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Abstract

Attack detection in PV-integrated power distribution systems using Machine Learning and

Deep Learning methods

Masoud Ahmadzadeh

This master’s thesis presents a comprehensive study on false data injection (FDI) attacks in pho-

tovoltaic (PV)-integrated power distribution systems (PDSs) and proposes two data-driven detection

frameworks to identify such attacks against voltage regulation in both steady-state and transient

modes. With the deployment of information and communication technologies (ICTs) for voltage

regulation, PDSs are exposed to cyber threats, including FDI attacks.

The first proposed framework employs a supervised machine learning (ML) approach based on

a support vector machine (SVM) to detect FDI attacks during the transmission of data from the cen-

tralized controller to PVs in a transient state. The framework collects a dataset of different operating

points, such as loading conditions, to train the SVM. The performance of the trained framework for

attack detection is compared with other supervised and unsupervised ML-based techniques. The

results demonstrate the superior performance of the proposed framework in detecting FDI attacks

against modified IEEE 33-bus PDS.

The second proposed framework is a convolutional neural network (CNN) approach to detect

FDI attacks against voltage regulation in steady-state. The framework creates a comprehensive and

realistic dataset that covers all normal conditions and unpredictable changes of a PDS during two

years, including features such as voltage measurements, season, weekdays/weekends, load con-

ditions, and PV generation power. The CNN is trained to distinguish normal grid changes from

FDI attacks. The performance of the trained framework has been compared with other supervised

ML-based and deep-learning techniques for FDI attacks against a modified IEEE 33-bus and 141-

bus PDS to show the scalability of the proposed method, and the results demonstrate the superior
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performance of the proposed framework in detecting FDI attacks.

Overall, this study aims to enhance the cyber-security of PV-integrated PDSs by proposing two

effective and reliable detection frameworks against FDI attacks in both steady-state and transient

modes. By utilizing ML and deep learning techniques, the proposed frameworks are capable of

accurately detecting FDI attacks, thereby improving the overall resilience of PDSs against cyber

threats.
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Chapter 1

Introduction

The power grid is a highly complex and essential system that facilitates the delivery of electric-

ity to end users [54]. One of its most significant roles is to maintain a stable and reliable power

supply by regulating the balance between power generation and demand. The power grid is typ-

ically divided into three main sections, namely, generation, transmission, and distribution [48].

Generation refers to the process of producing electricity at power plants through various methods,

such as burning fossil fuels [19], nuclear reactions [65], and renewable sources like solar, wind,

hydro, and geothermal energy [33]. The electricity generated by power plants is in the form of

high-voltage alternating current (AC) which is then transmitted to distant locations via power lines

[66]. Transmission involves the movement of electricity over long distances from the power plants

to substations and local distribution centers. To minimize losses during transmission, high-voltage

power lines are used, typically ranging from 69,000 to 765,000 volts, which are stepped down at

substations to lower voltages before distribution [63]. Finally, distribution is the last step in deliv-

ering electricity to customers. It refers to the process of delivering electricity to homes, businesses,

and other end-users via local distribution networks [73]. This is done through transformers which

step down the voltage to levels appropriate for use in homes and businesses. The distribution net-

work also includes devices such as circuit breakers and fuses to protect the grid and consumers from

faults, such as power outages and electrical fires [38].

The incorporation of renewable energy sources, particularly solar and wind, into the grid has
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been a crucial strategy in enhancing the efficiency of power distribution systems (PDSs). Photo-

voltaic (PV) systems, in particular, have been widely recognized for their efficacy, low maintenance

requirements, and practicality as a source of renewable energy [60]. PV systems have the potential

to bring a number of benefits to voltage regulation systems in PDS. One benefit of PV systems is that

they can help reduce line losses, which occur when electricity is transmitted over long distances. By

generating power closer to where it is being consumed, PV systems can reduce the need for long-

distance transmission, which can be expensive and inefficient [24]. These systems can also be used

to regulate the grid parameters, such as voltage. The fluctuating nature of power consumption in

distribution systems often causes voltage disturbances, which could result in equipment failure and

system blackouts [12]; thus, PV systems can help regulate voltage levels within acceptable ranges

by injecting or absorbing reactive power as needed to regulate the voltage [35]. Also, a key benefit

of PV systems for voltage regulation is that they can respond quickly to changes in power output,

helping the operation of the grid in real time. In contrast, traditional voltage regulation systems,

such as tap-changing transformers, tend to be slower and less responsive to changes in power output

[79].

Information and Communication Technologies (ICTs) have been suggested as a solution to im-

prove the efficiency and effectiveness of voltage regulation and data transfer between the central

controller and PV systems [6]. The use of ICTs enables the collection of real-time data from the

PV system and helps to make informed decisions for the optimal operation of the PV system. By

utilizing ICTs, the central controller can have access to precise data, which in turn, enables accurate

monitoring and management of the PV system. Additionally, ICTs can facilitate communication

and control between the central controller and PV systems, allowing for efficient and effective man-

agement of the entire PDS [62]. However, these same technologies, that have brought these benefits,

also have introduced new vulnerabilities to the power grid, making it susceptible to various cyber-

attacks such as False Data Injection (FDI) attacks [5]. FDI attacks are a type of cyber attack that

has become a significant threat to the security and reliability of PDSs. Adversaries carry out these

attacks by manipulating the measurements of a power system to create unfavorable conditions, such

as unacceptable voltage levels [15]. PV systems, which are integrated with PDS, are a common

target of FDI attacks, as adversaries seek to create unacceptable voltage levels at various buses and
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trigger the unnecessary operation of protection systems [29]. These attacks can be detrimental to the

smooth functioning of PDS, leading to costly consequences such as damage to equipment, power

outages, regulatory penalties, etc. [75].

FDI attacks are relatively simple to execute but can cause severe disruptions in the real-time

control systems used in power grids, making them challenging to detect and mitigate in a timely

manner [41, 70, 23]. As such, it is crucial to implement robust and adaptive security measures when

integrating control systems in the industrial IoT to prevent FDI attacks in PV-integrated power

grids [22]. This requires a comprehensive security framework that can monitor and detect any

anomalous behavior, quickly identify and respond to security threats, and mitigate their impact on

the PDS. Such measures can include the use of encryption [3], multi-factor authentication [69], and

intrusion detection systems [44] to protect the power grid’s critical infrastructure and data against

malicious cyber-attacks. Furthermore, to ensure the sustainability and resilience of PV-integrated

power grids, it is essential to continually monitor, evaluate, and enhance their cybersecurity posture

by implementing up-to-date security protocols, threat intelligence, and response strategies. Thus,

it is necessary to develop detection mechanisms that can efficiently and effectively identify these

attacks.

In this study, we focus on identifying FDI attacks in a PV-integrated PDS voltage control system.

The voltage readings and loading data are sent to a centralized controller to manage the voltage at

a desired location, such as the point of common coupling (PCC). The controller then calculates the

control signals that are sent back to the PVs, where those signals are added to the local control

loops of the PV converters. When an attacker manipulates the measurements in this scheme, an FDI

attack is launched. This attack causes an inappropriate voltage profile and can trip the relays in the

protection systems, leading to potential system failure.

To tackle this problem, we propose two different frameworks for detecting FDI attacks in tran-

sient and steady-state conditions.

• In the transient condition, we develop a machine learning (ML) framework based on support

vector machines (SVM). A dataset of different operational points, such as loading conditions

and voltage measurements, is obtained to train this supervised framework. The modified IEEE

33-bus PDS is used to show the attack implications and evaluate the effectiveness of the tuned

3



SVM detection framework. Moreover, the comparison with several existing supervised and

unsupervised ML-based approaches demonstrated the better performance of the developed

framework.

• In the steady-state condition, we propose a deep learning-based detection strategy that uti-

lizes a convolutional neural network (CNN). We develop the framework using a dataset that

includes various features, such as voltage measurements, loading conditions, time-based fac-

tors (e.g., season and weekdays/weekends), and PV power generation. The framework is eval-

uated using a modified IEEE 33-bus PDS and tested on the IEEE 141-bus PDS to demonstrate

scalability. The proposed method is compared to existing supervised and deep learning-based

approaches and is shown to perform superiorly. Furthermore, in order to improve the cred-

ibility and practicality of the proposed approach in actual real-world situations, the research

exhibits the ability of the method to withstand and function effectively in the presence of

noise.

Therefore, our contributions in this study are two-fold: first, we develop an SVM-based detection

framework for transient conditions, and second, we propose a novel deep learning-based framework

utilizing CNN for FDI attack detection in steady-state conditions.

The thesis is structured into eight chapters, each addressing a specific aspect of the research.

The second chapter reviews the related works in the field of FDI attacks and detection techniques.

In the third chapter, the background of PDSs and PVs is explained, including their functioning and

control methods. The fourth chapter presents the system model used in the study, including the

PDS architecture, voltage regulation system, and power flow analysis system. The fifth chapter

describes the threat model and different types of FDI attacks that can affect the PDS. In the sixth

chapter, two different detection models, namely SVM and CNN, are proposed to detect FDI attacks

in the transient and steady state, respectively. The seventh chapter presents the simulations and

results obtained from the proposed detection models on the modified IEEE 33-bus PDS and 141-

bus PDS. Finally, the eighth chapter concludes the thesis by summarizing the findings, discussing

the limitations and future directions, and suggesting practical recommendations for power system

operators to enhance the security of PV-integrated PDSs against FDI attacks.
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Chapter 2

Literature Review

Generally speaking, cyber-attack detection algorithms can be broadly categorized into two cat-

egories: model-based and data-driven techniques [27, 75].

In model-based techniques, a mathematical model is developed based on the knowledge of the

system being monitored. The model is used to simulate the behavior of the system under normal

operating conditions, and any deviation from the expected behavior is considered an anomaly [49].

Data-driven techniques, on the other hand, rely on ML algorithms to detect anomalies in the data

generated by the system being monitored. In data-driven techniques, the algorithms are trained on

historical data to identify patterns and regularities in the data. Once the model is trained, it is used

to detect anomalies in real-time data streams. Data-driven techniques are typically more flexible

and can adapt to changes in the system being monitored [50].

2.1 Model-based Techniques

Model-based methods employ mathematical models to detect cyber-attacks, such as the state

estimation approach presented in the literature [45, 80, 43, 30] for the detection of FDI attacks in

distribution systems.

Reference [42] highlighted the vulnerability of real-time topology to cyber-attacks, and em-

phasized the need for effective protection and detection strategies. Also, [7] presents an anomaly

detection approach to identify abnormal power flow patterns in the network caused by accidental
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or intentional changes to the database. The method aims to identify any deviations from the nor-

mal power flow behavior and alerts system operators to potential issues. Moreover, [57] introduces

an algorithm that can identify and describe cyberattacks on network parameter data in the context

of optimal power flow problems. In addition, [67] presents a framework for ensuring that power

systems are resilient to cyberattacks by proposing a model-based anomaly detection and attack mit-

igation algorithm for Automatic Generation Control (AGC). The paper highlights the impact of

data integrity attacks on power system frequency and electricity market operation, and evaluates

the detection capability of the proposed algorithm through simulation studies. The manipulation of

data collected by smart meters and the corresponding methods for identifying such manipulation

have been extensively examined in previous literature, as evidenced by studies such as [10, 32]. In

previous studies, load redistribution attacks and the algorithms used to detect them were discussed

and outlined in detail, as presented in references [76, 36, 13]. The article [10] suggests a two-tier

attack detection system that operates in real-time and can recognize organized data falsification in

decentralized microgrids, even under complex threat models. In [32], the current status of Advanced

Metering Infrastructure (AMI) energy theft detection techniques are summarized and divided into

three categories: classification-based, state estimation-based, and game theory-based methods, and

they are extensively compared and discussed. The study [53] investigates that how adversaries can

deceive the electrical grid by manipulating AMI systems. Moreover, reference [55] presents a detec-

tion mechanism based on a model that uses Extended Kalman filter interval state estimation (ISE) to

eliminate inaccurate measurements resulting from meter malfunctions or external attacks in power

systems. In [58], a decentralized and fast method for detecting cyber attacks in power grids is pro-

posed. This method employs a maximum likelihood estimation approach, taking advantage of the

near chordal sparsity of power grids. Meanwhile, [46] aims to propose a model-based approach for

detecting FDI attacks based on median filtering, which uses information from neighboring nodes.

Furthermore, [77] proposes a short-term state forecasting-based method, considering nodal state

temporal correlations, for detecting FDIAs in smart grids. [8] provides a comparative analysis of

previous research on FDI attacks in smart power grids. The study proposes novel attack and coun-

termeasure classifications based on factors such as the targeted subsystem, and the physical and
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economic impact of the attack. [68] evaluates the feasibility of a malicious attack on the measure-

ments utilized by the integrated volt-var control (VVC) mechanism in smart PDS. In the study by

Ibrahim et al. [28], a model-based approach is proposed for detecting cyberattacks on sensors in

grid-tied PV systems. The authors highlight various cyber vulnerabilities in the control scheme of

these systems and propose a defense mechanism that involves adding a watermarking signal to the

control inputs to improve security. Additionally, Isozaki et al. [30] investigates the effects of cyber

attacks on voltage regulation within PDS that incorporate a significant number of PV systems. The

paper proposes a detection algorithm that can identify false sensor measurements, but it is limited

in scenarios where a large number of attacks are executed, which can cause voltage violations at

specific nodes. Despite being proficient, model-based techniques have certain drawbacks, such as

the need for accurate system parameter knowledge, which may not be accessible to distribution

grid operators, and limited operational scope, resulting in suboptimal performance when the system

is operating at different points [59, 56]. Additionally, FDI attacks can deceive model-based bad

data detection systems by injecting false information into measurements without detection, which

affects the state estimation process. To address this issue, the use of data-driven machine learning

techniques for identifying malicious sensor data manipulation has gained popularity due to their

speed and accuracy. These techniques have been proven to be effective in detecting such attacks,

even when a significant number of sensors are compromised [64].

2.2 Data-driven Techniques

Recent progress in data processing technology has sparked increased attention towards data-

driven methods for detecting cyber attacks in smart grid systems [39]. To address the issue of cyber-

attacks, several studies have investigated the use of machine learning (ML) methods in the detection

of FDI attacks in smart grids[17, 71, 25, 9, 64]. For instance, [61, 25, 9, 64] have explored dif-

ferent ML algorithms, including real-time detection, supervised, semi-supervised, ensemble-based,

and online learning algorithms, for FDI attack detection in smart grids. In addition, in reference

[74], the authors evaluated the effectiveness of three machine learning (ML)-based modelsÐSVM,

K-Nearest Neighbor (kNN), and Extended Nearest Neighbor (ENN)Ðin detecting cyber attacks in
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power systems. Meanwhile, reference [31] proposed a time-series algorithm based on a neural net-

work, specifically a discrete-time nonlinear autoregressive neural network with exogenous inputs

(NARX), for detecting and mitigating FDI attacks on advanced metering infrastructure. This al-

gorithm is designed to identify FDI attacks and mitigate them accordingly. Additionally, reference

[40] suggested a deep learning-based framework, called Multi-layer Long Short-Term Memory Net-

work (MLSTM), for detecting cyber attacks in active PDS using voltage and current measurements.

Also, authors in [39] presented a high-dimensional data-driven approach called HCADI to identify

and detect cyber attacks in power systems. Additionally, according to [11], a two-stage method that

combines ML techniques, namely Random Forest (RF) and Logistic Regression (LR), is proposed

to identify and locate cyber attacks on voltage control systems in distributed generator systems. The

first stage uses RF for predicting the current-voltage levels using past voltage measurements and

weather data, while the second stage uses LR for comparing the predicted voltage levels to actual

measurements to identify and locate the attack in real-time. However, due to the unpredictability of

weather conditions and other uncertainties, the accuracy of the voltage level prediction is compro-

mised, which can lead to inaccuracies when comparing predicted and actual measurements.

2.3 Research Gap

Data-driven techniques have emerged as a promising approach to address the challenge of de-

tecting cyber attacks in smart grid systems. One of the advantages of data-driven techniques is their

ability to effectively identify the presence of malicious data injection by analyzing the behavior and

patterns of the grid data. This is because these techniques rely on large amounts of historical data to

detect changes in the normal patterns of the grid data. By using machine learning algorithms, these

techniques can also adapt to changes in the system and improve their accuracy over time. Compared

to model-based methods that require accurate system parameter knowledge and have a restricted op-

erational scope, data-driven techniques are not limited by these constraints. Model-based methods

rely on precise knowledge of the system parameters, which can be difficult to obtain in practice.

Additionally, model-based methods often have a limited operational scope, meaning that they may
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not be able to detect cyber attacks that occur outside of their scope. In contrast, data-driven tech-

niques can use a wide range of data sources and do not require precise knowledge of the system

parameters. For example, these techniques can use data from smart meters, weather sensors, and

other sources to detect changes in the grid data. By combining data from multiple sources, these

techniques can provide a more complete view of the system and improve their ability to detect cyber

attacks.

The data-driven techniques mentioned earlier have not been utilized to detect cyber attacks

aimed at the voltage regulation system of PV-integrated PDS in the presence of uncertainties such

as load variations and weather conditions in both steady-state and transient conditions. The nature

of these uncertainties and the complexity of PV-integrated PDSs makes it challenging to utilize ML

approaches for detecting FDI attacks, and this has not been extensively researched in the literature.

In other words, the use of data-driven techniques in detecting cyber attacks on voltage regulation

systems in PV-integrated PDS has not been widely studied due to the inherent complexity of these

systems and the presence of uncertainties such as load variations and weather conditions that make

it difficult to use machine learning approaches for FDI attack detection.
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Chapter 3

System model

This chapter provides an in-depth explanation of the under study system in this project. In

Section 3.1, the background of the power flow analysis used to evaluate the system is discussed. The

focus is on understanding the principles and methods of power flow analysis, which will provide a

solid foundation for subsequent sections. In Section 3.2, the distribution systems modeled in this

project are explained. This section discusses the different aspects of the distribution systems, such

as their design and operation, and provides a detailed overview of the modeling process. Section 3.3

of this chapter is dedicated to explaining the PV system implemented in this project. The section

covers various aspects of the PV system, including its components, characteristics, and operation.

Additionally, the section also provides a detailed explanation of the modeling and simulation of the

PV system. Finally, in Section 3.4, the voltage regulation system is explained. This section provides

a detailed overview of the voltage regulation system implemented in the study, including its design,

operation, and control.

3.1 Power Flow

In this section, we briefly discuss the required background for the readers to understand the

power flow mechanisms of the power system. Understanding this mechanism is necessary for ob-

taining the operating point in transient operation and the system parameters in the steady state.

Power flow analysis is a simulation method employed to model the electric power flow within a
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power system network. The key goal of power flow analysis is to determine the steady-state behav-

ior of the system, including power flow and voltages at each bus, under normal operating conditions

or various contingency situations. To solve power flow problems, the Newton-Raphson method

is a numerical approach commonly employed for solving non-linear algebraic equations based on

the Newton-Raphson iteration algorithm that is employed to calculate the voltage magnitude and

phase angles at each bus in a power system. The method is widely used due to its ability to con-

verge rapidly and accurately to the solution, providing highly accurate results with a relatively low

computational expense [52].

The behavior of electric power within a power system network can be modeled using power flow

analysis. The power flow equations are a set of non-linear equations that describe the relationship

between the voltage magnitude, phase angle, and real and reactive power injections at each bus

in a power system. The aim of power flow analysis is to determine the voltage magnitude and

phase angle at each bus that satisfies these equations. To begin the Newton-Raphson method, an

initial estimation of the voltage magnitude and phase angles at each bus is made. This estimation

is then utilized to calculate the real and reactive power injections at each bus using the power flow

equations. The deviation between the computed and the actual power injections is then used to

build the Jacobian matrix, which is then used to update the voltage magnitude and phase angles in

the next iterations. This procedure is repeated until the difference between the computed and the

actual power injections is within an acceptable tolerance level.

In a network containing N nodes, a linear equation can be used to express the relationship

between the current of a particular node, which is denoted by Ik, and the voltage of that node with

respect to the reference voltage, which is denoted by Ek. The admittance matrix of the network has

an element given by Ykm, and the use of a bar notation indicates that the values are complex.

Īk =

N
∑

m=1

ȲkmĒkm (1)

The mathematical expression for the complex power at node k is represented by the following

equation:

(Pk + jQk) = Ēk

N
∑

m=1

Ȳkm ∗ Ēm (2)
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In order to solve the power flow problem, we must determine the real and reactive power (Pk and

Qk) entering node k, which involves using the imaginary unit j =
√
−1 and a complex conjugate.

The power flow problem consists of a set of (N − 1) nonlinear equations from equation (1), which

must be solved iteratively. Newton’s method can be utilized if the Jacobian matrix can be calculated

accurately.

The iterative algorithm for solving an unadjusted power flow problem using Newton’s method

involves five stages. The first stage involves obtaining an initial approximation for the voltage

solution by setting the slack node voltage and assigning magnitude values to the given voltages. A

per-unit system is used, and the angles are initialized as the slack node angle. It is assumed that the

initial approximation of the voltages are 1 p.u. and angles are 0 rad.

In the second step, one iteration of the successive displacement method is performed to ensure

a good starting point without over-correction. In the third step, the residuals are augmented with the

Jacobian matrix.

In the fourth stage, the correction for the node voltages is determined by applying Gaussian

elimination and back-substitution methods to solve the Jacobian matrix, which becomes an upper

triangular matrix. The residuals are organized into a polar column that contains corrections in angle

and magnitude. These calculated correction values are then added to the node voltages.

The last stage involves evaluating the residuals ∆Pk and ∆Qk. If they are found to be small

enough, then the problem is considered solved. Otherwise, the algorithm is repeated from stage

three.

To sum up, the iterative algorithm based on Newton’s method is a structured approach for solv-

ing the unadjusted power flow problem. It involves a sequence of steps that include successive dis-

placement, formation of the Jacobian matrix, computation of voltage corrections, and assessment of

residuals to approach the voltage solution iteratively.

The iterative algorithm of the Newton-Raphson method is explained in Algorithm 1.
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Algorithm 1: Power Flow Iteration Algorithm

Input: Power flow equations, tolerance ϵ

Output: Voltage magnitude and phase angle at each bus

1 Initialize voltage magnitude and phase angle at each bus as V0 and θ0;

2 Set iteration counter k = 0;

3 Calculate real and reactive power injections at each bus using power flow equations;

4 Compute mismatch vector F(Vk, θk) and Jacobian matrix J(Vk, θk);

5 Solve for voltage correction ∆Vk using J(Vk, θk)∆Vk = −F(Vk, θk);

6 Update voltage magnitude and phase angle at each bus as Vk+1 = Vk +∆Vk and

θk+1 = θk +∆θk;

7 Calculate real and reactive power injections at each bus using updated voltage magnitude

and phase angle;

8 Compute new mismatch vector F(Vk+1, θk+1) and check if ||F(Vk+1, θk+1)|| < ϵ;

9 while ||F(Vk+1, θk+1)|| ≥ ϵ do

10 Increment the iteration counter and repeat from step 4;

11 end

Note that this algorithm assumes the power flow equations are already formulated and available

for use. Also, ∆θk is the angle correction vector, which can be computed from ∆Vk and J(Vk, θk),

but is omitted from the algorithm for simplicity.

3.2 PDS architecture

In this study, a modified version of the IEEE 33-bus and 141-bus PDS as a test system is used,

which includes the addition of PV panels and a voltage regulation system. The IEEE 33-bus test

system in the transient condition is simulated and a power flow analysis of both the IEEE 33-bus and

141-bus systems in the steady-state condition is performed. By using this methodology, the power

flow characteristics of the system and regulation of the voltage with the help of the integrated PV

panels is elaborated. This approach can help to identify the effect of uncertainties such as weather

conditions and load variations on the voltage regulation system of a PV-integrated PDS, and can
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Figure 3.1: IEEE 33-bus PDS architecture

provide valuable insights into using ML approaches for FDI attack detection in such systems.

This study focuses on PDS which acts as the last stage in the delivery of electricity to consumers

by transferring energy from transmission lines to various end-users. The main objective of this

system is to maintain acceptable operating voltages while supplying energy to consumers. For

this study, the IEEE 33-bus and 141-bus system were chosen as the test system. Modifications

were made on IEEE 33-bus by adding PV panels at buses 7, 17, and 30 [47]. These PV panels were

incorporated into the system to generate electricity from solar energy and provide sustainable energy

solutions to consumers. The addition of PV panels can affect the voltage regulation system of the

PDS, which is why this study focuses on detecting cyber attacks targeting the voltage regulation

system of PV-integrated PDSs. The IEEE 33-bus system illustrated in Fig. 3.1 comprises one high-

voltage feeder, 33 buses, and three PV panels. Its nominal operating voltage is 12.66 kV, with

maximum active and reactive powers of 3.715 MW and 2.3 MVAR, respectively. There are 37

branches in the system, and it experiences losses of 0.09 MW and 0.06 MVAr of reactive power. The

system’s minimum voltage magnitude is 0.91 p.u. at bus 18, and its maximum voltage magnitude

is 1.000 p.u. at bus 1. The minimum voltage angle is -0.29 degrees at bus 18, and the maximum

voltage angle is 0.34 degrees at bus 30. For more details on this network, please refer to [16, 51].

In addition, the 141-bus PDS referred to here is an electrical power system that consists of 141

buses, 140 branches, 1 connection to the transmission grid, and 83 loads. The purpose of this system

is to distribute electrical power to consumers, and it is depicted in Fig. 3.2. To study the impact of

PV panels on this system, 4 PV panels were added to buses 52, 77, 106, and 111. According to [21],
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Figure 3.2: 141-bus PDS architecture

the total capacity of the system is 100 MW, which is provided by the connection to the transmission

system. The total load demand in the system is 8.2 MW and 5.1 MVAr of reactive power. In this

benchmark, all loads within the PDS are often assumed to be fixed. However, the present study

modifies the loads to be variable, meaning they can fluctuate according to the system’s needs and

the details of the load variation are explained in Subsections 3.4.1 and 3.4.2 for transient and steady-

state conditions respectively. The voltage magnitude in the system with fixed loads ranges from 0.89

per unit (p.u.) at bus 52, 87 to 1 p.u. at bus 1, while the voltage angle ranges from -0.19 degrees at

bus 141 to 0.00 degrees at bus 1.
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3.3 PV System

A PV cell is a semiconductor device that converts sunlight into electrical energy. When sunlight

hits the PV cell, it excites the electrons in the semiconductor material, causing them to flow and

generate a direct current (DC) which means that the current flows in only one direction. The amount

of power generated by the PV system depends on various factors such as the amount of sunlight

falling on the panels, the temperature of the panels, the angle at which the panels are installed, and

so on. The PV module’s efficiency decreases as the temperature increases, resulting in reduced

power output. The decrease in efficiency is due to the increase in the number of free electrons and

the decreased mobility of these electrons in the semiconductor material, resulting in lower voltage

output.

According to the architecture of a grid-tied PV system, depicted in Fig. 3.3, to generate power,

solar panels produce DC electricity which varies based on the intensity of sunlight and temperature.

In order to maintain efficiency, two DC-DC converters are required to regulate and increase the DC

voltage to a specific level using Maximum Power Point Tracking (MPPT). The DC voltage output

must then be converted into alternating current (AC) to be utilized in the PDS, and inverters play a

crucial role in this conversion process. This architecture is simulated in Matlab/Simulink as depicted

in Fig.3.4.

MPPT technology is used in PVs. MPPT works by continuously tracking the maximum power

point (MPP) of the solar panel, which is the point at which the panel produces the maximum possible

power for a given level of sunlight and temperature. The MPP is typically found at a specific voltage

and current combination that maximizes the power output of the panel. The MPPT controller uses an

algorithm to constantly adjust the load on the panel to keep it operating at the MPP [18]. The MPPT

controller accomplishes this by measuring the voltage and current of the panel and then computing

the power output. This process is repeated continuously, ensuring that the solar panel operates at

the MPP under all conditions. Figure. 3.5 illustrates the MPPT curve for a constant temperature,

showing how the maximum power output of the PV is affected by adjusting voltage and current.

For example, at a temperature of 25 C◦, the maximum power generated by the PV is 100 kW.

The MPPT algorithm used in this project is Perturb & Observe algorithm. This algorithm is
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Figure 3.4: Grid-tied PV system model simulated in MATLAB/Simulink
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Figure 3.5: Current-Voltage and Power-Voltage curve at constant temperatures

a simple and widely used MPPT algorithm that works by perturbing (i.e., changing) the operating

voltage of the solar panel slightly and observing the effect on the output power; thus, controlling

the operating point of the system. If the output power increases, the voltage is perturbed further in

the same direction. If the output power decreases, the voltage is perturbed in the opposite direction.

This process is repeated until the MPP is reached, and the operating voltage is then fixed at this

value. The Perturb & Observe algorithm can be enhanced by introducing a control loop that adjusts

the perturbation step size according to the rate of change of the power output, so that the system can

converge to the MPP quickly and accurately [14, 20]. The MPPT control Perturb & Observe algo-

rithm is widely used in PV systems because of its simplicity, effectiveness, and low cost. However,

it has some limitations, such as susceptibility to oscillations around the MPP in rapidly changing

conditions and reduced efficiency at low light levels. Modeled DC to DC converter used in this

project is depicted in Fig. 3.6. MPPT Control block is implemented Perturb & Observe algorithm,

and the Boost block is boost converter. A boost converter is a type of DC to DC converter that

steps up the input voltage to a higher output voltage. Additionally, there is an LC filter in the figure

because The output of a PV panel is usually a DC voltage that contains some ripple due to factors

such as the fluctuation of solar irradiance, the temperature variation of the panel, and the switching

of power electronics. This ripple can cause unwanted effects on the power grid and the loads con-

nected to it, such as electromagnetic interference and voltage/current distortion. By using an LC

filter, which consists of an inductor (L) and a capacitor (C) connected in series, the ripple voltage

18



Figure 3.6: DC to DC block

and current can be smoothed out by selectively filtering out the high-frequency components of the

output waveform.

The output of the PV system is usually at a voltage and current level that is not suitable for most

applications. In order to make the power usable, it needs to be converted into a different form. This

is done by an inverter, which converts the DC power into AC power that can be used by appliances

and devices.

In this thesis, an average model is used for simulating the inverter. An average model inverter

is a type of inverter that uses a simplified mathematical model to convert DC power from a PV

system to AC power. This model uses average values of the input and output signals to simulate

the inverter’s behavior. The DC power is first converted to a high-frequency AC signal, which is

then filtered and transformed to a low-frequency AC signal that is suitable for use by appliances and

devices.

The considered inverter model, which is implemented in MATLAB/Simulink, consists of a total

of four distinct blocks,i.e., Phase-locked loop (PLL), VDC regulator, current regulator, and Uref

block that are shown in Fig. 3.7. The PLL block within the inverter model is a crucial component

that performs two distinct functions. First, it contains a PLL control system, which is responsible
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Figure 3.7: VSC control system model simulated in MATLAB/Simulink

for generating a highly accurate and stable frequency reference signal for the inverter. It works by

comparing the frequency of the inverter’s output waveform with the frequency of a stable reference

signal and then adjusting the inverter’s output frequency accordingly to eliminate any discrepancies.

This process ensures that the inverter produces a highly stable output waveform that is synchronized

with the frequency of the reference signal. Second, it incorporates a dq0 transformation module

that converts the 3-phase measurements obtained by the inverter into 2-dimensional dq measure-

ments, which can be easily used by the PV proportional-integral (PI) controllers. The PI controller

compares the measured dq currents with a set of reference values and adjusts the inverter’s output

accordingly to maintain the desired current levels. This transformation enables the PI controller to

accurately regulate the current flowing through the inverter’s components, ensuring that it remains

within safe limits and operates efficiently.

The VDC block is a vital component of the inverter model that serves the purpose of regulating

the voltage of the direct current Vdc supply. It achieves this by generating a reference signal for the

inverter’s direct current component (Id) based on the measured Vdc and the desired Vdc reference

value. This reference signal is then used by a PI controller to maintain the Vdc at the desired level.

The current regulator block is a fundamental component of the inverter model that plays a crit-

ical role in regulating the electrical current flowing through the system. The block takes various

input measurements, including (Id) and (Iq) measurements, (Id) and (Iq) reference values, and

(Vd) and (Vq) measurements. It then uses a combination of proportional-integral (PI) and feedfor-

ward controllers to generate converted (Vd) and (Vq) values, which are used to control the inverter’s
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output. The PI controller in the current regulator block processes the difference between the mea-

sured and desired (Id) and (Iq) values to generate an appropriate control signal. The feedforward

controller takes the measured (Vd) and (Vq) values and feeds them into the system’s control algo-

rithm. This controller is responsible for predicting the required control signal based on the previous

input measurements, improving the system’s overall response time and stability. The output of the

current regulator block is the converted (Vd) and (Vq) values, which are used to control the inverter’s

output. These values are fed into the inverter’s dq0 transformation module, where they are trans-

formed into 3-phase values to generate the inverter’s output waveform. The current regulator block’s

primary function is to ensure that the electrical current flowing through the inverter is maintained

within safe and acceptable limits. By precisely controlling the converted (Vd) and (Vq) values, the

block regulates the electrical current flowing through the inverter’s components, ensuring that they

operate efficiently and safely.

The output of the inverter is a critical component that determines the characteristics of the elec-

trical signal generated by the system. It is generated by the Uref block, which takes two input

signals: the angle frequency (wt) generated by the PLL block, and the converted voltage signals

(Vd and Vq) generated by the current regulator block. The Uref block combines these input sig-

nals to generate an output signal that is used to adjust the inverter’s output voltage and current to

the desired levels. The block applies a set of control algorithms that take into account the desired

reference values for voltage and current, as well as any external disturbances or variations in the

system’s operating conditions. The resulting output signal is fed back into the inverter’s electrical

circuit, where it is used to control the power delivered to the load or to the electrical grid.

3.4 Voltage Regulation Scheme

Voltage regulation schemes are a critical component of PDS as they maintain voltage magni-

tudes within specific limits and ensure the proper functioning of the system. Voltage levels can vary

due to changes in load and generation, and it is essential to keep them within the acceptable range

to maintain a stable and secure power supply. Voltage regulation schemes achieve this by control-

ling the voltage at specific points, such as the point of common coupling (PCC), by monitoring and
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adjusting the voltage levels. Control systems adjust the reactive power output of generators and

regulate the voltage to ensure that voltage magnitudes remain within predefined tolerances. It is

important to note that the acceptable voltage range in a PDS can vary depending on the standards

set by the operator. For example, the ANSI C84.1 voltage standard ranges from 0.9 per unit (pu) to

1.05 pu according to [2], while it ranges from 0.95 pu to 1.05 pu according to [34]. For the purposes

of this study, the desired voltage range is assumed to be within 0.9 pu to 1.05 pu.

Regulatory agencies and industry standards typically set the acceptable range of voltage magni-

tudes. Voltage regulation schemes must take into account various factors that can affect the voltage

levels, such as changes in load and generation. For instance, when there is an increase in load de-

mand, the voltage levels tend to decrease. In contrast, an increase in generation causes the voltage

levels to increase. Voltage regulation schemes must balance these factors and ensure that the voltage

levels remain within the acceptable range.

There are different types of voltage regulation schemes, such as on-load tap changer (OLTC),

static voltage regulator (SVR), and shunt reactors, that use different methods to regulate voltage.

OLTCs adjust the voltage levels by changing the tap positions of transformers. SVRs use electronic

switches to control the voltage levels, while shunt reactors absorb excess reactive power to maintain

voltage levels. The choice of voltage regulation scheme depends on the specific requirements of the

PDS. It should be noted that the implementation of all these devices incurs additional costs to the

grid, and hence is not the best solution from the operator’s perspective. On the other hand, the use

of PVs for voltage generation is almost cost-free for the operator since these devices are often used

for active power generation, and regulating voltage is an ancillary service that they can provide.

In order to ensure the efficient and reliable functioning of a PV system, there are the following

constraints that must be adhered to during its operation:

1- The operation of the i-th PV panel depends on the capacity constraint, which enforces that the

total active (Pi) and reactive power (Qi) output of the converter must not exceed a predefined value

of apparent power (Si) [72]. It is assumed that the active power generated by each individual PV

unit is 100 kW and its apparent power capacity is 500 kVA. This constraint is particularly important

because exceeding the apparent power limit could result in system instability, voltage fluctuations,

and other power quality issues. In other words, the PV units are designed to operate within a specific
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range of power output, and exceeding this range could result in system failure. Additionally, this

constraint may also be translated into a reactive power constraint.

Q2 ≤ S2 − P 2 =⇒ Q2 ≤ 5002 − 1002

Q2 ≤ 240 kV AR

(3)

2- The acceptable range for normal operation is predefined, and it is essential to ensure that the

PV system operates within this range. Operating outside the acceptable voltage range can cause

equipment damage, system failure, and a reduction in system efficiency. To comply with this con-

straint, the study proposes a voltage regulation system, which regulates the voltage levels within the

acceptable range by adjusting the reactive power output of the PV system.

The upcoming two subsections, namely Subsection 3.4.1 and Subsection 3.4.2, provide informa-

tion on the voltage regulation scheme that has been implemented in both transient and steady-state

conditions.

3.4.1 Transient conditions

In transient conditions, voltage regulation schemes aim to stabilize voltage levels after a dis-

turbance or change in system operating conditions. This can occur due to various factors, such as

sudden changes in load demand or the loss of a generator. Voltage regulation systems typically

use feedback control to rapidly respond to these changes and adjust the system’s reactive power

output to restore voltage levels to within acceptable limits. For example, in the event of a sudden

increase in load demand, the voltage regulation system may increase the reactive power output of

the generators to compensate and stabilize the voltage levels.

During transient conditions, the load is sinusoidally varying within a range of -1 to +1. In each

step, the fixed load value is multiplied by the sinusoidal value. It is assumed that the load in transient

conditions can fluctuate up and down by 100% to account for all possibilities and demonstrate

comprehensive variations.Additionally, inputs of the PV panels (irradiation and temperature) are

considered to be fixed because the time step used in the analysis is very small (in milliseconds).

Thus, any small changes in the weather conditions that may affect the output power of the PV
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Figure 3.9: Impact of PV arrays on the voltage regulation

panels are assumed to have a negligible impact on the overall output power, and can be ignored for

the purpose of analysis.

The voltage regulation method depicted in Fig. 3.8 involves a central proportional-integral (PI)

controller that acquires voltage measurements from the IEEE 33-bus PDS. The controller then com-

putes the necessary current to generate reactive power to adjust the voltage. The PDS being studied

here involves the installation of two additional PVs on Buses 18 and 33, which have lower voltage

levels than the others. Fig. 3.9 displays how the central PI controller and PVs in the PDS under

analysis can regulate voltage to maintain it within the desired range as the system load fluctuates.
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Figure 3.10: Voltage Regulation system impact

3.4.2 Steady-state conditions

In steady-state conditions, voltage regulation schemes aim to maintain voltage levels within

specified limits over a more extended period. This requires a more nuanced approach to control,

as the system must balance reactive power output and other operational factors to ensure stable and

reliable power supply. Voltage regulation systems in steady-state conditions use a variety of control

strategies, such as voltage control and droop control, to maintain voltage levels within acceptable

limits. For example, voltage control systems use feedback control to regulate the reactive power

output of the generators and adjust voltage levels to within specified tolerances. Droop control, on

the other hand, uses a distributed control strategy to maintain voltage levels by adjusting the reactive

power output of the generators based on their operating characteristics and load conditions. Overall,

voltage regulation schemes are critical to ensuring the stability and reliability of PDS, particularly

as the system operates under varying conditions.

Fig. 3.10 displays the effect of utilizing PVs for voltage regulation on the voltage levels of the

IEEE 33-bus PDSs. The method employed to regulate voltage in such a system is elaborated in [4]

with a focus on its transient mode of operation.

The following Algorithm 2 has been used in this project for regulating voltage in steady-state

conditions.

In steady-state conditions, the load variations and PV generations are determined by referring to

the historical data. The data for historical load and PV profiles were collected from AESO datasets

over a period of two years [1]. Figure. 3.11 illustrates an example of a daily load profile and PV
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Algorithm 2: Voltage Regulation Algorithm

Input: Power flow data (PFD) of the system model, Acceptable voltage range (V R),

Maximum reactive power limit (RPL), Time step size (TS), Simulation duration

(SD)

Output: Regulated voltage value (RV )

1 Extract voltage measurements (VM ) from PFD for buses with PVs and voltage regulation

system;

2 while Simulation duration < SD do

3 VM ′ = VM ;

4 while VM ′ not in Acceptable voltage range V R do

5 Reactive power RP = 0;

6 if VM ′ < V Rlow then

7 RP = RPL;

8 end

9 if VM ′ > V Rhigh then

10 RP = −RPL;

11 end

12 Inject or absorb reactive power RP to regulate voltage; Check constraints such as

the apparent power of the PV’s converter; Run power flow to get updated VM ′;

13 end

14 Wait for TS minutes; Simulation duration = SD + TS;

15 end

16 return Regulated voltage value RV ;

26



03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

0

0.5

1

1.5

L
o

a
d

 v
a
ri

a
ti

o
n

(a)

00:00 06:00 12:00 18:00 00:00

Time

0

0.5

1

P
V

 g
en

er
at

io
n

(b)

Figure 3.11: (a) Load profile (b) PV generation profile

generation. Specifically, the load values are updated every 15 minutes based on the data provided in

the dataset, which covers a period of two years.
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Chapter 4

Threat model

The FDI attack is a type of deliberate manipulation of sensor measurements in a PDS and its

objective is disturbing the voltage regulation scheme of the system. This type of attack has the

potential to cause considerable harm to the power system, including power outages and financial

losses. The attack involves introducing false data into the voltage measurements, resulting in the

generation of inaccurate control signals by the voltage regulation controller. This type of attack is a

serious threat to the stability and dependability of the power system and requires efficient measures

to counteract it and avoid damage.

4.1 Threat Model

To carry out an attack on the power system, the attacker can modify the voltage measurements

that are sent to the controller. This modification can be expressed as a manipulation of the measure-

ment vector using constants a and b, and the current measurement vector V (t), denoted as:

z = a× V (t) + b (4)

Here, V represents the true voltage measurements, t denotes time, and z is the attack vector.

Particle Swarm Optimization (PSO) is a popular optimization algorithm that is useful for deter-

mining the optimal values of parameters in an FDI attack. In this study, PSO was used to optimize
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Figure 4.1: Implemented FDI attack in IEEE 33-bus power system.

the values of a and b in order to cause a voltage response that would take the voltage bus out of the

acceptable range. The optimization was conducted for Bus 16 in the IEEE 33-bus and Bus 52 in

the 141-bus system, and the objective was to minimize the difference between the measured voltage

and the target value of 0.9 p.u. The search space consisted of all possible values of a and b, and

the PSO algorithm was initialized with 50 particles, a maximum of 100 iterations, an inertia weight

of 0.8, and learning factors. The fitness value was calculated for each particle in the swarm, and

the particle positions and velocities were updated using the PSO update equations. This process

continued until convergence was achieved or the maximum number of iterations was reached. The

optimized values of a and b were determined to be a=1.05 and b=0.03. It is important to note that

these values were selected to ensure that the FDI attack did not trigger the bad data detection (BDD)

algorithms of PDS.

Figure. 4.1 illustrates the voltage regulation process and a potential FDI attack. Wireless com-

munication, indicated by dashed lines, transmits measurement signals to the centralized controller

in the IEEE 33-bus and 141-bus systems. In the FDI attack, the attacker obtains bus voltage mea-

surements, maliciously modifies the voltage values, and then transmits them back to the centralized

controller.
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4.2 ICT vulnerability

This study employs IEC 60870-5-104 protocol to transfer voltage measurements from PDS to

the central controller. It is presumed that the attacker has the ability to eavesdrop on this commu-

nication protocol and manipulate the voltage sensors without getting detected. IEC 60870-5-104

protocol is a widely accepted communication protocol used for real-time data transfer and control

of electric power systems over wide-area networks (WANs) between remote terminal units (RTUs)

and control centers. The attacker can carry out a man-in-the-middle (MITM) attack by altering the

data sent between the PDS and the central controller. The attacker can use various techniques, such

as ARP spoofing, DNS spoofing, or IP spoofing, to execute the MITM attack on IEC 60870-5-104

protocol, which reroutes the communication channel through the attacker’s device. Once the com-

munication is rerouted, the attacker can modify the voltage measurement values by changing the

data based on (4).

4.3 FDI attack impact on the under study PDS’ voltage

It is crucial to promptly detect and mitigate malicious activities that can have severe conse-

quences on power system operation. During an FDI attack, the voltage levels of specific buses in a

power system can undergo significant changes and deviate from the normal range. Fig. 4.2 demon-

strates the adverse effect of an FDI attack on the voltage regulation of the IEEE 33-bus system in

transient conditions. The reactive power injection is used to regulate the voltage in response to the

load variation. Under normal conditions, the voltage is maintained within the acceptable range.

However, when an attack is launched with α = 1.1 and β = 0.02 between t = 4s and t = 7s, the

controller makes a wrong decision resulting in a significant drop in voltage below the acceptable

threshold. Once the FDI attack is terminated at t = 7s, the controller takes corrective action to raise

the voltage back to 1 p.u. and restore the operation. Machine learning algorithms are discussed in

the next section for detecting such attacks.

The voltage levels of all buses in the IEEE 33-bus and 141-bus power systems during an FDI

attack are illustrated in Figure 4.3 in the steady-state conditions. The negative effects of an FDI

attack on the voltage regulation of the IEEE 33-bus and 141-bus systems in steady-state conditions
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Figure 4.2: Implemented FDI’s impact on the bus voltage in the transient conditions

are demonstrated in Fig. 4.4 using time-domain analysis. The system experiences load variation

as per a dataset of 15-minute power consumption data for two years, and the controller aims to

maintain the voltage within the acceptable range by adjusting reactive power. The voltage levels

are within the acceptable range during normal operation. However, an attack with the parameters

of α = 1.05 and β = 0.03, which starts at t = 7AM and ends at t = 10AM , causes a significant

decrease in the voltage levels below the acceptable range due to the controller’s wrong decision.

After the attack ends at t = 10AM , the controller tries to restore the voltage levels to 0.95pu to

resume normal operation. The upcoming section elaborates on the deep learning algorithm utilized

to detect this type of attack.
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Figure 4.3: Bus voltages for (a) IEEE 33-bus and (b) 141-bus during FDI attack
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Figure 4.4: Voltage of under attack bus in IEEE 33-bus and 141-bus in the steady-state conditions

32



Chapter 5

Machine learning and deep learning

methods

ML has gained popularity in detecting cyber-attacks due to its ability to adapt to new and evolv-

ing attack techniques. Unlike traditional model-based systems, ML-based methods can learn com-

plex patterns from large amounts of data, making them capable of detecting sophisticated attacks

that may not be detected by human analysts. There are two main categories of ML algorithms:

supervised and unsupervised methods. Supervised learning algorithms are trained using labeled

data and feedback to predict the outcome of a process, while unsupervised learning systems use

unlabeled data for training and do not rely on feedback. These methods can detect subtle anomalies

and complex patterns that may go unnoticed by traditional rule-based methods. This project utilizes

ML methods to address the problem of transient and steady-state conditions. In the following two

sections, we will provide a detailed explanation of the details of the methods and how ML methods

are applied in these conditions.

5.1 Poposed SVM framework

In this study, we have developed a framework based on a supervised ML algorithm, i.e., SVM.

In this section, we discuss the details of the SVM algorithm and its performance. We also present

several examples of other supervised and unsupervised methods in Appendix A, which are briefly
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used to detect FDI attacks in our test system, and compare the results with the proposed technique.

This particular method is commonly used for historical data classification and regression, al-

though it is typically used as a classification algorithm. To use this algorithm, the data is first

mapped onto an n-dimensional space, where n represents the number of features. Then, a hyper-

plane is used to distinguish between the various samples, as described in [78]. To achieve the best

results, certain parameters such as the kernel type (’linear’, ’rbf’, ’poly’, and ’sigmoid’), Gamma,

C, and degree (for polynomial kernel) are used to fine-tune the SVM method. The kernel function

is used to transform the samples mathematically, Gamma is used to adjust the decision boundary,

and C is used to modify the penalty for error during data training. In this project, the values of

these parameters are detailed in Section 6.1. In power grids, it is essential to take secure measures

along with detecting measurements that have been targeted by attackers. If a secure measurement

is misinterpreted as an under-attack data, it can trigger an alarm, causing financial damage to power

grids. Thus, performance analysis is crucial to ensure that the detection system is both accurate and

reliable.

SVM’s main idea is to find a hyperplane in a high-dimensional space that best separates differ-

ent classes of data points. The hyperplane is chosen to maximize the margin, which is the distance

between the hyperplane and the nearest data points of each class. SVM can handle non-linearly

separable data by mapping the data to a higher-dimensional space using a kernel function, which

transforms the original data to a new feature space where the data can be linearly separated. The

objective of SVM is to find the hyperplane that maximizes the margin while minimizing the clas-

sification error. Given a set of training data points xi with corresponding labels yi ∈ −1, 1, SVM

solves the following optimization problem:

minimize
w,b,ξ

1

2
|w|2 + C

n
∑

i=1

ξi

subject to yi(w
T
xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n

(5)

where w is the weight vector, b is the bias term, ξi is the slack variable, yi is the class label for

the ith example, xi is the feature vector for the ith example, C is a hyperparameter that controls
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the trade-off between maximizing the margin and minimizing the classification error, and n is the

number of training examples. The objective function aims to minimize the L2 norm of the weight

vector while penalizing examples that violate the classification rule. The slack variables ξi allow

for some flexibility in the classification rule by allowing some examples to be misclassified, but at

a cost to the objective function. The constraints ensure that all examples are classified correctly (or

within some margin) and that the slack variables are non-negative.

If the data is not linearly separable, a kernel function can be used to map the data to a higher-

dimensional space. The most commonly used kernel functions are:

• Linear kernel: K(xi, xj) = xTi xj

• Radial basis function (RBF) kernel: K(xi, xj) = exp(−γ||xi − xj ||2)

• Polynomial kernel: K(xi, xj) = (xTi xj + c)d

• Sigmoid kernel: K(xi, xj) = tanh(γxTi xj + c) where γ, c, and d are kernel parameters that

can be tuned to achieve better performance.

A comprehensive explanation of the various stages involved in implementing the proposed ap-

proach, starting from data collection and concluding with evaluation is provided in Section 6.2. The

chapter offers a detailed account of the methods and techniques employed at each stage, along with a

description of the relevant parameters and assumptions made during the simulation. Additionally, it

includes information about the software tools and technologies utilized to perform the simulations,

along with their respective roles in the implementation process.

5.2 Proposed CNN algorithm

Deep learning, which is a type of supervised machine learning, has also been increasingly used

for attack detection in power grids. Power grids are critical infrastructures that require reliable and

robust security measures to protect against cyber-attacks that can cause blackouts and compromise

the safety of the grid. In this section, information about the proposed deep learning-based CNN is

provided.
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Figure 5.1: Deep CNN structure for screening using image processing-like technique.

CNNs or convolutional neural networks have become popular for detecting attacks in power

grids due to their robustness. They are machine learning algorithms commonly used for image

recognition tasks but can be applied to detecting malicious activities in a PDS integrated with PV

panels. Each row of data is transformed into a matrix and processed as an image by the CNN,

enabling analysis of high-dimensional and complex data. These methods are suitable for detecting

attacks that involve FDI into sensor measurements, using sensor readings of voltages and load de-

mands as data. The CNN model extracts important features from the data through multiple layers

of filters and activation functions that are trained using labeled data. The resulting model can detect

the presence of an attack in real-time even in the presence of noise or uncertainty in the data.

The performance of a model is significantly influenced by the design of the CNN architecture.

Numerous aspects must be considered during the process, such as the number and types of lay-

ers(e.g., convolutional, pooling, and fully connected layers), the choice of activation functions, and

the selection of an optimization algorithm for training. To obtain the optimal model for the problem,

it is essential to test various configurations of layers, activation functions, and optimization algo-

rithms. This process may involve a trial-and-error approach where the model is trained and assessed

multiple times using diverse configurations until the optimal model is identified.

The Sequential API of the TensorFlow library in Python is used to define a CNN model for

binary classification. The model is constructed by adding layers one by one, beginning with the

input layer and ending with the output layer. The process of designing the model is illustrated in

Fig. 5.1, and is explained in detail step by step below.

• The layer described here plays a crucial role in the CNN model for FDI attack detection. It
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performs a 2D convolution operation on the input image, which enables the model to recog-

nize and extract spatial features from the data. The layer is designed using 32 filters of size (5,

1) and applies the Rectified Linear Unit (ReLU) activation function to introduce non-linearity

to the output. This function is commonly used in deep learning models as it helps to improve

the performance of the network by increasing its ability to learn complex relationships be-

tween inputs and outputs. to maintain the spatial resolution of the input image and ensures

that the edge pixels of the input image are used in the convolution operation, we used ’same’

padding, which pads the input with zeros along the edges to ensure that the output size is

the same as the input size. This technique is useful when processing images with edges or

borders, as it prevents the loss of information at the edges of the image during the convolution

process.

• Next layer is responsible for performing 2D max pooling on the output of the previous

Conv2D layer. The max pooling technique helps to reduce the size of the feature maps and ex-

tract the most important features, while also decreasing the dimensionality of the data. In this

specific implementation, a window of size 2x1 is used to perform the max pooling operation.

This window size results in a reduction of the row dimension by a factor of 2, while keeping

the column dimension unchanged. By down-sampling the feature maps in this way, the model

is able to focus on the most important spatial information while reducing the computational

complexity of the network. This can help prevent overfitting and improve the generalization

ability of the model.

• A subsequent layer of Conv2D was included to enhance the model’s ability to identify more

intricate patterns in the input data. The new Conv2D layer was implemented with 64 filters

that were each of size (3,1). By introducing this additional layer, the model gains the capacity

to identify more complex relationships between the features and the target variable. The

layer’s output serves as an input to the subsequent layer of the model, and the features it

identifies will be used to make better predictions during the model’s evaluation stage. As a

result, the performance of the model is likely to be improved, as the new layer allows it to

better capture the complex relationships present in the data.
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• In order to further reduce the dimensionality of the data and extract the most important fea-

tures, we have incorporated an additional MaxPooling2D layer into the CNN architecture.

This layer works by down-sampling the feature maps obtained from the previous Conv2D

layer. By using a 2x1 window size, the layer reduces the row dimension by a factor of 2 and

maintains the column dimension. The down-sampling process results in a smaller represen-

tation of the input image, which can be more efficiently processed in the subsequent layers.

The addition of this layer to the CNN architecture can improve the model’s ability to extract

the most relevant features from the data, potentially leading to better performance in tasks

such as classification.

• A Dropout layer was included in the model to enhance its performance during training. The

layer works by randomly dropping 20% of the input units to zero at each training iteration.

This method helps to improve the generalization of the model and prevents overfitting by

reducing the complexity of the network. By doing so, the remaining neurons are forced to

learn more robust and representative features of the data, which ultimately leads to better

performance on unseen data.

• The Flatten layer was integrated into the model to transform the multi-dimensional output

obtained from the previous layer into a one-dimensional vector that can be passed as input to

the next Dense layer. The purpose of this step is to prepare the data in a suitable format for

processing by the next layer. It’s like flattening a 3D object into a 2D plane so that it can be

printed on paper. The output of the Flatten layer is a long array of values that represents the

flattened features of the input image. This layer is particularly useful when transitioning from

a convolutional layer to a fully connected layer, as it simplifies the data by removing spatial

information and reshaping it into a linear array.

• To enhance the model’s ability to learn complex patterns in the data and introduce non-

linearity to the output, we incorporated a Dense layer with 128 units and ReLU activation

function. This layer creates a fully connected neural network, where each neuron is con-

nected to all the neurons in the previous layer. The ReLU activation function sets negative

values to 0 and keeps positive values unchanged, which helps to introduce non-linearity to
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the output. By using 128 units, we provide the model with sufficient capacity to learn more

complex patterns in the data.

• To enhance the model’s performance and reduce the risk of overfitting, we included an ad-

ditional Dropout layer. During training, this layer randomly deactivates 20% of the input

units, forcing the remaining neurons to learn more robust and diverse features. By doing so,

the model becomes less likely to memorize the training data and better able to generalize to

unseen data. This can lead to improved accuracy and reliability in real-world applications.

• To enhance the model’s ability to learn complex patterns in the data, we included an addi-

tional Dense layer in the CNN architecture. This layer consists of 64 units and utilizes the

ReLU activation function, which helps to introduce non-linearity to the output. The ReLU

function applies the function f(x) = max(0, x) to each neuron’s output, ensuring that the

output values are non-negative. This allows the network to learn more complex and non-linear

relationships between the input and output.

• In order to enhance the model’s capability of generalizing well to unseen data and avoid

overfitting, we included an additional Dropout layer. During training, this layer randomly

deactivates 20% of the input units, which forces the remaining neurons to learn more robust

and meaningful features that are generalizable to new data. This ultimately helps the model

to avoid fitting too closely to the training data and better capture the underlying patterns in

the data.

• The last layer in the CNN model is a Dense layer with a single unit that uses the sigmoid

activation function. This layer produces a binary probability indicating the predicted class,

which means it predicts the likelihood of the input belonging to the positive class. The sig-

moid activation function is used in this layer because it guarantees that the output probability

falls within the range of 0 and 1. By setting the output to be a probability, we can easily inter-

pret the model’s prediction, and it becomes easier to compare the performance of the model

with other classification algorithms.

In order to accurately detect attacks in the PDS, it is crucial to have a well-designed CNN
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architecture. The combination of Conv2D layers, MaxPooling2D layers, Dropout layers, and Dense

layers with ReLU activation functions plays a vital role in the ability of the model to learn spatial

features in the data, down-sample the feature maps, introduce non-linearity, and prevent overfitting.

These layers work together to improve the model’s performance and accuracy in detecting attacks

in the PDS. The CNN model is trained using an extensive dataset of power flow data collected

over a considerable period of time. The objective of the training is to enable the model to identify

patterns and irregularities in the data that suggest a potential attack. Once the model is trained, it

can quickly analyze new power flow data and determine if there are any deviations from expected

patterns. If there are, the model can recognize the existence of an attack and send an alert, allowing

for prompt action to prevent significant damage to the power grid. Therefore, the CNN model’s

primary purpose is to provide early warning of potential attacks and prevent severe harm to the

power grid.

If the CNN architecture is not properly designed, the model may not be able to learn the neces-

sary features from the data, leading to poor performance and incorrect attack detection. Therefore,

it is important to experiment with different layer configurations, activation functions, and optimiza-

tion algorithms to find the best model for the problem. This can involve a process of trial and error,

with the model being trained and evaluated several times using different configurations until the

best model is found. The success of the CNN architecture lies in its ability to effectively analyze

the data and predict the presence of attacks in the PDS.
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Chapter 6

Simulation and results

In this chapter, the proposed frameworks are demonstrated to be effective in detecting attacks in

a modified IEEE 33-bus and 141-bus PDS. Additionally, an evaluation and comparison of various

algorithms such as ML, Deep Learning classifiers, and clustering methods are conducted for this

purpose. The upcoming two Subsections, 6.1 and 6.2, contain the simulations and outcomes for

both the transient and steady-state conditions of the two proposed frameworks. Each task involves

several steps that need to be followed. Figure 6.1 presents a step-by-step process for designing and

implementing SVM and CNN methods to detect attacks in a PV-integrated PDS, respectively, in

transient and steady state operation.

6.1 SVM framework for transient conditions

This section aims to analyze and compare the effectiveness of the proposed SVM with the

classifier and clustering machine learning algorithms for detecting attacks in our modified IEEE

33-bus PDS under transient conditions. The simulations were conducted using MATLAB Simulink

with a time step of 1 ms on a supercomputer with 32 cores and 500 GB of memory. To do so, the

developed models in the previous sections are simulated in detail.

41



Model Evaluation

Model Design

End

Model Training

Data Preprocessing

Model Deployment

Start

Acceptable performance

Unacceptable performance

Data Collection
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6.1.1 Data Collection

To generate a comprehensive dataset, the simulations were executed for a total of 20 iterations

where the load was progressively increased/decreased by 2.5% from zero to 50% of the nominal

value. The duration of each simulation was set to 60 seconds, ensuring that the dataset covered

all possible load variations. The resulting dataset was comprised of 1,200,000 rows, calculated

by multiplying the number of iterations with the duration of each simulation and then dividing it

by the simulation time step. Specifically, since the simulation time step was set to 0.001 seconds,

multiplying it by 60 seconds and then by 20 iterations yielded 1,200,000 rows. The dataset had

a total of 34 columns, with 33 columns representing bus voltages and one column indicating the

percentage of load alteration.

Supervised learning methods require labeled data, which means that each data point is assigned
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a specific label indicating whether it belongs to a particular class or not. In this case, the period

of attack occurrence is already known, and all the data during this period are considered as under-

attack data with the labels set to 1. On the other hand, the remaining data during the simulation

are normal and labeled as 0. The attack period is 3 seconds, which contains 3,000 samples with a

time step of 1ms in the simulations. It is important to note that the simulation lasts for 60 seconds,

which corresponds to 60,000 samples. Thus, only about 5% of the data can be considered as attack

samples. Once the labels have been assigned to the data, the next step is to perform some pre-

processing to prepare the dataset for learning.

6.1.2 Data Preprocessing

Preprocessing is important in this case because it involves transforming raw data into a format

that can be easily understood and analyzed by ML algorithms. This can include tasks such as data

cleaning, normalization, feature selection, and feature engineering. Proper preprocessing can help

to improve the accuracy and efficiency of ML models, and can also help to avoid issues such as

overfitting or underfitting. In the context of attack detection in power grids, preprocessing may

involve tasks such as removing outliers, scaling data, and selecting relevant features to improve the

performance of the models. Overall, prior to model training, some preprocessing steps need to be

performed.

The first step in data preparation is to divide the dataset into two portions: training and testing.

The training set is utilized for learning while the testing set is used to test the algorithm and calculate

its performance. To achieve this, 20% of the dataset is randomly separated and reserved for testing,

while the remaining 80% is utilized for training. In addition, scaling is a critical step in preparing

numerical features in the dataset. To accomplish this, we use the MinMax scaler, which scales the

data to a specified range between 0 and 1 while maintaining the distribution of values. Normalization

of the data is also required. The process of scaling individual samples to a unit normal distribution

is referred to as normalization.

The learning process can be complex and inefficient when dealing with a large number of fea-

tures, as in our case with 34 features. Therefore, feature reduction algorithms are used to decrease

the complexity and facilitate processing large amounts of data. One common feature reduction
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method is Principal Component Analysis (PCA), which transforms the source data from its original

34-dimensional form into 2-dimensional data, allowing for the visualization of the data distribution

and simplifying the learning process. It is worth noting that each principal component does not rep-

resent a specific physical parameter after the reduction in dimensions. Once the feature reduction

step is complete, the dataset is prepared for the learning phase.

6.1.3 Model Design

Section 5.1 provides detailed information on the design of the SVM model.

6.1.4 Model Training

The goal of the model training step is to adjust the SVM algorithm’s parameters to best fit the

training data and minimize errors in classifying the attack and normal data. Once the SVM model

is trained, it can be used to classify new, unseen data and detect attacks in real-time operation.

To obtain the best performance for detecting attacks, certain values are taken into account to

fine-tune the SVM method. The kernel used in this study is the non-linear ºRadial Basis Function

(RBF)º kernel. In order to achieve both high performance and time efficiency, the values of Gamma

and C are set to 0.1 and 0.01, respectively. These values have been chosen after careful consideration

and experimentation to ensure that the SVM model works optimally for detecting attacks.

6.1.5 Model Evaluation

To ensure that an SVM model performs well in real-world scenarios, evaluating its performance

on unseen data is a crucial step in the development process. Model evaluation techniques are used

to assess how well the SVM model performs, and various common techniques are available. These

techniques use the True Positive (TP), True Negative (TN), False Positive (FP), and False Negative

(FN) values to evaluate the model’s performance.

(1) Accuracy is a widely used evaluation metric for classification models that measures the pro-

portion of correctly classified samples in the test set. It can be calculated by dividing the

number of correctly classified samples by the total number of samples in the test set. For
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example, if the test set contains 100 samples and the model correctly classifies 90 of them,

the accuracy is 90%. Accuracy can be a useful metric when the classes in the dataset are

balanced, i.e., the number of samples in each class is roughly equal. However, in imbalanced

datasets, where one class has significantly more samples than the other(s), accuracy can be

misleading. In such cases, other metrics such as precision, recall, and F1-score are more

informative.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

(2) Confusion matrix: A confusion matrix provides a detailed breakdown of the model’s per-

formance by showing the number of true positives, true negatives, false positives, and false

negatives.

Predicted Negative Predicted Positive

Actual Negative TN FP

Actual Positive FN TP

(3) Precision and Recall: Precision measures the proportion of true positive predictions among

all positive predictions, and it is calculated by dividing the number of true positives by the

sum of true positives and false positives. Recall, on the other hand, measures the proportion

of true positive predictions among all actual positive samples, and it is calculated by dividing

the number of true positives by the sum of true positives and false negatives.

Precision =
TP

TP + FP
(7a)

Recall =
TP

TP + FN
(7b)

(4) F1-score: The F1-score is the harmonic mean of precision and recall, and it is a useful metric

when both precision and recall are important.

F1score =
2× (Precision×Recall)

Precision+Recall
(8)

By evaluating the model using these metrics, we can determine how well the SVM model performs
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in detecting attacks in the PDS. results and comparisons are provided in 6.1.6.

6.1.6 Results

To start the evaluation of our proposed methods, the first one considered is the decision tree

(DT). To calculate the performance of this algorithm, we use the testing dataset and predict labels

for each sample. Then, we compare the predicted labels with the true labels to calculate the F1

score, precision, and recall metrics. Table 6.1 shows the values for true positive, false positive, true

negative, and false negative for all the algorithms, including the DT. The total number of testing

samples is 240,000, which is equivalent to 20% of the total samples in our dataset as we previously

discussed. Table 6.1a illustrates the performance of the supervised DT algorithm on the dataset.

The DT algorithm could successfully detect 9,872 samples as under-attack data, but it missed 2,002

samples. It was able to accurately identify 218,056 samples as normal data, but it wrongly classi-

fied 10,070 samples as under-attack data. Although this technique can differentiate between most

normal and under-attack data, there are still a large number of false positives, which may lead to

an unacceptable number of false alarms. Additionally, there are many false negatives, which could

result in undetected attacks that could potentially damage the power system. Table. 6.1b presents

the results obtained from the RF method. The table indicates that the performance of the RF model

is relatively better than the DT method. The RF model successfully identifies 10,510 samples as

under-attack data and 225,593 samples as normal data. However, it also produces 2,537 false pos-

itive samples, which is still a high number of false alarms and not acceptable. Additionally, the

RF method fails to detect 1,360 samples as being under-attack data, and wrongly considers them

as normal. Table. 6.1c presents the results of the LR algorithm. Based on the results, LR exhibits

the smallest number of false positive samples, which is 622. This indicates that the LR approach

has fewer false alarms compared to the other methods. Additionally, the true negative (tn) value

achieved by the LR algorithm is greater than that of the other supervised techniques, indicating that

the LR method performs better in identifying normal data.

The SVM algorithm, proposed in this study, is capable of identifying under-attack samples,

as demonstrated in Table. 6.1d. It can be seen that this method can recognize 13,932 samples

as under-attack data and 224,222 samples as normal data. This approach has a distinct feature
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Table 6.1: Comparison between ML Algorithms

(a) DT

True Positive 9,872

False positive 10,070

True negative 218,056

False negative 2,002

(b) RF

True positive 10,510

False positive 2,537

True negative 225,593

False negative 1,360

(c) LR

True positive 10,607

False positive 622

True negative 227,504

False negative 1,267

(d) SVM

True positive 13,932

False positive 716

True negative 224,222

False negative 1,130

of producing a low percentage of false positive samples, which can help avoid unacceptable false

alarms. Additionally, the number of false negative samples identified by this method, which is

1,130, is also lower than that produced by the other algorithms, such as DT, LR, and RF.

If both precision and recall are high, then the F1 score will also be high, according to equation

(8). Thus, the F1 score is considered an appropriate evaluation metric to compare the algorithms

discussed. As shown in Figure 6.2, the DT method has a poor performance compared to the others,

with a low F1 score of 62.04% compared to LR’s 91.82%, due to the small number of evaluation

metrics. On the other hand, the SVM approach performs better than the others because of its high

F1 score, precision, and recall values.

These findings indicate that the SVM method suggested in this study outperforms other ap-

proaches in accurately distinguishing between normal and under-attack data, achieving a high level

of precision for detecting attacks while minimizing false alarms. The SVM algorithm demonstrated

the highest F1 score of 93.87%, indicating superior classification performance.

6.1.7 Model Deployment

Model deployment is the final step in the development of any machine learning model, where

the trained model is put into production to make predictions on new, unseen data. In the case of the

SVM-based attack detection method, the trained model can be deployed on a real-time system that

monitors the power grid for any potential cyber attacks.
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Figure 6.2: Supervised ML performance bar graph

During deployment, the SVM model is integrated with the monitoring system of the power grid

and is used to classify the incoming data as normal or under attack. The real-time data is first pre-

processed, then feature reduced using PCA, and finally fed into the SVM model for classification.

The output of the SVM model is then used to trigger appropriate action based on the nature of

the detected attack. For example, if an attack is detected, the monitoring system may automatically

isolate the affected part of the power grid to prevent further damage.

It is important to continuously monitor the performance of the deployed model to ensure that

it is working as intended and providing accurate predictions. Any significant drop in performance

or unexpected results should be investigated and the model re-evaluated and possibly retrained if

necessary.

6.2 CNN framework for steady-state conditions

When it comes to identifying malicious activities in a PDS that is integrated with PV panels,

CNNs can be applied to detect attacks by converting each row of data into a matrix that is processed

as an image. These methods are effective in analyzing complex and high-dimensional data, making

them well-suited for identifying attacks in power systems where false data is injected into sensor
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measurements. The data used for attack detection in a typical power grid setting includes sensor

readings of voltages and load demands. CNNs can extract important features from this data and use

them to make accurate predictions regarding the presence of an attack. This is accomplished using

several layers of filters and activation functions that are trained on a large volume of labeled data.

The result is a model that can detect attacks in real-time, even in situations where there is significant

noise or uncertainty in the data.

A vast collection of power flow data from the PDS is used to train the CNN model, which learns

to detect patterns and anomalies in the data that signify an attack. The model is then able to swiftly

recognize any deviations from the anticipated patterns and determine if an attack is occurring when

fresh data is entered into the model. As a result, the model aids in detecting possible attacks at an

early stage and avoids significant damage to the power system.

For this part of the project, a personal computer equipped with an Intel i7 core processor with

a clock speed of 2.9 GHz, 16 GB of RAM, and running the Windows operating system is used. To

run deep learning tasks, I utilized Google Colab, which is a platform that uses Python 3.8. I also

used MATLAB R2020 b to collect power flow data.

The procedure for creating and deploying CNN techniques for attack detection in a PDS that is

integrated with PV panels can be summarized as follows.

6.2.1 Data Collection

In designing and implementing a CNN for attack detection in a PV-integrated PDS, one crucial

step is data collection. This step entails gathering relevant data from the PDS that can be utilized

to train and test the CNN model. It is vital to collect data that accurately represents the typical

operating conditions of the system and any possible malicious activities that could occur. The

importance of data collection lies in the fact that it provides input to the CNN model, which is

employed to make predictions about the presence of attacks in the PDS. If the data collected is

incorrect or incomplete, it can cause bias in the model and lead to poor performance. Furthermore,

a large and diverse dataset can lead to a more robust and generalizable model that can detect attacks

more accurately in various scenarios. Hence, the quality of the data collected is a critical factor in

the success of the attack detection framework based on CNNs.
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To create a comprehensive dataset for developing a deep learning model, a power flow analysis

was conducted using the MATPOWER tool in MATLAB. The analysis was carried out at 15-minute

intervals for two years to balance the completeness of the dataset with its size. During each interval,

VR was used to maintain voltage within normal limits. The voltage regulation system is shown in

Algorithm 2. However, PV and inverter component limitations may sometimes prevent complete

voltage compensation and regulation. The dataset was created by extracting relevant information

such as bus voltages, load demand levels, time-related variables like seasons, weekdays, and week-

ends, as well as data labels from the power flow analysis.

6.2.2 Data Preprocessing

The preprocessing stage is a crucial step that sets the groundwork for the entire process. It is

crucial to clean, structure, and convert the data into a suitable format for the CNN model to use.

The goal of this step is to convert the raw data into a structured format that can be used for training

the model. The data preprocessing step typically involves cleaning the data, dealing with missing

values, normalizing the data, scaling, and transforming the data into a compatible format. These

tasks are vital as they help to reduce possible errors and biases in the data, and they make the data

more suitable for the CNN model to use.

To prepare our dataset, the first step is to check for any missing data. Fortunately, this is not an

issue as our data source is power flow data in MATLAB. Next, the data is processed and cleaned to

remove any incorrect, corrupted, duplicated, incorrectly formatted, or incomplete data. To simplify

the analysis, the data is then scaled, which standardizes the values across the dataset, making the

model learning and problem understanding more efficient. Standardization of features involves

transforming the data by removing the mean and scaling it to unit variance. This is accomplished

by calculating standard scores, which are the difference between a sample (x) and the mean of the

training samples (u), divided by the standard deviation of the training samples (s). Mathematically,

this is represented as:

z =
(x− u)

s
(9)

The aim of standardizing the data is to maintain a mean of zero and unit variance, which leads
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to a more reliable comparison of feature values across the dataset. Another technique used to en-

hance the data is normalization, which involves adjusting the numeric column values to a common

scale while maintaining their differences in value ranges. In this particular study, the normalization

method used is Max normalization, which is based on the infinity norm of the data. This mode was

chosen because it is believed that data in 2-dimensional space can be more clearly distinguished

through the application of Max normalization.

To make the data suitable for a CNN approach, it is important to transform each data row into a

matrix format. This can be done by converting each row of data, which contains 36 characteristics

such as 33 bus voltages, load demand levels, season, and weekdays/weekends, into a 12×3 matrix.

In the last step of preparing the dataset for the CNN method, it is necessary to divide it into

two separate sets, i.e., the training set and the testing set. This division is critical to evaluating the

model’s performance accurately. The training set, which constitutes 70% of the data, is used to

train the model, i.e., to teach it how to identify and classify different patterns and anomalies in the

data that are indicative of an attack. The remaining 30% of the data make up the testing set, which

is used to validate the performance of the model. During the testing phase, the model is presented

with new, unseen data that it has not been trained on. The accuracy of the model’s predictions on the

testing data is a measure of its ability to generalize to new, previously unseen scenarios. The 70:30

ratio is a common split used in machine learning applications to ensure that enough data is available

for training while still providing sufficient data for testing and evaluation. However, depending on

the size and complexity of the dataset, other ratios may also be used to ensure optimal performance

of the model.

6.2.3 Model Design

Section 5.2 of the document contains a detailed description of the design of the model. It

includes information such as the architecture of the model, the number of layers, and the activation

functions used to train the model. Additionally, it provides insights into the rationale behind the

choice of these design elements and how they contribute to the performance of the model.
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6.2.4 Model Training

Training the CNN model is a crucial stage in the design and implementation process. It in-

volves using an optimization algorithm to train the model on the preprocessed data. The aim is

to minimize the discrepancy between the predicted outputs and the actual outputs, resulting in the

most precise model possible. This process enables the model to learn from the training data and

generalize its predictions to unseen data. By iteratively adjusting the model’s parameters, the opti-

mization algorithm ensures that the model accurately captures the underlying patterns in the data,

allowing it to make reliable predictions. The success of the model’s performance relies heavily on

the effectiveness of the optimization algorithm used during the training phase.

In the process of model training, the goal is to develop a CNN model that can establish correla-

tions between the inputs, such as voltage levels, active and reactive power levels, and load demand,

and the outputs, which is the identification of potential attacks, using the data obtained during train-

ing. This trained model can subsequently be used to detect attacks in new, unseen data, allowing for

the identification of malicious activities in real-world situations.

It is crucial to recognize that the process of Model Training is an iterative one, and it may require

multiple attempts with various hyperparameters or architectures to find the most suitable model for

the task at hand. Model Training is a computationally intensive process that necessitates the use of

powerful GPUs and can take a significant amount of time, ranging from several hours to multiple

days, depending on the size of the data and the intricacy of the model.

Our CNN model uses the Adam optimization algorithm, which is a popular method for updating

the network weights during iterative gradient descent with training data [37]. Typically, the Adam

optimization algorithm is used in deep learning in conjunction with the binary cross-entropy loss

function. It is an adaptive learning rate optimization algorithm that tracks the first and second

moments of the parameters’ gradients and adjusts the learning rate based on the estimated variance

and mean of the gradients. By doing this, the algorithm can dynamically adjust the learning rate

during training, helping to avoid getting stuck in local minima and speeding up convergence.

In order to utilize the Adam optimization algorithm along with the binary cross-entropy loss,

we first need to compute the gradient of the loss function concerning the parameters of the neural
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network. Then, based on the estimated mean and variance of the gradients, the Adam algorithm

updates these parameters. This technique effectively reduces the oscillations that may occur in

weight updates and facilitates faster convergence.

The Binary cross-entropy loss function is suitable for problems that involve binary classification

and it is a good fit with Adam optimization due to its differentiability and clear gradient that can be

utilized to update the weights of the neural network. Algorithm 3 provides a detailed explanation of

the Adam algorithm. In our optimization process, we utilized the binary cross-entropy loss function

[26], which is defined as follows:

L = −
2

∑

i=1

ti log(pi)

= −[t1 log(p1) + t2 log(p2)]

= −[t log(p) + (1− t) log(1− p)]

(10)

This particular equation computes the loss L by adding up the values for the two classes (i = 1 and

i = 2), and taking the negative of the product of the actual label ti and the logarithm of the predicted

probability pi for each class. The expression for calculating loss can be made simpler by combining

terms. We can express the loss in terms of a single class by defining t1 as t and t2 as 1 − t, and p1

as p and p2 as 1− p.

L =















− log(p) if t = 1

− log(1− p) if t = 0

(11)

In order to optimize the model and improve its performance, a single expression for calculating

the cross-entropy loss is obtained by simplifying the initial formula. This expression takes into

account the true label and the predicted probability, and is used during the training process to adjust

the model parameters and minimize the loss. The Model Training step is essential in developing a

CNN model for PDS attack detection, as it allows the model to learn from the input data and make

accurate predictions. A well-trained model can contribute to enhanced security and reliability of the

PDS.
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Algorithm 3: Adam Optimization Algorithm

Input: Input data X , True output labels y, Initial parameter values θ, Learning rate α,

Exponential decay rates β1, β2, Small constant ϵ, Maximum number of iterations

max iterations

Output: Learned model parameters θ

1 Initialize the first and second moment variables m = 0, v = 0, t = 0;

2 while t < max iterations and not converged do

3 t = t+ 1;

4 Compute the gradient of the binary cross-entropy loss function: z = X · θ,

ypred = sigmoid(z), g =
XT (ypred−y)
y.shape[0] ;

5 Update the first and second moment estimates: m = β1 ·m+ (1− β1) · g,

v = β2 · v + (1− β2) · g2;

6 Compute bias-corrected estimates of the moments: m̂ = m
(1−βt

1
)
, v̂ = v

(1−βt
2
)
;

7 Update the model parameters using the Adam update rule: θ = θ − α · m̂

(
√
v̂+ϵ)

;

8 end

9 return θ;

6.2.5 Model Evaluation

The model evaluation step for a CNN based method involves assessing the performance of the

trained model on a separate set of data that was not used for training, called the testing set. This step

is important to verify that the model can accurately classify new data, rather than just memorizing

the data it was trained on.

The evaluation of the CNN-based method involves the use of various metrics, as described in

Subsection 6.1.5. These metrics include accuracy, precision, recall, and F1-score. These metrics

are essential in assessing the performance of the method in detecting attacks in the PDS.

Apart from the metrics mentioned above, the evaluation of the CNN-based method also involves

feature analysis. This analysis is used to determine the most relevant features in the dataset that con-

tribute to the detection of attacks in the PDS. By identifying these relevant features, the model can

be optimized to improve its accuracy in detecting attacks. The feature analysis involves the use of

various techniques such as principal component analysis (PCA), t-distributed stochastic neighbor

embedding (t-SNE), and correlation analysis. These techniques help in identifying the most impor-

tant features in the dataset and their correlation with the target variable. Overall, the use of these

metrics and feature analysis is crucial in evaluating the performance of the CNN-based method and
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improving its accuracy in detecting attacks in the PDS.

6.2.6 Results

The CNN model takes in 33 and 141 voltage measurements from the historical data along with

load demand, PV power generation, and temporal information like weekdays/weekends, and season

as inputs. To fit into the CNN model, these inputs are reshaped into an image format. In addi-

tion, we assess the classification performance of the CNN model against several standard machine

learning algorithms, including RF, KNN, LR, SVM, and Multilayer Perceptron (MLP). We used the

default settings provided by the scikit-learn and keras libraries for all models since a comprehensive

explanation of these models is beyond the scope of this paper.

Feature Importance Analysis

Figures 6.3 and 6.4 demonstrate the results of a feature importance analysis conducted on the

datasets of IEEE 33-bus and 141-bus systems, respectively. The datasets for both systems include

various features such as voltage measurements, load condition, PV generation, weekdays/weekend,

season, and label. For instance, the dataset for the IEEE 33-bus system has a total of 36 features,

while the dataset for the 141-bus system has 144 features. However, the first column, which has

a constant value of 1 p.u., was excluded, and the last column was used as the target. The fea-

ture importance analysis was conducted to identify the most significant features that influence the

performance of the CNN model.

The results of the feature importance analysis for the datasets of IEEE 33-bus and 141-bus

systems are presented in Fig.6.3 and Fig.6.4, respectively. According to Fig. 6.3, the most significant

feature for detecting FDI attacks in the IEEE 33-bus dataset is the load condition. The PV generation

and time-related features, such as weekdays/weekend and season, are less important in identifying

FDI attacks.

Fig. 6.4 reveals that bus number 52, which is connected to PV and voltage regulation systems

and is under attack, is the most critical feature in detecting FDI attacks in the 141-bus system dataset.

In contrast, the time-related features are found to be less significant.

The analysis of feature importance plays a crucial role in comprehending the characteristics
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Figure 6.3: Importance of each feature in the dataset for IEEE 33-bus
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of the dataset and recognizing the features that make the most significant contribution to the per-

formance of the model. By identifying these crucial features, the model can concentrate on them,

enhance its performance, and simultaneously reduce the complexity and computational time.

The relationship between features is a crucial factor in examining a dataset. Fig.6.5 and Fig.6.6

display a feature correlation map for the IEEE 33-bus and 141-bus systems, respectively. The col-

ormap uses a scale from 1 to -1, where 1 represents complete correlation between two features, and

-1 indicates a complete inverse correlation. In Fig.6.5, it is apparent that most voltage measurements

have a strong correlation with each other. However, feature 32, the load condition, has a negative

correlation because increased load leads to decreased voltage. Furthermore, the PV generation data

and time-related features have a weak correlation with voltage measurements. The light red cells

on the colormap represent buses that are under attack and nearby buses with lower voltage due to

the attack. In Fig.6.6, a similar correlation pattern is visible, but feature 51, the voltage of bus 52, is

lighter red, indicating that its voltage changes significantly more than other buses due to the attack.
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Figure 6.5: features correlation colormap for IEEE 33-bus
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Figure 6.6: features correlation colormap for 141-bus

Performance of Customized CNN Method and its Scalability

The training loss and accuracy for the IEEE 33-bus and 141-bus systems are shown in Fig. 6.7

and Fig. 6.8, respectively. In Fig. 6.7, it is apparent that the cross-entropy loss reduces significantly

in the initial stages of training, signifying that the CNN model is learning and becoming more adept

at detecting FDI attacks in IEEE 33-bus PDS. As the number of epochs increases, the decrease in
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Figure 6.7: Training loss and accuracy data for IEEE 33-bus

loss becomes more gradual, which is expected as the model approaches convergence. Meanwhile,

the binary accuracy, which is the proportion of correctly classified instances, improves steadily. This

suggests that the model is becoming better at distinguishing between normal and attack instances.

Fig. 6.8 illustrates that during the training process for the 141-bus system, there are some fluc-

tuations in both the loss and accuracy. These fluctuations are caused by the stochastic nature of the

training algorithm and are to be expected during training. As the training continues, these fluctua-

tions decrease in magnitude, and the model becomes more stable, ultimately reaching convergence.

The results of our proposed CNN method for IEEE 33-bus PDS are compared with five differ-

ent ML models in Table 6.2. The evaluation of the models is based on the metrics discussed in

Subsection 6.1.5, which include accuracy, precision, recall, and F1-score.

According to the data presented in Table 6.2, our proposed CNN model performs better than the

other five ML models in terms of accuracy, precision, recall, and F1-score. The CNN model has an

accuracy rate of 96.24%, which is the highest compared to the second-best model, LR, which has

an accuracy rate of 94.50
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Figure 6.8: Training loss and accuracy data for 141-bus

The evaluation results in Table 6.2 indicate that the proposed CNN model outperforms all other

ML models regarding precision, recall, and F1-score in addition to accuracy. The CNN model

obtained 95.71% precision, 96.81% recall, and 96.26% F1-score, which are the highest achieved

by any model. These findings demonstrate CNN’s superior effectiveness in detecting attacks in the

IEEE 33-bus PDS. Despite the superior performance of the proposed CNN model, some of the other

models also demonstrated high accuracy. For instance, LR attained an accuracy of 94.50%, while

SVM recorded a comparable accuracy of 94.61%. MLP also performed well, with an accuracy of

94.75% and the highest recall among all models at 97.09%. Although KNN and RF performed

slightly worse than the other models, they still recorded relatively high accuracies of 92.33% and

91.06%, respectively.

The results presented in Table 6.3 demonstrate the effectiveness and scalability of our proposed

CNN approach for identifying attacks in the 141-bus PDS. Our CNN model outperformed all other

models with an F1-score of 97.36%, which was significantly higher than those achieved by LR,

SVM, and MLP at 95.53%, 96.92%, and 96.82%, respectively. In contrast, KNN and RF achieved

even lower F1-scores of 93.90% and 95.30%, respectively, which were more than 1% lower than
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Model

Metric
Accuracy Precision Recall F1-Score

RF 91.06 91.08 91.02 91.05

KNN 92.33 92.35 92.30 92.33

LR 94.50 95.26 93.67 94.46

SVM 94.61 94.99 94.19 94.59

MLP 94.75 92.75 97.09 94.87

Proposed CNN 96.24 95.71 96.81 96.26

Table 6.2: Detection results for IEEE 33-bus PDS

Model

Metric
Accuracy Precision Recall F1-Score

RF 95.30 95.28 95.31 95.30

KNN 93.90 93.94 93.86 93.90

LR 95.71 99.70 91.69 95.53

SVM 97.01 1.0 94.03 96.92

MLP 96.92 1.0 93.85 96.82

Proposed CNN 97.31 95.41 99.40 97.36

Table 6.3: Detection results for 141-bus PDS

the CNN’s F1-score. Furthermore, our CNN model showed high precision and recall, indicating

that it could accurately identify attacks while minimizing false alarms.

In another scenario, the voltage regulation system of certain buses equipped with PV systems

receives feedback from another bus, which is not the PCC, and adjusts the voltage of that bus instead

of regulating its own bus. For example, in the IEEE 33-bus PDS, the PV system installed in Bus 7

and 17 regulates the voltage of Bus 18, which has the lowest voltage among all the buses, while Bus

30 regulates the voltage of Bus 33. The PV system must also ensure that its own voltage remains

within the specified range. This regulation strategy can address voltage instability issues in PDS

and maintain the voltage within an acceptable range.

In this scenario, an attacker intercepts the communication, receives the voltage measurement

of Bus 18, and maliciously alters it according to Equation (4). Based on the results presented in

Table 6.4, the CNN-based attack detection method performs better than the alternative scenario,

where the PVs attempt to regulate the PCC voltage. This is because Bus 18 has a higher probability

of exceeding the acceptable voltage range due to its comparatively lower voltage than the other

buses in the system.
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Table 6.4: Detection results in IEEE 33-bus PDS when the PV regulates the voltage of other buses

Model

Metric
Accuracy Precision Recall F1 Score

RF 92.06 92.46 92.31 92.38

KNN 94.83 94.87 94.77 94.81

LR 96.33 97.15 95.90 96.52

SVM 96.94 97.35 96.82 97.08

MLP 97.84 97.46 98.15 97.80

Proposed CNN 99.91 99.92 99.90 99.91

Figure 6.9: Results of the proposed method for attack detection during a day

The scalability of proposed CNN approach is demonstrated by the results of the 141-bus PDS

test, where it achieved a high detection accuracy on a larger and more intricate power system than

the IEEE 33-bus PDS. This is significant because real-world power systems are typically more

extensive and complicated than the research test systems. The 141-bus system has more buses and

branches than the IEEE 33-bus system, providing more data for training and testing ML models.

The additional data enables ML algorithms to learn more intricate patterns and correlations between

features, resulting in easier detection of anomalies and attacks.

Performance of the Proposed CNN Method during Online Detection

Figure 6.9 illustrates the results of the proposed method in the time domain. The red area

represents an attack, while the green area indicates normal system operation. The model is capable

of detecting attacks, but since the controller’s performance is not taken into account during training,

the CNN also identifies the controller’s response to attacks as problematic. Nevertheless, the method

is trained on both normal and attacked data, making it effective in identifying attacks.
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Figure 6.10: Noise robustness of the proposed method for IEEE 33-bus

Verifying the Robustness of the Proposed Method against Noise

In PDS, data transmission can be susceptible to noise, making it difficult to accurately detect

attacks. To overcome this challenge, it is essential to employ a detection method that is resilient

to noise. The newly developed detection method ensures reliable detection of attacks in real-world

scenarios, even in the presence of noise. The accuracy of the detection method when the signal-

to-noise ratio (SNR) is varied from 10 to 70 is depicted in Fig. 6.10. The results demonstrate that

the accuracy remains relatively consistent despite the presence of noise. However, when the SNR is

reduced, a slight decrease in accuracy may occur.

The CNN’s excellent performance is due to its capacity to learn relevant features from raw input

data, which in this case are the measurements of the power system. The CNN uses convolutional

layers to recognize spatial correlations within the input data and extract significant features. The

fully connected layers then utilize these features to make the final classification decision. The CNN

also has the advantage of being able to handle input data with high dimensions, a feature that is often

needed in real-world applications. Its ability to process large volumes of data makes it a suitable

choice for complex tasks such as detecting attacks in power systems. Moreover, the CNN method is

very adaptable and can be tailored to meet the specific demands of the application. Various designs,

hyperparameters, and optimization algorithms can be utilized to fine-tune the CNN’s performance

for a specific task. The CNN has several practical advantages in addition to its high performance and

flexibility. Unlike some other models, the CNN does not need feature engineering, which can be a

complex and time-consuming task. Furthermore, the interpretability of the CNN can be enhanced by

using visualization techniques such as feature visualization and activation maps, which can provide
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insights into the decision-making process of the CNN.

In summary, the outcomes of our research show that the CNN method is an effective and ex-

pandable technique to detect attacks in power systems. The CNN’s capability to learn significant

features from the raw data, along with its accuracy and scalability, demonstrates its potential for

practical use in power system security.

6.2.7 Model Deployment

Model deployment is the process of integrating a trained model into a production environment

for use in real-world scenarios. In the case of attack detection in power systems using a CNN, model

deployment would involve implementing the trained CNN model in the power system infrastructure

to monitor the system for attacks.

To deploy the CNN model, several steps need to be taken. First, the CNN model needs to

be converted into a format that can be easily deployed in the production environment. This could

involve converting the model into a framework such as TensorFlow, PyTorch, or Keras.

Next, the model needs to be integrated into the power system infrastructure. This involves creat-

ing an interface between the model and the data sources, such as sensors or monitoring equipment,

to receive input data for analysis.

Once the interface is established, the model can be deployed to monitor the power system in

real-time. The output of the model can then be used to trigger alerts or actions in response to an

attack detected by the model.

It is important to note that model deployment is not a one-time process, as the model needs to

be continually updated and retrained to adapt to changes in the power system and to improve its

performance. Thus, a continuous monitoring and updating process needs to be established to ensure

that the deployed model remains accurate and effective over time.
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Chapter 7

Conclsuion

This thesis suggests that FDI attacks can affect the voltage regulation schemes in PV-integrated

PDSs, leading to the protection system’s suboptimal performance in serving the loads. To address

this issue, the first solution proposed a ML-based framework based on SVM for detecting FDI

attacks in transient conditions, with SVM delivering better performance than other methods. The

second solution proposed a data-driven framework based on a CNN model, which outperformed

other techniques in detecting FDI attacks in steady-state conditions and demonstrated scalability

in a larger PDS and noise robustness in presence of noise. Both frameworks provide effective

protection against cyber threats and ensure the secure and reliable operation of power systems.

The proposed ML-based and data-driven frameworks have demonstrated their effectiveness in

detecting FDI attacks in PV-integrated PDSs, and they can be potentially deployed in real-world

systems to enhance the security of power systems. However, there are still some challenges that

need to be addressed. For instance, more complex attacks like replay attacks can be considered

to evaluate the performance of the proposed frameworks. Moreover, future work can focus on

designing a localization system to determine the location of the attack, which can facilitate the

system’s response to the attack. Additionally, other deep learning models like transfer learning can

be applied to handle non-comprehensive datasets, which can further improve the accuracy of the

proposed frameworks. Therefore, the proposed frameworks provide a solid foundation for future

research to enhance the security of PV-integrated PDSs.
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Appendix A

Supervised and Unsupervised ML

methods

A.1 Isolation Forest

Isolation Forest is a machine learning algorithm used for anomaly detection, which means de-

tecting data points that are significantly different from the majority of the dataset.

The algorithm works by randomly selecting a feature and a split point between the maximum

and minimum values of that feature. It then creates a binary tree structure by recursively repeating

this process on each of the two partitions generated by the split. The process stops when a predefined

stop criterion is met, such as when the tree has reached a maximum depth or the number of data

points in a partition falls below a threshold.

The intuition behind this algorithm is that anomalies are typically few and far between and

therefore require fewer splits to be isolated from the majority of the data. On the other hand, normal

points require more splits to be isolated. This means that anomalies will have a shorter average path

length in the tree than normal points. The algorithm uses the average path length of each data point

in the tree to measure its abnormality. Points with shorter path lengths are considered anomalies.

To determine the anomaly score of a data point, the algorithm constructs an ensemble of such

trees and averages their path lengths. The anomaly score is then computed as the exponential

function of the negative average path length. The algorithm can be tuned by adjusting the number
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of trees in the ensemble and the maximum depth of each tree.

Isolation Forest has several advantages over other anomaly detection algorithms. It is scalable,

meaning it can handle large datasets efficiently. It is also robust to outliers and can detect anomalies

in high-dimensional datasets.

A.2 Logistic Regression

Logistic Regression is a machine learning algorithm used for binary classification, which means

separating data points into two classes based on a set of input features. The goal of logistic regres-

sion is to find a linear decision boundary that separates the two classes as best as possible.

The algorithm works by modeling the probability of a data point belonging to the positive class

(class 1) as a function of its input features. This function is usually expressed using the logistic or

sigmoid function, which maps any real-valued input to a value between 0 and 1:

P (y = 1|x) = 1
1+e−z

where z is a linear combination of the input features:

z = β0 + β1x1 + β2x2 + ...+ βnxn

where x1, x2, ..., xn are the input features, β0, β1, ..., βn are the model parameters (also known

as coefficients or weights), and y is the target variable, which takes on a value of 1 for the positive

class and 0 for the negative class.

The logistic function transforms the linear combination of input features into a probability value

between 0 and 1. If the probability value is greater than or equal to a certain threshold (usually 0.5),

the data point is classified as belonging to the positive class; otherwise, it is classified as belonging

to the negative class.

The model parameters are learned by minimizing a cost function, such as the cross-entropy loss

function, using an optimization algorithm, such as gradient descent. The cost function measures

the difference between the predicted probabilities and the true class labels of the training data. The

optimization algorithm updates the model parameters iteratively to minimize the cost function.

Logistic Regression has several advantages over other classification algorithms. It is simple and

interpretable, meaning it can provide insights into which features are important for predicting the
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target variable. It also works well with both numerical and categorical input features and can handle

noisy data.

A.3 Decision Tree

Decision Tree is another machine learning algorithm used for classification, which means sep-

arating data points into different classes based on a set of input features. The algorithm creates a

tree-like model of decisions and their possible consequences to predict the target variable.

The algorithm works by recursively partitioning the input feature space into smaller regions or

nodes, where each node corresponds to a subset of the data points. The partition is performed based

on the value of one of the input features at a time, and the partitioning feature and value are chosen

such that they minimize the impurity of the resulting subsets.

The impurity of a node can be measured by different metrics, such as entropy, Gini impurity,

or misclassification rate. These metrics measure how much the classes are mixed within a node. A

node is considered pure if all the data points in the node belong to the same class.

The algorithm continues to recursively partition the input space until a stopping criterion is met,

such as reaching a maximum depth, having a minimum number of data points in a node, or having a

pure node. At each node, the algorithm selects the partitioning feature and value that minimize the

impurity of the resulting subsets.

Once the tree is constructed, new data points can be classified by following the decision path

from the root node to a leaf node based on their input feature values. The class label of the leaf node

is then assigned to the data point as the predicted class.

Decision Tree has several advantages over other classification algorithms. It is simple and inter-

pretable, meaning it can provide insights into which features are important for predicting the target

variable. It can also handle both numerical and categorical input features and can capture complex

nonlinear relationships between the input features and the target variable. However, Decision Tree

can suffer from overfitting, where the model captures noise in the training data and performs poorly

on new unseen data. To address this, various regularization techniques, such as pruning or ensemble

methods like Random Forest, can be used.
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A.4 Random Forest

Random Forest is a machine learning algorithm used for classification and regression tasks,

which is an ensemble method of decision trees. The algorithm creates multiple decision trees and

combines their predictions to make a final prediction.

The algorithm works by building a set of decision trees using a random subset of the training

data and a random subset of the input features at each split. This randomness helps to reduce the

correlation between the trees and improve the generalization ability of the model.

The number of trees in the ensemble is a hyperparameter that can be tuned based on the per-

formance on a validation set. The decision trees can be constructed using any of the decision tree

algorithms, such as CART or ID3.

To make a prediction for a new data point, each decision tree in the ensemble independently

predicts the class label, and the final prediction is obtained by combining the predictions of all the

trees. The most common way to combine the predictions is to use the majority vote. That is, the

class label with the most votes across all the trees is assigned as the final prediction.

Random Forest has several advantages over other classification algorithms. It is less prone to

overfitting than a single decision tree, as the randomness reduces the correlation between the trees

and improves the generalization ability of the model. It can handle both numerical and categorical

input features and can capture complex nonlinear relationships between the input features and the

target variable. It is also computationally efficient and can handle large datasets.
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