consists of

many neurons, each receiving the same input as the others and having the same activation

function. Moreover, as discussed, each neuron first sums all the inputs with their specific

weights along with bias values. Figure 2.3 represents the network with multiple hidden

layers.

To understand the mathematical model of the ANN, let us consider a network with 3

layers and 2 inputs (x1 and x2) that produces the one final output yH , as shown in Figure 2.4

[41]. In this network, the input layer, i.e., layer one, consists of three neurons, A, B, and

C; the hidden layer, i.e., layer 2, has four neurons, D, E, F, and G; and the output layer 3

contains only one neuron H. Hidden layer 2 takes the three inputs from the previous layer
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Figure 2.3: Artificial neural network with multiple hidden layers

and generates four outputs that are passed to the next layer. Layer 2 of this network is

known as a fully connected layer or dense layer as each neuron of the layer is connected

with every neuron of the preceding layer.

Figure 2.4: Artificial neural network with three layers (adapted from [41])

Similar to the mathematical model of single neuron, the output produced by the first

layer is given by:

16



zA = x1 · wa1 + x2 · wa2 + bA

zB = x1 · wb1 + x2 · wb2 + bB

zC = x1 · wc1 + x2 · wc2 + bC

(2.7)

Equation (2.7) can be rewritten as

z = x ·W + b (2.8)

where input array x =

(
x1 x2

)
, weight parameters W =

 wa1 wb1 wc1

wa2 wb2 wc2

, bias

b=

(
bA bB bC

)
, and output z =

(
zA zB zC

)
.

Hence, the final output of the first layer after applying activation function is given by

y = f(z) = ( f(zA)f(zB)f(zC) ), which is passed on to the second layer as an input

vector, and so on until the last layer.

2.3 Convolutional Neural Network

Convolutional neural network (CNN), also known as the ConvNet, is the type of ANN

generally used for the analysis of visual image datasets to extract particular features from

the images and classify them according to the extracted features. CNN are widely used

in computer vision, image and video recognition, speech recognition, image classification,

natural language processing, medical image analysis, and bioinformatics.
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2.3.1 CNN Architecture

Figure 2.5 illustrates the basic architecture of a convolutional neural network. CNN ar-

chitecture consists of two main parts, namely, feature extraction and classification. In a

CNN, a convolution tool is used to recognize the various features from the input image for

further analysis. Finally, a fully connected layer classifies the image based on the extracted

features. Convolutional layers and pooling layers are generally responsible for feature ex-

traction. In some CNN algorithms, batch normalization layers are also used along with the

previously mentioned layers.

Figure 2.5: CNN architecture with various layers (adapted from [42])

2.3.2 Convolutional Layers

In CNN, the convolutional layer is mainly responsible for extracting the essential features

from the input images. Despite its colloquial name, convolution, this layer theoretically

executes the sliding dot product or cross-correlation operation between the image and a

kernel. A kernel is a matrix consisting of learnable values called weights and this matrix is

slid across the 2-D input image, and element-wise multiplied by the corresponding values

of the input image and then all these products added to obtain a single output. Each of these

convolution kernels acts as a distinct filter, generating an output feature map that represents

different characteristics, such as kernels for detecting top edges, bottom edges, diagonal
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lines, etc. The final output image produced through convolution operation contains the

essential features of the input image, and is known as a feature map. The total number of

feature maps produced during this layer depends on the number of kernels; for example, if

n kernels are applied to the input image, it will produce a total of n feature maps.

To understand the convolutional operation in the neural network, let’s take a 5×5 input

image matrix and an edge detection kernel as shown in figure 2.6. Now, to calculate the

convolution for the pixel located at (2, 2) i.e., the second row and the second column (which

is highlighted by the red color box) of the input image, the element-wise multiplication with

the filter kernel is carried out followed by the summation, i.e., (1×−1+0×0+2×1+0×

−1+1×0+0×1+0×−1+0×0+1×1) to generate the output value 2. Then, we slide

the kernel to the right and repeat the convolution operation. We repeat this whole process,

sliding the kernel to the right and downwards until it reaches the lower-right corner of the

image.

Figure 2.6: Convolution operation

The central issue of the convolution operation is that it does not involve the pixels

located at the border of the image, as the size of a kernel is generally less than the size of the

image. To solve this issue, padding is used, through which extra pixels are added around

the boundary of the image. There are two different types of padding available in deep

learning: Valid padding and Same padding. Valid padding means no padding. However,
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the same padding produces the output feature map with the same size as the input image

size. In the same padding, zeros are appended to the outer frame of the image and the size

of the padding depends on the kernel size. If kernel size is k × k, where k is odd, then the

padding size is (k − 1)/2.

Figure 2.7 illustrates the same padding operation carried out on the 5× 5 image shown

in Figure 2.6 for the kernel size 3 × 3. Hence, the size of the padding is (3 − 1)/2 = 1.

Hence, an extra row and a column of zeros are added on all the sides of the image, as shown

in Figure 2.7, which effectively increases the input image size from 5× 5 to 7× 7.

Figure 2.7: Same padding

Another convolution parameter is the stride that is used to reduce the size of the output

feature map. It denotes the number of pixels by which the filter slides over the input image.

Figure 2.8 represents the convolution example with stride value S= 2 which produces the

output image of size 3 × 3 from input image 5 × 5 with a padding of one. Here, the filter

skips one pixel every time while traversing the input image, as shown in the figure. The

output feature map is generated through the convolutional layer by the dot product between

the input image and filter W0, considering bias value b0 = 0.
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Figure 2.8: Convolution operation between image and kernel with stride 2 and padding 1

2.3.3 Pooling Layers

The primary purpose of the pooling layer is to reduce the size of the convolved feature

map. In most cases, the pooling layer is generally used after one or more convolutional

layers. Generally, in CNN, two types of pooling operations are used, these are max pooling

and average pooling. Max pooling selects the pixel with the highest intensity value from

the predefined sized image sections. However, average pooling calculates the mean of all

the elements of the pooling region. Figure 2.9 illustrates the output generated through the

two types of pooling operations. The selection of pooling methods depends on the image

datasets. Max pooling is essential to extract the sharpest features from the feature map. On

the other hand, in average pooling, all values of the pooling region are considered. Max

pooling fails when most of the elements in the pooling region have the highest intensity

value, and average pooling fails when too many zero elements are present in the pooling

region [43].
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Figure 2.9: Pooling layer: Max pooling and average pooling (adapted from [44])

2.3.4 Batch Normalization

Batch Normalization, also known as Batch Norm, is an optional layer and is often placed

after one or more convolutional layers in CNN architecture. To understand the working of

the Batch Norm layer, it is required first to discuss normalization, which is a pre-processing

technique used for input-data standardization. Data normalization helps to set the range of

the input data into the appropriate range. There are two different normalization methods.

In the first method, input data is scaled to a range from 0 to 1 using the formula:

xnormalized =
x− µ

xmax − xmin

(2.9)

where x is the input data-set, µ represents the mean value of the given data-set, and xmax

and xmin denote the maximum and the minimum values, respectively, from the data-set.

The second method is generally force the overall data-set to have a mean value 0 and a

standard deviation value 1 through the following formula:

xnormalized =
x− µ

σ
(2.10)

where x is the input data-set, µ is the mean of the input data-set, and σ is the standard

deviation of the data-set.

Now, Batch Normalization is very similar to the normalization used to normalize batches

of data inside the neural network itself. In short, batch normalization is used between the

layers of an artificial neural network instead of the raw data sets, which helps to increase
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the overall training speed and use higher learning rates [45].

Let us consider the m inputs over a mini-batch B = {x1 · · · xm}. Then the output of

batch normalization is given by,

yi = γ · xi − µB

σB

+ β (2.11)

where γ and β are learning parameters of the Batch Norm responsible for scaling and

shifting of normalized value respectively. The mean µB and the standard deviation σB of

the input data of the mini-batch B can be calculated using

µB =
1

m

m∑
i=1

xi (2.12)

σB =

√√√√ 1

m

m∑
i=1

(xi − µB)2 + ϵ (2.13)

where ϵ is a small constant used to avoid division by zero.

2.3.5 Classification Layers

After feature extraction, it is required to classify the extracted features of the processed

image. Generally, classification layers of CNN comprise a flatten layer, several fully con-

nected (FC) layers, a dropout layer (optional), and finally, an activation function. The

flatten layer is responsible for flattening the output of the convolutional or pooling layer by

converting the 2-D feature matrix into a 1-D array. This single long feature vector is then

connected to the final classification model, known as fully connected layers or FC layers,

where the mathematical operations occur. Sometimes, to reduce the model’s size and in-

crease the computational speed, some neurons are dropped from the network based on the

probability and statistics using a dropout layer. Finally, the most important parameter of
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classification layers is the activation functions such as ReLU, Softmax, hyperbolic tangent

(tanh), and Sigmoid functions. Usually, softmax and sigmoid functions are used for binary

classification, and the softmax activation function is preferred for multi-class classification.

Based on the CNN concept discussed in Section 2.3.1, there are various CNN archi-

tectures. Out of these architectures, we implement four CNN models, namely, ResNet50,

DarkNet19, GoogLeNet, and VGG16, (which are discussed briefly in the following sec-

tion), using a transfer learning approach.

2.4 Implementation of Various Neural Network Architec-

ture

Figure 2.10 demonstrates the flow of the overall process of COVID-19 screening from

the CT-Scan image dataset. The figure shows various pre-trained neural network mod-

els, namely, ResNet50, DarkNet19, GoogLeNet, and VGG16 are implemented on lung

CT-Scan image dataset for automatic classification of the input images into two classes,

namely, COVID and Non-COVID. If the input image is classified as COVID-19 positive,

the infected region is identified using the lung image segmentation technique for further

analysis.

Figure 2.10: Process flow of COVID-19 screening methodology
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2.4.1 Transfer Learning

Transfer learning is a deep learning technique in which a model trained for one task (a pre-

trained model) is applied to a different task. In the present work, various pre-trained deep

neural network models ResNet50, DarkNet19, GoogleNet, and VGG16 are implemented

using a transfer learning approach in which the last three layers of the pre-trained model

are fine-tuned based on the classes of an input image dataset, as shown in Figure 2.11. In

transfer learning, image features are extracted using pre-trained CNN models, and layers

responsible for final image classification are replaced by new layers to categorize images

based on new required classes.

Figure 2.11: Transfer Learning mechanism

2.4.2 ResNet50

ResNet [46] was originally introduced by Microsoft Corporation, which is based on a resid-

ual learning framework. ResNet was designed to solve two major deep neural network

problems known as the vanishing gradient problem and degradation problem. In the van-

ishing gradient problem, the derivative of loss functions will become smaller and smaller

as we go backward with every layer during the training of the deep neural network. If there

are a large number of hidden layers, then the vanishing gradient problem causes unstable

network behavior and slows down the training speed of the network. Another problem with
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increasing the depth of the network is the degradation problem, that is, as the network depth

increases, accuracy gets saturated and then degrades rapidly as it becomes difficult for the

layers to propagate the information from the shallow layers, and due to that, the informa-

tion is lost [46]. As shown in Figure 2.12, ResNet comprises residual connections, also

known as skip connections, which ensures that the next layer of the network will perform

at least as good as the previous layer, not worse than that.

Figure 2.12: ResNet50 pre-trained model

ResNet is originally trained on ImageNet 2012 dataset [47] and classifies the input

images into 1000 different categories. Kaiming He et al. introduced five different ResNet

models based on the number of layers of the residual network, namely, ResNet18, ResNet34,

ResNet50, ResNet101, and ResNet152 [46]. The architecture of the ResNet50 model,

which is 50-layer residual network architecture with a total of 177 layers, is shown in Fig-

ure 2.12.

In the ResNet50 architecture, the initial layer consists of a convolution layer using a

kernel of size 7 × 7 with stride S = 2, and the number of filters is 64, followed by a max-

pooling layer with stride S = 2. This is followed by four stages comprising a total of 16

26



residual blocks. Each residual block contains three convolution layers with kernels of size

1×1, 3×3, and 1×1, respectively. Hence, there are 16×3 convolution layers belonging to

the residual blocks plus the first convolutional layer for a total of 49 convolution layers in

the ResNet50 architecture. Stage 1 of the network comprises three residual blocks with 64,

64, and 256 convolutional filters in each residual block. The second stage has four residual

blocks having 128, 128, and 512 convolutional filters in each residual block. Stage 3 and

stage 4 contain six and three residual blocks, respectively. In stage 3, there are 256, 256,

and 1024 convolutional filters in each residual block, whereas in stage 4, the number of

convolutional filters is 512, 512, and 2048 in each residual block. Finally, the classification

layer includes average pooling, a fully connected layer with 1000 nodes, and a softmax

function. Hence, in the ResNet50 architecture, the total number of residual network layers

is 49 (convolution layers) +1 (classification layer) = 50 layers.

In the present research work, ResNet50 pre-trained network is loaded into MATLAB

and then the last three layers “fc1000”, “fc1000_softmax”, and “ClassificationLayer_fc1000”

are replaced by “new_fc”, “new_softmax”, and “new_classoutput” layers, respectively,

as per the transfer learning approach discussed in Section 2.4.1. Input image size for

ResNet50 is 224 × 224, and hence, all the images of the dataset are resized to that size

during pre-processing.

2.4.3 DarkNet19

DarkNet19, based on You Only Look Once (YOLO) V2 object detector [48], is a convo-

lutional neural network with 19 convolutional layers and 64 total layers. The pre-trained

version of DarkNet19 was trained on more than one million images of the ImageNet dataset

[47] and classified the images into 1000 different categories, same as ResNet50. The de-

tailed information of different layers of the DarkNet19 network is described in Table 2.1.

As discussed in the Transfer Learning approach, the DarkNet19 pre-trained network is
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Table 2.1: Different layers of the DarkNet19 pre-trained network [48]

Type Filters Size/Stride Output
Convolutional 32 3× 3 224× 224

Maxpool 2× 2/2 112× 112
Convolutional 64 3× 3 112× 112

Maxpool 2× 2/2 56× 56
Convolutional 128 3× 3 56× 56
Convolutional 64 1× 1 56× 56
Convolutional 128 3× 3 56× 56

Maxpool 2× 2/2 28× 28
Convolutional 256 3× 3 28× 28
Convolutional 128 1× 1 28× 28
Convolutional 256 3× 3 28× 28

Maxpool 2× 2/2 14× 14
Convolutional 512 3× 3 14× 14
Convolutional 256 1× 1 14× 14
Convolutional 512 3× 3 14× 14
Convolutional 256 1× 1 14× 14
Convolutional 512 3× 3 14× 14

Maxpool 2× 2/2 7× 7
Convolutional 1024 3× 3 7× 7
Convolutional 512 1× 1 7× 7
Convolutional 1024 3× 3 7× 7
Convolutional 512 1× 1 7× 7
Convolutional 1024 3× 3 7× 7

Convolutional 1000 1× 1 7× 7
Avgpool Global 1000
Softmax
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loaded into MATLAB and the last three layers are replaced by new layers before performing

the classification task. Input image size for DarkNet19 is 256 × 256, and hence, all the

dataset images are resized to that size during pre-processing.

2.4.4 GoogLeNet

GoogLeNet, based on stacked inception modules, was introduced by Szegedy et al. in

2015 [49]. The network is 22 layers deep when considering only layers with parameters,

and 27 layers deep if the pooling layers are also taken into consideration. The pre-trained

network is trained using the ImageNet [47] or Places365 [50] datasets, which classify the

input images into 1000 object categories or 365 various place categories, respectively.

The overall architecture of the network is represented in Figure 2.13(a) which includes

the inception module of different size convolution layers. The inception module comprises

a total of four streams including a 1×1 convolution layer; a 1×1 convolution layer followed

by a 3×3 convolution layer; a 1×1 convolution layer followed by a 5×5 convolution layer;

and finally a 3 × 3 max-pooling layer followed by a 1 × 1 convolution layer as shown in

Figure 2.13(b). The output obtained by each four streams are concatenated and transferred

to the next layer.

(a) (b)

Figure 2.13: (a) GoogLeNet pre-trained model (b) Inception module block
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In the present work, the pre-trained GoogLeNet network is loaded into MATLAB, and

the last three layers of the pre-trained network are replaced with the new layers for the

classification of input images as per requirements. The input image size for this network is

224× 224.

2.4.5 VGG16

VGG (Visual Geometry Group) was first introduced by Simonyan and Zisserman from

Oxford University [51]. VGG is a very deep convolutional network in which the depth of

the network is increased using very small convolutional filters of size 3× 3. VGG16 which

is 16 layers deep comprises 13 convolutional layers and three fully-connected layers. The

total number of layers of the VGG16 is 41.

Figure 2.14: VGG16 pre-trained model

The network architectures of VGG16 is demonstrated in Figure 2.14. As shown in the

figure, the network comprises 3× 3 convolutional layers with stride S = 1 and 2× 2 max-

pooling layers with stride S = 2. The network was trained on the ImageNet dataset [47]

and classified the images into 1000 different categories with input image size 224 × 224.
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Here, we use a pre-trained network and change the last three layers of the pre-trained

network to classify the input lung CT-Scan images into two classes, namely, COVID and

Non-COVID, as discussed in Section 2.4.1.

2.5 Summary

In this chapter, the basic concept of the biological neural network, the mathematical model

of the artificial neural network, and the architecture of the convolutional neural network

with various layers of the network have been discussed in detail. Moreover, the overall

process flow of the COVID-19 screening methodology and the transfer learning approach

have been presented. Finally, the structures of various CNN models ResNet50, DarkNet19,

GoogLeNet, and VGG16 have been presented. The results obtained using these CNN

models will be presented and compared in Chapter 4. In the next chapter, a self-attention-

based deep learning approach will be discussed in detail for the COVID-19 screening.

31



Chapter 3

Vision Transformer for COVID-19

Detection

3.1 Introduction

Transformer, a self-attention-based deep learning approach, was introduced initially for

natural language processing (NLP) at Google Brain by Vaswani et al. [52]. Inspired by

the success of transformers in NLP, Dosovitskiy et al. [13] introduced the transformer

method for image classification, known as vision transformer (ViT). In this research work,

we propose to use a transformer-based approach instead of using CNN models to improve

the computational efficiency and accuracy. In this chapter, ViT is discussed in detail along

with an implementation of ViT-based approach for COVID-19 CT-Scan image classifica-

tion. Since we employ ViT for detection of COVID-19 from CT-Scan images, we call this

method as COViT-CT.
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3.2 What is Self-Attention?

The attention mechanism was first proposed by Graves et al. with a content-based attention

mechanism for neural turing machines [53]. After that, Cheng et al. introduced the self-

attention concept with a modified long short-term memory (LSTM) unit [54]. Self-attention

or intra-attention is an attention method in which the inputs interact with one another (hence

known as self) to compute a representation of the input sequence based on the obtained

attention value. Hence, it calculates the attention of all other inputs with respect to one

input.

The self-attention mechanism is demonstrated in Figure 3.1. Consider n input se-

quences X1, X2, · · ·Xn, each sequence being of size 1 × de, where de is the embedding

size. Figure 3.1 represents the steps for computing the self-attention score for the current

input X1. The first step is to obtain the embedding query vectors q1, q2, · · · , qn, key vec-

tors k1, k2, · · · , kn and value vectors v1, v2, · · · , vn by multiplying the corresponding input

sequences with the query weight matrix WQ, the key weight matrix WK and the value

weight matrix W V . Here, the size of trainable weight matrices WQ, WK , and W V are

de × dq, de × dk, and de × dv, respectively. Hence, multiplication of the weight matrices

with the input sequences will produce the embedding query vectors of the size 1 × dq, the

key vectors with the size 1 × dk, and the value vectors with the size 1 × dv. Since all

the input sequences have the same embedding size de, the query vectors, key vectors, and

value vectors are all also of the same size, i.e., dq = dk = dv. The next step is to compute

the dot product between the query vector (q1) of the current input (X1) with the key vectors

(k1, k2, · · · , kn) of all the inputs, and then the product obtained is divided by the square root

of the dimensions of the key vector (
√
dk) to produce the output a11, a12, · · · , a1n. Here,

we scale the output to prevent the final dot product value from being too large. Hence, this

attention mechanism is also known as scaled dot product attention. For small values of dk,

the dimensions of key and query vectors are also small. In this case, the dot product without
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scaling gives similar results as the dot product with scaling. On the other hand, larger val-

ues of dk result in large magnitudes of the dot products, thus pushing the softmax function

into the region where it has small gradients, resulting in the vanishing-gradient problem

[52]. To counteract this issue, the dot product is divided by the square root of dk. Then, the

softmax function is applied on dot product outputs to obtain the outputs â11, â12, · · · , â1n.

Finally, the softmax outputs are multiplied by the corresponding embedding value vectors

v1, v2, · · · , vn and then added to produce the final attention vector A1 of size 1 × dv. The

overall process of calculating the self-attention score of the input X1 can be written as

â1i = softmax(a1i) = softmax(
q1 · ki√

dk
) (3.1)

A1 = Attention(q1, K, V ) =
n∑

i=1

â1ivi (3.2)

where q1 is the embedding query vector corresponding to input X1, and K and V respec-

tively represent the key and the value matrices made by the embedding key vectors and

value vectors corresponding to all the inputs.

The self-attention mechanism discussed above can also be explained in terms of matri-

ces. Let’s consider the input matrix X made by the n input embedding vectors X1, X2, · · · , Xn.

The size of each input vector is 1 × de, hence, the size of the input matrix is n × de. We

can generate the query matrix Q, the key matrix K, and the value matrix V by multiplying

the input matrix X (size:n×de) with the trainable weight matrices WQ (size:de×dq), WK

(size:de × dk), and W V (size:de × dv), respectively. The size of Q, K, and V matrices are

n× dq, n× dk, and n× dv, respectively, where, dq = dk = dv.
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Figure 3.1: Calculation of the self-attention score for the input sequence X1

Q = X ×WQ

K = X ×WK

V = X ×W V

(3.3)

From the above analysis, we can say that the query matrix Q comprises a total of n

embedding query vectors q1, q2, · · · , qn, where the size of each vector is 1× dq. Similarly,

matrices K and V contain the total of n embedding key vectors and value vectors, respec-

tively. The next step is to calculate the attention score by multiplying the Q matrix with the

transpose of the K matrix as shown in Figure 3.2. The size of the attention score matrix

is n × n. The attention score so obtained is scaled by the factor 1√
dk

and then the softmax

function is applied. Finally, the obtained attention matrix is multiplied by the value matrix

V of size n × dv to generate the self-attention output matrix of size n × dv. The overall

process can be expressed by the equation
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Figure 3.2: The self-attention mechanism as matrix multiplications

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.4)

where Q, K, and V represent the query, key, and value vectors, respectively, and dk denotes

the dimension of the key vector.

The original transformer architecture [52] consists of an encoder as well as a decoder.

However, in most of the applications, only one block is used based on the task. The en-

coder is responsible for determining how various patches of the input information relate

to one another. The decoder is used to predict the next token in a sequence based on the

contextual information provided by the encoder. Both the encoder and the decoder are

implemented using the self-attention method. ViT is implemented using just the encoder

part of the original encoder-decoder-based transformer architecture to extract the important

image features for classification. In the following section, self-attention-based COViT-CT

approach is thoroughly explained.
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3.3 Self-Attention Based COViT-CT Approach

The COViT-CT method is inspired by the Vision Transformer (ViT) approach [13]. In this

method, a lung CT-Scan image data-set is used to classify the input images into two classes,

namely, COVID and Non-COVID. Figure 3.3 represents the overview of the COViT-CT

network. The ViT architecture is divided into three stages. The first stage is patch and

potion embedding to convert 2D image patches into 1D vectors, the second stage consists

of the transformer encoder which is responsible for the feature extraction and the last stage

is the classification head that classifies the input image.

Figure 3.3: Model overview of the COViT-CT approach

3.3.1 Patch and Position Embedding

Generally, the transformer accepts a 1D sequence as an input. Hence, it is required to

convert the 2D images into 1D sequences. For that, the input image X having a size

H ×W × C is split into a total of N square patches X1
P , X

2
P , · · · , XN

P , where H , W , and
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C represent the height, width, and channels of the input image. The size of each patch is

P × P × C, where P is a predefined parameter that denotes the patch size and C is the

number of channels associated with each patch. The total number of image patches can be

determined by the equation N = HW/P 2. Then, all the patches are flattened, resulting in

N vectors, each having the size 1× P 2C. The flattened patches are then multiplied with a

trainable embedding matrix of size P 2C × D, which linearly projects each flat patch to a

dimension D. The dimension D is constant in the architecture, and this step will create a

total of N embedded patches of size 1×D.

Figure 3.4: Patch and position embedding

After the patch embedding, the next step is to apply the position embedding to the

sequence of embedding. Positional embedding is used to add the spatial representation of

each patch within the sequence. Here, a 1-dimensional positional embedding approach is

used, wherein the sequence of patches are considered in the raster order (i.e., left to right,

up to down). Along with the position encoding, an extra learnable class token of size 1×D

is prepended to the sequence of patch embedding. The first box with an asterisk mark in

Figure 3.4 indicates the learnable class vector Xclass to store the label corresponding to

a specific class. The position encoding is essential, in view of the fact that if we change

the position of the patches for the model without position encoding, then the transformer

will detect both of the images as the same image. The output of the patch and position
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embedding is given by

Z0 = [Xclass;X
1
PE;X2

PE; · · · ;XN
P E] + Epos, E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D

(3.5)

where Xclass denotes an extra learnable class token, X1
P , X

2
P , · · · , XN

P represent flatten

patches each having the size 1×P 2C, E is a trainable embedding matrix of size P 2C×D,

and Epos represents (N + 1) positional embedding vectors, each having the size of 1×D.

3.3.2 Transformer Encoder

As discussed in the previous section, the input of the transformer encoder is flattened image

patches with position information. The stack of L transformer encoders are responsible for

extracting the image features for image classification. The transformer encoder consists

of alternative blocks of Multi-Headed Self Attention (MSA) and Multilayer Perceptron

(MLP) layers in which layer normalization (LN) is applied before every block, as shown in

Figure 3.5. It also consists of residual connections after every block [55].

MSA is implemented using multiple layers of self-attention also known as scaled dot-

product attention modules in parallel. Figure 3.6 represents the multiheaded self-attention

mechanism with h heads. Before computing the self-attention score, it is required to cal-

culate the query, key, and value matrices through a linear transformation using different

learnable weight matrices (i.e., WQ,WK ,W V ) for each head. Then, self-attention or

scaled dot-product attention is computed for each head independently using Equation (3.4).

As discussed in Section 3.2, the size of the output matrix generated using a self-attention

mechanism applied on (N +1) patches is (N +1)× dv. The output produced by each self-

attention block is concatenated to generate the final output matrix of size (N + 1)× dv · h,

where (N + 1) represents the number of input sequences plus learnable class token, dv is
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Figure 3.5: Vision transformer encoder (adapted from [13])

the dimension of the value vector and h is the number of heads. Finally, the concatenated

output is again linearly projected using the MSA weight matrix (Umsa) of size h · dv × do,

where do is output dimension. Hence, the size of MSA output matrix is (N + 1)× do. For

h heads the equation of the MSA is given by

MSA(Z) = [SA1(Z);SA2(z); · · · ;SAh(Z)]Umsa (3.6)

where SAi(Z) denotes the self-attention output generated by the ith head.

After the MSA block, there is a 2-layer MLP block (hidden and output). MLP is a feed-

forward neural network in which every layer is a fully connected layer. In the transformer

encoder, layer normalization is applied before the MLP and MSA blocks help to improve

the training time and overall performance of the network [55]. Layer normalization is sim-

ilar to batch normalization as discussed in Section 2.3.4; however, it calculates the mean

and standard deviation over all the hidden units in the same layer instead of mini-batch
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Figure 3.6: Multiheaded self-attention (adapted from [52])

[56]. The residual connections are also applied after the MLP and MSA blocks to solve

the vanishing gradients problem in very deep architecture. The output Z ′

l obtained after the

MSA block is given by Equation (3.7) and the output of the transformer encoder is given

by Equation (3.8).

Z
′

l = MSA(LN(Zl−1)) + Zl−1, l = 1 . . . L (3.7)

Zl = MLP (LN(Z
′

l )) + Z
′

l , l = 1 . . . L (3.8)

3.3.3 Classification Head

The last component of the vision transformer is the classification head that contains a

2-layer MLP as shown in Figure 3.7. The output of the transformer head is fed to the

MLP head for the final classification. The MLP head uses the Gaussian Error Linear Unit

(GELU) as the activation function, which is defined as [57]
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GELU(x) = xP (X ≤ x) = x · 1
2
[1 + erf(x/

√
2)]

≈ 0.5x(1 + tanh[
√
2/π(x+ 0.044715x3)])

≈ xσ(1.702x)

(3.9)

where erf(x) represents the Gaussian error function of x given by erf(x) = 2√
π

∫ x

0
e−t2 dt,

and σ(x) is the sigmoid function of x given by Equation (2.4).

Figure 3.7: Classification head of the COViT-CT network

As discussed in Section 3.3.2, the size of the output of the transformer encoder is (N +

1) × do. From this output matrix, only the first representation of the class token is used

for the classification with size 1 × do. Here, a 2-layer MLP is used for pre-training with

weight matrices of size do × dmlp and dmlp × num_cls for the hidden layer and the output

layer, respectively, where num_cls represents the number of classes used for classification.

Hence, the final output of the network is a vector of size 1×num_cls, which comprises the

probabilities associated with each of the num_cls classes. The final classification output y

is given by

y = MLP (LN(Z0
L)) (3.10)
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where Z0
L represents the first output vector representing the class token.

3.4 Implementation of Self-Attention Based COViT-CT Ap-

proach

As discussed in Section 3.3.1, the first step is to convert the input color image into serialized

data. As shown in Figure 3.3, the input lung CT-Scan image is resized to 72×72×3, where

height H = 72, width W = 72, and channel C = 3 due to the red, green, and blue color

channels. We consider the patch size to be P = 8, and hence, the total number of patches is

N = HW/P 2 = (72× 72)/82 = 81. So, we have a total of 81 image patches each having

the size 8 × 8 × 3 as the input to the COViT-CT network. Then, each patch is converted

into a 1-D sequence of size 1× P 2C = 1× 192. Since we take the embedding dimension

D = 128, each flattened patch is then multiplied with a trainable embedding matrix of size

P 2C ×D = 192 × 128 to generate a total of 81 patches of size 1 × 128. During the next

step, the positional information is attached to all the patches along with an extra learnable

class token, which results in a matrix of size (N + 1) × D = 82 × 128. We can say that

the input of the transformer encoder is a total of 82 patches each having the size 1 × 128.

During the implementation of the transformer encoder, we have set L = 8, i.e., 8 stacked

transformer encoders each comprising h = 6 MSA heads. The transformer encoder will

generate the image features having the size 82 × do, where do = dv · h = 128 × 6 = 768.

The first representation of the class token having the size of 1 × 768 is then used for the

classification using MLP. So, the input image is classified into two classes, namely, COVID

and Non-COVID based on the 768 extracted features.
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3.5 Summary

In this chapter, the mechanism of the self-attention method is described in detail. Further,

the implementation of the proposed COViT-CT network is explained briefly along with the

patch and position embedding, the transformer encoder, and the classification head. In the

next chapter, the results obtained through various CNN models as described in Chapter 2, as

well as with the self-attention-based deep learning approach COViT-CT, will be discussed

and compared using standard performance evaluation metrics.
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Chapter 4

Performance of the Proposed COViT-CT

Method and Comparison with that of

Other Deep Learning Techniques

This chapter presents the experimental setup for implementing various deep learning ap-

proaches for COVID-19 screening, and the results are analyzed and compared based on

standard comparison metrics. The chapter is organized as follows. First, the description of

the COVID-19 CT-Scan dataset used for the experiments is presented. Then, the system

environment used for the experiments is discussed, along with the standard performance

evaluation metrics used to compare the results. Then, the results obtained by the vari-

ous CNN models and the self-attention-based COViT-CT approach are presented. Finally,

the results obtained through various implemented techniques are compared with the recent

state-of-art works.
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4.1 Dataset

In this work, a publicly available COVID-19 CT-Scan image dataset known as the SARS-

CoV-2 CT-scan dataset provided by Soares et al. [32] has been used for analysis. This

dataset contains 2481 images comprising 1252 COVID-19 positive and 1229 COVID-19

negative images. The whole dataset is split into training, testing, and validation in the ra-

tio 60% : 20% : 20%. Table 4.1 describes the detailed information regarding splitting

the dataset into training, testing, and validation. Moreover, Figure 4.1 represents sample

images from both classes. In this work, the models are evaluated through a statistical anal-

ysis based on accuracy, precision, recall, F1-Score, and area under the curve (AUC). Here,

the transfer learning approach, discussed in Section 2.4.1, is used for image classification

through various CNN models.

Table 4.1: Training-Validation-Testing data splitting

Data Split COVID Non-COVID Cumulative
Traning 752 737 1489
Validation 250 246 496
Testing 250 246 496

Total 2481

4.2 Experimental Set-up and Performance Evaluation Met-

rics

All the experiments were performed on a system with an Intel(R) Core(TM) i7-11390H

processor having a maximum clock speed of 3.4 GHz, 16 GB RAM, and a Windows

11 operating system. In addition, all the four CNN methods described in Section 2.4,

namely, ResNet50, DarkNet19, GoogLeNet and VGG16, are implemented using a MAT-

LAB R2021a platform, and the self-attention-based technique COViT-CT discussed in

46



Figure 4.1: Sample CT-Scan images from the dataset which contains the images from both
the classes

Chapter 3 is implemented using Keras, which is an open-source Python library for cre-

ating deep learning applications.

The performance of all these methods, including the four CNN models and the COViT-

CT method, are evaluated based on six evaluation metrics, which are accuracy, precision,

recall (sensitivity), specificity, F1-Score, and AUC. Moreover, the corresponding confusion

matrix for each model is also represented.

The confusion matrix gives an output in the form of a matrix that describes the complete

performance of the model. We used the softmax layer as a binary classifier for all four CNN

models that classifies the images into two classes, namely, CT-COVID and CT-NonCOVID.

The confusion matrix is used to compare the predicted classes of our classifier with the

actual classes. Based on this, there are four important terms, namely, true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN). In this case, all the cases

with the prediction CT-COVID which are actually COVID-19 positive, are considered as

TP. The cases with the classifier prediction CT-NonCOVID and their actual class is also

CT-NonCOVID are considered as TN. However, if the predicted class is CT-COVID and
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they are actually CT-NonCOVID are FP cases and also known as type-I error. Moreover,

type-II error or FN contains all the cases which actually COVID-19 positive, but classified

as CT-NonCOVID.

Accuracy(ACC) of the model represents the correctly classified observations over the

total number of observations and is given by

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Precision(PC), also known as a positive predictive value, is the ratio that indicates the

positive responses that are correctly classified. It is used to determine how precise or accu-

rate the model is. Precision is defined as

Precision =
TP

TP + FP
(4.2)

Recall is also known as sensitivity(SN), or the true positive rate is a measure of the

probability, representing the actual positive observations that are classified as positive. Re-

call is given by

Sensitivity(Recall) =
TP

TP + FN
(4.3)

Specificity(SP), also known as the true negative rate, indicates how often the actual

negative observations will be classified as negative. The equation of specificity is

Specificity =
TN

TN + FP
(4.4)

F1-Score is represented as the harmonic mean of the precision and recall, which varies

from 0 to 1. This metric is used to evaluate the preciseness and robustness of the classifier.

The higher value of the F1-Score means our model performance is also good. F1-Score is

given by
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1

F1-Score
=

(
1

2

)[
1

Precision
+

1

Recall

]

Or

F1-Score = 2× 1
1

Precision
+ 1

Recall

(4.5)

The above equation can be further simplified by substituting the values of Precision

and Recall from the equations (4.2) and (4.3), respectively,

F1-Score =
2TP

2TP + FP + FN
(4.6)

AUC is generally used to evaluate the performance of binary classifiers. It calculates

the area under the ROC curve. ROC is the curve with the false positive rate on the x-Axis

and the true positive rate on the y-Axis. As discussed above, the true positive rate is also

known as recall or sensitivity and is given by Equation (4.3). Moreover, the false positive

rate is defined as

FalsePositiveRate =
FP

TN + FP
(4.7)

Here, values of both the axes vary from 0 to 1. Both the true positive rate and the false

positive rate are computed for different threshold values to plot the AUC curve. The range

of AUC is [0, 1], and higher the value of AUC, better is the performance of the model.
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4.3 Performance Results using the Four CNN Methods

ResNet50, DarkNet19, GoogLeNet and VGG16

As discussed in Section 4.2, all the four CNN methods are implemented using MATLAB

R2021a. In this experiment, we use “Adam” as the optimizer [58] with an initial learning

rate value of 10−4, maximum epoch size 20, and minimum batch size 115 for all the four

CNN models. This will result in 13 iterations per epoch as we have 1489 training images

and 115 images per batch, i.e., 1489 ÷ 115 = 12.95 ≈ 13. As there are 20 epochs, the

total number of iterations is 20 × 13 = 260. Other training options used in this work are

data shuffling before each epoch and an L2-regularization with a weight decay value of

0.005 to overcome the problem of over-fitting by forcing the weights to be small, but not

exactly zero. Moreover, we assign a validation dataset as described in Table 4.1 and set the

validation frequency to 1.

Figure 4.2 represents the training progress chart of the four implemented CNN methods,

namely, ResNet50, DarkNet19, GoogLeNet and VGG16. For each technique, the training

progress comprises the accuracy vs. iteration and loss vs. iteration graphs for training (blue

and red color lines indicate the accuracy and loss, respectively) as well as validation (black

dotted line indicates the validation data).

Figure 4.3 represents the confusion matrices of the four CNN methods. It is seen that

ResNet50 gives the best results with an efficiency of 98.6%. Moreover, the ROC curves

of all the methods are represented in Figure 4.4 to compare their performance based on

the AUC parameter. It is observed that ResNet50 has the highest value of AUC, which is

0.9992, followed by DarkNet19 with an AUC value of 0.9981, and VGG16 with an AUC

value of 0.9975. However, the performance of GoogLeNet is the worst based on the AUC

value, which is 0.9856.

Moreover, Figure 4.5 represents the activated features from the layer “activation_2_relu",
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Figure 4.2: Training progress of the various CNN methods
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Figure 4.2: Training progress of the various CNN methods (cont.)
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TP: 247

TN: 242

FP: 4

FN: 3

(a) ResNet50

TP: 241

TN: 242

FP: 4

FN: 9

(b) DarkNet19

Figure 4.3: Confusion matrices of the various CNN methods
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TN: 237

FP: 9

FN: 19

(c) GoogLeNet

TP: 244

TN: 230

FP: 16

FN: 6

(d) VGG16

Figure 4.3: Confusion matrices of the various CNN methods (cont.)
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Figure 4.4: ROC curves for implemented CNN methods
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Figure 4.4: ROC curves for implemented CNN methods (cont.)
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Figure 4.5: Activated features of activation_2_relu layer of ResNet50

which is the second linear rectified unit layer of ResNet50. These image features are ex-

tracted from a random image Figure 4.6(a) of the testing image data set. In Figure 4.5,

dark colors represent the less activated features, whereas highly activated features are with

bright colors. As discussed in Section 2.4.2, the second RELU layer of ResNet50 con-

tains 64 various filters; hence, we have 64 various activated features. Similarly, we can

visualize the various activated features from different layers of all the implemented CNN

networks. The total number of features depends on the total number of filters used in the

corresponding layer. Figure 4.6 represents two random images from the testing image data

set with the predicted class and the original class of these random images along with the

prediction score. Figure 4.6(a) represents the true positive case for which the predicted

class and original class both are CT-COVID. In this case, the score vector, i.e., the output

of the softmax layer is [1, 5.0066 × 10−7] which indicates the probability score 1 for the

CT-COVID as the predicted class and the probability score 5.0066× 10−7 ≈ 0 for the CT-

NonCOVID as the predicted class. Hence, the image is classified as CT-COVID. However,
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Figure 4.6(b) represents the false negative case (type-II error) for which the original CT-

COVID image is classified as CT-NonCOVID. Here, the probability score by the softmax

layer is [CT-COVID, CT-NonCOVID] = [0.3910, 0.6090]. Hence, the image is classified

as CT-NonCOVID as the probability score for that class is higher than that of CT-COVID.

4.4 Performance Results using the Proposed Self-Attention

Based COViT-CT Approach

The self-attention-based COViT-CT method is implemented using the Keras library in

Python. The ViT for COVID-19 detection from CT-Scan images used the ‘Adam’ opti-

mizer [58] having a learning rate and weight decay values of 0.0002. Here, we set the

batch size to 150 and total epochs to 700. The input image is resized to 72 × 72. As dis-

cussed in Section 3.4, the input image is first divided into 81 patches with the size of each

patch being 8 × 8 × 3. The sample input image from the training dataset and its patches

are presented in Figure 4.7(a) and Figure 4.7(b), respectively. In this work, we set the

projection dimension D to be 128 during patch and position embedding. Hence, all the 81

input patches are projected into a vector of size 128. Moreover, we employ six multi-head

attention units and eight transformer blocks. The training process chart, i.e., ‘Accuracy Vs.

Epoch’ and ‘Loss Vs. Epoch’ chart, along with the confusion matrix and ROC curve of

the results obtained using the above-mentioned parameters are presented in Figure 4.8 and

Figure 4.9, respectively.

4.5 Comparison of Results

In this section, we will compare the results of the COViT-CT approach discussed in Sec-

tion 4.4 with not only the four different CNN methods as discussed in Section 4.3, but also
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Predicted Class: CT-COVID

Score: [1, 5.0066× 10−7]

Original Class: CT-COVID

(a) True positive case

Predicted Class: CT-NonCOVID

Score: [0.3910, 0.6090]

Original Class: CT-COVID

(b) False negative case (Type-II error)

Figure 4.6: Random output images with predicted class, prediction score, and original class
from the testing image dataset
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(a) (b)

Figure 4.7: (a) Sample image from the training image dataset (b) Input image divided into
81 patches

with other recent state-of-the-art methods. All the comparisons are based on the perfor-

mance evaluation metrics as discussed in Section 4.2.

The results obtained by classification via the four implemented CNN methods, namely,

VGG16, GoogLeNet, ResNet50 and DarkNet19, and the proposed COViT-CT method are

shown in red fonts in Table 4.2. From the analysis of these entries, it is observed that

the best results are attained by the self-attention-based COViT-CT model with a precision

of 99.62%, sensitivity (recall) of 98.86%, specificity of 99.57%, F1-score of 99.24%, and

validation accuracy of 99.20%. If we consider only the four CNN models, then ResNet50

gives the best results for all the metrics. Moreover, it can be observed by comparing the

confusion matrices presented in Figure 4.3 and Figure 4.9(a) that the COViT-CT method

achieves the smallest misclassification error followed by ResNet50. From Figure 4.2 and

Figure 4.8, it can be seen from the accuracy/loss Vs. epoch plot that the validation line

closely follows the training line for the best performing models, namely, COViT-CT and

ResNet50.

We now compare the performance of the COViT-CT approach with that of the various

state-of-the-art architectures, which have been implemented using the same SARS-CoV-2

CT-scan dataset. The results for these architectures are shown in black fonts in Table 4.2,
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(a) Accuracy Vs. Epoch

(b) Loss Vs. Epoch

Figure 4.8: Training progress chart of the COViT-CT approach
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(a) (b)

Figure 4.9: (a) Confusion matrix for the COViT-CT approach (b) ROC curve for the CoViT-
CT approach

Table 4.2: Comparison of the performance of the various implemented deep learning ap-
proaches

❳❳❳❳❳❳❳❳❳❳❳❳Methods
Metrics Accuracy Precision Recall

(Sensitivity) Specificity F1-Score AUC

VGG16 95.56% 93.85% 97.60% 93.50% 95.69% 0.9975
GoogLeNet 94.35% 96.25% 92.40% 96.34% 94.29% 0.9856
ResNet50 98.59% 98.41% 98.80% 98.37% 98.60% 0.9992
DarkNet19 97.38% 98.37% 96.40% 98.37% 97.37% 0.9981

Decision Tree [32] 79.44% 76.81% 83.13% - 79.84% 0.7951
DBM [59] 97.23% 98.14% 97.68% - 97.89% 0.9771

MADE-DBM [59] 98.37% 98.74% 98.87% - 98.14% 0.9832
AdaBoost [32] 95.16% 93.63% 96.71% - 95.14% 0.9519
AlexNet [32] 93.75% 94.98% 92.28% - 93.61% 0.9368
VGG16 [32] 94.96% 94.02% 95.43% - 94.97% 0.9496
VGG19 [60] 95.00% 95.30% 94.04% - 94.67% -

GoogLeNet [32] 91.73% 90.20% 93.50% - 91.82% 0.9179
Dragonfly algorithm (DA) [61] 98.39% 98.21% 97.78% - 98.00% 0.9952

ResNet50 [62] 98.35% 98.02% 98.80% - 98.41% 0.9994
ResNet [32] 94.96% 93.00% 97.15% - 95.03% 0.9498

ResNet101 [62] 96.71% 96.43% 97.20% - 96.81% 0.9944
ResNet18 [62] 97.12% 96.83% 97.60% - 97.21% 0.9973

EfficientNet [63] 98.99% 99.20% 98.80% - - -
xDNN [32] 97.38% 99.16% 95.53% - 97.31% 0.9736
COViT-CT 99.20% 99.62% 98.86% 99.57% 99.24% 0.9922
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and the metric values given for these methods are taken from the respective articles for

which the references are indicated in the parentheses. It is seen from Table 4.2 that the pro-

posed self-attention-based COViT-CT method has the highest accuracy of 99.20% amongst

all the reported works in the literature. Moreover, the precision and F1-score of the COViT-

CT method are also the highest amongst all the state-of-the-art techniques, with the Recall

(or sensitivity) score almost the same as the highest score obtained by the MADE-DBM

method [59] in which a Memetic Adaptive Differential Evolution (MADE) algorithm is

used to tune the hyperparameters of the deep bidirectional long short-term memory net-

work with a mixture density model.

4.6 Summary

In this chapter, we have obtained the performance results for the proposed COViT-CT ap-

proach and compared it with that of the various state-of-the-art techniques using the stan-

dard comparison metrics. From the analysis of the results, we can conclude that the imple-

mented self-attention-based COViT-CT is the best approach with the highest accuracy of

99.20%, highest precision of 99.62% and highest F1-score of 99.24%. Hence, we choose

this method for lung CT-Scan image classification. Based on the classification results, we

will decide whether to apply image segmentation or not. If the lung CT-Scan image clas-

sified as COVID-19 positive, then the image segmentation method is applied in order to

identify the severity level of the disease. The image segmentation approach used in this

thesis will be discussed in the next chapter.
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Chapter 5

Extraction of COVID-19 Infected Region

In the previous chapters, we discussed various neural network methods for classifying the

input lung CT-Scan images into COVID and Non-COVID. After analyzing the results ob-

tained by the various methods in Chapter 4, we selected the COViT-CT method for image

classification as it is the best method with the highest accuracy. If the lung CT-Scan image

is classified as COVID-19 positive, then the infected lung portion is extracted for further

diagnosis. In this chapter, image segmentation-based approach for extracting the infected

lung region is discussed in detail. Finally, the severity level of the infection is determined

based on the infected region, which helps to reduce the processing time and burden of

experienced doctors.

5.1 Introduction

Image segmentation is a process of dividing the digital image into multiple segments or

image regions. There is no single standard algorithm for image segmentation. We can

select the appropriate segmentation method based on the types of images and applications

[64]. In this work, we implement an image segmentation-based approach for extracting the

COVID-19 infected region from lung CT-Scan images.
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The overall flow diagram of the image segmentation-based approach used to detect

the infected COVID-19 region is illustrated in Figure 5.1. As shown in the figure, the

method is divided into three main parts, image pre-processing, image segmentation, and

computation of the severity level of the infection. The main goal of image pre-processing

is to obtain the region of interest (ROI) for image segmentation using three steps, which are

(i) removing unnecessary background portions based on user-defined shape, (ii) applying

image enhancement through the power-law transformation technique [65], and (iii) finally,

applying the Otsu thresholding approach [23] to obtain the ROI, i.e., lung portion.

Figure 5.1: Flow chart of extraction of COVID-19 infected region

After extracting the ROI, the watershed image segmentation approach [66], [67] is ap-

plied to the pre-processed lung portion to identify the infected region. Finally, the severity
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level of the infection is computed based on the pixel ratio of the infected region to the

extracted lung portion (ROI).

5.2 Image Pre-Processing

The main objective of image pre-processing is to remove unnecessary background and

get proper lung portion (ROI) for the segmentation purpose. The first step in image pre-

processing is to choose the area by drawing a close shape around the lung portion on the

CT-Scan image. The final cropped image obtained using this step is then enhanced using

the image enhancement technique.

5.2.1 Image Enhancement

Image enhancement is the second step of image pre-processing. In the proposed work,

the intensity transformation method, namely, the power-law transformation, also known as

Gamma transformation, is used for image enhancement. Here, the power-law transforma-

tion is used to increase the brightness of the high-intensity pixels and is given by [65]

I = c · rγ (5.1)

where I is the output enhanced image, c and γ are positive constants, and r represents the

pixel values of the input image. The value of γ is decided based on the brightness of the

input image. For example, γ < 1 is more sensitive to changes in dark pixels, whereas γ > 1

is more sensitive to changes in bright pixels, as shown in Figure 5.2. In the present work,

the values of γ and c are chosen to be 1.5 and 3, respectively.
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Figure 5.2: Plot of the power-law transformation (I = c · rγ) for the various values of γ
with c = 1 (adapted from [65])

5.2.2 Otsu Thresholding Method

In digital image processing, various approaches are used to extract the main object from

the image. In our present case, the third stage after the image enhancement consists of

a thresholding filter that is used to extract the lung portion and remove the unnecessary

background from the input lung CT-Scan image. In this thesis, we employ the statistical-

based Otsu thresholding approach which was first introduced by Nobuyuki Otsu in 1979

[23].

Consider an input gray-scale image I having L gray levels represented by [1, 2, 3, · · · , L]

and let the number of pixels having a gray-scale intensity value i be denoted by ni. Then,

the total number of pixels for the input gray-scale image is given by N = n1 + n2 + n3 +

· · ·+ nL. The probability distribution of the input image is given by,

pi = ni/N, pi ≥ 0,
L∑
i=1

pi = 1 (5.2)
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where pi denotes the probability of the pixel having the gray-scale intensity value i. Prac-

tically, the frequency distribution of the pixels, i.e., the number of pixels with gray-scale

intensity value i, can be obtained using the histogram plot of the image as shown in Fig-

ure 5.3. Here, the image pixels are classified into two classes: C0 and C1, and both classes

are separated by the threshold value k. Hence, the distribution of classes C0 and C1 with

respect to pixels gray level value is given by [1, 2, 3, · · · , k] and [k + 1, k + 2, · · · , L],

respectively.

Figure 5.3: Normalized histogram plot of the input image

Then, the probabilities of occurrence for the two classes C0 and C1 are, respectively,

given by

P(C0) =
k∑

i=1

pi = ω0(k) (5.3)

and

P(C1) =
L∑

i=k+1

pi = ω1(k) = 1− ω0(k) (5.4)

since

P(C0) + P(C1) = 1 (5.5)

The mean values µ0(k) and µ1(k) for the two classes C0 and C1 are, respectively, given
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by

µ0(k) =
k∑

i=1

iP(i | C0) =
1

ω0(k)

k∑
i=1

ipi (5.6a)

and

µ1(k) =
L∑

i=k+1

iP(i | C1) =
1

ω1(k)

L∑
i=k+1

ipi (5.6b)

The total mean level µT of the image depends on the probability of occurrence of the

two classes and the mean values of these classes, and is given by

µT = ω0(k)µ0(k) + ω1(k)µ1(k) =
L∑
i=1

ipi (5.7)

Now, in order to evaluate the “goodness” of the threshold at level k, the normalized

measure η, introduced by Otsu [23], given by

η =
σ2
B

σ2
T

(5.8)

is used, where σ2
T is the total variance representing the intensity variance of all the pixels

in the given image, and given by

σ2
T =

L∑
i=1

(i− µT )
2pi (5.9)

and σ2
B is the between-class variance defined as

σ2
B = ω0(µ0 − µT )

2 + ω1(µ1 − µT )
2 (5.10)

Equation (5.10) can be further simplified as

σ2
B = ω0ω1(µ1 − µ0)

2 (5.11)
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The above equation can be further reduced to

σ2
B =

ω0(k)

1− ω0(k)
[µT − µ0(k)]

2 (5.12)

The above equation for σ2
B is more efficient computationally to evaluate the “goodness"

of the threshold, since we need to calculate only two parameters, namely, ω0(k) and µ0(k)

for various values of k. The total mean µT needs to be computed only once. Further, the

total variance σ2
T is a constant and is independent of the threshold value k. Hence, the

measure of separability η depends only on the value of σ2
B, which needs the calculation of

only ω0(k) and µ0(k) for various values of k. From Equation (5.10) it is clear that a larger

value of σ2
B indicates more distance between the two class means µ0 and µ1. From the above

analysis, it is seen that the optimal threshold value k∗ can be obtained by maximizing the

value of η, which is equivalent to maximizing the value of σ2
B:

σ2
B(k

∗) = max
1≤k<L

σ2
B(k) (5.13)

After applying the Otsu thresholding method, the output of thresholding is inverted.

Then, the morphological operation [68] is applied to the inverted image to remove irrelevant

artifacts from the image and to obtain the binary lung mask. Finally, ROI can be obtained

by multiplying the binary lung mask with the enhanced image obtained by the Gamma

transformation as discussed in Section 5.2.1. The next step after pre-processing is image

segmentation.
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5.3 Watershed Segmentation Method

In this work, a region-based image segmentation method known as the watershed image

transformation technique is used for image segmentation purposes. The watershed trans-

formation was originally proposed by Digabel and Lantuéjoul in 1978 [66] and then fur-

ther improved by Beucher and Lantuéjoul [67] in 1979. Moreover, in 1990, Meyer and

Beucher proposed a marker-controlled segmentation approach to solving the problem of

over-segmentation [69].

The overall idea of the watershed segmentation method is based on the geography of

landscape relief flooded by water [65]. Any gray-scale image can be visualized as a three-

dimensional image with two spatial coordinates and the intensity value of the pixels. In this

topographic view of the image, we have three types of points. First, points belonging to

local minimum, i.e., points M1 and M2 in Figure 5.4. Second, all the points lie between the

points W1 −M1, W2 −M1, W2 −M2, and W3 −M2. If a drop of water were placed in any

of these regions, it would flow towards a corresponding local minimum point M1 or M2.

A group of all these points makes a catchment basin or watershed of that local minimum.

Third, the points W1, W2, and W3 at which the drop of water has an equal probability of

falling to more than one local minimum point. For example, if a drop of water is placed at

point W2, it can either flow towards point M1 or M2. The set of all these points is known as

watershed lines or divide lines which make a boundary around the segmented region. The

main objective of the watershed segmentation method is to find the watershed lines.

In the present work, the distance transformed-based watershed segmentation method as

described in [70] is implemented using MATLAB. First, we convert the input gray-scale

extracted ROI into a binary image. Then, we compute the Euclidean distance transform

(EDT) [71] on the complement of the binary image. After that, we take the complement of

the distance transformed image so that light pixels represent high elevations and dark pixels

represent low elevations for the watershed transform. Finally, we apply the watershed
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Figure 5.4: Geographical concept of the watershed segmentation method

transform approach to the complement of the distance transformed image. The output of

the watershed segmentation extracts the COVID-19 infected lung portion. The final results

obtained using watershed transformation are represented in Section 5.5.

5.4 Computation of Severity Level

Currently, RT-PCR testing, which is known as a reverse-transcriptase polymerase chain

reaction, has been a widely used laboratory testing method to detect the COVID-19 virus

[72]. After testing, if the patient is COVID-19 positive, further treatment is totally based on

the severity level of the infection. To check the severity level, doctors use medical imaging

methods such as X-Ray or CT-Scan of the lung and diagnose the disease according to

that, including medical treatment, medicines, and dosage level of drugs. In this work, the

infected region is extracted, and the severity level is computed based on the pixel density

of the infected region. This computer-based method helps doctors to reduce their burden

and save lots of time. The severity level of the disease is computed based on the equation

[29]
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Infection Rate (%) =
Pixel Density of Infected Section

Pixel Density of Lung Portion
× 100 (5.14)

5.5 Results Obtained by Image Segmentation

The flow chart of image segmentation method used in this project is shown in Figure 5.1.

In this section, the results obtained during the different stages of the segmentation process

are represented. The first stage of the segmentation method is image pre-processing com-

prising extraction of ROI, image enhancement, and then applying the Otsu thresholding.

Here, we consider one sample CT-Scan image, which was classified as a COVID-19 pos-

itive using the COViT-CT approach discussed in Chapter 3. Figure 5.5(a) represents the

input image with the user-defined shape. This input image has 256 intensity levels (i.e.,

L=256) represented by [1, 2, 3, · · · , 256] and the total number of pixels is N = 210800.

Figure 5.5(b) represents the mask generated by the shape drawn by the user around the

input image. Finally, Figure 5.5(c) represents the output of the extracted ROI image after

multiplying the input image by the binary mask generated in Figure 5.5(b). After that, the

power-law transformation given by Equation ( 5.1) is applied for image enhancement with

γ = 1.5 and c = 3. The final enhanced image is presented in Figure 5.6.

(a) (b) (c)

Figure 5.5: (a) Sample COVID-19 positive image with the user-defined shape (b) Mask
generated based on shape drawn by the user (c) Final cropped image, i.e., ROI
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Figure 5.6: Image enhancement through power-law transform with γ = 1.5 and c = 3

Finally, the Otsu thresholding is applied to the enhanced image to produce the binary

lung mask. To generate the final lung mask, the output of the Otsu thresholding is inverted,

and then, the morphological operations are applied. The generated lung mask is then ap-

plied to the enhanced image to remove the background and get the final pre-processed

image. Figure 5.7(a) represents the output of the Otsu thresholding method. Moreover,

the different statistical values for the input image obtained through the Otsu threshold-

ing are represented in Table 5.1. The table gives the probabilities ω0 and ω1, as well as

the mean values µ0 and µ1 for the two classes, the between-class variance σ2
B, and the

separability measure η for different threshold values around the optimal threshold. For

the selected input image, the total mean value µT = 104.515925 and the total variance

σ2
T = 9.633155818 × 103. For this image, the optimal threshold value is k∗ = 120, which

can be obtained by maximizing the value of σ2
B. The maximum between-class variance

σ2
B and the class separability measure η are shown in red fonts in Table 5.1. The inverted

image and the extracted lung mask are shown in Figures 5.7(b) and 5.7(c), respectively.

The output after the image pre-processing stage is displayed in Figure 5.7(d).

After image pre-processing, the watershed segmentation method described in Section 5.3

is applied to the pre-processed image to extract the infected lung region. Figures 5.8(a) and

5.8(b) represent the binary image and the complement of the binary image obtained from

the final pre-processed image, respectively. Figure 5.8(c) is obtained after computing the

Euclidean distance transform of the binary image Figure 5.8(b). The complement of that
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(a) (b)

(c) (d)

Figure 5.7: (a) Output obtained by the Otsu thresholding (b) Inverted image (c) Extracted
lung mask (d) Final output of image pre-processing

Table 5.1: Statistical values for the two classes obtained through the Otsu thresholding
method

Threshold k = 118 k = 119 k∗ = 120 k = 121 k = 122
ω0 0.584416509 0.584833966 0.585256167 0.585649905 0.586048387
ω1 0.415583491 0.415166034 0.414743833 0.414350095 0.413951613
µ0 24.93310605 25.00025145 25.06878384 25.13327933 25.19914359
µ1 216.4296901 216.5276575 216.6259208 216.7167897 216.8079669
σ2
B 8906.412906 8906.688355 8906.81866 8906.801491 8906.643343
η 0.924558169 0.924586763 0.92460029 0.924598507 0.92458209
µT 104.515925
σ2
T 9.633155818× 103
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distance-transformed image is represented by Figure 5.8(d). The final output of the wa-

tershed segmentation algorithm is shown in Figure 5.9, which is obtained by applying the

watershed transformation on the distance-transformed image. Figure 5.9(b) represents the

segmented portion with various color labels and Figure 5.9(c) represents the infected lung

portion.

(a) (b)

(c) (d)

Figure 5.8: (a) Binary image of ROI (b) Complement of binary image (c) Distance trans-
form of the complement of binary image (d) Complement of the distance transform

The final stage of segmentation is to compute the severity level of the disease using

Equation (5.14). To calculate the severity level, it is required to calculate the number of

pixels in the infected region, i.e., the white portion of Figure 5.10(a) and the total number of

pixels in the lung mask in Figure 5.10(b). In our case, the number of pixels in the infected

region is 11931, and in the lung mask is 73665. Hence, the percentage of infection rate is
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(a) (b) (c)

Figure 5.9: (a) Watershed segmentation output (b) Segmented image with different color-
shades (c) Infected lung portion

(11931÷ 73665)× 100 = 16.196%.

(a) (b)

Figure 5.10: (a) Pixel density of infected segment which is 11931 (b) Pixel density of lung
portion which is 73665

5.6 Summary

In this chapter, we have discussed the image segmentation approach for extracting the in-

fected lung portion of positive COVID-19 lung CT-Scan images. Moreover, after detecting

the infected region, we computed the severity level of the COVID-19 disease. The over-

all process of classifying the input lung CT-Scan image, extracting the infected region of

COVID-19 positive CT-Scan image, and computing the severity level of the disease will

help to reduce the processing time and burden of the doctors.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, four different CNN methods, namely, ResNet50, DarkNet19, GoogLeNet,

and VGG16, have been implemented through the transfer learning approach. During this

work, the self-attention-based ViT method has also been implemented to classify the lung

CT-Scan images into COVID and Non-COVID classes, and we call this as the COViT-CT

approach. The overall work includes a series of processes, including image classifica-

tion, image pre-processing, image segmentation, and computation of the severity level of

the disease. By analyzing the results of the implemented five artificial neural network-

based image classification techniques and other state-of-the-art works, we conclude that

the COViT-CT approach offers the best performance with the highest accuracy of 99.20%,

highest precision of 99.62%, and highest F1-score of 99.24%. Furthermore, we have used

the semi-automatic image segmentation approach to detect the infected lung portion, only

if the image has been classified as COVID-19 positive during image classification through

the COViT-CT approach. For image segmentation, the power-law transform technique has

been used to enhance the image, which helps to determine an accurate threshold value by

the Otsu thresholding method. Subsequently, morphological transformation and watershed
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segmentation methods have been used to detect the COVID-19 infected region. Finally, the

severity of the disease is determined by calculating the infection rate based on the ratio of

the pixel density of the infected region with the pixel density of the lung portion. This in-

fection rate can be classified as mild, moderate, or severe based on the percentage value of

the infection rate. As the overall technique includes both classifications as well as segmen-

tation and also comprises severity level computation, it is expected to play a significant role

in real-time clinical diagnosis to reduce the processing time of diagnosis, and also reduce

the burden of the experienced doctors.

6.2 Future Work

It seems that the end of the COVID-19 pandemic is not over yet. It is also possible to clas-

sify the dataset into more than two classes such as COVID, Non-COVID, and Pneumonia.

We can also classify the dataset into COVID-19 variants such as Alpha, Beta, Delta, and

Omicron. The work carried out in this thesis has several possibilities for improvement in

future studies. The accuracy can be further improved by implementing other ViT-based

approaches such as Transformer iN Transformer (TNT) [73], Pyramid transformer [74],

and Swin transformer [75]. We can create hybrid architecture by combining the attention-

based transformer method with the CNN method to get the advantages of both methods.

The fusion of the transformer and the CNN-based models might improve the performance

of the existing models. Further, the work done in this thesis can also be helpful to detect

other lung diseases such as lung cancer, blood clots, tuberculosis, and pneumonia.
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