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ABSTRACT 

Framework for Multi-Purpose Utility Tunnel Location Selection Considering Social Costs 

 

Kelechukwu Tersoo Genger, Ph.D. 

Concordia University, 2023 

 

The unsustainable way of burying utilities has resulted in difficulties in regular maintenance, which 

is one of the main reasons for the poor state of these utilities. Accessing these utilities through 

open-cut excavation leads to detrimental socioeconomic and environmental impacts, which can be 

quantified as social costs incurred during the asset's lifecycle. To reduce social costs, synchronized 

interventions of collocated assets (e.g., water and sewer pipes and pavements) can minimize 

excavations in a specific street segment over time for preventive maintenance. Few studies have 

prioritized street segments based on the socioeconomic impacts from intervention activities, such 

as street closures. Additionally, synchronized interventions are not a long-term solution as they do 

not eliminate the need for future excavations. 

A more sustainable solution is the Multi-Purpose Utility Tunnels (MUTs), as they integrate all 

underground utilities in one accessible tunnel. MUTs eliminate the need for future excavations and 

their associated costs, as well as the resulting socioeconomic impacts. Meanwhile, both the 

synchronized interventions and the MUT are not generally practiced. Although several MUTs have 

been implemented in different parts of the world, their locations have either been politically 

influenced or selected to preserve heritage sites. In some cases, MUTs are built to take advantage 

of some opportunities, such as a newly developed area. Nevertheless, choosing the street segments 

for MUTs is affected by several criteria with different spatial characteristics. Combining these 

characteristics and managing their trade-offs determine the ranking of alternative MUT locations. 

Therefore, a systematic approach for MUT location selection that is based on the spatial 

characteristics of the criteria, as well as the lifecycle costs of each alternative is needed. 

Furthermore, the social cost of maintaining, repairing, or replacing utility assets during 

synchronized interventions or MUT implementation can be reduced by predicting the closure of 

street segments based on the need for intervention determined by asset conditions.  

The main goal of this research is to develop a framework for MUT location selection considering 

social costs. To achieve this goal, the specific objectives are: (1) Establishing the relationships 

between intervention activities and their socioeconomic impacts; (2) Classifying the conditions of 
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different spatially collocated underground municipal assets (i.e., pavements, water and sewer 

pipes) within a segment; (3) Determining street closures based on the synchronized or 

unsynchronized interventions at the segment level; (4) Developing a multi-criteria decision-making 

model (MCDM) for MUT location selection; and (5) Optimizing the location selection of MUTs 

considering agency and social lifecycle costs.  

The main contributions developed in the context of this thesis are: (1) Developing a geospatial 

visual analytics model that supports the understanding of the socioeconomic impacts of 

unsynchronized intervention practices; (2) Developing an ML method for systematic condition 

classification of different spatially collocated underground municipal assets (i.e., pavements, water 

and sewer pipes) within a segment. To the best of our knowledge, there is no existing research 

about determining street closures based on the combined conditions of spatially collocated 

municipal infrastructure assets at the segment level; (3) Applying a heuristic approach for 

determining street closures based on the synchronized or unsynchronized interventions at the 

segment level induced by combining the interventions of individual assets within each segment; 

(4) Defining a comprehensive MCDM model that identifies and quantifies the criteria that 

influence the MUT location selection using subjective and objective methods; (5) Defining a multi-

objective optimization model that was able to identify the potential MUT locations and a multi-

year plan for MUT implementation that offers lifecycle savings; (6) Developing a systematic 

method for comparing the results of the MUT optimization with those of the synchronized 

interventions. This comparison is based on the agency and social LCCs, and the network 

deterioration generated by the MUTs and synchronized method of utility interventions at the 

network and segment levels; and (7) Developing three regression models for capturing the social 

cost of both alternatives at the network and segment levels. 
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CHAPTER 1.    INTRODUCTION 

1.1 Background 

Traditionally, most urban utilities, such as water, sewer, and gas pipes, and telecommunication 

and electricity cables, are laid underground. In addition, cable networks have extensive networks 

aboveground on poles and towers. In most cases, the layout of these utilities makes interventions 

not only challenging but expensive for both utility providers and utility consumers (i.e., social 

cost) (Roberts et al., 2006; Valdenebro and Gimena, 2018). Utility providers face challenges in 

increasing the lifespan of these assets against damages ranging from natural disasters and 

manmade risks to deterioration over time. To increase the lifespan and ensure service continuity 

of utility assets, preventive maintenance and repair are needed. In the case of underground utilities, 

such as sewer pipes, potable water pipes, etc., these maintenance and repair activities, as well as 

network expansions, often require open-cut excavations. These interventions lead to the closure of 

streets and local businesses, noise pollution, air pollution, the diversion of traffic from the 

intervention area, and the reduction in the life of the pavement and walkways (Hao et al., 2012; 

Parker, 2008).  

All around the world, utility interventions account for a large number of pavement excavations. In 

the United Kingdom, an average of 1.5 million road excavations causing partial and complete 

street closures occur yearly, resulting in an estimated loss in earnings (e.g., loss of street parking 

revenue, social costs, dry holes related to utility excavations, etc.) of £5.5B per year (Caffoor, 

2019). Several cities in North America have also quantified the number of pavement excavations. 

For example, the District of Columbia (Washington DC) estimated over 6,000 excavations in 2000. 

Meanwhile, based on the requests for excavation permits made by utility owners in Montreal, 

7,000 requests for excavations were made by telecom, gas, Commission des services électriques 

de Montréal (CSEM), and electricity transmission and distribution companies from 2017 to 2019. 

These figures paint a picture of the number of interventions needed to install, maintain, or expand 

existing utility networks and the number of resulting business closures, increased travel delays, 

tax revenue losses, service interruptions, and air pollution (Oum, 2017). This recognition of the 

need for excavation for utility interventions, especially in urban centers, reiterates the need for 

coordinated and sustainable utility interventions and placement.  

Incorporating sustainability into the early stages of utility intervention planning ensures the 

implementation of optimal solutions through innovative strategic planning (Maleti et al., 2014; 
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Morioka and Monteiro De Carvalho, 2016). A sustainability-based utility interventions plan aims 

at achieving the right balance between reducing the socioeconomic and environmental impacts of 

the utility interventions and the cost of the interventions (de Magalhães et al., 2019). In the short 

term, some level of sustainability can be achieved by conducting synchronized integrated 

interventions.  

One main reason street segments undergo repeated excavations is unsynchronized interventions 

(Palsat et al., 2020; Wilde et al., 2002). An example is when a recently reconstructed or 

rehabilitated pavement of a street segment later experiences a pipe failure. These repeated 

excavations mean the user costs (e.g., traffic congestion because of street closures) associated with 

this street segment are increased due to both events. The negative socioeconomic impacts of 

unsynchronized utility interventions can be minimized by implementing a holistic form of utility 

intervention.  

In most cases, the maintenance and management of utility networks are performed in isolation 

from one another even though these systems operate as a system of systems (Clarke et al., 2017). 

Due to this interdependency, there is a need to holistically coordinate their intervention activities 

(Rashedi and Hegazy, 2016). This coordination means factoring in variables (e.g., the type and 

number of utility assets under a road segment, the remaining service life (RSL) of an asset, the 

nature of the required intervention, deterioration level, budget, social cost implications, etc.) into 

the decision-making process. 

Synchronized utility interventions are coordinated interventions that simultaneously target 

pavement interventions with private and municipal underground utility interventions (Abu-Samra 

et al., 2018). Although these interventions are practiced in several countries, e.g., Canada, Norway, 

Sweden, and the USA (Braun, 2012; Chacon and Normand, 2016; FCM and NRC, 2003; 

Hafskjold, 2010; Hafskjold and Bertelsen, 2008), some asset owners conduct their interventions 

in insolation from one another as their respective budgets are not coordinated. The effect of 

synchronizing intervention activities includes reducing project costs by eliminating repeated repair 

costs (FCM and NRC, 2003) and the associated social costs (Abu-Samra et al., 2018). Due to these 

benefits, synchronized interventions are encouraged (FCM and NRC, 2003). Practices such as 

corridor/street segment (i.e., part of a street between two intersections) upgrades are seen as 

opportunities for synchronized interventions, where the road is repaved when underground utility 

interventions are completed (FCM and NRC, 2003). Although this practice promotes coordination 

and reduces the frequency of utility interventions, there is a possibility of premature replacement 
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of utility assets before the end of their useful life. In addition, from the perspective of sustainable 

urban development, the practice of synchronized interventions does not guarantee the elimination 

of future excavations on the same street segment in which collocated assets exist. Also, it relies on 

adequate collaboration between utility owners, which seldom exists among most utility owners.  

To evaluate the conditions of these assets, most researchers have focused on asset-level condition 

assessment, prediction, or classification (Harvey and McBean, 2014; Kumar et al., 2018; Tavakoli 

et al., 2020). However, treating municipal assets as interrelated systems and synchronizing their 

interventions is paramount to reducing user costs. Therefore, multi-asset conditions should be 

determined at the segment level.  

However, in the long term, under certain conditions (e.g., high utility density, traffic density, etc.), 

a major shift can be made toward the sustainable placement of underground utilities using multi-

purpose utility tunnels (MUTs). MUTs offer a sustainable, long-term alternative by hosting 

utilities in an underground tunnel capable of housing several utilities in one or more compartments. 

In so doing, utility assets in the MUT are less vulnerable to damage, thus, increasing their lifespan 

(Laistner and Laistner, 2012). Also, expansion, inspection, and maintenance of the underground 

utilities can be executed all year round with the possibility of eliminating social costs. Other 

advantages of implementing MUTs include a significant reduction in utility intervention costs, 

reduced utility strikes and improved planning of underground space (Luo, Alaghbandrad, et al., 

2020).  

Despite these advantages, there is a general lack of enthusiasm towards building MUTs in most 

countries, as several barriers exist in the widespread acceptance and adoption of MUTs. Some of 

the challenges include the high cost of construction (Canto-Perello et al., 2013; Hunt et al., 2012), 

the dominance of the bury-it and forget-it approach (Laistner, 2012), safety and security risks 

related to the incompatibility of utilities (Calvo-Peña et al., 2006; Canto-Perello and Curiel-

Esparza, 2013; Hunt et al., 2014a), reluctant cooperation between utility owners (Hunt and Rogers, 

2005), lack of a standardized method of construction (Hunt et al., 2014a), lack of political will 

(Curiel-Esparza et al., 2004), and the business model of utility owners (Luo, 2019a).   

The short-term cost of construction is a significant setback in implementing MUTs. Most decision-

makers focus mainly on direct costs and pay little attention to long-term social and economic 

impacts in their decision-making process (Hojjati et al., 2018). When faced with cheaper 

alternatives, such as the traditional method of burying utilities and trenchless technologies, the 

decision, in most cases, does not favor the adoption of MUTs. However, when considering the 
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lifecycle costs of these alternatives, the MUT is a better solution because it offers a sustainable 

and resilient solution to hosting utilities (Valdenebro and Gimena, 2018; Wang et al., 2018; Yang 

and Peng, 2016).  

MUT location selection is vital because the decision-makers who are willing to consider the 

construction of MUTs are faced with a limited budget versus the high initial cost of construction 

of the MUT. In some countries (e.g., China), the decision of where to build MUTs is mainly 

political (Wang, 2018). In other set-ups (e.g., private establishments, universities, etc.), the 

decision is less complicated. Having a systematic process of identifying the most suitable locations 

(i.e., street segments) based on predetermined criteria will ensure that constructing the MUTs in 

the selected locations provides the maximum benefits of MUTs to utility owners and consumers 

as well as to the utility assets.  

1.2 Problem Statement  

This section expounds on the problems of interest:  

P1: Limited research related to the visualization and interpretation of the relationships between 

multi-asset interventions and their socioeconomic implications: To aid the decision-making 

process, insights can be drawn from the visualization and interpretation of the multivariate datasets 

that capture the relationship that exists between the interventions of spatially collocated assets. 

The use of methods such as Visual analytics (VA) has been effectively applied to understand the 

phenomena associated with individual infrastructure assets. However, this method of individual 

asset analysis is inefficient when considering synchronized or multi-asset interventions. 

P2: Need for a systematic process for predicting street closures based on the conditions of spatially 

collocated assets at the segment-level: From the social cost point of view, based on the scale and 

number of utility assets maintained, repaired, or replaced during synchronized interventions or 

MUT implementation, there is a need to either partially or completely close street segments. 

Therefore, predicting the closure of street segments based on the need for intervention (determined 

by the asset conditions) can provide a window to plan street closures to reduce socioeconomic 

impact while offering a more accurate estimate of the intervention duration (Oum, 2017). 

Accurately classifying the conditions of the spatially collocated assets improves the planning and 

budgeting phase of synchronized interventions, as well as MUT location selection, which will lead 

to better planning/decision-making for utility owners, city planners, business owners around the 

intervention area, transit departments, and the public. 
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P3: Limited research focusing on MUT location selection: Several MUTs have been implemented 

in different parts of the world. Their locations have either been politically influenced or selected 

to preserve heritage sites or to meet the conditions of a newly developed city (Valdenebro and 

Gimena, 2018; Wang, 2018). Nevertheless, selecting the location in an existing city under street 

segments is affected by several criteria that have different spatial characteristics. Combining these 

characteristics and managing the trade-offs that exist between them determine the ranking of the 

alternative street segments. Previous research has achieved MUT location selection using the 

Analytic Hierarchical Process (AHP) to determine the weights of eight criteria and the subsequent 

ranking of alternative street segments using Weighted Linear Combination (WLC) (Luo, et al., 

2020). However, AHP does not factor in interrelated criteria (Saaty, 2004). Using the Analytic 

Network Process (ANP) eliminates this drawback (Saaty, 2004). In terms of problem structure, 

AHP structures an MCDM problem in the form of a hierarchy, while ANP uses a network structure 

factoring in dependencies between different criteria. Furthermore, the weights obtained from 

applying both AHP and ANP are subjective weights that are based on expert judgments, which are 

in most cases biased to favor each expert's area of expertise. In addition, using subjective methods 

that factor in dependencies, and objective methods that objectively assign weights to the criteria 

will affect the outcome of the decision-making process. Although, the use of subjective and 

objective weights will offer different perspectives from the decision-maker's point of view and 

from the data itself.  

On the other hand, past research has compared the LCC of direct burial versus the MUT for built-

up areas with existing underground utility infrastructure. The literature shows that it is generally 

accepted that the MUT can be a more sustainable alternative to the traditional method of burying 

underground utilities (Canto-Perello et al., 2016; Valdenebro et al., 2019; Hunt et al., 2014), 

especially on street segments with high utility and traffic densities. Studies have used agent-based 

simulations, breakeven point analysis, etc., to show how the MUT in the long term, has the 

potential to be more economically sustainable than the synchronized method of utility intervention 

for buried utilities. However, these researchers used single isolated projects in their analyses. 

Therefore, more research is needed to apply optimization techniques to find the optimal MUT 

locations at the network and segment levels. 
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1.3 Research Objectives 

The main goal of this research is to develop a framework for MUT location selection considering 

social costs. The specific objectives of this research regarding the problem statements given in 

Section 1.2 are as follows:  

1. Developing a visual analytics model to establish the relationships between intervention 

activities and their socioeconomic impacts visually and statistically. This model identifies 

critical areas where the current infrastructure practices will potentially result in a relatively 

high socioeconomic impact.  

2. Developing a machine learning (ML) method for systematic condition classification of 

different spatially collocated underground municipal assets (i.e., pavements, water and sewer 

pipes) within a segment. 

3. Applying a heuristic approach for determining street closures based on the synchronized or 

unsynchronized interventions at the segment level induced from combining the interventions 

of individual assets within each segment.  

4. Developing a multi-criteria decision-making model for the spatial analysis for location 

selection of MUTs. 

5. Developing a multi-objective optimization model for selecting potential locations of MUTs 

considering agency and social lifecycle costs.  

1.4 Thesis Organization 

This thesis is structured as follows: 

Chapter 2 Literature Review: This chapter presents a critical review of several areas including: (1) 

the history, benefits, and implementation challenges of MUTs; (2) MUT location selection and the 

influencing criteria; (3) MCDM techniques; (4) underground asset condition classification and 

prediction; (5) synchronized utility intervention; (6) optimizing synchronized interventions (7) 

social costs; and (8) visual analytics. The chapter also summarizes the identified research gaps 

based on the limitations in the literature.  

Chapter 3 Research Framework: This chapter expounds on the different modules that make up the 

proposed methodology.   

Chapter 4 Geospatial Visual Analytics for Utility Intervention Decision-Making: This chapter 

presents an analysis of the relationship between the socioeconomic impacts of the current 
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infrastructure intervention practices and the conditions of two municipal assets (i.e., water pipes 

and pavements).  

Chapter 5 Street Closure Prediction Based on the Combined Conditions of Spatially Collocated 

Assets: This chapter is centered on the prediction of street closures using the discrete classification 

of the conditions of the three municipal assets. The conditions are used to determine asset-level 

intervention strategies, which are combined to obtain segment-level interventions. The nature of 

the segment-level interventions determines the required street closures. The applicability of the 

proposed model is demonstrated through a case study.  

Chapter 6 Multi-Criteria Decision-Making for MUT Location Selection: In this chapter, the 

selection of the locations for the placement of MUTs is accomplished using MCDM methods. The 

criteria that affect the placement of MUTs are identified and weighed using both subjective and 

objective MCDM techniques. Furthermore, ranking of the potential street segments is achieved by 

combining the weights and criteria scores of the segments. A case study demonstrating the 

implementation and applicability of the proposed method is also presented. 

Chapter 7 Multi-Objective Optimization for Selecting Potential Locations of MUT Considering 

Social Costs: This chapter expounds on the selection of street segments for MUT implementation 

based on the segments that offer agency and social lifecycle cost savings. This component of the 

research is achieved using two optimization models that optimize the agency and social lifecycle 

costs for the synchronized intervention and MUT. The outputs of both models are compared at the 

network and segment levels to identify the streets with lifecycle cost savings. The implementation 

and applicability of this proposed model are demonstrated through a case study.  

Chapter 8 Summary, Conclusions, Contributions, and Future Work: This chapter summarizes this 

research, and the contributions are highlighted. In addition, the limitations of this research are also 

stated, and recommendations for future research are suggested.  
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CHAPTER 2.    LITERATURE REVIEW1 

2.1 Introduction 

The MUT location selection problem is complex and multifaceted. This chapter focuses on 

exploring the literature related to MUT location selection and the synchronized method of utility 

intervention, which is considered the best practice. The chapter begins by discussing the history of 

MUTs, their implementation in North America and Europe, as well as their advantages and 

implementation challenges. Moreover, the chapter delves into MUT planning, highlighting the 

criteria considered for location selection from the MCDM perspective. This section emphasizes the 

techniques used in weighting criteria applied in this research. 

Following this, the chapter examines scholarly works related to optimizing both the MUT location 

selection and the synchronized method of utility interventions. In addition, the chapter showcases 

literature on the application of machine learning algorithms in the decision-making process of 

several asset management practices. Furthermore, the chapter provides an analysis of the social 

cost indicators used in this research to estimate the negative socioeconomic impacts of underground 

utility asset intervention. The literature also discusses the application of geospatial visual analytics 

as a way of portraying the relationship between the intervention activities and their socioeconomic 

impacts. 

Overall, this chapter provides a comprehensive overview of the literature related to MUT location 

selection and synchronized utility intervention. It highlights the challenges and opportunities 

associated with these practices, and the potential benefits of incorporating cutting-edge 

technologies such as machine learning, optimization algorithms, and geospatial visual analytics. 

2.2 Multi-Purpose Utility Tunnels 

MUT, as defined by APWA, (1997), is “any system of underground structures containing one or 

more utility services which permit the placement, renewal, maintenance, repair or revision of the 

service without the necessity of making excavations; this implies that the structure is traversable 

by people and, in some cases, traversable by some sort of vehicle as well”. 

1 This chapter is partially based on the following journal paper: Luo, Y., Alaghbandrad, A., Genger, T.K. and Hammad, A. (2020), 

“History and recent development of multi-purpose utility tunnels”, Tunnelling and Underground Space Technology, Pergamon, 1 

September, doi: 10.1016/j.tust.2020.103511. 
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According to Canto-Perello and Curiel-Esparza (2013), MUT is “an underground utilidor 

containing one or more utility systems, permitting the installation, maintenance, and removal of 

the system without making street cuts or excavations.” 

2.2.1 MUT advantages and implementation challenges  

2.2.1.1 MUT advantages 

According to Luo et al. (2020) the advantages of MUTs are classified into two groups: advantages 

to utility owners and to users. 

The benefits to the utility owners are as follows: (1) Significant reduction of agency costs; (2) 

Improved inspection and maintenance of utilities; (3) Minimized damage and corrosion of utilities; 

(4) Cost savings for future upgrades; (5) significant reduction in accidental injuries and death 

associated with underground utility interventions; (6) Significant reduction of municipal revenue 

loss resulting from street closures; and (7) Improved underground space planning. 

The societal and environmental benefits to the users are as follows: (1) Significant reduction in 

intervention-related traffic congestions; (2) Improved health and environment; (3) Improved 

quality of service; (4) Elimination of street closure for utility interventions; and (5) Major reduction 

in the temporary closures of recreational facilities and businesses around the intervention area. 

2.2.1.2 MUT implementation challenges 

There is a general lack of enthusiasm in developed countries, as several barriers exist in the 

acceptance and adoption of MUTs. Some of the challenges include; the high cost of construction 

(Canto-Perello et al., 2013; Hunt et al., 2012), the bury-it and forget-it approach (Laistner, 2012), 

incompatibility of utilities (Calvo-Peña et al., 2006), reluctant cooperation between utility owners 

(Hunt and Rogers, 2005), security and safety (Canto-Perello et al., 2013; Hunt et al., 2014), lack 

of a standardized method of construction (Hunt et al., 2014), and the business model of utility 

owners (Luo, 2019).  

2.2.2 History of MUTs 

MUTs have been in existence since the 19th century. The first countries to implement the use of 

MUTs were France (1850s) (Cano-Hurtado and Canto-Perello, 1999; Canto-Perello and Curiel-

Esparza, 2001; Wang et al., 2018), England (1860s)(Canto-Perello et al., 2009; Laistner and 
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Laistner, 2012; Rogers and Hunt, 2006), and Germany (1893) this shown in Figure 2-1(a). There 

was a lag from 1893 to about 1920 in the construction of MUTs. Figure 2-1(b) shows that between 

1921 and 1960, several MUTs were constructed in parts of North America (Alaska), Asia (Japan), 

and Europe (France, Germany, Czech, etc.). Figure 2-1(c) shows that from 1961 to 1980, there was 

a rise in the construction of MUTs with a total of about 30 MUTs constructed. During this period, 

about 50% of the world’s MUTs were built in France in cities like Angers, Paris, Rouen, Lyon, etc. 

Following the Utility Tunnel, Law passed in 1963, Japan was able to build approximately 2000 km 

of utility tunnels in 80 Japanese cities (Wang et al., 2018).  

Countries like Belgium, the Czech Republic, Germany, Switzerland, etc., were also involved in the 

construction of MUTs. Subsequently, between 1981 and 2000, the Czech Republic increased the 

construction of MUTs with a total of 10 out of a total of about 36 MUTs constructed worldwide 

during this period. These MUTs were built in cities like Prague, Brno, etc. Japan increased the 

construction of MUTs during this period to about 30% of the world's MUTs. However, countries 

like France and Germany continued to build MUTs. This period also saw the construction of MUTs 

in countries like Norway, Spain, China, and the USA as shown in Figure 2-1(d).  

The 21st century has seen a relative increase in the construction of MUTs in Asia. 80% of the 

world's MUTs are currently being constructed in China as shown in Figure 2-1(e). Countries like 

Israel, Malaysia, India, Qatar, Singapore, and Canada have also implemented MUTs, while 

countries like the Czech Republic, England, USA, have continued to construct MUTs with the 

latter two having MUTs constructed mainly on university campuses, hospitals, private 

establishments, and military installations.  

2.2.3 MUT projects in North America 

The feasibility study carried out by the (American Public Works Association (APWA), 1971) on 

the implementation of utility tunnels concluded that the choice for the construction of MUTs will 

be determined on case-by-case bases. Considering the utilities to be hosted, the cost of construction, 

installation, operation, and maintenance as well as quantifiable and unquantifiable benefits. The 

report also pointed out that economic feasibility is expected to be found only in high-density urban 

areas. Also, the report concluded that MUTs will be better suited for the distribution of utility 

services as opposed to the transmission of services. As a way of quantifying the economic 

justification of MUTs, three different types of demonstration projects were recommended; (a) An 
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urban renewal project with municipally-owned utilities to reduce the problems of regulation; (b) 

New town/community projects, where the planning and construction of the utility network are 

fused into the overall plan of the new community; and (c) An urban street that will undergo 

complete reconstruction and relocation of its existing utilities into the tunnel. However, these 

projects have never been realized because of the lack of interest from the stakeholders. 

On the other hand, a large number of university campuses, hospitals, military installations, and 

airports in North America appreciate the advantages of adopting MUTs in the long term (Laistner 

and Laistner, 2012). One reason for this adoption is that these bodies own and operate their utility 

infrastructure (Hunt et al., 2012). Furthermore, barriers such as utility coordination, security, 

funding, and operation of the utilities hosted in the MUTs are easily overcome in this case. 

However, in the public sector, very little work has been done in recent years related to MUTs in 

North America. Most states in the US are interested in MUTs according to a survey (Kuhn et al., 

2002). However, security and operational issues are the main concerns for undertaking MUT 

projects. 

Figure 2-2 is a map of some of the universities with MUTs on their campuses. Information 

regarding the utilities hosted, date of construction, etc. is difficult to acquire because most 

universities are not willing to share this data. Most of the data used in the generation of Figure 2-2 

was retrieved from the websites of the universities.  

The University of Rochester constructed tunnels that connect campus buildings for easier all-year-

round maintenance in the 1920s and 1930s. These tunnels were designed to be linked to the 

basements of their respective buildings (Chris, 2015). Central Connecticut University received the 

Connecticut Engineering Excellence Award in 2005 for the construction of a 2000-foot 

underground utility tunnel costing about $13.5 M. The MUT was built in 2002 to connect 36 

buildings to an energy center, hosting water, sanitary sewage, stormwater, natural gas, 

telecommunication, and electricity (BVH Integrated Services, 2018a). The University of 

Massachusetts is currently in the process of constructing a campus wide MUT estimated at $148 

M for new facilities and infrastructure construction. The MUT is to host hot and chilled water 

pipes, domestic water and fire protection pipes, electricity, and telecommunication cables, and 

sanitary and gas pipes (BVH Integrated Services, 2018b). In Canada, the University of Alberta has 

a series of underground tunnels on-campus that convey utilities such as telecommunication cables, 

steam and chilled water, domestic water, natural gas, compressed air, and electricity cables. These 
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MUTs cover over 14 km in length with a wide section enough to accommodate the movement of 

small motorcycles (Justin and Ryan, 2012).  

  

(a) 19th Century (3 MUTs). 

 

(b) 1921 to 1960 (11 MUTs). 

  
(c) 1961 to 1980 (30 MUTs). (d) 1981 to 2000 (36 MUTS). 

 

 
(e) 2001 to 2019 (100 MUTs). 

 

Figure 2-1. Location of MUTs built at different periods. 
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Figure 2-2. Universities with MUTs in North America. 

Although the development of MUT projects in North America has been limited to some institutions 

such as universities, the awareness of their importance as a viable solution for achieving 

sustainability and resilience for cities has been emphasized by a report published by the US 

National Research Council (National Research Council., 2013). It was mentioned in this report that 

“The viability, value, and benefits of utilidors may be effectively communicated with (1) 

development of workable scenarios for secure multi-utility facilities; (2) development of workable 

scenarios for effective transitioning from current configurations; (3) lifecycle cost-benefit analyses 

comparing separate and combined utility corridors, and (4) demonstration projects”.  

In the context of a research project carried on by the authors in the city of Montreal, Canada, the 

authors conducted a survey (Luo, 2019a) to understand the specific barriers to implementing MUTs 

from the point of view of private utility companies. The survey showed that cable utility owners 

are presently comfortable with the low cost of maintaining their above-ground cable networks and 

hosting their underground cable networks in ducts. They claim that the benefit of hosting their 

cables in MUTs is limited because they usually do not need excavation for repair activities. For 

example, Bell Canada owns its underground cable ducts while Videotron and Hydro Quebec rent 

ducts belonging to the Electric Services Commission of Montreal at a low cost. Due to the large 

difference between the cost of hosting these utilities in cable ducts and the initial construction cost 

of MUTs, these cable utility providers do not see the direct benefit of implementing MUTs. 

Therefore, incentives, regulations, and cost-sharing agreements between these private entities and 

the municipalities should be negotiated in a way to achieve a certain compromise among them.  
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2.2.4 MUT projects in Europe 

Several MUTs have been constructed in Europe, with countries like the Czech Republic, France, 

and Germany having the highest number of MUTs. Different countries in Europe built MUTs as a 

solution to one or more challenges, for example, France and the UK both built MUTs to stop the 

spread of cholera. Subsequently, the UK later built MUTs to eliminate traffic congestion caused 

by excavations for utility repairs. The Czech Republic on the other hand built MUTs to reduce the 

excavation impact in historical areas. 

Figure 2-3 shows some MUTs constructed in Europe, depicting the utilities hosted as well as the 

shapes of the MUTs. The color of each segment represents the different utilities present in the 

MUTs. The map shows the different shapes of the MUTs ranging from rectangular and circular to 

the arch-topped shape (Cano-Hurtado & Canto-Perello, 1999; Canto-Perello & Curiel-Esparza, 

2001; Laistner & Laistner, 2012; Makana, Jefferson, Hunt, & Rogers, 2014; Rogers & Hunt, 2006; 

Yang & Peng, 2016). The location and size of each segment used in representing the MUTs on the 

map do not represent the precise locations or actual dimensions of the utilities in the MUTs. 

Figure 2-4 represents the relative lengths of the MUTs constructed in Europe. Spain and Russia 

have implemented the longest MUTs of about 100 km built in 1940 and 1943, respectively.  

2.2.4.1 Examples of MUT projects in Europe 

MUT projects in two European cities (Prague and Barcelona) are selected as examples. The reason 

for selecting Prague is that it has one of the most extensive MUT networks in Europe. On the other 

hand, the MUT network in Barcelona is interesting because it was built in a short period as part of 

the preparation for the summer Olympic Games in 1992. 

(a) MUT projects in Prague, Czech Republic 

The first MUTs, also known as collectors, were built in the 1970s in Prague’s satellite housing 

estates, with the oldest MUT commissioned in the residential district North Town- Ďáblice in 1971. 

Several other MUTs were built in the 1970s and 1980s in several cities. The overall length of MUTs 

in Prague is about 90 km. These MUT networks were built and financed by the City of Prague. 

MUTs are classified based on their mode of construction and according to their location and 

capacity. Figure 2-5 shows the MUT classification in Prague. Driven MUTs in Prague’s city center 

could not be excavated from the surface because of the built-up areas, which posed a challenge in 
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terms of construction technology. As a solution, the tunnels were driven at depths of 5 to 45 m 

using micro tunneling techniques. This was in contrast to MUTs built on the outskirts of Prague 

and in newly built areas using the open-cut method. The 1st category MUTs (feeding traversal 

MUTs) are intended to serve either a state-wide or city-wide area, although they are yet to be 

constructed in Prague. The 2nd and 3rd category MUTs also have been constructed as supply MUTs 

and distribution MUTs respectively (Chmelar & Sila, 2006; Kolektory Praha, n.d; Pokorný, 2017). 

The MUTs were built to house utilities such as water mains of all pressure ranges, hot water, and 

steam pipes, natural gas pipes, electricity supply, telecommunication cables, sewage, and rain-

water networks. Figure 2-6 shows a typical cross-section of Category 2 MUTs. High-quality 

dispatch control and monitoring centers are achieved in Prague’s MUT networks using state-of-

the-art computers with several visualization systems unparalleled in the world (ITUSA, n.d.; 

Sochurek, 2006). 

 

Figure 2-3. Cross-section, shape, and utilities hosted in MUTs in Europe. 
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Figure 2-4. Lengths of MUTs in Europe. 

MUTs

Construction Method Location and Capacity

Driven MUTs

• Built at great depths 

using fully 

mechanized (TBM) or 

non-mechanized 

shield

• Not connected to 

street networks

• Charted along 

optimum routes

Excavated MUTs
• Buried in shallow 

common trenches 

linked to street 

networks

• Built mainly using 

prefab panels

• Partly monolithic

2
nd

 Category MUTs

• 25-35 m beneath 

street level

• Transport to districts 

and municipal 

networks

• No direct links with 

supplied objects on 

the surface

3
rd

 Category MUTs

• 6-11 m beneath 

street level

• Distribution or service 

collectors

• Transport to buildings

 

Figure 2-5. MUT classification in Prague (adapted from (Kolektory Praha, 2014). 
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Figure 2-6. Typical cross-section of Category 2 MUTs (Praha Kolektory, 2018). 

(b) MUT Projects in Barcelona, Spain 

In preparation for the 1992 Olympic Games in Barcelona, The Rondes MUT was constructed under 

a 36 km ring road that encircles a densely built-up area. The MUT houses all electrical and 

communication cables originally buried under the road. Other utilities such as public lighting cables 

owned by the local authorities were later hosted in the MUT. Figure 2-7 is a map of the main MUTs 

constructed in Barcelona. This network of tunnels includes Barcelona’s Rondes and Glòries Square 

Tunnels (36 km), Besòs Tunnels: Santa Coloma de Gramenet (1.7 km), Sant Adrià de Besòs (2.4 

km), and Tarragona St. Tunnel (0.6 km) (Gimeno, 2019). The Rondes transport tunnel has both 

rectangular (2 x 2.5 m) and circular (2.4 m in diameter) sections running under different main 

roads. Each MUT is built with reinforced concrete prefabricated pieces, 20 cm thick. Four brackets 

per module are used for the installation of corbels and the transportation of utilities. The utilities 

hosted range from electrical and telecom cables to city council services. 

The control and monitoring of Barcelona’s MUT network are achieved through automated devices 

connected by an optical fiber network. Smoke and gas sensors trigger acoustic alarms while 

temperature detectors control the ventilation system. These along with several control systems 

ensure the optimal operation of the MUT (Gimeno, 2019).   
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Figure 2-7. Existing MUTs in Barcelona (Gimeno, 2019). 

2.3 MUT Planning 

2.3.1 MUT location selection 

MUT planning is a vital component in underground space planning. Although several MUTs have 

been constructed over the past century, and more recently in some cities in China (Wang et al., 

2018) and the Middle East (Elsawah et al., 2016), details of the planning processes used in 

determining the optimal location for MUTs are vague. This is partly because local priorities and 

conditions are the main drivers of MUTs. 

A review conducted by Wang et al. (2018) on the applications of MUTs in China shows that 

significant progress is being made in the construction of MUTs. In China, the MUT location and 

routing are dependent on the status of utilities, the development of new urban settlements, and 

government policies. The factors influencing these decisions are geology, existing utility pipelines, 

existing city metro systems, and reserved underground space plans for development. Some MUTs 

are placed under street segments to fit with the city's design. Examples are the ring-type utility 

route designs in Zhuhai, Xiaoguwei, and Baiyin. These MUTs were built based on the radial nature 
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of the road network in these cities. In this research (Wang et al. (2018)) no mention was made of 

the use of any computing or spatial analysis in location selection.  

2.3.1.1 MCDM-based MUT location selection 

The work of Bobylev (2011) is an example of using the Analytical network process (ANP) in the 

decision-making process of selecting underground construction technologies for utility placement. 

The selection process was based on the environmental impact of each of the alternative 

technologies (open-cut excavation, MUT, and micro tunnelling). The ANP network was made up 

of four clusters: Benefits, Opportunities, Cost, and Risks (BOCR). These clusters were used in 

grouping 23 criteria. The result of the sensitivity analysis showed that the MUT had a relatively 

robust performance compared to the other alternatives when all the BOCR coefficients are equal. 

An AHP-Delphi model was proposed (Curiel-Esparza and Canto-Perello, 2013) to aid decision-

makers in planning urban underground spaces. This was carried out to select utility placement 

techniques through a hierarchical model made up of seven criteria and five alternatives: traditional 

trenching, common conduit, and MUTs (flat MUT, shallow MUT, and deep MUT). Based on seven 

criteria, the result of the model showed that deep MUT had the highest global priority, and therefore 

it was chosen as the best alternative.  

In terms of MUT construction plans, Liu et al. (2018) used five criteria: geological condition, 

environmental benefits, initial construction cost, number of different pipes, and maintenance cost. 

They account for the technical, economic, and environmental factors used in evaluating MUT 

construction plans for multiple energy systems. Each criterion’s combined weight is determined 

using experts' opinions based on the minimum deviation method. The radar chart method was used 

to determine the evaluation result by using the polygon area of the chart to represent the 

effectiveness of the construction plan.  

Regarding MUT placement location selection, Luo et al. (2020) proposed an AHP-based MCDM 

model using eight criteria to determine the priority of ten alternative MUT placement locations. 

The ranking of the ten alternative street segments was achieved using the weighted linear 

combination (WLC), which combined the criteria evaluation scores derived from the spatial 

attributes of the ten alternatives, and criteria weights computed using AHP.  
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2.3.1.2 Criteria for MUT location selection 

Table 2-1 contains several publications regarding the criteria and methods used in selecting the 

locations for the placement of MUTs. In addition, the table also shows the criteria and methods 

used in the current research. Over the years, the papers related to the spatial decision-making 

process related to MUT location selection are relatively fewer compared to other areas of MUT 

planning and implementation.  

MUT location selection is complicated due to several factors that should be included in the 

planning phase, such as population density, existing utilities, metro lines, roads, utility 

reconstruction, excavation planning, etc. According to (Jiang and Wang, 2016), old city MUTs 

should consider the scale of existing cables and pipes, including priority and quantity.  

According to (DHURD.Liaoning, 2016) and (MHURD, 2015a), route planning factors are as 

follows: (1) main users (power plants, water plants), (2) main road intersections, intersections of 

roads and railways or rivers, (3) road attributes (road level, road width, roads which affect city 

landscape), (4) existing utility pipelines and cables, (5) metro lines, (6) road, metro and utility 

reconstruction and excavation planning, (7) land-use and intensity (commercial, residence, 

industrial, vegetation, etc.), (8) underground space utilization (underground complex, underground 

roads), (9) central area & important plaza, (10) population, (11) geological and hydrological 

conditions (slopes, precipitation, etc.). These factors are vital since they are related to the city's 

conditions, especially for old cities.  

According to (Zhang, 2016a) and (Gao, 2010), the planning of Xiamen MUT projects in China is 

based on the following factors: (1) the selection of locations in high-density areas; (2) the planning 

of relocation of high voltage cables, which need excavation; and (3) the selection of locations with 

future metros or other underground planning.  

In 2013, the State Council of the People’s Republic of China decided to start MUT construction 

nationwide, and it identified 25 pilot cities in 2015 and 2016. The pilot city qualifications consist 

of: (1) high construction density areas with a population of more than 200,000, (2) heavy 

transportation, (3) high demand for underground space development and utilization, such as for 

subways or cables, (4) MUT length more than 10 km, (5) availability of utility types more than 

three, (6) suitable geological and hydrological conditions, (7) financial conditions and whether 

public-private partnership (PPP) investment model is reasonable, and (8) new areas at first and then 

important old areas (MHURD, 2015b, 2015c).  
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The framework described in (Makana et al., 2016) is based on sustainability science and resilience 

theory for evaluating the potential implementation of MUTs for both present and future socio-

ecological scenarios incorporated as performance indicators. This was achieved by quantifying the 

spatial and temporal impacts of MUTs, including the impacts on sub-surface environments. 

The overall MUT location selection is based on three aspects (Peng et al., 2018): (1) High-density 

areas such as commercial areas, and high-density underground areas. This aspect can be 

represented by population density, land use, locations near public facilities and high-rise buildings, 

etc.; (2) Areas with high traffic volume and high utility density; and (3) Areas with construction or 

repairs of roads, utilities, metro, underground roads/passages, underground commercial areas, etc. 

This aspect can be represented by the number of expected excavations of repair works, 

underground development projects, etc. 

MUT location selection can significantly affect the lifecycle cost, method of construction, type of 

utilities hosted in the MUT, environmental impacts, social costs accrued during construction, etc. 

From Table 2-1 it can be noticed that the current research has a more comprehensive list of criteria 

that represent different aspects that affect MUT location selection. In addition, the only other study 

that has applied spatial MCDM methods for MUT planning is (Makana et al., 2016). However, the 

focus of this study was the sustainable use of urban underground space rather than the location 

selection of MUT. 
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Table 2-1. Related works on MUT implementation. 
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(Gao, 2010)   ✔  ✔  ✔       Qualitative MUT design 

(Bobylev, 2011) ✔   ✔      ✔   Functionality, 
integration, 

flexibility, 
vulnerability, 
etc. 

ANP The selection of 
underground 

construction 
techniques 

(Curiel-Esparza and 
Canto-Perello, 2013) 

            Urban 
environment, 
governance, 

security, etc. 

AHP, 
Delphi 

The selection of 
underground utility 
placement techniques 

(MHURD, 2015b, 
2015d) 

✔ ✔ ✔   ✔ ✔       Qualitative Selection of pilot 
cities 

(Jiang and Wang, 2016)      ✔        Qualitative General 

(DHURD.Liaoning, 
2016) 

✔ ✔ ✔ ✔ ✔ ✔ ✔      Metro lines, 
main road 
intersections, 
etc. 

Qualitative Route planning 

(Zhang, 2016b)   ✔  ✔  ✔       Qualitative General 

(Makana et al., 2016)   ✔ ✔  ✔    ✔ ✔  Groundwater 
depth, real 
estate value, 
etc. 

ANP, GIS Sustainable use of 
urban underground 
space 

(Peng et al., 2018) ✔  ✔ ✔  ✔ ✔ ✔ ✔     Qualitative  

(Luo et al., 2019) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔      AHP, GIS, 
WLC  

MUT location 
selection 

Chapter 6 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  AHP, 

ANP, 
Entropy, 
TOPSIS 

MUT location 
selection 
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2.3.2 MUT economic analyses  

Quantitative studies compared the LCC of burying utilities and the MUT. For example, 

Alaghbandrad and Hammad (2020) used the breakeven point to determine the payback period 

which, is in turn used to determine how economical the MUT is compared to the synchronized 

intervention. Wu et al. (2020) used an agent-based simulation to evaluate the socioeconomic 

benefits of implementing the MUT rather than the buried utilities. Hunt et al. (2014) used the cost-

benefit analysis to show how the utility density, the number of avoided interventions, the type of 

MUT, the location, and the number of excavations is related to the economic benefits of MUTs. In 

addition, urban locations with the optimal combination of these factors make MUTs more 

economically sustainable than suburban or undeveloped locations in general. However, even in 

urban locations, certain street segments might offer more benefits (e.g., cost savings, reduced 

intervention-related traffic density, etc.) than others.  

All these studies show that, even though the MUT has a higher initial cost of construction and 

implementation, the LCC of the buried utility is greater than the LCC of the MUT when the social 

cost is considered. Furthermore, the results of the research conducted by (Li et al., 2019) 

corroborate that MUTs are more sustainable. Heyermann et al. (2022) conducted a lifecycle cost-

benefit analysis (LCCBA) to determine the long-term value of MUTs compared to the open-cut 

method of utility intervention for an isolated street segment. Using a 100-year planning period, the 

researchers concluded that the benefit-cost ratio is 1.29 with a payback period of 47 years. In 

addition, Genger et al. (2021) used multicriteria decision-making (MCDM) to assign subjective 

and objective weights to a combination of criteria (e.g., traffic density, utility density, population 

density, etc.) that influence the location selection of MUTs. However, this study involved a limited 

number of preselected urban locations. Table 2-2 summarizes most of the related research on the 

economic analysis of the MUT and the traditional method of buried utilities.  

From the table, all the previous studies were achieved using single isolated projects. Furthermore, 

in terms of quantifying the social LCC benefit, only Wu et al. (2020) considered one social cost 

indicator (vehicle delay) at the project level. In essence, the selection of potential locations should 

consider the agency and social LCC at network and segment levels for the MUT compared with 

the synchronized intervention, which is currently considered the best practice (FCM and NRC, 

2003). 
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Table 2-2. Research related to economic analysis. 

Reference Compared Alternatives Social Cost Components Method Application 

scope 

Objectives 

MUT Synchronized 

Intervention/ 

Buried Utilities 

Vehicle 

Delay  

Vehicle 

Maintenance 

and Operation 

Air 

Pollution 

Huck et al. 

(1976) 
✔  

  
 Economic 

analysis 

Project 

level 
MUT  

implementation  

Hunt et al. 

(2014) 
✔ ✔   

 Cost-benefit 

analysis 

Project 

level Breakeven point 

Li et al. 

(2019) 
✔   

  Cost-benefit 

analysis 

Project 

level 
Economic viability 

Alaghbandrad 

and Hammad 

(2020) 
✔ ✔   

 
Lifecycle cost 

analysis 

Project 

level Breakeven point 

Wu et al. 

(2020) 
✔ ✔ ✔  

 Agent-based 

simulation 

Project 

level 
LCC 

Heyermann et 

al. (2022) 
✔ ✔   

 
LCCBA 

Project 

level 
MUT benefits 

Genger et al. 

(2021) 
✔    

 
MCDM 

Segment 

level 
Location selection 

Chapter 7 ✔ ✔ ✔ ✔ ✔ 

Multi-

objective 

optimization 

Segment and 

network level Location selection  

2.4 Synchronized Utility Intervention 

The general level of deterioration of underground utility assets, budget constraints, intervention 

methods, and the socioeconomic impacts of the intervention methods that require excavations have 

given rise to the need for synchronized intervention for spatially collocated assets. However, 

synchronized interventions are not practiced in several countries, they are encouraged (FCM and 

NRC, 2003). In addition, several municipalities in Canada currently conduct integrated 

interventions, also known as corridor rehabilitation or upgrades.  

Table 2-3 is a summary of some municipalities currently practicing synchronized interventions and 

the different methods used to ensure the synchronization of their interventions. Based on the table, 

methods of achieving synchronization are driven by factors that are specific to the city or area in 

question. These factors include community or political policies and council infrastructure approach 

which varies across different areas. These practices are also limited by the presence of privately 

owned and managed utility assets that share the right-of-way. Most of these assets are subject to 

short-term planning periods and are not under the control of the municipalities. In addition, these 

methods of synchronization are most effective in the context of regular or timed preventive 

maintenance and are least effective when corrective interventions are required.  
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Table 2-3. Municipalities currently practicing synchronized interventions.  

City/Province/ Country Method of achieving 

synchronization 

Assets Reference 

Sudbury, Ontario. Canada Formal internal and 
external committees 

 

Pavement, water and 
sewer pipes, private 

utility companies 

(Braun, 2012; Chacon 

and Normand, 2016; 

FCM and NRC, 2003; 

Hafskjold, 2010; 

Hafskjold and 

Bertelsen, 2008) 

Winnipeg, Manitoba. 

Canada 

Kelowna, British 

Columbia. Canada 

Development of multi-

year plans 

Pavement, water, and 

sewer pipes 

 Surrey, British Columbia. 

Canada 

Coordination of 

development-related 

works 
 

Yellowknife, Northwest 

Territories. Canada  

Hamilton, Ontario. Canada 

Montreal, Quebec. Canada Restrictive practices 

e.g., permit 
requirements, no-cut 

rules, etc. 

(Chacon and 

Normand, 2016) 

Middletown, Ohio. USA Condition-based 
corridor renewal 

(Braun, 2012) 

Bergen, Norway Penalty systems or 

permit requirements, 

long-term planning, 
portal for planned 

infrastructure 

activities, etc. 

(Hafskjold, 2010) 

Trelleborg, Sweden Corridor rehabilitation (Hafskjold and 

Bertelsen, 2008) 
Trondheim, Norway Corridor rehabilitation Pavement, water and 

sewer pipes, electrical 

cables 

(Hafskjold, 2010) 

 

2.4.1 Optimization for synchronized utility intervention 

Effectively executing synchronized interventions of spatially collocated assets requires addressing 

the inevitable tradeoffs in these interventions (Carey and Lueke, 2013). Tradeoffs exist in the form 

of conflicting stakeholder objectives that include budgets, acceptable performance and risk levels, 

minimal social cost thresholds, etc. (Soliman, 2018). Tradeoffs could also appear in the form of 

stakeholder objectives at the network level or project level. Network-level objectives are centered 

around prioritizing and scheduling the interventions, while project-level objectives focus on 

selecting the type/strategy of interventions (Uddin et al., 2013). Saad et al. (2018) discussed the 
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tradeoffs for spatially collocated assets as follows: (1) different rates of deterioration, (2) different 

service lives, (3) limited budget, (4) different intervention methods and strategies, and (5) varying 

performance levels.  

Several methods have been proposed to find a solution that balances the tradeoffs in synchronized 

buried utility interventions. They include the use of mathematical optimization techniques (e.g., 

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO)) to find near-optimal/optimal 

solutions to either single or multi-objective problems (Elshaboury and Marzouk, 2022). Ideally, 

these methods simultaneously consider the tradeoffs at the network or project levels.  

Some of the objectives include minimizing LCC or the risks associated with failures in the 

network/project level while operating above a performance threshold (Elsawah et al., 2014), 

maximizing performance, and respecting the budget constraint (Soliman, 2018). Other frameworks 

have focused on bringing forward or deferring the interventions (Osman, 2016; RCCAO, 2020; 

Shahata, 2013), minimizing repair time and resources, and maximizing Return on Investment 

(ROI), safety, and resilience (Dong and Frangopol, 2016; Frangopol and Liu, 2007). Saad et al. 

(2018) proposed a concurrent bilevel optimization model that combines both the network and 

project levels into a single mathematical model. The results showed that the model could deal with 

conflicting stakeholder objectives while reaching a near-optimum solution regarding infrastructure 

fund allocation. Zangenehmadar et al. (2020) formulated a budget-based optimization model for 

planning intervention activities on water distribution networks over a 20-year planning period. The 

model aims to maximize the budget allocation by reducing the variance between maintenance costs 

and the budget. 

Similar to network and project-level tradeoffs, segment-level tradeoffs focus on the combination 

of prioritizing/scheduling segments, as well as determining the type/strategy of intervention unique 

to a segment. Researchers (e.g., Carey and Lueke, 2013) applied a GA to optimize the annual 

segment score, which is the summation of the scores assigned to each segment’s condition and 

criticality indices. The higher the scores, the higher the intervention priority assigned to the 

segment. Marzouk and Osama (2017) optimized the intervention strategies (repair, rehabilitation, 

replacement, or do nothing) at the segment level by calculating the risk index derived from the 

probability of failure and the consequence of failure. The objective functions include minimizing 

the risk and LCC while maximizing the level of service and performance. In addition to optimizing 

the LCC, Abu-Samra et al. (2018) optimized the social costs, physical state, and replacement value 



27 

 

for the synchronized interventions of water and road networks. Their research aimed to balance the 

tradeoff in scheduling segment interventions by either bringing forward or delaying intervention 

activities by using a combination of dynamic programming and goal optimization. Similarly, Abu-

Samra et al. (2020) developed a trilevel framework to optimize segment intervention scheduling 

by minimizing repair time and LCC while maximizing segment health.  

2.5 Multi-Criteria Decision-Making Techniques 

The MCDM process consists of several methods that can handle the trade-offs between different 

alternatives based on multiple criteria. The goal is to identify one or more alternatives that meet 

the decision-maker's preference subject to criteria that are often conflicting with each other (French 

and Roy, 1997; Yoon and Hwang, 1981). When considering the spatial nature of the criteria that 

make up the MUT location selection problem, MCDM alone is insufficient (Grimaldi et al., 2017). 

Therefore, combining MCDM techniques with GIS offers better visualization of the problem and 

alternatives as structured spatially referenced data through the creation of thematic maps that 

improve spatial decision-making (Malczewski, 2007).  

The combination of GIS and MCDM is well established, and its application includes areas related 

to utility infrastructure management, underground space planning, the ranking of construction 

techniques, urban spatial planning, suitability analysis, and location and site selection. (Peng and 

Peng, 2018) presented a method for evaluating urban underground space (UUS) resource planning 

using GIS and AHP along with other mathematical tools. The result was ranking the UUS resources 

based on the criteria that represent urban planning, construction suitability, and environmental 

conditions. In the area of water infrastructure planning, (Grimaldi et al., 2017) analyzed the 

relationship between regulations and planning using a combination of GIS and ANP. Some authors 

have used a combination of MCDM methods to prioritize criteria or rank the alternatives. (Yildirim 

et al., 2017) proposed a spatial MCDM method for routing a gas transmission pipeline using the 

weights obtained from applying AHP and the ranking of alternative routes using simple additive 

weighting (SAW) TOPSIS. Abdel-Basset et al., (2021) presented a hybrid MCDM method, a 

combination of AHP and PROMETHEE II for the location selection of offshore wind energy 

stations. They argued that the need for the combinations of MCDM techniques was due to the 

incomplete utilization of information and loss of data in the decision-making process. 
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2.5.1 Analytic hierarchy process 

The AHP method uses a weighted aggregation. The weights of the criteria and alternatives are 

obtained using pairwise comparison based on the decision maker's preferences. The AHP method 

was introduced by (Saaty, 1982). The steps include: (1) Creating a hierarchical model which 

consists of the goal, criteria, sub-criteria, and alternatives, (2) A pairwise comparison of main 

criteria and sub-criteria, (3) Deriving the scale of weights and checking the consistency index (C.I.) 

using Equation 2-1, (4) Ranking the options (Saaty, 1987, 2002).  

𝐶. 𝐼. =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

(2-1) 

 where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of the pairwise comparison matrix, and n is the size of the 

comparison matrix. 

2.5.2 Analytic network process 

ANP is a generalized form of AHP used in MCDM. Unlike AHP which structures the decision 

problem into a hierarchy consisting of goals, criteria, and alternatives, ANP uses a network 

structure (Saaty, 2004). Nevertheless, both MCDM techniques use a pairwise comparison process 

that signifies a judgment using a fundamental scale. In the ANP, the strength of dominance is 

derived by answering two questions: (a) Given a criterion, which of the two elements is more 

dominant with respect to that criterion; (b) Which of the two elements influences the third element 

more with respect to a criterion? 

A unique feature of ANP is the ability to accommodate the dependencies (inner dependencies and 

outer dependencies) that may exist within and between clusters in the network. The steps involved 

in ANP are as follows: (1) creating a network model showing all the clusters, the criteria contained 

in each cluster, the relationships (dependencies/feedback), and the alternatives; (2) pairwise 

comparison to identify the strength of dominance between elements of the network; (3) formation 

of supermatrices (unweighted, weighted, and limit matrix) and estimating the consistency ratio 

(CR); and (4) Prioritizing the component of the ANP network based on the output of the limit 

matrix W, calculated using Equation 2-2 (Saaty, 2004). 
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𝐿𝑖𝑚
𝑘→∞

1

𝑁
∑ 𝑊𝑘

𝑁

𝑘=1

 
(2-2) 

where k= 1, 2, … the raising power of W. 

2.5.3 Technique of order preference similarity to the ideal solution (TOPSIS) 

In TOPSIS, it is assumed that there is an ideal (positive-ideal) solution and a non-ideal (negative-

ideal) solution for every problem. Therefore, the ranking aims at finding the solution(s) that have 

the shortest distance to the positive-ideal solution (PIS) and the farthest distance from the negative 

ideal solution (NIS). Thus, the PIS, also known as the Zenith, maximizes the benefit criteria and 

minimizes the cost criteria. In contrast, the NIS, also known as the Nadir, maximizes the cost 

criteria and minimizes the benefit criteria (Behzadian et al., 2012; Papathanasiou and Ploskas, 

2018).  

The standard TOPSIS consists of seven steps which are: (1) Constructing a decision matrix, (2) 

normalizing the decision matrix, (3) calculating the weighted decision matrix, (4) selecting the PIS 

and NIS (5) calculating the distance between each alternative and PIS and NIS, (6) determining the 

relative closeness to the ideal solution, and (7) ranking the alternatives (Yoon and Hwang, 1981). 

2.5.4 Entropy weights 

Also known as Shannon's Entropy, the method of entropy weights was initially developed from 

statistical thermodynamics and transferred to information systems by Shannon (1948). The concept 

of Shannon's Entropy is used to find the measure of uncertainty associated with the source of an 

information. This measure of uncertainty is calculated using the probability theory (Shannon, 

1948). By using the discrimination that exists between the criteria performance values, the relative 

importance of each criterion in the MCDM problem is determined. The greater the entropy value 

of a criterion, the smaller the weight, and therefore the lesser the relative importance of the criterion 

in the decision-making process (Jat et al., 2008).  

The combination of Entropy weights and other ranking methods has been applied in various areas 

of research. (Dehdasht et al., 2020) proposed an Entropy-weighted TOPSIS combination for the 

selection of key drivers in sustainable lean construction. (Shad et al., 2017) used Entropy-derived 

weights to increase the reliability of the weights derived from AHP in developing a green building 

assessment tool. (Lee and Chang, 2018) compared the ranking of renewable energy sources by 
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applying four different MCDM ranking methods with Entropy weights. Some authors have used 

Entropy weights to eliminate the use of subjective weights (Chen, 2020). Others used them to 

handle imprecise judgments by decision-makers (Wang and Lee, 2009). 

The steps required to obtain the Entropy weights for a set of alternative criteria values are presented 

as follows (Wang et al., 2017). For a set of m alternatives 𝐴𝑖 (𝑖 = 1,2 … , 𝑚) and n corresponding 

criteria values 𝐶𝑗(𝑗 = 1,2 … , 𝑛), the performance matrix [𝑎𝑖𝑗]𝑚×𝑛  is: 

𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] 

Step 1: Perform linear normalization on the performance matrix: 𝑟𝑖𝑗 is the normalized value 

that implies the probability of occurrence. 

𝑟𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑚
𝑖=1

, 𝑖 = 1, 2, … , 𝑚; 𝑗 = 1, 2, … , 𝑛 (2-3) 

Step 2: Calculate the entropy. 

𝑒𝑗 = −
1

𝑙𝑛 𝑚
∑ 𝑟𝑖𝑗 𝑙𝑛 𝑟𝑖𝑗

𝑚

𝑖=1

 , 𝑖 = 1, 2, … , 𝑚; 𝑗 = 1, 2, … , 𝑛  
(2-4) 

where 𝑒𝑗 is the normalized entropy value; 𝑙𝑛 𝑟𝑖𝑗=0 if  𝑟𝑖𝑗 = 0 

Step 3: Calculate the relative importance weights of each criterion. 

𝑤𝑗 =
1 − 𝑒𝑗

∑ 1 − 𝑒𝑗
𝑛
1

, 𝑗 = 1, 2, … , 𝑛 
(2-5) 

where 1 − 𝑒𝑗 is the degree of information divergence of criterion j. 

2.6 Underground Asset Condition Prediction and Classification 

The above sections focused on the application of MCDM and optimization techniques in the MUT 

location selection problem. As part of the location selection problem, identifying street segments 

for implementing either the MUT or synchronized intervention can also be achieved using 

condition-based asset intervention. Machine learning (ML) algorithms have been applied to the 

decision-making process for several asset management practices, including predicting or 

classifying the conditions of utility assets for maintenance, repair, and replacement strategies, 

failure rate prediction, identification of contributing factors, intervention prioritization, etc. The 
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following sections focus on the literature related to applying different ML algorithms in 

predicting/classifying various aspects of underground utility assets and pavement networks. 

2.6.1 Pipe condition prediction and classification 

ML-based intervention priority has been achieved at a network level by combining ML models 

with expert opinion (Kerwin et al., 2020), survival analysis (Rahbaralam et al., 2020), etc. While 

at an asset level, other methods have been used to determine failure impact (Weeraddana et al., 

2019), the time of failure of each asset (Jafar et al., 2010), etc. Failure prediction and condition 

classification are two common areas used to ascertain the need for an intervention. Regarding 

failure prediction, (Weeraddana et al., 2019) predicted the probability of water mains failure using 

a supervised ML algorithm known as random forest regression (RFR). (Jafar et al., 2010) used six 

artificial neural networks (ANN) models to predict the failure of urban water mains. Concerning 

condition classification, several researchers have classified asset conditions as binary 

classifications (i.e., good or bad) (Harvey and McBean, 2014; Kumar et al., 2018; Laakso et al., 

2018; Mohammadi et al., 2019; Rahbaralam et al., 2020; Robles-Velasco et al., 2020; Tavakoli et 

al., 2020; Winkler et al., 2018). The misclassification errors resulting from the use of binary 

classification models may increase the economic loss of the remaining service life of assets 

prematurely replaced. When binary models are deployed, the misclassification errors will lead to 

the scheduled replacement of pipes in relatively good condition (i.e., good pipes misclassified as 

bad). In other words, some pipes scheduled for replacement (true positives) might still be in an 

“acceptable” condition and their premature replacement will mean a loss of remaining service life. 

These losses can be significant when considering large networks and budgetary constraints. 

However, some researchers (i.e., (Caradot et al., 2018) and (Hernández et al., 2021)) classified the 

conditions of sewers into three classes signifying good, medium, and bad pipes using random forest 

and support vector machine (SVM)-based models. They did so at the asset and network levels for 

management and inspection objectives. 

Several combinations of features have been used to achieve either pipe failure prediction or 

condition classification. The accuracy of the ML model is mainly dependent on the available 

features. Moreover, processes related to selecting ML algorithms, data preprocessing, 

hyperparameter tuning, and data quality also contribute to the model’s accuracy (Kuhn and 

Johnson, 2013). As shown in Table 2-4, utility network features (e.g., pipe material, length, 
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diameter, installation date, pipe location (e.g., right-of-way, jurisdiction, etc.), sewer pipe type 

(e.g., sanitary, combined), etc.) and external data (e.g., soil, pressure, depth) are commonly used in 

failure prediction and condition classification ML problems. Other features not listed in Table 2-4 

but used by some authors include the number of connections and valves, rainfall, soil resistivity, 

pipe thickness, water table, slope, etc. Also, Table 2-4 summarizes some related research conducted 

in applying ML algorithms to the condition prediction of both water and sewer pipes. It includes 

details of the ML model used, the features considered, and the output of the ML algorithm.  

2.6.2 Pavement condition prediction and classification 

Planning an optimal synchronized intervention requires prior information on pipe conditions 

alongside pavement conditions. The use of regression analysis (linear, nonlinear, and multiple 

linear), Bayesian models, and probabilistic models in predicting asset conditions are often limited 

by ambiguous, imprecise, and incomplete input data (Flintsch and Chen, 2004). Despite these 

limitations, ML algorithms have achieved relatively high accuracy when dealing with large sample 

sizes and a balanced dataset (Harvey and McBean, 2014). For example, (Bashar and Torres-Machi, 

2021) performed a meta-analysis to compare the performance of regression-based models to three 

ML algorithms (ANN, random forest (RF), and support vector machine (SVM)) in the prediction 

of the international roughness index (IRI) values. The results showed that the ML algorithms 

outperformed the traditional models, with the RF having the highest performance (R2 = 0.995) 

while the regression-based models achieved a performance of R2 = 0.791. 

 In addition to tabular data, ML algorithms have also been applied to images (i.e., computer vision) 

to detect pavement surface defects (e.g., potholes, cracks, etc.) (Hoang and Nguyen, 2018). Also, 

pavement condition rating has been determined using other indicators such as the IRI, Pavement 

Condition Index (PCI), Road Quality Index (RQI), Present Serviceability Index (PSI), etc. For 

example, Nabipour et al. (2019) used PCI values to predict the remaining service life for flexible 

pavement. Guo et al. (2021) used an ensemble learning model to predict IRI and rut depth. Some 

researchers focused on predicting one of the indicators and subsequently assigning the pavement 

condition based on the value of that indicator (Abdelaziz et al., 2020; Bashar and Torres-Machi, 

2021; Kirbaş and Karaşahin, 2016; Zhou et al., 2021; Ziari et al., 2015).  

Different ML algorithms and features have been used in IRI prediction. For example, Marcelino et 

al. (2021) developed a pavement performance prediction model using the Random Forest (RF) 
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algorithm to predict IRI for five and ten years using the Long-Term Pavement Performance 

database. Marcelino et al. (2020) predicted IRI values as an indicator to determine pavement 

performance using a modified version of the TrADABoost algorithm, The researchers used several 

features, including Annual Average Daily Traffic (AADT), pavement thickness, annual 

precipitation, average temperature, etc. Table 2-5 summarizes the research on applying ML 

algorithms toward pavement condition prediction and classification. It also includes the significant 

features considered in the ML process, the model used, and the output of the ML algorithms based 

on the problem stated by the researchers. The majority of the researchers used ANN to predict the 

IRI and set the pavement condition based on the predicted value. Even though relationships exist 

between several performance indicators (Arhin et al., 2015a), using one indicator alone may not 

sufficiently capture the condition of a street segment, considering that different standards exist for 

acceptable indicator thresholds (Arhin et al., 2015b). Regardless of the output of the ML model, 

most of the researchers used a combination of pavement features such as age, IRI, distress type, 

and thickness, along with features that represent the climate, such as precipitation and temperature. 

However, the values representing climate features are assumed to have a negligible variation when 

considering the research scale; therefore, they have not been used in this research. Few researchers 

considered the PCI, road class, and distress severity, and none of the listed researchers used the 

pavement surface area. Furthermore, some researchers used other features not included in the table, 

such as the number of potholes, soil condition, evaporation, etc.  

2.7 Machine Learning Algorithms 

This section contains brief details of the machine learning algorithms used in this research. A 

voting-based ensemble is used mainly because of the statistical, computational, and 

representational advantages of using multiple base learners (Dietterich, 2000). In this research, 

base learners consist of RF, gradient-boosted trees (GBT), and deep learning (DL) algorithms.  

Both RF and GBT are tree-based methods that apply greedy splitting rules, and DL uses stochastic 

gradient descent. These three base learners are mainly selected because RF is known to perform 

well even with statistical noise data, and GBT performs well even with imbalanced data. DL 

simultaneously uses all the available features in the dataset, unlike RF and GBT, which improve 

their accuracy by using random subsets of the features as new trees are added. Also, the output of 
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both the RF and GBT is relatively easy to interpret, unlike the black-box nature of DL algorithms. 

Details on each ML algorithm are elaborated on in the subsequent sections. 

2.7.1 Random forest algorithm 

The RF algorithm works by growing a specified number (ensemble) of unpruned decision trees, 

subsequently combined into a single forest of trees. Using bootstrap aggregation, the model uses 

sub-sets of randomly sampled instances from the original dataset to generate a tree. These subsets 

are then replaced based on the number of trees in the ensemble, and the aggregation of the resulting 

classifier is obtained using the majority vote of each tree classification. However, because a 

randomly selected subset of predictors generates each tree, this selection method can lead to poor 

performance in cases where the ratio of relevant predictors to the total number of predictors is low. 

Although the application of ML is problem and data-dependent, it should be noted that tuning 

parameters, such as the number of randomly selected predictors, number of trees in the ensemble, 

minimum leaf node size, etc., may increase the accuracy of an RF model.  

The RF aggregated predictor for a classification problem is shown in Equation 2-6 (Pavlov, 2019).  

ℎ̂𝑅𝐹(𝑥) =
𝑎𝑟𝑔 𝑚𝑎𝑥

1 ≤ 𝑐 ≤ 𝐶
∑ 1ℎ̂(𝑥,𝛩𝑙)=𝑐

𝑞

𝑙=1

 (2-6) 

where ℎ̂𝑅𝐹(𝑥) is the RF classifier for input vector x; 𝛩𝑙 is a vector of random variables that are 

independent and identically distributed used in determining the class c of trees l to q; C is the 

aggregated vote assigned to x; ℎ̂(𝑥, Θ𝑙) is the predictor of tree l. 

2.7.2 Gradient boosted trees 

The GBT algorithm works by sequentially building trees that attempt to compensate for the 

weaknesses of the previous trees until no further improvements are made, or a stopping criterion is 

satisfied (Brownlee, 2019). This nonlinear algorithm improves the model’s accuracy by optimally 

reducing the loss function, referred to as the degree of error, by adding weak learners using additive 

training (Friedman, 2001).  

Similar to the RF algorithm, where samples are randomly drawn, having many trees could overfit 

the model. Increasing the number of trees in a GBT model may also slowly overfit the model. Still, 

sequentially building more trees ensures that the new trees learn and improve from previous trees. 
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However, this increase in trees can be computationally expensive on a large dataset (Brownlee, 

2019). A classification problem with a labeled dataset {𝑥𝑖, 𝑦𝑗}, where 𝑥𝑖 is a subset of input features 

and, 𝑦𝑗 is the target or label {j = 1,2,3…,M}, from training samples {i = 1,2,3…,N}, GBT initially 

fits a DT model (weak learner) 𝐹𝑜 =  ℎ𝑡(𝑥𝑖, 𝑎) where a is a set of parameter values such as the 

splitting variables and the terminal node of the weak learner. As new variables are iteratively added, 

new trees are created such that the loss function L (Equation 2-7) is minimized by applying the risk 

minimization principle. Equation 2-8 shows the output of the GBT classifier (Friedman, 2001).
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Table 2-4. Summary of research applying machine learning to water and sewer pipes.  

Reference 

  

Assets Common Features Considered ML 

Model 

  

Output 

  

W
a
te

r
 

S
ew

er
 

A
g
e 

D
ep

th
 

D
ia

m
et

er
 

F
a
il

u
re

 d
a
te

 

F
a
il

u
re

 r
a
te

 

F
a
il

u
re

 t
y
p

e 

In
st

a
ll

a
ti

o
n

 

d
a
te

 

L
en

g
th

 

P
ip

e 

L
o
ca

ti
o
n

 

M
a
te

ri
a
l 

N
u

m
b

er
 

o
f 

fa
il

u
re

s 

P
re

ss
u

re
 

S
o
il

 

P
ip

e 
T

y
p

e 

Jafar et al. (2010)  ✔   ✔   ✔ ✔       ✔ ✔ ✔ ✔ ✔ ✔   ANN 

Failure 

prediction 

 

Winkler et al. (2018)  ✔   ✔   ✔             ✔ ✔ ✔     BDT* 

Weeraddana et al. (2019)  ✔   ✔   ✔       ✔ ✔     ✔     ✔ RFR 

Mohammadi et al. (2019)    ✔ ✔ ✔ ✔        ✔   ✔     ✔   LGR* 

Rahbaralam et al. (2020)  ✔   ✔   ✔         ✔  ✔   ✔       EGB* 

Robles-Velasco et al. (2020) ✔   ✔   ✔         ✔   ✔ ✔ ✔   ✔ SVC* 

Kerwin et al. (2020)  ✔       ✔ ✔   ✔ ✔ ✔   ✔ ✔   ✔   ANN 

Harvey and McBean (2014)   ✔ ✔ ✔ ✔       ✔ ✔   ✔       ✔ RF* 

Condition 
classification 

Caradot et al. (2018)    ✔ ✔ ✔         ✔ ✔   ✔     ✔ ✔ RF 

Kumar et al. (2018) ✔   ✔   ✔       ✔       ✔ ✔ ✔   GBDT* 

Laakso et al. (2018)    ✔ ✔ ✔ ✔       ✔ ✔   ✔       ✔ RF, BLR* 

Tavakoli et al. (2020)    ✔ ✔ ✔ ✔       ✔ ✔   ✔         RF* 

Hernández et al. (2021)   ✔ ✔ ✔ ✔         ✔ ✔ ✔     ✔ ✔ SVM 

Chapter 5 ✔ ✔ ✔   ✔ ✔ ✔   ✔ ✔ ✔ ✔ ✔     ✔ 
RF, GBT, 
DL, VE 

Notes: ANN: Artificial Neural Networks, BDT: Boosted Decision Tree, BLR: Binary Logistic Regression, DT: Decision Trees, EGB: eXtreme 

Gradient Boosting, GBDT: Gradient-Boosted Decision Tree, LGR: Logistic regression, RF: Random Forest, RFR: Random Forest Regression, SVC: 

Support Vector Classification, SVR: Support Vector Regression, VE: Voting-based Ensemble, * Binary classification 
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Table 2-5. Summary of research related to pavement condition prediction and classification. 

Reference Common Features Considered ML Model Output 
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Gong et al. (2018) ✔ ✔   ✔   ✔      ✔ ✔ ✔ RF IRI prediction 

(Abdelaziz et al., 2020) ✔ ✔       ✔            ANN 

Ziari et al. (2015) ✔     ✔         ✔ ✔ ✔ ✔ ANN 

Marcelino et al. (2020)   ✔   ✔         ✔ ✔ ✔   TrAdaBoost 

Marcelino et al. (2021)   ✔   ✔         ✔ ✔ ✔ ✔ RF 

Zhou et al. (2021) ✔ ✔   ✔   ✔       ✔ ✔   ANN, RNN 

Kirbaş and Karaşahin 
(2016) 

✔                       ANN PCI prediction 

Nabipour et al. (2019)   ✔ ✔     ✔ ✔           SVR RSL 

Guo et al. (2021)   ✔       ✔     ✔ ✔ ✔ ✔ LightGBM IRI, RD prediction 

Piryonesi and El-Diraby 

(2021a) 
✔ ✔ ✔ ✔ ✔       ✔ ✔     GBT, RF, LR IRI, PCI prediction and 

classification 

Hoang and Nguyen (2018) ✔ ✔       ✔     ✔       SVM, ANN, 
RF 

Pavement crack classification 

Chapter 5 ✔ ✔ ✔  ✔  ✔ ✔     RF, GBT, 

DL, VE 

Condition classification 

Notes: ANN: Artificial Neural Networks, GBT: Gradient Boosted Trees, IRI: International Roughness Index, LightGBM: Light Gradient Boost 

Machine, LR: Linear Regression, M&R: Maintenance and Repair, PCI: Pavement Condition Index, RD: Rut Depth, RF: Random Forest, RNN: 

Recurrent Neural Networks, RSL: Remaining Service Life, SVM: Support Vector Machine, SVR: Support Vector Regression, VE: Voting-based 

Ensemble 
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𝐹0(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑗, 𝜌)

𝑁

𝑖=1

 (2-7) 

𝐹𝑇(𝑥) = 𝐹0(𝑥) + ∑ 𝜌ℎ𝑡(𝑥; 𝑎𝑡)

𝑇

𝑡=1

 (2-8) 

2.7.3 Deep learning 

Deep learning (DL) uses stochastic gradient descent with back-propagation to train a multi-layer 

feed-forward ANN (RapidMiner, 2020). The neural network is initialized with the input dataset, 

and the activation function is calculated for each hidden layer while the corresponding weights are 

initialized. Weights are recalculated and aggregated for each hidden layer (Equation 2-9) using 

gradient descent. The output signal is transmitted to the connected neuron until the error is below 

a threshold or the loss function is minimized (Candel and Parmar, 2015). The output signal 𝑓(𝛼) 

which is a nonlinear activation function of the learning rate 𝛼, is transmitted to the connected 

neuron until the error is below a threshold or the loss function is minimized for each training 

example j. Equation 2-10 is the cross-entropy loss function used for a classification problem. Biases 

are added in all the non-output network layers, and the weights linking the biases and the neurons 

determine the output of the network (Candel and Parmar, 2015).  

𝛼 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 (2-9) 

𝐿(𝑊, 𝐵 |  𝑗) = ∑ {𝑙𝑛(𝑜𝑦
(𝑗)

)𝑡𝑦
(𝑗)

+ 𝑙𝑛(1 − 𝑜𝑦
(𝑗)

)(1 − 𝑡𝑦
(𝑗)

)}

𝑦∈𝒪

 (2-10) 

where 𝑤𝑖 is the neuron’s input values, 𝑥𝑖 is the neuron weight, b is the bias which is the threshold 

for a neuron's activation, W = {𝑊𝑖 }1:𝑁−1, 𝑊𝑖  is the weight matrix connecting layers i to i+1, N is 

the number of layers, 𝐵 = {𝑏𝑖}1:𝑁−1, 𝑏𝑖 is the column vector of biases for layer i+1, 𝑗 is a training 

example, y is the output units, 𝒪 is the output layer, 𝑜𝑦
(𝑗)

 is the predicted and 𝑡𝑦
(𝑗)

 is the actual 

output of the j. 
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2.7.4 Voting-based ensemble ML algorithm 

The voting-based ensemble algorithms improve stability and classification accuracy and reduce 

variance and overfitting (Friedman et al., 2000). Ensemble classifiers are generally a set of base 

learners (classifiers) whose individual decisions are combined to predict new cases. In most cases, 

the accuracy of an ensemble classifier is higher than the accuracy of its base learners (Dietterich, 

2000). This statement is true when the individual decisions of each base learner are not identical 

(diverse), and the classification errors are uncorrelated (Kuncheva and Rodríguez, 2012).  

The voting-based ensemble classifier trains a subset of the training dataset with at least two 

classifiers. It then aggregates the predicted class with the maximum votes of each classifier to the 

unknown example. In theory, if there are m independent classifiers, each classifier has the 

probability p of making the correct prediction. If 𝑝 = 0.5 + 𝜖 > 0.5. then the probability of the 

ensemble classifiers 𝑃(𝑚, 𝑝) majority voting making the correct prediction is greater than p 

(Equation 2-11), and p approaches one as m increases(Leon et al., 2017). However, if 𝑝 < 0.5, then 

𝑃(𝑚, 𝑝) decreases and tends to 0 as m increases. If 𝑝 = 0.5, there is no change on 𝑃(𝑚, 𝑝). 

𝑃(𝑚, 𝑝) = ∑ (
𝑚!

(𝑚 − 𝑖)! . 𝑖!
)

𝑚

𝑖=⌈𝑚
2⁄ ⌉

 . 𝑝𝑖  . (1 − 𝑝)𝑚−𝑖  (2-11) 

2.7.5 Machine Learning Model Evaluation 

Several methods are used in evaluating the performance of an ML algorithm. The confusion matrix 

is a common method for evaluating the performance of classifiers (Kuhn and Johnson, 2013). The 

confusion matrix is an m × m matrix made up of the elements cjk, which are the number of assets in 

actual condition j that are predicted to be in condition k where j є {1…m} and k є {1…m}. Elements 

on the diagonal of the matrix indicate that the predicted condition matches the actual condition. 

Elements off the diagonal represent the misclassification of the predicted conditions.  

The confusion matrix also helps to calculate two other vital metrics: precision and recall. Precision 

is the ratio of correct positive predictions (true positives, TP) to the overall number of positive 

predictions (TP + false positives (FP)). The recall is the ratio of correct positive predictions to the 

overall positive examples (TP + false negatives (FN)) in the dataset. There is a tradeoff in achieving 

high precision and recall (Andriy, 2019). In asset condition classification, the tradeoff between 

precision and recall has different consequences ranging from the waste of resources (misclassifying 
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good assets as bad) to sudden failures (misclassifying bad assets as good). Another helpful metric 

when errors in predicting multiple classes are essential is the accuracy of a model. The number of 

correctly classified examples (TP) is divided by the number of classified examples (TP +TN +FP 

+FN).  

Furthermore, the Kappa value measures the accuracy of an ML classifier in predicting different 

classes against the probability of random occurrence. The Kappa value of a binary classification is 

estimated using Equation 2-12. Equation 2-13 is used in estimating the Kappa value of a multi-

class classification with k = 1,2, 3,…, K number of classes (Tallón-Ballesteros and Riquelme, 

2014). The higher the Kappa value, the better the performance of the classifier. According to 

(Landis and Koch, 1977), Table 2-6 provides a benchmark for classifying Kappa values.  

Table 2-6. Interpretation of Kappa values. 

Kappa value Strength of agreement 

     <0.00 Poor 

0.00-0.20 Slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61–0.80 Substantial 

0.81–1.00 Almost perfect 

 

𝜅𝑏𝑖𝑛𝑎𝑟𝑦 =
𝑃𝑜 − 𝑃𝑟

1 − 𝑃𝑟
 (2-12) 

where 𝑃𝑜 is the observed accuracy and 𝑃𝑟 is the random accuracy. 

𝜅 =
𝑐 × 𝑠 − ∑ 𝑝𝑘

𝐾
𝑘 × 𝑡𝑘

𝑠2 − ∑ 𝑝𝑘
𝐾
𝑘 × 𝑡𝑘

 (2-13) 

where 𝑐 = ∑ 𝐶𝑘𝑘  𝐾
𝑘 is the total number of correctly predicted classes, 𝑠 = ∑ ∑ 𝐶𝑖𝑗

𝐾
𝑗

𝐾
𝑖  is the total 

number of elements; 𝑝𝑘 = ∑ 𝐶𝑘𝑖  𝐾
𝑖  is the number of predictions for class k; 𝑡𝑘 = ∑ 𝐶𝑖𝑘  𝐾

𝑖  is the 

number of observations of class k. 

2.8 Social Cost Indicators 

Social costs have been defined as the monetary equivalent of resources used by parties in 

construction projects, which are often implicitly accounted for (Matthews et al., 2015). Even 
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though no one pays the accrued amount, it is necessary to quantify social costs in monetary terms 

for their socioeconomic effects to be considered in any intervention (Manuilova et al., 2009). 

Intangible social costs of interventions, such as the loss of human life and the value of time (VOT), 

are more difficult to quantify. Additionally, it might also be difficult to quantify some of the 

tangible social costs (e.g., car occupancy rates, traffic accidents, etc.) due to the nature of 

uncertainty involved. The estimation and prediction of social costs is not a straightforward process 

(Gilchrist and Allouche, 2005; Zamojska and Próchniak, 2017). According to Matthews et al. 

(2015), the main deterrent is the inconsistency that exists in the current methods used in calculating 

various social indicators. However, several authors have proposed methods that can be classified 

into the direct calculation, generalized ranges, and conservative estimates (Matthews and Allouche, 

2010). Oum (2017) modeled several tangible and intangible social cost indicators for municipal 

infrastructure interventions at a macro level. The aim was to use non-linear regression functions in 

quantifying the social cost indicators associated with three municipal infrastructure assets. Several 

studies have used different techniques to quantify some tangible and intangible social cost 

indicators. McKim (1997) proposed a bidding methodology that includes social costs in the award 

process. According to this research, this inclusion is desirable by the public because it ensures the 

least disturbance and it identifies the most economically efficient bid since it estimates the project’s 

true cost (i.e., actual cost and social cost). (Tighe et al., 1999) proposed a method of estimating and 

comparing the cost of traffic disruptions when both trenchless technologies and open-cut 

excavations are used. Their method involved comparing three traffic control strategies and 

estimating the cost of implementing each strategy relative to the duration of the open-cut and 

trenchless technologies. Gilchrist and Allouche (2005) designed and implemented a tool 

specifically for forecasting and calculating five social cost categories considering project-specific 

parameters. 

In addition to the elimination of repeated excavations for utility interventions and intervention-

related traffic disruptions, MUTs have been associated with several tangible and intangible 

benefits. This research focuses on the benefits directly related to synchronized utility interventions 

and the MUT. These social indicators are expressed as the cost of disruptions grouped into road 

traffic and ecological environment.  
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2.8.1 Road traffic disruptions 

The impact of traffic disruptions considered in this research is divided into three types: vehicle 

maintenance and operating cost (VMO), vehicle delay costs (VDC), and pedestrian delay costs 

(PDC). The pedestrian delay cost is not estimated in this research. Traffic disruptions resulting 

from intervention-related activities lead to an increase in travel time and routes. The estimation of 

the impact of traffic disruptions can be achieved using field studies, empirical formulae, or traffic 

modeling tools (Ormsby, 2009). One common method of estimating the social cost of traffic 

disruptions is by setting the value of time lost in traffic as the hourly wage rate (Oum, 2017; Tighe 

et al., 1999). 

(a) Vehicle maintenance and operating costs  

According to Chatti and Zaabar (2012), Vehicle operating costs (VMO) costs are grouped into the 

additional fuel consumption and costs of increased maintenance and repair. Increased maintenance 

refers to vehicle depreciation resulting from longer travel routes or time and increased stop-and-go 

cycles that accelerate the deterioration of vehicle mufflers, tires, axles, and chassis. VMO cost can 

be assessed by using an average operating cost (AOC) in dollars per vehicle-kilometer driven that 

considers both fuel and maintenance (CAA, 2013). In case of a partial road closure allowing traffic 

through the work zone, VMO cost can be also divided into two parts: VMOq for queuing vehicles 

and VMOd for vehicles taking detours (de Marcellis-Warin et al., 2013; Najafi et al., 2021). 

Specifically, VMOf cost is assessed for each type of vehicle (automobile, bus, light, and heavy 

truck) to reflect their differences in fuel consumption (de Marcellis-Warin et al., 2013). 

(b) Vehicle delay costs 

VDC is assessed as opportunity costs of forgone work activities by setting the value of time (VOT) 

lost in traffic at the hourly wage rate. The latter is borne by each passenger in circulation. In the 

case of a partial road closure allowing traffic through the work zone, VDC is divided into two parts: 

VDCq for queuing vehicles and VDCd for vehicles taking detours (de Marcellis-Warin et al., 2013). 

VDC is assessed for each type of vehicle to give higher VOT to light and heavy trucks. In the 

literature, case studies were presented with knowledge of detour patterns; thus, removing the need 

for traffic simulation tools to forecast behaviors of drivers’ choice between taking detours and 

waiting in queues. 
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Researchers like (Wu et al., 2020) used agent-based simulation to estimate and integrate the 

increase in travel time into LCC analysis. The effect of the inclusion and exclusion of the cost 

associated with travel time at the breakeven point between the MUT and the direct burial method 

was estimated. Although the generated results on the benefits of MUT are consistent with the 

literature, the LCC model for the MUT does not capture the social costs accrued during the MUT 

construction phase which can significantly affect the breakeven point. 

2.8.2 Ecological environment disruption 

The impact on the ecological environment is determined by the volume of pollutants emitted into 

the environment. Air pollution resulting from fuel consumption is due to two factors: the use of 

heavy machinery, and increased vehicle emissions (Manuilova et al., 2009). Air pollution costs 

from machinery are based on the volumetric emission cost (VEC) for different pollutants, where 

greenhouse gases (GHGs) can be converted to carbon dioxide (CO2) equivalent (CO2eq) units, thus 

simplifying the calculations (Sambe and Dogoua, 2016). 

2.9 Geospatial Visual Analytics 

Visual analytics (VA) is the science of analytical reasoning supported by interactive visual 

interfaces” (Thomas and Cook, 2005). The term geospatial analytics involves the combination of 

geographic analysis, data visualization, and applying a specific domain intelligence to aid decision-

making (Ting et al., 2018). VA has been applied in several domains, including decision-making in 

healthcare (Reinert et al., 2020) and bioinformatics (Vehlow et al., 2015), economics (Savikhin et 

al., 2008), transportation, aviation (Andrienko et al., 2020), predictive analytics (Lee et al., 2020; 

Lu et al., 2017), social media (Chen et al., 2017), etc. It helps combine interactive visualization 

and computational analysis of large amounts of complex datasets and monitor their interactions. 

Geospatial visual analytics involves combining geographic analysis, data visualization, and 

applying a specific domain intelligence to aid decision-making (Ting et al., 2018). Also, 

spatiotemporal clusters and concentrations can be identified using statistical tests (Rey et al., 2015) 

combined with computational and human reasoning.  

Several researchers have proposed spatio-temporal visualization; for example, Ferreira et al. (2013) 

proposed a visualization interface to explore extensive spatio-temporal data and show the 

attributes’ variability and relationships. Packer et al. (2013) proposed a distance-based approach to 

splitting data and visualizing the shapes of each cluster in an interactive process by combining 



44 

 

spatial clustering and heuristic computations. The deviation between the clusters and the data points 

is minimized to identify each class (Ester et al., 1995). Lee et al. (2020) developed a predictive VA 

system to monitor and forecast traffic congestion using real-time and historical data. VA tools have 

been applied in asset management, sustainable lifecycle design (Ramanujan et al., 2017), and 

revealing complex tradeoffs in multi-objective optimization (Guo et al., 2009). For example, 

Motamedi et al. (2014) combined VA and Building Information Modeling (BIM) to detect and 

visualize failure root causes in facility management. Zhou et al. (2016) used VA tools, such as 

parallel coordinates and sunburst visualization, to represent the relationships between water pipe 

attributes and the probability of pipe failure. In the multi-objective optimization of a water 

distribution system, Fu et al. (2012) demonstrated the use of VA in revealing the tradeoffs among 

the objectives, thereby improving decision-making via the understanding of the interactions 

between the objectives. VA has been effectively applied to understand the phenomena associated 

with individual infrastructure assets. However, this method of individual asset analysis is 

inefficient when considering synchronized or multi-asset interventions.  

To address this gap, this research aims to establish the relationships between multi-asset 

intervention activities and their socioeconomic impacts visually and statistically. The critical areas 

where the current infrastructure practices will potentially result in a relatively high socioeconomic 

impact are identified using density maps. By exploring the spatial distribution of the pipes where 

the interventions require excavation, the location of aging utility assets, and the traffic density, the 

interpretation of the correlation between the different attributes can be portrayed to aid decision-

makers.  

2.10  Summary  

This chapter provides an overview of various aspects related to the implementation of MUTs. It 

begins with a concise history of MUT implementation in different parts of the world, followed by 

an explanation of the planning process and location selection criteria. Additionally, the chapter 

explores the literature on synchronized utility intervention and the optimization algorithms 

involved in this process. The socioeconomic impact of utility interventions is also discussed, 

specifically in terms of social costs incurred due to current practices that necessitate pavement 

excavations. Finally, the chapter delves into the application of machine learning techniques for 
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predictive maintenance in asset condition classification and the application of geospatial visual 

analytics to improve the decision-making process for utility interventions. 

Based on the literature review, the research gaps related to MUT location selection can be 

summarized as follows: (1) As presented in Table 2-1, there is limited research in the area of MUT 

location selection. The table clearly shows that the reviewed literature has focused on different 

areas of MUT implementation. However, Luo et al. (2019) successfully achieved MUT location 

selection using eight criteria, without accounting for the dependencies that exist within the criteria.; 

(2) Currently, there is limited research on the quantification of the socioeconomic impact of the 

MUT and the synchronized method of utility interventions at a macro level. In addition, there is 

also limited research that provides quantitative support for the long-term benefits of MUTs. 

Meanwhile, most studies have compared the benefits of implementing the MUT using only isolated 

projects; (3) Previous research focuses on binary or multi-class classification models to determine 

the need for intervention at an asset or network level for single infrastructure assets. A systematic 

approach is required at a segment level to holistically combine the conditions of spatially collocated 

assets to foster synchronized interventions; and (4) As presented in Table 2-3, existing methods 

used to achieve synchronized utility interventions are specific to a municipality or city. Therefore, 

limiting their applicability and replicability.  
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CHAPTER 3.    OVERVIEW OF RESEARCH METHODOLOGY  

3.1 Introduction 

This chapter presents an overview of the proposed research methodology for determining the MUT 

location selection from the lifecycle point of view, the socioeconomic perspective, and spatial 

characteristics while considering the synchronized method of utility interventions. Section 3.2 

highlights the key modules that make up the methodology.  

3.2 Research Methodology 

The proposed research method is shown in Figure 3-1. The method is centered around four core 

areas, namely: (1) A geospatial visual analytics model to analyze and determine the relationships 

between interventions practices, asset conditions, and their socioeconomic impacts using statistical 

tools and geospatial analysis; (2) Street closure prediction model based on the combined conditions 

of spatially collocated assets (i.e., pavements, water and sewer pipes) within a segment using 

machine learning; (3) A multi-criteria decision-making model that uses spatial data in the MUT 

location selection problem; and (4) A multi-objective optimization model, to optimize the agency 

and social lifecycle costs for identifying the potential locations of MUTs. The following four 

sections introduce each module of the methodology.
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Figure 3-1. Overview of research methodology 
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3.3 Geospatial Visual Analytics for Utility Intervention Decision-Making  

As discussed in Section 1.2, both the synchronized intervention and the MUT have the potential to 

significantly reduce the agency and social cost of utility interventions, compared to conventional 

unsynchronized methods. However, despite their benefits, these alternatives are not widely 

practiced or implemented, which underscores the need to highlight the socioeconomic implications 

of unsynchronized interventions to decision-makers.  

To achieve this, a holistic approach is necessary to identify and understand patterns in the 

multivariate datasets that represent utility asset interventions. Statistical tests are used to interpret 

the relationship between spatiotemporal clusters and concentrations (Rey et al., 2015). 

Following data collection and criteria extraction, the next phase of this chapter focuses on 

establishing the relationships between intervention activities and their socioeconomic impacts. By 

analyzing the correlation between different attributes of the multivariate dataset, critical areas can 

be identified where current infrastructure practices will likely result in high socioeconomic 

impacts. This module of the research is presented in detail in Chapter 4. 

3.4 Street Closure Prediction Based on the Combined Conditions of Spatially Collocated 

Assets  

As explained in Section 1.1, partial and complete street closures are a common occurrence in both 

asset-level and segment-level interventions. As the number of unsynchronized interventions 

increases, so does the frequency of street closures. Once segment-level interventions are 

determined, the two alternatives of synchronized interventions and MUTs can be considered. In 

this research, synchronized interventions are considered best practice and MUT is investigated as 

an opportunity primarily for segment-level interventions that require excavations, such as pipe 

replacement. 

To aid municipal decision-makers in identifying and prioritizing synchronized segment-level 

interventions, this research predicts street closures. This will improve the planning and estimation 

of intervention durations and street closures, thereby reducing the social costs resulting from utility 

interventions. The prediction of street closures is based on the combined conditions of spatially 

collocated assets, such as street pavements and water and sewer pipes. Different policy-based 

methods have been implemented for synchronization, but their replicability is limited. A condition-
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based method is proposed to classify the condition of each spatially collocated asset and simplify 

their combination on a segment level. 

Feature extraction is used to obtain the most influential asset attributes, which are subsequentially 

used in the machine learning process. A multi-class classification approach is used to determine 

the condition of each asset, based on independent ML models that capture their respective 

conditions. Subsequently, intervention strategies are applied to restore the condition of each asset. 

These strategies, known as asset-level intervention strategies, are then combined systematically at 

a segment level to obtain segment-level intervention strategies, including synchronized or 

unsynchronized interventions and MUTs. Finally, the combination of the output of these strategies 

determines the nature of the required street closures. 

This module not only predicts street closures, but also serves as a way to identify potential street 

segments for MUT implementation, based on the need for asset-level interventions and segment-

level intervention strategies. The details of this module are presented in Chapter 5. 

3.5 Multi-Criteria Decision-Making Model for MUT Location Selection 

The third module of this research focuses on prioritizing street segments for MUT location 

selection using a combination of subjective and objective MCDM techniques and GIS spatial 

analysis. The effect of considering the dependencies in the MCDM process will be determined by 

comparing the ranking obtained from the TOPSIS that are based on the weights derived from AHP 

or ANP. The module is divided into four phases, including criteria definition, selection and scoring 

of the alternatives, aggregation, and decision-making. To prioritize the street segments, 12 criteria, 

based on the literature review, are considered, including annual average daily traffic, road class, 

utility density, population density, number of expected excavations, underground development 

projects, land-use, proximity to public facilities, high-rise buildings, soil type, the slope of the 

terrain, and proximity to the floodplain. 

Different sets of criteria weights are estimated using both AHP and ANP, and the ranking of street 

segments is achieved using TOPSIS. The subjective weights derived from aggregating expert 

opinions are represented by criteria weights obtained from both MCDM techniques. To determine 

the effects of the dependencies considered in the ANP methodology, the weights and the 

subsequent ranking results are compared. Furthermore, although the AHP and ANP methodologies 

have the consistency index to check the transitivity of expert responses, not all pairwise 
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comparisons are transitive. This further complicates the decision maker's ability to compare the 

criteria from an expert point of view. Also, since 12 criteria are used in the MCDM process, their 

relative weights would be small. Therefore, a consistency error is likely to considerably distort the 

relative weights of the criteria (Saaty, 1987). Thus, an objective approach is implemented in this 

chapter using Shannon's Entropy (Shannon, 1948). The calculated Entropy weights are 

subsequently integrated into the TOPSIS method. Furthermore, the ranking results from both AHP 

and ANP are compared to the ranking obtained from using Entropy weights applied with TOPSIS 

to determine the difference or similarity between the application of objective and subjective 

weights for a set of alternative MUT locations. Nevertheless, using subjective weights (AHP or 

ANP) in the context of selecting MUT placement locations is also essential due to the input of 

experts and because only a handful of authors have covered this area of research as compared to 

other areas of study.  

The proposed method prioritizes street segments from both the decision-makers' perspective and 

the data itself, providing vital information to the MUT location selection decision-making process. 

Chapter 6 provides a detailed explanation of this module. 

3.6 Multi-Objective Optimization for Selecting Potential Locations of MUT Considering 

Social Costs 

The fourth module of this research aims to identify potential street segments for MUT placement 

using a mathematical optimization technique. Unlike the method proposed in Chapter 6 where 

preselected street segments were considered, this module of the research considers all street 

segments in the network to identify potential locations for MUT implementation. The selection 

involves modeling agency and social LCC and network deterioration resulting from implementing 

MUTs and the synchronized method of infrastructure interventions at the network and segment 

levels. Two independent optimization models are used to optimize both alternatives, and the results 

are compared at the network and segment levels. Both models are constrained by the yearly agency 

and social cost budgets. Two solutions that satisfy the decision-maker's preferences are selected 

from the Pareto fronts of each optimization model and compared. By comparing both optimization 

results, the street segments in the network where the LCCs of implementing MUTs are less than 

the LCCs of the synchronized utility intervention are identified as the optimal locations for MUT 

implementation that guarantee LCC savings. 
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The search space for finding an optimal or near-optimal solution is complex due to several variables 

considered, including the number of intervention scenarios, the number of utility assets, the 

intervention strategies, the number of segments in the network, and the planning period. Similar to 

the second module, asset conditions determine the asset-level intervention strategies, and their 

combination determines the applied segment-level intervention strategies. Linear deterioration 

models for each type of asset are used to determine the yearly change in asset conditions. Three 

social cost indicators are used to quantify the socioeconomic implication of each intervention 

alternative using three regression models for each social cost indicator. 

This module is presented in detail in Chapter 7 and provides a comprehensive approach to 

identifying optimal street segments for MUT placement. The proposed framework considers 

various factors and helps decision-makers make informed decisions that result in efficient and cost-

effective interventions. 

3.7 Summary  

This chapter provides an overview of the proposed research, addressing the research gaps in MUT 

location selection. The framework is composed of several essential components, including 

geospatial analysis to establish the correlation between intervention needs and their negative 

socioeconomic impact, identification of street segments that may require partial or complete 

closures due to intervention for assets with poor conditions, street segment ranking using MCDM 

techniques that prioritize them based on subjective and objective weights, and optimization of street 

segment selection based on the value of agency and social LCCs and network deterioration. In the 

subsequent chapters, each module of the proposed research is thoroughly explained and validated 

through case studies. The integration of these components will result in a comprehensive and 

efficient method for MUT location selection that accounts for various socioeconomic and 

infrastructure factors. 
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CHAPTER 4.    GEOSPATIAL VISUAL ANALYTICS FOR UTILITY INTERVENTION 

DECISION-MAKING2 

4.1 Introduction 

Section 1.2 highlights the interdependency between underground utility networks and explains why 

relying solely on individual asset analysis is inefficient in understanding how the intervention of 

spatially collocated assets affects their interactions and relationships, as well as the associated 

negative socioeconomic impacts. This chapter focuses on using VA to comprehend the 

relationships between the location and condition of underground utility assets, their intervention-

related activities, and socioeconomic impacts, to improve the effectiveness of interventions and 

reduce negative impacts on society. A case study is established to demonstrate these relationships 

both visually and statistically. This chapter aims to aid decision-making by emphasizing the 

importance of sustainability considerations (i.e., environmental, social, and governance factors) 

while exploring alternative intervention practices and utility infrastructure asset placement 

techniques such as the MUT.  

4.2 Geospatial VA Model 

The conducted analysis is based on existing and historical datasets grouped into three categories: 

utility networks (i.e., water pipe network and road pavement), auxiliary datasets, and the 

surrounding environment, as shown in Figure 4-1. The auxiliary datasets include the intervention 

plan, emergency repair data, water pipe breakage data, and Info-Excavation data (data representing 

the locate requests of underground infrastructures) for underground assets. All of these play an 

essential role in establishing the relationships between the attributes of each utility asset, utility 

interventions that require excavations, and selecting sustainable asset management or placement 

system.  

The feature selection process is carried out to determine which dataset attributes substantially 

influence asset conditions. Raster maps are generated to enhance the visualization of clusters.  

2 This chapter is based on the following conference paper: Genger, T.K. and Hammad, A. (2022), “Geospatial Visual Analytics for 

Supporting Decision Making for Underground Utility Integrated Interventions”, International Conference on Transportation and 

Development 2022, American Society of Civil Engineers, Reston, VA, pp. 46–59, doi: 10.1061/9780784484364.005 
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Spatial relationships are established to identify clusters representing the likelihood of 

socioeconomic impacts (i.e., high traffic volume resulting from street closures due to pavement 

excavation for infrastructure interventions). These clusters are made up of locations with high 

levels of asset damage (e.g., high break rate), aging assets, high traffic density, and high requests. 

Finally, the spatial and statistical relations between the selected features will be discussed. The 

details of these steps are explained below. 

 

 

Figure 4-1. Geospatial visual analytics model. 

4.2.1 Multi-variate data source  

The datasets include both municipal and private networks buried under the roads. By combining 

both the network and the auxiliary datasets, the relationships between several attributes can be 

analyzed, such as the condition of the assets, location of failures, age, material, and frequency of 

repairs. In addition, the combination with surrounding datasets will help establish the relationship 

between the intervention activities and the social costs. The AADT is used as the surrounding 

dataset to understand the relationship with social costs. 

4.2.2 Geospatial VA  

Feature selection is commonly used to improve the performance of a predictive model by reducing 

the complexity and dimensionality of a dataset (Ting et al., 2018). Here, feature selection is used 

to search for the most influential set of attributes for determining the condition of pavement and 

water pipes. Spatial maps are rasterized to create density maps that help identify and visualize 
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geospatial hotspots based on the identified attributes. The correlation between a subset of the raster 

density maps is calculated using Equations 4-1 and 4-2 (Poldrack, 2018). Finally, the relationship 

between each dataset pair is analyzed using a correlation matrix. 

𝐶𝑜𝑣𝑖𝑗 =
∑ (𝑍𝑖𝑘 − 𝜇𝑖 ) (𝑍𝑗𝑘 − 𝜇𝑗)𝑁

𝑘=1

𝑁 − 1
 

(4-1) 

𝐶𝑜𝑟𝑟𝑖𝑗 =
𝐶𝑜𝑣𝑖𝑗

𝛿𝑖𝛿𝑗
 

(4-2) 

where: 𝐶𝑜𝑣𝑖𝑗 is the covariance of layers i, j of a stack, μ is the mean of a layer, N is the number of 

cells, k is a particular cell, Z is the value of a cell, 𝐶𝑜𝑟𝑟𝑖𝑗 is the correlation coefficient, and δ is the 

standard deviation. 

4.3 Case Study 

The study area highlighted in Figure 4-2 comprises nine boroughs in the City of Montreal, 

including Ville Marie, Mercier–Hochelaga-Maisonneuve, Le Plateau-Mont-Royal, Rosemont–La 

Petite-Patrie, Outremont, Côte-des-Neiges–Notre-Dame-de-Grâce, Le Sud-Ouest, LaSalle, and 

Verdun. The data sources include the Traffic Department and the Geomatics Department of 

Montreal City, the Montreal Open Data Portal (Montreal City, 2021), and Statistics Canada 

(Statistics Canada, 2020). 

4.3.1 Utility networks 

Various utility networks exist on the underground surface; however, only the drinking water pipe 

network is selected for analysis and the road pavement network. The water pipe network (Figure 

4-3) consists of about 127,716 pipes, with laid pipes ranging from 1900 to 2019. The pavement 

network in the study area (Figure 4-4) comprises 15,603 road segments with an average length of 

215.4 m. Both assets’ conditions are classified as 1, 2, and 3, signifying excellent/good (minor 

defects with an estimated time of failure ≥ 20 years), fair (moderate defects with an estimated time 

of failure between 10 to 20 years), and critical (severe defect requiring immediate attention) 

conditions, respectively (LLA, 2007).  

Table 4-1 and Table 4-2 summarize the attribute values for the pavement and water pipes datasets 

(Montreal City, 2018). 
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Figure 4-2. Study area. 

4.3.2 Auxiliary datasets  

The auxiliary dataset comprises the intervention and inspection data for the water pipe and 

pavement networks. Furthermore, the emergency repair data and water pipe breakage data provide 

information on the condition of water pipes, the location of pipe breaks, and the frequency of the 

pipe breaks. This breakage dataset contains 11,794 historical breaks dated to 2020. Both the water 

pipe breaks, and pipe break rate attributes offer different perspectives. The breakage data provides 

information on the frequency and location of breaks on each pipe, while the break rate is the amount 

of breaks/km/year. A pipe with repeated breaks can be translated as the presence of undetected 

phenomena (e.g., soil type, high traffic loads, etc.). The break rate discloses the rate at which one 

or more pipes break every kilometer/year. Figure 4-5 is a GIS map of the study area showing the 

location of previous breaks, and Figure 4-6 shows the different break rates for each road segment. 

Road segments with high break rates can be candidates for MUTs because this will eliminate the 

need for repeated excavation. The water pipe and pavement dataset represent the interventions 
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determined by the City of Montreal’s intervention plan for 2016-2021. This plan includes the 

infrastructure deficit, and the maintenance needs during this period.  

Part of the auxiliary dataset is the Info-Excavation data. The Info-Excavation dataset signifies the 

safety aspects of an excavation-related intervention as it ensures acquiring information on the assets 

buried underground before excavation. This information reduces the possibility of utility strikes. 

Figure 4-7 shows the trend from 2015 to part of 2019 for the locate requests made for pavement 

and water pipe maintenance and repair-related interventions. The trend shows a gradual increase 

in the locate requests made from 2015 to 2017 and a decline from 2017 to 2019. The information 

contained in this data is vital to understanding the excavations’ frequency and location. 

4.3.3 Surrounding datasets  

The AADT for 2,396 intersections from 2008 to 2018 is used to analyze the relationship between 

the surrounding traffic conditions and the intervention activities. Each point in Figure 4-8 

represents an intersection, and the hotspots in the figure signify areas with relatively high traffic 

volume. The correlation between the AADT and the attributes that represent the need for asset 

replacement or repair (condition of the assets, age) can indicate the degree of the negative 

socioeconomic impact of the interventions. 
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Figure 4-3. Water pipe network. 

 

Figure 4-4. Road pavement network. 

 

Figure 4-5. Water pipe breaks. 

 

 

Figure 4-6. Water pipe break rate. 
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Table 4-1. Summary of pavement features. 

Number of road segments 15,603 

Performance condition index (PCI) 
Average PCI 

1-100 
52 

International roughness index (IRI) 

Average IRI 

0 - 13.9 

5 

Road class 0-9 

Average length (m) 215.4 

Average surface area (m2) 2245.1 

Category Arterial, local 

Hierarchy I, II, III 

Pavement conditions 1, 2, 3 

 

Table 4-2. Summary of water pipe features. 

Number of pipes 127,716 

Mean age (yrs.),  

Std. Dev. 

73.84 

40.79 

Major materials Gray cast iron, ductile iron, copper, 
reinforced concrete 

Major types Connection, feed, network 

Diameter range (mm) 15-3,900 

Average pipe length (m) 215.4 

Break rate (brk/km/yr) 

Average break rate 

0 - 15  

0.4 

Range of failure dates 1973 - 2020 

Major failure types Circular crack, pipe burst, seal leak 

N_failures (Number of previous failures in the segment) 

Average 

0 – 26 

4 

R_life (Inspection age/estimated useful life) 

Average 

0 – 1.68 

0.55 

T_length (Average total length of pipes in a segment) (m) 212 

N_p_bad (Number of pipes in a road segment with a bad or 

very bad status) 

Average 

0 – 8 

 

0.12 

Pipe conditions 1, 2, 3 
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Figure 4-7. Frequency of information requests for excavation. 

 

Figure 4-8. AADT Hotspots. 
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4.3.4 Feature selection 

Feature selection was carried out on the water pipes and pavement attributes. Seven of the initial 

12 water pipe attributes as shown in Table 4-2 were identified as the key features using the Naive 

Bayes algorithm and forward selection analysis (Visalakshi and Radha, 2014). These features and 

their corresponding weights are shown in Figure 4-9. This process revealed that pipe break rate has 

the most substantial influence in classifying the condition of the water pipes, followed by 

inspection age/estimated useful life. Similarly, Figure 4-10 shows the key features that determine 

the pavement conditions. The pavement PCI has the most substantial influence in classifying the 

pavement conditions, followed by IRI. The parallel coordinates plots in Figure 4-11 and Figure 

4-12 are used to visualize the trend between the identified key features for the water pipes and 

pavement condition. For example, Figure 4-11 shows a linear relationship between break age and 

pipe age, while Figure 4-12 shows an inverse relationship between PCI and IRI.  

 

 

Figure 4-9. Water pipe attributes vs. their weights after feature selection. 

 

Figure 4-10. Pavement attributes vs. their weights after feature selection.  
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Figure 4-11. Relationship between multi-attributes and water pipe condition. 

 

 

Figure 4-12. Relationship between multi-attributes and pavement condition. 

4.3.5 Correlation 

The correlation coefficient is used to determine the degree of relationship between the asset 

conditions, the need for asset replacement or repair, and the socioeconomic impacts of 

interventions. The PCI and water pipe break rate are used as the variables representing the asset 
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conditions, while the water pipes older than 100 years and pavements with PCI less than 55 

represent the need for intervention (Shah et al., 2013). Furthermore, the excavation activities and 

the AADT imply the socioeconomic impacts of intervention activities. Due to the different units 

of the attribute of the datasets, raster maps of equal cell size (50 m) are created for each dataset. 

Figure 4-13 shows density raster maps used to visualize the locations with the high magnitude-per-

unit area. 

The maps show common areas with relatively high magnitudes with a darker shade of purple. A 

correlation matrix is used to show the degree of relationship between any two variables, which is 

the correlation coefficient of any two raster maps. The ArcGIS tool Band Collection Statistics (Esri, 

2016a) is used to calculate the correlation matrix shown in Table 4-3. The matrix shows a positive 

correlation exists between all the paired datasets. However, there are relatively stronger 

relationships between locations with water pipes older than 100 years and the excavation rate and, 

more obviously, between water pipe breaks and break rates. 

Table 4-3. Correlation matrix. 

 AADT PCI<55 

Water pipes 

older than 
100 years Water breaks Excavation 

Water pipe 
break rate 

AADT 1 0.533 0.691 0.695 0.717 0.676 

PCI<55  1 0.664 0.712 0.737 0.850 

Water pipes ≥100 years   1 0.761 0.877 0.708 

Water breaks    1 0.810 0.858 

Excavation     1 0.761 

Water pipe break rate      1 

 

4.4 Intervention Activities and Sustainability Considerations 

Montreal has experienced an increase in its population by about 4.6% between 2016 and 2021 (The 

Canadian Press, 2022). This increase means a rise in every spectrum of its economy. There is a 

need for sustainable investing in utility infrastructure that identifies, mitigates, and manages 

environmental, social, and governance (ESG) risks. Meanwhile, making such investment 

advantageous to both the utility owners and users. The ESG factors are broken as follows. 



63 

 

 
(a) Water pipe break rate 

 

(b) Water pipe breaks 

 

(c) Water pipes older than 
100 years 

 

(d) Excavation activities 

 

(e) Pavement PCI<55 

 

(f) AADT 

Figure 4-13 Density raster maps. 

 Environmental: As underground assets continue aging, the excavation-related interventions will 

continue to increase, as shown in the positive correlation between excavation and pipes older than 

100 years. Despite the increased use of trenchless technologies, intervention-related excavations 

are synonymous with street or lane closures that increase traffic delays and travel time. Meanwhile, 
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increasing CO2 emissions resulting from higher fossil fuel consumption and a significant increase 

in air pollution pose public health risks.  

Social: The positive correlation between the age of pipes and break rate shows that older pipes are 

likely to break more. More breaks mean more service disruptions (increased loss of service) and 

emergency interventions to mitigate the breaks (i.e., more unplanned street or lane closures). 

Meanwhile, unless synchronized, these interventions will further reduce the quality of the 

pavements, as evident in the relationship between excavations and PCI. 

Governance: The placement of underground utility assets makes regular inspection difficult and 

interventions expensive for both shareholders and stakeholders. Regulations can be implemented 

to mandate synchronized interventions between utility owners whose assets share the same right-

of-way. However, this is a short-term and unsustainable solution mainly because buried assets will 

need future excavations accompanied by negative environmental and social factors (as shown by 

the positive correlation between areas with water pipe breaks, break rate, excavation, and PCI). 

Making the transition to the MUT has been hindered by issues that include the high initial cost of 

construction, safety concerns, and management issues. Public-private partnerships for cost-sharing 

(Alaghbandrad and Hammad, 2018), IoT for smart sensing (Luo et al., 2019), and a MUT 

regulatory body for management and coordination have the potential to address the hindrances 

mentioned above, respectively. Policies that mandate the construction of MUTs in new 

developments and areas prone to high break rates and AADT can help ensure future positive ESG 

returns. 

4.5 Summary  

This chapter has presented the relationship between the conditions of pavement and water pipe 

assets with intervention related to excavations, and their socioeconomic activities using geospatial 

visual analytics. This relationship was established using a list of multivariate datasets, including 

AADT, intervention plan, emergency repair data, water pipe networks, and excavation data. The 

link between the need for intervention and the adverse socioeconomic effects was established by 

relating the asset conditions and excavation-related activities. A feature selection algorithm is used 

to identify the most influential features in determining the condition of each utility asset. These 

features were then subsequently used in creating spatial density maps for visualization. These 

density maps help identify hotspots. For instance, areas with a high number of breaks and high 
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excavation represent problematic segments where traditional or synchronized interventions have 

occurred in the past, which translates to unresolved issues responsible for repeated breaks. With 

this information, decision-makers can recommend further studies to identify the reason for repeated 

breaks. 

The correlation matrix showed the strength of the relationships between features. These 

relationships can also aid the decision-making process. For example, the positive medium 

correlation between AADT and break rates does not necessarily mean a cause-effect relationship 

but that a sustainable method of utility placement (e.g., MUT) is required in areas prone to high 

traffic (Genger et al., 2021). In addition, the strong positive correlation between pipes older than 

100 years, water pipe breaks, and water pipe break rate translates to the influence of pipe age on 

breaks and the rate at which pipes break. Moreover, the relatively strong correlation between 

excavation activities and AADT shows that both entities will increase at a relatively high rate 

(0.716). This relationship shows that areas that experience high excavation activities are also prone 

to high AADT.  
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CHAPTER 5.    STREET CLOSURE PREDICTION BASED ON THE COMBINED 

CONDITIONS OF SPATIALLY COLLOCATED ASSETS3  

5.1 Introduction 

As discussed in Section 1.2, one way to reduce the negative socioeconomic impacts of intervention-

related activities such as street closures is to undertake synchronized interventions at the street 

segment level. To conduct efficient synchronized interventions, it is necessary to have the 

conditions of all spatially collocated assets in the street segment. As explained in Section 2.6 most 

researchers have focused on condition predictions or classifications of individual assets. This 

chapter focuses on classifying the conditions of three spatially collocated assets (i.e., road 

pavement, sewer and water pipes) using a uniform scale to aid their combination in determining 

synchronized interventions at the segment level.  

In this chapter, we present a detailed explanation of the proposed method for determining street 

closures. Section 5.2 covers the various stages of the proposed approach, including data preparation 

and preprocessing, ML model development, condition classification, and segment-level 

combination. The subsequent section expounds on the heuristics that generate the asset and 

segment-level intervention strategies and street closure decisions. To demonstrate the applicability 

of the proposed method, a case study is presented, followed by a sensitivity analysis of the various 

features that contribute to the condition classification of each asset. 

5.2 Machine Learning Model 

The proposed methodology shown in Figure 5-1 is developed to determine street closures at a 

segment level by combining the conditions derived from three ML models for each asset and 

subsequently applying intervention strategies. This methodology starts with preparing raw GIS 

data for each asset’s failure, inspection, and network datasets, then several data preprocessing steps 

are executed on the datasets. The data is then split into training/cross-validation and testing. The 

selected features for each asset are fed into their respective ML model, each consisting of a voting-

based ensemble ML algorithm.  

 
3 This chapter is based on the following journal paper:  

0. 
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Hyperparameter tuning is carried out on each ML model to obtain the highest accuracy. Each model 

is evaluated, and the output (the conditions of the three assets) is combined at a segment level. The 

mapping between assets and segments is done using assets’ unique identifiers and the unique 

identifiers of the street segment where each asset is located. Finally, the combined conditions of 

the assets are integrated with intervention strategies that determine the nature of street closures 

(partial or complete) and the need for synchronized or unsynchronized interventions. 

5.2.1 Data preparation 

This first phase of the method involves generating the datasets used for the ML process. The 

selection of attributes is guided by literature, data quality, and data availability. For this purpose, a 

large amount of data regarding several features of each asset is gathered and used in the 

classification process. Table 5-1 to Table 5-3 contains the attributes/features for each utility asset. 

These tables show the features, the source dataset, and the data types generated after the preparation 

phase.  

5.2.2 Data preprocessing 

Data combination was achieved using the intersect tool of the ArcGIS geoprocessing toolbox. This 

tool combines the different data sources using a unique identifier. Data preprocessing was carried 

out to identify duplicate records, missing data, erroneous data, and outlier values. Subsequently, 

corrective measures are applied to each dataset to remove the duplicate, outliers, and erroneous 

records from the training, validation, and testing datasets. Instances with missing attribute values 

were either removed or replaced using mean (numeric features) or median imputation (nominal 

features).  

Data preprocessing methods such as feature selection and dimensionality reduction will be 

executed to reduce the complexity and possibly improve the model’s accuracy. Feature selection 

identifies crucial subsets while eliminating noncrucial and redundant features. The process aims to 

generate the optimal features to achieve the highest accuracy. In theory, a fewer subset of features 

also reduces the dimensionality and computational complexity of the models and could increase 

the classification accuracy (Kuhn and Johnson, 2013). Furthermore, data normalization using the 

Z-transformation method is performed on the numeric features. The data is shuffled to avoid bias 

by ensuring that each subset used in the training/cross-validation and testing is representative of 

the overall distribution of the data (Kuhn and Johnson, 2013). 
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Figure 5-1. Proposed method.
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Class imbalance in the training dataset is handled using the Synthetic Minority Over-sampling 

TEchnique (SMOTE upsampling). SMOTE upsampling uses the K nearest neighbor to find a 

random neighbor for a subset of randomly selected instances of the minority class and creates new 

instances (Chawla et al., 2002). The newly created instances for the minority classes balance the 

missing instances, but they do not provide new information to the model. 

Table 5-1. Pavement features. 

Source dataset Description (Feature name) Type 

Network Unique street ID (Pavement_ID) Nominal 

Street class (Category) 

Type of pavement (rigid or flexible) (Pavement type) 

Pavement coating material (Pavement coating) 

Length Numerical 

 Surface area (Surface_area) 

Inspection PCI (PCI_measure) 

IRI (IRI_measure) 

Rutting length (Rutting) 

Road Intervention class (Label) (Condition) Nominal 

 

Table 5-2. Water pipe features. 

Source 

dataset 

Feature name (description) Type 

Network Pipe_ID (Water pipe ID) Nominal 

 Material 

Jurisdiction of the pipe (Jurisdiction) 

Length Numerical 

Diameter 

Water pipe 

breaks 

Age 

Type of failure 

Break age 

Sum of lengths of all pipes in the section (T_length) 

Total number of drinking water pipes in the section (T_n_pipe) 

Number of drinking water pipes in the street section with a bad 

status. (N_p_bad) 

Indicators Break rate (number of water pipe breaks per kilometer per year) 

Age of drinking water pipe divided by estimated useful life ( R_life) 

Number of previous failures (N_failures) 

Water Intervention class (Label) (Condition) Nominal 
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Table 5-3. Sewer pipe features. 

Source 

dataset 

Description (Feature name) Type 

Network Sewer pipe ID (Pipe_ID) Nominal 

Material 

Type (Pipe type) 

Hierarchy (Pipe_hierarchy) 

Date of pipe installation (Installation year) Date 

Diameter Numerical 

 Length 

Inspection Sum of lengths of all pipes in the section (T_length) 

Total number of sewer pipes in the section (T_n_pipe) 

Age at inspection divided by estimated useful life (R_life) 

Remaining life (Rem_life) 

Number of sewer pipes in the street section with a bad status 

(N_p_bad)  

Date of pipe inspection (Inspection year) Date 

Jurisdiction of the sewer line (Jurisdiction) Nominal 

Sewer Intervention class (Label) (Condition) 

 

5.2.3 ML model development  

After data preparation and preprocessing, each dataset was split into training/cross-validation and 

testing datasets. 70% of the dataset was used for training/cross-validation and 30% for testing. The 

learning model’s performance was estimated and improved using the cross-validation process with 

ten mutually exclusive subsets of equal folds. In addition, each fold was created using either 

shuffled or stratified sampling. Furthermore, each fold was trained using a voting-based ensemble 

algorithm consisting of RF, GBT, and DL algorithms. This combination was necessary because the 

output of each algorithm was diverse and, therefore, the voting generated the highest accuracy. 

Finally, hyperparameter optimization was done using the grid search technique for each base 

learner in the ensemble.  

5.2.4 Condition classification 

Multi-class classification is carried out to determine the conditions of each of the three assets from 

their independent models. The condition of each asset is labeled using a uniform scale of N (No 

intervention required, assets are unlikely to fail in the near future), D (intervention is desirable as 

assets have an estimated time of failure between 10 to 20 years), and R (immediate attention 
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required i.e., assets have failed or assets likely to fail between 0 to 10 years). However, the focus 

lies on identifying street segments with conditions with a combination of classes D and R for all 

the assets. These conditions determine the required asset-level intervention strategies needed to 

restore the asset to an N condition.  

5.2.5 Segment level combination 

Figure 5-2 shows a street segment (usually between two intersections) and the spatially collocated 

assets in the segment. Each segment is assigned a unique identifier, and this ID is assigned to each 

located asset in the segment in addition to the unique identifier of the asset.  

5.3 Intervention Strategies 

After classifying the conditions of all three assets, the next step is to determine the asset-level 

intervention strategies unique to each asset and the segment-level interventions unique to each 

street segment. These decisions will determine the closures necessary for each segment-level 

intervention. Most street segments have several water pipes with different diameters and lengths 

and sewer pipes with varying depths based on the slope. However, in many cases where water and 

sewer pipes share the right-of-way, a common practice involves burying the water pipes above the 

sewer pipes to reduce contamination when a sewer pipe failure occurs (Max, 2022; Paige, 2021). 

 

Figure 5-2. Schematic street segment (al Amari et al., 2013). 

Therefore, most interventions on the sewer pipes require excavating below the water pipes. This 

placement method creates an opportunity to implement interventions on water pipes when the main 

goal is to undertake interventions on sewer pipes (i.e., synchronized interventions). Although this 
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increases the intervention costs and creates losses due to the premature replacement of water pipes 

if the water pipes are still in an acceptable condition, it avoids future excavations for the inevitable 

replacement of the water pipes. In the case of an unsynchronized interventions for a sewer pipe, 

there is the possibility of damaging the water pipe while assessing the sewer for intervention (utility 

strikes) (Makana et al., 2018); depending on the sewer pipe condition, trenchless methods such as 

cured-in-place pipes (CIPP) or sliplining can be used (Najafi, 2010).  

The individual intervention strategies depend on the collocated asset and criteria, including the 

present asset condition, performance indicators (e.g., PCI and IRI for pavements, hydraulic 

integrity for sewer and water pipes), past intervention practices, etc. Furthermore, synchronized 

interventions must consider the combined strategies of the collocated assets at a segment level. As 

shown in Figure 5-3, based on the intervention guidelines of Montreal City, the pavement 

intervention strategy for R class pavements with 𝑃𝐶𝐼 ≤ 40 and 𝐼𝑅𝐼 ≥ 6 will undergo a 

reconstruction (i.e., the complete removal and replacement of existing pavement structure 

including granular layers) if the pavement is rigid, or a major rehabilitation (i.e., increasing the 

structural load carrying capacity of the pavement using structural overlays) if the pavement is 

flexible (Chacon and Normand, 2016). On the other hand, major rehabilitation is required if the 

pavement condition is bad. In contrast, D-class pavements will require minor rehabilitation (i.e., 

restoring the structural capacity of a pavement structure, e.g., rout and crack sealing). Finally, for 

N-class pavements, no intervention is required. However, these interventions depend on the 

intervention strategy of other spatially collocated assets (e.g., sewer replacements that require 

excavations will result in pavement reconstruction rather than rehabilitation). Algorithm 5.1 shows 

the detailed process depicted in Figure 5-3 and how the pavement intervention strategy is 

implemented. 
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Figure 5-3. Pavement intervention strategy. 

Algorithm 5.1: Pavement intervention strategy. 

 Input: Pavement condition (N, D, R), PCI, IRI, and pavement type 
 Output: Pavement intervention strategy 

1 for all segments: do 

2 { 

3 if pavement condition == N then 

4  Pavement intervention strategy ←No intervention 

5 else if pavement condition == D then 

6  Pavement intervention strategy ← Minor rehabilitation 

7 else: 

8  if PCI is less than 40 and IRI ≥ 6 then 

9   if Pavement type == Rigid: 

10    Pavement intervention strategy ← Reconstruction 

11   else: 

12    Pavement intervention strategy ← Major rehabilitation 

   end if 

13  else: 

   Pavement intervention strategy ← Major rehabilitation 

  end if 

 end if 

14 } 

15 end for 

The sewer intervention strategy shown in Figure 5-4 relies on the condition, hydraulic integrity, 

and nature of the last intervention executed on the sewer pipe. N-class sewer pipes require no 

intervention, while D-class pipes require structural rehabilitation (i.e., extending the service life of 

an existing sewer pipe using methods such as inserting a sheath inside the sewer pipe). R-class 

sewer pipes are replaced with the recommended diameter if the pipes have lost their hydraulic 

integrity or if the last intervention conducted on the pipe required structural rehabilitation. 

Otherwise, structural rehabilitation of R-class sewer pipes is conducted. Algorithm 5.2 shows the 



74 

 

detailed process depicted in Figure 5-4 and it expresses how the sequence of the sewer intervention 

strategy is implemented. 

Algorithm 5.2: Sewer intervention strategy. 

 Input: Sewer pipe condition (N, D, R), hydraulic integrity, last intervention 

 Output: Sewer pipe intervention strategy 

1 for all segments do 

2 { 

3    if Sewer pipe condition == N then 
4  Sewer intervention strategy ←No intervention 

5   else if Sewer pipe condition == D then 

6  Sewer intervention strategy ←Structural rehabilitation 

7   else: 

8  if pipe lost hydraulic integrity == true then 

9   Sewer intervention strategy ←Replacement with a recommended diameter 

10  else: 

11   if last intervention == Structural rehabilitation 

12    Sewer intervention strategy ←Replacement 

13   else: 

14    Sewer intervention strategy ←Rehabilitation 

   end if 

  end if 

   end if 

15 } 

16 end for 

Figure 5-5 shows the intervention strategy for water pipes based on the intervention guidelines of 

Montreal City. This strategy relies on several water pipe attributes: the number of historical repairs, 

break rate, hydraulic integrity, diameter, material, presence of lead, pipe hierarchy (i.e., ranking 

assigned by the municipality that is based on the socioeconomic impact of a temporary loss of 

service), and elapsed life. Similar to the pavement and sewer intervention strategies, N-class water 

will require no intervention, while D-class water pipes will also require structural rehabilitation 

(i.e., extending the service life of a water pipe using methods such as cure-in-place pipe (CIPP)). 
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Figure 5-4. Sewer intervention strategy. 

In the case of R-class pipes, the nature of the intervention is determined by the combination of the 

different water pipe attribute criteria presented in Figure 5-5. For instance, if the number of 

historical breaks is less than six and the water pipe has a break rate of less than two, the pipe will 

undergo structural rehabilitation. On the other hand, if the break rate is greater than two and the 

number of repairs in the last ten years is greater than two, the pipe is replaced. Furthermore, pipes 

with a number of historical breaks greater than six that have lost their hydraulic integrity are 

replaced with the recommended diameter. Otherwise, if their diameter is less than 150 mm, they 

are replaced with larger-diameter pipes. Pipes with a diameter greater than 1200 mm are replaced, 

together with pipes with diameters less than 1200 mm made of pre-stressed concrete, installed 

between 1966 - 1987. Pipes that do not satisfy these criteria and do not contain lead undergo 

structural rehabilitation. Pipes containing lead and assigned the highest hierarchy (I) are replaced 

in addition to pipes of lower hierarchy with an elapsed life greater than 90%. Otherwise, the pipes 

undergo structural rehabilitation. The process depicted in Figure 5-5 is also presented in Algorithm 

5.3, and it shows in detail the water pipe intervention strategy. 
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Algorithm 5.3: Water pipe intervention strategy. 

 Inputs: Water pipe condition (N, D, R), number of historical breaks, break rate, loss of hydraulic integrity, 

Number of repairs, diameter, material, installation date, presence of lead, pipe hierarchy, and elapsed life 

 Output: Water pipe intervention strategy 

1 For all segments 

2 { if pipe condition == N then 

3  Water intervention strategy ←No intervention 

4 else if pipe condition == D then 

5  Water intervention strategy ←Structural rehabilitation 

6 else: 

7  if number of historical breaks ≤ 6 then 

8   if break rate is ≤ 2 then 

9    Water intervention strategy ←Structural rehabilitation 

10   else: 

11    if Number of repairs in the last 10 years ≥ 2 then 

12     Water intervention strategy ←Replacement 

13    else:  

14     if loss of hydraulic integrity == true then 

15      Water intervention strategy ←Replacement with recommended diameter 

16     else: 

17      if diameter < 150 mm then 

18       Water intervention strategy ←Replacement with larger diameter 

19      else: 

20       if diameter > 1200 mm then 

21        Water intervention strategy ←Replacement 

22       else: 

23        if Material == stressed concrete & installation date between 1987-1966 

then 

24         Water intervention strategy ←Replacement 

25        else: 

26         if presence of lead == true then 

27          if pipe hierarchy == I then 

28           Water intervention strategy ←Replacement 
29          else: 

30           if Elapsed life > 90% then 

31            Water intervention strategy ←Replacement 

32           else: 

33            Water intervention strategy←Structural rehabilitation 

34           end if 

35          end if 

36         else: 

37          Water intervention strategy ←Structural rehabilitation 

38         end if 

39        end if 

40       end if 

41      end if 

42     end if 

43    end if 

44   end if 

45  else: go to line 154  

47  end if 

48    end if } 

49 end for 
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Figure 5-6 shows the segment-level intervention strategy used to decide the type of street closures. 

As presented in the figure, complete closures are necessary when either sewer or water pipes 

require replacements or when pavements require major rehabilitation or reconstructions. 

Alternatively, if street segments are completely closed, rather than simply replacing the 

underground assets, the closures can be considered an opportunity to implement the MUT. On the 

other hand, partial closures are sufficient when trenchless methods are used for pipe rehabilitation 

or when the only needed intervention is pavement minor rehabilitation. The process in Figure 5-6 

is simplified in Table 5-4, which shows the possible combination of asset conditions, intervention 

strategies, and street closures decisions at a segment level.  

As shown in Table 5-4, there are street segments with a combination such as N, N, and R. This 

combination means that although two of the three assets in the segments do not require intervention, 

a third asset is critical. Suppose the asset in R condition is a water or sewer pipe where excavation 

is required to replace the pipe. In that case, a synchronized intervention is needed due to the 

reconstruction of the pavement after the pipe replacement is completed. However, if the R-class 

asset is the pavement, it is an unsynchronized intervention requiring a complete street closure for 

pavement rehabilitation or reconstruction. Unsynchronized interventions could also lead to partial 

street closures on segments requiring rehabilitation for either D-class water or sewer pipes.  

On the other hand, a combination such as R, R, and R could also be considered an opportunity for 

implementing a MUT. However, MUT placement depends on several other criteria (e.g., utility 

density, proximity to public facilities, etc.) (Genger et al., 2021); these street segments could be 

considered potential locations for MUT placement due to the scale of the intervention. In addition, 

MUTs can also be considered for street segments with water and sewer pipe combinations of R and 

R because such sections will require excavation irrespective of the pavement condition. This 

intervention will lead to the complete closure of the street segment.  

Furthermore, synchronized interventions on street segments where either the water or sewer pipe 

has an R and D class combination means excavation is required to replace the asset with the R 

condition. In such cases, a replacement is done instead of rehabilitating the D-class pipes (Oum, 

2017). The replacement of either the sewer or water pipes means excavating the subsurface and 

subsequently reconstructing the pavement, which is also irrespective of the pavement condition. 

Therefore, condition combinations representing such scenarios (e.g., N, D, R) have been removed 

from Figure 5-6. Synchronized interventions resulting from combinations such as R, D, and D, 
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where the pavement has the R condition, will encounter partial and complete street closures. This 

combination reduces the social costs during the water and sewer pipe rehabilitation phase, where 

partial closures are needed mainly because trenchless technologies are used (Oum, 2017). After 

completing the rehabilitation phase, complete closures are required for pavement reconstructions 

or rehabilitation. 
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Figure 5-5. Water pipe intervention strategy. 
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Figure 5-6. Segment-level intervention strategy. 
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Table 5-4. Possible condition combinations and segment-level interventions. 

Condition (Intervention class) Pavement Water Sewer Synchronized Unsynchronized NI 

Pavement Water Sewer RC RH NI RP RH NI RP RH NI PC CC PC CC 

D D D  ✔   ✔   ✔  ✔ ✔    

D D N  ✔   ✔    ✔ ✔ ✔    

D D R ✔   ✔   ✔    ✔    

D N D  ✔    ✔  ✔  ✔ ✔    

D N N  ✔    ✔   ✔    ✔  

D N R ✔     ✔ ✔    ✔    

D R D ✔   ✔   ✔    ✔    

D R N ✔   ✔     ✔  ✔    

D R R ✔   ✔   ✔    ✔    

N  D D   ✔  ✔   ✔  ✔     

N D N   ✔  ✔    ✔   ✔   

N D R ✔    ✔  ✔    ✔    

N N D   ✔   ✔  ✔    ✔   

N N N   ✔   ✔   ✔     ✔ 

N N R ✔     ✔ ✔    ✔    

N R D ✔   ✔   ✔    ✔    

N R N ✔   ✔     ✔  ✔    

N R R ✔   ✔   ✔    ✔    

R  D D ✔    ✔   ✔  ✔ ✔    

R D N ✔    ✔    ✔ ✔ ✔    

R D R ✔   ✔   ✔    ✔    

R N D ✔     ✔  ✔  ✔ ✔    

R N N ✔     ✔   ✔    ✔  

R N R ✔     ✔ ✔    ✔    

R R D ✔   ✔   ✔    ✔    

R R N ✔   ✔     ✔  ✔    

R R R ✔   ✔   ✔    ✔    

Notes: RC: Reconstruction, RH: Rehabilitation, NI: No intervention, RP: Replacement, PC: Partial closure, CC: Complete closure
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5.4 Street Closure Decisions 

The social costs caused by street closures include traffic delays for pedestrians and vehicle users, 

increased travel time, loss of municipal revenue (e.g., parking meters), etc. Several factors such as 

the size of the excavation, traffic volume, policies enforced by transportation ministries of 

municipalities, the estimated duration of the intervention, etc., also contribute to deciding on partial 

or complete street closures (Valdenebro et al., 2019). However, for worker safety and to ease the 

movement of heavy machinery and equipment, most interventions on the right-of-way require the 

complete, partial, or both complete and partial closures of street segments (le Gauffre et al., 2002a; 

Matthews et al., 2015; Oum, 2017). Another practice involves undertaking intervention activities 

at night for streets with high traffic volumes and temporarily covering the excavated area with steel 

plates during the day to reduce the impact on both pedestrian and vehicular traffic (City of 

Charleston, 2013; Klimas, 2020). Therefore, it is safe to assume that the decision to either partially 

or entirely close a street segment for intervention is based on the combined (segment-level) 

intervention strategy of the spatially collocated assets in the street segment.  

Figure 5-7 presents the process of determining the street closure decisions. The output of the ML 

process (the asset condition classes) is combined with the criteria values extracted from the 

inspection data to determine the asset-level intervention strategies. Asset-level interventions are 

then combined at a segment level using the segment-level intervention strategies outlined in Figure 

5-6. The outcomes are asset-level interventions combined at a segment level and the corresponding 

street closure decisions. 

5.5 Implementation and Case Study  

All ML processes were performed on a computer with the following specifications: Ubuntu 

20.04.3LTS, AMD Ryzen Threadripper 3960x 24-core processor x 48 threads, and 251 GB 

memory. RapidMiner Studio Educational 9.10.001 is used to build all ML processes. The GBT and 

DL algorithms were executed using the H2O 3.30.0.1 (RapidMiner, 2020, 2021) . H2O is 

developed by H2O.ai as an open-source machine learning and deep learning for applications. H2O 

uses a supervised training protocol for its deep learning architectures, unlike other architectures 

that use a combination of unsupervised pretraining and supervised training. It uses in-memory 
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compressions techniques and implements ML algorithms such as Linear and logistic regression, 

Naive Bayes, etc. (Candel and Parmar, 2015).  

The dataset comprises all boroughs in Montreal. However, a part of the data was reserved from the 

Ville-Marie Borough to implement the intervention strategies and street closures. Considering that 

several machine learning data processing and splitting processes involve random sampling, this 

reserved dataset was necessary to ensure that all three models had a common area that could be 

later analyzed at a segment level. Based on the city block sizes, the intervention dataset is structured 

by the geomatic department of the City of Montreal to capture segments with a length of 

approximately 200 m. The average length of each street segment is 212 m. 

 

Figure 5-7. Street closure process. 

Table 5-5 to Table 5-7 summarize the features of all three assets, and Figure 5-8 is a sample street 

segment showing all three municipal assets. The list of pavement features used in this research 

does not include AADT. This feature was removed from the dataset because it had 76% missing 

values. Its removal is compensated by features such as the road class, pavement surface area, and 

two indicators (PCI and IRI), whose values are correlated to traffic volume (Amin and Amador-

Jiménez, 2017). Both indicators provide valuable information on pavement condition 

classification, as street segments may have an excellent IRI and a poor PCI or vice versa (Genger 

and Hammad, 2022).  
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The pavement model uses eight input features in the classification process. Numeric features such 

as the surface area and length were normalized using the Z-transformation method. Other numeric 

features (i.e., PCI, IRI, and rutting length) were not normalized, as normalizing them did not 

improve the model’s accuracy. 

Table 5-5. Summary of pavement features. 

Number of road segments 15,603 

Performance condition index (PCI) 
Average PCI 

1-100 
52 

International roughness index (IRI) 

Average IRI 

0 – 13.9 

5 

Rutting (m) 
Average rutting 

0-50 
4.79 

Pavement coating Asphalt, cobblestone, concrete, crushed stone 

Average length (m) 212 

Average surface area (m2) 2,245.1 

Category Arterial, local 

Pavement type Rigid, flexible 

Pavement condition N, D, R 

As shown in Table 2-4, apart from some water pipe features (i.e., depth, soil, and pressure), most 

of the features used by other researchers were also used in this research in addition to others not 

listed in the table (e.g., age at the time of break (break_age) and break rate). The failure data for 

the water pipe model was only available for 30% of the total number of pipes in the dataset. Its 

inclusion in the model was necessary to determine the conditions of the water pipes, although this 

meant reducing the dataset. The output of the data preparation and preprocessing phases on the 

water pipe dataset resulted in 13 features. 

In terms of the sewer condition classification, several features such as the slope, pressure values, 

and soil type, alongside failure data, are unavailable for this research. Therefore, the sewer model 

uses 13 features in the classification process as shown in Table 5-1.  

Unlike the pavement model, data normalization was performed on all the numeric features in the 

water and sewer pipe model. Other data preprocessing methods, such as discretization and the 

conversion of nominal to numeric data types, were applied; however, they did not improve the 

accuracy of the models. Also, several feature selection techniques (i.e., forward selection, 

backward elimination, and optimized selection) alongside dimensionality reduction processes (i.e., 
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Principal component analysis) were applied at this stage of data preprocessing. However, these 

processes did not improve the classification accuracy of the models. 

The sewer dataset was imbalanced as most pipes had the N condition. The SMOTE upsampling 

process was applied twice to the training/cross-validation dataset to rectify the imbalance of the D 

and R classes.  

Finally, the cross-validation process was applied to ten mutually exclusive subsets of equal folds 

for all three models. However, stratified sampling was used for the sewer pipe model to create each 

fold randomly. Using stratified sampling further ensured an equal class distribution of the classes 

in each fold. At the same time, both the pavement and water pipe models used shuffled sampling. 

Table 5-6. Summary of water pipe features. 

Number of pipes 127,716 

Mean age (yrs.),  
Std. Dev. 

73.84 
40.79 

Major materials Gray cast iron, ductile iron, copper, 

reinforced concrete, etc. 

Jurisdiction Local, metropolitan area, centre ville, 
etc. 

Diameter range (mm) 15-3,900 

Average pipe length (m) 215.4 

Break rate (brk/km/yr) 

Average break rate 

0-15  

0.5 

Break age 1–149 

N_failures (Number of failures in the section) 

Average 

0–15 

0 

R_life (age/estimated useful life) 

Average 

0–1.68 

0.55 

T_length (Average total length of pipes in a section) (m) 286.3 

N_p_bad (Number of pipes in a street section with a bad or 
very bad status) 

Average 

0–8 
 

0.21 

N_p_segment (Number of pipes in a street section) 

Average 

1-27 

1.48 

Water pipe condition N, D, R 
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Table 5-7. Summary of sewer pipe features. 

Number of pipes 119,857 
Major materials Reinforced concrete, grey font, brick, 

PVC, ductile iron, etc. 

Pipe type Combined, sanitary 

Hierarchy I, II, III 

Installation year 1900-2015 

Diameter range (mm) 75-5,325  

Average length (m) 54.19 

T_length (Average total length of pipes in a section) (m) 254.19 

T_n_pipes (Average number of pipes in a section) (m) 5 

R_life (Inspection age/estimated useful life) 
Average 

0–3.48 
0.45 

Rem_life (Remaining life) 

Average 

1-212 

71 

N_p_bad (Number of pipes in a street section with a bad or very 
bad status) 

Average 

0-12 
 

1.14 

Inspection year 1993-2015 

Jurisdiction Local, arterial 

Sewer pipe condition N, D, R 

 

 

Figure 5-8. Sample street segment. 
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5.5.1 Data preparation and preprocessing 

Data used in this research was obtained from three primary sources, including intervention and 

network data for all three assets and the failure data for only the water pipes. The collected datasets 

were combined with the intersect tool of the ArcGIS geoprocessing toolbox. The resulting 

Shapefiles were converted to excel files using the ArcGIS Table-to-Excel toolbox (Esri, 2016b).  

5.5.2 Feature importance 

The weights assigned by each classifier determine the importance or contribution of each feature 

in the ML classification process. In addition to the weights assigned to each feature, the DL 

algorithm also assigns weights to each feature value with a nominal data type. All three base 

learners in the ensemble assign different weights to each feature. This difference results in different 

classification outputs. For example, as shown in Figure 5-9(b) and Figure 5-9(c), both GBT and 

DL assign the highest weight to PCI, followed by IRI, whereas the RF model assigned the highest 

weight to pavement length as shown in Figure 5-9(a). Furthermore, Figure 5-10 shows that all three 

base learners assigned the number of pipes in a street section with a bad or very bad status 

(n_p_bad) feature as the most important in classifying the sewer pipes. In addition, Figure 5-11 

shows that all three algorithms assigned the highest weight to different features in the water pipe 

model. 
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Figure 5-9. Pavement feature weights 
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Figure 5-10. Sewer pipe feature weights. 

 

Figure 5-11. Water pipe feature weights. 
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5.5.3 ML modelling 

5.5.3.1 Hyperparameter tuning 

Hyperparameter tuning was done on the parameters of all three models using a grid search (Guo et 

al., 2021; Pei et al., 2022). Table 5-8 shows the hyperparameter values, the search range, and the 

selected values used to obtain the accuracies of each ML model for all three infrastructure assets. 

The models are trained using the combination of every single value (i.e., exhaustive search) in the 

search range, to find an optimal parameter set that is guided toward improving the accuracy of each 

model. Different parameters have different effects on the learning algorithm and the selected 

parameters had the highest influence on the performance of each base learner. For example, a high 

number of trees in the RF model may lead to a generalized model however, it may also increase 

the complexity of the model and slow down the training process. On the other hand, the GBT model 

generally requires relatively more trees as presented in Table 5-8. The maximal depth signifies the 

nodes of each tree in the forest. The higher the number of nodes, the more the splits and captured 

information. However, a relatively high maximal depth may lead to overfitting and a failure to 

generalize the model. Therefore, as presented in Table 5-8 each of these two base learners (i.e., RF 

and GBT) are trained using relatively low maximal depths. In the case of the GBT algorithm, the 

use of a small learning rate helps prevent overfitting by reducing the overall variance of the model. 

Due to the imbalanced nature of the sewer dataset, a relatively high number of epochs was used in 

its DL model as compared to the other DL models. This high number of epochs resulted in a 

significant increase in training time because the weights are recalculated for each layer during each 

pass of the entire training dataset. The value of k (i.e., the number of neighbors to consider) was 

the only parameter changed in the SMOTE upsampling process. All other parameter values for 

each algorithm retain their default values. The following sections elaborate on the performance of 

the ML models based on the outcome of the hyperparameter tuning. 
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Table 5-8. Searched range and hyperparameter values for the ML algorithms. 

ML 

algorithm 

Hyperparameters Range searched Selected values 

Pavement Water 

pipes 

Sewer 

pipes 

RF Number of trees {30-500} 190 41 90 

Splitting criterion Gain ratio, Gini index, 

Information gain 

Gini index Gini 

index 

Gini 

index 

Maximal depth {1-40}  19 16 8 

GBT Number of trees {10-1000} 500 200 300 

Maximal depth {4-8} 5 5 8 

Learning rate {0.01-1} 0.08 0.01 0.01 

DL Activation Tanh, Rectifier Rectifier Rectifier Rectifier 

Number of hidden 

layers {Size of 

hidden layers} 

1-5{1-200} 3{200,100

,200} 

3{100,10

0,100} 

3{150, 

150,150} 

Epochs {10-2000} 10 11 1000 

SMOTE 

upsampling 

K {2-5} - - 2 

 

5.5.3.2 Pavement classification model performance  

Table 5-9 presents the comparison of the base models with the ensemble model of the pavement 

classification model. The results presented in the table are based on the test dataset and the 

hyperparameters of each base model are the same as those presented in Table 5-8. Based on the 

performance metrics used in the multi-class classification of the pavement conditions, the ensemble 

model outperformed all the individual base learners. The difference in the accuracies of the RF, 

GBT, and DL base models when compared with the ensemble algorithm is 0.06%, 0.23%, and 

1.89%, respectively. 

Table 5-9. Comparison of the base and the ensemble models on the pavement test dataset. 

Algorithms Accuracy (%) Precision (%) Recall (%) Kappa 

Random Forest 98.58 98.49 97.85 0.98 

GBT 98.41 98.17 97.68 0.95 

DL 96.75 96.72 95.67 0.95 

Ensemble  98.64 98.58 97.92 0.98 

Table 5-10 shows that using the ensemble algorithm on the training/cross-validation dataset 

generated an accuracy of 98.66% and Kappa = 0.98. Applying the model to the test dataset 

generated an accuracy of 98.64%, Kappa = 0.98. The breakdown of the classification of all three 
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classes is in the confusion matrix presented in Table 5-11. The confusion matrix shows that the 

model correctly classified all street pavements with N and D conditions with a precision of 100%. 

However, only 71 street segments with actual R conditions were misclassified as D; this brought 

the precision for D conditions to 95.73%.  

Table 5-10. Pavement ensemble model performance. 

 Accuracy (%) Kappa 

Training dataset 98.66 0.98  

Test dataset 98.64 0.98 

 

Table 5-11. Confusion matrix of the pavement ensemble model applied on the test dataset.  

 True N True D True R Class precision (%) 

Predicted N 2498 0 0 100 

Predicted D 0 1593 71 95.73 

Predicted R 0 0 1066 100 

Class recall (%) 100 100 93.76  

5.5.3.3 Water pipe classification model performance  

The comparison between the base models and the ensemble model is presented in Table 5-12. Like 

the pavement comparison results, the RF model has the highest accuracy when compared to the 

other two base models with a slightly lower accuracy when compared to the ensemble model. 

Furthermore, the DL model has the lowest accuracy, which could be associated with the relatively 

small datasets used in the water pipe classification model. 

Table 5-12. Comparison of the base and the ensemble models on the water pipe test 
dataset. 

Algorithms Accuracy (%) Precision (%) Recall (%) Kappa  

Random Forest 96.31 89.21 89.50 0.90 

GBT 95.59 87.95 88.05 0.89 

DL 94.85 85.92 86.19 0.87 

Ensemble  96.37 89.86 89.93 0.91 

Table 5-13 shows the performance of the water pipe classification model on both the training/cross-

validation and testing datasets. The model’s accuracy on the training and testing datasets is 97.27% 

and 96.37%, respectively. The test dataset’s Kappa value (0.91) shows that only a small number of 

the expected classification is achieved by chance. Furthermore, all pipes in class N were correctly 

classified with precision and recall at 100%, as shown in Table 5-14. In addition, pipes in classes 
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D and R were also classified with a precision of 80.13% and 89.44%, respectively. However, the 

D and R classes have 88.97% and 80.89% recall values. 

Table 5-13. Water pipe ensemble model performance. 

 Accuracy (%) Kappa  

Training dataset 97.27 0.93 

Test dataset 96.37 0.91 

 

Table 5-14. Confusion matrix of the water pipe ensemble model applied on the test dataset. 

 True N True D True R Class precision (%) 

Predicted N 946 0 0 100 

Predicted D 0 121 15 80.13 

Predicted R 0 30 127 89.44 

Class recall (%) 100 88.97 80.89  

5.5.3.4 Sewer pipe classification model performance  

Table 5-15 presents the comparison between the ensemble models and the base models for the 

sewer pipe condition classification. The results show the diversity in the classification results of 

the base models and how their combination in an ensemble improved the overall classification of 

the sewer pipe condition model. Unlike the water and pavement models where the DL algorithm is 

outperformed by the other two algorithms, the DL algorithm has the highest accuracy. This 

relatively higher accuracy can be attributed to the size of the dataset, as the sewer dataset is larger 

than both the water and pavement datasets. Also, the RF algorithm has the lowest performance and 

a relatively low kappa value of 0.58. 

Table 5-15. Comparison of the base and the ensemble models on the sewer pipe test 
dataset.  

Algorithms Accuracy (%) Precision (%) Recall (%) Kappa  

Random Forest 74.97 66.56 71.51 0.58 

GBT 78.21 67.34 70.86 0.61 

DL 79.62 66.60 65.88 0.61 

Ensemble  82.38 89.86 89.93 0.67 

The sewer condition model results are presented in Tables 5.17 and 5.18. The model’s 

training/cross-validation and test datasets accuracies are 86.22 and 82.38%, respectively. The 

corresponding Kappa values for both datasets are 0.79 and 0.67. The test dataset also shows the 
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imbalance of the test dataset, with condition labels N and R having relatively higher instances than 

the D label. In addition, the Kappa value of 0.67 for the test dataset shows a substantial strength of 

agreement as only 0.33 was observed by chance. 

Table 5-16. Sewer pipe model performance. 

 Accuracy (%) Kappa 

Training dataset 86.22  0.79 

Test dataset 82.38 0.67 

 

Table 5-17. Confusion matrix of the sewer model test. 

 True N True D True R Class precision (%) 

Predicted N 7485 432 277 91.35 

Predicted D 476 2851 420 76.09 

Predicted R 285 473 710 48.37 

Class recall (%) 90.77 75.91 50.46  

 

5.5.4 Intervention strategies  

Finally, the ML model was applied to the dataset used to test segment-level interventions and street 

closures. The accuracies of all ML models on this dataset are presented in Table 5-18. Based on 

the segment-level intervention strategies, Figure 5-12 shows the actual intervention map, and 

Figure 5-13 is the predicted intervention map for street segments. Both maps show street segments 

where no intervention, unsynchronized, or synchronized interventions are needed and the nature of 

the street closures. Street segments with no information on the collocated assets are labeled as no 

data. When comparing the actual and predicted sets of segment-level interventions, there was a 

79.92% similarity. 

Table 5-18. Accuracy of the models on the street closure dataset. 

Ville Marie subset data Accuracy (%) 

Pavement 96.79 

Water pipe 94.70 

Sewer pipes 70.17 

5.6 Sensitivity Analyses 

In this research, the sensitivity analysis is achieved by systematically ablating the most influential 

input features identified in Section 5.4.2 to see how they affect each asset model’s performance. 
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Apart from the removed input feature of each model, other input features remain unchanged. 

Processes that include hyperparameter tunning and cross-validation are performed while retraining 

the ensemble models, and the results on the street closure dataset are compared using the evaluation 

metric used in the previous section. 

Firstly, in the ensemble pavement classification model, the results of the feature importance show 

that both DL and GBT are influenced by the PCI measure. Therefore, it is ablated from the 

ensemble model. Secondly, in the sewer pipe model, the number of pipes in a street section with a 

bad or very bad status (n_p_bad) is removed since all base models assigned it as the most important 

feature in their classification processes. Lastly, the sensitivity of the water pipe classification model 

to pipe length, n_p_bad, and break rate features was conducted by removing each feature one after 

another, while keeping the other two features. Table 5-19 presents the results of the sensitivity 

analysis on all three models and the degree of influence of each ablation process. 

According to the results of the sensitivity analysis on the pavement model, the removal of the 

PCI_measure from the input features reduced the model’s accuracy by 12.02%. This difference in 

accuracy shows that the pavement condition classification is sensitive to PCI, which is consistent 

with the results of previous studies. On the sewer classification model, the removal of the n_p_bad 

feature resulted in reducing the model’s accuracy by 18.84% and a relatively low Kappa value of 

0.29. 

Table 5-19. Sensitivity analyses on the ensemble models using the street closure dataset. 

Model Accuracy before 

ablation (%) 

Feature 

removed 

Accuracy after 

ablation (%) 

Kappa after 

ablation 

Pavement 96.79 PCI_ measure 84.77 0.76 

Sewer 70.17 n_p_bad 51.33 0.29 

Water 

94.70 Pipe length 92.93 0.81 

n_p_bad 80.65 0.55 

break rate  88.94 0.71 

Considering that all three base models assigned the highest importance to this feature, this result is 

expected. Based on the three ablated features, the water pipe classification model is more sensitive 

to the n_p_bad feature which, when removed from the input features, reduced the accuracy by 

14.05% with a Kappa value of 0.55. The sensitivity of the model to the pipe length and break rate 

is significantly lower, as their ablation resulted in a drop of the accuracy of 1.77% and 5.76%, 

respectively.  



96 

 

 

Figure 5-12. Actual segment interventions and street closures. 

Notes: N.I.: No intervention; S: Sewer pipe, P: Pavement; W: Water pipes; Sync: Synchronized; Unsync: Unsynchronized; RH: 

Rehabilitation; RC: Reconstruction, RP: Replacement; PC: Partial closure; CC: Complete closure 
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Figure 5-13. Predicted segment intervention strategies and street closures. 

Notes: N.I.: No intervention; S: Sewer pipe, P: Pavement; W: Water pipes; Sync: Synchronized; Unsync: Unsynchronized; RH: 

Rehabilitation; RC: Reconstruction, RP: Replacement; PC: Partial closure; CC: Complete closure; MUT: Multi-purpose utility 

tunnel 
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5.7 Discussion 

This research presents a combination of three independent ML models used to classify the 

conditions of pavement and underground assets to determine the needed asset-level interventions 

and the corresponding segment-level interventions leading to street closures. Classifying each asset 

using a uniform scale enabled the combination of the outcomes of the three models. 

This paper uses three labels (N, D, and R) to signify the different asset condition levels. The 

pavement condition classification model uses eight essential features in the ML process, including 

two condition indicators (PCI and IRI), rutting length, pavement material, etc. After 

hyperparameter tuning, the ensemble ML algorithm generated a classification accuracy of 98.64% 

with a Kappa value of 0.98 for test data. In addition to pipe features such as break rate, number of 

failures, etc., the water pipe model also uses the number of bad pipes, the sum of pipes, and the 

total length of pipes in the street segment for the classification process. Therefore, emphasizing the 

relationship in the conditions of spatially collocated assets. After optimizing the parameter values 

of all three ML algorithms in the ensemble, the model generated an accuracy of 96.37% and a 

Kappa value of 0.91 for the test data. 

The classification of sewer pipes uses similar features to the water pipe classification model. 

However, the model’s accuracy (82.38%) is lower than the pavement and water pipe classification 

models. This relatively low performance is partly due to the imbalanced nature of the sewer pipe 

dataset and the limited features available. For example, the slope, groundwater level, history of 

failure, and depth are missing from the dataset.  

When the ensemble models were tested on the reserved data meant for implementing the 

interventions and street closures, the model’s accuracy was 96.79%, 94.70%, and 70.17% for the 

pavement, water, and sewer pipes, respectively, with a segment-level accuracy of 79.92%. 

Although the use of an ensemble model, hyperparameter tuning, and SMOTE upsampling, 

improved sewer accuracy, one main source of uncertainty is the imbalanced nature of the sewer 

dataset. The relatively low performance of the sewer classification model as compared to both the 

water and pavement models reduced the overall segment-level accuracy, therefore increasing the 

uncertainty of the overall model.  
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Furthermore, each asset condition determined the asset-level intervention strategy (i.e., 

replacement, rehabilitation, or reconstruction (pavements only)) needed to restore its condition. 

Based on the intervention strategy needed at the segment level, interventions can be synchronized 

or not, and the nature of street closures is determined. Some asset-level interventions are changed 

at a segment level. For instance, pipes with a D condition will require rehabilitation at an asset 

level. However, when combined with an R-condition pipe requiring a replacement at an asset level, 

replacement is done rather than rehabilitating the D-condition pipe.  

The results also show that some street segments undergo partial and complete street closures to 

accommodate the pipe rehabilitation phase and the subsequent pavement reconstruction or 

rehabilitation phase of the intervention. This type of closure reduces the accrued social cost on the 

street segment because road users can access the street during partial closures. In addition, Figure 

13 reveals instances, where neighboring street segments with similar segment-level interventions 

can be combined into a single intervention, thus, reducing the accrued social costs. The results also 

reveal street segments where the implementation of the MUT could serve as an alternative to the 

synchronized method. Although several criteria determine the placement of MUTs on a street 

segment (Genger et al., 2021), this research can aid in identifying potential street segments which 

can be subsequently ranked using the criteria for determining the MUT placement. 

Although synchronized interventions increase utility cost savings by reducing the number of 

repeated excavations, introducing the MUT as an alternative technique for street sections, where 

the combined condition of the assets is in a critical state, increases the lifespan and ease of 

maintenance of underground utilities. This method of utility placement increases sustainability 

while avoiding future excavations related to utility interventions in the implemented street segment. 

GIS maps were used to display the street closures where interventions and subsequent street 

closures are imminent. These visualizations aid in traffic management (alternative route selection 

based on the impact on travel time) and intervention budget estimation (direct and social costs) 

based on the conditions of the individual assets. By classifying the individual conditions of the 

pipes in a road segment, a more accurate intervention duration can be ascertained.  

To our knowledge, the combination of machine learning outputs for multiple assets to aid 

synchronization has not been done before. Therefore, it is not possible to compare the accuracy of 

our results with previous research. Instead, Table 5-20 shows the comparison of the results of each 

model to individual classification models in the literature review. The pavement and water models 
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outperformed all the previous classification models, and the sewer condition model outperformed 

all the models except (Tavakoli et al., 2020). However, with a balanced sewer dataset, there is the 

possibility of improving the accuracy of the sewer classification model. 

Table 5-20. Model accuracy comparison.  

Asset Reference Accuracy% 
Accuracy % 

(This research) 

Water 

Winkler et al. (2018) 96 

96.37 Robles-Velasco et al. (2020) 85 

Kumar et al. (2018) 62 

Sewer 

Harvey and McBean (2014) 76 

82.38 
Mohammadi et al. (2019) 81 

Laakso et al. (2018)  62 

Tavakoli et al. (2020)  93 

Pavement (Piryonesi and El-Diraby, 

2021a) 
88 

98.64 

Hoang and Nguyen (2018) 87.5 

 

5.8 Summary  

This chapter presents an approach to determining street closures based on the combined conditions 

of spatially collocated municipal infrastructure assets at the segment level. The use of ensemble 

ML methods for classifying multi-asset conditions while using a uniform scale for all assets made 

it applicable for enhancing synchronized interventions at the segment level.  

The contributions of this research are as follows:  

(1) Developing an ML-based method for systematic condition classification of different spatially 

collocated underground municipal assets (i.e., pavements, water and sewer pipes) within a segment. 

Based on this contribution, the following conclusions can be stated: 

• The high accuracy of each ensemble machine learning model indicates an acceptable 

performance in the classification of the spatially collocated municipal assets as shown in 

Table 5-20.   

• Using a uniform classification scale for all three municipal assets enabled the determination 

of asset-level interventions, whose combination led to segment-level interventions and street 

closure decisions. 
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 (2) Applying a heuristic approach for determining street closures based on the synchronized or 

unsynchronized interventions at the segment level induced by combining the interventions of 

individual assets within each segment. Based on this contribution, the following conclusions can 

be stated: 

• The intervention strategies derived from the applied heuristics were used to determine the 

intervention unique to restoring the condition of each asset while taking a holistic approach 

to restoring the conditions of all spatially collocated assets within a segment. 

• The predicted segment-level interventions have an accuracy of 79.92%. 

• Based on the segment-level interventions, potential street segments for MUT location 

selections have been identified. 

• The segment-level intervention strategies resulted in both synchronized and 

unsynchronized interventions leading to complete or partial street closures. Some street 

segments require partial and complete street closures to accommodate the initial pipe 

rehabilitation phase and the subsequent pavement reconstruction or rehabilitation phase of 

the intervention. 

This research was implemented using a part of the City of Montreal (reserved dataset) that includes 

approximately 200 street segments. Moreover, this research shows the potential to be scaled up to 

an entire city with a similar combination of asset features, coupled with the intervention strategies 

unique to the infrastructure asset owners. This research can also be scaled up to include both 

municipal and private infrastructure assets.  
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CHAPTER 6.    MULTI-CRITERIA DECISION-MAKING FOR MUT LOCATION 

SELECTION4 

6.1 Introduction 

As discussed in Section 2.3, due to the limited research in the area of MUT location selection, this 

chapter is focused specifically on MUT location selection from the point of view of the decision-

makers and the data itself. The focus is on analyzing spatial data as input in the MCDM process of 

selecting the ideal candidate street segment for MUT placement. The objective is to gain insights 

into how spatial data can be utilized as input to a process to rank pre-selected street segments as 

potential MUT locations. This objective is accomplished through five specific goals (1) defining 

the criteria that influence the MUT location selection, (2) defining the required GIS datasets for 

quantifying these criteria and transforming them into scores for each candidate street segment, (3) 

analyzing the impacts of the dependencies between the criteria by comparing the ranking results of 

two MCDM methods (i.e., AHP and ANP) combined with the TOPSIS, (4) analyzing the difference 

between using subjective weights and objective weights obtained by applying the Entropy MCDM 

method, and (5) developing a prototype system to integrate the MCDM methods in a GIS platform. 

The ultimate aim of this chapter is to provide a comprehensive understanding of the MUT location 

selection process and the crucial role that spatial data can play in this decision-making process. 

6.2 MCDM Module 

This chapter provides a general method for MUT location selection using a combination of MCDM 

techniques and GIS spatial analysis, as shown in Figure 6-1. The method is broken into four phases: 

the criteria definition, selection and scoring of the alternatives, aggregation, and decision-making. 

This research focuses on the ranking of street segments for MUT placement using 12 criteria that 

are based on the literature review. They include annual average daily traffic, road class, the density 

of the utilities, population density, number of expected excavations, underground development 

projects, land-use, proximity to public facilities, proximity to high-rise buildings, soil type, the 

slope of the terrain, and proximity to the floodplain.  

 

 

4This chapter is based on the following journal paper: 

Genger, K.T., Luo, Y. and Hammad, A. (2021), “Multi-criteria spatial analysis for location selection of multi-purpose utility 

tunnels”, Journal of Tunnelling and Underground Space Technology, Pergamon, Vol. 115, p. 104073. 
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Different sets of weights are estimated using both AHP and ANP. The ranking of the street 

segments is achieved using TOPSIS. To determine the effects of the dependencies considered in 

the ANP methodology, the weights and the subsequent ranking results are compared. However, 

both ranking results are then compared to the output obtained from using Entropy weights applied 

in TOPSIS to determine which method (AHP or ANP) closely relates to an objective approach for 

a set of alternative MUT locations.   

 

Figure 6-1. Proposed MCDM method. 
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6.2.1 Criteria definition 

The MCDM process starts with defining the criteria and gathering the data related to each criterion 

in the MUT location selection process. Table 6-1 contains the 12 criteria used in the MCDM 

process and the possible GIS layers that could be used in generating the value of each criterion. 

Both the AHP and ANP models comprise four groups of criteria that further contain sub-criteria. 

These groups address different aspects of selecting a location for MUT placement in an urban or 

existing city. The social aspects and location groups address issues relating to the end-users (e.g., 

social cost generated from vehicular traffic and pedestrian delays, etc.) and the justification of the 

high construction cost with regard to the benefits of MUTs. The infrastructure cluster focuses on 

the benefits to the utility network infrastructure and the utility owners and the opportunities that 

could be constructed alongside MUTs. The environment cluster is mainly related to the method of 

construction and the utilities hosted in the MUT. The details of calculating or extracting each 

criterion are as follows. 

Table 6-1. GIS data related to criteria. 

# Criteria GIS Layer 

1 AADT Road traffic layer  

2 Road class Road class 

3 Population density Population distribution (e.g., Census data)  

4 Land-use categories Land-use layer 

5 Number of expected 

excavations for utility 

intervention 

Future intervention plan, history excavation data for intervention 

6 Utility density Utility networks (water, sewage, steam cool water and gas pipes, 

electricity and telecom cables, etc.) 

7 Underground development 

projects 

A layer of future underground projects (i.e., metro, underground roads, 

tunnels, etc.) 

8 Public facilities A layer of health facilities, colleges, universities, police departments, 

commercial centers, etc. 

9 High-rise buildings High-rise buildings layer 

10 Slope The slope of the terrain layer 

11 Floodplain Floodplain layer 

12 Soil type Soil layer 

 

6.2.1.1 Social aspects cluster 

(a)  Annual average daily traffic (AADT): MUTs reduce the need for excavation for underground 

asset maintenance; and consequently, they reduce the impact of traffic delays resulting from 

intervention activities. Therefore, selecting street segments with relatively higher AADT is 



105 

 

paramount. The GIS layer representing the AADT at road intersections can be integrated with 

the road layer to obtain the AADT for each street segment.  

(b) Road class: MUTs should be built under higher class roads (e.g., such as national roads, 

provincial roads, highways, etc.) because of the transitive relationship between road 

classification and AADT, and the importance of the continuity of traffic flow. Although there 

is a dependency between the classification of roads and AADT, road class is also influenced 

by additional variables such as transit routes and the needs of pedestrians and cyclists. These 

variables account for the road users that are not captured in the AADT. The road class is scored 

by assigning each classification a value between 0 and 1 based on its relevance to MUT location 

selection. This value is assigned using experts’ opinions. 

(c) Population density: MUTs should provide services to areas with high population density 

(number of persons per square kilometer) as a means of justifying their high initial cost of 

construction. Furthermore, areas of high population density tend to have a higher demand for 

utilities, and this translates to a high utility density. Equation 6-1 is used to calculate the average 

population density of street segments whose entire length is surrounded by areas with different 

population densities.  

𝑃𝐷𝑠𝑡 =
∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 × 𝑃𝐷𝑖

𝑛
𝑖=1

∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝑛
𝑖=1

 
(6-1) 

     where 𝑃𝐷𝑠𝑡=average population density of a street segment; 𝑃𝐷𝑖=population density of a length 

i.  

(d) Land-use: Areas with different land-use categories have different needs of MUTs, and they 

also reflect the number of potential users that do not show in the population density (e.g., day-

time users that are reflected in the institution or educational land-use category). Each land-use 

category is assigned a score between 0 and 1 according to its relevance to the MUTs based on 

experts’ judgment. Furthermore, the average score for street segments surrounded by different 

land-use categories is estimated using Equation 6-2.  

𝐿𝑆𝑠𝑡 =
∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 × 𝐿𝑆𝑖

𝑛
𝑖=1

∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖
𝑛
𝑖=1

 (6-2) 

      where 𝐿𝑆𝑠𝑡=land-use score of the street segment; 𝐿𝑆𝑖=land-use score of a length i.  
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6.2.1.2 Infrastructure cluster 

(a) Number of expected excavations for utility repair activities: MUTs would reduce the need for 

excavations for utility repair activities. Therefore, street segments with a relatively large number of 

excavations for utility interventions have a high priority for building MUTs. There is a relationship 

between utility density and the number of expected excavations. It can be assumed that street 

segments with a higher utility density will have a higher probability of utility interventions. Also, 

this criterion represents problematic street segments where excavations are frequent due to factors 

such as the age of the utility assets, material, level of deterioration, etc.  

(b) Utility density: MUTs would reduce the frequency of excavation for intervention activities of 

underground utilities. Furthermore, there is also a higher probability of utility strikes occurring 

on streets with a high utility density. Therefore, building MUTs under roads with high utility 

density eliminates utility strikes and their associated costs, and reduces downtime as a result of 

the disruption of service.  

Utility density takes into consideration: (1) The total number of utility pipes and cables, and 

(2) the sub-type of each utility: based on the diameters of water pipes, the type of electricity 

cables (single-phase, two-phase, etc.), the pressure of gas pipes, etc. The utility density of a 

street segment is calculated using Equation 6-3. The utilities buried under the street segments 

(e.g., electricity cables, sewage, gas, and water pipes) are considered to calculate utility density. 

The utility sub-type score (e.g., diameter of pipes, type of cables) of each utility type is assigned 

based on experts' opinions. For each street segment, the length covered by each utility sub-type 

is multiplied by the score attached to this sub-type. Subsequently, the summation of these 

values for all utilities is divided by the length of the street segment.  

𝑈𝐷𝑠𝑡 =
∑ ∑ 𝑙𝑖𝑗𝑠𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1

𝑙𝑠𝑡
 (6-3) 

where 𝑈𝐷𝑠𝑡= utility density of a street segment st; 𝑛= number of utility types under a road 

segment; m = number of utility sub-types for each utility of type 𝑖; 𝑙𝑖𝑗= length of utility type i 

and sub-type j; 𝑠𝑖𝑗= utility score; 𝑙𝑠𝑡 = length of the street segment. 

(c) Underground development projects: MUTs can be constructed simultaneously with 

underground development projects as this will significantly reduce the cost of construction. 

Therefore, MUTs should be built under roads with new construction of underground 
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passageways, metro lines, malls, etc. Boolean logic is used to normalize the underground 

project criterion. Street segments with future underground development projects are assigned 

1 and street segments without any underground developments are assigned 0. 

6.2.1.3 Location cluster 

(a) Proximity to public facilities: Public facilities have a relatively higher demand for utilities 

(e.g., hospitals, schools, factories, etc.), and the social cost accrued when there is service 

disruption is relatively higher than regular end-users. Therefore, public facilities would 

maximize the use of MUTs. The distance of the public facilities to the alternative street 

segments is calculated. This method was used in scoring the street segments because proximity 

determines the cost of lateral connections (i.e., longer lateral connections increase the cost of 

construction). Therefore, the shorter the distance from the MUT to the public facilities, the 

higher the score and vice versa.   

(b) Proximity to high-rise buildings: MUTs should be built near high-rise buildings because the 

ratio between the number of end-users to the number of lateral connections is higher than that 

of low-rise buildings. Also, high-rise buildings are correlated to the high density of utility 

networks. The scoring process is like the criterion of proximity to public facilities. 

6.2.1.4 Environmental cluster 

(a) Soil type: Different soil types determine the method of construction, construction materials, 

etc., and consequently, it may increase the initial construction cost. The soil types are assigned 

a value between 0 and 1 based on their suitability for the location of MUTs. This score is also 

assigned using experts’ opinions. 

(b) Slope of terrain: This criterion affects the utility type selection to be hosted in MUTs. The 

hosting of gravity-based sewage pipes in the MUT may increase construction costs due to the 

extra excavations needed to meet the slope requirements. Therefore, the slope of the terrain is 

a factor for MUT location selection.  

(c) Proximity to the Floodplain: MUT construction in floodplain areas may considerably increase 

construction costs. To avoid additional construction costs and the likelihood of future flooding 

of the MUT, MUTs should not be built in proximity to the floodplain. The distance between 
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each alternative street segment and the floodplain is calculated. Each alternative is scored based 

on the distance (i.e., the longer the distance the higher the score, and vice versa). 

6.2.2 Selection and scoring of alternatives  

The processes involved in this phase include identifying the alternative MUT locations and the use 

of several geoprocessing techniques in GIS in the extraction or calculation of the criteria scores for 

each alternative location from the data. These criteria scores are the values that make up the 

performance (decision) matrix. 

6.2.3 Aggregation 

This phase of the MCDM process identifies the most suitable alternatives from the available 

locations. Two sets of criteria weights are calculated using the AHP and ANP methods. These 

weights and the decision matrix generated in the selection and scoring phase are used in the 

TOPSIS process to obtain two sets of priority rankings that both represent the subjective ranking 

of each alternative for the MUT location selection. 

The decision matrix is also used in calculating the Entropy criteria weights for the identified 

alternative locations. The Entropy weights and the decision matrix are subsequently used in 

generating a third set of priorities using TOPSIS. These priorities signify the objective ranking of 

the MUT alternative locations. The following sections describe the AHP and ANP models used in 

generating the subjective weights. 

6.2.3.1 AHP model 

In the AHP hierarchy, the MUT location selection is the goal and the highest node in the hierarchy. 

This is followed by the criteria and sub-criteria in the middle and lower levels of the hierarchy as 

shown in Figure 6-2. All the experts' judgments for each pairwise comparison is aggregated to a 

single value using the geometric mean (Saaty, 2008), which is then incorporated into the pairwise 

comparison matrix (PCM). The priority vector (weights) for each criterion is computed from the 

Eigenvector of the PCM. This represents the weights for each criterion that will be subsequently 

used in the ranking of the alternatives. 
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Figure 6-2. AHP model. 

6.2.3.2 ANP model 

Dependencies exist between some of the criteria that make up the MCDM. Figure 6-3 represents 

the ANP structure for the MUT location selection problem. The ANP model shows five clusters 

and the dependencies that exist between/within them. Four clusters group the criteria, and one 

cluster represents the goal of the MCDM process.  

6.3 List of dependencies 

Based on the criteria selected for the MCDM process, the relationships that exist are both inner 

dependencies within a cluster and outer dependencies that exist between clusters. The inner 

dependencies considered in the social aspect cluster are (1) Land-use and population density: 

Certain land-use categories have relatively higher population densities than others (e.g., residential 

land-use has a relatively higher population density than agricultural land-use). To maximize the 

benefits, MUTs should be built in land-use categories associated with relatively higher population 

densities. (2) Road class and AADT: The relationship between road classification and traffic 

volume is such that, higher-classed roads serve both regional and inter-regional traffic movement 

over long distances. While lower-order classes handle local traffic movements over shorter 

distances. This does not necessarily mean that higher classed roads always have higher AADT. 

Although, their importance in terms of traffic interruption due to utility intervention is higher than 

roads of lower classification where alternative routes may exist, resulting in lower social costs. (3) 

AADT and Population density: There is a positive correlation between AADT and population 

density. 
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The inner dependency considered in the Infrastructure Cluster is; Utility density and Number of 

expected excavations: Street segments with high utility density tend to have a higher number of 

excavations regardless of other factors such as age, level of deterioration of the utilities, etc.  

The outer dependencies considered are: (1) Utility density and Population density: Ideally, there is 

a positive correlation between utility density and population density i.e., the demand for utility 

increases as the population density increases. (2) Land-use and Location Cluster: High-rise 

buildings or public facilities are mainly concentrated around downtown areas or areas with a 

diverse mix of residential or commercial land-use categories. Therefore, building MUTs near 

public facilities or high-rise buildings will also be of benefit to the surrounding users captured by 

the land-use category. (3) Population density and Location Cluster: This is similar to (2). (4) Utility 

density and Location Cluster: Public facilities and high-rise buildings generally require more 

utilities and need a certain level of service to operate efficiently. The cost-of-service disruption due 

to damage to utility services poses a threat to public safety and human lives in the case of health 

centers. 

Capturing dependencies in the model ensures that the influence these criteria have with respect to 

MUT placement or with respect to other criteria is recognized by the decision-maker. This 

recognition is converted to a value via the decision-makers opinions in the pairwise comparison 

using the nine-point fundamental scale proposed by (Saaty, 2004). 

6.3.1 Decision making 

All three techniques are based on different concepts; for example, AHP and ANP are based on 

decomposition, comparative judgments, and priority synthesis (Saaty, 1987). While TOPSIS is 

based on the distance principle (Jahanshahloo et al., 2006). In Step 4, the ranking results of 

AHP/ANP are compared to the results obtained from the ranking using Entropy weights applied to 

TOPSIS. These techniques are compared to determine the variance and similarities in the results 

obtained from each combination. 
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Figure 6-3. ANP model for MUT location selection. 

6.4 Implementation and Case Study 

6.4.1 Study area and related GIS data 

The study area used in the implementation of the MCDM module is shown in Figure 4-2. Table 

6-2 presents information on the GIS data used in generating the criteria values for the ten alternative 

MUT locations. Figure 6-4 shows the locations of the ten street segments that have been selected 

as the alternative MUT locations. The labels in the figures represent the unique identifiers of each 

street segment. To have comparable MUT projects of a similar scale, the length of each alternative 

street segment is about 200 m. The alternative street segments were selected based on attributes 

like the street's significance in terms of the activities (commercial, education, industrial, etc.) 

surrounding the street, data availability, and the topology of the utility networks. The maps in 

Figure 6-5 show the spatial maps generated for 11 criteria, excluding the soil type data which is, 

currently unavailable. Therefore, all alternatives will be assigned a value of one for this criterion. 

Figure 6-5 also contains four additional maps that show the utilities (electricity cables, water, 

sewer, and gas pipes) used in estimating the utility density. 
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Figure 6-4. The locations and IDs of the alternative street segments. 
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Table 6-2. Criteria and data sources. 

# Content Layer Data 

Type 

Data source Derived map 

1 AADT Traffic  Polylines 

 

Map of AADT at 

intersections* 

AADT 

2 Road Roads Map of the existing road 

network** 

Road class 

3 Population Population 

density 

Polygons Map of census 

information*** 

Population density 

4 Land-use Land-use Map of land-use** Land-use 

5 Intervention 

plan 

Road 

intervention 

plan 

Polylines Map of the intervention 

plan for road, water and 

sewer network** 

Break rate (the 

number of expected 

excavations) for the 

water pipes 

6 

 

 

 

Utility 

networks 

 

  

Water pipes Map of the water pipe 

network** 

Utility density  

Sewages 

pipes 

Map of the sewer pipe 

network** 

Electricity 

cables 

Map of the electricity cable 

network** 

Gas pipes Map of the Gas pipe 

network* 

7 Future city 

projects 

 Map of future underground 

projects** 

Underground 

development projects 

8 Public 

facilities 

Health 

facilities 

Points Map of hospitals, colleges, 

universities, police 

departments, and 

commercial centers** 

 

Public facilities 

Colleges  

Universities 

Police 

departments 

Commercial 

centers 

9 High-rise 

buildings 

High-rise 

buildings 

Points Lidar point cloud and 

building footprints** 

High-rise buildings 

10 Slope Road 

network 

slope 

Polylines Lidar point cloud and road 

network** 

Slope of road 

segments 

11 Floodplain Floodplain Polygons Map of the floodplain** Floodplain 

* Traffic Department, City of Montreal, Geomatics Department of the City of Montreal 

**Montreal Open Data Portal 

*** Statistics Canada 
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Figure 6-5. Criteria spatial maps.
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6.4.2 Criteria data analysis 

This section elaborates on the retrieval/estimation of each criterion value from the available 

datasets. 

AADT: Determining the AADT for any street segment required intersecting the AADT layer with 

the street segments layer. Figure 6-6 shows a GIS representation of a section of the AADT dataset 

with the color-coding signifying the different traffic densities for several intersections in the study 

area. 

 
Figure 6-6. AADT layer. 

Road class: Table 6-3 contains the 10 classes that represent the road classification in the study 

area and the score assigned to each class using experts’ opinions. This score represents the value 

of the road class criterion for each alternative. 

Utility density: Four types of utilities (i.e., electricity cables, sewage, gas, and water pipes) are 

considered in calculating utility density. Figure 6-7 is the GIS representation of a typical street 

segment showing the utilities buried underground. The utilities and the utility sub-types under each 

street segment are initially extracted from their respective GIS layers and the score for each utility 

sub-type is assigned. Table 6-4 is an example of the scores assigned to the description of the 

electricity cables. The total score (utility density) for each alternative street segment is then 

calculated using Equation (6-1). 

Number of expected excavations: This criterion was extracted from two types of GIS data: (1) 

Historical number of excavations and (2) Intervention plan of utilities and roads. The intervention 

plan layer contains an attribute about the water pipe break rate. This refers to the number of water 



116 

 

pipe breaks per km per year. Due to the lack of breakage data for other utilities, only the water 

pipe break rate was used to estimate the number of expected excavations for utility repair. The 

value of this criterion is extracted for all the alternative street segments. Street segments with 

missing values were assigned zero values. 

 

 
Figure 6-7. Utilities under street segment. 

 

Table 6-3. Assigned road class scores. 

Class name Scores 

Main arteries 1.0 

Highways 1.0 

Collectors 0.8 

Secondary arteries 0.8 

Business places 0.6 

Local roads 0.5 

Projected street 0.3 

Pedestrians 0.2 

Wharf 0.1 

Private 0.1 

 

 

Table 6-4. Sub-type scores of electricity cables. 

 

 
 

 

 
Level Score 

Neutral  0.9 

Secondary principal 0.9 

Three-phase 0.7 

Two-phase 0.6 

Street lighting  0.5 

Single-phase  0.4 

Connection  0.1 

      Table 6-5.Assigned land-use scores. 

Land-use category Scores 

Diversified activities 1.0 

Employment 1.0 

Institution 0.9 

Mix 0.8 

Infrastructure 0.7 

Residential 0.6 

Religious 0.2 

Agricultural 0.1 

Preservation 0.1 

Park 0.1 
 

Underground development projects: The map for the future city projects of the City of Montreal 

was intersected with the streets segments layer to identify the alternatives with future underground 

projects.  
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Population density: The street segments layer was intersected with the population density layer. 

Equation (6-2 was used to calculate the average population density for segments that cut across 

two or more population density polygons (e.g., Figure 6-8).  

Land-use: Table 6-5 shows the score assigned to each land-use category. Estimating the score for 

the land-use criterion is similar to the population density criterion. The criterion score for street 

segments with more than one surrounding land-use category was calculated using Equation 6-3.  

 

Figure 6-8. A segment surrounded by population density polygons. 

Proximity to public facilities: The maps used in determining the proximity to public facilities 

include health facilities, colleges, universities, police departments, and commercial centers layer. 

Using the Near method in ArcGIS, the distance between each alternative location and the closest 

public facility was estimated. The value is used in calculating the score for this criterion. The 

shorter the distance, the higher the score, and vice versa. 

Proximity to high-rise buildings: Like the proximity to public facilities criterion, the distance 

between the alternatives and the nearest high-rise building is calculated and the criterion value is 

based on the calculated distance.  

The slope of the road segment: Figure 6-9 shows the GIS model for calculating the slope of a 

road segment. Ground points are filtered from the point cloud data (LAS files) and saved in an 

LASD dataset using the Make LAS dataset layer tool in ArcGIS. The subsequent layer is converted 

to the Digital Terrain Model (DTM) by using the LAS dataset to raster tool. The street intersection 
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layer is converted to points using the feature vertices to point tool. This tool iterates through all 

the line features of the intersection layer and converts all the vertices that make up its geometry to 

point features. The new feature class is combined with the DTM layer to extract the cell values of 

the DTM raster. These values represent the elevation of the start and endpoints of the street 

intersections. This criterion is calculated using the difference in elevation between the start and 

endpoints of the street segment divided by the length of the road. 

Proximity to the floodplain: The Near method was also used in determining the proximity to the 

floodplain. Alternatives that are farthest away from the floodplain have higher scores. Alternatives 

with a score of zero are located within the floodplain. 

 

 

Figure 6-9. Calculating the slope of a street segment. 

6.5 GIS Software Prototype Implementation 

The tool, PlaceMUT, was designed to provide a user-friendly interface that aids decision-making 

by eliminating the need for calculating the weights for each criterion and the need to generate the 

attribute scores by using several geoprocessing techniques for each road segment. The user does 

not need to have prior knowledge of any geoprocessing or database manipulation techniques. The 

intended use of this software is the automated ranking of street segments based on 12 criteria for 

the location selection of the placement of MUTs. This software calculates the TOPSIS ranking 

based on weights obtained from AHP and ANP for the alternative road segments. It also estimates 
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the objective Entropy weights from the performance values of the street segments selected by the 

user.  

6.5.1 Software architecture 

PlaceMUT is implemented in Python 3.6.8 with several open-source libraries. For example, 

geoprocessing operations are implemented using the Arcpy library (Esri, 2020), and data 

visualization and numerical operations are done using Matplotlib (John, 2003) and NumPy 

(Numpy, 2020) respectively. Also, the GUI was designed using Tkinter libraries (Python Software 

Foundation, 2021), and both the input map (for selecting street segments) and output map (for 

visualizing the ranking scores) were implemented using C#. In addition, the archook module 

(Ramm, 2017) was used to locate ArcGIS and arcpy, thus making them available outside an active 

ArcGIS Conda environment. Finally, the SQLite3 (SQLite.org, 2014) SQL database engine was 

used to store the criteria scores for calculating the weights, the normalized scores, and the ranking 

results. The normalization, TOPSIS ranking codes, and Entropy processes were written from 

scratch in Python using the steps outlined in Sections 2.5.3 and 2.5.4. The sequence diagram in 

Figure 6-10 represents the sequence of operations needed to select a set of alternative street 

segments from the map and prioritize them using all three MCDM methods alongside two ranking 

methods (results from applying WLC were not included in this paper). Apart from the User object, 

the sequence diagram contains five objects: the Mapviewer, the Main controller (main Python 

file), Geoprocessor, the GIS database, and MCDM. The Mapviewer object is responsible for 

receiving and processing user commands, such as displaying selected street segment details and 

sending the unique identifier to the Main controller. The Geoprocessor uses queries generated by 

the Main controller to extract the criteria scores from the GIS database and subsequently returns 

the scores to the Main controller. The Main controller normalizes the scores and sends them to 

the MCDM object for ranking. Finally, the MCDM object sends the ranked street segments to the 

Main controller, which forwards the results to the Mapviewer object to display them to the User. 

Figure 6-11 is the main interface of the software. Figure 6-12 shows the study area loaded into the 

input map. Figure 6-13 shows a zoomed-in view of the study area with the labels in red showing 

the names of the alternative street segments. 
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Figure 6-10. PlaceMUT sequence diagram for ranking and displaying a set of street 

segments. 

6.6 Collecting Data for AHP and ANP Methods 

The AHP and ANP questionnaires were sent to 15 experts in the fields of urban planning, utility 

infrastructure management (the City of Montreal, HydroQuebec), telecommunication (Bell and 

Videotron), engineering, and MUT researchers in the United Kingdom, and Canada to collect the 

relative importance (preferences) of the criteria used for both MCDM processes. Samples of both 

questionnaires can be found in Appendix B. By so doing, the level of inconsistency was reduced. 

The group of experts had a combined consistency ratio of 1.9 % and 2.2% for AHP and ANP 

respectively, resulting in a consistent subjective evaluation. This was achieved by giving the 

experts with high inconsistencies the opportunity to review their choices. The choices made by all 

the experts were then aggregated into a single value for each pairwise comparison using the 

geometric mean. This value was input as the relative importance for each pairwise comparison 

judgment. The Super Decisions software version 3.2.0 © (Saaty et al., 2012) was used in 

calculating the weights derived from the AHP and ANP methods.  
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Figure 6-11. PlaceMUT main interface. 
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Figure 6-12. Input map. 

 

 
Figure 6-13. Zoomed-in map showing street 

segments. 

6.7 Results and Discussion 

This section discusses the results obtained by applying AHP, ANP, and Entropy weights. It also 

contains information on the ranking of the ten alternative street segments using TOPSIS. Finally, 

the obtained results are compared and discussed.  

6.7.1 AHP weights 

Table 6-6 is the aggregated decision matrix used in computing the AHP priority weights of the 

criteria. Based on the weights, the utility density criterion has the highest priority, followed by the 

AADT criterion. This shows that the experts agree that MUTs should be constructed under streets 

with high utility density. There are benefits to this because streets with high utility density are 

expected to have a relatively higher excavation rate for utility repairs than streets that have lower 

utility density. This could also potentially reduce the cost of construction via cost-sharing among 

the utility owners. There is a transitive relationship between utility density and the expected 

number of excavations. Prioritizing streets with a high utility density and a high expected number 

of excavations means reducing the excavations, which will reduce the traffic congestion caused by 

detours and street closures due to the excavations. This is also shown in the AHP weighting results 

as the experts ranked these three criteria (utility density, the expected number of excavations, and 

AADT) as the highest. The underground development criterion is ranked fourth. This criterion 

offers an opportunity to build MUTs alongside underground developments as this reduces the 
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initial cost of constructing the MUTs. The soil type criterion has the least priority with a weight of 

2.4%. The soil type will majorly affect construction costs and its effect can be remedied. 

6.7.2 ANP weights 

Table 6-7 contains the ANP cluster weights and the criteria weights. Based on the criteria weights, 

the proximity to public facilities criterion has the highest priority weight with 20.6%. This criterion 

also has a high cluster weight of 55.7%, accounting for its high criterion value. It is also important 

to note that street segments in proximity to public facilities are usually also in proximity to high-

rise buildings. The street segments that satisfy these two criteria are usually in downtown areas 

that have high utility density, high population density, and high traffic volume. These three criteria 

also have relatively high priority weights of 17.5%, 14.4%, and 6.2% respectively. This translates 

to the importance of building MUTs under street segments that are in proximity to both public 

facilities and high-rise buildings. The criteria that constitute the environmental cluster have the 

lowest priority weights with the soil type, distance to the floodplain, and slope of terrain having 

weights of 0.9%, 2.0%, and 0.9%, respectively. However, the possible impact the soil type and 

floodplain criteria may have on the implementation of MUTs can be remedied during the 

construction phase (i.e., soil and structural reinforcement of the MUT). The slope criterion affects 

the choice of utilities to be installed in the MUT (i.e., in the case of gravity-based pipes), which 

can also be remedied with the use of vacuum or pumped sewer systems (Islam, 2017).  
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Table 6-6. AHP aggregated decision matrix. 
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AADT 1.00 2.04 0.90 1.10 1.91 1.64 3.96 3.94 2.54 4.36 6.60 2.02 15.6 

Road class 0.49 1.00 0.61 0.92 0.92 1.04 1.81 2.49 1.43 4.32 2.35 1.23 8.9 

Utility density 1.11 1.64 1.00 1.78 2.35 2.18 4.92 5.12 2.39 5.53 4.79 2.67 17.8 

Number of 

expected 

excavations 

0.91 1.08 0.56 1.00 1.64 1.84 3.73 3.20 2.02 4.32 3.09 1.63 12.4 

Underground 

development 

projects 

0.52 1.08 0.43 0.61 1.00 2.29 2.61 3.68 2.95 4.55 2.79 1.46 11.0 

Population density 0.61 0.96 0.46 0.54 0.44 1.00 1.84 2.14 1.18 4.86 2.35 1.52 8.0 

Land-use 0.25 0.55 0.20 0.27 0.38 0.54 1.00 1.50 1.35 3.44 2.35 1.22 5.4 

Proximity to public 

facilities 
0.25 0.40 0.20 0.31 0.27 0.47 0.67 1.00 1.06 1.43 0.90 0.58 3.6 

Proximity to high-

rise buildings 
0.39 0.70 0.42 0.50 0.34 0.85 0.74 0.94 1.00 3.16 1.52 0.98 5.5 

Soil type 0.23 0.23 0.18 0.23 0.22 0.21 0.29 0.70 0.32 1.00 0.68 0.54 2.4 

Slope of terrain 0.15 0.43 0.21 0.32 0.36 0.43 0.43 1.11 0.66 1.48 1.00 0.74 3.5 

Proximity to the 

Floodplain 
0.49 0.81 0.37 0.61 0.68 0.66 0.82 1.72 1.02 1.84 1.35 1.00 6.0 

 

Table 6-7. ANP cluster and criteria weights. 

Cluster  Criteria ANP cluster weights % ANP criteria weights % 

Social Aspects AADT 22.1 6.2 

Road class 20.8 5.8 

Population density 51.6 14.4 

Land-use 5.5 1.5 

Infrastructure Number of expected excavations 22.6 7.1 

Utility density 55.7 17.5 

Underground development projects 21.7 6.8 

Location  Proximity to public facilities 55.7 20.6 

Proximity to high-rise buildings 44.3 16.4 

Environmental Soil type 23.8 0.9 

Proximity to the floodplain 52.7 2.0 

Slope of terrain 23.6 0.9 
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6.7.3 TOPSIS ranking results based on AHP and ANP weights 

Table 6-8, generated from PlaceMUT, presents the unnormalized scores that represent the criteria 

values (performance values) for the ten alternative locations. Figure 6-14 shows the TOPSIS 

ranking results for the alternatives using both the AHP and ANP derived weights. TOPSIS ranked 

the alternatives Sainte-Catherine and Atwater as the two highest priorities. The alternative Sainte-

Catherine has the highest number of excavations for utility intervention when compared to the 

other alternative segments, and it is also the only location with a future underground development 

project. Atwater on the other hand has the highest population density and the second highest AADT 

and is located in proximity to both high-rise buildings and public facilities compared to the other 

alternatives. Furthermore, based on both MCDMs and TOPSIS combinations, the alternatives 

Saint-Patrick and Notre-Dame are the ninth and tenth priorities respectively. All other priority 

positions are slightly different when both MCDM weights are applied. 

 

Figure 6-14. TOPSIS ranking results based on AHP and ANP weights. 
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Table 6-8. Performance values for ten alternative MUT locations. 

Alternative  

 

 

 

Locations 

Sainte-

Catherine 

(Bishop to 

Guy) 

Sherbrooke 

(Stanley to 

Montagne) 

René-

Lévesque 

(Panet to De 

Champlain) 

Atwater 

(Tupper to De 

Maisonneuve) 

Metcalfe 

(René-

Lévesque to 

Sainte-

Catherine) 

Saint-

Antoine 

(Georges-

Vanier to 

Vinet) 

Saint-

Patrick 

(Privée to 

Seigneurs) 

Notre-Dame 

(Hector-

Barsalou to De 

Boucherville) 

Pie-IX (La 

Fontaine 

to 

Ontario) 

Parc 

(Villeneuve 

to Saint-

Joseph) 

Street Segment ID 23043 23074 23786 22977 23103 20593 21195 34864 14911 18049 

Length (m) 205.48 196.49 254.76 217.90 239.32 272.85 226.67 208.89 166.24 176.37 

AADT 17,000 13,000 12,000 18,000 5,900 3,800 12,000 15,000 12,000 22,000 

Road class 0.8 1.0 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 

Utility density 14.60 8.17 14.35 10.08 6.66 3.76 4.72 9.60 10.05 7.70 

Excavation number 

(brk/km/yr) 

 

4.75 

 

2.79 

 

0 

 

0 

 

0 

 

2.53 

 

0 

 

0. 

 

3.60 

 

0 

Underground 

development project 

 

1 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

Population 

density(per/sq.km) 

 

5,713 

 

9,560 

 

10,182 

 

27,252 

 

3,217 

 

13,843 

 

7,127 

 

848 

 

10,122 

 

18,038 

Land-use 0.83 0.70 0.80 0.8 0.80 0.60 0.80 0.85 0.60 0.80 

Proximity to public 

facilities (m) 

 

18.47 

 

115.24 

 

329.49 

 

96.40 

 

133.71 

 

294.20 

 

998.43 

 

1,513.83 

 

76.45 

 

753.80 

Proximity to high-rise 

buildings (m) 

 

101.06 

 

169.28 

 

48.58 

 

2.22 

 

146.10 

 

248.83 

 

802.42 

 

3,131.39 

 

2,175.32 

 

1,033.83 

Soil type 1 1 1 1 1 1 1 1 1 1 

Proximity to 

floodplain (m) 

 

1,581.62 

 

0 

 

1,567.18 

 

2,388.27 

 

1,047.35 

 

1,806.42 

 

1,169.05 

 

0 

 

168.41 

 

2,967.16 

Slope of terrain 1.58 0 2.40 0.86 0.83 0 0.32 0 0 0.86 
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6.7.4 Entropy weights and ranking 

The Entropy weights are dependent on the performance values of the alternatives. Entropy weights 

were calculated using the values of the alternative street segments in Table 6-9. Because the soil 

data is unavailable, it is assumed that there is no variation in the soil type for all alternative 

locations. The soil type criterion was assigned a value of 1 for all alternatives. A performance 

value of 1 will assign an Entropy weight of 0 to the soil type criterion so as not to affect the overall 

ranking of the street segments. Therefore, the ranking results can be compared to the other two 

MCDM ranking results. 

The weights in Table 6-10 show that the criterion with the highest weight is underground project 

development with a weight of 38.8%. Having only one alternative with a future underground 

project among the 10 alternatives results in a high degree of differentiation, and this accounts for 

the high criterion weight. Second, to this criterion is the number of expected excavations with an 

Entropy weight of 16%. The utility density criterion weighs 0.8%, even though this criterion is 

one of the main reasons for the implementation of MUTs. The slope criterion, on the other hand, 

has a relatively higher weight of 11.4% as opposed to AHP and ANP which gave values of 3.5% 

and 0.9% respectively. This is because four of the ten alternatives have zero slope values that 

represent flat horizontal road segments. Whereas, based on the calculation of the entropy weights, 

the zero values increase the level of uncertainty and therefore, increase the entropy weights. 

The derived weights were applied to the TOPSIS algorithm, and the ranking results are shown in 

Figure 6-15. Using the Entropy weights in TOPSIS also ranked the alternative Sainte-Catherine 

as the highest priority with an evaluation score of 0.91. There is a large difference in the priority 

score of Sainte-Catherine and subsequent alternatives of lower priorities. 
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Table 6-9. Entropy weights for 10 alternatives. 

Criteria Entropy weight (%) 

AADT 1.4 

Road class 0.1 

Population density 4.0 

Land-use 0.1 

Number of expected excavations 16.0 

Utility density 0.8 

Underground project development 38.8 

Proximity to public facilities 8.9 

Proximity to high rise buildings 12.2 

Soil type 0.0 

Proximity to the floodplain 6.2 

The slope of the terrain 11.4 

 

6.7.5 Ranking comparison of subjective and objective weights 

Table 6-10 is the different criteria weights for the three MCDM techniques. The weighting 

methods are based on different principles. AHP assumes no relationship exists between the criteria, 

in contrast with ANP. Entropy weighs the criteria based on the data values themselves without 

considering the purpose of the data. Based on the ten alternative locations, the utility density, land-

use, and road class criteria Entropy weights have relatively lower weights when compared to the 

weights derived from AHP and ANP. While the number of expected excavations and underground 

project development criteria was weighted among the top four for AHP and Entropy.  
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Figure 6-15. Entropy weights and TOPSIS ranking (derived using PlaceMUT). 

Figure 6-16 shows the different ranking positions obtained from the combination of TOPSIS with 

weights derived from the AHP, ANP, and Entropy weights. Figure 6-17 is a map showing the 

locations of all ten alternatives and the ranking position of each combination. A comparison of the 

ranking results shows that the ANP method was closer in ranking priorities to the objective weights 

than the AHP method. All three combinations rank the alternatives Sainte-Catherine, Saint-

Patrick, and Notre-Dame as the first, ninth, and tenth, respectively, amongst this set of alternatives. 

The ranking priorities derived from the combination of ANP+TOPSIS are equal to the combination 

of Entropy+TOPSIS for seven out of the ten priority positions.  
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Table 6-10. Criteria weights. 

Criteria 

Weights (%) 

AHP ANP Entropy 

AADT 15.6 6.2 1.4 

Road class 8.9 5.8 0.1 

Population density 8.0 14.4 4.0 

Land-use 5.4 1.5 0.1 

Number of expected excavations 12.4 7.1 16.0 

Utility density 17.8 17.5 0.8 

Underground Project Development 11.0 6.8 38.8 

Proximity to public facilities 3.6 20.6 8.9 

Proximity to high rise buildings 5.5 16.4 12.2 

Soil type 2.4 0.9 0.0 

Proximity to the Floodplain 3.5 2.0 6.2 

The slope of the terrain 6.0 0.9 11.4 

 

Figure 6-16. Comparing different ranking positions. 
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Figure 6-17. Ranked alternatives. 

6.8 Summary  

Considering the high initial construction cost of MUTs, this research has shown that the 

identification of critical street segments as candidates for MUT placement can be achieved through 

the application of a general method for MUT location selection based on the combination of GIS 

spatial analysis and MCDM. The spatial attributes of the alternative MUT locations were extracted 

using several geoprocessing techniques, and MCDM methods were used in weighing the criteria 

and subsequently ranking the potential MUT locations. The developed tool, PlaceMUT, automates 

the decision-making process of street segment selection and ranking and can be used for any city 

by changing the input data.   
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From the case study, the differences between the most critical criteria determined the ranking. The 

alternative Sainte-Catherine has an above-average utility density and the highest excavation 

number, and it is the only street that has a future underground development project. It is located in 

the downtown area of the City of Montreal. Therefore, it is selected as the most suitable location 

for MUT placement among the ten locations in all MCDM methods.  
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CHAPTER 7.    MULTI-OBJECTIVE OPTIMIZATION FOR SELECTING POTENTIAL 

LOCATIONS OF MUT CONSIDERING SOCIAL COSTS5 

7.1 Introduction 

Chapter 6 adopted a location selection approach for MUTs based on the spatial characteristics of 

pre-selected locations. However, this chapter proposes a different approach to identifying the 

potential locations for MUTs by optimizing agency and social LCCs (life cycle costs) and network 

deterioration through multi-objective optimization. 

This proposed approach involves estimating and comparing the savings in agency and social LCCs 

and network deterioration resulting from the implementation of MUTs and synchronized utility 

interventions at both the segment and network levels. By comparing the optimization results, the 

aim is to identify the street segments in the network where implementing MUTs is less expensive 

than the synchronized method of utility intervention while offering lifecycle savings. The end-

result is a multi-year plan for MUT location selection that optimizes all three objective functions. 

The focus of this chapter is on using multi-objective optimization to identify the potential locations 

for MUTs that offer the greatest benefit in terms of LCC savings and network deterioration. The 

rest of this chapter includes: (1) the development of agency and social LCC models for both 

alternatives; (2) the use of linear deterioration models that track the yearly conditions of the 

spatially collocated assets; and (3) the comparison of the obtained optimization results at the 

network and segment levels.  

7.2 Overview of the Optimization Model 

Figure 7-1 represents the proposed framework at a high level of abstraction. Based on the current 

conditions derived from the individual datasets of each asset, asset-level interventions are 

determined. This research uses a condition-based method to combine the individual asset-level 

interventions, which enables the transition to segment-level interventions. The asset classifications 

alongside the asset and segment-level intervention strategies used in this module are the same used 

in Sections 5.2.4 and 5.2.5. 

 

5This chapter is based on the following journal paper: 

Genger, K.T., Hammad, A., and N. Oum (2023), “Multi-Objective Optimization for Selecting Potential Locations of Multi-

Purpose Utility Tunnels Considering Agency and Social Lifecycle Costs”, Journal of Tunnelling and Underground Space 

Technology (under review). 
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The assumptions (i.e., condition indicator thresholds and synchronized intervention strategies) 

adopted in this research are based on the practical approach used by the City of Montreal (Chacon 

and Normand, 2016). 

The objectives of each alternative (MUT and synchronized interventions) are obtained using two 

independent optimization models, one for each alternative. These models will be explained in 

greater detail in Sections 7.5.1 and 7.5.2. The solutions contained in the Pareto fronts of the two 

optimization models include the LCCs and network deterioration of implementing MUTs and 

synchronized interventions on several street segments on a network.  

The details of each optimization model will be explained in the following sections. After 

determining the asset conditions (Step 1) in Figure 7-1, the next step is to establish the asset-level 

intervention strategies unique to each asset and the segment-level intervention strategies unique to 

each segment (Step 2). These segment-level intervention strategies are obtained from the 

combination of asset-level interventions. In Step 3, the main goal is to optimize the synchronized 

interventions at the network level considering the agency and social LCCs and the deterioration of 

the assets in the network. If interventions are required, the nature of the applied intervention 

strategy (i.e., pipe rehabilitation or replacement, and pavement reconstruction or rehabilitation) 

determines the improvement in the condition of each asset. Synchronized interventions are then 

applied to segments where at least two assets require interventions, and their synchronization 

enables the transition to segment-level interventions. The agency and social costs of the 

intervention are calculated, and the condition of each asset is updated based on the applied 

intervention.  

Deterioration models for each type of asset are used to determine the yearly change in asset 

conditions. These models keep track of the conditions of buried assets (with or without 

interventions). This process is repeated throughout the planning period and the LCCs are 

calculated at segment and network levels.  

Meanwhile, MUTs are also applied to segments where the interventions require excavation (e.g., 

for pipe replacements), as these street segments are considered an opportunity to build MUTs (Step 

4). This aggressive process means that the assets are allowed to deteriorate to the point where only 

interventions requiring excavations can be performed.  

In Step 5, the main goal is to optimize the MUT implementation at the network level considering 

the agency and social LCCs and network deterioration. Similar to synchronized interventions, the 
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agency and social costs of implementing the MUT are calculated and the conditions of the assets 

(i.e., hosted in the MUT or buried) are updated. Yearly maintenance is executed on the MUT 

structure as well as the assets hosted in the MUT without accruing any social costs, meanwhile, 

the agency cost of the maintenance is calculated. Deterioration models keep track of the conditions 

of the assets in the MUT and these assets are replaced when their conditions get to the thresholds 

for intervention with no accrued social costs. 

The selection of the street segments for either the implementation of the MUT or the synchronized 

interventions in a particular year is guided by the objectives and constraints. The multiyear location 

selection for the MUT and the synchronized interventions involves maximizing the network 

performance, which is achieved by minimizing the deterioration represented by the number of 

segments with D and R asset conditions at the end of the planning period. This objective function 

aims to minimize the network deterioration by minimizing the ratio of segments with all three 

assets requiring intervention versus the total number of segments in the network at the end of the 

planning period as will be explained in Equation 7-5. In addition, the location selection also 

involves minimizing the agency and social LCCs while meeting all constraints of the system. 

The second and third objective functions cover the agency and social LCCs, respectively, accrued 

as a result of the implementation of the MUT or synchronized interventions. 

To compare both solutions at the network or segment levels, a solution that satisfies the decision 

maker’s priority is selected from the Pareto front (Step 6). This research uses the Simple Additive 

Weighting (SAW) method to select a solution by assigning a score to each solution, obtained by 

summing the products of the normalized objective values and their weights (i.e., assigned by the 

decision maker). The solution with the largest score is selected from the Pareto front (Martínez-

Morales et al., 2010).  
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Figure 7-1. Proposed framework.
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7.3 Social Cost Model 

The socioeconomic impacts of both alternatives (i.e., MUTs and synchronized interventions) are 

estimated using three social cost indicators: vehicle maintenance and operations (VMO), vehicle 

delays (VED), and air pollution (AP). All three indicators are accrued during the implementation 

of the synchronized intervention method in the construction and maintenance phases of the 

lifecycle. However, they are only accrued during the construction phase of the MUT 

implementation. The models used for estimating each social cost indicator are presented in the 

sections below.  

7.3.1 Social cost nonlinear regression models 

The implementation of the developed models is fastidious at the macro level for the entire network. 

There was therefore a need to develop regression functions for the social cost indicators to ease 

the estimation of the social costs at the macro level. First, linear regression modeling was tested, 

but the results were not satisfactory, even though the R2, measuring the proportion of variance in 

each social cost indicator, was acceptable. The estimated costs from linear regression often failed 

to match calculated social costs because some coefficients or the intercepts were negative. A 

negative intercept was a concern because it can lead to negative costs (Oum, 2017). Therefore, it 

was decided to shift to nonlinear regression modeling. For all indicators, it was observed that both 

the project duration (PD) and the length of the segment (L) are exponential functions, and the 

vehicle traffic density (VTD) is a linear function. Then, the regression functions (VED, VMO, and 

AP) were developed upon these observations of the three indicators.  

Synchronized interventions make it necessary to guarantee worker safety and ease of movement 

for heavy machinery and equipment. Therefore, most interventions on the right-of-way require 

complete or partial closures of street segments (le Gauffre et al., 2002; Matthews et al., 2015). The 

regression coefficients are determined for both partial and complete street closures. The 

coefficients for complete street closures are used to calculate the social cost indicators for 

synchronized interventions, while the coefficients for partial street closures are used to calculate 

the social cost indicators for the MUT construction. This assumption is mainly due to the selected 

method of construction used in the implementation of MUT (i.e., microtunneling) which requires 

an input shaft and an exit shaft.  
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The regression functions for all three social cost indicators were built in a way to find the predicted 

VED, VMO, and AP costs (in $), based on VTD (in vehicles), L (in meters), and PD (in days). The 

regression was performed by minimizing the sum of the squares of the errors, i.e., differences 

between modeled and measured values. The statistical tests, F-test, and t-test were performed for 

complete and partial closures. 

7.4 Deterioration Models  

The deterioration of all three assets is determined using linear deterioration models adopted from 

the models used by the City of Montreal (Chacon and Normand 2016). Due to the lack of models 

that capture the rate of asset deterioration in MUTs, it is assumed that assets hosted in the MUT 

deteriorate at the same rate as those buried under the subsurface. Therefore, the condition threshold 

required for the implementation of the intervention strategies before building the MUT is the same. 

In addition, replacements and yearly maintenance are carried out on the assets hosted in the MUT.  

7.4.1 Sewer and water pipe deterioration models 

It is assumed that both the sewer and water pipes buried underground follow a linear deterioration 

model, which is expressed by the age of the pipe divided by the expected life (Equation 7-1). 

Furthermore, the expected life of sewer and water pipes is based on their respective materials and 

diameters as will be explained in Section 7.7. 

𝐷𝑡 =
𝐴𝑔𝑒𝑡

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑓𝑒
 (7-1) 

where 𝐷𝑡 is the degree of deterioration of the pipe at year t 

Both intervention strategies (i.e., pipe rehabilitation and replacement) restore the deterioration 

degree of a pipe to 0. However, the expected life of these intervention strategies differs.  

7.4.2 Pavement deterioration models 

In this research, the pavement condition index (PCI) is used to determine pavement condition. At 

year 0 (i.e., time of intervention), PCI is 100. At the end of the elapsed life, the PCI approaches 0 

(Piryonesi and El-Diraby, 2021b). Assuming a pavement deteriorates at a rate (𝑟𝑎𝑡𝑒𝑑𝑒𝑡) between 

1 to 2 PCI points/year (Chacon and Normand 2016). The pavement deterioration model can be 
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expressed as presented in Equation 7-2. To capture the random nature of the pavement 

deterioration rate, a random value between 1 and 2 is assigned yearly to each street segment.  

𝑃𝐶𝐼𝑡 = 𝑃𝐶𝐼𝑡−1 − 𝑟𝑎𝑡𝑒𝑑𝑒𝑡  (7-2) 

Different intervention strategies have different impacts on pavement conditions. Although both 

minor and major pavement rehabilitation strategies improve the condition of the pavement, only a 

pavement reconstruction restores it to the original state (i.e., PCI = 100). The impact of applying 

both major and minor rehabilitation interventions is achieved by randomly assigning a PCI value 

between 100 – 70 and 70-40 for major and minor rehabilitation respectively. 

7.5 Optimization Model (NSGA-II Adaptation) 

The optimization problem considered in this work is a combinatorial multi-objective problem 

because it involves selecting a combination of street segments based on their current conditions, 

future conditions, and the timing and nature of the intervention, all subject to budgetary constraints. 

The search space for finding the optimal or near-optimal solutions is very large because several 

variables are considered. These variables include the street segments in the network, the collocated 

utility assets in a segment (i.e., water and sewer pipes, telecommunication and electricity cables, 

and pavement), the type of synchronized intervention strategies (e.g., pipe rehabilitation or 

replacement and pavement rehabilitation or reconstruction), the year of the applied intervention, 

and the planning period. 

The optimization model is implemented using the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) optimization algorithm (Deb et al., 2002) because it is a well-established and widely 

used multiobjective optimization algorithm capable of solving complex combinatorial problems. 

The NSGA-II is implemented by randomly initializing a population according to the number of 

solutions (chromosomes). Figure 7-2 presents the proposed optimization model for identifying the 

optimal MUT locations as well as the optimal intervention plan for implementing the synchronized 

interventions over a planning period. 

The fitness functions are evaluated using Equations 7-3 to 7-5 for the synchronized intervention 

model which is subject to the constraints in Equations 7-6 and 7-7. Furthermore Equations 7-6 and 

7-7 ensure that the agency cost and the social costs in year t are within budgets limits of their 
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respective the present values. Details on the synchronized intervention optimization model are 

provided in Section 7.5.1. 

The objective functions for synchronized interventions are: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶 = ∑ ∑
 𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠𝑡

(1 + 𝑟)𝑡

𝑁

𝑡=1

𝑆

𝑠=1

 (7-3) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶 = ∑ ∑
𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠𝑡

(1 + 𝑟)𝑡

𝑁

𝑡=1

𝑆

𝑠=1

 (7-4) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ ∑
𝐷𝑁𝑠𝑖𝑗 + 𝑅𝑁𝑠𝑖𝑗

𝑆

𝑚

𝑗=1

𝑛

𝑖=1

𝑆

𝑠=1

 
(7-5) 

where 𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶 is the agency LCC achieved by implementing the synchronized 

intervention; 𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶 is the social LCC achieved by implementing the synchronized 

intervention; r is the discount rate; t is the year of intervention; N is the length of the planning 

period; S is the number of segments in the network; 𝐷𝑁𝑠𝑖𝑗 and 𝑅𝑁𝑠𝑖𝑗 is the number of segments with 

D-condition assets and R-condition assets, respectively.  

Subject to the following constraints: 

 ∑  𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠

𝑆

𝑠=1

≤
𝐴𝐺𝐵

(1 + 𝑟)𝑡
 (7-6) 

 ∑ 𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠

𝑆

𝑠=1

≤
𝑆𝐶𝐵

(1 + 𝑟)𝑡
 (7-7) 

where 𝐴𝐺𝐵 is the yearly agency cost budget; and 𝑆𝐶𝐵 is the social cost budget. 

While for the MUT optimization problem, the fitness functions are evaluated using Equation 7-5 

(this fitness is common to both optimization problems), and Equations 7-8 to 7-9. The MUT 

optimization problem is subject to the constraints in Equations 7-10 to 7-11. Equation 7-10 ensures 

that the combined maintenance cost of existing MUTs and cost of implementation new MUTs in 

year t does not exceed the present value of the yearly agency. On the other hand, Equation 7-11 

ensures that the social cost of implementing new MUTs does not exceed the present value of the 

yearly social cost budget at year t. Details of the MUT optimization model are provided in Section 

7.5.2. 
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The objective functions for MUT implementation are: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶 = ∑ ∑
 𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠𝑡

(1 + 𝑟)𝑡

𝑁

𝑡=1

𝑆

𝑠=1

 (7-8) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶 = ∑ ∑
 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠𝑡

(1 + 𝑟)𝑡

𝑁

𝑡=1

𝑆

𝑠=1

 (7-9) 

where 𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶 is the agency LCC; s is the street segment; 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶 is the social LCC;  

Subject to the following constraints: 

 ∑ 𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠

𝑆

𝑠=1

 + ∑ 𝑂𝑀𝐶𝑠

𝑆

𝑠=1

≤
𝐴𝐺𝐵

(1 + 𝑟)𝑡
 (7-10) 

 ∑ 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠

𝑆

𝑠=1

≤
𝑆𝐶𝐵

(1 + 𝑟)𝑡
 (7-11) 

where 𝑂𝑀𝐶𝑠 is the cost of existing MUT maintenance and operation 

The representation of the solution for optimizing the multi-year MUT locations is presented in 

Table 7-1. Each solution (i.e., chromosome) is a vector with a length equal to the multiplication of 

the length of the planning period and the number of street segments in the network. Table 7-2 is 

the solution representation for one year of a synchronized intervention. Each chromosome 

comprises the interventions for each utility in each segment in each year of the planning period. 

The length of a solution is the multiplication of the planning period, the number of segments in the 

network, and the intervention strategies applied based on the asset condition and the number of 

assets.  

Table 7-1. MUT solution representation.   

S1 S2 … SX Sa Sb … Sy … Si Sj … Sz 

Year 1 Year 2 … Year N 

 

Table 7-2. Solution representation for the synchronized intervention for year t. 

 

 



142 

 

 
Figure 7-2. Optimization model. 

An intervention strategy is assigned to each collocated asset based on its current condition. The 

intervention strategies for all the collocated assets are encoded using an integer representation. 

Each type of intervention strategy is assigned a unique integer. For example, no intervention 

strategy is assigned 0, the rehabilitation of sewer and water pipes is assigned 1, and the replacement 

is assigned 2. Segments where the initial intervention on the sewer pipe is 1 (i.e., rehabilitation), 

are changed to a 2 (i.e., replacement) when the intervention of the water pipe is 2 and vice versa. 

This decision means that both the water and sewer pipes will undergo synchronized replacement 

requiring excavations or they will both undergo synchronized rehabilitation using trenchless 
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methods such as cured-in-place pipes (CIPP) or sliplining (Najafi, 2010). Also, due to the need for 

excavation during the replacement of underground assets, pavement interventions are dependent 

on the interventions of the underground assets. This means that the underground interventions will 

be also synchronized with pavement interventions. Based on the current asset conditions, some 

segments may not require any intervention, for example, Table 7-2 includes a street segment z 

where all the underground assets and the pavement do not require intervention hence the 

intervention strategy is 0. All these conditions are accounted for when generating each solution in 

a population. The value of each objective function is calculated, and each solution is assigned a 

fitness value.  

The selection of potential individuals to construct a new population is done by binary tournament 

selection, which initially sorts the population using the dominance principle and a comparison 

operator that calculates the crowding distance. Each individual in the new population either has a 

lower (i.e., better) or equal rank that is located in a lesser crowded region (i.e., new solutions have 

greater crowding distances than the old solutions).  

Crossover is achieved by selecting a random single cut-point for two random parent solutions as 

shown in Figure 7-3 for the case of synchronized interventions. The crossover operator then creates 

two child solutions by combining the left side of the cut-point of parent 1 and the right side of the 

cut-point of parent two for child one, followed by a switch of selected sides for child two. After 

the crossover operation, both parents and children are merged, and a new Pareto front is computed 

for that generation.  

The mutation process is carried out to ensure a good spread of solutions. Mutation is achieved by 

randomly changing, one or more intervention strategies on the utilities in a segment in a specific 

solution as shown in Figure 7-4. The crossover and mutation will also reflect the impact of the 

implemented interventions of the underground assets on the intervention of the pavement as shown 

in Figure 7-3. This entire process is carried out for all generations until convergence is obtained or 

the maximum number of generations is reached.  
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Figure 7-3. Crossover operation (case of synchronized interventions). 

 

Figure 7-4. Mutation operation. 

7.5.1 Synchronized utility intervention optimization model 

In the case of optimizing the synchronized intervention model, at the start of the planning period, 

the initial conditions of all assets in the segment will determine the nature of the respective 

interventions. The condition for subsequent years is determined using a deterioration model for 

each asset. The derived conditions will further determine the nature and timing of an applied 

intervention strategy. Adopted from the intervention strategies used by the City of Montreal 

(Chacon and Normand, 2016), the intervention strategies applied to water and sewer pipes include: 

No Intervention for pipes still in a good condition, Structural Rehabilitation for pipes in a desirable 

condition (i.e., extending the service life of an existing sewer or water pipe using methods such as 

inserting a sheath inside the pipe), and Replacement for pipes in a critical condition. Similar to the 

intervention strategies of water and sewer pipes, pavements in a good condition (i.e., PCI ≥ 70) 
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will require No Intervention, Minor Rehabilitation (i.e., restoring the structural capacity of a 

pavement structure, by rout and crack sealing) is applied to pavements in a desirable condition 

(i.e., 70  > PCI ≥  40), Major Rehabilitation (i.e., increasing the structural load carrying capacity 

of the pavement using structural overlays), or Reconstruction (i.e., the complete removal and 

replacement of existing pavement including granular layers) for pavement in a critical condition 

(i.e., PCI < 39). The timing and nature of the selected intervention will have agency costs and 

social costs implications, as well as implications on the level of deterioration of the asset.  

Equation 7-12 represents the agency LCC for synchronizing the intervention of utilities under a 

street segment and the road pavement. The equation accounts for the intervention cost of the 

underground assets and the cost of pavement intervention. 

𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠  = ∑ ∑ ∑
𝐼𝐶𝑠𝑡𝑖𝑗 + 𝑃𝐼𝐶𝑠𝑡

(1 + 𝑟)𝑡

𝑚

𝑗=1

𝑛

𝑖=1

𝑁

𝑡=1

 (7-12) 

 where 𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠 is the agency life-cycle cost for conducting a synchronized intervention 

on street segment s; for an underground asset of type i and sub-type j, over a planning period N; 

𝐼𝐶𝑠𝑡𝑖𝑗  and 𝑃𝐼𝐶𝑠𝑡 are the intervention costs of underground assets and pavement interventions, 

respectively; r is the discount rate. 

Equation 7-13 is the social LCC associated with the intervention, which is the sum of all social 

cost indicators discounted to the present value.  

 𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠  =  ∑ ∑
𝑆𝐶𝐼𝑠𝑡𝑘

(1 + 𝑟)𝑡

𝐾

𝑘=1

𝑁

𝑡=1

 (7-13) 

where 𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶𝑠 is the social cost accrued during all interventions at segment s; k is the 

number of social cost indicators; 𝑆𝐶𝐼𝑠𝑡𝑘  is the social cost accrued during interventions on segment 

s at time t. 

7.5.2 MUT optimization model  

Based on the initial conditions of the collocated assets on each segment, several street segments 

are selected as the target of MUT construction and both the agency and social LCC are estimated. 

For subsequent years in the planning period, linear deterioration models are applied to each asset 

in the network and based on future conditions, more street segments are selected as the target of 
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MUT construction. The selection of the street segments in any particular year is constrained by a 

social cost budget and an agency cost budget. 

The LCC components considered in this research include the tunnel construction, utility 

replacement and installation, tunnel system equipment, and maintenance phase of the MUT. 

According to Jorjam (2022), the two main methods used in MUT construction are cut and cover 

(C&C) and microtunneling. The tradeoff between these methods is that while the microtunneling 

is faster and has relatively lower socioeconomic impacts, it is more expensive than the C&C 

method. In addition, microtunneling is applicable in mature cities with high traffic densities, 

because it requires fewer street closures, and is less disruptive to traffic. The selected construction 

method is a major factor in estimating the initial construction cost and the duration of the 

construction. In this study, microtunneling is selected as the construction method of MUTs because 

of the above-mentioned advantages. This research assumes that all the existing utilities previously 

buried in the underground are replaced by new ones in the MUT.  

Another factor that affects the cost of MUT implementation is the cost of utility asset replacement 

and installation. Equation 7-14 represents the agency LCC of implementing a MUT under a street 

segment. The agency LCC is the summation of the initial cost of construction, the cost of MUT 

system equipment (e.g., appurtenances, auxiliary systems, detection and communication systems, 

control systems, etc.), utility handling (i.e., replacement and installation), and utility and tunnel 

maintenance. 

 𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠  = 𝐼𝐶𝐶𝑠 + 𝑀𝑈𝑇_𝑆𝐸𝑞𝑠 + ∑ ∑(𝐶𝑃𝑅𝐸𝑃 + 𝐶𝑃𝐼𝑁𝑆)𝑠𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ 𝑂𝑀𝐶𝑠 (7-14) 

where  𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠 is the agency LCC of implementing a MUT on a street segment s; 𝐼𝐶𝐶𝑠 is 

the initial cost of MUT construction on segment s; 𝑀𝑈𝑇_𝑆𝐸𝑞𝑠 is the cost of MUT system 

equipment; 𝐶𝑃𝑅𝐸𝑃 and 𝐶𝑃𝐼𝑁𝑆 are the costs of replacing and installing the pipes and cables, 

respectively; i is the number of utility assets to be replaced and installed, j is the number of utility 

sub-types (e.g., pipes with different materials and diameters); and 𝑂𝑀𝐶𝑠 is the utility operation 

and maintenance cost of the MUT after the first year of construction. 

𝐼𝐶𝐶𝑠 is calculated by multiplying the unit cost of tunnel construction (𝐶𝑑) by the length of the 

tunnel 𝑙𝑠 as shown in Equation 7-15. 

𝐼𝐶𝐶𝑠 = 𝐶𝑑 ∗ 𝑙𝑠 (7-15) 
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𝑀𝑈𝑇_𝑆𝐸𝑞𝑠 is calculated by multiplying the unit cost per meter of MUT requirements (𝑅𝐸𝑄𝑠) by 

the length of the tunnel as shown in Equation 7-16. 

 𝑀𝑈𝑇_𝑆𝐸𝑞𝑠 = 𝑅𝐸𝑄𝑠 ∗ 𝑙𝑠 (7-16) 

Equation 7-17 is the sum of the unit cost of yearly maintenance per meter of each asset multiplied 

by the length, cost of the asset repair, and the cost of tunnel maintenance. The repair of an asset 

hosted in the MUT is determined by the same linear deterioration models in Equation 7-1. 

𝑂𝑀𝐶𝑠 = ∑ ∑ ∑(𝑈𝑠𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

𝑇

𝑡=1

𝑙𝑠𝑖𝑗 + 𝐶𝑅𝑠𝑡𝑖𝑗+𝑇𝑀𝑠)(1 + 𝑟)−𝑡 (7-17) 

where 𝑈𝑠𝑖𝑗  is the unit cost of asset maintenance; 𝑙𝑠𝑖𝑗 is the length utility asset; 𝐶𝑅𝑠𝑡𝑖𝑗  is the cost of 

replacement; 𝑇𝑀𝑠 is the cost of tunnel maintenance; r is the discount rate; t is the intervention 

year; T is the maintenance period (i.e., from the year of construction till the end of the planning 

period). 

Equation 7-18 is the social cost (i.e., the sum of all social cost indicators) accrued on a street 

segment only during the MUT construction phase.  

 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠 = ∑ ∑
𝑆𝐶𝐼𝑠𝑘

(1 + 𝑟)𝑡

𝐾

𝑘=1

𝑁

𝑡=1

 (7-18) 

where 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶𝑠 is the social cost accrued during the construction phase; 𝑆𝐶𝐼𝑠𝑘  is a social 

cost indicator. 

7.6 LCC Savings 

To determine if there are LCC savings achieved via the implementation of the MUT as opposed 

to the synchronized intervention on a street segment, the best solutions are selected and compared 

from the Pareto fronts of each optimization model. This research uses Simple Additive Weighting 

(SAW) method to rank and select one solution from the Pareto front of each model (Martínez-

Morales et al., 2010). The SAW method calculates an evaluation score 𝐸𝑆𝑖 for each solution i in 

the Pareto front by multiplying the relative importance weights 𝑤𝑗 of the objective functions j and 

the normalized values of each solution 𝑣𝑖𝑗 as expressed in Equation 7-19. Equal weights are 

assigned to each objective function and the non-dominated solution with the highest evaluation 
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score is selected and the LCC savings are calculated. The normalization is achieved using Equation 

7-20. 

                                         𝐸𝑆𝑖  =  ∑ 𝑤𝑗𝑣𝑖𝑗
𝑀
𝑗=1              for i =1,2, 3,…,P (7-19) 

 𝑣𝑖𝑗  =  
𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)

𝑥𝑖𝑗
 (7-20) 

where P is the size of the Pareto front; M is the number of objective functions; and 𝑥𝑖𝑗 is the value 

of the objective functions for each solution.  

LCC savings are calculated as the differences between the LCC (agency or social) of implementing 

the MUT and the synchronized intervention as expressed in Equations 7-21 and 7-22, respectively. 

 𝐴𝐺_𝐿𝐶𝐶_𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 𝐴𝐺_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶 − 𝐴𝐺_𝑀𝑈𝑇_𝐿𝐶𝐶 (7-21) 

 𝑆𝐶_𝐿𝐶𝐶_𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 𝑆𝐶_𝑆𝑌𝑁𝐶_𝐿𝐶𝐶 − 𝑆𝐶_𝑀𝑈𝑇_𝐿𝐶𝐶 (7-22) 

7.7 Case Study 

Due to the limited amount of data, three municipal assets (pavement, sewer, and water pipes) are 

used in this analysis. However, this framework can be extended to accommodate private utility 

networks such as gas, telecommunication cables, electricity cables, etc., if the related data is 

available on the cost of interventions, the deterioration patterns, and maintenance strategies. To 

examine the approach proposed in this research, the case study area is presented in Figure 7-5. The 

geographic information system (GIS) map shown in the figure contains street segments in ten 

boroughs spread across the City of Montreal. The boroughs include Rosemont-La Petite-Patrie, 

Anjou, Saint-Léonard, Mercier-Hochelaga-Maisonneuve, Le Plateau-Mont-Royal, Rivière-des-

Prairies-Pointe-aux-Trembles, Ville-Marie, Villeray-Saint-Michel-Parc-Extension, Le Sud-Ouest, 

and Outremont. 1,151 street segments totaling 259.71 km make up this study area. It should be 

noted that social cost indicators related to municipal works have never been assessed in previous 

research at a large scale, but rather they were addressed at a project level due to the complexity of 

their assessment.  
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Figure 7-5. Case study area showing street segments. 

Figure 5-2 shows the schematic view of a street segment (between two intersections) and the 

spatially collocated assets in the segment. Table 7-3 is a summary of the assets used in this analysis. 

The information presented in the table includes the asset age, material, expected life, condition 

thresholds, etc. Included in Table 7-3 are some of the major sewer pipe materials and their 

respective expected life. In addition, it is assumed that sewer pipes with larger diameters made 

from the same material have higher expected life (Chacon and Normand 2016). For example, the 

average expected life of a 400 mm - 600 mm prestressed concrete pipe is 115 years, whereas that 

of a 750 mm – 1,350 mm pipe is 165 years.  

Table 7-4 outlines the cost components that make up the LCC of the MUT on a street segment. 

Included in the table is the range for tunnel construction cost per unit length (m), which is used to 

randomly assign a cost to the segments in the network following a uniform distribution function 

adopted from (Jorjam, 2022). Table 7-4 also presents the cost of routine tunnel structure 

maintenance. The costs in the references have been adjusted by considering the average yearly 

inflation rate of 3.03% (Bank of Canada, 2022).  

Table 7-5 outlines the cost components used in estimating the LCC of synchronized interventions. 

The table shows the cost of the different intervention strategies for each of the assets used in this 
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research. Table 7-6 presents a sample of pavement and traffic attributes, for 11 street segments. 

Table 7-7 presents a sample of the attribute values for the sewer and water pipes located under the 

11 street segments. Most asset infrastructure systems are managed on a short planning period. For 

example, the City of Montreal uses a six-year intervention plan. However, for this research, the 

planning period is taken as 100 years (i.e., the service life span of the MUT), as this enables a 

rational comparison between the two alternatives. The discount rate is assumed fixed at 3% and 

the effect of inflation on future unit costs is not considered. The yearly agency and social cost 

budgets for both alternatives are fixed at $140M and $8.5M, respectively. The value of the agency 

cost budget is based on the budget for the City of Montreal’s intervention plan for all the municipal 

assets for the period 2016-2021. In addition, the value of the agency cost budget is also set to 

accommodate the implementation of MUTs as special projects. The social cost budget signifies 

the amount of delays and pollution that can be tolerated yearly, and its value is assumed to be 

approximately ten percent of the agency cost. According to (Rahman et al., 2005) the social cost 

can amount to 400% of a construction project. 

Table 7-3. Asset summary. 

Asset Attribute Attribute values 

Pavements Average age (years) 65.14  

Average length (m) 224.05 

Average surface area (m2) 2,556.16 

Pavement categories A (numbered lane), B (artery), C (collector), D 

(others), and E (local road) 

Average PCI 45 

PCI intervention 

thresholds 

No intervention PCI ≥ 70 

Intervention desirable 69 ≥ PCI ≥ 40 

Intervention critical PCI < 39 

Sewer 

pipes 

Average age (years) 81.24 

Average length (m) 55.90 

Diameter range (mm) 200 – 3,850 

Major materials | average 

expected life (years) 

Prestressed concrete (400 - 600 

mm) 

115 

Prestressed concrete (750 – 1,350 

mm) 

165 

Reinforced concrete (≤ 1970) 90 

Reinforced concrete (> 1970) 120 

brick 145 

grey cast iron 100 

Polyvinyl chloride 90 
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Table 7-3. Asset summary (cont’d). 

Asset Attribute Attribute values 

Sewer 

pipes 

Ductile iron 80 

Deterioration level  

D = Age/expected life 

No intervention 𝐷 ≤ 0.50  

Desirable intervention 0.90 ≥ 𝐷 > 0.50  

Intervention critical 𝐷 > 0.90  

Average initial deterioration 

level 

0.60 

Water 

pipes 

Average age (years) 82.85 

Average length (m) 204.9 

Diameter range (mm) 100 – 2,100 

Major materials | average 

expected life (years) 

Pre-stressed concrete (<1966 or < 

1987) 

120 

Pre-stressed concrete (1966-

1987) 

35 

Ductile iron 63 

Grey cast iron (<1921) 172 

Grey cast iron (1921 - 1935) 124 

Gray cast iron (1936 - 1956) 87 

Grey cast iron (>1956) 78 

Polyvinyl chloride 100 

Reinforced concrete 90 

Steel 100 

Deterioration level 

D = Age/expected life  

No intervention 𝐷 ≤ 0.50  

Desirable intervention 0.90 ≥ 𝐷 > 0.50  

Intervention critical 𝐷 > 0.90  

 Average initial deterioration 

level 

0.66 

 

Table 7-4. MUT cost components. 

Item Unit ($/m) Reference 

Tunnel construction cost 117,000 - 308,000 Jorjam (2022) 

Utility tunnel requirements 

Occupancy costs 130.62 Boileau (2013) 

Service equipment 500 

Utility replacement and 

Utility installation 

2,400 

Maintenance 

Water pipes 16 Boileau (2013) 

Sewer pipes 26 

Tunnel structure 21.24 (Riera and Pasqual, 1992) 

 



152 

 

Table 7-5. The average cost for synchronized intervention. 

Asset Diameter (mm) Replacement cost 

($/m) 

Rehabilitation 

cost ($/m) 

Reference 

Water pipes 150 1,520 1,165 Chacon 

(2016) 

 
375 - 400 2,050 1,573 

600 2,500 2,193 

900 3,270 3,013 

1,200 3,550 3,823 

3,000 8,200 8,743 

Sewer pipes 200 - 300 2,170 425 - 445 

600 4,080 574 

900 4,340 1,025 

1,200 5,530 1,147 

3000 11,500 9,530 

Pavement Minor 

rehabilitation 

cost ($/m2) 

Major 

rehabilitation cost 

($/m2) 

Reconstruction 

cost ($/m2) 

Category A - D 295 319 395 

E 251 319 335 

 

Table 7-6. Sample pavement and traffic attribute values. 

Segment ID AADT 

ID 

Length 

(m) 

Surface 

area 

(mm2) PCI 

Pavement 

category Bus Autos 

Heavy 

trucks 

Light 

trucks 

17820 133.52 983.37 74 B 0 8,256 354 3,919 

17822 115.96 1,261.76 29 E 0 1,098 47 521 

17823 292.96 3,398.87 23 
 

D 

0 1,098 47 521 

17825 228.31 2,651.99 28 12 1,953 84 927 

17830 154.23 1,633.44 52 55 3,423 164 0 

17831 188.26 2638.04 39 C 314 15,352 493 35 

17834 215.36 2,518.34 33 

E 

 

36 6,084 0 2,888 

17837 208.34 1,934.98 24 98 16,037 688 7,611 

17838 388.01 3,523.25 61 98 16,037 688 7,611 

17842 305.62 2,781.32 44 22 3,686 0 1,749 

17844 307.42 3,349.80 33 36 6,084 0 2,888 
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Table 7-7. Sewer and water pipe attribute values. 

Segment 

ID 

Sewer pipes Water pipes 

ID Material Age 

Diameter 

(mm) 

Length 

(m) 

Expected 

life (yrs.) 

Initial 

condition ID Material Age 

Diameter 

(mm) 

Length 

(m) 

Expected 

life (yrs.) 

Initial 

condition 

17820 5297446 Reinforced 
concrete 

63 750 25.95 165 0.38 88355 Ductile 
iron 

8 350 81.89 63 0.13 

17822 5297431 56 750 14.39 165 0.34 33732 51 200 124.88 63 0.81 

17823 5293854 56 375 12.54 105 0.53 33733 Grey cast 
iron 

113 150 315.21 172 0.66 

17823 5293903 Brick 110 900 43.6 145 0.76 47530 Grey font 88 900 60.7 172 0.51 

17825 5296284 110 900 70.05 145 0.76 33749 121 150 225.56 172 0.70 

17830 5292687 117 900 73.22 145 0.70 87960 Reinforced 
concrete 

58 900 154.3 58 0.87 

17830 5302985 117 900 65.2 145 0.70 87961 Ductile 
iron 

19 300 161 117 0.16 

17831 5292688 130 900 53.8 145 0.9 33767 Steel 111 900 186.7 100 0.9 

17831 5292813 130 900 53.8 145 0.9 33770 Ductile 
iron 

15 300 194.6 63 0.24 

17834 5292811 99 900 81.00 145 0.68 33801 Grey font 115 150 216.38 172 0.67 

17837 5293864 98 900 13.67 145 0.68 33804 115 150 215.34 172 0.67 

17838 5293900 Reinforced 
concrete 

32 750 8.51 165 0.19 33805 118 100 388.47 172 0.69 

17842 5302735 32 600 13.28 115 0.28 33809 Ductile 
iron 

32 200 313.25 63 0.51 

17844 5292267 Brick 99 900 41.42 145 0.68 33811 Grey font 117 150 308.24 172 0.68 
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7.7.1 Estimating the social cost indicators 

Table 7-8 presents the social cost components. The duration of the synchronized interventions has 

been extracted from past projects executed on the street segments. The value of the duration for the 

microtunnelling is randomly assigned between 1.6 - 2.2 days/m to account for uncertainties (e.g., 

soil type) in the construction phase following a uniform distribution function adopted from (Jorjam, 

2022). Annual average daily traffic (AADT) is broken down into four types of vehicles, namely: 

automobiles, light trucks, heavy trucks, and buses (Open Government Portal, 2023).  

Table 7-8. Social cost components. 

Component Duration (days) Source 

Synchronized intervention (segment) 4 - 14 City of Montreal 

MUT (microtunnelling) (m) 1.6 - 2.2 Jorjam (2022) 

AADT  City of Montreal 

 

7.7.1.1 Regression functions for VED costs 

VED costs represent the costs of travel delays borne by vehicle passengers because of increased 

travel routes or time. Table 7-9 presents the results of the statistical tests for both partial and 

complete closures for the VED, VMO, and AP costs. In modeling the VED for partial closures, the 

F-statistic = 1.02 < F0.05 = 1.09; therefore H0 (σ1 = σ2) is accepted. The t-test assuming equal 

variances has a p-value = 0.44, so H0 (μ1 = μ2) is accepted. For complete closures, the F-statistic = 

1.01 < F0.05 = 1.09; so H0 (σ1 = σ2) is accepted. The t-test assuming equal variances has a p-value 

= 0.56, so H0 (μ1 = μ2) is accepted. It can be concluded that the regression function for complete 

closure is adequate. Refer to Appendix E for the assumptions of the literature related to the 

interpretation of the statistical tests. 

Table 7-9. Statistical tests for VED, VMO, and AP cost regression models. 

 F-statistic p-value 

VED for partial closure 1.020 0.44 

VED for complete closure 1.010 0.56 

VMO for partial closure 1.010 0.54 

VMO for complete closure 1.010 0.54 

AP for partial closure 1.095 0.88 

AP for complete closure 1.078 0.70 
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Equation 7-23 represents the regression model used in calculating the VED costs. The coefficients 

for each of the variables of the model are presented in Table 7-10. The coefficients show that PD 

has the highest statistical significance on VED costs irrespective of the nature of street closures, 

while the VTD of buses has the lowest.  

 𝑉𝐸𝐷𝑐𝑜𝑠𝑡𝑠 =  (𝑥1 × 𝑉𝑇𝐷𝑎𝑢𝑡𝑜 + 𝑥2 × 𝑉𝑇𝐷𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑢𝑐𝑘 + 𝑥3 × 𝑉𝑇𝐷ℎ𝑒𝑎𝑣𝑦 𝑡𝑟𝑢𝑐𝑘 + 𝑥4 × 𝑉𝑇𝐷𝑏𝑢𝑠)

× 𝑒𝑥5×𝐿 × 𝑃𝐷𝑥6 
(7-23) 

 

Table 7-10. Regression coefficients for VED costs. 

Variables Coefficients Partial closure Complete closure 

VTD auto 𝑥1 0.0124 0.0873 

VTD light truck  𝑥2 0.0074 0.0076 

VTD heavy truck 𝑥3 0.1122 0.6335 

VTD bus 𝑥4 0.0001 0.0001 

L 𝑥5 0.0040 0.0040 

PD 𝑥6 1.0306 1.0306 

 

7.7.1.2 Regression function for VMO costs 

Similar to the tests applied to the VED in Section7.7.1.1, the coefficients of the VMO costs are 

presented in Table 7-9. The VMO costs is calculated using Equation 7-24. The coefficients for each 

variable are presented in Table 7-11. Similar to VED costs, the PD has the highest statistical 

significance on VMO costs while L has the lowest significance on VMO for both partial and 

complete closures. 

𝑉𝑀𝑂𝑐𝑜𝑠𝑡𝑠  =  (𝑥1 × 𝑉𝑇𝐷𝑎𝑢𝑡𝑜 + 𝑥2 × 𝑉𝑇𝐷𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑢𝑐𝑘 + 𝑥3 × 𝑉𝑇𝐷ℎ𝑒𝑎𝑣𝑦 𝑡𝑟𝑢𝑐𝑘 + 𝑥4 × 𝑉𝑇𝐷𝑏𝑢𝑠)

× 𝑒𝑥5×𝐿 × 𝑃𝐷𝑥6 
(7-24) 
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Table 7-11. Regression coefficients for VMO costs. 

Variables Coefficients Partial closure Complete closure 

VTD auto 𝑥1 0.0230 0.1373 

VTD light truck  𝑥2 0.0072 0.0073 

VTD heavy truck 𝑥3 0.0440 0.3205 

VTD bus 𝑥4 0.3546 0.4067 

L 𝑥5 0.0040 0.0040 

PD 𝑥6 1.0256 1.0325 

 

7.7.1.3 Regression functions for vehicle AP cost 

The coefficients of the AP costs are presented in Table 7-9. AP costs is estimated using Equation 

7-25 and the values of coefficients for partial and complete closures are presented in Table 7-12. 

Similar to VED and VMO costs, PD also has the highest significance on AP costs while VTD for 

autos and buses has the lowest significance during partial closures, and VTD for heavy trucks has 

no significance on AP costs during complete closures. 

𝐴𝑃𝑐𝑜𝑠𝑡 =  (𝑥1 × 𝑉𝑇𝐷𝑎𝑢𝑡𝑜 + 𝑥2 × 𝑉𝑇𝐷𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑢𝑐𝑘 + 𝑥3 × 𝑉𝑇𝐷ℎ𝑒𝑎𝑣𝑦 𝑡𝑟𝑢𝑐𝑘 + 𝑥4 × 𝑉𝑇𝐷𝑏𝑢𝑠)

× 𝑒𝑥5×𝐿 × 𝑃𝐷𝑥6 
(7-25) 

 

Table 7-12. Regression coefficients for AP from vehicle emissions. 

Variables Coefficients Partial closure    Complete closure    

VTD auto 𝑥1 0.0001 0.0107 

VTD light truck  𝑥2 0.0018 0.0071 

VTD heavy truck 𝑥3 0.0006 0.0000 

VTD bus 𝑥4 0.0001 0.3493 

L 𝑥5 0.0039 0.0043 

PD 𝑥6 1.0297 1.0151 

 

7.7.2 Optimization results and discussion 

This section presents the results of the optimization of both intervention alternatives. The 

calculations were carried out in the MATLAB R2020b (MathWorks, 2019) environment on a 
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computer with Intel(R) Core (TM) i7-3840QM CPU @ 2.80GHz and 32 GB RAM. The NSGA-II 

parameters adopted for the synchronized optimization problem include a population size of 250, a 

maximum number of generations set at 50, the probability of crossover set at 80%, and the mutation 

probability set at 1%. While the NSGA-II parameters for the MUT optimization problem include 

a population size of 300, a maximum number of generations of 50, the probability of crossover set 

at 70%, and the mutation probability set at 2%. These parameter values are the output of a 

hyperparameter tunning that produced the highest 3D hypervolume with a reference point as the 

largest possible value for all three objective functions (Bradstreet, 2011). 

The selection of a single solution from the Pareto fronts of both optimization problems was 

achieved by selecting the solution in the Pareto front with the largest score calculated using the 

SAW method, assuming all objectives have equal weights as explained in Section 7.6. Figure 7-6 

presents the scores for the synchronized optimization problem and Figure 7-7 presents the SAW 

scores for all the solutions in the Pareto front for the MUT optimization. The bar chart presents, 

the normalized social and agency LCCs, network deterioration, and the SAW score. Both graphs 

are ordered based on their descending SAW scores. 

 

Figure 7-6. SAW weights for solutions in the Pareto front (Synchronized). 
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Figure 7-7. SAW weights for solutions in the Pareto front (MUT). 

7.7.2.1 Synchronized intervention results 

Figure 7-8 presents the generated solutions of the synchronized optimization problem. The Pareto 

front includes 24 solutions. Figure 7-8(a) shows the tradeoff between the synchronized agency 

LCC and the network deterioration. The present value for the synchronized agency LCC generated 

by the solutions in the Pareto front ranges from approximately CAD$2.80B to CAD$2.93B, with 

an average LCC of CAD$2.87B over the planning period. Figure 7-8(b) shows the tradeoff between 

the synchronized social LCC and the network deterioration. The synchronized social LCC across 

the network ranges from approximately CAD$254M to CAD$263M, with an average of 

CAD$258M. Meanwhile the network deterioration for all solutions in the Pareto front ranges from 

0.09% to 2.26%, with an average network deterioration of 0.85%. Meaning that at the end of the 

planning period, only 0.09% to 2.26% of the assets in the network will require any intervention. 

Figure 7-8(c) shows the tradeoff between the synchronized social LCC and synchronized agency 

LCC and Figure 7-8(d) presents the 3D view of all three objective functions.  

The selected optimal solution for the synchronized intervention contains all the street segments, 

with a network agency and social LCC of CAD$2.90B and CAD$261M, respectively. The network 

deterioration of this solution is approximately 0.09%. The results indicate that on the segment level, 

the non-dominated solutions yield maximum values of CAD$7.89M and CAD$3.86M for the 

present values of the agency and social LCCs, respectively. In contrast, the minimum values for 

the agency and social LCCs are CAD$0.42M and CAD$2,267, respectively. The average values 

for the agency and social LCCs are CAD$2.52M and CAD$0.23M, respectively. These findings 

suggest that there is considerable variation in the performance of the solutions, with some 
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outperforming others in terms of both agency and social LCCs. The average number of segments 

undergoing synchronized interventions throughout the planning period is approximately 63 per 

year, with a maximum of 103 and a minimum of 30. In addition, the average number of 

interventions per segment throughout the planning period is approximately six, with a maximum 

of eight and a minimum of three. These values do not account for the interventions due to sudden 

damages that occur when assets are not regularly maintained due to the limitation in the placement 

of utilities under the subsurface. 

7.7.2.2 MUT optimization results 

Figure 7-9 shows the generated solutions of the MUT optimization problem. The Pareto front 

includes 43 solutions. Figure 7-9(a) presents the tradeoff between the MUT agency LCC and the 

network deterioration. The MUT agency LCC generated by the solutions in the Pareto front ranges 

from approximately CAD$3.02B to CAD$3.75B, with an average of CAD$3.35B, over the 

planning period, which is slightly higher than the agency LCC for the synchronized intervention. 

Furthermore, the maximum number of street segments selected for MUT implementation by all 43 

solutions in the Pareto front are 362 and the minimum is 292 (out of 1,150 segments) with an 

average of 333 over the planning period. These results corroborate with the literature, as not all 

street segments have the potential to maximize the benefits of the MUT due to their location, street 

class, AADT, etc. (Genger et al., 2021). This is especially relevant when resources are limited. 

Meanwhile, the resulting network deterioration ranges from 68.55% to 74.63%, with an average of 

71.08%. These values mean that at the end of the planning period, 68.55% to 74.63%, of the street 

segments will have assets requiring some form of intervention. 

Figure 7-9(b) shows the tradeoff between the MUT social LCC and the network deterioration. The 

MUT social LCC ranges from CAD$77M to CAD$120M, with an average social LCC of 

CAD$98M. Figure 7-9(c) shows the tradeoff between the MUT social LCC and the agency LCC 

and Figure 7-9(d) shows the tradeoff between all three objective functions. 

The solution in the Pareto front selected for the MUT optimization contains 312 street segments 

with a MUT agency LCC and social LCC of CAD$3.32B and CAD$77M, respectively, and a 

network deterioration of 72.89%. Furthermore, on a segment level, the maximum MUT agency 

and social LCC values generated are CAD$70.5M and CAD$3.92M, respectively. Meanwhile, the 
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minimum values are both zeros (i.e., street segments where no MUTs are implemented yet) with 

average values of CAD$10.62M and CAD$0.25M for the agency and social LCCs, respectively. 

  
(a) Synchronized agency LCC vs Network 

deterioration 

 

(b) Synchronized social LCC vs Network 

deterioration 

  

(c) Synchronized social vs Synchronized agency 

LCCs 

(d) Network deterioration vs Synchronized social 

LCC vs Synchronized agency LCC 

 
Figure 7-8. Comparison of the values of the objective functions (synchronized interventions) 
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(a) MUT agency LCC vs Network 

deterioration 

(b) MUT social LCC vs Network 

deterioration 

 
 

(c) MUT social LCC vs MUT agency LCC (d) Network deterioration vs MUT social LCC vs 

MUT agency LCC 

 
Figure 7-9. Comparison of the values of the objective functions (MUT) 

Every year (other than the initial year in the planning period), the cost of maintenance and repair 

of assets in existing MUTs is always considered, and therefore deducted from the present value of 

the yearly agency cost budget. The remainder of the budget is then used for the construction of new 
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MUTs. This budgetary constraint, coupled with the conditions and their respective intervention 

strategies that serve as an opportunity for MUT implementation in a particular year, may result in 

no new MUTs being built in certain years. On the other hand, some years have as many as seven 

segments selected for MUT implementation. 

7.7.3 Location selection 

Coupled with the values of the objective functions for the solutions in the Pareto front, an 

interventions plan showing the segments and the year in the planning period for the proposed 

interventions (synchronized and MUT) is also generated for each solution in the Pareto front. Based 

on the SAW scores, solutions 20 and 33 have the highest scores for the synchronized and MUT 

Pareto fronts, respectively, as shown in Figure 7-6 and Figure 7-7.  

The results presented in Figure 7-10 and Figure 7-11 illustrate the distribution of the number of 

synchronized interventions conducted during each decade of the planning period and the present 

values of the agency and social LCCs, respectively. Both figures reveal that the first decade of the 

planning period experienced a relatively high number of street segments selected for synchronized 

interventions, as well as relatively high agency LCC. Subsequently, there are small variations in 

the number of synchronized interventions although the present values of the agency and social 

LCCs decrease down the planning period. 

These decreases are reflecting the effect of the discount rate. Furthermore, the highest number of 

interventions are experienced during the fourth and seventh decades of the planning period.  

Figure 7-12 and Figure 7-13 displays the distribution of the number of potential street segments 

selected for implementation of the MUT for each decade in the planning period and the 

corresponding present values of the agency and social LCCs, respectively. Similar to the 

distribution of synchronized interventions, both figures show a steady decrease in the present value 

of both LCCs with a slight variation in the number of potential street segments selected for MUT 

implementation across the planning period. Meanwhile, the lowest and highest number of segments 

are obtained in the third and eighth decades, respectively. 
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Figure 7-10. Number of synchronized interventions vs present value of agency LCC for the 
planning period.  

These figures (Figure 7-10 to Figure 7-13) also show the difference in the number of synchronized 

interventions as compared to the number of potential MUTs and their corresponding LCCs. The 

figures clearly show that although the number of potential MUTs only make a fraction of the 

number street segments for synchronized intervention, the have a higher agency LCC and a lower 

social LCC.   
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Figure 7-11. Number of synchronized interventions vs present value of social LCC for the 
planning period. 

 

Figure 7-12. Number of MUTs vs present value of agency LCC for the planning period 

Table 7-13 presents the network-level optimization results and the budgets for both alternatives. 

Based on the network comparison of both alternatives across the planning period, the present value 

of the MUT agency LCC surpasses the synchronized agency LCC with a significant difference of 

about CAD$417M. However, the MUT has a lower social LCC with a difference of about 

CAD$184M. These values agree with the literature because the implementation of MUTs is 

expected to offer social LCC savings although the cost of implementation is higher. 
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Figure 7-13. Number of MUTs vs present value of social LCC for the planning period 

Based on the selected solution from the Pareto front, Figure 7-14 shows the potential street 

segments selected for MUT implementation and the range of years for their implementation. The 

GIS map shows that the majority of the selected street segments are located in the downtown area, 

and even though these segments will generate high social costs during MUT construction. 

However, they will also offer the highest level of benefits of implementing the MUT in the rest of 

their lifecycle. 

Table 7-13. Summary of network optimization results 

 Agency LCC 

(CAD$) 

Social LCC 

(CAD$) 

Network 

deterioration (%) 

Synchronized intervention  2.90 B 261 M 0.09 

MUT 3.32 B 77 M 72.89 

Yearly budget 140 M 8.5 M - 

Total present value of the budget 

(100Y) 

4.56 B 277 M - 

Using the synchronized interventions and MUT implementation plans, a segment-level comparison 

was done on the 312 segments (i.e., the potential MUT segments) that are common to both plans. 

The results show that 70 street segments offer agency LCC savings ranging from CAD$24,161 to 

CAD$5.15M with an average of CAD$1.34M and a total agency LCC savings of about 

CAD$93.48M. Meanwhile, 136 street segments offer social LCC savings ranging from as low as 

CAD$89 to a high of CAD$0.63M, with an average of approximately CAD$99,821 and a total 

social LCC of approximately CAD$6.99M. Furthermore, 51 street segments offer both agency and 

social LCC savings of about CAD$69.52M and CAD$4.5M, respectively. In addition, the results 

0

5

10

15

20

25

0

5

10

15

20

25

30

35

40

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 P
re

se
n

t 
va

lu
e 

o
f 

so
ci

al
 L

C
C

 (
C

A
D

$)

M
ill

io
n

s

N
u

m
b

er
 o

f 
p

o
te

n
ti

al …

Planning period
Number of MUTs Social LCC (CAD$)



166 

 

also show that MUTs are suitable in certain locations, as only 51 out of the 312 potential segments 

selected for MUT implementation offer both agency and social LCC savings. Figure 7-15 and 

Figure 7-16 show the locations of the street segments with agency and social LCC savings, 

respectively, and Figure 7-17 shows the street segments with both LCC savings. 

 

 

Figure 7-14. MUT selected locations in the Pareto front. 

7.7.4 Discussion 

The implementation of MUTs on street segments is a special intervention that should be carefully 

considered due to potential social costs during construction that may exceed those of regular 

interventions such as pipe replacements or pavement reconstructions. The inclusion of privately 

owned and managed assets (e.g., telecom, electricity, and gas) in synchronized interventions has 

the potential to increase social costs further, resulting in greater social LCC savings with MUTs. 

In addition to the quantifiable benefits of MUTs, such as ease of maintenance and longer pavement 

lifespan, there are also less quantifiable benefits that should be considered in LCC analysis. 

However, the current study has not factored in additional costs associated with damage to buried 

utilities over their lifecycle, which can result in service loss, repair costs, and reduced quality of 

life. It is also important to note that while social LCC savings from MUT implementation are 

continuous throughout the lifespan of the MUT, it is difficult to estimate these savings in the current 

optimization model. For example, MUTs implemented in the later part of the planning period will 
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continue to offer benefits and savings for the rest of their service lives, whereas synchronized 

interventions will continue to accrue social costs with each intervention in the planning period. 

7.8 Summary  

This chapter developed a framework to optimize the location selection of MUTs based on the 

agency and social LCCs and network deterioration using the NSGA-II algorithm. The use of two 

multi-objective optimization models for minimizing the agency and social LCCs, as well as the 

network deterioration, ensured the optimal cost and timing of implementing both the synchronized 

method of utility interventions and the MUT were obtained.  

By quantifying the socioeconomic impacts of implementing both the MUT and the synchronized 

utility interventions at the network level and segment level, the costs of both intervention 

alternatives have been optimized and compared. 

The results show that the tradeoff between the social LCC and agency LCC significantly affects 

the location selection. Although the literature argues that MUTs are more sustainable in general, 

this study shows that by estimating the social costs associated with each alternative at the network 

and segment levels, the tradeoff between the objectives makes MUT only suitable in certain street 

segments in urban locations. Meanwhile, as shown in the results, at the network and segment levels, 

there is a significant difference in the LCC of implementing the MUT compared to the 

synchronized interventions. Although at the network level, the MUT has a higher agency LCC, the 

social LCC of implementing synchronized interventions is higher. Furthermore, the benefits of the 

implementation of MUTs will continue for decades after their construction. 

The contributions of this chapter are as follows: 

The main objective of this research is to optimize the agency and social LCCs and network 

deterioration using multi-objective optimization for identifying the potential locations of MUTs. 

This selection involves modeling the agency and social cost savings and the network deterioration 

resulting from the implementation at the network and segment levels. Comparing the optimization 

results in identifying the street segments in a network where the LCC of implementing MUTs is 

less than the LCC of the synchronized utility intervention. While doing so, a multi-year plan for 

MUT location selection that optimizes the three objective functions and offers lifecycle savings is 

achieved. 
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(1) Defining a multi-objective optimization model that was able to identify the potential MUT 

locations and a multi-year plan for MUT implementation that optimizes the three objective 

functions and offers lifecycle savings. The candidate MUTs locations have been identified 

purely based on mathematical optimization without any subjective reasoning as was done in 

previous research (Genger et al., 2021). This is a novel approach that increases the objectivity 

and reliability of the decision-making process.  

(2) Developing a systematic method for comparing the results of the MUT optimization with those 

of the synchronized interventions. This comparison is based on the agency and social LCCs, 

and the network deterioration generated by the MUTs and synchronized method of utility 

interventions at the network and segment levels. Based on this comparison, it can be concluded 

that, when compared with the optimized results of the synchronized interventions, 51 out of 

312 potential MUT locations (optimized from a network of 1,151 street segments) provided 

both agency and social LCC savings.  

(3) Developing three regression models for capturing the social cost of both alternatives at the 

network and segment levels. The three social cost indicators resulting from the regression 

models are effective tools for capturing the benefits of MUTs in reducing the negative impacts 

on traffic and environment. Quantifying the social cost benefits of MUTs using these models 

provided valuable insights into the potential advantages of implementing MUTs.  

Furthermore, the MUT optimization model does not contain intangible agency and social cost 

components such as the ease of maintenance, added protection of assets hosted in the MUT, etc. 

Methods for calculating these costs will further improve the optimization results. 
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Figure 7-15. Street segments with agency 

LCC savings 

 

Figure 7-16. Street segments with social 
LCC savings 

 

Figure 7-17. Street segments with both LCC savings  
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CHAPTER 8.    SUMMARY, CONCLUSIONS, CONTRIBUTIONS, AND FUTURE 

WORK  

8.1 Introduction 

This chapter provides a summary of both the conceptual and practical implications of the research, 

highlighting its contributions to the existing body of knowledge. In addition, it presents key 

conclusions drawn from the findings and outlines potential avenues for future research. 

8.2 Summary of the Research 

The complex and multidimensional nature of the MUT location selection problem is addressed in 

the proposed framework, which incorporates geospatial visual analytics to aid decision-making 

(Chapter 4). By utilizing spatial analysis and visual and statistical methods, the framework presents 

the socioeconomic impact of utility interventions, enabling stakeholders to make informed 

decisions. This aspect of the research module facilitates the quantification of the relationship 

between current practices and their corresponding effects on the surrounding areas. 

Chapter 5 explored the application of condition-based classification of underground utility assets, 

utilizing three ensemble ML algorithms. The implementation of a uniform classification scale 

allowed for the transition from asset-level to segment-level interventions, enabling the 

identification of street segments suitable for MUT implementation and the determination of the 

necessary segment-level interventions. In addition, this approach is applicable for enhancing 

synchronized interventions at the segment level, which is considered best practice and a short-term 

solution to utility interventions. The proposed methodology provides a useful tool for stakeholders 

involved in underground utility management, facilitating more effective decision-making and 

improving the efficiency of infrastructure maintenance and upgrade programs. 

The methodology provided in Chapter 6 incorporates both subjective and objective MCDM 

methods to determine the location selection for MUTs by analyzing spatial data. This approach 

allows for the weighting of various criteria, providing a more holistic assessment of potential 

locations. By combining the weights and criteria scores of preselected locations, the framework 

generates a ranking of the most suitable locations for MUT implementation. Overall, this approach 

represents an effective tool for decision-makers involved in the selection of MUT locations, 

providing a comprehensive and data-driven approach to infrastructure planning and management. 
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Chapter 7 examines the use of mathematical optimization algorithms to identify street segments 

suitable for MUT implementation. This module involves quantifying, optimizing, and comparing 

agency and social LCC savings, as well as minimizing network asset deterioration. By analyzing 

both network and segment levels, the module determines which street segments are best suited for 

MUT implementation. This approach ensures that the identified MUT locations are optimal, 

guaranteeing long-term LCC savings. 

8.3 Research Contributions and Conclusions 

The contributions of this research are as follows:  

(1)  Developing a geospatial visual analytics model that supports the understanding of the 

socioeconomic impacts of unsynchronized intervention practices. Based on this contribution, 

the following conclusions can be stated: 

• The proposed geospatial visual analytics model represents a valuable tool for identifying, 

visualizing, and quantifying the negative socioeconomic implications of unsynchronized 

utility interventions on a multi-utility network. By utilizing this model, stakeholders can 

more effectively assess the impact of infrastructure maintenance and upgrade programs and 

make informed decisions about the implementation of MUTs.  

(2) Developing an ML method for systematic condition classification of different spatially 

collocated underground municipal assets (i.e., pavements, water and sewer pipes) within a 

segment. To the best of our knowledge, there is no existing research about determining street 

closures based on the combined conditions of spatially collocated municipal infrastructure 

assets at the segment level. Based on this contribution, the following conclusions can be stated: 

• The high accuracy of each ensemble machine learning model indicates an acceptable 

performance in the classification of the spatially collocated municipal assets as shown in 

Table 5-20. 

• Using a uniform classification scale for all three municipal assets enabled the determination 

of asset-level interventions, whose combination led to segment-level interventions and street 

closure decisions. 

• The proposed solution also identifies segments where MUTs can be considered as an 

alternative to synchronized interventions that require excavations. 
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(3) Applying a heuristic approach for determining street closures based on the synchronized or 

unsynchronized interventions at the segment level induced by combining the interventions of 

individual assets within each segment. Based on this contribution, the following conclusions 

can be stated: 

• The intervention strategies derived from the applied heuristics were used to determine the 

intervention unique to restoring the condition of each asset while taking a holistic approach 

to restoring the conditions of all spatially collocated assets within a segment. 

• The predicted segment-level interventions have an accuracy of 79.92%. 

• Based on the segment-level interventions, potential street segments for MUT location 

selections have been identified. 

• The segment-level intervention strategies resulted in both synchronized and 

unsynchronized interventions leading to complete or partial street closures. Some street 

segments require partial and complete street closures to accommodate the initial pipe 

rehabilitation phase and the subsequent pavement reconstruction or rehabilitation phase of 

the intervention. 

(4) Defining a comprehensive MCDM model that identifies and quantifies the criteria that 

influence the MUT location selection using subjective and objective methods. Based on this 

contribution, the following conclusions can be stated: 

• The use of AHP and ANP showed considerable differences in the calculated criteria weights 

and subsequent ranking of the alternatives. However, factoring in the dependencies affected 

the criteria weights and the subsequent ranking as only 40% of the ranking positions were 

similar for the combination of both AHP and ANP with TOPSIS.  

• Comparing the ranking results also showed that 70% of the results obtained from the 

combination of ANP+TOPSIS were similar to the results obtained from the 

Entropy+TOPSIS combination, unlike the AHP+TOPSIS combination which had a 30% 

similarity.  

• The results show that a systematic process for MUT location selection can be achieved using 

spatial data. 

• The developed software enables the automated ranking of street segments for the location 

selection of the placement of MUTs.  
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(5) Defining a multi-objective optimization model that was able to identify the potential MUT 

locations and a multi-year plan for MUT implementation that optimizes the three objective 

functions and offers lifecycle savings. The candidate MUTs locations have been identified 

purely based on mathematical optimization without any subjective reasoning as was done in 

previous research (Genger et al., 2021). This is a novel approach that increases the objectivity 

and reliability of the decision-making process.  

(6) Developing a systematic method for comparing the results of the MUT optimization with those 

of the synchronized interventions. This comparison is based on the agency and social LCCs, 

and the network deterioration generated by the MUTs and synchronized method of utility 

interventions at the network and segment levels. Based on this comparison, it can be concluded 

that, when compared with the optimized results of the synchronized interventions, 51 out of 

312 potential MUT locations (optimized from a network of 1,151 street segments) provided 

both agency and social LCC savings.  

(7) Applying three regression models for capturing the social cost of both alternatives at the 

network and segment levels. The three social cost indicators resulting from the regression 

models are effective tools for capturing the benefits of MUTs in reducing the negative impacts 

on traffic and environment. Quantifying the social cost benefits of MUTs using these models 

provided valuable insights into the potential advantages of implementing MUTs.  

8.4 Limitations and Future Work  

Despite the contributions listed above, some limitations of this research need to be addressed in the 

future.  

(1) The methods applied in this research rely on data related to several attributes of water and sewer 

pipes and pavements. In some instances, where these assets are not managed together, data 

availability and coordination may become an issue. 

(2) Only municipal assets were considered in this research. However, other buried assets such as 

gas pipes and electrical cables could be combined in determining street closures and MUT 

location selection. 
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(3) The relationships presented in Chapter 4 do not necessarily represent a cause and effect, due to 

the lack of temporal precedence and sequential data representing the cause-and-effect timelines. 

(4) Issues such as the lack of motivation of the different stakeholders and data-sharing platforms 

can also hamper synchronized segment-level interventions. Future research should include 

estimating the impact of uncertainties on the use of methods that require risk assessment or the 

probability of failure and ML methods. 

(5) In addition to a balanced sewer pipe dataset, including features like the slope, pressure, soil, 

etc., could improve the sewer pipe condition model.  

(6) Furthermore, the pavement intervention strategy could integrate indicators such as frost 

susceptibility and road bearing capacity.  

(7) In Chapter 5, some alternatives have missing criterion values for the number of expected 

excavations, which could affect the Entropy weights for the criteria, and therefore, the overall 

ranking of the alternatives.  

(8) Furthermore, the MUT optimization model does not contain intangible agency and social cost 

components such as the ease of maintenance, added protection of assets hosted in the MUT, 

etc. Methods for calculating these costs will further improve the optimization results.  
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Appendix B. ANP and AHP Questionnaires 

Table B-1 ANP questionnaire 

# Questions 

E
x

tr
e
m

e
ly

 i
m

p
o

r
ta

n
t 

E
x

tr
e
m

e
ly

 t
o

 v
e
ry

 s
tr

o
n

g
ly

 

im
p

o
r
ta

n
t 

V
e
r
y

 s
tr

o
n

g
ly

 i
m

p
o

r
ta

n
t 

V
e
r
y

 s
tr

o
n

g
ly

 t
o

 m
o

d
e
r
a

te
ly

 

im
p

o
r
ta

n
t 

m
o

d
e
r
a

te
ly

 i
m

p
o

r
ta

n
t 

m
o

d
e
r
a

te
ly

 t
o

 s
li

g
h

tl
y

 

im
p

o
r
ta

n
t 

S
li

g
h

tl
y

 i
m

p
o

r
ta

n
t 

S
li

g
h

tl
y

 t
o

 e
q

u
a

ll
y

 m
o

r
e
 

im
p

o
r
ta

n
t 

E
q

u
a

l 

S
li

g
h

tl
y

 t
o

 e
q

u
a

ll
y

 m
o

r
e
 

im
p

o
r
ta

n
t 

S
li

g
h

tl
y

 i
m

p
o

r
ta

n
t 

M
o

d
e
r
a

te
ly

 t
o

 s
li

g
h

tl
y

 

im
p

o
r
ta

n
t 

M
o

d
e
r
a

te
ly

 i
m

p
o

r
ta

n
t 

V
e
r
y

 s
tr

o
n

g
ly

 t
o

 m
o

d
e
r
a

te
ly

 

im
p

o
r
ta

n
t 

p
r
e
fe

r
r
e
d

 

V
e
r
y

 s
tr

o
n

g
ly

 p
r
e
fe

r
r
e
d

 

E
x

tr
e
m

e
ly

 t
o

 v
e
ry

 s
tr

o
n

g
ly

 

im
p

o
r
ta

n
t 

E
x

tr
e
m

e
ly

 i
m

p
o

r
ta

n
t 

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 

1  Cluster comparisons with respect to the overall MUT placement  

1a How important is Location cluster when it is compared to Infrastructure cluster when selecting the road segments 

for building MUTs                                   

1b How important is Location cluster when it is compared to Environment cluster when selecting the road segments 

for building MUTs                                   

1c How important is Location cluster when it is compared to Social Aspects cluster when selecting the road segments 

for building MUTs                                   

1d How important is Infrastructure cluster when it is compared to Environment cluster when selecting the road 

segments for building MUTs                                   

1e How important is Infrastructure cluster when it is compared to Social Aspects cluster when selecting the road 

segments for building MUTs                                   

1f How important is Environmental cluster when it is compared to Social Aspects cluster when selecting the road 

segments for building MUTs                                   

2  Cluster comparisons with respect to Infrastructure cluster (which cluster is more important when constructing MUTS)  

2a How important is Location cluster when it is compared to Infrastructure cluster                                   

2b How important is Location cluster when it is compared to Social Aspects cluster                                   

2c How important is Infrastructure cluster when it is compared to Social Aspects cluster                                   

3  Cluster comparisons with respect to Social cluster  

3a How important is Location cluster when it is compared to Social Aspects cluster                                   

4  Comparison with respect to AADT node in Social Aspects cluster    

4a How important is Road class when it is compared to Population density (how does road class affect AADT 

compared to how population density affects AADT)                                   

5  Comparisons with respect to Land use node in Location cluster   
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Table B-1 ANP Questionnaire (cont.) 
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9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 

5a How important is Proximity to public facilities when it is compared to Proximity to high-rise buildings (how does 

Proximity to public facilities affect Land use compared to how Proximity to high-rise buildings affects Land 

use) 

                 

6  Comparisons with respect to Population density node in Location cluster  

6a How important is Proximity to public facilities when it is compared to Proximity to high-rise buildings (compare 

the change in population density as the distance to public facilities/high-rise building changes) 
                 

7  Comparisons with respect to Utility density node in Location cluster  

7 
Comparisons with respect to Utility density node in Location cluster  

7a How important is Proximity to public facilities when it is compared to Proximity to high-rise buildings (compare 

the change in utility density as the distance to public facilities/high-rise building changes) 
                 

8 
Comparisons with respect to Overall Goal node in Location Cluster 

8a How important is Proximity to public facilities when it is compared to Proximity to high-rise buildings (is better 

to place MUT close to public facilities or close to high-rise buildings) 
                 

9  Comparisons with respect to Overall Goal node in Social Aspects Cluster  

9a How important is AADT when it is compared to Road class                                   

9b How important is AADT when it is compared to Population density                                   

9c How important is AADT when it is compared to Land use                                   

9d How important is Road class when it is compared to Population density                                   

9e How important is Road class when it is compared to Land use                                   

9f How important is Population density when it is compared to Land use                                     

10  Comparisons with respect to Overall Goal node in Infrastructure Cluster  
10a How important is Number of expected excavations when it is compared to Utility density                                   

10b 
How important is Number of expected excavations when it is compared to Underground development projects                                   

10c How important is Utility density when it is compared to Underground development projects                                     

11  Comparisons with respect to Overall Goal node in Environmental Cluster  

11a How important is Soil type when it is compared to Floodplain                                     

11b How important is Soil type when it is compared to Slope of utilities                                     

11c How important is Floodplain when it is compared to Slope of utilities                                     
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Table B-2 AHP Questionnaire 
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9 7 5 3 1  1/3 1/5  1/7  1/9 

1 How important is Annual average daily traffic (AADT) when it is compared to Road class          

2 How important is Annual average daily traffic (AADT) when it is compared to Utility density          

3 
How important is Annual average daily traffic (AADT) when it is compared to Number of expected excavations for 

utility repair activities 
         

4 How important is Annual average daily traffic (AADT) when it is compared to Underground development projects          

5 How important is Annual average daily traffic (AADT) when it is compared to Population density          

6 How important is Annual average daily traffic (AADT) when it is compared to Land use          

7 How important is Annual average daily traffic (AADT) when it is compared to Near to public facilities          

8 How important is Annual average daily traffic (AADT) when it is compared to Near to high-rise buildings          

9 How important is Annual average daily traffic (AADT) when it is compared to Soil type          

10 How important is Annual average daily traffic (AADT) when it is compared to Slope of utilities           

11 How important is Road class when it is compared to Utility density          

12 How important is Road class when it is compared to Number of expected excavations for utility repair activities           

13 How important is Road class when it is compared to Underground development projects          

14 How important is Road class when it is compared to Population density          

15 How important is Road class when it is compared to Land use          

16 How important is Road class when it is compared to Near to public facilities          

17 How important is Road class when it is compared to Near to high-rise buildings          

18 How important is Road class when it is compared to Soil type          

19 How important is Road class when it is compared to Slope of utilities          

20 How important is Utility density when it is compared to Number of expected excavations for utility repair activities          

21 How important is Utility density when it is compared to Underground development projects          

22 How important is Utility density when it is compared to Population density          

23 How important is Utility density when it is compared to Land use          

24 How important is Utility density when it is compared to Near to public facilities          

25 How important is Utility density when it is compared to Near to high-rise buildings          

26 How important is Utility density when it is compared to Soil type          

27 How important is Utility density when it is compared to Slope of utilities          
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Table B-2 AHP Questionnaire (Cont.) 
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28 
How important is Number of expected excavations for utility repair activities when it is compared to Underground 

development projects 
         

29 How important is Number of expected excavations for utility repair activities when it is compared to Population density          

30 How important is Number of expected excavations for utility repair activities when it is compared to Land use          

31 
How important is Number of expected excavations for utility repair activities when it is compared to Near to public 

facilities 
         

32 
How important is Number of expected excavations for utility repair activities when it is compared to Near to high-rise 

buildings 
         

33 How important is Number of expected excavations for utility repair activities when it is compared to Soil type          

34 How important is Number of expected excavations for utility repair activities when it is compared to Slope of utilities           

35 How important is Underground development projects when it is compared to Population density          

36 How important is Underground development projects when it is compared to Land use          

37 How important is Underground development projects when it is compared to Near to public facilities          

38 How important is Underground development projects when it is compared to Near to high-rise buildings          

39 How important is Underground development projects when it is compared to Soil type          

40 How important is Underground development projects when it is compared to Slope of utilities          

41 How important is Population density when it is compared to Land use          

42 How important is Population density when it is compared to Near to public facilities          

43 How important is Population density when it is compared to Near to high-rise buildings          

44 How important is Population density when it is compared to Soil type          

45 How important is Population density when it is compared to Slope of utilities          

46 How important is Land use when it is compared to Near to public facilities          

47 How important is Land use when it is compared to Near to high-rise buildings          

48 How important is Land use when it is compared to Soil type          

49 How important is Land use when it is compared to Slope of utilities          

50 How important is Near to public facilities when it is compared to Near to high-rise buildings                 

51 How important is Near to public facilities when it is compared to Soil type                 

52 How important is Near to public facilities when it is compared to Slope of utilities                 

53 How important is Near to high-rise buildings when it is compared to Soil type                 

54 How important is Near to high-rise buildings when it is compared to Slope of utilities                 

55 How important is Soil type when it is compared to Slope of utilities                
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Appendix C. PlaceMUT Software User Guide 

LOCATION SELECTION OF THE PLACEMENT OF MULTI-PURPOSE UTILITY 
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Introduction 

This chapter gives a general overview of the developed software and its working principles. The 

software implementation is based on the results of the multi-criteria decision-making (MCDM) model, 

which aims to identify the street segments with the highest potential for establishing a MUT. The 

MCDM model, shown in Figure C-1, is based on eight criteria: (Average Annual Daily Traffic (AADT), 

road class, utility density, number of expected excavations for utility repair activities, underground 

development projects, population density, land use, and near to public facilities/high-rise buildings). 

These criteria form the backbone of the decision-making process. The criteria values for each street 

segment represent the criteria scores for that street segment. The summation of the multiplication of 

each criterion score and its corresponding weight, derived from the Analytic Hierarchy Process (AHP) 

results, is the evaluation score for that street segment. This process is subsequently repeated for all the 

streets in the group of streets within the analysis. Street segments are ranked based on their total 

evaluation scores. The segment with the highest score is ranked highest and vice versa (Caffoor, 2019). 

 

Figure C-1. MCDM model 

Languages and software components 

The languages and software components used in the development are as follows: 

-Python (Programming language)  

-ArcGIS (Arcpy libraries) (Geoprocessing) 

-SQLite (Database)  
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-C# (Visualization) 

Intended Use 

The intended use of this software is the automated ranking of street segments based on eight criteria 

for the location selection of the placement of MUTs. This software aids decision-making by eliminating 

the need for calculating the priority weights for each criterion and the need to generate the attribute 

scores by using several geoprocessing techniques for each street segment. The user does not need to 

have prior knowledge of any programming, geoprocessing, and database manipulation techniques.  

Installation 

To run the software, a licensed copy of ArcGIS Pro (version 2.6.3 or above) or ArcGIS Desktop 

(version 10.7.1 or above) is needed. The following is the sequence of steps necessary to execute the 

program: 

 Copy and unzip the MUT_EXE file into any location. After unzipping the MUT_EXE folder, click 

the MUT-AHP.exe executable file. 

The software is not installed in a way that requires uninstalling. It’s enough to delete the folder that is 

generated after unzipping the provided software file. However, keeping this folder is not going to 

affect any other functionality of your computer. 

Database 

This application uses an SQLite database. The database schema is called MUTDB and it contains three 

tables, namely: 

Road_details: This table contains approximately 18,000 street segment records. The columns of the 

table are the data source for the autocomplete feature (i.e., the user can type the first few letters of the 

street name and the names will be completed automatically) of the three street input entries in the 

GUI. The values were extracted from the PIM_TRONCON_UNIFIE (road intervention plan) layer.  

Results_table: This table stores the criteria values extracted after the geoprocessing stage. 

Rank_db: This table stores the normalized values. 

Functionalities 

Figure C-2 shows the main window that is displayed when the program is executed. The message box 

presents an option for the user to either use their custom files or use preprocessed files. If the user 

decides to use custom files, a warning is generated as shown in Figure C-3. The interface in Figure C-

4 is displayed when the user decides to use custom files. Using the custom file interface is explained in 

Section 6. The following sequence of activities is executed when using preprocessed files. 
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Figure C-2. The select custom file message box. 

 

Figure C-3. Warning for using custom datasets. 

Figure C-5 shows a description of the features of the main window of the application. The numbers 

in each text box represent the sequence of operations of actions that must be executed for a successful 

ranking of street segments. The green boxes represent inputs, the blue text boxes represent outputs, 

and the red text boxes represent processes.  
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Figure C-4 Custom files 

Figure C-5 Main interface window 

Selecting street segments: This step selects the street segments and extracts all the criteria values 

that are available. The source of the street segment data is the road intervention plan. This limits the 

search for street segments to records that exist in the road intervention plan. Intersections that exist 

in the intervention plan, may or may not be exactly as desired (e.g., “Sainte-Catherine between Guy 
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and Bishop” vs. “Sainte-Catherine between Guy and Mackay” or “Sainte-Catherine between Mackay 

and Bishop”).  

Searching for a street segment is done in two ways. 

❖ Visually locating the street segment using the map. 

❖ Typing the details of the street segment (i.e., the name, starting intersection, and end 

intersection) into the entries in the user interface. 

Using the map. To visually select street segments, the user clicks the button shown in Figure C-6. This 

opens an interface displaying the available street segments as shown in Figure C-7.  

 

Figure C-6. Open Map button 

 

Figure C-7. Map input 
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To zoom in and zoom out, use the mouse wheel to scroll up and down respectively. Furthermore, to 

identify the desired street, the user should hover the mouse around the area and zoom in as shown in 

Figure C-8. As the user zooms further down, labels appear to guide the user in identifying the desired 

street segment. Figure C-9 shows the streets segments labels. 

 

Figure C-8. Zooming into the map 
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Figure C-9. Street segments showing labels 

After identifying the desired street segment, the user right-clicks the mouse, and the details of the street 

segment pop as shown in Figure C-10. The user can either confirm the selection by clicking OK or 

cancel the selection by clicking CANCEL. Clicking OK sends the selected segment to the list in the 

table as shown in Figure C-11. Multiple segments can be selected and added to the table as shown in 

Figure C-12. After selecting all the desired segments, the user clicks on the CONFIRM button and all 

the segments are processed in a First-in First-Out (FIFO) order. Clicking the CONFIRM button 

generates a popup (Figure C-13) showing the progress of the processing of each street in the street 

segments table. When the process is complete (Figure C-14), the user should click on the PROCEED 

button. 

 

Figure C-10. Map showing selected segment details 
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Figure C-11. Text area showing one street segment 

 

Figure C-12. Text area showing multiple street segments 

After clicking the PROCEED button, the interface in Figure C-15 is displayed showing extracted criteria 
values for all the selected street segments. 
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Figure C-13. Process initiated 

 
Figure C-14. Process completed 

 

Figure C-15. Results table showing extracted criteria values. 

Alternatively, searching can be done by first entering a valid street name along with the names of a 

start and a stop intersection. Entries 1, 2, and 3 represent the street name, start intersection and stop 

intersection, respectively. All three entries have auto-complete features embedded in them as shown 

in Figure C-16. This feature suggests street names as the user types. To select the intended street, use 

the UP or DOWN keys to navigate to the name and use the RIGHT KEY to select. 
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Figure C-16. Autocomplete feature. 

 

French characters do not appear correctly in the autocomplete entries (e.g. René-Lévesque is displayed 

as “Ren?-L?vesque”). The error message in Figure C-17 pops up when searching for street names with 

French characters. To avoid this error, the names should be entered manually.  

If the street segment is found in the database, its attribute values are generated and displayed in the 

Criteria Scores section (Figure C-18) across each corresponding criterion. The same values are displayed 

in the Result Table in Figure C-18. Furthermore, Figure C-18 also shows the analysis conducted on a 

road segment on Sainte-Catherine Street between Bishop and Guy. 

 

Figure C-17.  Check input warning! 
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Figure C-18. Example of a search and analyze function 

Ranking:  Ranking can only be performed on two or more street segments.  The steps involved are: 

First, enter the details of at least two or more valid street segments.  

Normalization (please refer to Equation 12 of the phase 2 report) is performed and the results of 

each normalized road segment can be seen by double-clicking the row corresponding to that road 

segment on the Result Table. Figure C-19 shows the normalized values for the highlighted row in 

the Criteria Scores section of the GUI. 
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Figure C-19. Displaying normalized results 

Finally, by clicking the Rank Streets button, the street segments are ranked, and the ranking is 

displayed in descending order in the Ranked Streets table as shown in Figure C-20. The street 

segment with the highest value is considered the most suitable for MUT placement based on the 

criteria values.  

 

Figure C-20. Ranking results 
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Map Display: This feature displays the ranked segments on a map. Displaying a map is done by 

first clicking the Display Map button shown in Figure C-21. The generated map is shown in Figure 

C-22. The width of the street segments signifies their ranks (i.e., the thicker the width, the higher 

the rank of the street). Clicking on a street segment generates a pop-up that displays the street 

name and the score as shown in Figure C-23. Maps are generated for a minimum of 2 segments 

and a maximum of 10 street segments. The error message in Figure C-24 is generated if the user 

attempts to generate a map outside this range. 

 

Figure C-21. Open map button 

 

 

Figure C-22. Map showing ranked street segments 
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Figure C-23. Pop-up showing street name and rank score 

 

Figure C-24. Map error message 

 

Delete: This feature allows the user to delete a street segment from the analysis. Records of street 

segments can be deleted from the analysis by selecting the row in the Result Table and then clicking the 

Delete Record button. When the deletion is confirmed (Figure 25), the ranking is recomputed, and the 

new scores are updated as shown in Figure 26.  

 

 



 

220 

 

 

Figure C-25. Delete confirmation 

 

Figure C-26. Deleting a record 

Saving: This feature allows the user the option of saving an analysis. The output file contains 

information on the extracted criteria values (unnormalized values), the normalized criteria scores, and 

the ranking result of the street segments that have been analyzed. An analysis is saved by clicking the 

Save option in the Menu toolbar as shown in Figure C-27. The user selects a location (Figure C-28) and 

the file is named by the user with a . TXT extension. Figure C-29 is a sample of a saved analysis. 
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Figure C-27. Menu Toolbar 

 

Figure C-28. Saving interface 

 

Figure C-29. Sample of output 
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Criteria Attributes and Geoprocessing 

This section gives a brief insight into the layers used for the analysis and the attributes of each layer 

used.  

(1) Road Search  

Layer used: PIM_TRONCON_UNIFIE_L_J.shp 

Necessary attributes: ID_TRC_PI, RUE, DE, A, LONGUEUR 

Outputs: RUE, DE, A  

The beginning of analysis starts with a search for road segments. The road intervention plan layer 

(PIM_TRONCON_UNIFIE) was used instead of the road layer because the records capture the 

streets as segments in between intersections. This layer will be combined with the needed information 

from all other layers to get the criteria values for each street segment. 

(2) Road Class 

Layers used: ROAD.shp, PIM_TRONCON_UNIFIE_L_J.shp 

Necessary attributes: CLASSE, LENGTH 

This layer was combined with the PIM_TRONCON_UNIFIE layer to determine the class of the 

street segments. Please refer to Section 4.3.4 of the Phase II report for details on how the class values 

are assigned to road segments. The values in Table C-8 in the Phase two report are the default values 

that have been hard-coded into the program. To use another dataset for the road class, a column 

(attribute) that represents the road class must exist. 

(3) AADT 

Layers used: SECTION_TRAFIC.shp, PIM_TRONCON_UNIFIE_L_J.shp 

Necessary attribute: nouveau__1 

This layer contains section traffic for several major intersections. To derive the AADT for a street 

segment, this layer is combined with the road intervention plan layer (PIM_TRONCON_UNIFIE). 

Road segments with AADT values of 0 imply that the AADT for that segment is a missing value. 

Using another dataset for the AADT should contain the AADT column. 
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(4) Utility Density 

Layers used: AGU_SEGMENT_L_J_VM, CONDUITE, EGO_SEGMENT_L_J_VM, 

HQ_LIGNE, PIM_TRONCON_UNIFIE_L_J 

Necessary attributes:  

 Water: DIAMETREM_, SHAPE_Leng 

 Gas: diameter, SHAPE_Leng 

 Sewer: DIAMETRE_1, SHAPE_Leng 

 Hydro-Quebec: DESCRIPTION (voltage), TYPE (underground/above ground), 

SHAPE_Leng 

Four utilities (water, gas, sewer, and Hydro-Quebec) are used in calculating the utility density for a 

street segment. The score for each utility type is calculated separately. For more details on the 

calculation of the utility density, please refer to Section 4.3.4 of the Phase II report. 

(5) Number of Expected Excavations 

Layer used: PIM_TRONCON_UNIFIE_L_J 

Necessary attribute: Taux de bris max 

The water pipe breakage rate is indicated in the “Taux de bris max (Nb/km/an)” column. This refers 

to the number of water breakage per km per year. Because of the lack of breakage rate data for other 

utilities, only the water pipe breakage rate is used to predict the number of expected excavations for 

utility repair. 

(6) Underground Project Development 

Layers used: PROJET_2020_INTERVALLES.shp, PIM_TRONCON_UNIFIE_L_J.shp 

Necessary attribute: TYPE 

This layer was intersected with the road intervention plan layer to determine if a street segment has an 

underground development project. The type of project considered in this analysis is the “Grand Projet”. 
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(7) Population Density 

Layers used: MONTREAL TRACTS, PIM_TRONCON_UNIFIE_L_J.shp 

Source: 

https://services.arcgis.com/Ywxx29kRZEPq7K5N/arcgis/rest/services/montreal_tracts10023/Fea

tureServer 

Necessary attributes: Population density (derived), Shape_Area, GeoUID 

The population layer is intersected with the road intervention plan to derive the population density of 

the area surrounding the road segment.  

(8) Land use 

Layers used: AFFECTATIONPU.shp, PIM_TRONCON_UNIFIE_L_J.shp 

Necessary attributes: ID_TRC, length, categorie 

This layer is intersected with the road intervention plan to determine the land use surrounding each 

road segment. Each category of land use is assigned a score based on its relevance to MUT placement 

selection (please refer to Table C-10 of the Phase II report). Several geoprocessing techniques are then 

applied to determine land use based on the length of the road, the category surrounding the length, 

and the score attached to each category of land use.   

(9) Proximity to Public Facilities/High-Rise Buildings 

Layers used: EQUNIVERSITAIRE, EQCOLLEGIAL, EQSANTE, HIGHRISE_BUILDING, 

PIM_TRONCON_UNIFIE_L_J.shp 

Necessary attribute: count (derived) 

The first four input layers were combined into a single feature class. This feature class was intersected 

with a 128 m buffer (average distance between two parallel streets) created around the road 

intervention plan (PIM_TRONCON_UNIFIE_L_J.shp) layer. The output was the number of high-

rise /public buildings around the street segment. This number is then further normalized using 

Equation 12 of the Phase II report to obtain the criterion score for the road segment. 
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Using Custom files 

A user has the option of using custom datasets. This means replacing one or all the default datasets 

that have already been preprocessed in the software. This interface can be executed when the program 

is initially run. Alternatively, the user can select the Load data option in the File menu as shown in Figure 

C-30. The use of custom files is executed using the interface in Figure C-31. 

Replacing a criterion’s preprocessed file with a custom file will require the user to select some 

attributes. The required attributes depend on the criteria file being replaced. Table C-1 shows the 

criteria, the required attributes, and the attribute description. Scoring (assigning a level of importance 

relative to other attributes) is required for some of the fields. This is done by assigning values between 

0-1 to the unique attribute values. By default, all unique attribute values are assigned a value of 1 (i.e., 

equal importance). Figure C-32 is an example of scoring the Hydro Quebec voltage field. 

 

Figure C-30. Load custom files. 

 

 

Figure C-31. Using the custom files interface 
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Figure C-32. Scoring attribute values 

Table C-1. Criteria input description 

Criteria/Layer Required Attribute(s)/Field(s) Description 

HydroQuebec 

Network 

Voltage The voltage of the cables 

Type Underground/aboveground 

Shape length Length of the cable in that road segment 

Water Network Diameter Water pipe diameter 

Shape length Length of the pipe in that road segment 

Status  Pipe status e.g.  abandoned pipes 

Underground 
development projects 

Type Type/description of the project e.g. Grand 
projects 

Sewer Network Diameter Water pipe diameter 

Shape length Length of the pipe in that road segment 

Road Network Classe Road class 

Public facilities   

Land use Category Land use category, e.g institution, 
commercial.  

Population Density GeoUID Unique ID for population densities 

Length field Length covered by the population density 

Population density Values representing the population densities  

Limitations 

This application takes in only shapefiles with the .shp extension. To use Feature class files from a 

geodatabase, the user must convert feature class files to shapefiles.  
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Using custom files increases the time for an analysis to complete.  

French characters do not appear correctly in the autocomplete entries for example René-Lévesque 

is displayed as “Ren?-L?vesque”. When searching for street names with French characters, the 

names should be entered manually. Alternatively, use the map to select the street segments.   

Some road segments have missing data, this accounts for criteria values with zero scores. For 

example, the traffic dataset (AADT) used in this application has records for only the main 

segments. Using a relatively complete dataset for the criteria will improve the decision-making 

results.  

The criteria weights are based on the AHP results in Phase II of this research. These values can be 

modified. However, the user must ensure that the sum of the criteria weights is equal to one.

Caffoor, I. (2019). Robotics and Autonomous Systems (RAS) for buried pipe infrastructure and water operations. 

TWENTY65. Retrieved from http://pipebots.ac.uk/wp-content/uploads/2019/03/robotics-report-

web-4.pdf 
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Figure C-33 Frequency and Ages of water pipes 
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Figure C-34 GIS representation of the ages of water pipes 

 

Figure C-35 Frequency and Ages of Sewer pipes 
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Figure C-36 GIS representation of the ages and materials of sewer pipe

 Attribute Type Range 

Water pipe 

network 

Pipe material Nominal Reinforced concrete, Steel 

Grey font, Ductile iron, Gray 

iron or ductile iron, 

Prestressed concrete, 

Polyvinyl chloride, 

Polyethylene, Unreinforced 

concrete, Asbestos cement 

Galvanized iron, Copper 

Diameter (mm) Numeric 2100, 1500, 1200, 1050, 900, 

850, 750, 600, 500, 450, 400, 

350, 300, 250, 200, 150, 100, 

75, 50 

Status Ordinal Existing, Abandoned, to 

validate offers, out of order 

Type of Pipe Nominal  

Water pipe 

breaks 

Date of break Date 1900-2020 

Installation date Date 1862- 2013 

Type of breaks Nominal Hole, Leak at the seal, 

Sparkle, Perforation in the 

wall, Longitudinal crack 
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Circular crack 

Leak at the fitting 

Corporate shutdown (main 

pipe), Chipping of the pipe / 

Perforation in the wall, 

Circumferential breakage, 

Muff, Broken connection 

Leaking faucet, driving 

sparkle, Leak at the water 

connection, Longitudinal 

breakage, Line (or 

distribution) stop, Pipe chip / 

Longitudinal breakage, Split 

interlocking, Circumferential 

breakage / Chipping of the 

pipe, Perforation in the wall, 

Perforation, downward 

circumferential, 

shard, ramback, corrosion 

valve, Rift 

Longitudinal breakage + 

Perforation in the wall, 

Vertical, circumferential, 

wear pipe, Circumferential, 

Circular - breeze in 2 

Join at the tap, 

Circumferential, Wear pipe, 

corrosion, 

Shine, third party damage, 

Breaking, Longitudinal 

breakage / Chipping of the 

pipe 

Type of repair Nominal Disconnection of an unused 

water service, Seal repair 

Seal repair, Replacing a pipe 

segment, Installation of a 

sleeve, Pipe replacement 

Repair at the connection, 

Valve replacement, 

Replacement of the pipe / 

Installation of a sleeve, 

Replacement of the water 

connection, Replacement of 

the pipe / Installation of a 

sleeve / Repair at the fitting 
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Caliper repair, Installation of 

an anode, Sleeve installation 

Repair at the joint / 

Installation of a sleeve, 

Replacement of a segment of 

the pipe + Installation of a 

sleeve, Replacement of a 

pipe segment, street asphalt 

asphalt and earthworks - 

sidewalk. change the water 

and sewer from the BS to the 

main street 

Intervention 

plan 

Number of bad &very bad pipes Numeric 0 - 8 

Age/useful life  Numeric 0 - 1.68 

Integrated class Ordinal A - D 

Number of historical breaks Numeric 0 - 9 

Break rate Numeric 0 - 9.76 

Cost ($) Numeric 433 - 6,889,046 

Public work 

and Info-

excavation 

Type of work Nominal  

Excavation type Nominal  

Duration of work Numeric  

 AADT Numeric  

 

Figure C-37 Street segments showing break-rate 
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Appendix D. MATLAB Codes 

D.1 Codes for synchronized intervention 

% ----------------------------------------------------------------------- % 

% Function NSGAII performs a Non Sorting Genetic Algorithm-II             % 

%                                                                         % 

%                                                                         % 

%   Input parameters:                                                     % 

%       - params:   Struct that contains the customized parameters.       % 

%         * params.Np:           Number of chromosomes in the population. % 

%         * params.maxgen:       Maximum number of generations.           % 

%         * params.pc:           Probability of crossover.                % 

%         * params.pm:           Probability of mutation.                 % 

%         * params.NumSegments   Number of segments.          % 

%         * params.r     Discount rate.                           %  

%         * params.YearlyBudget  Agency cost budget          %  

%         * params.SocialCostYearlyBudget Social cost budget              % 

%         * params.years         Planning period          %   

%         * params.sewer_costs   Sewer pipe intervention cost             % 

%         * params.water_costs   Water pipe intervention cost        %  

%         * params.Pavement_intervention_impact pavement                  %                                          

% 

% ----------------------------------------------------------------------- % 

%   Author:  Kelechukwu Tersoo Genger                                     % 

%   Date:    09/03/2023                                                   % 

%   E-mail:  tkgenger@gmail.com                                           % 

%                                                                         % 

%   Log:                                                                  % 

%             1.1:  Fast Non Sorting Algorithm is now vectorized for im-  % 

%                   proving the performance (much less computation time)  % 

%                   (22/12/2017).                                         % 

%           - 1.2:  The old mutation operator is substituted by the adding% 

%                   of a , as suggested by                                % 

%                   Alexander Hagg, which brings a better convergence     % 

%                   (25/11/2019).                                         % 

% ----------------------------------------------------------------------- % 

%   References:                                                           % 

%    [1] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002)% 

%        A fast and elitist multiobjective genetic algorithm: NSGA-II.    % 

%        IEEE transactions on evolutionary computation, 6(2), 182-197.    % 

% ----------------------------------------------------------------------- % 
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function 

[Plans,SocialCost,InterventionCost,Performance,years_interventioncost,years_socialcost,gen_rank_s

olutions] = SYNC_NSGAII(params) 

global Water_pipe_expected_life Sewer_pipe_expected_life WaterPipeCondition Water_pipe_age 

Sewer_pipe_age PavementCondition SewerCondition 

    % Parameters 

    Np      = params.Np;        % Number of chromosomes in the population 

    maxgen  = params.maxgen;    % Maximum number of generations 

    pc      = params.pc;        % Probability of crossover 

    pm      = params.pm;        % Probability of mutation 

    NumSegments = params.NumSegments; 

    r = params.r; 

    YearlyBudget = params.YearlyBudget; 

    SocialCostYearlyBudget = params.SocialCostYearlyBudget; 

    years = params.years; 

    assets = params.assets; 

    sewer_costs = params.sewer_costs; 

    water_costs = params.water_costs; 

    Pavement_intervention_impact = params.Pavement_intervention_impact; 

 

   % Data 

    uniqueID =  assets.ID_TRC_PI;                                   %ID of segment 

    SegmentID = uniqueID(1:NumSegments)'; 

    function ResizeData(Nrows) 

        Water_pipe_age = repmat(assets.waterPipe_age(1:NumSegments)',Nrows,1); 

        Sewer_pipe_age = repmat(assets.SewerAge(1:NumSegments)',Nrows,1); 

        PavementCondition = repmat(assets.PCI(1:NumSegments)',Nrows,1); 

        SewerCondition = repmat(assets.sewer_initial_condition(1:NumSegments)',Nrows,1); 

        WaterPipeCondition = repmat(assets.water_initial_condition(1:NumSegments)',Nrows,1); 

        Sewer_pipe_expected_life = 

repmat(assets.Sewer_pipe_expected_life(1:NumSegments)',Nrows,1); 

        Water_pipe_expected_life = 

repmat(assets.Water_pipe_expected_life(1:NumSegments)',Nrows,1); 

    end 

    ResizeData(Np) 

 

    % Initialization 

    UseInit = false; 

    PavementInterventionInit = nan; 

    SewerInterventionInit = nan; 

    WaterInterventionInit = nan; 

initial Population P 

    [InterventionCost, 

SocialCost,Performance,years_interventioncost,years_socialcost,Plans,InterventionBudgetUtilizatio

n,SocialBudgetUtilization,... 

    PavementInterventionInit, SewerInterventionInit,WaterInterventionInit] = 

InterventionAndSocialCost(PavementCondition,SewerCondition,WaterPipeCondition,... 
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    Water_pipe_age,Sewer_pipe_age,Sewer_pipe_expected_life,Water_pipe_expected_life, 

assets,sewer_costs,water_costs,... 

    r,Pavement_intervention_impact,YearlyBudget,years,SegmentID, SocialCostYearlyBudget,... 

    PavementInterventionInit, SewerInterventionInit,WaterInterventionInit,UseInit); 

    UseInit = true; 

    gen   = 1; 

    genPFPlans = {}; 

    genPFintervention_cost = []; 

    genPFSocial_cost = []; 

    genPFPerformance = []; 

    Pfit = [sum(InterventionCost,2),sum(SocialCost,2),Performance]; 

    Prank = FastNonDominatedSorting_Vectorized(Pfit); 

    [PavementInterventionInit, SewerInterventionInit,WaterInterventionInit,~] = 

selectParentByRank(PavementInterventionInit, SewerInterventionInit,WaterInterventionInit,Prank); 

 

    [PavementInterventionInitQ, SewerInterventionInitQ,WaterInterventionInitQ,InterventionCostQ, 

SocialCostQ] = applyCrossoverAndMutation(PavementInterventionInit,... 

        SewerInterventionInit,WaterInterventionInit,InterventionCost, SocialCost,pc,pm); 

Plotting and verbose 

    if(size(Pfit,2) == 2) 

        h_fig = figure(1); 

        h_par=scatter(Pfit(:,1),Pfit(:,2),20,'filled', 

'markerFaceAlpha',0.3,'MarkerFaceColor',[128 193 219]./255); hold on; 

        h_rep = plot(Pfit(:,1),Pfit(:,2),'ok'); hold on; 

        grid on; xlabel('Intervention Cost'); ylabel('Social Cost'); 

        drawnow; 

        axis square; 

    end 

    if(size(Pfit,2) == 3) 

        h_fig = figure(1); 

        h_rep = plot3(Pfit(:,1),Pfit(:,2),Pfit(:,3),'ok'); hold on; 

        grid on; xlabel('Intervention Cost'); ylabel('Social Cost'); zlabel('Performance'); 

        drawnow; 

        axis square; 

    end 

    display(['Generation #' num2str(gen) ' - First front size: ' num2str(sum(Prank==1))]); 

Main NSGA-II loop 

    stopCondition = false; 

    gen_rank_solutions = nan; 

    function update_gen_pareto_front(gen,Prank,Pfit) 

        gen_rank_solution = [repmat(gen,size(Pfit,1),1),Prank,Pfit]; 

        if isnan(gen_rank_solutions) 

            gen_rank_solutions = gen_rank_solution; 

        else 

            gen_rank_solutions = [gen_rank_solutions;gen_rank_solution]; 
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        end 

    end 

% Plotting and verbose 

 function plot_data(Rfit,Rrank) 

       if(size(Rfit,2) == 2) 

            figure(h_fig); delete(h_rep); 

            h_par=scatter(Rfit(1:Np,1),Rfit(1:Np,2),20,'filled', 

'markerFaceAlpha',0.3,'MarkerFaceColor',[128 193 219]./255); hold on; 

            h_rep = plot(Rfit(1:Np,1),Rfit(1:Np,2),'ok'); hold on; 

            grid on; xlabel('Intervention Cost'); ylabel('Social Cost'); 

            drawnow; 

            axis square; 

       end 

        current_pf = Rrank == 1; 

        RfitPF = Rfit(current_pf,:); 

        NumPF = size(RfitPF,1); 

        if(size(Rfit,2) == 3) 

            figure(h_fig); delete(h_rep); 

            h_rep = plot3(Rfit(1:Np,1),Rfit(1:Np,2),Rfit(1:Np,3),'ok'); hold on; 

                 try delete(h_pf); end 

                 h_pf = 

plot3(RfitPF(1:NumPF,1),RfitPF(1:NumPF,2),RfitPF(1:NumPF,3),'s','color','green','MarkerFaceColor'

,'g'); hold on; 

%             end 

            grid on; xlabel('Intervention Cost'); ylabel('Social Cost');zlabel('Performance'); 

            drawnow; 

            axis square; 

        end 

    end 

    while ~stopCondition 

        % Merge the parent P and the children Q 

%         R = [P; Q]; 

        PavementInterventionInitR = [PavementInterventionInit;PavementInterventionInitQ]; 

        SewerInterventionInitR = [SewerInterventionInit;SewerInterventionInitQ]; 

        WaterInterventionInitR = [WaterInterventionInit;WaterInterventionInitQ]; 

        Nrows = size(WaterInterventionInitR,1); 

        ResizeData(Nrows) 

Compute the new Pareto Fronts 

        [InterventionCost, 

SocialCost,Performance,years_interventioncost,years_socialcost,Plans,InterventionBudgetUtilizatio

n,SocialBudgetUtilization,... 

            ~] = 

InterventionAndSocialCost(PavementCondition,SewerCondition,WaterPipeCondition,... 

            Water_pipe_age,Sewer_pipe_age,Sewer_pipe_expected_life,Water_pipe_expected_life, 

assets,sewer_costs,water_costs,... 

            r,Pavement_intervention_impact,YearlyBudget,years,SegmentID, 
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SocialCostYearlyBudget,... 

            PavementInterventionInitR, SewerInterventionInitR,WaterInterventionInitR,UseInit); 

 

        Rfit = [sum(InterventionCost,2),sum(SocialCost,2),Performance]; 

        Rrank = FastNonDominatedSorting_Vectorized(Rfit); 

        plot_data(Rfit,Rrank) 

Sort by rank 

        [Rrank,idx] = sort(Rrank,'ascend'); 

        Rfit = Rfit(idx,:); 

        PavementInterventionInitR = PavementInterventionInitR(idx,:); 

        SewerInterventionInitR = SewerInterventionInitR(idx,:); 

        WaterInterventionInitR = WaterInterventionInitR(idx,:); 

        Plans = Plans(idx,:); 

        InterventionCost = InterventionCost(idx,:); 

        SocialCost= SocialCost(idx,:); 

        Performance = Performance(idx,:); 

 

        genPFps = Plans(Rrank==1,:); 

        PFintervention_cost = InterventionCost(Rrank==1,:); 

        PFSocial_cost = SocialCost(Rrank==1,:); 

        PFPerformance = Performance(Rrank == 1, :); 

 

        genPFPlans = [genPFPlans;genPFps]; 

        genPFintervention_cost =[genPFintervention_cost;PFintervention_cost]; 

        genPFSocial_cost = [genPFSocial_cost;PFSocial_cost]; 

        genPFPerformance = [genPFPerformance; PFPerformance]; 

 

        update_gen_pareto_front(gen,Rrank,Rfit) 

        if stopCondition, break; end 

 

       display(['Generation #' num2str(gen) ' - First front size: ' num2str(sum(Rrank==1))]); 

Compute the crowding distance index 

        [Rcrowd,Rrank,~,PavementInterventionInitR, SewerInterventionInitR,WaterInterventionInitR] 

... 

            = crowdingDistances(Rrank,Rfit,PavementInterventionInitR, 

SewerInterventionInitR,WaterInterventionInitR); 

Select Parent 

        [PavementInterventionInit, SewerInterventionInit,WaterInterventionInit] = ... 

            selectParentByRankAndDistance(Rcrowd,Rrank,PavementInterventionInitR, 

SewerInterventionInitR,WaterInterventionInitR); 

Compute child 
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        [PavementInterventionInitQ, SewerInterventionInitQ,WaterInterventionInitQ, 

InterventionCostQ, SocialCostQ] =... 

            applyCrossoverAndMutation(PavementInterventionInit, 

SewerInterventionInit,WaterInterventionInit,InterventionCost, SocialCost,pc,pm); 

Increment generation 

        gen = gen + 1; 

        if(gen>maxgen), stopCondition = true; end 

    end 

    AllPF = gen_rank_solutions(gen_rank_solutions(:,2)==1,3:end); 

    AllPFrank = FastNonDominatedSorting_Vectorized(AllPF); 

    [AllPFrank,idx] = sort(AllPFrank,'ascend'); 

    genPFPlans = genPFPlans(idx,:); 

    genPFintervention_cost = genPFintervention_cost(idx,:); 

    genPFSocial_cost = genPFSocial_cost(idx,:); 

    genPFPerformance = genPFPerformance(idx,:); 

    AllPF = AllPF(idx,:); 

 

    update_gen_pareto_front(gen,AllPFrank,AllPF); 

 

    Plans = genPFPlans(AllPFrank == 1,:); 

    InterventionCost = genPFintervention_cost(AllPFrank == 1,:); 

    SocialCost = genPFSocial_cost(AllPFrank == 1,:); 

    Performance = genPFPerformance(AllPFrank == 1,:); 

end 

Function that selects a new parent based on the crowding distance operator 

function [newPavementInterventionInit, newSewerInterventionInit,newWaterInterventionInit] =... 

    selectParentByRankAndDistance(Rcrowd,Rrank,PavementInterventionInitR, 

SewerInterventionInitR,WaterInterventionInitR) 

 

    % Initialization 

    N = length(Rcrowd)/2; 

    Npf = length(unique(Rrank)); 

    newPavementInterventionInit = zeros(N,size(PavementInterventionInitR,2)); 

    newSewerInterventionInit = zeros(N,size(PavementInterventionInitR,2)); 

    newWaterInterventionInit = zeros(N,size(PavementInterventionInitR,2)); 

 

    % Selecting the chromosomes 

    pf = 1; 

    numberOfSolutions = 0; 

    while pf <= Npf 

        % If there is enough space, select solutions based on rank 

        if numberOfSolutions + sum(Rrank == pf) <= N 
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            newPavementInterventionInit(numberOfSolutions+1:numberOfSolutions+sum(Rrank == pf),:) 

= PavementInterventionInitR(Rrank == pf,:); 

            newSewerInterventionInit(numberOfSolutions+1:numberOfSolutions+sum(Rrank == pf),:) = 

SewerInterventionInitR(Rrank == pf,:); 

            newWaterInterventionInit(numberOfSolutions+1:numberOfSolutions+sum(Rrank == pf),:) = 

WaterInterventionInitR(Rrank == pf,:); 

 

            numberOfSolutions = numberOfSolutions + sum(Rrank == pf); 

        % If there isn't enugh space, sort by crowding distances 

        else 

            rest = N - numberOfSolutions; 

            lastPFPavement = PavementInterventionInitR(Rrank == pf,:); 

            lastPFSewer = SewerInterventionInitR(Rrank == pf,:); 

            lastPFWater = WaterInterventionInitR(Rrank == pf,:); 

            lastPFdist = Rcrowd(Rrank == pf); 

 

            [~,idx] = sort(lastPFdist,'descend'); 

 

            lastPFPavement = lastPFPavement(idx,:); 

            lastPFSewer = lastPFSewer(idx,:); 

            lastPFWater = lastPFWater(idx,:); 

             

%             newParent(numberOfSolutions+1:numberOfSolutions+rest,:) = lastPF(1:rest,:); 

            newPavementInterventionInit(numberOfSolutions+1:numberOfSolutions+rest,:) = 

lastPFPavement(1:rest,:); 

            newSewerInterventionInit(numberOfSolutions+1:numberOfSolutions+rest,:) = 

lastPFSewer(1:rest,:); 

            newWaterInterventionInit(numberOfSolutions+1:numberOfSolutions+rest,:) = 

lastPFWater(1:rest,:); 

            %newPlans(numberOfSolutions+1:numberOfSolutions+rest,:) = lastPFPlans(1:rest,:); 

            numberOfSolutions = numberOfSolutions + rest; 

        end 

        pf = pf + 1; 

    end 

end 

Function that computes the crowding distances of every single Pareto Front 

function 

[sortCrowd,sortRank,sortFit,sortPavementInterventionInitR,sortSewerInterventionInitR,sortWaterInt

erventionInitR] = ... 

    crowdingDistances(rank,fitness,PavementInterventionInitR, 

SewerInterventionInitR,WaterInterventionInitR) 

 

    % Initialize 

%     sortPop = []; 

    sortPavementInterventionInitR = []; 

    sortSewerInterventionInitR = []; 

    sortWaterInterventionInitR = []; 

 

    sortFit = []; 

    sortRank = []; 
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    sortCrowd = []; 

 

    Npf = length(unique(rank)); 

    for pf = 1:1:Npf 

        index = find(rank==pf); 

        temp_fit = fitness(index,:); 

        temp_rank = rank(index,:); 

        temp_pavementpop= PavementInterventionInitR(index,:); 

        temp_sewerpop= SewerInterventionInitR(index,:); 

        temp_waterpop= WaterInterventionInitR(index,:); 

        %temp_planspop = PlansR(index,:); 

 

        % Sort by first dimension 

        [temp_fit,sort_idx] = sortrows(temp_fit,1); 

        temp_rank = temp_rank(sort_idx); 

        sortFit = [sortFit; temp_fit]; 

        sortRank = [sortRank; temp_rank]; 

 

%         sortPop = [sortPop; temp_pop(sort_idx,:)]; 

        sortPavementInterventionInitR = [sortPavementInterventionInitR; 

temp_pavementpop(sort_idx,:)]; 

        sortSewerInterventionInitR = [sortSewerInterventionInitR; temp_sewerpop(sort_idx,:)]; 

        sortWaterInterventionInitR = [sortWaterInterventionInitR; temp_waterpop(sort_idx,:)]; 

        %sortPlansR = [sortPlansR; temp_planspop]; 

 

        % Crowded distances 

        temp_crowd = zeros(size(temp_rank)); 

        for m = 1:1:size(fitness,2) 

            temp_max = max(temp_fit(:,m)); 

            temp_min = min(temp_fit(:,m)); 

            for l = 2:1:length(temp_crowd)-1 

                temp_crowd(l) = temp_crowd(l) + (abs(temp_fit(l-1,m)-

temp_fit(l+1,m)))./(temp_max-temp_min); 

            end 

        end 

        temp_crowd(1) = Inf; 

        temp_crowd(length(temp_crowd)) = Inf; 

        sortCrowd = [sortCrowd; temp_crowd]; 

    end 

end 

Function that calculates a child population by applying crossover and mutation 

function children = performCrossover(parent1,parent2,cut) 

    temp = parent1(cut+1:end); 

    child1 = [parent1(1:cut), parent2(cut+1:end)]; 

    child2 = [parent2(1:cut), temp]; 

    children = [child1;child2]; 

end 

function [PavementInterventionInitQ, SewerInterventionInitQ,WaterInterventionInitQ, 

InterventionCostQ, SocialCostQ] = applyCrossoverAndMutation(PavementInterventionInit, ... 
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    SewerInterventionInit,WaterInterventionInit,InterventionCost, 

SocialCost,pc,pm)%,pm,ms,var_max,var_min) 

    % Params 

    N = size(PavementInterventionInit,1); 

    nVar = size(PavementInterventionInit,2); 

 

    % Child initialization 

%     Q = parent; 

    PavementInterventionInitQ = PavementInterventionInit; 

    SewerInterventionInitQ =  SewerInterventionInit; 

    WaterInterventionInitQ = WaterInterventionInit; 

    InterventionCostQ = InterventionCost; 

    SocialCostQ = SocialCost; 

 

    % Crossover 

    cross_idx = rand(N,1) < pc; 

    cross_idx = find(cross_idx); 

    crossed = zeros(N,1); 

    next_id = 1; 

    for c = 1:1:length(cross_idx) 

        if any(crossed(:) == c) 

            continue; 

        else 

            crossed(next_id) = c; 

            next_id = next_id + 1; 

        end 

        selected = randi(N,1,1); 

        while selected == c || any(crossed(:) ==selected) 

            selected = randi(N,1,1); 

        end 

        crossed(next_id) = selected; 

        next_id = next_id + 1; 

        cut = randi(nVar,1,1); 

%         Q(c,:) = [parent(c,1:cut), parent(selected,cut+1:nVar)]; 

        PavementInterventionInitQ([c,selected],:) = 

performCrossover(PavementInterventionInit(c,:), PavementInterventionInit(selected,:),cut); 

        SewerInterventionInitQ([c,selected],:) = performCrossover(SewerInterventionInit(c,:), 

SewerInterventionInit(selected,:),cut); 

        WaterInterventionInitQ([c,selected],:) = performCrossover(WaterInterventionInit(c,:), 

WaterInterventionInit(selected,:),cut); 

        InterventionCostQ([c,selected],:) = performCrossover(InterventionCost(c,:), 

InterventionCost(selected,:),cut); 

        SocialCostQ([c,selected],:) = performCrossover(SocialCost(c,:), 

SocialCost(selected,:),cut); 

    end 

 

    % Mutation population with Gaussian distribution 

    population_shape = size(PavementInterventionInitQ); 

    total_elements = population_shape(1) * population_shape(2); 

    mutatedPavementPop = reshape(randsample(0:3,total_elements,true),population_shape); 

    mutatedSewerPop = reshape(randsample(0:2,total_elements,true),population_shape); 

    mutatedWaterPop = reshape(randsample(0:2,total_elements,true),population_shape); 

    mutatedPavementPop((mutatedSewerPop == 2) | (mutatedWaterPop == 2)) = 3; 
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    mut_idx = rand(N,nVar) < pm; 

    PavementInterventionInitQ(mut_idx & PavementInterventionInitQ > 0) = 

mutatedPavementPop(mut_idx & PavementInterventionInitQ > 0); 

    SewerInterventionInitQ(mut_idx & SewerInterventionInitQ > 0) = mutatedSewerPop(mut_idx & 

SewerInterventionInitQ > 0); 

    WaterInterventionInitQ(mut_idx & WaterInterventionInitQ > 0) = mutatedWaterPop(mut_idx & 

WaterInterventionInitQ > 0); 

 

 

    PavementInterventionInitQ((SewerInterventionInitQ == 2) | (WaterInterventionInitQ == 2)) = 3; 

 

end 

Function that performs a binary tournament selection and extracts one parent from the initial population 

based on their ranks. 

function [PavementInterventionInit1, SewerInterventionInit1,WaterInterventionInit1,P1rank]   = 

selectParentByRank(PavementInterventionInit, SewerInterventionInit,WaterInterventionInit, Prank) 

    % Take the couples 

    N = length(Prank); 

    left_idx  = randi(N,N,1); 

    right_idx = randi(N,N,1); 

    while sum(left_idx==right_idx)>0 

        right_idx(left_idx==right_idx) = randi(N,sum(left_idx==right_idx),1); 

    end 

 

    % Make the tournament 

    winners = zeros(N,1); 

    winners(Prank(left_idx)<=Prank(right_idx)) = left_idx(Prank(left_idx)<=Prank(right_idx)); 

    winners(Prank(right_idx)<Prank(left_idx)) = right_idx(Prank(right_idx)<Prank(left_idx)); 

 

    % Select both populations 

%     P1 = P(winners,:); 

    PavementInterventionInit1 = PavementInterventionInit(winners,:); 

    SewerInterventionInit1 = SewerInterventionInit(winners,:); 

    WaterInterventionInit1 = WaterInterventionInit(winners,:); 

    P1rank = Prank(winners,:); 

end 

Function that performs a vectorized version of the Fast Non Dominated Sorting algorithm which speeds 

up the computation time 

function [RANK] = FastNonDominatedSorting_Vectorized(fitness) 

    % Initialization 

    Np = size(fitness,1); 

    RANK = zeros(Np,1); 

    current_vector = [1:1:Np]'; 

    current_pf = 1; 

    all_perm = [repmat([1:1:Np]',Np',1), reshape(repmat([1:1:Np],Np,1),Np^2,1)]; 

    all_perm(all_perm(:,1)==all_perm(:,2),:) = []; 
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    % Computing each Pareto Front 

    while ~isempty(current_vector) 

 

        % Check if there is only a single particle 

        if length(current_vector) == 1 

            RANK(current_vector) = current_pf; 

            break; 

        end 

 

        % Non-dominated particles 

            % Note: nchoosek has an exponential grow in computation time, so 

            % it's better to take all the combinations including repetitions using a 

            % loops (quasi-linear grow) or repmats (linear grow) 

 

        d = dominates(fitness(all_perm(:,1),:),fitness(all_perm(:,2),:)); 

        dominated_particles = unique(all_perm(d==1,2)); 

 

        % Check if there is no room for more Pareto Fronts 

        if sum(~ismember(current_vector,dominated_particles)) == 0 

            break; 

        end 

 

        % Update ranks and current_vector 

        non_dom_idx = ~ismember(current_vector,dominated_particles); 

        RANK(current_vector(non_dom_idx)) = current_pf; 

        all_perm(ismember(all_perm(:,1),current_vector(non_dom_idx)),:) = []; 

        all_perm(ismember(all_perm(:,2),current_vector(non_dom_idx)),:) = []; 

        current_vector(non_dom_idx) = []; 

        current_pf = current_pf + 1; 

    end 

end 

Function that returns true if x dominates y and false otherwise 

function d = dominates(x,y) 

    d = (all(x<=y,2) & any(x<y,2)); 

end 

This is the main function that calls the NSGAII algorithm  

%function Optimization_09_30 

%%This is the main function that calls the NSGAII algorithm 

    clear; close all; 

assets = readtable('Case_study_10_24Copy2.xlsx'); 

NanData = ~(isnan(assets.ID_TRC_PI) | isnan(assets.waterPipe_age)| isnan(assets.Autos)| 

isnan(assets.Heavy_Trucks)... 

    | isnan(assets.Light_Trucks)| isnan(assets.Bus)| isnan(assets.PD_arrondi)| 

isnan(assets.Segment_Length)| isnan(assets.Pavement_Surface_area)... 

    | isnan(assets.Sewer_length)| isnan(assets.Sewer_diameterV)| isnan(assets.water_P_length) | 
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isnan(assets.water_diameter)); 

    assets = assets(NanData,:); 

    sewer_costs = readtable('Cost_replace_rehab_sewer_pipes.xlsx'); 

    water_costs = readtable('Cost_replace_rehab_water_pipes.xlsx'); 

    Pavement_intervention_impact =readtable('Pavement_Intervention_year_impact.xlsx'); 

    Np = 250; 

    NumSegments = 1151; 

    r=0.03; 

    % segments in each column and row for each solution 

    YearlyBudget =140000000; 

    SocialCostYearlyBudget = 8500000; 

    years = 100; % Planning period 

 

    UseInit = false; 

 

    params.Np = Np; 

    params.maxgen =5; 

    params.pc = 0.8; 

    params.pm = 0.01; 

    params.ms = 0; 

    params.NumSegments = NumSegments; 

    params.r = r; 

    params.YearlyBudget = YearlyBudget; 

    params.SocialCostYearlyBudget = SocialCostYearlyBudget; 

    params.years = years; 

    params.assets = assets; 

 

    params.sewer_costs = sewer_costs; 

    params.water_costs = water_costs; 

    params.Pavement_intervention_impact = Pavement_intervention_impact; 

 

    [Plans,SocialCost,InterventionCost,Performance,years_interventioncost,years_socialcost, 

gen_rank_solutions] = SYNC_NSGAII(params); 

    csvwrite('sync_gen_pareto_front.csv',gen_rank_solutions) 

    plot_gen_SYNC_pareto_front3(gen_rank_solutions,3,'AG\_SYNC\_LCC (CAD$)',5,'Network 

deterioration',2) 

 

    plot_gen_SYNC_pareto_front3(gen_rank_solutions,5,'Network deterioration',3,'AG\_SYNC\_LCC 

(CAD$)',2) 

    plot_gen_SYNC_pareto_front3(gen_rank_solutions,3,'AG\_SYNC\_LCC (CAD$)',4,'SC\_SYNC\_LCC 

(CAD$)',3) 

    plot_gen_SYNC_pareto_front3(gen_rank_solutions,5,'Network deterioration',4,'SC\_SYNC\_LCC 

(CAD$)',4) 

%     loop NGSA 
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D. 2 Codes for MUT optimization 

% ---------------------------------------------------------------------------------% 

% Function NSGAII performs a Non Sorting Genetic Algorithm-II                      % 

%                                                                                  % 

%                                                                                  % 

%   Input parameters:                                                              % 

%       - params:   Struct that contains the customized parameters.                % 

%         * params.Np:                    Number of chromosomes in the population. % 

%         * params.maxgen:                Maximum number of generations.           % 

%         * params.pc:                    Probability of crossover.                % 

%         * params.pm:                    Probability of mutation.                 % 

%         * params.NumSegments            Number of segments.    % 

%         * params.r              Discount rate.                           %  

%         * params.YearlyBudget           Agency cost budget    %  

%         * params.SocialCostYearlyBudget Social cost budget                       % 

%         * params.years                  Planning period           %   

%         * params.req                    Cost of MUT requirement/length           % 

%         * params.occupancy_costs        Occupancy costs                        %  

%         * params. Service_equip         Cost of replacement                      %                                          

% 

% 

% ---------------------------------------------------------------------------------% 

%   Author:  Kelechukwu Tersoo Genger                                              % 

%   Date:    09/03/2023                                                            % 

%   E-mail:  tkgenger@gmail.com                                                    % 

%                                                                                  % 

%   Log:                                                                           % 

%             1.1:  Fast Non Sorting Algorithm is now vectorized for im-           % 

%                   proving the performance (much less computation time)           % 

%                   (22/12/2017).                                                  % 

%           - 1.2:  The old mutation operator is substituted by the adding         % 

%                   of a , as suggested by                                         % 

%                   Alexander Hagg, which brings a better convergence              % 

%                   (25/11/2019).                                                  % 

% ---------------------------------------------------------------------------------% 

%   References:                                                                    % 

%    [1] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002)         % 

%        A fast and elitist multiobjective genetic algorithm: NSGA-II.             % 

%        IEEE transactions on evolutionary computation, 6(2), 182-197.             % 

% -------------------------------------------------------------------------------- % 
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function 

[construction_year,MUT_Plans,Total_MUT_SocialCost,Total_MUT_Agency_Cost,MUT_Performance,gen_rank_

solutions] = MUT_NSGAII(params) 

global Water_pipe_expected_life Sewer_pipe_expected_life WaterPipeCondition Water_pipe_age 

Sewer_pipe_age SewerCondition 

global tunnel_length sewer_length water_length construction_year Maint_Cost 

TunnelconstructionCost 

    Np      = params.Np;        % Number of chromosomes in the population 

    maxgen  = params.maxgen;    % Maximum number of generations 

    pc      = params.pc;        % Probability of crossover 

    pm      = params.pm;        % Probability of mutation 

    ms      = params.ms;        % Mutation strength 

    NumSegments = params.NumSegments; 

    r = params.r; 

    YearlyBudget = params.YearlyBudget; 

    SocialCostYearlyBudget = params.SocialCostYearlyBudget; 

    years = params.years; 

    assets = params.assets; 

    %CD = params.CD; 

    req = params.req; 

    Occupancy_costs = params.Occupancy_costs; 

    Service_equip = params.Service_equip; 

    uniqueID =  assets.ID_TRC_PI; 

    SegmentID = uniqueID(1:NumSegments)';                   %ID of segment 

        function ResizeData(Nrows) 

        Water_pipe_age = repmat(assets.waterPipe_age(1:NumSegments)',Nrows,1); 

        Sewer_pipe_age = repmat(assets.SewerAge(1:NumSegments)',Nrows,1); 

        SewerCondition = repmat(assets.sewer_initial_condition(1:NumSegments)',Nrows,1); 

        WaterPipeCondition = repmat(assets.water_initial_condition(1:NumSegments)',Nrows,1); 

        Sewer_pipe_expected_life = 

repmat(assets.Sewer_pipe_expected_life(1:NumSegments)',Nrows,1); 

        Water_pipe_expected_life = 

repmat(assets.Water_pipe_expected_life(1:NumSegments)',Nrows,1); 

        tunnel_length = repmat(assets.Segment_Length(1:NumSegments)',Nrows,1); 

        sewer_length = repmat(assets.Sewer_length(1:NumSegments)',Nrows,1); 

        water_length = repmat(assets.water_P_length(1:NumSegments)',Nrows,1); 

        construction_year = repmat(zeros(size(1:NumSegments)),Nrows,1); 

        Maint_Cost = repmat(zeros(size(1:NumSegments)),Nrows,1); 

        TunnelconstructionCost = repmat(zeros(size(1:NumSegments)),Nrows,1); 

 

        end  

    ResizeData(Np) 

 

    %Initialization 

    UseInit = false; 

    SewerInterventionInit = nan; 

    WaterInterventionInit = nan; 

initial Population P 
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    [Total_MUT_Agency_Cost, 

Total_MUT_SocialCost,MUT_Performance,MUT_Plans,MUT_Agency_BudgetUtilization,MUT_SocialBudgetUtili

zation,... 

    construction_year,SewerInterventionInit,WaterInterventionInit] = 

MUTAgency_And_SocialCost(SewerCondition,WaterPipeCondition,... 

    Water_pipe_age,Sewer_pipe_age,Sewer_pipe_expected_life,Water_pipe_expected_life,assets,... 

    r,YearlyBudget,years,SegmentID, SocialCostYearlyBudget,... 

    construction_year,SewerInterventionInit,WaterInterventionInit,UseInit, 

req,Occupancy_costs,Service_equip, tunnel_length, sewer_length,water_length); 

  UseInit = true; 

    gen   = 1; 

    genPFPlans = {}; 

    genPF_MUT_Agency_cost = []; 

    genPF_MUT_Social_cost = []; 

    genPF_MUT_Performance = []; 

    Pfit = [sum(Total_MUT_Agency_Cost,2),sum(Total_MUT_SocialCost,2),MUT_Performance]; 

    Prank = FastNonDominatedSorting_Vectorized(Pfit); 

 

    [ SewerInterventionInit,WaterInterventionInit,~] = 

selectParentByRank(SewerInterventionInit,WaterInterventionInit,Prank); 

 

    [ SewerInterventionInitQ,WaterInterventionInitQ,Total_MUT_Agency_CostQ, 

Total_MUT_SocialCostQ] = applyCrossoverAndMutation( 

SewerInterventionInit,WaterInterventionInit,Total_MUT_Agency_Cost, Total_MUT_SocialCost,pc,pm); 

Plotting and verbose 

    if(size(Pfit,2) == 2) 

        h_fig = figure(1); 

        h_par=scatter(Pfit(:,1),Pfit(:,2),20,'filled', 

'markerFaceAlpha',0.3,'MarkerFaceColor',[128 193 219]./255); hold on; 

        h_rep = plot(Pfit(:,1),Pfit(:,2),'ok'); hold on; 

        grid on; xlabel('Total MUT Agency Cost'); ylabel('Total MUT SocialCost'); 

        drawnow; 

        axis square; 

    end 

    if(size(Pfit,2) == 3) 

        h_fig = figure(1); 

        h_rep = plot3(Pfit(:,1),Pfit(:,2),Pfit(:,3),'ok'); hold on; 

        grid on; xlabel('Total MUT Agency Cost'); ylabel('Total MUT SocialCost'); 

zlabel('Performance'); 

        drawnow; 

        axis square; 

    end 

    display(['Generation #' num2str(gen) ' - First front size: ' num2str(sum(Prank==1))]); 

Main NSGA-II loop 
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    stopCondition = false; 

    gen_rank_solutions = nan; 

    function update_gen_pareto_front(gen,Prank,Pfit) 

        gen_rank_solution = [repmat(gen,size(Pfit,1),1),Prank,Pfit]; 

        if isnan(gen_rank_solutions) 

            gen_rank_solutions = gen_rank_solution; 

        else 

            gen_rank_solutions = [gen_rank_solutions;gen_rank_solution]; 

        end 

    end 

    function plot_data(Rfit,Rrank) 

          % Plotting and verbose 

       if(size(Rfit,2) == 2) 

            figure(h_fig); delete(h_rep); 

            h_par=scatter(Rfit(1:Np,1),Rfit(1:Np,2),20,'filled', 

'markerFaceAlpha',0.3,'MarkerFaceColor',[128 193 219]./255); hold on; 

            h_rep = plot(Rfit(1:Np,1),Rfit(1:Np,2),'ok'); hold on; 

            grid on; xlabel('Total MUT Agency Cost'); ylabel('Total MUT SocialCost'); 

            drawnow; 

            axis square; 

       end 

        current_pf = Rrank == 1; 

        RfitPF = Rfit(current_pf,:); 

        NumPF = size(RfitPF,1); 

        if(size(Rfit,2) == 3) 

            figure(h_fig); delete(h_rep); 

            h_rep = plot3(Rfit(1:Np,1),Rfit(1:Np,2),Rfit(1:Np,3),'ok'); hold on; 

                 try delete(h_pf); end 

                 h_pf = 

plot3(RfitPF(1:NumPF,1),RfitPF(1:NumPF,2),RfitPF(1:NumPF,3),'s','color','green','MarkerFaceColor'

,'g'); hold on; 

            grid on; xlabel('Total MUT Agency Cost'); ylabel('Total MUT 

SocialCost');zlabel('Performance'); 

            drawnow; 

            axis square; 

        end 

    end 

    while ~stopCondition 

Merge the parent and the children         R = [P; Q]; 

        SewerInterventionInitR = [SewerInterventionInit;SewerInterventionInitQ]; 

        WaterInterventionInitR = [WaterInterventionInit;WaterInterventionInitQ]; 

        Nrows = size(WaterInterventionInitR,1); 

        ResizeData(Nrows) 

        % Compute the new Pareto Fronts 

        [Total_MUT_Agency_Cost, 

Total_MUT_SocialCost,MUT_Performance,MUT_Plans,InterventionBudgetUtilization,SocialBudgetUtilizat

ion,... 
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            ~] = MUTAgency_And_SocialCost(SewerCondition,WaterPipeCondition,... 

            

Water_pipe_age,Sewer_pipe_age,Sewer_pipe_expected_life,Water_pipe_expected_life,assets,... 

            r,YearlyBudget,years,SegmentID, SocialCostYearlyBudget,... 

            construction_year,SewerInterventionInitR,WaterInterventionInitR,UseInit,... 

            req,Occupancy_costs,Service_equip, tunnel_length, sewer_length,water_length); 

 

        Rfit = [sum(Total_MUT_Agency_Cost,2),sum(Total_MUT_SocialCost,2),MUT_Performance]; 

        Rrank = FastNonDominatedSorting_Vectorized(Rfit); 

        plot_data(Rfit,Rrank) 

        %sort by rank 

        [Rrank,idx] = sort(Rrank,'ascend'); 

        Rfit = Rfit(idx,:); 

%         R = R(idx,:); 

        SewerInterventionInitR = SewerInterventionInitR(idx,:); 

        WaterInterventionInitR = WaterInterventionInitR(idx,:); 

        MUT_Plans = MUT_Plans(idx,:); 

        Total_MUT_SocialCost = Total_MUT_SocialCost(idx,:); 

        Total_MUT_Agency_Cost = Total_MUT_Agency_Cost(idx,:); 

        MUT_Performance = MUT_Performance(idx,:); 

 

        genPFps = MUT_Plans(Rrank==1,:); 

        PFMUT_agency_cost = Total_MUT_Agency_Cost(Rrank==1,:); 

        PFMUT_social_cost = Total_MUT_SocialCost(Rrank==1,:); 

        PFMUT_performance = MUT_Performance(Rrank==1,:); 

 

        genPFPlans = [genPFPlans;genPFps]; 

        genPF_MUT_Agency_cost = [genPF_MUT_Agency_cost;PFMUT_agency_cost]; 

        genPF_MUT_Social_cost = [genPF_MUT_Social_cost;PFMUT_social_cost]; 

        genPF_MUT_Performance = [genPF_MUT_Performance;PFMUT_performance]; 

 

        update_gen_pareto_front(gen,Rrank,Rfit) 

        if stopCondition, break; end 

 

        display(['Generation #' num2str(gen) ' - First front size: ' num2str(sum(Rrank==1))]); 

         %compute the crowding disance index 

        [Rcrowd,Rrank,~, SewerInterventionInitR,WaterInterventionInitR] ... 

            = crowdingDistances(Rrank,Rfit, SewerInterventionInitR,WaterInterventionInitR); 

Select Parent         P = selectParentByRankAndDistance(Rcrowd,Rrank,R); 

        [SewerInterventionInit,WaterInterventionInit] = ... 

            selectParentByRankAndDistance(Rcrowd,Rrank, 

SewerInterventionInitR,WaterInterventionInitR); 

Compute child         Q = applyCrossoverAndMutation(P,pc,pm,ms,var_max,var_min); 

        [SewerInterventionInitQ,WaterInterventionInitQ,Total_MUT_Agency_CostQ, 

Total_MUT_SocialCostQ] =... 
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applyCrossoverAndMutation(SewerInterventionInit,WaterInterventionInit,Total_MUT_Agency_Cost, 

Total_MUT_SocialCost,pc,pm);%,pm,ms,var_max,var_min); 

% 

Increment generation 

        gen = gen + 1; 

        if(gen>maxgen), stopCondition = true; end 

    end 

    AllPF = gen_rank_solutions(gen_rank_solutions(:,2)==1,3:end); 

    AllPFrank = FastNonDominatedSorting_Vectorized(AllPF); 

    [AllPFrank,idx] = sort(AllPFrank,'ascend'); 

    genPFPlans = genPFPlans(idx,:); 

    genPF_MUT_Agency_cost = genPF_MUT_Agency_cost(idx,:); 

    genPF_MUT_Social_cost = genPF_MUT_Social_cost(idx,:); 

    genPF_MUT_Performance = genPF_MUT_Performance(idx,:); 

    AllPF = AllPF(idx,:); 

 

    update_gen_pareto_front(gen,AllPFrank,AllPF); 

 

    MUT_Plans = genPFPlans(AllPFrank == 1,:); 

    Total_MUT_Agency_Cost = genPF_MUT_Agency_cost(AllPFrank == 1,:); 

    Total_MUT_SocialCost = genPF_MUT_Social_cost(AllPFrank == 1,:); 

    MUT_Performance = genPF_MUT_Performance(AllPFrank == 1,:); 

 

    display(['Generation #' num2str(gen) ' - First front size: ' num2str(sum(AllPFrank==1))]); 

end 

function [newSewerInterventionInit,newWaterInterventionInit] =... 

    selectParentByRankAndDistance(Rcrowd,Rrank, SewerInterventionInitR,WaterInterventionInitR) 

 

    % Initialization 

    N = length(Rcrowd)/2; 

    Npf = length(unique(Rrank)); 

 

    newSewerInterventionInit = zeros(N,size(SewerInterventionInitR,2)); 

    newWaterInterventionInit = zeros(N,size(WaterInterventionInitR,2)); 

 

    % Selecting the chromosomes 

    pf = 1; 

    numberOfSolutions = 0; 

    while pf <= Npf 

        % If there is enough space, select solutions based on rank 

        if numberOfSolutions + sum(Rrank == pf) <= N 

            newSewerInterventionInit(numberOfSolutions+1:numberOfSolutions+sum(Rrank == pf),:) = 

SewerInterventionInitR(Rrank == pf,:); 

            newWaterInterventionInit(numberOfSolutions+1:numberOfSolutions+sum(Rrank == pf),:) = 

WaterInterventionInitR(Rrank == pf,:); 

            numberOfSolutions = numberOfSolutions + sum(Rrank == pf); 

        % If there isn't enugh space, sort by crowding distances 
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        else 

            rest = N - numberOfSolutions; 

            lastPFSewer = SewerInterventionInitR(Rrank == pf,:); 

            lastPFWater = WaterInterventionInitR(Rrank == pf,:); 

 

            lastPFdist = Rcrowd(Rrank == pf); 

            [~,idx] = sort(lastPFdist,'descend'); 

            lastPFSewer = lastPFSewer(idx,:); 

            lastPFWater = lastPFWater(idx,:); 

 

 

%           newParent(numberOfSolutions+1:numberOfSolutions+rest,:) = lastPF(1:rest,:); 

            newSewerInterventionInit(numberOfSolutions+1:numberOfSolutions+rest,:) = 

lastPFSewer(1:rest,:); 

            newWaterInterventionInit(numberOfSolutions+1:numberOfSolutions+rest,:) = 

lastPFWater(1:rest,:); 

 

            numberOfSolutions = numberOfSolutions + rest; 

        end 

        pf = pf + 1; 

    end 

end 

function [sortCrowd,sortRank,sortFit,sortSewerInterventionInitR,sortWaterInterventionInitR] = ... 

    crowdingDistances(rank,fitness,SewerInterventionInitR,WaterInterventionInitR) 

 

    % Initialize 

 

    sortSewerInterventionInitR = []; 

    sortWaterInterventionInitR = []; 

 

%     sortPop = []; 

    sortFit = []; 

    sortRank = []; 

    sortCrowd = []; 

 

    Npf = length(unique(rank)); 

    for pf = 1:1:Npf 

        index = find(rank==pf); 

        temp_fit = fitness(index,:); 

        temp_rank = rank(index,:); 

 

%         temp_pop = pop(index,:); 

 

        temp_sewerpop= SewerInterventionInitR(index,:); 

        temp_waterpop= WaterInterventionInitR(index,:); 

 

        % Sort by first dimension 

 

        [temp_fit,sort_idx] = sortrows(temp_fit,1); 

        temp_rank = temp_rank(sort_idx); 

        sortFit = [sortFit; temp_fit]; 

        sortRank = [sortRank; temp_rank]; 
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%         sortPop = [sortPop; temp_pop(sort_idx,:)]; 

        sortSewerInterventionInitR = [sortSewerInterventionInitR; temp_sewerpop(sort_idx,:)]; 

        sortWaterInterventionInitR = [sortWaterInterventionInitR; temp_waterpop(sort_idx,:)]; 

 

        % Crowded distances 

        temp_crowd = zeros(size(temp_rank)); 

        for m = 1:1:size(fitness,2) 

            temp_max = max(temp_fit(:,m)); 

            temp_min = min(temp_fit(:,m)); 

            for l = 2:1:length(temp_crowd)-1 

                temp_crowd(l) = temp_crowd(l) + (abs(temp_fit(l-1,m)-

temp_fit(l+1,m)))./(temp_max-temp_min); 

            end 

        end 

        temp_crowd(1) = Inf; 

        temp_crowd(length(temp_crowd)) = Inf; 

        sortCrowd = [sortCrowd; temp_crowd]; 

    end 

end 

Function that calculates a child population by applying crossover and mutation 

function children = performCrossover(parent1,parent2,cut) 

    temp = parent1(cut+1:end); 

    child1 = [parent1(1:cut), parent2(cut+1:end)]; 

    child2 = [parent2(1:cut), temp]; 

    children = [child1;child2]; 

end 

function [SewerInterventionInitQ,WaterInterventionInitQ,Total_MUT_Agency_CostQ, 

Total_MUT_SocialCostQ] = 

applyCrossoverAndMutation(SewerInterventionInit,WaterInterventionInit,... 

    Total_MUT_Agency_Cost, Total_MUT_SocialCost,pc,pm) 

    % Params 

    N = size(SewerInterventionInit,1); 

    nVar = size(SewerInterventionInit,2); 

 

    % Child initialization 

%     Q = parent; 

    SewerInterventionInitQ =  SewerInterventionInit; 

    WaterInterventionInitQ = WaterInterventionInit; 

    Total_MUT_Agency_CostQ = Total_MUT_Agency_Cost; 

    Total_MUT_SocialCostQ = Total_MUT_SocialCost; 

    cross_idx = rand(N,1) < pc; 

    cross_idx = find(cross_idx); 

    crossed = zeros(N,1); 

    next_id = 1; 

    for c = 1:1:length(cross_idx) 

        if any(crossed(:) == c) 

            continue; 

        else 
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            crossed(next_id) = c; 

            next_id = next_id + 1; 

        end 

        selected = randi(N,1,1); 

        while selected == c || any(crossed(:) == selected) 

            selected = randi(N,1,1); 

            %display(selected) 

        end 

        crossed(next_id) = selected; 

        next_id = next_id + 1; 

 

        cut = randi(nVar,1,1); 

%         Q(c,:) = [parent(c,1:cut), parent(selected,cut+1:nVar)]; 

        SewerInterventionInitQ([c,selected],:) = performCrossover(SewerInterventionInit(c,:), 

SewerInterventionInit(selected,:),cut); 

        WaterInterventionInitQ([c,selected],:) = performCrossover(WaterInterventionInit(c,:), 

WaterInterventionInit(selected,:),cut); 

        Total_MUT_Agency_CostQ([c,selected],:) = performCrossover(Total_MUT_Agency_Cost(c,:), 

Total_MUT_Agency_Cost(selected,:),cut); 

        Total_MUT_SocialCostQ([c,selected],:) = performCrossover(Total_MUT_SocialCost(c,:), 

Total_MUT_SocialCost(selected,:),cut); 

    end 

     population_shape = size(SewerInterventionInitQ); 

    total_elements = population_shape(1) * population_shape(2); 

 

    mutatedSewerPop = reshape(randsample(0:2,total_elements,true),population_shape); 

    mutatedWaterPop = reshape(randsample(0:2,total_elements,true),population_shape); 

    mutatedWaterPop ((mutatedSewerPop==2) & (mutatedWaterPop ==1))=2;  %added this 

    mutatedSewerPop ((mutatedWaterPop==2) & (mutatedSewerPop ==1))=2; 

      % Mutation population with Gaussian distribution 

%     % Mutate the children with probability pm 

    mut_idx = rand(N,nVar) < pm; 

    SewerInterventionInitQ(mut_idx & SewerInterventionInitQ > 0) = mutatedSewerPop(mut_idx & 

SewerInterventionInitQ > 0); 

    WaterInterventionInitQ(mut_idx & WaterInterventionInitQ > 0) = mutatedWaterPop(mut_idx & 

WaterInterventionInitQ > 0); 

 

end 

Function that performs a binary tournament selection and extracts one parent from the initial population 

based on their ranks. 

function [SewerInterventionInit1,WaterInterventionInit1,P1rank]   = 

selectParentByRank(SewerInterventionInit,WaterInterventionInit, Prank) 

    % Take the couples 

    N = length(Prank); 

    left_idx  = randi(N,N,1); 

    right_idx = randi(N,N,1); 

    while sum(left_idx==right_idx)>0 

        right_idx(left_idx==right_idx) = randi(N,sum(left_idx==right_idx),1); 

    end 
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    % Make the tournament 

    winners = zeros(N,1); 

    winners(Prank(left_idx)<=Prank(right_idx)) = left_idx(Prank(left_idx)<=Prank(right_idx)); 

    winners(Prank(right_idx)<Prank(left_idx)) = right_idx(Prank(right_idx)<Prank(left_idx)); 

 

    % Select both populations 

%     P1 = P(winners,:); 

 

    SewerInterventionInit1 = SewerInterventionInit(winners,:); 

    WaterInterventionInit1 = WaterInterventionInit(winners,:); 

    P1rank = Prank(winners,:); 

end 

function [RANK] = FastNonDominatedSorting_Vectorized(fitness) 

    % Initialization 

    Np = size(fitness,1); 

    RANK = zeros(Np,1); 

    current_vector = [1:1:Np]'; 

    current_pf = 1; 

    all_perm = [repmat([1:1:Np]',Np',1), reshape(repmat([1:1:Np],Np,1),Np^2,1)]; 

    all_perm(all_perm(:,1)==all_perm(:,2),:) = []; 

 

    % Computing each Pareto Front 

    while ~isempty(current_vector) 

 

        % Check if there is only a single particle 

        if length(current_vector) == 1 

            RANK(current_vector) = current_pf; 

            break; 

        end 

 

        % Non-dominated particles 

            % Note: nchoosek has an exponential grow in computation time, so 

            % it's better to take all the combinations including repetitions using a 

            % loops (quasi-linear grow) or repmats (linear grow) 

            %all_perm = nchoosek(current_vector,2); 

            %all_perm = [all_perm; [all_perm(:,2) all_perm(:,1)]]; 

        d = dominates(fitness(all_perm(:,1),:),fitness(all_perm(:,2),:)); 

        dominated_particles = unique(all_perm(d==1,2)); 

 

        % Check if there is no room for more Pareto Fronts 

        if sum(~ismember(current_vector,dominated_particles)) == 0 

            break; 

        end 

 

        % Update ranks and current_vector 

        non_dom_idx = ~ismember(current_vector,dominated_particles); 

        RANK(current_vector(non_dom_idx)) = current_pf; 

        all_perm(ismember(all_perm(:,1),current_vector(non_dom_idx)),:) = []; 

        all_perm(ismember(all_perm(:,2),current_vector(non_dom_idx)),:) = []; 

        current_vector(non_dom_idx) = []; 

        current_pf = current_pf + 1; 
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    end 

end 

Function that returns true if x dominates y and false otherwise 

function d = dominates(x,y) 

    d = (all(x<=y,2) & any(x<y,2)); 

end 

This is the main function that calls the NSGAII algorithm  

%function MUT_optimization 

    clear; close all; 

    assets = readtable('Case_study_10_24Copy2.xlsx'); 

   NanData = ~(isnan(assets.ID_TRC_PI) | isnan(assets.waterPipe_age)| isnan(assets.Autos)| 

isnan(assets.Heavy_Trucks)... 

    | isnan(assets.Light_Trucks)| isnan(assets.Sewer_ID) | isnan(assets.Bus)| 

isnan(assets.PD_arrondi)| isnan(assets.Segment_Length)| isnan(assets.Pavement_Surface_area)... 

    | isnan(assets.Sewer_length)| isnan(assets.Sewer_diameterV)| isnan(assets.water_P_length) | 

isnan(assets.water_diameter)); 

 

    assets = assets(NanData,:);%read assets data from excel sheet 

    sewer_costs = readtable('Cost_replace_rehab_sewer_pipes.xlsx');                         %read 

sewer_costs data from excel sheet 

    water_costs = readtable('Cost_replace_rehab_water_pipes.xlsx');                         %read 

water_costs data from excel sheet 

    uniqueID =  assets.ID_TRC_PI;                                                           

%%read ID of segment from excel sheet 

 

    Np = 300;                                                                                  

    NumSegments = 1151; 

    SegmentID = uniqueID(1:NumSegments)'; 

    r =0.03;                                                                                      

    req = 2400;                                                           %Cost of MUT  

    Occupancy_costs = 130;                                                                         

    Service_equip = 500;                                                                          

    YearlyBudget =      140000000;           %budget 

    SocialCostYearlyBudget =8500000; 

    years = 100; 

    age_increment = 0; 

    UseInit = false; 

    params.Np = Np; 

    params.maxgen =10; 

    params.pc = 0.8; 

    params.pm = 0.03; 

    params.NumSegments = NumSegments; 

    params.r = r; 

    params.YearlyBudget = YearlyBudget; 

    params.SocialCostYearlyBudget = SocialCostYearlyBudget; 

    params.years = years; 

    params.assets = assets; 
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    %params.CD = CD; 

    params.req = req; 

    params.Occupancy_costs = Occupancy_costs; 

    params.Service_equip = Service_equip; 

    

[construction_year,MUT_Plans,Total_MUT_SocialCost,Total_MUT_Agency_Cost,Performance,gen_rank_solu

tions] = MUT_NSGAII(params); 

    csvwrite('mut_gen_pareto_front.csv',gen_rank_solutions) 

plot_gen_pareto_front3(gen_rank_solutions,5,'Network deterioration',3,'AG\_MUT\_LCC (CAD$)',2) 

plot_gen_pareto_front3(gen_rank_solutions,3,'AG\_MUT\_LCC (CAD$)',4,'SC\_MUT\_LCC (CAD$)',3) 

plot_gen_pareto_front3(gen_rank_solutions,5,'Network deterioration',4,'SC\_MUT\_LCC (CAD$)',4) 

This function generates the graphs  

function plot_gen_pareto_front3(gen_rank_solutions,XCol,Xlabel,YCol,Ylabel,Fig) 

    figure(Fig) 

 

    X = gen_rank_solutions(:,XCol); 

    Y = gen_rank_solutions(:,YCol); 

    gen = gen_rank_solutions(:,1); 

    Rank = gen_rank_solutions(:,2); 

    maxgen = max(gen); 

    Xold = X(gen < maxgen); 

    Yold = Y(gen < maxgen); 

    plot(Xold,Yold,'LineStyle', 'none', 'Marker', 'o', 

'MarkerFaceColor',[0.6,0.6,0.6],'MarkerEdgeColor','none') 

    hold on 

    Xfinal = X(gen == maxgen); 

    Yfinal = Y(gen == maxgen); 

    plot(Xfinal,Yfinal,'LineStyle', 'none', 'Marker', 'o', 

'MarkerFaceColor',[0,0,1],'MarkerEdgeColor','none') 

 

    PF = (gen == maxgen) & (Rank == 1); 

 

    plot(X(PF), Y(PF),'LineStyle', 'none', 'Marker', 'o', 

'MarkerFaceColor',[0,1,0],'MarkerEdgeColor','none') 

 

    xlabel(Xlabel) 

    ylabel(Ylabel) 

 

    hold off 

 

    figure(Fig+1); 

    

plot3(gen_rank_solutions(:,3),gen_rank_solutions(:,4),gen_rank_solutions(:,5),'LineStyle','none',

'Marker','o','MarkerEdgeColor',[0.8,0.8,0.8]);hold on 

    plot3(gen_rank_solutions(gen == maxgen,3),gen_rank_solutions(gen == 

maxgen,4),gen_rank_solutions(gen == 

maxgen,5),'LineStyle','none','Marker','o','MarkerEdgeColor',[0,0,1],'MarkerFaceColor',[0,0,1]); 

    

plot3(gen_rank_solutions(PF,3),gen_rank_solutions(PF,4),gen_rank_solutions(PF,5),'LineStyle','non

e','Marker','o','MarkerEdgeColor',[0,1,0],'MarkerFaceColor',[0,1,0]); 
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    grid on; xlabel('AG\_MUT\_LCC (CAD$)'); ylabel('SC\_MUT\_LCC (CAD$)'); zlabel('Network 

deterioration'); 

    drawnow; 

    axis square; 

    hold off 

end 
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Appendix E. Statistical Test Interpretation 

The F-Test Two-sample for variances is used for the two populations Yi and 𝑌�̂�(estimated). It is assumed 

that the costs are normally distributed data. The hypotheses are:  

• H0: σ1 = σ2, variances are likely equal  

• H1: σ1 ≠ σ2, variances are likely different 

If F ≥ F0.05 (which is the critical value of F for the 0.05 significance level) H0 is rejected and if F < F0.05, 

H0 is accepted. When H0 is accepted, it means that on average the costs are spread out equally from their 

respective means. Now, to compare the two means (μ1, μ2) when the variances are known to be likely 

either equal or different, the Two sample T-test is used, assuming either equal (σ1 = σ2) or unequal 

variance (σ1 ≠ σ2). The hypotheses are: 

• H0: μ1 = μ2, means are likely equal 

• H1: μ1 ≠ μ2, means are likely different 

If the p-value ≥ 0.05 (i.e. 5% chance there is no real difference between the two populations), H0 

is accepted, and if the p-value < 0.05 H0 is rejected. When H0 is accepted, it means that on average, 

the two means are reliably the same. Therefore, we conclude that the regression function is 

validated. The following section presents the results of the regression models for the three social 

cost indicators. 

 

 


