
DATA STREAM CLASSIFICATION WITH MONDRIAN

FOREST UNDER MEMORY CONSTRAINTS

Martin Khannouz

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

May 2023

© Martin Khannouz, 2023

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Martin Khannouz

Entitled: Data Stream Classification with Mondrian Forest Under

Memory Constraints

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. Rolf Wuthrich

External Examiner
Dr. Katarina Grolinger

Examiner
Dr. Leila Kosseim

Examiner
Dr. Brigitte Jaumard

Examiner
Dr. Nizar Bouguila

Supervisor
Dr. Tristan Glatard

Approved
Dr. Leila Kosseim, Graduate Program Director

04/17/2023

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Data Stream Classification with Mondrian Forest Under Memory

Constraints

Martin Khannouz, Ph.D.

Concordia University, 2023

Supervised learning algorithms generally assume the availability of enough memory to store

data models during the training and test phases. However, this assumption is unrealistic

when data comes in the form of infinite data streams, or when learning algorithms are de-

ployed on devices with reduced amounts of memory. In this manuscript, we investigate the

use of data stream classification methods under memory constraints. Our investigation con-

sists of three steps: a benchmark of models, an update of a model, and an optimization

of a trade-off. We evaluate data stream classification models with different criteria such

as classification performance or resource usage. The benchmark reveals that the Mondrian

forest, despite having state-of-the-art classification performance with unlimited memory, is

impacted by a low memory limit. We then adapt the online Mondrian forest classification

algorithm to work with memory constraints on data streams. In particular, we design five

out-of-memory strategies to update Mondrian trees with new data points when the memory

limit is reached. We evaluate our algorithms on a variety of real and simulated datasets, and

we conclude with recommendations on their use in different situations: the Extend Node

strategy appears as the best out-of-memory strategy in all configurations. We identify that

the memory-constrained brings a trade-off between the Mondrian forest size and its tree

depth. We design an adjusting algorithm to optimize the forest size to the data stream

and the memory limit and we evaluate this algorithm on similar datasets. All our methods

are implemented in the OrpailleCC open-source library and are ready to be used on em-

bedded systems and connected objects. Overall, the contributions significantly improve the

performance of the Mondrian forest under memory constraints.

iii

Acknowledgments

I would like to thank my supervisor, Dr. Tristan Glatard, for his guidance. This thesis

would not have been possible without his continued support and mentorship.

I would like to thank all my colleagues at the /bin lab for making this experience more

enjoyable, especially to Valérie for her guidance and support during my time at Concordia.

I would like to thank my friends Ronny and Jeremy in France, who not only provided me

with countless help but also motivated me to improve as a computer scientist and as a person.

Enfin, je remercie, en français, mes parents et mes beaux-parents pour leur soutien in-

conditionnel à tous mes projets.

iv

Contribution of Authors

This thesis consists of four manuscripts. Author contributions are as follows.

Chapter 3: Martin Khannouz, Bo Li, and Tristan Glatard. OrpailleCC: a

Library for Data Stream Analysis on Embedded Systems. Journal of Open

Source Software, 4(39):1485, 2019.

I was responsible for software development, experimental design, model design, interpretation

of results, and writing and editing the first draft of said manuscripts. Bo Li was a master’s

student and he aided with software development. Tristan Glatard provided supervision and

aided with experimental and model design, and manuscript editing.

Chapter 4: Martin Khannouz and Tristan Glatard. A Benchmark of Data

Stream Classification for Human Activity Recognition on Connected Objects.

Sensors, 20(22):6486, 2020.

I was responsible for software development, experimental design, model design, interpretation

of results, and writing and editing the first draft of said manuscripts. Tristan Glatard

provided supervision and aided with experimental and model design, and manuscript editing.

Chapter 5: Martin Khannouz and Tristan Glatard. Mondrian Forest for Data

Stream Classification Under Memory Constraints. arXiv:2205.07871 [cs.LG],

2022.

I was responsible for software development, experimental design, model design, interpretation

of results, and writing and editing the first draft of said manuscripts. Tristan Glatard

provided supervision and aided with experimental and model design, and manuscript editing.

Chapter 6: Martin Khannouz and Tristan Glatard. Dynamic Ensemble Size

Adjustment for Memory Constrained Mondrian Forest. In 2022 IEEE Inter-

national Conference on Big Data (Big Data), pages 3358–3363, Osaka, Japan,

dec 2022. IEEE Computer Society.

I was responsible for software development, experimental design, model design, interpreta-

tion of results, and writing and editing the first draft of said manuscripts. Tristan Glatard

provided supervision and aided with experimental and model design, and manuscript editing.

v

Contents

List of Figures viii

List of Tables xi

Glossary 1

1 Introduction 1

2 Data Stream Processing 6

2.1 Classification and Data Stream Classification 7

2.2 Existing Data Stream Classification Models 9

2.2.1 Naive Bayes . 9

2.2.2 k-nearest neighbors . 9

2.2.3 Decision Tree . 10

2.2.4 Ensemble classifier . 12

2.2.5 Random Forest . 13

2.2.6 Online and Data Stream Forests . 14

2.2.7 Mondrian forest . 16

3 OrpailleCC: a Library for Data Stream Analysis on Embedded Systems 18

4 A Benchmark of Data Stream Classification for Human Activity Recogni-

tion on Connected Objects 21

4.1 Introduction . 22

4.2 Related Work . 23

4.2.1 Comparisons of data stream classifiers 23

4.2.2 Offline and data stream classifiers for Human Activity Recognition . . 24

4.3 Materials and Methods . 25

vi

4.3.1 Datasets . 26

4.3.2 Algorithms and Implementation . 28

4.3.3 Evaluation . 32

4.3.4 Results Reproducibility . 33

4.4 Results . 34

4.4.1 Overall classification performance . 34

4.4.2 Hoeffding Tree and Näıve Bayes . 37

4.4.3 Mondrian forest . 38

4.4.4 MCNN . 38

4.4.5 Feedforward Neural Network . 38

4.4.6 Power . 39

4.4.7 Runtime . 40

4.4.8 Memory . 40

4.4.9 Hyperparameter tuning . 40

4.5 Conclusion . 42

5 Mondrian Forest for Data Stream Classification Under Memory Constraints 45

5.1 Introduction . 46

5.2 Materials and Methods . 47

5.2.1 Mondrian Forest . 47

5.2.2 Mondrian Forest for Data Stream Classification 47

5.2.3 Out-of-memory Strategies in the Mondrian Tree 48

5.2.4 Concept Drift Adaptation for Mondrian Forest under Memory Constraint 51

5.2.5 Time Complexity . 54

5.2.6 Node Boxes Analysis . 55

5.2.7 Datasets . 58

5.2.8 Evaluation Metric . 59

5.3 Results . 59

5.3.1 Baselines . 60

5.3.2 Out-of-memory strategies . 60

5.3.3 Concept Drift Adaptation for Mondrian Forest under Memory Constraint 62

5.3.4 Impact of the Memory Limit . 63

5.4 Related Work . 66

5.5 Conclusion . 68

vii

6 Dynamic Ensemble Size Adjustment for Memory Constrained Mondrian

Forest 70

6.1 Introduction . 71

6.2 Materials and Methods . 71

6.2.1 Mondrian Forest . 72

6.2.2 Mondrian Forest for Data Stream Classification 72

6.2.3 Dynamic Tree Count Optimization 73

6.2.4 Comparison Test . 74

6.2.5 Pre- and Postquential Statistics Computation 75

6.2.6 Tree Addition Method . 76

6.2.7 Datasets . 77

6.2.8 Evaluation Metric . 78

6.3 Results . 78

6.3.1 Optimal Forest Size . 79

6.3.2 Tree Addition . 79

6.3.3 Tree Removal . 80

6.3.4 Comparison to Fixed Ensemble Size 81

6.4 Related Work . 83

6.5 Conclusion . 84

7 Conclusion 85

7.1 Benchmark Contributions . 85

7.2 Mondrian Forest Contributions . 85

7.3 Other Contributions . 86

7.4 Future Work . 87

viii

List of Figures

1.1 The power and energy consumption in connected devices (figure extracted

from [25]). Yellow: Transmition of data, Blue: Reception of data, Red: Pro-

cessing, Green: Sleep. 2

1.2 Architecture illustration of the Internet of Things (figure extracted from [82]). 2

2.1 Illustration of the Mondrian tree before (top) and after (bottom) of a branch

out. The left side shows the data points in a two-feature space with the node’s

boxes and the splits. The right side shows the tree structure. The branch out

is triggered by the purple data point. 17

4.1 F1 scores for the six datasets (average over 20 rep.). The horizontal dashed

black line indicates the offline k -NN F1 score (the value of k was obtained by

grid search in [2, 20]). The blue shades is the ±σ interval of the Mondrian

forest classifier. 35

4.2 Power usage and Runtime (20 repetitions) for the Banos et al dataset. Results

are similar across datasets. 39

4.3 Memory footprint of classifiers with the empty classifier as a baseline, mea-

sured on the Banos et al dataset. The memory footprint of the empty clas-

sifier is 3.44 MB. The baselines are the two Näıve Bayes from OrpailleCC

and StreamDM-C++. Their respective memory footprints are 3.44 MB and

4.74 MB. 41

4.4 Error threshold tuning of MCNN with the first subject of Banos et al dataset.

Error threshold in parenthesis. 42

4.5 Hyperparameters tuning for Mondrian with the first subject of Banos et al

dataset. 43

ix

5.1 A two-feature example of the split definition. In each scenario, rectangles

represent leaf boxes, the triangle is the new data point, and the cross is the

split helper. The green area indicates the range of values where the new split

will be created. The split helper is arbitrarily placed to illustrate different

situations. 54

5.2 Comparison of the out-of-memory strategies proposed in Section 5.2.3 for six

datasets. 61

5.3 Comparison of trimming methods applied with the Extend Node out-of-memory

strategy. 63

5.4 Comparison of tree leaf splitting methods combined with the Random trim-

ming strategy. 65

5.5 Evaluation of the memory impact on the top out-of-memory strategy and

the top trimming methods described in Section 5.2.3 and Section 5.2.4. The

results are shown for 50 trees. 66

6.1 The impact of the ensemble size on the F1 score depending on the datasets

and the memory limit. 79

6.2 The effectiveness of the adding methods and removing method compare to

Fixed. 80

6.3 Comparison between component combinations and Fixed with the optimal

tree count. Fixed is represented by a vertical dashed line. The value for the

component combinations is percentage of the Fixed F1 score. 82

x

List of Tables

4.1 Activity merging in Recofit dataset (table extracted from [31]). 27

4.2 Hyperparameters used for the Mondrian forest. 29

4.3 Hyperparameters used for the MCNN. 30

4.4 Average F1 scores obtained on the last data point of the stream. 36

5.1 Summary of the node structure used in Algorithm 1. 50

5.2 Summary of the proposed out-of-memory strategies. update counters and

update box refer to the functions in Algorithm 1. —: no-op. 51

5.3 ∆F1 score compared to Stopped Mondrian. Minimum, maximum, and average

scores are computed across all tree numbers. 62

5.4 ∆F1 score compared to Stopped Mondrian for the trimming methods. Mini-

mum, maximum, and average scores are computed across all tree numbers. . 64

6.1 The best-ranked component combinations out of the 24 combinations of Al-

gorithm 4 across datasets and memory limits. The top lines rank better on

average than the bottom lines. 83

xi

Chapter 1

Introduction

The amount of connected devices is expected to double in the next five years to reach 75.4

billion in 2025 [77]. However, the current data processing architecture suffers limitations.

Currently, this architecture is generally centralized, as illustrated in Figure 1.2, implying

that data are produced on the device, then transferred to a centralized computer where

they are stored and processed. This centralized approach suffers from a few drawbacks

such as energy consumption and lack of privacy. Indeed, transferring the entirety of the

data centrally requires a substantial amount of wireless communication, which importantly

reduces battery life. Figure 1.1 shows that wireless communications represent 90% of the

power consumption and 50% of energy usage [25, 4, 35].

Moreover, centralizing the data delegates data governance entirely to the central entity.

This situation threatens privacy, for instance when political views, sexual orientation, or

medical conditions can be extracted from the data [97]. Currently, the user does not know

who is using their data, or when [27]. This is an issue since the data can be sold or stolen and

used many years after their acquisition. Four approaches are used to enhance privacy: au-

thentication and authorization, edge computing and plug-in architecture, data anonymizing

and denaturing, digital forgetting, and data summarization [97].

A solution to privacy and battery issues is to decentralize data collection by process-

ing data directly on a connected device using data stream algorithms. This solution is a

combination of edge computing and data summarization. Indeed, data stream algorithms

aggregate summaries of the data to central places, which limits the potential future use of

the data and the amount of data transmitted through the wireless network [29, 99]. On the

other hand, the decentralized architecture increases resource usage on the devices, in partic-

ular CPU and memory, which, in turn, may increase energy consumption. Additionally, the

1

Figure 1.1: The power and energy consumption in connected devices (figure extracted

from [25]). Yellow: Transmition of data, Blue: Reception of data, Red: Processing, Green:

Sleep.

Figure 1.2: Architecture illustration of the Internet of Things (figure extracted from [82]).

2

resource limitation of connected objects (memory and processor) creates challenges.

A data stream algorithm is an approach to processing an infinite sequence of data points

that arrive continuously over time. It is designed to handle high-velocity and high-volume

data, and has constant space and time complexity, which makes it well-suited for processing

data from connected objects. Data stream classification is a subclass of online classification,

in which the model is updated with new data as it arrives [14, 88]. However, data stream

classification is typically more constrained on the resources, the complexities, and on the

volume of data than other online classification approaches. In this manuscript, we use the

following definition: 1) Offline classification refers to situations where the entire dataset can

be accessed without any restrictions 2) Online classification refers to scenarios where only

one chunk of the dataset can be accessed at a time, but this chunk can be accessed again

later 3) Data stream classification, on the other hand, refers to scenarios where the dataset

is processed in a continuous streaming fashion. Many problems have been studied from the

perspective of data stream processing such as sampling, counting, or learning [52, 83, 110, 59].

This manuscript focuses on supervised classification for data streams, a problem that

has been targeted by many models. These models generally derive from existing non-data

stream models and extend them to process infinite sequences of data points. There are

individual models such as the Näıve Bayes or the Hoeffding Tree [33], and ensemble-based

models such as the Adaptive-Size Hoeffding Tree [19], the Kappa Updated Ensemble [26],

or the Mondrian forest [71]. Some models are hybrid such as Fast-Slow Classifier [78] that

combines a Hoeffding Tree and an ensemble.

Among them, the Mondrian forest is an ensemble of randomized decision trees [71].

Similarly to Random Forests [24], these trees involve randomness to grow differently from

the same data, limiting the ensemble from overfitting. The performances reported in [71]

show that the classification performance of the Mondrian forest is similar to the offline

Random Forests and Online Random Forests [93], the straightforward extension of Random

Forests for online learning. The Mondrian forest has the particularity of not using labels

during training, but rather selecting the splits based on data point density only. Even though

the labels are required for the prediction, they can be delayed during the tree-building phase,

a situation that occurs for some data streams [50, 48].

Most ensemble-based models presented before assume the existence of enough memory to

train and update to new data [78, 71, 26, 93]. These models usually crash if the model size

exceeds the available memory [12, 54]. The assumption of unlimited memory clearly does not

hold when the architecture is decentralized and the learning happens on the devices. This

3

manuscript focuses on memory-constrained Mondrian forests for data streams. A memory-

constrained model is a model where the memory footprint should remain under a user-defined

limit. In general, the model classification performance is directly linked to the memory limit

and the model should, therefore, aim at using all the memory available. The overall goal of

this thesis is to develop a Mondrian forest algorithm suitable for data stream classification

with memory constraints.

This thesis is article-based and this manuscript compiles the publications associated with

the thesis. Chapter 2 provides the background needed to understand the contributions. It

introduces data stream, data stream classification, and the problems posed by processing

streaming data. The chapter also describes existing data stream classification algorithms.

Chapter 3 describes OrpailleCC and was published in [63]. OrpailleCC is an open-source

collection of various data stream algorithms including supervised learning algorithms. The

OrpailleCC paper is published in the Journal of Open Source Software which enforces the

best software practices by reviewing the source code of the library linked to the papers.

In particular, the journal publishes papers where the linked source code is released with

extensive documentation and unit tests. In OrpailleCC, the algorithms are implemented

with the deployment of connected objects in mind. In particular, the learning algorithms

have a constant memory footprint.

Chapter 4 is a benchmark of data stream classifiers published in [60]. The benchmark

tests classifiers implemented in OrpailleCC, including the Mondrian forest. In contrast with

the original Mondrian forest implementation, the OrpailleCC implementation includes a

memory limit set by the user. The benchmark evaluates the model F1-scores and resource

usage such as memory or energy consumption. The benchmark concludes that the implemen-

tation of the Mondrian forest maintains an overall good classification score, but is sensitive

to the amount of available memory. Indeed, when less memory is available the classification

performances worsen. The remaining chapters focus on the Mondrian forest with a memory

constraint and aim at making it memory efficient given a user-defined memory limit. This

chapter focuses on Human Activity Recognition because prior to this benchmark, a col-

laboration was established with Motsai company, which was interested in this application.

However, the algorithmic contributions of this thesis have broader applications.

Chapter 5 proposes and evaluates 14 designs for the memory-constrained streaming Mon-

drian forest and is published in [62]. In particular, it defines and tests 5 ways to update

the Mondrian forest while complying with the memory limit. Additionally, it defines and

evaluates 9 mechanisms to handle concept drifts. The chapter identifies the Mondrian forest

4

design that is best suited for data stream learning with a memory constraint. This design

improves the Mondrian forest F1 score by 0.27 on average compared to the näıve default

strategy. The experimental results reported in this chapter exhibit the impact of the ensem-

ble size on the classification performance of the Mondrian forest. In particular, the results

denote the existence of an optimal ensemble size beyond which the performance of the forest

decreases. This is usually not the case in tree-based ensembles, such as Random Forest [24],

when trained without memory constraint.

Chapter 6 explores how the ensemble size of the Mondrian forest can be dynamically

adjusted to reach its optimal size and it is published in [61]. Our results highlight a trade-off

between tree depth and tree count. Indeed, due to the memory constraint, having more

trees in the forest leads to smaller trees that underfit the data. This trade-off makes the

Mondrian forest either overfit when there are too few trees, or underfit when there are too

many trees. Then we propose a method based on overfitting detection to guide the growth of

the ensemble within the memory limit. The chapter concludes that the method works even

though the hyper-parameters still need tuning. Using our method, the model can achieve

up to 95% of an optimally-sized Mondrian forest.

Overall, the main contribution of this thesis are 1) a benchmark of data stream clas-

sifiers; 2) the adaptation of the Mondrian forest to data stream and memory constraints;

3) a mechanism to optimize the forest size under memory constraint; 4) an open-source

implementation of the memory-constrained Mondrian forest.

5

Chapter 2

Data Stream Processing

Data Stream Algorithms are designed to process an infinite sequence of items that may

be read only once [90, 10, 47]. A data stream is considered endless because the amount of

data that will be produced is unknown. Therefore, the size of the sequence is not available

and must be considered infinite. An item in the data stream must be processed a constant

number of times, usually only once, because multiple examinations require storing the item

for a longer period of time. As a data stream is infinite, examining items an unknown

number of times requires storing the entire data stream which is not possible. Additionally,

examining one item has to be done with a constant complexity regarding the number of

items already processed. This limitation is related to the infinity of the stream because the

time to process one item will increase too much and the algorithm will not be usable after

the processing time has exceeded the period between two consecutive elements. Finally, the

distribution of values in a data stream might be changing over time and the most recent

data are often more relevant than the older ones. This behavior is called concept drift.

Data streams appear in many situations that involve connected devices. A camera pro-

duces a series of pictures, a connected wristband senses the evolution of heartbeat through

time, and a refrigerator emits every time an item is used. All previous examples stream a

series of events, possibly endless, from which data must extract on the fly.

When processing these infinite sequences with limited examinations, key information

should be extracted as soon as the item is available even though the entire sequence is not

available, rather than waiting for all items. Delaying the extraction may result in the loss of

valuable information. However, due to the lack of data and the constant time complexity,

an approximate answer is often acceptable. Therefore, most data stream algorithms are

stochastic and include parameters to tune the error margin. For instance, in the camera

6

example mentioned above, detecting a particular object in an image can be achieved with a

given confidence level and this level is adjusted depending on the user’s need.

Data stream algorithms cover a wide range of problems. The work in [59] gathers a list of

those problems and associates papers with each of them. These papers explore data stream

methods as well as online methods. Online algorithms differ from data stream algorithms

by the availability of the data. In online situations, the data are already available and the

dataset size is known. Nevertheless, the dataset is too large to fit in memory, thus it must

be processed in sequence (preferably once). In the rest of this manuscript, we will focus on

data stream classification.

2.1 Classification and Data Stream Classification

Supervised classification is a machine learning problem in which a model has to accurately

predict the label (or category) of an unlabeled data point. The model is trained on labeled

data points available in a dataset. A dataset is a set of data points where each point

corresponds to one element. A point is described by its features (for instance, length, width,

or any information that characterizes the point) and all points from a dataset have the same

number of features.

Offline classification is when the dataset is available without limits. The dataset is split

in two: the training set (labeled points) is used to build a model then a test set (unlabeled

points) is used to evaluate it. Online classification is when the training set is only available

in sequential order and each data point is used to update the model. However, the model

can be built with multiple passes through the training set.

Data stream classification introduces further challenges to online classification because

the dataset is an infinite sequence [43]. The length of the stream is unknown, so it cannot

be used to set variables or adjust probabilities. Given that the stream may be infinite,

storing the stream is not feasible, and the model must maintain constant time and memory

complexities. The class distribution is unknown, and there may be a class imbalance that

fluctuates throughout the stream.

Moreover, data streams are sensitive to concept and data drifts, a common challenge in

data stream classification where the underlying patterns in the data change over time. It

can happen for various reasons, including changes in user preferences, external factors, or

seasonality. Drift creates a significant challenge for classifiers since they learn patterns from

historical data, and when these patterns change, the models may no longer be accurate.

7

Thus, detecting and adapting to drift is essential to ensure that the machine learning models

remain effective in dynamic environments. It is a difficult problem that is further complicated

by memory constraints, as drift detection and adaptation require memory.

Concept drift and data drift are two types of changes that can occur in a data stream.

Data drift refers to a change in the distribution of input features over time. This can be

caused by various factors, such as changes in the data collection process, changes in the

underlying system generating the data, or data anomalies. Concept drift, on the other hand,

refers to a change in the underlying relationship between the input features and the target

variable. This means that the statistical properties of the target variable can change, even

if the input features remain the same. For example, a feature that was once important for

predicting a target variable may become less relevant over time, while other features may

become more important.

Even though the environment is dynamic, in this manuscript we assume a fixed number

of features and labels throughout the data stream classification process.

These obstacles related to data stream learning disrupt the offline pipeline where datasets

are split in training set and test set. Instead, the metric used is the prequential evaluation [30]

also known as the interleaved test-then-train. With this metric, each new data point from

the stream is used to first test the model, then train the model. Additionnaly, the prequential

evaluation can be combined with a fading factor that gives more weight to the recent data

points, and therefore limiting the impact of old misclassifications [43].

There are two approaches to adapt existing models to data streams: batch learning

and incremental learning. Batch learning collects data points in a sample large enough to be

representative of the stream, then trains a new offline model with that batch. Batch learning

has the advantage of re-using the existing models without much modification. However, it

is more resource-intensive because it re-trains a new model and it has to store enough data

points for the offline model.

The incremental learning approach updates the model with each new data point without

the need to store many of them. This approach is less resource-intensive, but it requires to

design new models.

When training a model, there are a few general problems that raises: bias, variance,

underfitting, and overfitting. The bias is the error on the training set. The variance is the

error on the test set. The model underfits when it has a high bias because it misses relevant

relations between the features and the labels. When a model has a low bias and a high

variance, the model overfits, because it has taken into account random noise in the training

8

data.

2.2 Existing Data Stream Classification Models

In this section, we present various classification models and their data stream adaptations.

We first describe the offline models, then we present adaptations of these models to data

streams. The models can use both incremental and batch learning.

2.2.1 Naive Bayes

The Naive Bayes classifier [72] is a probabilistic classifier based on Bayes Theorem. It

aims at finding the most likely class of a record based on the probability of the attributes.

To proceed, the classifier needs the dataset with all possible classes. The Naive Bayes

algorithm compiles the dataset into a table of occurrences and it uses this table to compute

the probabilities to belong to each class given a feature value. To classify a new record,

probabilities of the features are combined for each possible class.

This approach is datastream-friendly for many reasons. Adding a new record to the model

has a constant complexity because at most one row of counters needs to be incremented. The

size of the model is also constant and very small (number of classes × number of features).

The table of occurrences is only limited by the bit size of its counters and does not store

the data points. Because of the simplicity of this method, Naive Bayes can be employed by

bigger classification models for smaller subsets. Finally, the Näıve Bayes can be modified to

focus on the most recent data, which helps recover from concept drifts [109].

Even though the Näıve Bayes classifier is a popular and straightforward choice, it has a

few drawbacks. The model assumes that features are independent, which is not always the

case in real life. Additionally, continuous features need to be discretized. Furthermore, the

model does not work with missing data and needs alternative methods such as smoothing to

behave properly. Finally, the performance of the Näıve Bayes classifier can be poor compared

to other classifiers [31].

2.2.2 k-nearest neighbors

The k-nearest neighbors (kNN) [6] classifier uses the neighbors accumulated during the

training phase to classify a new element. Given an element e and a constant k, the algorithm

retrieves the class of the k-nearest neighbors of e in the training set. The predicted class for

9

e is the majority class amongst the k neighbors. Even though the Euclidean distance is the

most popular one, other distances can be used, such as Manhattan, Minkowsky, Chebychev

or Camberra [67].

The kNN algorithm has a major inconvenience for online and datastreams applications:

it uses the whole training dataset to classify a data point. This behavior contradicts two

principles of data stream learning: data should be processed once and the stream cannot be

stored. However, using a sliding window to store the last records of the dataset makes it

viable for online applications. In addition, the sliding window allows kNN to better catch

concept drifts. This side effect appears because the dataset for kNN does not contain the

oldest elements, thus the older concepts. The work in [2] uses a biased reservoir sampling

method to build a sample before applying kNN. Thus, new points are classified using their

k-nearest neighbors from the sample. Results show that the kNN over the biased window

performs better than the kNN over an unbiased sample.

Micro-Clusters Nearest Neighbors [103] (MC-NN) is a kNN adaptation to data streams

where elements are aggregated in centroids. MC-NN compresses the data points and dimin-

ishes the amount of comparisons to execute in the classification phase. To adjust to concept

drift, MC-NN splits the centroids when they reach a given amount of misclassification.

ProtoNN [51] is a kNN-based model that performs a low-dimension projection of the

features to increase accuracy and improve its memory footprint. The model also compresses

the training set into a fixed amount of clusters. ProtoNN claims to remain below 2KB

while retaining high accuracy. However, this model does not apply to evolving data streams

because its low-dimension projection and its structures are pre-trained based on existing

data, thus, adjusting them would require more time and memory.

2.2.3 Decision Tree

A decision tree [89] is a type of classifier structured as a tree where nodes represent

classification criteria. Each internal tree node contains a criterion on the features to split

the dataset between its child nodes, and tree leaves contain records from the dataset to

finalize the classification.

During the training phase, all records are passed down the tree following the tests in

internal nodes until they reach a leaf. Then a metric is computed to decide whether the leaf

needs to be split and which criterion should be used for the split. The most common metrics

are entropy [98] through the information gain and the Gini index [46].

During the test phase, records pass through the tree until they reach a leaf. In each

10

internal node, the features are tested with the tests selected during the training phase. The

test result redirects the record toward one of the child nodes. Once the record reaches a leaf,

it is classified using the training element that also attained this leaf.

Decision trees are not suitable for data stream learning. Indeed, to compute the infor-

mation gain of a possible split, the tree needs to store all records of the leaf. Regarding the

root, the complete dataset is required to compute the first split, which violates one of the

principle of data stream learning.

To bypass this limitation, incremental trees were developed. An incremental tree is

a decision tree to which training records are given one by one. The main difficulty in

incremental trees is to decide when the split should be done and when to discard a record

that is not needed anymore.

The Hoeffding Tree [33] tackles these issues in two ways. First, it stores feature counts of

every record in each leaf. This operation removes the need to store the data points. Second,

it uses the Hoeffding bound equation to decide when the difference between the two best

criteria is high enough in order to proceed to a split. Similarly, the McDiarmid Tree [92] is

a decision tree where the McDiarmid bound replaces the Hoeffding inequality.

In order to improve the Hoeffding Tree performance, the Hoeffding Option Tree (HOT)

uses option nodes [66] to allow records to be sorted in multiple leaves. Then a weighted

vote algorithm combines the classification of all leaves. Even though this approach is similar

to ensemble methods (Section 2.2.4), it uses much less memory while preserving the perfor-

mances. The HOT also describes pruning methods to reduce further the memory footprint

to the same point as the Hoeffding Tree at a small cost in accuracy.

The Hoeffding Adaptive Tree [16] (HAT) is a variant of the Hoeffding Tree developed

to deal with concept drifts. In addition to statistics on leaves for the splits, it also keeps

information at the node level, to detect drift. If a drift is detected, the algorithm starts

growing an alternate branch at that node called a ghost branch. If the ghost branch obtains

better results than the original one, the original branch is replaced by the new one. The

HAT proposes two methods to detect concept drifts: one based on a sliding window and a

second one based on the Adaptive Windowing detector [5].

Adaptive Windowing (ADWIN) is a change detection algorithm used in data stream

mining. It dynamically adjusts a sliding window over a stream of data, constantly monitoring

the data distribution in the window. If a significant change is detected, the window size is

adjusted to keep more recent data and exclude older data. ADWIN is designed to adapt to

changes in the data distribution quickly and with logarithmic space complexity.

11

Overall, to propose a new data stream decision tree, a developer has to fix two issues.

The new algorithm has to be built iteratively, thus the tree needs to know when it should

process to a split, with the most common method being the Hoeffding bound. The tree also

needs to adapt to concept drifts which imply reshaping itself. Additionally, the tree may

need to detect concept drift in order to adapt properly, but it is not mandatory.

2.2.4 Ensemble classifier

Ensemble classifiers are classifiers that use a group of sub-classifiers (or weak classifiers)

to make their prediction [34]. When an ensemble classifier makes a prediction, it runs all its

sub-classifier, then merges the result using a voting system, for instance, the majority class

or a consensus vote.

Boosting is an ensemble classifier where sub-classifiers are trained sequentially and each

sub-classifier is trained with the errors of the previous one in mind. The most famous

boosting algorithm is Adaboost [42]. At the first iteration, all data points have a weight

of one, then weights of misclassified records in the previous iteration will represent half the

weight of the dataset. Therefore, the following sub-classifier will focus on the misclassified

points.

Bagging [23] is another ensemble classifier where sub-classifiers are trained concurrently

over slightly different datasets called bags. A bag is a sample with replacement of the dataset.

When the size of the bag is equal to the size of the original dataset, the bag is called a

bootstrap sample. This ensemble classifier provides several advantages: it is straightforward

to parallelize and it limits overfitting. Indeed, since all sub-classifiers are independent, they

can train in parallel. Also, since the sub-classifiers are not built with the same training set,

the ensemble is less likely to focus on random noise in the data.

Bagging introduces a new concept to measure performance: the out-of-bag error (OOB) [56].

When a bag from the training set is assembled, some records are left out of the bag. It hap-

pens because of the replacement or because the size of the bag is smaller than the training

set. The OOB error of a sub-classifier is the average prediction error on the records out of

its bag. The OOB error of the ensemble is the average error of prediction for each training

record with each sub-classifier when the record does not belong to its bag.

Ozabag and Ozaboost [84] adapt bagging and boosting to online applications. The online

bagging assumes the dataset length tends to +∞ and thus, is able to compute the probability

of one element to appear a certain amount of times k. This number k follows a Poisson law.

Therefore, it allows the online bagging to generate a number k following this law for each

12

record and then insert the record k times. This online approach performs as well as the

offline bagging.

On the other hand, online boosting proposed in [84], slightly twists the original approach.

Instead of training one classifier with the whole dataset and then adjusting the weights,

it trains each sub-classifier with the current record and adjusts the weight based on the

classification result of the sub-classifier. This online boosting does not match the performance

of the offline version even though it remains close to it.

Fast and Slow Classifier [78] (FSC) is a hybrid method to cope with data stream learning

that involves incremental learning with a single decision tree and batch learning with an

ensemble. Indeed, FSC combines a batch learning algorithm (Ms) and a stream learning

algorithm (Mf) to provide the best prediction. FSC uses an Hoeffding Tree as Mf and an

eXtreme Gradient Boosting as Ms. Mf is continuously trained with each new item while

Ms is only trained on a sliding window. When Ms is not trained yet, Mf is used to classify.

When both Ms and Mf are available, the one with the highest accuracy is used. The error

of each model is continuously updated with the prequential error [30]. ADWIN [5] is used

to detect concept drift. When a drift is detected, the sliding window is split into two sets

(training and testing) and new models of Ms are trained based on the training set. FSC

uses four strategies to build a new model. The first uses the entire training set unchanged.

The second strategy trains the model over a probabilistic adaptive window of the training

set. The third approach trains the model on a reservoir sample of the training set. The last

strategy uses a weighted reservoir sampling algorithm. Once the new models are trained

their performances are compared on the testing set. The original Ms is also tested in case it

remains more accurate than the new models. Finally, the most efficient model will replace

Ms. In most cases, the hybrid model outperforms its two components, Ms and Mf .

2.2.5 Random Forest

A Random Forest [24] is an ensemble of decision trees. Given a training dataset D where

each record is represented by k features, each tree tj of the forest is trained with a bag Dj.

As described before, Dj is a sample with replacement from the original dataset D. When

the tree grows, each leaf considers l features randomly picked to select a split, with l ≪ k.

Thus, a leaf only considers a subset of the features to select a split. The original paper [24]

also considered recombining features with linear combinations, which gives slightly better

results. To select the best splits in trees, the Random Forest relies on the Gini index [46]

rather than the information gain.

13

To predict the class of an unlabelled record, the algorithm passes this record through all

trees and returns the majority class predicted by them. This algorithm benefits from the

bagging method by not overfitting the data and by being straightforward to parallelize.

The forest performances converge with the number of trees and using a larger l to select

the split enhances accuracy [24].

Since 2001, Random Forests have been widely explored. A survey found that ReliefF

measurement gives better performance than the Gini index [69]. However, combining various

information measures (Gini, Gain ratio, ReliefF, MDL) does not improve the result. An

empirical study showed that a forest with 100 trees and l = log(feature+ 1) offers the best

performance on imbalanced datasets [64]. It also shows that a Random Forest with these

parameters performed better than a baseline composed of kNN, C4.5 decision tree, Näıve

Bayes, and SVM.

While the original Random Forest uses the majority vote to aggregate the classification

of the trees, the survey in [69] describes various alternatives. All of them weigh the vote of

each tree based on its characteristics. Tree accuracy is one of them. Dynamic Integration

aims at replacing the majority vote with a dynamic voting system [104]. Each variant of the

Dynamic Integration stores the result of all trees for all records in the training set. Then,

kNN finds similar instances of the unlabelled data point for each tree. Finally, these instances

are used to predict the error of each tree for the new data point. Depending on the variant,

the system uses these error predictions to weigh trees, discard them, or both.

Another improvement in Random Forests is to find a smaller forest that achieves the

same accuracy. Reducing the forest size improves the memory footprint and decreases the

amount of time to train the forest. However, most methods tend to overproduce trees and

then shrink the forest by removing trees or combining them [69]. If these approaches provide

smaller forests, they still have the same peak memory and use the same time to produce.

Finally, Random Forests have been adapted to various types of situations. Initially de-

signed to classify and make regressions [24], some Random Forests version estimate quantiles,

applies clustering algorithms and predicts ranking [15].

2.2.6 Online and Data Stream Forests

Online and data stream Random Forests raise new problems. Building bags out of a

stream is not straightforward and choosing the right manner of adapting to concept drift

is subject to debate. Indeed, Random Forests have at least two options to handle drifts:

changing trees or using incremental trees designed for data streams. Furthermore, data

14

stream forests, as classification algorithms, have to handle non-uniformly distributed labels

over the sequence. In addition, the classification problem faces constraints related to data

streams as explained in the beginning of this chapter. Data should be read once, the learning

time complexity has to be constant for each record, and the sequence cannot be stored.

The Streaming Random Forest [1] is a method that combines Hoeffding Trees [33] to

form a forest. Trees are trained with n records and tested with 10% of this amount. As

long as the tree error remains too high, the training continues with a decreasing number of

records (n
2
, n

4
, n

4
, etc · · ·). During the prediction phase, the tree error is used to weigh the

tree prediction and thus, decrease the influence of the tree with a higher error. To detect

concept drift, the method compares the entropy between an older window of the stream

and the current sliding window. Periodically, the method checks for concept drift intensity

and changes between 25% and 100% trees starting with the trees with the largest error. A

minimum of 25% of the forest is always changed to ensure that even small concept drifts are

caught.

In the same vein, the Adaptive-Size Hoeffding Tree [19] combines Hoeffding Trees with

a different size limit for each. When such a tree reaches its limit, it restarts from the last

added node and deletes the other nodes. With this mechanism, trees with smaller limit will

adapt faster to concept drift.

Ultra Fast Forest Tree [44] (UFFT) is an online Random Forest based on an online

decision tree method for binary classification. The tree is designed to work with online data.

Even though the tree is limited to a two-class classification, the paper suggests using a forest

of these trees to handle multi-class classification. In addition to the trees, the UFFT uses

a sliding window to initialize statistics in leaf nodes after a split. Each considered split is

formed with an attribute and a value such that attributej < value. The value is selected with

an analytical method [76] that solely requires the average and the variance: two statistics

computable in an online fashion. However, this method assumes that attributes are uniformly

distributed for each class. To turn a leaf node into an internal node, the algorithm waits for

two events. A positive value from the information gain function toward the best split and

having seen enough new data points so it is statistically supported by the Hoeffding bound.

To be classified, new records are passed through the tree until they reach a leaf, then a

Näıve Bayes algorithm is applied to finalize the classification. With multi-class problems,

the answers of each tree are a probability distribution for each class, then these probabilities

are aggregated using the sum rule [65] and the most probable class is returned.

The Online Random Forest [93] (ORF) uses the Ozabag to build bags out of the data

15

sequence. The ORF also includes a mechanism to remove old trees based on their out-of-bag

error (OOBE). The algorithm randomly picks a tree with an OOBE higher than a threshold

and replaces it with a probability equal to the OOBE.

Instead of throwing a tree, the Adaptive Random Forests [48] proposes an alternative

mechanism called the background tree. In this method, two thresholds of concept drift

detection are set: warning and replace. When the warning threshold is crossed for a specific

tree t, a background tree associated with t starts to grow. Both t and its background tree

use the same records. When t crosses the replace threshold, it is replaced by its background

tree. This system with two levels of concept drift is used to avoid using a brand-new tree in

the forest. Instead, the tree had time to train on the recent element of the stream.

Even though the tree error is not used to discard trees in Adaptive Random Forests [48],

the tree error is used in a weighted vote for prediction. Additionally, the Adaptive Random

Forests carries little difference compared to the Online Random Forest. It uses Hoeffding

trees instead of regular CART trees and it uses ADWIN to detect concept drift instead of

out-of-bag errors.

2.2.7 Mondrian forest

The Mondrian forest is an ensemble of Mondrian trees [71] and it is the main focus of

this manuscript. The Mondrian tree is a decision tree that involves a lot of randomnesses

to build different trees given the same data points. The performances reported in [71] show

that the Mondrian forest has competitive performances similar to the Random Forest [24],

the Extremely Randomized trees [45], and the Online Random Forests [93].

In a Mondrian tree, each node is made of label counters and a feature box, thus keeping

the minimum and maximum range of each feature. At any node, all the points counted

at that node fit inside the node’s feature box. Additionally, the node’s box fits inside its

parent’s box. To grow the tree, the data points are passed down the tree either one by one

or in batches. If a data point is sorted to a node (internal or leaf) but the point falls outside

of the node’s box, then the node may trigger a branch out, as illustrated in Figure 2.1.

Branching out is a way to introduce a new leaf at any place in the tree. In Figure 2.1 (top),

a new data point (in purple on the left) is sorted into leaf C but falls outside of C’s box.

Figure 2.1 (bottom) shows the result of a branch out with two new nodes: F and F. F is a

node that will hold the purple data point, and E is the parent of F and C. The new nodes are

introduced without modifying existing branches or altering their counters. The probability

to trigger a branch out depends on how far the data point is from the node’s box. If a branch

16

F2

F1

R

A B

C D

F2

F1

R

A B

DE

CF

Figure 2.1: Illustration of the Mondrian tree before (top) and after (bottom) of a branch

out. The left side shows the data points in a two-feature space with the node’s boxes and

the splits. The right side shows the tree structure. The branch out is triggered by the purple

data point.

out is not triggered for a point outside of a node’s box, the node’s box is extended to fit that

point.

For prediction, the unlabelled data point is passed down each tree and they give an array

of probability. The forest averages the prediction of its trees and predicts the label with the

highest average probability.

The model proposed in [71] and its implementation made in [12] is an online algorithm

that requires a few adjustments to properly work for data streams. A detailed description

of the Mondrian forest is done in Chapter 5.2.2, where we discuss different ways of adapting

the Mondrian forest to data streams.

17

Chapter 3

OrpailleCC: a Library for Data

Stream Analysis on Embedded

Systems

Published as: Martin Khannouz, Bo Li, and Tristan Glatard. OrpailleCC: a Library for

Data Stream Analysis on Embedded Systems. Journal of Open Source Software, 4(39):1485,

2019.

The Journal of Open Source Software (JOSS), where OrpailleCC is published, is an open-

access journal that publishes research software packages with high-quality documentation,

peer-reviewed and well-tested source code. JOSS is designed to provide a publishing venue

for researchers who develop and maintain open-source software that has been evaluated and

tested for scientific research. JOSS operates on a model of community-driven review, where

reviewers openly review the software package and make suggestions for improvements.

The guidelines of JOSS require software packages to be well-documented, well-structured,

and to have an open-source license. The software should also be tested and used in a scientific

context. JOSS encourages the use of community-based review, which helps to ensure the

quality of the software and provides an opportunity for developers to receive feedback on

their work. The papers submitted alongside the package are generally between 250 and 1000

words, which is why this chapter is relatively short.

These guidelines are relevant for the scientific community because they promote the

use and development of open-source software that can be used and modified by researchers

worldwide. By requiring high-quality documentation, JOSS makes it easier for researchers to

understand and use the software, which can increase the reproducibility and transparency of

18

research. Finally, the community-driven review process ensures that the software is rigorously

evaluated and tested, which can increase confidence in the quality and reliability of the

software.

The remainder of this chapter present the short paper published in JOSS to describe the

contribution.

The Internet of Things could benefit in several ways from mining data streams on con-

nected objects rather than in the cloud. In particular, limiting network communication with

cloud services would improve user privacy and reduce energy consumption in connected de-

vices. Besides, applications could leverage the computing power of connected objects for

improved scalability.

OrpailleCC provides a consistent collection of data stream algorithms developed to be

deployed on embedded devices. Its main objective is to support research on data stream

mining for connected objects, by facilitating the comparison and benchmarking of algo-

rithms in a consistent framework. It also enables programmers of embedded systems to use

out-of-the-box algorithms with an efficient implementation. To the best of our knowledge,

existing libraries of stream mining algorithms cannot be used on connected objects due to

their resource consumption or assumptions about the target system (e.g., existence of a

‘malloc‘ function). Nevertheless, for more powerful devices such as desktop computers, Java

frameworks such as Massive Online Analysis [18] and WEKA [53] achieve similar goals as

OrpailleCC.

OrpailleCC targets the classes of problems discussed by [59], in particular Sampling and

Filtering. Sampling covers algorithms that build a representative sample of a data stream.

OrpailleCC implements the reservoir sampling [108] and one variant, the chained reservoir

sampling [11]. Filtering algorithms remove the stream elements that do not belong to a

specific set. OrpailleCC implements the Bloom Filter [22] and the Cuckoo Filter [39], two

well-tested algorithms that address this problem.

In addition to Sampling and Filtering, OrpailleCC provides algorithms for stream Classi-

fication and for stream Compression. The Micro-Cluster Nearest Neighbour algorithm [103]

is based on the k-nearest neighbor to classify a data stream while detecting concept drifts.

The Lightweight Temporal Compression [96] and a multi-dimensional variant [74] are two

methods to compress data streams.

All implementations rely as little as possible on functions provided by the operating

system, for instance ‘malloc‘, since such functions are typically not available on embedded

19

systems. When algorithms cannot be implemented without such functions, the library uses

template parameters to request the required functions from the user. All algorithms are

developed for FreeRTOS [8], a free real-time operating system used in embedded systems, but

they should work on any micro-controller with a C++11 compiler. The C++11 programming

language was chosen for its performance as well as its popularity in the field. All methods

are tested and tests are run through Travis-CI.

In the future, we plan to extend the library with other reliable algorithms to widely cover

as many common problems as possible. We also plan to use it as a basis to design new stream

classification methods. External contributions are, of course, most welcome.

20

Chapter 4

A Benchmark of Data Stream

Classification for Human Activity

Recognition on Connected Objects

Published as: Martin Khannouz and Tristan Glatard. A Benchmark of Data Stream

Classification for Human Activity Recognition on Connected Objects. Sensors, 20(22):6486,

2020.

This paper evaluates data stream classifiers from the perspective of connected devices,

focusing on the use case of Human Activity Recognition. We measure both classification

performance and resource consumption (runtime, memory, and power) of five usual stream

classification algorithms, implemented in a consistent library, and applied to two real human

activity datasets and to three synthetic datasets. Regarding classification performance, re-

sults show an overall superiority of the Hoeffding Tree, the Mondrian forest, and the Näıve

Bayes classifiers over the Feedforward Neural Network and the Micro Cluster Nearest Neigh-

bor classifiers on 4 datasets out of 6, including the real ones. In addition, the Hoeffding

Tree, and to some extent the Micro Cluster Nearest Neighbor, are the only classifiers that

can recover from a concept drift. Overall, the three leading classifiers still perform substan-

tially lower than an offline classifier on the real datasets. Regarding resource consumption,

the Hoeffding Tree and the Mondrian forest are the most memory intensive and have the

longest runtime, however, no difference in power consumption is found between classifiers.

We conclude that stream learning for Human Activity Recognition on connected objects

is challenged by two factors which could lead to interesting future work: a high memory

21

consumption and low F1 scores overall.

4.1 Introduction

Internet of Things applications may adopt a centralized model, where connected objects

transfer data to servers with adequate computing capabilities, or a decentralized model,

where data is analyzed directly on the connected objects or on nearby devices. While the

decentralized model limits network transmission, increases battery life [4, 35], and reduces

data privacy risks, it also raises important processing challenges due to the modest computing

capacity of connected objects. Indeed, it is not uncommon for wearable devices and other

smart objects to include a processing memory of less than 100 KB, little to no storage

memory, a slow CPU, and no operating system. With multiple sensors producing data at

a high frequency, typically 50 Hz to 800 Hz, processing speed and memory consumption

become critical properties of data analyses.

Data stream processing algorithms are precisely designed to analyze virtually infinite

sequences of data elements with reduced amounts of working memory. Several classes of

stream processing algorithms were developed in the past decades, such as filtering, counting,

or sampling algorithms [59]. These algorithms must follow multiple constraints such as a

constant processing time per data element, or a constant space complexity [43]. Our study

focuses on supervised classification, a key component of contemporary data models.

We evaluate supervised data stream classifiers from the point of view of connected objects,

with a particular focus on Human Activity Recognition (Human Activity Recognition). The

main motivating use case is that of wearable sensors measuring 3D acceleration and orien-

tation at different locations on the human body, from which activities such as gym exercises

have to be predicted. A previously untrained supervised classifier is deployed directly on the

wearables or on a nearby object, perhaps a watch, and aggregates the data, learns a data

model, predicts the current activity, and episodically receives true labels from the human

subject. Our main question is to determine whether on-chip classification is feasible in this

context.

We evaluate existing classifiers from the complementary angles of (1) classification per-

formance, including in the presence of concept drift, and (2) resource consumption, including

memory usage and classification time per element (latency). We consider six datasets in our

benchmark, including three that are derived from the two most popular open datasets used

for Human Activity Recognition, and three simulated datasets.

22

Compared to the previous works reviewed in Section 4.2, the contributions of our paper

are the following:

• We compare the most popular data stream classifiers on the specific case of Human

Activity Recognition;

• We provide quantitative measurements of memory and power consumption, as well as

runtime;

• We implement data stream classifiers in a consistent software library meant for deploy-

ment on embedded systems.

The subsequent sections present the materials, methods, and results of our benchmark.

4.2 Related Work

To the best of our knowledge, no previous study focused on the comparison of data stream

classifiers for Human Activity Recognition in the context of limited memory and available

runtime that characterizes connected objects.

4.2.1 Comparisons of data stream classifiers

Data stream classifiers were compared mostly using synthetic datasets or real but general-

purpose ones (Electrical, CoverType, Poker), which is not representative of our use case. In

addition, memory and runtime usage are rarely reported, with the notable exception of [21].

The work in [86] reviews an extensive list of classifiers for data streams, comparing the

Hoeffding Tree, the Näıve Bayes, and the k-nearest neighbor (k -NN) online classifiers. The

paper reports an accuracy of 92 for online k -NN, 80 for the Hoeffding Tree, and 60 for Näıve

Bayes. The study is limited to a single dataset (CoverType).

The work in [58] compares four classifiers (Bayesnet, Hoeffding Tree, Näıve Bayes, and

Decision Stump) using synthetic datasets. It reports a similar accuracy of 90 for the Bayesnet,

the Hoeffding Tree, and Näıve Bayes classifiers, while the Decision Stump one only reaches

65. Regarding runtimes, Bayesnet is found to be four times slower than the Hoeffding Tree

which is itself three times slower than Näıve Bayes and Decision Stump.

The work in [87] compares ensemble classifiers on imbalanced data streams with concept

drifts, using two real datasets (Electrical, Intrusion), synthetic datasets, and six classifiers,

23

including the Näıve Bayes and the Hoeffding Tree ones. The Hoeffding Tree is found to be

the second most accurate classifier after the Accuracy Updated Ensemble.

The authors in [41] have analyzed the resource trade-offs of six online decision trees

applied to edge computing. Their results showed that the Very Fast Decision Tree and the

Strict Very Fast Decision Tree were the most energy-friendly, the latter having the smallest

memory footprint. On the other hand, the best predictive performances were obtained in

combination with OLBoost. In particular, the paper reports an accuracy of 89.6% on the

Electrical dataset, and 83.2% on an Hyperplane dataset.

Finally, the work in [21] describes the architecture of StreamDM-C++ and presents

an extensive benchmark of tree-based classifiers, covering runtime, memory, and accuracy.

Compared to other tree-based classifiers, the Hoeffding Tree classifier is found to have the

smallest memory footprint while the Hoeffding Adaptive Tree classifier is found to be the

most accurate on most of the datasets.

4.2.2 Offline and data stream classifiers for Human Activity Recog-

nition

In this study we focus on Human Activity Recognition conducted from wearable sensors

used for instance during sport activities. Other works focus on daily human activities such as

cooking or cleaning [106, 7, 28], mostly using home sensors. These studies describe how they

have collected datasets from heterogeneous sensor networks located in appartments. Except

for the Opportunity datasets shown in [28], the data were collected from sensor placed in

various daily objects such as the entrance door or the cupboard. The Opportunity dataset

have, in addition, wearable sensors placed on the subjects. These papers also provide a

baseline F1-score with popular classifiers (Näıve Bayes, k -NN, and neural network).

Several other studies evaluated classifiers for Human Activity Recognition with sport

activities in an offline (non data stream) setting. In particular, the work in [57] compared 293

classifiers using various sensor placements and window sizes, concluding on the superiority of

k nearest neighbors (k -NN) and pointing out a trade-off between runtime and classification

performance. Resource consumption, including memory and runtime, was also studied for

offline classifiers, such as in [68] for the particular case of the R programming language.

In addition, the work in [105] achieved an offline accuracy of 99.4% on a five-class dataset

of Human Activity Recognition. The authors used AdaBoost, an ensemble method, with

ten offline decision trees. The work in [3] proposes a Support Vector Machine enhanced with

24

feature selection. Using smartphone data, the model showed above 90% accuracy on day-to-

day human activities. Finally, the work in [94] applies three offline classifiers to smartphone

and smartwatch human activity data. Results show that Convolutional Neural Network and

Random Forest achieve F1 score of 0.98 with smartwatches and 0.99 with smartphones.

In a data stream (online) setting, the work in [95] presents a wearable system capable

of running pre-trained classifiers on the chip with high classification accuracy. It shows the

superiority of the proposed Feedforward Neural Network over k -NN.

In this study, we focus on Human Activity Recognition with wearable sensor data pro-

cessed with data streams classifiers and we use OrpailleCC, an OS-independent library that

could be deployed on connected objects. To our knowledge, this is the first benchmark

conducted in this context.

4.3 Materials and Methods

We evaluate 5 classifiers implemented in either StreamDM-C++ [21] or OrpailleCC [63].

StreamDM-C++ is a C++ implementation of StreamDM [20], a software to mine big data

streams using Apache Spark Streaming. StreamDM-C++ is usually faster than StreamDM

in single-core environments, due to the overhead induced by Spark.

OrpailleCC is a collection of data stream algorithms developed for embedded devices. The

key functions, such as random number generation or memory allocation, are parametrizable

through class templates and can thus be customized on a given execution platform. Orpail-

leCC is not limited to classification algorithms, it implements other data stream algorithms

such as the Cuckoo filter [40] or a multi-dimensional extension of the Lightweight Temporal

Compression [73]. We extended it with a few classifiers for the purpose of this benchmark.

This benchmark includes five popular classification algorithms. The Mondrian forest (Mon-

drian forest) [71] builds decision trees without immediate need for labels, which is useful in

situations where labels are delayed [49]. The Micro-Cluster Nearest Neighbors [103] is a

compressed version of the k-nearest neighbor (k -NN) that was shown to be among the most

accurate classifiers for Human Activity Recognition from wearable sensors [57]. The Näıve

Bayes [72] classifier builds a table of attribute occurrence to estimate class likelihoods. The

Hoeffding Tree [33] builds a decision tree using the Hoeffding Bound to estimate when the

best split is found. Finally, Neural Network classifiers have become popular by reaching or

even exceeding human performance in many fields such as image recognition or game play-

ing. We use a Feedforward Neural Network (Feedforward Neural Network) with one hidden

25

https://spark.apache.org/streaming/

layer, as described in [95] for the recognition of fitness activities on a low-power platform.

The remainder of this section details the datasets, classifiers, evaluation metrics and

parameters used in our benchmark.

4.3.1 Datasets

To conduct our benchmark, we selected the main two datasets commonly used to evaluate

Human Activity Recognition from wearable sensors. In addition, we used the popular MOA

stream simulator to generate three synthetic datasets with different properties.

The Banos et al dataset [9] is a human activity dataset with 17 participants and 9 sensors

per participant1. Each sensor samples a 3D acceleration, gyroscope, and magnetic field, as

well as the orientation in a quaternion format, producing a total of 13 values. Sensors are

sampled at 50 Hz, and each sample is associated with one of 33 activities. In addition to the

33 activities, an extra activity labeled 0 indicates no specific activity.

We pre-process the Banos et al dataset using non-overlapping windows of one second (50

samples), and using only the 6 axes (acceleration and gyroscope) of the right forearm sensor.

We compute the average and the standard deviation over the window as features for each

axis,similar to the second feature set in [13]. Indeed, this feature set was providing the best

performance while minimizing the producing cost.. We assign the most frequent label to the

window. The resulting data points were shuffled uniformly.

In addition, we construct another dataset from Banos et al , in which we simulate a

concept drift by shifting the activity labels in the second half of the data stream. This is

useful to observe any behavioral change induced by the concept drift such as an increase in

power consumption.

The Recofit dataset [79] is a human activity dataset containing 94 participants2. Similarly

to the Banos et al dataset, the activity labeled 0 indicates no specific activity. Since many

of these activities were similar, we merged some of them together using the same logic as in

Table 4.1.

We pre-processed the dataset similarly to the Banos et al one, using non-overlapping

windows of one second, and only using 6 axes (acceleration and gyroscope) from one sensor.

. From these 6 axes, we used the average and the standard deviation over the window as

features. We assigned the most frequent label to the window.

1Banos et al dataset available here.
2Recofit dataset available here.

26

https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset#:~:text=The%20REALDISP%20(REAListic%20sensor%20DISPlacement,%2Dplacement%20and%20induced%2Ddisplacement.
https://msropendata.com/datasets/799c1167-2c8f-44c4-929c-227bf04e2b9a

Activity Label Activity Label Activity Label

Arm band adjustment 0 (Noise) Lawnmower (both) 19 Squat (arms in front) 32

Arm straight up 0 (Noise) Lawnmower (left) 0 (Noise) Squat (hands behind head) 32

Band Pull-Down row 1 Lawnmower (right) 20 Squat (kettlebell) 32

Bicep Curl 2 Lunge (both legs) 21 Squat Jump 32

Bicep Curl (band) 2 Ball Slam 22 Squat Rack Shoulder Press 32

Box Jump 3 No Exercise 0 (Noise) Static Stretching 0 (Noise)

Burpee 4 Note 0 (Noise) Stretching 0 (Noise)

Butterfly sit-up 5 Triceps Extension (standing) 23 Tap IMU 0 (Noise)

Chest Press 6 Triceps Extension (both) 23 Tap left IMU 0 (Noise)

Crunch 7 Plank 24 Tap right IMU 0 (Noise)

Device on Table 0 (Noise) Power Boat pose 25 Triceps Kickback (bench–both) 33

Dip 8 Pushups (foot variation) 26 Triceps Kickback (bench–left) 0 (Noise)

Dumbbell Deadlift Row 9 Pushups 26 Triceps Kickback (bench–right) 33

Dumbbell Row (both) 10 Stretching 0 (Noise) Triceps Extension (lying–both) 34

Dumbbell Row (left) 0 (Noise) Rest 0 (Noise) Triceps Extension (lying–left) 0 (Noise)

Dumbbell Row (right) 11 Rowing Machine 27 Triceps Extension (lying–right) 34

Dumbbell Squat (hands at side) 12 Running 28 Two-arm Dumbbell Curl (both) 35

Dynamic Stretch 0 (Noise) Russian Twist 29 Non-listed 0 (Noise)

Elliptical Machine 13 Seated Back Fly 30 V-up 36

Punches 14 Shoulder Press 31 Walk 37

Invalid 0 (Noise) Side Plank (left) 24 Walking lunge 38

Jump Rope 15 Side Plank (right) 24 Wall Ball 39

Jumping Jacks 16 Sit-up (hand behind head) 5 Wall Squat 40

Kettlebell Swing 17 Sit-up 5 Dumbbell Curl (alternating) 35

Lateral Raise 18 Squat 32

Table 4.1: Activity merging in Recofit dataset (table extracted from [31]).

27

Massive Online Analysis [18] (MOA) is a Java framework to compare data stream classi-

fiers. In addition to classification algorithms, MOA provides many tools to read and generate

datasets. We generate three synthetic datasets3: a hyperplane, a RandomRBF, and a Ran-

domTree dataset. We generate 200,000 data points for each of these synthetic datasets.

The hyperplane and the RandomRBF both have three features and two classes, however,

the RandomRBF has a slight imbalance toward one class. The RandomTree dataset is the

hardest of the three, with six attributes and ten classes. Since the data points are generated

with a tree structure, we expect the decision trees to show better performances than the

other classifiers.

4.3.2 Algorithms and Implementation

In this section, we describe the algorithms used in the benchmark, their hyperparameters,

and relevant implementation details. We selected two of the main algorithms in the popular

StreamDM library: Näıve Bayes and Hoeffding Tree. These algorithms are commonly found

in data stream classification studies. In addition, we selected representative algorithms

from the main classfification approaches: the Mondrian forest for tree based-learning, Micro

Cluster Nearest Neighbor for cluster based-learning, and a Feedforward Neural Network for

neural networks.

Mondrian forest (Mondrian forest) [71]

Each tree in a Mondrian forest recursively splits the feature space, similar to a regular

decision tree. However, the feature used in the split and the value of the split are picked

randomly. The probability to select a feature is proportional to its normalized range, and

the value for the split is uniformly selected in the range of the feature. During prediction, a

node combines its observed label count with its parent prediction. Since the Mondrian tree

is able to reshape the internal structure of the tree, we expect the Mondrian forest to recover

from concept drifts, although most likely slower than MCNN.

In OrpailleCC, the amount of memory allocated to the forest is predefined, and it is

shared by all the trees in the forest, leading to a constant memory footprint for the classifier.

This implementation is memory-bounded, meaning that the classifier can adjust to memory

limitations, for instance by stopping tree growth or replacing existing nodes with new ones.

3MOA commands available here.

28

https://github.com/big-data-lab-team/benchmark-har-data-stream/blob/f314bf4a258e96e418e249228897d269c59cd522/Makefile#L104

Number of trees Base count Discount Budget

1 0.0 1.0 1.0

5 0.0 1.0 0.4

10 0.0 1.0 0.4

50 0.0 1.0 0.2

Table 4.2: Hyperparameters used for the Mondrian forest.

This is different from an implementation with a constant space complexity, where the clas-

sifier would use the same amount of memory regardless of the amount of available memory.

For instance, in our study, the Mondrian forest classifier is memory-bounded while Näıve

Bayes classifier has a constant space complexity.

Mondrian trees can be tuned using three parameters: the base count, the discount factor,

and the budget. The base count is used to initialize the prediction for the root. The discount

factor influences the nodes on how much they should use their parent prediction. A discount

factor closer to one makes the prediction of a node closer to the prediction of its parent.

Finally, the budget controls the tree depth.

Hyperparameters used for Mondrian forest are shown in Table 4.2. Additionally, the

Mondrian forest is allocated with 600 KB of memory unless specified otherwise. On the

Banos et al and Recofit datasets, we also explore the Mondrian forest with 3 MB of memory

in order to observe the effect of available memory on performances (classification, runtime,

and power).

Micro Cluster Nearest Neighbor [103]

The Micro Cluster Nearest Neighbor (MCNN) is a variant of k-nearest neighbors where

data points are aggregated into clusters to reduce storage requirements. During training,

the algorithm merges a new data point to the closest cluster that shares the same label. If

the closest cluster does not share the same label as the data point, this closest cluster and

the closest cluster with the same label are assigned an error. When a cluster receives too

many errors, it is split. During classification, MCNN returns the label of the closest cluster.

Regularly, the algorithm also assigns a participation score to each cluster and when this score

gets below a threshold, the cluster is removed. Given that the maximum number of clusters

is fixed, this mechanism makes space for new clusters, and possibly helps adjust to concept

drifts. The space and time complexities of MCNN are constant since the maximum number

29

Number of clusters Error threshold Participation threshold

10 2 10

20 10 10

33 16 10

40 8 10

50 2 10

Table 4.3: Hyperparameters used for the MCNN.

of clusters is fixed. The reaction to concept drift is influenced by the participation threshold

and the error threshold. A higher participation threshold and a lower error threshold increase

reaction speed to concept drift. Since the error thresholds used in this study are small, we

expect MCNN to react quite fast and efficiently to concept drifts.

We implemented two versions of MCNN in OrpailleCC, differing in the way they remove

clusters during training. The first version (MCNN Origin) is similar to the mechanism

described in [103], based on participation scores. The second version (MCNN OrpailleCC)

removes the cluster with the lowest participation only when space is needed. A cluster slot

is needed when an existing cluster is split and there is no more slot available because the

number of active clusters already reached the maximum defined by the user.

MCNN OrpailleCC has only one parameter, the error threshold after which a cluster is

split. MCNN Origin has two parameters: the error threshold and the participation threshold.

The participation threshold is the limit below which a cluster is removed. Hyperparameters

used for MCNN are shown in Table 4.3. Additionally, they both implementations have the

cluster count as their last parameter.

Näıve Bayes (Näıve Bayes) [72]

The Näıve Bayes algorithm keeps a table of counters for each feature value and each

label. During prediction, the algorithm assigns a score for each label depending on how the

data point to predict compares to the values observed during the training phase. Since the

counters are not biased toward the more recent data points, we expect Näıve Bayes to be

slow to adapt if not ineffective in a concept drift situation.

The implementation from StreamDM-C++ was used in this benchmark. It uses a Gaus-

sian fit for numerical attributes. Two implementations were used, the OrpailleCC one and

the StreamDM one. We used two implementations to provide a comparison reference between

30

the two libraries.

Hoeffding Tree (Hoeffding Tree) [33]

Similar to a decision tree, the Hoeffding Tree recursively splits the feature space to

maximize a metric, often the information gain or the Gini index. However, to estimate when

a leaf should be split, the Hoeffding Tree relies on the Hoeffding bound, a measure of the

score deviation of the splits. This measure allows the leaf to decide when the best split is

clearly better than the second best split based on the data observed from the stream. This

mechanism prevents the tree from waiting until the end of the stream to ensure a split is

the best. During classification, a data point is sorted to a leaf, and a label is predicted

by aggregating the labels of the training data points in that leaf, usually through majority

voting or Näıve Bayes classification. We used this classifier as implemented in StreamDM-

C++. The Hoeffding Tree is common in data stream classification, however, the internal

nodes are static and cannot be re-considered. Therefore, any concept drift adaption relies

on the new leaves that will be split.

The Hoeffding Tree has three parameters: the confidence level, the grace period, and the

leaf learner. The confidence level is the probability that the Hoeffding bound makes a wrong

estimation of the deviation. The grace period is the number of processed data points before

a leaf is evaluated for a split. The leaf learner is the method used in the leaf to predict the

label. In this study, we used a confidence level of 0.01 with a grace period of 10 data points

and the Näıve Bayes classifier as leaf learner.

Feedforward Neural Network (Feedforward Neural Network)

A neural network is a combination of artificial neurons, also known as perceptrons, that

all have input weights and an activation function. To predict a class label, the perceptron

applies the activation function to the weighted sum of its input values. The output value

of the perceptron is the result of this activation function. This prediction phase is also

called feed-forward. To train the neural network, feed-forward is applied first, then the error

between the prediction and the expected result is used in the backpropagation process to

adjust the weights of the input values. A neural network combines multiple perceptrons by

connecting perceptron outputs to inputs of other perceptrons. One of the key benefits of

the neural network is that it maintains a consistent memory footprint, making it ideal for

processing data streams. In this benchmark, we used a fully-connected Feedforward Neural

Network, that is, a network where perceptrons are organized in layers and all output values

31

from perceptrons of layer n−1 serve as input values for perceptrons of layer n. We used a 3-

layer network with 120 inputs, 30 perceptrons in the hidden layer, and 33 output perceptrons.

Because a Feedforward Neural Network takes many epochs to update and converge it barely

adapts to a concept drifts even though it trains with each new data point. Instead of the

features described in Section 4.3.1, we utilized histogram features from [95] in this study as

the network did not perform well with the former. These histogram features generate 20

bins per axis.

This neural network can be tuned by changing the number of layers and the size of each

layer. Additionally, the activation function and the learning ratio can be changed. The

learning ratio indicates by how much the weights should change during backpropagation.

Hyperparameters Tuning

For each classifier, we tuned hyperparameters using the first subject from the Banos et

al dataset. The data from this subject was pre-processed as the rest of the Banos et al

dataset (window size of one second, average and standard deviation on the six-axis of the

right forearm sensor, . . .). We did a grid search to test multiple values for the parameters.

The classifiers start the prequential phase with no knowledge from the first subject. We

made an exception for the Feedforward Neural Network because we noticed that it performed

poorly with random weights and it needed many epochs to achieve better performances than

a random classifier. Therefore, we decided to pre-train the Feedforward Neural Network and

re-use the weights as a starting point for the prequential phase.

For other classifiers, only the hyperparameters were taken from the tuning phase. We

selected the hyperparameters that maximized the F1 score on the first subject.

Offline Comparison

We compared data stream algorithms with an offline k -NN. The value of k were selected

using a grid search. The k -NN F1 score computation is computed offline using a test set

comprising 10% of the stream, while the remaining 90% is used as the training set.

4.3.3 Evaluation

We computed four metrics: the F1 score, the memory footprint, the runtime, and the

power usage. The F1 score and the memory footprint were computed periodically during

the execution of a classifier. The power consumption and the runtime were collected at the

32

end of each execution.

To compute the F1 score, we monitor the true positives, false positives, true negatives,

and false negatives using the prequential evaluation, meaning that with each new data point

the model is first tested and then trained. From these counts, we compute the F1 score

every 50 elements. We do not apply any fading factor to attenuate errors throughout the

stream. We compute the F1 score in a one-versus-all fashion for each class, averaged across

all classes (macro-average, code available here). When a class has not been encountered yet,

its F1 score is ignored. We use the F1 score rather than the accuracy because the real data

sets are imbalanced.

We measure the memory footprint by reading file /proc/self/statm every 50 data

points.

The runtime of a classifier is the time needed for the classifier to process the dataset. We

collect the runtime reported by the perf command4, which includes loading of the binary in

memory, setting up data structures, and opening the dataset file. To remove these overheads

from our measurements, we use the runtime of an empty classifier that always predict class

0 as a baseline.

We measure the average power consumed by classification algorithms with the perf com-

mand. The power measurement is done multiple times in a minimal environment. We use

the empty classifier as a baseline.

4.3.4 Results Reproducibility

The code and datasets used in this study are available on Github at https://github.

com/big-data-lab-team/benchmark-har-data-stream.git. We used release 1.0, avail-

able on Zenodo with DOI 10.5281/zenodo.4148947 for long-term archival. The repository

contains the source code and data we used to run the experiment, including the Makefile to

compile the benchmark, the Python script to organize the execution and plot the results,

and the datasets. This experiment requires the following software to run properly.

• Git to download the repository and its submodules.

• gcc or any C++ compiler in combination with make to compile the benchmark binaries.

• log4cpp as a dependency of StreamDM-C++.

• Python, seaborn, matplotlib, and pandas, to run the experiment and plot the results.

4perf website

33

https://github.com/big-data-lab-team/benchmark-har-data-stream/blob/f314bf4a258e96e418e249228897d269c59cd522/src/main.cpp#L81
https://github.com/big-data-lab-team/benchmark-har-data-stream.git
https://github.com/big-data-lab-team/benchmark-har-data-stream.git
https://doi.org/10.5281/zenodo.4148947
https://perf.wiki.kernel.org/index.php/Main_Page

The plotting script (makefile.py) extracts data from three CSV files: models.csv,

output runs, and output. models.csv lists the combination of classifiers, datasets, and

parameters that were run. This combination is called a model. The output runs file stores

information about the model’s repetition such as the runtime or the energy. Finally, the

output file contains the accuracy, the F1 score, and the memory footprint every fifty ele-

ments. Each line is identified with three ids: the model id, the repetition count, and the

data point count in the dataset.

In the README file, we provided the commands to download, compile, run the experi-

ment, and plot the results.

During the benchmark execution, the datasets and output files were stored in memory

through a memfs filesystem mounted on /tmp, to reduce the impact of I/O time. We aver-

aged metrics across repetitions (same classifier, same parameters, and same dataset). The

experiment was done with a single core of a cluster node with two Intel(R) Xeon(R) Gold

6130 CPUs and a main memory of 250G. The node was running a CentOS Linux 8 with

Linux kernel 4.18.

4.4 Results

This section presents our benchmark results and the corresponding hyperparameter tun-

ning experiments.

4.4.1 Overall classification performance

Figure 4.1 compares the F1 scores obtained by all classifiers on the six datasets. The

graphs also show the standard deviation of the Mondrian forest classifier observed across all

repetitions (the other classifiers do not involve any randomness). Table 4.4 also shows the

last F1 scores obtained on each dataset.

F1 scores vary greatly across the datasets. While the highest observed F1 score is above

0.95 on the Hyperplane and RandomRBF datasets, it barely reaches 0.65 for the Banos et

al dataset, and it remains under 0.40 on the Recofit and RandomTree datasets. This trend

is consistent for all classifiers.

The offline k -NN classifier used as baseline achieves better F1 scores than all other clas-

sifiers, except for the Mondrian forest on the Hyperplane and the RandomRBF datasets.

On the Banos et al dataset, the difference of 0.23 with the best stream classifier remains

34

(a) Banos et al (b) Banos et al (with Drift)

(c) Hyperplane (MOA) (d) RandomRBF (MOA)

(e) RandomTree (MOA) (f) Recofit

Figure 4.1: F1 scores for the six datasets (average over 20 rep.). The horizontal dashed black

line indicates the offline k -NN F1 score (the value of k was obtained by grid search in [2,

20]). The blue shades is the ±σ interval of the Mondrian forest classifier.

35

Hyperplane RandomRBF RandomTree Recofit Banos et al Banos et al (drift)

Empty 0.333 0.404 0.041 0.000 0.004 0.004

MCNN Origin 10 clusters 0.918 0.624 0.164 0.050 0.169 0.163

MCNN Origin 20 clusters 0.918 0.583 0.188 0.061 0.265 0.262

MCNN Origin 33 clusters 0.918 0.584 0.196 0.065 0.268 0.270

MCNN Origin 40 clusters 0.918 0.581 0.183 0.047 0.266 0.268

MCNN Origin 50 clusters 0.918 0.607 0.146 0.045 0.212 0.210

MCNN OrpailleCC 10 clusters 0.918 0.637 0.176 0.063 0.178 0.185

MCNN OrpailleCC 20 clusters 0.918 0.707 0.222 0.090 0.332 0.339

MCNN OrpailleCC 33 clusters 0.918 0.729 0.250 0.109 0.507 0.487

MCNN OrpailleCC 40 clusters 0.918 0.725 0.244 0.118 0.522 0.501

MCNN OrpailleCC 50 clusters 0.918 0.689 0.226 0.109 0.500 0.485

Mondrian 1 tree(s) (RAM x1.0) 0.825 0.961 0.282 0.183 0.506 0.302

Mondrian 5 tree(s) (RAM x1.0) 0.903 0.978 0.190 0.157 0.588 0.345

Mondrian 10 tree(s) (RAM x1.0) 0.919 0.994 0.218 0.107 0.566 0.336

Mondrian 50 tree(s) (RAM x1.0) 0.957 0.942 0.112 0.056 0.402 0.244

NaiveBayes 0.875 0.534 0.227 0.307 0.661 0.416

StreamDM HoeffdingTree 0.931 0.759 0.617 0.362 0.656 0.650

StreamDM NaiveBayes 0.875 0.534 0.227 0.311 0.661 0.416

Mondrian 1 tree(s) (RAM x5.0) 0.230 0.536

Mondrian 5 tree(s) (RAM x5.0) 0.241 0.717

Mondrian 10 tree(s) (RAM x5.0) 0.212 0.726

Mondrian 50 tree(s) (RAM x5.0) 0.107 0.593

Feedforward Neural Network 0.365 0.360

Table 4.4: Average F1 scores obtained on the last data point of the stream.

36

very substantial, which quantifies the remaining performance gap between data stream and

offline classifiers. On the Recofit dataset, the difference between stream and offline classifiers

is lower, but the offline performance remains very low.

It should be noted that the F1 scores observed for the offline k -NN classifier on the real

datasets are substantially lower than the values reported in the literature. On the Banos et

al dataset, the original study in [13] reports an F1 score of 0.96, the work in [31] achieves

0.92, but our benchmark only achieves 0.86. Similarly, on the Recofit dataset, the original

study reports an accuracy of 0.99 and the work in [31] reaches 0.65 while our benchmark

only achieves 0.40. This is most likely due to our use of data coming from a single sensor,

consistently with our motivating use case, while the other works used multiple ones (9 in the

case of Banos et al).

The Hoeffding Tree appears to be the most robust to concept drifts (Banos et al with

drift), while the Mondrian forest and Näıve Bayes classifiers are the most impacted. MCNN

classifiers are marginally impacted. The low resilience of Mondrian forest to concept drifts

can be attributed to two factors. First, existing nodes in trees of a Mondrian forest cannot

be updated. Second, when the memory limit is reached, Mondrian trees cannot grow or

reshape their structure anymore.

4.4.2 Hoeffding Tree and Näıve Bayes

The Näıve Bayes and the Hoeffding Tree classifiers stand out on the two real datasets

(Banos et al and Recofit) even though the F1 scores observed remain low (0.6 and 0.35)

compared to offline k -NN (0.86 and 0.40). Additionally, the Hoeffding Tree performs out-

standingly on the RandomTree dataset and Banos et al dataset with a drift. Such good

performances were expected on the RandomTree dataset because it was generated based on

a tree structure.

Except for the Banos et al dataset, the Hoeffding Tree performs better than Näıve Bayes.

For all datasets, the performance of both classifiers is comparable at the beginning of the

stream, because the Hoeffding Tree uses a Näıve Bayes in its leaves. However, F1 scores

diverge throughout the stream, most likely because of the Hoeffding Tree’s ability to reshape

its tree structure. This occurs after a sufficient amount of elements, and the difference is

more noticeable after a concept drift.

Finally, we note that the StreamDM-C++ and OrpailleCC implementations of Näıve

Bayes are indistinguishable from each other, which confirms the correctness of our imple-

mentation in OrpailleCC.

37

4.4.3 Mondrian forest

On two synthetic datasets, Hyperplane and RandomRBF, the Mondrian forest (RAM x

1.0) with 10 trees achieves the best performance (F1>0.95), above offline k -NN. Additionally,

the Mondrian forest with 5 or 10 trees ranks third on the two real datasets.

Surprisingly, a Mondrian forest with 50 trees performs worse than 5 or 10 trees on most

datasets. The only exception is the Hyperplane dataset where 50 trees perform between 5

and 10 trees. This is due to the fact that our Mondrian forest implementation is memory-

bounded, which is useful on connected objects but limits tree growth when the allocated

memory is full. Because 50 trees fill the memory faster than 10 or 5 trees, the learning

stops earlier, before the trees can learn enough from the data. It can also be noted that the

variance of the F1 score decreases with the number of trees, as expected.

The dependency of the Mondrian forest to memory allocation is shown in Banos et al

and Recofit datasets, where an additional configuration with five times more memory than

the initial configuration was run (total of 3 MB). The memory increase induces an F1 score

difference greater than 0.1, except when only one tree is used, in which case the improvement

caused by the memory is less than 0.05. Naturally, the selected memory bound may not be

achievable on a connected object. Overall, Mondrian forest seems to be a viable alternative

to Näıve Bayes or the Hoeffding Tree for Human Activity Recognition.

4.4.4 MCNN

The MCNN OrpailleCC stands out on the Banos et al (with drift) dataset where it

ranks second thanks to its adaptation to the concept drift. On other datasets, MCNN

OrpailleCC ranks below the Mondrian forest and the Hoeffding Tree, but above MCNN

Original. This difference between the two MCNN implementations is presumably due to

the fact that MCNN Origin removes clusters with low participation too early. On the real

datasets (Banos et al and Recofit), we notice that the MCNN OrpailleCC appears to be

learning faster than the Mondrian forest, although the Mondrian forest catches up after a

few thousand elements. Finally, we note that MCNN remains quite lower than the offline

k -NN.

4.4.5 Feedforward Neural Network

Figure 4.1a shows that the Feedforward Neural Network has a low F1 score (0.36) com-

pared to other classifiers (above 0.5), which contradicts the results reported in [95] where

38

(a) Power (b) Runtime

Figure 4.2: Power usage and Runtime (20 repetitions) for the Banos et al dataset. Results

are similar across datasets.

the Feedforward Neural Network achieves more than 95% accuracy in a context of offline

training. The main difference between [95] and our study lies in the definition of the training

set. In [95], the training set includes examples from every subject, while we only use a single

one, to ensure an objective comparison with the other stream classifiers that do not require

offline training (except for hyperparameter tuning, done on the first subject of the Banos et

al dataset). When we use a random sample of 10% of the datapoints across all subjects for

offline training, we reach an F1 score of 0.68, which is higher than the performance of the

Näıve Bayes classifier.

4.4.6 Power

Figure 4.2a shows the power usage of each classifier on four datasets (results are similar

for the other two datasets). All classifiers exhibit comparable power consumptions, close to

102 W.

This observation is explained by two factors. First, the benchmarking platform was

working at minimal power. To ensure no disturbance by a background process, we run the

classifiers on an isolated cluster node with eight cores. Therefore, the power difference on

one core is not noticeable.

Another reason is the dataset sizes. Indeed, the slowest run is about 10 seconds with 50

Mondrian trees on Recofit dataset. Such short executions do not leave time for the CPU to

switch P-states because it barely warms a core. Further experiments would be required to

39

check how our power consumption observations generalize to connected objects.

4.4.7 Runtime

Figure 4.2b shows the classifier runtimes for the two real datasets. The Mondrian forest

is the slowest classifier, in particular for 50 trees which reaches 2 seconds on Banos et al

dataset. This represents roughly 0.35 ms/element with a slower CPU. The second slowest

classifier is the Hoeffding Tree, with a runtime comparable to the Mondrian forest with 10

trees. The Hoeffding Tree is followed by the two Näıve Bayes implementations, which is

not surprising since Näıve Bayes classifiers are used in the leaves of the Hoeffding Tree. The

MCNN classifiers are the fastest ones, with a runtime very close to the empty classifier. Note

that allocating more memory to the Mondrian forest substantially increases runtime.

We observe that the runtime of StreamDM-C++’s Näıve Bayes is comparable to Orpail-

leCC’s. This suggests that the performance of the two libraries is similar, which justifies our

comparison of Hoeffding Tree and Mondrian forest.

4.4.8 Memory

Figure 4.3 shows the evolution of the memory footprint for the Banos et al dataset.

Results are similar for the other datasets and are not reported for brevity. Since the memory

footprint of the Näıve Bayes classifier was almost indistinguishable from the empty classifier,

we used the two Näıve Bayes as a baseline for the two libraries. This enables us to remove

the 1.2 MB overhead induced by StreamDM-C++. The StreamDM-C++ memory footprint

matches the result in [21], where the Hoeffding Tree shows a memory footprint of 4.8 MB.

We observe that the memory footprints of the Mondrian forest and the Hoeffding Tree are

substantially higher than for the other classifiers, which makes their deployment on connected

objects challenging. Overall, memory footprints are similar across datasets, due to the fact

that most algorithms follow a bounded memory policy or have a constant space complexity.

The only exception is the Hoeffding Tree that constantly selects new splits depending on new

data points. The Mondrian forest has the same behavior but the OrpailleCC implementation

is memory-bounded, which makes its memory footprint constant.

4.4.9 Hyperparameter tuning

Figure 4.4 shows the impact of the error threshold in the MCNN classifiers with different

cluster counts. The error threshold of MCNN has little impact on classification performance.

40

Figure 4.3: Memory footprint of classifiers with the empty classifier as a baseline, measured

on the Banos et al dataset. The memory footprint of the empty classifier is 3.44 MB. The

baselines are the two Näıve Bayes from OrpailleCC and StreamDM-C++. Their respective

memory footprints are 3.44 MB and 4.74 MB.

41

Figure 4.4: Error threshold tuning of MCNN with the first subject of Banos et al dataset.

Error threshold in parenthesis.

For 20 and 40 clusters, the best-performing threshold is either 2 or 4, meaning that a cluster

may do 2 or 4 errors before being split. For 10 clusters, all error thresholds perform equally.

Figure 4.5 shows the impact of the Mondrian forest hyperparameters on the classification

performance. The base count hyperparameter (Figure 4.5a) has a very substantial impact

on classification performance; the smallest value (0.0) results in the best performance. On

the contrary, the budget hyperparameter (Figure 4.5b) only has a moderate impact on

classification; the best value is 0.2. Finally, the discount hyperparameter (Figure 4.5c)

has a negligible impact on the performance; the best-performing value is 0.1.

4.5 Conclusion

We conclude that the Hoeffding Tree, the Mondrian forest, and the Näıve Bayes data

stream classifiers have an overall superiority over the Feedforward Neural Network and the

MCNNs ones for Human Activity Recognition. However, the prediction performance remains

quite low compared to an offline k -NN classifier, and it varies substantially between datasets.

Noticeably, the Hoeffding Tree and the MCNNs classifiers are more resilient to concept drift

that the other ones.

42

(a) Impact of the base count with 10 trees, a

budget of 1.0, and a discount factor of 0.2.

(b) Impact of the budget with 10 trees, a base

count of 0.1, and discount factor of 0.2.

(c) Impact of the discount factor with 10 trees,

a budget of 1.0, and a base count of 0.1.

Figure 4.5: Hyperparameters tuning for Mondrian with the first subject of Banos et al

dataset.

43

Regarding memory consumption, only the MCNN and Näıve Bayes classifiers were found

to have a negligible memory footprint, in the order of a few kilobytes, which is compatible

with connected objects. Conversely, the memory consumed by a Mondrian forest, a Feed-

forward Neural Network or a Hoeffding Tree is in the order of 100 kB, which would only

be available on some connected objects. In addition, the classification performance of a

Mondrian forest is strongly modulated by the amount of memory allocated. With enough

memory, a Mondrian forest is likely to match or exceed the performance of the Hoeffding

Tree and Näıve Bayes classifiers.

The amount of energy consumed by classifiers is mostly impacted by their runtime, as all

power consumptions were found comparable. The Hoeffding Tree and Mondrian forest are

substantially slower than the other classifiers, with runtimes in the order of 0.35 ms/element,

a performance not compatible with common sampling frequencies of wearable sensors.

Our results show that even though data stream classifiers were developed to minimize

memory footprint, they were not developed to work with a given memory budget. For

instance, there is no guarantee that the Mondrian forest or the Hoeffding Tree would make

the best split selection on a device with a small amount of memory. Future research could

focus on developing algorithms that can guarantee a peak memory consumption and ensure

an optimal response within a memory budget. In particular, we are planning to explore

tree sampling methods based on memory and performance criteria in Mondrian forest. In

addition, deploying classification algorithms on actual connected objects might highlight

other relevant research directions.

44

Chapter 5

Mondrian Forest for Data Stream

Classification Under Memory

Constraints

Published as: Martin Khannouz and Tristan Glatard. Mondrian Forest for Data Stream

Classification Under Memory Constraints. arXiv:2205.07871 [cs.LG], 2022.

This preprint is currently under revision in the Data Mining and Knowledge Discovery

journal.

Supervised learning algorithms generally assume the availability of enough memory to

store data models during the training and test phases. However, this assumption is unreal-

istic when data comes in the form of infinite data streams, or when learning algorithms are

deployed on devices with reduced amounts of memory. In this paper, we adapt the online

Mondrian forest classification algorithm to work with memory constraints on data streams.

In particular, we design five out-of-memory strategies to update Mondrian trees with new

data points when the memory limit is reached. Moreover, we design node trimming mecha-

nisms to make Mondrian trees more robust to concept drifts under memory constraints. We

evaluate our algorithms on a variety of real and simulated datasets, and we conclude with

recommendations on their use in different situations: the Extend Node strategy appears

as the best out-of-memory strategy in all configurations, whereas different node trimming

mechanisms should be adopted depending on whether a concept drift is expected. All our

methods are implemented in the OrpailleCC open-source library and are ready to be used

on embedded systems and connected objects.

45

5.1 Introduction

Supervised classification algorithms mostly assume the availability of abundant memory

to store data and models. This is an issue when processing data streams — which are infinite

sequences by definition — or when using memory-limited devices as is commonly the case

in the Internet of Things. This paper studies how the Mondrian forest, a popular online

classification method, can be adapted to work with data streams and memory constraints

compatible with connected objects.

Although online and data stream classification methods both assume that the dataset is

available as a sequence of elements, data stream methods assume that the dataset is infinite

whereas online methods consider that it is large but still bounded in size. Consequently,

online methods usually store the processed elements for future access whereas data stream

methods do not.

Under memory constraints, a data stream classification model that has reached its mem-

ory limit faces two issues: (1) how to update the model when new data points become

available, which we denote as the out-of-memory strategy, and (2) how to adapt the model

to concept drifts, i.e., changes in the learned concepts. The mechanisms described in this

paper address these two issues in the Mondrian forest.

The Mondrian forest is a tree-based, ensemble, online learning method with comparable

performance to offline Random Forest [71]. Previous experiments highlighted the Mondrian

forest sensitivity to the amount of available memory [60], which motivates their extension

to memory-constrained environments. In practice, existing implementations [12, 54] of the

Mondrian forest all assume enough memory and crash when memory is not available.

The concept drift is a common problem in data streams that occurs when the distribution

of features changes throughout the stream. By design, the Mondrian forest is not equipped to

adapt to concept drifts as its trees cannot be pruned, trimmed, or modified. When memory

is saturated, this lack of adaptability to concept drift worsens as trees cannot even grow new

branches to accommodate changes in feature distributions. Therefore, the Mondrian forest

needs a mechanism to free memory such that new tree nodes can grow. Such a mechanism

might also be useful for stable data streams as it would replace less accurate nodes with

better performing ones.

In summary, this paper makes the following contributions:

1. We adapt the Mondrian forest for data streams;

2. We propose five new out-of-memory strategies for the Mondrian forest under memory

46

constraints;

3. We propose three new node trimming mechanisms to make Mondrian forest adaptive

to concept drifts;

4. We evaluate our strategies on six simulated and real datasets.

5.2 Materials and Methods

All the methods presented in this section are implemented in the OrpailleCC frame-

work [63]. The scripts to reproduce our experiments are available on GitHub at https:

//github.com/big-data-lab-team/benchmark-har-data-stream.

5.2.1 Mondrian Forest

The Mondrian forest [71] is an ensemble method that combines Mondrian trees. Each tree

in the forest recursively splits the feature space, similar to a regular decision tree. However,

the feature used in the split and the value of the split are picked randomly. The probability

to select a feature is proportional to its range, and the value for the split is uniformly selected

in the range of the feature. In contrast with other decision trees, the Mondrian tree does

not split leaves to introduce new nodes. Instead, it introduces a new parent and a sibling to

the node where the split occurs. The original node and its descendant are not modified and

no data point is moved to that new sibling beside the data point that initialized the split.

This approach allows the Mondrian tree to introduce new branches to internal nodes. This

training algorithm does not rely on labels to build the tree, however, each node maintains

counters for each label seen. Therefore, labels can be delayed, but are needed before the

prediction. In addition to the counters, each node keeps track of the range of its feature that

represents a box that containing all data points. A data point can create a new branch only

if it is sorted to a node and it falls outside of the node’s box.

5.2.2 Mondrian Forest for Data Stream Classification

The implementation of Mondrian forest presented in [71, 12] is online because trees rely

on potentially all the previously seen data points to grow new branches. To support data

streams, the Mondrian forest has to access data points only once as the dataset is assumed

to be infinite in size. Algorithm 1, adapted from reference [71], describes our data-stream

47

https://github.com/big-data-lab-team/benchmark-har-data-stream
https://github.com/big-data-lab-team/benchmark-har-data-stream

implementation. Function update box (line 11) updates the node’s box using the data

point’s features. Function update counters (line 12) updates the label counters assigned

to the node. Function is enough memory (line 2) returns true if there is enough memory to

run extend tree (line 7). Function distance to box (line 3) compute the distance between

a data point and the node’s box and it returns zero if the data point fall inside the box.

Function random bool (line 5) randomly select a boolean that is more likely to be true when

the data point is far from the node’s box. This function always return false if the distance

is zero. Finally, function extend tree extends the tree by introducing a new parent and a

new sibling to the current node.

To make a prediction, a node assigns a score to each label. This score uses the node’s

counters, the parent’s scores, and the score generated by an hypothetical split. The successive

scores of the nodes encountered by the test data point are combined together to create the

tree score. Finally, the scores of the trees are averaged to get the forest’s score. The prediction

is the label with the highest score.

Mondrian trees can be tuned using three parameters: the base count, the discount factor,

and the budget. The base count is a default score given to the root’s parent. The discount

factor controls the contribution of a node to the score of its children. A discount factor

closer to one makes the prediction of a node closer to the prediction of its parent. Finally,

the budget controls the tree depth. A small budget makes nodes virtually closer to each

other, and thus, less likely to introduce new splits.

5.2.3 Out-of-memory Strategies in the Mondrian Tree

A memory-constrained Mondrian forest needs to determine what to do with data points

when the memory limit is reached. We designed five out-of-memory strategies for this pur-

pose. These strategies specify how the statistics, namely the counters and the box limits,

should be updated when training nodes. They are implemented in functions update box

and update counters called at lines 11 and 12 in Algorithm 1. Table 5.2 summarizes these

strategies.

The Stopped strategy discards any subsequent data point when the memory limit is

reached. It is the most straightforward method as it only uses the model created so far. In

this strategy, functions update box and update counters are no-ops. The Stopped strategy

has the advantage of not corrupting the node’s box with outlier data points that would have

required a split earlier in the tree. However, it also drops a lot of data after the model

reached the memory limit.

48

Algorithm 1: Recursive function to train a node in the data stream Mondrian

forest. This function is called on each root node of the forest when a new labeled data

point arrives. The implementation of functions update box and update counters

called at lines 11 and 12 vary depending on the out-of-memory strategy adopted

(see Section 5.2.3). Table 5.2 summarizes these strategies. Table 5.1 describes the

attributes of the node data structure.
Data: x = a data point

Data: l = label of the data point

Data: node = current node containing attributes in Table 5.1

1 Function train node(x, l, node) is

2 m = is enough memory();

3 distance = node.distance to box(x);

4 if distance is positive then

5 r = random bool(node, node.parent, distance);

6 if r and m then

7 extend tree(node, node.parent, x, l);

8 return;

9 end

10 end

11 update box(node, x, r, m);

12 update counters(node, l, r, m);

13 if !node.is leaf() then

14 if x[node.split feature] < node.split value then

15 train node(x, l, node.right);

16 else

17 train node(x, l, node.left);

18 end

19 end

20 end

49

Attributes Description

parent Node’s parent or empty for the root.

split feature Feature used for the split.

split value Value used for the split.

right Right child of the node.

left Left child of the node.

counters An array counting labels

lower bound An array saving the minimum value for each feature

upper bound An array saving the maximum value for each feature

prev lower bound Same as lower bound but saving the previous minimum

prev upper bound Same as upper bound but saving the previous maximum

Table 5.1: Summary of the node structure used in Algorithm 1.

The Extend Node strategy disables the creation of new nodes when the memory limit

is reached. Each data point is passed down the tree and no splits are created. However, the

counters and the box of each node are updated. In Algorithm 1, functions update box and

update counters work as if there were no split, thus updating counters and nodes as if r

was always false. Compared to the Stopped method, the Extend Node one includes all the

data points in the model. However, since the tree structure does not change, outlier data

points may extensively increase node’s boxes and as a result Mondrian trees tend to have

large boxes, which is 1) detrimental to classification performance, and 2) limits further node

creations in the event that more memory becomes available since the distance to the node’s

box is unlikely to be positive when computing m at line 4 of Algorithm 1.

The Partial Update strategy discards the points that would have created a split if

enough memory was available, and updates the model with the other ones. This strategy

discards fewer data points than in the Stopped method while it is less sensitive to outlier

data points than the Extend Node method. In Algorithm 1, functions update box and

update counters update statistics as in the original implementation, except when a split

is triggered (r = true). In that case, all modifications done previously are canceled. Algo-

rithm 2 and 3 describe functions update counters and update box in more details.

The Count Only strategy never updates node boxes and simply updates the counters

with every new data point. In Algorithm 1, the function update box is a no-op, while the

50

Method update counters update box

Stopped — —

Extend Node Always Always

Partial Update Only if no split is triggered Only if no split is triggered

Count Only Always —

Ghost Update until a split is triggered Update until a split is triggered

Table 5.2: Summary of the proposed out-of-memory strategies. update counters and

update box refer to the functions in Algorithm 1. —: no-op.

function update counters works as in the original implementation. This strategy is less

sensitive to outliers than the Extend Node method and it discards less data points than

Partial Update. However, it may create nodes that count data points outside of their box,

thus nodes that do not properly describe the data distribution.

The Ghost strategy is similar to Partial Update for data points that do not create a split

(r = false). In case of a split (r = true), the data point is dropped, however, in contrast

with the Partial Update method, the changes applied between the node parent and the root

are not canceled. This allows internal nodes to keep some information about data points

that would have introduced a split, which preserves some information from the discarded

data points.

5.2.4 Concept Drift Adaptation for Mondrian Forest under Mem-

ory Constraint

In this section, we propose methods to adapt Mondrian forests to concept drifts un-

der memory constraints. We design and compare mechanisms to free up some memory by

trimming tree leaves, and resume the growth of the forest after an out-of-memory strategy

was applied. More specifically, we propose three methods to select a tree leaf for trimming:

(1) Random trimming, (2) Data Count, and (3) Fading Count. In all cases, the trimming

mechanism is called periodically on all trees when the memory limit is reached.

The Random method, used as baseline, selects a leaf to trim with uniform probability.

The Count method selects the leaf with the lowest data point counter: it assumes that

leaves with few data points are less critical for the classification than leaves with many data

points. The exception to this would be leaves that have been recently created. To address

51

Algorithm 2: Partial Update algorithm for function update counters.

Data: node = current node containing attributes Table 5.1

Data: l = label of the data point

Data: r = true if a split has been introduced.

Data: m = true if there is enough memory to run extend tree.

1 Function update counters(node, l, r, m) is

2 node.counters[l] += 1;

3 if m is false and r is true then

4 while node.parent is not root do

5 node.counters[l] -= 1;

6 node = node.parent

7 end

8 end

9 end

this issue, the Fading count method applies a fading factor to the leaf counters: when a

new data point arrives in a leaf, the leaf counter c is updated to c = 1+ c×f , where f is the

fading factor. The other leaves get their counter updated to c = c × f . As a result, leaves

that haven’t received data points recently are more prone to be discarded.

For all methods, the selected leaf is not trimmed if it contains more data points than a

configurable threshold. This threshold prevents the trimming of an important leaf. The trim-

ming mechanism is triggered every hundred data points when the memory limit is reached.

Once leaves have been trimmed, new nodes are available for the forest to resume its

growth. The forest can extend according to the original algorithm, meaning that only new

data points with features outside of the node boxes can create a split. However, with the Ex-

tend Node and Ghost strategies, this method creates leaves containing mostly outliers since

node boxes have extensively increased when memory was full. This scenario is problematic

because these new leaves might be even less used than the trimmed ones.

To address this issue, we propose to split the tree leaves that may have expanded as a

result of the memory limitation in the Extend Node and Ghost strategies. The splitting of

tree leaves is defined from two points: a new data point, and a split helper (Figure 5.1). The

split is triggered in the tree leaf that contains the new data point, along a dimension defined

using the split helper. We propose two variants of the splitting method corresponding to

different definitions of the split helpers: in variant Split AVG, the split helper is the fading

52

Algorithm 3: Partial Update algorithm for function update box.

Data: node = current node containing attributes Table 5.1

Data: x = the data point

Data: r = true if a split has been introduced.

Data: m = true if there is enough memory to run extend tree.

1 Function update box(node, x, r, m) is

2 foreach f ∈ all features do

3 node.prev lower bound[f] = node.lower bound[f];

4 node.prev upper bound[f] = node.upper bound[f];

5 node.lower bound[f] = min(x[f], node.lower bound[f]);

6 node.upper bound[f] = min(x[f], node.upper bound[f]);

7 end

8 if m is false and r is true then

9 while node.parent is not root do

10 foreach f ∈ all features do

11 node.lower bound[f] = node.prev lower bound[f];

12 node.upper bound[f] = node.prev upper bound[f];

13 end

14 node = node.parent

15 end

16 end

17 end

53

Leaf 2

Leaf 1

Split Helper

Data Point

F
ea
tu
re

2

Feature 1

Leaf 2

Leaf 1
Sp
lit

He
lpe

r

Data Point

F
ea
tu
re

2

Feature 1

Figure 5.1: A two-feature example of the split definition. In each scenario, rectangles rep-

resent leaf boxes, the triangle is the new data point, and the cross is the split helper. The

green area indicates the range of values where the new split will be created. The split helper

is arbitrarily placed to illustrate different situations.

average data point, whereas in Split Barycenter, it is the weighted average of the leaves.

The split dimension is randomly picked amongst the dimensions along which the split helper

features are included within the leaf box. The split value along this dimension (green region

in Figure 5.1) is randomly picked between the data point feature value and the split helper

feature value along this dimension. The counters in the original leaf are proportionally split

between the new leaves. The idea behind the split helper is to create new leaves in the parts

of the tree that already contain a lot of data points.

5.2.5 Time Complexity

In this section, we discuss the time complexity of the training and testing processes.

Equations 1 and 2 respectively describe the time complexity for the training and testing

processes, where:

• m is the memory size in number of nodes.

• t is the tree count.

• d is the depth of the tree ≃ log(m
t
) in a case of a balanced tree.

54

• l is the label count.

• f is the feature count.

training = O(td(f + l)) (1)

testing = O(ml + tl + td(f + l) + l) (2)

Indeed, in the training process, the t term is related to training each tree of the ensemble.

The data point is sorted into a leaf, which gives the d term. Finally, at each depth level, the

process computes distances, and updates the node’s bounds and the node counters, which

gives us the (f + l) terms.

For the testing process, the model starts by updating statistics in each node for the labels,

which gives ml in Equation 2. Then it processes the score of each tree, which gives the tl

term. Similarly to the training process, the predict process will sort the data point into a

leaf while computing distances and nodes score, which adds the term td(f + l). Finally, the

tree scores are aggregated and it adds l.

We note that, despite being constant in regards to the stream size, the time complexity

is impacted by dataset characteristics (label count and feature count) as well as user-defined

parameters (memory size and tree count). We also note that for all variables included in

Equation 1 and 2, none of them expanded into quadratic terms.

The out-of-memory strategies do not influence these equations, however, the trimming

and split methods add a few terms to the training process. The Trim Fading method needs

to fade the count of all leaves, which adds ml as shown in Equation 3.

training trim fading = O(ml + td(f + l)) (3)

Besides, the Split AVG has to maintain an average data point, which introduces the term

f and gives Equation 4.

training split AV G = O(f + td(f + l)) (4)

5.2.6 Node Boxes Analysis

In this section, we analyze the impact of node boxe sizes on the quality of tree predictions

based on the Mondrian forest algorithm provided in [71].

55

In the classification step, the Mondrian tree passes the data point x through the tree,

and computes a score Sk for each label k. The prediction of the forest is the label with the

highest score Sk.

The score Sk mainly depends on the following terms:

• Gj, the predictive probability at node j.

• pj(x) the probability for data point x to generate a split at node j.

• PNotSperatedY et(j, x) the probability of not having generated a split yet as node j.

• sj,k(x) the score given by a node j to assign label k to data point x.

• ηj(x) the distance to the node’s box.

The following paragraphs explain how Sk is computed.

ηj(x) is computed as follows:

ηj(x) =
∑︂
d

(max(xd − ujd, 0) +max(ljd − xd, 0)), (5)

where:

• ujd and ljd are respectively the upper and lower bound at node j on feature d,

• xd is the value of the data point x for feature d.

ηj(x) depends on the distance between x and the box of node j defined by uj and lj for all

features. If x falls within the box of j, ηj(x) will be zero, and the farther x is from j’s box,

the higher ηj(x) will be.

Equation 6 shows how pj(x) is computed based on ηj(x) and ∆j, a distance between node

j and its parent. We note that when x falls within the box of j, ηj(x) is equal to zero, and

thus, pj(x) is null.

pj(x) = 1− exp(−∆jηj(x)) (6)

Equation 7 defines PNotSperatedY et(j), the probability of not having branched off before

reaching node j. It uses pj(x), the probability to branch off at node j defined in Equation 6,

and ancestors(j) which returns the ancestors of node j starting from the root.

PNotSperatedY et(j, x) =
∏︂

g∈ancestors(j)

(1− pg(x)) (7)

56

Equation 8 describes how the score of node j is computed for label k. It uses pj(x), the

probability of branching off at that node, PNotSperatedY et(j), defined in Equation 7, and Gj,k,

the predictive probability at node j for label k.

sj,k(x) =

{︄
PNotSperatedY et(j, x)(1− pj(x))Gj,k j = leaf.

PNotSperatedY et(j, x)pj(x)Gj,k otherwise.
(8)

The score given by a tree for label k and data point x, Sk(x), is shown in Equation 9.

leaf(x) returns the leaf node where the data point x has been sorted to. path(j) returns the

list of nodes that lead to node j, starting from the root.

Sk(x) =
∑︂

j∈path(leaf(x))

sj,k(x) (9)

We can see from the computation of Sk that the strategies that do not expand the node

boxes (Count Only and Stopped, as well as Partial Update and Ghost to a certain extent)

tend to use the tree root rather than leaves to predict class labels, even though the root only

has a very rough approximation of class distributions. Indeed, in a situation where boxes

are maintained small such as with Count Only strategy, the data point will have a greater

chance to fall outside a node box as well as farther from it. In this case, the probability of

branching off pj(x), will be higher and thus PNotSperatedY et(j) will be lower as we go deeper

in the tree.

Therefore, when computing Sk(x), the node score sj,k will become smaller as we get closer

to a leaf because sj,k is the product of the node predictionGj,k weighted by PNotSperatedY et(j, x).

In that situation, most of the score comes from nodes closer to the root, but these nodes

have a poor approximation of the feature space.

For nodes closer to the leaf, analysis shows that their weight in the tree prediction

increases as box sizes increase. In general, with a smooth label distribution, we think that

Extend Node would exhibit better performance for this reason. We also expect these nodes

to become irrelevant in a concept drift situation. In this scenario, using nodes closer to the

root may be more relevant.

The following empirical study intends to compare the different approaches and determine

if it is better to increase the impurity of the node by forcing the box to extend (Extend Node

strategy) and include data points that should have branched off than keeping the box small

and having a finer-grain partition of the space (Count Only, Stopped, Partial Update, and

Ghost).

57

5.2.7 Datasets

We used six datasets to evaluate our proposed methods: three synthetic datasets to

mimic real-world situations and to make comparisons with and without concept drifts, and

two real Human Activity Recognition datasets.

Banos et al

The Banos et al dataset [9]1 is a human activity dataset with 17 participants and 9 sensors

per participant. Each sensor samples a 3D acceleration, gyroscope, and magnetic field, as

well as the orientation in a quaternion format, producing a total of 13 values. Sensors are

sampled at 50 Hz, and each sample is associated with one of 33 activities. In addition to the

33 activities, an extra activity labeled 0 indicates no specific activity.

We pre-processed the Banos et al dataset as in [13], using non-overlapping windows of

one second (50 samples), and using only the 6 axes (acceleration and gyroscope) of the

right forearm sensor. We computed the average and standard deviation over the window as

features for each axis,similar to the second feature set in [13]. Indeed, this feature set was

providing the best performance while minimizing the producing cost.. We assigned the most

frequent label to the window. The resulting data points were shuffled uniformly.

In addition, we constructed another dataset from Banos et al , in which we simulated a

concept drift by shifting the activity labels in the second half of the data stream.

Recofit

The Recofit dataset [79, 80] is a human activity dataset containing 94 participants. Sim-

ilar to the Banos et al dataset, the activity labeled 0 indicates no specific activity. Since

many of these activities were similar, we merged some of them together using the same logic

as in Table 4.1.

We pre-processed the dataset similarly to the Banos et al dataset, using non-overlapping

windows of one second, and only using 6 axes (acceleration and gyroscope) from one sensor.

From these 6 axes, we used the average and the standard deviation over the window as

features. We assigned the most frequent label to the window.

1available here

58

https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset#:~:text=The%20REALDISP%20(REAListic%20sensor%20DISPlacement,%2Dplacement%20and%20induced%2Ddisplacement

MOA Datasets

We generated two synthetic datasets using Massive Online Analysis [18] (MOA) is a Java

framework to compare data stream classifiers. In addition to classification algorithms, MOA

provides many tools to read and generate datasets. We generate two synthetic datasets

(MOA commands available here) using the RandomRBF algorithm, a stable dataset, and a

dataset with a drift. Both datasets have 12 features and 33 labels, similar to the Banos et

al dataset. We generated 20,000 data points for each of these synthetic datasets.

Covtype

The Covtype dataset2 is a tree dataset. Each data point is a tree described by 54 features

including ten quantitative variables and 44 binary variables. The 581,012 data points are

labeled with one of the seven forest cover types and these labels are highly imbalanced. In

particular, two labels represent 85% of the dataset.

5.2.8 Evaluation Metric

We evaluated our methods using a prequential fading macro F1-score. We used a pre-

quential metric because data stream models cannot be evaluated with the traditional test-

ing/training sets since the model continuously learns from a stream of data points [43]. We

focused on the F1 score because most datasets are imbalanced. We used the prequential

version of the F1 score to evaluate classification on data stream. Contrary to the previous

chapter, we used a fading factor to minimize the impact of old data points, especially data

points at the beginning or data points saw before a drift occur. To obtain this fading F1

score, we multiplied the confusion matrix with the fading factor before incrementing the cell

in the confusion matrix.

5.3 Results

Our experiments evaluated the out-of-memory and adaptation strategies presented previ-

ously. We evaluated both sets of methods separately. Unless specified otherwise, we allocated

600 KB of memory for the forest, which allowed for 940 to 1600 nodes in the forest depending

on the number of features, labels, and trees. As a comparison, the Raspberry Pi Pico has

256 KB of memory and the Arduino has between 2 KB (Uno) and 8 KB (MEGA 2560).

2available here

59

https://github.com/big-data-lab-team/benchmark-har-data-stream/blob/956e81f446a531111c1680a1abb96d6117a19a87/Makefile#L200
https://archive.ics.uci.edu/ml/datasets/covertype

5.3.1 Baselines

Figure 5.2 shows the F1 score obtained at the end of each dataset as a function of the

number of trees in the forest. The experiment includes the methods described in Section 5.2.3

— executed wih a memory limit of 0.6 MB — as well as the online Mondrian forest and

the Data Stream Mondrian forest with 2 GB of memory for reference. The limit of 2 GB is

reached for the Covtype and Recofit datasets, and the Data Stream Mondrian 2 GB method

applies the extend node method in that situation. The Online Mondrian is the Python

implementation available on GitHub [12] that we modified to output the F1 score.

The Online Mondrian reaches state-of-the-art performances in the real datasets [21, 78,

26, 31]. The Data Stream Mondrian 2 GB achieves similar performances for the Banos et al

dataset and RandomRBF stable. However it is significativly lower with the Recofit dataset,

the RandomRBF with drift, and the Covtype dataset. These differences are explained by

three factors: the 2 GB limit is reached for the Recofit and Covtype datasets; the Online

Mondrian is evaluated with a holdout set randomly selected from the dataset whereas the

Data Stream Mondrian is evaluated with a prequential method (as is commonly done in data

streams); the Online Mondrian can access to previous data points while the Data Stream

Mondrian cannot. The Online Mondrian is given here as a reference for comparison, however,

it should not be directly compared to the Data Stream Mondrian as these methods operate

in different contexts.

The Stopped method, the default reference for evaluation under memory constraints,

has by far the lowest F1 score, which demonstrates the usefulness of our out-of-memory

strategies. The impact of memory limitation is clear and can be seen by the substantial

performance edge of Data Stream Mondrian 2 GB over the other methods.

5.3.2 Out-of-memory strategies

Figure 5.2 shows that for the stable and drift RandomRBF datasets all our proposed out-

of-memory strategies achieve similar F1 scores — clearly better than the default Stopped

method. Since none of these methods take concept drifts into account, the RandomRBF

with drift exhibit F1 scores lower than RandomRBF stable by roughly 0.65.

In the four other datasets, the Extend Node method consistently stands above the other

ones except for the Banos et al with drift dataset where the Partial Update method achieves

the best F1 score. This is due to a faster recovery of the nodes’ counters after the drift.

The other three methods, Count Only, Ghost, and Partial Update, tend to have similar F1

60

0.1
0.3
0.5
0.7
0.9

M
ea

n
F1

RandomRBF stable RandomRBF drift

0.1
0.3
0.5
0.7
0.9

M
ea

n
F1

Banos et al Banos et al (drift)

1 10 20 30 40 50
Tree count

0.1
0.3
0.5
0.7
0.9

M
ea

n
F1

Covtype

1 10 20 30 40 50
Tree count

Recofit

Online Mondrian
Data Stream Mondrian 2GB
Stopped

Extend Node
Partial Update

Count Only
Ghost

Figure 5.2: Comparison of the out-of-memory strategies proposed in Section 5.2.3 for six

datasets.

scores. The Extend Node makes the best of two factors. First, it does not drop any data

points compare to Partial Update or Count Only. Second, since it extends the boxes, future

data points fall within the box and receive the prediction of the corresponding leaf, whereas

the Count Only and the Ghost methods soften the leaf prediction depending on the data

point distance with the box.

The difference in F1 score between the Stopped Mondrian and the other methods is

reported in Table 5.3. The difference is computed for all numbers of trees and we report

the minimum, the mean, and the maximum. On average, the Extend Node has the best

improvement over Stopped Mondrian with an average improvement in F1-score of 0.27, a

minimum of 0.03, and a maximum of 0.73.

Finally, we note on Figure 5.2 that the F1 score generally decreases when the number

of trees increases. This deterioration occurs due to the trade-off between the number of

trees and the trees’ size. Indeed, since the memory bound is shared by all trees, the more

trees there are, the shallower they must be, making them more prone to underfit. This does

not happen when enough memory is available because in such cases, trees do not influence

each other’s size. This is why the Mondrian 2GB reaches plateaus instead of decreasing.

Therefore, under memory constraint, the number of trees has a significant impact on the

61

∆ F1

Dataset Method Name Min Mean Max

RandomRBF stable Count Only .29 .64 .73

Extend Node .29 .64 .73

Ghost .29 .63 .73

Partial Update .29 .64 .73

RandomRBF drift Count Only .03 .05 .06

Extend Node .03 .05 .07

Ghost .03 .05 .07

Partial Update .03 .05 .07

Banos et al Count Only .28 .43 .51

Extend Node .40 .50 .56

Ghost .29 .44 .51

Partial Update .30 .41 .49

Banos et al (drift) Count Only .10 .17 .21

Extend Node .13 .20 .26

Ghost .10 .18 .25

Partial Update .17 .26 .32

Covtype Count Only .02 .04 .08

Extend Node .03 .13 .21

Ghost .00 .08 .16

Partial Update .00 .07 .16

Recofit Count Only .03 .04 .08

Extend Node .05 .10 .18

Ghost .03 .07 .16

Partial Update .03 .06 .11

Table 5.3: ∆F1 score compared to Stopped Mondrian. Minimum, maximum, and average

scores are computed across all tree numbers.

performance.

From these results, we conclude that the Extend Node should be the default strategy to

follow when the Mondrian forest reaches the memory limit.

5.3.3 Concept Drift Adaptation for Mondrian Forest under Mem-

ory Constraint

Figure 5.3 shows the F1 score for the three proposed leaf trimming strategies. All trim-

ming strategies were evaluated with the Extend Node out-of-memory strategy as it outper-

forms the other out-of-memory strategies per our previous experiment. In the case of concept

drift (RandomRBF drift, Banos et al drift), the random trimming method outperforms the

other ones whereas for the stable datasets (RandomRBF, Banos et al , Covtype, Recofit), no

trimming appears to be the best strategy.

Figure 5.4 shows the F1 score for the three splitting methods (no split, Split AVG, and

Split Barycenter) combined with random trimming and extend node as the out-of-memory

strategy. With the two drift datasets, the three methods perform better than not trimming.

With RandomRBF stable, the two splitting methods perform better than not trimming with

5 and 10 trees. Finally, with Banos et al , Recofit, and Covtype datasets, not trimming is

62

0.1

0.3

0.5

0.7

0.9
M

ea
n

F1
RandomRBF stable RandomRBF drift

0.1

0.3

0.5

0.7

0.9

M
ea

n
F1

Banos et al Banos et al (drift)

1 10 20 30 40 50
Tree count

0.1

0.3

0.5

0.7

0.9

M
ea

n
F1

Covtype

1 10 20 30 40 50
Tree count

Recofit

Data Stream Mondrian 2GB
No Trim

Trim Count
Trim Fading

Trim Random

Figure 5.3: Comparison of trimming methods applied with the Extend Node out-of-memory

strategy.

generally better than randomly trimming.

On Figure 5.4, we note that for the RandomRBF stable with 5 and 10 trees, the split

methods get their F1 score higher than No Trim and Mondrian 2GB. Their F1 scores improve

over time even though the dataset is stable.

Table 5.4 summarizes the delta of F1 scores of the trimming methods compared to the

Stopped method. From these results, we conclude that randomly trimming allows the Mon-

drian forest to adapt to concept drift. We also conclude that using the split methods (Split

AVG and Split Barycenter) should be the default method to grow the Mondrian trees after

trimming as they exhibit a better F1 score than not splitting.

5.3.4 Impact of the Memory Limit

We note in Figures 5.2, 5.3, and 5.4, that the F1-scores tend to be low even though the

Data Stream Mondrian 2 GB reaches state-of-the-art F1-scores. This implies that reducing

the memory from 2 GB to 600 KB has a strong impact on the performance. We also note

that this impact varies between datasets. For the RandomRBF stable dataset, the methods

are closer to the Data Stream Mondrian 2 GB compared to the Covtype dataset where there

is a more important difference.

63

∆ F1

Dataset Method Name Min Mean Max

RandomRBF stable Trim Count, No Split .29 .63 .72

Trim Count, Split AVG .29 .66 .74

Trim Count, Split Barycenter .29 .66 .75

Trim Fading, No Split .29 .62 .71

Trim Fading, Split AVG .29 .66 .76

Trim Fading, Split Barycenter .29 .66 .76

Trim Random, No Split .29 .55 .64

Trim Random, Split AVG .29 .63 .74

Trim Random, Split Barycenter .29 .62 .73

RandomRBF drift Trim Count, No Split .03 .05 .07

Trim Count, Split AVG .05 .09 .13

Trim Count, Split Barycenter .05 .09 .14

Trim Fading, No Split .02 .05 .07

Trim Fading, Split AVG .05 .25 .32

Trim Fading, Split Barycenter .05 .25 .33

Trim Random, No Split .05 .16 .25

Trim Random, Split AVG .05 .27 .38

Trim Random, Split Barycenter .05 .26 .37

Banos et al Trim Count, No Split .36 .48 .57

Trim Count, Split AVG .38 .49 .56

Trim Count, Split Barycenter .38 .49 .57

Trim Fading, No Split .34 .48 .56

Trim Fading, Split AVG .36 .48 .56

Trim Fading, Split Barycenter .37 .48 .56

Trim Random, No Split .30 .43 .52

Trim Random, Split AVG .25 .43 .54

Trim Random, Split Barycenter .26 .43 .53

Banos et al (drift) Trim Count, No Split .16 .22 .25

Trim Count, Split AVG .20 .28 .32

Trim Count, Split Barycenter .20 .28 .31

Trim Fading, No Split .18 .23 .26

Trim Fading, Split AVG .27 .38 .46

Trim Fading, Split Barycenter .28 .39 .47

Trim Random, No Split .29 .38 .46

Trim Random, Split AVG .23 .37 .48

Trim Random, Split Barycenter .24 .37 .47

Covtype Trim Count, No Split .03 .10 .21

Trim Count, Split AVG .03 .12 .21

Trim Count, Split Barycenter .03 .12 .21

Trim Fading, No Split .02 .08 .21

Trim Fading, Split AVG .04 .12 .21

Trim Fading, Split Barycenter .04 .12 .20

Trim Random, No Split .00 .06 .16

Trim Random, Split AVG .02 .07 .21

Trim Random, Split Barycenter .02 .06 .18

Recofit Trim Count, No Split .04 .09 .18

Trim Count, Split AVG .05 .10 .18

Trim Count, Split Barycenter .05 .10 .18

Trim Fading, No Split .03 .09 .18

Trim Fading, Split AVG .05 .10 .19

Trim Fading, Split Barycenter .04 .10 .19

Trim Random, No Split .04 .08 .16

Trim Random, Split AVG .03 .08 .17

Trim Random, Split Barycenter .03 .08 .17

Table 5.4: ∆F1 score compared to Stopped Mondrian for the trimming methods. Minimum,

maximum, and average scores are computed across all tree numbers.

64

0.1

0.3

0.5

0.7

0.9
M

ea
n

F1
RandomRBF stable RandomRBF drift

0.1

0.3

0.5

0.7

0.9

M
ea

n
F1

Banos et al Banos et al (drift)

1 10 20 30 40 50
Tree count

0.1

0.3

0.5

0.7

0.9

M
ea

n
F1

Covtype

1 10 20 30 40 50
Tree count

Recofit

Data Stream Mondrian 2GB
No Trim

Trim Random, No Split
Trim Random, Split AVG

Trim Random, Split Barycenter

Figure 5.4: Comparison of tree leaf splitting methods combined with the Random trimming

strategy.

Figure 5.5 shows the evolution of the memory limit impact on the F1-score for a Mondrian

forest with 50 trees. We selected 50 trees as it is the number of trees that benefit the most

from more memory. Indeed, more memory means they are less likely to underfit and thus,

have better performance than fewer trees. Similar trends are observed with fewer trees. The

dashed black line indicates the F1-score reached by Data Stream Mondrian 2 GB.

We note that, except for the Stopped method, F1-scores increase with the amount of

available memory. This is explained by the fact that trees can grow more nodes and therefore

describe a finer-grained partition of the feature space.

We observe that the sharpest improvement for the No Trim method happens between

600 KB and 10 MB, after which the F1-score increase slows down and plateaus toward the

Data Stream Mondrian 2 GB F1-score.

The trimming methods with split exhibit two behaviors. For stable datasets, they follow

the trend of No Trim. For the drift datasets, the trimming methods improve beyond the

Data Stream Mondrian 2 GB up to the 10 MB limit, after which the F1-score decreases

down to the Data Stream Mondrian 2 GB.

This behavior is explained by the trimming algorithm that trims based on the tree count

rather than the tree size. When too much memory is allocated the size of the trees becomes

65

0.1

0.3

0.5

0.7

0.9
M

ea
n

F1
RandomRBF stable RandomRBF drift

0.1

0.3

0.5

0.7

0.9

M
ea

n
F1

Banos et al Banos et al (drift)

0.6M10M 50M
100M

200M

0.1

0.3

0.5

0.7

0.9

M
ea

n
F1

Covtype

0.6M10M 50M
100M

200M

Recofit

Data Stream Mondrian 2GB
No Trim

Stopped
Trim Random, Split AVG

Trim Random, Split Barycenter

Figure 5.5: Evaluation of the memory impact on the top out-of-memory strategy and the

top trimming methods described in Section 5.2.3 and Section 5.2.4. The results are shown

for 50 trees.

too big for the trimming pace. Therefore, the old concept is not trimmed out fast enough,

which explains the decrease in F1-score beyond the 10 MB mark for the trimming methods

on the drift datasets.

5.4 Related Work

Edge computing is a concept where processing is done close to the device that produced

the data, which generally means on devices with much less memory than regular computing

servers. There are many surveys about classification for edge computing [81, 91, 37], but

most of the work focuses on deep learning, which is not applicable in our case because it

requires a lot of data and time to train the model. They discuss inherent problems related to

learning with edge devices, in particular about lighter architecture and distributed training.

They also depict areas where machine learning on edge devices would be impactful like

computer vision, fraud detection, or autonomous vehicles. Finally, these studies draw future

work opportunities such as data augmentation, distributed training, and explainable AI.

Aside from the deep learning approaches, the survey in [81] discusses two machine learning

66

techniques with a small memory footprint: the Bonsai and ProtoNN methods.

Bonsai [70] is a tree-based algorithm designed to fit in an edge device memory. It is

a sparse tree that comes with a low-dimension projection of the feature space to improve

learning while limiting memory usage and achieving state-of-the-art accuracy. Similarly,

ProtoNN [51] is a kNN based model that performs a low-dimension projection of the features

to increase accuracy and improve its memory footprint. It also compresses the training set

into a fixed amount of clusters. ProtoNN and Bonsai claim to remain below 2KB while

retaining high accuracy. However, these models don’t apply to evolving data streams because

their low-dimension projections and their structures are pre-trained based on existing data,

thus, adjusting them would require more time and memory. Additionally, our method starts

from scratch whereas ProtoNN or Bonsai require data before being used.

When it comes to forests designed for concept drift, there are many variations and many

mechanisms. The Hoeffding Adaptive Tree [16] embeds a concept drift detector and grows

a ghost branch when it detects a drift in a branch. The ghost branch replaces the old one

when its performance becomes better. Similarly, the Adaptive Random Forest [17] keeps a

drift detector for each tree and starts growing a ghost tree when a drift is detected. The

work in [19] presents a forest that is constantly evolving where each decision tree has its

size limit. When the limit is reached, it restarts from the last created node. With this

mechanism, trees with a smaller limit will adapt faster to recent data points. Additionally,

the forest also embeds the ADWIN [5] concept drift detector and restarts the worst base

learner when a drift is detected. This mechanism called the ADWIN bagging is used in the

Adaptive Rotation Forest [102] in addition to a low-dimension projection of the features with

an incremental PCA. Such combinations allow the forest to maintain the most accurate base

classifiers while keeping the projection up-to-date. Our methods differ from ADWIN or the

Adaptive Rotation Forest because we rely on passive drift adaptation rather than using a

drift detector.

The Kappa Updated Ensemble [26] is an ensemble method that notices drifts by self-

monitoring the performance of its base classifiers. In case of a drift, the model trains new

classifiers. The prediction is made using only the best classifiers from the ensemble but the

method never discards a base classifier as it can still be useful in the future. This mechanism

of keeping unused trees raises a memory problem since it may fill the memory faster for very

little benefit.

Similarly, the work in [38] proposes a method to prune base learners based on their global

and class-wise performances. It is used to reduce memory consumption while retaining good

67

accuracy across all classes. The method evaluates the base learners for each class then ranks

them using a modified version Borda Count.

The Mean error rate Weighted Online Boosting [55] is an online boosting method where

the weights are calculated based on the accuracy of previous data. Even though the method

is not designed for concept drift, the self-monitoring of the accuracy makes the base learner

train more on recent data making the ensemble robust to concept drift.

These last studies rely on ranking the base learners of the ensemble to either adjust or

disable them. However, these coarse-grain approaches are memory intensive and are not

applicable to the trimming methods because they would require keeping statistics for each

node.

5.5 Conclusion

We adapted Mondrian forests to support data streams and we proposed five out-of-

memory strategies to deploy them under memory constraints. Results show that the Extend

Node method has the best improvement on average. With a carefully tuned number of trees,

the Extend Node also has the highest F1 score gain compared to the Stopped strategy. Thus,

we recommend using Extend Node as the default strategy.

We also compared node trimming methods for the Mondrian trees and there are two

viable methods depending on the situation. Not trimming is the best option in most case

of stable dataset. However, when expecting a concept drift, the trim Random with splits

is preferable. The drawback with the Trim Random method is that it deteriorates the F1

score on stable streams.

Overall, this paper showed that using our out-of-memory strategies is critical in order to

make the Mondrian forest work in a memory-constrained environment. In particular, existing

Mondrian forest implementations [12, 54] do not have any out-of-memory strategy and will

fail if they cannot allocate any more nodes. Using the Extend Node strategy allows an

average F1 score gain of 0.28 accross all datasets compared to not doing anything. Similarly,

using Trim Random offers an average F1 score gain of 0.3.

Our results show no significant difference between the two types of node splitting strategy.

By default, we would recommend using Split AVG because it is less compute-intensive.

We observe that with a carefully picked number of trees, using trimming can lead to

improvement with RandomRBF stable. This statement needs more investigation to under-

stand why it happened on one dataset and if similar behavior can be obtained with the other

68

datasets.

Future work will focus on the tree count adjustment as our results have shown its critical

impact on the performances. It will also investigate trim mechanisms to adaptively trim

depending on the memory limit and concept drift. Finally, we suggest exploring the use of

drift detectors such as ADWIN [5] to switch between No Trim and Trim Random.

69

Chapter 6

Dynamic Ensemble Size Adjustment

for Memory Constrained Mondrian

Forest

Published as: Martin Khannouz and Tristan Glatard. Dynamic Ensemble Size Adjust-

ment for Memory Constrained Mondrian Forest. In 2022 IEEE International Conference on

Big Data (Big Data), pages 3358–3363, Osaka, Japan, dec 2022. IEEE Computer Society.

Supervised learning algorithms generally assume the availability of enough memory to

store data models during the training and test phases. However, this assumption is unreal-

istic when data comes in the form of infinite data streams, or when learning algorithms are

deployed on devices with reduced amounts of memory. Such memory constraints impact the

model behavior and assumptions. In this paper, we show that under memory constraints,

increasing the size of a tree-based ensemble classifier can worsen its performance. In particu-

lar, we experimentally show the existence of an optimal ensemble size for a memory-bounded

Mondrian forest on data streams and we design an algorithm to guide the forest toward that

optimal number by using an estimation of overfitting. We tested different variations for this

algorithm on a variety of real and simulated datasets, and we conclude that our method

can achieve up to 95% of the performance of an optimally-sized Mondrian forest for stable

datasets, and can even outperform it for datasets with concept drifts. All our methods are

implemented in the OrpailleCC open-source library and are ready to be used on embedded

systems and connected objects.

70

6.1 Introduction

Supervised classification algorithms mostly assume the availability of abundant memory

to store data and models. This is an issue when processing data streams — which are infinite

sequences by definition — or when using memory-limited devices as is commonly the case

in the Internet of Things. We focus on the Mondrian forest, a popular online classification

method. Our ultimate goal is to optimize it for data streams under memory constraints to

make it compatible with connected objects.

The Mondrian forest is a tree-based, ensemble, online learning method with comparable

performance to offline Random Forest [71]. Previous experiments highlighted the Mondrian

forest sensitivity to the ensemble size in a memory-constrained environment [62]. Indeed,

introducing a memory limit to the ensemble also introduces a trade-off between underfitting

and overfitting. On the one hand, low tree numbers make room for deeper trees and increase

the risk of overfitting. On the other hand, large tree numbers constrain tree depth due to

the memory limitation and increase the risk of underfitting. Depending on the memory limit

and the data distribution, a given ensemble size may either overfit or underfit the dataset.

The goal of this paper is to address this trade-off by adapting the ensemble size dynamically.

In summary, this paper makes the following contributions:

1. Highlight the existence of an optimal tree count in memory-constrained Mondrian

forest;

2. Propose a dynamic method to optimize the tree count;

3. Compare this method to the Mondrian forest with a optimally-sized tree count.

6.2 Materials and Methods

All the methods presented in this section are implemented in the OrpailleCC frame-

work [63]. The scripts to reproduce our experiments are available on GitHub at https:

//github.com/big-data-lab-team/benchmark-har-data-stream.

In this section, we start by presenting background on Mondrian Forests (6.2.1 and 6.2.2),

then presents the main contribution of the paper, namely dynamically adjusting the ensemble

size of a memory-constrained Mondrian forest (6.2.3, 6.2.4, 6.2.5, 6.2.6), then describes the

experimental evaluation framework (6.2.7, 6.2.8).

71

https://github.com/big-data-lab-team/benchmark-har-data-stream
https://github.com/big-data-lab-team/benchmark-har-data-stream

6.2.1 Mondrian Forest

The Mondrian forest [71] is an ensemble method that aggregates Mondrian trees. Each

tree recursively splits the feature space, similar to a regular decision tree. However, the

feature used in the split and the value of the split are picked randomly. The probability to

select a feature is proportional to its range, and the value for the split is uniformly selected

in the range of the feature. In contrast with other decision trees, the Mondrian tree does

not split leaves to introduce new nodes. Instead, it introduces a new parent and a sibling to

the node where the split occurs. The original node and its descendant are not modified and

no data point is moved to that new sibling besides the data points that initialized the split.

This approach allows the Mondrian tree to introduce new branches to internal nodes. This

training algorithm does not rely on labels to build the tree, however, each node maintains

counters for each label seen. Therefore, labels can be delayed, but are needed before the

prediction. In addition to the counters, each node keeps track of the range of its feature

which represents a box containing all data points. A data point can create a new branch

only if it is sorted to a node and falls outside of the node’s box.

6.2.2 Mondrian Forest for Data Stream Classification

The implementation of Mondrian forest presented in [71, 12] is online because trees rely

on potentially all the previously seen data points to grow new branches. To support data

streams, the Mondrian forest has to access data points only once as the dataset is assumed

to be infinite in size.

The work in [62] describes a Data Stream Mondrian forest with a memory bound. The

ensemble grows trees from a shared pool of nodes and the trees are paused when there is

no node left. This work also proposed out-memory strategies to keep updating the statistics

for the trees without creating new branches. In particular, this work recommend using the

Extend Node strategy when the memory is full, a strategy where statistics of the node boxes

are automatically extended to fit all data points, and the counters automatically increased.

The attributes of a node are an array for counting labels that fall inside a leaf, and

two arrays lower bound and upper bound that define a box of the node. The Extend Node

strategy automatically increases the counter of the label in the leaf and automatically adjusts

lower bound and upper bound so the new data point fits inside the box.

Having a shared pool of nodes for the ensemble has a direct impact on the number of trees.

As mentioned before, having more trees limits the tree depth and may lead to underfitting,

72

whereas having less trees increases the risk of overfitting.

6.2.3 Dynamic Tree Count Optimization

Algorithm 4 describes the function that trains the forest with a new data point and

dynamically adjusts the ensemble size. The main idea is to compare pre- and post-quential

errors to decide whether or not to adjust the forest size.

Algorithm 4: Training function for a data stream Mondrian forest with a dynamic

ensemble size.
Data: f = a Mondrian forest

Data: x = a data point

Data: l = the label of data point x

1 Function train forest(f, x, l) is

2 predicted label = f.test(x);

3 prequential.update(predicted label, l);

4 for i do

5 train tree(i, x, l);

6 end

7 predicted label = f.test(x);

8 postquential.update(predicted label, l);

9 post metric = postquential.metric();

10 pre metric = prequential.metric();

11 if post metric >̃ pre metric then

12 trim trees(f);

13 add tree(f);

14 end

15 end

The forest evaluates prequential statistics, meaning that it predicts the new data point

label before using it for training (line 2-3). After training, the forest evaluates postquential

statistics (lines 7-8). The prequential accuracy is widely used as accuracy approximation on

a test set for data streams [43]. Here we introduce the postquential accuracy, where we test

after training, to simulate the accuracy on a training set.

To find the number of trees that maximize prediction performance, we initialize the

Mondrian forest with a single tree, therefore with a high risk of overfitting. The idea is to

73

test for overfitting by comparing prequential and postquential accuracies and add a tree in

case the forest is deemed to overfit.

A model that overfits is defined as a model that performs significantly better on the

training set than on the test set. Therefore the problem of detecting overfitting becomes a

statistical testing problem between the training and test accuracies.

While overfitting is commonly detected by comparing the performance of the classifier

on the training and test set, detecting underfitting for memory-constrained data stream

models remains very challenging. Consistently, Algorithm 4 is written to only support tree

addition. Should an underfitting criterion be available in the future, Algorithm 4 could easily

be adapted to support tree removal.

Overall, Algorithm 4 can be adjusted with three components: the comparison test (line

11), the type of pre/postquential statistics used (line 3 and 8), and the method to add trees

(line 12-13).

6.2.4 Comparison Test

In Algorithm 4, the update process determines if it needs to add a tree based on a

comparison between the prequential and the postquential accuracies. If both accuracies are

significantly different, the forest is deemed to overfit and thus, the algorithm adds a tree to

compensate.

There are different methods to test the statistical difference between two accuracies and

we experiment with four in this paper: the sum of variances, the t-test, the z-test, and the

sum of standard deviations.

Notations for the following equations include: µpre and µpost the mean of respectively

the prequential and postquential accuracies, σ2
pre and σ2

post the variance of respectively the

prequential and postquential accuracies, n the size of the sample, µ and σ2 respectively the

mean and variance of µpost − µpre.

Sum of Variances

Equation 10 shows the sum of variances as a comparison test. The two accuracies are dif-

ferent when the distance it is higher than the square root of the prequential and postquential

variances.

µpost − µpre >
√︂

σ2
post + σ2

pre (10)

74

T-test

Equation 11 describes the t-test used to compare the prequential and postquential ac-

curacies. We apply a one-sample t-test where we check if µ is different from 0 with a 99%

confidence [101].

√
n
µ

σ
> 2.326 (11)

Z-test

Equation 12 shows how we computed the two proportion z-test pooled for µpre equal µpost.

We first compute the zscore, then we compare it with the Z-value that ensures confidence of

99% [100, 111]. The zscore is the observed difference (a) divided by the standard error of the

difference (b) pooled from the two samples (p).

a = µpre − µpost

p =
µpre + µpost

2

b =

√︃
2p(1− p)

n

zscore =
a

b

zscore > 2.576

(12)

Sum of Standard Deviations

Equation 13 shows the use of the sum of standard deviations as comparison test. The

difference between postquential and prequential is significant when that difference is higher

than the sum of standard deviations.

µpost − µpre > σpost + σpre (13)

6.2.5 Pre- and Postquential Statistics Computation

In Algorithm 4 we mention that the accuracy and its variance are evaluated both pre-

quentially and postquentially. However, only the most recent data points are relevant for

these statistics. We compared two ways of computing the mean (µ) and variance (σ2): sliding

and fading.

75

The sliding version uses a sliding window to store the statistics. Let Pi ∈ {0, 1} be the

correctness of the prediction for data point i. The values of Pi are stored in a binary sliding

window W of size Wsize. W is updated with the most recent Pi and the mean and variance

of the accuracy are computed as follows:

µ =

∑︁
Pi∈W Pi

Wsize

σ2 = µ(1− µ)

(14)

This expression of σ2 comes from the fact that Pi is a binary variable.

The sliding version increases memory consumption because it needs to keepW in memory.

The fading version addresses this downside of the sliding version. To reduce memory usage,

the fading version relies on a fading factor [43]. The sum maintained to compute the accuracy

and the variance are faded. Which mean these sums are multiplied by a fading factor

f ∈ [0, 1] before being updated. It gives a weight to all elements with older elements having

a smaller weight. If f = 1 then the sum is computed for the entire stream. If f = 0 then

only the last point is taken into account.

To compute the fading statistics, we need the count of data points n, the faded count

of data points N =
∑︁n

i=1 f
n−i, and the faded accuracy of the prediction An =

∑︁n
i=1 f

n−iPi.

This is sufficient to compute the mean accuracy and its variance:

µ =
An

N

σ2 = µ(1− µ)

(15)

In this experiment, we use a fading factor of 0.995.

6.2.6 Tree Addition Method

In the Data Stream Mondrian forest, adding a tree simply implants a root in the node

pool. The main issue in adding trees revolves around the number of nodes available for that

tree to grow. Indeed, if the number of nodes available is too small, the tree won’t grow much

and it will underfit the data.

Therefore, to make space for new trees, we need to trim the leaves of existing trees.

The trimming phase ensures that every tree has a similar size while accommodating enough

memory space for the new tree to grow. We test three approaches for trimming trees: Add

random, Add depth, and Add count. The Add random approach randomly selects the leaves

to remove. The Add depth approach removes the deepest leaves first. The Add count

approach focuses on the leaves that contain the least amount of data points.

76

6.2.7 Datasets

We used six datasets to evaluate our proposed methods: three synthetic datasets to

mimic real-world situations and to make comparisons with and without concept drifts, and

two real Human Activity Recognition datasets.

Banos et al

The Banos et al dataset [9]1 is a human activity dataset with 17 participants and 9 sensors

per participant. Each sensor samples a 3D acceleration, gyroscope, and magnetic field, as

well as the orientation in a quaternion format, producing a total of 13 values. Sensors are

sampled at 50 Hz, and each sample is associated with one of 33 activities. In addition to the

33 activities, an extra activity labeled 0 indicates no specific activity.

We pre-processed the Banos et al dataset as in [13], using non-overlapping windows of

one second (50 samples), and using only the 6 axes (acceleration and gyroscope) of the

right forearm sensor. We computed the average and standard deviation over the window as

features for each axis, similar to the second feature set in [13]. Indeed, this feature set was

providing the best performance while minimizing the producing cost.. We assigned the most

frequent label to the window. The resulting data points were shuffled uniformly.

In addition, we constructed another dataset from Banos et al , in which we simulated a

concept drift by shifting the activity labels in the second half of the data stream.

Recofit

The Recofit dataset [79, 80] is a human activity dataset containing 94 participants. Sim-

ilar to the Banos et al dataset, the activity labeled 0 indicates no specific activity. Since

many of these activities were similar, we merged some of them together using the same logic

as in Table 4.1.

We pre-processed the dataset similarly to the Banos et al dataset, using non-overlapping

windows of one second, and only using 6 axes (acceleration and gyroscope) from one sensor.

From these 6 axes, we used the average and the standard deviation over the window as

features. We assigned the most frequent label to the window.

1available here

77

https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset#:~:text=The%20REALDISP%20(REAListic%20sensor%20DISPlacement,%2Dplacement%20and%20induced%2Ddisplacement

MOA Datasets

We generated two synthetic datasets using Massive Online Analysis [18] (MOA) is a Java

framework to compare data stream classifiers. In addition to classification algorithms, MOA

provides many tools to read and generate datasets. We generate two synthetic datasets

(MOA commands available here) using the RandomRBF algorithm, a stable dataset, and a

dataset with a drift. Both datasets have 12 features and 33 labels, similar to the Banos et

al dataset. We generated 20,000 data points for each of these synthetic datasets.

Covtype

The Covtype dataset2 is a tree dataset. Each data point is a tree described by 54 features

including ten quantitative variables and 44 binary variables. The 581,012 data points are

labeled with one of the seven forest cover types and these labels are highly imbalanced. In

particular, two labels represent 85% of the dataset.

6.2.8 Evaluation Metric

The models start without prior knowledge of the datasets. We evaluated our meth-

ods using a prequential fading macro F1-score. We focused on the F1 score because most

datasets are imbalanced. We used the prequential evaluation because we process a data

stream [43]. The prequential evaluation or interleaved-test-then-train evaluation is the most

popular method to evaluate data stream models. It first tests the model with the data

points, then trains the model with it. We used a fading factor to minimize the impact of old

data points, especially data points at the beginning or data points seen before a drift occur.

To obtain this fading F1 score, we multiplied the confusion matrix with the fading factor

before incrementing the cell in the confusion matrix. The model is continuously evaluated

throughout the data stream and we report only the final evaluation metric. The F1 scores

are averaged across 20 repetitions.

6.3 Results

In this section, we first highlight the existence of an optimal number of trees dependent

on the data and the memory. Then we evaluate the performance of the tree-adding methods

2available here

78

https://github.com/big-data-lab-team/benchmark-har-data-stream/blob/956e81f446a531111c1680a1abb96d6117a19a87/Makefile#L200
https://archive.ics.uci.edu/ml/datasets/covertype

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ea

n
F1

RBF stable Banos et al Recofit

1 10 20 30 40 50
Tree count

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ea

n
F1

RBF drift

1 10 20 30 40 50
Tree count

Banos (drift)

1 10 20 30 40 50
Tree count

Covtype

0.2MB 0.6MB 10MB

Figure 6.1: The impact of the ensemble size on the F1 score depending on the datasets and

the memory limit.

independently from the dynamic update process. Finally, we assess the complete dynamic

update method and all its parameter.

6.3.1 Optimal Forest Size

Figure 6.1 shows the relation between the number of trees in the Mondrian forest and

the F1 score. We notice that in most configurations, there is an optimal number of trees

located between 1 and 15, except for 10MB and the datasets RBF stable, in which case the

F1 score keeps increasing without reaching a maximum.

A particular situation occurs on the Covtype and the Recofit datasets with 0.2MB and

0.6MB: the optimal ensemble size is one, which suggests that the memory limit is not high

enough for a tree to overfit the datasets. Therefore, adding trees will always underfit.

We observe significant performance differences between the best-performing and least-

performing number of trees, in particular for low memory amounts. Therefore, optimizing

the number of trees is necessary to achieve the best performances.

6.3.2 Tree Addition

Figure 6.2 compares the tree addition methods presented in Section 6.2.6 with Fixed, the

Mondrian forest with a fixed number of trees described in Section 6.3.1. This comparison is

done independently of the dynamic procedure that will be evaluated later. In this Figure,

Add random, Add count, and Add depth, start their forest with 1 tree, then add a tree

79

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ea

n
F1

RBF stable - 0.2 MB RBF stable - 0.6 MB RBF stable - 10 MB

1 10 20 30 40 50
Tree count

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ea

n
F1

Banos et al - 0.2 MB

1 10 20 30 40 50
Tree count

Banos et al - 0.6 MB

1 10 20 30 40 50
Tree count

Banos et al - 10 MB

Fixed
Remove

Add random
Add depth

Add count

Figure 6.2: The effectiveness of the adding methods and removing method compare to Fixed.

periodically until the forest reaches the size given on the x-axis. Ideally, the update method

should be indistinguishable from Fixed that uses the number of trees indicated on the x-axis.

From Figure 6.2, we note that Add Count is consistently closer to Fixed than Add random

is. Add depth tend to be the worst variant to add a new tree as it diverges faster than the

other two. Therefore, adding trees with Add count is a functionnal strategy to dynamicly

adjust the number of tree.

6.3.3 Tree Removal

Since detecting underfitting is challenging, tree removal is not included in Algorithm 4.

However, we implemented a tree removal method that we evaluated similarly to the add

method, in Figure 6.2. The Remove method in that Figure starts a forest with 50 trees and

periodically removes a tree to reach the value indicated on the x-axis.

We note that removing trees always underperforms except for the highest amounts of

memory. Indeed, removing a tree to decrease underfitting by allowing the remaining trees

to grow more nodes raises an issue related to outlier data points. The forest deletes a tree

when the memory limit has been reached. Therefore, the tree growth has been paused and

only the node statistics (box and counters) are updated. Once a tree is deleted, the other

trees resume their growth until the memory is full again. However, during the pause phase,

data points have still been received, but since none of the points outside a box could branch

off, they forced the boxes to expand so they fit all data points. Thus, the node boxes tend

to be bigger.

80

When growth is resumed, data points that could introduce new nodes are more likely to

be outliers since only data points outside a box can branch off. Therefore, most of the new

nodes, if not all, will be created for outliers, and these nodes are unlikely to be used and to

improve the classification.

6.3.4 Comparison to Fixed Ensemble Size

We tested all possible combinations of:

• Tree addition methods (Section 6.2.6)

• Pre- and Postquential statistics (Section 6.2.5)

• Comparison Tests (Section 6.2.4)

The tree addition includes Add random, Add depth, and Add count. The pre- and

postquential statistics include fading and sliding. Finally, the comparison test contains the

sum of standard deviation (sum-std), the sum of variance (sum-var), the t-test (t-test), and

the z-test (z-test).

Figure 6.3 shows how the top combinations compare to Fixed for each dataset and mem-

ory limit. The score is relative to the F1 score of Fixed with the optimal number of trees.

We observe that for most datasets, at least one dynamic forest reaches the performance

of the Fixed method. The only exception is the RBF drift dataset with 0.2MB where all the

dynamic approaches are substantially under the performance obtained by the Fixed method.

For the drift datasets, some dynamic forests surpass the performance of the Fixed method.

This is due to the introduction of new trees that are not influenced by older concepts, and

thus are more accurate to the new data points.

Nevertheless, no single dynamic method consistently reaches the performance of Fixed.

Indeed, the count fading t-test method (purple on Figure 6.3) reaches or surpasses the

performance of the Fixed method for RBF stable and drift (except 0.2MB), Banos et al and

Banos et al drift, however, it underperforms on the Recofit and Covtype datasets where

the count fading sum-std (blue on Figure 6.3) and the random fading sum-std (orange

on Figure 6.3) perform significantly better. Conversely, the depth fading sum-std method

(brown on Figure 6.3) reaches the Fixed performance for Covtype, Recofit, and Banos et al

datasets, but significantly underperforms on RBF stable and RBF drift.

We computed the average rank of the dynamic forests and reported the top 10 methods

in Table 6.1. The best average rank of 6.50 out of 24 indicates the lack of a clear winner

among all combinations.

81

count fading sum-std
random fading sum-std

random sliding z-test
count sliding z-test
count fading t-test

depth fading sum-std
count fading z-test

random fading z-test
count sliding sum-std

count sliding t-test

RBF stable - 0.2MB RBF stable - 0.6MB RBF stable - 10MB

count fading sum-std
random fading sum-std

random sliding z-test
count sliding z-test
count fading t-test

depth fading sum-std
count fading z-test

random fading z-test
count sliding sum-std

count sliding t-test

RBF drift - 0.2MB RBF drift - 0.6MB RBF drift - 10MB

count fading sum-std
random fading sum-std

random sliding z-test
count sliding z-test
count fading t-test

depth fading sum-std
count fading z-test

random fading z-test
count sliding sum-std

count sliding t-test

Banos et al - 0.2MB Banos et al - 0.6MB Banos et al - 10MB

count fading sum-std
random fading sum-std

random sliding z-test
count sliding z-test
count fading t-test

depth fading sum-std
count fading z-test

random fading z-test
count sliding sum-std

count sliding t-test

Banos (drift) - 0.2MB Banos (drift) - 0.6MB Banos (drift) - 10MB

count fading sum-std
random fading sum-std

random sliding z-test
count sliding z-test
count fading t-test

depth fading sum-std
count fading z-test

random fading z-test
count sliding sum-std

count sliding t-test

Recofit - 0.2MB Recofit - 0.6MB Recofit - 10MB

0 1 2 3

Percent Best F1

count fading sum-std
random fading sum-std

random sliding z-test
count sliding z-test
count fading t-test

depth fading sum-std
count fading z-test

random fading z-test
count sliding sum-std

count sliding t-test

Covtype - 0.2MB

0 1 2 3

Percent Best F1

Covtype - 0.6MB

0 1 2 3

Percent Best F1

Covtype - 10MB

Figure 6.3: Comparison between component combinations and Fixed with the optimal tree

count. Fixed is represented by a vertical dashed line. The value for the component combi-

nations is percentage of the Fixed F1 score.

Moreover, we observed that varying the fading factor made some methods consistently

approach the Fixed performance. In particular, when reducing the fading factor, the methods

82

Tree Addition Pre & Postquential Comp. Test Avg. Rank

count fading sum-std 6.50

random fading sum-std 7.50

random sliding z-test 7.61

count sliding z-test 7.67

count fading t-test 8.39

depth fading sum-std 8.50

count fading z-test 8.67

random fading z-test 9.28

count sliding sum-std 9.50

count sliding t-test 10.44

Table 6.1: The best-ranked component combinations out of the 24 combinations of Algo-

rithm 4 across datasets and memory limits. The top lines rank better on average than the

bottom lines.

using the z-test and the t-test approach Fixed on all datasets. This is explained by the fact

that the experimental conditions are closer to the assumptions made by the t-test and the

z-test. Nevertheless, these fading factor explorations were not done with a proper cross-

validation, and cannot be repported in this paper because it would require an analysis on

independent datasets.

6.4 Related Work

The work in [85, 36] propose methods to adjust ensemble size based on accuracy con-

tribution of the sub-classifier. A sub-classifier that significantly decreases the accuracy of

the ensemble should be removed, whereas the new sub-classifier built on the last chunk of

data should be added if it significantly increases the ensemble accuracy. However, their

hypotheses are not valid in our study, since growing a new tree influences the performance

of existing trees. Indeed, the new tree requires nodes to grow and these nodes will be taken

from existing trees.

The work in [75] explores an algorithm to adjust hyper-parameters on data streams

with concept drift. When a concept drift is detected, the algorithm makes a list of hyper-

parameters configurations to evaluate on the most recent data points. The best configuration

provides the new hyper-parameters until the next concept drift. This method is not suited

83

for our hypothesis since it assumes we have enough memory to store at least two models.

6.5 Conclusion

In this paper, we showed experimentally that a memory-bounded Mondrian forest has

an optimal ensemble size that depends on the dataset and the memory limit. To find this

optimal, we proposed a dynamic ensemble-sized Mondrian forest that estimates overfitting

to drive the ensemble toward the optimal number of trees. The overfitting measure relies on

the postquential accuracy, an innovative concept to estimate the training accuracy of a data

stream classifier.

We introduced the use of fading factor to keep track of the mean and variance, needed for

the comparison test. We tested our algorithm on six datasets with different combinations of

comparison tests, different methods to add trees, and different ways of computing the mean

and variance.

From this experiment, we observed that some of the proposed methods were able to reach

the performance of a Mondrian forest with an optimal number of trees. However, none of

the methods consistently achieve that optimal. In future work, we suggest investigating the

role of the fading factor.

In addition, further investigations are required to design a functional tree removal method

that resists two issues: detecting underfitting in the forest and continuing the growth of

paused Mondrian trees.

84

Chapter 7

Conclusion

7.1 Benchmark Contributions

This manuscript started with an evaluation of several data stream classification models,

focusing on their resource usage and their classification performance. Given the importance

of memory usage for connected objects, we noted the current lack of memory-constrained

data stream classification models in the literature. Our evaluation revealed the top three

classifiers to be the Hoeffding tree, the Näıve Bayes, and the Mondrian forest, although

their classification performance are significantly below the one obtained with offline kNN.

Interestingly, our results also showed that the Mondrian forest’s classification performance

is sensitive to the amount of available memory, and with sufficient memory, the model can

achieve state-of-the-art performance. As a result, we chose to focus this thesis on exploring

the topic of memory-constrained Mondrian forests for data stream classification.

We considered using deep learning algorithms but they are generally unsuited for data

stream classification. Indeed, it often requires processing the dataset multiple times, which

is not feasible for connected devices. Even though pre-trained feature extraction models

could provide better features, such models often need significant computation resources that

may not be available on these devices. However, these model offers the advantage of a fixed

memory footprint.

7.2 Mondrian Forest Contributions

We have developed and evaluated five mechanisms to enable the Mondrian forest to op-

erate efficiently under memory constraints. These mechanisms define how the Mondrian tree

85

updates its node’s boxes and counters when the memory is full. In addition, we introduced

and evaluated pruning methods that enable the Mondrian forest to handle concept drift

and optimize the tree over time. Our updating mechanisms significantly improved the Mon-

drian forest over the original algorithm described in [71], allowing it to operate efficiently

in memory-constrained environments. The pruning methods also improved classification

performance on data streams with concept drift. Moreover, our experiments revealed an

interesting trade-off between tree depth and the number of trees in a memory-constrained

Mondrian forest. We found that there is an optimal size for the Mondrian forest beyond

which its performance declines. This trade-off arises because the model must choose between

tree depth and the number of trees when operating under memory constraints.

Since this optimal ensemble size depends on various factors such as the dataset or the

memory limit, we developed and evaluated a method to extend the ensemble toward that

optimal number of trees. This method measures the overfitting of the ensemble, and when it

is significantly high, a new tree is introduced in the forest. Starting with only one tree in the

forest, our results demonstrate that the Mondrian forest reaches the optimal size as well as

optimal classification performance in most datasets. Furthermore, in the event of a concept

drift, the method surpasses the optimal performance by introducing more up-to-date trees.

7.3 Other Contributions

All the methods discussed in this manuscript are available in OrpailleCC, which is an

open-source collection of data stream algorithms. We implemented these algorithms with

deployment on embedded devices in mind. Therefore, our implementation does not assume

the availability of kernel functions like malloc. Depending on the algorithm used, either the

memory will be reserved automatically by the implementation or the user must provide a ker-

nel function to allocate memory. This flexibility allows the user to adapt the implementation

to the specific constraints and requirements of their system.

The algorithmic approach followed in this manuscript is not the only way to address

memory-constrained models. We collaborated on a numerical stability study of the Mondrian

forest that showed the numerical precision can be reduced to 8-bit without impacting the

classification performance [107]. This study used Verificarlo [32] to replace 64-bit floating

point operations with their 8-bit equivalent. This approach aims at reducing the memory

footprint of the model through the floating-point format and can be applied to other models.

86

Overall, this thesis contributes to improving the classification performance of the Mon-

drian forest for memory-constrained environments, with a focus on limited memory resources

ranging from 200 KB to 1 MB. In these scenarios, the Mondrian forest proves to be an effi-

cient solution for classification tasks, particularly when it include all our extensions. However,

the classification performance may vary depending on the dataset’s characteristics, such as

the number of labels and features, and the Hoeffding Tree or the Näıve Bayes may exibit

competitive performances.

7.4 Future Work

As future work, there are several ways to further improve the Mondrian forest. For

instance, developing a tree removal method that preserves the Mondrian forest’s classification

performances. This method would improve the ensemble size adjustment by correcting for

errors in the adjustment or for concept drifts. We could also optimize the pruning method

so the pruning rates adapt to the ensemble size and the memory limit.

During our research, we found that memory-constrained classification models have not

been studied extensively. While the thesis focused on the Mondrian forest, there are several

other models that could benefit from investigating how a memory constraint would impact

them. In particular, ensemble-based models are likely to face similar issues as the Mondrian

forest, such as the trade-off between the ensemble size and classification performance, and

could benefit from our ensemble size adjusting algorithm. Therefore, further research could

investigate the effects of memory constraints on other ensemble-based models to better un-

derstand their performance limitations in memory-constrained environments. Additionnaly,

forest-based model may benefit from our trimming mechanisms.

87

Bibliography

[1] Hanady Abdulsalam, David B. Skillicorn, and Patrick Martin. Classification Using

Streaming Random Forests. IEEE Transactions on Knowledge and Data Engineering,

23(1):22–36, jan 2011.

[2] Charu C Aggarwal. On biased reservoir sampling in the presence of stream evolution.

In Proceedings of the 32nd international conference on Very large data bases, pages

607–618. VLDB Endowment, 2006.

[3] Nadeem Ahmed, Raihan Kabir, Airin Rahman, Al Momin, and Md Rashedul Islam.

Smartphone sensor based physical activity identification by using hardware-efficient

support vector machines for multiclass classification. In 2019 IEEE Eurasia Conference

on IOT, Communication and Engineering (ECICE), pages 224–227. IEEE, 2019.

[4] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless

Sensor Networks: a Survey. Computer Networks, 38(4):393–422, 2002.

[5] Albert Bifet and Ricard Gavaldà. Learning from Time-Changing Data with Adaptive

Windowing. In Proceedings of the 2007 SIAM International Conference on Data Min-

ing, pages 443–448, Minneapolis, United States, April 2007. Society for Industrial and

Applied Mathematics.

[6] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regres-

sion. The American Statistician, 46(3):175, aug 1992.

[7] Giuseppe Amato, Davide Bacciu, Stefano Chessa, Mauro Dragone, Claudio Gallicchio,

Claudio Gennaro, Hector Lozano, Alessio Micheli, Gregory O’Hare, Arantxa Renteria,

and Claudio Vairo. A Benchmark Dataset for Human Activity Recognition and Ambi-

ent Assisted Living. In International Symposium on Ambient Intelligence, pages 1–9,

01 2016.

88

[8] Amazon Web Services. FreeRTOS. https://www.freertos.org/. Accessed: 2023-01-

23.

[9] Oresti Baños, Miguel Damas, Héctor Pomares, Ignacio Rojas, Máté Attila Tóth, and

Oliver Amft. A Benchmark Dataset to Evaluate Sensor Displacement in Activity

Recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing,

UbiComp ’12, page 1026–1035, New York, NY, USA, 2012. Association for Computing

Machinery.

[10] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.

Models and Issues in Data Stream Systems. In Proceedings of the Twenty-First ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS

’02, page 1–16, New York, NY, USA, 2002. Association for Computing Machinery.

[11] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window

over streaming data. In Proceedings of the thirteenth annual Association for Comput-

ing Machinery-SIAM symposium on Discrete algorithms, pages 633–634. Society for

Industrial and Applied Mathematics, 2002.

[12] Balaji Lakshminarayanan. Python implementation of the mondrian forest, 2014.

[13] Oresti Banos, Juan-Manuel Galvez, Miguel Damas, Hector Pomares, and Ignacio Ro-

jas. Window Size Impact in Human Activity Recognition. 14(4):6474–6499, April

2014.

[14] András A. Benczúr, Levente Kocsis, and Róbert Pálovics. Online Machine Learning

Algorithms over Data Streams, pages 1199–1207. Springer International Publishing,

Cham, 2019.

[15] Gérard Biau and Erwan Scornet. A random forest guided tour. TEST, 25(2):197–227,

apr 2016.

[16] Albert Bifet and Ricard Gavaldà. Adaptive Learning from Evolving Data Streams.

In Advances in Intelligent Data Analysis VIII, pages 249–260, Lyon, France, August

2009. Springer Berlin Heidelberg.

[17] Albert Bifet and Ricard Gavaldà. Adaptive learning from evolving data streams. In

Advances in Intelligent Data Analysis VIII, pages 249–260. Springer Berlin Heidelberg,

2009.

89

https://www.freertos.org/

[18] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA: Massive

Online Analysis. Journal of Machine Learning Research, 11(May):1601–1604, 2010.

[19] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà.

New Ensemble Methods for Evolving Data Streams. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD

'09, Paris, France, June 2009. Association for Computing Machinery.

[20] Albert Bifet, Silviu Maniu, Jianfeng Qian, Guangjian Tian, Cheng He, and Wei

Fan. StreamDM: Advanced Data Mining in Spark Streaming. In Proceedings of the

2015 IEEE International Conference on Data Mining Workshop, ICDMW ’15, page

1608–1611, USA, 2015. IEEE Computer Society.

[21] Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff

Holmes, and Bernhard Pfahringer. Extremely Fast Decision Tree Mining for Evolving

Data Streams. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining - KDD ’17, pages 1733–1742. Association for

Computing Machinery, August 2017.

[22] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426, jul 1970.

[23] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, aug 1996.

[24] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[25] Gilles Callebaut, Guus Leenders, Jarne Van Mulders, Geoffrey Ottoy, Lieven

De Strycker, and Liesbet Van der Perre. The Art of Designing Remote IoT De-

vices—Technologies and Strategies for a Long Battery Life. Sensors, 21(3):913, 2021.

[26] Alberto Cano and Bartosz Krawczyk. Kappa Updated Ensemble for Drifting Data

Stream Mining. Machine Learning, 109(1):175–218, 2020.

[27] Poornima M Chanal and Mahabaleshwar S Kakkasageri. Security and privacy in iot:

a survey. Wireless Personal Communications, 115:1667–1693, 2020.

[28] Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digumarti,

Jose del R. Millan, Daniel Roggen, and Gerhard Tröster. The Opportunity challenge:

A benchmark database for on-body sensor-based activity recognition. Pattern Recog-

nition Letters, 23:2033–2042, 01 2013.

90

[29] Sakshi Chhabra and Dinesh Singh. Data Fusion and Data Aggregation/Summarization

Techniques in WSNs: A Review. International Journal of Computer Applications,

121(19), 2015.

[30] A. P. Dawid. Present position and potential developments: Some personal views:

Statistical theory: The prequential approach. Journal of the Royal Statistical Society.

Series A (General), 147(2):278, 1984.

[31] Akbar Dehghani, Omid Sarbishei, Tristan Glatard, and Emad Shihab. A Quantitative

Comparison of Overlapping and Non-Overlapping SlidingWindows for Human Activity

Recognition Using Inertial Sensors. Sensors, 19(22):5026, 2019.

[32] Christophe Denis, Pablo De Oliveira Castro, and Eric Petit. Verificarlo: Checking

Floating Point Accuracy through Monte Carlo Arithmetic. In 2016 IEEE 23nd Sym-

posium on Computer Arithmetic (ARITH), pages 55–62, 2016.

[33] Pedro Domingos and Geoff Hulten. Mining High-Speed Data Streams. Proceeding of

the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 11 2002.

[34] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A Survey on

Ensemble Learning. Frontiers of Computer Science, 14:241–258, 2020.

[35] E.J. Duarte-Melo and Mingyan Liu. Analysis of energy consumption and lifetime of

heterogeneous wireless sensor networks. In Global Telecommunications Conference.

GLOBECOM 02. IEEE, 2002.

[36] Piotr Duda, Maciej Jaworski, and Leszek Rutkowski. On ensemble components selec-

tion in data streams scenario with reoccurring concept-drift. In 2017 IEEE Symposium

Series on Computational Intelligence (SSCI), pages 1–7, 2017.

[37] Dr. Lachit Dutta and Swapna Bharali. TinyML Meets IoT: A Comprehensive Survey.

Internet of Things, 16:100461, 2021.

[38] Sanem Elbasi, Alican Büyükçakır, Hamed Bonab, and Fazli Can. On-the-Fly Ensemble

Pruning in Evolving Data Streams, 2021.

[39] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo

filter. In Proceedings of the 10th ACM International on Conference on emerging Net-

working Experiments and Technologies - CoNEXT '14. ACM Press, 2014.

91

[40] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo

Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM International

on Conference on Emerging Networking Experiments and Technologies, CoNEXT ’14,

page 75–88, New York, NY, USA, 2014. Association for Computing Machinery.

[41] Jessica Fernandes, Everton Santana, Victor Turrisi da Costa, Bruno Bogaz Zarpelão,

and Sylvio Barbon. Evaluating the Four-way Performance Trade-off for Data Stream

Classification in Edge Computing. IEEE Transactions on Network and Service Man-

agement, PP:1–1, mar 2020.

[42] Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences,

55(1):119–139, aug 1997.

[43] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. Issues in Evaluation of

Stream Learning Algorithms. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’09, page 329–338, Paris,

France, 2009. Association for Computing Machinery.

[44] João Gama, Pedro Medas, and Ricardo Rocha. Forest trees for on-line data. 2004.

[45] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Ma-

chine learning, 63(1):3–42, 2006.

[46] Corrado Gini. Concentration and dependency ratios. Rivista di politica economica,

87:769–792, 1997.

[47] Lukasz Golab and M. Tamer Özsu. Issues in Data Stream Management. SIGMOD

Rec., 32(2):5–14, jun 2003.

[48] Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabŕıcio Enembreck,

Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. Adaptive Random Forests

for Evolving Data Stream Classification. Machine Learning, 106(9-10):1469–1495, June

2017.

[49] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama.

Machine Learning for Streaming Data: State of the Art, Challenges, and Opportuni-

ties. SIGKDD Explor. Newsl., 21(2):6–22, November 2019.

92

[50] Maciej Grzenda, Heitor Murilo Gomes, and Albert Bifet. Delayed Labelling Evaluation

for Data Streams. Data Mining and Knowledge Discovery, 34(5):1237–1266, 2020.

[51] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi

Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and

Prateek Jain. ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices.

In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Re-

search, pages 1331–1340, Sydney NSWAustralia, August 2017. Proceedings of Machine

Learning Research.

[52] Peter J Haas. Data-Stream Sampling: Basic Techniques and Results. Data Stream

Management: Processing High-Speed Data Streams, pages 13–44, 2016.

[53] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H. Witten. The WEKA data mining software. ACM SIGKDD Explorations

Newsletter, 11(1):10, nov 2009.

[54] HelloAlone. C++ implementation of the mondrian forest, 2018.

[55] Nagaraj Honnikoll and Ishwar Baidari. Mean Error Rate Weighted Online Boosting

Method. The Computer Journal, October 2021.

[56] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction

to statistical learning, volume 112. Springer, 2013.

[57] Majid Janidarmian, Atena Roshan Fekr, Katarzyna Radecka, and Zeljko Zilic. A Com-

prehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.

Sensors, 17(3):529, mar 2017.

[58] Amrinder Kaur and Rakesh Kumar. A Comprehensive Analysis of Classification Meth-

ods for Big Data Stream. In Harish Sharma, Kannan Govindan, Ramesh C. Poonia,

Sandeep Kumar, and Wael M. El-Medany, editors, Advances in Computing and Intel-

ligent Systems, pages 213–222, Singapore, 2020. Springer Singapore.

[59] Arun Kejariwal, Sanjeev Kulkarni, and Karthik Ramasamy. Real time analytics: :

algorithms and systems. Proceedings of the VLDB Endowment, 8(12):2040–2041, aug

2015.

93

[60] Martin Khannouz and Tristan Glatard. A Benchmark of Data Stream Classification

for Human Activity Recognition on Connected Objects. Sensors, 20(22):6486, 2020.

[61] Martin Khannouz and Tristan Glatard. Dynamic Ensemble Size Adjustment for Mem-

ory Constrained Mondrian Forest. In 2022 IEEE International Conference on Big Data

(Big Data), pages 3358–3363, Osaka, Japan, dec 2022. IEEE Computer Society.

[62] Martin Khannouz and Tristan Glatard. Mondrian Forest for Data Stream Classifica-

tion Under Memory Constraints, 2022.

[63] Martin Khannouz, Bo Li, and Tristan Glatard. OrpailleCC: a Library for Data Stream

Analysis on Embedded Systems. Journal of Open Source Software, 4(39):1485, 2019.

[64] Taghi M. Khoshgoftaar, Moiz Golawala, and Jason Van Hulse. An Empirical Study

of Learning from Imbalanced Data Using Random Forest. In 19th IEEE International

Conference on Tools with Artificial Intelligence(ICTAI 2007). IEEE, oct 2007.

[65] J. Kittler. Combining classifiers: A theoretical framework. Pattern Analysis and

Applications, 1(1):18–27, mar 1998.

[66] Ron Kohavi and Clayton Kunz. Option decision trees with majority votes. In ICML,

volume 97, pages 161–169, 1997.

[67] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A

review of classification techniques. Emerging artificial intelligence applications in com-

puter engineering, 160:3–24, 2007.

[68] Helena Kotthaus, Ingo Korb, Michel Lang, Bernd Bischl, Jörg Rahnenführer, and

Peter Marwedel. Runtime and memory consumption analyses for machine learning R

programs. Journal of Statistical Computation and Simulation, 85(1):14–29, jan 2015.

[69] Vrushali Y Kulkarni and Pradeep K Sinha. Pruning of random forest classifiers: A

survey and future directions. jul 2012.

[70] Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-Efficient Machine Learn-

ing in 2 KB RAM for the Internet of Things. In Proceedings of the 34th International

Conference on Machine Learning - Volume 70, ICML’17, page 1935–1944, Sydney,

NSW, Australia, August 2017. JMLR.org.

94

[71] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian Forests:

Efficient Online Random Forests. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems 27, volume 4, pages 3140–3148. Curran Associates, Inc., Montreal, Canada,

December 2014.

[72] David D. Lewis. Naive (Bayes) at Forty: The Independence Assumption in Informa-

tion Retrieval. In Proceedings of the 10th European Conference on Machine Learning,

ECML ’98, pages 4–15, Berlin, Heidelberg, 1998. Springer-Verlag.

[73] Bo Li, Omid Sarbishei, Hosein Nourani, and Tristan Glatard. A multi-dimensional ex-

tension of the Lightweight Temporal Compression method. In 2018 IEEE International

Conference on Big Data, pages 2918–2923. IEEE, dec 2018.

[74] Bo Li, Omid Sarbishei, Hosein Nourani, and Tristan Glatard. A multi-dimensional ex-

tension of the Lightweight Temporal Compression method. In 2018 IEEE International

Conference on Big Data (Big Data). IEEE, dec 2018.

[75] Jesus L. Lobo, Javier Del Ser, and Eneko Osaba. Lightweight Alternatives for Hyper-

parameter Tuning in Drifting Data Streams. In 2021 International Conference on Data

Mining Workshops (ICDMW), pages 304–311, 2021.

[76] Wei-Yin Loh and Yu-Shan Shih. Split selection methods for classification trees. Sta-

tistica sinica, pages 815–840, 1997.

[77] Sam Lucero et al. IoT platforms: enabling the Internet of Things. White paper, 2016.

[78] Jacob Montiel, Albert Bifet, Viktor Losing, Jesse Read, and Talel Abdessalem. Learn-

ing Fast and Slow: A Unified Batch/Stream Framework. In 2018 IEEE International

Conference on Big Data (Big Data), Seattle, WA, USA, December 2018. Institute of

Electrical and Electronics Engineers.

[79] Dan Morris, T. Scott Saponas, Andrew Guillory, and Ilya Kelner. Recofit: Using a

Wearable Sensor to Find, Recognize, and Count Repetitive Exercises. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,

page 3225–3234, Toronto, Ontario, Canada, April 2014. Association for Computing

Machinery.

95

[80] Dan Morris, T. Scott Saponas, Andrew Guillory, and Ilya Kelner. RecoFit: Using a

Wearable Sensor to Find, Recognize, and Count Repetitive Exercises, 2014.

[81] M. G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh Anan-

thanarayanan, and Faraz Hussain. Machine Learning at the Network Edge: A Survey.

ACM Comput. Surv., 54(8), October 2021.

[82] Mohamed A. Nassar, Len Luxford, Peter Cole, Giles Oatley, and Polychronis Kout-

sakis. Adaptive Low-Power Wireless Sensor Network Architecture for Smart Street

Furniture-based Crowd and Environmental Measurements. In 2019 IEEE 20th In-

ternational Symposium on ”A World of Wireless, Mobile and Multimedia Networks”

(WoWMoM), pages 1–9, 2019.

[83] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A Survey on Data Stream

Clustering and Classification. Knowledge and information systems, 45:535–569, 2015.

[84] N.C. Oza. Online Bagging and Boosting.

[85] Lena Pietruczuk, Leszek Rutkowski, Maciej Jaworski, and Piotr Duda. A Method for

Automatic Adjustment of Ensemble Size in Stream Data Mining. In 2016 International

Joint Conference on Neural Networks (IJCNN), pages 9–15, 2016.

[86] Bakshi Prasad and Sonali Agarwal. Stream Data Mining: Platforms, Algorithms, Per-

formance Evaluators and Research Trends. International Journal of Database Theory

and Application, 9:201–218, 09 2016.

[87] S Priya and R Annie Uthra. Comprehensive analysis for class imbalance data with

concept drift using ensemble based classification. Journal of Ambient Intelligence and

Humanized Computing, apr 2020.

[88] Junfei Qiu, Qihui Wu, Guoru Ding, Yuhua Xu, and Shuo Feng. A survey of machine

learning for big data processing. EURASIP Journal on Advances in Signal Processing,

2016:1–16, 2016.

[89] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[90] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge

University Press, USA, 2011.

96

[91] Partha Pratim Ray. A Review on TinyML: State-of-the-Art and Prospects. Journal of

King Saud University - Computer and Information Sciences, 34(4):1595–1623, April

2022.

[92] Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Maciej Jaworski. Decision trees

for mining data streams based on the mcdiarmid’s bound. IEEE Transactions On

Knowledge And Data Engineering, 2013.

[93] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof.

On-line Random Forests. In 2009 IEEE 12th International Conference on Computer

Vision Workshops, ICCV Workshops. IEEE, sep 2009.

[94] Rubn San-Segundo, Henrik Blunck, Jos Moreno-Pimentel, Allan Stisen, and Manuel

Gil-Martn. Robust Human Activity Recognition Using Smartwatches and Smart-

phones. Engineering Applications of Artificial Intelligence, 72(C):190–202, June 2018.

[95] O. Sarbishei. A platform and methodology enabling real-time motion pattern recog-

nition on low-power smart devices. In 2019 IEEE 5th World Forum on Internet of

Things (WF-IoT), pages 269–272. IEEE, April 2019.

[96] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow, and D. Estrin.

Lightweight temporal compression of microclimate datasets [wireless sensor networks].

In 29th Annual IEEE International Conference on Local Computer Networks. IEEE

(Comput. Soc.), 2004.

[97] Mohamed Seliem, Khalid Elgazzar, and Kasem Khalil. Towards Privacy Preserving IoT

Environments: A Survey. Wireless Communications and Mobile Computing, 2018:1–

15, 2018.

[98] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical

Journal, 27(3):379–423, jul 1948.

[99] Amir Sinaeepourfard, Jordi Garcia, Xavier Masip-Bruin, and Eva Marin-Tordera. A

Novel Architecture for Efficient Fog to Cloud Data Management in Smart Cities.

In 2017 IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), pages 2622–2623, 2017.

[100] R. C. Sprinthall. Basic Statistical Analysis (9th ed.). Pearson Education, 2011.

[101] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

97

[102] Yu Sugawara, Satoshi Oyama, and Masahito Kurihara. Adaptive Rotation Forests:

Decision Tree Ensembles for Sequential Learning. In 2021 IEEE International Confer-

ence on Systems, Man, and Cybernetics (SMC), pages 613–618, Melbourne, Australia,

October 2021. Institute of Electrical and Electronics Engineers.

[103] Mark Tennant, Frederic Stahl, Omer Rana, and João Bártolo Gomes. Scalable real-

time classification of data streams with concept drift. Future Generation Computer

Systems, 75:187–199, oct 2017.

[104] Alexey Tsymbal, Mykola Pechenizkiy, and Pádraig Cunningham. Dynamic Integration

with Random Forests. In Lecture Notes in Computer Science, pages 801–808. Springer

Berlin Heidelberg, 2006.

[105] Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy Milidiú, and

Hugo Fuks. Wearable Computing: Accelerometers’ Data Classification of Body Pos-

tures and Movements. In Advances in Artificial Intelligence - SBIA 2012, pages 52–61,

Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[106] Tim van Kasteren, Gwenn Englebienne, and B. Krose. Human Activity Recognition

from Wireless Sensor Network Data: Benchmark and Software. Activity recognition in

pervasive intelligent environments, 4:165–186, 05 2011.

[107] Marc Vicuna, Martin Khannouz, Gregory Kiar, Yohan Chatelain, and Tristan Glatard.

Reducing Numerical Precision Preserves Classification Accuracy in Mondrian Forests.

In 2021 IEEE International Conference on Big Data (Big Data), pages 2785–2790,

2021.

[108] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-

matical Software, 11(1):37–57, mar 1985.

[109] Sebastian Wagner, Max Zimmermann, Eirini Ntoutsi, and Myra Spiliopoulou. Ageing-

Based Multinomial Naive Bayes Classifiers Over Opinionated Data Streams. In Annal-

isa Appice, Pedro Pereira Rodrigues, Vı́tor Santos Costa, Carlos Soares, João Gama,

and Aĺıpio Jorge, editors, Machine Learning and Knowledge Discovery in Databases,

pages 401–416, Cham, 2015. Springer International Publishing.

[110] Kapil K Wankhade, Snehlata S Dongre, and Kalpana C Jondhale. Data Stream Clas-

sification: A Review. Iran Journal of Computer Science, 3:239–260, 2020.

98

[111] Wikipedia contributors. Z-test — Wikipedia, the free encyclopedia, 2004. [Online;

accessed 30-September-2022].

99

	List of Figures
	List of Tables
	Glossary
	Introduction
	Data Stream Processing
	Classification and Data Stream Classification
	Existing Data Stream Classification Models
	Naive Bayes
	k-nearest neighbors
	Decision Tree
	Ensemble classifier
	Random Forest
	Online and Data Stream Forests
	Mondrian forest

	OrpailleCC: a Library for Data Stream Analysis on Embedded Systems
	A Benchmark of Data Stream Classification for Human Activity Recognition on Connected Objects
	Introduction
	Related Work
	Comparisons of data stream classifiers
	Offline and data stream classifiers for Human Activity Recognition

	Materials and Methods
	Datasets
	Algorithms and Implementation
	Evaluation
	Results Reproducibility

	Results
	Overall classification performance
	Hoeffding Tree and Naïve Bayes
	Mondrian forest
	MCNN
	Feedforward Neural Network
	Power
	Runtime
	Memory
	Hyperparameter tuning

	Conclusion

	Mondrian Forest for Data Stream Classification Under Memory Constraints
	Introduction
	Materials and Methods
	Mondrian Forest
	Mondrian Forest for Data Stream Classification
	Out-of-memory Strategies in the Mondrian Tree
	Concept Drift Adaptation for Mondrian Forest under Memory Constraint
	Time Complexity
	Node Boxes Analysis
	Datasets
	Evaluation Metric

	Results
	Baselines
	Out-of-memory strategies
	Concept Drift Adaptation for Mondrian Forest under Memory Constraint
	Impact of the Memory Limit

	Related Work
	Conclusion

	Dynamic Ensemble Size Adjustment for Memory Constrained Mondrian Forest
	Introduction
	Materials and Methods
	Mondrian Forest
	Mondrian Forest for Data Stream Classification
	Dynamic Tree Count Optimization
	Comparison Test
	Pre- and Postquential Statistics Computation
	Tree Addition Method
	Datasets
	Evaluation Metric

	Results
	Optimal Forest Size
	Tree Addition
	Tree Removal
	Comparison to Fixed Ensemble Size

	Related Work
	Conclusion

	Conclusion
	Benchmark Contributions
	Mondrian Forest Contributions
	Other Contributions
	Future Work

