
NEW INSIGHTS ON CATASTROPHIC FORGETTING IN

NEURAL NETWORKS

Nader Asadi

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

April 2023

© Nader Asadi, 2023

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Nader Asadi

Entitled: New Insights on Catastrophic Forgetting in Neural

Networks

and submitted in partial fulĄllment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the Ąnal examining committee:

Chair
Dr. Thomas Fevens

Examiner
Dr. Thomas Fevens

Examiner
Dr. Yang Wang

Co-supervisor
Dr. Eugene Belilovsky

Supervisor
Dr. Sudhir P. Mudur

Approved by
Dr. Leila Kosseim, Graduate Program Director
Department of Computer Science and Software Engineering

20
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

New Insights on Catastrophic Forgetting in Neural Networks

Nader Asadi

Continual learning, the ability of agents to learn from a changing distribution of data

while respecting memory and compute constraints, is a challenging and important

problem in machine learning. The central challenge of Continual Learning (CL)

is to balance effective adaptation of new information while combating catastrophic

forgetting, i.e. stability-plasticity dilemma. This thesis is comprised of four major

chapters that explore different aspects of continual learning and propose novel

solutions to address some of its challenges.

First, we investigate the impact of experience replay (ER) on the change in

representations of observed data that arises when previously unobserved classes

appear in the incoming data stream. We show that applying ER causes the

representations of newly added classes to overlap signiĄcantly with the previous

classes, leading to highly disruptive parameter updates. To mitigate this issue,

we propose a new method that shields the learned representations from drastic

adaptation to accommodate new classes. SpeciĄcally, we use an asymmetric update

rule that pushes new classes to adapt to the older ones, which is more effective,

especially at task boundaries where much of the forgetting typically occurs. Empirical

results on standard continual learning benchmarks show signiĄcant gains over strong

baselines.

Then, we focus on the concept of representation forgetting, which refers to the

change in a modelŠs representation without losing knowledge about prior tasks.

We observe that models trained without any explicit control for forgetting often

experience small representation forgetting, which can sometimes be comparable to

methods that explicitly control for forgetting, especially in longer task sequences. We

propose a simple yet competitive approach to learning representations continually

with standard supervised contrastive learning while constructing prototypes of class

samples when queried on old samples. We show that this approach can lead to new

insights on the effect of model capacity and loss function used in continual learning.

Finally, we address the challenge of balancing effective adaptation while combating

catastrophic forgetting, i.e. stability-plasticity dilemma, without relying on prior

iii

task data. We propose a holistic approach to jointly learn the representation and

class prototypes while maintaining the relevance of old class prototypes and their

embedded similarities. We use a supervised contrastive loss to learn representations

in an embedding space and evolve class prototypes continually in the same latent

space, enabling learning and prediction at any point. To continually adapt the

prototypes without keeping any prior task data, we propose a novel distillation

loss that constrains class prototypes to maintain relative similarities as compared

to new task data. Empirical results show that this method yields state-of-the-art

performance in the task-incremental setting and provides strong performance in the

class-incremental setting without using any stored data points.

Overall, in this thesis, we provide new insights and methods for effective

adaptation in CL without catastrophic forgetting. The proposed methods achieve

state-of-the-art performance on standard continual learning benchmarks and provide

new insights into the role of model capacity, loss functions, and forgetting in CL.

iv

Acknowledgments

During my two-year MasterŠs program, I had an incredible learning experience and

met many amazing people who contributed to my journey. My supervisors, Sudhir

Mudur and Eugene Belilovsky, deserve special thanks for guiding me to become a

better researcher and giving me the freedom to explore my research interests. They

were always willing to discuss my work and help me improve my papers. I am grateful

for their guidance in showing me the guidelines of doing great research and shaping

my thoughts.

I would like to take this opportunity to express my heartfelt gratitude to Rahaf

Aljundi for her invaluable guidance, support, and mentorship during my research

projects. Her extensive knowledge, expertise, and passion for research have been

a constant source of inspiration for me. I am also grateful to my collaborators,

MohammadReza Davari and Lucas Caccia. They taught me how to approach research

problems with creativity and a critical mindset, and their encouragement and belief

in my abilities boosted my conĄdence as a researcher.

I would also like to thank Soroush Saryazdi, Amir SarĄ, and Farzad Salajegheh for

their thoughtful interactions that contributed to my thinking and research philosophy.

Your feedback, whether it was positive or constructive, helped me to reĄne my

research methodology and approach complex problems from different perspectives.

I am thankful to Mahdi Eftekhari, Hadis Mohseni, and Farid Saberi-Movahed, my

supervisor and advisors during my bachelorŠs studies, for putting their trust in me

submitting recommendation letters on my behalf.

I would like to take this opportunity to express my sincere gratitude and

appreciation to my friends, family, and girlfriend, who have supported me throughout

my MasterŠs degree journey. Your unwavering encouragement, love, and support have

been invaluable to me, and I could not have made it this far without your help. I am

grateful to have you all in my life, thank you again for being my support system, and

I appreciate everything you have done for me.

v

Contents

List of Figures ix

List of Tables xiii

List of Abbreviations 1

1 Introduction 3

1.1 Overview . 3

1.2 Continual Learning . 4

1.3 Main Contributions . 5

2 Background 8

2.1 Neural Networks . 8

2.2 Parameter Estimation and Regularization 10

2.3 Self-supervised and Deep Metric Learning 11

2.4 Knowledge Distillation . 13

2.5 Continual Learning Terminology . 13

2.6 Continual Learning Scenarios . 14

2.7 Continual Learning Methods . 17

2.7.1 Rehearsal-based Methods . 17

2.7.2 Regularization-based Methods 18

2.7.3 Parameter Isolation Methods 21

3 Mitigating Representation Drift in Online Continual Learning 22

3.1 Introduction . 22

3.2 Related Work . 25

3.3 Learning Setting and Notation . 27

3.4 Methods . 27

3.4.1 A Distance Metric Learning Approach for Reducing Drift . . . 27

vi

3.4.2 Negative Selection Affects Representation Drift 29

3.4.3 Cross-entropy Based Alternative 30

3.5 Experiments . 31

3.5.1 Evaluation Metrics and Considerations 32

3.5.2 Standard Online Continual Learning Settings 34

3.5.3 Blurry Task Boundaries . 36

3.5.4 An in-depth analysis of SS-IL in the online setting 37

3.5.5 OverĄtting on buffered samples 39

3.5.6 Combining ER-ACE with DER++ 40

3.5.7 Gradient Norm . 40

3.5.8 ER-AML with Triplet loss . 41

3.5.9 Ablations Negative Selection 42

3.5.10 Additional Drift Results . 42

3.5.11 Analysis of the Representations During the Second Task . . . 43

3.5.12 Additional Blurry Task Boundaries Experiments 44

3.5.13 Experiments with limited training data available 45

3.6 Summary . 45

4 One-Class Incremental Learning with Regularized Class Prototypes 46

4.1 Introduction . 46

4.2 Methods . 48

4.2.1 Supervised BYOL (SupBYOL) 48

4.2.2 CCP: Continual Contrast of Class Prototypes 49

4.3 Experiments . 50

4.4 Summary . 52

5 Exploring Representation Forgetting and its Implications 53

5.1 Introduction . 53

5.2 Related Work . 55

5.3 Background and Methods . 57

5.3.1 Linear Probes for Representation Forgetting 57

5.3.2 Centered Kernel Alignment 57

5.3.3 Supervised and Unsupervised Contrastive Loss 58

5.3.4 Exemplars and Fast Remembering 58

5.4 Experiments . 59

5.4.1 Observed vs LP accuracy . 60

5.4.2 Effects of Increased Model Capacity 64

vii

5.4.3 Low-Cost Remembering with SupCon 66

5.4.4 Depth-wise Probes and Comparison to CKA 67

5.4.5 ImageNet→ Scenes→ CUB 69

5.4.6 Comparing Overall Representation Improvement 70

5.4.7 Representation Forgetting for Other Tasks 71

5.4.8 Training Details . 71

5.5 Summary . 72

6 Replay-Free Continual Learning with Evolving Class Prototypes 74

6.1 Introduction . 74

6.2 Related Work . 76

6.3 Methodology . 78

6.4 Experiments . 81

6.4.1 Evaluations on Task-Incremental Setting 82

6.4.2 Evaluations on Class-Incremental Setting 84

6.4.3 Analysis and Ablations . 87

6.4.4 Evaluations on Domain-Incremental Setting 90

6.4.5 Training Details . 91

6.5 Summary . 92

7 Conclusion 93

References 95

viii

List of Figures

1 An illustration of the continual machine learning versus static machine

learning. 4

2 An example of a 3 layers neural network. 9

3 A block diagram of self-supervised learning algorithms. 11

4 Continual learning overview. At each training task we learn a new set

of classes, and the model must retain knowledge about all classes. . . 15

5 Overview of continual learning with rehearsal buffer. Following each

task, a portion of the data is saved in a memory for use in the next

task. While rehearsal learning is the most effective way to minimize

forgetting, the capacity of the memory is frequently inadequate. . . . 17

6 Constraining the new model based on the old model. The new model is

restrained to resemble the old model during each task after the initial

one. This entails constraining the new model to maintain similarity

with the old one. 19

7 (left) Analysis of representations with the Ąrst taskŠs class prototypes at

a task boundary. Under ER when Task 2 begins, class 1 & 2 prototypes

experience a large gradient and subsequent displacement caused by the

close location of the unobserved sample representations, this leads to a

signiĄcant drop in performance (right). Our proposed method (ACE)

mitigates the representation drift issue and observes no performance

decrease on a task switch. 24

8 Buffer displacement in a 5 task stream. Background shading denotes

different tasks. 29

9 Total Accuracy as a function of TeraFLOPs spent. Here the models

are evaluated on all 10 classes, to ensure consistency across timesteps. 35

ix

10 For Split-CIFAR-10, we monitor the performance on the current task

observed in the stream for SS-IL, ER, and ER-ACE. ER Ąts too

abruptly current task; ER-ACE incorporates this knowledge slowly;

SS-IL barely on the other hand is unable to learn new tasks when they

are Ąrst observed in the stream . 38

11 Alignment between buffer and holdout representations. ER-ACE

has constantly larger alignment between seen and unseen samples

compared to ER especially for older tasks. 39

12 Comparison to Dark Experience Replay (DER). We obtain improved

performance and we can enhance the DER method using the ER-ACE

approach . 40

13 GradientŠs norm for Ąrst task features in a two task learning scenario.

We observe a sharp increase when all negatives are used and decrease

using only incoming negatives. 41

14 1 Training Iteration on the Second Task 43

15 100 Training Iterations on the Second Task 43

16 400 Training Iterations on the Second Task 44

17 End of the Second Task . 44

18 Split CIFAR-100 anytime evaluation results in one-class(left) and multi-

class(right) incremental settings with M = 100. SupBOYL and CCP greatly

outperform the existing methods in one-class setting while being competitive

with the top performing methods in multi-class setting. Note that ER-ACE

and ER-AML cannot be applied in one-class setting since they require more

than one class in the incoming data. 50

19 Performance on ImageNet during the sequence

(ImageNet→Scenes→CUB→Flowers) using ResNet18. We observe

that although observed accuracy heavily degrades the LP accuracy,

in Ąnetuning does not decay as drastically and can rival LP accuracy

of methods such as LwF and EWC. Moreover, we observe that the

LP Accuracy of SupCon training, which has no control for forgetting,

outperforms the LwF, a method designed for CL. Note EWC with

λ = 8k is the best performing method in terms of LP and observed

acc., however it does not perform well on the current task (see Tab. 10). 60

x

20 10-Task SplitCIFAR100 and 20-Task SplitMiniImageNet. We compare

observed accuracy and linear probe accuracy Naively Ąnetuning with CE

does poorly if using the observed accuracy. However using the LP based

evaluation we observe that performance gap to other methods is lower.

Furthermore when Ąnetuning is performed instead with the SupCon loss

function LP performance can rival that of LwF. 61

21 SplitCIFAR100 comparison of unsupervised Linear Probe accuracies

on task 1 with supervised Ąnetuning CE and SupCon as well as LwF.

We observe that LwF and CE based Ąnetuning can decay over time,

while the unsupervised learning (SimCLR) has an initial drop and stays

relatively Ćat. 62

22 200-Task ImageNet32. We compare Linear probe accuracy for Tasks 1

data over the whole sequence. As the model observes the later tasks

of the sequence, the performance of Ąnetuning with CE reaches LwF,

and Ąnetuning with SupCon outperforms ER with 5 samples per class. 63

23 Performance on ImageNet during the transfer sequence (Ima-

geNet→Scenes→CUB) using VGG-16. We observe that although

observed accuracy heavily degrades, the LP accuracy for Ąnetuning

does not decay as drastically and can rival LP accuracy of methods

such as LwF and EWC. We evaluate methods which do not rely on

storing data from Task 1 to replay during training. Note EWC with

λ = 8k is the best performing method in terms of LP and observed

accuracy, however it does not perform well on the current task (see

Tab. 15). 68

24 All-LP anytime evaluation plot on SplitCIFAR100 10-task sequence. All-

LP is a probe trained on all, i.e. seen and unseen tasks, training data and

evaluated on all test data. We compare this with splitting iid data into 10

subsets trained in sequence, denoted as iid-split. 70

25 LP and Observed accuracy for Task 2 (upper left), 3 (upper right), and

5(bottom) on 10-Task SplitCIFAR100. 71

xi

26 Illustration of our Prototype-Sample Relation Distillation (PRD). For

each prior task prototype, we preserve the relative ordering of samples

in the mini-batch. This gives Ćexibility for representations to adapt

to new tasks while maintaining relevant positions of past prototypes.

Illustrated for the prototype in orange 4 samples in the minibatch are

ranked 1 through 4 based on similarity. PRD attempts to preserve this

ranking while learning the new task. 75

27 Task-incremental accuracy on 20-Task Split-CIFAR100(left) and Split-

MiniImageNet(right). We observe that PRD widely outperforms other

baselines without storing any previous task data, and as well exceeds

the performance of ER with a very large buffer. 83

28 Task-incremental accuracy on 200-Task ImageNet32. On this long

sequence, PRD matches a baseline with a large replay buffer. Although

other methods degrade overtime, the average accuracy of PRD

improves due to the cumulative effect of maintaining better plasticity. 84

29 Class-incremental accuracy on 20-Task Split-CIFAR100(left) and

Split-MiniImageNet(right). We observe that PRD outperforms not

only other replay-free baselines but also ER, M=5, and is on par with

ER, M=20, without storing any data. We also observe that with

additional replay samples, PRD M=50 outperforms ER M=50 with

the same number of replay samples. 85

30 Task-incremental Split-CIFAR100. Accuracy on the current task(left)

and average accuracy over previous tasks(right). We observe that PRD

performs well on the current task while having low forgetting. 87

31 Task 1 LP accuracy over 200-Task ImageNet32. We compare Linear

probe accuracy for Tasks 1 data over the whole sequence. We can

observe that during a long sequence, the performance of our method,

i.e. PRD, not only stays relatively Ćat but also increase at some points

in the later stages of the sequence, suggesting its ability to preserve the

information of observed tasks. 88

xii

List of Tables

1 split CIFAR-10 results. † indicates the method is leveraging a task

identiĄer at training time. For methods whose compute depend on the

buffer size, we report min and max values. We evaluate the models

every 10 updates. Results within error margin of the best result are

bolded. 34

2 Split CIFAR-100 (left) and Mini-Imagenet (right) results with M =

100. For each method, we report the best result between using (or

not) data augmentations. 34

3 CIFAR-10 Blurry Task Boundary Experiments 36

4 Final Accuracy on split CIFAR-10 with class balanced stream. 39

5 Average Drift (avg distance in feature space) of buffered representations

for CIFAR-10 during learning of the second task. We observe similar

behavior to ER-AML with SupCon 41

6 Ablation comparing ER-AML with triplet loss to ER-AML with

SupCon. We observe both improve over ER but SupCon has better

performance in larger buffer sizes . 41

7 Ablation of ER-AML with all negative selection versus negatives selected

from incoming classes. We use the CIFAR-10 dataset. We observe that

performance of ER-AML with all negatives is similar to but slightly better

than ER, while use of well-selected negatives greatly improves performance. 42

8 Accuracy and Forgetting results on Split CIFAR-10 in one-class

incremental setting(10 tasks) with augmentations and different buffer sizes.

Averages and standard deviations are computed over Ąve runs. SupBYOL

and CCP outperform other methods with a considerable margin in both

Accuracy and Forgetting. 50

xiii

9 Accuracy and Forgetting results on Split CIFAR-10 in multi-class

incremental setting (5 tasks) with augmentations and different buffer sizes.

Averages and standard deviations are computed over Ąve runs. Our

proposed method, CCP, is competitive with top performing methods in

this setting. 51

10 Observed accuracy of the current task in the sequence Ima-

geNet→Scenes→CUB→Flowers using ResNet architecture. Although

EWCλ:8k attains relatively poor performance on the current task, it

achieves the highest LP and observed accuracy for the previously

seen tasks (see Fig. 19). Moreover, the SupCon training achieves

comparably high accuracy on the current task (even surpassing CE on

Scenes) while suffering from relatively small representation forgetting

(see Fig. 19). 61

11 Final Accuracy of 10 task SplitCIFAR100 sequence with variable width

and depth in the offline setting. M indicates the number of samples

per task used in the ER buffer. We observe that simple Ąnetuning and

LwF baselines show large forgetting, which do not improve signiĄcantly

with width or depth. On the other hand, the LP evaluation reveals

that representation quality for Ąnetuning and LwF becomes closer to

strong CL methods that store samples and also use more compute, e.g.

ER. Furthermore, LP evaluations reveal LwF with wider models can

rival ER. 64

12 Final Accuracy of 10 task SplitCIFAR100 sequence in the Online

Setting. LP evaluations show that width substantially improves online

representation learning, while observed Avg Accuracies suggest it

decreases. Increasing depth on the other hand appears to be less

effective in the online setting. 65

13 Final Accuracy of 10-task SplitCIFAR100 sequence comparing only the

observed accuracy and SupCon+NME. Supcon+NME gives superior

performance to CL speciĄc methods such as LwF and nearly matches

the performance of ER with a similar memory size while not needing

access to the memory during task training. 66

xiv

14 Representation forgetting of Task 1 measured via optimal linear probes

(LP) on ResNet and VGG. The Accuracy degradation of LP trained on

activations of stages (blocks of convolutions) before and after observing

Task 2 suggests that the representations are still highly useful for Task

1 despite training on Task 2. *Note CKA results are taken from [1] for

comparison. 67

15 Observed accuracy of the current

task in the sequence ImageNet→Scenes→CUB using VGG-16 architecture.

Although EWCλ:8k attains relatively poor performance on the current task,

it achieves the highest LP and observed accuracy for the previously seen

tasks (see Fig. 23). 68

16 Reproduction of the results reported in [2]. Note that we observe

a slight difference in our reproduced results due to stochasticity of

training neural networks, and removing the warm-up step. 69

17 Forgetting of Task 1 measured via optimal linear probes (LP). Note

that although the forgetting is much higher for Ąnetuning compared to

LwF, the LP accuracy is nearly identical, especially for the ImageNet

→ Scenes task. 69

18 Class-incremental results on 20-Task Split-CIFAR100 and Split-

MiniImageNet datasets using different buffer sizes. We observe even

with no replay samples (M=0) PRD outperforms all of the replay-

based baselines with 5 replay samples. With a small number of

replay samples, e.g. M=5, PRD widely outperforms other replay-based

methods, suggesting the ability of our method to utilize replay samples

while maintaining a good performance with no access to prior data. . 86

19 Pre-trained Initialization. We report average cumulative incremental

accuracies over all tasks are reported. PRD exceeds recent proposals

in this challenging setting. 86

20 Ablation study on the effect of relation distillation coefficient, β in

Eq. equation 6.3. The reported numbers are Task-incremental average

observed accuracy. We can observe that β = 0, having no distillation,

results in very low average accuracy over all tasks. On the other hand,

when the sequence is very long, e.g. 200 task ImageNet32, a higher

coefficient value for the distillation loss results in better overall average

accuracy. 89

xv

21 Domain-incremental setting using the CLAD-C dataset [3]. All methods

use a ResNet-50 [4] architecture, pre-trained on ImageNet [5], and use a

batch size of 32. Our results highlight the versatility of our method and its

applicability to real-life continual learning scenarios. Moreover, it suggests

that our method is cable of performing under severe class imbalance and

drastic distribution shifts, without having access to past data. 90

xvi

List of Abbreviations

CIL Class Incremental Learning

CL Continual Leanring

CNN Convolutional Neural Network

EG Expert gate

ER Experience Replay

EWC Elastic Weight Consolidation

GEM Gradient Episodic Memory

i.i.d Independent and identically distributed

iCaRL Incremental ClassiĄer and Representation Learning

IMM Incremental Moment Matching

KD Knowledge Distillation

KL Kullback-Leiber divergence

LP Linear Probe

LwF Learning without Forgetting

MAS Memory Aware Synapses

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron

NME Nearest Mean Examplar

1

NN Neural Network

ReLU RectiĄed Linear Unit

SGD Stochastic Gradient Descent

SI Synaptic Intelligence

SSL Self-supervised Learning

2

Chapter 1

Introduction

1.1 Overview

The world we live in is constantly changing and our brains are continuously evolving

to adapt to these changes. The non-stationary nature of evolutionary systems in

living creatures contrasts with the stationary world described by classical physics.

To create effective machine intelligence, our artiĄcial agents must be able to adapt

and exploit new information in the same dynamic, non-stationary world. Without

mechanisms to constantly adapt, effective machine intelligence cannot be achieved.

Neural networks, represented by current machine learning models, can learn and

even surpass human-level performance in individual tasks. However, the learning

process creates static neural models that cannot adapt or expand their functions.

When faced with new data, the neural network training process must start from

scratch. This practice becomes intractable in real-world scenarios where data streams,

disappears, or cannot be stored due to storage constraints or privacy issues. Neural

networks must be able to adapt and update over time to keep up with the constantly

evolving world.

The main obstacle to developing continually adapting systems is catastrophic

forgetting, where the learning of new data completely erases previously acquired

knowledge. Although catastrophic forgetting has been observed in neural networks,

the ability of these networks to implicitly store acquired knowledge highlights the

need to understand this phenomenon.

Humans tend to learn concepts sequentially and revisit some concepts, but the

complete loss of previous knowledge is rare. ArtiĄcial neural networks cannot learn

in this manner due to catastrophic forgetting. Revisiting training data improves

performance, but this is not the case for humans. Research shows that learning

3

Figure 1: An illustration of the continual machine learning versus static machine
learning.

two events sequentially in rats results in complete forgetting of the Ąrst event once

the second is learned. However, concurrent learning of the same two events shows

forgetting, but not catastrophic forgetting. Overcoming catastrophic forgetting

in higher mammals may be due to the development of a hippocampal-neocortical

separation.

Catastrophic interference is caused by the stability-plasticity dilemma in neural

networks. While plasticity allows for the integration of new knowledge, stability

preserves previous knowledge while new data is encoded. To build intelligent systems

that are dynamic and sensitive to new information while being stable and immune

to catastrophic interference, the challenge is to balance stability and plasticity. This

challenge has been the driving goal of the work conducted during this masterŠs studies.

1.2 Continual Learning

Lifelong learning, also known as continual learning, incremental learning, or sequential

learning, is the study of learning from an inĄnite stream of data that comes from

changing input domains and different tasks. The ultimate goal is to use this acquired

knowledge in problem-solving and future learning [6]. The key feature of continual

learning is the sequential nature of the learning process, where only a small portion

of input data from one or a few tasks is available at once. It is impossible to label

all training examples from all tasks before initiating the learning process, and with a

constantly evolving world, adaptation and continual learning are essential. However,

to be efficient, previously seen data should not be stored in their raw format, and full

4

re-training at each point is not feasible at such a large scale.

Researchers have studied the catastrophic forgetting problem since the early

development of neural networks and proposed that parameter sharing, which allows

neural networks to generalize from seen data, is the reason behind catastrophic

forgetting [7, 8]. After learning one task, the network parameters correspond to one

point in the parameter space. When learning a new task, the parameters will change

their values to a new point that might not correspond to a solution to the Ąrst task.

It has been shown that the parameter space of shallow networks contains cliffs in

which small moves lead to a severe change in the function output [9].

Early research developed several strategies to mitigate forgetting without storing

the training data, mostly on a small scale of a few examples and considering shallow

networks [10Ű12]. Recently, with the revival of neural networks, the catastrophic

forgetting problem and the continual learning paradigm have received increased

attention [13Ű16]. We Ąrst deĄne the general continual learning setting and describe

the main desired criteria of a continual learning system.

General Continual Learning Setting The general continual learning setting

considers an inĄnite stream of data where at each time step t, the system receives

a new sample(s) ¶xt, yt♢ drawn non i.i.d. from a current distribution Q that could

itself experience sudden or gradual changes. The main goal is to learn a function f

parameterized by θ that minimizes a predeĄned loss ℓ on the new sample(s) without

interfering with and possibly improving on those that were learned previously.

1.3 Main Contributions

This masterŠs thesis is structured around mitigating catastrophic forgetting in

continual learning settings. We aim to propose solutions to provide artiĄcial agents

with the ability to learn continually and accumulate the acquired knowledge over

their lifetime. We considered various speciĄc situations and approaches presented in

several chapters:

Chapter 3: Mitigating Representation Drift in Online Continual Learning

The focus of our work is on how representations of observed data change when

new classes appear in the incoming data stream, and the challenge of distinguishing

them from previous classes. We discovered that using ER causes the newly added

classes to overlap signiĄcantly with previous classes, resulting in disruptive parameter

5

updates. To address this issue, we propose a new method that shields the learned

representations from drastic adaptation to accommodate new classes. Our method

uses an asymmetric update rule that pushes new classes to adapt to the older ones,

which is more effective at task boundaries where forgetting often occurs. We tested

our method on standard continual learning benchmarks and achieved signiĄcant gains

over strong baselines. The work in this chapter has led to a conference publication:

• Caccia, Lucas, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau,

and Eugene Belilovsky. "New Insights on Reducing Abrupt Representation

Change in Online Continual Learning." In International Conference on Learning

Representations (ICLR) 2022.

Chapter 4: One-Class Incremental Learning with Regularized Class

Prototypes Unlike other continual learning scenarios, where a learner is presented

with new samples multiple times, in this setting, the learner is presented with new

samples only once and must distinguish between all seen classes. To overcome this

challenge, some successful methods store and replay a subset of samples alongside

incoming data in an efficient manner. One recent method called ER-AML achieved

strong performance by using an asymmetric loss based on contrastive learning to

distinguish incoming data from replayed data. However, the proposed method avoids

contrasts between incoming and stored data, which makes it impractical when only

one new class is introduced in each phase of the stream. In this work, we adapt

a recently proposed approach (BYOL [17]) from self-supervised learning to the

supervised learning setting, unlocking the constraint on contrasts. We then show that

by supplementing this with additional regularization on class prototypes, we achieve

a new method that performs strongly in the one-class incremental learning setting

and is competitive with the top-performing methods in the multi-class incremental

setting. The work in this chapter has led to a workshop publication:

• Asadi, Nader, Sudhir Mudur, and Eugene Belilovsky. "Tackling Online One-

Class Incremental Learning by Removing Negative Contrasts." In NeurIPS 2022

Workshop on Distribution Shifts (DistShift).

Chapter 5: Exploring Representation Forgetting and its Implications We

explore the idea of representation forgetting, which is identiĄed by the difference

in performance of an optimal linear classiĄer before and after introducing a new

task. By using this tool, we revisit various standard continual learning benchmarks

6

and Ąnd that model representations trained without explicit control for forgetting

often experience small representation forgetting and can sometimes be as effective as

methods that explicitly control for forgetting, particularly in longer task sequences.

We also discover that representation forgetting provides new insights into the impact

of model capacity and loss function used in continual learning. Based on our Ąndings,

we suggest a simple yet effective approach of continually learning representations using

standard supervised contrastive learning while generating prototypes of class samples

when queried on old samples. The work in this chapter has led to a conference

publication:

• Davari, MohammadReza*, Nader Asadi*, Sudhir Mudur, Rahaf Aljundi, and

Eugene Belilovsky. "Probing representation forgetting in supervised and

unsupervised continual learning." In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 16712-16721. 2022.

* denotes equal contribution

Chapter 6: Replay-Free Continual Learning with Evolving Class

Prototypes In this research, we aim to overcome the need to use previous task data

by starting with robust representation learning methods that have been demonstrated

to be less susceptible to forgetting. We propose a comprehensive approach to

simultaneously learn the representation and class prototypes while maintaining the

relevance of old class prototypes and their embedded similarities. SpeciĄcally, we map

samples to an embedding space where we learn representations using a supervised

contrastive loss, and continually evolve class prototypes in the same latent space,

enabling learning and prediction at any point. To continually adapt the prototypes

without retaining any prior task data, we propose a novel distillation loss that

constrains class prototypes to maintain relative similarities compared to new task

data. The work in this chapter is in submission as a conference paper, at the time of

writing this thesis. The preprint can be found as:

• Asadi, Nader, MohammadReza Davari, Sudhir Mudur, Rahaf Aljundi, and

Eugene Belilovsky. "Prototype-Sample Relation Distillation: Towards Replay-

Free Continual Learning." arXiv preprint arXiv:2303.14771 (2023).

7

Chapter 2

Background

In this chapter, we explain brieĆy the background materials related to the works

presented in this manuscript.

2.1 Neural Networks

Given a training dataset D = ¶x, y♢N
n=1 sampled i.i.d. from a target distribution Qx,y,

a neural network is employed to learn a function f that maps a given input xn to

a target output yn. For example in handwritten digit recognition, xn represents an

image while yn corresponds to the drawn digit. They are called networks because the

learned function is composed of multiple functions, e.g. f(x) = f3(f2(f1(x))) where

f1 is the Ąrst layer, f2 is the second layer and f3 is the output layer. While the target

yn represents the desired output for the output layer, there is no target output for

the other layers and they are called hidden layers. Each layer, represented by fl, is

parametrized by a weight vector θl = ¶θij♢ with a vector input and a vector output,

fl(x) = ϕ(θlx) where ϕ is the activation function. The layer can be viewed as a group

of neurons, also called units or perceptrons, where each neuron maps a vector input

to a scalar output, hence the name multi-layer perceptron, see Fig. 2 for an example.

ϕ is usually a non-linear function except maybe from the output layer. By stacking

multiple layers of neurons, one can approximate various non-linear functions. In

fact, neural networks can be seen as universal approximators if provided with enough

neurons in a hidden layer. The learning occurs through minimizing a loss function

that represents the divergence between the output of the neural network and the

target output. Due to the non-linearity of the neural networks, most cost functions

become non-convex; and they are usually optimized by iterative gradient descent

steps. The gradients of the loss function are computed through the backpropagation

8

Figure 2: An example of a 3 layers neural network.

[131] of the estimated loss to the preceding layers of the network. Typically, the

optimizer performs gradient steps on batches randomly sampled from the training

set. This process is repeated and samples are re-visited until convergence. After a

local minimum is reached, the neural network is deployed and used for performing

predictions on new samples. You can see a mini-batch stochastic gradient descent

algorithm in the following:

Algorithm 1: Optimizing a neural network with gradient descent.

input: Dataset D with pairs of (xi, yi)

input: Loss function L

input: Model function fθ with θ as the learnable parameters

input: Learning rate η //

1 while stopping criterion not satisĄed do

2 (x, y)← sample mini-batch of size b from D

3 Forward pass: ŷ ← fθ(x)

4 Compute loss: L ← L(ŷ, y)

5 Compute the gradients: δ ← ∇θL

6 Update all parameters: θ ← θ − ηδ

7 end

The learning rate η controls the step size when updating the parameters in the

direction of the gradient. The batch size b deĄnes the number of images seen during

one update. The backpropagation algorithm [18] computes the gradients and the

update of the parameters. In the case of image classiĄcation and segmentation, the

main topics explored in this thesis, we discern the feature extractor from the classiĄer

in the neural network. The former transforms the input space so that the latter

9

linearly discriminates classes. We refer to [19] for detailed information on deep neural

networks.

2.2 Parameter Estimation and Regularization

Maximum Likelihood Estimation Given a dataset D = ¶x, y♢N
n=1 sampled i.i.d.

from a target distribution Qx,y and a model with parameters θ = ¶θij♢, the likelihood

of the data given the model parameters is deĄned as L(θ) = p(D♣θ). A maximum

likelihood estimator of the model parameters θ is:

θMLE∗ = max
θ

p(D♣θ) (1)

where θMLE∗ is the model parameters that maximize the likelihood of the data D.

Usually, in optimization, we minimize an objective function, e.g. loss function. As

such instead of maximizing the likelihood, we minimize the negative log-likelihood.

θMLE∗ = min
θ
− log (p(D♣θ)) (2)

Regularization The dataset used for training can be small and noisy while the

model is typically overparameterized. Minimizing the log-likelihood of the training

data could result in overĄtting, i.e. small training errors but higher test errors. To

reduce overĄtting, regularization is imposed to control the model variance without

a signiĄcant increase in the bias. Many regularization techniques aim at limiting

the model capacity by adding a penalty that corresponds to the norm of the model

parameters. As examples we mention:

L2 Regularization An ℓ2 norm penalty which is usually referred to as weight

decay. It pulls the parameters towards the origin, keeping them with small magnitude.

L2 regularization is also known as ridge regression or Tikhonov regularization.

Minimizing the penalized objective would lead to:

θMLE∗ = min
θ
− log (p(D♣θ)) +

1

2
∥θ∥2

2 (3)

L1 Regularization Instead of ℓ2 penalty, ℓ1 norm is also a popular norm for

regularization. It is deĄned as ∥θ∥1=
∑

i,j♣θi,j♣
2
2. ℓ1 norm results in more sparse

parameters than Ś2 norm and it has been used for feature selection as in the LASSO

[20] (least absolute shrinkage and selection operator).

10

Figure 3: A block diagram of self-supervised learning algorithms.

2.3 Self-supervised and Deep Metric Learning

The ability to learn rich patterns from the abundance of data available today has made

the use of deep neural networks a compelling approach in the majority of computer

vision and natural language processing tasks. Even though there is a plethora of data

available, the lack of annotations has pushed researchers to Ąnd alternative approaches

that can leverage them. This is where self-supervised methods play a vital role in

fueling the progress of deep learning without the need for expensive annotations and

learn feature representations where data provide supervision.

Self-supervised learning can be considered as a bridge between supervised and

unsupervised learning. The goal of self-supervised learning is to utilize a supervisory

signal which naturally exists in the data, to learn generalizable representations to

downstream tasks. This is also called predictive or pretext learning. The self-

supervised algorithm has the ability to auto-generate the labels for unlabelled data,

which converts the unsupervised model to a supervised model. Fig. 3 shows a high-

level overview of self-supervised learning pipeline.

Pretext Task Early works in self-supervised learning methods rely on all sorts of

pretext to learn visual representations. For example, colorizing gray-scale images [21],

image jigsaw puzzle [22], image super-resolution [23], image inpainting [24], predicting

a relative offset for a pair of patches [25], predicting the rotation angle [26], and image

reconstruction [27, 28]. Although these methods have shown their effectiveness, they

lack the generality of the learned representations.

11

Instance Discrimination The recent contrastive learning methods [29Ű32] have

made a lot of progress in the Ąeld of self-supervised learning. Most of the previous

contrastive learning methods are based on the instance discrimination [33] task in

which positive pairs are deĄned as different views of the same image, while negative

pairs are formed by sampling views from different images. SimCLR [29, 34] shows

that image augmentation (e.g.Grayscale, Random Resized Cropping, Color Jittering,

and Gaussian Blur), nonlinear projection head and large batch size plays a critical

role in contrastive learning. SimCLR loss is given by:

LSimCLR = −
∑

xi∈X

log
sim(fθ(xp(i)), fθ(xi))

∑

xn∈A(i) sim(fθ(xn), fθ(xi))
(4)

where sim(a, b) = exp(aT b
τ∥a∥∥b∥

), A(i) corresponds to all minibatch examples and their

data augmentations except xi, and xp(i) represents an augmented version of xi.

Contrastive loss functions are also becoming a popular alternative to cross-entropy

(CE) in the supervised setting [35,36], referred to as SupCon. Given a representation

fθ, often consisting of a primary network and a projection, the SupCon loss for a

minibatch X is given by:

LSupCon =
∑

xi∈X

−1

♣P (i)♣

∑

xp∈P (i)

log
sim(fθ(xp), fθ(xi))

∑

xa∈X/xi
sim(fθ(xa), fθ(xi))

(5)

where P (i) represents the same class samples as xi from the minibatch, and the

denominator is taken over all other samples.

Contrastive Learning without Negatives Most previous contrastive learning

methods prevent the model collapse in an explicit manner (e.g. push different

instances away from each other or force different instances to be clustered into different

groups). BYOL [17] can learn a high-quality representation without negatives.

SpeciĄcally, it trains an online network to predict the target network representation

of the same image under a different augmented view and using an additional predictor

network on top of the online encoder to avoiding the model collapse. SimSiam

[37] shows that simple Siamese networks can learn meaningful representations even

without the use of negative pairs, large batch size, and momentum encoders.

12

2.4 Knowledge Distillation

Knowledge distillation [38] is a technique that aims at transferring the knowledge

embedded in one model to another. Usually, a big model or an ensemble of models is

used to learn a function from a big training dataset, which is quite computationally

demanding. This technique aims at distilling the knowledge from the big/ensemble to

a smaller model that is much lighter to deploy. The probabilities of each class in the

output layer of the big model convey richer information than the label of the image.

It also captures the similarities/dissimilarities between the different classes that are

learned by the large model. Suppose that ŷ is the output of the light model and y∗

is the output of the large model. Then the knowledge distillation loss is deĄned as:

ℓdist(ŷ, y∗) = −⟨z∗, log ẑ⟩ (6)

where log is operated entry-wise and

z∗
i =

y
∗1/τ
i

∑

j y
∗1/τ
j

and ẑi =
ŷ

1/τ
i

∑

j ŷ
1/τ
j

(7)

where i, j ∈ ¶1, ..., J♢ running over the output layer units, τ is the temperature.

The application of a high temperature τ softens the probability distribution over the

classes. Different forms of knowledge distillation can be used to reduce forgetting by

distilling the knowledge from a previous model to a model being trained on a new

task, as we show in Chapter 6.

2.5 Continual Learning Terminology

In this manuscript, we use terms that have become common in the continual learning

community. You can see a short description of frequently used terms in the following:

• Catastrophic Forgetting: The complete erase of the previously acquired

knowledge once new knowledge is learned.

• Task: A more speciĄc term than ŞproblemŤ with a predeĄned input and

output. For example, scene classiĄcation is a task of the image classiĄcation

problem.

• Joint Training: Indicates the training of a shared model on multiple tasks

using all their data.

13

• Fine-tuning: Indicates training a given task using as initialization a model

pre-trained on another task, typically with large amount of labelled data. It is

the most typical form of transfer learning.

• Replay: When learning a new task or new samples, samples from previous

history are re-intorduced to the learner.

• Rehearsal: Performing learning steps on the replayed samples from previous

history when learning a new task or new samples.

2.6 Continual Learning Scenarios

Continual Learning involves training a model on a continually changing dataset

without forgetting previous knowledge. In traditional training, it is assumed that

the dataset is Ąxed and independent and identically distributed, but transfer learning

can be used to transfer knowledge from one dataset to another. In Continual

Learning, new classes or samples from new domains are continuously added to the

training dataset, and the test dataset is assumed to evolve similarly. Various types

of distribution drifts exist in Continual Learning and that they are referred to by

different names in literature. The major drifts involve changes in the input sample

and its ground-truth label, such as in image classiĄcation or semantic segmentation.

The major drifts are:

• Covariate drift: when p(x) changes, it happens with the introduction of new

domains [39].

• Prior drift: when p(y) changes. Class-Incremental Learning happens with this

kind of drift.

• Conceptual drift: when p(y♣x) changes. Seldom covered in the literature, it

can be found in Continual Semantic Segmentation.

The idea of training a new model on an ever-growing dataset can be achieved by

starting from scratch and using the combination of past and new data. However, there

are constraints such as privacy concerns, limited time, or limited storage capacity

that limit the amount of previous data that can be kept. In some cases, the model

may only have access to new data and not the old data. If the parameters are

initialized randomly, the model will not be able to predict the past data distribution.

To overcome this, the new model parameters can be initialized using the previous

14

Figure 4: Continual learning overview. At each training task we learn a new set of
classes, and the model must retain knowledge about all classes.

parameters (θt := θt−1
∗). ItŠs important to note that the optimization procedure for

the old (t− 1) model and the new (t) model will be different.

Evidently, the optimal parameters θ∗ are different for the task t and t − 1. This

difference results in what we call a forgetting: θt
∗ is optimal for the new task t

but is suboptimal for the task t1, therefore performance on the previous task may

be degraded (L(fθt , Dt1)≫ L(fθt−1 , Dt1)). This performance drop is actually so

important that the literature names it catastrophic forgetting [11]. It is particularly

critical in the context of image classiĄcation where each new task brings new classes

to be classiĄed as described below.

Class-Incremental Learning A well-known benchmark in Class Incremental

Learning (CIL) involves learning the classiĄcation dataset, consisting of N classes,

in multiple stages. Each stage involves learning several new classes. During the Ąrst

stage (t = 1), the model f1 learns the Ąrst k classes (Ct=1). The second stage (t = 2)

begins by initializing the model f2 with the parameters learned in the previous stage

f1 and then adding 10 more classes (Ct=2) to its knowledge. This process continues

until all 100 classes have been learned in the Ąnal stage (t = T). After each stage,

the model is evaluated on the testing data for all the classes that it has seen so far

(C1:t). Fig. 4 shows the continual protocol and Fig. 4 compares the performance of a

model that was trained from scratch for each task and a model that was continually

Ąne-tuned with new data. The latter tends to overpredict new classes and has a lower

overall accuracy due to the phenomenon of catastrophic forgetting, which highlights

the importance of addressing this issue.

15

Single-Head vs Multi-Head The two primary ways of evaluating in Continual

Learning are Single-Head and Multi-Heads, according to [40]. In the Single-Head

setting, the model must identify samples among all classes it has seen (C1:t), regardless

of the step in which they were learned. Conversely, in the Multi-Heads evaluation,

the model knows the step/task identiĄer (i) of the samples during testing, allowing

it to classify samples based solely on the limited number of classes from that step

(Ci). This form of evaluation is closely connected to multi-task learning. This thesis

focuses on Single-Head evaluation, as it is more practical, as it is rarely possible to

determine the origin of a sample in real-life situations. Additionally, Single-Head

evaluation is more challenging as it requires a single classiĄer to discriminate among

all classes from all tasks, instead of having a separate classiĄer for each task [41].

Evaluation Metrics Multiple metrics exist in Continual Learning: the most

common are the Ąnal accuracy and average incremental accuracy. The former

measures the performance of the model on all tasks at the last step, the latter

measures the average of performance on all seen tasks after each new task learned [42].

Practically, given Ai,t the accuracy of the ith task after learning the tth task, the Ąnal

accuracy is (assuming balanced tasks):

AccF =
1

T

T
∑

i=1

Ai,T (8)

and the average incremental accuracy:

Acca =
1

T

T
∑

t=1

1

t

t
∑

i=1

Ai,T (9)

Average incremental accuracy is somewhat more important than simply the Ąnal

accuracy: a continual model should be good after every step because in a true

continual setting, there is not a ŞĄnal taskŤ.

There are other metrics besides performance, such as forgetting (as recorded by

[43]), which measures the decline in a modelŠs performance on a task compared to

when it was initially learned. This metric is valuable because it is independent of

the modelŠs overall performance. Additionally, metrics like processing speed (i.e. the

number of images processed per second) and capacity utilization (i.e. the number of

parameters learned) are crucial to consider, as demonstrated by [1], who found that

larger models have lower forgetting rates.

16

Figure 5: Overview of continual learning with rehearsal buffer. Following each task,
a portion of the data is saved in a memory for use in the next task. While rehearsal
learning is the most effective way to minimize forgetting, the capacity of the memory
is frequently inadequate.

2.7 Continual Learning Methods

There are several methods to combat forgetting in Continual Learning, including

replay of old data, regularization to control the modelŠs behavior, and adjusting the

modelŠs structure.

2.7.1 Rehearsal-based Methods

The most effective way to prevent forgetting in continual learning is to use rehearsal

learning, where old samples are shown alongside new samples. However, the number

of old samples that can be stored is limited, as storing too many would go against the

purpose of continual learning. Fig. 5 demonstrates how rehearsal learning happens

in Continual Learning. In the Ąrst step, the model is trained on all available samples

and then a limited number of those samples are stored in a memory. In the second

step, the model has access to both new samples and all previously stored samples in

the memory. In Class-Incremental learning, an equal number of samples per class is

stored in the memory. Two approaches have been proposed to determine the number

of samples: [42] suggest fully utilizing a memory of size M among all C classes,

while [44] keep the number of samples stored per class Ąxed to M divided by the

number of classes M/♣C1:T ♣.

Herding refers to selecting which samples per class should be stored in the rehearsal

memory. One simple method is to randomly sample images, which surprisingly yields

comparable results to more complex methods [45]. Similarly, in active learning,

17

random sampling has been found to be effective [46]. Other herding methods include

selecting samples close to the class mean in feature space [45] or close to an incremental

barycenter [42].

Sampling is a crucial but relatively unexplored topic in continual learning. Many

models combine all memory samples with new samples without any under- or over-

sampling. [45] suggest Ąne-tuning on a balanced set of old and new class samples for

a few epochs after training on a new step. [47] oversample tiny memory with just one

sample per class and demonstrate that continual models do not overĄt in the context

of online learning where models learn in only one epoch. In the same context, [48]

propose oversampling the memory examples with the highest losses. In imbalanced

situations for continual learning, over- and under-sampling can be applied depending

on the number of samples per class.

Efficient storing is essential for rehearsal learning because a larger rehearsal

memory leads to less forgetting [44]. Consequently, multiple works explore how to

store more rehearsal samples with the same memory size. For instance, [49] compress

intermediate features of memory samples with a lossless compression algorithm. [50]

also store features but modify them during training to handle inherent internal

covariate drift.

Pseudo-rehearsal generates pseudo-samples for rehearsal instead of storing

actual samples [51]. The generation can be achieved with auto-encoders from

intermediate features [52,53] or by using a generative adversarial network (GAN) [54].

Unfortunately, these methods have several drawbacks, such as difficulty in scaling to

large images, requiring a generator size greater than a classic rehearsal memory size,

and the generator itself may experience catastrophic forgetting [55]. Alternatively, [56]

(2020) propose a method halfway between rehearsal and pseudo-rehearsal, where real

images are randomly sampled and slightly modiĄed via bi-level optimization [57] to

minimize forgetting during continual training.

2.7.2 Regularization-based Methods

Fig. 6 shows that one effective and frequently used approach to alleviate forgetting

is to limit the variance in performance between the old and new models. Multiple

methods can be used to impose these restrictions, which are detailed below.

18

Figure 6: Constraining the new model based on the old model. The new model is
restrained to resemble the old model during each task after the initial one. This
entails constraining the new model to maintain similarity with the old one.

Weight-based Regularization The easiest way to prevent complete forgetting is

to keep the old and new models the same. However, this approach makes the model

rigid, unable to change and learn new tasks. Thus, a line of research proposed to

constrain only a portion of the neurons:

L
(

θt, θt−1


= Lt

(

θt


+ λ
∑

i

Ωt−1
i

(

θt
i − θt−1

i

2
(10)

where Lt(θ) is the loss at the current task t (e.g. the cross-entropy), θt
i and θt−1

i

respectively the ith neuron of the current and previous model, and Ωt−1
i a neuron-

wise importance factor.

The idea is to keep the important neurons from the previous task (t-1) unchanged,

while adapting other neurons to Ąt the new task (t). [14], followed by [58] and [43],

propose using the diagonal Fisher information matrix as importance factors. The

motivation behind this is that the posterior p(θt−1♣Dt−1) should contain information

about which parameters are important to the previous dataset, Dt−1. This posterior

can be approximated by a Gaussian distribution whose diagonal precision is given by

the diagonal Fisher information matrix. A higher value indicates a more important

neuron for the previous task, and the constraint should be increased accordingly.

Conversely, a lower value for a less important neuron means that it can change

drastically, which facilitates learning new data. This approach strikes a balance

between rigidity (no change and no forgetting) and plasticity (changing and learning

new concepts). [59] use the sensitivity of the model when small perturbations are

added to the neurons to measure their importance.

However, itŠs worth noting that weight-based constraints are typically only useful

19

in multi-head settings where a task identiĄer is available at test time. [41] show that

in the single-head setting, they struggle to reduce forgetting and are outperformed

by simple rehearsal learning, which is memory-intensive.

Gradient-based Regularization [60] introduced the GEM model that combines

gradient constraints and rehearsal learning. The algorithm enforces that the loss on

a given stored sample does not increase despite the model learning new classes. This

can be achieved by requiring the gradient of a new sample (g) to be in the same

direction as the gradient of all stored old samples, given a locality assumption:

⟨g, gi⟩ ≥ 0, for all i ∈M (11)

with M as the rehearsal buffer. If this constraint is violated, the new gradient g is

projected to the closest gradient that satisĄes the angle constraint by minimizing a

quadratic program. However, the computational cost of this method can become

prohibitive when the memory is too large. To address this issue, [40] proposed

Averaged-GEM, which only constraints the average of all memory samples. [61] also

improved GEMŠs speed by selecting a subset of the memory samples that maximize

the feasible region.

In contrast, [62] introduced OGD, which constrains the gradients of task t to

be orthogonal to gradients of task t − 1. They use the Gram-Schmidt procedure to

orthogonalize the new gradients, which allows updates for the new task that minimally

interfere with the performance of old tasks.

Distillation-based Regularization The majority of Continual models evaluated

on large datasets, such as ImageNet [5], use a combination of rehearsal learning and

constraints on the modelŠs outputs. Knowledge Distillation (KD) [38] is applied to

the modelŠs probabilities by LWF [13] and iCaRL [42]. This involves minimizing the

Kullback-Leiber divergence (KL) between the probabilities of the old and new models.

LKD = KL

(

softmax

(

ỹt−1

τ



∥

∥

∥ softmax

(

ỹt

τ



. (12)

where ŷt−1 = gt−1(ft−1(x)) .The probabilities, also known as dark knowledge, contain

additional information about the model that is useful for distilling. In Class-

Incremental scenarios, the new model predicts more classes than the old model, so

the KL is only applied to the logits that are common to both models. The KD is

sometimes deĄned as the binary cross-entropy between the sigmoid-activated logits.

20

Probabilities are commonly constrained in models by most base losses. However,

a few models have also considered constraining intermediate outputs. For instance,

MK2D [63] uses the KD from both the Ąnal and auxiliary classiĄers, similar to the

Inception network [64]. [44] maximizes the cosine similarity between the embeddings

produced by the global average pooling (GAP). [65] minimize the L1 distance between

the attention maps produced by GradCam.

2.7.3 Parameter Isolation Methods

Parameter isolation methods allocate different subsets of model parameters to each

task to prevent forgetting previous tasks. If there are no constraints on the

architecture size, this can be achieved by freezing the learned parameters after each

task and adding new branches for new tasks [16, 66]. The Expert Gate method [67]

is an example that ensures no forgetting and aims for optimal performance in future

tasks through knowledge transfer.

Alternatively, methods with a Ąxed architecture identify the parts used for

previous tasks and mask them out during the training of the new task. This can

be done at the parameter or neuron level [68, 69]. However, these methods usually

require a task oracle to activate the corresponding masks or task branch during

prediction [70]. The Expert Gate method [67] avoids this issue by learning an auto-

encoder gate. Generally, this family of methods is limited to the task incremental

setting and is better suited for learning long sequences of tasks when model capacity

is not constrained, and optimal performance is a priority.

21

Chapter 3

Mitigating Representation Drift in

Online Continual Learning

This work was the fruit of collaboration with Lucas Caccia, Rahaf Aljundi, Tinne

Tuytelaars, Joelle Pineau, and Eugene Belilovsky. It was published as an article in

ICLR 2022 [71].

3.1 Introduction

Continual learning is concerned with building models that can learn and accumulate

knowledge and skills over time. A continual learner receives training data sequentially,

from a potentially changing distribution, over the course of its learning process. The

distribution change might be either a shift in the input domain or new categories

being learned. The main challenge is to design models that can learn how to use the

new data and acquire new knowledge while preserving or improving the performance

of previously learned data. While different settings have been investigated of how

new data are being received and learned, we focus on the challenging scenario of

learning from an online stream of data with new classes being introduced at unknown

points in time and where memory and compute constraints are applied on the learner.

Additionally, we assume a shared output layer among all the learned classes [61]. This

setting is different and harder than the conventional multi-head setting [72] where each

new group of classes is considered as a new task with a dedicated head (classiĄcation

layer), requiring a task oracle at test time to activate the correct head. The axes of our

setting (online learning, no task boundary, no test time oracle, constant memory, and

bounded compute) align with the main desiderata of continual learning as described

in [73].

22

Catastrophic forgetting [7], where previous knowledge is overwritten as new

concepts are learned, remains a key challenge in the online continual learning setting.

To prevent forgetting, methods usually rely on storing a small buffer of previous

training data and replaying samples from it as new data is learned. This can

partially counteract catastrophic forgetting but still tends to lead to large disruptions

in accuracy, particularly at the initial task boundary or shift in distribution. Various

works focus on studying which samples to store [61, 74] or which samples to

replay when receiving new data [48]. In this work, we direct our attention to the

representations being learned and investigate how the features of previously learned

classes change and drift over time.

Consider the time point in a stream when a new class is introduced after previous

classes have been well learned. If we consider the representation being learned,

incoming samples from new classes are likely to be dispersed, potentially near and

between representations of previous classes, while the representations of previous

classes will typically cluster according to their class. Indeed, one might expect

minimal changes to the learned representation of the previous classes, while the

new classes samples are pushed away from the clusters of old class data. However,

with a standard Experience Replay (ER) algorithm [75], we observe that it is the

representations of older classes that is heavily perturbed after just a few update steps

when training on the new class samples. We hypothesize that the fundamental issue

arises from the combination of: new class samples representations lying close to older

classes and the loss structure of the standard cross entropy applied on a mix of seen

and unseen classes. We illustrate the observed effect in Fig. 7 (left).

This behavior is exacerbated especially in the regime of low buffer size. With

larger replay buffers, the learner can recover knowledge about the prior classes over

time, while with smaller buffers the initial disruptive changes in representations are

challenging to correct. Indeed we illustrate this effect in Fig. 7 (right), we see that

ER only recovers from the initial displacement given a much larger buffer size.

In standard continual learning with replay [48,75] the same loss function is usually

employed on both the newly received samples and the replayed samples. In contrast,

we propose a simple and efficient solution to mitigate this representation drift by

using separate losses on the incoming stream and buffered data. The key

idea is to allow the representations of samples from new classes to be learned in

isolation of the older ones Ąrst, by excluding the previously learned classes from the

incoming data loss. The discrimination between the new classes and the older ones is

learned through the replayed batches, but only after incoming data has been learned,

23

TSNE plot of the penultimate layer at the first task boundary

Class 1 (Task 1)
Class 2 (Task 1)
Class 3 (Task 2)
Class 4 (Task 2)
Task 1 gradient
Task 2 gradient

0 200 400
Number of training steps on the 2nd task

20

40

60

80

100

Ta
sk

 1
 A

cc
ur

ac
y

Task 1 Accuracy during 2nd Task

ACE, buffer size 200
ER, buffer size 200
ER, buffer size 1000

Figure 7: (left) Analysis of representations with the Ąrst taskŠs class prototypes at
a task boundary. Under ER when Task 2 begins, class 1 & 2 prototypes experience
a large gradient and subsequent displacement caused by the close location of the
unobserved sample representations, this leads to a signiĄcant drop in performance
(right). Our proposed method (ACE) mitigates the representation drift issue and
observes no performance decrease on a task switch.

added to the buffer, and made available for replay. To allow more direct control of

the structure in representations we Ąrst consider a metric learning based loss for the

incoming data, proposed in [35], where we propose to exclude samples of previously

learned classes from the negative samples. We show that this type of negative selection

is critical, and in contrast issues arise when negative examples are sampled uniformly

from the buffer. These issues mimic those seen with standard losses in experience

replay (ER) [48]. On the other hand we use a different loss on replay buffer data that

is allowed to consider new and old classes, thereby consolidating knowledge across

current and previous tasks. We call this overall approach ER with asymmetric metric

learning (ER-AML).

Since cross entropy losses can be more efficient in training for classiĄcation than

metric learning and contrastive losses (avoiding positive and negative selection) and

it is widely used in incremental and continual learning, we also propose an alternative

cross entropy solution that similarly applies an asymmetric loss between incoming and

replay data. Notably, the cross entropy applied to the incoming data only considers

logits of classes of the incoming data. This variant, named ER with asymmetric

cross-entropy (ER-ACE), along with ER-AML show strong performance, with little

disruption at task boundaries Fig. 7 (right). We achieve state of the art results in

existing benchmarks while beating different existing methods including the traditional

ER solution with an average relative gain of 36% in accuracy. Our improvements

are especially high in the small buffer regime. We also show that the mitigation

24

of the old representation drift does not hinder the ability to learn and discriminate

the new classes from the old ones. This property emerges from only learning the

incoming data in isolation; as we will see, also isolating the rehearsal step (as in [76])

leads to poor knowledge acquisition on the current task. Furthermore we show our

ER-ACE objective can be combined with existing methods, leading to additional

gains. Finally, we take a closer look at the computation cost of various existing

methods. We show that some methods, while obtaining good performance under

standard evaluation protocols, fail to meet the computational constraints required in

online CL. We provide an extensive evaluation of computational and memory costs

across several baselines and metrics.

To summarize, our contributions are as follows. We Ąrst highlight the problem

of representation drift in the online continual learning setting. We identify a root

cause of this issue through an extensive empirical analysis (Sec. 3.4.2). Second, we

propose a new family of methods addressing this issue by treating incoming and past

data asymmetrically (Sec. 3.4.1, 3.4.3) . Finally, we show strong gains over replay

baselines in a new evaluation framework designed to monitor real world constraints

(Sec. 6.4). To the best or our knowledge, we are the Ąrst to report the computation

costs of different methods in our setting, revealing new insights.

3.2 Related Work

Research on continual learning can be divided based on the sequential setting being

targeted (see [77Ű80] for categorizations of the settings and [73] for a broad survey

on continual learning). Earlier works consider the relaxed setting of task incremental

learning [13, 70, 81] where the data stream is divided into chunks of tasks and each

task is learned offline with multiple iterations over the data of this task. While this

setting is easier to handle as one task can be learned entirely, it limits the applicability

of the solution.

In this work, we consider the challenging setting of an online stream of non-i.i.d.

data where changes can anytime occur in the input domain or in the output space.

This more realistic setting has attracted increasing interest lately [48,60]. SpeciĄcally,

we study the single-head (or shared head) setting, where when queried, the learner is

not told which task the sample belongs to (as opposed to the multi-head setting). The

single-head assumption is further studied in task-agnostic continual learning settings

[41, 82Ű85] in which the task-boundary assumption, amongst others, is also relaxed.

Many of the solutions to the online continual learning problem rely on the use of a

25

buffer formed of previous memories which are replayed alongside new data during the

learning process. Several works [61,74,75] propose solutions to select which samples

should be stored, or retrieved for replay [48], or both [86]. [40,60] use replay to perform

constrained optimization, limiting interference with previous tasks as new ones are

learned. Our work, on the other hand, focuses on the appropriate loss function in

this context. [87] propose a graph-based approach that capture pairwise similarities

between samples. Dark Experience Replay (DER) [88] suggests an alternative replay

loss. Samples are stored along with their predicted logits and once replayed the

current model is asked to keep its output close to the previously recorded logits.

While the method is simple and effective it is worth noting that it relies heavily on

data augmentation. Our work is orthogonal and can be combined with DER as we

show in Sec. 3.5.6. Finally, concurrent work [89] also use a contrastive loss for online

continual learning, but not in an asymmetric fashion.

In our work we also investigate the underlying causes for performance degradation

in replay-based methods. Related to this study are works in the class incremental

setting, where similar to our case a shared output layer is used, but classes are learned

offline. Works in this area address the implicit class imbalance issue occurring when

new classes are learned alongside replayed data. [90] proposes to correct last layer

weights after a group of classes is learned via adjusting the weights norm. [91] suggests

to deploy extra additional parameters in order to linearly correct the ŞbiasŤ in the

shared output layer. Those parameters are learned at the end of each training phase.

[44] considers addressing this imbalance through applying cosine similarity based

loss as opposed to the typical cross entropy loss along with a distillation loss and a

margin based loss with negatives mining to preserve the feature of previous classes.

Recently, [76] propose to learn the incoming tasks and the previous tasks separately.

They use a masked softmax loss for the incoming and rehearsal data, to counter the

class imbalance. All the methods highlighted above operate in the offline setting,

where data from the current task can be revisited as needed making the disruptive

issues emphasized at the task boundary less critical. In this paper, we focus on

the online setting, with potentially overlapping tasks. As we will see, work by [76]

developed to counter class imbalance, can inhibit learning of the current task in the

online setting (see Appendix 3.5.4). Lastly, [77] uses a logit masking related to our

method but their context is based on the multi-head setting, and does not consider

replay based methods, where learning across tasks occurs. Their goal is to activate

only the head of which the samples within the new batch belong to. However, our

approach is more general and it applies to the single head setting (where we have a

26

single output layer for all classes, and no task oracle.)

3.3 Learning Setting and Notation

We consider the setting where a learner is faced with a possibly never-ending stream

of data. At every time step, a labelled set of examples (Xin, Yin) drawn from

a distribution Dt is received. However, the distribution Dt itself is sampled at

each timestep and can suddenly change to Dt+1, when a task switch occurs. The

learner is not explicitly told when a task switch happens, nor can it leverage a task

identiĄer during training or evaluation. We note that this deĄnition generalizes task-

incremental learning, where each task is seen one after the other. In this scenario,

given T tasks to learn, Dt changes T − 1 times over the full steam, yielding T locally

i.i.d learning phases. We also explore in this paper a more general setting without

the notion of clearly delineated tasks [92, 93], where the data distribution gradually

changes over time.

Given a model fθ(x) representing a neural network architecture with parameters θ,

we want to minimize the classiĄcation loss L on the newly arriving data batch while

not negatively interfering with the previously learned classes (i.e. increasing the

classiĄcation loss). A simple and efficient approach to achieve this is to replay stored

samples from a Ąxed size memory,M, in conjunction with the incoming data [75,94].

The core of our approach is that instead of treating the replayed batch and the

incoming one similarly and naively minimizing the same loss, we opt for a speciĄc loss

structure on the incoming batch that would limit the interference with the previously

well learned classes. We approach this by allowing the features of the newly received

classes in the incoming data to be initially learned in isolation of the older classes.

We Ąrst present our idea based on a metric learning loss and then generalize to the

widely deployed cross-entropy loss.

3.4 Methods

3.4.1 A Distance Metric Learning Approach for Reducing

Drift

In order to allow Ąne-grained control of which samples will be pushed away from other

samples given an incoming batch, we propose to apply, on the incoming data, a metric

learning based loss from [35]. Related loss functions have recently been popularized

27

in the self-supervised learning literature [29]. We combine this in a holistic way with a

cross-entropy type loss on the replay data. This allows us to control the representation

drift of old classes while maintaining strong classiĄcation performance. Note that if

a metric learning loss is used alone we need to perform predictions using a Nearest

Class Means [42] approach, which we show is computationally expensive in the online

setting.

Given an input data point x, we consider the function fθ(x) mapping x to its

hidden representation before the Ąnal linear projection. We denote the incoming N

datapoints by Xin and data replayed from the buffer by Xbf . We use the following

loss, denoted SupCon [35], on the incoming data Xin.

L1(X
in) = −

∑

xi∈Xin

1

♣P (xi)♣

∑

xp∈P (xi)

log
sim(fθ(xp), fθ(xi))

∑

xn∈N∪P (xi) sim(fθ(xn), fθ(xi))
(13)

where sim(a, b) = exp(aT b
τ∥a∥∥b∥

) computes the exponential cosine similarity between

two vectors, with scaling factor τ [31,95]. Here we denote the incoming data xi ∈ Xin.

We use the P and N to denote the set of positives and negatives with respect to xi

and the positive examples xp are selected from the examples in Xin ∪M, which are

from the same classes as xi. In the sequel, we will consider xn selected from Xin∪M

in two distinct ways: (a) from a mix of current and previous classes and (b) only from

classes of the Xin. Note that this implicitly learns a distance metric where samples of

the same class lie close by. For the rehearsal step, we apply a modiĄed cross-entropy

objective as per [95] which allows us to link the similarity metric from above to the

logits.

L2(X
bf) = −

∑

x∈Xbf

log
sim(wc(x), fθ(x))

∑

c∈Call
sim(wc, fθ(x))

(14)

where Call the set of all classes observed, and c(x) denotes the label of x. The above

formulation allows us to interpret the rows of the Ąnal projection ¶wc♢c∈Call
as class

prototypes and inference to be performed without the need for the nearest neighbor

search. We combine the loss functions on the incoming and replay data

L(Xin ∪Xbf) = γL1(X
in) + L2(X

bf) (15)

We refer to this approach as Experience Replay with Asymmetric Metric Learning

(ER-AML). Note the buffer may contain samples with the same classes as the

incoming data stream. The subroutine FetchPosNeg is used to Ąnd one positive

28

101 201 301 401 501 601 701 801 901
Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

Drift of buffered data on consecutive updates
ER-AML
ER-AML all negs.

Figure 8: Buffer displacement in a 5 task stream. Background shading denotes
different tasks.

and negative sample per incoming datapoint in Xin, which can reside in either the

buffer memory M or in Xin.

3.4.2 Negative Selection Affects Representation Drift

The selection of negatives for the proposed loss L can heavily inĆuence the

representation of previously learned classes and is analogous to the key issues faced

in the regular replay methods where cross-entropy loss is applied to both incoming

and replay data. A typical approach in this loss for classiĄcation may be to select

the negatives from any other class [96]. However, this becomes problematic in the

continual learning setting as the old samples will be too heavily inĆuenced by the

poorly embedded new samples that lie close to the old sample representations. To

illustrate what is going on in the feature space, consider the case of a ER-AMLŠs

L1 term, which explicitly controls distances between sample representations. L1

considers the incoming batch samples (containing new classes) as anchors. As the

representations from these classes havenŠt been learned, anchors may end up placed

near or in-between points from previous classes (analogous to the illustration in

Figure 7). Since the previous classes samples will be clustered together, if we use

them as negatives for the incoming sample anchors, the gradients magnitude of the

positive term will be out-weighted by the negative terms coming from the new class

samples, similar to what is observed in Figure 7. In this case, there is a sharp

change in gradients norms of the loss w.r.t. the features of previous classes, as we

illustrate in Appendix 3.5.7, which leads to a large change in the representation at the

task boundary (and subsequently poor performance). On the other hand, if we use

only incoming batch examples as negatives we can avoid this excessive representation

29

drift. We illustrate this in Figure 8 by showing the representations drift at the task

boundaries for ER-AML when using negative samples from all classes and when using

only classes in the incoming batch. In the context of the model under consideration

we measure the one iteration representation drift of a sample x as ∥fθt(x)−fθt+1(x)∥,

the output of the network being normalized. We observe that naively applying the

proposed loss results in large changes of the learned representation. On the other

hand, when allowing only negatives from classes in the incoming batch, we see a

reduction in this representation drift. In the Appendix 7 we further demonstrate that

the accuracy of models trained using ER-AML with only incoming batch negatives can

improve the continual learning system performance by a large margin. We emphasize

that ER-AML with all negatives and the regular ER method used for online continual

learning suffer from a similar issue and thus lead to similar poor performances, with

appropriate negative selection resolving the problem. This is further emphasized in

Appendix 3.5.10 where we observe similar poor drift behavior for ER.

3.4.3 Cross-entropy Based Alternative

Having demonstrated the effect of controlling the incoming batch loss in avoiding

a drastic representation drift, we now extend it to be applicable to the standard

cross-entropy loss typically studied in ER [48, 75]. Given an incoming data batch,

consider Cold the set of previously learned classes and Ccurr the set of classes observed

in the current incoming mini-batch. Denoting C the set of classes included in

the cross-entropy loss, we deĄne the Lce(X, C) cross-entropy loss as: Lce(X, C) =

−
∑

x∈X log
sim(wc(x),fθ(x))

∑

c∈C
sim(wc,fθ(x))

where C ⊂ Call denotes the classes used to compute

the denominator. We note that restricting the classes used in the denominator has

an analogous effect to restricting the negatives in the contrastive loss. Consider the

gradient for a single datapoint x, ∂Lce(x,C)
∂fn

θ

= W((p⃗ − y⃗) ⊙ 1y⃗∈C). Here p⃗ denotes

the softmax output of the network, y⃗ a one-hot target, 1y⃗∈C a binary vector masking

out classes not in C, and W the matrix with all class prototypes ¶wc♢c∈Call
. When

the loss is applied in the batch setting, it follows that only prototypes whose labels

are in C will serve roles analogous to positives and negatives in the contrastive loss.

We can then achieve a similar control as the metric learning approach on the learned

representations.

Now, our loss applied at each step would be:

Lace(X
bf ∪Xin) = Lce(X

bf , Cold ∪ Ccurr) + Lce(X
in, Ccurr)

30

where Ccurr denotes the set of the classes represented in the incoming batch and Cold

denotes previously seen classes that are not presented in the incoming batch, those

that we want to preserve their representation. Note this is a straightforward procedure

and induces no additional computational overhead. We refer to it as Experience

Replay with Asymmetric Cross-Entropy (ER-ACE).

3.5 Experiments

We have highlighted the issue of abrupt representation change when new classes are

introduced, and propose two methods that address this issue. We now demonstrate

that mitigating drift directly leads to better performance on standard online continual

learning benchmarks. As in [48,60,75] we use a reduced Resnet-18 for our experiments,

and leave the batch size and the rehearsal batch size Ąxed at 10. This allows us to

fairly compare different approaches, as these parameters have a direct impact on the

computational cost of processing a given stream.

Datasets All benchmarks are evaluated in the single-head setting, i.e. task

descriptors are not provided to the model at test time, hence the model performs

N -way classiĄcation where N is the total amount of classes seen.

Split CIFAR-10 partitions the dataset into 5 disjoint tasks containing two classes

each (as in [48,97])

Split CIFAR-100 comprises 20 tasks, each containing a disjoint set of 5 labels.

We follow the split in [75]. All CIFAR experiments process 32× 32 images.

Split MiniImagenet splits the MiniImagenet dataset into 20 disjoint tasks of

5 labels each. Images are 84× 84.

Baselines We focus our evaluation on replay-based methods, as they have been

shown to outperform other approaches in the online continual learning setting [48,

75, 98]. We keep buffer management constant across methods : all samples are kept

or discarded according to Reservoir Sampling [99]. We consider the following state-

of-the-art baselines:

ER: Experience Replay with a buffer of a Ąxed size. Unlike [48], we do not

leverage the task identiĄer during training to ensure that rehearsal samples belong to

previous classes.

iCaRL [42] A distillation loss alongside binary cross-entropy is used during

training. Samples are classiĄed based on closest class prototypes, obtained from

31

recomputing and averaging buffered data representations.

MIR [48] selects for replay samples interfering the most with the incoming data

batch.

DER++ [88] uses a distillation loss on the logits to ensure consistency over time.

SS-IL [76] learns both the current task loss and the replay loss in isolation of each

other. An additional task-speciĄc distillation is used on the rehearsal data.

GDUMB [100] performs offline training on the buffer with unlimited computation

and unrestricted use of data augmentation at the end of the task sequence.

iid: The learner is trained with a single pass on the data, in a single task containing

all the classes. We also consider a version of this baseline using a similar compute

budget as replay methods (iid++)

We note additional baselines such as [40,60] were shown to perform poorly in this

setting by prior work [88] and are thus left out for clarity.

3.5.1 Evaluation Metrics and Considerations

Our evaluation includes the metrics and experimental settings used in previous works

on online continual learning with a single-head [48,97,98]. We provide extra emphasis

on anytime evaluation and comparisons of the computation time per incoming batch.

We also consider several additional settings in terms of computation and use of image

priors.

Anytime evaluation A critical component of online learning is the ability to

use the learner at any point [73] . Although most works in the online (one-pass

through the data) setting report results throughout the stream [40, 60, 61], several

prior works have reported the Ąnal accuracy as a proxy [48, 97]. However a lack of

anytime evaluation opens the possibility to exploit the metrics by proposing offline

learning baselines that are inherently incompatible with anytime evaluation [100].

In order to make sure that learners are indeed online learners, we evaluate them

throughout the stream. We deĄne the Anytime Accuracy at time k (AAk) as the

average accuracy on the test sets of all distributions seen up to time k. If the learning

experience lasts T steps, then AAT is equivalent to the Ąnal accuracy. Finally, we

report the Averaged Anytime Accuracy (AAA) [83], which measures how well the

model performed over the learning experience

AAA =
1

T

T
∑

t=1

(AA)t. (16)

32

Computation and Memory Constraints While memory constraints are well

documented in previous work, careful monitoring of computation is often overlooked;

some methods can indeed hide considerable overhead which can make the comparison

across methods unfair. On the other hand this is critical to the use cases of online

continual learning. To remedy this, we report for each method the total number of

FLOPs used for training. While we cannot Ąx this quantity as we can for memory

(since different methods require different computations), this will shed some light on

how different methods compare. Note that we also include in this total any inference

overhead required by the models; Nearest Class Mean (NCM) classiĄers must compute

class prototypes before inference for example. We add this cost every time the model

is queried to measure its Anytime Accuracy. Let

Mem =
1

T

T
∑

t=1

♣θt♣+♣Mt♣, Comp =
T
∑

t=1

O(m(·; θt)), (17)

where O(m(·; θt)) denotes the number of FLOPs used at time t. Since the same

backbone and buffer is used for all methods in this paper, we will focus our constraint

analysis on computation

Data Augmentation In the settings of [48, 60, 75, 97, 98] data augmentation is

not used. However, this is a standard practice for improving the performance on

small datasets and can thus naturally complement most methods utilizing replay

buffers. Notably, [100], the offline learning method, utilizes data augmentation

when comparing to the above online learners. To avoid unfair comparisons, in our

experiments we indicate when a method uses augmentation. When not speciĄed, we

treat it as a hyperparameter and report the best performance.

Hyperparameter selection For all datasets considered, we withhold 5 % of the

training data for validation. For each method, optimal hyperparameters were selected

via a grid search performed on a validation set. The selection process was done on a

per dataset basis, that is we picked the conĄguration which maximized the accuracy

averaged over different memory settings. We found that for both ER-AML and ER-

ACE, the same hyperparameter conĄguration worked across all settings and datasets.

All necessary details to reproduce our experiments can be found in the Appendix.

33

Method Data M = 5 M = 20 M = 100 Train Mem.
Aug. AAA Acc AAA Acc AAA Acc TFLOPs (Mb)

iid ✗ - 62.7±0.7 - 62.7±0.7 - 62.7±0.7 8 4
iid++ ✗ - 72.9±0.7 - 72.9±0.7 - 72.9±0.7 16 4

DER++ ✓ 50.7±1.1 31.8±0.9 55.6±1.2 39.3±1.0 60.1±1.3 52.3±1.1 24 (4, 7)

ER ✗ 40.0±0.8 19.7±0.3 45.2±1.3 26.7±1.0 55.4±1.4 38.7±0.8 17 (4, 7)
✓ 45.6±1.1 28.4±1.0 55.9±1.2 40.3±0.6 60.3±1.3 49.4±1.3

iCaRL† ✗ 47.0±0.8 30.6±0.8 55.1±0.7 41.7±0.6 59.3±0.6 45.1±0.6 (21, 47) (8, 11)
✓ 49.1±1.0 33.4±1.0 54.4±0.7 39.2±0.8 56.9±0.7 42.3±0.8

MIR† ✗ 39.3±1.0 19.7±0.5 44.7±1.1 29.7±0.6 53.8±1.7 43.3±1.0 41 (4, 7)
✓ 44.9±0.9 29.8±0.8 49.7±1.0 41.8±0.6 54.6±1.4 49.3±0.6

SS-IL† ✗ 42.6±1.7 29.6±0.4 44.8±1.8 35.1±0.9 48.1±2.2 41.1±0.4 19 (8, 11)
✓ 41.1±1.6 31.6±0.5 47.0±1.2 38.3±0.4 48.1±1.7 47.5±0.7

ER-ACE ✗ 53.1±1.0 35.6±1.0 58.0±0.7 42.6±0.7 61.9±0.9 52.2±0.7 17 (4, 7)
(ours) ✓ 52.6±0.9 35.1±0.8 56.4±1.0 43.4±1.6 61.7±0.9 53.7±1.1

ER-AML ✗ 49.4±1.0 30.9±0.8 57.0±1.0 39.2±1.0 63.3±1.0 52.2±1.1 17 (4, 7)
(ours) ✓ 50.4±1.3 36.4±1.4 56.8±1.0 47.7±0.7 62.0±0.9 55.7±1.3

GDUMB ✓ 0±0.0 35.0±0.6 0±0.0 45.8±0.9 0±0.0 61.3±1.7 (43, 853) (11, 14)

Table 1: split CIFAR-10 results. † indicates the method is leveraging a task identiĄer
at training time. For methods whose compute depend on the buffer size, we report
min and max values. We evaluate the models every 10 updates. Results within error
margin of the best result are bolded.

Method AAA Acc.
Train Mem.

TFLOPs (Mb.)

iid - 19.8±0.3 9 4
iid++ - 28.3±0.3 17 4
DER++ 23.3±0.5 15.1±0.4 25 36
ER 24.2±0.6 19.8±0.4 17 35
iCaRL† 26.3±0.3 17.3±0.2 294 39
MIR† 23.6±0.8 20.6±0.5 41 35
SS-IL† 31.5±0.5 25.0±0.3 19 39
ER-ACE (ours) 32.7±0.5 25.8±0.4 17 35
ER-AML (ours) 30.2±0.6 24.3±0.4 28 35

AAA Acc.
Train Mem.

TFLOPs (Mb.)

- 16.7±0.5 59 4
- 25.0±0.8 118 4

21.7±0.6 12.9±0.3 176 217
26.2±0.8 18.2±0.5 118 216
24.4±0.4 17.1±0.1 2097 220
27.2±0.7 20.2±0.8 294 216
29.7±0.6 23.5±0.5 137 220
30.2±0.6 22.7±0.6 118 216
27.0±0.7 19.3±0.6 200 216

Table 2: Split CIFAR-100 (left) and Mini-Imagenet (right) results with M = 100. For
each method, we report the best result between using (or not) data augmentations.

3.5.2 Standard Online Continual Learning Settings

We evaluate on Split CIFAR-10, Split CIFAR-100 and Split MiniImagenet using the

protocol and constraints from [48, 97, 98] . We note in all results each method is run

10 times, and we report the mean and standard error. We Ąrst discuss dataset speciĄc

results, before analysing the computation cost of each method.

CIFAR-10 results are found in Table 1 using a variety of buffer sizes. In this

setting, we see that both the methods we propose, ER-AML and ER-ACE consistently

outperform other methods by a signiĄcant margin. This result holds in both settings

34

10 20 30 40 506 × 100

Cumulative TeraFlops spent

10

20

30

40

50

60

Ac
cu

ra
cy

Split Cifar-10 with M=100

DER++
ER
iCaRL
MIR
SS-IL
ER-ACE
ER-AML

Figure 9: Total Accuracy as a function of TeraFLOPs spent. Here the models are
evaluated on all 10 classes, to ensure consistency across timesteps.

where data augmentation is (or not) used, outperforming previous state-of-the-art

methods MIR and DER++. Shifting our attention to SS-IL, its underperformance

w.r.t to ER-ACE highlights the importance of having a rehearsal objective that

considers the new classes. In Appendix 3.5.4, we observe that when applying SS-

IL in the online setting: (1) the method performs poorly on the current task, as

is it unable to consolidate old and new knowledge, (2) yet mitigates representation

drift even on a perfectly balanced stream. The latter is surprising, as the method

was designed speciĄcally to address stream imbalance. Finally, we note the offline

training baseline G-DUMB cannot satisfy the anytime evaluation criteria.

textbfLonger Task Sequence results are shown in Table 2 with CIFAR-100 on the

left and MiniImagenet on the right. On both datasets similar Ąndings are observed,

our proposed methods match or outperform strong existing baselines. SS-IL performs

similarly to our method on mini-imagenet hile having a higher computational and

memory cost. As mentioned above, the method struggles to learn the current task,

however here the Şweight" of the current task is small in the Ąnal acc of the 20-

task regime. Finally, ER-ACE shows relative gains of 35% in accuracy over ER,

without any additional computation cost. For Mini-Imagenet, ER-ACE outperforms

the single-pass iid baseline, and nearly reaches the performance of the equal-compute

iid baseline.

Computation Budget To provide another view of the computational advantages

of our proposal we report the accuracy given compute budget over the length of the

sequence in Fig 9. When monitoring the computation performed by each baseline,

we notice that several methods do not compete on equal footing. First, the use of

Nearest Class Mean (NCM) classiĄers leads to a signiĄcant compute cost, as shown

35

Method M = 20 M = 100

ER 32.1±1.5 42.7±2.2

DER++ 31.0±1.4 41.7±1.4

ER-AML 45.6±1.2 55.2±1.1

ER-ACE 44.5±0.5 50.2±1.1

Table 3: CIFAR-10 Blurry Task Boundary Experiments

for iCaRL. For our experiments, we evaluate the model after 10 mini-batches (100

total samples), where NCM classiĄer must forward the whole buffer to get class

prototypes. We argue that such an approach has disadvantages in the online setting

due to poor computational trade-offs. Second, MIR [48] has an expensive sample

retrieval cost. It remains to show if this step can be approximated more efficiently.

Finally, we note that our method, ER-AML has varying compute: for streams with

a small number of classes per task (CIFAR10), it can compute the incoming loss

leveraging only the incoming data. In other datasets, where an incoming batch may

not have at least two samples of each class, an additional cost to forward a buffered

point is incurred.

Evaluation with augmentation The use of augmentations also permits extra

beneĄts of replay methods particularly in settings where buffer overĄtting is more

present, e.g. in the small buffer regime. From the results in Table 1, we see that

augmentations provides signiĄcant gains for a large set of methods. It is therefore

crucial to compare methods on equal footing, where they can all leverage (or not) data

augmentation. For example, gains reported in [100] over ER completely vanish when

ER is given the same access to augmented data. We note that for Mini-Imagenet,

augmentations did not help. We hypothesize that since this is the hardest task the

risk of overĄtting on the buffer is less severe.

3.5.3 Blurry Task Boundaries

Next, we explore a setting where the distribution is continuously evolving, rather

than clearly delineated by task boundaries (similar to settings considered in [61]).

To do this, we linearly interpolate between tasks over time, resulting in new classes

being slowly mixed into the data stream. This experiment is done on Split-CIFAR10,

and the interpolation is such that at every timestep, the incoming data batch has

36

on average 2 unique labels (as in the original experiment). We only evaluate task-

free methods in this setting: methods like MIR and SS-IL cannot be used in such

setting. Results in table 3 report the Ąnal accuracy, averaged over 5 runs, we report

the standard error. We observe our ER-AML and ER-ACE methods perform well in

this setting.

3.5.4 An in-depth analysis of SS-IL in the online setting

SS-IL is a related method. In this section, we highlight several key observations when

deploying SS-IL in the online setting which are on the other hand not issues for ER-

AML and ER-ACE. We then provide several additional experiments, shedding some

light on the inner workings of the method.

SS-IL fails to learn the current task As stated earlier, the key difference between

SS-IL without distillation and ER-ACE is that in the latter, the rehearsal loss in

unmasked. In this section, we highlight the problems that occur when using a masked

rehearsal loss alongside a masked incoming loss as in SS-IL. We show that since both

losses are masked, the model never learns to classify classses across tasks. SpeciĄcally,

there is no objective in which the model learns to distinguish classes in the current task

from classes in the previous tasks. As we show in Figure 10, SS-IL is unable to classify

samples from the current task in a single-head setting. The method actually performs

worse than random chance on samples form the current task. On the other extreme

we see that ER does very well on the current task (shifting abrupty the previous

representations to accomodate the new task). Finally, we see that ER-ACE strikes

a good tradeoff between the two, reaching a reasonable accuracy on the current task

without disrupting the learned representations of previous tasks. We note that the

same conclusion is reached when using the original SS-IL method with the distillation

loss.

SS-IL does more than correcting for class imbalance SS-IL is motivated

as a method which addresses the class imbalance issue arising in replay methods.

SpeciĄcally, when drawing a Ąxed number of rehearsal points at every epoch, it follows

that as more and more tasks are seen, previous classes are underrepresented in the

training stream when compared to points from the current tasks.

In this section, we test whether or not the behavior of SS-IL differs from standard

Experience Replay when no class imbalance is present. In this experiment, we increase

the number of rehearsal points sampled at every task such that when combining

incoming and rehearsal data, we obtain perfectly balanced training data on average.

37

100 200 300 400 500 600 700 800 900
Number of training updates on task 4

0

50

Ta
sk

 4
 A

cc
.

100 200 300 400 500 600 700 800 900
Number of training updates on task 3

0

50

Ta
sk

 3
 A

cc
.

100 200 300 400 500 600 700 800 900
Number of training updates on task 2

0

50

Ta
sk

 2
 A

cc
.

100 200 300 400 500 600 700 800 900
Number of training updates on task 1

0

50

Ta
sk

 1
 A

cc
.

100 200 300 400 500 600 700 800 900
Number of training updates on task 0

0

50

Ta
sk

 0
 A

cc
.

ER
ER-ACE
SS-IL

Accuracy on the current task

Figure 10: For Split-CIFAR-10, we monitor the performance on the current task
observed in the stream for SS-IL, ER, and ER-ACE. ER Ąts too abruptly current
task; ER-ACE incorporates this knowledge slowly; SS-IL barely on the other hand is
unable to learn new tasks when they are Ąrst observed in the stream

This is experiment is done on the Split-CIFAR10 benchmark with 2 classes per task,

with a minibatch of 10 incoming datapoints. Therefore, we sample 0, 10, 20, 30, 40

rehearsal points per incoming databatch for the Ąrst, second, third, fourth and Ąfth

task.

What we observe is that SS-IL still outperforms regular Experience Replay,

suggesting that the method does more than simply addressing class imbalance in the

data stream. We report Ąnal accuracy in Table 4. SS-ILŠs performance gap with ER

is bigger with small buffer. This is consistent with what we observe for representation

drift : methods with larger buffer can better correct for abrupt representation change,

making the gap between ER vs ER-ACE and ER-AML smaller. From this we give

new insights on the inner workings of SS-IL, namely that it works well because it

38

Method M = 20 M = 50 M = 100

ER 21.0± 1.2 25.7± 1.1 37.8± 0.7
SS-IL 30.3± 1.0 34.6± 0.8 39.1± 0.6

Table 4: Final Accuracy on split CIFAR-10 with class balanced stream.

addresses representation drift rather than class imbalance.

3.5.5 OverĄtting on buffered samples

We study the extent to which our proposed method reduces over-Ątting to samples

stored in the buffer.

Task 1 Task 2 Task 3 Task 4 Task 5
0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

S
im

ila
rit

y

Cosine Similarity between held-out and buffered data across tasks

ER
ER-ACE

Figure 11: Alignment between buffer and holdout representations. ER-ACE has
constantly larger alignment between seen and unseen samples compared to ER
especially for older tasks.

A good model Ąt should yield a learned representation where same class datapoints

are aligned, whether or not they were seen during training. To evaluate this potential

mismatch, we Ąrst train a model and compare the representations of a) samples in

the buffer M after training and b) held-out samples from the validation set V . That

is, for each datapoint xm ∈ M we Ąnd the point xv ∈ V with c(xm) = c(xv) which

maximizes the cosine similarity between fθ(xm) and fθ(xv) . This allows to compare

alignment across models, irrespective of their internal scaling. We report the results

in Figure 11, where similarity values are averaged over points from the same task.

We Ąnd that our proposed method, ER-ACE, designed to reduce representation drift

also reduces the extent to which the model overĄts on the buffer. We observe that for

earlier tasks, ER-ACE still retains a strong alignment between rehearsal and held-out

data, which is not the case for ER.

39

3.5.6 Combining ER-ACE with DER++

In this section, we apply our method on top of the strong DER++ [88] baseline.

For this experiment, we use the same setting as in the DER paper. SpeciĄcally, we

port our implementation to their public codebase https://github.com/aimagelab/

mammoth. We keep the default settings for CIFAR-10, using a single pass through the

data. We Ąnd that combining ER-ACE with DER++ yields additional advantages.

Not only do we observe small gains in accuracy, we notice signiĄcant gains in

forgetting. Results are shown in Figure 12. Forgetting is deĄned as in [40].

M=20 M=50 M=100
Buffer Size

30

40

50

60

70

Fi
na

l A
cc

.

CIFAR-10 Accuracy

M=20 M=50 M=100
Buffer Size

0

10

20

30

40

Fo
rg

et
tin

g

CIFAR-10 Forgetting
DER++
DER++ACE
ER-ACE

Figure 12: Comparison to Dark Experience Replay (DER). We obtain improved
performance and we can enhance the DER method using the ER-ACE approach

3.5.7 Gradient Norm

Figure 13 shows the gradients norms of the features of previous classes in a stream of

two tasks. Note how for normal ER, at the task switch the gradients of the previous

classes features are suddenly very high leading potentially to large drift on these

features.

40

ER (3.2± 1.8)× 10−2

ER-AML-Triplet w. All Negs (3.0± 0.6)× 10−2

ER-AML-Triplet w. Incoming Negs (2.5± 0.6)× 10−2

Table 5: Average Drift (avg distance in feature space) of buffered representations for
CIFAR-10 during learning of the second task. We observe similar behavior to ER-
AML with SupCon

Accuracy ↑
M = 5 M = 20 M = 50 M = 100

iid online 60.8± 1.0 60.8± 1.0 60.8± 1.0 60.8± 1.0
iid++ online 72.0± 0.1 72.0± 0.1 72.0± 0.1 72.0± 0.1

iid offline 79.2± 0.4 79.2± 0.4 79.2± 0.4 79.2± 0.4

Ąne-tuning 18.4± 0.3 18.4± 0.3 18.4± 0.3 18.4± 0.3
ER 19.0± 0.1 26.7± 0.3 36.1± 0.6 41.5± 0.6

ER-AML Triplet 33.0± 0.3 40.1± 0.4 46.0± 0.5 49.8± 0.5
ER-AML SupCon 33.0± 0.2 41.9± 0.1 48.3± 0.2 51.9± 0.3

Table 6: Ablation comparing ER-AML with triplet loss to ER-AML with SupCon.
We observe both improve over ER but SupCon has better performance in larger buffer
sizes

0 250 500 750 1,000 1,250 1,500 1,750
Step

0.000

0.002

0.004

0.006

0.008

0.010

G
ra

di
en

t L
1

N
or

m

Loss gradient norm w.r.t hidden rep. of 1st Task

method
Asym. Loss w. All Negs
Asym. Loss w. Incoming Negs

Figure 13: GradientŠs norm for Ąrst task features in a two task learning scenario. We
observe a sharp increase when all negatives are used and decrease using only incoming
negatives.

3.5.8 ER-AML with Triplet loss

We observe similar behavior for ER-AML implemented with the triplet loss in terms of

the importance of negative selection on drift as illustrated in Table 5. We also ablate

ER-AML based on SupCon and Triplet in Table 6 Ąnding the former outperforms in

settings with higher buffer sizes, but that both outperform ER.

41

3.5.9 Ablations Negative Selection

As discussed in the main paper, the selection of negatives is a critical aspect of ER-

AML and motivates ER-ACE. To further illustrate this we ablate the performance of

ER-AML when all possible negatives are used versus the prescribed negative selection

strategy (using only classes in the incoming batch). The results are shown in Table 7.

We observe that performance of ER-AML with all negatives is similar to but slightly

better than ER, while use of well-selected negatives greatly improves performance.

Accuracy (↑ is better)
M = 20 M = 50

ER 26.7± 0.3 36.1± 0.6
ER-AML(all negatives) 28.5± 0.3 41.4± 0.4

ER-AML(incoming negatives) 41.9± 0.1 48.3± 0.2

Forgetting (↓ is better)
M = 20 M = 50

47.1± 0.8 37.6± 0.9
56.7± 0.6 35.0± 0.4
33.6± 0.2 25.8± 0.3

Table 7: Ablation of ER-AML with all negative selection versus negatives selected from
incoming classes. We use the CIFAR-10 dataset. We observe that performance of ER-
AML with all negatives is similar to but slightly better than ER, while use of well-selected
negatives greatly improves performance.

3.5.10 Additional Drift Results

We showed in Figure 8 that the selection of negatives has a signiĄcant impact on the

amount of representation change. Here we show that a similar behavior is observed

with ER vs ER-ACE.

101 201 301 401 501 601 701 801 901
Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

Drift of buffered data on consecutive updates
ER
ER-ACE

42

3.5.11 Analysis of the Representations During the Second

Task

In this section we take a closer look at the modelŠs internal representation during

the learning of the second task for different methods. This experiment replicates

the setup illustrated in Figure 7 (split-CIFAR-10 with M = 20). For each method,

the Ągures for all iterations were projected together to ensure that the Ągures are

comparable across timesteps. All methods were initialized starting from the same

base model trained on the Ąrst task. The dotted representations shown for each class

come from held-out samples.

We start by looking at the representations obtained at the begining of the second

task. We see that for all three methods, (i) the prototypes of the classes from the

Ąrst task (Class 0 and Class 1) are well placed, while the other prototypes are placed

at random since they are not trained.

Figure 14: 1 Training Iteration on the Second Task

After 100 training iterations, we see that for ER, the prototypes of the old classes

have been signiĄcantly displaced and are far from the points of similar class. This

is not the case for the latter two methods; for ER-ACE and ER-AML, the model is

beginning to separate de classes from one another, and the class prototypes are near

their respective classes.

Figure 15: 100 Training Iterations on the Second Task

43

After 400 training iterations, ER still struggles to align the class prototypes with

the respective classes. ER-ACE has already well clustered the respective classes.

ER-AML, continues to cluster the classes together, however does not do it as fast as

ER-ACE.

Figure 16: 400 Training Iterations on the Second Task

At the end of the second task, ER-ACE and ER-AML have successfully clustered

the classes and aligned their respective prototypes with the clusters. As for ER,

while the data is clustered, the prototypes are not properly aligned with class clusters.

Moreover, we still see a strong overlap between prototypes of Class 2 and 3.

Figure 17: End of the Second Task

3.5.12 Additional Blurry Task Boundaries Experiments

Here we provide blurry task results for varying levels of task overlap. To give an idea

of how much the tasks overlap, we report the average number of unique classes per

incoming minibatch (MB): a small number means that the tasks are well separated.

A high number means that there is a strong overlap. In the fully i.i.d setting, this

number would be maximized. On the other hand, when this equals 1, each data class

is streamed one after the other.

Experiments are performed again on CIFAR-10 with M = 20. We use

augmentations to fairly compare with DER++. Results are averaged over 5 runs.

44

Method Avg. unique classes per MB
1 2 3 4 5

ER 23.1 25.7 26.3 31.1 34.4
DER++ 20.3 31.1 31.4 37.3 34.4

ER-ACE 32.8 36.2 36.8 41.7 44.5
ER-AML 34.0 40.4 46.0 47.6 47.9

We see that through a wide range of different blurriness levels, our methods show

strong improvement over other task-free baselines

3.5.13 Experiments with limited training data available

Next, we evaluate the methods above using varying percentages of the training data

from the second task onwards (we use all the data for the Ąrst task so the model has

converged to a reasonable solution before the Ąrst distribution shift). Moreover, we

augment the rehearsal batch size for ER, ER-ACE and ER-AML to 20, so that their

compute cost equals DER++. This is again on CIFAR-10, M = 20. Results averaged

over 5 runs.

Method % of Data Used
5% 10% 25% 50%

ER 17.3 22.5 28.0 33.2
DER++ 17.4 19.9 24.8 32.8

SS-IL 15.2 21.7 28.6 31.9

ER-ACE 20.5 25.4 31.2 36.1
ER-AML 18.1 24.3 31.0 38.7

Again, we see that the proposed methods outperforms the baselines suggested

above.

3.6 Summary

We have illustrated how in the online continual learning setting the standard loss

applies excessive pressure on old class representations. We proposed two modiĄcations

of the loss function, both based on treating the incoming and replay data in an

asymmetric fashion. Our proposed method does not require knowledge of the current

task and is shown to be suitable for long task sequences achieving strong performance

with minimal or no additional cost. We also raise the standard for high quality

evaluation in online continual learning by considering a wide number of baselines and

metrics.

45

Chapter 4

One-Class Incremental Learning

with Regularized Class Prototypes

This work was with the collaboration of Sudhir Mudur and Eugene Belilovsky. It was

published as a workshop article in NeurIPS 2022 [101].

4.1 Introduction

Continual learning is a paradigm that aims to allow deep learning algorithms which

will have the ability to learn online from a non-stationary and never-ending stream of

data. Such systems must become capable of acquiring new knowledge, while avoiding

catastrophic forgetting of previously seen data, a problem commonly known and

suffered by gradient-based neural networks [102]. A number of common continual

learning scenarios exist in the classiĄcation setting, each with their own set of related

but also different challenges. These are often characterized along a number of axes.

The Ąrst is which information is available to the learner at training and test time. In

our setting we focus on the single-head setting where a learner is unaware at test time

which task the data belongs to. In other words, when new classes are presented the

learner must learn to distinguish them from all previously observed classes. Another

common distinction is the online and offline setting. In the offline setting the learner

receives the full set of data for each task and can perform unlimited training on this

before moving to the next. On the other hand in the online setting the learner receives

one or a small number of samples from a stream and must process and/or store these

samples under a computational and memory budget. In this work we focus on the

latter.

An extreme continual classiĄcation scenario involves the learner observing

46

individual classes at each changing point in the data stream. Until now this scenario

has been studied to a limited degree in the offline setting [44, 103], but has not been

considered in the online setting. This is due to the inherent challenging nature of the

online setting which has only recently started obtaining results competitive with iid

baselines [104, 105]. Indeed, in [103] they use an expensive regularization approach

that is impractical under the constraints of online continual learning. Furthermore,

the method proposed by [103] uses a pre-trained model, performing an initial stage

of offline iid pretraining on half of the classes in the dataset. Where as, our aim is to

tackle the problem without any assumption of pre-trained models.

In the online continual learning setting the best performing methods rely on

various forms of rehearsal, where old samples are stored in a Ąnite memory and

reused at later points in the stream. A common strong baseline is experience replay

[47,61]. Recently, Caccia et al. [105] showed that in online continual learning settings,

after each distribution shift (task boundaries), the model observes a signiĄcant drift

in the representation of previously learned classes. They hypothesize that this is

fundamentally due to: (i) new class samples representations lying close to older classes

and (ii) the loss structure of the standard cross entropy applied on a mix of seen and

unseen classes. To mitigate this, they proposed a method to allow Ąne-grained control

over which samples will be pushed away from other samples given an incoming batch.

The main downside of methods proposed by Caccia et al. [105], is the critical need for

negative samples in the incoming batch to learn the representation of incoming data

while avoiding catastrophic forgetting. The result is the inability of their methods to

be applied to the more challenging setting where the model observes one class at a

time in an online data stream.

In this work, we apply recent ideas from [17], which break the dependence on

negative samples in self-supervised contrastive learning to the supervised continual

learning setting. This allows us to maintain an asymmetric loss structure between

replay samples and incoming data as in [105], while providing learning on new

incoming class data without the need to contrast to old classes or their representations.

Augmenting this approach with a regularization term that constrains class prototypes,

further yields a new method which far exceeds performance of strong online CL

benchmarks in the one class incremental setting and is competitive with the top

performing methods in the multi-class incremental setting.

47

4.2 Methods

Similar to [105], given a model fθ(x) representing a neural network architecture with

parameters θ, we want to minimize the classiĄcation loss L on the newly arriving

data batch while not negatively impacting previous learning of other classes, and

have the ability to be applied to one-class incremental settings. We opt for a speciĄc

loss structure on the incoming batch that would enable the model to learn the

representation of each class independently and in isolation from all other classes,

either in the incoming batch or in buffered samples. This removes the need for

negative samples and enables the model to learn useful representations, even in one-

class incremental settings. We Ąrst present our supervised modiĄcation of BYOL and

apply it in the asymmetric setting of [105], then propose our new method.

4.2.1 Supervised BYOL (SupBYOL)

In order to remove the need for negative samples to learn the representation of the

incoming batch, we apply a supervised modiĄcation of BYOL [17] on the incoming

data. BYOL uses a twin architecture with online and target networks. The online

network is comprised of three stages: an encoder fθ, a projector gθ, and a predictor

qθ. The target network has the same architecture but with different parameters ξ,

and is the exponential moving average of the online network: ξ ← τξ + (1− τ)θ. We

use the following loss, a modiĄcation of BYOL loss [17], on the incoming data Xin.

Lbyol
1 = −

1

N

∑

xi∈Xin

1

♣P (xi)♣

∑

xp∈P (xi)

sim(qθ(zθ), zξ) (18)

where sim(a, b) = aT b
τ∥a∥∥b∥

, and zθ = gθ(fθ(xi)) and zξ = gξ(fξ(xi)) are the projections

outputted by online and target networks respectively. We denote the incoming N

data points by Xin, data replayed from the buffer by Xbf , and the set of positive

samples with respect to xi by P . Following [105], for the rehearsal step, we apply a

modiĄed cross-entropy objective as per [95].

L2(X
bf) = −

∑

xi∈Xbf

log
exp (sim(cy(xi), fθzi))
∑

y∈Yall
exp (sim(cy, zi))

(19)

where Yall is the set of all observed classes, and zi = gθ(fθ(xi)).

48

4.2.2 CCP: Continual Contrast of Class Prototypes

Although BYOL can learn the representation of each class independently from other

classes, in case of supervised learning, specially where we have multiple classes in

the incoming data, it is tricky to evade collapsed representations. In some cases,

we observed representation collapse between new classes in the incoming data or old

classes in the memory buffer, which results in forgetting of the corresponding classes

(drop in accuracy). Also, due to the twin architecture design, BYOL has a larger

compute footprint than ER-AML, which makes it less suitable for online continual

learning.

Inspired by [106], we use randomly initialized prototypes as class cluster

representatives to reduce intra-class variance while enforcing inter-class variance. We

represent each observed class y ∈ Y by a prototype cy in prototypes memory C.

The network parameters θ and class prototypes C are jointly optimized to project

an instance xi ∈ Xin of class y close to its corresponding cluster prototype cy as

well as other samples of class y in the batch, i.e. positive samples P (xi). In order

to evade collapsed representations, we use a contrast term between class prototypes

which enforces inter-class variance. So, as the prototypes act like a representative for

the whole corresponding class samples, we can enforce inter-class variance without

any need for negative samples, and also provide stable training without BYOLŠs

optimization tricks such as twin architecture and predictor head. We formulate the

objective as follows:

Lccp
1 = −

1

N

∑

xi∈Xin



sim(zi, cy(xi)) +
1

♣P (xi)♣

∑

xp∈P(xi)

sim(zi, zp)



+
1

♣C♣

∑

ci∈C

∑

cj∈C/i

sim(ci, cj)

(20)

where sim(a, b) = aT b
τ∥a∥∥b∥

, zi = gθ(fθ(xi)), and y(x) denotes the class label of x.

As in the case of SupBYOL, we combine this with the same L2 term applied to the

buffered samples. In order to avoid contrast between new and old classes introduced

by the last term, we do not directly update old class prototypes using gradients. In

other words, for the incoming data, we perform stochastic optimization to minimize

L1 + L2 with respect to θ and c ∈ Cin, where Cin is the class labels of the incoming

data. However, to update the old class prototypes, we follow [73] and use the replayed

samples to obtain a momentum update after each training step to stabilize the model

against drastic changes in the representation of learned classes: cy ← αcy + (1−α)c̄y

where y ∈ Ybf denotes the label of old classes stored in the buffer and c̄y is the

49

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Task

0

5

10

15

20

25

Ac
cu

ra
cy

Anytime Accuracy on CIFAR-100, M=100
CCP
SupBYOL
ER
iCaRL
MIR
iid

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Task

0

5

10

15

20

25

Ac
cu

ra
cy

Anytime Accuracy on CIFAR-100, M=100
CCP
SupBYOL
ER-ACE
ER-AML
ER
iCaRL
MIR
iid

Figure 18: Split CIFAR-100 anytime evaluation results in one-class(left) and multi-
class(right) incremental settings with M = 100. SupBOYL and CCP greatly outperform
the existing methods in one-class setting while being competitive with the top performing
methods in multi-class setting. Note that ER-ACE and ER-AML cannot be applied in
one-class setting since they require more than one class in the incoming data.

Accuracy (↑ is better)
M = 5 M = 20 M = 50 M = 100

iid online 63.4 ±0.6 63.4 ±0.6 63.4 ±0.6 63.4 ±0.6

Ąne-tuning 10.0 ±0.0 10.0 ±0.0 10.0 ±0.0 10.0 ±0.0

ER [47] 15.7 ±1.7 18.2 ±2.6 19.6 ±3.1 21.2 ±2.3

iCarl [42] 18.8 ±1.6 20.5 ±1.5 23.3 ±1.2 24.4 ±0.9

MIR [48] 17.8 ±1.8 19.3 ±2.7 20.2 ±2.2 22.0 ±2.4

DER++ [88] 20.1 ±1.4 21.2 ±2.4 23.2 ±2.4 24.6 ±1.5

SupBYOL (ours) 24.4 ±1.2 30.6 ±1.4 33.3 ±2.1 36.0 ±2.3

CCP (ours) 24.2 ±0.9 34.3 ±1.1 36.0 ±1.3 39.1±1.1

Forgetting (↓ is better)
M = 20 M = 50 M = 100

N/A N/A N/A

100.0±0.0 100.0±0.0 100.0±0.0

54.7±2.5 51.1±2.8 45.7±2.6

46.1±1.7 42.8±1.7 40.1±1.4

52.0±2.9 47.4±2.6 41.9±2.8

58.9±2.2 53.3±2.2 49.8±1.8

28.3±1.6 25.6±2.1 23.1±2.4

27.2±1.0 24.2±1.1 21.9±1.0

Table 8: Accuracy and Forgetting results on Split CIFAR-10 in one-class incremental
setting(10 tasks) with augmentations and different buffer sizes. Averages and standard
deviations are computed over Ąve runs. SupBYOL and CCP outperform other methods
with a considerable margin in both Accuracy and Forgetting.

updated prototype for class y.

4.3 Experiments

Our method enables the model to learn the representation of each class in isolation

from other classes without the need to have more than one class in the incoming data.

Following [75,105], we use a reduced Resnet-18 with batch size and the rehearsal batch

size of 10 samples. All of the models are trained in single head setting, so the task id

is not revealed to the model at test time. Similar to [105], we Ąnd data augmentation

to be useful in most of the settings, specially in simple datasets like CIFAR-10 with

a small buffer size where the model might overĄt on the buffer samples. Our data

50

Accuracy (↑ is better)
M = 5 M = 20 M = 50 M = 100

iid online 63.4 ±0.6 63.4 ±0.6 63.4 ±0.6 63.4 ±0.6

Ąne-tuning 17.9 ±0.2 17.9 ±0.2 17.9 ±0.2 17.9 ±0.2

iCarl [42] 33.4±1.0 39.2±0.8 41.6±0.9 42.3±0.8

ER [47] 28.4±1.0 40.3±0.6 42.8±1.2 49.4±1.3

MIR [48] 29.8±1.0 41.8±0.6 45.6±0.7 49.3±0.6

DER++ [88] 31.8 ±0.9 39.3±1.0 46.7±1.1 52.3±1.1

ER-AML [105] 36.4±1.4 47.7±0.7 52.6 ±1.1 55.7±1.3

ER-ACE [105] 35.1±0.9 43.4±1.6 49.3 ±1.2 53.7±1.1

SupBYOL (ours) 25.4 ±1.2 36.6 ±1.3 41.4 ±1.2 43.6 ±1.8

CCP (ours) 34.2 ±0.9 42.0 ±1.1 47.6 ±1.0 51.2 ±0.9

Forgetting (↓ is better)
M = 20 M = 50 M = 100

N/A N/A N/A

80.9±0.1 80.9±0.1 80.9±0.1

31.3±0.8 30.8±1.2 29.4±1.6

26.8±0.8 24.4±1.2 22.8±1.6

38.2±1.2 21.6±0.9 15.8±1.1

29.7±1.1 24.5±1.0 19.0±1.1

19.8±0.4 16.4±0.4 15.9±0.3

18.3±0.6 15.2±0.8 14.6±0.8

20.7±1.1 18.9±1.2 17.4±1.2

19.7±0.8 16.3±1.0 14.4±0.8

Table 9: Accuracy and Forgetting results on Split CIFAR-10 in multi-class incremental
setting (5 tasks) with augmentations and different buffer sizes. Averages and standard
deviations are computed over Ąve runs. Our proposed method, CCP, is competitive with
top performing methods in this setting.

augmentation pipline consists of a simple random crop followed by random horizontal

Ćip. We use SGD for optimization with a learning rate of 0.1 as in [48]. We now

present the experiments on 10 and 100 task settings for Split CIFAR-10 and Split

CIFAR100.

Split CIFAR-10 typically partitions the dataset into 5 disjoint tasks containing

two classes each ([48,97]). In this work we also consider partitioning into 10 disjoint

sets (1 class each). When applying the 10 class split we will indicate S = 1, while the

case of 2 class tasks will be denoted S = 2.

We show in Table 8 results for split CIFAR10 on S = 1 and for S = 2 in Table 9

showing the overall accuracy and forgetting at the end of the task sequence for a

variety of memory settings. Observe that in the one class setting ER-ACE and ER-

AML cannot be applied as they require other classes in the incoming data. SupBOYL

and CCP greatly outperform the existing methods in this setting, with CCP obtaining

top performance in all categories. For the multi-class setting of S = 2, SupBYOL

performs poorly, but CCP greatly improves upon SupBYOL and achieves performance

close to ER-AML and ER-ACE in both accuracy and forgetting categories.

Split CIFAR-100 Consists of 100 classes typically split into 20 tasks, each

containing a disjoint set of 5 labels (S = 5). In our one class incremental work

we will also consider the case of splitting into 100 distinct task switches (S = 1). All

CIFAR experiments process 32× 32 images.

In Figure 18, we show the results on S = 1 and S = 5. In the S = 1 setting

especially as the number of classes grows, we observe increasing margins over existing

51

methods for both SupBYOL and CCP. On the other hand, in the S = 5 setting,

SupBYOL does not perform well as in the CIFAR-10, while CCP matches the

performance of ER-AML and is close to the performance of ER-ACE (which nearly

matches the i.i.d performance).

4.4 Summary

Our major contribution is a new method to handle online one-class incremental

learning without the need for negative contrasts. We demonstrated that this method

can outperform strong baselines, and is also applicable and highly competitive in

traditional online continual learning settings. Furthermore we have shown that recent

advances in self-supervised learning without contrasts can be adapted to supervised

settings, particularly in continual classiĄcation. Future work can consider if our

approach can be applied in the offline one class incremental setting.

52

Chapter 5

Exploring Representation

Forgetting and its Implications

This work was the fruit of collaboration with MohammadReza Davari, Sudhir Mudur,

Rahaf Aljundi, and Eugene Belilovsky. It was published as an article in CVPR

2022 [107].

5.1 Introduction

Continual Learning (CL) is concerned with methods for learners to manage changing

training data distributions. The goal is to acquire new knowledge from new data

distributions while not forgetting previous knowledge. A common scenario is CL in

the classiĄcation setting, where the class labels presented to the learner change over

time. In this scenario, a phenomenon known as catastrophic forgetting has been

observed [7, 102]. This phenomenon is often described as a loss of knowledge about

previously seen data and is observed in the classiĄcation setting as a decrease in

accuracy.

Deep learning has been traditionally motivated as an approach, which can

automatically learn representations [108], forgoing the need to design handcrafted

features. Indeed representation learning is at the core of deep learning methods in

supervised and unsupervised settings [109]. In the case of many practical scenarios

we may not simply be interested in the Ąnal performance of the model, but also the

usefulness of the learned features for various downstream tasks [110]. Although a

modelŠs representation may change, sometimes drastically at task boundaries [105],

this does not necessarily imply a loss of useful information and may instead correspond

to a simple transformation. For example, consider a standard multi-head CL setting,

53

where each task shares a representation and only differs through task speciĄc Şheads".

A permutation of the features leading into the classiĄcation heads leads to total

catastrophic forgetting as measured by standard approaches as the task heads no

longer match with the representations. However, this does not correspond to a

loss of knowledge about the data, nor a less useful representation. Indeed recent

works have highlighted the importance of fast remembering versus catastrophic

forgetting [111, 112], a looser continual learning requirement where in the task

performance may decrease but the agent is able to recover rapidly upon observing a

few samples from the previous task. In this light, maintaining a useful representation,

which facilitates rapid recovery, is as important as maintaining high performance for

the task.

CL envisions having learners operate over long time horizons while continually

maintaining old knowledge and integrating new knowledge. Hence, in addition to

directly measuring the performance on previous tasks using the last layer classiĄers,

it is sensible to consider the usefulness of their representations for previous tasks.

In this paper we highlight that traditional approaches of evaluating forgetting are

unable to properly disambiguate trivial changes in the features (e.g. permutation)

from abrupt losses of useful representations. We instead use optimal Linear Probes

(LP), commonly used to study unsupervised representations [29] and intermediate

layer representations [113,114], to evaluate CL algorithms and their effectiveness.

We revisit several CL settings and benchmarks and measure forgetting using LP.

Our focus is particularly on re-evaluating Ąnetuning approaches that do not apply

explicit control for the non-iid nature of continual learning. We observe that in

many commonly studied cases of catastrophic forgetting, the representations under

naive Ąnetuning approaches, undergo minimal forgetting, without losing critical task

information.

Our major contributions in this work are as follows. First we bring three

new signiĄcant insights obtained and demonstrated through extensive experimental

analysis:

1. In a number of CL settings the observed accuracy can be a misleading metric

for studying forgetting, particularly when compared to Ąnetuning approaches

2. Naive training with SupCon [35] or SimCLR (in the unsupervised case) have

advantageous properties for continual learning, particularly in longer sequences.

3. By using LP based evaluation, forgetting is clearly decreased for wider and

deeper models, which is not seen that clearly from earlier observed accuracy.

54

Secondly, we suggest a simple approach to facilitate fast remembering, which does

not require using a large memory during training; it relies only on a small memory

combined with SupCon based Ąnetuning.

5.2 Related Work

The design of CL methods is often focused on mitigating the catastrophic forgetting

phenomenon, with aspects such as maximization of forward and backward transfer

between tasks taken as secondary [60]. One class of methods focuses on bypassing

this problem by growing architectures over time as new tasks arrive [16,67,115,116].

Under the Ąxed architecture setting, one can identify two main categories. The Ąrst

category of methods rely on storing and re-using samples from the previous history

while learning new ones; this includes approaches such as GEM [60] and ER [75]. The

second category of methods encode the knowledge of the previous tasks in a prior that

is used to regularize the training of the new task [2, 59, 117Ű119]. A classic method

in this vein is Learning without Forgetting (LwF) [2], which mitigates forgetting by

a regularization term that distills knowledge [38] from the earlier tasks. The network

representations from earlier stages are recorded, and are used during training for a

new task to regularize the objective by distilling knowledge from the earlier state

of the network. Similarly, Elastic Weight Consolidation (EWC) [120] preserves the

knowledge of the past tasks through a quadratic penalty on the network parameters

important to the earlier tasks. The importance of the parameters is approximated

via the diagonal of the Fisher information matrix [121]. The scale of the importance

matrix, λ, determines the networkŠs preference towards preserving old representations

or acquiring new ones for the current task. In Sec. 5.4.1 we examine the effectiveness

of these approaches in mitigating representation forgetting.

Recent works on elucidating the nature of catastrophic forgetting have examined

the inĆuence of task sequence [122], network architecture [123], and change in

representation similarity [1]. Our work is related in spirit to [1] as we pursue measuring

how much forgetting has occurred on the learned representation and we additionally

study this for intermediate representations. One signiĄcant difference is that in [1], the

authors use linear CKA (centred Kernel Alignment) [124] to measure the similarity

between intermediate representations inĆuenced by forgetting, while in our work we

measure how much forgetting has occurred on the representations using LP.

Several recent works have also studied the behavior of networks with increasing

model capacity. In [125] the authors examine several common architectures under

55

the task incremental setting and demonstrate that pre-training is essential to combat

forgetting and to achieve high performance on all tasks. They conclude that training

only with larger models yields no beneĄt for continual learning. Our analysis revisit

this setting and take a closer look at how representation forgetting is affected with

increase in model width and depth.

Several works [42] have focused on modifying the last layer of a classiĄcation

network to make more effective use of the representation for prior tasks. This

indirectly highlights the fact that the last layer can be modiĄed to yield better

performance on prior tasks. Particularly [42, 89] use a buffer of old examples at

training time to improve learning and then use them at evaluation time to construct

a class mean prototype. This allows for more effective use of the representations

of the network. These works consider settings where the CL methods are used to

control forgetting, while we also emphasize that naive continuation of training under

task shift can yield strong representations. Our work can also be seen as both a way

to explain and to motivate the need for such approaches.

Self-supervised learning (SSL) is becoming increasingly popular in visual

representation learning. Some of the best performing methods rely on contrastive

learning [29,126]. These methods have been recently evaluated in a limited continual

learning setting [127] where a sequence was trained on non-iid unsupervised streaming

data and then applied in transfer learning settings on multiple datasets. However,

forgetting was not evaluated. In contrast our work, which also uses a SSL loss,

focuses on the LP evaluation and the study of representation forgetting with respect

to previously seen distributions. Contrastive methods are also often used in the

supervised setting, for example, the recently popular SupCon loss [35]. In [105]

and [89] the use of SupCon is proposed in the online class-incremental setting in

combination with experience replay. Our work too considers SupCon as one of

the supervised representation learning approaches. However distinct from the other

works we consider it in the offline task-incremental setting. We do not look at

its use in combination with replay or other approaches, but study the effect of

standard Ąnetuning with SupCon loss, distinct from [105], where it is used to facilitate

separation of contrasts between old and new classes, speciĄc to the class incremental

setting.

56

5.3 Background and Methods

In this section we review the key tools used in our analysis including linear probes,

centered kernel alignment, and contrastive loss functions. Finally we discuss how the

nearest mean of exemplars approach can be used in the context of non-rehearsal based

methods, such as Ąnetuning with SupCon, as a simple continual learning method that

also facilitates rapid remembering.

5.3.1 Linear Probes for Representation Forgetting

Following the work in SSL [29] and in the analysis of intermediate representations [114]

we evaluate the adequacy of representations by an optimal linear classiĄer using

training data from the original task. A linear classiĄer is trained on top of the frozen

activations of the base network given the training instances of a certain dataset. The

test set accuracy obtained by using LP on that dataset is used as a proxy to measure

the quality of the representations. The difference in performance of the LP before and

after a new task is introduced, acts as a surrogate measure to the amount of forgetting

observed by the representations and is referred to as representation forgetting.

Formally, for a given model fθi
computed from time step i of a task sequence,

we compute its optimal classiĄer W ∗
i = arg minWi

L(Wifθi
(Xi), Yi), where L is the

objective function, and Xi and Yi correspond to the data from task i. To assess

representation forgetting between θa and a model at a later point in the sequence, say

θb, we evaluate T (Wafθa
(Xa), Ya)−T (Wbfθb

(Xa), Ya) where T is the task performance

(accuracy).

5.3.2 Centered Kernel Alignment

CKA [124] is a recent popular approach to compare representations. It has been

commonly used to compare representations across depth as well as across models

from different tasks in the CL settings [1]. Given a dataset comprised of m

samples, and their representations X and Y , with features nx and ny respectively,

X ∈ R
m×nx and Y ∈ R

m×ny , the, typically used, linear CKA between X and

Y is given as
∥Y T X∥

2

F

∥XT X∥2
F ∥Y T Y ∥2

F

. This similarity metric has the advantage of being

invariant to scaling and orthogonal transformations. However, being a simple

linear alignment comparison it is not invariant to general classes of invertible

transformations. Furthermore, relative comparisons of CKA metrics are challenging

to interpret compared to task performance degradation. CKA has been used in [1] to

57

compare the intermediate representations of a model in consecutive task increments

t and t + 1. Ramasesh et al. [1] proxy the CKA similarity between the intermediate

representations of the model fθt
and fθt+1 to measure representation forgetting. Thus,

under this paradigm, a high value of CKA similarity is interpreted as minimal

representation forgetting. One limitation of this metric for representation forgetting

is its inability to distinguish between positive and negative backward transfer (see

Sec. 5.4.4). This is addressed when measuring representation forgetting via LP.

5.3.3 Supervised and Unsupervised Contrastive Loss

Contrastive loss functions have become increasingly popular in representation

learning, particularly visual representation learning. They have led to large advances

in unsupervised learning [29,126]. As well they are becoming a popular alternative to

cross-entropy (CE) in the supervised setting [35,36], referred to as SupCon. Given a

representation fθ, often consisting of a primary network and a projection, the SupCon

loss for a minibatch X is given by:

∑

xi∈X

−1

♣P (i)♣

∑

xp∈P (i)

log
sim(fθ(xp), fθ(xi))

∑

xa∈X/xi
sim(fθ(xa), fθ(xi))

Where sim(a, b) = exp(aT b
τ∥a∥∥b∥

) and P (i) represents the same class samples as xi from

the minibatch, and the denominator is taken over all other samples. Note that we

consider SupCon in the naive setting, thus all minibatches are from the current task in

our evaluations of SupCon. Similar to this, in the unsupervised setting the SimCLR

loss [29] is given by:

−
∑

xi∈X

log
sim(fθ(xp(i)), fθ(xi))

∑

xn∈A(i) sim(fθ(xn), fθ(xi))

Where A(i) corresponds to all minibatch examples and their data augmentations

except xi, and xp(i) represents an augmented version of xi.

5.3.4 Exemplars and Fast Remembering

Many CL methods utilize buffers of exemplars [42] that are constantly updated.

Typically, these samples are used repeatedly to train the model [75]. In [42, 89],

the samples in the memory are also used to continuously estimate a class mean for

old samples using the new representation. This is then used to construct a nearest

mean of exemplars (NME) classiĄer, which can be seen as a fast way to construct a

strong classiĄer that requires only a small amount of data. Instead of relying on the

58

same exemplars during training and inference, one can use a small set of exemplars

from the task distribution at the end of a task sequence to construct an NME based

classiĄer in combination with a non-CL speciĄc representation learning method such

as SupCon [35]. SpeciĄcally the learner maintains a class mean for any class it has

encountered. These class means are updated either by using a stored set of samples

that is only used at inference or upon encountering an old task again, obtaining a small

set of new samples to facilitate fast remembering. Notably, unlike the prior work on

NME classiĄers in continual learning, we donŠt suggest using exemplars as a rehearsal

memory during the training, but as a method for fast remembering of class means

for old tasks during evaluation time. This has the advantage of not increasing the

computational complexity of training and not needing additional overhead in storing

or retrieving samples, except at the end of a task sequence or upon re-encountering

a task. SpeciĄcally, it can facilitate rapid remembering; in situations without prior

data stored. Upon encountering a new task a model with minimal representation

forgetting can rapidly adapt by updating just its class means.

5.4 Experiments

We perform evaluations in several CL scenarios, focusing on the task-incremental

setting. The evaluations are based on LP and observed accuracy. Observed accuracy

refers to the standard accuracy used in the CL literature. SpeciĄcally we measure

observed accuracy, Aij, as the accuracy of the model after step i on the test data

of task j. Similarly, the average observed accuracy at the end of the sequence is
1
T

∑

t∈T AT,t as used in [2]. Similarly we can measure the LP accuracy for each step

i and task j as well as the average LP accuracy.

Datasets We use an ImageNet transfer setting based on [2], a common

SplitCIFAR100 [128] setting (split into 10 tasks), and reproduce the SplitCIFAR10

(split into 2 tasks) setting from [1]. Finally, to evaluate in very long task sequence

regimes, we use a downsampled version of the entire ImageNet dataset (ImageNet32

[129]) split into 200 tasks of 5 classes each. For the ImageNet transfer setting, we

use a sequence consisting of the standard ImageNet (LSVRC 2012 subset) [110],

MIT Scenes [130] for indoor scenes classiĄcation (5,360 samples over 67 classes),

Caltech-UCSD Birds (CUB) [131] for classiĄcation of bird species (6,033 samples

over 200 classes), and Oxford Flowers [132] for Ćower classiĄcation (2,040 samples

over 102 classes). The use of this sequence allows us to complement the standard

59

ImageNet Scenes CUB Flowers
Time Step

10

20

30

40

50

Ac
cu

ra
cy

ImageNet Acc. on ImageNet Scenes CUB Flowers Sequence

Method
Finetuning(CE)
LwF
EWC500
EWC8000
Finetuning(SupCon)

Accuracy Type
Observed
Probe

Figure 19: Performance on ImageNet during the sequence
(ImageNet→Scenes→CUB→Flowers) using ResNet18. We observe that although
observed accuracy heavily degrades the LP accuracy, in Ąnetuning does not decay as
drastically and can rival LP accuracy of methods such as LwF and EWC. Moreover,
we observe that the LP Accuracy of SupCon training, which has no control for
forgetting, outperforms the LwF, a method designed for CL. Note EWC with λ = 8k
is the best performing method in terms of LP and observed acc., however it does not
perform well on the current task (see Tab. 10).

long task sequence benchmarks with a more realistic and diverse larger scale sequence.

Optimization hyperparameters for training are detailed in the Appendix.

Methods Compared Our work focuses on evaluating naive Ąnetuning based

approaches using CE and SupCon [35] loss functions, as well as a set of representative

CL methods. For regularization-based baselines, we consider two of the most popular

methods, which do not utilize memory of any past samples: LwF [2] and EWC [120].

For rehearsal-based baselines, which continuously store past samples we focus on

Experience Replay (ER). Indeed a number of recent works have illustrated that ER,

particularly with increase in buffer size, is a strong baseline [1,75] and rivals or exceeds

other rehearsal based methods such as iCaRL [42] and GEM [60]. Hence we use ER

with both a small buffer, M = 5 samples per class, and a relatively large buffer,

M = 20 samples per class.

5.4.1 Observed vs LP accuracy

In this section we study the observed vs LP accuracy for various task sequences and

methods, in both supervised and unsupervised settings.

60

Method
Acc. Acc. Acc.

Scenes CUB Flowers

■ FT (CE) 56.9%± 1.1 54.5%± 2.6 89.3%± 1.1
■ LwF 57.6%± 1.5 43.1%± 2.9 85.3%± 0.5
■ EWCλ:0.5k 52.5%± 1.1 47.8%± 2.5 85.9%± 1.6
■ EWCλ:8k 42.1%± 1.5 38.3%± 0.9 79.1%± 1.0
■ FT (SupCon) 57.1%± 1.2 50.4%± 1.0 85.3%± 0.9

Table 10: Observed accuracy of the current task in the sequence Ima-
geNet→Scenes→CUB→Flowers using ResNet architecture. Although EWCλ:8k

attains relatively poor performance on the current task, it achieves the highest LP and
observed accuracy for the previously seen tasks (see Fig. 19). Moreover, the SupCon
training achieves comparably high accuracy on the current task (even surpassing CE
on Scenes) while suffering from relatively small representation forgetting (see Fig. 19).

1 2 3 4 5 6 7 8 9 10
Task

20

30

40

50

60

70

80

Ac
cu

ra
cy

Method
ER, M=20
ER, M=5
Fine-tuning(CE)
Fine-tuning(SupCon)
LwF
Accuracy Type
Observed
Probe

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task

20

30

40

50

60

70

80
Ac

cu
ra

cy

Method
ER, M=20
ER, M=5
Fine-tuning(CE)
Fine-tuning(SupCon)
LwF
Accuracy Type
Observed
Probe

Figure 20: 10-Task SplitCIFAR100 and 20-Task SplitMiniImageNet. We compare observed
accuracy and linear probe accuracy Naively Ąnetuning with CE does poorly if using the
observed accuracy. However using the LP based evaluation we observe that performance
gap to other methods is lower. Furthermore when Ąnetuning is performed instead with the
SupCon loss function LP performance can rival that of LwF.

ImageNet Transfer We consider models trained on the large ImageNet data

and subsequently applied to different tasks in the sequence. We take the setting

of [2], which considers the ImageNet [110] transfer to various datasets, in particular

CUB [133], and Scenes [130]. We extend this setting by including Flowers [132]

in the task sequence. To reduce the computation of experiments we do random

resize crops to 64×64 and utilize ResNet-18 for these experiments. Additional results

further conĄrming our observations with larger crop size are given in the Appendix.

As mentioned earlier, in addition to LwF, we also examine EWC [120] under two

conditions: (a) large λ value (8k), so the network is inclined to preserve the knowledge

important to the previous tasks, and (b) small λ value (0.5k), so the network is

61

LP Accuracy for SplitCIFAR100

1 2 3 4 5 6 7 8 9 10
Task

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

Method
Fine-tuning(CE)
Fine-tuning(SupCon)
LwF
SimCLR
Accuracy Type
Probe

Figure 21: SplitCIFAR100 comparison of unsupervised Linear Probe accuracies on
task 1 with supervised Ąnetuning CE and SupCon as well as LwF. We observe that
LwF and CE based Ąnetuning can decay over time, while the unsupervised learning
(SimCLR) has an initial drop and stays relatively Ćat.

encouraged to perform competitively on the current task.

We report observed accuracy and LP accuracy on ImageNet validation set as

the model is trained on the task sequence ImageNet → Scenes → CUB → Flowers

(see Fig. 19). We also report the observed accuracy on the current task in Tab. 10.

Our evaluation reveals that although the forgetting in terms of the traditional

measure is high for Ąnetuning compared to LwF (as shown in [2]), the LP

accuracy of these methods suggest less drastic forgetting. Furthermore, the LP

performance across Ąnetuning and other methods is not as drastically different as

their respective observed accuracies are. We see that the LP accuracy of SupCon

based Ąnetuning, which has no explicit control for forgetting, outperforms LwF,

a method speciĄcally designed for CL. It also closely tracks the performance of

EWCλ:0.5k, while outperforming on the current task performance. Indeed, as we can

see in Tab. 10, SupCon training achieves comparably high accuracy on the current

task (even surpassing CE Ąnetuning on Scenes) with relatively small representation

forgetting (see Fig. 19).

SplitCIFAR100 and SplitMiniImageNet We now consider the SplitCIFAR100

with 10 tasks of 10 classes each and the 20 task SplitMiniImageNet setting. We

show in Fig. 20 the performance on the Ąrst task throughout the sequence for both

settings. Similar to the previous case we see: for Ąnetuning with CE the LP based

evaluation shows much milder forgetting than observed accuracy. When Ąnetuning

with SupCon, LP performance drops initially but then stays relatively Ćat and even

62

LP Accuracy ImageNet 200 Task Sequence

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Task

40

45

50

55

60

65

70

75

Ac
cu

ra
cy

Fine-tuning(CE)
Fine-tuning(SupCon)
ER, M=5

ER, M=20
LwF
SimCLR

Figure 22: 200-Task ImageNet32. We compare Linear probe accuracy for Tasks 1
data over the whole sequence. As the model observes the later tasks of the sequence,
the performance of Ąnetuning with CE reaches LwF, and Ąnetuning with SupCon
outperforms ER with 5 samples per class.

increases, suggesting that positive backward transfer is occurring. Overtime, SupCon

outperforms the LwF [2] approach without any speciĄc CL based control in both

task sequences. It also obtains performance that becomes close to ER with 5 samples

per class without access to any previous data. For the longer MiniImageNet task

sequence we see that over time even the strong ER based baselines which train on

old data demonstrate a reduced LP performance, while Ąnetuning baselines remain

relatively Ćat and even increase in the case of SupCon. This suggests that in very

long sequences, Ąnetuning baselines can be competitive to the more computationally

expensive CL methods.

Utilizing SplitCIFAR100 we also consider the unsupervised representation learning

case where linear probes follow naturally as a common evaluation setting. The

literature on evaluation of continual learning methods in the unsupervised setting

is limited. Hence we directly compare unsupervised and supervised approaches in

their representation learning ability when presented with the same task sequences.

We focus on the SimCLR loss and evaluate LP performance in comparison to other

methods in Fig. 21. We can see in Fig. 21 that the initial LP performance is lower

for SimCLR compared to the supervised losses. This is natural as it does not have

access to the labeled data. Despite the higher starting accuracy, LwF and Ąnetuning

with CE show a decay that continues in the Ąrst several tasks following task 1. On

the other hand SimCLR decays at the Ąrst step but then remains nearly Ćat over

the rest of the sequence, showing a strong resistance to representation forgetting

after this inital drop. However SupCon, which utilizes a loss similar to SimCLR in

63

Task 1 Obs. Acc. Task 1 Task 1 LP LP Acc. All Avg. Obs.
Acc. at T=10 T=10 T=10 Acc.

RN18, Width=32 82.2 20.8 64.8 70.8 35.5
Finetuning(CE) RN18, Width=128 83.3 21.2 70.5 74.2 36.8

RN101, Width=32 82.9 19.8 67.9 72.4 35.9
RN18, Width=32 82.7 52.1 74.2 75.7 54.8

ER-M5 RN18, Width=128 83.6 54.8 75.6 77.3 55.4
RN101, Width=32 83 50.9 74.5 76.1 51.6
RN18, Width=32 82.4 61.3 76 76.4 65.2

ER-M20 RN18, Width=128 83.2 63.5 78.8 80.1 67
RN101, Width=32 82.9 60.7 77.1 77.5 63.9
RN18, Width=32 82.1 36.2 70.1 73.4 47.7

LwF RN18, Width=128 83.9 37.7 74.8 76.7 49.1
RN101, Width=32 82.5 35.5 71.0 74.6 46.3

Table 11: Final Accuracy of 10 task SplitCIFAR100 sequence with variable width
and depth in the offline setting. M indicates the number of samples per task used
in the ER buffer. We observe that simple Ąnetuning and LwF baselines show large
forgetting, which do not improve signiĄcantly with width or depth. On the other
hand, the LP evaluation reveals that representation quality for Ąnetuning and LwF
becomes closer to strong CL methods that store samples and also use more compute,
e.g. ER. Furthermore, LP evaluations reveal LwF with wider models can rival ER.

the supervised setting, shows the best of both worlds, has an initial drop and then

illustrates gradual backward transfer properties.

200 Task Sequence - SplitImageNet32 We now consider a much longer sequence

than typically studied in the literature to allow us to observe whether the trends we

have seen so far continue to hold. Using Imagenet32 we construct 200 tasks of 5 classes

each. Fig. 22 shows the performance on the Ąrst task throughout the whole sequence.

We see that in a very long sequence of tasks, the previous trends are kept. SpeciĄcally,

we see that as the model reaches the later stages of the sequence, Ąnetuning with CE

reaches LwF, and Ąnetuning with SupCon outperforms the competitive baseline of

ER with a small buffer without access to buffer data. Furthermore, we observe as

in the previous section that SimCLR performance stays Ćat. In the supplementary

material we also demonstrate that this pattern is not limited to the Ąrst task but is

maintained for other tasks along the sequence.

5.4.2 Effects of Increased Model Capacity

Next, we use linear probes to evaluate the effect of increased model width and depth.

Recently [125] has suggested that increased model size must be strictly combined with

pre-training in order to get increased robustness to catastrophic forgetting. We revisit

64

Task 1 Obs. Acc. Task 1 Task 1 LP LP Acc. All Avg. Obs.
Acc. at T=10 T=10 T=10 Acc.

RN18, Width=32 18.6 12.2 39.8 36.4 22.3
Finetuning(CE) RN18, Width=128 19.4 12.7 42.3 41.7 19.8

RN101, Width=32 14.6 11.8 28.2 29.4 14.5
RN18, Width=32 18.8 27.3 36.0 40.1 33.8

ER-M5 RN18, Width=128 19.5 28.9 54.7 47.9 31.6
RN101, Width=32 15.0 24.7 37.1 30.4 24.3
RN18, Width=32 18.4 32.0 46.8 43.5 34.7

ER-M20 RN18, Width=128 20.0 31.8 51.2 50.7 32.5
RN101, Width=32 14.5 25.4 36.5 33.9 24.3
RN18, Width=32 18.5 13.4 29.5 36.0 22.7

LwF RN18, Width=128 19.7 18.3 34.6 39.1 22.1
RN101, Width=32 14.8 11.1 25.4 22.8 16.8

Table 12: Final Accuracy of 10 task SplitCIFAR100 sequence in the Online Setting.
LP evaluations show that width substantially improves online representation learning,
while observed Avg Accuracies suggest it decreases. Increasing depth on the other
hand appears to be less effective in the online setting.

this in the context of both wider and deeper models on a SplitCIFAR100 sequence

of 10 tasks with 10 classes each. Table 11 shows the results using a Resnet18 with

a much wider model (128 vs. 32) and then a much deeper model (101 layers). We

report both the LP accuracy of task 1 at the end of the sequence and the average of

LP accuracies for all the tasks at the end of the sequence.

First, we can see that as in the other cases, the LP accuracy of Ąnetuning is

higher than observed accuracy, suggesting that forgetting is less catastrophic than

what is indicated by observed accuracy. Secondly, we see that Ąnetuning evaluated

using the observed accuracy is particularly deceptive in revealing how the model

representations changes with increasing capacity. The observed and accuracy of

task 1 are relatively close despite increasing capacity (wider or deeper) while the

corresponding LP accuracies show substantial gaps. Using observed accuracy one

would conclude that increasing width and capacity of the model without applying

any CL speciĄc method does not reduce forgetting. This is consistent with the

observations of [125], which evaluates only on observed accuracy. However, if we

observe the LP accuracy, it reveals a more clear picture of what occurs at the

representation level, suggesting that larger models can indeed reduce forgetting even

when trained from scratch without explicit control of forgetting. Moreover, we see

that at the representation level as model capacity increases, naive Ąnetuning becomes

much closer in performance to costly (and under privacy constraints unusable) CL

methods such as ER, which require more compute and memory.

In comparing depth and width we also see some key distinctions - increasing width

65

Method
Obs Acc. Task 1 Avg. Obs.

at T=10 Acc.

Finetuning(CE) 20.8% 35.5%
ER-M5 52.1% 54.8%
ER-M20 61.3% 65.2%
LwF 36.2% 47.7%
Finetune(SupCon) + NME-M5 48.0% 53.9%

Table 13: Final Accuracy of 10-task SplitCIFAR100 sequence comparing only the
observed accuracy and SupCon+NME. Supcon+NME gives superior performance to
CL speciĄc methods such as LwF and nearly matches the performance of ER with a
similar memory size while not needing access to the memory during task training.

appears to help more than increasing depth. For ER we also see that increasing depth

yields a lower observed accuracy, while the LP evaluation suggests the representations

are similar. Similarly, in Tab. 12 we report the results for the online task-incremental

setting [60, 75]. In this setting, momentum tends to be detrimental to performance,

thus we use a Ąxed learning rate of 0.01 with no momentum. We see similar behavior

to the previous case, the larger models can end up appearing to do worse if we

consider observed accuracy, but perform better using LP evaluation. Wider models

appear to do particularly well in the online setting while deeper models have degraded

LP accuracy in this setting. Finally we see that LwF which is a regularization method

performs poorly in this setting. Indeed regularization based methods do poorly in

the online setting. This suggests that amongst methods without access to a replay

buffer, Ąnetuning may provide the best representation learning.

5.4.3 Low-Cost Remembering with SupCon

The observed low representation forgetting properties of Ąnetuning with SupCon loss

suggest if we can approximate a classiĄer using its representation it would allow

for low cost remembering upon encountering a previously observed task. We thus

evaluate the use of the NME in combination with SupCon. As discussed in Sec 3.4

such an approach allows a simpler alternative to ER methods and moreover facilitates

fast remembering not relying on a buffer and repeatedly training the model with old

samples. We use the SplitCIFAR100 dataset to compare against several CL speciĄc

methods such as LwF and ER in Tab. 13. We use a memory with M = 5 samples

per class for this. We chose the exemplars at random to simulate re-encountering

an old task. We observe that just applying the simple approximation with a small

66

ResNet: Network Acc. on T-1 after T-2 training: 63.64%

Block
LP Acc. LP Acc.

∆ Acc. CKA*
Post T-1 Post T-2

B-0 63.54% 64.62% +1.08% 0.97
B-1 68.24% 69.50% +1.26% 0.93
B-2 71.62% 71.34% −0.28% 0.88
B-3 77.64% 76.52% −1.12% 0.78
B-4 80.06% 78.98% −1.08% 0.31
B-5 85.82% 80.10% −5.72% 0.22

VGG: Network Acc. on T-1 after T-2 training: 57.88%

B-0 67.94% 66.86% −1.08% 0.95
B-1 73.60% 72.52% −1.08% 0.93
B-2 78.58% 75.68% −2.90% 0.85
B-3 81.54% 75.48% −6.06% 0.66

Table 14: Representation forgetting of Task 1 measured via optimal linear probes
(LP) on ResNet and VGG. The Accuracy degradation of LP trained on activations
of stages (blocks of convolutions) before and after observing Task 2 suggests that the
representations are still highly useful for Task 1 despite training on Task 2. *Note
CKA results are taken from [1] for comparison.

number of samples allows for a rapid recovery of the performance with the Ąnetuning

approach alone, exceeding the performance of LwF on overall accuracy and task 1

accuracy. The overall performance is close to that of ER with the same memory size

and slightly below the ER performance on task 1 at the end of the sequence. On the

other hand ER requires samples to be available during the entire training sequence,

requires the addition of extra algorithmic elements speciĄcally to control forgetting,

and uses substantially more compute (≈ 2× that of the Ąnetuning step in this case).

5.4.4 Depth-wise Probes and Comparison to CKA

We consider a 2-task SplitCIFAR10 setting from [1]. We use the same models and

training procedures and subsequently evaluate forgetting. In Tab. 14, we study the

shift in representations of each block of the network by measuring the performance

of LP on task 1 before and after training the network on task 2.

First we see that the observed accuracy decreases from 85% to 63%, suggesting

large degradation in performance and large forgetting. However, following the optimal

classiĄer evaluation protocol the accuracy degradation is seen to be only 5.7%, without

any CL method applied to control forgetting. This suggests that the representations

are still highly useful for Task 1 despite training on Task 2. Second, similar to [1] we

67

ImageNet Scenes CUB
Time Step

50

55

60

65

70

Ac
cu

ra
cy

ImageNet Acc. on ImageNet-Scenes-CUB Sequence

Method
Fine-tuning
LwF
EWC- :0.5k
EWC- :8k

Accuracy Type
Observed
Probe

Figure 23: Performance on ImageNet during the transfer sequence (Ima-
geNet→Scenes→CUB) using VGG-16. We observe that although observed accuracy
heavily degrades, the LP accuracy for Ąnetuning does not decay as drastically and can
rival LP accuracy of methods such as LwF and EWC. We evaluate methods which
do not rely on storing data from Task 1 to replay during training. Note EWC with
λ = 8k is the best performing method in terms of LP and observed accuracy, however
it does not perform well on the current task (see Tab. 15).

Method
Acc. Acc.

Scenes CUB

■ Finetuning 74.70% 74.39%
■ LwF 74.78% 75.23%
■ EWCλ:0.5k 74.70% 74.72%
■ EWCλ:8k 72.69% 71.44%

Table 15: Observed accuracy of the current task in the sequence ImageNet→Scenes→CUB
using VGG-16 architecture. Although EWCλ:8k attains relatively poor performance on the
current task, it achieves the highest LP and observed accuracy for the previously seen tasks
(see Fig. 23).

note that the forgetting is concentrated at the top layers. Indeed early layers in the

network experience almost no representation forgetting and in some cases improve

their usefulness with regards to Task 1.

Ramasesh et al.Šs [1] analysis also showed forgetting occurring in early layers to

a lower degree than in higher layers and suggested that forgetting is extreme in the

upper layer representations. SpeciĄcally, the authors measured linear CKA [124]

performance between layers (given in Tab. 14) showing that this similarity metric

dropped progressively from close to 1 to 0.2 for both ResNet and VGG models.

However, our evaluation suggests that forgetting does not exist in lower layers and

also the loss in information is less catastrophic at higher layers than suggested by [1].

68

ImageNet (T-1) → CUB (T-2)

Obs. T-2 Acc. Obs. T-1 Acc.

Finetune- [2] 73.1% 50.7%
Finetune-Ours 74.5% 50.9%
LwF- [2] 72.5% 60.6%
LwF-Ours 75.7% 63.6%

ImageNet (T-1) → Scenes (T-2)

Finetune- [2] 74.6% 62.7%
Finetune-Ours 74.7% 53.6%
LwF- [2] 74.9% 66.8%
LwF-Ours 74.8% 65.3%

Table 16: Reproduction of the results
reported in [2]. Note that we observe a
slight difference in our reproduced results
due to stochasticity of training neural
networks, and removing the warm-up
step.

Observed Acc. on ImageNet: 71.59%

ImageNet (T-1) → CUB (T-2)

T-1 Acc. @ T-2 LP Acc. @ T-2 T-2 Acc.

FT 50.89% 64.49% 74.51%
LwF 63.58% 67.23% 75.65%
EWCλ:8k 60.28% 67.46% 72.70%
EWCλ:0.5k 50.78% 63.99% 74.53%

ImageNet (T-1) → Scenes (T-2)

FT 53.56% 66.39% 74.70%
LwF 65.27% 67.98% 74.78%
EWCλ:8k 64.14% 68.50% 72.69%
EWCλ:0.5k 54.61% 65.94% 74.70%

Table 17: Forgetting of Task 1 measured
via optimal linear probes (LP). Note that
although the forgetting is much higher
for Ąnetuning compared to LwF, the LP
accuracy is nearly identical, especially for
the ImageNet → Scenes task.

5.4.5 ImageNet→ Scenes→ CUB

For ease of experiments, in Sec. 5.4.1 we have used a lower resolution, 64×64, a light

ResNet-18 model, and a modern rapid training scheduler. On the other hand in this

section we reproduce the results of the original paper (Li et al.) [2] using a VGG-16

model and 224×224 input size and then carry out our LP analysis further conĄrming

our observations. We take the setting of [2], which considers the ImageNet [110]

transfer to various datasets, in particular CUB [133], and Scenes [130]. We use the

same model architecture (VGG-16) and training procedures described in [2], which

proposes LwF, closely reproducing their ImageNet → Scenes as the Ąrst step in the

sequence (see Tab. 16). We also include an EWC baseline under two conditions: (a)

large λ value (λ = 8k), so the network is inclined to preserve the knowledge important

to the previous tasks, and (b) small λ value (λ = 0.5k), so the network is encouraged

to perform competitively on the current task. The results are shown in Figure 23 and

Table 15.

We Ąrst note that our results for the Ąrst task switch are consistent with those

reported in [2] (see Tab. 17). Fig. 23 reveals that although the forgetting in terms of

the traditional measure is high for Ąnetuning compared to LwF (as shown in [2]), the

LP accuracy of these methods suggest a much less drastic forgetting. Furthermore, the

LP performance across Ąnetuning and other methods is not as drastically different

as their respective observed accuracies are. Indeed, we observe that on the third

task, Ąnetuning outperforms LwF in representation forgetting on ImageNet. Similarly

69

1 2 3 4 5 6 7 8 9 10
Task

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

Fine-tuning(CE)
Fine-tuning(SupCon)
ER, M=5
ER, M=20
LwF
iid-split
iid

Figure 24: All-LP anytime evaluation plot on SplitCIFAR100 10-task sequence. All-LP is
a probe trained on all, i.e. seen and unseen tasks, training data and evaluated on all test
data. We compare this with splitting iid data into 10 subsets trained in sequence, denoted
as iid-split.

EWC does not clearly outperform naive Ąnetuning. For example, if using one hyper-

parameter for the regularization term the performance closely tracks Ąnetuning. On

the other hand using λ = 8k we observe the best LP performance on ImageNet

through the task sequence but degraded current task performance as seen in Tab. 15.

Although we followed the training procedure as closely as possible to the ones

reported by [2], the results are slightly different from the ones reported in [2] due to

(a) not using the task-head warm-up step, where the backbone network is Ąrst frozen

and the newly added task head is trained until convergence (warm-up), and then the

entire network is trained until convergence, and (b) stochasticity of training neural

networks. Table 16 highlights these differences.

5.4.6 Comparing Overall Representation Improvement

In addition to representation forgetting, we consider also measuring how much a

representation improves overall as seen by a linear probe trained and evaluated on

data from the union of all current and future tasks. We can evaluate this by training

at each step in the sequence an ŞAll-LP", that is a linear probe trained on all the

training data and evaluated on all test data. A natural baseline to compare such an

approach to is splitting iid data into 10 subsets trained in sequence (we denote this

iid-split). The results of this evaluation are shown for SplitCIFAR100 in Figure 24.

We observe again that SupCon exceeds LwF methods and competes with the small

replay-sized ER method.

70

2 3 4 5 6 7 8 9 10
Task

20

30

40

50

60

70

80

Ac
cu

ra
cy Method

ER, M=20
ER, M=5
Fine-tuning(CE)
Fine-tuning(SupCon)
LwF
Accuracy Type
Observed
Probe

3 4 5 6 7 8 9 10
Task

0

20

40

60

80

Ac
cu

ra
cy Method

ER, M=20
ER, M=5
Fine-tuning(CE)
Fine-tuning(SupCon)
LwF
Accuracy Type
Observed
Probe

5 6 7 8 9 10
Task

0

20

40

60

80

Ac
cu

ra
cy Method

ER, M=20
ER, M=5
Fine-tuning(CE)
Fine-tuning(SupCon)
LwF
Accuracy Type
Observed
Probe

Figure 25: LP and Observed accuracy for Task 2 (upper left), 3 (upper right), and
5(bottom) on 10-Task SplitCIFAR100.

5.4.7 Representation Forgetting for Other Tasks

Complementing the results in Sec. 5.4.1, we report the observed and LP accuracies

for methods when measured for tasks beyond Task 1. SpeciĄcally for SplitCIFAR100

we show trends for Task 2, 3, and 5 in Fig. 25. We observe similar trends as reported

for Task 1 in Sec. 5.4.1.

5.4.8 Training Details

ImageNet → Scenes → CUB → Flowers we use images downsampled and

cropped at 64×64 (224×224 size results are shown in Sec. 5.4.5) in this task sequence.

We train a ResNet-18 [4], using AdamW [134] optimizer with a learning rate (LR) of

1e-5 and a weight decay of 5e-4. We Ąrst train the model on ImageNet via (1) CE

loss, or (2) SupCon loss for 500 epochs. Next, for each task in the sequence, we train

the model via early stopping [135], and report the observed accuracy over the test set

(see Tab. 10).

The LP classiĄers are trained using the same optimizer and weight decay value.

However, for faster convergence, in this setting, we use a cosine LR scheduler [136]

with an initial LR of 1e-4. The results of LP classiĄers are reported on the ImageNet

validation set. All the training images in this section undergo, random crop, random

71

horizontal Ćip, and color jitter of 0.5.

SplitCIFAR100, MiniImageNet, ImageNet32 For our SplitCIFAR100 10-task

sequence, MiniImageNet 20-task sequence, and ImageNet32 200-task sequence we use

SGD optimizer with LR of 0.05, momentum of 0.9, and weight decay of 1e-4. We

train the models for 50 epochs for SplitCIFAR100 and MiniImageNet, and for 80

epochs for ImageNet32. The augmentation pipeline consists of random crop, random

horizontal Ćip, and color jitter of 0.5. For the LP classiĄers, we train each for 20

epochs, using AdamW [134] optimizer with a LR of 1e-3 and a weight decay of 5e-4.

For the SplitCIFAR10 2-task sequence from [1] we use the hyper-parameters and

training conditions mentioned in [1] for both VGG [137] and ResNet [4] architectures.

For the LP classiĄers, we train each for 70 epochs, using AdamW [134] optimizer with

a LR of 1e-3 and a weight decay of 5e-4. For LP training we use data augmentation

in all cases, except the SplitCIFAR10 to obtain the most accurate measure of the

modelŠs ability to linearly separate the data of interest. For SplitCIFAR10 2-task we

choose not to use any data augmentation because the source result ([1]) does not

rely on data augmentation for training. We opt not to use data augmentation in our

LP evaluation for a fair comparison.

5.5 Summary

We have highlighted the importance of evaluating representations and not just

task accuracy in CL. Our results suggest a) representation forgetting under naive

Ąnetuning in supervised settings is not as catastrophic as other metrics suggest b)

We demonstrate that without evaluation of features, the effects of model size on

forgetting and representation learning will be misinterpreted. c) We show that the

self-supervised SimCLR loss and supervised SupCon loss have lesser representation

of forgetting in long task sequences, maintaining or increasing performance on early

tasks. These results open up potential new directions for approaches in continual

learning. One such direction of using memories that are not available to the learner

during training is evaluated with promising initial results.

Limitations and Future Work Our work focuses on comparing linear probe

performance as a proxy of knowledge retained from past tasks. However, task

performance may not be the only criterion to fully evaluate knowledge retention

related to past data. Another limitation of our work is that it currently focuses on

72

the task-incremental setting and does not consider the important class-incremental

setting, a subject for future studies. Finally, though our work studies a diverse task

sequence ImageNet → Scenes → CUB → Flowers, to fully understand the behavior

of representation forgetting, results over more distant tasks may be needed (e.g.

ImageNet → Sketch Images [138,139]).

73

Chapter 6

Replay-Free Continual Learning

with Evolving Class Prototypes

This work was the fruit of collaboration with MohammadReza Davari, Sudhir Mudur,

Rahaf Aljundi, and Eugene Belilovsky. Currently in submission as a conference

paper [140].

6.1 Introduction

Continual Learning (CL) aims to continuously acquire knowledge from an ever-

changing stream of data. The goal of the learner is to continuously incorporate new

information from the data stream while retaining previously acquired knowledge.

Performance decay of the system on the older samples due to the loss of previously

acquired knowledge is referred to as catastrophic forgetting [7], which represents

a great challenge in CL. Thus CL algorithms are typically designed to control for

catastrophic forgetting while observing additional restrictions such as memory and

computation constraints.

Some of the early work in modern continual learning such as LwF [2] and

EWC [117] propose solutions that do not require storage of past data. However,

in complex settings with long task sequences, these techniques tend to under-perform

by a wide margin compared to the idealized joint training [75]. Many recent high-

performing approaches in this area maintain existing samples in some form of buffer,

allowing them to be reused for distillation [42], replay [75, 83], or as part of gradient

alignment constraints [40,60]. These approaches have been shown to be more efficient

and have become a predominant approach for many state-of-the-art continual learning

systems [3]. On the other hand in many cases when training on a new task it may

74

Task 1 Start Task 2 End Task 2

1

2

4

3

1

2 3

4

Prototype

Sample
Preserved

1 3 2 4
Softmax (Similarities to) Softmax (Similarities to)

1 3 2 4

Figure 26: Illustration of our Prototype-Sample Relation Distillation (PRD). For each
prior task prototype, we preserve the relative ordering of samples in the mini-batch.
This gives Ćexibility for representations to adapt to new tasks while maintaining
relevant positions of past prototypes. Illustrated for the prototype in orange 4 samples
in the minibatch are ranked 1 through 4 based on similarity. PRD attempts to
preserve this ranking while learning the new task.

be prohibited to store prior data. For example, prior task data may be sensitive (e.g.

medical data) or it may consist of proprietary data that is not aimed for release.

Moreover, methods relying on prior task data tend to grow the storage with the

number of tasks [40, 83], which can be prohibitive under severe storage constraints.

Thus developing methods that can match or exceed the efficiency of data-storage-

based methods is of great importance.

Recently [107] observed that for many continual learning tasks, the representa-

tional power of deep networks trained with naive Ąne-tuning can remain remarkably

efficient for representing both new and old task data. In particular, it was observed

that when performing continual learning with the Supervised Contrastive Loss [141]

and no CL constraints, the efficiency of representations on old task data tends to

match that of complex CL data-storage methods. These observations relied on an

oracle measure of the deep representations and did not provide a practical solution.

In order to link the powerful representation learning to the effective prediction of prior

class data we can consider alternatives for making the Ąnal prediction. An approach

previously taken in the continual learning literature is to use the notion of class

prototypes [142], vector representations whose similarity to new sample representation

can give predictions of the target class. If we take the observation that representations

of old classes are already well separated [107] then an efficient continual learner can

be obtained by simply maintaining correct estimates of the class prototypes for past

classes.

75

In this work we propose an effective way to maintain relevant class prototype

positions based on avoiding changes in the relative similarity of new task data and

old class prototypes. This allows us to leverage the powerful supervised contrastive

loss for learning representations while maintaining a clear link to prototypes capable

of providing predictions for past tasks. Our approach is illustrated in Fig. 26. Here

each prototype is compared to all samples within a mini-batch. Our proposed method,

Prototype-Sample Relation Distillation (PRD), maintains the relative relation of each

prototype, speciĄcally constraining the softmax distribution over samples in the mini-

batch to not change. This effectively allows representations to adapt to new classes,

while keeping prototypes from old classes relevant. We now summarize our overall

contributions in this work:

• We propose a novel CL method, PRD, that does not rely on prior data storage

during training or inference.

• In a variety of challenging settings (task and class-incremental), datasets

(SplitMiniImagenet [143], SplitCIFAR100 [128], Imagenet-32 [107]), and task

sequence lengths (20 to 200), we demonstrate that PRD leads to large

improvements over both replay-based and replay-free methods.

• Throughout several experiments, we demonstrate that our method not only

achieves strong control of forgetting previously observed tasks but also leads to

improved plasticity in learning new tasks.

In the following section, Sec. 6.2, we summarize the related work, and then describe

the essence of our proposed solution, Sec. 6.3. We demonstrate the effectiveness of

our approach in Sec. 6.4.

6.2 Related Work

The primarily goal of many CL methods is to mitigate the catastrophic forgetting

phenomenon, while optimizing the forward and backward knowledge transfer between

tasks is seen as secondary objective. One branch of algorithms address the issue of

catastrophic forgetting by modifying and growing the model architecture as new tasks

are observed [16,67,115,116]. Under the Ąxed architecture constraints, the algorithms

can be divided into two categories. The Ąrst and more popular branch is the rehearsal

methods. These methods store and re-use samples of the past tasks while observing

the new ones [60, 75]. The second family of approaches is the regularization based

methods. These methods preserve the previously learned information by imposing

76

penalty terms on the objective of the new tasks, including popular methods such

as LwF [2] and EWC [43, 117], where the former imposes a knowledge distillation

penalty [38] on the objective of the newly observed task and the latter a quadratic

penalty based on Fisher information matrix [121].

Recently, several works have considered the use of SupCon loss [141] in continual

learning [71, 101, 144]. These studies have been largely focused on the combination

of SupCon loss [141] with replay buffers in the online setting, and do not consider

the notion of class prototypes in the replay-free setting. [107] demonstrated that the

use of the SupCon loss in the offline setting yields more effective Şrepresentation

forgetting" (forgetting as measured by an oracle training of a linear probe). However,

a direct application of this observation of the SupCon loss was not proposed in this

prior work.

[145] proposed a prototype based evolution strategy that continually updated

prototypes using a momentum update combined with taking the mean of stored

exemplars. Contrary to the present work this method focused on the online setting

and leveraging stored data. Furthermore, it did not exploit the efficient and stable

representation properties of contrastive supervised learning.

Knowledge distillation [38], where a student network attempts to mimic the

behavior of a teacher network is a popular technique in deep representation learning

[38, 146, 147], often used to reduce model size. Classical distillation techniques have

been applied in various contexts in CL. [42, 148] utilized a distillation loss alongside

replayed examples, constraining the current model to give similar outputs. [149]

recently proposed to use a triplet loss alongside a contrastive distillation term. Here

samples are constrained to have similar distances under current and previous models.

By contrast we apply a relation distillation that constrains the relative distances of

old class prototypes to samples to be preserved.

Another application of classical distillation techniques closely related to our work

[150] proposed a method that does not require storage of prior task data. This

approach relies on constraining the distance between embeddings of the old and new

models combined with a cross entropy term. The constraint here can be analogous to

a traditional distillation term, while our approach focuses on relation distillation to

prototypes. [150] also utilizes a self-supervised learning objective based on rotation

of images to enhance the representation learning similar to [151].

Relation distillation has recently been used in teacher-student methods [152].

Unlike conventional knowledge distillation techniques that attempt to make student

network representations similar to teacher networks, relation distillation maintains

77

relative distances between a set of points. In the present work we apply a related

idea in the context of continual learning, maintaining relative relationships between

prototypes and current task samples.

6.3 Methodology

We consider a general continual learning setting where a learner is faced with a

possibly never-ending stream of data divided into separate training sessions. At each

session St, a set of data Xt and their respective labels Yt are drawn from a distribution

Dt characterized by P (X, Y♣T = t). When learning new sessions, it is assumed that

access to the samples form previous sessions is restricted. This deĄnition covers both

task-incremental settings where (Xt, Yt) represent a separate task, class-incremental

scenario where changes in P (X) induces a shift on P (Y), and the domain-incremental

learning where changes in P (X) does not affect P (Y). We consider a neural network

composed of an encoder f that maps an input sample x to its features representation

f(x) ∈ R
d and a projection head g that projects the features onto another latent

space g ◦ f(x) ∈ R
k where k < d. Our goal is to minimize the objective loss Lt on

the new session data while not increasing the objective loss of the previously learned

sessions Li ∀i<t.

A common approach to control the loss of the previously encountered sessions is

to use a buffer of stored samples and reuse them upon encountering new sessions.

In our approach we do not require access to the past data, instead, we approximate

the behavior of the previously seen classes of objects via a set of prototypes. In

our approach upon visiting a new session, we employ a novel distillation term to

approximate the now-inaccessible loss of the previous sessions and set to restrict this

surrogate loss in order to control the loss of the previously seen sessions. In the

following sections, we introduce the different parts of the objective function used to

optimize the model at each step.

Supervised Contrastive Learning Supervised Contrastive Learning [141] is a

powerful representation learning method observed to be useful in many downstream

tasks. [107] employed Supervised Contrastive training for continual learning and

showed that the learned representations are less prone to forgetting compared to

that learned with Cross Entropy loss (CE). In this work, we build on this observation

and propose a solution to jointly train the representation and classiĄcation head in

an incremental fashion. In order to optimize the representation for the task being

78

learned, we apply a supervised contrastive loss on the incoming data.

LSC(X) = −
∑

xi∈X

1

♣A(i)♣
LSC(xi) (21)

Where each sampleŠs loss is given:

LSC(xi) =
∑

xp∈A(i)

log
h(g ◦ f(xp), g ◦ f(xi))

∑

xa∈X/xi
h(g ◦ f(xa), g ◦ f(xi))

(22)

Where h(a, b) = exp(sim(a, b)/τ) and sim(a, b) = aT b
∥a∥∥b∥

. Here A(i) represents the

set of samples that form positive pairs with xi i.e. augmented views of xi and other

samples of the same class ¶xj♣yj = yi♢. Note that this loss is composed of tightness

terms between positive pairs and contrast terms with negative pairs [153].

Prototype Learning without Contrasts In order to easily link the discrimina-

tive representations learned by optimizing LSC(X) to a Ąnal class level prediction we

consider the notion of class prototypes [71, 142], which allow us to score a sampleŠs

representation with respect to each class. A simple solution for learning the class

prototypes is to apply the Softmax in combination with the Cross Entropy loss, for

a given sample yielding

−sim(p, fθ(xi)) + log
(

∑

pk∈P

h(pk, fθ(xi))


(23)

However, it has been shown that in the class-incremental setting, the softmax

combined with cross-entropy produces a large interference with previously learned

classes due to terms that suppress previous classes logits [71, 154]. Here, we propose

instead to learn class prototypes that are representatives of each class samples using

only the Ąrst term in this loss, referred to as the Ştightness" term [153]. For each class

c we initialize a random prototype pc ∈ R
d. We want to optimize these prototypes

to be representatives of current classes samples without introducing any suppression

to prototypes of previous classes. To achieve this we use a loss term considering only

positive pairs of class samples and their corresponding prototypes where we aim at

maximizing the similarity of these pairs:

Lp(X) = −
1

♣X♣

∑

xi,yi∈X,Y

sim(pyi
, sg[fθ(xi)]) (24)

Here sg denotes the stop gradient operations. The suggested loss contains only

a tightness term, i.e., contrast-free, which doesnŠt have a direct effect on previous

79

classes prototypes. From this loss term, we aim to only optimize the prototypes and

not to change the samples representations as this is taken care of by equation 21. Note

that contrary to [71] which also uses prototype-based learning, we do not include any

contrastive terms for the prototype learning, the learning of class separations being

left to LSC . Note that we utilize the stop-gradient operation so that the learning of the

prototypes does not interfere with the representation learning or previous prototypes.

Once prototypes are obtained we can now directly perform predictions at test

time by using the similarity of the sample representation and the set of prototypes

to decide on the nearest class prototype.

Prototypes-Samples Similarity Distillation Our prototypes are learned in

isolation for each task. However, as we update our feature extractor using the

supervised contrastive loss Eq. equation 21 prototypes of previous task classes will

become outdated leading to the forgetting of previously learned classes. As shown

in [107] this forgetting may correspond simply to movement in the decision boundary,

despite classes still being well separated. To update old prototypes as we update

our representation, we propose a similarity distillation term using new classes data

as a proxy for old data. Before the start of a new training session, we compute the

prototypesŠ similarities to each sample of new classes. During the new training session,

we propose to minimize the KL divergence between the similarities distribution

of prototypes to minibatch samples, enforcing current similarities to be similar to

previous similarities.

Consider the current model and set of prototypes for previous classes fθt
, Pt

o along

with their corresponding model and prototype from the end of the previous task

fθt−1 , Pt−1
o . For an incoming mini-batch X and a corresponding prototype we can

consider the softmax output Pt(p
t
k, X), where the ith entry is given:

Pt(p
t
k, X)i =

h(pt
k, fθt

(xi))
∑

xj∈X h(pt
k, fθt

(xj))
(25)

Denoting for shorthand Pt(p
t
k, X) as Pt(k) we can now construct a relation

distillation term as the KL-divergence between prototype-samples similarity

distribution estimated with the model at session t− 1 and during the current session

t.

Ld(P) =
∑

pk∈Po

KL
(

Pt(k) ♣♣ Pt−1(k)


(26)

Note that this is distinct from distillation approaches where we compute the

80

similarities for each sample over existing classes. As illustrated in Fig.26 the relative

positions of samples to the prototypes are encouraged to remain the same by our loss.

This results in Ćexibility in the representations in order to adapt to new classes while

keeping the relative distances of many samples to the prototype as similar as possible.

Our overall training objective is thus given as a combination of these three terms:

L(X) = Lsc(X) + αLp(X, Pc) + βLd(X, Po)

6.4 Experiments

In this section, we evaluate our proposed method on a wide range of challenging CL

settings. In Sec. 6.4.1 we focus on the task-incremental (multi-head) setting, where

we compare our method with other replay-free methods. Sec. 6.4.2 is dedicated to

class-incremental setting, where the shared output layer poses an enormous challenge

that drives most work to employ a replay buffer, unlike our replay-free solution. The

evaluations are based on average observed accuracy. SpeciĄcally, we measure observed

accuracy, Aij, as the accuracy of the model after step i on the test data of task j.

Similarly, the average observed accuracy at the end of the sequence is 1
T

∑

t∈T AT,t as

used in e.g. [2].

Datasets We use Split-CIFAR100 [128], Split-MiniImageNet, and ImageNet32 [107,

129] as the benchmarks for both multi-head and single-head settings. Split-

CIFAR100 [128] comprises 20 tasks, each containing a disjoint set of 5 labels. The

classes splits are constructed as in [75]. All CIFAR experiments process 32 × 32

images. Split-MiniImageNet divides the MiniImagenet dataset into 20 disjoint tasks

of 5 labels each. Images are 84× 84. ImageNet32 [129] is a downsampled (32× 32)

version of the entire ImageNet [5] dataset split into 200 tasks of 5 classes each. We

use ImageNet32 in order to compare methodsŠ performance in very long sequence

scenarios.

Baselines Although our proposed method does not use any replay buffer, we

consider in our evaluation both replay-free and replay-based methods, as replay-

based have been shown to outperform other approaches in the continual learning

setting [42, 48, 75, 98]. We consider the following replay-free methods in our

evaluations:

81

LwF [2]: knowledge distillation based on the softmax probabilities and current

task data is used to limit forgetting.

EWC [120]: estimate an importance value for each parameter in the network and

penalize changes on parameters deemed important for previous tasks.

SPB [150]: A recent method that also utilizes contrastive learning and addresses

the setting without replay data. We were unable to effectively reproduce this

approach to the accuracies described as code was not provided. However, we compare

our approach directly to the reported results in the setting studied in the original

work [150] in Sec. 6.4.2.

iid: The learner is trained with the same number of epochs as other baselines on

the whole data, in a single task containing all the classes.

The incorporated replay-based baselines are as follows:

ER [75]: Experience Replay with a buffer of a Ąxed size. In our experiments, we

used buffer sizes of 5, 20, and 50 samples per class based on the evaluation setting.

Note this is a very strong baseline that exceeds most methods, particularly with large

buffers (50 samples) [107].

iCaRL [42]: A distillation loss alongside binary cross-entropy loss is used during

training. Samples are classiĄed based on the closest class prototypes.

ER-AML [71]: Utilizes SupCon loss, alongside a replay buffer, to reduce the

representation drift of previously observed classes.

ER-ACE [71]: Similar to ER-AML, ER-ACE intends to reduce the representation

drift of old classes by introducing a modiĄed version of the standard softmax-cross-

entropy.

Hyperparameter selection For each method, optimal hyperparameters were

selected via a grid search performed on the validation set. The selection process

was done on a per-dataset basis, that is we picked the conĄguration which maximized

the accuracy averaged over different settings. We found that for our method, the

same hyperparameter conĄguration worked well across all settings and datasets. All

necessary details to reproduce our experiments can be found in the supplementary

materials.

6.4.1 Evaluations on Task-Incremental Setting

We evaluate on Split-CIFAR100, Split-MiniImagenet, and ImageNet32 using the

protocol from [48] with 100 epochs of training on each task. Note that for each

evaluation point we report the mean and standard error over 3 runs.

82

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task

40

50

60

70

80

90
Ac

cu
ra

cy
Split-CIFAR-100 Average Observed Accuracy

Method
PRD(ours)
LwF
EWC

ER, M=5
ER, M=20
ER, M=50
Fine-tuning(CE)

iid
Method Type
Replay-free
Replay-based

Method0

10

20

30

40

50

Fo
rg

et
tin

g

Forgetting

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task

30

40

50

60

70

80

Ac
cu

ra
cy

Split-MiniImagenet Average Observed Accuracy

Method
PRD(ours)
LwF
EWC

ER, M=5
ER, M=20
ER, M=50
Fine-tuning(CE)

iid
Method Type
Replay-free
Replay-based

Method0

10

20

30

40

50

Fo
rg

et
tin

g

Forgetting

Figure 27: Task-incremental accuracy on 20-Task Split-CIFAR100(left) and Split-
MiniImageNet(right). We observe that PRD widely outperforms other baselines
without storing any previous task data, and as well exceeds the performance of ER
with a very large buffer.

Split-CIFAR100 and Split-MiniImageNet We consider Split-CIFAR100 and

Split-MiniImageNet with 20 tasks of 5 classes each. The results can be found in

Fig. 27, for Split-CIFAR100 and Split-MiniImageNet, using different buffer sizes for

ER. In this setting, we can observe that our proposed method consistently outperforms

other methods by a signiĄcant margin. Even though our method does not utilize

previous tasksŠ data in any form, it still outperforms ER with 50 replay samples per

class, nearly closing the gap with the oracle iid setting. From Fig. 27, we can observe

that during the whole continual sequence of tasks, the average accuracy of our method

on the observed classes remains relatively similar and even increases at several points

during the sequence, e.g. 12th task, suggesting a good trade-off between stability and

plasticity of the model.

Although our method, in terms of average observed accuracy, outperforms other

baselines with a considerable margin, a little higher forgetting rate can be observed

compared to the strong replay-based baseline, i.e. ER with 50 replay samples. In

Sec. 6.4.3, we show that our proposed method, in terms of plasticity, i.e. ability to

learn new tasks, is comparable to naive Ąne-tuning, which is the upper bound among

existing CL methods due to the absence of constraints on preserving previous tasks (

i.e., lacking stability). This observation suggests that our method is able to preserve

previous tasksŠ information without losing the ability to learn new tasks.

ImageNet32 - Long Task Sequence We now consider a longer sequence than

typically studied which allows us to observe whether the trends we have seen so far

continue to hold. Using Imagenet32 we construct 200 tasks of 5 classes each. Fig. 28

83

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Task

20

30

40

50

60

70

80

Ac
cu

ra
cy

ImageNet32 Average Observed Accuracy

PRD(ours)
LwF
EWC
ER, M=5
ER, M=20
ER, M=50
Fine-tuning(CE)
iid

Method0

10

20

30

40

50

60

Fo
rg

et
tin

g

Forgetting

Figure 28: Task-incremental accuracy on 200-Task ImageNet32. On this long
sequence, PRD matches a baseline with a large replay buffer. Although other methods
degrade overtime, the average accuracy of PRD improves due to the cumulative effect
of maintaining better plasticity.

shows the average observed accuracy throughout the whole 200 tasks sequence. We

see that in a very long sequence of tasks, the previously established observations

about our method holds. SpeciĄcally, we see that as the model reaches the later

stages of the sequence, our method outperforms the competitive baseline of ER with

50 replay samples without utilizing previous tasksŠ data in any form. Note that the

number of stored data points leveraged by ER increases as we proceed in the sequence.

Furthermore, we observe as in the previous section that the average observed accuracy

of our proposed method not only stays relatively the same during the beginning but

also starts increasing as the model reaches the middle of the sequence, i.e. the 90th

task. This observation suggests that our method is able to efficiently learn new tasks

features while preserving the previous tasksŠ information.

6.4.2 Evaluations on Class-Incremental Setting

In addition to the experiments in the task-incremental setting, to further verify the

effectiveness of our method in mitigating representation forgetting with no access to

prior task data, we also evaluate on the more challenging class-incremental setting

where we examine the ability to incrementally learn a shared classiĄer. Note that in

all results each method is run 3 times, and we report the mean and standard error.

Split-CIFAR100 and Split-MiniImageNet Fig. 29 shows the average observed

class-incremental accuracy of the model over the 20 task sequence of Split-CIFAR100

and Split-MiniImageNet. Note that the replay-based methods are plotted in dashed

lines. We can see that our method, with no access to previous tasks data, not only

84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task

20

40

60

80

Ac
cu

ra
cy

Split-CIFAR-100 Average Observed Accuracy

Method
PRD(ours)
PRD(ours), M=50
LwF

Fine-tuning(CE)
ER, M=5
ER, M=20
ER, M=50

iid
Method Type
Replay-free
Replay-based

Method0

20

40

60

80

Fo
rg

et
tin

g

Forgetting

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

Split-MiniImagenet Average Observed Accuracy

Method
PRD(ours)
PRD(ours), M=50
LwF

Fine-tuning(CE)
ER, M=5
ER, M=20
ER, M=50

iid
Method Type
Replay-free
Replay-based

Method0

10

20

30

40

50

60

70

Fo
rg

et
tin

g

Forgetting

Figure 29: Class-incremental accuracy on 20-Task Split-CIFAR100(left) and Split-
MiniImageNet(right). We observe that PRD outperforms not only other replay-free
baselines but also ER, M=5, and is on par with ER, M=20, without storing any data.
We also observe that with additional replay samples, PRD M=50 outperforms ER
M=50 with the same number of replay samples.

outperforms other replay-free methods but also beats ER with 5 replay samples and

is on par with ER with 20 replay samples per class. From Fig. 29, we can observe that

the average accuracy of our method drops initially, probably due to the drift of the

old tasksŠ prototypical features, but stays relatively the same from the middle of the

sequence. This observation also suggests that in longer tasks sequences the learned

prototypical features of old classes remain useful, even in the absence of any replay

data.

In the following section, Sec. 6.4.2, we perform a thorough experiment on the

effect of different replay buffer sizes, showing that our method beats the state-of-the-

art replay-based methods with fewer stored samples.

Leveraging stored samples Our method targets incremental learning in scenarios

where no stored samples are allowed. However, in this section, we investigate if our

can method beneĄts from the availability of a few stored samples.

When utilizing replay data we follow the standard approach of ER-based methods,

sampling half the training data of the mini-batch from the previous data. The

subsequent optimization problem is kept the same. Note that now the relation

distillation will also see data from past tasks that directly correspond to the

prototypes. Sec. 6.4.2 compares our method with different buffer sizes to other replay-

based methods. It can be seen that our method can successfully leverage the available

data and further improve the performance achieving high gains over the state-of-the-

art in low buffer regime. This suggests our method is highly effective in both limited

85

Method
Split-CIFAR100, K = 20

M = 0 M = 5 M = 20 M = 50

iid 65.3 65.3 65.3 65.3
Fine-tuning 4.6 4.6 4.6 4.6

ER [75] - 15.2±0.7 29.6±0.8 38.3±0.9

iCaRL [42] - 19.8±0.5 28.6±0.7 32.9±0.5

ER-AML [71] - 21.4±0.8 35.3±0.6 42.4±0.8

ER-ACE [71] - 22.8±0.5 35.7±0.2 43.3±0.2

PRD(Ours) 27.8±0.2 32.0±0.4 39.5±0.4 45.1±0.5

Split-MiniImageNet, K = 20
M = 0 M = 5 M = 20 M = 50

54.5 54.5 54.5 54.5
4.4 4.4 4.4 4.4

- 13.4±0.2 21.7±0.8 28.7±0.5

- 16.2±0.1 22.8±0.3 26.1±0.2

- 17.1±0.3 26.3±0.7 32.3±0.2

- 18.8±0.1 27.1±0.5 34.2±0.5

20.0±0.1 25.7±0.3 31.3±0.5 35.8±0.4

Table 18: Class-incremental results on 20-Task Split-CIFAR100 and Split-
MiniImageNet datasets using different buffer sizes. We observe even with no replay
samples (M=0) PRD outperforms all of the replay-based baselines with 5 replay
samples. With a small number of replay samples, e.g. M=5, PRD widely outperforms
other replay-based methods, suggesting the ability of our method to utilize replay
samples while maintaining a good performance with no access to prior data.

Method
Split-CIFAR100 ImageNet-Sub
K=6 K=11 K=6 K=11

iid 73.4 73.2 82.0 82.7
Fine-tuning 22.3 12.6 23.6 13.2

LwF-E [2,155] 57.0 56.8 65.5 65.6
EWC-E [120,155] 56.3 55.4 65.2 64.1
MAS-E [59,155] 56.9 56.6 65.8 65.8
SDC [155] 57.1 56.8 65.6 65.7

SPB [150] 60.9 60.4 68.7 67.2
PRD (Ours) 64.3 63.7 71.8 70.3

Table 19: Pre-trained Initialization. We report average cumulative incremental
accuracies over all tasks are reported. PRD exceeds recent proposals in this
challenging setting.

and no replay data settings.

Pre-trained Initialization To further measure the class-incremental performance

of our method and allow direct comparison to [150], we also evaluate our method

on Split-CIFAR100 [128] and ImageNet-Subset [42, 156] using the protocol and

constraints from [150]. In these settings, half the classes are used for an initial

pre-training phase. ImageNet-Subset contains 100 classes randomly sampled from

ImageNet. Following [150], we randomly select the Ąrst 50 classes as the 1-st phase

86

5 10 15
Task

30

40

50

60

70

80

90

Ac
cu

ra
cy

Current Task Accuracy

1-4 1-9 1-14
Task

30

40

50

60

70

80

90

Ac
cu

ra
cy

Old Tasks' Average Accuracy

Fine-tuning(CE) EWC ER, M=50 PRD(ours)

Figure 30: Task-incremental Split-CIFAR100. Accuracy on the current task(left) and
average accuracy over previous tasks(right). We observe that PRD performs well on
the current task while having low forgetting.

and evenly split the remaining 50 classes for K -1 phases. Similar to [150], for this

experiment, we evaluate our models with K=6 and 11 phases on both Split-CIFAR100

and ImageNet-Subset datasets, i.e., after the 1st phase, we incrementally add 5 or

10 new classes at each phase. Following [150], we report the average cumulative

incremental accuracy over all phases. All results are averaged over three runs.

Tab. 19 shows average cumulative incremental accuracies (as used in [150]) over

all phases on Split-CIFAR100 and ImageNet-Subset. We observe that our method

exceeds the recent proposal of [150] in this setting as well as beating strong baselines

such as SDC. Note that [150] also applied a self-supervised objective which we do not

include as we were unable to obtain source code for these experiments, and this was

a complementary approach that can enhance our method as well.

6.4.3 Analysis and Ablations

PRD Balances Plasticity and Stability A continual learner should be able to

easily integrate new knowledge by learning new tasks (plasticity) while beneĄting

from prior knowledge to improve performance on the current task (forward transfer).

Continual learning methods are often characterized by a trade-off in plasticity and

stability. Stability refers to the ability to retain the knowledge of prior tasks [157],

often measured by the forgetting metric. We have thus far observed in our experiments

that PRD has relatively low forgetting, for example in Fig. 27, it is shown for CIFAR-

100 it has the lowest forgetting, only slightly improved on by the ER-M50 a baseline

with a large replay buffer. Both ER-M50 and PRD have good stability, but their

87

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Task

45

50

55

60

65

70

75

Ac
cu

ra
cy

Task 1 Linear Probe Accuracy over ImageNet32 200-Task Sequence
PRD(ours)
LwF
Fine-tuning(CE)
Fine-tuning(SupCon)

ER, M=5
ER, M=20
ER, M=50

Figure 31: Task 1 LP accuracy over 200-Task ImageNet32. We compare Linear probe
accuracy for Tasks 1 data over the whole sequence. We can observe that during a
long sequence, the performance of our method, i.e. PRD, not only stays relatively
Ćat but also increase at some points in the later stages of the sequence, suggesting
its ability to preserve the information of observed tasks.

plasticity can be difficult to gauge in long tasks sequences directly from observed

accuracy. For example a task can be very poorly learned during a session but learned

later on thanks to the replay buffer. We thus directly compare the current task

performance separately from the old task performance corresponding to PRD, ER

M=50, and EWC on task-incremental CIFAR100, corresponding to the results in

Fig. 27. The results are shown for tasks 5,10, and 15 in Fig. 30.

We Ąrst observe that all methods progressively degrade in current task accuracy.

Since tasks are sampled uniformly from the set of possible tasks we can assume this

corresponds to a gradual reduction in plasticity. This is consistent with many previous

observations of continual learning systems [157,158]. On the other hand, we observe

that compared to other strong baselines like EWC and ER, M=50, the current task

accuracy of PRD is substantially higher, while the old task accuracy is as well, being

largely maintained as training progresses. Thus PRD provides a strong tradeoff in

plasticity and stability. If we observe the behavior of ER, M=50, we see that its old

task accuracy is sometimes increasing (for example at task 10). Overall, we can state

that models trained by our method, PRD, exhibit plasticity close to constraint-free

Ąne-tuning while showing the best stability.

Representation Forgetting Following [107], we evaluate the representation

forgetting of our method against other baselines with a Linear Probe, denoted as LP

in the rest of this section. Similar to the deĄnition of observed accuracy in Sec. 6.4,

88

Dataset
Distillation Split-CIFAR100 Split-MiniImageNet ImageNet32
Coefficient(β) (K=20) (K=20) (K=200)

β = 0. 39.4±1.5 31.2±0.9 21.3±0.8

β = 1. 80.0±0.5 59.3±0.3 55.4±0.4

β = 2. 82.1±0.3 63.7±0.3 59.2±0.4

β = 4. 83.5±0.4 68.3±0.4 62.7±0.2

β = 8. 83.1±0.4 70.9±0.5 65.1±0.3

β = 16. 82.7±0.2 67.2±0.5 67.5±0.2

Table 20: Ablation study on the effect of relation distillation coefficient, β in Eq.
equation 6.3. The reported numbers are Task-incremental average observed accuracy.
We can observe that β = 0, having no distillation, results in very low average accuracy
over all tasks. On the other hand, when the sequence is very long, e.g. 200 task
ImageNet32, a higher coefficient value for the distillation loss results in better overall
average accuracy.

we can measure the LP accuracy for each step i and task j as well as the average LP

accuracy.

Similar to [107], we construct 200 tasks of 5 classes using ImageNet32 dataset in

the task-incremental setting. Fig. 31 shows the performance of the model on the Ąrst

task throughout the whole continual sequence. We observe that although the naive

SupCon exceeds replay with M=5 in terms of representation forgetting on the Ąrst

task, PRD provides a very substantial improvement. This suggests that we not only

beneĄt from stabilizing the prototypes but the representation itself greatly beneĄts

from PRD, avoiding forgetting at the representation level.

Ablation on Prototypes-Samples Similarity Distillation As discussed in

Sec. 6.4.3, continual learning methods are characterized by a trade-off in plasticity

and stability. Stability refers to the ability to retain the knowledge of prior tasks

[157], often measured by the forgetting metric. According to our observations from

Sec. 6.4.3, one can observe the PRD has relatively low forgetting while maintaining

high plasticity in learning new tasks. PRD controls the stability-plasticity trade-off

mostly using the coefficient for prototype-sample relation distillation loss. Here we

do an ablation on the effect of our prototype-sample relation distillation loss in three

datasets, Split-CIFAR100, Split-MiniImageNet, and ImageNet32. Tab. 20 presents

the performance of our method with different coefficient values(β) for our prototype-

sample relation distillation loss.

We can observe that using a coefficient value of 0 (β = 0), i.e. having no relation

89

Finetune EWC [117] LwF [2] PRD (ours)

AMCA 40.5 62.5 63.7 65.1

Table 21: Domain-incremental setting using the CLAD-C dataset [3]. All methods use a
ResNet-50 [4] architecture, pre-trained on ImageNet [5], and use a batch size of 32. Our
results highlight the versatility of our method and its applicability to real-life continual
learning scenarios. Moreover, it suggests that our method is cable of performing under
severe class imbalance and drastic distribution shifts, without having access to past data.

distillation loss, Eq. equation 6.3, results in very low average accuracy for all of the

three datasets. This observation shows the importance of relation distillation loss in

remembering old tasksŠ information. Further, we can observe using different values of

β, with shorter task sequences like 20 task Split-CIFAR100, does not affect the overall

average performance of the model across all tasks. On the other hand, with long task

sequences, e.g. 200 task ImageNet32, a higher coefficient value for the distillation loss

results in less forgetting and better overall average accuracy.

6.4.4 Evaluations on Domain-Incremental Setting

We evaluate our approach using the CLAD-C dataset [3], under the conditions laid

out in [3]. The dataset contains images recorded via dashcams over 3 days. The

shift between night and day constitutes the task boundaries, hence overall we have

6 tasks. The objective of each tasks is to correctly classify an image into one of 6

possible classes of objects: 1. pedestrian 2. cyclist 3. car 4. truck 5. bus 6. tricycle.

The dataset reĆects the real-world distribution of these objects. Hence, certain classes

are rarely observed (e.g. the tricycle class) and others are seen more frequently (e.g.

the car class). As the night and day changes in the data stream and we are introduced

to new tasks, the image distribution changes, sometimes so drastic that leads to the

absence of a few classes. This fact, along with the in-task class imbalance of the data

makes the CLAD-C dataset [3] a challenging, yet realistic, benchmark.

The training data contains of overall 22,249 objects distributed over 6 tasks. We

report our results using the Ąnal Average Mean Class Accuracy (AMCA) on the test

data which contains 69,881 objects spanning over both day and night. The AMCA

for T tasks each containing C classes is given by:

AMCA =
1

♣T ♣♣C♣

∑

t∈T

∑

c∈C

At
c (27)

where At
c is the accuracy of the class c for the task t. The results are given in Tab. 21.

All methods in Tab. 21 use a ResNet-50 [4] architecture, pre-trained on ImageNet [5],

90

and use a batch size of 32. Our results highlight the versatility of our method and its

applicability to real-life continual learning scenarios. Moreover, it suggests that our

method is cable of performing under severe class imbalance and drastic distribution

shifts, without having access to past data.

6.4.5 Training Details

In this section, we provide additional details regarding the baselines and

hyperparameters. In all experiments, we leave the batch size and the number

of epochs Ąxed at 128 and 100. The model architecture (θ) is also kept constant,

which is a regular ResNet-18 model, where the dimensions of the last linear layer

change depending on the input height and width.

The augmentation pipeline is consistent across all experiments, consisting of the

random crop, random horizontal Ćip, color jitter of 0.4, and random grayscale.

Hyperparameter Selection All results in the paper have been either implemented

by us or adapted from [71], with the exception of SPB [150], where results were taken

from the original paper since there was no public codebase for that baseline at the

time of submission. For each method, a grid search was run on the possible hparams,

which we detail below. In the following, we list the hyperparameters that we included

in our grid search. The best values for each parameter are underlined.

PRD(ours)

• LR: [0.01, 0.005, 0.001]

• SupCon Temperature: [0.1, 0.2, 0.3]

• Relation Distillation Coefficient(β): [1., 2., 4., 8., 16.]

• Prototypes Coefficient(α): [1., 2., 4.]

EWC [120]:

• LR: [0.01, 0.005, 0.001]

• Lambda Coefficient: [20, 50, 100, 200, 500, 1000]

LwF [2], ER [75], and iCaRL [42]:

• LR: [0.01, 0.005, 0.001]

91

Similar to [71], for ER, rehearsal begins as soon as the buffer is not empty. Also when

samples are being fetched from the buffer, we do not exclude classes from the current

task.

ER-ACE [71]:

• LR: [0.01, 0.005, 0.001]

Following [71] implementation, for the masking loss, we simply

use logits.maskedfill(mask, -1e9) to Ąlter out classes that should not receive

gradient.

ER-AML [71]:

• LR: [0.01, 0.005, 0.001]

• SupCon Temperature: [0.1, 0.2, 0.3]

6.5 Summary

We proposed a novel approach for Replay-Free Continual learning that effectively

leverages relationship distillation alongside supervised contrastive learning. On a

wide array of evaluations, our method is shown to provide good trade-offs in stability

and plasticity, leading to large improvements over replay-free baselines and allows

us to exceed performance of replay-based methods. Moreover, we showed that our

method can effectively utilize additional replay samples, outperforming the state-of-

the-art replay-based methods in the class-incremental setting. These observations

open up potential new directions for approaches in replay-free continual learning.

92

Chapter 7

Conclusion

In this thesis, we addressed various challenges in online continual learning and

replay-free continual learning settings. We proposed novel methods to handle these

challenges and evaluated our proposed methods on various datasets with state-of-the-

art metrics.

In Chapter 3, we showed that the standard loss function applied excessive pressure

on old class representations in online continual learning settings. To address this

challenge, we proposed two modiĄcations of the loss function that treated incoming

and replay data asymmetrically. Our proposed method achieved strong performance

with minimal or no additional cost, and we raised the standard for high-quality

evaluation in online continual learning by considering a wide number of baselines

and metrics.

In Chapter 4, we introduced a new method to handle online one-class incremental

learning without the need for negative contrasts. We demonstrated that our method

outperformed strong baselines and was also applicable and highly competitive in

traditional online continual learning settings. Our approach can also be adapted to

supervised settings, particularly in continual classiĄcation. Future work can explore

the possibility of applying our approach in the offline one-class incremental setting.

In Chapter 5, we emphasized the importance of evaluating representations and not

just task accuracy in continual learning. Our results suggested that representation

forgetting under naive Ąnetuning in supervised settings was not as catastrophic as

other metrics suggest. We also showed that the self-supervised SimCLR loss and

supervised SupCon loss had lesser representation forgetting in long task sequences,

maintaining or increasing performance on early tasks. Additionally, we evaluated a

direction of using memories that are not available to the learner during training with

promising initial results.

93

In Chapter 6, we proposed a novel approach for replay-free continual learning

that leveraged relationship distillation alongside supervised contrastive learning.

Our method provided good trade-offs in stability and plasticity, leading to large

improvements over replay-free baselines and exceeded the performance of replay-

based methods. Moreover, our method effectively utilized additional replay samples.

Our observations opened up potential new directions for approaches in replay-free

continual learning.

Overall, our proposed methods addressed various challenges in continual learning

and replay-free continual learning settings, and our results showed that these methods

outperformed state-of-the-art baselines on various datasets. Our Ąndings provide new

directions for future research in the Ąeld of continual learning.

94

References

[1] V. V. Ramasesh, E. Dyer, and M. Raghu, ŞAnatomy of catastrophic forgetting:

Hidden representations and task semantics,Ť arXiv preprint arXiv:2007.07400,

2020. xv, 16, 55, 57, 58, 59, 60, 67, 68, 72

[2] Z. Li and D. Hoiem, ŞLearning without forgetting,Ť IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935Ű2947, 2017.

xv, 55, 59, 60, 61, 62, 63, 69, 70, 74, 77, 81, 82, 86, 90, 91

[3] E. Verwimp, K. Yang, S. Parisot, H. Lanqing, S. McDonagh, E. Pérez-

Pellitero, M. De Lange, and T. Tuytelaars, ŞClad: A realistic continual learning

benchmark for autonomous driving,Ť arXiv preprint arXiv:2210.03482, 2022.

xvi, 74, 90

[4] K. He, X. Zhang, S. Ren, and J. Sun, ŞDeep residual learning for image

recognition,Ť in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 770Ű778, 2016. xvi, 71, 72, 90

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ŞImagenet: A

large-scale hierarchical image database,Ť in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248Ű255, Ieee, 2009. xvi, 20, 81, 90

[6] D. L. Silver, Q. Yang, and L. Li, ŞLifelong machine learning systems: Beyond

learning algorithms.,Ť in AAAI Spring Symposium: Lifelong Machine Learning,

pp. 49Ű55, Citeseer, 2013. 4

[7] M. McCloskey and N. J. Cohen, ŞCatastrophic interference in connectionist

networks: The sequential learning problem,Ť Psychology of learning and

motivation, vol. 24, pp. 109Ű165, 1989. 5, 23, 53, 74

[8] R. Ratcliff, ŞConnectionist models of recognition memory: Constraints imposed

by learning and forgetting functions,Ť Psychological review, vol. 97, no. 2,

pp. 285Ű308, 1990. 5

95

[9] J. Kolen and J. Pollack, ŞBack propagation is sensitive to initial conditions,Ť

Advances in neural information processing systems, vol. 3, 1990. 5

[10] J. K. Kruschke, ŞAlcove: an exemplar-based connectionist model of category

learning.,Ť Psychological review, vol. 99, no. 1, p. 22, 1992. 5

[11] A. Robins, ŞCatastrophic forgetting, rehearsal and pseudorehearsal,Ť Connec-

tion Science, vol. 7, no. 2, pp. 123Ű146, 1995. 5, 15

[12] B. Ans and S. Rousset, ŞAvoiding catastrophic forgetting by coupling two

reverberating neural networks,Ť Comptes Rendus de lŠAcadémie des Sciences-

Series III-Sciences de la Vie, vol. 320, no. 12, pp. 989Ű997, 1997. 5

[13] Z. Li and D. Hoiem, ŞLearning without forgetting,Ť in European Conference on

Computer Vision, pp. 614Ű629, Springer, 2016. 5, 20, 25

[14] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.

Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al.,

ŞOvercoming catastrophic forgetting in neural networks,Ť Proceedings of the

national academy of sciences, p. 201611835, 2017. 5, 19

[15] S.-W. Lee, J.-H. Kim, J.-W. Ha, and B.-T. Zhang, ŞOvercoming catastrophic

forgetting by incremental moment matching,Ť arXiv preprint arXiv:1703.08475,

2017. 5

[16] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ŞProgressive neural networks,Ť

arXiv preprint arXiv:1606.04671, 2016. 5, 21, 55, 76

[17] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya,

C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, et al., ŞBootstrap your

own latent: A new approach to self-supervised learning,Ť arXiv preprint

arXiv:2006.07733, 2020. 6, 12, 47, 48

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ŞLearning representations

by back-propagating errors,Ť nature, vol. 323, no. 6088, pp. 533Ű536, 1986. 9

[19] Y. LeCun, Y. Bengio, and G. Hinton, ŞDeep learning,Ť nature, vol. 521,

no. 7553, pp. 436Ű444, 2015. 10

96

[20] R. Tibshirani, ŞRegression shrinkage and selection via the lasso,Ť Journal of the

Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267Ű288,

1996. 10

[21] R. Zhang, P. Isola, and A. A. Efros, ŞColorful image colorization,Ť in Computer

VisionŰECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11-14, 2016, Proceedings, Part III 14, pp. 649Ű666, Springer, 2016. 11

[22] M. Noroozi and P. Favaro, ŞUnsupervised learning of visual representations

by solving jigsaw puzzles,Ť in Computer VisionŰECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,

Part VI, pp. 69Ű84, Springer, 2016. 11

[23] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., ŞPhoto-realistic single image

super-resolution using a generative adversarial network,Ť in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 4681Ű4690,

2017. 11

[24] O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari, ŞImage

inpainting: A review,Ť Neural Processing Letters, vol. 51, pp. 2007Ű2028, 2020.

11

[25] C. Doersch, A. Gupta, and A. A. Efros, ŞUnsupervised visual representation

learning by context prediction,Ť in Proceedings of the IEEE international

conference on computer vision, pp. 1422Ű1430, 2015. 11

[26] H. Lee, S. J. Hwang, and J. Shin, ŞSelf-supervised label augmentation via input

transformations,Ť in International Conference on Machine Learning, pp. 5714Ű

5724, PMLR, 2020. 11

[27] P. Baldi, ŞAutoencoders, unsupervised learning, and deep architectures,Ť in

Proceedings of ICML workshop on unsupervised and transfer learning, pp. 37Ű

49, JMLR Workshop and Conference Proceedings, 2012. 11

[28] A. Brock, J. Donahue, and K. Simonyan, ŞLarge scale gan training for high

Ądelity natural image synthesis,Ť arXiv preprint arXiv:1809.11096, 2018. 11

[29] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ŞA simple framework for con-

trastive learning of visual representations,Ť arXiv preprint arXiv:2002.05709,

2020. 12, 28, 54, 56, 57, 58

97

[30] Y. Tian, D. Krishnan, and P. Isola, ŞContrastive multiview coding,Ť in

Computer VisionŰECCV 2020: 16th European Conference, Glasgow, UK,

August 23Ű28, 2020, Proceedings, Part XI 16, pp. 776Ű794, Springer, 2020.

12

[31] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, ŞMomentum contrast for

unsupervised visual representation learning,Ť in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 9729Ű9738, 2020.

12, 28

[32] I. Misra and L. v. d. Maaten, ŞSelf-supervised learning of pretext-invariant

representations,Ť in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 6707Ű6717, 2020. 12

[33] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, ŞUnsupervised feature learning via non-

parametric instance discrimination,Ť in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3733Ű3742, 2018. 12

[34] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, ŞBig self-

supervised models are strong semi-supervised learners,Ť Advances in neural

information processing systems, vol. 33, pp. 22243Ű22255, 2020. 12

[35] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,

C. Liu, and D. Krishnan, ŞSupervised contrastive learning,Ť in Advances in

Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 18661Ű18673, Curran Associates,

Inc., 2020. 12, 24, 27, 28, 54, 56, 58, 59, 60

[36] F. Graf, C. Hofer, M. Niethammer, and R. Kwitt, ŞDissecting supervised

constrastive learning,Ť in International Conference on Machine Learning,

pp. 3821Ű3830, PMLR, 2021. 12, 58

[37] X. Chen and K. He, ŞExploring simple siamese representation learning,Ť in

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pp. 15750Ű15758, 2021. 12

[38] G. Hinton, O. Vinyals, and J. Dean, ŞDistilling the knowledge in a neural

network,Ť arXiv preprint arXiv:1503.02531, 2015. 13, 20, 55, 77

[39] R. Volpi, D. Larlus, and G. Rogez, ŞContinual adaptation of visual

representations via domain randomization and meta-learning,Ť in Proceedings

98

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 4443Ű4453, 2021. 14

[40] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, ŞEfficient lifelong

learning with a-gem,Ť in ICLR 2019. 16, 20, 26, 32, 40, 74, 75

[41] T. Lesort, A. Stoian, and D. Filliat, ŞRegularization shortcomings for continual

learning,Ť arXiv preprint arXiv:1912.03049, 2019. 16, 20, 25

[42] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, Şicarl: Incremental

classiĄer and representation learning,Ť in Proc. CVPR, 2017. 16, 17, 18, 20, 28,

31, 50, 51, 56, 58, 60, 74, 77, 81, 82, 86, 91

[43] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, ŞRiemannian walk

for incremental learning: Understanding forgetting and intransigence,Ť arXiv

preprint arXiv:1801.10112, 2018. 16, 19, 77

[44] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, ŞLearning a uniĄed classiĄer

incrementally via rebalancing,Ť in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 831Ű839, 2019. 17, 18, 21, 26,

47

[45] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari, ŞEnd-

to-end incremental learning,Ť in Proceedings of the European conference on

computer vision (ECCV), pp. 233Ű248, 2018. 17, 18

[46] Y. Gal, R. Islam, and Z. Ghahramani, ŞDeep bayesian active learning with

image data,Ť in International conference on machine learning, pp. 1183Ű1192,

PMLR, 2017. 18

[47] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H.

Torr, and M. Ranzato, ŞOn tiny episodic memories in continual learning,Ť arXiv

preprint arXiv:1902.10486, 2019. 18, 47, 50, 51

[48] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, L. Charlin, and T. Tuytelaars,

ŞOnline continual learning with maximally interfered retrieval,Ť in Advances in

Neural Information Processing (NeurIPS), 2019. 18, 23, 24, 25, 26, 30, 31, 32,

33, 34, 36, 50, 51, 81, 82

99

[49] T. L. Hayes, K. KaĆe, R. Shrestha, M. Acharya, and C. Kanan, ŞRemind

your neural network to prevent catastrophic forgetting,Ť in Computer VisionŰ

ECCV 2020: 16th European Conference, Glasgow, UK, August 23Ű28, 2020,

Proceedings, Part VIII 16, pp. 466Ű483, Springer, 2020. 18

[50] A. Iscen, J. Zhang, S. Lazebnik, and C. Schmid, ŞMemory-efficient incremental

learning through feature adaptation,Ť in Computer VisionŰECCV 2020: 16th

European Conference, Glasgow, UK, August 23Ű28, 2020, Proceedings, Part

XVI 16, pp. 699Ű715, Springer, 2020. 18

[51] T. Lesort, A. Gepperth, A. Stoian, and D. Filliat, ŞMarginal replay vs

conditional replay for continual learning,Ť in International Conference on

ArtiĄcial Neural Networks, pp. 466Ű480, Springer, 2019. 18

[52] R. Kemker and C. Kanan, ŞFearnet: Brain-inspired model for incremental

learning,Ť arXiv preprint arXiv:1711.10563, 2017. 18

[53] A. Ayub and A. R. Wagner, ŞEec: Learning to encode and regenerate images

for continual learning,Ť arXiv preprint arXiv:2101.04904, 2021. 18

[54] H. Shin, J. K. Lee, J. Kim, and J. Kim, ŞContinual learning with deep generative

replay,Ť in Advances in Neural Information Processing Systems, pp. 2990Ű2999,

2017. 18

[55] M. Zhai, L. Chen, F. Tung, J. He, M. Nawhal, and G. Mori,

ŞLifelong gan: Continual learning for conditional image generation,Ť ArXiv,

vol. abs/1907.10107, 2019. 18

[56] Y. Liu, Y. Su, A.-A. Liu, B. Schiele, and Q. Sun, ŞMnemonics training: Multi-

class incremental learning without forgetting,Ť in Proceedings of the IEEE/CVF

conference on Computer Vision and Pattern Recognition, pp. 12245Ű12254,

2020. 18

[57] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros, ŞDataset distillation,Ť arXiv

preprint arXiv:1811.10959, 2018. 18

[58] F. Zenke, B. Poole, and S. Ganguli, ŞContinual learning through synaptic

intelligence,Ť arXiv preprint arXiv:1703.04200, 2017. 19

[59] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,

ŞMemory aware synapses: Learning what (not) to forget,Ť in ECCV 2018,

2018. 19, 55, 86

100

[60] D. Lopez-Paz et al., ŞGradient episodic memory for continual learning,Ť in

Advances in Neural Information Processing Systems, pp. 6467Ű6476, 2017. 20,

25, 26, 31, 32, 33, 55, 60, 66, 74, 76

[61] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, ŞGradient based sample

selection for online continual learning,Ť arXiv preprint arXiv:1903.08671, 2019.

20, 22, 23, 26, 32, 36, 47

[62] M. Farajtabar, N. Azizan, A. Mott, and A. Li, ŞOrthogonal gradient descent

for continual learning,Ť 2019. 20

[63] P. Zhou, L. Mai, J. Zhang, N. Xu, Z. Wu, and L. S. Davis, ŞM2kd: Multi-model

and multi-level knowledge distillation for incremental learning,Ť arXiv preprint

arXiv:1904.01769, 2019. 21

[64] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ŞGoing deeper with convolutions,Ť in

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 1Ű9, 2015. 21

[65] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa, ŞLearning without

memorizing,Ť in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pp. 5138Ű5146, 2019. 21

[66] J. Xu and Z. Zhu, ŞReinforced continual learning,Ť arXiv preprint

arXiv:1805.12369, 2018. 21

[67] R. Aljundi, P. Chakravarty, and T. Tuytelaars, ŞExpert gate: Lifelong learning

with a network of experts,Ť in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 21, 55, 76

[68] Y. MarcŠAurelio Ranzato and L. B. S. C. Y. LeCun, ŞA uniĄed energy-based

framework for unsupervised learning,Ť in Proc. Conference on AI and Statistics

(AI-Stats), vol. 24, 2007. 21

[69] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel,

and D. Wierstra, ŞPathnet: Evolution channels gradient descent in super neural

networks,Ť arXiv preprint arXiv:1701.08734, 2017. 21

[70] J. Serrà, D. Surís, M. Miron, and A. Karatzoglou, ŞOvercoming catastrophic

forgetting with hard attention to the task,Ť arXiv preprint arXiv:1801.01423,

2018. 21, 25

101

[71] L. Caccia, R. Aljundi, N. Asadi, T. Tuytelaars, J. Pineau, and E. Belilovsky,

ŞNew insights on reducing abrupt representation change in online continual

learning,Ť arXiv preprint arXiv:2203.03798, 2022. 22, 77, 79, 80, 82, 86, 91, 92

[72] S. Farquhar and Y. Gal, ŞTowards robust evaluations of continual learning,Ť

arXiv preprint arXiv:1805.09733, 2018. 22

[73] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,

G. Slabaugh, and T. Tuytelaars, ŞContinual learning: A comparative study on

how to defy forgetting in classiĄcation tasks,Ť arXiv preprint arXiv:1909.08383,

2019. 22, 25, 32, 49

[74] Z. Borsos, M. Mutnỳ, and A. Krause, ŞCoresets via bilevel optimization for

continual learning and streaming,Ť arXiv preprint arXiv:2006.03875, 2020. 23,

26

[75] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H.

Torr, and M. Ranzato, ŞContinual learning with tiny episodic memories,Ť arXiv

preprint arXiv:1902.10486, 2019. 23, 26, 27, 30, 31, 33, 50, 55, 58, 60, 66, 74,

76, 81, 82, 86, 91

[76] H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, and T. Moon, ŞSs-il: Separated

softmax for incremental learning,Ť arXiv preprint arXiv:2003.13947, 2020. 25,

26, 32

[77] C. Zeno, I. Golan, E. Hoffer, and D. Soudry, ŞTask agnostic continual learning

using online variational bayes,Ť arXiv preprint arXiv:1803.10123, 2018. 25, 26

[78] G. M. van de Ven and A. S. Tolias, ŞThree scenarios for continual learning,Ť

arXiv preprint arXiv:1904.07734, 2019. 25

[79] F. Normandin, F. Golemo, O. Ostapenko, M. Riemer, P. Rodriguez, J. Hurtado,

K. Khetarpal, T. Lesort, L. Charlin, I. Rish, and M. Caccia, ŞSequoia - towards

a systematic organization of continual learning research,Ť Github repository,

2021. 25

[80] T. Lesort, M. Caccia, and I. Rish, ŞUnderstanding continual learning settings

with data distribution drift analysis,Ť arXiv preprint arXiv:2104.01678, 2021.

25

102

[81] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,

ŞMemory aware synapses: Learning what (not) to forget,Ť arXiv preprint

arXiv:1711.09601, 2017. 25

[82] X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. W. Teh, and

R. Pascanu, ŞTask agnostic continual learning via meta learning,Ť ArXiv,

vol. abs/1906.05201, 2019. 25

[83] M. Caccia, P. Rodriguez, O. Ostapenko, F. Normandin, M. Lin, L. Caccia,

I. Laradji, I. Rish, A. Lacoste, D. Vazquez, et al., ŞOnline fast adaptation and

knowledge accumulation: a new approach to continual learning,Ť arXiv preprint

arXiv:2003.05856, 2020. 25, 32, 74, 75

[84] O. Ostapenko, P. Rodriguez, M. Caccia, and L. Charlin, ŞContinual learning via

local module composition,Ť in Thirty-Fifth Conference on Neural Information

Processing Systems, 2021. 25

[85] J. Von Oswald, D. Zhao, S. Kobayashi, S. Schug, M. Caccia, N. Zucchet,

and J. Sacramento, ŞLearning where to learn: Gradient sparsity in meta

and continual learning,Ť Advances in Neural Information Processing Systems,

vol. 34, 2021. 25

[86] D. Shim, Z. Mai, J. Jeong, S. Sanner, H. Kim, and J. Jang, ŞOnline class-

incremental continual learning with adversarial shapley value,Ť in Proceedings

of the AAAI Conference on ArtiĄcial Intelligence, vol. 35, pp. 9630Ű9638, 2021.

26

[87] B. Tang and D. S. Matteson, ŞGraph-based continual learning,Ť arXiv preprint

arXiv:2007.04813, 2020. 26

[88] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, ŞDark

experience for general continual learning: a strong, simple baseline,Ť arXiv

preprint arXiv:2004.07211, 2020. 26, 32, 40, 50, 51

[89] Z. Mai, R. Li, H. Kim, and S. Sanner, ŞSupervised contrastive replay: Revisiting

the nearest class mean classiĄer in online class-incremental continual learning,Ť

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 3589Ű3599, 2021. 26, 56, 58

103

[90] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S. Xia, ŞMaintaining discrimination

and fairness in class incremental learning,Ť arXiv preprint arXiv:1911.07053,

2019. 26

[91] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, ŞLarge scale

incremental learning,Ť in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 374Ű382, 2019. 26

[92] R. Aljundi, K. Kelchtermans, and T. Tuytelaars, ŞTask-free continual learning,Ť

in CVPR 2019, 2018. 27

[93] H.-J. Chen, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, ŞMitigating

forgetting in online continual learning via instance-aware parameterization,Ť

Advances in Neural Information Processing Systems, vol. 33, 2020. 27

[94] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne, ŞExperience

replay for continual learning,Ť arXiv preprint arXiv:1811.11682, 2018. 27

[95] H. Qi, M. Brown, and D. G. Lowe, ŞLow-shot learning with imprinted

weights,Ť in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 5822Ű5830, 2018. 28, 48

[96] E. Hoffer and N. Ailon, ŞDeep metric learning using triplet network,Ť in

International workshop on similarity-based pattern recognition, pp. 84Ű92,

Springer, 2015. 29

[97] D. Shim, Z. Mai, J. Jeong, S. Sanner, H. Kim, and J. Jang, ŞOnline class-

incremental continual learning with adversarial shapley value,Ť arXiv e-prints,

pp. arXivŰ2009, 2020. 31, 32, 33, 34, 51

[98] X. Ji, J. Henriques, T. Tuytelaars, and A. Vedaldi, ŞAutomatic recall

machines: Internal replay, continual learning and the brain,Ť arXiv preprint

arXiv:2006.12323, 2020. 31, 32, 33, 34, 81

[99] J. S. Vitter, ŞRandom sampling with a reservoir,Ť ACM Transactions on

Mathematical Software (TOMS), vol. 11, no. 1, pp. 37Ű57, 1985. 31

[100] A. Prabhu, P. H. Torr, and P. K. Dokania, ŞGdumb: A simple approach

that questions our progress in continual learning,Ť in European Conference on

Computer Vision, pp. 524Ű540, Springer, 2020. 32, 33, 36

104

[101] N. Asadi, S. Mudur, and E. Belilovsky, ŞTackling online one-class incremental

learning by removing negative contrasts,Ť arXiv preprint arXiv:2203.13307,

2022. 46, 77

[102] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, ŞAn empirical

investigation of catastrophic forgetting in gradient-based neural networks,Ť

arXiv preprint arXiv:1312.6211, 2013. 46, 53

[103] A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle, ŞPodnet: Pooled

outputs distillation for small-tasks incremental learning,Ť in Computer VisionŰ

ECCV 2020: 16th European Conference, Glasgow, UK, August 23Ű28, 2020,

Proceedings, Part XX 16, pp. 86Ű102, Springer, 2020. 47

[104] L. Caccia, E. Belilovsky, M. Caccia, and J. Pineau, ŞOnline learned continual

compression with adaptive quantization modules,Ť Proceedings of the 37th

International Conference on Machine Learning, 2020. 47

[105] L. Caccia, R. Aljundi, T. Tuytelaars, J. Pineau, and E. Belilovsky,

ŞReducing representation drift in online continual learning,Ť arXiv preprint

arXiv:2104.05025, 2021. 47, 48, 50, 51, 53, 56

[106] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,

ŞUnsupervised learning of visual features by contrasting cluster assignments,Ť

arXiv preprint arXiv:2006.09882, 2020. 49

[107] M. Davari, N. Asadi, S. Mudur, R. Aljundi, and E. Belilovsky, ŞProbing

representation forgetting in supervised and unsupervised continual learning,Ť

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 16712Ű16721, 2022. 53, 75, 76, 77, 78, 80, 81, 82, 88, 89

[108] Y. Bengio, A. Courville, and P. Vincent, ŞRepresentation learning: A review

and new perspectives,Ť IEEE transactions on pattern analysis and machine

intelligence, vol. 35, no. 8, pp. 1798Ű1828, 2013. 53

[109] I. Goodfellow, Y. Bengio, and A. Courville, ŞDeep learning.Ť Book in

preparation for MIT Press, 2016. 53

[110] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ŞImageNet

Large Scale Visual Recognition Challenge,Ť International Journal of Computer

Vision (IJCV), vol. 115, no. 3, pp. 211Ű252, 2015. 53, 59, 61, 69

105

[111] X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. W. Teh, and

R. Pascanu, ŞTask agnostic continual learning via meta learning,Ť arXiv

preprint arXiv:1906.05201, 2019. 54

[112] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, ŞEmbracing change: Continual

learning in deep neural networks,Ť Trends in cognitive sciences, 2020. 54

[113] E. Oyallon, ŞBuilding a regular decision boundary with deep networks,Ť

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 5106Ű5114, 2017. 54

[114] M. D. Zeiler and R. Fergus, ŞVisualizing and understanding convolutional

networks,Ť in European conference on computer vision, pp. 818Ű833, Springer,

2014. 54, 57

[115] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, ŞLearn to grow: A

continual structure learning framework for overcoming catastrophic forgetting,Ť

in International Conference on Machine Learning, pp. 3925Ű3934, PMLR, 2019.

55, 76

[116] A. Rosenfeld and J. K. Tsotsos, ŞIncremental learning through deep

adaptation,Ť IEEE transactions on pattern analysis and machine intelligence,

vol. 42, no. 3, pp. 651Ű663, 2018. 55, 76

[117] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.

Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al.,

ŞOvercoming catastrophic forgetting in neural networks,Ť arXiv preprint

arXiv:1612.00796, 2016. 55, 74, 77, 90

[118] F. Zenke, B. Poole, and S. Ganguli, ŞImproved multitask learning through

synaptic intelligence,Ť in Proceedings of the International Conference on

Machine Learning (ICML), 2017. 55

[119] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, ŞVariational continual

learning,Ť arXiv preprint arXiv:1710.10628, 2017. 55

[120] F. Huszár, ŞOn quadratic penalties in elastic weight consolidation,Ť arXiv

preprint arXiv:1712.03847, 2017. 55, 60, 61, 82, 86, 91

[121] I. J. Myung, ŞTutorial on maximum likelihood estimation,Ť Journal of

mathematical Psychology, vol. 47, no. 1, pp. 90Ű100, 2003. 55, 77

106

[122] C. V. Nguyen, A. Achille, M. Lam, T. Hassner, V. Mahadevan, and S. Soatto,

ŞToward understanding catastrophic forgetting in continual learning,Ť arXiv

preprint arXiv:1908.01091, 2019. 55

[123] G. Arora, A. Rahimi, and T. Baldwin, ŞDoes an LSTM forget more than a

CNN? an empirical study of catastrophic forgetting in NLP,Ť in Proceedings

of the The 17th Annual Workshop of the Australasian Language Technology

Association, (Sydney, Australia), pp. 77Ű86, Australasian Language Technology

Association, 4Ű6 Dec. 2019. 55

[124] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, ŞSimilarity of neural network

representations revisited,Ť in International Conference on Machine Learning,

pp. 3519Ű3529, 2019. 55, 57, 68

[125] V. V. Ramasesh, A. Lewkowycz, and E. Dyer, ŞEffect of scale on catastrophic

forgetting in neural networks,Ť in International Conference on Learning

Representations, 2022. 55, 64, 65

[126] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, ŞMomentum contrast for

unsupervised visual representation learning,Ť arXiv preprint arXiv:1911.05722,

2019. 56, 58

[127] D. Hu, Q. Lu, L. Hong, H. Hu, Y. Zhang, Z. Li, A. Shen, and J. Feng, ŞHow

well self-supervised pre-training performs with streaming data?,Ť arXiv preprint

arXiv:2104.12081, 2021. 56

[128] A. Krizhevsky, G. Hinton, et al., ŞLearning multiple layers of features from tiny

images,Ť tech. rep., University of Toronto, 2009. 59, 76, 81, 86

[129] P. Chrabaszcz, I. Loshchilov, and F. Hutter, ŞA downsampled variant

of imagenet as an alternative to the cifar datasets,Ť arXiv preprint

arXiv:1707.08819, 2017. 59, 81

[130] A. Quattoni and A. Torralba, ŞRecognizing indoor scenes,Ť in Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 413Ű420,

IEEE, 2009. 59, 61, 69

[131] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,

and P. Perona, ŞCaltech-UCSD Birds 200,Ť Tech. Rep. CNS-TR-2010-001,

California Institute of Technology, 2010. 59

107

[132] M.-E. Nilsback and A. Zisserman, ŞAutomated Ćower classiĄcation over a large

number of classes,Ť in Proceedings of the Indian Conference on Computer

Vision, Graphics and Image Processing, Dec 2008. 59, 61

[133] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, ŞThe Caltech-

UCSD Birds-200-2011 Dataset,Ť Tech. Rep. CNS-TR-2011-001, California

Institute of Technology, 2011. 61, 69

[134] I. Loshchilov and F. Hutter, ŞDecoupled weight decay regularization,Ť arXiv

preprint arXiv:1711.05101, 2017. 71, 72

[135] R. Caruana, S. Lawrence, and L. Giles, ŞOverĄtting in neural nets:

Backpropagation, conjugate gradient, and early stopping,Ť Advances in neural

information processing systems, pp. 402Ű408, 2001. 71

[136] I. Loshchilov and F. Hutter, ŞSgdr: Stochastic gradient descent with warm

restarts,Ť arXiv preprint arXiv:1608.03983, 2016. 71

[137] K. Simonyan and A. Zisserman, ŞVery deep convolutional networks for large-

scale image recognition,Ť arXiv preprint arXiv:1409.1556, 2014. 72

[138] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, ŞThe sketchy database: learning

to retrieve badly drawn bunnies,Ť ACM Transactions on Graphics (TOG),

vol. 35, no. 4, pp. 1Ű12, 2016. 73

[139] D. Ha and D. Eck, ŞA neural representation of sketch drawings,Ť arXiv preprint

arXiv:1704.03477, 2017. 73

[140] N. Asadi, M. Davar, S. Mudur, R. Aljundi, and E. Belilovsky, ŞPrototype-

sample relation distillation: Towards replay-free continual learning,Ť 2023. 74

[141] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,

C. Liu, and D. Krishnan, ŞSupervised contrastive learning,Ť Advances in Neural

Information Processing Systems, vol. 33, pp. 18661Ű18673, 2020. 75, 77, 78

[142] M. De Lange and T. Tuytelaars, ŞContinual prototype evolution: Learning

online from non-stationary data streams,Ť in Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 8250Ű8259, 2021. 75, 79

[143] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., ŞMatching networks for

one shot learning,Ť Advances in neural information processing systems, vol. 29,

2016. 76

108

[144] H. Cha, J. Lee, and J. Shin, ŞCo2l: Contrastive continual learning,Ť in

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pp. 9516Ű9525, 2021. 77

[145] M. De Lange and T. Tuytelaars, ŞContinual prototype evolution: Learning

online from non-stationary data streams,Ť arXiv preprint arXiv:2009.00919,

2020. 77

[146] Y. Tian, D. Krishnan, and P. Isola, ŞContrastive representation distillation,Ť

arXiv preprint arXiv:1910.10699, 2019. 77

[147] J. Zhu, S. Tang, D. Chen, S. Yu, Y. Liu, M. Rong, A. Yang, and

X. Wang, ŞComplementary relation contrastive distillation,Ť in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 9260Ű9269, 2021. 77

[148] K. Javed and F. Shafait, ŞRevisiting distillation and incremental classiĄer

learning,Ť in Asian conference on computer vision, pp. 3Ű17, Springer, 2018.

77

[149] T. Barletti, N. Biondi, F. Pernici, M. Bruni, and A. Del Bimbo, ŞContrastive

supervised distillation for continual representation learning,Ť in International

Conference on Image Analysis and Processing, pp. 597Ű609, Springer, 2022. 77

[150] G. Wu, S. Gong, and P. Li, ŞStriking a balance between stability and plasticity

for class-incremental learning,Ť in Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 1124Ű1133, 2021. 77, 82, 86, 87, 91

[151] F. Zhu, X.-Y. Zhang, C. Wang, F. Yin, and C.-L. Liu, ŞPrototype augmentation

and self-supervision for incremental learning,Ť in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 5871Ű5880, 2021.

77

[152] W. Park, D. Kim, Y. Lu, and M. Cho, ŞRelational knowledge distillation,Ť

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 3967Ű3976, 2019. 77

[153] M. Boudiaf, J. Rony, I. M. Ziko, E. Granger, M. Pedersoli, P. Piantanida,

and I. B. Ayed, ŞA unifying mutual information view of metric learning:

cross-entropy vs. pairwise losses,Ť in European conference on computer vision,

pp. 548Ű564, Springer, 2020. 79

109

[154] H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, and T. Moon, ŞSs-il:

Separated softmax for incremental learning,Ť in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pp. 844Ű853, October

2021. 79

[155] L. Yu, B. Twardowski, X. Liu, L. Herranz, K. Wang, Y. Cheng, S. Jui, and

J. v. d. Weijer, ŞSemantic drift compensation for class-incremental learning,Ť

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 6982Ű6991, 2020. 86

[156] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ŞImagenet classiĄcation

with deep convolutional neural networks,Ť in Advances in neural information

processing systems, pp. 1097Ű1105, 2012. 86

[157] M. Mermillod, A. Bugaiska, and P. Bonin, ŞThe stability-plasticity dilemma:

Investigating the continuum from catastrophic forgetting to age-limited learning

effects,Ť 2013. 87, 88, 89

[158] S. Dohare, A. R. Mahmood, and R. S. Sutton, ŞContinual backprop: Stochastic

gradient descent with persistent randomness,Ť arXiv preprint arXiv:2108.06325,

2021. 88

110

