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Abstract

Application of GPU Accelerated Paired Explicit Runge-Kutta Methods to Turbulent Flow
Over a Sphere

Alex Lalaian

The design of next generation aircraft will rely on the use of high-fidelity computational fluid

dynamics (CFD). For this purpose, the Paired Explicit Runge-Kutta (P-ERK) time stepping method

was developed. It is a variation of explicit Runge-Kutta methods that allows the pairing of multiple

methods within a given simulation. This results in higher stability methods being used in stiff

regions, and lower cost methods being used in non-stiff regions, resulting in significant performance

improvements. This work explores the utility of Graphical Processing Unit (GPU) acceleration

combined with P-ERK schemes Subcritical flow over a smooth sphere at a Reynolds number (Re) of

3700 was used as the validation case. The flux reconstruction (FR) spatial discretization scheme was

used with the implicit Large Eddy Simulation (ILES) turbulence modelling approach. Instantaneous

quantities such as velocity fluctuations, Strouhal numbers, and time-averaged quantities such as

drag coefficient, pressure coefficient, back pressure ratio, and Reynolds stresses were obtained. In

addition, Q-criterion contours were generated and used to obtain separation angle and recirculation

bubble length. This study shows that the P-ERK method can achieve good agreement with both

reference simulation, and experimental data. Moreover, when compared to the traditional fourth

order Runge-Kutta (RK) method the P-ERK scheme shows an average speedup factor of 4.73 using

GPUs and of 5.82 using CPUs with regards to solution polynomial scaling, and with regards to

resource scaling it requires approximately 8 times more resources using CPUs, or each CPU has an

approximately 45 times greater runtime compared to one GPU . This is a significant reduction in

computational times, while maintaining accuracy.
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Chapter 1

Introduction

1.1 Motivation

In recent years, climate change and its impact on both the environment and human health has

come to the forefront of political discourse. Already, the changing climate has caused worsening

natural disasters and other major ecological changes [6]. This has resulted in various climate action

plans being adopted over the years, such as the Kyoto Protocol [7] with moderate levels of success.

The most recent climate discussions yielded the Paris Agreement [8]. While Canada had withdrawn

from the Kyoto Protocol in 2012 [9], it has committed itself to meeting the Paris Agreement’s

ambitious objectives. This agreement requires reducing greenhouse gas emissions to below 2005

levels by 2030. To achieve theses objectives, industries will have to develop many new, clean, and

efficient technologies, including the aviation industry.

With the adoption of the Waypoint 2050 project by the Air Transport Action Group (ATAG), the

aviation industry has committed itself to becoming net-zero for carbon emissions by 2050 among

a slew of other objectives aimed at tackling climate change [1]. These objectives are in line with

the goals of the Paris Agreement and go beyond them by setting a variety of other climate-related

objectives and by extending even further in time. Many different avenues have been proposed to

achieve these ambitious goals, such as improvements to infrastructure, the use of sustainable fuels

and investments in new technologies, to name a few. The ATAG estimates that, of the methods

proposed, new technologies such as innovations to airframes and propulsion systems will represent
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22% of the goal assuming that the industry does not simply remain on the current course [1]. Figure

1.1 shows how the ATAG breaks down contributions by method, with new technologies accounting

for 22% and the transition to sustainable fuels accounting for 61%.

Figure 1.1: Emission reduction contributions ATAG Scenario 1 [1]

This will require redesigns of airframes and propulsion systems. Innovative airframe designs

such as blended wing-body configurations like that explored by Airbus [10] and various high-lift

configurations show promise, but also pose significant design challenges as many of the tools de-

veloped to accelerate aircraft design no longer apply. When looking at improvements to propulsion

systems, one of the biggest roadblocks to innovation is the complexity of designing multi-stage axial

turbines and compressors. In fact, obtaining type certificates for new aircraft engines can take many

years and requires many flight tests, which results in high costs for new development programs.

Therefore, the increasing use of Computational Fluid Dynamics (CFD) to compute the solutions

of the flow in these difficult-to-analyse sections has enabled more cost-effective and rapid develop-

ment of innovative gas turbine engine designs. As the Navier-Stokes (NS) equations which govern

fluid behaviour cannot be solved exactly, CFD requires the use of numerical methods and various

turbulence modelling approaches to obtain solutions with engineering levels of accuracy as well as

feasible and affordable computational costs.
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1.2 Turbulence Modelling

There are three primary turbulence modelling approaches being used in modern CFD appli-

cations. These are the Direct Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes

(RANS) and, Large Eddy Simulation (LES). These will be explored in greater depth in Chapter

3 of this study.

1.2.1 Direct Numerical Simulation

While Direct Numerical Simulation is often grouped with the various turbulence modelling

methods, strictly speaking it is not a model at all. In fact, it simply refers to an approach where all

of the temporal and spatial scales found in the flow are numerically solved directly. The term DNS

was first used in 1970 by Orszag [11] in his study of small-scale isotropic incompressible turbulent

flow at a small Reynolds number of 35 to differentiate it from the various models being developed

at that time. It was further developed by Rogallo in 1981 [12] in their study of the effects of mean

shear, irrotational strain, and rotation on homogeneous turbulence.

While this method is relatively straightforward, its shortcomings led to the development of more

complex turbulence models. The primary issue with DNS stems from the fact that it directly solves

for all the spatial scales from the smallest to the largest. This imposes a requirement on the mesh at

high Reynolds numbers to be fine enough to capture the smallest scales such as at a wall boundary.

This results in high memory usage and means that for any given iteration a relatively large amount

of floating point operations are required. For most CFD applications this is simply not an effective

method due to the wide range of turbulent scales present and the resulting computational cost.

Most flow regimes that are of engineering interest are at high Reynolds numbers and include

wall boundaries within the computational domain, such as, flow over a plate, channel flow, flow in a

pipe, and flow over a sphere to name a few. Due to the cost associated with DNS, it was historically

not feasible to perform these. It was only in the late 1980s with the studies by Moser and Moin

[13] of flow in a curved channel, and by Kim et al [14] of plane channel flow that DNS became

feasible for wall-bounded turbulent flows. Since then, more studies have been conducted using

DNS, including studies of compressible flow [15, 16, 17, 18], turbulent mixing [19], shock-waves
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[20], and others. For modern applications, DNS is primarily used in conjunction with physical

experiments as a means of providing reliable validation data for the development of novel and

more efficient methods [21]. However, it remains prohibitively expensive for practical aerospace

applications.

1.2.2 Reynolds-Averaged Navier-Stokes

The Reynolds-Averaged Navier-Stokes (RANS) approach addresses some of the challenges

present with DNS. The primary principle of this method involves separating instantaneous quan-

tities, such as velocity, into a time-averaged component and its instantaneous fluctuation. It was

first proposed by Oswald Reynolds in 1894 [22]. However, it could not be practically applied at

that time, as there was no way to close the resulting system of equations for the mean flow. It

was only with the supporting work of Boussinesq in 1877 [23] that introduced the use of an eddy-

viscosity based model to close the system of equation, and the work of Prandtl in 1925 [24] who

introduced the concept of a mixing length as a method of determining the eddy-viscosity, that it

became possible to solve an approximate form of these equations.

RANS has the advantage of significantly reduced computational costs compared to DNS. This

is due to only solving a single steady field instead of the complex turbulent fields inherent to the

NS equations that must be solved directly with DNS. This also means that more generous grid

spacing can be used, further reducing the amount of computation required. This method however

suffers from two major drawbacks: it requires the use of turbulence models to close the system of

equations and by its time-averaged nature can only provide information about steady-state flow. For

many applications, computing time-averaged statistics is sufficient as these quantities will include

terms such as: lift, drag, pressure coefficient, and others. However, it is also often interesting to

obtain information about instantaneous behaviour in the flow which this method cannot provide.

Further work on RANS modelling has come in the form of a series of turbulence models to

more accurately close the system of equations. This includes the mixing-length approach proposed

by Prandlt [24]. This was however, found to be deficient as it tried to use clearly separated scales

to resolve the flow, which is unrealistic at high Reynolds. This made way for the method proposed

by Pandtl in 1945 [25] that used a model to obtain the turbulent kinetic energy and used that as a

4



basis for the eddy-viscosity instead. While methods based on this approach were considered more

accurate, they still had many of the drawbacks inherent to eddy-viscosity based methods. The work

of Rotta in 1951 [26] saw the emergence of Reynods-stress based turbulence closure models. This

approach remains the basis for most modern RANS methods used today. Significant contributions

in this field were made by Naot et al [27] (who first proposed a tensor-based approach), Jones

and Launder [28], Hanjalic and Launder [29], Launder, Reece and Rodi [30], Schumannn [31],

and Lumley [32]. Many different models are used for modern applications, each having various

advantages and disadvantages. Some of the more common models are the k − ϵ model developed

by Hanjalic and Launder[29], Menter’s shear stress transport turbulence model [33], and the k − ω

model developed by Wilcox [34]. It is important to consider the choice of model carefully when

using RANS for CFD as, depending on the particular situation, they can introduce significant error.

In particular, RANS models are generally deficient for transitional and separated turbulent flows,

which are found in a wide range of aerospace applications.

1.2.3 Large Eddy Simulation

While the DNS method solves NS at all scales of motion from the smallest (Kolmogorov scale)

to the largest, and the RANS method instead only solves the time-averaged large scale behaviour

and models all of the smaller-scale behaviour, LES serves as a compromise between these two

extremes. LES was initially proposed by Smagorinsky in 1963 [35] for meteorological applications

and was first successfully used in an engineering context by Deardorff in 1970 [36] and Schumann

in 1975 [37].

Instead of time-averaging the NS equation, LES uses filtering to eliminate only the smallest

scales which means that it computes all of the instantaneous parameters of the flow for most scales

and can therefore capture most of its unsteady behaviour, which RANS cannot including: vortex

shedding frequencies, boundary layer behaviour, and more. This also opens up LES method to

many interesting applications, such as more accurate and informative combustion modelling [38]

where there is significant small-scale transient behaviour that is pertinent to capture. This, however,

means that its computational cost is significantly greater than for a similar RANS simulation; the

increase being in the order of 10 to 100 times [39] is not negligible and must therefore be taken into
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consideration when selecting a turbulence modelling approach.

Primary advancements with LES have to do with the development of novel sub-grid scale (SGS)

models to successfully resolve the flow behaviour at the very small scales that are no longer solved

directly by the LES method. This includes work by: Leonard in 1974 who proposed the usage of

a kernel to eliminate scales under a given length-scale [40], Bardino et al in 1983 [41], Speziale in

1985 [42], Germano et al in 1991 [43], and Germano in 1992 [44] who proposed and tested various

sub-grid scale modelling approaches. Additionally, novel LES methods that do not make use of an

SGS model have been developed, such as Implicit Large Eddy Simulation (ILES), which uses the

numerical truncation error to model the SGS behaviour first proposed by Boris in 1990 [45]. This

method is of particular interest for this study and will be explored in greater depth in Chapter 3.

1.3 Discretization

1.3.1 Spatial Discretization Schemes

To be able to apply DNS, RANS or LES to the governing partial differential equations (PDE)

they must first be discretized. Many methods for spatial discretization have been proposed over

the years such as the: Finite Difference (FD), Finite Volume (FV), Finite Element (FE), Discon-

tinuous Galerkin (DG) [46], Spectral Volume (SV) [47], Spectral Difference (SD) [48], and Flux

Reconstruction (FR) [49] methods.

The finite difference method is one of the oldest spatial discretization methods commonly used

in CFD [50]. It consists of evaluating a given function at an arbitrary number of points using a

Taylor expansion to approximate the local solution. For a small enough grid spacing, the truncation

error can be reduced sufficiently so that the derivative for any given point can be approximated

explicitly using information from nearby points. This method can obtain high orders of accuracy

depending on the order of the derivatives being computed and is relatively simple to understand and

implement. It struggles greatly however, when applied to irregular geometries requiring magnitudes

more effort in the implementation so as to be applicable to such cases. This drawback is the primary

reason why it is not more widely used [51, 52].

The finite volume method traces its origins to the 1970s and work conducted by McDonald [53].
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It addresses the structured grid restrictions of the FD method allowing FV to be applied to a wider

range of geometries. It treats each cell in the mesh as a control volume with a piecewise constant

internal solution and with discontinuous boundaries. In addition, it uses the governing equations in

their integral form which, when combined with the previously mentioned characteristics, results in

the method being simple to implement, having low memory usage, and relatively quick computation

speeds. It’s cost increases drastically however as the order of the method increases and extensions to

high order are non-trivial on unstructured meshes. This makes the method unsuitable for high-order

applications [51, 52].

The finite element method has origins in structural analysis but has been extended to fluid dy-

namic applications as well. It comprises a family of methods that share a similar structure. With

the finite element method, the solution is evaluated at a number of points. Basis functions are used

at each point to approximate the solution surrounding it with a continuity constraint for the solution

to match at each interface with neighbouring elements. The solution produced by FEM is therefore

defined globally and is continuous over the entire domain. This is, however, computationally inten-

sive requiring the inversion of a global mass matrix, and suffers from stability issues when applied

to certain type of flow such as compressible flow [51, 52].

The discontinuous Galerkin method is, strictly speaking, a type of FE method [50]. It attempts

to resolve the issues inherent to FE methods by implementing features from FV methods in its

framework. It evaluates the solution in its integral form at a number of points contained within

control volumes. The solution is expressed within each volume by a polynomial passing through

a set of solution points. This results in the solution being continuous within each element, and

discontinuous at element interfaces. This, therefore, requires integration quadratures across each

element boundary to compute common fluxes. Its internal polynomial representation results in the

method being able to scale effectively to high orders, unlike the FV method, while having fewer

stability issues than the FE method, and reduced computational cost. Additionally, as the solution

is evaluated locally instead of globally, this method can be easily parallelized [50, 52].

The spectral volume method is in many ways similar to the DG method [47]. While the DG

method makes use of a control volume and evaluates the solution at a series of points within said

volume, the SV method instead subdivides the “spectral volume” into a set of “control volumes”.
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The solution is then approximated using independently-computed averages for each control volume

to obtain a solution for the spectral volume. The fluxes at each spectral volume boundary are

computed similarly to the DG method. This results in the method maintaining the advantages of the

FV method while allowing it to scale to higher orders by modifying the number and shape of the

control volumes which is computationally relatively inexpensive [47, 52, 54].

The spectral difference method is very similar to the DG and SV methods [48]. Its difference lies

in that it combines elements from the FD and FV methods. In fact, in 1D the SV and SD methods

are identical [54]. The solution is evaluated in its differential form at a set of solution points and

the flux is evaluated at a set of flux points within a given element. Generally, Gauss quadrature

points are used for the solution points and the Gauss-Lobatto quadrature points are used for the flux

points [55]. As with the FD method, the solution is evaluated at the solution points exclusively.

The flux derivatives are expressed at the flux points and are used to couple the solution in a given

cell with its neighbours. As the solution flux is discontinuous, a common flux must be computed at

the boundaries of the elements as with the DG method. This method is very promising with good

performance at high orders and high levels of stability [48, 55].

The flux reconstruction method serves as a framework by which most other methods can be

recovered. This gives it a special advantage over other methods as whichever method is most appro-

priate for the application can be used in a smart way. It does this by introducing a general correction

field for the flux. Depending on the choice of correction field various other methods such as: FV,

DG, SD, and SV can be recovered [49]. Table 1.2 is an extension of the table generated by Hes-

thaven and Warburton [56] illustrating the relative advantages of the various methods. Due to its

advantages, the FR method is of particular interest for this study and will be explored in Chapter 4.

1.3.2 Temporal Discretization Schemes

Knowing the initial and boundary conditions of a given governing equation, and having selected

an appropriate spatial discretization method, the solution for a single initial instant in time can be

evaluated. However, for DNS and LES the objective when performing CFD is to evaluate the

solution over a period of time. Whether it is to obtain time-averaged statistics such as the pressure

coefficient (Cp) or to obtain instantaneous values such as shedding frequencies, a method must be
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Figure 1.2: Comparison of spatial schemes [2]

used to march time forward. These methods are known as temporal discretization methods. There

are two primary families of discretization schemes: explicit, and implicit schemes, as well as the

family of implicit-explicit schemes (IMEX) that use parts of each.

Explicit methods are defined as time-marching methods that rely solely on the current and past

times to determine future times. Each time step can therefore be solved explicitly without requiring

iterative methods to arrive at a converged future time. When explicit methods are discussed in the

context of CFD, it is usually in reference to the explicit Runge-Kutta (RK) methods [57]. These

methods consist of splitting a given time step into an arbitrary number of intermediate stages. The

intermediate stage solutions are used to obtain the subsequent stage residuals and are combined

with appropriate coefficients to obtain the solution for the next time step. The coefficients used are

organized with the help of a Butcher tableau. For an explicit method, the tableau will always be

lower triangular. This method has many advantages such as being simple to implement, relatively

quick per step and can scale to high-order accuracy in a straightforward manner.

However, it also has many significant disadvantages, such as only being able to achieve con-

ditional stability for the step size. This stability constraint has been studied extensively over the

years, such as by Courant, Friedrichs and Lewy in 1928 [58] in their study that established that the

ratio of the flow velocity multiplied with the time step size divided by the spatial step size must be

maintained below a limit to achieve stability for an explicit method. This means that for explicit

methods, the number of computations required to achieve a desired final time while maintaining

stability can be high. In addition, as the order of the solution increases, the number of intermediate
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stages required also increases. This results in large amounts of memory being needed to store the

intermediate stages’ residuals to be able to compute the next solution’s time step. [57]

To circumvent the limitations of explicit time stepping methods, implicit schemes were devel-

oped. Implicit schemes differ from explicit schemes in that they require information of a future

time step to resolve the solution. As that information cannot be obtained explicitly without using

an explicit time stepping method as above, iterative numerical methods are employed to obtain the

information at the future time. There are many possible implicit methods that have been developed

over the years, and they generally differ in what current and future values are required to arrive at a

solution. [59]

An example of an implicit method would be the implicit Runge-Kutta methods (IRK). These

are conceptually similar to the explicit RK methods. However, their Bucher tableaus are not lower

triangular which means that their stages are at least partially dependent on future stages for any

given stage. Therefore, to compute a given time step, all of the intermediate stages must be treated

as a system of equations, and employing iterative methods, achieve a converged solution for each

stage. There are many ways to go about performing these iterations: the Beam-Warming algorithm

[60], Jacobi [61], Gauss-Seidel [62], or Krylov subspace methods such as conjugate gradient or

generalized minimal residual method (GMRES) [63].

The primary advantage of implicit methods has to do with their stability. They can be uncon-

ditionally linearly stable, meaning that arbitrarily large steps can be taken. However, to achieve

temporal convergence, relatively complex computational iterations must be performed repeatedly

until convergence is achieved. In addition, these methods are applied to the entire solution simul-

taneously. This is time- and resource-intensive. Therefore, the set of problems where implicit

methods are preferable over explicit methods is limited to highly stiff systems because the com-

putational cost of the implicit method will be lesser than the cost of the explicit method due to its

stability constraints [59].

Implicit-explicit schemes aim to alleviate the limitations of each of the implicit and explicit

methods outlined above. They do so by applying an unconditionally stable implicit method for

the stiff portions of the solution, and a low-cost explicit method in the non-stiff portion of the

solution. They are paired together such that a time stepping method is obtained that maintains the
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order of accuracy of the component methods. This means that IMEX methods will have a lower

computational cost than fully implicit methods, while circumventing the stability restrictions of

explicit methods. IMEX methods have been shown to achieve speed up factors of 91 and a 70%

reduction in memory usage compared to fully implicit schemes [64].

However, these methods have issues extending to high order due to the nature of the implicit

portion requiring many simultaneous computations, which in turn demands large amounts of mem-

ory and computational power. In fact for hexahedral elements, it can be expected that a 5th order

scheme will use approximately 250 times the amount of memory as a second order scheme. This

scaling similarly applies to the dimensionality of the solution where a three-dimensional solution

could be expected to use 6.5 times the memory of a one-dimensional solution [65].

While IMEX schemes are promising as a method to solve locally stiff problems at a reduced

cost, their complexity makes implementation and use challenging [59]. This means that it is of

interest to find a different method that does not require the simultaneous use of many variables,

that is relatively simple to implement, that scales to higher orders, and that can at least partially

circumvent issues related to numerical stiffness. The Paired Explicit Runge-Kutta method proposed

by Vermeire in 2019 addresses these requirements using families of fully explicit methods [66]. The

method consists of developing a special kind of Butcher tableau that allows low-stability, low cost,

and high-stability, high cost RK methods to be used together seamlessly for any given problem.

High stability methods are used for stiff regions, whereas low-stability methods are used for low

stiffness regions. This allows the method to mitigate the effects of numerical stiffness without using

implicit methods. It has previously been extended to third-order accuracy by Hedayati Nasab, where

speedup factors up to 4 were observed [67]. This method is the focus of the current study and will

be explored in greater detail in Chapter 5.

1.4 High-Performance Computing

Moore’s law, as seen in Figure 1.3 stipulates that the number of transistors which can be fitted on

a microchip will double approximately every two years and will therefore allow for smaller process

sizes to be utilized. For the past six decades, this has held true and has allowed process levels to
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advance from 20 micrometers introduced by RCA process to a current process of 3 nanometres

introduced by TSMC [68]. These leaps have allowed processors and computers to become more

affordable and powerful year over year, and has lead to the widespread use of computers both for

personal computing and industrial applications. In turn, this enabled progress in fields which had

previously been constrained due to the lack of high computational power. Similarly, the clock rate

(or frequency) of the processor, which can be defined as the number of operations in can perform

per unit of time, has seen an important increase from an initial 1 Hz to more than 5 GHz.

Figure 1.3: Moore’s law [3]

These important advances have allowed high-performance computing to accelerate the devel-

opment of research fields, and also allowed for the development of more advanced types of com-

putation to further increase efficiency and reduce compute time for applications and processes.

High-performance computing typically involves the use of computer clusters made up of individual
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computers referred to as nodes. One of these methods is called parallel computing, where multi-

ple computers are utilized for a given application to tackle its different aspects simultaneously and

therefore increase the time efficiency. As clusters have a number of nodes, this allows for a higher

degree of parallelization due to their interconnection. A task can be broken down into sub-tasks,

which can then be performed concurrently on separate computing nodes or on a single node instead

of sequentially on a single computer. It should be mentioned that as the number of transistors on

a process has increased exponentially, this has resulted in an increased number of resources, such

as computer cores, being able to be fit in a single chip [69]. Modern computers therefore make use

of parallel computing as well to better handle the increasing amount of resources made available

to them. The benefits of more efficient parallel processes ultimately extended beyond its usage in

high-performance computing to every day applications.

While Moore’s law and parallel computing methods have enabled central processing units

(CPU) to achieve important performance milestones, the difficulty of further reducing the size of

components and issues with effective heat dissipation have started to limit the possible performance

gains using this method [70]. This is in part due to the architecture used in CPUs that prioritizes

performing a few computations at very high speeds by making use of larger and more powerful

cores. This is ideal for performing complex operations sequentially with low latency. Graphics

processing units (GPU) in turn rely on a large number of smaller cores to perform many operations

in parallel. This is due to their original purpose of rendering images and video in real time requiring

many repetitive operations. The key factor in maximizing the performance gain when using GPUs

is to ensure that the operation to be performed can be broken up into many smaller tasks because

otherwise it is possible that not all of the resources available can be utilized effectively. Figure

1.4 illustrates the advantages of parallelization and GPU acceleration when applied to CFD using

Ansys Fluent. It shows the speedup experienced when using Ansys Fluent to perform aerodynamic

analysis of a car which is significant. In fact it shows that even a single GPU can outperform an

entire cluster of CPUs.

Another key element to consider is memory. Memory dictates the maximum size and amount

of variables that can be retained by the program while it is running. The availability of memory

has increased over time just as with CPU performance. This has enabled larger and more complex
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Figure 1.4: Speedup for different CPU and GPU clusters [4]

programs to be created and executed effectively. In the case of CFD, the memory requirement scales

primarily with the number of elements in the computational domain, the order of the stored solution,

and the complexity of the methods used. Therefore, high accuracy CFD simulations tend to require

large amounts of memory.

In the case of CFD, graphics acceleration can provide significant improvement to computation

times. This is due to the nature of CFD requiring several similar computations to be performed over

a domain. However, depending on the methods used, this gain can be lessened or increased. The

primary factor to consider is the element locality of the method. In other words, is the solution eval-

uated at each element independently with minimal impact from its neighbours, or is it dependent on

information from larger portions of the domain. High element locality is desired when parallelizing

and is therefore desirable when performing GPU acceleration. This indicates that, of the methods

outlined in Chapter 1.3, the FR method among spatial discretization methods [71] and explicit time

stepping methods, such as the explicit RK methods, among time stepping methods are especially

suited to obtaining performance gains via GPU acceleration.
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1.5 Objectives and Contributions

The P-ERK method has shown promise for reducing computation times while requiring signif-

icantly reduced resources. However, there is not an abundance of studies exploring this method.

The objective of this study is to explore the capabilities of the P-ERK scheme including: accuracy,

computational performance, and compatibility with various hardware configurations.

To achieve this objective, the formulation for the general P-ERK scheme will be presented. A

subcritical flow over a sphere will be simulated. Instantaneous and time-averaged statistics will be

collected. Comparisons will be drawn to reference numerical and experimental data as a means of

validation. Performance data will be gathered for a variety of polynomial degrees and for a variety

of hardware configurations. The collected performance data will be compared to the classical fourth

order RK method.

The contributions of this work consists of furthering the body of knowledge associated with this

novel time stepping scheme.

1.6 Thesis Outline

Chapter 1 explores the background and historical context of this work including: turbulence

modelling approaches, spatial discretization, temporal discretization, trends in high-performance

computing, and an overview of the challenges and objectives of this study.

Chapter 2 presents the theoretical concepts of fluid mechanics. The governing equations of fluid

mechanics such as the conservation laws and the additional equation of state are explored including

the mathematical manipulations that are required to employ them in a computational context.

Chapter 3 presents the various turbulence modelling approaches mathematical. The form of the

governing equations is presented as well as their limitations.

Chapter 4 presents the spatial discretization scheme employed for this study. The theoretical

basis for the method is explored primarily in its one-dimensional expression and its extension into

many dimensions.

Chapter 5 presents the theoretical basis for explicit time discretization schemes such as: the

classical Runge-Kutta schemes and the focus of this study, the Paired Explicit Runge-Kutta schemes.
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Chapter 6 presents numerical results obtained in the context of this study to provide supporting

evidence of the claims being made of both accuracy and performance.

Chapter 7 concludes this work with a summary and recommendations for future work.
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Chapter 2

Governing Equations

Fluid behaviour is described by the following set of 3 fundamental laws. [72]

(1) Conservation of mass

(2) Conservation of momentum

(3) Conservation of energy

In this section, these governing equations will be presented in their integral and divergence

forms.

2.1 Conservation of Mass

The law of conservation of mass states that for a closed system no mass may be created or

destroyed [72]. This can be expressed mathematically as

dm

dt
= 0. (1)

According to the Reynolds transport theorem, two terms must be determined to compute this rate.

First, the change in quantity within the control volume and second, the rate of flow into or out of

the volume of the same quantity. Knowing that the amount of mass (m) per unit volume (V ) also

known as the density ρ = ρ(x⃗, t), where x⃗ is position in space and t is time can be obtained from
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m
V = ρ, it follows the total amount of mass in the volume is

m(t) =

ˆ
V
ρ dV. (2)

Knowing the total mass contained in the volume, its rate of change can be obtained by taking its

time derivative
dm

dt
=

d

dt

ˆ
V
ρ dV. (3)

The rate of mass flow into the volume can itself be defined as the sum of the flow entering the

volume from its surfaces. This can be expressed as

˛
S
ρ(v⃗ · n̂) dS, (4)

where S represents the surfaces bounding the volume, v⃗ represents the velocity of the incom-

ing/outgoing flow, and n̂ is the outward pointing normal vector to the surface. These quantities

are illustrated in Figure 2.1. They can then be combined to obtain the final expression

Figure 2.1: Control Volume

dm

dt
=

d

dt

ˆ
V
ρ dV +

˛
S
ρ(v⃗ · n̂) dS = 0. (5)
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2.2 Conservation of Momentum

The law of conservation of momentum is also know as Newton’s second law, states that the sum

of forces (
∑︁

F⃗ ) applied to a body is equal to the time rate of change of its momentum [72]. For a

constant mass it can be expressed simply as

∑︂
F⃗ = ma⃗, (6)

where a⃗ is the acceleration. However, in a fluid system the mass can change and so it must be

expressed in the general form ∑︂
F⃗ =

d(mv⃗)

dt
(7)

Using the Reynolds transport theorem, and recognizing that the momentum for a unit volume is ρv⃗,

it can be expressed as ∑︂
F⃗ =

d

dt

ˆ
V
ρv⃗ dV +

˛
S
ρv⃗(v⃗ · n̂) dS. (8)

Having obtained this expression,
∑︁

F⃗ must now be determined. This requires having knowledge

of all the forces acting on the volume which includes surface and body terms. For the current

application, body forces such as gravity will be ignored. Two primary surface forces are considered:

pressure and shear. Firstly, the pressure (p) is a distributed force that acts over a surface and is

always perpendicular to the surface it is affecting. As such it can be expressed as the following

F⃗ p =

˛
S
−pn̂ dS. (9)

Secondly, the viscous effects must be considered. Shear, unlike pressure, acts parallel to the surface

it is affecting. It can be expressed using the Cauchy stress tensor (τ) which for a Newtonian fluid is

defined as [73]

τ = µ(∇v⃗ + (∇v⃗)T )− 2

3
µ(∇v⃗)I, (10)
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were µ is the dynamic viscosity, and I is the identity matrix. From this expression, the total viscous

force can be obtained by integrating it over the surface, obtaining

F⃗ v =

˛
S
τ · n̂ dS. (11)

Combining the terms computed above, conservation of momentum can be expressed as

d

dt

ˆ
V
ρv⃗ dV +

˛
S
ρv⃗(v⃗ · n̂) dS =

∑︂
F⃗ =

˛
S
−pn̂ dS +

˛
S
τ · n̂ dS . (12)

This can be further simplified by grouping like terms together to obtain

d

dt

ˆ
V
ρv⃗ dV +

˛
S
(ρv⃗ ⊗ v⃗ − σ) · n̂ dS, (13)

where

σ = −pI + τ. (14)

2.3 Conservation of Energy

Conservation of energy states that the rate of change of energy (E) within a system is equal to

the heat added to the system (Q̇) minus the work produced by the system on its surroundings (Ẇ )

[72]. It can be expressed as
dE

dt
= Q̇− Ẇ . (15)

From the above, the rate of change of the energy in a unit volume (ρe) can be obtained from:

ρe = ρ(cvT +
1

2
(v⃗ · v⃗)), (16)

where e is the specific energy, cv is the constant volume specific heat, and T is the temperature.

Using the Reynolds transport theorem, the above equation can be written as

d

dt

ˆ
V
ρe dV +

˛
S
ρe(v⃗ ·+n̂) dS = Q̇− Ẇ (17)
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As with the conservation of momentum, knowledge of the terms on the right hand side is needed to

resolve this equation. Considering that body forces are being neglected, work can only be generated

by surface forces acting on the volume, such as pressure and viscosity, while heat can only be

generated via thermal diffusion through conduction. As pressure acts always perpendicularly to the

surface, its contribution to work can be expressed as

Wp =

˛
S
(v⃗ · n̂). (18)

Knowing that shear acts parallel to the surface, and using the Cauchy stress tensor defined above,

its contribution to work can be written as

Wv = −
˛
S
τ · v⃗ dS, (19)

where work is defined as energy leaving the system, hence the negative expression. Heat transfer

through convection can be expressed using Fourier’s law. Therefore, the heat dispersed at any given

point is given by:

q⃗ = −k∇T, (20)

where q⃗ is the heat diffusion at a given point, k is the thermal conductivity of the medium, and where

∇ is d
dx⃗ . Taking into account that only the normal component of the heat flux enters the volume at

any given point, the total heat flow for the surface can be obtained by:

Q̇ =

˛
S
k∇T · n̂ dS. (21)

Combining the above equations, the conservation of energy can be expressed as

d

dt

ˆ
V
ρe dV +

˛
S
ρe(v⃗ · n̂) dS = Q̇− Ẇ = −

˛
S
p(v⃗ · n̂) +

˛
S
τ v⃗ dS +

˛
S
k∇T · n̂ dS, (22)

which can be further simplified by grouping the surface terms together into

d

dt

ˆ
V
ρe dV +

˛
S
(ρev⃗ + pv⃗ − τ v⃗ − k∇T ) · n̂ dS = 0. (23)
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2.4 Equation of State

While the above laws describe fluid flow, there are too many variables to solve them explicitly,

therefore an additional relation must be defined to be able to close them. Generally, the ideal gas

law is used to resolve this issue. For fluids it can be described as

p = ρRT (24)

where (R) is the specific gas constant for the fluid [50]. While it is convenient to make use of this

equation, it must be acknowledged that not all real gasses behave as ideal gasses. Notably, at high

temperatures and high compression levels, the behaviour of real gasses deviates strongly from that

described by the ideal gas law.

2.5 Compact Form

As all three laws above are obtained using the Reynolds transport theorem, they have similar

forms. They all include the time derivative of a volume integral of the relevant quantity, and a set of

surface integrals of the fluxes across the boundary. Therefore the equations can be combined into a

set of vectors to represent them compactly [72]. The first vector will be the conserved quantities

w⃗ =

⎡⎢⎢⎢⎢⎣
ρ

ρv⃗

ρe

⎤⎥⎥⎥⎥⎦ . (25)

The second, the tensor of the inviscid fluxes

F⃗ inviscid =

⎡⎢⎢⎢⎢⎣
ρv⃗

ρv⃗ ⊗ v⃗ + pI

ρev⃗ + pv⃗

⎤⎥⎥⎥⎥⎦ , (26)
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and the third being the tensor of the viscous fluxes:

F⃗ viscous =

⎡⎢⎢⎢⎢⎣
0

τ

τ v⃗ − q⃗

⎤⎥⎥⎥⎥⎦ . (27)

Having established these tensor forms, the integral form of the Navier-Stokes equations can be

written as:
d

dt

ˆ
V
w⃗ dV +

˛
S

[︃
F⃗ inviscid − F⃗ viscous

]︃
· n̂ dS = 0 (28)

2.6 Divergence Form

These equations can be expressed in their integral form, as above, or in their divergence form

[72]. The primary difference between these forms is related to their applicability. The integral form

can be applied to a control volume, while the divergence form is applied to points. This means that

for many applications the integral form is sufficient and in CFD it is applied when using the finite

volume method. However, for many CFD applications (such as when using the DG or FR spatial

discretization methods) the conserved variables are computed at points and therefore the divergence

form of the equations is required. To convert from the integral form to the divergence form, the

divergence theorem needs to be applied to each equation. The divergence theorem establishes an

equivalence between volume integrals of a vector field and a surface integral of the same vector

multiplied by the normal unit vector to the surface

ˆ
V
∇F⃗ dV =

˛
S
F⃗ · n̂ dS. (29)

2.6.1 Conservation of Mass

Applying the divergence theorem to Equation 5 the divergence form of conservation of mass

can be obtained. The integral form of conservation of mass is

d

dt

ˆ
V
ρ dV +

ˆ
V
∇ · (ρv⃗) dV = 0. (30)
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Noting that in general derivatives and integrals are commutable and that both integrals in Equation

5 have the same bounds this can be compacted to

ˆ
V

∂ρ

∂t
+∇ · (ρv⃗) dV = 0. (31)

For this equation to be valid other than in trivial cases, the integrand must satisfy the condition:

∂ρ

∂t
+∇ · (ρv⃗) = 0. (32)

2.6.2 Conservation of momentum

Applying the same manipulations as above to Equation 13 the divergence form of the momen-

tum equation can be obtained

∂(ρv⃗)

∂t
+∇ · (ρv⃗ ⊗ v⃗ − σ) = 0. (33)

2.6.3 Conservation of energy

Similarly, applying the above manipulations to Equation 23 the divergence form of conservation

of energy is obtained
∂(ρe)

∂t
+∇ · (ρev⃗ + ρv⃗ − τ v⃗ − k∇T ) = 0. (34)

2.6.4 Compact Divergence Form

The divergence theorem can also be directly applied to the compact integral form in Equation

28 obtaining
∂w⃗

∂t
+∇ ·

[︃
F⃗ inviscid − F⃗ viscous

]︃
= 0. (35)
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Chapter 3

Turbulence Modelling

One of the major challenges when employing CFD to resolve the Navier-Stokes equations is

the handling of turbulence. Extensive research has been conducted over time to develop methods

to handle turbulence in more effective ways. For modern applications, three different approaches to

turbulence modelling are used depending on the situation. Each of these methods has its advantages

and disadvantages. They are the direct numerical simulation [11] method, the Reynolds-Averaged

Navier-Stokes [22] method and, large eddy simulation [35] method.

3.1 Direct Numerical Simulation

The DNS method is technically not a modelling method at all. It consists of solving directly all

scales of the flow from the smallest scales to the largest. This is the most intuitive and straightfor-

ward method of solving these equations.

Kolmogorov in his 1941 theory [74] proposed a method by which the smallest turbulent scales

can be determined. Considering that turbulence attains its energy from the mean flow and that large

eddies pass down their energy to smaller eddies at a rate (Π) of [75]

Π ≈ u3/ℓ, (36)

where ℓ is the integral scale and noting that for steady turbulence, the small scale rate of energy
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decay ϵ must be equivalent to Π, it can be expressed as

ϵ ≈ Π ≈ u3/ℓ. (37)

Setting η to represent the characteristic length such that vη/ν ≈ 1 where ν is the kinematic viscos-

ity, and knowing that the small scale dissipation rate can be expressed as

ϵ ≈ νv2/η2 (38)

by eliminating v the following expression can be obtained

η = (
ν3

ϵ
)
1
4 = (

ul

ν
)−

3
4 l, (39)

which is known as the Kolmogorov micro scale [75]. Knowing that the Reynolds number (Re)

which is a measure of the relative strength of the viscosity [72] in a flow, can be expressed as

Re =
ul

ν
, (40)

the above identity can be rewritten as

η = Re−3/4l. (41)

This indicates that as the Reynolds number increases, the Kolmogorov scales become smaller. This

is especially significant considering that to solve these scales the spatial step size (∆x) cannot be

much larger than η. It follows, then, that the minimum approximate number of points for a three-

dimensional square mesh using DNS can be obtained from

N3
x ≈

(︃
Lbox

∆x

)︃3

≈
(︃
Lbox

l

)︃3

Re(
3
4
)
3

, (42)

where Nx is the number of grid points in any given direction and LBOX is the flow field size in a

given direction. As this expression will only give minimal resolution sufficient to capture a single
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eddy it stands that

Re ≤ N
4
3 , (43)

is needed to accurately capture flow behaviour at these scales. This is problematic as for moderate

to high Reynolds numbers the amount of points required scales very poorly. This is especially

challenging when considering that in Orzarg’s work [11] the Reynolds number was only Re = 20

while the ranges that are of interest to engineers range from such small values to Re ≥ 106. Because

of these limitations, even with modern hardware, DNS is only used for a relatively small range of

problems.

3.2 Reynolds-Averaged Navier-Stokes

The Reynolds-Averaged Navier-Stokes method is the first major turbulence modelling frame-

work that was developed and it is still in use today. This method, models all turbulent scales us-

ing a turbulence model obtaining a steady-state solution. The NS equation is then computed in

a time-averaged form. By applying Reynolds averaging to the velocity, its mean and fluctuating

components are separated obtaining

u(−→x , t) = u(−→x ) + u(−→x , t)′, (44)

where u(−→x , t) is the instantaneous velocity,u(−→x ) is the time-averaged velocity and u(−→x , t)′ is the

velocity fluctuation. Noting the properties of Reynolds averaging include 1) time-averaging being a

linear process

αu+ βv = αu+ βv. (45)

2) Time-averaging of integrals and derivatives commutes

ˆ
u dy =

ˆ
udy,

∂u

∂t
=

∂u

∂t
. (46)
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3) the time-average of the fluctuation of a variable is always zero

u′ = 0, (47)

and 4) the average of a product is obtained as

uv = uv + u′v′, (48)

from which it follows that

u = u, u′v = 0, (49)

and, applying the same method to the momentum equation the time-average form for incompressible

Navier-Stokes

ρ

(︃
∂vi
∂t

+
∂

∂xj
(vjvi)

)︃
= − ∂p

∂xi
+

∂

∂xj
(τ ji − ρv′jv

′
i), (50)

can be obtained [72] where ρv′jv
′
i is known as the Reynolds stress. For a three-dimensional flow

case, 6 Reynolds stresses are generated which are unknowns that must be solved in addition to

the variables inherent to the governing equations in 3D to close the system of equations. This is

challenging as in this current form the system of equations is under defined. Various turbulence

models have been developed to address this issue. The selection of an appropriate turbulence model

is the primary challenge when using RANS.

It is important to note that by the very nature of time-averaging, the RANS method can only

ever produce accurate results for steady-state flow behaviour. For this reason it struggles when

simulating transient behaviours such as boundary layer separation, vortex shedding, and stall.

3.3 Large Eddy Simulation

Large Eddy Simulation serves as a middle ground between DNS and RANS. LES solves most

spatial scales directly while using filtering methods to truncate the very small scale behaviours.

This can be seen clearly in Figure 3.1 below. This means that this method can provide information
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on transient behaviours, unlike RANS, but at a significantly reduced cost compared to DNS. The

Figure 3.1: Turbulent kinetic energy cascade [5]

form of the NS equation used by LES is in many ways similar to that of RANS. Whereas RANS

decomposes the velocity field into its mean and fluctuating components, LES decomposes it into

filtered and residual components

u = ū+ u′, (51)

where u is the velocity field, ū is the filtered velocity, and u′ is the residual. While RANS time-

averages the NS equations, LES uses spatial filtering to obtain, for incompressible Navier-Stokes

∂ūi
∂t

+
∂(uiuj¯ )

∂xj
=

1

ρ
(
∂τRij
∂xj

− ∂p̄

∂xi
) + ν∇2ūi, (52)

where

τRij = ρ[ūiūj − uiuj¯ ], (53)

is the residual stress tensor. The residual stress tensor is analogous the the Reynolds stresses found

in the RANS equations and must be modeled somehow [75]. More importantly though, LES only
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requires modelling for a small fraction of turbulent length scales, whereas RANS must model the

entire turbulent cascade. Generally a sub-grid-scale (SGS) turbulence model is used such as those

developed by Leonard [40]. However, the implicit large eddy simulation approach allows the trun-

cation error of the method to resolve these SGS eddies instead [45]. The turbulence modelling

approach implemented in the the High-Order Unstructured Solver (HORUS) used for this study is

an ILES method.
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Chapter 4

Spatial Discretization

4.1 Flux Reconstruction

While there are many methods of spatial discretization that have been proposed, such as those

outlined earlier in Chapter 1.3.1, in this study the flux reconstruction approach initially proposed

by H. T. Huynh [49] is of interest. Its one-dimensional and multi-dimensional expressions will be

provided in the following section. A special characteristic of the FR scheme is its ability to recover

several different high order methods such as DG, SV, and SD [49, 76]. It was further extended into

2D by Wang and Gao [76], and into 3D by both Haga et al using the Lifting Collocation Penalty

(LCP) formulation [77], and by Wang and Gao using the Correction Procedure via Reconstruction

(CPR) scheme [76]. Additionally, Vincent et al extended the 1D formulation to develop a class

of energy stable FR methods [78] which were later extended into 3D by Williams and Jameson

[79]. Many other contributions include: Romero and Jameson’s extensions to triangular elements

[80], Vermeire and Vincent’s applications to ILES [81, 82], Vermeire and Nadarajah’s application

to adaptive IMEX schemes [65], Vermeire et al’s application to turbulent flow over an airfoil [83],

Pereira and Vermeire’s work on hybridized flux reconstruction schemes [84], and others.
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4.1.1 One-Dimensional

A one dimensional conservation law can be written as

∂u

∂t
+

∂F

∂x
= 0, (54)

where u represents the conserved variables and F represents the fluxes of the variables. The FR

approach discretizes equations of this form by first dividing the computational domain (Ω) into Ni

non-overlapping elements (Ωi) where x ∈ [xi,L, xi,R] are respectively the left and right bounds of

each element as shown in Figure 4.1. Then, for simplicity every element Ωi is mapped from the

Figure 4.1: 1D discretization

physical space x ∈ R to a reference space ξ ∈ [−1, 1] were the reference element Ω′
i is used. This

transformation is performed by

x(ξ) =
1

2
(xi,L + xi,R + ξhi) � ξ(x) =

2

hi

(
x−

xi,L,+xi,R
2

)
, (55)

where hi represents the size of the element in physical space. The PDE is then converted using:

∂ξ

∂x
=

2

hi
�

∂x

∂ξ
=

hi
2

(56)

obtaining
∂ui
∂t

+
2

hi

∂Fx,i

∂ξ
= 0. (57)

Within each element, the solution is defined at Np points determined by the desired polynomial

degree P o of the solution where the number of points is defined by Np = P o + 1. The fluxes, in

turn, are approximated by a degree P o+1 polynomial. While the solution within each element must

be continuous, there is no such requirement at the element edges. Therefore the solution polynomial
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can be written as

uδi (ξ, t) =

Ni∑︂
n=1

ui,nϕn(ξ), (58)

where ui,n is the solution at one of the solution points Ni and ϕn(ξ) is the nodal basis function

expressed as

ϕn(ξ) =

Ni∏︂
n=1,i̸=n

ξ − ξn
ξi − ξn

. (59)

Figure 4.2 shows an example set of nodal basis functions using equidistant points. Given that

the solution points for every element are at the same relative position in reference space, the nodal

basis functions only need to be generated once for the entire solution as they will be identical. Being

now able to solve the continuous solution within any given element, the flux within the elements

must be determined. Using a similar method, the flux can be obtained by

F δ
i (ξ, t) =

Ni∑︂
n=1

Fi,n(t)ϕn(ξ), (60)

where Fi,n(t) is the flux computed at a point Ni. As mentioned previously, the fluxes at the edges

of each element are not necessarily continuous. Therefore, they must be stitched to generate a

continuous flux over the entire domain that approximates the discontinuous fluxes while maintaining

continuity across element boundaries. This flux will have a polynomial degree of P o + 1 and be

computed at Ni + 1 points. The correction function used to stitch these is the following:

ζi =
[︂
F ∗
i,L − F δ

i (−1)
]︂
gL(ξ) +

[︂
F ∗
i,R − F δ

i (1)
]︂
gR(ξ), (61)

which results in a final relation between the fluxes described by

F c
i = F δ

i + ζi, (62)

where F c
i is the continuous flux on an element, F ∗

i is the common interface flux at either boundary,
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Figure 4.2: 1D Nodal basis functions for P o
0 to P o

5
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and the correction functions g must respect:

gL(−1) = 1, gL(1) = 0, (63)

gR(−1) = 0, gR(1) = 1, (64)

and, must be of polynomial degree P o+1. The common fluxes must be determined using a Riemann

solver. There are many possible schemes, such as upwind or central schemes that introduce different

amounts and types of error to the final solution. Therefore, an appropriate solver must be selected

for the application. Depending on the correction function used, various different schemes can be

recovered such as SD and SV. Huynh [49] describes how Radeau polynomials can be used to recover

DG schemes. The left Radeau polynomials describe gR and the right polynomials describe gL. They

can be obtained from the normalized Legendre polynomials shown in Figure 4.3 by the following

identity

g = −1i−1 1

2
(S(i)− S(i− 1)), (65)

where g is the Radau polynomial, i is the polynomial degree and S is the normalized Legendre
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Figure 4.3: Normalised Legendre polynomials

polynomial. The Radau polynomials are visualized in Figure 4.4.

Replacing the discontinuous flux with the continuous flux in the conservation law formulation
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Figure 4.4: Radau polynomials

for a reference element results in:

∂ui
∂t

+
2

hi

∂

∂ξ
(Fi + ζ) = 0. (66)

4.1.2 Multi-Dimensional

This method was initially introduced only for 2D quadrilateral cases in Huynh’s paper [49]. It

is through the works of Wang and Gao [76] and Haga et all [77] that it was expanded in general

multiple dimensions. The conservation law can be expressed as

du

dt
+∇ · F⃗ = 0. (67)

Similar to the 1D case, it is mapped into Ni number of non-overlapping elements, Ωi. Assuming

square elements, and using a reversible mapping function such that

(x⃗) = Fmi(ξ⃗) ↔ (ξ⃗) = Fm−1
i (x⃗) (68)

where Fm is the mapping function and ξ⃗ is the variable representing x⃗ in the reference space. Using

a polynomial basis representation, the solution polynomial is expressed as

uδi (ξ⃗, t) =

Ni∑︂
m,n=1

ui,nϕn(ξ⃗). (69)
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Hence, the discontinuous fluxes can be expressed as

F⃗
δ

i (ξ⃗, t) =

Ni∑︂
n=1

F⃗ i,n(t)ϕn(ξ⃗). (70)

As with the one-dimensional formulation, these discontinuous fluxes must be stitched into a contin-

uous form using a correction function ζi described as:

ζi =
1

|Ωi|
∑︂
f∈S

∑︂
l

ai,f,l[F̃ ]f,lSf , (71)

where Ωi represents the element size, ai,f,l represents the constant lifting coefficients for any ge-

ometry, [F̃ ]f,l represents the flux difference at point l along boundary f , and Sf represents the the

dimensions of the boundary. This results in the conservation law being written as

du

dt
+∇ · F⃗ i + ζi = 0. (72)

It is important to note that the value used for ai,f,l will affect what type of scheme (such as DG, SV

and, SD) is recovered. When using this method with the Navier-Stokes equations it is important to

consider the inviscid and viscous components separately. This is because of their vastly different

behaviours. As such, HORUS makes use of the Rusanov Riemann solver [85] for the inviscid fluxes

and the BR2 solver [86] for the viscous fluxes. All of these are evaluated at the Gauss-Legendre

points for tensor product elements.
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Chapter 5

Time Discretization

As outlined in Chapter 1.4 there are many types of time discretizations that have been proposed

and they all have certain advantages and disadvantages. For the purposes of this study the focus is

on a comparison of the fourth order explicit Runge-Kutta method with Paired Explicit Runge-Kutta

methods.

5.1 Explicit Runge-Kutta Methods

Runge-Kutta methods are a family of numerical methods extending from the first-order Euler

method. The Euler method can be simply expressed as

ui+1 = ui +∆tR, (73)

where u is any conserved variable dependent on the variable t, and R is the residual of u. The

equation is simply repeated to find the solution of any n future time steps. Runge-Kutta methods

can be obtained by expanding on the Euler method by adding intermediate stages. These break

down the time step into smaller stages, using the previous stages to compute future stages and by

applying coefficients to the stage residuals and summing them to obtain the solution for the time
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step. These coefficients are generally represented in a Butcher tableau of the form [87]

c A

bT
, (74)

were A is a matrix of coefficients representing the contribution of each stage to others, c is a vector of

coefficients representing the relative stage time, and b is a vector of quadrature weights representing

the contribution of each stage residual to the final updated solution. The simplest such tableau is the

one representing the Euler method described above. It is of the form

0 0

1
. (75)

For the tableau to generate a first-order accurate method, it must satisfy the consistency condition. In

other words the sum of the elements of b must be equal to 1 which can be expressed mathematically

as
Ns∑︂
j=1

bi = 1, (76)

where Ns is the total number of stages. For a method to be explicit, every stage can only rely on

previous stages and, therefore, the upper triangular of the matrix is generally left blank to indicate

the 0 values located there. Therefore, any explicit Runge-Kutta method can be expressed by the

following

ui = un +∆t

Ns∑︂
j=1

ai,jR(tn + cj∆t, uj) (77)

where ui is the intermediate value of the stage, and, ai,j is the corresponding coefficient in the A

matrix. Hence, the value at the end of the step is obtained from

un+1 = un +∆t

Ns∑︂
i=1

biR(tn + ci∆t, ui). (78)

From these tableaus, the order of accuracy of these methods can be determined. For any scheme

of order P t, it must satisfy 2n − 1 constraints including the consistency condition. The additional
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conditions for orders 2 to 4 are as follows

N∑︂
i=1

bici =
1

2
,

N∑︂
i=1

bic
2
i =

1

3
,

N∑︂
i=1

N∑︂
j=1

biai,jci =
1

6
,

N∑︂
i=1

bic
3
i =

1

4
,

N∑︂
i=1

N∑︂
j=1

biciai,jcj =
1

8
,

N∑︂
i=1

N∑︂
j=1

biai,jc
2
j =

1

12
,

N∑︂
i=1

N∑︂
j=1

N∑︂
k=1

biai,jaj,kci =
1

24
.

The classical Runge-Kutta method (also know as RK44) is of primary interest as a reference method

for this study. Its Butcher tableau is the following:

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

(79)

It can be seen from this tableau that this method is an explicit fourth-order accurate method as

it meets all the criteria outline above for a fourth order accurate scheme and its upper diagonal

components are zero.

5.1.1 Stability

Taking a system of differential equations of the form [87]

x′(t) = qx(t) (80)

where q is a constant matrix, z = ∆tq, and ∆t is the step size; the exact solution will increase

by a factor of exp(z) while the solution computed using an RK method will increase by a stability

function f(z) that is unique to the given scheme. The stability region can then be expressed as [87]

z ∈ C : |f(z)| ≤ 1. (81)
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As z is a function of h, the step size used must be selected such that the above condition is respected.

This in turn means that these methods cannot be unconditionally stable. From [87] the stability

functions for RK methods of orders P t = 1 to P t = 5 are as follows:

1 + z P t = 1,

1 + z + 1
2z

2 P t = 2,

1 + z + 1
2z

2 + 1
6z

3 P t = 3,

1 + z + 1
2z

2 + 1
6z

3 + 1
24z

4 P t = 4,

1 + z + 1
2z

2 + 1
6z

3 + 1
24z

4 + 1
120z

5 + Cz6 P t = 5,

(82)

The C coefficient for the P t = 5 order is dependent on the specific method used. The stability

regions can be visually represented as in Figure 5.1. It can be seen from the figure that when

using the standard method of building RK schemes, part of the stability region is on the right side

of the origin. As systems with roots in the right half plane are unstable, part of the theoretical

stability region cannot be used to obtain a stable method. Thus, part of the stability gain achieved

by higher order methods is effectively wasted [88]. Achieving these higher orders following this

approach imposes an increasing number of simultaneous computations for each step, making the

computational time and memory cost associated with it high. For this reason, it is interesting to

find variations for the high order methods that maximize the useful stability region all the while

minimizing the computational cost by using a similar or smaller number of stages.

5.2 Paired Explicit Runge-Kutta Method

The Paired Explicit Runge-Kutta method (P-ERK) first proposed by Vermeire [66] aims to over-

come shortcomings with traditional Runge-Kutta schemes, such as high memory requirements to

store the stage residuals R, issues with stability scaling to higher orders, and relatively high compu-

tational cost to achieve a desired accuracy order. This first issue can be mitigated by modifying the
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Figure 5.1: Stability regions of RK methods from P = 1 to P = 5

traditional method by setting

ai,j = 0, j > 1, i > j + 1,

bi = 0, i < n,

bn = 1.

The corresponding Butcher tableau then takes on the following form

0 0

c2 a2,1 0

c3 a3,1 a3,2 0

c4 a4,1 0 a4,3
. . .

...
...

...
...

. . . 0

cn an,1 0 0 · · · an,n−1 0

0 0 0 · · · 0 bn

(83)
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This means that only two stages need to be stored per time step, greatly reducing the memory

overhead of the method. It is equally important that the method maintain its order of accuracy.

This can be achieved by respecting the conditions outlined above for RK methods of various orders.

Hence, setting

cn =
1

2
, (84)

will ensure that the method is second-order accurate. Then choosing the remain ci to be evenly

spaced between the first and last stages

ci =
i− 1

2(n− 1)
, (85)

the general tableau above is simplified to the following

0 0

c2 a2,1 0

c3 c3 − a3,2 a3,2 0

c4 c4 − a4,3 0 a4,3
. . .

...
...

...
...

. . . 0

cn cn − an,n−1 0 0 · · · an,n−1 0

0 0 0 · · · 0 bn

(86)

where each ci term is determined from

ci =
n∑︂

j=1

ai,j . (87)

Therefore, for every additional stage that is added, only a single additional computation is required

which is similar to the traditional RK method. Additionally, this method can be further modified to

use e active stages out of the n total stages defined in the Butcher tableau within a single system

and is represented as P-ERKn,e,2 This is done by setting

ai+1,i = 0, 2 ≤ i ≤ n− e+ 1, (88)
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which results in the scheme having e− 2 unknown coefficients. Obtaining the stability polynomial

by the method outlined by Hairer [89], resolves these unknown coefficients. An example stability

region for a P-ERK6,6,2 schemes can be seen in Figure 5.2. The stability polynomials were obtained
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i
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Figure 5.2: Stability region for a P-ERK6,6,2 scheme

from [66] and were optimized in such a way as to ensure that the maximum stability region will

be located in the usable side of the axis enclosing the spectra of the spatial discretization. Noting

that the b and c vectors are identical for any P-ERK method having the same total amount of

stages, methods with varying amounts of active stages can therefore be stitched together at points of

contact. This is especially useful when dealing with systems that are only locally stiff such as most

CFD problems. That is because this enables the use of high-order RK methods in the stiff regions

while the non-stiff regions use lower-order methods, further reducing the computational cost of the

overall solution.

While the utility of P-ERK methods has been established on CPUs, their utility for GPU accel-

erated simulations has yet to be established. The objective of the following sections is to explore

this topic via applying P-ERK to LES simulations using FR as a spatial method on GPUs.

44



Chapter 6

Low Reynolds Flow Over a Sphere

6.1 Background

In CFD there are number of flow conditions that pose particular challenges for RANS. These

include cases such as shock capturing, stall, and low Re flow. For this study, sub-critical flow

over a sphere is explored. There have been many experimental [90, 91, 92, 93] and numerical

[94, 95, 96, 97, 98] analyses of this case using a variety of computational methods. Through these

experiments, this particular test case is well-defined, and thus it’s an ideal candidate to asses GPU

accelerated LES using P-ERK. As this is a sub-critical flow experiment, the viscous forces are

important in determining the flow behaviour, making it especially pertinent to study the following

quantities: lift and drag, boundary layer separation, vortex shedding, and pressure coefficient.

6.2 Case Description

The solver used to perform this experiment was HORUS which makes use of an FR approach

for spatial discretization evaluated at the Gauss-Legendre points for tensor product elements. The

Riemann solvers used to compute fluxes are the Rusanov solver for inviscid fluxes and the second

method of Bassi and Rebay CBR2 solver for the viscous fluxes [99].

The case consists of simulating three-dimensional sub-critical flow over a smooth sphere. The

flow was defined using a Reynolds number Re of 3,700, a Mach number (M) of 0.2, a Prandtl
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number (Pr) of 0.71, and a ratio of specific heats (γ) of 1.4. At the initial state, velocities were

set to zero so that the flow would develop naturally as time progresses. All parameters used in the

simulation were non-dimensionalized.

The geometry was simulated using 88872 quadratically curved hexahedral elements. The ele-

ments have a higher density near the sphere and a reduced density at the far field. Figure 6.1 shows

the discretization of the domain. The computational domain dimensions can be seen in Table 6.1. A

Figure 6.1: Computational domain mesh

x y z
- 8 6 6
+ 22 6 6

Table 6.1: Computational domain dimensions

P-ERK16,16,2 scheme with 11,760 elements using all active stages and 77,112 elements P-ERK16,3,2

using three active stages was used as the time time discretization scheme for this study. The number

of elements in the mesh was adjusted to make maximal use of the memory available when using a

solution polynomial degree of five. Figure 6.2 shows the distribution of these schemes.

Simulations were run on a general purpose cluster belonging to the Digital Research Alliance of

Canada known as Narval. The computing capabilities of this cluster are outlined in Table 6.2. The

experiment was run on 1, 2, 4, 8, 16, and 32 GPUs using 12 CPU cores per task.
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Figure 6.2: Solution timelevel distribution

nodes cores memory CPU storage GPU
1145 64 249G or

255000M
2 x AMD Rome 7532 @
2.40 GHz 256M cache L3

1 x 960G SSD -

159 48 498G or
510000M

2 x AMD Milan 7413 @
2.65 GHz 128M cache L3

1 x SSD of 3.84
TB

4 x NVIDIA A100
(40 GB memory)

Table 6.2: Narval node characteristics

6.3 Performance

As the primary objective of developing the P-ERK schemes was to acquire faster computational

times for similar levels of accuracy and resources, it is important to evaluate its performance not

only for a single configuration, but also to evaluate how it may scale with various configurations.

This study therefore evaluates how performance will scale for various solution polynomial degrees,

and for different resource configurations, namely the number of GPUs and CPU cores being used.

Figure 6.3 shows that for polynomial degrees of one to five, the P-ERK scheme is advantageous

over the classic RK method. It shows that the advantage of the P-ERK scheme increases as the

polynomial degree of the solution increases. This is significant as it shows that the performance of

the P-ERK method scales logarithmically and would support its application to still higher orders

for strongly locally stiff problems. This scaling is similar for both CPUs and GPUs, with one CPU

core taking approximately 200 times longer than one GPU for the same polynomial degree. This

can also be observed by looking at the speedup factor in Table 6.3,. which is defined as the ratio of
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the previously mentioned time ratios. This shows that for the polynomial degrees studied, there is

an average speedup factor of 4.73 using GPUs and of 5.82 using CPUs when attempting to reach a

solution with the P-ERK16,e,2 scheme compared to the performance of the traditional fourth order

RK method.
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Figure 6.3: Clock/simulation time VS polynomial degree

P o 1 2 3 4 5

Speedup factor
GPU 4.56 4.80 4.33 4.54 5.44
CPU 5.8 6.31 5.59 5.42 5.99

Table 6.3: Speedup factor for scaling polynomial degree

CFD is applied to a wide variety of problems, and the computational power available to run

these schemes also varies widely. From low-complexity works running on single computers to

high-complexity works running on multiple nodes it is important to identify where these new time

stepping schemes are most applicable. As parallelizing has been showm previously to be an effective

method to improve computation time, it becomes interesting to ascertain whether the P-ERK method

scales better with increasing parallel tasks as opposed to the traditional method. It is especially
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important to ascertain if, within the realistic range of hardware configurations, there is a point where

the traditional method surpasses the P-ERK method. Figure 6.4 shows the resource performance

scaling for these two methods.
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Figure 6.4: Clock/simulation time VS resources

From Figure 6.4, there are three important things to note. First, for all configurations observed,

the P-ERK scheme runs faster. Second, runtimes on GPUs are orders of magnitude smaller than

on CPUs. It shows that when comparing one entire CPU to a GPU, the gains are on average of 45

times and when comparing nodes a performance gain of average speedup of ∼36 is observed. Third,

the gap between the two cases shrinks as the resources increase. It is important to note, however,

that while the difference decreases it appears that the computational time is asymptotic. This would

indicate that while they may approach similar values, the P-ERK method will remain faster. This can

be attributed in part to the increase in computational overhead required to maintain communication

between the various GPUs being used and the minimum time to perform the operations. This also

means that infinite gains are not possible with simple parallelization and eventually a limit will be

reached where the computation time will actually increase instead of decrease. In addition, Table
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6.4 shows that for any given case it would take roughly eight times more resources using RK44 to

achieve a similar performance when using a P-ERK.

GPUs CPUs
Nodes PERK RK44 PERK RK44
0.25 281.80 1533.18 3775.52 23623.99
0.5 175.43 761.88 2728.44 12912.14
1 127.07 410.98 1045.27 7292.41
2 89.83 264.91 595.78 3811.51
4 71.03 170.61 299.38 1746.66
8 55.35 150.35 152.48 1091.96

Table 6.4: P-ERK16,3,2 and RK44 computer/simulated time

It is important to keep in mind, however, that for any parallel computing application, as the

resources increase the computational overhead increases. This will result in diminishing returns and

an eventual overall slowdown of the computation [100].

6.4 Numerical Results

Numerical results were collected for 1000 convective times with the flow becoming steady at

roughly 150-200 convective times (tc). The solution was sampled every 0.05tc for P o from 1 to 4,

and the time averaged statistics were assessed at every 0.1tc, starting at 100tc. The instantaneous

properties obtained include density, cartesian velocity components, and energy. The time-averaged

quantities include pressure, streamwise and radial velocity components, and Reynolds stresses. Fig-

ure 6.5 shows that taking the time-average over a period of 350tc after having achieved steady flow

results in data that is reasonably time-independent to represent first- and second-order statistics.

It can also be seen that for the time-averaged velocity, the second- and third-degree values con-

verge nicely. The values for this figure were sampled at x/D = 3 and r/D = 0, which is a point

downstream of the recirculation bubble.

6.4.1 Power Spectra

Power spectra were computed to determine the dominant frequencies present in the wake of

the sphere. Various probes were used at axysymetric locations, as outlined in Table 6.5. As the
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Figure 6.5: Streamwise and radial: velocity, time average, and fluctuation
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table shows, for every streamwise station four probes are used at evenly spaced radial locations.

The notable exception is the station at x/D = 3 which has an additional point located at r/D =

0 which is the one used in Figure 6.5. A sampling rate of (tc/2000)
−1 was used to accurately

capture both low-energy, high-frequency behaviours and high-energy low-frequency behaviours.

The time series seen in Figure 6.6 were computed by averaging the velocity at each radial station

index x/D r/D θ

1,2,3,4 1 0.6 0, π
2 , π, 3π

2

5.6.7.8 2.2 0.6 0, π
2 , π, 3π

2

9,10,11,12 2.4 0.6 0, π
2 , π, 3π

2

13 3 0 0
14,15,16,17 3 0.6 0, π

2 , π, 3π
2

18,19,20,21 5 0.6 0, π
2 , π, 3π

2

Table 6.5: Probe Locations

for a given streamwise direction. The power spectra were obtained by computing the power spectra

for each radial station and averaging them, similarly to what was done for the time series. From

the time series and power spectra shown in Figure 6.6, two observations are made: the dominant

vortex shedding frequency in the wake, and the higher frequency disturbances in the boundary

layer separation area. Firstly, from the peaks of the PSD far from the boundary layer, it can be

observed that a large-scale vortex shedding frequency corresponding to the Strouhal number St of

0.219 is present for all solution polynomial degrees simulated. This peak is more clearly visible

for the solution polynomial degree P o = 2 line as it captures fewer of the low-energy eddies

that can appear as noise in the PSD plot. This value correlates strongly with both numerical and

experimental reference data as shown in Table 6.6. While this peak is present at all stations, it can be

hard to notice due to the presence of noise and due to its decreasing magnitude as the distance from

the body increases. Additionally, for all stations except the first, the energy decay with frequency

increase corresponds with the Kolmogorov -5/3 law. Additionally, near the boundary layer, there

is a higher frequency behaviour due to the shear layer separation that corresponds with the Kelvin-

Helmholtz instabilities of fkh = 0.734. In addition, the first station located at x/D = 1 appears to

be located outside of the wake caused by the body, due to it only having very small fluctuations of

radial velocity.

The figure also shows that as the polynomial degree increases, more of the frequencies are
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Figure 6.6: Average time series and power spectra for x/D = 1, x/D = 2.4, x/D = 3 and x/D = 5
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captured. Figure 6.7 shows that for the streamwise velocity fluctuation at the center line there is

also a peak at f = 0.0143 which can also be observed as a secondary peak for the probe located in

the wake included in Figure 6.6. For this case, the polynomial degree has little effect on the captured

frequencies. However, the magnitude of the fluctuations is more clearly captured.
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Figure 6.7: Power spectral density of the streamwise velocity fluctuation at x/D = 3 and r/d = 0

6.4.2 Coherent Structures

A generally accepted method to visualize and understand vortex formation and shedding is using

the Q-criterion proposed by Hunt et al [101] as a method of identifying eddies. While other similar

methods exist such as that proposed by Jeong and Hussain [102], for the purposes of this paper the

Q-criterion method will be used. This value shows the relationship between vorticity and strain.

For the Q criterion to be positive, the vorticity must be stronger than the strain. It can be defined

mathematically as

Q =
1

2
(||Ω||2 − ||S||2), (89)
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where ||Ω||2 = Tr(ΩΩt) represents the vorticity tensor and ||S||2 = Tr(SSt) is the strain rate

tensor. Figure 6.8 shows how the wake develops behind the body of the sphere. It can be seen that

the flow separates at an angle Φs = 89o−90o. However, the separated shear layer remains cohesive

for some time before it becomes unstable and breaks down, joining the turbulent wake. This occurs

at a similar location for P o
2 , P

o
3 ,and P o

4 . As expected, as the solution degree increases more of the

small scale behaviours in the wake are being captured. While at P o
1 a few large shedding events are

observed in the wake with little other significant behaviour, a dominant spiral pattern with smaller

eddies also present emerges at higher orders. This spiral pattern is most noticeable for P o
2 as fewer

small scale behaviours are present, but it is noticeable for P o
3 , and P o

4 as well.

The data in Figure 6.9 shows where the disturbances occur. While the time of the disturbances

changes for any given position, its magnitude is relatively unchanged for a set x/D station. When

comparing the stations within the shear layer to those within the transition area, they get amplified

and propagate. This causes the flow at the further stations to be much more chaotic, indicating

that the transition to turbulent flow occurs between these two stations for the bulk of the flow. In

addition, as the disturbances don’t occur simultaneously at each θ, this would contribute to the

helical behaviour observed in Figure 6.8. This behaviour has been documented in Rodriguez et al

[98], in Achenbach [103], in Contantinescu and Squires [96] and in Yun et al. [97].

6.4.3 Time Averaged Statistics

Re St Φs(
o) Cd̄ Cpb

¯ L/D
Current study P-ERK16,e,2 LES Po

4 3700 0.219 89-90 0.394 -0.205 2.16
Rodriguez et all. IMEX DNS [98] 3700 0.215 89.4 0.394 -0.207 2.28

Kim and Durbin Exp [91] 3700 0.225 -0.224
Sakamoto and Hanui Exp [92] 3700 0.204

Yun et al. IMEX LES [97] 3700 0.21 90 0.355 -0.194 2.622
Schlichting Exp [104] 4000 0.39

Tomboulides DNS [95] 1000 0.195 102 1.7
Seidl et al. DNS [94] 5000 89.5 0.38 2.1

Constatninescu and Squires LES [96] 10000 0.195 84-86 0.393 1.7

Table 6.6: Summary of significant quantities

There are a number of values that are compared with reference data to assess the validity of the
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Figure 6.8: Q criterion contours for Po
1, Po

2, Po
3, and Po

4
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Figure 6.9: Time series of radial velocity at (a) x/D = 1 and (b) x/D = 2.2
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methods used: the Reynolds number, Strouhal number, separation angle, average drag coefficient,

back pressure ratio, and length of the separation bubble. These are all compiled in Table 6.6. The

Strouhal number was obtained from the PSD plots in Figure 6.6 above, the separation angle was

obtained by analyzing the Q-criterion contours in Figure 6.8, the drag coefficient was obtained

directly from the forces, the back pressure ratio was obtained by evaluating the pressure coefficient

(Cp) as in Figure 6.10, and the length of the separation bubble was obtained by looking at the time

averaged velocity along the centerline as seen in Figure 6.11. All of these values were computed

starting from a time after steady flow was obtained.

Figure 6.10: Cp VS angle of the sphere comparing current study to previous studies
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Figure 6.10, illustrates the Cp distribution over the surface of the sphere. Qualitatively it corre-

lates strongly with reference data for all points as the shape of the distribution follows closely both

the DNS data obtained from Rodriguez et al [98] and the experimental data from Kim and Durbin

[91]. Additionally, when looking at the back pressure ratio Pb it can be seen that it has a value of

-0.209 which corresponds with reference data as outlined in Table 6.6.
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Figure 6.11: Time-averaged velocity(a) and root mean square velocity fluctuation(b) along the cen-
terline of the wake

The length of the recirculation bubble was obtained by evaluating the distance between the rear

surface of the sphere and the point where velocity becomes greater than 0, as seen in Figure 6.11

(a), sizes of L/D = 0.75, 1.90, 1.95, and 2.17. This can be further confirmed when looking at Figure

6.11 (b) as the mean fluctuation for each order has two peaks one at x/D = 1.95 for all orders and

at x/D = 2.15 for P o
2 , and 2.13 for P o

3 and P o
4 . The peak with the greatest amplitude therefore

corresponds with the end of the recirculation bubble. While there is some discrepancy in the size

of the recirculation bubble when looking at the streamwise velocity distribution at various points

along the wake such as in Figure 6.12, it can be seen that the same differences are present. The

discrepancy is largest at x/D = 3 which is part of the recovery zone. In addition, this figure shows

clearly that for polynomial degrees 2 and 3 there is a strong level of convergence in the observed

values. It can be said that the results obtained from this experiment correlate with both DNS and

experimental results at polynomial degrees 2 and greater. In addition, the correlation is stronger

with increasing P o with P o
4 closely following the DNS results obtained by Rodriguez et al [98] .
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Figure 6.12: mean streamwise velocity at various points. x/D = 0.2, x/D=1.6 and, x/D=3

Figure 6.13, shows the mean velocity profiles at distances of 1.6, 2, 3, 5, and 10 x/D from the

origin and from 0 to 2 y/D in the z = 0 plane. Negative streamwise velocities are observed for the

x/D = 1.6 and 2 cases as near the centerline these are still within the recirculation region of the wake.

This also partially explains to why the initial values for the velocity are small at x/D = 3, as that is

relatively close to the end of the bubble. Figure 6.14 shows the mean fluctuation for the same region.

It shows that for X/D = 1.6, 2, 3, and 5, there is a peak in the streamwise fluctuation at approximately

y/D = 0.5 which decreases as y/D increases further. This can be understood by studying the Q-

criterion presented in Figure 6.8, as that is the transition area between the surrounding flow regime
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and the wake of the sphere. The magnitude of the fluctuations tends to decrease as the streamwise

distance increases. The radial fluctuation presents a similar behaviour to the streamwise component

for x/D = 1.6 and 2, but afterwards there is no noticeable peak and it adopts a general downwards

slope.

Figures 6.15, 6.16, 6.17, and 6.18 show contours of the Reynolds streamwise normal stress,

the cross-stream normal stress, and the shear stress for increasing polynomial degrees. While they

do not perfectly match those presented in Rodriguez et al [98] and those presented in Jang and

Lee [105], there is an increasing degree of agreement with increasing polynomial degree. It is

important to note that when comparing to the vizualisation presented in Jang and Lee at Re=11,000

the recirculation bubble in the present work is larger and can partially account for the discrepancies.

Of the values contoured in Figures 6.15, 6.16, 6.17, and 6.18 the Reynolds shear stresses show the

strongest agreement.
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Figure 6.13: mean velocity profiles at various points in the wake. x/D, y/D, and z= 0
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Figure 6.14: Root mean square velocity fluctuations at various points in the wake. x/D, y/D, and z=
0

63



Figure 6.15: Reynolds streamwise normal stress, cross-stream normal stress, and shear stress con-
tours for Po = 1

Figure 6.16: Reynolds streamwise normal stress, cross-stream normal stress, and shear stress con-
tours for Po = 2
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Figure 6.17: Reynolds streamwise normal stress, cross-stream normal stress, and shear stress con-
tours for Po = 3

Figure 6.18: Reynolds streamwise normal stress, cross-stream normal stress, and shear stress con-
tours for Po = 4
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

This study provides supporting evidence for the the applicability and performance of the Paired

Explicit Runge-Kutta time-stepping schemes using flux reconstruction spatial discretization and

implict large eddy simulation turbulence modelling approach. A well documented case of sub-

critical flow over a sphere was used as a test case, drawing from both numeric and experimental

data as a reference.

This study has shown that for the given case, strong agreements can be observed between the

P-ERK results and reference results. This agreement improves as the polynomial degree enters

higher orders. It has also shown that for the given case on a single GPU with scaling polynomial de-

gree the P-ERK method performs with a speedup factor of ∼4.7 compared to the traditional fourth

order RK method, which is in line with previous findings of similar speedup factors for third-order

schemes. In addition, with parallel computing using multiple GPUs, it was shown that the P-ERK

method achieves superior performance to the traditional fourth order RK method with an average

speedup factor of ∼4. This is especially significant when considering the order of improvements

shown by other methods when compared to the RK method such as certain IMEX schemes showing

a speedup factor of only up to 1.97. Moreover if the P-ERK method is combined with GPU acceler-

ation when compared to RK44 on CPUs, a speedup of ∼45 is achieved when compared one to one

and an average speedup of ∼36 when compared node to node is observed.
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7.2 Recommendations

Considering the significant performance improvements that have been observed in this study, it

becomes clear that there is merit in further exploring this novel time stepping method. It would be

especially interesting to study how it performs under different numeric and experimental conditions

and with expansion into still higher orders. The case studied in the current paper presents benchmark

flow conditions that have been previously successfully analyzed using a variety of methods. It would

be pertinent to explore how this method behaves and how its performance may be affected by more

challenging flow conditions such as within a turbine cascade, a shock tube and, many others. While

it has been shown that for third- and fourth-order accuracy, the P-ERK method shows a speedup

factor of ∼4-5, it would be interesting to see how this value may change at higher orders.
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