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Abstract 

A Compositional Learning Diagnoser for Discrete Event System 

Tarek Bekir 

 

In this thesis, the design of model-based fault diagnosis systems for Discrete Event Systems (DES) is 

studied. The correct performance of a model-based diagnoser depends on the accuracy of the plant DES 

model used in its design. The behavior of this nominal model may differ from the actual plant behavior 

(i.e., the true model) due to various reasons such as modeling errors, modeling simplifications and coding 

errors. The difference between the nominal model and the true model may result in observations (i.e., 

sensor readings) that are unexpected by the diagnoser, resulting in "discrepancy." 

In the literature, "learning diagnosers" have been proposed that in cases of discrepancy add transitions 

to the nominal DES model to account for the unexpected behavior. It is assumed that the nominal and 

true models have the same number of states, and their difference is in the transitions. 

In general, every discrepancy can be explained by different sets of additional transitions, each 

representing a hypothesis. To narrow down the list of hypotheses, the principle of parsimony is used - 

giving preference to less complex hypotheses. After a set of hypotheses is generated, using future 

observations, this set is narrowed down. In some cases, the set may have to be expanded. 

In this thesis, a new approach to learning diagnoser is introduced that takes advantage of the structure 

of the plant to generate hypotheses. This is meant to reduce the number of hypotheses and to generate 

hypotheses that are more likely to correctly explain the discrepancies. Specifically, the proposed method 

takes advantage of the fact that models are built incrementally from component models and their 

interactions. Hence, in the learning process, new transitions (to explain discrepancies) are added to the 

component models and their interactions (rather than to the complete flat model of the plant).  

This results in a compositional  approach to learning. In this thesis, a framework for the compositional 

approach is presented and the learning rules and the corresponding algorithms are developed. A case study 

from process control is used to illustrate the proposed approach.  
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Chapter 1 

Introduction 

Modelling a Discrete Event Systems (DES) is very important step and a corner stone when dealing 

with the design of supervisory control and fault diagnosis systems. Our focus in this thesis is directed to 

automata. Petri nets and automata are two examples for the modelling categories used to study DES [1].  

The chosen model category will guide the design process towards the particular design technique. The 

accuracy of a model is one of the significant aspects that strongly affects the quality of design of systems. 

A model-based design process of a diagnoser could be prone to incomplete models. This model 

incompleteness usually appears as a result of a lack of full information about the components’ behavior. 

In addition, model incompleteness could result from the simplification of some component models (e.g., 

ignoring some transitions or faults that are very unlikely to happen). However, in the long run and in 

critical applications such as aerospace and industrial processes, the absence of such transitions in the 

model could severely impact the diagnosis or degrade the quality of the diagnoser.  

Due to the importance of model correctness and completeness, vast research work has been carried 

out for the identification of the missing transitions in incomplete models. In these approaches, 

observations (e.g., sensor readings) that are not consistent with the plant DES model are used to generate 

hypotheses about the missing transitions. In this thesis, we aim to develop a learning approach that can 

generate hypotheses that are more likely to accurately explain the inconsistency between observations 

and the plant model. 

In our approach of this thesis, we aim to identify the missing transitions at the component level. This 

is based on the fact that true models are constructed from the synchronous product of the constituent 

automata models of the components. This approach leads to the benefit that once a missing transition is 

identified at the component level, the correction will subsequently propagate throughout the model and 

correct many other missing transitions in the composed model.  
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1.1 Literature Review 

This section presents a literature review of research work related to this thesis. 

1.1.1 DES Modelling 

The nature of a system dictates the technique by which the system can be modelled. In continuous 

variable systems that are usually represented in terms of differential or difference equations, the state is a 

continuous vector of values, and the state space is a continuum of these vectors of states. On the other 

side, in discrete event systems (DES), the change of a variable to another value or from a range of values 

to another range is associated with an “event”, e.g., from low to medium and from medium to high. In 

continuous systems, state change is driven by time while in discrete event systems, state change is driven 

by events and therefore, they are called event-driven systems [1]. 

Modelling discrete event systems typically comes as a result of the abstraction of their real time 

continuous counterpart systems. This abstraction appears in terms of defining events signifying changes 

in the levels of the process. For example, in the case of continuous flow rate, defining low flow or high 

flow events instead of monitoring the full range of the flow could be looked at as an abstraction [1], [3], 

[51]. 

A massive body of work has examined modelling techniques of discrete event systems.  In general, 

the two popular and competing techniques are the automata and the Petri nets (PN) [4],[5].  In the 

literature, various types of automata have been discussed and presented where the modelling methods 

depend on the characteristics and dynamics of the system. Deterministic automata represent a DES having 

a single deterministic transition from a state to another by an event [1]. Contrarily, non-deterministic 

automata represent DES with uncertainty in transitions due to unobservable events, or when a single event 

leads to multiple different states. Timed automata could be constructed by incorporating  timing 

information along with the events[1],[6] and has some applications in fault diagnosis [7] and supervisory 

control [8].  

Stochastic automata are used to model DES with probabilistic nature where the stares are random and 

was used to study unpredictable machines failures and sharing resources [1],[9],[10]. Fuzzy logic is 

incorporated in fuzzy DES to define transition function that results in a membership value to a state based 

for a given event [11], [12] and is used to study the uncertainty of some applications as problem 

scheduling, string matching, and database systems [14]. In large DES systems, Hierarchical Finite State 

Machines (HFSM) divide the DES to small segments called D-hollons each of which represents a stage 
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of the plant. This approach is used on fault diagnosis where the focus will be on the running D-hollon 

instead of considering the entire plant model [15][16][17]. 

Therefore, and in terms of modelling, the chosen approach of the DES is crucially important for the 

application that uses it. Two major domains that use the DES model are the Fault diagnosis as in 

[18][16][17][21] and the Supervisory control as in [1] [22]. 

1.1.2 Observers and Diagnosers 

Fault detection and isolation have a crucial importance in practical systems. Extensive research has 

been carried out in the domain of fault diagnosis. The proposed approaches differ in the model or in the 

underlying technique for diagnosis. In the literature, there are several approaches for fault diagnosis such 

as using rough set theory [23], applied on distribution line [24] and the fault diagnosis of incomplete 

models [25]. Also, the approach of fault tree is used for fault detection and diagnosis of Printed Circuit 

Board (PCB) [26]. In this thesis we will focus on the fault diagnosis using automata model that is based 

mainly on DES observers and diagnosers. 

In a real system, some events could take place that are not measured and hence are unobservable and 

drive the system from one state to another. For example, these events are related to some faulty conditions 

in the plant. An observer [1],[18],[19] is able to give an estimate for the state or the group of states at 

which the system reaches after an event occurs. This is with taking into consideration the possible 

unobservable events that might have occurred. 

An observer could be the core building block of a diagnoser where after having a state estimate, a 

mapping function could estimate the normal/faulty condition of the system [20][3]. These conditions 

could reveal important knowledge about whether the system is behaving normally, or it is in a certain 

faulty condition [20][3]. 

In [18] and [19], fault diagnosis using automata model is presented and explored. In this approach, 

the events set is portioned to normal events and groups of faults. This approach presented an event-based 

diagnoser that receives the observable events generated as inputs and gives the system condition as output. 

While the aforementioned work tackled the systems modeled as standard automata, another version 

concerned with systems modeled as Moore output automata is discussed in [3],[20] and [27]. In this work, 

the states are partitioned into groups based on the system condition being in normal or in one of the faulty 

modes.  Consequently, this approach uses a state-based diagnoser that takes as inputs the output labels 

generated by the system and evaluates the state estimates, then provides the estimated system condition 
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as output. In [21] an application of such event-based approach has been introduced along with a case 

study in power grids. A diagnoser that combines both the event-based and the state-based was introduced 

in [28] as an event-state based diagnoser for timed automata. 

In [29], an overview of research work is presented that encompasses a vast amount of literature on the 

diagnosis methods in DES and groups them from four classification aspects. The first aspect is based on 

the fault compilation being either off-line or online. The modelling formalism such as  petri nets, 

automata, state charts, and hierarchical state machines is used as the second aspect. The third classification 

aspect presents the fault representation based on the models that could be event-based, state-based, or  

fault-tree models. The decision structure is the fourth aspect of this classification that presents three 

architectures of centralized, decentralized and distributed. 

In the literature, some other forms of diagnosis analysis were conducted for specific problems.  For 

example, the robust fault diagnosis and diagnosability are introduced in [30],[31] respectively to deal with 

stochastic DES where the true model belongs to a set of probabilistic automata. A robust diagnoser is 

introduced that detects the fault occurrence with no false alarm and with reducing the misdetection rate. 

Another example is the research work in [32] that introduces the synchronous diagnosis which is based 

on observing the fault-tree of system components. This is to avoid the large number of states generated 

by composition of numerous components. The approach is extended to introduce synchronous 

codiagnosability in a decentralized structure. 

In fact, in real-world systems with complexity, not all the faults of the system are diagnosable. A 

range of undiagnosable faults could be still considered diagnosable and called I-diagnosable if the fault 

could be detected and isolated after executing the so-called indicator observable event. Otherwise, the 

fault is considered unobservable [18], and [19]. 

Partial diagnosable discrete event systems were also studied in [33] to evaluate quantitatively the 

diagnosability of systems by introducing two indicators. The first is the “diagnosable degree” that briefly 

gives the weight ratio of a diagnosable fault to all faults. The second indicator is the “diagnosable depth” 

starting from the root fault to the lowest fault level in the fault model. 

1.1.3 Incomplete DES Models 

The DES model incompleteness problem has been examined extensively. This problem is concerned 

with cases where the existing knowledge could be insufficient to model the system completely. This 

incompleteness in turn affects the accuracy of applications such as fault diagnosis or supervisory control 
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and therefore needs to be addressed. The incompleteness could result from the abstraction of the real 

continuous processes that does not sufficiently capture all the dynamics of the system, or it could arise 

from model simplification [3] [27]. The problem of model incompleteness is addressed in the literature 

by several approaches that are mainly based on data collection from the system and then using this data 

to build or complete a model. 

Discrete event system identification is an approach that resembles the notion of system identification 

of the continuous system. It does not require any prior knowledge of the system components [34],[35] 

and the system could be considered as a black box. In this approach (e.g. [36]), the data collected from a 

real time system could be used by the identification algorithm to build up an automaton model that could 

simulate the observed behavior of the system, then it is in fault detection. A recent technique for the 

identification of DES called Deterministic Automaton with Outputs and Conditional Transitions 

(DAOCT) that aims to do fault detection is introduced in [37] and [38]. The data is collected to build an 

automaton representing the fault-free behavior. The model is compared with  system observations (i.e., 

sensor readings) to detect discrepancies and isolate faults. 

An extension of the DAOCT approach that incorporates timing information is called the Timed 

Automaton with Outputs and Conditional Transitions (TAOCT) and is introduced in [39].  

Rather than using complete black box identification techniques, a hierarchical approach of two levels 

was proposed in [40], where the higher level is built by the expert knowledge while the lower is obtained 

by identification. 

1.1.4 Learning in DES 

The notion of learning is widely used in the domain of artificial intelligence and machine learning. 

The basic idea is to start with having a set of data which is used for the learning process using a certain 

machine learning technique to construct a trained model to be used later for prediction. In the supervised 

learning, the set of training data includes inputs and outputs so that the trained model can predict the 

output of any new input. The non-supervised learning  has no outputs in the training data and the trained 

model is used to classify new inputs based on their structure [41], and [42]. 

The notion of learning has been incorporated in the learning of DES models. The research work in 

this domain has some general features or aspects. One of the main aspects is the use of online or offline 

learning algorithms to construct automaton model. Another feature is whether it begins with a completely 

unknown model, or it begins with a partially known model. In addition, another aspect is whether the 
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resulting automaton is deterministic or non-deterministic. Offline learning algorithms generally have a 

set of positive and negative examples respectively for the strings to be accepted or rejected to provide a 

minimal automaton [43].  

An online setup of Angluin’s L* algorithm is introduced in [44] to tackle the case of when we start 

with a completely unknown system. In this method, a set of examples called Teacher and a learning 

algorithm called Learner are discussed. This approach is employed in the identification of deterministic 

automata.  The L* algorithm of identification is used in a learning-based application of  supremal 

nonblocking supervisor as in [45] and is used also in [46] for a synthesis of permissive supervisor for 

Markov Decision processes. Also, in [49] deterministic Moore automata are learnt from input and output 

traces. Furthermore, the NL* algorithm is used for non-deterministic automaton identification in [43] and 

it is also utilized in the learning of partially known DES in [13].  

Since the diagnoser itself is an automaton, the learning of automata was employed in learning the 

diagnosers. In [47], the proposed learning approach aims to build the diagnoser incrementally from 

collecting the information of the unknown DES plant in observation tables.  

The authors of [3] and [27] consider the problem of fault diagnosis using DES model. There it is 

assumed that the model used for diagnosis, called the nominal model, may be missing some transitions. 

The number of missing transitions is not known but an upper bound on the number is assumed available. 

Furthermore, it is assumed that the nominal model has all the states of the plant’s true model. 

Inconsistency between plant observations and diagnoser is called discrepancy. In case of discrepancy, 

hypotheses for the missing transitions are proposed to amend the nominal model and resolve the 

discrepancy. To limit the number of hypotheses, the Parsimonious Covering Theory (PCT) is used. 

The PCT that is presented in [48] with the parsimony principle stating that if there are two given 

explanations where all other factors are equal, it is preferable to use the less complex. Thus, PCT is used 

in [3], and [27] to construct a learning diagnoser that aims to detect the faults as well as it contributes to 

completing and repairing the model. 

The approach in [3] and [27] uses the flat model of the DES plat which is typically very large. This 

leads to a large number of hypotheses which may result in the missing transition never been identified. 

To improve the speed and accuracy of the learning process, it would be useful to take advantage of any 

knowledge that we have about the structure of the system. 
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1.2 Objectives and Contributions 

1.2.1 Objectives 

In this thesis we consider the design of learning diagnoser. Here discrepancies between observations 

and the nominal model are used to generate hypotheses to amend the nominal model. In order to improve 

the speed and accuracy of the learning process, we will take advantage of the fact that models for systems 

are typically built by combining the models of the components and their interactions. Thus, the missing 

transitions should be added to the model of individual components and interactions (rather than to 

complete plant model). 

1.2.2 Contributions 

The contributions of this thesis could be listed in the following items. 

- This thesis introduces a new framework to formalize modeling uncertainty that takes advantage 

of the structure of the system. 

- The thesis develops a learning algorithm to use discrepancies between observations and nominal 

model and generate hypotheses to correct the nominal model. 

- The learning model is applied to a case study from process control to identify a missing transition 

in one of the interaction models on the process. 

1.3 Thesis Outline 

In chapter 2, we review the required background material for this thesis starting from defining DES 

with related constituent topics of automata, language, operations, then we introduce observers and 

diagnosers. Chapter 3 introduces the problem along with its framework by defining the system block 

diagram components. The components are DES block, nominal model and observer block, Learning 

algorithm block and the diagnoser block.  Then it gives the problem statement followed by two sets of 

experiments: the first is missing transitions with observable events and the second is missing transitions 

with unobservable events. In chapter 4, the design of evet-state observer is introduced with its update laws 

followed by defining the discrepancy symptoms. The mathematical formulation of the learning algorithm 

is presented, then the computational complexity is discussed. A case study is introduced in chapter 5 to 

apply the learning algorithm to a process having incomplete model. Chapter 6 lists the accomplishments 

and contributions. Finally, chapter 7, summarizes the thesis and states the scope of applicability and the 

limitations and proposes the future work.  
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Chapter 2 

Background Overview 

2.1 Discrete Event Systems 

The Discrete Event Systems abbreviated as DES are the systems that could be modeled in terms of 

their states change driven by events.  The events could be regarded as an abstraction of the  change of the 

values of the continuous systems where the state variable changes from a discrete value to another or from 

a range to another, e.g., from close to open or from low to high. The state space becomes a set of states 

where the transition from a state to another is driven by a discrete event. Such type of systems could be 

represented as automata or petri nets, where in the study we will focus on automata of Finite State 

Machines (FSM). 

2.2 Languages and Automata 

2.2.1 Language 

Starting with the basic constructing element of the automata which is the Symbol. While it could be 

regarded as a letter in the natural language, the symbol represents an event in the model of discrete event 

system. An alphabet denoted as Σ is a finite set of symbols, and it could be seen as the set of events that 

can occur in a certain DES. A sequence of symbols (events) formed by the symbols of the language Σ 

takes the form σ1 σ2 σ3 …. σn for n ≥ 1 and σi ∈ Σ , 1 ≤ i  ≤ n. The sequences are called strings or words. 

Therefore, for a practical point of view, we can consider the language denoted by L that the DES model 

can speak means the sequence of events that the system can generate. 

For an alphabet Σ, the set of all possible and finite sequences of symbols (events) is denoted as Σ+.  

The word or string that has no symbols or events is called empty string or empty sequence which is 

denoted by ε. 

Σ* denotes the set of all finite sequences of events in the Σ with including the empty sequence ε.  

Thus, Σ* = Σ+ ⋃ {ε}. 
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The length of a string S in the number of symbols in this string and is denoted as |S|, where if S is an 

empty string i.e., S= ε, then |S| =0. If we consider a string S is comprised of three substrings t,u,v 

such that S=tuv, then t is called a prefix and v is called a suffix. 

2.2.2 Operations on Languages 

Consider L and M are two languages defined over the alphabet Σ. 

The intersection of the two languages is defined as follows: 

L∩M := {s | s ∈L and s ∈M}, is the set of strings that belongs to both L and M.  

The union of the two languages is defined as follows: 

L⋃M := {s | s ∈L or s ∈M}, is the set of strings that belongs to either L or M.  

The concatenation of two languages L and M is the set of strings that results from concatenating the 

strings in L and the strings in M. The concatenation of L and M denoted by LM is defined as follows: 

     LM:= {tu ∈ Σ* | t ∈L and u ∈M }. 

The complement of a language L is the set of stings in Σ* that does not belong to L, and is 

denoted by LCO and is defined as follows: 

     LCO := Σ* - L = { s ∈ Σ* | s ∉ L}. 

The prefix-closure of a language L denote by 𝐿 is defined as follows: 

     𝐿 := {S ∈Σ* |∃t ∈Σ* [st ∈L ]}, is the set of all prefixes of all the strings in the language L. 

The language is said to be prefix closed if L = 𝐿, where in general, L ⊆ 𝐿. 

2.2.3 Automata 

The automaton or the Finite State Machine is one of the techniques used to model DES [1], [2]. 

Generally, the automaton could be represented as the following tuple. 

G=(X,Σ,η,x0,Xm), 
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Where X is the set of states, Σ is the finite set of events of the automaton G, η: X × Σ→ X is the 

transition function which is a partial function because it might not be guaranteed that all the events are 

defined at all the states, x0 is the initial state, Xm: finite set of marked states where  Xm ⊆X. 

For the empty string denoted as ε, η (x,ε) = x. If we considered S  as a sequence of symbols (events), 

the transition function η could be extended such that  η (x,S σ) = η (η (x,S ),σ). 

 

The language that automaton G can generate is called the closed language or the closed behavior 

denoted by L(G) and is defined as follows: 

L(G) := {s ∈ Σ* | η(x0,s) ≠ ϕ} where L(G) is a closed language, i.e., L(G) = 𝐿(𝐺). 

The marked language of the automaton G denoted by Lm(G) is the set of strings that belongs to the 

closed language of G and ends with marked states, and is defined as follows: 

     Lm(G):= {s∈ L(G) | η(x0,s) ∈ Xm}. from the definition we can see that  Lm(G)⊆L(G). 

 

Definition 2.1 Considering a set Q of elements, the cardinality of this set is the number of the elements in 

this set denoted as |Q|. 

□ 

For example, Q = {q1, q2, q3,…, q10}, the cardinality of the set Q is |Q|=10. 

  

2.2.4 Deterministic and Nondeterministic Automata 

The automaton is said to be deterministic if the transition function η is defined such that it evaluates 

to only one (determined) state. This means that η: X × Σ→X. An automaton is said to be nondeterministic 

if the transition function evaluates to more than one state where η: X × Σ→ 2X and 2X represents the 

power set of X. 

Another aspect of nondeterministic automata is the effect of ε transitions where the empty string could 

cause the system to evolve from a state to other state(s) rather than to keep the system in the same state, 
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i.e., for a state x∈X, then η(x,ε)∈2X. 

2.2.5 Types of Automata Based on Input and Output Mapping 

Basically, there are three types of automata used to model the Discrete Event systems based on 

mapping the events as inputs and the output labels to the states.  

2.2.5.1  Standard Automata (FSM) 

For its simplicity, this type of automata is widely used in literature and named as the standard automata 

or Finite State Machine (FSM). It has the same tuple definition as the given formerly and could be 

represented graphically by the state flow diagram as shown in the following example. 

1 2

3

α

β

σ
θ

 

Figure 2.1: Example of Standard FSM 

 

The nodes or circles represent the states, while the symbols over the arcs represent the events. This 

type of automata can be used to model the systems in which the events can include the enough information 

to move the system from a state to another. Assume that the system was at the initial state-1, when the 

event α occurs, the system moves to state-2 and so on. From an operational or practical point of view, the 

events here include all types of commands (Start/Stop), measurements (High/Low) and any kind of 

informational or calculated events (Started/Done/Timeout) that cause a transition to another state. 

2.2.5.2 Moore Automata 

This is the second type of automata in which entering the state is accompanied by emitting an output 

label. The definition of this type of automata will be extended to include an output map function. Usually 

in practice, the output labels represent the measurements or readings that indicate entering a certain state. 

Figure 2.2 shows an example for a Moore automaton with the output labels (y1,y2,y3) indicated over their 

corresponding states. 
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1 2

3

α

β

σ
θ

y1 y2

y3

 

Figure 2.2: Example of Moore Automata with Showing the Events 

If the system is initialized at state-1, the output y1 will be emitted, and if the event α occurs, the system 

moves to state-2 where the output y2 is generated and so on. To represent the output mapping of the states 

to their corresponding output labels, the automaton definition will be extended to include the output map 

function as given by the following tuple. 

G=(X,Σ,η,x0,Y,λ,Xm), 

Where X is the set of states, Σ: finite set of events, η: X × Σ → X is the partial transition function, x0 

is the initial state,  Y is the finite set of output labels, λ: X → Y output map function, Xm is the finite set 

of marked states. 

 

From practical point of view, this type of automata is suitable to model the systems in which it is 

required to represent the readings of the sensors as output labels while the events that causes the transitions 

with their causal action on the arcs. For example, the events could be the commands (Start/Stop) while 

the output labels could be (High/Low). 

A simpler version of this automaton is widely used also in the literature where the events are omitted 

from the arcs since their effect has been already captured by the output labels. For example, as shown in 

Figure 2.3 with comparison with Figure 2.2, it is known that after the output y1  is measured at the initial 

state, the output y2 will appear after the event α has already occurred. Or let us say for example, the flow 

became high after the valve has been already opened. Thus, the output labels here sometimes include the 

enough information of the transition from a state to another. 

Note: in the context of this thesis the word “label” will always mean the output label that might be 

written as just “label” for simplicity. 
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1 2

3

y1 y2

y3

 

Figure 2.3: Example of Moore Automata with Omitting the Events 

2.2.5.3 Mealy Automata 

This type of automata with its similarity to Moore automata, the output label is appended to the events 

on the arcs. Hence, for example in Figure 2.4, it could be interpreted as if the system was at the initial 

state, then the event α occurred and the output label y2 is measured, the system is moved to state-2 and so 

on. 

1 2

3

α/y2

β/y1 σ/y2

θ/y3

 

Figure 2.4: Example of Mealy Automata 

2.2.6 Partially Observed Systems Modeled as Automata 

The notion of having an ε-transition or an empty string could be used to introduce the phenomenon 

of a DES system that evolves to other states without having an observable event (command or feedback) 

occurred. In other words, there are some unmeasurable or unobservable events that happened and led to 

such evolvement and this event could be represented as an ε-transition. Practically, the lack of enough 

sensor to monitor all the events may lead to such scenarios. But in this case, the evolvement by an ε-

transition will add a nondeterminism to the DES model.   

Therefore, rather than using the ε-transition with its nondeterminism, another version of the DES 

systems is introduced to use the unobservable events in lieu of empty string transitions.  This version of 

DES is called the partially observed DES and has a deterministic structure that incorporates the 

unobservable events [1].  
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2.2.7 Types of Events 

While modelling the Discrete Event System as automata, two types of events are to be considered. 

The first type of events that can occur in the system and could be observed by sensors or by any other 

monitoring or controlling entity in the system. This type of events is known as the observable events. The 

alphabet of this type of events is denoted as ΣO.  Examples of these events can include commands to start 

or stop a pump or the detected measurements of a pressure. On the other side, some events can occur in 

the system and cannot be observed or measured directly while its effect might  appear later on. These 

events are known as the unobservable events.  The alphabet of these events is denoted ΣUO. Examples of 

these events can include the unobservable failure of a closed valve that becomes stuck in the close position 

where this could not be measured but its effect on a flow reading can appear later on. 

Thus, for a DES modeled as an automaton, the alphabet Σ is the union of these two disjoint sets of 

events or these two alphabets, i.e.,  or Σ=ΣO⋃ΣUO. 

2.3 Automata Operations 

There are so many operations that could be performed on the automata. Here, we will introduce the 

required operation to be used within the context of this thesis in the following definitions. 

2.3.1 Unary Operations 

Definition 2.2 for a state and a symbol, the transition function is said to be defined and denoted as η(x,σ)! 

if η(x,σ) ≠ ϕ                                                                                                                   

□ 

This means that at state x, and after the occurrence of the event σ, the automaton can evolve to a set of 

states evaluated by η that is not an empty set. 

 

Definition 2.3  For an automaton G, a state x∈X is said to be a reachable state if there exist a string s 

Where,   s∈Σ* and x=η(x0,s)!  

□ 
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Definition 2.4 For an automaton G=(X,Σ,η,x0,Xm), and s is a string of symbols,  the reachable part of 

G written as reach(G) is the sub-automaton Gr with the set of states Xr that is defined as: 

Xr = {x∈X  | ∃s ∈ L(G) and  η(x0, s) = x}.  

□ 

The reachable part of an automaton G denoted as reach(G) is the sub-automaton Gr of the automaton G 

where all states are reachable from the initial state x0, or in other words, it is the sub-automaton after 

removing the unreachable states. 

2.3.2 Binary Operations 

 Definition 2.5 For the two automata G1= (X1,Σ1,η1,x01
,Xm1) and G2= (X2,Σ2,η2,x02

,Xm2), the product 

of G1 and G2 written as Product(G1,G2) could be defined as follows: 

Product(G1,G2) = reach (X1×X2, Σ1∩Σ2 ,η, (x01
,x02

), Xm1
×Xm2

). 

Where the transition function η is defined as follows: 

 

η((x1,x2),σ) := {  
(η1(x1,σ) ,η2(x2,σ)) if σ∈Σ1∩Σ2 and η1(x1,σ)! and η2(x2,σ)!

 undefined otherwise.
 

Where x1∈X1, x2∈X2, and σ ∈ Σ1∩Σ2. 

□ 

For two automata, a symbol or an event is said to be common if this event or symbol belongs to the 

languages of both of the two automata while the event is said to be private to an automaton if it belongs 

ONLY to the alphabet that specific automaton.  

 

Definition 2.6  For the two automata G1= (X1,Σ1,η1,x01
,Xm1) and G2= (X2,Σ2,η2,x02

,Xm2) we write the 

synchronous product of G1 and G2 as sync (G1,G2) and could be defined as follows: 

sync (G1,G2) = reach (X1×X2, Σ1⋃Σ2 ,η, (x01
,x02

), Xm1
×Xm2

), 

where for x1∈X1, x2∈X2, and σ ∈ Σ1⋃Σ2 
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η((x1,x2),σ) := {

(η1(x1,σ) ,η2(x2,σ)) If σ ∈ Σ1∩Σ2 and η1(x1,σ)!  and η2(x2,σ)!

(η1(x1,σ), x2) If σ ∈ Σ1 − Σ2 and η1(x1, σ)! 

(x1 , η2(x2,σ))

undefined
If  σ ∈ Σ2 − Σ1 and η2(x2, σ)!

otherwise.

 

□ 

This synchronous product operation is also called the parallel composition. 

 

Definition 2.7 Consider a model that is built by synchronous product of some components, at a certain state 

x of the entire system’s model, the state value of a component is the specific state of the component at 

which this component reached when the system reached x .  

□ 

For example, for a system built by the synchronous product from the components V1, V2, F respectively, 

and reached the state x =(C,O,H), the state value of F is H. 

Definition 2.8 The ε-Reach operation of a state x ∈ X denoted by εR(x) will return all the states that 

could be reached by the empty string ε starting from the state x. Normally, x belongs to εR(x). 

The ε-Reach could be extended for a set of states Z∈X,  where the ε-Reach is the union of all the ε-Reach 

of the member states and could be written as εR(Z) = ⋃ 𝜀𝑅(𝑥)𝑥∈𝑍  

□ 

 

Definition 2.9 for an automaton G, consider the set of events Σ that could be divided into two disjoint 

subsets ΣO, ΣUO such that Σ=ΣO⋃ΣUO, where ΣO is the set of observable events and ΣUO is the set of 

unobservable events where, also ε ∈ ΣUO, the unobservable reach of the state x∈X denoted as UR(x) is 

given by: 

UR(x) = {y∈X : (∃ s∈Σ𝑈𝑂
∗ ) and η(x,s)= y}. 

□  

By considering the following example shown in Figure 2.5, the events α1 and α2 are unobservable events. 
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UR(x3) = {x3} 

UR(x4) = {x4 , x6 ,x7} 

If Z={x4 , x5} then UR(Z) = UR ({x4 , x5}) = {x4 , x5 , x6 ,x7} 

 

x3

x5

x4σ1

x6

x7

α1

σ2

α2

 

Figure 2.5: Unobservable Reach Example 

 

2.4 Observers and Diagnosers 

Since the partially observed DES models contain observable and unobservable events, it will be 

required to have an observing entity to monitor the progression of the DES automaton while there are 

unobservable events. 

The following example explains the need to employ an observing block in the system to monitor the 

progression by estimating the states that the system might reach after an observable event occurs. 

The observable events (σ1,σ2) are represented by arcs with solid lines, meanwhile the unobservable events 

are represented by dotted lines. 

As shown in Figure 2.6, the system is at state x3 and an observable event σ1 occurred, so the model says 

that the system shall progress to state x4. But maybe there are some transitions in the model after x4 having 

unobservable events α1 and α2 such that they might happen while they are unmeasurable. Thus, the 

observer shall estimate that the system is in any of these states {x4, x11, x12}. 

x3

x5

x4σ1

x11

x12

α1

σ2

α2

 

Figure 2.6: Example on the Need for Using an Observer. 
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2.4.1 Observer 

As mentioned formerly, the main purpose of the observer is to estimate the states to which the system 

might reached after an observable event has occurred considering that unobservable events might 

occurred. 

The observer of a DES is an automaton which is built using the automaton model of the system and 

evaluates the unobservable reach of each observable event in the DES. Then observer automaton will be 

the version of the DES model that has all the transitions defined by observable events [1]. 

For a partially observed automaton G=(X,Σ,η,x0,Xm) where Σ=ΣO ⋃ ΣUO, the observer is the automaton 

Gobs=(Xobs,Σo,ηobs,  x0obs
, Xmobs

) that could be computed by the following formulas [1]: 

x0obs
= UR (x0). 

 ηobs (Z,σ) =  UR ({x∈X : (∃xz∈Z) and (x=η(xz,σ))}. 

Xm = {Z∈Xobs : Z ∩ Xm ≠ϕ}. 

The following example shown in Figure 2.7, demonstrates the construction of the observer. 

 

1

3

2

4

6

5

a

c

d

R1

R2

{1,5,6}

{3,4}{2,6}

R1

c
aR2,b

d

e2

e1

e3

b

e4

R2G Gobs

 

Figure 2.7: Example of Constructing an Observer 

x0obs
= UR (x0) = UR (1) = {1,5,6}. 

At state-1 if the event “a” occurs, the estimated destination will be UR(η(1,a)) = UR(2) = {2,6} 
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At state-1 if the event “c” occurs, the estimated destination will be UR(η(1,c)) = UR(3) = {3,4} and 

so on. The same operation conitues with all the states with their corresponding observable events to 

construct the remaining transitions in Gobs. For Xm={1,4} in the automaton G, thus Xmobs
 is the set of 

states in Gobs that has a nonempty intersection with Xm which are {1,5,6} and {3,4}.  

2.4.2 Diagnoser 

Faults are considered as a type of unobservable events where it could not be measured directly by 

sensors, but their occurrence could be diagnosed based on their effect that appears after their occurrence 

or after some transitions in the system. 

The diagnoser is an automaton that is designed based on the current model of the system. It could be 

seen as an advanced version of the observer where it can do the job of the observer to estimate the current 

state of the partially observed system. In addition, it can diagnose which unobservable fault(s) event 

occurred and map it to a system condition. 

Two approaches were basically tackled in the literature. The first is the event-based approach 

introduced in [18] where the system is modeled as a standard FSM. The second is the state-based approach 

introduced in [20] where the system is modeled as Moore automaton. In this thesis, we will discuss the 

background review of the state-based diagnoser approach [20]. 

For a plant modeled as a nondeterministic Moore automaton G = (X,Σ,η,x0,Y,λ), it is assumed that there 

are p failure modes denoted as F1, …FP and the normal mode denoted as N. The condition set denoted by 

K = {N, F1, …Fp}. The set of states X is segmented into subsets of states according to the condition such 

that X= XN ⊍ XF1⊍ …⊍ XFP where ⊍ means the disjoint union. The condition map is denoted as k(x) 

where k: X→K is a function that maps each state to its corresponding condition based on its membership 

in which of the segmented subsets of X. The condition map is extended to act on subsets where k(z) = 

{k(x) | x∈z}. 

The diagnoser monitors the plant modeled as a Moore automaton while generating the output labels 

reflecting the measurements (y1, y2, …). Based on the generated output label, the diagnoser will estimate 

the current state. Due to the unobservable events, the diagnoser estimation evaluates to a set of states 

denoted as z.  Then the diagnoser uses the condition map k(z) to decide the condition. Therefore, the 

diagnoser could be regarded as a unit that receives the output label sequence (y1, y2, …) to estimate the 
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system condition in one of the modes in the condition set K = {N, F1, …Fp}. 

In this approach, the diagnoser D is defined as a Moore automaton as follows: 

D = (Z ⋃ {z0},Y, ξ, z0,K^,k) where Z is the set of this diagnoser states z1,z2,.. (Each single state z is a 

set of states estimated for the diagnosed plant automaton G. The initial state z0= (z0,0) is denoted as a 

pair because it has a different update law where z0∈2X –{ϕ} and usually z0=X. The set of output labels 

of the diagnosed automaton G denoted by Y is the event set of the diagnoser D.  K^ ⊆2K – {ϕ} is the 

output set of the diagnoser while k: Z ⋃{z0}→ K is the output map function. 

The partial transition function is defined as ξ:Z ⋃{z0} × Y → Z  where  the state transition zK+1= 

ξ(zK,yK+1) is given by: 

z1= z0⋂ λ-1({y1}). 

zK+1 = {x | λ(x) = yk+1 and (∃ x’∈zK : x’ x)}. 

Where x’x denotes that x’ is output adjacent to x which means that x is reachable from x’ through a 

path of states in which all the outputs = λ(x) but the output at λ(x’) ≠ λ(x) and this output λ(x’) is considered 

the first output change after the constant output path. 

In terms of computational complexity, it is possible to economize the computation by doing 

reachability analysis. In this analysis, breadth-first search is used to compute the output-adjacent states 

for each state in the model. The result of this analysis will be stored in a table called Reachability 

Transition System (RTS) [20]. The following example explains the idea. 

Example 2.1: Consider the following automaton as the model of the system. 
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Figure 2.8: Example Automaton for RTS 
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Table 2.1: Reachability Transition System 

State Output-adjacent states 

1 3,5,6 

2 3,5,6 

3 2,4 

4 3,6,7 

5 3,6,7 

6 1,5 

7 6 

 

To explain how the output-adjacent states are computed in the reachability transition system, we 

consider the state 1, it has two outing transitions. The first from 1 to 2 where the label is still L1 the same 

as state 1, if we continue to state 3, the label changes to L2, thus this is the first output change on a path 

(1→2→ 3) with the same label reachable from 1. From 2 if moved to 5, this will be first label change of 

the label to be L3 on the path (1→2→5), thus 5 is output adjacent. Finally, the second outing transition 

from 1 to 6, will find a new label at 6 of L4 on the path (1→6) thus, 6 is output adjacent. Therefore, the 

state 1 has {3,5,6} output-adjacent states that will be substituted in the RTS. 
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Chapter 3 

Problem Formulation 

This chapter will discuss the research problem of this thesis to find an algorithm that corrects the 

incomplete DES automata models. The following sections of this chapter introduce Fault diagnosis 

framework and the experiments operated to find what is the useful information that could be used to 

conclude some rules that lead to construct the learning algorithm. The experiments will tackle two types 

of missing transitions, the missing transitions with observable events and the missing transitions with 

unobservable events. 

3.1 The Fault Diagnosis Framework 

Before stating the research problem, it is required to present the framework within which the problem 

originates, and the proposed learning algorithm will perform. The framework here means the entire block 

diagram that includes all the entities that comprise the fault diagnosis application of this thesis. This 

includes the true plant, the model along with the observer that monitors the plant and finally the learning 

algorithm and its position among all these components. 

The importance of introducing the framework before the algorithm details and the formulation is to 

introduce the functional operation of the algorithm. This functional operation will explain how and when 

the algorithm is triggered and what is expected to be received as input data and what should be produced 

as output. Figure 3.1 represents the operation framework in which the proposed learning algorithm should 

function. 

3.1.1 DES Block 

The true plant along with the controller is modeled as a discrete event system (DES). In this block, 

the plant reactions are observed typically by controller commands and measurements in terms of 

observable events and the generated output labels. These observations (observable events and output 

labels) will be applied as inputs to the observer block. 
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Figure 3.1: Entire Framework Block Diagram 

3.1.2 Nominal Model and Observer 

Since the systems modeled as DES contain unobservable events, it is required to incorporate an 

observer to estimate the current state of the system. The observer is designed using the current model of 

the system which is composed by the synchronous product of the automata of the components and is 

referred to as the nominal model. The components automata are modeled by the best of knowledge, thus, 

if there are any missing transitions, in some component will lead to an incomplete model that might 

behave differently from the plant.  

The observer that is designed based on the nominal model estimates the system progression from one 

state to another taking into consideration the unobservable events. While the observer is monitoring the 

progression of the system, if there is any new observation (output label or observable event) that could 

not be explained by the observer and it has an empty set of estimates, this condition is flagged as 

discrepancy. Then, the discrepancy is forwarded to the learning algorithm for correction. In this thesis, 

the observer is an event-state observer that uses both events and output labels to estimate the next state 

and will be discussed in detail in the following chapters. 

3.1.3 Diagnoser Block 

The diagnoser block receives the state estimates from the observer and it contains a condition map 

function that maps the estimated states to their corresponding condition either normal or fault. It should 

be noted that, in the literature as in [20], the typical diagnoser carries out both tasks of being an observer 

to estimate the states and then maps these estimates to the corresponding condition. In this thesis, the two 
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tasks are separated, where the estimates are handled by the observer while the condition mapping is 

handled by the diagnoser.  

3.1.4 Learning Algorithm 

Recalling that the observer is monitoring the plant by receiving the events and output labels and it 

aims to estimate the progression from one state to another. If the nominal model was incomplete in terms 

of missing some transitions, so its behavior does not match the behavior of the real plant, (either it cannot 

explain the events or the output labels) then, a discrepancy will be flagged. This discrepancy is signaled 

to the learning algorithm that will collect and analyze all the current information from the true plant and 

the nominal model. Then it works on correcting the nominal incomplete model by hypothesizing the 

missing transitions to match the real plant. Such a correction will update the nominal model that in 

consequence will update the observer. This is indicated by the updating arrow in the block diagram. 

3.1.5 Learning Diagnoser 

As shown in the block diagram, the three blocks of, the nominal model and observer, the learning 

algorithm and the diagnoser will comprise the function of the bigger block of the learning diagnoser. This 

is in fact to introduce the idea of designing a diagnoser that monitors the plant and learns to get updated 

by detecting any discrepancy in the current nominal model that will be corrected by the learning 

algorithm. Consequently, the learning diagnoser is updated based on the new learnt nominal model.  

3.2 Problem Statement 

The DES models represented by automata are constructed by the synchronous product of the 

components’ automata and the interactions automata. In case of lack of knowledge or modeling mistakes, 

or if the automaton of a certain component is missing some transitions, this in turn will affect the entire 

synchronous product and the resulting model becomes incomplete. Such model incompleteness would 

impact the correctness of the application that could be fault diagnosis or supervisory control as examples. 

Since the focus of this thesis is on the domain of fault diagnosis, a diagnoser will be used to monitor 

the plant and to evaluate the states estimation of the model. This estimation is done based on the events 

and the output labels occurring in the plant. If the model is incomplete, the plant will generate some events 

or output labels that leads the observer to estimate an empty set of states ϕ. Such an empty estimation of 

states blocks the diagnoser from evolving to estimate the next states to which the model has moved to and 
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generates a discrepancy. The discrepancy describes the case where the diagnoser is unable to explain or 

to estimate which state the system is progressed to because the events and output labels do not match with 

the current available incomplete model. This thesis tackles the problem of designing a learning diagnoser 

by finding an algorithm that exploits the current available information in the plant and the nominal model 

to generate hypotheses for the missing transitions to correct the incomplete models. The correction will 

be carried out on the level of components to correct the wrongly modeled components that are suspected 

to be the cause of the discrepancy. 

The general assumptions concerned with the problem are as follows: 

- The automata of the components are modeled as Moore Deterministic automata and the resulting 

model is a deterministic Moor automaton. 

- The components are modeled with the correct number of states, and they do not miss any state. 

- The alphabet of event symbols is well defined, and we are not adding more events. 

- The correct number of components are modeled, and we are not missing any component. 

- The output map of the model is known. 

- The unobservable events are known, and we are not adding new unobservable events. 

In the coming sections or chapters, the specific assumptions will be listed individually to cope with 

the corresponding concerned topic. 

3.3 Steps Towards the Solution 

In this research, a set of tests and experiments are operated to conclude some rules by which it is 

possible to formulate a heuristic learning algorithm that can be used to correct the incomplete models. 

We start the experiment with an exactly well-defined and known DES model represented by an 

automaton of the entire model. This model will be referred to in the context of this research as the true 

model. The second step of the experiment is to deliberately delete some transitions in certain components 

and redo the synchronous product. Thus, another incomplete version of the model is generated by 

synchronous product. This resulting automaton will be referred to as the nominal model. The goal is to 

emulate the situation as if according to our best of knowledge we modeled a system and resulted in the 

nominal model. But since this model is still incomplete and missing some transitions, then it is required 

to find a method to detect the missing transitions and hypothesis them to achieve the complete true model. 
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The two models, the true model automaton and the nominal model automaton will be evolved by some 

sequence of events such that the true model will generate output labels and progress normally. On the 

other side, the nominal model will evolve with the same sequence of events as the true model. The 

response of the nominal model towards the applied sequence of events will be monitored in terms of 

complying with the sequence of events and generating the same output labels as the true system model or 

not. In case of any mismatch of the generated output labels or if the nominal model is unable to proceed 

with the sequence of event, a discrepancy flag shall be raised signifying that a missing transition is 

detected. 

A group of experiments are operated by the formerly explained scenario and some rules were 

concluded to detect the suspected components and to hypothesize the missing transitions. These rules will 

be used to formulate a learning algorithm that is proposed to solve the problem of correcting the 

incomplete DES models represented by automata. 

Owing to the fact that, the DES systems automata might have unobservable events that are not 

measurable. Therefore, monitoring the evolvement of the DES automata is done by observers or 

diagnosers to estimate the current state which usually be in form of an estimated set of states. 

It should be noted that, during the experiments operated to conclude a learning algorithm, the true and 

nominal models and the sequence of events are exactly known. Therefore, the observer or diagnoser is 

not incorporated in the experiments. The evolvement will be done step by step or state by state by 

comparing the two models instantly against each other. Later on, after concluding the learning algorithm 

rules, the application of the algorithm on some examples and a case study will incorporate using an 

observer to estimate the current set of states that the nominal automaton might evolved to. Briefly, the 

work will be started assuming the model automaton evolves from a single state to exactly a single state. 

Then the work will be extended where the model evolves from a single to a set of state estimates (by 

incorporating the observer). 

3.4 Introduction  to Experiments 

3.4.1 Types of Missing Transitions in Automata 

This section discusses the possible types of missing transition in the models. As shown in Figure 3.2, 

the two general types of missing transitions are related to the nature of events being observable or 

unobservable. These two general types will pursue two different branches in the learning algorithm. In 

addition, the observable events could be categorized in terms of alphabet as private to a single component 
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or it could be common between two or more components in the system.  

Missing Transitions 

Unobservable events

Common Events Private Events

Observable events

Common Events Private Events

 

Figure 3.2: Type of Missing Transitions 

3.4.2 Steps of Experiments 

These are the general steps of operating the experiments: 

1-  Start with a system having a group of components e.g., valves, pump, motor, etc. 

2-  Model the components as Moore automata. 

3-  Perform the synchronous product to get the complete automaton of the true model. 

4-   Selecting the automaton of  one or more components and delete some transitions deliberately. 

5-  With the modified components, perform the synchronous product to get the automaton of the 

nominal model that is missing transitions. 

6-  Apply a known sequence of events on both true model and nominal model and observe the 

progression. 

7-   If the nominal model has a different response or fails to proceed with the same sequence of events, 

a discrepancy is detected. 

8-  Collect the current information observed at the moment of discrepancy. 

9-  Analyze the observations to determine the suspected components, sources, and destinations of the 

missing transitions. 

10-  Generate the hypotheses in the suspected components (Correct the missing transitions in the 

components). 

11-   Perform synchronous product to update the nominal model. 

12-   Continue the progression of the models with applying events and reject the incompliant 

hypotheses. 
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3.4.3 Experiments Preparation and Organization 

As mentioned in the steps of the experiments above, some transition will be deleted deliberately, so we 

organized the experiments based on the following criteria. 

- Missing transitions with observable events are divided into two types tested separately. The first is 

for private events and the second is for common events. 

- Missing transitions with unobservable events are tested if it occurs with its effect appears after an 

observable event and while its effect appears without observable events. 

- We start with testing the case of deleting a single transition, then multiple transitions to see the 

effect of the model structure on the ability to detect and retrieve the missing transitions.  

- We test changing the sequence of events from the true system to see its effect changing the 

observation while the model structure is fixed. 

- Throughout all the experiment, the main goal is to make sure that the algorithm is able to correct 

the missing transitions or to learn about the limitations if there are any. 

3.4.4 Definitions 

Definition 3.1: The Output map it is a table that is built by listing all the possible states of the entire model 

that are comprised by the cartesian product of the states of the individual components along with the 

corresponding output label as shown in the following example. 

Assume that we have a system of cascaded valve and a pump V and P, followed by a flow meter as 

shown in Figure 3.3. The automaton of V has the states of Xv={C,O} standing for closed and open. The 

pump automaton has states of Xp={Off,On}. The flowmeter reading will be taken as the output label 

where it is either High denoted as H or Low denoted as L. 

F

V

P

 

Figure 3.3: Example Automaton  for Demonstration 

Xv = {C,O},  Xp = {Off,On}  

The cartesian product of Xv and  Xp is given by Xv × Xp = {(C,Off),(C,On),(O,Off),(O,On)}. Thus, the 

output map table is constructed as follows: 
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Table 3.1: Output Map for the Demonstration Example 

V P Label 

C Off L 

C On L 

O Off L 

O On H 

 

The first row corresponds to the first state in the cartesian product (C,Off) which will produce a 

measurement of the Low flow dented by the output label L. similarly, the last row corresponds to the last 

state (O,On) with a flow reading of High denoted by H. 

The output map will be used in the experiments, since building the model from the components is 

done by the synchronous product which starts with calculating the cartesian product of the states of the 

components. Then each of the states of the resulting automaton should be assigned an output label 

according to the definition of the Moore automata. That’s why the output map should be prepared for the 

experiments, and it is assumed that the outputs are known to the designer or the system engineer. 

Definition 3.2: The Discrepancy State (DS) is state of the nominal model at which the discrepancy in 

event or output label occurs or is detected as mismatch between the behavior of the nominal model and 

the true mode. 

Definition 3.3: The Suspected Components (SC) are the components suspected of having the missing 

transition. 

Definition 3.4: The Last Conforming State (LCS) is the last state in the nominal model that was 

conforming with true model by the applied sequence of events without discrepancy neither in event nor the 

output label. 

Definition 3.5: The Last Conforming Label (LCL) is the last output label in the nominal model that 

conforms with the actual received output label from the true model. 

Definition 3.6: The Actual Label of Discrepancy (ALD) is the actual output label when a discrepancy is 

detected. 
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Definition 3.7: The Expected label is the output label generated by the nominal model or component at a 

specified state. 

Definition 3.8: The Event of Discrepancy is the event causing the nominal model to generate a 

discrepancy because it is missing at the discrepancy state. 

Definition 3.9: The Hypothesis Source is the state in the component from which the missing transition 

starts. 

Definition 3.10: The Hypothesis Destination is the state in the component at which the missing transition 

ends. 

3.5 Missing Transitions with Observable Events 

This section will present a set of experiments to conclude the building rules of the heuristic algorithm 

that will be used to recover the missing transitions having observable events.  

3.5.1 Assumptions of the Experiments 

1- The components e.g., valve or pump are modeled with the correct number of states and are not 

missing any states. 

2- Only some transitions with observable events are missing in the automata of the components. 

3- The missing transitions have observable events that are known in the alphabet, and they are not 

new events to be added to the alphabet. 

4- The output map is known, and it is the same for the true and nominal model. 

5- The events of faults are unobservable and for simplicity, it is assumed that the unobservable events 

are considered to be observable, and they will not occur while studying the missing transitions 

with observable events.  

Under the above assumptions, a discrepancy between the nominal model and the actual plant 

observation is in the form of an observable event that is generated in the plant but is undefined in the 

nominal model. 
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3.5.2 Private Events 

In this section, the cases of missing private observable events in the nominal model will be discussed. 

Starting by the system shown in Figure 3.4, the system is comprised of two cascaded valves V1 and V2 

followed by a flowmeter F.  

The first valve automaton V1 is a two-state valve of open and closed positions modeled by the automaton 

V1. The states are: 

C: Close.                     O: Open.          SC: Stuck Close.         SO: Stuck Open. 

The events symbols are defined as follows: 

V1C: Close command.            V1O: Open Command. 

V1SC: Stuck Close fault.         V1SO: Stuck Open fault. 

 

The second valve automaton V2 is a gradually controlled valve abstracted as three positions of Close, 

Partially Open and Open modeled by the automaton V2 where  the states are: 

C: Close.     Po: Partially Open.     O: Open.    SC: Stuck Close.      SO: Stuck Open. 

The events symbols are defined as follows: 

V2CT: Close one Turn command.            V2OT: Open one Turn command. 

V1SC: Stuck Close fault.                           V1SO: Stuck Open fault. 

 

The controller automaton Cont. is the controller sequence for this system modeled by the automaton 

Cont. The control sequence will start by opening V1 then opening one turn of V2 then open the second 

turn of V2. For the closing sequence, the controller will close V2 one turn then close V2 the second turn 

and finally closes V1. 

The output labels given by the flowmeter F are: 

fL: Low flow         fM: Medium Flow            fH: High flow 
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Figure 3.4:  Private Events True Model 

The output map is given in Table 3.2 below. 

Table 3.2: Output Map of Private Events Experimental System 

V1 V2 F 

C C fL 

C Po fL 

C O fL 

C SC fL 

C SO fL 

O C fL 

O Po fM 

O O fH 

O SC fL 

O SO fH 

SC C fL 

SC Po fL 

SC O fL 

SC SC fL 

SC SO fL 

SO C fL 

SO Po fM 

SO O fH 

SO SC fL 

SO SO fH 

 

The system model will be computed by performing the synchronous product of V1,V2 and Cont 
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Gt = Sync (V1,V2,Cont) 

will produce the automaton of the true model or the real plant. Now we will delete the transition with 

V2CT between O and Po and the transition with V2CT between Po and C as shown by the crossed arcs 

in Figure 3.5. 

PoC
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v2SO
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v2CT

v2SC v2SC
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O

v2SC

v2SO

v2OT

v2CT

v2CT v2OT

v2OT
v2CTv2OT

v2CT

XX

 

Figure 3.5: Nominal Model of V2 

This deletion of transition is to deliberately simulate the problem in which the modeling is done while 

lacking or missing some transitions (as if this this a modeling or coding error or it is the best of available 

knowledge currently), so the component V2 is incomplete and will be denoted as V2’. 

By reperforming the synchronous product of V1,V2’,Cont we will have another incomplete version of 

the model that is referred to as the nominal model. This nominal model is regarded practically as the 

model resulting after a modeling process while missing some information due to any reason and it required 

to find a method to correct the missing transitions. 

The nominal system is  

GN = Sync(V1, V2’,Cont) 

Note: The experiments will be numbered as Experiment-Pn, where P stands for  the “private events” 

while n is the experiment number. 

3.5.2.1 Experiment-P1 

A sequence of events will be applied to both the complete and the nominal automata. In this example, 

this sequence of events is generated by the controller “Cont”. The following state transition chart depicts 

the progression of each automaton. As shown below in Figure 3.6, the events’ sequence of  

V1O,V2OT,V2OT,V2CT,V2CT,V1C is applied to both automata. The associated output labels are 

indicated at the top of each state. 

 



34 

 

True model: 

 

Nominal Model: Missing V2CT between O and Po in V2 

 

Figure 3.6: P1 True and Nominal Models 

The first complete automaton is compatible with the sequence of events as all these events are defined 

at the states. Meanwhile, the second nominal model reached the state (O,O,C4) where both valves are 

fully opened, and the output is high flow then after applying the event V2CT is could not progress to 

another state. This is because this automaton is built by sync operation while deleting V2CT in V2 at state 

O. Hence, when the model reaches the state O,O,C4, the event V2CT is not defined at this state and cannot 

proceed to another state. This situation is referred to as a discrepancy where the nominal model is unable 

to progress while an event is generated by the real system. Thus, up to here, we simulated a situation in 

which the system is modeled incompletely and while its progression it has received an event generated 

by the real system where this event is not defined at the current state of the model. It is required to create 

an algorithm that can recover the missing transitions. The following procedure will explain how to exploit 

the current information to hypothesize the missing transitions. 

 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Missing Event V2CT 

c. V2CT belongs to the alphabet of V2 and Cont, thus the suspected components ={Cont., V2} 

d. Last Conforming State(LCS) in the Nominal model:(O,O,C4) 

e. Actual Label of Discrepancy (ALD) = fM. 

 

2- Step-2 Analysis: 

a. Check the first suspected components Cont:  

- The state C4 is the state in Cont when the nominal model reached the last conforming state 

O,O,C4.  

- At C4, the event V2CT is found to be defined. 
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- Then, remove Cont from the suspected components. 

b. Check the second suspected components V2: 

- The state O is the state in V2 when the model reached the last conforming state O,O,C4.  

- At O, the event V2CT is found undefined or missing. 

- Then, V2 is left in the suspected components. 

c. From the Last Conforming State (O,O,C4), V2 which is the suspected component was at 

State O. 

- Thus, the source of missing transition is state O of V2. 

Note: This means here, it is required to have a transition that starts from O in V2 with the event V2CT 

and result in a label of fM. 

d. From the output map, list all rows that can have the Actual Label of Discrepancy (ALD)=fM 

 So, now filtered the output map to limited options in Table 3.3 below. 

Table 3.3: Experiment P1: Filtered Output Map 

V1 V2 Output  

O Po fM 

So Po fM 

e. The discrepancy happened due to missing a transition with an observable event.  

- When the model reached O,O,C4, the value of the irrelevant component V1 was at O  

- Thus, select from Table 3.3, the state(s) that matches this value of V1 

Table 3.4: Experiment P1 Filtered Candidates 

V1 V2 Label 

O Po fM 

 

- The remaining row in the output map is the candidate expected states = (O,Po) where the 

value of the suspected component V2 should equal Po to have a label = fM. 

- Thus, the candidate destination for the missing transition in V2 = {Po} 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

The suspected component: (Source → Discrepancy event → Destination Candidates). 

𝑉2: 𝑂
𝑉2𝐶𝑇
→   𝑃𝑜 
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4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components. 

Proceed with the system and reject the non-conforming hypotheses if there are any. 

Now, the nominal model can progress with the event V2CT at state O,O,C4 to generate the label fM and 

to proceed to the state O,Po,C5. 

3.5.2.2 Experiment-P2 

Using the same system for in Experiment-P1 and continuing with the same applied sequence of events, 

another V2CT command will be applied at the current state. But again, the updated nominal model is 

unable to progress on since the event V2CT is not defined at the state O,Po,C5. 

Nominal model: Missing V2CT between Po and C in V2 

 

Figure 3.7: P2 Nominal Model 

The same procedure given above will be followed to hypothesize the missing transition. 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Missing Event V2CT 

c. V2CT belongs to the alphabet of V2 and Cont, thus the suspected components ={Cont., V2} 

d. Last Conforming State(LCS) in the nominal model:(O,Po,C5) 

e. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

a. Check the first suspected components Cont:  

- The state C5 is the state in Cont when the nominal model reached the last conforming state  

O,Po,C5.  

- At C5, the event V2CT is found to be defined. 

- Then, remove Cont from the suspected components. 

b. Check the second suspected components V2: 

- The state Po is the state in V2 when the model reached the last conforming state O,Po,C5.  

- At Po, the event V2CT is found undefined or missing. 

- Then, V2 is left in the suspected components. 
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c. From the Last Conforming State (O,Po,C5), V2 which is the suspected component was at 

State Po 

- Thus, The source of missing transition in V2 = Po 

Note: This means here, it is required to have a transition that starts from Po in V2 with the event 

V2CT and results in a label of fL. 

d. From the output map, list all rows that can have the Actual Label of Discrepancy (ALD)=fL  

Table 3.5: Expeiement P2 Output Map 

V1 V2 F 

C C fL 

C Po fL 

C O fL 

C SC fL 

C SO fL 

O C fL 

O SC fL 

SC C fL 

SC Po fL 

SC O fL 

SC SC fL 

SC SO fL 

SO C fL 

SO SC fL 

 

- When the model reached O,Po,C5, the value of the irrelevant component V1 was at O  

- Thus, select the state(s) that matches this value of V1 

Table 3.6: Experiment P2 - Filtered Output Map 

V1 V2 Label 

O C fL 

O SC fL 

 

- Since the discrepancy was due to missing a transition with an observable event, it will be 

expected that V2 will reach a normal state not a faulty state. This means that the second row in 

Table 3.6 is not applicable because V2 will be at SC which is a faulty state that is reachable by 

the unobservable fault events. The remaining row in the table becomes: 
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Table 3.7: Experiment P2 Filtered Candidates 

V1 V2 Label 

O C fL 

 

- The remaining row in the output map is the candidate expected state = (O,C) where the value 

of the suspected component V2 should equal C to have a label = fL. 

- Thus, the candidate destination for the missing transition in V2 = {C} 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

The suspected component: (Source → Discrepancy event → Destination Candidates). 

𝑉2: 𝑃𝑜
𝑉2𝐶𝑇
→   𝐶 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components. 

After the above correction, the nominal model becomes the same as the true model and by continuing 

to apply the sequence of event, the nominal model now can progress without discrepancies. 

3.5.2.3 Discussion 

 The outcome of this experiment is the ability to show that it was possible to recover the missing 

transitions in the nominal model by using the available information collected from the plant and the 

nominal model at the occurrence of the discrepancy. 

The true automaton model could be regarded as a real plant generating events and outputs. For the sake 

of performing the tests, the progression of its current states is shown. This was only required in this phase 

of research for the rules of the learning algorithm. In the practical application of the algorithm, the real 

system will be a black box or unknown entity which is modeled with the best of available knowledge as 

the nominal model. After creating the algorithm, the plant works and generates events and outputs. These 

observations are used to track the state of the plant if a discrepancy occurs, the algorithm will be used to 

correct the nominal model. 

This is in fact analogous to the concepts of learning techniques in machine learning and artificial 

intelligence. The neural network as an example starts its learning by using a known data set and its 

corresponding outputs. Once the learning is finished, the learned neural network as an algorithm can deal 

with the unseen sets of data to predict their outputs. 

Therefore, briefly, what is done here in the experiment is to use the known true model along with the 
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nominal model to drive the learning algorithm, to be used in the correction of the unseen discrepancy 

cases. In the following, we consider other types of transitions to drive other rules for the learning 

algorithm. 

 

3.5.3 Common Events 

This section will discuss the case of the missing transition pertaining to a common observable event 

between the components and how to detect the missing event and how to generate hypothesis for model 

correction. 

The following system in Figure 3.8 will be used as an example for the test cases. 

C1

C3C2

C5

v1OT

v2OT

v2OT

C8 C7
v2CT

v2CTv1CT

v1OT

C4

C6
v1CT

ES

ES
ES

ES

ESES

ES
Cont

F

V1 V2

PoC

v2OT

SC

v2SO

SO

v2CT

v2SC v2SC

v2SO

O

v2SC

v2SO

v2OT

v2CT

v2CT v2OT

v2OT
v2CTv2OT

v2CT

ES

ES

PoC

v1OT

SC

v1SO

SO

v1CT

v1SC v1SC

v1SO

O

v1SC

v1SO

v1OT

v1CT

v1CT v1OT

v1OT
v1CTv1OT

v1CT

ES

ES

V1
V2

Plant

 

Figure 3.8: Common Events True Model. 

The plant is comprised of two valves V1 and V2 each of three states of  closed, partially open, and 

open. They have a common event of ES that stands for Emergency Shutoff that will command both 

valves to close from any state and is common to the alphabets of V1 and V2. Both valves have the same 

description as given in Experiment-P1. The controller automaton is shown in Figure 3.8, where the normal 

operation sequence is V1OT,V2OT,V1OT,V2OT,V2CT,V1CT,V2CT,V1CT. 

Note: The experiments will be numbered as Experiment-Cn, where C stands for common events while n 

is the experiment number. 
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3.5.3.1 Experiment-C1 

In this experiment, the automaton of the true model is computed by the synchronous product of V1,V2 

and Cont. 

Plantr = Synch (V1,V2, Cont) 

To have a nominal model emulating a modeling mistake, the event ES will be deleted in V2 between the 

states Po and C as indicated by the crossed dotted line in Figure 3.9Figure 3.8.  Suppose that the system 

follows its normal sequence, except after the sixth step, instead of V2CT, ES occurs. 

PoC

v2OT

SC

v2SO

SO

v2CT

v2SC v2SC

v2SO

O

v2SC

v2SO

v2OT

v2CT

v2CT v2OT

v2OT
v2CTv2OT

v2CT

ES

ES

V2

ES

 

Figure 3.9: V2 Nominal Model 

True model: 

 

Nominal Model: Missing ES between Po and C in V2 

 

Figure 3.10: Experiment C-1 True and Nominal Models 



41 

 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Missing Event ES 

c. ES belongs to the alphabet of V1,V2 and Cont, thus the suspected components 

={Cont,V1,V2} 

d. Last Conforming State(LCS) in the Nominal model:(Po,Po,C7) 

e. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

a. Check the first suspected components Cont:  

- The state C7 is the state in Cont when the nominal model reached the last conforming state 

Po,Po,C7.  

- At C7, the event ES is found to be defined. 

- Then, remove Cont from the suspected components. 

b. Check the next suspected component V1: 

- The state Po is the state in V1 when the nominal model reached the last conforming state 

Po,Po,C7.  

- At Po, the event ES is found to be defined. 

- Then, remove V1 from the suspected components. 

c. Check the next suspected component V2: 

- The state Po is the state in V2 when the nominal model reached the last conforming state 

Po,Po,C7.  

- At Po, the event ES is found undefined. 

- Then, V2 is left in the suspected components. 

d. From the Last Conforming State (Po,Po,C7), V2 which is the suspected component was at 

State Po. 

- Thus, the source of missing transition in V2 is the state Po. 

Note: This means that here, it is required to have a transition that starts from Po in V2 with the 

event ES and result in a label of fL (as the Actual label of discrepancy). 

e. From the output map, list all rows that can have the Actual Label of Discrepancy (ALD)=fL 
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Table 3.8: Output Map filtered to the Label  fL 

V1 V2 Output   V1 V2 Output  

C C fL  O C fL 

C Po fL  SO C fL 

C O fL  Po SC fL 

C SC fL  O SC fL 

C SO fL  SO SC fL 

SC C fL     

SC Po fL     

SC O fL     

SC SC fL     

SC SO fL     

Po C fL     

 

- When the model reached LCS=(Po,Po,C7), and after the event ES happened the value of 

the irrelevant component V1 should be C. 

- Thus, select the state(s) that matches this value of C in V1. 

Table 3.9: Filtered Output Map 

V1 V2 Output  

C C fL 

C Po fL 

C O fL 

C SC fL 

C SO fL 

 

- Since the discrepancy was due to missing a transition with an observable event, the 

transition should not end with a faulty state that is reachable by unobservable event. So, 

reject the row (C,SC) and (C,SO), i.e., the event ES should take V2 from Po to a normal 

state which is not one of SC or SO. Table 3.9 is filtered to be: 

Table 3.10: Candidate States 

V1 V2 Output  

C C fL 

C Po fL 

C O fL 

 

- The remaining row in the output map are the candidate expected states = 

{(C,C),(C,Po),(C,O)} and they have the value of the suspected component V2 could be any 

state of {O,Po,C} to have output = fL (as the Actual label of discrepancy) along with V1=C. 
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- Thus, the destination candidates for the missing transition in V2 = {O,Po,C}. 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

Hypothesis = The suspected component: (Source → Discrepancy event → Destination Candidates). 

H1= V2:Po
ES
→O 

H2= V2:Po
ES
→Po 

H3= V2:Po
ES
→C 

 

 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components. 

Three hypothetical models are generated based on the three hypotheses H1,H2 and H3. 

b. Check the future progression of each hypothesis according to the actual labels initiated by the 

real system and reject the hypotheses incompliant with observations. 

After ES, the future progression for the true model and the hypothetical models generated by hypotheses 

are as follows: 

Complete system: 

fM  fL  fL  fM   

 ES  V1OT  V2OT    

Po,Po,C7  C,C,C1  Po,C,C2  Po,Po,C3   

Figure 3.11: Complete System Progression 

H1= V2:Po
ES
→ O 

fM  fL  fM  fM   

 ES  V1OT  V2OT    

Po,Po,C7  C,O,C1  Po,O,C2  Po,O,C3 

 

  

Figure 3.12: H1 Progression 

H1 is incompliant with the true model future progression, as it mistakenly predicts fM after V1OT. Thus, 

H1 is rejected. 
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H2= V2:Po
ES
→ Po 

fM  fL  fM  fM   

 ES  V1OT  V2OT    

Po,Po,C7  C,Po,C1  Po,Po,C2  Po,O,C3   

Figure 3.13: H2 Progression 

H2 is incompliant with the true model future progression, as it mistakenly predicts fM after V1OT. Thus, 

H2 is rejected. 

 

H3= V2:Po
ES
→ C 

fM  fL  fL  fM   

 ES  V1OT  V2OT    

Po,Po,C7  C,C,C1  Po,C,C2  Po,Po,C3   

Figure 3.14: H3 Progression 

H1 is found compliant with the true model future progression, thus H1 is accepted. 

 

3.5.3.2 Experiment C-2 

In this test, still the effect of missing a transition with a common observable event in a single component 

will be studied but with changing the component position in the control sequence. Here, the same plant 

as Experiment C-1 is used, but V1 will have the common event ES deleted between the states Po and C 

as shown in Figure 3.15. 

PoC

v1OT

SC

v1SO

SO

v1CT

v1SC v1SC

v1SO

O

v1SC

v1SO

v1OT

v1CT

v1CT v1OT

v1OT
v1CTv1OT

v1CT

ES

ES

V1

ES

 

Figure 3.15: V1 After Deleting a Transition 
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True model: 

fL  fL  fM  fM  fH   

 V1OT  V2OT  V1OT  V2OT    

C,C,C1  Po,C,C2  Po,Po,C3  O,Po,C4  O,O,C5   

 

fH  fM  fM  fL   

 V2CT  V1CT  ES    

O,O,C5  O,Po,C6  Po,Po,C7  C,C,C1   

 

Nominal Model: Missing ES between Po and C in V1 

fL  fL  fM  fM  fH   

 V1OT  V2OT  V1OT  V2OT    

C,C,C1  Po,C,C2  Po,Po,C3  O,Po,C4  O,O,C5   

 

fH  fM  fM  fL   

 V2CT  V1CT  ES    

O,O,C5  O,Po,C6  Po,Po,C7  ϕ   

 

Figure 3.16: Experiment C2 True and Nominal Models 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Missing Event ES 

c. ES belongs to the alphabet of V1,V2 and Cont, thus the suspected components 

={Cont,V1,V2} 

d. Last Conforming State(LCS) in the Nominal model:(Po,Po,C7) 

e. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

a. Check the first suspected components Cont:  

- The state C7 is the state in Cont when the nominal model reached the last conforming state 

Po,Po,C7.  

- At C7, the event ES is found defined. 

- Then, remove Cont from the suspected components. 
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b. Check the next suspected component V1: 

- The state Po is the state in V1 when the nominal model reached the last conforming state 

Po,Po,C7.  

- At Po, the event ES is found undefined. 

- Then, is left in the suspected components. 

c. Check the next suspected component V2: 

- The state Po is the state in V2 when the nominal model reached the last conforming state 

Po,Po,C7.  

- At Po, the event ES is found defined. 

- Then, remove V2 from the suspected components. 

- From the Last Conforming State (Po,Po,C7), V1 which is the suspected component was 

at State Po. 

- Thus, the source of missing transition in V1 is from state Po. 

Note: This means here, it is required to have a transition that starts from Po in V1 with the event 

ES and result in a label of fL (as the Actual label of discrepancy). 

d. From the output map, list all rows that can have the Actual Label of Discrepancy (ALD)=fL  

Table 3.11: Output Map filtered to the Label  fL 

V1 V2 Output  

C C fL 

C Po fL 

C O fL 

C SC fL 

C SO fL 

SC C fL 

SC Po fL 

SC O fL 

SC SC fL 

SC SO fL 

Po C fL 

O C fL 

SO C fL 

Po SC fL 

O SC fL 

SO SC fL 

 

- When the model reached LCS=(Po,Po,C7), and after the event ES happened the value of 

the irrelevant component V2 should be C. 



47 

 

- Thus, select the state(s) that matches this value of C in V2. 

Table 3.12: Filtered Output Map 

V1 V2 Output  

C C fL 

Po C fL 

O C fL 

SC C fL 

SO C fL 

 

- Since the discrepancy was due to missing a transition with an observable event, the 

transition should not end with a faulty state that is reachable by unobservable event since 

the unobservable events were assumed that they did not occur. So, reject the row (SC,C) 

and (SO,C), i.e., the event ES should take V1 from Po to a normal state which is NOT one 

of SC or SO. The table becomes: 

Table 3.13: Candidate States 

V1 V2 Output  

C C fL 

Po C fL 

O C fL 

 

- The remaining rows in the output map are the candidate expected states 

={(C,C),(Po,C),(O,C)}. They have the value of the suspected component V1 could be any 

state of {O,Po,C} to have output = fL (as the Actual label of discrepancy) along with V2=C. 

Thus, the destination candidates for the missing transition in V1 are {O,Po,C}. 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

H1= V1:Po
ES
→ O 

H2= V1:Po
ES
→ Po 

H3= V1:Po
ES
→ C 
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4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected component. 

Three hypothetical models are generated based on the three hypotheses H1,H2 and H3. 

b. Check the future progression of all hypotheses according to the actual labels generated by 

the real system and reject the incompliant hypotheses. 

After ES, the future progression for the true model and the hypothetical models generated by 

hypotheses as follows: 

 

True Model: 

fM  fL  fL  fM  fM 

 ES  V1OT  V2OT  V1OT  

Po,Po,C7  C,C,C1  Po,C,C2  Po,Po,C3  O,Po,C4 

 

fM  fH 

 V2OT  

O,Po,C4  O,O,C5 

Figure 3.17: True Model System Progression 

 

H1= V1:Po
ES
→ O 

fM  fL  fL  fM  fM 

 ES  V1OT  V2OT  V1OT  

Po,Po,C7  O,C,C1  O,C,C2  O,Po,C3  O,Po,C4 
 

fM  fH 

 V2OT  

O,Po,C4  O,O,C5 

Figure 3.18: H1 System Progression 
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H1 is compliant with the true model future progression, so it is kept. 

H2= V2:Po
ES
→ Po 

fM  fL  fL  fM  fM 

 ES  V1OT  V2OT  V1OT  

Po,Po,C7  Po,C,C1  O,C,C2  O,Po,C3  O,Po,C4 
 

fM  fH 

 V2OT  

O,Po,C4  O,O,C5 

 

Figure 3.19: H2 System Progression 

H2 is compliant with the true model future progression, so it is kept. 

 

H3= V2:Po
ES
→ C 

fM  fL  fL  fM  fM 

 ES  V1OT  V2OT  V1OT  

Po,Po,C7  C,C,C1  Po,C,C2  Po,Po,C3  O,Po,C4 

 

fM  fH 

 V2OT  

O,Po,C4  O,O,C5 

 

Figure 3.20: H3 System Progression 

H3 is compliant with the true model future progression, so it is kept. 

So far, it is noted that all the hypotheses can generate a future response of labels complying with the 

true model. This means that if we start with a nominal system in which it is detected that ES is missing in 

V1 which is common between V1 and V2 and follow the given controller loop , then it will be equally 

possible to hypothesize the missing event ES in V1 between the source state Po and any non-fault state 

{C,Po,O}. In other words, future observations do not resolve the ambiguity about the missing transition. 

As noted in this test, the sequence of events dictated by the controller automaton made the valve V1 
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to be in a position dominated by V2 where the state of V2 finally decides the output label regardless of 

the used hypothesis. 

In the next experiment, it will be assumed that the control sequence has the freedom to change its sequence 

in such a way V1 is the last controlled element in the sequence after V2 to see if the incompliancy could 

be detected or not. 

3.5.3.3 Experiment C-3 

The same configuration as the previous test is used here where the nominal model is built while the 

transition with ES between Po and C in V1 is assumed to be mistakenly omitted. The control sequence 

will be modified as shown where the V2 will be commanded before V1 and sequence of events will be 

V2OT, V1OT, V2OT, V1OT, V1CT, V2CT, V1CT, V2CT.  This is shown in Figure 3.21. 

C1

C3C2

C4

v2OT

v1OT

v1OT

C6 C5
V1CT

v1CTv2CT

v2OT

C3

C5
v2CT

ES

ES
ES

ES

ESES

ES
Cont

 

Figure 3.21: Modified Control Sequence 

True model 

fL  fL  fM  fM  fH  fM 

 V2OT  V1OT  V2OT  V1OT  V1CT  

C,C,C1  C,Po,C2  Po,Po,C3  Po,O,C4  O,O,C5  Po,O,C6 

 

fM  fM  fL  fL  fM  fM 

 V2CT  ES  V2OT  V1OT  V2OT  

Po,O,C6  Po,Po,C7  C,C,C1  C,Po,C2  Po,Po,C3  Po,O,C4 

 

fM  fH 

 V1OT  

Po,O,C4  O,O,C5 

 

Figure 3.22: Experiment C-3 True model 
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H1= V1:Po
ES
→ O 

fL  fL  fM  fM  fH  fM 

 V2OT  V1OT  V2OT  V1OT  V1CT  

C,C,C1  C,Po,C2  Po,Po,C3  Po,O,C4  O,O,C5  Po,O,C6 

 

fM  fM  fL  fM  fM  fH 

 V2CT  ES  V2OT  V1OT  V2OT  

Po,O,C6  Po,Po,C7  O,C,C1  O,Po,C2  O,Po,C3  O,O,C4 

 

fH  fH 

 V1OT  

O,O,C4  O,O,C5 

 

Figure 3.23: Experiment C-3 H1 Progression 

H1 is incompliant with the true model future progression, as it violates the actual generated outputs after 

ES,V2OT. Thus, H1 is rejected. 

H2= V2:Po
ES
→ Po 

fL  fL  fM  fM  fH  fM 

 V2OT  V1OT  V2OT  V1OT  V1CT  

C,C,C1  C,Po,C2  Po,Po,C3  Po,O,C4  O,O,C5  Po,O,C6 

 

fM  fM  fL  fM  fM  fH 

 V2CT  ES  V2OT  V1OT  V2OT  

Po,O,C6  Po,Po,C7  Po,C,C1  Po,Po,C2  O,Po,C3  O,O,C4 

 

fH  fH 

 V1OT  

O,O,C4  O,O,C5 

 

Figure 3.24: Experiment C-3 H2 Progression 
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H2 is incompliant with the true model future progression, as it violates the actual generated outputs after 

ES,V2OT. Thus, H2 is rejected. 

H3= V2:Po
ES
→ C 

fL  fL  fM  fM  fH  fM 

 V2OT  V1OT  V2OT  V1OT  V1CT  

C,C,C1  C,Po,C2  Po,Po,C3  Po,O,C4  O,O,C5  Po,O,C6 

 

fM  fM  fL  fL  fM  fM 

 V2CT  ES  V2OT  V1OT  V2OT  

Po,O,C6  Po,Po,C7  C,C,C1  C,Po,C2  Po,Po,C3  Po,O,C4 

 

fM  fH 

 V1OT  

Po,O,C4  O,O,C5 

 

Figure 3.25: Experiment C-3 H3 Progression 

H3 is compliant with the true model future progression, so it is accepted. As shown here, in some cases 

the incorrect hypotheses could be rejected if the system has some freedom of generating the sequence of 

events otherwise, the equal hypotheses will be considered. 

 

3.5.3.4 Experiment C-4 

This experiment has the same configuration as Experiment C-1 but the nominal model will be built 

with ES is mistakenly omitted in V1 between Po and C as well as in V2 between Po and C. This is to 

study the effect of missing this common event in multiple components in the plant. This could happen 

when the models of V1 and V2 come from the same database and the model error originates from the 

database. The control sequence will be the same as Experiment C-1 as V1OT, V2OT, V1OT, V2OT, 

V2CT, V1CT, V2CT, V1CT. 
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True model 

fL  fL  fM  fL   

 V1OT  V2OT  ES    

C,C,C1  Po,C,C2  Po,Po,C3  C,C,C1   

 

Nominal model: Missing ES between Po and C in V1 and V2  

fL  fL  fM  fL   

 V1OT  V2OT  ES    

C,C,C1  Po,C,C2  Po,Po,C3  ϕ   

Figure 3.26 : Experiment C-4 True and Nominal Model Executions. 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Missing Event ES 

c. ES belongs to the alphabet of V1,V2 and Cont, thus the suspected components 

={Cont,V1,V2} 

d. Last Conforming State(LCS) in the Nominal model:(Po,Po,C3) 

e. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

a. Check the first suspected component Cont:  

- The state C3 is the state in Cont when the nominal model reached the last conforming state 

Po,Po,C3.  

- At C3, the event ES is found defined. 

- Then, remove Cont from the suspected components. 

b. Check the next suspected component V1: 

- The state Po is the state in V1 when the nominal model reached the last conforming state 

Po,Po,C3.  

- At Po, the event ES is found undefined. 

- Then, V1 is left in the suspected components. 

c. Check the next suspected component V2: 

- The state Po is the state in V2 when the nominal model reached the last conforming state 

Po,Po,C3.  

- At Po, the event ES is found undefined. 
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- Then, V2 is left in the suspected components. 

d. From the Last Conforming State (Po,Po,C3), V1 and V2 which are the suspected 

components was at State Po in V1 and in Po in V2. 

- Thus, The source of missing transition in V1 = Po  and in V2 = Po 

Note: The hypotheses based on single missing transition in V1 or in V2 cannot explain the 

observations and are rejected. That is why hypotheses with two missing transitions are considered. 

V1:PO
ES
→  ?? 

V2:PO
ES
→  ?? 

Where after the synchronous product of the components they will result in a in a label of fL (as the Actual 

label of discrepancy). 

a. From the output map, list all rows that can have the Actual Label of Discrepancy (ALD)=fL  

Table 3.14: Filtered Output Map to the Label fL 

V1 V2 Output  

C C fL 

C Po fL 

C O fL 

C SC fL 

C SO fL 

SC C fL 

SC Po fL 

SC O fL 

SC SC fL 

SC SO fL 

Po C fL 

O C fL 

SO C fL 

Po SC fL 

O SC fL 

SO SC fL 

- There are no irrelevant components and both components are suspected. 

- Since the discrepancy was due to missing a transition with an observable event, the 

transition should not end with a faulty state that is reachable by unobservable event that 

were assumed that they did not occur. Thus, ES should move V1 from Po to a normal state 

and V2 from Po to a normal state. 
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Table 3.15: Candidate States 

V1 V2 Output  

C C fL 

C Po fL 

C O fL 

Po C fL 

O C fL 

- From the table, we can find the combination candidates = {(C,C), (C,Po), (C,O), 

(Po,C),(O,C)} could be the candidate expected states for the missing ES transition. Each 

of these candidate combinations will make a hypothesis. 

 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

H1= V1:Po
ES
→ C AND V2:Po

ES
→ C 

H2= V1:Po
ES
→ C AND V2:Po

ES
→ Po 

H3= V1:Po
ES
→ C AND V2:Po

ES
→ O 

H4= V1:Po
ES
→ Po AND V2:Po

ES
→ C 

H5= V1:Po
ES
→ O AND V2:Po

ES
→ C 

 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components. 

Five hypothetical models are generated based on the three hypotheses H1,H2,H3,H4 and 

H5. 

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

Thus, after ES, the future progression for the true model and the hypothetical models generated by 

hypotheses as follows: 
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True model 

fM  fL  fL  fM  fM  fH 

 Es  V1OT  V2OT  V1OT  V2OT  

Po,Po,C3  C,C,C1  Po,C,C2  Po,Po,C3  O,Po,C4  O,O,C5 

Figure 3.27: Experiment C-4 Complete System Progression 

H1= V1:Po
ES
→ C AND V2:Po

ES
→ C 

fM  fL  fL  fM  fM  fH 

 Es  V1OT  V2OT  V1OT  V2OT  

Po,Po,C3  C,C,C1  Po,C,C2  Po,Po,C3  O,Po,C4  O,O,C5 

Figure 3.28: Experiment C-4 H1 Progression 

H1 complies with the future progression of the true model. H1 is so far accepted. 

H2= V1:Po
ES
→ C AND V2:Po

ES
→ Po 

fM  fL  fM     

 Es  V1OT      

Po,Po,C3  C,Po,C1  Po,Po,C2     

 

Figure 3.29: Experiment C-4 H2 Progression 

H2 is incompliant with future progression of the true model. H2 is rejected. 

H3= V1:Po
ES
→ C AND V2:Po

ES
→ O 

fM  fL  fM     

 ES  V1OT      

Po,Po,C3  C,O,C1  Po,O,C2     

 

Figure 3.30: Experiment C-4 H3 Progression 

H3 is incompliant with future progression of the true model. H3 is rejected. 
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H4= V1:Po
ES
→ Po AND V2:Po

ES
→ C 

fM  fL  fL  fM  fM  fH 

 ES  V1OT  V2OT  V1OT  V2OT  

Po,Po,C3  Po,C,C1  O,C,C2  O,Po,C3  O,Po,C4  O,O,C5 

Figure 3.31: Experiment C-4 H4 Progression 

H4 is complies with the future progression of the true model. H4 is accepted. 

 

H5= V1:Po
ES
→ O AND V2:Po

ES
→ C 

fM  fL  fL  fM  fM  fH 

 ES  V1OT  V2OT  V1OT  V2OT  

Po,Po,C3  O,C,C1  O,C,C2  O,Po,C3  O,Po,C4  O,O,C5 

Figure 3.32: Experiment C-4 H5 Progression 

H5 complies with the future progression of the true model. H5 is accepted. Thus, H1, H4 and H5 are 

accepted hypotheses. 

3.5.3.5 Experiment C-5 

Let us assume that in Experiment-C4, the controller followed a different sequence given below: 

V2OT, V1OT, V2OT, V1OT, V1CT, V2CT, V1CT, V2CT as shown in Figure 3.33. In this case we will 

see that H1 will be kept and H4 and H5 will be rejected. 

C1

C3C2

C4

v2OT

v1OT

v1OT

C6 C5
V1CT

v1CTv2CT

v2OT

C3

C5
v2CT

ES

ES
ES

ES

ESES

ES
Cont

 

Figure 3.33: Modified Control Sequence 

True model 

fL  fL  fM  fL  fL   

 V2OT  V1OT  ES  V2OT    

C,C,C1  C,Po,C2  Po,Po,C3  C,C,C1  C,Po,C2   
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Figure 3.34: True model Progression 

H1= V1:Po
ES
→ C AND V2:Po

ES
→ C 

fL  fL  fM  fL  fL   

 V2OT  V1OT  ES  V2OT    

C,C,C1  C,Po,C2  Po,Po,C3  C,C,C1  C,Po,C2   

Figure 3.35: Experiment C-5 H1 Progression 

H1 complies with the future progression of the true model. H1 is kept. 

H4= V1:Po
ES
→ Po ANDV2:Po

ES
→ C  

fL  fL  fM  fL  fM   

 V2OT  V1OT  ES  V2OT    

C,C,C1  C,Po,C2  Po,Po,C3  Po,C,C1  Po,Po,C2   

 

Figure 3.36: Experiment C-5 H4 Progression 

H4 is incompliant with future progression of the true model. H4 is rejected. 

H5= V1:Po
ES
→ O AND V2:Po

ES
→ C 

fL  fL  fM  fL  fM   

 V2OT  V1OT  ES  V2OT    

C,C,C1  C,Po,C2  Po,Po,C3  O,C,C1  O,Po,C2   

Figure 3.37: Experiment C-5 H5 Progression 

H5 is incompliant with future progression of the true model. H5 is rejected. 

3.5.4 Derived Rules for the Learning Algorithm 

The following rules are derived from the previous experiments and will be used in constructing the 

algorithm that finds the missing transitions in the case of observable events. The rules are named as 

ObRule-n, where the prefix Ob stands for Observable events while n is the rule number. 

ObRule-1: At the Last Conforming State (LCS), every component that has the event of discrepancy in 

its event set yet undefined at LCS is a suspected component. 

ObRule-2:The Last Conforming State (LCS) gives the source of the missing transitions in suspected 



59 

 

components. 

ObRule-3: The event of discrepancy shall move the nominal model to a destination state with the same 

output as the ALD. The possible destinations are determined using the output map. The selection could 

have more than one candidate destination state. Thus, the candidate destination states of the nominal 

model give the destination of missing transitions. 

ObRule-4: The parsimonious logic is used to explain the discrepancy using the least number of 

transitions, by filtering the possible destinations to the candidate destinations. This will be carried out in 

ObRule-5, 6 and 7. 

ObRule-5: The irrelevant components - that do not have the discrepancy event in their alphabets - shall 

not change their state. 

ObRule-6:  The complete suspected component – having the discrepancy event in its alphabet but defined 

at LCS - shall progress with the common event as defined in their automata.   

ObRule-7: The Observable event shall move a suspected component to a normal candidate state and NOT 

to a faulty state. 

ObRule-8: A hypothesis is defined based on a possible missing transition from a source to a destination 

with the event of discrepancy.  

ObRule-9:The number of hypothetical models equals the number of hypotheses of the possible missing 

transitions missing transitions. 

ObRule-10: In terms of the future progression of the system, the compliant models are kept, and the 

incompliant models are rejected. 

ObRule-11: Equal hypotheses are reduced to one hypothesis per transition if they pertain to the same 

component so that they could be tested separately. If the Equal hypotheses pertain to different 

components,  they can be merged in a combined hypothesis. 

 

3.6 Missing Transitions with Unobservable Events 

This section we will study the case of missing transitions involving unobservable events. The reason 

for missing these transitions in the model could be human mistakes, lack of knowledge or the 

simplification of the system. A set of experiments will be operated as done in the previous section in order 

to develop some rules to generate hypotheses for the missing transitions. 
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3.6.1 Assumptions of the Experiments 

1. The components, e.g., valve or pump are modeled with the correct number of states and are not 

missing any states. 

2. Only some transitions with unobservable events are missing in the automata of the components. 

3. The missing transitions have unobservable events that are known in the alphabet, and they are not 

new events to be added to the alphabet. 

4. The output map is known and accurate therefore it is the same for the true and nominal model. 

5. The fault modes are permanent where if a component fails to a certain fault mode, it remains 

indefinitely. This is by following the same diagnosability assumption in [20]. 

We start with a simple system then we will add more components. The plant is comprised of two 

valves V1 and V2. The automata of the valves are shown in Figure 3.38. 

OC

v1O

SC

v1SO

SO

v1C,v1O

v1C

v1C

v1SC

v1C,v1O

OC

v2O

v2C

v2C

v1SC
v1SO

C1 C3

C2

C4

v2O
v1O

v1C
v2C

F

V1 V2

V1 V2 Cont
Plant

 

Figure 3.38: Demonstration System for Unobservable Events 

The first valve automaton V1 is a two-state valve of open and closed positions modeled by automaton 

V1. The states are: 

C: Closed.                     O: Open.          SC: Stuck Closed.         SO: Stuck Open. 

The events symbols are defined as follows: 

V1C: Close command.            V1O: Open Command. 

V1SC: Stuck Closed fault.         V1SO: Stuck Open fault. 

The second valve automaton V2 is a two-position valve of open and closed but it was considered reliable 

having no faults. This fault-free assumption is to simplify the discussion. 

The states are: 

C: Closed.         O: Open.     
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The events symbols are defined as follows: 

V2C: Close command.            V2O: Open Command. 

The controller Cont issues the control sequence for this system, and is modeled by automaton Cont. The 

control sequence will generate the sequence of events V2O,V1O,V1C,V2C and so on. 

The output labels given by the flowmeter F are: 

fL: Low flow                   fH: High flow 

Note: The experiments will be numbered as Experiment-Un, where U stands for unobservable events 

while n is the experiment number. 

3.6.1.1 Experiment U-1 

In this experiment, the nominal model is built by deleting the transition between C and SO with the 

unobservable event V1SO as indicated with the crossed transition in Figure 3.39. Here it has been assumed 

mistakenly in the nominal model that stuck-open failure does not happen in the valve’s closed position. 

OC

v1O

SC

v1SO

SO

v1C,v1O

v1C

v1C

v1SC

v1C,v1O

v1SC

v1SO

 

Figure 3.39: V1 After Deleting V1SO Between C and SO 

True model: 

fL  fL  fH  fL  fL  fL  fH 

 V2O  V1O  V1C  V2C  V1SO  V2O  

C,C,C1  C,O,C2  O,O,C3  C,O,C4  C,C,C1  SO,C,C1  SO,O,C2 

Nominal Model: Missing V1SO between C, SO in V1 

fL  fL  fH  fL  fL  fL  fL 

 V2O  V1O  V1C  V2C    V2O  

C,C,C1  C,O,C2  O,O,C3  C,O,C4  C,C,C1    C,O,C2 

  SC,O,C2  SO,O,C3  SC,O,C4  SC,C,C1    SC,O,C2 

Figure 3.40: Experiment U-1 True and Nominal Models 
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Firstly, because of having unobservable events in the model, some states could be expected to have 

more than one possible state. For example, in the state chart of the nominal model and starting from 

C,C,C1 when V2O occurs, the model moves to C,O,C2 but it is possible also that V1 has stuck-closed so 

SC,O,C2 is another possible state. 

As shown in the state chart in Figure 3.40, the nominal model complies with the true model until it 

reaches the possible states {C,C,C1, SC,C,C1} where the output in both models is fL. Then, the 

unobservable event V1SO occurred in the plant making V1 fail to open. This fault event is unobservable 

by measurements and its transition is not included in the nominal model at the last states set {C,C,C1, 

SC,C,C1}. Once a new observable event V2O occurs, the nominal model expects mistakenly the output 

fL because it considers V1 closed or stuck-closed. This is while the real system represented by the true 

model generated a different actual output fH because the V1 failed to stuck-open then V2 is commanded 

to open. This mismatch between the output expected by the nominal model (fL) and the real system (fH) 

is the sign of a discrepancy caused by missing a transition with unobservable event. 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong expected output after observable event. 

c. Expected State(ES)= (C,O,C2) or (SC,O,C2) 

d. Last Conforming State(LCS) in the Nominal model: {(C,C,C1), (SC,C,C1)} 

e. Actual Label of Discrepancy (ALD) = fH. 

 

2- Step-2 Analysis: 

To determine the suspected components, the output map will be used to select the states of the system 

that have the same output as the Actual Label of Discrepancy (ALD) = fH. These states are suspected to 

be a destination of the missing transition and listed in a table that will be referred to as the Suspected 

States table or the SS-table. 

SS-Table: 

Table 3.16: Experiment U-1 SS-Table 

V1 V2 Label 

O O fH 

SO O fH 

a. Reject the rows with all normal states. 

Since the current experiment discrepancy is in the output label and not the generated observable 
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events, the cause of the discrepancy must be an unobservable event, in this case, a failure event and the 

destination state should not be a normal state. In other words, the missing transition should end in a state 

reachable by any of the unobservable events. Therefore, in the SS-table above, the state (O,O) is ruled 

out. By comparing the last reached or Expected States (ES) = (C,O,C2) and (SC,O,C2) in the nominal 

model with the actual state SO,O,C2 in the true model, we can see that V2 is correctly expected to be at 

O while V1 was wrongly expected to be at C or SC rather than SO.  This means generally, in the expected 

states ES we can see that there are correctly expected states belonging to some components that will be 

called correctly expected components. Similarly, in the ES, there are wrongly expected states belonging 

to some components that will be called wrongly expected components. The wrongly expected 

components are the suspected components. Since as mentioned before, during the experiments, we use a 

known true model but in practice, the real system is modeled with the best of knowledge as the nominal 

model while the true model is unknown. Thus, it is required to find a way to know the wrongly expected 

components. This will be done as follows: 

b. From the SS-table, select the states that have some components  conforming with Expected 

State (ES)=(C,O,C2) or (SC,O,C2). In other words, select the states in which the components have 

similar values as the values of components in the expected state ES. This will be explained in detail in 

the following step. 

For now, we will omit the controller as it is assumed to be programmatically known and introduced by 

the designer. The focus will be to correct the physical components. Thus, we can consider ES = {(C,O), 

(SC,O)}. 

Considering the first ES = (C,O):  

• To find conforming states in the SS-table, let us hold V2 constant at O, and V1 could be variable. So, 

we anticipate finding (SC,O) or (SO,O). But the anticipated (SC,O) is not in the SS-table because it 

does not make the output label to fH as the ALD, so it is rejected. On the other hand, (SO,O) exists 

in the SS-table, so it is a candidate. 

• Hold V1 constant at C and V2 could be variable. So, we anticipate finding (C,SO) or (C,SC) but both 

do not exist in SS-table. This is because V2 in this example does not have neither SC nor SO. 

ES V1 Variable and V2 Constant V1 Constant , V2 Variable 

(C,O) (SC,O) or (SO,O) (C,SO) or (C,SC) Both do not exist 

Considering the second ES = (SC,O):  

• Hold V2 constant at O, and V1 could be variable. So, we expect to find (SC,O) or (SO,O). But 
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(SC,O) is not in the SS-table because it does not make the output label to fH as the ALD, so it is 

rejected. On the other hand (SO,O) exists in the SS-table, but here it cannot be considered because 

the assumption of permanent fault holds such that when V1 is in SC it remains and does not move to 

SO. However (SO,O) has been already candidate previously. 

• Hold V1 constant at SC and V2 could be variable. So, we expect to find (SC,SO) or (SC,SC) but 

both do not exist. This is because V2 in this example does not have neither SC nor SO. 

ES V1 Variable and V2 Constant V1 Constant , V2 Variable 

(SC,O) (SC,O) or (SO,O) (SC,SO) or (SC,SC) Both do not exist 

c. (SO,O) is found as a candidate expected state for the first ES = {(C,O), where we can see that 

V2 is correctly expected to be O, and V1 should be SO. 

d. Since the value of V2 is correctly expected and the wrongly expected is V1, thus suspected 

components={V1}. 

e. Source of missing transition: in the Last Conforming State (LCS) = (C,C,C1), where V1 is at C, 

then the source of missing transition in V1 is C. 

f. Transition Destination Candidates: from the found records (the candidate expected state) of the 

SS-table, V1 should be at SO, thus destination candidate in V1 is SO. 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

c. In V1, Transition Destination Candidates = SO is reachable through V1SO. 

d. Thus, in V1 Hypothesis 

H1= V1:C
V1SO
→   SO 

 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

c. In this experiment, we have only one hypothesis that is retrieved exactly as the complete 

system so logically the updated nominal model will comply with the true model and no 

need to check the future progression in this case. 
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3.6.1.2 Experiment U-2 

In this experiment, the plant will be comprised of two similar valves as the previous experiment but 

in parallel. In addition, the cross failures (from O to SC and C to SO) will not be considered.  The nominal 

model will be built by deleting the unobservable event V1SO between O and SO in V1. The controller 

will have the sequence of events V1O,V2O, V2C,V1C as shown in Figure 3.41. 

 

F

V1

V2
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v1O
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v1SO
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v1C,v1O

v1C

v1C
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v1C,v1O

OC
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v1O
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Figure 3.41: Experiment U-2 System 

 

True model: 

fL  fH  fH  fH  fH  fH  fH 

1 V1O  V2O  V1SO  V2C  V1C  V1O  

C,C,C1  O,C,C2  O,O,C3  SO,O,C3  SO,C,C4  SO,C,C1  SO,C,C2 

Nominal Model: missing V1SO in V1 between O and SO 

fL  fH  fH  fH  fH  fL     

1 V1O  V2O    V2C  V1C      

C,C,C1  O,C,C2  O,O,C3    O,C,C4  C,C,C1     

          SC,C,C1     

Figure 3.42: Experiment U-2 True and Nominal Models 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong expected output after an observable event. 

c. Expected State(ES)= (C,C,C1) or (SC,C,C1).  

d. Last Conforming State(LCS) in the Nominal model: (O,C,C4). 

e. Actual Label of Discrepancy (ALD) = fH. 
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2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD= fH. 

SS-Table: 

Table 3.17: Experiment U-2 SS-Table 

V1 V2 Output 

O O fH 

C O fH 

O C fH 

SO O fH 

SC O fH 

SO C fH 

 

a. Reject the rows with all normal states (looking for faulty states or states reachable by 

unobservable events). 

Table 3.18: Experiment U-2 Filtered SS-Table 

V1 V2 Output 

SO O fH 

SC O fH 

SO C fH 

 

b. From the filtered SS-table, select the states that have some components  conforming with 

Expected States (ES) = {(C,C,C1), (SC,C,C1)}. By neglecting the controller component 

Cont, then ES becomes = {(C,C), (SC,C)} 

For (C,C): V2 is found to be C in one record in the table (V1=SO, V2=C), thus (SO,C) is the 

corresponding candidate expected state. 

For (SC,C): V1 is found to be SC in one record in the table (V1=SC, V2=O), thus (SC,O) is 

the corresponding candidate expected state. 

Also, V2 is found to be C in one record in the table (V1=SO, V2=C), thus (SO,C) is the 

corresponding candidate expected state. 

The summary  

Table 3.19 below summarizes the conclusion of sources and destinations of the missing transitions 

and is explain as follows:  

Table 3.19: Experiment U-2 Source and Destination Summary Table 
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LCS ES Candidate 

Expected States 

Suspected 

Component 

Source Destination 

O,C C,C (SO,C) V1 O SO 

SC,C (SC,O) V1 O SC 

V2 C O 

(SO,C) V1 O SO 

 

c. For the first ES = (C,C) 

i. The candidate expected state (SO,C) when compared to ES = (C,C), we can find that V1 

is wrongly expected, thus suspected components={V1}. 

ii.  Source of missing transition: in the Last Conforming State (LCS)=(O,C), where V1 is at 

O, then the source of missing transition in V1 is O. 

iii. Transition Destination Candidate: from the found records (the candidate expected state) of 

the SS-table, V1 should be at SO, thus destination candidate in V1 is SO. 

d. For the second ES = (SC,C)  

i. The first candidate expected state (SC,O) compared to ES = (SC,C), we find that V1 and 

V2 are wrongly expected, thus suspected components={V1,V2}.  

• Source of missing transition: in the Last Conforming State (LCS)=(O,C), where V1 is at 

O, V2 is at C. 

Then the source of the first missing transition in V1 is O. 

The source of the second missing transition in V2 is C. 

• Transition Destination Candidates:  

For the second candidate expected state (SC,O),  

V1 should be at SC, thus the destination of first missing transition is SC. 

V2 should be at O, thus the destination of first missing transition is O. 

ii. The second candidate expected state (SO,C) when compared to ES = (SC,C), we can find 

that V1 is wrongly expected, thus suspected components={V1}. 

• Source of missing transition: in the Last Conforming State (LCS)=(O,C), where V1 is at 

O, then the source of missing transition in V1 is O. 

• Transition Destination Candidate: from the found records (the candidate expected state) 

of the SS-table, V1 should be at SO, thus destination candidate in V1 is SO. 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

• For first expected state ES = (C,C) 
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H1= V1:O
V1SO
→   SO as SO is a state reachable by V1SO. 

• For the second expected state ES = (SC,C). 

H2= V1:O
V1SC
→   SC as SC is reachable by V1SC, but this hypothesis is rejected by logic 

because this transition is not included as mentioned in the system setup. 

H3= V1:C
𝑈𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡??
→                 O This hypothesis is rejected by logic since O is reachable by 

observable events. 

H4= V1:O
V1SO
→   SO as SO is a state reachable by V1SO, but this hypothesis is rejected because 

it is repeated in H1.  

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

c. In this experiment, we have only one hypothesis that is retrieved exactly as the true model, 

so logically the updated nominal model will comply with the true model and no need to 

check the future progression in this case. 

3.6.1.3 Experiment U-3 

In this experiment, the plant will be comprised of the same two valves as the previous experiment in 

parallel. The nominal model is built by removing the unobservable event V1SO between C and SO in V1 

as shown in Figure 3.43. 
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 Figure 3.43: Experiment U-3 System 
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True model: 

fL  fH  fH  fH  fL  fH 

 V1O  V2O  V2C  V1C  V1SO  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SO,C,C1 

Nominal Model: Missing V1SO between C,SO in V1 

fL  fH  fH  fH  fL  fL 

 V1O  V2O  V2C  V1C    

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1   

  SO,C,C2  SO,O,C3 

SC,O,C3 

 SO,C,C4  SC,C,C1   

Figure 3.44: Experiment U-3 True and Nominal Models 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong unexpected output. 

Note: Here the nominal model was matching the system until it reached the state (C,C,C1) 

with output=fL and suddenly the real system generated a new different output fH while the 

currently expected output is fL.  This sudden change happened due to an unobservable event 

that could not be explained by the nominal model. 

c. Expected State(ES)=(C,C,C1) 

d. Last Conforming State(LCS) in the Nominal model: (C,C,C1) 

Note: in this type of discrepancy (wrong unexpected output), ES equals LCS. 

e. Actual Label of Discrepancy (ALD) = fH. 

 

2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD= fH. 
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SS-table: 

Table 3.20: Experiment U-3 SS-Table 

V1 V2 Output 

O O fH 

C O fH 

O C fH 

SO O fH 

SC O fH 

SO C fH 

 

a. Reject the rows with all normal states (looking for states reachable by unobservable events 

which are faulty states in this experiment). 

Table 3.21: Experiment U-3 Filtered SS-Table 

V1 V2 Output 

SO O fH 

SC O fH 

SO C fH 

 

e. For the first ES = (C,C,C1) 

iv. From the output map table, select the states that have some components  conforming with 

Expected State (ES)= (C,C,C1). 

v. V2 is found to be C in one record in the table (V1=SO, V2=C) 

Thus, (V1=SO, V2=C) is the candidate expected state. 

vi. The wrongly expected component is V1, thus suspected components={V1} 

vii. Source of missing transition: in the expected state ES =(C,C,C1), where V1 is at C, then 

the source of missing transition in V1 is C. 

viii. Transition Destination Candidates: from the found records (the candidate expected state) 

of the SS-table, V1 should be at SO, thus destination candidate in V1 is SO. 

f. For the second ES = (SC,C,C1) 

ix. From the output map table, select the states that have some components  conforming with 

Expected State (ES)= (SC,C,C1). 

x. V2 is found to be C in one record in the table (V1=SO, V2=C) 

Thus, (V1=SO, V2=C) is the candidate expected state. 

xi. The wrongly expected component is V1, thus suspected components={V1} 
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xii. Source of missing transition: in the expected state ES =(SC,C,C1), where V1 is at SC, then 

the source of missing transition in V1 is SC. 

xiii. Transition Destination Candidates: from the found records (the candidate expected state) 

of the SS-table, V1 should be at SO, thus destination candidate in V1 is SO. 

xiv. V1 is found to be SC in one record in the table (V1=SC,V2=O) 

Thus, (V1=SC, V2=O) is the candidate expected state. 

xv. The wrongly expected component is V2, thus suspected components={V2} 

xvi. Source of missing transition: in the expected state ES =(SC,C,C1), where V2 is at C, then 

the source of missing transition in V2 is C. 

xvii. Transition Destination Candidates: from the found records (the candidate expected state) 

of the SS-table, V2 should be at O, thus destination candidate in V2 is O. 

 

Table 3.22: Experiment U-3 Source and Destination Summary Table 

LCS ES Candidate 

Expected States 

Suspected 

Component 

Source Destination 

C,C C,C (SO,C) V1 C SO 

SC,C SC,C (SO,C) V1 SC SO 

(SC,O) V2 C O 

 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

• For first expected state ES = (C,C) 

H1= V1:C
V1SO
→   SO as SO is a state reachable by V1SO. 

• For the second expected state ES = (SC,C). 

H2= V1:SC
V1SO
→   SO as SO is reachable by V1SO, but this hypothesis is rejected based on the 

assumption that the fault modes are permanent. 

H3= V2:C
Unobservable event??
→              O This hypothesis is rejected by logic since O is reachable by 

observable events. 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  
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b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

c. In this experiment, we have only one hypothesis that is retrieved exactly as the complete 

system so logically the updated nominal model will comply with the true model. 

3.6.1.4 Experiment U-4 

In this experiment, the plant is comprised of the same two valves as the previous experiment. The 

nominal model is built by removing the unobservable event V1SC between C and SC in V1 as shown in 

Figure 3.45. 
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Figure 3.45: Experiment U-4 System 

True model: 

fL  fH  fH  fH  fL  fL  fL 

1 V1O  V2O  V2C  V1C  V1SC  V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SC,C,C1  SC,C,C2 

 

fL  fH 

 V2O  

SC,C,C2  SC,O,C3 

Nominal model: Missing V1SC between C and SC in V1  

fL  fH  fH  fH  fL  fL  fH 

1 V1O  V2O  V2C  V1C    V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1    O,C,C2 

  SO,C,C2  SO,O,C3 

SC,O,C3 

 SO,C,C4       

Figure 3.46: Experiment U4 True and Nominal Models 
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1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong expected output after an observable event. 

c. Expected State(ES)=(O,C,C2) 

d. Last Conforming State(LCS) in the Nominal model: (C,C,C1) 

e. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD = fL. 

SS-table: 

Table 3.23: Experiment U-4 SS-Table 

V1 V2 Output 

C C fL 

SC C fL 

a. Reject the rows with all normal states (looking for faulty states). 

Table 3.24: Experiment U-4 Filtered SS-Table 

V1 V2 Output 

SC C fL 

b. From the output map table, select the states that have some components  conforming with 

Expected State (ES) = (C,C,C1). 

c. V2 is found to be C in one record in the table (V1=SC, V2=C) 

Thus, (V1=SC, V2=C) is the candidate expected state. 

d. The wrongly expected component is V1, thus suspected components={V1}. 

e. Source of missing transition: in the Last Conforming State(LCS) = (C,C,C1), where V1 is at 

C, then the source of missing transition in V1 is C. 

f. Transition Destination Candidates: from the found records (the candidate expected state) of 

the SS-table, V1 should be at SC, thus destination candidate in V1 is SC. 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

c. In V1, Transition Destination Candidate = SC is reachable through V1SC. 



74 

 

d. Thus, in V1 Hypothesis 

H1= V1:C
V1SC
→   SC 

e. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

c. In this experiment, we have only one hypothesis that is retrieved exactly as the complete 

system so logically the updated nominal model will comply with the true model. 

 

3.6.1.5 Experiment U-5 

In this experiment, the plant will be comprised of the same two valves as the previous experiment. 

The nominal model is built by deleting the unobservable event V1SC between O and SC in V1 as shown 

in Figure 3.47. 
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Figure 3.47: Experiment U-5 System 
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True model: 

fL  fH  fH  fH  fL  fH  fL 

 V1O  V2O  V2C  V1C  V1O  V1SC  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  O,C,C2  SC,C,C2 

 

fL  fH  fL  fL 

 V2O  V2C  V1C  

SC,C,C2  SC,O,C3  SC,C,C4  SC,C,C1 

 

Nominal model: 

fL  fH  fH  fH  fL  fH  fH 

 V1O  V2O  V2C  V1C  V1O    

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  O,C,C2   

  SO,C,C2  SO,O,C3  SO,C,C4  SC,C,C1  SO,C,C2   

Figure 3.48: Experiment U-5 True and Nominal Models 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong unexpected output. 

Note: Here the nominal model was matching the system until it reached the possible states 

{(O,C,C2), (SO,C,C2)}with output = fH and suddenly the real system generated a new 

different output fL while the currently expected output is fH.  This sudden change happened 

due to an unobservable event that could not be explained by the nominal model. 

c. Expected State (ES)={(O,C,C2), (SO,C,C2)}. By neglecting the controller component 

“Cont”, then ES becomes = {(O,C), (SO,C)}. 

d. Last Conforming State (LCS) in the nominal model = {(O,C,C2), (SO,C,C2)}. By neglecting 

the controller component “Cont”, then LCS becomes = {(O,C), (SO,C)}. 

Note: in this type of discrepancy (wrong unexpected output), ES equals LCS. 

e. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD = fL. 
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SS-Table: 

Table 3.25: Experiment U-5 SS-Table 

V1 V2 Output 

C C fL 

SC C fL 

a. Reject the rows with all normal states (looking for states reachable by unobservable events 

which are the faulty states in this experiment). 

Table 3.26: Experiment U-5 Filtered SS-Table 

V1 V2 Output 

SC C fL 

b. From the SS-table, select the states that have some components  conforming with Expected 

State (ES)= {(O,C), (SO,C)}. 

• For the first ES = (O,C): V2 is found to be C in one record in the table (V1=SC, V2=C), 

thus (SC,C) is corresponding candidate expected state. 

• For the second ES = (SO,C): V2 is found to be C in one record in the table (V1=SC, V2=C), 

thus, (SC,C) is the corresponding candidate expected state. 

The summary Table 3.27 below summarizes the conclusion of sources and destinations of the missing 

transitions and is explain as follows:  

Table 3.27: Experiment U-5 Source and Destination Summary Table 

LCS ES Candidate 

Expected States 

Suspected 

Component 

Source Destination 

O,C O,C SC,C V1 O SC 

SO,C SO,C SC,C V1 SO SC 

 

g. For the first ES = (O,C) 

i. The candidate expected state (SC,C) when compared to ES = (O,C), we can find that V1 is 

wrongly expected, thus suspected components={V1}. 

ii.  Source of missing transition: in the Last Conforming State (LCS)=(O,C), where V1 is at O, 

then the source of missing transition in V1 is O. 

iii. Transition Destination Candidate: from the found records (the candidate expected state) of 

the SS-table, V1 should be at SC, thus destination candidate in V1 is SC. 
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h. For the second ES = (SO,C)  

i. The candidate expected state (SC,C) when compared to ES = (SO,C), we can find that V1 

is wrongly expected, thus suspected components={V1}. 

ii. Source of missing transition: in the Last Conforming State (LCS)=(SO,C), where V1 is at 

SO, then the source of missing transition in V1 is SO. 

iii. Transition Destination Candidate: from the found records (the candidate expected state) of 

the SS-table, V1 should be at SC, thus destination candidate in V1 is SC. 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

• For the first expected state ES = (O,C) 

H1= V1:O
V1SC
→   SC as SC is a state reachable by V1SC. 

• For the second expected state ES = (SO,C) 

H2= V1:SO
V1SC
→   SC as SC is a state reachable by V1SC. But this hypothesis is rejected by 

logic because it contradicts with the assumption of having permanent fault mode, where if a 

certain component drops in a fault mode, it remains indefinitely, as well as it does not move 

to another fault mode. 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

c. In this experiment, we have only one remaining hypothesis that is retrieved exactly as the 

complete system so logically the updated nominal model will comply with the true model. 

 

3.6.1.6 Experiment U-6 

This experiment will repeat experiment U-1 but with changing the control sequence 

V1O,V2O,V2C,V1O as shown in Figure 3.49. The nominal model is built by deleting V1SO between C 

and SO in V1 as shown in Figure 3.49. 
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Figure 3.49: Experiment U-6 System 

True model:  

fL  fL  fH  fL  fL  fL  fL 

 V1O  V2O  V2C  V1C  V1SO  V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SO,C,C1  SO,C,C2 

 

fL  fH fH  fL  fL 

 V2O   V2C  V1C  

SO,C,C2  SO,O,C3 SO,O,C3  SO,C,C4  SO,C,C1 

Figure 3.50: Experiment U-6 True Model 

Nominal Model: Missing V1SO between C and SO in V1 

fL  fL  fH  fL  fL  fL  fL 

 V1O  V2O  V2C  V1C    V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1    O,C,C2 

  SO,O,C2  SO,O,C3  SO,C,C4 

SC,C,C4 

 SC,C,C1 

SO,C,C1 

   SO,C,C2 

SC,C,C1 

 

fL  fH  fL  fL 

 V2O  V2C  V1C  

O,C,C2  O,O,C3  O,C,C4  C,C,C1 

SO,C,C2 

SC,C,C1 

 SO,O,C3 

SC,C,C4 

 SO,C,C4  SC,C,C1 

Figure 3.51: Experiment U-6 Nominal Models 
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It could be noted that in this experiment, the nominal model is complying with the real system which 

is represented by the true model in terms of following the same sequence of events and generating the 

same output labels. This is although the nominal model is built with a missing transition in a component 

compared to the true model. The positioning of the component V1 in the system with the controller along 

with the sequence of events applied to the system made the unobservable fault event V1SO to be 

undiagnosable. The principle of diagnosability was tackled in the literature as in [20] which determines 

the conditions upon which a diagnoser will be able to diagnose a fault caused by an unobservable event. 

The diagnosability could be shown in the following example if we compared the behavior of the system 

(without having the fault V1SO) in one side. On the other side, the true model with the fault V1SO along 

with the nominal model missing the transition of V1SO in V1. 

True model without V1SO: 

fL  fL  fH  fL  fL  fL  fL 

1 V1O  V2O  V2C  V1C    V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1    O,C,C2 

 

fL  fH  fL  fL 

 V2O  V2C  V1C  

O,C,C2  O,O,C3  O,C,C4  C,C,C1 

Figure 3.52: Experiment U-6: True model without V1SO 

True model with V1SO: 

 

fL  fL  fH  fL  fL  fL  fL 

1 V1O  V2O  V2C  V1C  V1SO  V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SO,C,C1  SO,C,C2 

 

fL  fH  fL  fL 

 V2O  V2C  V1C  

SO,C,C2  SO,O,C3  SO,C,C4  SO,C,C1 

Figure 3.53: Experiment U-6: True model with V1SO 
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Nominal Model: Missing V1SO between C and SO in V1 

 

fL  fL  fH  fL  fL  fL  fL 

1 V1O  V2O  V2C  V1C    V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1    O,C,C2 

 

fL  fH  fL  fL 

 V2O  V2C  V1C  

O,C,C2  O,O,C3  O,C,C4  O,C,C1 

Figure 3.54: Experiment U-6 Nominal Model 

As shown, the three state charts have the same sequence of observable events applied and they 

generate the same outputs without any mismatch. This means that in the true model itself with V1SO,  the 

effect of the unobservable event V1SO could not be determined or diagnosed, and it behaves as it has not 

happened. This aspect of undiagnosability made the nominal model unable to flag the discrepancy of the 

missing transition. This experiment concludes that the missing transitions with an undiagnosable 

unobservable failure event in the true model could not be detected and hypothesized.  

3.6.1.7 Experiment U-7 

In this experiment, missing more than one missing transition is studied. The plant will be comprised 

of two similar valves having stuck-open and stuck-closed fault modes. The automata of the components 

are shown in Figure 3.55. In this case, the nominal model will be built by deleting a transition in each of 

the two valves, i.e., missing two transitions. The two missing transitions are V1SC between C and SC in 

V1, and V2SC between C and SC in V2. 
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Figure 3.55: Experiment U-7 System 
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True model: 

fL  fH  fH  fH  fH  fL  fL 

1 V1O  V2O  V2C  V2SC  V1C  V1SC  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  O,SC,C4  C,SC,C1  SC,SC,C1 

 

fL  fL 

 V1O  

SC,SC,C1  SC,SC,C2 

Figure 3.56: Experiment U-7  True Model 

Nominal Model: 

fL  fH  fH  fH fH  fL fL  fH 

1 V1O  V2O  V2C   V1C   V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4   C,C,C1   O,C,C2 

  SO,C,C2  SO,O,C3 

O,SO,C3 

SO,SO,C3 

  SO,C,C4 

SO,SO,C4 

     SO,C,C2 

Figure 3.57: Experiment U-7  Nominal Model 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong expected output after an observable event. 

i. Expected State(ES)= {(O,C,C2), (SO,C,C2), (SO,O,C3),(O,SO,C3),}. By neglecting the 

controller component Cont, then ES become = {(O,C), (SO,C)}. 

a. Last Conforming State(LCS) in the Nominal model = (C,C,C1). By neglecting the controller 

component Cont, then LCS becomes = {(C,C)} 

 

c. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD = fL. 
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SS-Table: 

Table-7 SS-Experiment U: 28.3Table  

V1 V2 Label 

C  C fL 

SC C fL 

C SC fL 

SC SC fL 

a. Reject the rows with all normal states (looking for faulty states). 

Table 3.29: Experiment U-7 Filtered SS-Table 

V1 V2 Label 

SC C fL 

C SC fL 

SC SC fL 

 

b. From the output map table, select the states that have some components  conforming with 

Expected States (ES) = {(O,C), (SO,C)}. 

For the first ES = (O,C), V2 is found to be C in the first record in the table (V1=SC, V2=C), 

thus (SC,C) is the corresponding candidate expected state. 

For the second ES = (SO,C), V2 is found to be C one record in the table (V1=SC, V2=C), 

thus (SC,C) is the corresponding candidate expected state. 

The summary Table 3.30 below summarizes the conclusion of sources and destinations of the missing 

transitions and is explain as follows:  

Table 3.30: Experiment U-7 Source and Destination Summary Table 

LCS ES Candidate 

Expected States 

Suspected 

Component 

Source Destination 

C,C O,C SC,C V1 C SC 

 SO,C SC,C V1 C SC 

 

c. For the first ES = (O,C) 

i. The candidate expected state (SC,C) when compared to ES = (O,C), we can find that V1 is 

wrongly expected, thus suspected components={V1}. 

ii.  Source of missing transition: in the Last Conforming State (LCS)=(C,C), where V1 is at C, 

then the source of missing transition in V1 is C. 

iii. Transition Destination Candidate: from the found records (the candidate expected state) of 

the SS-table, V1 should be at SC, thus destination candidate in V1 is SC. 
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d. For the second ES = (SO,C) 

i. The candidate expected state (SC,C) so, it is the same as the first ES = (O,C). 

 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

• For first expected state ES = (O,C) 

H1= V1:C
V1SC
→   SC as SC is a state reachable by V1SC. 

• For the second expected state ES = (SC,O). 

H1= V1:C
V1SC
→   SC as SC is a state reachable by V1SC.  But this hypothesis is rejected 

because it is repeated.  

 

4- Step-4: Update the model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

The same sequence of event will be applied then continued to check the future progression. 

True model: 

fL  fH  fH  fH  fH  fL  fL 

1 V1O  V2O  V2C  V2SC  V1C  V1SC  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  O,SC,C4  C,SC,C1  SC,SC,C1 

 

fL  fL  fL 

 V1O  V2O  

SC,SC,C1  SC,SC,C2  SC,SC,C3 

Figure 3.58: Experiment U-7 True Model 
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New Nominal Model: 

fL  fH  fH  fH  fH  fL 

1 V1O  V2O  V2C    V1C  

C,C,C1  O,C,C2  O,O,C3  O,C,C4    C,C,C1 

  SO,C,C2  SO,O,C3 

O,SO,C3 

SO,SO,C3 

 SO,C,C4 

SO,SO,C4 

   SC,C,C1 

 

 

 

 

 

Figure 3.59: Experiment U-7 New Nominal Models 

Notes: 

- Practically, the nominal model does not see the unobservable events happening in the real 

system, but after correcting the previous discrepancy, V1SC is added to the model. If the 

previous discrepancy rehappens, it will be explained by V1SC, so the state flow diagram is 

updated accordingly including V1SC after the state (C,C,C1). 

- Now, the nominal model is under the correction of hypothesis H1. A new discrepancy happens 

means either H1 is incompliant and needs to be rejected or this is already a new discrepancy. 

But, since the new nominal model is under a single hypothesis, the discrepancy is considered as 

a new discrepancy. This means for example, if the previous discrepancy leads to 3 hypotheses 

and the first of them has a discrepancy and the other two have not, the first will be considered 

incompliant while the other two surviving hypotheses will be considered compliant. If all 

hypotheses have a discrepancy, then this is considered a new discrepancy and needs to be 

corrected. 

- Here in this case, there is only one hypothesis, and the new discrepancy needs to be corrected. 

 

 

 

fL  fL  fL  fH 

   V1O  V2O  

C,C,C1    O,C,C2  O,O,C3 

SC,C,C1    SC,C,C2  
SC,O ,C3 

SO,O,C3 

O,SO,C3 

SO,SO,C3 
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1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong expected output after an observable event. 

j. Expected State(ES) = {(O,O,C3), (SC,O,C3), (SO,O,C3), (O,SO,C3),(SO,SO,C3)}.  

For simplicity, we will study the first two expected states {(O,O,C3), (SC,O,C3)}. 

By neglecting the controller component Cont, then ES becomes = {(O,O), (SC,O)}. 

c. Last Conforming State(LCS) in the Nominal model: {(O,C,C2), (SC,C,C2)}. By neglecting 

the controller component Cont, then LCS becomes = {(O,C), (SC,C)}. 

d. Actual Label of Discrepancy (ALD) = fL. 

2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD = fL. 

SS-Table: 

Table 3.31: Experiment U-7 SS-Table (for New Nominal) 

V1 V2 Label 

C  C fL 

SC C fL 

C SC fL 

SC SC fL 

• Reject the rows with all normal states (looking for states reachable by unobservable events which 

are fault events in this experiment). 

Table 3.32: Experiment U-7 Filtered SS-Table (for New Nominal) 

V1 V2 Label 

SC C fL 

C SC fL 

SC SC fL 

 

a. From the filtered SS-table, select the states that have some components  conforming with 

Expected State (ES)= {(SC,O), (O,O)}. 

For (O,O): No record was found, so, it will be assumed that both V1 and V2 are wrongly 

expected due to unobservable events that happened in both of them. Thus, the fully faulty 

states will be selected as candidate states. In this case (SC,SC) is the corresponding candidate 

expected state. 
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For (SC,O): V1 is found to be SC in two records in the table (V1=SC, V2=C), and (V1=SC, 

V2=SC) thus {(SC,C), (SC,SC)} are the corresponding candidate expected states. 

The summary Table 3.33 below summarizes the conclusion of sources and destinations of the missing 

transitions and is explain as follows: 

Table 3.33: Experiment U-7 Source and Destination Summary Table 

LCS ES Candidate 

Expected States 

Suspected 

Component 

Source Destination 

(O,C) (O,O) (SC,SC) V1 O SC 

V2 C SC 

(SC,C) (SC,O) (SC,C)  --- ---  --- 

(SC,SC) V2 C SC 

 

b. For the first ES = (O,O) 

i. The candidate expected state (SC,SC) when compared to LCS = (O,C), we can find that V1 

and V2 are wrongly expected, thus suspected components={V1,V2}. 

• Source of missing transition: in the Last Conforming State (LCS)=(O,C), where V1 is at 

O, V2 is at C. 

Then the source of the first missing transition in V1 is O. 

The source of the second missing transition in V2 is C. 

• Transition Destination Candidates:  

For the first candidate expected state (SC,SC),  

V1 should be at SC, thus the destination of first missing transition is SC. 

V2 should be at SC, thus the destination of first missing transition is SC. 

c. For the second ES = (SC,O) 

i. The first candidate expected state is neglected because it is the same as the LCS. This means 

that the missing transition will be as  a self-loop. But the unobservable event such as faults 

should move the automaton from a normal state to a fault state. 

ii. For the second  candidate expected state (SC,SC), when compared to LCS = (SC,C), we can 

find that V2 is wrongly expected, thus suspected components={V2}. 

iii. Source of missing transition: in the Last Conforming State (LCS)=(SC,C), where V2 is at 

C, then the source of missing transition in V2 is C. 

iv. Transition Destination Candidate: from the found records (the candidate expected state) of 

the SS-table, V2 should be at SC, thus destination candidate in V2 is SC. 
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3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

• For first expected state ES = (O,O) 

H1= V1:O
V1SC
→   SC as SC is a state reachable by V1SC. This hypothesis is rejected because 

the cross fault between O and SC is not included in the setup of the true system. 

H2= V2:C
V1SC
→   SC as SC is a state reachable by V2SC. 

• For the second expected state ES = (SC,O). 

H3= V2:C
V2SC
→   SC as SC is reachable by V2SC, but this hypothesis is rejected but this 

hypothesis is rejected because it is repeated in H2. 

 

4- Step-4: Update the model 

c. Re-combine all the components based on the new hypotheses in the suspected components.  

d. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

e. The missing transition has been retrieved the same as the true model, so no need to verify 

the progression. 

3.6.1.8 Experiment U-8 

In this experiment, missing more than one missing transition is studied. The automata of the 

components are shown in Figure 3.60. In this case, the nominal model will be built by missing a transition 

in each of the two valves. The two missing transitions are V1SO between C and SO in V1, and V2SO 

between C and SO in V2. 

OC

v1O

SC

v1SO

SO

v1C,v1O

v1C

v1C

v1SC

v1C,v1O

v1SC
v1SO

OC

v2O

SC

v2SO

SO

v2C,v2O

v2C

v2C

v2SC

v2C,v2O

v2SC
v2SO

F

V1

V2

C1 C3

C2

C4

v1O
v2O

v2C
v1C

Cont PlantV1 V2

 

Figure 3.60: Experiment U-8 System 
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True model: 

 

 

 

 

Nominal Model: 

fL  fH  fH  fH  fL  fL 

1 V1O  V2O  V2C  V1C    

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  C,C,C1 

  SO,C,C2 

SO,SC,C2 

O,SC,C2 

 SO,O,C3 

SO,SC,C3 

SO,SO,C3 

SC,O,C3 

SC,SO,C3 

O,SO,C3 

 SO,C,C4 

SO,SC,C4 

O,SC,C4 

SO,SO,C4 

SC,SO,C4 

O,SO,C4 

 SC,C,C1 

SC,SC,C1 

C,SC,C1 

 SC,C,C1 

SC,SC,C1 

C,SC,C1 

Figure 3.61: Experiment U-8 True and Nominal Models 

1- Step-1 Information Collection 

a. Is there a discrepancy detected? Yes 

b. Type of Discrepancy? Wrong unexpected output. 

Note: Here the nominal model was matching the system until it reached the state (C,C,C1) with 

output=fL and suddenly the real system generated a new different output fH while the currently 

expected output is fL.  This sudden change happened due to an unobservable event that could not 

be explained by the nominal model. 

Expected State (ES) after neglecting the controller component  = {(C,C), (SC,C), (SC,SC,), (C,SC)}. 

a. Last Conforming State(LCS) in the Nominal model after neglecting the controller 

component = {(C,C), (SC,C), (SC,SC,), (C,SC)}. 

b. Actual Label of Discrepancy (ALD) = fH. 

2- Step-2 Analysis: 

Suspected States table or the (SS-table) for the states in the model that can have the same output as 

Actual Label of Discrepancy ALD = fL. 

 

  

fL  fH  fH  fH  fL  fH 

1 V1O  V2O  V2C  V1C  V1SO  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SO,C,C1 
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SS-Table: 

 

Table 3.34: Experiment U-8 SS-Table 

V1 V2 Output 

O O fH 

O C fH 

O SO fH 

O SC fH 

SO O fH 

SO C fH 

SO SO fH 

SO SC fH 

C O fH 

SC O fH 

C SO fH 

SC SO fH 

 

a. Reject the rows with all normal states (looking for faulty states). 

 

Table 3.35: Experiment U-8 Filtered  SS-Table 

V1 V2 Output 

O SO fH 

O SC fH 

SO O fH 

SO C fH 

SO SO fH 

SO SC fH 

SC O fH 

C SO fH 

SC SO fH 

 

Here in this experiment, and because the LCS and ES have four elements, the explanation will be very 

long. Therefore, using the same steps made in the previous experiments, we will generate the hypotheses 

based on the summary Table 3.36 below that summarizes the conclusion of sources and destinations of 

the missing transitions. 
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Table 3.36: Experiment U-8 Source and Destination Summary Table 

LCS ES Candidate 

Expected States 

Suspected 

Component 

Source Destination Hypothesis Selection Reason 

(C,C) (C,C) (C,SO) V1 C SO Kept1. 

(SO,C) V2 C SO Kept1. 

(SC,C) (SC,C) (SC,O) V2 C O Rejected2: Ends with normal states 

reachable by observable event. 

(SC,SO) V2 C SO Kept1. 

(SO,C) V1 SC SO Rejected3: Fault mode is Permanent. 

(SC,SC) (SC,SC) (O,SC) V1 SC O Rejected3: Fault mode is Permanent. 

(SO,SC) V1 SC SO Rejected3: Fault mode is Permanent. 

(SC,O) V2 SC O Rejected3: Fault mode is Permanent. 

(SC,SO) V2 SC SO Rejected3: Fault mode is Permanent. 

(C,SC) (C,SC) (O,SC) V1 C O Rejected2: Ends with normal states 

reachable by observable event. 

(SO,SC) V1 C SO Kept1 

(C,SO) V2 SC SO Rejected3: Fault mode is Permanent. 

 

Notes: 

1In the summary table, these hypotheses are sourcing from a normal state and ends with a destination 

state reachable by unobservable event. Thus, it is considered logically valid where we are treating 

missing transitions with unobservable events. 

2 These hypotheses are rejected because the destination is a normal state reachable by observable 

event. 

3 These hypotheses are rejected because they are sourcing from a fault mode state and the destination 

is different while it is assumed in this thesis that the fault mode is permanent. 

 

3- Step-3: Hypothesize: 

a. Create a direct transition from the source to the candidate destination on the form: 

b. Hypothesis = The suspected component: (Source → Discrepancy event → Destination 

Candidates). 

• For the expected state ES = (C,C) 

H1= V1:C
V1SO
→   SO as SO is a state reachable by V1SO.  

H2= V2:C
V1SO
→   SC as SO is a state reachable by V2SO. 

• For the second expected state ES = (C,SC). 

H3= V1:C
V1SO
→   SO as SO is a state reachable by V1SO, but this hypothesis is rejected but 

this hypothesis is rejected because it is repeated in H1. 
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4- Step-4: Update the Model 

a. Re-combine all the components based on the new hypotheses in the suspected components.  

b. Check the future progression of each hypothesis according to the actual labels initiated by 

the real system and reject the incompliant. 

True model: 

fL  fH  fH  fH  fL  fH  fH 

 V1O  V2O  V2C  V1C  V1SO  V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SO,C,C1  SO,C,C2 

 

fH  fH  fH  fH 

 V2O  V2C  V1C  

SO,C,C2  SO,O,C3  SO,C,C4  SO,C,C1 

Figure 3.62: Experiment U-8 True Model 

For simplicity, here the progression of the nominal models generated by H1 and H2 will not show all the 

possible states after each event and will only show the state reached by the event on the transition.  

 

Nominal Model: Built by using H1 

The model reaches C,C,C1 after V1O,V2O,V2C,V1C, then the output changes to fH. This model has an 

explanation for this change which is V1SO after V1C. 

fL  fH  fH  fH  fL  fH  fH 

 V1O  V2O  V2C  V1C  V1SO  V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  SO,C,C1  SO,C,C2 

 

fH  fH  fH  fH 

 V2O  V2C  V1C  

SO,C,C2  SO,O,C3  SO,C,C4  SO,C,C1 

       

Figure 3.63: Experiment U-8 Nominal Model by H1 
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Nominal Model: Built by using H2 

The model reaches C,C,C1 after V1O,V2O,V2C,V1C, then the output changes to fH. This model has 

an explanation for this change which is V2SO after V1C. 

fL  fH  fH  fH  fL  fH  fH 

 V1O  V2O  V2C  V1C  V2SO  V1O  

C,C,C1  O,C,C2  O,O,C3  O,C,C4  C,C,C1  C,SO,C1  O,SO,C2 

 

fH  fH  fH  fH 

 V2O  V2C  V1C  

O,SO,C2  O,SO,C3  O,SO,C4  C,SO,C1 

Figure 3.64: Experiment U-8 Nominal Model by H2 

Discussion: 

As shown above, the two hypotheses H1 and H2 are equal in terms of generating the same output 

response under the same sequence of observable events. 

By repeating the future progression check with changing the sequence of event after the instant of 

discrepancy, it could be noted that the behavior of the two hypotheses is the same. This is since any of 

the valves is stuck open the output label will be fH always. Although the nominal model at the beginning 

of this experiment was built by removing two transitions, retrieving one of them is sufficient to explain 

the discrepancy. In other words, in H1, retrieving the missing V1SO between C and SO in V1 makes the 

missing V2SO between C and SO in V2 to be undiagnosable and consequently cannot be covered. And 

the same is correct for H2. 

In such configuration, if we found two hypotheses having the same behavior under all possible 

sequence of events, we can consider them equal hypotheses where we can select any of them and reject 

the other or combine them based on the designer’s decision. 

This could be formulated as: 

In this experiment, the two hypotheses are generated in two different components V1 and V2, thus it 

could be possible to merge these equal hypotheses so that each component will have its own missing 

transition corrected. In case of the two hypotheses are generated on the same component, for a 

demonstration example if we assumed there is two hypotheses as: 

H1= V1:C
V1σ
→  O  and  H2= V1:C

V1σ
→  Po, then the two hypotheses shall not be merged, and they would 

be checked separately for future progression. This is since merging the two hypotheses will lead to a 
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nondeterministic model having two transitions with the same source and event but with different 

destinations. This case is out of scope of the assumptions of this research that tackles the missing 

transitions in deterministic models. 

3.6.2 Derived Rules for the Learning Algorithm 

The following rules are concluded from the previous experiments and will be used in constructing the 

algorithm that corrects the model’s missing transitions with unobservable events. The rules are named as 

UnObRule-n, where the prefix UnOb stands for UnObservable events while n is the rule number. 

UnObRule-1: The discrepancy of missing transition of unobservable event is detected by having 

unexpected output that could not be explained by the current nominal model.  

- UnObRule-1.a:  Type-1 is the unexpected output after an observable event is applied after the 

Last Conforming State. 

- UnObRule-1.a: Type-2 is the unexpected output that suddenly happens without any observable 

event is applied after the Last Conforming State. 

UnObRule-2: Expected state (ES) is the state in nominal model at which the output discrepancy occurs. 

UnObRule-3: The suspected states table (SS-table) lists all the states having the same output as ALD. 

The fully normal states (reachable by observable events) are rejected. 

UnObRule-4: The candidate expected states are concluded from SS-table to have some components 

conforming with Expected State (ES). 

- UnObRule-4.a: Missing transition with unobservable event should end with a state that is 

reachable by unobservable event in the component. 

- UnObRule-4.b: Since within the context of this thesis, it is assumed that the fault mode is 

permanent, if the source state has a component in a faulty state (reachable by unobservable fault 

event), this component should not change its state. 

- UnObRule-4.C: The suspected components are the wrongly expected components. 

UnObRule-5: The Last Conforming State (LCS) gives the source of the missing transitions in suspected 

components. 

UnObRule-6: The destination of the missing transition in the suspected component is the value of this 

component in the candidate expected states.  

UnObRule-7: a hypothesis of a missing transition starts from a source to a destination with the applicable 

unobservable event that can reach the destination.  
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UnObRule-8:The number of hypothetical models equals the number of hypotheses of the missing 

transitions. 

UnObRule-9: In terms of the future progression of the system, the compliant models are accepted, and 

the incompliant models are rejected. 

UnObRule-10: Equal hypotheses are reduced to one hypothesis per transition if they pertain to the same 

component so that they could be tested separately. If the Equal hypotheses pertain to different 

components,  they can be merged in a combined hypothesis. 
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Chapter 4 

The Proposed Learning Algorithm 

This chapter introduces the design of the diagnoser and the heuristic algorithm that is proposed as a 

solution for the previously discussed problem of incomplete models. As discussed in chapter 3, this study 

includes a number of experiments in order to explore the possible cases of the missed transitions. The 

rules follow the procedures used in the experiments of chapter 3. Since the algorithm should be triggered 

by a discrepancy, it is required to introduce the design of the diagnoser that monitors the system and 

detects the discrepancy. The steps of the learning algorithm are developed in such a way to first capture 

the current information of the system at the discrepancy. Then, the analysis of these information leads to 

the determination of the suspected components and the states at which the missing transitions are possibly 

missing. Finally, the hypotheses proposing the missing transitions are used to generate new models. The 

new model is verified based on its compliance with future behavior to the true system. The compliant 

hypotheses that make the nominal model generate the same response as the true system shall be accepted 

meanwhile the incompliant hypotheses shall be rejected. 

 

4.1 Event-State Observer Design 

4.1.1 Introduction 

This section introduces the event-state based observer including its update laws and cases of detecting 

the discrepancy along with examples of how it works. While the observer will be used here for monitoring 

the progression of the model, the diagnosis will be carried out by the diagnoser block. 

Two major approaches of observers or diagnosers are tackled in the literature. The event-based 

approach uses only the events with standard automata in the design of the diagnosers as per [18], [19]. 

The other approach of diagnoser is the state-based diagnoser that uses the output labels as inputs for the 

diagnoser to estimate the system state and the system condition [20]. Some other research combined the 

event-state based diagnoser in a timed version such as [28]. 

In this research, we represent the incomplete nominal model that needs to be corrected as a version of 
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Moore automaton having events on the transition arcs and the output labels on the states. Therefore, both 

of the two pieces of information which are the events and output labels will be incorporated in our 

observer block. This means that in this research, the observer will be an Event State-Based Observer. We 

assume that the observer block shall be initialized at the same time as the true system is initialized. As 

inputs, the observer receives the observable events generated in the plant and all output changes. Based 

on the received inputs either observable event, output change or both, the observer will compute the 

estimated states of the system. The state estimates are a set of states of the model where the observer 

informs that the system is estimated to be in one of those states.  

The observer is an automaton designed based on the current model [20], then, if  the model is 

incomplete and the observer at a certain point was unable to estimate the system states and evaluates to 

an empty set, this condition will be signaled as a discrepancy. The observer was explained in chapter 2 in 

the background overview however, Example 4.1 is introduced to recall and facilitate the idea, and the full 

discussion of the observer structure is given in the following section. 

Example 4.1: As shown in Figure 4.1, assuming that the system is at state x3 and an observable event 

σ1 occurred, so the nominal model says that the system shall progress to state x4. But since there are some 

transitions in the nominal model after x3 having unobservable events α1 and α2 such that they might happen 

while they are unmeasurable. Thus, the observer shall estimate that when the system was at x3 and σ1 

occurred, the system is estimated to be in any of the states {x4 , x11 , x12}. If σ2 occurs, the system is 

estimated to be in {x5 , x13}. 

x3

x5

x4σ1

x11

x12

α1

σ2

α2

x13

β1

 

Figure 4.1: Example 4.1 Nominal Model 

More formally, if we assumed that at certain instant k, the observer state estimate was zk ={x3}, then 

after σ1 the new state estimate will be zk+1 = {x4 , x11 , x12}. Or at zk ={x3}, if σ2 occurs the new state 

estimate zk+1 = {x5 , x13} because after x5 the unobservable event β1 might happen. Figure 4.2 depicts 

the observer. Now, we can say that z1 , z2 and z3  are the states of the observer automaton with each of 

them contains the state estimates of the nominal model based on the occurred event. It should be noted 
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that the observer in this example is an event-based observer. 

z1

x3

z2

x4 , x11, x12

z3

x5 , x13

σ1

σ
2

 

Figure 4.2: Example 4.1 Observer Automaton 

4.1.2 Plant Model 

The plant is modeled with best of knowledge to be the nominal model. Thus, the nominal model could be 

represented in terms of the following tuple. 

G=(X,Σ,η,x0,Y,λ,Xm), 

Where X is the set of states, Σ: finite set of events, η: X × Σ → X is the partial transition function, x0 

is the initial state,  Y is the finite set of output labels, λ: X → Y output map function, Xm is the finite set 

of marked states. 

4.1.3 Definitions 

The unobservable reach of a state x denoted as UR(x) introduced in [1] is reintroduced here. 

Definition 4.1  The unobservable reach of a state x∈X is defined as follows: 

UR(x) = {v∈X | (∃t ∈Σuo
* ) and η (x,t)= v}. 

□ 

Example 4.2 In Example 4.1 , UR(x4) = {x4, x11,x12}.  

In addition, this definition could be extended to a set of states z ⊆ X as: 

UR(z) = ⋃x∈Z UR(x) 
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Example 4.3 To obtain the unobservable reach for the set of states {x4, x5}, in Figure 4.1, let 

z = {x4, x5}  , and then UR(z) = UR(x4) ⋃ UR(x5) = {x4,x11,x12}⋃{x5, x13} = {x4,x5,x11,x12,x13} 

Definition 4.2  For any two states x1, x2 ∈ X, we say that x2 is e-Reachable from x1 if x1 ≠ x2 and  x2 is 

reachable from x1 by an unobservable event and is denoted as x1 
σ ∈ Σuo
→      x2. 

□ 

It would be required to extend the transition function η of the model’s automaton such that it could be 

applied on a set of states rather than one state. Thus, for z⊆X, and σ ∈ Σ, η(z,σ) = {x∈X | (∃ xe∈z) 

and x=η(xe ,σ)}, this means that it will result in the set of states reached by the event σ starting from the 

set of states z. 

4.1.4 Observer Model 

The observer automaton is represented by the following tuple: 

O =(Z, Σ, Y, η, λ, z0,  ξσ, ξy, ξe) 

where, 

Z: set of states of the observer z ⊆2X-{ϕ}. 

Σ : Set of events of the system. 

Y : Set of output labels of the system. 

η: X × Σ → X, the partial transition of the nominal model. 

λ : X → Y, the output map function. 

z0 : the initial state estimate of the observer. 

Transition function: is also called the update law since it is the function used to update the observer from 

its current state to the next state. 

ξσ : Z × Σ → Z , is the transition function (update law) of case-1 of receiving an observable event without 

having an output label change. (Will be discussed in detail in section 4.1.5.1). 

ξy: Z × Y → Z , is the transition function (update law) of case-2 of having an output label change without 

receiving an observable event . (Will be discussed in detail in section 4.1.5.24.1.5.1). 

ξe: Z × Σ × Y →  Z, the transition function (update law) of case-3 of receiving an observable event with 
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an output change.(Will be discussed in detail in section 4.1.5.3). 

As mentioned earlier, we assume that the observer and the true system will be initialized at the time. This 

implies that initial state z0 = {x | x ∈ UR({x0}) and λ(x) = λ(x0)}. 

4.1.4.1 Observer State Notation  

Figure 4.3 shows the notation of the observer state that is comprised of the three fields. The top field holds 

the observer state number. The middle field shows the estimated states of the nominal model. The bottom 

field holds the corresponding output label generated by the true system. The entering arrow represents the 

observation that leads to this state of observer (either the observable event or, the output label or, both of 

them). 

 z (Observer State)

 x1, x2 ,.. (Nominal Model 

Estimated States) 

 y (Corresponding Output Label)

σ or/and y  

 

Figure 4.3: Observer State Notation 

4.1.5 Cases of Observer Transition Function  

The observer block is introduced as a Moore automaton that has a transition function which defines 

how the automaton states changes. Here, this automaton of the observer will have a transition function 

with three rules based on the case of the occurrence of the events and outputs. Briefly, the three cases of 

the transition function are as follows. 

1- In the first case, a new observable event occurs in the system that causes no change in the output label. 

2- In the second case, there is a change in the output label without an observable event. 

3- In the third case, a new observable event occurs in the system that causes a change in the output label. 

Figure 4.4 depicts the construction of the event-state observer in terms of the three cases of transition 

function.  

σk+1
zk 

yk 

yk+1 
zk 

yk 

σk+1 , yk+1 
zk 

yk 

zk+1 

yk+1=yk 

zk+1 

yk+1 

zk+1 

yk+1 

Case-1 Case-2 Case-3
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Figure 4.4: Observer Transition Function Cases 

The transition function cases are formally described below, while some examples of how the observer 

operates in these cases are given in the next section.  

4.1.5.1 Transition Function Case-1 

In this case, the true system generates a new observable event σk+1 but there is no change in the output 

label. The transition function (update law) of this case is defined as follows: 

zk+1 = ξσ (zk, σk+1) where, 

ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}. 

Figure 4.5 depicts the idea by an example. Here it is assumed that zk={xe1, xe2, xe3} is a certain state of 

the observer, and after the event σk+1 occurs, the element states {xe1, xe2, xe3} evolved to {xi1, xi2, xi3}, 

then the new observer state estimation zk+1 is the Unobservable Reach of {xi1,xi2,xi3} having an output 

label yk+1 where yk+1  = yk. 

σK+1
xe1

xe2 

xe3

xi1

xi2

 xi3

UR(xi1, xi2, xi3)

Σuo

zk 

zk+1 

zk 

xe1,xe2 ,xe3

yk 

yk+1=yk 

σK+1

zk+1 

yk+1=yk 

UR(xi1, xi2, xi3)

 

Figure 4.5: Observer Transition Function Case-1 

This is an adapted version of the event-based observer transition function introduced in [1]. In other 

words, it could be said that the result of the event-transition function is to return all the states that could 

be reached from the set of states zk by a sequence of events that starts with σk+1 followed by 

unobservable events and all such states have the same output yk+1 = yk. 
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4.1.5.2 Transition Function Case-2 

In this case, the true system generates a new output  without the occurrence of an observable event. 

The cause of this label change is an unobservable event. The transition function (update law) of this case 

is defined as follows: 

zk+1 = ξy (zk, yk+1) where, 

ξy (zk, yk+1) = {x | λ(x) = yk+1 and x ∈ UR(zk)}. 

The transition function of this case is an adapted version of the state-based diagnoser transition 

function introduced in [20]. 

This means that, the new state estimation zk+1 will be the set of states reachable from the previous zk by 

an unobservable event and having the new output label yk+1.  

Figure 4.6 depicts the idea by an example. If we assumed zk={xe1, xe2, xe3}, then the new state estimate 

zk+1 is the set of states reachable from zk by an unobservable event and having the new output label yk+1 

generated by the true system.  

 

zk+1 

UR(xe1,xe2 ,xe3)

yk+1 yk yk 

zk 

xe1,xe2 ,xe3

yk 

xe1

xe2 

xe3

UR(xi1, xi2, xi3)

zk 

σuo

λ(UR(zk ))=yk+1

zk+1 

σuo

 

Figure 4.6: Observer Transition Function Case-2 
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4.1.5.3 Transition Function Case-3 

In this case, a new observable event occurred in the system followed by a change of the output label. 

The transition function (update law) of this case is defined as follows: 

zk+1 = ξe (zk, σk+1, yk+1) where, 

ξe (zk, σk+1, yk+1) =  {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 }. 

xe1

xe2 

xe3

xi1

xi2

 xi3

λ
-1

(yk+1) ∩ UR(xi1, xi2, xi3)

Σuo

zk 
zk+1 

zk 

xe1,xe2 ,xe3

yk 

yk+1 

zk+1 

yk+1 

UR(xi1, xi2, xi3)
 σk+1, yk+1 

σk+1

 

Figure 4.7: Observer Transition Function Case-3 

 

Figure 4.7 depicts the idea that could be described as the first case but with having a new output label 

generated by the true system. When a new observable event σk+1 occurs, the state estimate zk={xe1, xe2, 

xe3} can be updated to other states {xi1, xi2, xi3}, then expanded to the unobservable reach with same output 

yk+1 to get the new estimate zk+1. 

It is worth to highlight that, in this research it is required to monitor the progression of the model in 

terms of two types of observations, the observable events and the output labels.  Therefore, any 

discrepancy found that could not be explained by the current model shall be detected and forwarded to 

the learning algorithm. 

4.1.6 Observer Block Operation Examples 

The following examples are intended to describe how the observer works and also to show how 
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discrepancies will be detected. 

 

4.1.6.1 Observer Block Example-1 

This example introduces the observer block and ends with detecting a discrepancy of missing a 

transition with an observable event. The discrepancy in this example will be detected as an event happens 

in the true system but it is undefined in the nominal model at the discrepancy state. The plant is comprised 

of two cascaded valves. Figure 4.8 shows the automata of the plant. The first valve has fault modes of 

stuck-open and stuck-closed while the second valve is considered reliable with no faults. The ES stands 

for Emergency Shut Down command and is intended to be enabled on all the states of the two valves to 

let the valves go to their initial closed states. The observable transition with ES from state O to state C in 

V2 (denoted by the crossed line) is assumed to be missing in the model but it could happen in the true 

plant. This example will describe the progression of the model under the observation of the observer and 

shows how the missing transition is detected and declared as a discrepancy. The sequence of events is 

considered V1O, V2O, ES. 

OC

v1O

SC

v1SO

SO

v1C,v1O, ES

v1C

v1C,ES

v1SC

v1C,v1O, ES

OC

v2O

v2C

v2C, ES

v1SCv1SO

v2O

v1O
ES

C1 C3

C2

C4

v2Ov1O

v1C
v2C

F2

V1 V2

ES

ES

ES

ES

ES

V1 V2 Cont Plant

 

Figure 4.8: Observer Example-1 System 

Figure 4.9 shows the automaton of the nominal model after performing the synchronous product of the 

components as G = sync (V1,V2,Cont). The sync operation is computed using Discrete Event Control 

Kit (DECK) [50] and plotted by MATLAB. The state name in the figure is depicted in terms of the state 

number and the components’ values (e.g., 1:C,C,C1). The numbers assigned to states here are assigned 

by the sync operation in DECK. The transitions with unobservable events are indicated by the dashed 

lines while the solid lines represent observable events. 



104 

 

 

Figure 4.9: Observer Example-1 Nominal Model 

Remarks about the examples: 

- A new observation either a new observable event or a new output label will be denoted by the 

bold chevron bullet “” and will be followed by the corresponding transition computations. 

- The diagnoser starts from its initial state z0 that equals UR(x0). After a new observation (either 

a new observable event or a new output), the state estimate zk will be updated by the observer’s 

update law that corresponds to the case. 

 

z0 = UR(x0) = {1,3,4}, is the initial state.    

y0 = fL , is the output label at the initial state. 

 V1O ,  y1 = fL : new event occurred at the real system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}  

Then, z1 = {x | x∈UR (η(z0, V1O)) and λ(x)=fL}.  

Since z0  = {1,3,4}, η(z0, V1O) = {2,5,6} as explained below. 

Initial  

State 
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x∈z0 
η(x,V1O ) UR(.) UR(.) and λ(x)=fL 

1 η(1,V1O)=2 {2,5,6} {2,5,6} 

3 η(3,V1O)=5 {5} {5} 

4 η(4,V1O)=6 {6} {6} 

Thus, z1= {2,5,6}. 

 V2O ,  y2 = fH: new event occurred with label change (Case-3)  

Since zk+1 = ξe (zk, σk+1,yk+1) , ξe (zk, σk+1, yk+1) = {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 }. 

Then, z2= {x | x ∈ UR(η(z1, V2O)) and λ(x)=fH} 

Since z1= {2,5,6}, η(z1, V2O) = {7,8,9} as explained below.  

 

x∈z1 
η(x,V2O ) UR(.) UR(.) and λ(x)=fH 

2 η(2,V2O)=7 {7,8,9} {7,9} 

5 η(5,V2O)=8 {8} --- 

6 η(6,V2O)=9 {9} {9} 

But  λ(8)≠fH, thus, z2 = {7,9}. 

 ES,  y3 = fL: new event occurred with label change (Case-3)  

z3= {x | x ∈ UR(η(z2, ES)) and λ(x)=fL}  

Since z2= {7,9}, η(z2, ES) = ϕ as explained below.  

x∈z2 
η(x, ES ) UR(.) UR(.) and λ(x)=fL 

7 η(7,ES)= NOT DEFINED --- --- 

9 η(9,ES)= NOT DEFINED --- --- 

ES is NOT DEFINED at z2 = {7,9}, DISCREPANCY DETECTED 

The progression of the observer during the previous steps is depicted in Figure 4.10. 

z0

{1,3,4}

y0 = fL

z1 

{2,5,6}

y1=fL 

σ1=V1O
z2

{7,9}

y2=fH 

σ2=V2O, y2=fH σ3=ES, y3=fL 
z3

- - -
y3=fH 

Discrepancy

ES is NOT 

defined at {7,9}

Learning 

Algorithm

Go to

 

Figure 4.10: Observer Example-1 Progression 
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4.1.6.2 Observer Block Example-2 

This example discusses the observer block in a case ending with detecting the discrepancy of missing 

a transition with an unobservable event. The discrepancy in this example will be detected as an unexpected 

output label generated and measured while the current nominal model is unable to explain it. This is due 

to an unobservable event happening in the true system, and its transition being absent in the current 

nominal model. 

The plant is comprised of two valves as shown in Figure 4.11. The first valve has two modes of fault 

(stuck-open and stuck-closed) while the second one is considered without fault modes. The nominal 

model is built with missing the transition of  the unobservable event V1SO between the state C and SO 

in V1.  

OC

v1O

SC

v1SO

SO

v1C,v1O

v1C

v1C

v1SC

v1C,v1O

OC

v2O

v2C

v2C

v1SCv1SO

v2O

v1O

C1 C3

C2

C4

v2O
v1O

v1C
v2C

F

V1 V2

V1 V2 Cont Plant

 

Figure 4.11: Observer Example-2 System 

Figure 4.12 shows the automaton of the nominal model after performing the synchronous product of the 

components as G = sync (V1,V2,Cont). 
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Figure 4.12: Observer Example-2 Nominal Model 

z0 = UR(x0) =  UR(1) = {1,2}, is the initial state. 

y0 = fL 

 V2O ,  y1 = fL : new event occurred at the real system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}. 

Then, z1 = =  {x | x∈UR (η(z0  V2O)) and λ(x)=fL}. 

Since z0 = {1,2}, η(z0, V2O) = {3,4} as explained below. 

x∈z0 η(x,V2O) UR(.) UR(.) and λ(x)=fL 

1 η(1,V2O)=3 {3,4} {3,4} 

2 η(2,V2O)=4 {4} {4} 

Thus, z1= {3,4}. 

 V1O ,  y2 = fH: new event occurred with label change (Case-3) 

Since zk+1 = ξe (zk, σk+1, yk+1) , ξe (zk, σk+1, yk+1) = {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 }. 

Then, z2 = {x | x ∈ UR(η(z1, V1O))  and λ(x)=fH}. 

Since z1= {3,4}, η(z1, V1O) = {5,6} as explained below. 

 

 

Initial  

State 



108 

 

x∈z1 η(x,V1O) UR(.) UR(.) and λ(x)=fH 

3 η(3,V1O)=5 {5,6,8} {5,8} 

4 η(4,V1O)=6 {6} --- 

But λ(6)≠fH, thus, z2 = {5,8}. 

 V1C ,  y3 = fL: new event occurred with label change (Case-3) 

Then, z3= {x | x ∈ UR(η(z2, V1C))  and λ(x)=fL}. 

Since z2 = {5,8}, η(z2, V1C) = {7,10} as explained below.  

x∈z2 η(x,V1C) UR(.) UR(.) and λ(x)=fL 

5 η(5,V1C)=7 {7,9} {7,9} 

8 η(8,V1C)=10 {10} --- 

But λ(10)≠fL, thus, z3 = {7,9}. 

Here, we can study the two scenarios related to unobservable events. The first scenario is the unexpected 

output label change and the second is the unexpected label change after an observable event. 

Unexpected Output Label Change: 

At the current situation, let us assume that the unobservable event V1SO occurs in the plant where the 

transition of V1SO from C to SO in V1 is missing in the nominal model. But it happens in the plant where 

V1 fails to stuck-open. This is an unobservable event and, it caused an output label change to fH. 

 y4 = fH: new label without an observable event (Case-2) 

Since, zk+1 = ξy (zk, yk+1) , where zk+1= {x | λ(x) = yk+1 and x ∈ UR(zk)} 

Then, z4= {x | λ(x) = fH  and x ∈ UR(z3)}, i.e., z4= UR(z3) ∩ λ-1(fH ) 

From z3 = {7,9}  

 

x∈z3 UR(.) UR(.) and λ(x) = fH 

7 {7,9} --- 

9 --- --- 

This means that, for this label change, if we started from the states of z3 = {7,9} we cannot reach any 

state having label =fH by any unobservable events. Thus, the new label cannot be explained by the current 

model, and a DISCREPANCY IS DETECTED. Here a stuck-open failure from the closed state of V1 

was not expected. The progression of the observer during the previous steps is depicted in Figure 4.13. 
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z0

{1,2}

y0 = fL

z1 

{3,4}

y1=fL 

σ1=V2O
z2

{5,8}

y2=fH 

σ2=V1O, y2=fH σ3=V1C, y3=fL 
z3

{7,9}

y3=fL 

Discrepancy

y4=fH is not expected and could 

not be explained

Learning Algorithm
Go to

y4=fH

 

Figure 4.13: Observer Example-2 Progression 

Wrong Expected Output After an Observable Event. 

If we assumed that the system continued after z3 = {7,9} as follows: 

 V2C ,  y4 = fL : new event occurred at the real system with no label change (Case-1) 

Then, z4= {x | x∈UR (η(z3, V2C))) and λ(x)=fL}. 

Since, z3 = {7,9}, η(z3, V2C) = {1,2} as described below. 

x∈z3 η(x,V2C) UR(.) UR(.) and λ(x)=fL 

7 η(7,V2C)=1 {1,2} {1,2} 

9 η(9,V2C)=2 {2} {2} 

Thus, z4 = {1,2}. 

 V1SO unobservable event occurs in the true system with its transition missing in the nominal model 

but since V2 is still closed, it will not cause any label change. 

 V2O, y5 = fH: new event occurred with label change (Case-3).  

Note that, this label fH is due to V1 has failed to the stuck-open state by V1SO but the current nominal 

model expects the output label to remain fL since V1 is not yet commanded to open . 

Then, z5 ={x | x ∈ UR(η(z4, V2O))  and λ(x)=fH}. 

For z4 = {1,2}, we find η(z4,V2O) as described below.  

x∈z4 η(x,V2O) UR(.) UR and λ(x)=fH 

1 η(1,V2O)=3 {3,4} --- 

2 η(2,V2O)=4 {4} --- 

Although the new event is V2O is defined at z4= {1,2} but it leads to states {3,4} with output label 

fL, i.e., the nominal model expects to see an output label fL. This is while the plant actually generates a 

label fH that cannot be explained or expected by the current model. Thus, a DESCRIPANCY IS 

DETECTED. The progression of the observer during the previous steps is depicted in Figure 4.14. 
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z0

{1,2}

y0 = fL

z1 

{3,4}

y1=fL 

σ1=V2O
z2

{5,8}

y2=fH 

σ2=V1O, y2=fH 

σ4=V2C

z3

{7,9}

y3=fL 

Discrepancy

y5=fH is not expected and could 

not be explained

Learning Algorithm
Go to z4

{1,2}

y4=fL 
y5=fH

σ3=V1C, y3=fL 

σ5=V2O

 y4=fL 

 

Figure 4.14: Observer Example-2 Progression 

4.1.6.3 Observer Block Example-3 

This example presents the operation of the observer block and discusses the case of unobservable 

events happening in the real system if they are already modeled in the nominal model. 

The same configuration of the system used in Example-2 above will be used here with V1SO exists 

between C and SO. 

z0 = UR(x0) = {1,2}, is the initial state. 

y0 = fL, is the output label at the initial state. 

 V2O ,  y1 = fL : new event occurred at the real system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}. 

Then, z1 = =  {x | x∈UR (η(z0  V2O)) and λ(x)=fL}. 

Since z0 = {1,2}, η(z0, V2O) = {3,4} as explained below. 

x∈z0 η(x,V2O) UR(.) UR(.) and λ(x)=fL 

1 η(1,V2O)=3 {3,4} {3,4} 

2 η(2,V2O)=4 {4} {4} 

Thus, z1= {3,4}. 

 V1O,  y2 = fH: new event occurred with label change (Case-3) 

Since zk+1 = ξe (zk, σk+1, yk+1) , ξe (zk, σk+1, yk+1) = {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 }. 

Then, z2 = {x | x ∈ UR(η(z1, V1O))  and λ(x)=fH}. 

Since z1= {3,4}, η(z1, V1O) = {5,6} as explained below. 

x∈z1 η(x∈z1,V1O) UR(.) UR(.) and λ(x)=fH 

3 η(3,V1O)=5 {5,6,8} {5,8} 

4 η(4,V1O)=6 {6} --- 

But λ(6)≠fH, thus, z2 = {5,8}. 
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 V1SO occurs in the true system and since it is unobservable and under the current configuration, it will 

not cause any label change. 

 V1C,  y3 = fH: new event occurred at the real system with no label change (Case-1) 

Then, z3 = {x | x∈UR (η(z2, V1C)) and λ(x)=fH}. 

Since z2  = {5,8}, η(z2, V1C)) = {7,10} as explained below. 

x∈z2 η(x,V1C) UR(.) UR(.) and λ(x)=fH 

5 η(5,V1C)=7 {7,9} --- 

8 η(8,V1C)=10 {10} {10} 

But  λ(7)≠fH and ,λ(9)≠fH, thus, thus, z3 = {10}. 

 V2C ,  y4 = fL: new event occurred with label change (Case-3) 

z4 = {x | x ∈ UR(η(z3, V2C) and λ(x)=fL}  

Since z3 = {10}, η(z3, V2C) = {11} as described below. 

x∈z3 η(x,V2C) UR(.) UR | λ(x)=fL 

10 η(10,V2C)=11 {11} {11} 

Thus, z4 = {11}.  

The progression of the observer during the previous steps is depicted in Figure 4.15 in terms of the 

observable events. 

z0 = {x0}
{1}

y0 = fL

z1 

{3,4}

y1=fL 

σ1=V2O
z2

{5,8}

y2=fH 

σ2=V1O, y2=fH 

σ4=V2C

z3

{10}

y3=fH 

z4

{11}

y4=fL 

σ3=V1C 

 y4=fL 
 

Figure 4.15: Observer Example-3 Progression 

As shown above, the unobservable event V1SO could be explained by the nominal model and 

estimated by the observer based on the output label change. 

4.2 The Learning Diagnoser Flowchart 

Figure 4.16 shows the flow chart of the learning diagnoser. It is comprised mainly of two parts. The 

first part is the state-event observer that checks for new observations, updates state estimates and detects 

the discrepancy. If there is no discrepancy, the condition map function maps the estimated states to thier 

corresponding conditions (e.g., Normal, Fault). The second part is the learning algorithm that is triggered 
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when a discrepancy is detected. then, it works on generating hypotheses for the missing transitions. 

The discrepancy is detected as soon as any of the three cases of update laws for the observer returns 

an empty state estimate. This means that the current nominal model cannot  explain the observations from 

the true system, either the events or the actual output label. This inability to explain is due to the 

incompleteness of the model in terms of missing transitions in  some components. Once the discrepancy 

is detected, the symptom of discrepancy shall identify its type and consequently, the type of the missing 

transition either a transition with observable event or unobservable event. 

Observer Update State Estimate zk

Yes

No

STEP-1:Current Data Collection:

- From the system

- From the Nominal Model

STEP-2: Analysis:

- Determine the suspected 

components

- Determine Destinations

of the missing transitions

- Determine Sources

of the missing transitions

STEP-3: Hypotheses 

- Hypotheses Generation

- Sync components and generate the 

new hypothesized models

- Reject incompliant hypotheses

New observation

Check for new observation

Determine Discrepancy Type

Discrepancy 

Handling

Learning 

Algorithm

zk=ϕ?
Discrepancy?

Condition

Map

 

Figure 4.16: Learning Diagnoser Flowchart 
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4.3 Discrepancy Symptoms 

In this study we have two types of missing transitions: (1) is missing transitions with observable events 

and (2) is, missing transitions with unobservable events. Each type of these missing transition generates 

discrepancy with its own symptoms. 

4.3.1 Missing Transitions with Observable Events: 

The discrepancy of this type of missing transitions in the components has one symptom that is denoted 

as “Unexpected Observable Event”. 

4.3.1.1 Unexpected Observable Event 

The name comes from the situation that, when the true system is progressing and the observer is 

estimating, then a new observable event that is not defined at the last state estimate occurs. That is why it 

is not expected to be seen here at last state estimate. Hence, the observer update law evaluates an empty 

set ϕ and indicates a discrepancy. This unexpected observable event could be a private event that belongs 

to the alphabet of a single component, or it is a common event that belongs to the alphabets of more than 

one component. 

4.3.2 Missing Transitions with Unobservable Events 

The discrepancy of this type of missing transitions in the components has two symptoms that will be 

denoted as: (1) Unexpected output label with observable event, and (2) Unexpected output label. 

4.3.2.1 Unexpected Output Label with Observable Event 

The discrepancy symptom appears when an observable event occurs in the true system and generates 

an output label either the same as the previous one or a new one. This observable event is defined at the 

current state estimate of the observer, but it leads the nominal model to a different output label other than 

the actual label generated by the true system. This Unexpected output label generated in the true system 

happens due to a transition with unobservable event in the real system but was missing in the nominal 

model, and it is required to be added.  

It should be noted that, the occurred observable event is already defined at the last conforming state 

estimate, so it could not be treated as a missing observable event. This is based on the theoretical definition 

of the synchronous product given in chapter.2, the event (common or private) is defined in the resulting 
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model automaton (at the current state) if it is defined in all automata - having the event in their alphabet 

- at their corresponding current states.  Moreover, adding a new transition that sources from the last 

conforming state estimate holding this event (which has already this event going out of it), will make the 

automaton nondeterministic which is not the subject of this thesis. 

4.3.2.2 Unexpected Output-Label 

The name of this discrepancy symptom describes the situation in which the true system was at a certain 

state that matches the estimations of the observer and without any new observable event occurred in the 

true system, the true system suddenly generates an output label that cannot be explained by the current 

nominal model. Such sudden change is unexpected to occur by any observable event or a command in the 

true system. 

4.4 Discrepancy Type Determination by the Observer 

A discrepancy arises if after a new observation, the observer generates an empty state estimate. 

Depending on the last update law that was used, there are three cases of discrepancy. Therefore, this 

section explains how each update law is able to detect discrepancy symptoms. 

4.4.1 While in Update Law of Case-1 

In case-1, a new event occurred, and the output label does not change, The update law is: 

zk+1 = ξσ (zk, σk+1) where, 

ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}. 

Thus, the discrepancy handling block in the algorithm flow chart could be explained as follows: 

➢ IF the term ξσ (zk, σk+1) evaluates to an empty set ϕ (due to σk+1 is not defined at the set of 

state estimate zk because its transition is missing in some components), 

         Then the type of discrepancy is unexpected observable event. This depicted in Figure 4.17. 

 

zk 

yk 

σk+1 Not Defined at zk Unexpected 

Observable Event ϕ

 

Figure 4.17: Unexpected observable Event from Case-1 
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Figure 4.18 explains this logic as a flowchart for Update law of case-1. 

zk+1 = ξσ (zk, σk+1) = ϕ YesNo

Update

Update law Case-1

Unexpected 

Observable Event.

Missing Transition 

with Observable 

Event.

 

 Figure 4.18: Discrepancy Detection by Case-1 Update Law 

4.4.2 While in Update Law of Case-2 

In case-2, the output label changes without any observable event, generated. The update law is: 

zk+1 = ξy (zk, yk+1) where, 

ξy (zk, yk+1) = {x | λ(x) = yk+1 and x ∈ UR(zk)}. 

Thus, the discrepancy handling block in the algorithm flow chart could be explained as follows: 

➢ IF the true system generates a new output label y’ where y’ ≠ y (the current output label) 

without an observable event and the new output label y’ cannot be explained by the observer 

at the unobservable reach of the current state estimate, i.e., y’ ∉ λ(UR(zk )), 

Then the type of discrepancy is unexpected output label. This depicted in Figure 4.19. 
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y

- - -

- - -
y' 
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Actual output-label 

cannot be explained

Unexpected Output Label y' 

 

Figure 4.19: Unexpected Output Label 
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Figure 4.20 explains this logic as a flowchart for Update law of case-2. 
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Figure 4.20: Discrepancy Detection by Case-2 Update Law 

4.4.3 While in Update Law of Case-3 

In case-3, a new observable event is generated along with output label change.  

The update law is:  

zk+1 = ξe (zk, σk+1, yk+1) where, 

ξe (zk, σk+1, yk+1) =  {x | x ∈ UR(η(zk, σk+1))  and λ(x) = yk+1}. 

It should be noted that, this case could be regarded as an extension to case-1 (that has no output label 

change), but with output label change and it will be executed in two steps. The first step is to evaluate 

UR(η(zk, σk+1)) if σk+1 is defined at zk, and the second step is to return the set of states, where λ(x) = yk+1. 

Hence, if the generated event in the true system is not defined at the last state, such that η(zk, σk+1) = ϕ, 

then the type of discrepancy is unexpected observable event, (as detected by case-1). This is regardless 

of the value of the output label, because anyways the learning algorithm shall work on hypothesizing a 

transition with the missing observable event that explains the actual output label (either changed or not). 

However, if the generated observable event by the true system σk+1 was defined at the last state zk such 

that such that η(zk, σk+1) ≠ ϕ, but the new actual output label yk+1 cannot be explained by the model, it 
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means that an unobservable event could have happened in that past that drove the true system to generate 

this output label. But the transition of this unobservable event is missing in the model. In this case we 

cannot assume a discrepancy of missing a transition with the observable event σk+1, because the 

synchronous product guarantees that if σk+1 is defined at zk, so it is defined in all the components if σk+1 

is common, or it is defined in its specific component if it is private. Thus, hypothesizing a transition from 

any state in the state estimate set zk will lead to a non-deterministic automaton. The discrepancy will be 

attributed to an unobservable event. 

Thus, the discrepancy handling block in the algorithm flow chart could be explained as follows: 

➢ IF the term η(zk, σk+1) evaluates to an empty state. 

Then the type of discrepancy is unexpected observable event (Missing a transition with an 

observable event). This depicted in Figure 4.21. 

 

zk 

yk 

σk+1 Not Defined at zk Unexpected 

Observable Event ϕ

 

Figure 4.21: Unexpected Observable Event from Case-3 

 

➢ IF the term η(zk, σk+1) evaluates to a non-empty set, but the actual output label cannot be 

explained where yk+1 ∉ λ( UR(η(zk, σk+1)), 

Then the type of discrepancy is unexpected output label with observable event (Missing a 

transition with an unobservable event). This is depicted in Figure 4.22.  
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Figure 4.22: Unexpected Output-Label with Observable Event from Case-3 

 

Figure 4.23 explains this logic as a flowchart for Update law of case-3. 
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Figure 4.23: Discrepancy Detection by Case-3 Update Law 

 

4.5 Mathematical Formulation for the Learning Algorithm 

As explained before, there are two types of missing transitions, the first one is the transitions with 

observable events while the second is transitions with unobservable events. Therefore, the learning 

algorithm has two sub-algorithms, the first handles missing transitions with observable events and is 

denoted as Algorithm-1. The second sub-algorithm denoted as Algorithm-2 handles missing transitions 

with unobservable events. This section discusses the mathematical formulation of the learning algorithm 

for each type. 

  



119 

 

4.5.1 Introduction 

By considering X as the set of states of the system, let us assume that it is divided into two subsets. 

The first subset contains the normal states XN that are reachable by observable events while the second XF 

has all the states reachable by unobservable events where, X = XN ⋃ XF. typically, XF represents the set 

of faults states, but since some fault events could be observable when measured directly by sensors, then  

XF will be denoted in this research as the abnormal states set, where these states are reachable only by 

unobservable events. 

The output map that was used formerly in the experiments can be reintroduced and defined as the 

table listing all the states of the system resulting from the cartesian product of the components along with 

the corresponding generated output labels. This table can be introduced in matrix representation. The 

rows indexed by the index “i” ranges from 1 to N, where N is the maximum number of rows while the 

columns are indexed with the index “c” that ranges from 1 to |C|, where C is the set of components in the 

plant i.e., C={C1,C2,…,Cc}; so |C| is the number of components. Each row represents a state of the model 

and is written in form of a tuple a xi = (xi1,xi2,…,xic), as shown in Table 4.1. 

Table 4.1: Output Map 

                                              Components 

States 
C1 C2 … Cc y=output label 

x x1,1 x1,2 … x1,c y1 

x2 x2,1 x2,2 … x2,c y2 

          

x xN,1 xN,2 … xN,c yN 

As shown in the output map, C1,C2,…,Cc are the component automata. The symbols xi,C are the 

substates or the state value of the comprising components. For example, the symbol x2,1 (underlined in the 

table) stands for the value of the component C1 while the model of the system is at state x2. As another 

example, let us assume that the state is a 4-tuple (Po,Po,C,C2) is state number 3 in the table (x3), then x3,2 

is Po and, x3,3 is C. Thus, generally for any component’s state value written as xi,C, the first index “i” 

specifies the state in the output map which is xi, while the second index “c” specifies the state value of 

the component. 
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4.5.2 Assumptions 

Let us review our assumptions on the DES model. 

• The number of components is known and does not miss any component model. 

• The number of states in the components are known and correct. For example, a valve or a pump 

automaton has the correct number of states. 

• The event set is known and does not miss any event, i.e., the event set of the nominal model and 

the true model are the same. 

• We may only miss some transitions in the model of components (that leads to discrepancy in the 

composed model). 

• The set of output labels is available and accurate (i.e., nothing is missing). In other words, the 

output map function of the real system and the nominal system are the same. 

• The faults (abnormal states) are permanent, and after a failure occurs, the system will not return to 

normal mode. 

4.5.3 Missing Transitions with Observable Events 

This section introduces the mathematical formulation in case of the discrepancy occurs following the 

occurrence of an observable event. By following the same flowchart of the algorithm in section 4.2 , each 

step of this flowchart is described in the following. 

4.5.3.1 Algorithm Description 

This section explains in detail the steps of the branch of the learning algorithm concerned with missing 

transitions with observable events. 

1- STEP1: Detect the discrepancy and determine the discrepancy type. 

a. Detect discrepancy and its type. 

i. Is a discrepancy detected during observer progression? 

Answer: Yes 

ii. What is the type of discrepancy?  

Answer: The new observable event occurred in the system is not defined at the current state 

estimation of the nominal model, i.e., Unexpected Observable Event. 

Cause: Missing transition with observable event. 

b. Collect  the current system observations and information. 
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i. Event of Discrepancy σd: is the event that happened in the real system that is not defined at current 

state estimation of the nominal model. 

ii. Last Conforming State Set LCS:  

Based on ObRule-1, the last conforming state zL is the last state estimate before the occurrence of 

the event of discrepancy as shown in Figure 4.24.  
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σk+1
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ϕ 
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Figure 4.24: Last Conforming State 

In Figure 4.24, the last conforming state estimate in the observer of the nominal model  is the last state 

to which the observer moved before the discrepancy (after which the discrepancy event σd is not defined 

in the nominal model that results in ϕ estimates). 

iii. Actual Label of Discrepancy ALD: yd, is the actual generated label from the real system observed 

at the discrepancy state.  

 

2- STEP-2: Analyzing the collected information and determining sources 

and candidates 

a. Get Suspected Components 

i. Suspected Components SC: is the set of  components that have the discrepancy event σd in their 

event sets. Since ΣCi denotes the alphabet of the component Ci then, SC={Ci  | σd ∈ΣCi ,1≤i≤|C|}. 

ii. Complete Suspected Components CSC: 

This is the subset of suspected components for which σd is defined at the current state, i.e., they are 

the components having σd in their event set but found not missing the transition of σd in at least one 

of the states of discrepancy. These are the components that are removed from the SC since they are 

not causing of the discrepancy.  

▪ The formulation: 

For each estate estimate xLj in the last conforming state zL  the complete suspected components could 

be computed by the following formula: 
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CSCj = {C∈SC | η(xLj,C ,σd) is defined} , ∀ xLj∈zL. 

The index j is used for indexing the states xLj in zL where, 1≤j≤|zL|. 

iii. Deficient Suspected Components DSC 

This is the subset of suspected components found with σd NOT defined at their current state i.e., 

suspected components found missing a transition with σd at the state of discrepancy. 

 

▪ The formulation: 

For each estate estimate xLj in the last conforming state zL  the deficient suspected components could 

be computed by the following formula: 

DSCj= {C∈SC | η(xLj,C , σd) is not defined}  , ∀ xLj∈zL  

iv. Irrelevant Components Cirv: 

Is the set of components that are not suspected of missing the transition with σd event at the 

discrepancy state because they do not have this event in their event sets. 

▪ The formulation: 

For each estate estimate xLj in the last conforming state zL, the irrelevant components could be 

computed by the following formula: 

Cirv = C – SC 

v. The Deficient Components Table: 

It will be required to tabulate the above information so that it can be referenced and indexed in the 

algorithm. Thus, they will be collected on a table called the Deficient Components Table. To explain how 

this table is structured, we will introduce the following notations. 

Notation 4.1 

Consider a certain state xz, 

The deficient part of a state is the values of the deficient components in this state denoted by xz,{DSC}. 

The irrelevant part of a state the values of the irrelevant components in this state denoted by xz,{Cirv}. 

Example: Assuming a certain state xz= (C,Po,Po,O,H) where DSC={C2,C4}, then xz,{DSC} points to 

(C2:Po,C4:O) while xz,{Cirv} refers to the other components value (C1:C,C3:Po,C5:H). 

The Complete Suspected Components “CSC” and the Deficient Suspected Components “DSC” and 
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the Irrelevant Components “Cirv” will be used to construct the Deficient Components Table. This is 

shown by the following example. 

Example 4.4: Deficient Components Table 

This example is given just to demonstrate constructing the tables required for computations with 

indexing and filling the cells. An application example will be given after this section of the formulation. 

Let us assume that we have a plant comprised of four cascaded valves V1,V2,V3,V4 and that an observer 

detects a discrepancy at a state estimate zL = {(O,O,Po,O), (O,Po,O,Po), (SO,Po,O,Po)} after an event σd 

occurred. Then, assuming that the DSC and CSC and Cirv are found per each component state estimate 

xLj. 

The Deficient Components Table could be constructed as follows: 

Table 4.2: Deficient Components Table 

xLj ∈ zL DSCj xLj ,{DSC} CSCj xLj ,{CSC} Cirv xLj ,{Cirv} 

xL1= 

(O,O,Po,O) 

DSC1= 

{V2,V3} 

xL1,{DSC}=(V2:O,V3:Po) CSC1= 

{V1} 

xL1,{CSC}=(V1:O) Cirv1={V4} xL1,{Cirv}= 

(V4:O) 

xL2= 

(O,Po,O,Po) 

DSC2= 

{V3} 

xL2,{DSC}=V3:Po CSC2={V1,

V2} 

xL1,{CSC}=(V1:O,V2:Po) Cirv2={V4} xL2,{Cirv}= 

(V4:Po) 

xL3=  

(SO,Po,O,Po) 

DSC3= 

{V2,V3} 

xL1,{DSC}=(V2:Po,V3:O) CSC3={V1} xL3,{CSC}=(V1:Po) Cirv3={V4} xL2,{Cirv}= 

(V4:Po) 

 

The Deficient Components Table checks each state xLj  in the state estimate zL and tabulates the 

corresponding deficient, complete and irrelevant components. 

b. Determine the Candidate Suspected States 

i. Proposed States XPS 

As shown in the experiments and based on ObRule-3, it is required to select some states using the 

output map as suitable candidate states for the destination of the missing transition. So, XPS is the set of 

states in the output map that have the same label as the ALD. In the experiments, these are the states that 

were first filtered from the output map table. 

▪ The formulation: 

XPS={x | λ(x)=ALD}. 

Hence, these proposed states are the first group of states proposed by the output map that can generate 

the label ALD. For example, in a cascaded couple of valves (C,C), (C,O), (O,C), (SC,C), (SC,O) could 

be the XPS for the label fL. Up to here and based on ObRule-4, in terms of selecting and filtering the XPS 

to get candidate expected states, we have two sub-scenarios for the missing observable event: the first, 
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the event is private and the second, the event is a common event. 

ii. Private Events candidate expected states: 

In case of missing transitions with a private observable event, this event belongs to only one 

automaton and is not common with others, i.e., |DCS|=1 or the number of deficient components is only 

one.  In this case it will be required to have some rules to filter the proposed states XPS to get the candidate 

expected states. These rules are formulated in the following. 

 

▪ The formulation: 

If at a certain state estimate z that became the LCS, and we have j state estimates in this state z such 

that zL={xL1,xL2, …., xLj}, then the candidate expected states of each state xLj could be filtered by 

applying the following function Xcndd(xLj): 

 Xcndd(xLj) = {xPS ∈XPS}  

Such that the following conditions hold if applicable: 

Table 4.3: Filtering Candidate Expected States – Private Events 

 Condition Description 

1)  xPS,{Cirv}= xLj,{Cirv}  Based on ObRule-5, select the states xPS ∈XPS where the 

irrelevant part stays unchanged by σd. 

2) xPS,{DSC} ∉ XCF if xLj,{DSC}∉ XCF Based on ObRule-7, if the state value of the deficient 

component at the discrepancy state is normal, select the 

candidate states to be also normal. 

Here, XCF is the set of faulty (abnormal) states in the 

component C. 

3) 
xPS,{DSC} = xLj,{DSC} 

if xLj,{DSC}∈XCF 

As a result of ObRule-7, if the state value of the deficient 

component at the discrepancy state is abnormal, select the 

candidate states to be also abnormal and to be the same as 

the deficient component state value. 
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By looking to the previous definition and the condition table, we can explain the conditions of 

selecting the candidate expected states of each state xLj as follows: 

1) While selecting candidate expected states from XPS ,the irrelevant components’ part is held 

constant as they do not have σd in their alphabet and not expecting any change to happen in the 

irrelevant components. 

2) If at a discrepancy state xLj∈zL, the suspected component is at a normal state such as O or C in a 

valve, the observable event σd should move it to another normal state. Thus, the candidate state 

inside the component must be also normal. For example, missing ES between ON and OFF in a 

pump. 

3) If at a discrepancy state xLj∈zL, the suspected component is at a faulty (abnormal) state such as 

SO or SC in a valve, the event σd should move it to an applicable abnormal state. Thus, the candidate 

state inside the component must be also faulty (abnormal).  But, since it is assumed that the fault 

modes (abnormal states) are permanent, the candidate state should be selected the same as the state 

value of the deficient component in LCS. This is because the missing transition with observable 

event shall not move the automaton from an abnormal state to another. This case resembles missing 

to model a self-loop at a faulty state, e.g., missing an open command V1O around stuck-open state 

SO in a valve. 

 

iii. Common Events Candidate States: 

▪ The formulation: 

If at a certain state estimate z that became the LCS, and we have j state estimates in this state z such that 

zL={xL1,xL2, …., xLj}, then the candidate expected states of each state xLj could be filtered by applying 

the following function Xcndd(xLj):  

Xcndd(xLj) = {xPS ∈XPS } 

Such that the following conditions hold if applicable: 
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Table 4.4: Filtering Candidate Expected States – Common Events 

1)  xPS,{Cirv}= xLj,{Cirv} Based on ObRule-5, select the states where the irrelevant part 

stays unchanged by σd 

2) 
xPS,{CSC} = 

ηc(xLj,{CSC},σd)  

Based on ObRule-6, select the states where the complete 

suspected components having σd defined will make a transition by 

its own transition function ηc. 

3) xPS,{DSC} ∉ XCF if 

xLj,{DSC} ∉XCF 

 

Based on ObRule-7, if the state value of the deficient component 

at the discrepancy state is normal, select the candidate states to be 

also normal. Where, XCF is the set of abnormal states in the 

component C. 

4) 
xPS,{DSC} = xLj,{DSC} 

if xLj,{DSC}∈XCF 

 

As a result of ObRule-7, if the state value of the deficient 

component at the discrepancy state is abnormal, select the 

candidate states to be also abnormal and to be the same as the 

deficient component state value. 

 

By looking to the previous definition and the condition table, we can explain the conditions of selecting 

the candidate expected states of each state xLj as follows: 

1) While selecting candidate expected states from XPS ,the irrelevant components’ part is held 

constant as they do not have σd in their alphabet and not expecting any change to happen in the 

irrelevant components. 

2) The complete suspected components having σd common but defined at the discrepancy state, 

should progress by its own transition function ηc. 

3) If the discrepancy state in a suspected component is a normal state such as O or C in a valve, the 

event σd should move it to another normal state. Thus, the candidate state inside the component 

must be also normal. For example, missing ES between ON and OFF in a pump. 

4) If at the discrepancy state, the suspected component is at an abnormal state such as SO or SC in 

a valve, the event σd should not move the automaton to another state because the fault modes 

(abnormal states) are assumed to be permanent. Thus, we select the candidate state the same as the 

state value of the deficient component in LCS. This case resembles missing to model a self-loop at 

a faulty state, e.g., missing an open command V1O around stuck-open state SO in a valve. 
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For each xLj  in zL, the candidate expected states will be tabulated in table called the Candidate States 

Table. For the previous demonstration example of the four cascaded valves and assuming that by 

consulting the output map table, it was possible to get the candidate suspected states as per each state 

estimate xLj in the last conforming state.  

The Candidate states table is constructed as following example (with these values here for 

demonstration): 

Table 4.5: Demonstration Example - Candidate States Table 

xLj  Xcndd(xLj) 

xL1  (C,C,C,C),(C,Po,Po,C),(C,Po,O,C),(C,O,O,C) 

xL2 (C,C,C,C),(C,C,Po,C),(C,C,O,C) 

xL3 (C,C,C,C) 

 

c. Determine the Destinations of the Missing Transitions 

Destinations Table: 

This table is computed based on Table 4.5 of candidate states table. Each field in the destinations table 

will contain the proposed or candidate destination state of the component Ci per each xLj. The destination 

of a transition will be formulated in the form a colon pair as Ci:xt where Ci is the component name and xt 

is the state value of that component at its destination. The formula to get each field in this destinations 

table is as follows. 

▪ The formulation: 

For a component Ci indexed with ”i” in a candidate state xcndd_k(xLj) indexed with “k” for a state 

estimate xLj in the last conforming state zL, the destinations could be represented by the following formula: 

Destj,k,i = Ci: xcndd_k,i(xLj) if Ci ∈DSCj ∀ 1≤ j ≤|zL|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

This means for each state estimate xLj in LCS, there will be some candidate states 

Xcndd(xLj)={xcndd_1(xLj), … , xcndd_k(xLj)}. In these candidate states, the value of the component Ci is the 

destination of the transition if this Ci belongs to the deficient components DSCj of this candidate state 

xcndd_k(xLj). 

For the previous demonstration example, and based on the Deficient Components Table, the Destination 
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Table will be constructed as follows: 

Table 4.6: Demonstration Example - Destination Table 

 xLj xcndd_k(xLj) Destj,k,i = Ci: xcndd_k,i(xLj) 
V1 V2 V3 V4 

xL1=(O,O,Po,O) xcndd_1(xL1)=(C,C,C,C) --- V2:C V3:C --- 

xcndd_2(xL1)=(C,Po,Po,C) --- V2:Po V3:Po --- 

xcndd_3(xL1)=(C,Po,O,C) --- V2:Po V3:O --- 

xcndd_4(xL1)=(C,O,O,C) --- V2:O V3:O --- 

xL2=(O,Po,O,Po) xcndd_1(xL2)=(C,C,C,C) --- --- V3:C --- 

xcndd_2(xL2)=(C,C,Po,C) --- --- V3:C --- 

xcndd_3(xL2)=(C,C,O,C) --- --- V3:C --- 

xL3=(SO,Po,O,Po) xcndd_1(xL3)=(C,C,C,C) --- V2:C V3:C --- 

 

d. Determine the Sources of Missing Transitions 

Sources Table: 

Based on ObRule-2, the source of missing transitions in the suspected components are written in the 

form of colon pairs as Ci:xLj,i. The first element in the colon pair is the Deficient Suspected Component 

and the second element is the state value of this component in the last conforming state estimate xLj. 

To backwardly link the destinations table to the sources, the source of missing transition is computed for 

each deficient component cell in the Destinations Table. This associates every cell in the destination table 

to its corresponding originating source to facilitate generating the hypotheses. This is depicted in Figure 

4.25. 

 

 

Figure 4.25: Sources Table to Destination Tables Correspondence 
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The source of missing transition is computed for each deficient component cell in the Destinations 

Table Destj,k,i using the following formula. 

 

▪  The formulation: 

For a component Ci indexed with ”i” in a candidate state xcndd_k(xLj) indexed with “k” for a state 

estimate xLj indexed with “j” in the last conforming state zL, the sources could be given by the following 

function: 

Srcs(Destj,k,i) =Ci:xLj,i   if Ci∈DSCj   ∀ 1≤ j ≤|zL|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C|       

For the previous example the sources table will be constructed as follows: 

 

Table 4.7: Demonstration Example - Sources Table 

 xLj xcndd_k(xLj) V1 V2 V3 V4 

xLj1=(O,O,Po,O) xcndd_1(xL1)=(C,C,C,C) --- V2:O V3:Po --- 

xcndd_2(xL1)=(C,Po,Po,C) --- V2:O V3:Po --- 

xcndd_3(xL1)=(C,Po,O,C) --- V2:O V3:Po --- 

xcndd_4(xL1)=(C,O,O,C) --- V2:O V3:Po --- 

xL2=(O,Po,O,Po) xcndd_1(xL2)=(C,C,C,C) --- --- V3:O --- 

xcndd_2(xL2)=(C,C,Po,C) --- --- V3:O --- 

xcndd_3(xL2)=(C,C,O,C) --- --- V3:O --- 

xL3=(SO,Po,O,Po) xcndd_1(xL3)=(C,C,C,C) --- V2:Po V3:O --- 

 

3- STEP-3: Hypotheses generation and model compliance verification 

This step is based on ObRule-8 to 11. 

a.  Generating the Hypotheses 

i. Hypotheses 

After computing the sources and destinations tables, it is possible to interlink between the 

corresponding cells in the tables to generate the hypotheses. As mentioned before such tabulation will be 

beneficial in organizing the work to get it programmatically implemented through programming loops. 

Based on ObRule-8, the hypotheses are computed for each deficient component Ci per each candidate 
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state of each last conforming state xLj. Each hypothesis starts from the source of the missing transition to 

the candidate destination with the event of discrepancy σd. 

ii. The simple hypothesis 

The hypothesis is simple if the missing transition is proposed in single component, and it starts from the 

source to the destination by the event of discrepancy in the component itself.  

▪ The formulation: 

Hj,k,i = Srcs(Destj,k,i)  
𝜎𝑑
→  Destj,k,i ∀ 1≤ j ≤|zL|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C|  

In the previous example, the simple hypothesis of xL2 at the first candidate of xL2 and the third component 

V3 is: 

     H2,1,3 = V3:O
σd

→C 

 

 

Figure 4.26: Demonstration Example – Simple Hypothesis Sources to Destination Linking 

iii. Combined Hypothesis: 

A hypothesis might be comprised of more than one transition at a time if the event of discrepancy is 

common and is found missing in more than one component. Thus, for each state estimate, the hypothesis 

is generated as the combination of the simple transition hypotheses ending by the corresponding candidate 

expected states. For the previous example: 

LCS=zL

=(O,O,Po,O)xL1 

(C,C,C,C)

(C,Po,Po,C)

(C,Po,O,C)

candidate expected states

(C,O,O,C)

 

Figure 4.27: Demonstration Example - Hypotheses Generation 
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The candidate expected state for xL1 denoted by Xcndd(xL1) = {(C,C,C,C), (C,Po,Po,C), (C,Po,O,C), 

(C,O,O,C)} = {Xcndd_1(xL1), Xcndd_2(xL1), Xcndd_3(xL1)} 

The hypotheses will be generated respecting the combination as follows: 

H1(xL1) = V2:O
σd

→C   AND  V3:Po
σd

→C 

H2(xL1) = V2:O
σd

→Po   AND  V3:Po
σd

→Po 

H3(xL1) = V2:O
σd

→Po      AND  V3:Po
σd

→O 

H4(xL1) = V2:O
σd

→O      AND  V3:Po
σd

→O 

Thus, if we have K candidate expected states, where “k” is used to index them, then the combined 

hypothesis could be formulated as follows: 

 

▪ The formulation: 

Hj,k = AND [Srcs(Destj,k,i) 
𝜎𝑑
→  Destj,k,i] ∀ 1≤ j ≤|zL|, ∀ 1≤k≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

Note that, the index “i” in hypothesis name is removed because the hypothesis now is combined of multiple 

components hypotheses.  

b. Synchronizing the Corrected Components and Generate New Models 

The previous formulas may result in a set of hypotheses for the corrected components. Consequently, 

the corrected components shall undergo a new synchronization operation that generates a new set of 

hypothesized models. This set of models have their progression monitored by the observer. If any of the 

new models becomes incompliant with the true plant observations while there are other models complying 

with the true plant, the incompliant model shall be rejected. This rejection is based on the fact that there 

are some models having explanation for the plant data while the rejected model perhaps was built using 

incorrect hypothesis and it is the time to reject it. 

▪ The formulation: 

If a number of hypotheses M indexed by m are generated and the number of components is |C| thus, 

the hypothesized models are given by: 

Modelm= Synch (C1, C2,… ,Cc),  1≤m≤M. 

4.5.3.2 Observable Events Algorithm pseudo code 

The following pseudo code represents the learning algorithm for the missing transitions with an 
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observable event. The code starts from detecting a discrepancy to generating the hypothesized models.  

It should be noted, the text starting with sign “/*” is considered as an informational comment line. 

 

 Algorithm 1: Observable Events Learning Algorithm 

 Input: Current nominal model, σd ,ALD, LCS. 

 Output: Set of hypothesized models. 

1: Suspected Components SC = {C | σd ∈Σc} 

2: For each xLj ∈ zL 

3:     Complete Suspected Components CSCj = {C∈SC | η(xLj,C , σd) IS DEFINED} 

4:     Deficient Suspected Components DSCj= {C∈SC | η(xLj,C , σd) IS NOT DEFINED} 

5:     Irrelevant Components Cirvj = C – SC 

6:     Fill in The Deficient Components Table 

7: End 

8: /* Determine the Candidate suspected states 

9: Proposed States XPS={x | λ(x)=ALD}  

10: For each xLj ∈ zL, SELECT FROM XPS WHERE 

11:     /* Candidate expected states (with Private event or Common event) 

    Xcndd(xLj) = {xPS ∈ XPS} 

12:     AND xPS,{Cirv}= xLj,{Cirv} 

13:     AND xPS,{CSC} = ηc(xL,{CSC}, σd)  

14:     AND  IF xLj,{DSC} ∉ XCF   

15:               THEN  xPS,{DSC} ∉ XCF 

16:     AND IF xLj,{DSC}∈XCF  

17:              THEN  xPS,{DSC} = xLj,{DSC} 

18:     Fill in The Candidate states table 

19: End 

20: /* Destinations Table 

21: For each xLj∈zL 

22:      For each xcndd_k(xLj) in Xcndd_k(xLj) 

23:            For each Ci in xcndd_k(xLj) 
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24:                   Destj,k,i = Ci: xcndd_k,i(xLj) if Ci ∈DSCj 

25:                       Fill Destinations Table with Destj,k,i 

26:             End 

27:      End 

28: End 

29: /* Sources Table 

30: For each xLj∈zL 

31:      For each xcndd_k(xLj) in Xcndd_k(xLj) 

32:            For each Ci in xcndd_k(xLj) 

33:                  Srcs(Destj,k,i)=Ci:xLj,i  IF Ci ∈DSCj  

34:                  Fill in Sources Table with  Srcs(Destj,k,i) 

35:             End 

36:      End 

36: End 

37: /* Generate the Hypotheses 

38: For each xLj∈zL 

39:      For each xcndd_k(xLj) in Xcndd_k(xLj) 

40:            For each Ci in xcndd_k(xLj) 

41:                   Hj,k,i = Srcs(Destj,k,i)  
σd

→ Destj,k,i 

42:             End 

43:      End 

44: End 

45:  /* combined Hypotheses  

46: Hj,k = AND [Srcs(Destj,k,i)  
σd

→ Destj,k,i] ∀ 1≤j≤|zL|,1≤k≤|Xcndd(xLj)|, 1≤i≤|C| 

47: /* Synchronize the corrected components and generate the new models 

48: For each H in Hj,k,i 

49:   Modelm= Synch (Cn)m, 1≤n≤|C|, 1≤m≤M, M is the number of hypotheses 

50: End 
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4.5.3.3 Application Example-1  

The system in this example is comprised of cascaded pump and valve as shown in Figure 4.28. The 

valve V1 is similar to the examples given before in terms of the states and events. The pump has two 

states Off and On. The events in the pumps are: 

p2Stp: Stop command      p2Rn: Run command    ES: Emergency Shut off 

The model is built while missing to model ES between On and Off in P2, while this event exists and can 

occur in the real plant if the pump was On. This example will go through the progression of the model 

until detecting the discrepancy then applying the learning algorithm to correct it by generating hypotheses. 

F

V1

OC

v1O

SC

v1SO

SO

v1C,v1O, ES

v1C

v1C,ES

v1SC

v1C,v1O, ES

OnOff

p2Stp, ES

v1SCv1SO

v1O
ES

C1 C3

C2

C4

p2Rn
v1O

v1C p2Stp

ES

ES

ES

ES

ES

V1 P2 Cont Plant

p2Rn

p2Stp

p2Rn

P2

 

 

Figure 4.28: Observable Events Application Example-1 

 

Figure 4.29 shows the automaton of the nominal model after the synchronous product of the components 

as G = synch (V1,P2,Cont). 
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Figure 4.29: Example-1 Nominal Model 

The system was initialized, and the model starts with initial state z0 

Since z0 = {x | x ∈UR({x0}) and λ(x) = λ(x0)} 

z0 = {1,3,4}    

y0 = fL 

 V1O ,  y1 =fL: new event occurred at the real system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}  

Then, z1 =  {x | x ∈ UR (η(z0, V1O)) and λ(x)=fL}. 

Since z0  = {1,3,4}, η(z0, V1O) = {2,5,6} as explained below. 

x∈z0 
η(x,V1O ) UR(.) UR and λ(x)=fL 

1 η(1,V1O)=2 {2,5,6} {2,5,6} 

3 η(3,V1O)=5 {5} {5} 

4 η(4,V1O)=6 {6} {6} 

Thus, z1= {2,5,6}. 

 

 P2On ,  y2 = fH: new event occurred with label change (Case-3)  

Initial 

state 
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Since zk+1 = ξe (zk, σk+1,yk+1) , ξe (zk, σk+1, yk+1) = {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1} 

Then, z2= {x | x ∈ UR(η(z1, P2On )) and λ(x)=fH} 

Since z1= {2,5,6}, η(z1, P2On) = {7,8,9} as explained below. 

 

x∈z1 η(x,P2O ) UR(.) UR and λ(x)=fH 

2 η(2,P2On )=7 {7,8,9} {7,9} 

5 η(5,P2On )=8 {8} --- 

6 η(6,P2On )=9 {9} {9} 

But  λ(8)≠fH, thus, z2 = {7,9}.  

 ES,  y3 = fL: new event occurred with label change (Case-3)  

z3= {x | x ∈ UR(η(z2, ES)) and λ(x)=fL}  

Since z2= {7,9}, η(z2, ES) = ϕ as explained below.  

 

x∈z2 η(x∈z2) UR(.) UR | λ(x)=fL 

7 η(7,ES)= NOT DEFINED --- --- 

9 η(9,ES)= NOT DEFINED --- --- 

ES is NOT DEFINED at z2 = {7,9}, DISCREPANCY DETECTED. The progression of the observer 

during the previous steps is depicted in Figure 4.30. 

 

z0

{1}

y0 = fL

z1

{2,5,6}

y1=fL 

σ1=V1O
z2

{7,9}

y2=fH 

σ2=P2On, y2=fH σ3=ES, y3=fL 
- - -

- - -
y3=fL 

Discrepancy

ES is NOT 

defined at {7,9}

Learning 

Algorithm

Go to

 

Figure 4.30: Example-1 Model Progression 

1- STEP1: Detect the discrepancy and determine the discrepancy type. 

a. Detect discrepancy and its Type 

i. Type of Discrepancy: Unexpected observable event. 

ii. Cause: Missing Transition with Observable Event 

b. Collect  the current system observations and information 

i. Event of discrepancy σd= ES  

ii. Actual Label of Discrepancy ALD= yd= fL 
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iii. Last Conforming State LCS: zL= z2 = {7,9} = {(O,On,C3),(SO,On,C3)} = {xL1, xL2} 

 

2- STEP-2: Analyzing the collected information and concluding sources and 

candidates 

a. Suspected Components: 

Since  SC = {C | σd ∈Σc} and σd =ES, and ES ∈{V1, P2,Cont}  

The SC = {V1,P2,Cont} 

At xL1= (O,On,C3) 

   ES is defined at V1:O 

   ES is NOT defined at P2:On 

   ES is defined at Cont:C3 

   Then, DSC1 ={P2}    (Deficient Suspected Components) 

              CSC1={V1,Cont}    (Complete Suspected Components) 

              Cirv= ---    (Irrelevant Components) 

At xL2= (SO,On,C3) 

   ES is defined at V1:SO 

   ES is NOT defined at P2:On 

   ES is defined at Cont:C3 

   Then, DSC2 ={P2} 

              CSC2={V1,Cont} 

              Cirv= --- 

 

Deficient Components Table 

xLj ∈ zL DSCj xLj ,{DSC} CSCj xLj ,{CSC} Cirv xLj ,{Cirv} 

xL1=(O,On,C3) DSC1={P2} xL1,{DSC}=(P2:On) CSC1={V1,Cont} xL1,{CSC}=(V1:O, Cont :C3)    ---  --- 

xL2=(SO,On,C3) DSC2={P2} xL2,{DSC}=(P2:On) CSC2={V1,Cont} xL2,{CSC}=(V1:O, Cont :C3)    ---  --- 

Up to here, we can omit the values of the controller Cont., because it is assumed to be known by the 

designer and it is not missing the event while only physical components are used to build the output map. 
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b. Determine the Candidate Suspected States 

Proposed States XPS 

XPS={x | λ(x)=ALD} , Thus XPS={x | λ(x)=fL}  

From the output map, the proposed states having output label = fL will be selected. 

 

V1 P2 Output 

C On fL 

C Off fL 

SC On fL 

SC Off fL 

O Off fL 

SO Off fL 

Candidate expected states 

xLj  Xcndd(xLj) Description 

xL1=(O,On) (C,On), (C,Off) Complete suspected component V1 moved from O to C by 

the common event ES in the expected candidate. 

xL2=(SO,On) (SO,Off) Complete suspected component V1 is at an abnormal state 

SO, so it should not change in the expected candidate. 

c. Determine the Destinations of the Missing Transitions 

Destinations Table: 

Destj,k,i = Ci: xcndd_k,i(xLj) if Ci ∈DSCj,k ∀ 1≤ j ≤|zL=LCS|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

 xLj xcndd_k(xLj) V1 P2 

xL1=(O,On) xcndd_1(xL1)=(C,On) --- P2:On 

xcndd_2(xL1)=(C,Off) --- P2:Off 

xL2=(SO,On) xcndd_1(xL2)=(SO,Off) --- P2:Off 

 

d. Determine the Sources of Missing Transitions 

Sources Table 

Srcs(Destj,k,i) =Ci:xLj,i   if Ci∈DSCj,k   ∀ 1≤ j ≤|zL=LCS|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

 xLj xcndd_k(xLj) V1 P2 

xL1=(O,On) xcndd_1(xL1)=(C,On) --- P2:On 

xcndd_2(xL1)=(C,Off) --- P2:On 

xL2=(SO,On) xcndd_1(xL2)=(SO,Off) --- P2:On 
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3- STEP-3: Hypotheses generation and model compliance verification 

 

Hypotheses: 

Hj,k,i = Srcs(Destj,k,i)  
𝜎𝑑
→  Destj,k,i ∀ 1≤ j ≤|zL=LCS|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

H1,1,2 =  P2:On
ES
→On 

H1,2,2 =  P2:On
ES
→Off 

H2,1,2 =  P2:On
ES
→On  Repeated  

The control sequence V1,P2Rn,P2Stp,V1C will lead to reject the first hypothesis, since after ES, the 

model (of H1,1,2) will expect that the pump is running and when it will receive the first event V1O, it will 

expect high flow “fH” while the actual output will be low flow “fL”. This output will be complying with 

the model built with the hypothesis H1,2,2. 

Thus, in this example, it is possible to hypothesize the missing transition and to reject the incompliant 

hypothesis.  

 

4.5.4 Missing Transitions with Unobservable Events 

This section introduces the mathematical formulation in case of the discrepancy pertains to missing 

transitions with unobservable events. By following the learning algorithm general flowchart, each step 

of this flowchart is described in the following. 

4.5.4.1 Algorithm Description 

This section explains in detail the steps of the learning algorithm concerned with missing transitions 

with unobservable events. In case of a discrepancy due to a missing transition with an unobservable event, 

there will be two types of the symptoms of discrepancies as follows. 

Type-1: Unexpected Output Label with Observable Event: after the occurrence of an observable 

event, a wrong output is expected by the model, while the unexpected actual output could not be 

explained.   

Type-2: Unexpected Output-Label: The real system changes the output without any observable event 

occurred where this new output could not be explained by the nominal model. 

The algorithm has three main steps or stages. The first is to determine the discrepancy and to collect the 
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system’s data. The second will analyze the data and determine the sources and destinations of the missing 

transitions. The third is for generating hypotheses. Therefore, STEP-1 of the algorithm that determines 

the type of discrepancy will discuss each type of discrepancy symptoms separately then the following 

steps will be the same for both types. 

1- STEP1: Detect the discrepancy and determine the discrepancy type. 

For Type-1: Unexpected Output Label with Observable Event 

a. Detect Discrepancy and its Type 

i. Is a discrepancy detected during observer progression? 

Answer: Yes 

ii. What is the type of discrepancy?  

Answer: An observable event occurred that is defined at the last state estimate, but the actual 

output label from the true system cannot be explained by the model, i.e., unexpected output label 

with observable event. 

Cause: Missing transition with unobservable event. This is based on UnObRule-1.a. 

b. Collect  the current system observations and information 

i. The event of discrepancy σd: is the observable event that occurred and after which system 

generated an output label that could not be explained by the model. 

ii. Actual Label of Discrepancy ALD : is the actual label generated by the true system at the 

discrepancy state. 

In this case, the actual output is mismatched with the expected by the model. This means that the 

output label generated by the true system couldn’t be explained by the current nominal model at the 

current state estimate of the observer. 

iii. Last Conforming State Set LCS: zL is the last state estimated by the observer before the 

discrepancy state estimate where the output label generated by the true system could be explained 

by the state estimate of observer. 

iv. Discrepancy State DS: zd in this case, the discrepancy state is the set of states estimates that results 

by the transition from the LCS with the event of discrepancy σd. The Discrepancy state is called 

the Expected State in the experiments where it is the state expected by the nominal model after 

having σd (based on UnObRule-2). This is depicted in Figure 4.31. 
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zL

yL 

zd

{x∈η(zL, σd)}

ALD ∉λ(x∈zd) 

σd 

DSLCS

 

Figure 4.31: Discrepancy State 

Note: this variable DS was not defined in the algorithm of missing transition with observable events, 

because the progression stops after the occurrence of the event of discrepancy that evaluates to ϕ. 

Type-2 Unexpected Output Label. 

a. Detect Discrepancy and its Type 

i. Is a discrepancy detected during observer progression? 

Answer: Yes 

ii. What is the type of discrepancy? 

A sudden output label change in the true system with no observable event occurred and the output 

label could not be explained by the model, i.e., unexpected output label. 

Cause: Missing transition with unobservable event. This is based on UnObRule-1.b. 

b. Collect  the Current System Observations and Information 

i. Actual Label of Discrepancy ALD : yd is the actual new generated label from the real system 

observed as discrepancy after the last conforming state estimate. 

ii. Last Conforming State set LCS: zL is defined in this case as the last state during the progression 

of nominal model that can explain the label yd  at the true system. While being in LCS, the real 

system generates an unexpected new label that has no explanation by the current nominal model 

and causes discrepancy. 

iii. Discrepancy State set DS: zd the discrepancy state estimate here will be taken as the last state 

estimate reached by the observed nominal model. The Discrepancy state was called the Expected 

State in the experiments (based on UnObRule-2). This is because here we do not have an event 

of discrepancy σd. 

We can note in this case that the last conforming state estimate equals the discrepancy state DS 

i.e., DS = LCS. 

 

2- STEP-2: Analyzing the Collected Information and Concluding Sources and 

Candidates 

This algorithm has different order of steps than the algorithm of missing transition with observable 
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events. 

a. Determine the Deficient Suspected Components: 

First we have to find the suspected states that could be reached by the true model after the 

unobservable event occurred and will be abbreviated as SS. 

i. Suspected States SS: is the set of abnormal states in the output map table that have the same output 

label as ALD. This is based on UnObRule-3. 

▪ The formulation: 

SS = {x∈XF  | λ(x)= yd}. 

Candidate States: Xcndd(xdj): Set of states filtered from SS states to be used as the candidates for 

the expected states instead of the wrongly expected DS by the model (based on UnObRule-4.a, 

b and c). For each xdj∈DS, the corresponding candidate states is filtered form the SS states such 

that they have the maximum similar part of components states as in the xd. This similar part is 

denoted as the correct expected part while the remaining is denoted as the wrong expected part. 

Since we assumed during the introduction of output map, that we can represent the model states 

in form of a tuple, then we can segment the tuple of a candidate state as: 

xcndd∈Xcndd as: xcndd = (xcndd,{CRCT}, xcndd,{WRNG}).   

This means that a candidate state has a correct expected part suffixed with {CRCT} and wrong 

expected part suffixed with {WRNG}. 

Example 4.5:  

This example explains the notations of correct and wrong expected parts.  Let us assume that we have 

a plant of 5 cascaded valves, and the discrepancy state estimate reached by the observer say zd  = 

{xd1,xd2}={(O,Po,O,Po,Po), (O,O,Po,Po,O)}. Assuming the filtered candidate states are Xcndd(xd1) = 

{(O,Po,SO,Po,Po), (O,Po,O,Po,SO)} and Xcndd(xd2) = {(O,SO,Po,Po,O), (O,O,Po,Po,SO)}. This is shown 

in Table 4.8. 

Table 4.8: Example of Wrong Expected Parts 

xdj Xcndd(xLi)  

xd1=(O,Po,O,Po,Po) (O,Po,SO,Po,Po)  Same output as zd 

(O,Po,O,Po,SO) Same output as zd 

xd2=(O,O,Po,Po,O) (O,SO,Po,Po,O) Same output as zd 

(O,O,Po,Po,SO) Same output as zd 
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For the xd1= (O,Po,O,Po,Po) having the first candidate destination state of (O,Po,SO,Po,Po), the correct part 

is {V1,V2,V4,V5} and the wrong part is {V3}. 

Thus, the correct part could be written as xd1,{CRCT}=xd1,{1,2,4,5}= (V1:O, V2:Po, V4:Po, V5:Po). Similarly, the 

wrong part will be written as xd1,{WRNG} = xd1,{3} = (V3:O). 

In fact, the wrong part contains the suspected components because they have been wrongly expected 

due to an unobservable event with its transition was missing in the model. 

Thus, the aim here is to filter the suspected states SS to a narrower list of the candidate states by selecting 

the group of states with the maximum correct part. This selection could be formulated as follows: 

▪ The formulation: 

The Candidate States for a state estimate xdj∈DS can be selected from the suspected states SS by 

applying the following function: 

Xcndd(xdj) = {xss∈SS | xss,{CRCT} = xdj,{CRCT}} , ∀ xdj∈zd Such that the following conditions hold if 

applicable: 

Table 4.9: Filtering Candidate Expected States – Unobservable Events 

1)  
|{CRCT}| is maximum The cardinality (the length) of the correct part is 

selected to be maximum, i.e., the states with biggest 

correct part are selected. 

2) 
xss,{WRNG}  should belong to 

abnormal states. 

This means that the wrong part in the candidate 

expected states should be comprised of abnormal states 

of the components. This is because the missing 

transition we are searching for has unobservable event 

that ends with an abnormal state. 

3) 
Abnormal states in components are 

permanent. 

If a component was in an abnormal state at DS then the 

transition of missing event should not move it to 

another different state. This means during the selection, 

we select the states that has the abnormal component 

value unchanged.  

 

Sources and destinations of the missing transitions will be represented in the form of tables. This 

means that the sources will be computed to fill in a table called the sources table. Similarly, the 
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destinations will be computed to fill the destinations table. This tabulation of information will be 

convenient to generate the hypotheses by linking the corresponding cells of sources and destinations in 

the tables programmatically. 

 

ii. Deficient Suspected Components:  

It the set of Deficient Suspected Components that have been wrongly expected in a discrepancy state. 

In the previous demonstration example, the deficient suspected component of xd1 is xd1,{WRNG}= xd1,{3} = 

{V3}. Thus, after evaluating the candidate states for each discrepancy state estimate xdj in zd, the deficient 

suspected components will be computed by comparing each candidate state xcndd_k(xdj) with its 

corresponding discrepancy state xdj to determine the wrong part, where “k” is used to index the candidate 

states for each xdj. 

In the previous example comparing xcndd_1(xd1)= (O,Po,SO,Po,Po) compared to xd1=(O,Po,O,Po,Po), 

then the deficient suspected component is determined by the wrong part which is V3. By this way, it will 

be possible to fill in a table that is called the deficient components table as follows: 

 

Table 4.10: Deficient Components Table Demonstration Example 

 xdj xcndd_k(xdj) DSCj,k 
xd1=(O,Po,O,Po,Po) (O,Po,SO,Po,Po)  {V3} 

(O,Po,O,Po,SO) {V5} 

xd2=(O,O,Po,Po,O) (O,SO,Po,Po,O) {V2} 

(O,O,Po,Po,SO) {V5} 

▪  The formulation: 

For each state estimate xdj in the Discrepancy state zd, and for each candidate state, the deficient 

suspected components could be represented in the form of the following function:  

DSC(xcndd_k(xdj)) = {c | c ∈{WRNG}}, ∀ 1≤ j ≤|zd|, ∀ 1≤ k ≤|Xcndd(xdj)| 

And could be abbreviated as DSCj,k  

For some extreme cases if |CRCT|= 0, this cardinality of 0 means that we could not find a candidate state 

with a correct part, then Xcndd(xdj) = {xss ∈ SS: |{WRNG}|=|C|}, where the size of the wrong part equals the 

number of components. Thus, IF APPLICABLE, we will select the fully abnormal states like for 

example (SO,SO,SO,SO,SO) as candidates, where all the components are wrongly expected. 
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b. Determine the Destinations of Missing Transitions 

i. Destinations Table: 

This table is computed based on Table 4.10 of deficient suspected components. Each field in the 

destinations table contains the candidate destination state of the component Ci per each xdj (Based on 

UnObRule-6). The destination of a transition is formulated in the form a colon pair as Ci:xt where Ci is 

the component name and xt is the state value of that component at its destination. The formula to get each 

field in this destinations table is as follows. 

▪ The formulation: 

For a component Ci indexed with ”i” in a candidate state xcndd_k(xdj) for a state estimate xdj in the 

discrepancy state zd, the destinations could be represented by the following formula: 

Destj,k,i = Ci: xcndd_k,i(xdj) if Ci ∈DSCj,k ∀ 1≤ j ≤|zd|, ∀ 1≤ k ≤|Xcndd(xdj)|, ∀ 1≤i≤|C| 

This means for each state estimate xdj in DS, there will be some candidate states Xcndd(xdj)={xcndd_1(xdj), 

… ,xcndd_k(xdj)}. In these candidate states, the value of the component Ci is the destination of the transition 

if this Ci belongs to the deficient components DSCj,k of this candidate state xcndd_k(xdj).  

For the previous example the destinations table will be constructed as follows: 

Table 4.11: Destinations Table Demonstration Example 

 xdj xcndd_k(xdj) DSCj,k V1 V2 V3 V4 V5 

xd1=(O,Po,O,Po,Po) xcndd_1(xd1)=(O,Po,SO,Po,Po)  {V3} --- --- V3:SO --- --- 

xcndd_2(xd1)=(O,Po,O,Po,SO) {V5} --- --- --- --- V5:SO 

xd2=(O,O,Po,Po,O) xcndd_1(xd2)=(O,SO,Po,Po,O) {V2} --- V2:SO --- --- --- 

xcndd_1(xd2)=(O,O,Po,Po,SO) {V5} --- --- --- --- V5:SO 

c. Determine the Sources of Missing Transitions 

ii. Sources Table: 

The source of missing transitions in the suspected components will be written in the form of colon 

pairs as Ci:xdj,i (based on UnObRule-5). The first element in the colon pair is the Deficient Suspected 

Component and the second element is state value of this component in the discrepancy state estimate xdj. 

To backwardly link the destinations table to the sources, the source of missing transition will be computed 

for each deficient component cell in the Destinations Table Destj,k,i using the following formula. 

▪  The formulation: 

For a component Ci indexed with ”i” in a candidate state xcndd_k(xdj) for a state estimate xdj in the 

discrepancy state zd, the sources could be given by the following function: 
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Srcs(Destj,k,i) = Ci:xdj,i   IF Ci∈DSCj,k   ∀ 1≤ j ≤|zd|, ∀ 1≤ k ≤|Xcndd(xdj)|, ∀ 1≤i≤|C|  

For the previous example the sources table will be constructed as follows: 

Table 4.12: Sources Table Demonstration Example 

xdj xcndd_k(xdj) DSCj,k V1 V2 V3 V4 V5 

xd1=(O,Po,O,Po,Po) xcndd_1(xd1)=(O,Po,SO,Po,Po)  {V3} --- --- V3:Po --- --- 

xcndd_2(xd1)=(O,Po,O,Po,SO) {V5} --- --- --- --- V5:Po 

xd2=(O,O,Po,Po,O) xcndd_1(xd2)(O,SO,Po,Po,O) {V2} --- V2:O --- --- --- 

xcndd_1(xd2)=(O,O,Po,Po,SO) {V5} --- --- --- --- V5:O 

3- STEP-3: Hypotheses generation and model compliance verification 

a.  Generating the Hypotheses 

i. Hypotheses 

After computing the sources and destinations tables, it is possible to interlink between the 

corresponding cells in the tables to generate the hypotheses (UnObRule-7 to 10). As mentioned before 

such tabulation is beneficial in organizing the work to get it programmatically implemented through 

programming loops. 

The hypotheses are computed for each deficient component Ci per each candidate state of each 

discrepancy state xdj. Each hypothesis starts for the source of the missing transition to the candidate 

destination. The unobservable event is chosen according to the applicable unobservable event that leads 

to reach the candidate abnormal state. For example, if the destination candidate for a transition ended with 

a stuck-closed fault state in valve V1, the unobservable event is taken as V1SC. In the following formula, 

the unobservable event will be denoted as σuo. 

ii. The simple hypothesis  

For a component is starting from the source to the destination by the event of discrepancy in the 

component itself.  

▪ The formulation: 

Hj,k,i = Srcs(Destj,k,i)  
𝜎𝑢𝑜
→  Destj,k,i ∀ 1≤ j ≤|zd=DS|, ∀ 1≤ k ≤|Xcndd(xdj)|, ∀ 1≤i≤|C|  

For the previous demonstration example:  if we assumed that in the valves, the fault state SO is reachable 

by the unobservable event VnSO where n is the valve number, then: 

H1,1,3 =  V3:Po 
V3SO
→     V3:SO 

H1,2,5 =  V5:Po 
V5SO
→     V5:SO 

H2,1,2 =  V2:O 
V2SO
→     V2:SO 
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H2,2,5 =  V5:O 
V5SO
→     V5:SO 

iii. Combined Hypothesis: 

A hypothesis might be comprised of more than one transition at a time if the event of discrepancy is 

common and was missing in more than one component. Thus, for each state estimate, the hypothesis is 

generated as the combination of the simple transition hypotheses ending by the corresponding candidate 

expected states. 

▪ The formulation: 

Hj,k = AND [Srcs(Destj,k,i) 
𝜎𝑢𝑜
→  Destj,k,i] ∀ 1≤ j ≤|zd=DS|, ∀ 1≤k≤|Xcndd(xdj)|, ∀ 1≤i≤|C| 

b. Synchronizing the corrected component and generating new models. 

The previous formulas may result in a set of hypotheses for the corrected components. Consequently, 

the corrected components shall undergo a new synchronous product that generates a new set of 

hypothesized models. This set of models have their progression monitored by the observer. If any of new 

models becomes incompliant with the true plant observations while there are other models complying 

with the plant data, the incompliant model shall be rejected. This rejection is based on the fact that, there 

are some models having explanation for the plant data while the rejected model perhaps was built using 

incorrect hypothesis and it is the time to reject it. 

▪ The formulation: 

If a number of hypotheses M indexed by m are generated and the number of components is |C| thus, 

the hypothesized models are given by: 

Modelm= Synch (C1, C2,… ,Cc),  1≤m≤M. 

4.5.4.2 Unobservable Event Algorithm Pseudo Code  

 

 Algorithm 2: Unobservable Events Learning Algorithm 

 Input: Current model, σd ,ALD, LCS, DS. 

 Output: Set of hypothesized models. 

1: Suspected States SS = {x∈XF  | λ(x)= yd} 

2: For each xdj∈zd 

3: Candidate States Xcndd( dj) = {xss∈SS | xss,{CRCT} = xd,{CRCT}} , ∀ xdj∈zd 
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4:       AND |{CRCT}| is maximum 

5:       AND  xss,{WRNG}  belongs to faulty states. 

6:       AND Fault states in components are permanent. 

7: End 

8: /* Deficient Components 

9: For each xdj ∈zd 

10:      For each xcndd_k(xdj) 

11:                DSCj,k = DSC(xcndd_k(xdj)) = {c | c∈{WRNG} 

12:                Fill deficient components table with DSCj,k  

13:      End 

14: End 

15: /* Destinations Table 

16: For each xdj∈zd 

17:      For each xcndd_k(xdj) in Xcndd_k(xdj) 

18:            For each Ci in xcndd_k(xdj) 

19:                   Destj,k,i = Ci: xcndd_k,i(xdj) if Ci ∈DSCj,k  

20:                       Fill Destinations Table with Destj,k,i 

21:             End 

22:      End 

23: End 

24: /* Sources Table 

25: For each xdj ∈zd 

26:      For each xcndd_k(xdj) in Xcndd_k(xdj) 

27:            For each Ci in xcndd_k(xdj) 

28:                    Srcs(Destj,k,i) = Ci:xdj,i   IF Ci∈DSCj,k  

29:                  Fill in Sources Table with Srcs(Destj,k,i) 

30:             End 

31:      End 

32: End 

33: /* Generate the Hypotheses 

34: For each xdj ∈zd 

35:      For each xcndd_k(xdj) in Xcndd_k(xdj) 
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36:            For each Ci in xcndd_k(xdj) 

37:                  Hj,k,i = Srcs(Destj,k,i)  
𝜎𝑢𝑜
→  Destj,k,i  

38:             End 

39:      End 

40: End 

41: /* Combined Hypotheses 

42: Hk(xdj) = AND [Srcs(Destj,k,i) 
𝜎𝑢𝑜
→  Destj,k,i] ∀ 1≤ j ≤|zd=DS|, ∀ 1≤k≤|Xcndd(xdj)|, ∀ 1≤i≤|C| 

43: /* Synchronize the corrected components and generate the new models 

44: For each H in Hj,k,i 

45:   Modelm= Synch (Cn)m, 1≤n≤|C|, 1≤m≤M, M is the number of hypotheses. 

46: End 

 

4.5.4.3 Application Example-2 

The following example describes the application of the algorithm after detecting a discrepancy up to 

generating the hypotheses for the missing transitions with unobservable events in the model. In this 

example, the plant is comprised of three similar cascaded valves. The automaton of the first valve, the 

control sequence and the plant are shown in Figure 4.32. The model of the plant was built by the 

synchronous product of the components’ automata. We deleted the transition with V1SC, V2SC and 

V3SC between O and SC in V1, V2 and V3 as indicated by the crossed transition in Figure 4.32. This 

example will tackle the case of type-2 of discrepancy where the system generated a new unexpected 

output label with no observable events were applied. 

OC

v1O

SC

v1SO

SO

v1C,v1O

v1C

v1C

v1SC

v1C,v1O

v1SCv1SO

v1O

F2

V1 V2

V1 Cont Plant

C1

C3C2

C4

v1O

v2O

v3O

C6 C5

v3C

v2C

v1C V3

V1,V2 and, V3 are the same

  

Figure 4.32: Application Example-2 on Unobservable Events 

z0 = {1,3,4,5,6,7,8} 

y0 = fL 
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 V1O ,  y1 = fL: new event occurred at the real system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}  

Then, z1 =  {x | x ∈ UR (η(z0, V1O)) and λ(x)=fL}. 

x∈z0 η(x,V1O ) UR(.) UR(.) and λ(x)=fL 

1 η(1,V1O)=2 {2,9,11,12,13,14} {2,9,11,12,13,14} 

3 η(3,V1O)=15 {15,43,44,45,46} {15,43,44,45,46} 

4 η(4,V1O)=9 {9,29,30,31,32} {9,29,30,31,32} 

5 η(5,V1O)=11 {11,29,38,39} {11,29,38,39} 

6 η(6,V1O)=12 {12,30,40,41} {{12,30,40} 

7 η(7,V1O)=13 {13,31,38,40} {13,31,38,40} 

8 η(8,V1O)=14 {14,32,39,41} {14,32,39} 

Thus, z1 = {2,9,11,12,13,14,15,29,30,31,32,38,39,40,43,44,45,46} 

 V2O ,  y2 = fL: new event occurred with no label change (Case-1) 

Then, z1 =  {x | x ∈ UR (η(z0, V2O)) and λ(x)=fL}. 

x∈z1 η(x,V2O ) UR(.) UR(.) and λ(x)=fL 

 η(2,V2O)=10 {10,28,33,35,36} {10,28,33,35} 

 η(9,V2O)=28 {28,55,57,58} {28,55,57} 

 η(11,V2O)=37 {37,59,71,72} {37,59,71,72} 

 η(12,V2O)=33 {33,55,65,66} {33,55,65} 

 η(13,V2O)=35 {35,57,65} {35,57,65} 

 η(14,V2O)=36 {36,58,66} --- 

 η(15,V2O)=42 {42,73,75,76} {42,73,75,76} 

 η(29,V2O)=59 {59,89,90} {59,89,90} 

 η(30,V2O)=55 {55,83,84} {55,83} 

 η(31,V2O)=57 {57,83} {57,83} 

 η(32,V2O)=58 {58,84} --- 

 η(38,V2O)=71 {71,89} {71,89} 

 η(39,V2O)=72 {72,90} {72,90} 

 η(40,V2O)=65 {65,83} {65,83} 
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 η(43,V2O)=77 {77,107,108} {77,107,108} 

 η(44,V2O)=73 {73,101,102} {73,101,102} 

 η(45,V2O)=75 {75,101} {75,101} 

 η(46,V2O)=76 {76,102} {76,102} 

Thus, z2 ={10,28,33,35,37,42,55,57,59,65,71,72,73,75,76,77,83,89,90,101,102,107,108} 

 V3O ,  y3 = fH: new event occurred with label change (Case-3) 

Since zk+1 = ξe (zk, σk+1,yk+1) , ξe (zk, σk+1, yk+1) = {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 }. 

Then, z3= {x | x∈UR(η(z2, V3O)) and λ(x)=fH} 

x∈z2 η(x∈,V3O ) UR(.) UR(.) and λ(x)=fH 

10 η(10,V3O)=34 {34,56,64,68} {34,56,64,68} 

28 η(28,V3O)=56 {56,82,86} {56,82,86} 

33 η(33,V3O)=64 {64,82,92} {64,82,92} 

35 η(35,V3O)=69 {69,87,93} --- 

37 η(37,V3O)=70 {70,88,98} --- 

42 η(42,V3O)=74 {74,100,104} --- 

55 η(55,V3O)=82 {82,110} {82,110} 

57 η(57,V3O)=87 {87,111} --- 

59 η(59,V3O)=88 {88,116} --- 

65 η(65,V3O)=93 {93,111} --- 

71 η(71,V3O)=99 {99,117} --- 

72 η(72,V3O)=98 {98,116} --- 

73 η(73,V3O)=100 {100,127} --- 

75 η(75,V3O)=105 {105,128} --- 

76 η(76,V3O)=104 {104,127} --- 

77 η(77,V3O)=106 {106,133} --- 

83 η(83,V3O)=111 {111} --- 

89 η(83,V3O)=117 {117} --- 

90 η(90,V3O)=116 {116} --- 

101 η(101,V3O)=128 {128} --- 
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102 η(102,V3O)=127 {127} --- 

107 η(107,V3O)=134 {134} --- 

108 η(108,V3O)=133 {133} --- 

Thus, z3 = {34,56,64,68,82,86,92,110}. 

 V2SC unobservable event occurred in the true system. 

y4 = fL: new label without an observable event (Case-2) 

zk+1 = ξy (zk, yk+1), ξy (zk, yk+1) = {x | λ(x) = yk+1 and x ∈ UR(zk)}. 

Then, z4= {x | λ(x) = fL and x ∈ UR(z3)}. 

Since z3 = {34,56,64,68,82,86,92,110} 

x∈z3 UR(.) UR(.) and λ(x) = fL 

34 {34,56,64,68} --- 

56 {56,82,68} --- 

64 {64,82,92} --- 

68 {68,86,92} --- 

82 {82 ,110} --- 

86 {86,110} --- 

92 {92,110} --- 

110 {110} --- 

This means that, for this label change, if we started from the states of z3 = {34, 56, 64, 68, 82,86,92,110}  

we cannot reach any state having label = fL by an unobservable event. Thus, the new label cannot be 

explained by the current model, and a DISCREPANCY IS DETECTED. 

STEP1: Detect the discrepancy and determine the discrepancy type. 

a. Detect Discrepancy and its Type 

DISCREPANCY IS DETECTED. 

i. Type of Discrepancy: Unexpected output label 

ii. Cause: Missing transitions with unobservable event 

b. Collect  the Current System Observations and Information 

i. Actual Label of Discrepancy ALD= yd= fL 

ii. Last Conforming State LCS: zL= z3 = {34,56,64,68,82,86,92,110} 

Here, in this type of discrepancy, the discrepancy sate DS=LCS,  

DS= z3 = {34,56,64,68,82,86,92,110} 
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STEP-2: Analyzing the Collected Information and Concluding Sources and Candidates 

 

a. Determine the Deficient Suspected Components: 

i. Suspected States SS: from the output map table, we have the following states that can have a label 

of fL. For simplicity, the SS table will be represented in a compact representation such that if any 

valve is closed or stuck closed, the other valves could be in any state to get a label of fL. The sign 

“/” in the table means “or”, and this is to compress the number of rows to make the table readable. 

Table 4.13: Application Example-2 SS Table 

V1 V2 V3 y 

C C/O/SC/SO C/O/SC/SO fL 

SC C/O/SC/SO C/O/SC/SO fL 

C/O/SC/SO C C/O/SC/SO fL 

C/O/SC/SO SC C/O/SC/SO fL 

C/O/SC/SO C/O/SC/SO C fL 

C/O/SC/SO C/O/SC/SO SC fL 

 

ii. Candidate States Xcndd 

Xcndd(xdj) = { xss ∈ SS | xss,{CRCT} = xdj,{CRCT}} , ∀ xdj∈zd 

From the SS-table, the candidate states for each xdj are listed and the actual values of the xdj are given. 

Table 4.14: Application Example-2 Candidate States 

DS= z3 Xcndd(xdj) 

34 = (O,O,O) (SC,O,O), (O,SC,O),(O,O,SC) 

56 = (SO,O,O) (SO,SC,O), (SO,O,SC) 

64 = (O,SO,O) (SC,SO,O),(O,SO,SC) 

68 = (O,O,SO) (SC,O,SO),(O,SC,SO) 

82 = (SO,SO,O) (SO,SO,SC) 

86 = (SO,O,SO) (SO,SC,SO) 

92 = (O,SO,SO) (SC,SO,SO) 

110 = (SO,SO,SO)  --- 

 

As shown in Table 4.14, the candidates are selected according to the conditions of selecting the 

candidates described in the algorithm formulation. For example, for the state 68 = (O,O,SO), the |{CRCT}| 

is selected to be maximum, so the selected candidates have only one component changed at a time. Also, 

the component changed to a faulty state, while the faulty state SO remained unchanged. 
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iii. Deficient Suspected Components:  

Table 4.15: Application Example-2 Deficient Components 

 xdj xcndd_k(xdj) DSCj,k 

34 = (O,O,O) (SC,O,O) {V1} 

 (O,SC,O) {V2} 

 (O,O,SC) {V3} 

56 = (SO,O,O) (SO,SC,O) {V2} 

 (SO,O,SC) {V3} 

64 = (O,SO,O) (SC,SO,O) {V1} 

 (O,SO,SC) {V3} 

68 = (O,O,SO) (SC,O,SO) {V1} 

 (O,SC,SO) {V2} 

82 = (SO,SO,O) (SO,SO,SC) {V3} 

86 = (SO,O,SO) (SO,SC,SO) {V2} 

92 = (O,SO,SO) (SC,SO,SO) {V1} 

 

b. Determine the Destinations of Missing Transitions 

i. Destinations Table: 

Destj,k,i = Ci: xcndd_k,i(xdj) if Ci ∈DSCj,k ∀ 1≤ j ≤|zd=DS|, ∀ 1≤ k ≤|Xcndd(xdj)|, ∀ 1≤i≤|C| 

Table 4.16: Application Example-2 Destinations Table 

 xdj xcndd_k(xdj) DSCj,k V1 V2 V3 

34 = (O,O,O) (SC,O,O) {V1} V1:SC   

 (O,SC,O) {V2}  V2:SC  

 (O,O,SC) {V3}   V3:SC 

56 = (SO,O,O) (SO,SC,O) {V2}  V2:SC  

 (SO,O,SC) {V3}   V3:SC 

64 = (O,SO,O) (SC,SO,O) {V1} V1:SC   

 (O,SO,SC) {V3}   V3:SC 

68 = (O,O,SO) (SC,O,SO) {V1} V1:SC   

 (O,SC,SO) {V2}  V2:SC  

82 = (SO,SO,O) (SO,SO,SC) {V3}   V3:SC 

86 = (SO,O,SO) (SO,SC,SO) {V2}  V2:SC  

92 = (O,SO,SO) (SC,SO,SO) {V1} V1:SC   

 

c. Determine the sources of missing transitions 

i. Sources Table: 

Srcs(Destj,k,i) = Ci:xdj,i   if Ci∈DSCj,k   ∀ 1≤ j ≤|zd=DS|, ∀ 1≤ k ≤|Xcndd(xdj)|, ∀ 1≤i≤|C|  

The sources table will be constructed as follows: 
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Table 4.17: Application Example-2 Sources Table 

 xdj xcndd_k(xdj) DSCj,k V1 V2 V3 

34 = (O,O,O) (SC,O,O) {V1} V1:O   

 (O,SC,O) {V2}  V2:O  

 (O,O,SC) {V3}   V3:O 

56 = (SO,O,O) (SO,SC,O) {V2}  V2:O  

 (SO,O,SC) {V3}   V3:O 

64 = (O,SO,O) (SC,SO,O) {V1} V1:O   

 (O,SO,SC) {V3}   V3:O 

68 = (O,O,SO) (SC,O,SO) {V1} V1:O   

 (O,SC,SO) {V2}  V2:O  

82 = (SO,SO,O) (SO,SO,SC) {V3}   V3:O 

86 = (SO,O,SO) (SO,SC,SO) {V2}  V2:O  

92 = (O,SO,SO) (SC,SO,SO) {V1} V1:O   

STEP-3: Hypotheses generation and model compliance verification 

a.  Generating the Hypotheses 

Hypotheses: 

Hj,k,i = Srcs(Destj,k,i)  
𝜎𝑢𝑜
→  Destj,k,i ∀ 1≤ j ≤|zd=DS|, ∀ 1≤ k ≤|Xcndd(xdj)|, ∀ 1≤i≤|C|  

The generated hypotheses are: 

H1,1,1 =  V1:O 
V1SC
→     V1:SC 

H1,1,2 =  V2:O 
V2SC
→     V2:SC 

H1,1,3 =  V3:O 
V3SC
→     V3:SC 

H2,1,2 =  V2:O 
V2SC
→     V2:SC  Repeated 

H2,2,3 =  V3:O 
V3SC
→     V3:SC  Repeated 

H3,1,1 =  V1:O 
V1SC
→     V1:SC  Repeated 

H3,1,3 =  V3:O 
V3SC
→     V3:SC  Repeated 

H4,1,1 =  V1:O 
V1SC
→     V1:SC  Repeated 

H4,1,2 =  V2:O 
V2SC
→     V2:SC  Repeated 

H5,1,3 =  V3:O 
V3SC
→     V3:SC  Repeated 

H6,1,2 =  V2:O 
V2SC
→     V2:SC  Repeated 

H7,1,1 =  V1:O 
V1SC
→     V1:SC  Repeated 
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The repeated hypotheses having the same transition to correct a component will be ignored this result that 

we have three unique hypotheses. 

H1,1,1 =  V1:O 
V1SC
→     V1:SC 

H1,1,2 =  V2:O 
V2SC
→     V2:SC 

H1,1,3 =  V3:O 
V3SC
→     V3:SC 

 

In this example, the three hypotheses are equally possible in their effect such that any one of them if has 

been added to the plant can explain the discrepancy. This means that they will lead to generating three 

compliant models where any of them could be selected or it could be left up to the designer’s decision to 

combine the hypotheses. 

 

4.6 Diagnosis with Multiple Hypotheses 

In normal operation, the observer evaluates the states estimates of the system and forwards these 

estimated states to the diagnoser’s condition map to compute the system condition either normal or in 

fault mode. As discussed previously, the event-state observer detects the discrepancy, and the learning 

algorithm works on generating hypotheses for the missing transitions to amend the model and to update 

the observer.  

After the generation of a set of hypotheses, there will be a number of models  that correspond to the 

generated hypotheses. In this case, the final condition of the system will be taken as the union of the 

conditions computed of all the current hypothesis as shown in Figure 4.33.  Based on the compliance of 

the hypotheses, the incompliant hypotheses are rejected, while the compliant ones are kept. The union of 

conditions is taken as the ensemble of the decisions of each single hypothesis. This is in fact, similar to 

the ensemble technique used in machine learning when it is required to combine the decision of multiple 

learners [42].  
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Figure 4.33: Diagnosis with Multiple Hypotheses  

 

4.7 Computational Complexity 

4.7.1 Introduction 

Since a certain problem could be theoretically solvable but in practice it may not be possible to solve 

it due to the higher requirements of time and computer resources. Computational complexity is introduced 

as an important measure to analyze algorithms in terms of time and memory [53]. The time complexity 

is independent of the hardware whether the algorithm is executed on a nano computer or supercomputer 

[54].  In this thesis we will study only the time complexity for the learning diagnoser algorithm.  

As the exact computational time of an algorithm could be a very complex task, the study of 

computational complexity of an algorithm aims to estimate it under its worst case. Such an estimation is 

called the asymptotic analysis that seeks an understanding of the runtime while the inputs grow to be very 

large [53]. The “Big-O” notation is used to represent the time complexity of algorithms while running on 

large inputs and could define the upper bound of the complexity of the algorithm. For example, 

considering an algorithm with its complexity was determined to be O(f(N)), then it is said that f(N) is an 

upper bound of this algorithm complexity. 

Since each basic single computation statement such as addition, subtraction will be considered to 

consume a unit of time, the “Big-O” is considered as an estimation of the number of time unites consumed 

in the algorithm. In computing the “Big-O”, the lower order terms and coefficients are ignored, and the 
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highest order term of the expression will be considered. This is because the highest term will dominate 

the other lower terms and then the “Big-O” describes the complexity of the highest term [53]. 

 

4.7.2  Techniques 

The following techniques are considered to be applied in the estimation process of computational 

complexity. 

1- The very small loops such as of two iterations to check flags will be ignored and considered as fixed 

sized constant  statements and is not affected by input size growth. 

2- The cardinality of any subsets used in the algorithm is replaced by or approximated to the cardinality 

of its superset that could be concluded from the inputs and this is to consider the worst case. For 

example, the cardinality of the proposed states set XPS is replaced by the cardinality of the model states 

set X, since the bigger the model the bigger the proposed states. This is because the cardinality of these 

supersets can be concluded while running the algorithm, and the worst case is considered if the set 

equals its super set. 

3- Since the model is comprised of a set of components, and for the sake of estimation, all the components 

are assumed to be the same, i.e., all components’ models are assumed to have the same automaton. 

This implies that during this estimation, the number of states, transition list length and the number 

events are the same for all the components. 

4.7.3 Learning Algorithm Computational Complexity 

In this section, the computational complexity of the learning algorithm is discussed. As was shown 

and discussed earlier in the general learning algorithm flow chart, based on the discrepancy type, there 

are two sub-algorithms. The first treats the missing observable events represented by Algorithm-1 

meanwhile the second sub-algorithm delas with the missing non observable events represented by 

Algorithm-2. Both of them have similar steps of collecting the current data, collected data analysis in 

terms of finding suspected components determining sources and destination of hypotheses, and finally to 

generate the new hypothesized models. 

Since both algorithms exhibit almost the same behavior in computation, the first algorithm “Algorithm-

1” is used to study the computational complexity. 

• Determining the suspected components is estimated to have the following complexity. 
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O (|C|.|Σc|)  

where |C|, is the number of components in the model and |Σc| is the number of events in the event set of the 

component automaton. 

• Determining complete and deficient suspected components is estimated to have the following 

complexity. 

O (|zL|.|TL|.|SC|) 

Where |zL| is the number of states estimates in a diagnoser evolving step, and |TL| is the number of 

transitions in the component automaton, and |SC| is the number of suspected components. 

This will be approximated to be  

O (|X|.|TL|.|C|) 

Where |X| is the number of states in the model. 

• Determining candidate suspected states is estimated to have the following complexity. 

O (|zL|.|XPS|.[|Cirv|+|TL|.|CSC|+|C|+|Xc|]) 

Where |zL| is the number of states estimates in a diagnoser evolving step, |XPS| is the number of states in 

the output map having output label = ALD, |Cirv| is the number of irrelevant components, |TL| is the number 

of transitions in an automaton , |CSC|, is the number of complete suspected components, |C| is the number 

of components, and |Xc| is the number of states in automaton. 

This will be approximated to be  

O (|X|.|X|.[|C|+|TL|.|C|+|C|+|Xc|]) 

≃ O (|X|2.[|TL|.|C|+|Xc|]) 

• Destination and Sources tables will be estimated to have  

O (|X|2.|C|2) 

• Sync Operation is used to generate the hypothesized models. In fact, this operation is found to be 

the most time consuming operation in the algorithm and it dominates the other steps of the 

algorithm. 

This operation starts with computing the inverse projection of the components’ automata, then it will 

operate the product operation on them. The recursive loop of operating the product of invers projected 

automata will finally be estimated to have  

O (Xc
|c|) 
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where |Xc| is the number of states of an automaton, and |C| is the number of components in the model. 

4.7.4 Diagnoser Update 

As explained in the framework block diagram, once a discrepancy is detected, the learning algorithm 

will generate hypotheses and create hypothetical models. For a certain hypothetical newly generated 

model, the event-state observer should be updated to be able to deduce the state estimation based on the 

new model. In [20], the event-state observer is implemented based on the Reachability Transition System 

(RTS). For each state of a certain automaton, the reachability analysis complexity is O (|X|+|T|) where 

X is the set of states, and T is the transition list. Thus, for the entire automaton the reachability could be 

obtained in O (|X|2+|X|.|T|). Therefore, it could be said that updating the diagnoser that corresponds to 

a certain generated model will have a complexity of 

O (|X|2+|X|.|T|) 

Where |X| and |T| are the number of states and  the transition list length of the entire model. |T| could be 

evaluated as |X|.|Σ|, where |Σ| is the cardinality of the events set of the entire model. 

 In terms of the components’ notation, and since X ≃ Xc
|c| as the result of the cartesian product of the 

states of all components, then updating the diagnoser will have complexity of 

O (|Xc|2|c|+|Xc||c|.|T|) 

≃O (|Xc|2|c|) 

4.7.5 Entire Learning Diagnoser Algorithm Complexity Estimation 

So finally, as discussed above all the comprising entities of the framework where the exponential term 

of the sync operation dominates all the other terms of the other steps of the algorithm, then the diagnoser 

update dominates the sync operation. Hence, we can say that the algorithm has complexity of 

O (|Xc|2|c|) 

Where |Xc| is the number of states of an automaton, and |C| is the number of components in the model. 
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 Chapter 5 

Case Study: Ozone Generation System 

In this chapter, the Ozone Generation System will be introduced as a case for applying the algorithm 

where one of the common modeling mistakes will be detected and treated using the learning algorithm. 

This mistake appears when the designer assumes a wrong interaction among components which leads to 

a missing transition in the nominal model. While the real plant is generating the events and output labels, 

the learning algorithm will be used to detect the discrepancy and to correct the model. 

5.1 Ozone Generation System Overview 

Ozone is used in some water treatment plants to disinfect potable water. It was firstly used in 1893 at 

Oudshoorn, Netherlands [52]. Figure 5.1 shows the schematic diagram of an ozone generation system. 

Briefly, ozone is generated from oxygen subjected to high voltage applied between two electrodes. The 

vessel in which this interaction takes place is called the ozone generator. As shown in the figure, the 

process comprises mainly of the ozone generator vessel. Oxygen is supplied by another subsystem and 

its flow is controlled by the inlet and outlet valves V2 and V3 respectively. The flow is monitored by a 

flow meter “F2” while the ozone concentration is monitored by an ozone analyzer “AIT” (Analyzer 

Indicator Transmitter). 

A stream of cooling water is used to keep the temperature within the required limits to assure the good 

production efficiency of ozone. The cooling water stream is controlled by valve V1, and the water flow 

is monitored by flowmeter F1. 

A power supply unit (PSU) is used to generate the high voltage required to generate ozone. The power 

supply unit, in conjunction with the cooling water supply, governs the quality of the generated ozone 

represented in terms of the ozone concentration. Both of the power supply unit and the cooling water must 

be operational to generate ozone as measured by the ozone concentration analyzer AIT. On top of these 

equipments is the supervisor that receives the readings and sends the commands based on the supervisory 

specifications. 
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Figure 5.1: Ozone Generation System 

5.2 Plant Model 

5.2.1 Basic Components 

Figure 5.2 shows the automata of the components in the system. 
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Figure 5.2: Ozone Generation System Components 

The states and the events symbols for each automaton is described in the following. 
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Valve V1 

V1 is the cooling water valve automaton, and it has two states, open (O) and closed (C). It has two 

events, open command (V1O) and close command (V1C). 

Valve V2 

V2 is the valve of the oxygen inlet automaton, and it has three states, open (O), closed (C), and stuck-

closed (SC). It has three events, open command (V2O), close command (V2C), and stuck-closed failure 

(V2SC). As shown in the model, V2 can get stuck-closed from its closed state. 

Valve V3 

V3 is the valve of ozone outlet automaton, and it has two states, open (O) and closed (C). It has two 

events, open command (V3O) and close command (V3C). 

Flowmeter F1 

F1 is the cooling water flowmeter automaton, and it has two states, flow (F) and no-flow (NF). It has 

two events, high flow (F1H) and low flow (F1L). 

Flowmeter F2 

F2 is the oxygen flowmeter automaton, and it has two states, flow (F) and no-flow (NF). It has two 

events, high flow (F2H) and low flow (F2L). 

Ozone Analyzer AIT 

AIT is the ozone analyzer indicator transmitter automaton, and it has two states, low (L) and high 

(H). It has two events, high concentration (O3H) and low concentration (O3L). 

 Power Supply PSU 

PSU is the power supply unit automaton, and it has two states, OFF and ON. It has two events, run 

command (Run), and stop command (Stop). 

5.2.2 Interactions 

Generally speaking, the interaction automata represent how some components are affected by the 

events happening in other components, e.g., the influence of operating valves on the flowmeter readings.  

Here, we have three interactions explained in the following. 
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Interaction-1: F1_V1:  

The reading of F1 changes based on the state of V1. If V1 is open, the flow meter F1 will read high 

(H). This is indicated by a self-loop of F1H at the state “O” in V1. Similarly, if V1 is closed F1 will read 

low (L). This is indicated by a self-loop of F1L at the state “C” in V1. From another point of view, it 

could be said that the event F1H happens or permitted to happen when V1 is open and similarly, F1L 

happens when the valve is closed. 

 

OC

v1O

v1C

v1O

v1C
F1L F1H

INT1: F1_V1

 

Figure 5.3: Interaction-1 F1_V1 

Interaction-2 F2_V2_V3:  

The reading of flow meter F2 is determined by the state of valves V2 and V3. The flowmeter will 

have a high reading if both valves are open otherwise the reading will be low. Since F2 depends on V2 

and V3, we can model the interaction by first get the synchronous product of V2 and  V3, then suitable 

F2 events will be added as self-loops to the resulting automaton: self-loop of F2H at state (O,O) where 

both valves are open; F2L self-loops at all other states (when at least one of the valves is closed). Figure 

5.4 shows the results. The valve events are omitted from the figure to avoid cluttering the figure. The 

important information in this automaton is F2 self-loop transitions at the states. 

(C,C) (SC,C)(O,C)

(O,O)

F2L F2LF2L

F2H

INT2:F2_V2_V3:

V2_V3 = sync(v2,v3) 

(SC,O)

F2L

(C,O)

F2L

 

Figure 5.4: Interaction-2 F2_V2_V3 
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Interaction-3: AIT_F1_PSU_F2:  

In reality the values of the ozone concentration analyzer depend on the states of the power supply unit 

(PSU) and the flow of cooling water F1. If the power supply is ON and the cooling water flow is high the 

analyzer can generate high reading. Otherwise, if any of these conditions is not met, the oxygen will not 

be properly transformed to ozone and the analyzer reading will be low. So, the correct modeling of this 

interaction is to get the synchronous product of the power supply automaton (PSU) with cooling water 

flowmeter automaton (F1), then to add self-loops of ozone analyzer (AIT) events accordingly.  

A common mistake happens here - could be due to a wrong assumption – is when the designer assumes 

that the ozone concentration depends also on the flowmeter of oxygen. In this case, the designer obtains 

the synchronous product of F1,PSU and F2, then adds self-loops of ozone analyzer events. 

In this case study, we assume the above modeling mistake is done and we see how it leads to a 

discrepancy during the operation of the plant and how the learning algorithm detects and generates a 

hypothesis to add the missing transition. Figure 5.5 below shows the automaton of the incorrect interaction 

AIT_F1_PSU_F2. This interaction is modeled as an automaton by forming the synchronous product of 

F1, PSU and F2, then adding self-loops of AIT events. It should be noted that events of F1, PSU, and F2 

are omitted to avoid cluttering the figure (since our focus is on the events of the ozone analyzer). As 

shown in the figure, state (F,ON,F), corresponding to  (F1: Flow, PSU:ON, F2:Flow), has a self-loop of 

O3H. All the other states have the self-loop of O3L. 

State (F,ON,NF) in particular corresponding to (F1: Flow, PSU:ON, F2: No Flow), has an O3L self-

loop, however in reality, having cooling water flow and PSU in ON state should permit the O3H to happen 

because even if there is no more oxygen supply but still the remaining oxygen in the vessel could be 

transformed to ozone. This missing self-loop transition of O3H at (F,ON,NF) is the missing transition in 

this example. Note that, there is an incorrect transition of O3L at this state, but the scope of our algorithm 

is to add any missing transitions and not to remove wrong transitions. 

In general, in a deterministic setup as ours, discrepancies can be used to identify missing transitions, 

not to eliminate existing ones. To eliminate transitions, one can use a probabilistic framework or examine 

a more detailed model of components. In our case, once the learning algorithm adds an O3H self-loop to 

(F,ON,NF), the designer is alerted to the fact that perhaps O3L self-loop at the same state was an error. 
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Figure 5.5: Interaction-3 AIT_F1_PSU_F2 

The Plant model is generated by having the synchronous product of the components and the interactions 

as follows: 

 Plant = Sync (V1, V2, V3, PSU, F1, F2, AIT, INT1, INT2, INT3) 

5.2.3 Supervisor  

The supervisor block is modular, consists of two automata that enforce two specifications. 

SUP1: 

The first specification is the startup and shut down sequences: 

Startup sequence: 

- Open the cooling water stream valve (V1) 

- Open the inlet oxygen valve (V2) 

- Open the outlet oxygen valve (V3) 

- Start the power supply unit (PSU) 

 

Shutdown sequence: 

- Stop the power supply unit (PSU) 

- Close the cooling water stream valve (V1) 

- Close the inlet oxygen valve (V2) 

- Close the outlet oxygen valve (V3) 
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Both sequences are enforced by the supervisor module in Figure 5.6. All other events that are not restricted 

by this supervisory module are permitted and thus added as self-loops at all supervisor states. To avoid 

cluttering the figure, the self-loops are indicated under the figure. 

 

C1

C3C2

C5

v1O Run

v3O

C8 C7
v1Cv2C

v3C

v2O

C4

C6 Stop

SUP1

Selfloop ∑ - {v1O,v1C,v2O,v2C,v3O,v3C,Run,Stop } 
 

Figure 5.6: Startup and Shutdown Supervisory Specification SUP 1 

SUP2: 

The second safety specification requires that the ozone generator vessel be purged after the shutdown. 

Thus, both valves V2 and V3 will not be closed until the ozone concentration falls low. This could be 

modeled by the automaton in Figure 5.7. Here, a copy of ozone analyzer automaton is used to monitor 

the concentration and in its low state, both events of v2C and v3C are permitted (i.e., self-loops at state 

L). However, at H state, both v2C and v3C are absent (i.e., not permitted by the supervisor). Also, all 

other events that are not restricted by this supervisory specification are permitted (i.e., self-loops at all 

states. To avoid cluttering the figure, the self-loops are indicated under the figure. 

HL

O3H

O3L

SUP2 v2C,V3C

Selfloop ∑ - {v2C,v3C,O3L,O3H }  

Figure 5.7: Supervisory Specification SUP 2 

The supervisor denoted as SUP will be computed by the product of SUP1 and SUP2 as follows: 

SUP = prod(Sup1,Sup2)   

The entire Model of the system under supervision denoted as OGS, is computed by the product of the 

plant model and the supervisor. 
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OGS = prod(Plant, SUP) 

The model under supervision has 70 states and 151 transitions. 

5.3 System in Operation  

Next we discuss a scenario which results in discrepancy and see how the learning algorithm works. 

The output labels will be represented in terms of the readings of F1, F2 and AIT respectively.  Also, all 

events are observable except the stuck-closed failure of valve 2. 

The system is initialized, and the observer starts with initial state z0 

Since z0 = {x | x ∈ UR({x0}) and λ(x) = λ(x0)} , x0 =1, then  

z0 = {x | x ∈ UR({1}) and λ(x) = (NF,NF,L)} 

z0  = {1,3} 

y0 = (NF,NF,L) 

 V1O ,  y1 = (NF,NF,L): new event occurred at the true system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}  

Then, z1 =  {x | x ∈ UR (η(z0, V1O)) and λ(x)=(NF,NF,L)}. 

In OGS,   1
V1O
→  2

V2SC
→  5 , and  3

V1O
→  5 

Since z0  = {1,3}, η(z0, V1O) = {2,5} as explained below. 

x∈z0 
η(x,V1O ) UR(.) UR(.) and λ(x)= (NF,NF,L) 

1 η(1,V1O)=2 {2,5} {2,5} 

3 η(3,V1O)=5 {5} {5} 

Thus, z1= {2,5}. 

The states of the components in OGS states 2 and 5 are given below. 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

2: 2 1 1 1 1 1 1 2 1 1 

 O C C OFF NF NF L O (C,C) (NF,OFF,NF) 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

5: 2 3 1 1 1 1 1 2 3 1 

 O SC C OFF NF NF L O (SC,C) (NF,OFF,NF) 
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After opening the cooling water, the event F1H occurs, and the flowmeter F1 reads high flow. 

 

 F1H,  y2 = (F,NF,L): new event occurred with label change (Case-3)  

Since zk+1 = ξe (zk, σk+1,yk+1) , ξe (zk, σk+1, yk+1) =  {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 }. 

Then, z2={x | x ∈ UR(η(z1, F1H))  and λ(x)=(F,NF,L)} 

Since z1 = {2,5}, η(z1, F1H) = {6,10} as explained below. 

x∈z1 η(x,F1H ) UR(.) UR(.) and λ(x)=(F,NF,L) 

2 η(2,F1H )=6 {6,10} {6,10} 

5 η(5,F1H )=10 {10} {10} 

Thus, z2 = {6,10}  

In states 6 and 10 of OGS, the states of components are as follows. 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

6: 2 1 1 1 2 1 1 2 1 3 

 O C C OFF F NF L O (C,C) F,OFF,NF 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

10: 2 3 1 1 2 1 1 2 3 3 

 O SC C OFF F NF L O (SC,C) F,OFF,NF 

 

 V2SC 

At this point, a stuck-closed failure happens in V2 that causes this valve to get closed. This event is 

unobservable and does not result in new observation at this point. The supervisor will then send the open 

command to valve 2 based on SUP1 logic (V2O command). 

 

 V2O ,  y3 = (F,NF,L): new event occurred in the true system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk} 

Then, z3 = {x | x∈UR (η(z2, V2O)) and λ(x)=(F,NF,L)}. 

 Since z2 = {6,10}, η(z2, V2O) = {5,18} as explained below. 
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 x∈z2 η(x,V2O) UR(.) UR(.) and λ(x)=(F,NF,L) 

6 η(6,V2O )=8 {8} {8} 

10 η(10,V2O )=15 {15} {15} 

Thus, z3 = {8,15}  

In states 8 and 15 of OGS, the states of components are as follows. 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

8: 2 2 1 1 2 1 1 2 2 3 

 O O C OFF F NF L O (O,C) F,OFF,NF 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

15: 2 3 1 1 2 1 1 2 3 3 

 O SC C OFF F NF L O (SC,C) F,OFF,NF 

 

Next, the supervisor opens valve 3 based on SUP1 logic by sending the V3O command 

 

 V3O ,  y4 = (F,NF,L): new event occurs in the true system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) =  {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}  

Then, z4 = {x | x∈UR (η(z3 ,V3O)) and λ(x)=(F,NF,L)} 

Since z3 = {8,15}, η(z3, V3O) = {12,21} as explained below. 

x∈z3 η(x,V3O ) UR(.) UR(.) and λ(x)=(F,NF,L) 

8 η(8,V3O )=12 {12} {12} 

15 η(15,V3O )=21 {21} {21} 

Thus, z4 = {12,21}  

In states 12 and 21 of OGS, the states of components are as follows. 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

12: 2 2 2 1 2 1 1 2 5 3 

 O O O OFF F NF L O (O,O) F,OFF,NF 
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 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

21: 2 3 2 1 2 1 1 2 6 3 

 O SC O OFF F NF L O (SC,O) F,OFF,NF 

 

Since V2 was commanded to open but it is stuck-closed and V3 is opened, the oxygen flow will not build 

up causing no change in the label. Then, the supervisor starts the power supply unit. 

 

 Run, y5 = (F,NF,L) new event occurs at the true system with no label change (Case-1) 

Since zk+1 = ξσ (zk, σk+1) ,  ξσ (zk, σk+1) = {x | x∈UR (η(zk, σk+1)) and λ(x)=yk}.  

Then, z5 ={x | x∈UR (η(z4, Run)) and λ(x)=(F,NF,L)} 

Since z4 = {12,21}, η(z4, Run) = {17,27} as explained below. 

x∈z3 η(x,V3O ) UR(.) UR(.) and λ(x)=(F,NF,L) 

12 η(12,Run)=17 {17} {17} 

21 η(21,Run)=27 {27} {27} 

Thus, z5 = {17,27}  

In states 17 and 27 of OGS, the states of components are as follows. 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

17: 2 2 2 2 2 1 1 2 5 5 

 O O O ON F NF L O (O,O) F,ON,NF 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

27: 2 3 2 2 2 1 1 2 6 5 

 O SC O ON F NF L O (SC,O) F,ON,NF 

 

Once the power supply unit is started, the oxygen that is already existing inside the vessel will be 

transformed to ozone causing a high reading of the ozone concentration meter. 

 

 O3H,  y6 = (F,NF,H): new event occurred with label change (Case-3)  

Since zk+1 = ξe (zk, σk+1,yk+1) , ξe (zk, σk+1, yk+1) =  {x | x ∈ UR(η(zk, σk+1))  and λ(x)=yk+1 } 

Then, z6={x | x ∈ UR(η(z5, O3H))  and λ(x)=(F,NF,H) } 
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To get η(z5, O3H), since z5= {17,27} 

Since z5 = {17,27}, and O3H is not defined in either state, z6= {17,27}= ϕ as explained below. 

x∈z5 η(x,F1H ) UR(.) UR(.) and λ(x)=(F,NF,H) 

17 η(17,O3H)= --- --- --- 

27 η(27,O3H)= --- --- --- 

DISCREPANCY DETECTED. This is shown in Figure 5.8. 

 

z0 = {x0}
{1}

y0 = 

(NF,NF,L)

z1 

{2,5}

y1=

(NF,NF,L) 

σ1=V1O
z2

{6,10}

y2=

(F,NF,L)

σ2=F1H σ3=V2O
z3

{8,15}
y3=

(F,NF,L)

Discrepancy

O3H is NOT 

defined at 

{17,27}

Learning 

Algorithm

Go to

y2=(F,NF,L)

σ4=V3O

y4=(F,NF,L)

z4

{12,21}
y4=

(F,NF,L)

σ5=Run

y5=(F,NF,L)

z5

{17,27}
y5=

(F,NF,L)

σ6=O3H

y6=(F,NF,H)

 

Figure 5.8: Ozone System Progression and Discrepancy Detection 

5.4 The Learning Algorithm 

The learning algorithm of missing transitions with observable events is explained in section 4.5.3  

1- STEP1: Detect the Discrepancy and Determine the Discrepancy Type. 

a. Detect discrepancy and its Type 

i. Type of Discrepancy: Unexpected Observable Event. 

ii. Cause: Missing Transition with Observable Event 

b. Collect  the Current System Observations and Information 

i. Event of discrepancy σd= O3H  

ii. Actual Label of Discrepancy ALD= yd= (F,NF,H) 

iii. Last Conforming State LCS: zL= z5 = {17,27} 
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2- STEP-2: Analyzing the Collected Information and Concluding Sources and 

Candidates 

a. Suspected Components: 

Since  SC = {C | σd ∈Σc} and σd =O3H, and O3H is an event of{AIT, INT3,SUP2}. Thus,  

SC = {AIT, INT3,SUP2} 

At xL1= 17 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

17: 2 2 2 2 2 1 1 2 5 5 

 O O O ON F NF L O (O,O) F,ON,NF 

O3H is defined at AIT: L 

O3H is NOT defined at INT3: (F,ON,NF) 

O3H is defined at SUP2:L 

Then, by checking xL1= 17, the deficient suspected components DSC1 ={INT3} 

 And the complete suspected components CSC1={AIT,SUP2} 

The irrelevant components Cirv1 = All components – {AIT, INT3,SUP2} 

At xL2= 27 where, 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

27: 2 3 2 2 2 1 1 2 6 5 

 O SC O ON F NF L O (SC,O) F,ON,NF 

O3H is defined at AIT:L 

O3H is NOT defined at INT3: (F,ON,NF) 

O3H is defined at SUP2:L 

Then, by checking xL2= 27, the deficient suspected components DSC2 ={INT3} 

And the complete suspected components CSC2={AIT,SUP2} 

The irrelevant components Cirv2= All components – {AIT, INT3,SUP2} 

Deficient Components Table 

xLj DSCj CSCj Cirvj 

xL1=17 {INT3} CSC1={AIT,SUP2} C - {AIT,SUP2} 

xL2=27 {INT3} CSC2={AIT,SUP2} C - {AIT,SUP2} 
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Note: for readability, the deficient components table here is shorter version of the ones introduced in the 

mathematical formulation section 4.5.3, as we omitted xLj ,{DSC}, xLj ,{CSC}, and xLj ,{Cirv}.  

b. Determine the Candidate Suspected States 

Proposed States XPS 

Since XPS={x | λ(x)=ALD} , Thus XPS={x | λ(x)=(F,NF,H)} 

These states are obtained from the output map by finding the states that can generate the same label. 

It should be noted that the states in the output map table (i.e., the domain of the map) are generated by the 

cartesian product of the components’ state sets. In this case study, the output map table has 18432 rows. 

Furthermore, it should be noted that the output label is evaluated based on the corresponding values of 

F1, F2 and AIT. So, this step will get all the states in the output map table that have a label of (F,NF,H). 

This step returns 2304 rows from the output map table which is a large number of states that is hard 

to list them here. This is because in this step, the proposed states are not yet filtered by the rules that 

evaluate the candidate expected states. Thus, for readability, we will provide the list of filtered proposed 

states in the next step.  

Candidate expected states 

The candidate expected states could be obtained by filtering the proposed states above using the rules 

listed in section 4.5.3 of the algorithm of missing observable events. Basically, the state of relevant 

components is updated with the new event. Thus, AIT after O3H should be at state H. The “irrelevant” 

components stay at the same state as their state never change with the new event O3H. Thus, all other 

components should stay at their same state before the event O3H occurred.  

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

17: 2 2 2 2 2 1 1 2 5 5 

 O O O ON F NF L O (O,O) F,ON,NF 
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Table 5.1 lists the candidate states from the state 17. 

Table 5.1: Ozone Generation Case Study – Filtered Proposed States from State 17 

V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 Label 

O O O ON F NF H O (O,O) (NF,OFF,NF) F,NF,H 

O O O ON F NF H O (O,O) (NF,OFF,F) F,NF,H 

O O O ON F NF H O (O,O) (NF,ON,NF) F,NF,H 

O O O ON F NF H O (O,O) (NF,ON,F) F,NF,H 

O O O ON F NF H O (O,O) (F,OFF,NF) F,NF,H 

O O O ON F NF H O (O,O) (F,OFF,F) F,NF,H 

O O O ON F NF H O (O,O) (F,ON,NF) F,NF,H 

O O O ON F NF H O (O,O) (F,ON,F) F,NF,H 

 

Table 5.2 lists the candidate states from the state 27. 

 

 V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 

27: 2 3 2 2 2 1 1 2 6 5 

 O SC O ON F NF L O (SC,O) F,ON,NF 

 

Table 5.2: Ozone Generation Case Study – Filtered Proposed States from State 17 

V1 V2 V3 PSU F1 F2 AIT INT1 INT2 INT3 Label 

O SC O ON F NF H O (SC,O) (NF,OFF,NF) F,NF,H 

O SC O ON F NF H O (SC,O) (NF,OFF,F) F,NF,H 

O SC O ON F NF H O (SC,O) (NF,ON,NF) F,NF,H 

O SC O ON F NF H O (SC,O) (NF,ON,F) F,NF,H 

O SC O ON F NF H O (SC,O) (F,OFF,NF) F,NF,H 

O SC O ON F NF H O (SC,O) (F,OFF,F) F,NF,H 

O SC O ON F NF H O (SC,O) (F,ON,NF) F,NF,H 

O SC O ON F NF H O (SC,O) (F,ON,F) F,NF,H 

 

Since the interaction INT3 = AIT_F1_PSU_F2 is formed by the synchronous product of F1,PSU,F2, 

then for each state in  

Table 5.1 and Table 5.2 above of filtered proposed state, this interaction should follow the same states 

of its comprising components. This means that, since components F1 reached the state F, and PSU reached 

ON and F2 reached NF, then INT3 state should be at (F,ON,NF). Consequently, the candidate expected 

state has (F,ON,NF) in its INT3 while all the other states will be rejected because they are just produced 
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from the cartesian product, but they cannot be reached in this case. 

 

Candidate expected states 

xLj  Xcndd(xLj) 

xL1=17 (O,O,O,ON,F,NF,H,O,(O,O),(F,ON,NF)) 

xL2=27 (O,SC,O,ON,F,NF,H,O,(O,O),(F,ON,NF)) 

 

c. Determine the Destinations of the Missing Transitions 

Destinations Table: 

Destj,k,i = Ci: xcndd_k,i(xLj) if Ci ∈DSCjk ∀ 1≤ j ≤|zL=LCS|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

Table 5.3: Ozone Generation Case Study- Destinations Table 

 xLj xcndd_k(xLj) INT3 

xL1=17 xcndd_1(xL1)=(O,O,O,ON,F,NF,H,O,(O,O),(F,ON,NF)) (F,ON,NF) 

xL2=12 xcndd_1(xL2)=(O,SC,O,ON,F,NF,H,O,(O,O),(F,ON,NF)) (F,ON,NF) 

 

Note: The columns of all the components are omitted from the destination table for simplicity;  INT3 is the 

10th component. 

 

d. Determine the Sources of Missing Transitions 

Sources Table 

Srcs(Destj,k,i) =Ci:xLj,i   if Ci∈DSCj,k   ∀ 1≤ j ≤|zL=LCS|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

Table 5.4: Ozone Generation Case Study- Sources Table 

 xLj xcndd_k(xLj) INT3 

xL1=17 xcndd_1(xL1)=(O,O,O,ON,F,NF,L,O,(O,O),(F,ON,NF) ) (F,ON,NF) 

xL2=27 xcndd_1(xL2)=(O,SC,O,ON,F,NF,L,O,(SC,O),(F,ON,NF)) (F,ON,NF) 

 

Note: The columns of all the components are omitted from the Sources table for simplicity where INT3 is 

the 10th component. 
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3- STEP-3: Hypotheses Generation and Model Compliance Verification 

Hypotheses: 

Hj,k,i = Srcs(Destj,k,i)  
𝜎𝑑
→  Destj,k,i ∀ 1≤ j ≤|zL=LCS|, ∀ 1≤ k ≤|Xcndd(xLj)|, ∀ 1≤i≤|C| 

H1,1,10 =  INT3:(F,ON,NF)
O3H
→  (F,ON,NF) 

As shown, the algorithm was able to detect the missing transition and a hypothesis based on it. 

 

5.5 Remarks 

This case study could be used to drive a new rule in the algorithm that is to speed up the calculations 

rather than going through all the steps of the algorithm. Based on the nature of constructing the automata 

of interactions, usually the events of the affected components are used to add self-loop transitions at the 

affecting components.  For example, the flowmeter F1 was an affected component by the state of the 

affecting component which is valve V1. Therefore, the interaction INT1 was built by self-looping F1 

event at the states of V1. Using this idea, we can drive a new rule that when the missing transition is found 

in an interaction automaton AND the event of discrepancy belongs to the affected component, it would 

be possible to just self-loop this event at the last conforming state of the interaction automaton. This is 

because as was seen in this case study, the source state was the same as destination state while the missing 

transition was a self-loop. 

 

 

 

 

 

 

 

 

 

 

  



178 

 

Chapter 6 

Accomplishments and Contributions 

After introducing the problem of missing transitions and its impact on fault diagnosis, this study 

continued with formulating the solution as a learning algorithm that generates hypotheses for adding the 

missing transition to the individual components’ models.  As mentioned in the literature review in chapter 

1, the approach in [3]  can be considered as the launching point of this thesis.  In [3], the authors started 

with an incomplete model of a system (nominal model) that misses some transitions which lead to 

discrepancy between the observations and the nominal model. Then, the missing transitions are 

hypothesized to be added to the flat model of the entire system. As the possible hypotheses could be large, 

the Parsimonious Covering Theory (PCT) is used to narrow down the list of hypotheses. In this section, 

the proposed method in this thesis and the approach in [3] are compared.  

Suppose we have a system comprised of two components, represented by automata G1 and G2 shown 

in Figure 6.1. 

1 2 3 1 2 3

b b

a e

b

G1
G2

a c

b
 

 

Figure 6.1: Accomplishments Discussion Example Automata 

The true model G is built by the synchronous product of the two automata. 

G = sync (G1, G2) 

The resulting automaton is the true model that has 7 states and 10 transitions, as shown in Figure 6.2. 
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1,1 2,2

2,3

3,2

3,3

1,21,3

a

c

c

e

e

b

b

c

b

b

 

Figure 6.2: Accomplishments Discussion Example True model 

Note that in Figure 6.2, the dotted lines do not represent unobservable events as in the previous chapters, 

and they represent the part that will be missing if event b at state 2 in G2 is missing as explained in the 

following.  

Let us assume that, due to human mistake or lack of knowledge in the nominal model, the self-loop 

transition of event b at state 2 in automaton G2 is missing, (the dotted line). After finding the synchronous 

product of the two components with  2
b
→ 2 removed from G2, we obtain the nominal model that has 5 states 

and 6 transitions as shown in Figure 6.3. 

1,1 2,2

2,3

3,2

3,3
a

c

c

e

e

b

 

Figure 6.3: Accomplishments Discussion Example Nominal Model 

By comparing the true model and the nominal model, it is obvious that the nominal model is 

surprisingly smaller than the true model in terms of the number of states and consequently has less 

transitions.  
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Hence, the approach tackled in [3] to hypothesize missing transitions on top of an entire nominal 

model of a system (Like the in the example) might not be correct because the nominal models could be 

missing some states. In addition, any added transitions still will be unable to correct this nominal model. 

In contrast, this thesis works on correcting the problem on the level of the components (G2 in the example) 

to make sure that hypothesizing the missing transition will correct the number of states of the model and 

the added transitions will pass across their corresponding states. Another benefit is that working on the 

level of components and after the synchronous product, the new transitions will be propagated to many 

places in the nominal model. This means that, a newly added transition in a component can fix many 

missing transitions in the nominal model at once rather than waiting to detect their discrepancy. This is 

shown in the example, by assuming that we worked on recovering the missing transition in G2 and we 

rebuilt the nominal model.  Then, adding a single transition in G2 will result in adding four transitions in 

the nominal model. 
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Chapter 7 

Conclusion 

7.1 Summary 

This research tackles the problem of having incomplete DES models. The main goal of the research 

was to come up with a learning algorithm that generates hypotheses for the missing transitions. The study 

started with operating a set of experiments taking into consideration the different types of events in the 

model transitions. Observable, unobservable, private and common events were addressed in the 

experiments. This was followed by formal discussion that resulted in learning rules for amending the DES 

model to account for discrepancies. 

Unlike the learning methods that rely on the flat model of the plant, the proposed method takes 

advantage of the structure of the plant and models inaccuracies of models as missing transitions in 

component models. This leads to more realistic hypotheses and amend the overall plant models at several 

states (rather than one). 

Since the algorithm is to be incorporated with real systems that have unobservable events occurring 

during the operation, an event-state observer was introduced to monitor the model progression according 

to the occurred events and generated output labels. The observer in the proposed scheme, was used to 

detect the discrepancy in the model if the model behavior mismatches the real system. This discrepancy 

is forwarded to the learning algorithm to work on it. The learning algorithm in turn collects the currently 

existing information from the real system and the nominal model, then by analyzing this information, it 

determines the suspected components and the sources and destinations of the missing transitions. Finally, 

the algorithm generates the hypotheses for the missing transitions. The new hypotheses will be used to 

generate new models where these models be examined using new observation to see their compliance. 

The models that are found incompliant will be rejected while the compliant ones will be kept. 

7.2 Scope of Applicability 

The scope of applicability for the learning algorithm introduced in this research defines how far this 

algorithm can be applicable; in other words, the range of DES systems that can use this algorithm. The 
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scope is governed by the limitations imposed by the assumptions made in this thesis. Based on the 

assumptions made in this research, it is possible for a DES to use the learning algorithm if the following 

conditions hold. 

1. The system is modeled as a deterministic Moore automaton. 

2. The fault modes (abnormal states) in the components are permanent such that if the fault event 

happens, the component state does not return to normal. 

3. The components are modeled as automata with correct number of states but perhaps missing some 

transitions between the states. 

4. The number of components is exactly known, and there are no missing components, and there are 

no new components to be added by the algorithm. 

5. The event set for each component is known. This means that no new events (symbols) need to be 

added to the event sets. 

6. The set of output labels is known. Also, the output map is defined and known in terms of the states 

and outputs. 

7. The output map function of the true system and the nominal system are the same. 

8. If the missing transition has an unobservable event, this event must be diagnosable to able to use 

the algorithm to hypothesize the missing transition. 

 

7.3 Future Work 

This research tackled the untimed version of automata. Since, in the real applications including the 

timing information enriches the accuracy of models, future research can extend the work to the learning 

of missing transitions in timed automata. In addition, this approach addressed the problem of missing 

transitions while assuming the correct number of states for the components. Future research can work on 

the case of discovering missing states in the components. 

In terms of the learning technique, the tabulation of information during determining sources, 

destination candidates as well as the successful and rejected hypotheses will create a rich foundation to 

integrate this work with an artificial intelligence technique such as Reinforcement Learning. 

Furthermore, this approach introduces a more precise approach to hypothesizing missing transitions 

compared to the approach in [3] that could be prone to huge number of hypotheses. Therefore, it is an 

open direction of research to integrate our approach of creating hypotheses in this thesis with the learning 

diagnoser in [3].  
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