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Abstract

The effects of reproducibility & replicability of Parkinson’s Disease

progression prediction using Machine Learning

Mohanad Arafe

Machine Learning (ML) techniques are growing in popularity for analyzing T1-weighted

magnetic resonance imaging (MRI) as it is a promising source of Parkinson’s disease (PD)

biomarkers. However, there is growing concern within the scientific community regarding

the reproducibility of research findings. This reproducibility crisis suggests that a significant

proportion of studies may not be reliable which impacts the validity of results in a preclinical

setting.

The objective of this paper is to reproduce and replicate the findings of a study by (Shu et

al., 2020) that uses ML techniques to predict the progression of PD using conventional MRI

and radiomic biomarkers in whole-brain white matter. We aim to assess the reproducibility

and replicability of (Shu et al., 2020)’s predictive capabilities using open-source tools. We

used the Parkinson’s Progression Markers Initiative (PPMI) dataset, the same dataset used

by (Shu et al., 2020) and similar analyses to assess the reproducibility of the findings. While

we attempted to follow the methods outlined in (Shu et al., 2020) as closely as possible,

some details were unclear and we made educated guesses. We introduced variations in the

methodological methods, including different cohorts, feature sets, ML algorithms, and eval-

uation techniques, to assess the replicability of the findings. Our study could not reproduce

nor replicate the predictive capabilities of (Shu et al., 2020). The lack of reproducibility and

replicability in this paper highlights the importance of adopting open science practices to

ensure that proposed biomarkers are robust.
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Chapter 1

Introduction

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disease characterised

by both motor and nonmotor features. Although there is currently no known cure for

PD, correctly identifying the disease in its early stages is crucial for providing appropriate

initial treatment. One promising area for detecting PD is through the use of neuroimaging

techniques, such as magnetic resonance imaging (MRI). Machine Learning (ML) techniques

are growing in popularity for the examination of T1-weighted MRI scans. ML can help

researchers identify pattern changes in the brain that may be early indicators of PD. However,

the usage of ML in PD research has raised important questions about the reproducibility

and validity of findings.

In this chapter, we will focus on the reproducibility and replicability of MRI-derived PD

biomarkers. We will begin by defining key terms related to reproducibility and replicability

and discuss the current state of the reproducibility crisis. We will then examine the current

usage of ML in neuroimaging research. Finally, we will outline the objectives of this thesis.

1.1 Reproducibility Definitions

The terms “reproducibility” and “replicability” are distinct and may cause confusion. In

fact, the first definition dates back to the early 1990s, when geophysicist Jon Claerbout drew

attention to the issue [10]. He defined reproducibility as “running the same software on the

same input data and obtaining the same results” and replicability as “obtaining sufficiently

similar results by designing and running new code based on a published description of a

model” [25]. This started a trend of scientists and researchers voicing their opinions on

the proper usage of the terms. For instance, in social sciences, Harvard professor Gary
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King uses “replication” to cover all related concepts to the term [22]. The Association for

Computing Machinery refers to reproducibility as “Different team, same experimental setup”

and replicability as “Different team, different experimental setup” [3]. Needless to say, the

wide variety of definitions presents a challenge in standardizing the usage of the terms. The

work in [5] conducted a review of the usage of the terms and grouped findings in three

categories:

(A) The terms are used with no distinction between them.

(B1) “Reproducibility” refers to instances in which the original researcher’s data and com-

puter codes are used to regenerate the results, while “replicability” refers to instances

in which a researcher collects new data to arrive at the same scientific findings as a

previous study.

(B2) “Reproducibility” refers to independent researchers arriving at the same results using

their own data and methods, while “replicability” refers to a different team arriving at

the same results using the original author’s artifacts.

A B1 B2

political science signal processing microbiology

economics scientific computing computer science

econometry

epidemiology

clinical studies

internal medicine

physiology (neuro)

computational biology

biomedical research

statistics

Table 1: Grouping of terminologies by discipline from [5]

Table 1 illustrates the distribution of the usage of the terms among different scientific

disciplines. The results show that the B1 definition is widely utilized. Therefore, in this

work, we follow B1’s defintions of reproducibility and replicability. Regardless of the various

definitions and disciplines that exist, these terms simply aim to describe the attempt to

assess the validity of results being produced. This leads us to our next topic of conversation,

the reproducibility crisis.
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the 100 studies were successfully replicated. The term “Reproducibility crisis” refers to the

“large and growing proportion of studies published across disciplines [that] are unreliable due

to the declining quality and integrity of research and publication practices”[13]. In 2016, the

work in [4] conducted a survey in which 1,576 researchers gave their views on reproducibility

in research. A staggering 70% have said that they tried and failed to reproduce another

scientist’s experiments, and more than half have failed to reproduce their own experiments.

Additionally, 90% agreed that there is a slight or significant crisis on-going.

One of the factors contributing to the on-going crisis is the lack of a standardized pro-

tocol to report results. Firstly, researchers frequently do not publish their code. Although

having the code does not guarantee reproducibility, as Nicolas Rougier at France’s National

Institute for Research in Computer Science and Automation in Bordeaux has argued [19],

it certainly provides a foundation for gaining deeper understanding of a published study.

Second, 60% of the participants in [4]’s survey have agreed that the pressure to publish and

selective reporting are two of the main factors that lead to reproducibility issues. One of

the contributing factors to academic success is publishing good papers that earn reputable

recognition [29]. Researchers who aim to advance their careers are less likely to work on

replication studies than publishing original work [1]. For example, [26] said that replication

studies are “low-prestige, mundane, unoriginal, or non-academic and therefore not encour-

aged by faculties”. Due to the competitive nature of research, the pressure to publish often

results in negligent reporting of findings. Another contributing factor to the crisis is the

publication bias towards publishing positive results. The work in [31] argues that it is eas-

ier for researchers to get their papers released in prestigious journals when sharing positive

results.

On the other side of the spectrum, there are those who believe we are not necessarily

in a crisis. The work in [16] argues that the unrealistic expectations of individual study

reproducibility may alter the perception of the crisis. Additionally, [16] makes an interesting

point by questioning if replication studies themselves may have reproducibility issues. As

discussed in the previous section, some researchers have different definitions of reproducibility

and what constitutes as a successful replication. The phenomenon of the reproducibility crisis

is an on-going debate that will probably continue for the next decades to come until a feasible

solution is standardized.
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1.3 Neuroimaging analysis with Machine Learning

The mapping of brain function has been a goal of scientists for centuries. In the late 20th

century, the invention of noninvasive methods such as MRI has advanced the field known

today as neuroimaging. In essence, neuroimaging refers to the ability to study and vizualize

the structure and function of the brain. T1-weighted MRI is a promising source of biomark-

ers as it can provide detailed information about brain structure [24]. This method can be

used to compare the brain structure of a healthy individual and one who is suffering of a

disease. According to the World Health Organization, the death rate caused from PD is

increasing faster than any neurological disease, and the prevalence of PD has doubled in the

past 25 years [2]. PD was first described in 1817 by Dr. James Parkinson as a “shaking

palsy”. It is a chronic, progressive neurodegenerative disease characterised by both motor

and nonmotor features. Common motor symptom include resting tremor, bradykinesia, and

muscular rigidity [12] while common non-motor symptoms include cognitive, neuropsychi-

atric, sleep, autonomic and sensory disturbances [28]. The Hoehn and Yahr scale (HYS) is a

clinical scale that describes the severity of PD. The scale consists of 5 stages, ranging from

Stage 1 (mild) to Stage 5 (severe). Table 2 describes the common symptoms at each stage.

HYS Symptoms

1 Only unilateral involvement, usually with minimal or no func-

tional disability

2 Bilateral or midline involvement without impairment of balance

3 Bilateral disease: mild to moderate disability with impaired pos-

tural reflexes; physically independent

4 Severely disabling disease; still able to walk or stand unassisted

5 Confinement to bed or wheelchair unless aided

Table 2: Summary of PD symptoms per HYS from [6]

There exists several neuroimaging analysis techniques that can be applied to T1-weighted

MRI images to gain insights into brain structure of individuals with a disease such as

PD. These methods include voxel-based morphometry, cortical thickness measurements,

and deformation-based morphometry. Typically, open source software packages such as

FreeSurfer [14] or FSL (FMRIB Software Library) [21] are used for conducting these analy-

ses. During the pre-processing step, these software packages are used to extract brain tissues,

such as the white matter (WM). In the statistical assessment phase, the measures obtained
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from the pre-processing step are evaluated to gain a deeper understanding of the data and

interpret the results.

In recent years, ML has emerged as a powerful tool for neuroimaging analysis due to its

ability to identify complex patterns and relationships. Researchers have used ML algorithms

to perform disease-associated predictions based on MRI data. For example, several papers

have used ML techniques to make predictions about PD based on MRI data [8] [33]. ML

has also been used to predict disease progression by analyzing MRI images taken over time

[32]. Despite its potential, MRI-based measurements of PD have yet to be widely adopted

in clinical and research settings, in part due to the lack of reliability, robustness, and re-

producibility of such measures. The lack of reproducibility of MRI measures of PD likely

originates in variability in population sampling, image acquisition parameters, and image

analysis conditions. For instance, the work in [37] showed that longitudinal measures of

cortical thickness revealed conflicting results for PD progression. Moreover, the work in [18]

has shown that measurements of anatomical volume and cortical thickness are affected by

the version of FreeSurfer, workstation type, and version of operating system used. There-

fore, the variability observed across imaging studies significantly threatens the reliability of

MRI-derived biomarkers.

1.4 LivingPark initiative

The LivingPark initiative investigates whether existing potential MRI biomarkers of PD are

impacted by analytical and dataset variability. It also examines whether this variability

can be leveraged, using ML or statistical methods to improve their quality. The initiative

investigates the following questions:

• What is the impact of the image analysis software toolbox on the reliability of potential

biomarkers?

• What is the replicability of potential biomarkers across different datasets?

• Can we improve biomarkers by combining measurements from multiple toolboxes or

datasets?

In order to address the research questions, the LivingPark initiative intends to replicate

eleven MRI-derived measures of neurodegeneration listed in [24], the most recent comprehen-

sive review of potential MRI biomarkers in PD. The repository containing all the replication
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studies can be found here (https://github.com/LivingPark-MRI/). The initiative’s aim is

not to debunk previous findings, but rather to use the analytical techniques in these studies

as a basis for comparing different analysis choices and measuring their impact.

1.5 Thesis objectives

The objective of this thesis is to examine the impact of reproducibility and replicability of

MRI-based biomarkers for PD progression prediction using ML. We performed a replica-

tion study of a previously published paper that contributes to the LivingPark initiative. We

conducted a reproducibility experiment to evaluate the ability to reproduce the original find-

ings. Additionally, we conducted a replicability experiment that introduces methodological

changes to the original pipeline and examined the robustness of ML to these changes.
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Chapter 2

Background

In this chapter, we will discuss current research on the use of MRI-derived measurements

in PD using ML. To achieve this, we conducted a literature review of recent studies in the

field. Through our review, we identified a paper using inclusion and exclusion criteria that

will serve as the primary focus of our reproduction & replication experiment.

2.1 Selecting a paper for reproduction & replication

To select a paper for our reproduction and replication experiment, we conducted a thorough

literature review to carefully choose the study for reproduction and replication. We used

PubMed to extract a list of publications based on MRI-derived biomarkers for PD. Following

that, we only selected the papers that used ML techniques. For each paper, we recorded

the main objectives, class being predicted (e.g. PD versus Healthy Control), dataset, imag-

ing protocols, features, software tools, ML algorithm, and performance metrics. We only

considered papers that used data from the Parkinson’s Progress Markers Initiative (PPMI)

database. The PPMI is a landmark study that launched in 2010 with a mission to identify

biomarkers of PD [23]. The study provides data on PD patients, including demographic in-

formation, clinical assessments, imaging data, and biological samples. The PPMI dataset is

a valuable resource for the PD research community, and it has been utilised in many studies

to advance the understanding of PD. We filtered out papers by applying exclusion criteria.

The criteria includes (i) absence of MRI-based prediction of or association with PD-related

phenotype (ii) use of functional or diffusion MRI (iii) use of non-publicly available software

toolbox (iv) sample population less than 30 (v) use of non-MRI imaging (vi) performs pre-

diction of PD v.s. Healthy Control. After reviewing the literature and narrowing down the
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options, we selected the study Predicting the progression of Parkinson’s disease using con-

ventional MRI and machine learning: An application of radiomic biomarkers in whole-brain

white matter by [34] as the focus of our reproduction and replication. The full literature

review is available in Appendix A.

The work in [34] developed and validated a radiomics signature using whole-brain WM

and clinical features to predict the progression of PD over 3 years. They segmented WM

masks from T1-weighted MRI scans, extracted radiomic features from the WM, trained a

classifier with these features and evaluated its capability to predict PD progression. Ra-

diomics is a field of research aiming to extract high-dimensional data from clinical images.

Radiomic features can be classified into four types, namely shape features, first-order statis-

tics features, second-order statistics features, and higher-order statistics features, which are

obtained using different methods and provide various kinds of information about the images

[38]. The study used the HYS to track the severity of PD over time. Patients were classified

into the disease progression group if the HYS score increased by any number over the 3-year

follow-up, or into the stable disease group if the HYS score did not increase. Seventy-two

patients were included in the progression group and seventy-two patients were included in

the stable group. [34] used SPM12 to extract whole-brain WM masks from which 378 ra-

diomic features were extracted using the A.K software (Quantitative Analysis Kit, version

1.2, GE Healthcare). The maximum relevance minimum redundancy (mRMR) algorithm

reduced the dimensionality of the extracted features to 7 features. Finally, they trained a

support vector machine (SVM) with a linear kernel to construct the radiomics signature.

The radiomics signature achieved an Area under the ROC Curve (AUC) of 0.795. The

pipeline used in [34] is depicted in Figure 2. [34] also developed a joint model that combined

both the radiomics signature and clinical features extracted from PPMI into a single model.

This model demonstrated a slightly better performance with an AUC of 0.836. However,

our study focuses primarily on evaluating the reproducibility and replicability of imaging

biomarkers, hence, we solely focused on the radiomics signature in our study. We chose [34]

as the focus of our reproduction and replication since it highlights the potential of using ML

techniques to develop biomarkers for disease progression. Identifying biomarkers that can

predict the progression of PD is essential to support the development of new therapies and

track reponses to these new therapies.
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One paper that caught our attention was called Automated Categorization of Parkinso-

nian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting by [9] [9]. The au-

thors categorised various parkinsonian syndromes by segmenting MRI scans using FreeSurfer.

They measured brain volumes from 13 segmented regions of interest (ROI) and used them as

input features to their ML models. Furthermore, they validated their results by using two in-

dependent cohorts from two separate studies. They achieved AUC values ranging from 0.839

to 0.871. The paper attracted our attention as it used recognized tools and techniques and

published trustworthy results. We did not choose this study as the focus of our reproduction

and replication as it did not use PPMI data, which is an important methodological aspect

of our research. However, we considered the features used in [9]’s study as an interesting

variation we could introduce to [34]’s features.

2.3 Conclusion of Literature Review

This paper is an attempt to both reproduce and replicate the study “Predicting the progres-

sion of Parkinson’s disease using conventional MRI and machine learning: An application of

radiomic biomarkers in whole-brain white matter” [34]. Our study first assesses the repro-

ducibility of the findings in [34] using the same dataset and similar analysis software as in the

original study. Further, we assess the replicability of the findings by introducing variations

in the methodological methods, including different cohorts, feature sets, ML algorithms, and

evaluation techniques.
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3.1 Cohort construction

The [34] study used data from the PPMI database. Their study population was constructed

by including PD patients that were matched by age, sex, and baseline HYS score across each

group. The MRI data was collected from 32 international sites using a Siemens Verio 3T

MRI machine. The protocol used for data acquisition was standardized by PPMI protocols

and included the following parameters: repetition time = 2300 ms, echo time = 2.98 ms,

inversion time = 900 ms, slice thickness = 1 mm, field of view = 256 mm, and matrix size

= 240 × 256. Each patient was evaluated over the course of 3 years. Patients with HYS

scores higher at follow-up than at baseline were included in the progressive set (n=72) and

patients with the same HYS score at follow-up and at baseline were included in the stable

set (n=72).

In our reproducibility experiment, our objective was to build a cohort that is as close as

possible to the one in [34]. We filtered the PPMI database for patients meeting the following

inclusion criterias:

• C1: received a diagnosis of idiopathic PD;

• C2: has a pair of visits spaced 3 years apart, with a T1-weighted MRI available at the

first visit;

• C3: has HYS data available at both visits.

After constructing the cohorts, we conducted sanity checks which ensured that (i) both

groups (stable and progressive) are equal size (ii) no patient is present more than once in

each group and (iii) patients in one group aren’t in the other group and vice versa. We

generated two groups of cohorts which will be referred to as the reproduction cohort and

the replication cohorts.

3.1.1 Reproduction cohort

PPMI data was accessed on November 22nd, 2022. For the reproduction cohort, we performed

an advanced image search in PPMI with the following filters:

• Research Group: PD

• Acquisition Type: 3D

• Field Strength: 3T

• Slice Thickness: 1 mm

• Manufacturer: Siemens
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• Manufacturer Model: Verio

• Weighting: T1

We will refer to this cohort in the paper as the Verio Reproduction Cohort (VRC). This

cohort uses all the filters that we could extract from [34]’s methods section.

3.1.2 Replication cohorts

In case the VRC does not successfully reproduce [34]’s cohort, we constructed 3 sub-cohorts

with increasingly permissive filters. For the first cohort, we included patients scanned using

a Siemens manufactured MRI machine. We performed an advanced image search in PPMI

with the following filters:

• Research Group: PD

• Acquisition Type: 3D

• Field Strength: 3T

• Slice Thickness: 1 mm

• Manufacturer: Siemens

• Weighting: T1

We will refer to this cohort in the paper as the Siemens Replication Cohort (SRC). The

VRC only includes patients that were strictly scanned using a Siemens Verio MRI machine.

The manufacturer model filter is slightly more permissive in the SRC than in the VRC,

which is meant to accommodate variations in manufacturer model descriptions throughout

the PPMI study.

In case the SRC does not successfully replicate [34]’s cohort, we constructed two more co-

horts with increasingly permissive filters. The Multiple Scanner Replication Cohort (MSRC)

includes patients scanned with any manufactured MRI machine and was obtained using the

following filters:

• Research Group: PD

• Acquisition Type: 3D

• Field Strength: 3T

• Slice Thickness: 1 mm

• Weighting: T1

The No Filter Replication Cohort (NFRC) includes patients with an MRI of any field

strength and a slice thickness between 1 mm and 1.2 mm. We used the following filters:
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• Research Group: PD

• Acquisition Type: 3D

• Slice Thickness: 1 mm ≤ 1.2 mm

• Weighting: T1

In addition to the cohorts described, we will also construct a functional state cohort

(FSC) based on the functional state of patients at each visit. The PPMI protocol requires

that clinical assessments be conducted twice per visit in different functional states (“ON

state” vs “OFF state”). The functional state of a patient refers to the patient’s response to

medication which importantly affects clinical measures such as the HYS and should therefore

be taken into account when building the cohort. [34] did not mention if patients in their

cohort were in the ON/OFF state. The variables related to a patient’s functional state

during a visit are reported in MDS-UPDRS Part III evaluations and include:

• PDSTATE (ON/OFF): the current functional state of the patient

• PDTRTMNT (0/1): 1 if the participant is on PD medication or receives deep brain

stimulation, 0 otherwise

• PDMEDTM: time of most recent PD medication dose

• PDMEDDT: date of most recent PD medication dose

In this FSC, we modified inclusion criterion C3 so that HYS measures of a given patient

were obtained with the same PDSTATE (ON or OFF) at both visits. This is meant to ensure

that HYS measures were consistently obtained between visits and are therefore comparable.

Moreover, the MDS-UPDRS Part III evaluations available in PPMI contain inconsistencies

and missing data that we corrected as described in Appendix B & C. We used the following

imaging filters on the resulting data:

• Research Group: PD

• Acquisition Type: 3D

• Field Strength: 3T

• Slice Thickness: 1 mm

• Weighting: T1

For each sub-cohort, we used the list of patients returned by the PPMI query and kept

those that have a pair of MRI visits spaced 3 years apart. Furthermore, we matched patients

from both groups based on age, sex and baseline HYS.
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VRC SRC MSRC NFRC FSC

Research Group PD PD PD PD PD

Acquisition Type 3D 3D 3D 3D 3D

Field Strength 3T 3T 3T any 3T

Slice Thickness 1mm 1mm 1mm 1mm ≤ 1.2mm 1mm

Manufacturer Siemens Siemens any any Siemens

Manufacturer model Verio any any any any

Weighting T1 T1 T1 T1 T1

Table 3: Summary of PPMI filters used in each cohort.

3.2 MRI Feature extraction

We extracted two sets of image features for each cohort. The first set of features (F1) is

radiomics-based as per [34]’s methods. The second set of features (F2) consists of WM, gray

matter (GM) and ventricle volumes measured from known ROI’s involved in parkinsonian

syndromes [9]. We chose to implement the F2 features because [9] achieved high performances

(AUC 0.839 to 0.871) in their study. Moreover, some of the ROI’s are in the basal ganglia,

which is strongly associated with PD. [9] used two independent cohorts to validate their

results, which increases the reliability and trustworthiness of these features.

3.2.1 Segmentation of T1-weighted images

We used two different software tools to perform automatic whole-brain segmentation for F1

and F2. For F1, we used the Segmentation module of SPM12 with default parameters to

get the tissue probability masks and build a WM binary mask for each patient. For F2, we
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used FreeSurfer v6.0 to get the ROI volumes needed.

3.2.2 Quality Control

In [34], two experienced neuro-radiologists used ITK-snap to manually modify WM volumes.

The modifications include (i) removal of nonbrain tissue, brainstem and cerebellum and (ii)

correcting segmentation errors in WM tissues. We used 3D Slicer v.5.0.3 to visualize and

assess the quality of WM segmentations produced by SPM12. For each MRI scan, we

reviewed the axial, coronal and sagittal slices. We used the following QC failure criteria:

• There is WM outside of the segmented WM mask;

• There is GM inside the segmented WM mask;

• The MRI has any common artifacts;

• The MRI has a low signal-to-noise (SNR) ratio;

We used FreeSurfer’s QA tools 3 to assess the quality of the segmentations. The tool can

be used for outlier detection, SNR calculation, WM intensity measurement and collecting

detailed volume snapshots.

3.2.3 Radiomic features

The A.K. software (Artificial-Intelligent Radio-Genomics Kits; GE Healthcare, Chicago, IL,

USA) used in [34] is not publicly available. Therefore, we used PyRadiomics [36], an open-

source Python package for the extraction of radiomics features. PyRadiomics can extract

a total of 56 features relevant to our study, including 24 gray level cooccurrence matrix

(GLCM) features, 16 gray level size zone matrix (GLSZM) features and 16 gray level run

length matrix (GLRLM).

[34] extracted a total of 378 features, including 42 histograms features, 10 Haralick fea-

tures, 9 FormFactor features, 126 GLCM features, 180 GLRLM features, and 11 gray level

region matrix features (GLZSM). From these 378 features, the authors used the maximum

relevance minimum redundancy (mRMR) algorithm to extract the following top 7 features

to train the model:

• Feature 1: GLCMEntropy AllDirection offset1

• Feature 2: RunLengthNonuniformity angle45 offset7

3https://surfer.nmr.mgh.harvard.edu/fswiki/QATools
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• Feature 3: Correlation angle45 offset1

• Feature 4: HaralickCorrelation angle90 offset4

• Feature 5: ShortRunEmphasis angle0 offset7

• Feature 6: HaralickCorrelation AllDirection offset7

• Feature 7: Inertia AllDirection offset4

We extracted two sets of features using PyRadiomics. The first set, RF1, includes 5

PyRadiomics features that best match the 7 A.K software features from [34], namely:

• Feature 1: Joint Entropy

• Feature 2: Run Length Non Uniformity

• Feature 3 / Feature 4 / Feature 6: Correlation

• Feature 5: Short Run Low Gray Level Emphasis

• Feature 7: Contrast

The mapping between A.K software and PyRadiomics features is not exact. Indeed,

the A.K software, unlike PyRadiomics, provides every feature at a specific angle and offset.

In PyRadiomics, for each feature class, the value of a feature is calculated for each angle

separately, after which the mean of these values is returned. The exact definitions of these

features are available in the PyRadiomics documentation4 and in the supplementary material

of [34], Table S2. [34] used the mRMRe R package [11] to identify the top 7 radiomic

features. As such, we will use the mRMRe package with R v4.2.1 on the PyRadiomics

features extracted per cohort with K=7 in the second set, RF2.

3.2.4 Volumes of Regions of Interest

We used FreeSurfer to extract 13 ROI’s that contribute to parkinsonian syndromes as shown

in [9]. Those include the midbrain, pons, putamen, posterior putamen, caudate, thalamus,

pallidum, precentral cortex and insular cortex in the gray matter, the superior cerebellar

peduncle, and the cerebellum white matter including the middle cerebellar peduncles in the

white matter and the third and fourth ventricles. Every region’s volume was used as input

features in our ML algorithms.

4https://pyradiomics.readthedocs.io/en/latest/features.html
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3.2.5 Feature Normalization

We normalized and centered the features using scikit-learn’s StandardScaler, resulting in the

following transformation:

Z =
x− µ

σ

where µ is the mean of the training samples and σ is the feature standard deviation in the

training sample. We then applied this transformation to the test set, reusing the mean and

standard deviation values learned in the training set.

3.3 Machine Learning Model

To predict disease progression, [34] trained a linear SVM based on the 7 features extracted

and selected from segmented WM masks of PD patients. The authors compared the SVM

with three other machine learning methods, including Gaussian Naive Bayes (GNB), k-

nearest neighbours (KNN), and decision tree (DT) classifiers. Since [34] did not mention the

name and values of the classification hyper-parameters, we used values that are commonly

optimized for these classifiers and reported them in Table 4. We implemented the models

using scikit-learn v1.1.3, a reference Python library for machine learning, using Python

v3.10.4.

3.3.1 Model Selection and Evaluation using Bootstrap

In this section, we describe the model selection and evaluation technique for the repro-

ducibility experiment. [34] used a bootstrap approach to compare classifiers and optimize

their hyper-parameters. To reproduce this process, we split the dataset into training (100

patients) and test (44 patients) sets having matched the HYS scores of the patients in each

set. We implemented model selection using 100 iterations of a bootstrap sampling loop ap-

plied to the training set. Each iteration randomly selects (with replacement) 50 patients,

normalizes the features for these 50 patients, fits the models to these 50 patients, and mea-

sures the AUC of the models on the remaining patients. To measure the stability of the

models across the 100 bootstrap samples, we computed the RSD defined as:

RSD =
σAUC

µAUC

× 100

20



where σAUC and µAUC are the standard deviation and mean of the AUC values obtained

on the 100 bootstrap samples. Finally, we selected the model with the lowest RSD and

applied it to the test set.

Model Hyper-parameter Range

SVM

Regularization parameter 0.1, 1, 10, 100, 1000

Gamma 1, 0.1, 0.01, 0.001, 0.0001

Kernel type Linear, Poly, RBF

Decision Tree

Max depth of tree 1, 2, 3, 4, 5, 8, 16, 32

Max number of leaf nodes 2, 3, 4 , . . . , 19

Min samples to split node 2, 3, 4, 5, 8, 12, 16, 20

K-nearest neighbors

Number of neighbors 1, 2, 3, . . . , 30

Power parameter 1, 2

Weight function uniform, distance

Gaussian NB Distribution variance np.logspace(0,-9, num=100)

Table 4: Hyper-parameter grid

3.3.2 Model Selection and Evaluation using Cross-Validation

In this section, we describe the model selection and evaluation technique for the replicability

experiment. We implemented a Stratified K-fold cross-validation (CV) loop similar to the

one in [9] and more common than the bootstrap loop mentioned previously. We first split the

cohort into training (100 patients) and test (44 patients) sets randomly. For model selection,

we applied to the training set a CV loop including 50 repetitions of a 5-fold stratified CV. For

each fold, we normalized the features using the standard scaler mentionned above, selected

hyperparameters based on the performance of the validation set and reported the AUC

computed on the test set using the model that performed the best average AUC in the

validation fold. We implemented this CV loop independently for the SVM, GNB, kNN, and

DT, with a scikit-learn validation pipeline, using the RepeatedStratifiedKFold function with

5 splits and 50 repetitions, and the GridSearchCV function with the parameters in Table 4.
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3.4 Infrastructure & code availability

We used Pandas v.1.4.3 and Numpy v1.22.4 to construct the cohorts. The extraction of WM

using SPM12 was carried out using Docker containers and Boutiques v0.5.25. The FreeSurfer

volumes were extracted using a Slurm script running on a Compute Canada cluster. All the

work was conducted using Ubuntu OS 22.04.

All our methods are available in a publicly available notebook (https://github.com/

LivingPark-MRI/shu-etal). To comply with PPMI’s Data Usage Agreements that prevent

users to re-publish data, the notebook queries and downloads data directly from PPMI. Since

PPMI does not have a data access API, we developed our own Python interface to PPMI

using Selenium, a widely-supported Python library to automate web browser navigation.

Using this interface, the notebook downloads PPMI study and imaging files to build the

cohorts and train the ML models. The utility functions to download and manipulate PPMI

data are merged in LivingPark utils, a Python package available on GitHub (https://

github.com/LivingPark-MRI/livingpark-utils).
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Chapter 4

Results

In the previous chapter, we discussed the various methods used for conducting the repro-

ducibility and replicability experiments. Now, in this chapter, we will shift our focus towards

the results that were obtained in the cohort construction, feature extraction as well as the

outcomes of both experiments.

4.1 Cohorts

Table 5 summarizes the demographics of the reproduction and replication cohorts that we

built. Although we built the VRC using the same PPMI filters as in [34], we were not able to

reproduce the original cohort due to a shortage of subjects scanned with a Verio scanner. In

fact, when we performed the query, we found a total of 29 visit pairs for progressive patients

with HYS=1, 98 visit pairs for progressive patients with HYS=2, 0 visit pairs for stable

patients with HYS=1 and 66 visit pairs for progressive patients with HYS=2. Using these

visit pairs, we were not able to match the number of patients in [34] while ensuring that a

given patient appears in at most one group.

The SRC is the closest cohort we were able to build to [34]‘s. As in [34], the SRC includes

72 progressive and 72 stable patients scanned with a Siemens manufactured MRI machine.

However, the patient breakdown by HYS value differs from [34] in each group: in the SRC,

both groups have 32 patients with baseline HYS=1 and 40 patients with baseline HYS=2

whereas in [34] these numbers are respectively 47 and 25. The age and F/M balance in the

SRC are comparable to [34]’s with 29 females and 43 males per group, an average age of the

stable group of 61.0±8.8, and an average age of the progressive group of 61.1±8.6. Finally, it

should be noted that out of 144 patients in the SRC, 96 have a different value of PDSTATE
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(ON/OFF) at their baseline and follow-up visits.

The MRSC includes all the patients meeting the SRC’s inclusion criteria except for the

MRI machine used. In the MRSC, 132 patients have been scanned with a Siemens machine,

4 with a GE Medical Systems machine, 8 with a Philips machine and 1 with an unknown

machine. There are 29 females and 43 males per group. The average age of the stable group

is 60.7 ± 9.4 and the average age of the progressive group is 60.7 ± 9.3. Both groups have 40

patients with baseline HYS=1 and 32 patients with baseline HYS=2. Finally, 103 patients

have a different value of PDSTATE (ON/OFF) at their baseline and follow-up visits.

The NFRC included patients with an MRI of any field strength and slice thickness be-

tween 1 mm and 1.2 mm. In the NFRC, 108 patients have been scanned with a Siemens

machine, 19 with a GE Medical Systems machine, 15 with a Philips machine and 2 with

unknown scanners. There are 35 females and 37 males per group. The average age of the

stable group is 62.0 ± 9.4 and the average age of the progressive group is 62.0 ± 9.2. Both

groups have 40 patients with baseline HYS=1 and 32 patients with baseline HYS=2. Finally,

100 patients out of the 144 have a different value of PDSTATE (ON/OFF) at their baseline

and follow-up visits.

The FSC includes an additional filter to only keep visit pairs with consistent values of

PDSTATE (ON/OFF) between the baseline and follow-up visits. The FSC only includes

102 patients and therefore does not reproduce the sample size in the [34] cohort. In total,

we could only find 22 patients with HYS=1 and 29 patients with HYS=2 in each group,

totalling 102 patients in the cohort.
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Shu et al. VRC SRC MSRC NFRC FSC

Stable Progr Stable Progr Stable Progr Stable Progr Stable Progr Stable Progr

Subjects,

No.
72 72 12 12 72 72 72 72 72 72 51 51

F/M No. 29/43 22/50 3/9 3/9 29/43 29/43 29/43 29/43 35/37 35/37 19/32 20/31

Age,

mean +/-

SD

61.30±

10.09

61.45±

11.44

66.5 ±

10.5

68.1 ±

6.9

61.0 ±

8.8

61.2 ±

8.6

60.7 ±

6.4

60.7 ±

9.3

62.0 ±

9.4

62.0 ±

9.2

60.3 ±

8.6

63.8 ±

8.9

Hoehn &

Yahr

Stage 1

(n)

47 47 0 0 32 32 32 32 32 32 22 22

Hoehn &

Yahr

Stage 2

(n)

25 25 12 12 40 40 40 40 40 40 29 29

Table 5: Summary of reproduction and replication cohorts constructed.
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4.2 Feature Extraction

The second set, RF2, consists of the top 7 features selected by the mRMR algorithm applied

to the 56 features available in PyRadiomics. We used the mRMRe v2.1.2 R package [11]

with R v4.2.1.

Cohort RF2

SRC

original glrlm LongRunLowGrayLevelEmphasis

original glcm Idn

original glcm ClusterShade

original glrlm GrayLevelNonUniformity

original glszm SizeZoneNonUniformityNormalized

original glcm ClusterProminence

original glcm Imc2

MSRC

original glcm InverseVariance

original glcm JointEnergy

original glcm MCC

original glszm LargeAreaHighGrayLevelEmphasis

original glszm SizeZoneNonUniformityNormalized

original glcm ClusterShade

original glszm SmallAreaLowGrayLevelEmphasis

NFRC

original glszm LowGrayLevelZoneEmphasis

original glszm LargeAreaHighGrayLevelEmphasis

original glszm SizeZoneNonUniformityNormalized

original glcm ClusterShade

original glcm Imc1

original glcm InverseVariance

original glcm Autocorrelation

Table 6: Feature extraction (RF2) per cohort using mRMRe (K=7)

The cluster shade (original glcm ClusterShade) and Size-Zone Non-Uniformity Normal-

ized (original glszm SizeZoneNonUniformityNormalized) appear in all three cohorts. No-

tably, none of the features extracted from [34] appear in any of the cohorts.
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4.3 Machine Learning Model

4.3.1 Reproducibility experiment

Our first objective was to reproduce [34]’s pipeline. For this reproducibility experiment, we

used the SRC since it is the closest cohort to [34] that we could create. We used the 5

radiomic features (RF1) extracted with PyRadiomics. The distribution of RF1 in the SRC

is illustrated in Figure 4. The ShortRunLowGrayLevelEmphasis feature for stable patients

stood out due to the presence of several outliers, particularly on the left-tail. Unfortunately,

we do not have access to [34]’s feature values, so we cannot directly compare the distribution

of feature our values to theirs. The box plot displays a left-skewed distribution which sug-

gests that the data may not be normally distributed. We trained the 4 models mentioned

previously (SVM, kNN, GNB,DT), optimized the hyperparameters as described in Table 4,

and used the bootstrap evaluation approach.
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The evaluation results for all the models are reported in Table 7. After hyper-parameter

tuning, none of the models achieved an average AUC higher than 0.501 on the validation set.

The Decision Tree model had the lowest RSD and was therefore selected for evaluation on

the test set (with hyperparameters max depth=1, max leaf nodes=2, min samples split=2)

on which it achieved an AUC of 0.523, which is slightly better than the AUC of a random

classifier. Using this pipeline described we were not able to reproduce the AUC of 0.795

reported in [34].

Figure 5 shows the ROC of every model in the validation set. The observed average

AUCs reach a maximal value of 0.501, suggesting that the [34] results may be the result of

a random sampling artifact.

AUC RSD

SVM 0.456 10.819

Decision Tree 0.473 7.443

kNN 0.501 10.182

Gaussian NB 0.441 12.387

Table 7: AUC & RSD values of each model’s best performer (defined as model with lowest

RSD) in the validation set. The Decision Tree achieved the lowest RSD and was therefore

selected for the test set in which it achieved an AUC of 0.523.
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Figure 5: ROC curves per classifier. Gray lines represent ROC curves for model instances over different

bootstrap iterations and hyper-parameters. The green curves show the 100 iterations of a hyper-parameter

configuration that produced the lowest RSD per classifier.

4.3.2 Replicability experiment

Our second objective was to test the replicability of [34] by using several cohorts and feature

sets. For every cohort we built, we trained our four models with our feature sets (RF1,

RF2 and ROI volumes) using the repeated stratified K-fold CV loop. In total, we trained

3 feature sets per model resulting in 12 sets of results per cohort that were compared with

[34]’s reproduced pipeline. The evaluation results for all the models are reported in Table 8.

30



Figure 6 shows the ROC of these configurations.

SRC MSRC NFRC

RF1 RF2 ROI RF1 RF2 ROI RF1 RF2 ROI

SVM 0.54 0.59 0.6 0.629 0.354 0.513 0.42 0.634 0.374

DT 0.418 0.433 0.533 0.486 0.524 0.379 0.521 0.685 0.561

kNN 0.387 0.536 0.498 0.536 0.579 0.453 0.652 0.626 0.652

GNB 0.472 0.437 0.434 0.609 0.557 0.248 0.484 0.416 0.444

Table 8: Performance of the replicability experiment on the test set with AUCs according

to the cohort, model and feature. Observations show that a few configurations (highlighted

in green) have promising results. However, no configuration came close to [34]’s result of

AUC=0.795. For the most part, the results are under chance level (AUC=0.5). There is

high variability of AUC values across cohorts. RF1 and RF2 are fairly consistent.

31





Chapter 5

Discussion

In the previous chapter, we presented the outcomes of our reproducibility and replicability

experiments. In this chapter, we will discuss the results that we obtained in each step of the

pipeline. Additionally, we will summarize our findings and provide a conclusion based on

the results of all of our experiments.

In this study, we investigated the reproducibility and replicability of a recent study

applying ML to MRI data to predict PD progression. We attempted to reproduce the

findings in [34], but were unable to do so despite following the same methods and using data

from the same database. The failure to reproduce these results were related to the three

phases of the analysis: cohort construction, feature extraction, and ML model construction.

The cohort construction proved to be more challenging than expected. In Section 3.1,

we attempted to reproduce the exact cohort used in [34] by applying the same filters as

described in their methods. Instead, the SRC was used as the main reference cohort since it

closely resembled [34]’s cohort. The major difference between [34]’s cohort and the SRC was

the baseline HYS score distribution per group. Our split for baseline HYS scores of 1 and 2

per group is 32/40 respectively, whereas [34] reports a split of 47/25 respectively. There is a

considerable difference between the SRC’s distribution and [34]’s cohort that we could not

ignore. The disparity in HYS scores between both cohorts has the potential to influence the

performance of our ML models. A possible reason why we could not reproduce the cohort

is that there may have been participants that withdrew from PPMI’s study. We initially

thought that this would result in their data disappearing from PPMI. However, according

to PPMI’s protocols section 22, any data collected before a subject’s withdrawal will not be

removed. Another possible explanation for our failure to reproduce [34]’s cohort could be due

to changes in the PPMI user interface that might be due to clerical errors. PPMI’s advanced

33



image search tool has gradually enabled users to input increasing numbers of filters over time.

We believe that the introduction of the “Mfg Model” (manufacturer model) filter impacted

our ability to search the database, as not all patient metadata may have been updated with

the Mfg Model information. There may be a significant number of patients scanned with

a Siemens manufacturer MRI machine without Mfg Model information. After investigating

PPMI’s database, we found that several images labeled as Proton Density weighting (PDw)

are actually T1-weighted images. Further analysis revealed that there are approximately 800

mislabeled T1-weighted MRIs labeled as PDw images in the imaging database. More details

on this fix can be found in the LivingPark utils v0.9. For the MSRC and NFRC, there were

no difficulties in constructing these cohorts as the increasingly permissive filters allowed for

the inclusion of more patients. Finally, despite our efforts to impute missing data in the

MDS-UPDRS Part III evaluation, the FSC did not meet the requirements set by [34]. In

summary, the cohort construction was difficult and our attempt to reproduce [34]’s cohort

mostly failed.

We reproduced the pre-processing pipeline after making necessary modifications. The

WM extraction using SPM12 was straightforward. Once we collected the WM, we did

not follow the manual steps outlined by [34]. Instead, we performed QC on the WM by

manually inspecting every image using 3D Slicer v5.0.3, while [34] used ITK-snap for QC.

We do not believe that the difference in software (ITK-snap and 3D Slicer) is a major source

of variability. However, the variation in the QC protocol between our study and [34] could

potentially introduce variability in the radiomic features. The most challenging aspect was

reproducing the feature extraction step as the A.K software is not publicly accessible and we

could not obtain access to it. We used PyRadiomics instead to extract radiomic features. [34]

extracted 378 features while we extracted 56 features. The large difference in the number

of features is due to the fact that PyRadiomics calculates the value of a feature for each

angle separately, after which the mean of these values is returned. Not having the exact

same features as [34] could have a big impact on the ML models. Nevertheless, we were able

to extract radiomic features which was a critical step of the pipeline. For feature selection,

we used the mRMRe library to select the top 7 ranked features, which were different from

those used in [34]. The ROI volumetric data was easy to extract thanks to the availability

of FreeSurfer. Although the ROI features extracted in (Chougar et al., 2020) are not the

primary focus of our study, we found that the ROI volumes enhance the replicability aspect

of this study.

The model we attempted to reproduce in [34] yielded underperforming results. Using the
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SRC, RF1 and a bootstrap evaluation method, we achieved AUC’s that are below chance

level (0.5). The Decision Tree model proved to be the most stable with an RSD of 7.443 with

maximum depth = 1, maximum number of leaf nodes = 2 and minnimum sample split = 2

as hyperparameters. The kNN model achieved an AUC of 0.501 in the validation set, which

was the highest among all models tested. The results suggest that the models are unable

to distinguish between stable and progressive patients. It seems to be making random or

constant predictions for all patients. We believe this is due to the very limited number of

training samples (n=50) in the bootstrap method which results in an insufficient amount of

data for the model to differentiate each group. Our reproducibility experiment may have

implications for ML research in the context of PD as well as for how results are reported. The

use of unconventional evaluation methods and the inevitable lack of methodological details in

ML/MRI papers is likely an important factor explaining our failure to reproduce the results.

It is important for researchers in the field of ML and PD to ensure that their methods are

well documented, available publicly, and make use of standard techniques and tools. We

tried to communicate with the authors of [34] by sending them two emails to discuss our

results and seek clarification on why we couldn’t reproduce their study. Unfortunately, we

have not received any reply from them yet.

To improve reproducibility in ML research for PD progression prediction, we make sug-

gestions for the community to consider when publishing their work. First and foremost,

publishing re-executable notebooks is highly recommended to allow fellow researchers to

follow-up on one’s work. When it comes to feature extraction, one should use publicly-

available tools such as FreeSurfer, SPM12, or PyRadiomics instead of proprietary softwares.

For ML related techniques, having a predefined training and test set can introduce bias and

should be avoided. Instead, it is preferable to randomly split the training and test set, and to

never peek at the test set until training is complete. For model evaluation, while bootstrap

is not necessarily bad practice, it is definitely not as widely recognized as CV. We strongly

recommend the proper usage of CV with well-defined hyperparameter tuning to thoroughly

evaluate a model’s performance. The work in [30] proposed an ML checklist introduced at

the NeuriIPS 2019 reproducibility program that can be used for ensuring good practices of

ML techniques. Moreover, [27] provides a user-friendly interactive checklist for neuroimaging

guidelines (https://ohbm.github.io/eCOBIDAS/#/). The COBIDAS protocol offers users

a list of considerations that researchers can refer to when conducting a neuroimaging analysis

pipeline, such as MRI acquisition, preprocessing, etc.

The best performer in the replicability experiment was obtained with the NFRC cohort
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trained with a decision tree (using hyper-parameters max depth = 8, max leaf nodes =

19 and min sample split = 3) with RF2 features, achieving an AUC of 0.685 on the test

set. Although some models achieved performances above chance level, none of the models

came close to the results reported by [34]. The replicability experiment results showed great

variability between cohorts, feature sets and models.

The results across cohorts lacked consistency. For instance, the kNN with RF1 achieved

AUC values of 0.387, 0.536, and 0.652 across the SRC, MSRC and NFRC respectively. Large

differences between cohorts were found. For instance, the AUC of SVM using ROI features

was 0.374 with NFRC and .6 with SRC. The SRC, MSRC and NFRC averaged AUC values

across models and features of 0.488, 0.489 and 0.539 respectively. We were surprised to find

that the NFRC performed better than the SRC, given that the SRC has patients scanned

from the same MRI manufactured machine. We expected the SRC to have an advantage

since the radiomic features extracted from the same MRI manufactured machine are more

likely to be consistent.

For some iterations in the CV loops, one radiomic feature set performed better than the

other, however, the results were overall consistent. The average AUC values of RF1 and RF2

were 0.513 and 0.531 respectively. The features selected in RF2 (see Table 6) across cohorts

were very different from those selected by [34] in RF1, however, the marginal difference in

average AUC values suggest that there is negligible variability in radiomic feature selection.

The average AUC value of ROI features was 0.472, however, some configurations revealed

promising results (0.6 with SRC & SVM, and 0.652 with NFRC & kNN). These results

suggest that ROI features could potentially be useful biomarkers of PD progression detection,

further validation is necessary to investigate its utility.

This work has several limitations to be considered. [34] developed their ML models with R

v3.5.1. In principle, we should have implemented our models using R for the reproducibility

experiment. We chose to use Python instead of R since in our experience the two languages

yield similar computational results. The imputation process used for missing scores in the

MDS-UPDRS Part III evaluation may contain errors due to the manual derivation of rules.

Consequently, this could result in the FSC being unsuccessful as there may not be enough

patients to construct the cohort. Moreover, negative bias in replication studies refers to

the pattern of replication studies that report weaker results compared to original studies.

To address negative bias, we attempted many different replications (as seen in Figure 3) to

ensure the robustness of our findings.

Our study has promising opportunities for future work. For feature selection, we could

36



opt to use CNN’s to learn features instead of using radiomic features. Alternatively, we

could further validate the performance of ROI volumes, as we saw their potential utility in

the replicability experiment. Further validation of this feature set would be an interesting

focus for future research. Since our models could not properly predict disease progression,

we could increase cohort sizes to improve model training. For feature extraction, we could

explore additional feature selection techniques such as Principal Component Analysis or

Random Forests. All in all, there are many possible replications in [34]’s pipeline that could

be interesting directions for future research.

To conclude, while we were unable to replicate [34]’s study with our adapted pipeline, we

found that there is a potential for brain imaging biomarkers for PD progression prediction.

Future work will likely need more data to ensure robust and generalizable results across

cohorts and imaging acquisitions.
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Appendix A

Literature review of MRI-derived

biomarkers for PD

Title Objectives Target

variable

Software ML models

Complex

networks

reveal early

MRI markers

of

Parkinson’s

disease.

Propose an unsupervised

general methodology to

model brain connectivity

for PD & NC. Explore

regions affected by disease

(ROI). Propose a learning

strategy to combine CF &

NF. Create diagnostic tool

for PD diagnosis based on

MRI features. The

proposed approach both

detects which regions are

mostly affected by the

disease and uses the

network measures to

provide classification

scores.

Diagnosis

(PD vs HC)

FSL, Brain

Extraction

Tool, FLIRT,

FreeSurfer, R

3.2.2

Random

Forests
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Classification

of PPMI

MRI scans

with

voxel-based

morphometry

and machine

learning to

assist in the

diagnosis of

Parkinson’s

disease.

Identify ROIs using VBM

& analyse regions for PD

detection. Extract features

based on first and second

order statistics. Select

features based on PCA.

Diagnosis

(PD vs HC)

CAT12,

SPM12,

JULIA 1.4,

WEKA

kNN (k=5),

MLP, SVM

radial kernel,

Random

forest, NB,

LC, Bayesian

network

An

Integrative

Nomogram

for

Identifying

Early-Stage

Parkinson’s

Disease Using

Non-motor

Symptoms

and White

Matter-Based

Radiomics

Biomarkers

From

Whole-Brain

MRI.

Segment WM to extract

radiomic features and

develop radiomic

biomarkers. Combine

biomarkers with non-motor

symptoms to build a

nomogram. The proposed

approach suggests the

possibility of developing

novel imaging biomarkers

of PD from WM using

radiomics and combining

them with prodromal

nonmotor symptoms to

generate an integrative

nomogram for disease

classification.

Diagnosis

(PD vs HC)

SPM12,

ITK-SNAP,

AK software,

SPSS 22.0 ,

GraphPad

Prism 6, R

3.3.1

SVM, Bayes,

Logistic

Regression,

Random

Forests,

Decision

Trees
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Predicting

the

progression

of

Parkinson’s

disease using

conventional

MRI and

machine

learning: An

application of

radiomic

biomarkers in

whole-brain

white matter.

The proposed approach

develops a radiomics

method using whole-brain

WM based on a machine

learning approach to detect

disease stage and

progression to PD in

patients using conventional

MRI.

Stable PD vs

Progressive

PD

SPM12,

ITK-SNAP,

AK software,

SPSS 25.0, R

3.5.1, Python

3.5.6

SVM (Linear

kernel),

Bayes, kNN,

DT

Sparse

feature

learning for

multi-class

Parkinson’s

disease

classification.

Propose a framework to

construct a LSR model

based on LDA and LPP.

Build a multiclassifier for

PD using PD, HC,

SWEDD scans

Diagnosis

(PD vs HC)

libsvm5, FSL SVM

Automated

Categoriza-

tion of

Parkinsonian

Syndromes

Using

Magnetic

Resonance

Imaging in a

Clinical

Setting

The proposed approach is

to asses the predictive

performance of ML for

categorisation of

Parkinsonian symptoms.

PD, MSA-C,

MSA-P,

atypical

pakinsonism

Matlab

R2017b,

FreeSurfer

6.0, FMRIB

5.0, SPM12,

scikit-learn

Logistic

regression,

SVM,

Random

Forest
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Unsupervised

learning

based feature

extraction for

differential

diagnosis of

neurodegen-

erative

diseases: A

case study on

early-stage

diagnosis of

Parkinson

disease.

Combines KSOM and

LSSVM for PD detection.

Compares PD, NC,

SWEDD scans. KSOM is

used as a vector

quantization technique to

reduce complexity.

LS-SVM is employed for

classification of subjects &

PD, HC, SWEDD.

Diagnosis

(PD vs HC

vs SWEDD)

VBM8,

SOMtoolbox,

Matlab,

BrainNet

Viewer

KSOM,

LSSVM

Detection of

Parkinson’s

Disease from

3T T1

Weighted

MRI Scans

Using 3D

Convolu-

tional Neural

Network.

Develop a 3D CNN model

for PD detection. 3D MRI

analysis was performed for

the detection of PD using

3D convolutional neural

network and PD, HC.

Diagnosis

(PD vs HC)

Python CNN
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Joint feature-

sample

selection and

robust

diagnosis of

Parkinson’s

disease

fromMRI

data.

Create a joint

feature-sample method to

select optimal samples &

features. Create a robust

classification model to

de-noise the selected subset

of features and samples.

propose a new joint

feature-sample selection

(JFSS) procedure,which

jointly selects the best

subset of most

discriminative features and

best samples to build a

classification model.

Robust classification

framework is proposed to

simultaneously de-noise the

selected subset of features

and samples. Diagnosis

(PD vs HC)

Diagnosis

(PD vs HC)

Not shared LDA, MC,

SVM, SR,

JFSS-C
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Determination

of Imaging

Biomarkers

to Decipher

Disease

Trajectories

and

Differential

Diagnosis of

Neurodegen-

erative

Diseases

(DIsease

TreND).

Detect imaging biomarkers

& build automated disease

diagnosis using SOM &

LS-SVM.

Diagnosis

(AD, HC,

MCI, PD,

SWEDD)

SPM 8.0,

VBM8

LS-SVM

Effectiveness

of imaging

genetics

analysis to

explain

degree of

depression in

Parkinson’s

disease.

Imaging genetic features

predicted and explained

the degree of depression in

Parkinson’s disease

appropriately

Depressed

PD vs Non-

depressed PD

NeuroX, FSL LASSO

Table 9: Preview of the literature review performed consisting a paper’s title, main objec-

tives, target variable, software used and ML models trained. To view the full grid, refer to

this google document.
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Appendix B

Data cleaning rules implemented in

MDS UPDRS III

Inconsistency

Problem: Some records have missing data for all UPDRS-III variables.

Fix: Remove these records

Problem: A few records have PDSTATE=ON and PDTRTMNT=0, which is inconsis-

tent:

Fix: Set PDTRTMNT=1 for these records. It doesn’t seem realistic that a plausible

PDMEDTM and PDSTATE=ON have been entered by mistake while the

patient was not under medication.

Problem: Some records have a non-empty PDMEDTM and have PDTRTMNT=0, which

is inconsistent.

Fix: Set PDTRTMNT=1. It is unlikely that a plausible medication time was en-

tered by mistake.

Problem: Some patients were on medication at screening time while PPMI patients were

supposed to be unmedicated at screening time.

Fix: Keep the records. Maybe the patients started medication between recruitment

and screening time.
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Inconsistency

Problem: Some records have PDSTATE=ON but PDMEDTM is after EXAMTM.

Fix: Discard the records.

Problem: Some visits have 3 exams while a maximum of two exams per visit are expected,

one in OFF state and one in ON state.

Fix: Remove exam with EXAMTM=NaN and PDSTATE=NaN when visit has 3

exams
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Appendix C

Imputation of missing PDSTATE &

PDTRTMNT in MDS UPDRS III

Case

Case I PDSTATE=OFF and PDTRTMNT=NaN.

Fix: Set PDTRTMNT=0. It is unlikely that these records correspond to medicated

patients when none of the variables related to medication have a value.

Case II PDSTATE=NaN and PDTRTMNT=0.

Fix: Set PDSTATE=OFF. The patient is not medicated and for this reason

PDSTATE is likely to not have been entered.
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Case

Case III PDSTATE=NaN and PDTRTMNT=1

Fix: IF record belongs to a visit with two exams:

• Set PDSTATE=OFF for record with earliest EXAMTM.

• Set PDSTATE=ON for record with latest EXAMTM.

ELSE determine PDSTATE as a function of PDMEDTM and EXAMTM:

• IF PDMEDTM or EXAMTM are missing THEN discard records.

• IF PDMEDTM is earlier than EXAMTM

– IF PDMEDTM is earlier than EXAMTM

∗ IF EXAMTM-PDMEDTM ≥ 30 min THEN set

PDSTATE=ON.

∗ ELSE Discard record

– ELSE set PDSTATE=OFF
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