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Abstract

Turbulence Modelling with Deep Neural Networks

Jie Bao

High-Fidelity computational fluid dynamics simulations, such as large eddy simulation and

direct numerical simulation (DNS), are computationally expensive. For this reason, the

Reynolds-averaged Navier-Stokes (RANS) equations are more popular for industrial

applications. They are obtained by deriving time-averaged properties, removing the need to

resolve small-scale unsteady turbulent fluctuations. However, RANS requires a closure model to

relate unknown Reynolds stresses to the time-averaged velocities. Traditional turbulence closure

models are prone to inaccuracies, particularly for separated and transitional flows, due to the

chaotic and anisotropic nature of turbulence. In this study, a data-driven approach is used to

model turbulence leveraging high-fidelity data from DNS. A canonical turbulent channel case is

considered at three different Reynolds numbers and compared with reference results. A deep

neural network is trained on these three datasets, and then used to predict two intermediate

Reynolds numbers. Comparison with parallel DNS simulations demonstrates agreement from

70% to 98% R2 score for predictions of turbulent kinetic energy production and dissipation,

depending on the chosen training and testing datasets. A second study is then performed on a

NACA 0012 airfoil at a Reynolds number of 50,000 at angles of attack ranging from 4 to 12

degrees. A deep neural network was trained on a limited set of these angles of attack, and used

to predict turbulent kinetic energy production and dissipation. Comparison with the testing

dataset showed good agreement at lower angles of attack, with limited agreement at high angles

of attack beyond stall. Based on these results, we can conclude that deep neural networks can

be trained to accurately predict turbulent kinetic energy production and dissipation for

wall-bounded turbulent flows, but there are some limitations for massively separated flows.

Future work will focus on directly incorporating these results in a RANS turbulence modelling

framework.
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Chapter 1

Introduction

1.1 Green Aviation

The demand for global air transportation has risen to 4.5 billion passengers in 2019 [ICAO_2019].

Despite a reduction in passengers during the COVID 19 pandemic, the number of air passengers

is expected to grow to 5 billion by 2025 [IATA_2024]. Using conventional aircraft designs, this

will lead to a significant increase in greenhouse gas emissions, and detrimental environment

impacts. Hence, developing efficient aircraft technologies will play a critical role in the growth of

aviation going forward. The International Air Transport Association has published a technology

roadmap for environmental improvement of the aerospace industry. These innovations could

significantly reduce the fuel burn and environmental footprint of next generation aircraft.

For instance, a hybrid-electric aircraft using a blended wing body configuration can reduce CO2

emission by up to 40% compared to the existing fleet of aircraft in the same category [CO2].

To close these technological gaps, advanced aerodynamic tools, capable of accurately capturing

the complexity of turbulent flows are required for advanced aircraft designs. Increasingly, this

relies on expensive simulation campaigns to simulate components and complete aircraft in a

wide range of operating configurations. In order to minimize the cost of performing a large

number of simulations, a range of approximate solution methods have been developed such as

the low-order steady state Reynolds-averaged Navier-Stokes (RANS). These allow data to be

approximated via a set of simplified time averaged equations using turbulence models. These

turbulence models can be considered as physics-based non-linear interpolars from the benchmark

problems they are tuned with.

Outside of the aerospace industry, Machine Learning (ML) has been widely used for similar
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data interpolation applications. The objective of this thesis is to explore the utility of ML as

an interpolating model for turbulent fields in benchmark turbulent flow problems, including a

turbulent channel and turbulent NACA 0012 airfoil. It is expected that this could provide a

new framework for reduced order modelling of complex turbulent flows, and that it could be

extended for future aircraft designs.

1.2 High-order Methods

For industrial aerospace application, Computational Fluid Dynamics (CFD) is used as a design

tool to complement the wind tunnel results and analytical methods. With increasing compute

performance, RANS solvers are able to simulate more complex flows. However, the inherent

inability to accurately convect and preserve the strength of vortical flow fields will limit their

applications [Ekaterinaris]. The adoption of high-order schemes in combination with more

accurate solution approaches, such as Direct Numerical Simulation (DNS) and Large Eddy

Simulation (LES), would allow for coarser meshes with fewer Degrees Of Freedom (DOF) to

be used for scale resolving simulations. Resulting in more cost-effective computation time for

the same, or better, accuracy. In chapter 2, the Flux Reconstruction framework which uses a

unstructured high-order element-wise Finite-Element Simulation (FEM) numerical method is

presented in greater detail.

1.3 Artificial Intelligence

Artificial Intelligence (AI) can be described as the study of "intelligent agents"; such as a

device making a decision that is obtained from reasoning after an observation made on its

surrounding [Norvig]. Living in the information age, we benefit from many automated daily

tasks with the help of so-called "narrow AI". These systems are on the same level or even

surpassing human performance in a specific set of activities. The latter can be as simple as a

game of chess [Kasparov]. However, modern AI still lacks the cognitive capabilities of humans,

meaning it is incapable of generalizing to other similar types of tasks. The quintessential goal in

the multidisciplinary field of AI is to develop a "strong AI" with the same general intelligence

found in human beings [AGI]. However, the possibility to create strong AI is a controversial

subject, and there are arguments on whether such a system is possible [Dreyfus, Ragnar].

The primary interest for this thesis concerns the ML subfield of AI. ML algorithms exists in

2



many forms, but all learn from the data they are given. In other words, a ML model will only

be as good as the set of features that it is fed during training. Deep learning is a sub-branch

of ML where the computer is able to express complex patterns using simpler representations

from the visible layer [Goodfellow]. The first deep learning attempt started in 1943 with the

development of connected neurons treated as logical gates. The result was the Artificial Neural

Network (ANN), which was inspired by the nervous system of the human body, hence the name

ANN [McCulloch]. It is also referred to as a Neural Network (NN) for short. A resurgence of

ML in the 21st century was possible with breakthrough strategies such as greedy layer-wise

pretraining [Hinton] and with increasingly more powerful computational resources allowing for

more computationally expensive experiments. This new wave of popularity not only brought

focus on new unsupervised and reinforcement learning techniques, but also to supervised learning

algorithms that have existed since the 1980s.

Supervised Learning

Supervised learning is where the computer is provided with a set of training data and corresponding

labels. If the label is discrete, such as to accurately identify the facial identity of a person [Taigman],

then the learning process is called classification. Otherwise, the labels are continuous, such as

the prediction of scaled sound pressure level generated by an airfoil [decibels], then the task is a

regression. Surprisingly, the same learning algorithms from the 1980s are still used today for

complex tasks [Goodfellow]. What has changed is the increased dataset size allowing them to

train using more comprehensive and diverse data. As a general rule of thumb, for supervised

learning it is recommended to have at least 5,000 labeled examples per category. To exceed human

performance the training dataset needs to contain at least 10 million examples [Goodfellow].

Semi-Supervised Learning

Learning algorithms training on a dataset missing a portion of the target values is referred to as

semi-supervised learning. One such field is Deep Reinforcement Learning (DRL) where an agent

tries to maximize the reward it receives from a dynamic environment. The action taken by the

agent in the system will inform the algorithm if a positive or a negative feedback (bounded real

number) should be awarded. In turn, the action taken by the agent will change the environment

(state) for the next time step. This also means DRL cannot be trained on a typical static dataset.

For each action, a different state is generated by the interactive environment. However, what

3



works well in DRL networks is the sparse award system, meaning it does not require a feedback

from each action of the agent. [Sutton1998]. It is proven that learning a long-term strategy or a

set of moves works quite well for DRL algorithms. That is why most of the progress in DRL

research is applied with games [ATARI].

Machine
Learning

Supervised
Learning

Semi-Supervised
Learning

Unsupervised
Learning

Neural Networks

Support Vector
Machines

Decision Trees

Logistic Regression

Naive-Bayes

Generative Models

Reinforcement
Learning

K-Means

Autoencoders

Mixture Models

Hierarchical
Clustering

Figure 1.1. Summary of machine learning techniques

Unsupervised Learning

Unsupervised learning, refers to the absence of labeled targets in the given dataset. An

unsupervised learning algorithm has the task to extract patterns, which can be done by clustering

the dataset into different groups. Some common techniques are the k-means, mixture models,

and hierarchical clustering [top10].

1.3.1 Machine Learning in Aerospace

Aircraft design is an inherent Multi-Disciplinary Optimization (MDO) process. To deliver an

efficient modern aircraft that satisfies the requirements from several different disciplines. These

disciplines include aerodynamics, structure, controls, to business cost analysis, and environmental

impacts, amongst many others [Raymer, MDO-Structure]. This MDO framework lays the perfect

groundwork for AI/ML application.

Machine learning has a wide range of capabilities limited by the volume of available data.

However, aerospace applications typically produce and store large amounts of data. For instance,

4



an aircraft will generate thousands of performance and operations datasets throughout its life

cycle. That data is generated from the design phase, the production, and all the way to the

operational and maintenance phases. Aero Montreal published a report in 2019 [AERO_MTL]

stating that Montreal is both one of the largest aerospace hubs and largest AI hubs in the world.

Therefore, the aerospace industry in Montreal is poised to benefit from the collaboration those

two sectors through cooperation. For instance, the strategic agreement between Bombardier,

Scale AI and the Institute for Data Valorization (IVADO) to adopt preventive monitoring

techniques using analytics models [IVADO, SCALEAI-BBD].

Example Applications in Industry

In the final stages of aircraft assembly, large gaps between high tolerance components is

common. A time-consuming shim is custom made to satisfy the engineering nominal specifications.

Researchers at the University of Washington have made progress using machine learning and

sparse sensing for predicting shim gaps in aircraft assembly. They use robust principal component

analysis to extract patterns in the gap measurements [RPCA]. Training on historical datasets

provided by Boeing Aerospace, the accuracy of this model ranged from 96-99%. This proof of

concept can improve assembly line efficiency and, over the years save billions of dollars [shimming,

sensing]. Unscheduled maintenance on arrival is not unusual.

Unfortunately, disturbing an optimized flight schedule can have costly consequences. Therefore,

research has focused on training neural networks to detect anomalies in data from flight sensors.

Long Short Term Memory (LSTM) networks are particularly appealing due to their quality in

learning from sequences and have been found to be useful in overcoming limitations from the past.

Used as a means to identify events that reduce safety margins [LSTM1], and engine remaining

useful life [LSTM2]. Convolution neural networks are also used in the fatigue crack diagnosis

for aircraft structures [CNN-Fatigue]. Other research in the field of aerospace fluid mechanics

involves reinforcement learning to control wake separation. Altering the aerodynamic flow field

around a body by injecting energy or momentum is known as active flow control. Researchers

have been able to train an agent through deep reinforcement learning to promote drag reduction

by using small jets on the top and bottom of a 2D cylinder [DLR-Garnier]. This approach can

also be an alternative to grid search for shape optimization problems [DLR-Rabault].

It is important to mention that machine learning will not replace theoretical and experimental

methods. Rather it tries to leverage optimization directed on data to enhance the established
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techniques and allow new discoveries [paradigm]. To improve the desired outcome, we may also

embed physical learning process within the neural network’s architecture.

1.3.2 Physics-based Neural Networks

Recent advances in Graphical Processing Unit (GPU) has equipped researchers with the capability

to tackle even more computationally challenging problems [VERMEIRE]. Along with the

investment on open-source AI software by many industry leaders [Tensorflow]. Now more than

ever, non-experts have the opportunity to build neural networks for aerospace applications.

Using increasingly better data collection and advances in data quality. A growing field known

as "Data Science" capitalizes on the vast amount of data to make predictions with the goal to

augment scientific research capabilities [50years].

However, even with so much data we cannot blindly apply a machine learning technique

and expect accurate results. Instead, we can use existing model structures and integrate prior

knowledge from a trained machine learning model. This is a data-driven approach and is

currently applied in turbulence modeling research in the field of CFD. For instance, there are

efforts for improving the LES by developing a neural networks to model the SubGrid-Scale (SGS)

stress tensor (6 NN for all components). Training data are provided by DNS of a turbulent

channel flow. Then a feed-forward neural network is used to establish the functional relationship

between the grid-scale and the SGS. The result shows the NN models were not far from the

DNS but only when the filter size was small: ∆+
≲ 20 [Hattori].

A more tractable turbulence modeling technique but less accurate is the RANS approach.

Machine learning techniques have previously been used to model the RANS closure coefficients.

From the seminal work of Ling et al. [preLing], a random forest regression model is used to

predict the coefficients of the Reynolds anisotropy tensor expansion [pope_1975]. This technique

presented poor result due to the difficulty to ensure Galilean invariance. Later Ling et al. used

a NN architecture also known as a Tensor Basis Neural Network (TBNN) [Ling, Ling2, Ling3].

The TBNN differs from other models as it has embedded physical constraints thus ensuring

Galilean and rotational invariance. Researchers from Texas A&M have advanced the TBNN

introducing a closed loop framework [Texas]. The Constitutive Closure Coefficients (CCC) are

extracted from the neural network to modify the Transport Closure Coefficients (TCC). The

process stops once the CCC has converged. The approach proved to be better than the predictive

accuracy of open loop framework.
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CFD for aerospace application often involves the study of wing design at a high Reynolds

number. However, the strong adverse pressure induces an anisotropy around the airfoil. The

Spalart-Allmaras model purpose is to overcome the latter challenge for wall-bounded flows. The

one equation model works by solving a viscosity-like variable ν̃ and can be modified to account

for compressible flows. Zhu et al. [SAZhu] used the Spalart-Allmaras data as training to build an

eddy viscosity mapping function. The NN accuracy was validated and the approach proved to be

more efficient than the original Spalart-Allmaras model due the absence of complex calculations.

Novati et al. used DRL to benefit the area of turbulence modeling. The authors of multi-

agent reinforcement learning (MARL) demonstrated the potential of DRL on LES [RLLES].

The agents are dispersed in the simulation closure model and each agent performs a localized

action based on information about the state of the local flow field. To estimate the unresolved

subgrid-scale physics, the control policy enacted by the cooperating agents is to detect critical

spatio-temporal patterns in the flow field. The encouraging result compares positively with

state-of-the-art SGS modeling approaches. They also avoid the necessity to perform DNS during

training through experiment measures. In turn used to train SGS models for LES. Their work

focused solely on homogeneous and isotropic turbulence. Nevertheless, they opened a new

research direction to consider DRL as a training algorithm for SGS closures.

An alternate approach to use TBNN as a means to obtain eddy viscosity still requires

numerous iterations of data fitting for the CCC terms. The goal would be to bypass the need

for a classical two equation model. Using the Turbulent Kinetic Energy (TKE), production and

dissipation values we could infer the eddy viscosity directly. In this thesis, we take a first step in

this direction by training a NN to infer the production and dissipation values.

1.4 Thesis Objectives

The goal of this thesis is to use open-source machine learning software to bypass the need for a

RANS turbulence model. Training data will be generated using DNS with PyFR [WITHERDEN20143028].

Two three-dimensional simulation cases are considered; The turbulent channel case from Kim,

Moin, and Moser (K.M.M) [KMM] and the turbulent flow around the NACA-0012 airfoil from

Rodriguez et al. [NACA0012]. Favre-averaging is applied to consider compressibility effects in

the flow. A deep neural network will be built to recognize the production and dissipation terms

in the turbulent kinetic transport equation.
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1.5 Thesis Outline

In Chapter 1, we introduced the nature of the work in this thesis and the overall state of artificial

intelligence in the aerospace sector. Chapter 2 explains the fundamental theory behind most of

the research, including fluid mechanics, high-order computational fluids and turbulence modeling

techniques. The deep feedforward neural network theory is explained with the help of an example

dataset in Chapter 3. Along with the general framework on how the ML is integrated into the

CFD workflow. Results and discussion of the findings are located in Chapter 4. Finally, the

conclusions and recommendations for future work are presented in Chapter 5. An excerpt of

the end-to-end machine learning pipeline is located in the Appendix and also additional CFD

validation figures.
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Chapter 2

Theoretical Concepts

2.1 Governing Equations

The evolution of the physical properties of a fluid are described by a set of conservations laws.

In this section, a brief description of a compressible fluid is presented using the Navier-Stokes

equations. The detailed conservation law derivation can be found in [davidson2004turbulence].

Conservation of Mass

Figure 2.1. Schematic representation of Control Volume [VermeireBook]

Consider a volume of fluid, denoted as Ω, travelling across a medium of surface S. The mass

passing through the region cannot disappear nor be created, and the volume flux with the surface

is described by f⃗ = V⃗ · n̂. Using the conserved variable density, ρ. We can apply the general
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conservation of mass on the Navier-Stokes equation,

∂

∂t

∫
Ω

ρ dx⃗ +
∮

S
ρV⃗ · n̂ dS = 0. (2.1)

Applying Gauss’s theorem, we obtain the divergence form of the convervation of mass

∂ρ

∂t
+∇ · (ρV⃗ ) = 0. (2.2)

Conservation of Momentum

According to Newton’s second law, the time rate of change of the dot product between a mass

and its velocity must be equal to all the forces acting on it.

∂ρ

∂t

∫
Ω

ρV⃗ dΩ +
∮

S

(
ρV⃗ (V⃗ n̂− n̂σ)

)
dS =

∫
Ω

F⃗ dΩ, (2.3)

where the left hand side of Equation 2.3 is the explicit expression of the convective derivative.

The stress tensor, σ, includes pressure and shear stresses on the surface, S. The right hand

side contains the body forces. An important observation from Equation 2.3 is the non-linear

quadratic term for V⃗ . This non-linear convection, combined with entropy generation via diffusion,

is responsible for the complex turbulent flows.

The divergence form is written using Gauss’s theorem as

ρV⃗

∂t
+∇ · (ρV⃗ · V⃗ − σ) = F⃗ . (2.4)

Conservation of Energy

In a closed system, the change in energy is equal to the rate of heat addition less the rate of

work done by the system on its surroundings. The specific energy, E, is taken to have two parts,

the kinetic and thermal energy.

E = e + V⃗ · V⃗
2 (2.5)

e = cvT , (2.6)

where e is the internal energy, cv is the specific heat coefficient at constant volume, T is the

temprature, and where V⃗ · V⃗ /2 corresponds to the specific kinetic energy. By considering external
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heat sources, q⃗, and work from viscous shear stresses and pressure, the conservation law for

energy is
∂

∂t

∫
Ω

ρE dΩ +
∮

S
·
[
ρEV⃗ − ρσV⃗ + ρq⃗

]
· n̂ dS =

∫
Ω

F⃗ · V⃗ dΩ, (2.7)

and the divergence form is

∂ρE

∂t
+∇ · (ρEV⃗ − ρσV⃗ + ρq⃗) = F⃗ · V⃗ . (2.8)

2.2 The Flux Reconstruction Method

One-Dimensional Spatial Discretization

In 2007, Huynh introduced the Flux Reconstructions (FR) approach for solving the Navier-Stokes

system of equations. The high-order method has demonstrated to have improved accuracy

at lower computational cost than current industry-standard second-order schemes [Huynh].

By varying a single correction factor, the FR method can recover existing schemes such as

the Discontinuous Galerkin Method (DGM). The FR approach will be explained using linear

advection in a one dimensional domain. A general one-dimensional conversation law in divergence

form is

∂u

∂t
+ ∂F

∂x
= 0, (2.9)

where a conserved scalar u = u(x, t), and the flux is F = F (u).

xL xR

ΩeΩe−1 Ωe+1

Figure 2.2. One-dimensional domain discretization

The computational domain, Ω, is split into Ne non-overlapping elements defined by x ∈

[xL, xR] as shown in Figure 2.2. On each element, the solution and flux are represented by a

polynomial of degree N = Np − 1, where Np is the number of nodal points. To handle elements

of different sizes, we can use a standardized mapping transformation between the physical, Ωe,

and a reference space, ξ ∈ [−1, 1],
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x︸︷︷︸
physical coordinate

←→ ξ︸︷︷︸
reference coordinate

(2.10)

ξ(x) = 2
he

(
x− xL + xR

2

)
, (2.11)

where he refers to the physical element size. Note the Jacobian of this mapping is

∂ξ

∂x
= 2

he
→ ∂x

∂ξ
= he

2 . (2.12)

The invertible transformation can be manipulated to output the spatial derivative from the

chain rule. For instance the flux derivative

∂F

∂x
= ∂F

∂ξ

∂ξ

∂x
. (2.13)

The solution is represented by nodal basis points and their corresponding nodal basis function.

The FR is a type of finite-element method that allows discontinuous solutions between neighbouring

elements. The Lagrange polynomials are used as nodal basis functions. Therefore, in every

element, Ωe, we have a local solution ue(x, t),

uh
e (ξ, t) =

Np∑
k=1

ue,k(t)︸    ︷︷    ︸
nodal coeffi.

ϕk(ξ)︸   ︷︷   ︸
nodal basis fct.

, (2.14)

fh
e (ξ, t) =

Np∑
k=1

fe,k(t)ϕk(ξ), (2.15)

where uh
e (x, t) and fh

e (x, t) are parts of a global piecewise continuous approximation of the

solution on a single element. We then assume the true global solution u(x, t) is approximated by

the direct sum of all of the uh
e (x, t)

u(x, t) ≈ uh
e (x, t) =

Ne⊕
e=1

uh
e (x, t), (2.16)

Additionally, ϕk is the kth nodal basis function in the reference space. The latter is governed

by the Lagrange polynomials. In the case of one-dimension

ϕk(ξ) =
K∏

m=1, m,k

ξ − ξm

ξk − ξm
(2.17)
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These nodal basis function take the value of 1 at their respective solution point and zero at the

other solution points.It has been observed that an equidistant distribution of the basis points

could produce undesired oscillations for non-linear flux functions. This behaviour could be

suppressed by clustering the points near both end of the element. As shown in the next page,

the Gauss-Legendre points are preferred in this case.
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0

0.5

1

ξ

ϕ
(ξ

)

Polynomial P0

−1 −0.5 0 0.5 1

0

0.5

1

ξ

ϕ
(ξ

)

Polynomial P1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5
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ϕ
(ξ

)

Polynomial P2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

ξ

ϕ
(ξ

)

Polynomial P3

Figure 2.3. Nodal basis functions for 1D elements using P0 to P3
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0
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1
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ξ

ϕ
(ξ
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Figure 2.4. Nodal basis functions for 1D elements using P4 and P5

An alternate representation using orthonormal modal basis functions is

uh
e (ξ, t) =

Np∑
k=1

ũe,k(t)l̃k(ξ), (2.18)

Where ũe,k are the k-th modal expansion coefficient. These are the well-known Legendre

polynomials, l̃, as shown in figure 2.5.

The two forms are used for polynomial construction and can be translated from one to

another using the Vandermonde matrix, V

u = V ũ. (2.19)

Where Vi,j = xj−1
i . The approximate solution should satisfy

∂uh
k

∂t
+ ∂fh

k

∂ξ
= 0. (2.20)

However, we know the latter cannot be equal to the exact solution, resulting in a residual

R(ξ, t) , 0.
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Figure 2.5. Legendre polynomials

2.3 Turbulence Modelling

The lack of a general solution to the Navier-Stokes equations means that engineers have to build

mathematical tools in order to predict the evolution of turbulence. RANS, LES, and DNS are

the most common approaches, and will be discussed below.

2.3.1 Direct Numerical Simulation

The DNS is the most computationally expensive approach. It consists of solving the Navier-Stokes

equations, resolving all the scales of motion down to the dissipation scales. The relationship

between the largest eddy and the smallest scale eddies is obtained from the Kolmogorov scale

[davidson2004turbulence]:

η ∼ lRe− 3
4 =

(
ν3

ϵ

) 1
4

, (2.21)

where ν is the kinematic viscosity, η is the length scale of the smallest scale vortices, Re is the

Reynolds Number, l is the scale of the largest eddy, and ϵ is the dissipation rate of the energy.

Notice the exponential growth in the difference between the smallest and largest length scale

with an increasing Reynolds Number. Indeed, the grid spacing, δx must be proportional to η to
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capture the smallest eddies:

∆x ∼ η ∼ lRe− 3
4 . (2.22)

For a three-dimensional simulation, the required number of degrees of freedom is estimated at:

NDOF =
(

L

∆x

3
)
≈
(

L

η

)
Re

9
4 (2.23)

Where L is the edge length of a cubic domain of equal sides, and ∆x is the characteristic

grid-spacing. The resources required based on this Reynolds scaling is the reason DNS has not

yet been widely adopted for industrial applications.

2.3.2 Large-Eddy Simulation

During the lifetime of an eddy, it will breakup through a progression of sizes. Due viscosity,

the eddy is cascaded down into smaller sizes, until its kinetic energy is dissipated into heat

[davidson2004turbulence]. The smallest eddies are often isotropic and are simpler to model for

this reason. A visual explanation is given in Figure 2.6.

Implicit Large-Eddy Simulation

A SGS modelling approach called Implicit Large-Eddy Simulation (ILES) is adopted in this

research. In ILES, we take advantage of the numerical error of FR to mimic the physical

dissipation of the flow. In the case of FR, numerical dissipation concentrated at high wave

numbers is effective at mimicing the dissipation of unresolved scales. Research has proven the

validity of this approach in many validation studies when compared to DNS and experimental

results [VERMEIRE].

LES resolves the large scale turbulence and uses a SGS to approximate the influence of small

unresolved eddies on the large resolved eddies.
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Figure 2.6. Schematic representation of energy cascade [FrischBook]

2.3.3 Reynolds-Averaged Navier-Stokes

The RANS approach has been widely adopted in general CFD for industrial applications due to its

reasonable computational cost. By time-averaging the Navier-Stokes equations for incompressible

fluids, we remove the necessity to resolve the higher-frequency range in the flow. This method

was first introduced in a paper by Osborne Reynolds [Osborne]. Reynolds decomposition consists

of splitting the velocity into two parts

u(x, t) = u(x) + u(x, t)′, (2.24)

where ū is the ensemble-averaged velocity and u′ is the fluctuating component. The RANS

equation for incompressible flow is is as follow [Osborne]

ρ
∂ūi

∂t
+ ρ

∂

∂xj
(ūiūj + u′

iu
′
j) = − ∂P

∂xi
+ ∂

∂xj
(2µSij), (2.25)

where Sij is the mean strain-rate tensor

Sij = 1
2

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
. (2.26)
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However, from the simplified time-averaged Navier-Stokes we have generated an unknown

turbulent correlation, ρu′
iu

′
j . for which there is no general solution. This requires the specification

of an appropriate turbulence model for these so-called Reynolds stresses. Unlike LES, this

turbulence mode must approximate the behaviour of all of the turbulent length scales, including

both the small isotropic and large anisotropic ones. While several turbulence models have been

proposed, they all have significant limitations, particularly in transitional and separated flows.

Reynolds-stress-transport Model

The most straightforward way is to model the Reynolds stresses to formulate a closure that

determines them directly. Zhou (1945) has derived the time evolution of Reynolds stress

[Zhou1945]:

∂u′
iu

′
j

∂t
+ ūk

∂u′
iu

′
j

∂xk
= −u′

iu
′
k

∂ūj

∂xk
− u′

ju′
k

∂ūi

∂xk
+ p′

ρ

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)
−

∂

∂xk

(
u′

iu
′
ju′

k + p′u′
i

ρ
δjk +

p′u′
j

ρ
δik − ν

∂u′
iu

′
j

∂xk

)
− (2.27)

2ν
∂u′

i

∂xk

∂u′
j

∂xk
.

We observe in the Equation above that by trying to find a more general equation for the Reynolds

stresses we have obtained an expression with even more unknown, namely the triple correlations

u′
iu

′
ju′

k. Another drawback is the low numerical stability associated with the absence of the

numerically stabilizing second-order derivatives for the eddy-viscosity. Resulting in the necessity

for measures to improve convergence [Lien].

Linear Eddy Viscosity Models

The RANS approach introduced a tensor known as the Reynolds Stresses. The symmetrical tensor

has 6 unknowns. We may reduce the turbulence closure problem to 1 term using the Boussinesq

approximation. The two equation model is used to solve the Boussinesq approximation. Where

a turbulent viscosity is introduced that is responsible of the chaotic mixing and diffusion of the

fluid. The parameter is determined from the local gradient

−ρu′
iu

′
j = µt

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
︸                    ︷︷                    ︸

deviatoric

−2
3δijρk. (2.28)
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The kronecker delta terms are corrections for realisability and the eddy viscosity terms account

for the deviation to the average isotropic stresses [schwartz], i.e. the deviatoric parts of the

stresses. To determine the viscosity, we know it must be a combination of a length scale and

time scale, µt = lv. Using the combination of each scale to represent the energetic level of the

eddy of interest.

The popular k−ϵ model refers to the transport of the turbulent kinetic energy and the dissipation

rate of turbulent kinetic energy as the respective velocity and length scale.

µt = Cµ
k2

ϵ
(2.29)

The transport of k and ϵ are

∂k

∂t
+ ū · ∇k = −∇ · T ′ + P − ϵ, (2.30)

where T ′ is unknown and is approximated to
(

µt

σk
∇k
)

[Book:Pope], P and ϵ are the production

and dissipation terms in the kinetic energy equation. Discussed in later Section 3.2.

∂k

∂t
+ ū · ∇k = ∇ ·

(
µt

σk
∇k

)
+ P − ϵ. (2.31)

To close the set of equations, the transport for dissipation rate ϵ must be defined. It is important

to distinguish between the empirical and exact ϵ. The former is used rather than the exact

equation because it is best viewed as the energy-flow rate in the cascade, determined by the

large-scale motions [Book:Pope],

∂ϵ

∂t
+ ū · ∇ϵ = ∇ ·

(
µt

σϵ
∇ϵ

)
+ Cϵ1

Pϵ

k
− Cϵ2

ϵ2

k
. (2.32)

Where Cϵ1 and Cϵ2 are adjustable constants obtained through a comprehensive data fitting.

Until now, the closure modeling is narrowed down to the calibration of constitutive relationships

with canonical experimental data. Standard values for Launder and Sharma (1974) [Book:Pope]

are

Cµ = 0.09, Cϵ1 = 1.44, Cϵ2 = 1.92, σk = 1, σϵ = 1.3. (2.33)
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However, this approach has many shortcomings. For instance, the Boussinesq approximation

[2.28] linearly relates the Reynolds stresses with the mean strain rate tensor. This will provide a

very crude estimate when the flow has strong anisotropic turbulence [davidson2004turbulence].

Additionally, the Reynolds stresses can be visualized as a transient momentum mixing across

the shear layer. Therefore, a more reliable model should reflect the eddy transition from the

prior location rather than rely solely on local quantities. To reach better predictive accuracy,

more advanced general eddy viscosity models have been proposed.

Explicit Algebraic Reynolds-stress Model

To improve from the linear eddy viscosity model, Pope (1975) developed the most general

representation of the normalized anisotropic Reynolds stresses by deriving the relevant integrity

bases [pope_1975].

bij = bij(s̄, r̄), (2.34)

s̄ij = 1
2

k

ϵ

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
= k

ϵ
S̄ij , (2.35)

r̄ij = 1
2

k

ϵ

(
∂ūi

∂xj
− ∂ūj

∂xi

)
= k

ϵ
R̄ij , (2.36)

where s̄ is the non-dimensional mean rate of strain and r̄ is the non-dimensional rate of rotation.

Based on the Cayley-Hamilton theory, where a matrix is the solution of its own characteristic

equation. Pope and Gatski proved for three-dimensional flows the eddy viscosity can be expressed

as a linear combination of 10 basis tensors and 5 irreducible invariants [Gatski]:

b =
10∑

n=1
g(n)(λ1, ..., λ5)T (n). (2.37)

The coefficients g(n) in equation [2.37] are functions of a limited number of invariants. When

an eddy viscosity model g(n) , 0, the model is said to be non linear. This increases the

accuracy of the solver with the added potential to capture better flow physics and streamline
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curvature [pope_1975]. The five invariants are

λ(1) = Tr(s̄2), (2.38)

λ(2) = Tr(r̄2),

λ(3) = Tr(s̄3),

λ(4) = Tr(r̄2s̄),

λ(5) = Tr(r̄2. s̄2)

The basis tensors are

T (1) = s̄,

T (2) = s̄r̄ − r̄s̄,

T (3) = s̄2 − 1
3I · Tr(s̄2),

T (4) = r̄2 − 1
3I · Tr(r̄2),

T (5) = r̄s̄2 − s̄2r̄,

T (6) = r̄2s̄ + r̄s̄2 − 2
3I · Tr(s̄r̄2), (2.39)

T (7) = r̄s̄r̄2 − r̄2s̄r̄,

T (8) = s̄r̄s̄2 − s̄2r̄s̄,

T (9) = r̄2s̄2 − s̄2r̄2 − 2
3I · Tr(s̄2r̄2),

T (10) = r̄s̄2r̄2 − r̄2s̄2r̄,

where I is the three-dimensional identity tensor and Tr(M) corresponds to the trace of the of

tensor M.

In summary, the need for a modelling technique arises due to the lack of a general solution

to the Navier-Stokes equations. RANS is the most popular approximation because of its fast

computation time and lower computation cost. However, the Reynolds decomposition yields

an unknown turbulent correlation known as the Reynolds Stresses. A widely used approach

known as the Boussinesq approximation tackles the problem via Linear Eddy Viscosity. This

way a turbulent viscosity is introduced, allowing for chaotic mixing and diffusion of the fluid.
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Models like the k − ϵ are calibrated using a wide range of turbulent flows, but are inaccurate

for transitional and turbulent separated flows. Instead of transporting turbulence quantities,

we propose the use of deep neural network to estimate the amount of turbulent kinetic energy

production and dissipation.
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Chapter 3

Machine Learning Methodology

In this chapter, we will explain the multi-layer perceptron, an example implementation on the

popular Iris dataset [Iris] using Tensorflow [Tensorflow], followed by the thesis framework and

how the trained NN will fit within the CFD workflow.

3.1 Multi-Layer Perceptron (MLP)

The feedforward artificial neural network is the model of interest in this thesis. Unlike linear

classification models, a neural network can optimize a decision surface for complex problems

by adding multiple hidden layers. This is useful since most modern challenging problems are

non-linear. To illustrate this, we project the XOR(x1, x2) on a single neuron. We notice to

the left of Figure 3.1, where no decision boundary can adequately separate the binary response.

However, we can overcome this by applying a transformation on our input values as seen on the

right of Figure 3.1.

Figure 3.1. XOR gate modelisation [hugo]
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Therefore, the inspiration behind deep learning or multi-layer perceptron is to find a new

representation from the training data. The set of transformed input neurons are known as

"hidden layers" because their values are not given in the data [Goodfellow].

XOR (x1, x2) =



0 if x1 = 0 and x2 = 0

1 if x1 = 1 and x2 = 0

1 if x1 = 0 and x2 = 1

0 if x1 = 1 and x2 = 1

(3.1)

Given an adequate amount of neural units on a single hidden layer, the artificial neural

network has the potential to predict a variety of continuous non-linear function. This is the

Universal approximation theorem, although there are some scepticism on whether it is practically

feasible as it could require an incredibly large architecture [Goodfellow].

MLP Architecture

We begin the description of a Multi Layer Perceptron (MLP) with the focus on a single neuron.

The first hidden layer unit in Figure 3.2 can be mathematically described as a mapping function

hℓ(x)i = gℓ(a(x)i) = gℓ(bℓ
i +

3∑
j=1

W ℓ
i,jxj), (3.2)

where ℓ is the hidden layer notation, b is the bias, W is the weight, g is the activation function

and a is the pre-activation. Additionally, the index i is used to denote the neuron in the hidden

layer. Furthermore, assuming a fully connected neural network, there’s a weight for every pair

of units between layers, hence Wi,j . The ℓth hidden layer notation are important due to the

changes between layers. For instance, the activation function may change from one hidden layer

to another.

The vector form is

hℓ(x) = gℓ(a(x)) = gℓ(bℓ + W ℓx) (3.3)
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Figure 3.2. Single unit

As mentioned previously, the hidden layers purpose is to introduce transformations on the

input data. Non-linearity in the model will help predict complex functions and this is achieved

with the help of the activation function. A common activation function for binary classification

is the sigmoid activation [Liu2014ImageCF].

sigmoid(x) = σ(x) = 1
a + e−x

. (3.4)

It is also useful to know the derivative of the sigmoid function

sigmoid′(x) = σ(x)(1− σ(x)). (3.5)

Finally, as shown on Figure 3.3, the output node is

f(x) = o(b(2) + W (2)T
h(x)), (3.6)

where o is the output activation function. In general, a linear activation function is employed

for the output. Softmax and the Rectified Linear Unit (ReLU) are used for classification and

regression, respectively.
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MLP Training

In supervised learning, we assume that we have a dataset that has both the input and its

associated target. Therefore the performance of the model can be evaluated using a loss function

J = 1
m

m∑
i=1
L(ŷ, y). (3.7)

This allows us to cast training as our optimization problem. For instance, the gradient of the

loss function with respect to the weight of the neural network is used to update the parameters

after each iteration. This is known as the Stochastic Gradient Descent (SGD).
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Figure 3.3. Schematic of MLP

θ ≡ {W (1)
i , W

(1)
0 , ..., W

(ℓ)
i , W

(ℓ)
0 }, (3.8)

△ = −∇θL(f(x; θ), y). (3.9)

where θ is the set of all weights in the neural network and △ is the loss derivative with respect to

the weights. The result of the loss function gradient with respect to the parameter θ is expressed

in the above equation. Another term for this is Back Propagation. Where f(x; θ) is the output

of the neural network. Given this, updated weights can be found via
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θ ← θ + α△, (3.10)

where α is the learning rate and it controls by how much the parameter should change during

each iteration. The learning rate is a hyper-parameter that helps the loss function to converge

into a local minima. How after each iteration as the SGD approaches the minima, it can over

shoot if the learning rate is too large. Alternatively, it can slow down the training process if the

learning rate is too small. There are common values for learning rates but there is no values that

fits all. A paper by Leslie N. Smith proposed a systematic approach, where one would gradually

increase the learning rate for each mini-batch until the loss starts to explode [CyclicalSmith].

Once the algorithm has trained over all given instances, we say the training reached one epoch.

Ideally, by the end of the training, the model will have optimal values of weight and can accurately

generalize on unseen data.

As a practical example, if we would take the gradient of the loss function with respect to W (2)

as seen from figure 3.3. The chain rule will be applied

∂L
∂W (2) = ∂L

∂y

∂y

∂a

∂a

∂W (2) , (3.11)

∂y

∂a
= ∂σ(a)

∂a
= y(1− y), (3.12)

∂a

∂W (2) =
∂
(
W (2)σ(L−1) + W

(2)
0

)
∂W (2) = σ(L−1), (3.13)

where y is the activated output, and a is the pre-activation. Therefore, our first derivative

will depend on the type of loss function. We also notice the second derivative of the activated

output with respect to the pre-activation is only the derivative of the sigmoid, Equation 3.5.

Furthermore, the third and last derivative is nothing more but the activated output from the

previous layer (hidden layer).

3.1.1 Iris Dataset

In this section, we will showcase the conventional approach to train a neural network. The

demonstration will be delivered using one of the most common studied datasets, the Iris
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dataset[Iris, UCI].

Data Preparation

The dataset contains 50 samples from three species of the Iris plants (Iris setosa, Iris virginica

and Iris versicolor). Four features are measured for each instance, namely the length and the

width of the sepals and petals. Prior to the ML model construction, the data explanatory

analysis is a crucial step. Not only do we gain a more comprehensive understanding of the

dataset, we can also apply transformation to improve the quality of our data.

sepal length sepal width petal length petal width
count 150.00 150.00 150.00 150.00
mean 5.84 3.06 3.76 1.193

std 0.83 0.44 1.77 0.76
min 4.30 2.00 1.00 0.10
25% 5.10 2.80 1.60 0.30
50% 5.80 3.00 4.35 1.30
75% 6.40 3.30 5.10 1.80
max 7.90 4.40 6.90 2.50

Table 3.1. Iris dataset statistics

There is no missing input and the target distribution is also well balanced. Therefore, we can

avoid feature engineering tasks. Out of the total 150 instances, 10% will be split into the test

dataset. On Figure 3.4, we observe the correlation amongst the different features. We conclude

a high positive correlation for the petal features with the exception to the sepal width.

Training Model

Three models have been trained, each step will showcase an improvement over the previous

model. In Figure 3.5, the model is composed of 4 layers with 128 units and 5 layers of 64

units. All units are initialized with He Uniform [HeUniform], the bias are initially one, and the

activation function is ReLU[relu2018]. The output layer is a softmax function with 3 units. To

accelerate training, it is good practice to use mini-batches, which is set to 40. Additionally, the

Adam optimization algorithm [adam2014] with an initial learning rate of 10−4 was used. A 15%

validation split is set aside during each epoch to monitor the training status. We notice a clear

indication of over-fitting on the in loss in Figure 3.5. This happens when the model learns the

noise in a limited training data set, which it is unable to generalize on unseen data.

To reduce undesirable overfitting, we add regularization techniques to the model. The weight
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Figure 3.4. Iris heatmap

decay and dropout [dropout2014] are implemented in the second model in Figure 3.6. Here, the

L2 method adds a penalty to the cost function, J . This has the effect of limiting the changes in

weight matrices from the hidden layers. In turn, this process simplifies the model to achieve

better results. The modified loss function is

J = 1
m

m∑
i=1
L(ŷ, y) + λ

2m

L∑
ℓ=1
∥W [ℓ]∥2, (3.14)

where λ is the regularization parameter. Also, m stands for the number of training instances,

and L is the number of hidden layers.

The validation loss in figure 3.6 does not diverge from the training loss anymore. This is a

clear indication that the regularization technique has successfully reduce the overfitting in the

network.

To further improve the model, we can introduce early-stopping. This feature informs the
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Figure 3.5. Iris dataset performance

neural network to stop the training once the validation loss does not improve after 30 epochs.

The benefit is to have an accurate model trained in a shorter amount of time. As shown on

Figure 3.7, training terminated once the validation loss stopped improving. The same techniques

will be applied in the numerical experiments in Chapter 4.
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Figure 3.6. Iris dataset performance with regularization
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Figure 3.7. Iris dataset performance with regularization and early-stopping

3.2 Framework

Using local quantities, we leverage machine learning capabilities to improve the eddy viscosity

prediction. Currently, most popular RANS solvers marches the turbulent kinetic energy (TKE)

field in time and space to calculate the Reynolds stresses, such as the k − ω and k − ϵ model.

The TKE and the Reynolds stresses are related by the Boussinesq approximation

τR
ij = −ρu′

iu
′
j = µt

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
− 2

3δijρk. (3.15)

The Reynolds stresses, τR
ij , and the mean strain rate, Sij , are related by the scalar eddy

viscosity, µt. The latter is the term of interest, its accuracy depends on 3 elements. Mainly, the

constitutive relations, the predicted velocity and length scale. However, the closure models are

calibrated with canonical cases. Instead of using calibrated model constants, we can train the

neural network to locally approximate the exact TKE production and dissipation values. In

essence, the TKE partial differential equation is replaced by the machine learning model. Notice

the term D in Equation 3.16 is the second transported variable in the k − ϵ model.

The full form of the TKE equation is

∂ρ̄k

∂t
+ ∂ρ̄kũi

∂xi
= A + B + C + D, (3.16)
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where

A = −ρu
′′
i u

′′
j

∂ũi

∂ũj
, (3.17)

B = ∂

∂xj
{ − 1

2 ρu
′′
i u

′′
i u

′′
j + u

′′
i τij − pu

′′
j }, (3.18)

C = p
∂u

′′
i

∂xi
, (3.19)

D = τij
∂u

′′
i

∂xj
. (3.20)

Term Description
A Production
B Diffusion
C Pressure
D Dissipation

Table 3.2. Terms in the Turbulence kinetic energy equation

The present work seeks to complement the eddy-viscosity approach with a trained neural

network for reliable estimation of the TKE production and dissipation values. High-fidelity data

from a DNS simulation feeds into the training pipeline. As a reminder, the model works in the

RANS environment. Thus, only the same available input data in the RANS environment are

used to train the neural network. The turbulent channel case is a 1 dimensional flow and the

available features are

y/d, ρ, ρui, ρE, ∂ρ

∂xi
, ∂ρui

∂xi
. (3.21)

3.2.1 Dataset Target Variables

This section will address how the TKE production and dissipation are extracted from the DNS.

The approach relies on the Favre-averaging for fluid compressibility effects.
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Favre Averaging

To advance physical understanding and accuracy, we must rely on high-fidelity data. Favre-

averaging does so by accurately capturing fluid density changes in time averaged fields. It is

important to mention the focus will be on fully transitioned fluid flow without chemical reactions

or real gas effects. Similar to the Reynolds decomposition, Favre-averaging also has a mean and

fluctuating component. Some useful rules of Favre averaging are

f̃ = ρf

ρ̄
, (3.22) f = f̃ + f

′′ , (3.23)

¯̃f = f̃ , (3.24) ρf ′′ = 0. (3.25)

Production Term

The production is generated through the interaction between the shear stress and shear strain

within the flow. Using the stated rules, we can deconstruct the production term into variables

we can be extracted from the DNS.

A = −ρu
′′
i u

′′
j︸      ︷︷      ︸

part 1

∂ũi

∂xi︸︷︷︸
part 2

, (3.26)

−ρu
′′
i u

′′
j︸      ︷︷      ︸

part 1

= −ρuiuj + 2ρuiũj − ρ̃ũiũj = −ρuiuj + 2ūiρuj − ρ̄
ρui

ρ̄

ρuj

ρ̄
, (3.27)

∂ũi

∂xi︸︷︷︸
part 2

=
∂(ρui

ρ̄ )
∂xj

. (3.28)

Applying the quotient rule on the numerator in Equation 3.28

∂ũi

∂xj
=

ρ̄∂ρui
∂xj
− ρui

∂ρ̄
∂xi

ρ̄2 . (3.29)

Applying the product rule on the first numerator in Equation 3.29.

∂ũi

∂xj
=

ρ̄
[

∂ρ
∂xj

ui + ρ ∂ui
∂xj

]
− ρui

∂ρ̄
∂xi

ρ̄2 . (3.30)

Finally, the production term is the result of Equation 3.27 and Equation 3.30,

A =
(
−ρuiuj + 2ūiρuj − ρ̄

ρui

ρ̄

ρuj

ρ̄

)
×

ρ̄
[

∂ρ
∂xj

ui + ρ ∂ui
∂xj

]
− ρui

∂ρ̄
∂xi

ρ̄2 . (3.31)
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Dissipation Term

Following the same systematic approach for the Production term. We define the laminar stress

tensor

τij = λ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (3.32)

where λ = −2
3τ and τ is the molecular viscosity which is a function of static temperature.

Using Einstein notation

D = τij
∂u

′′
i

∂xj
=
(

λ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+ ∂uj

∂xi

))
∂u

′′
i

∂xj
. (3.33)

As a reminder
∂u

′′
i

∂xj
= ∂ūi

∂xj
− ∂ũi

∂xj
. (3.34)

The final dissipation equation is

D = −2
3µ

∂uk

∂xk
δij

∂ui

∂xj
+ 2

3µ
∂uk

∂xk
δij

∂ũi

∂xj
+ µ

∂ui

∂xj

∂ui

∂xj
− µ

∂ūi

∂xj

∂ũi

∂xj
+ µ

∂ui

∂xj

∂uj

∂xi
− µ

∂ūi

∂xj

∂ũj

∂xi
. (3.35)

Nondimensionalizing Target Variables

To validate the work, we have to nondimensionalize the data as per K.M.M. [KMM].

Starting with equation 3.26,

A = −ρu
′′
i u

′′
j

∂ũi

∂xi

[
kg

m · s3

]
. (3.36)

Similarly for Dissipation with equation 3.2.1,

D = τij
∂u

′′
i

∂xj

[
kg

m · s3

]
. (3.37)

From K.M.M. documentation [KMM], they used the kinematic viscosity over the frictional

velocity, ν/uτ . The Nondimentionalizing Factor (NF) has been found to be the following,
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NF = µ

ρu4
τ

= ν

ρ2u4
τ

[
m · s3

kg

]
. (3.38)
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Chapter 4

Numerical Experiments

4.1 Turbulent Channel

4.1.1 Case Description

One of the first DNS ever performed was a turbulent channel case [KMM]. This fully developed

flow is quasi-one dimensional and is driven by a specified pressure gradient, dp/dx, in the

streamwise direction. The channel is 2δ tall and is enclosed between two infinite plate in the

x − z plane. The dataset is generated using the PyFR DNS are performed at five friction

Reynolds number Reτ = [180, 285, 395, 450, 590].

The case with friction Reynolds number Reτ = uτ δ/µ = 395, has a bulk Reynolds number

Reb=13773 which was found using Deans’ law [Book:Pope]. The fluid density and kinetic

viscosity are denoted by ρ and µ respectively. The flow fields start laminar and will transition

to turbulence after sufficient time. However, the transition process to turbulence in an uniform

flow can be very slow without upstream agitation. Therefore, we can accelerate the transition

by adding perturbation in the initial condition.

u = −11.2 · y · (y − 2), (4.1)

v = 0.5 · sin(5.5 · πy) · 0.5 · sin(5.5 · πx), (4.2)

w = 0.5 · sin(5.5 · πz) · 0.5 · sin(5.5 · πy), (4.3)
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where the bulk velocity vb is given by

vb =
∫ δ

0
v̄d

(
y

δ

)
≈ 6.8. (4.4)

Near the center of the channel, the values of TKE production and dissipation reach very small

values and possibly spurious due to the PyFR solver. From observation, the ratio of production

and dissipation is close to null. A corrolary is that the cross-correlations vanishes in strain-free

flow region which is the center part of the turbulent channel. Thus, only the region prior to a

clipping factor are kept, y < 0.8δ and y > 1.2δ. Both correspond to the bottom and top region

respectively. To ensure the simulation has reached steady state, the friction reynolds has been

tracked over time. As shown on Figure 4.1, the channel has reached the desired Reτ = 395 after

70 convective times. A convective time is defined as the time taken for the flow to travel across

the channel.
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Figure 4.1. Friction Reynolds number development over time

Figure 4.2, 4.3, and 4.4 show the isosurfaces of Q-criterion for Re = 180, 395, and 590. They

are colored by velocity magnitude. As expected, all simulations manifest vortical structures

along the bottom plane. We observe difference in the results, the size of vortices are finer for

larger Reynolds values.
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Figure 4.2. Q-criterion for Re = 180

Figure 4.3. Q-criterion for Re = 395
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Figure 4.4. Q-criterion for Re = 590

We will now consider the accuracy of the simulated turbulent channel. We observe excellent

agreement for normalized streamwise velocity with the results of K.M.M [KMM] for all Reynolds

number in Figure 4.10, 4.16, and 4.22. The root-mean-square velocity fluctuations shows good

agreement in Figure 4.9, and 4.15. However, in Figure 4.21 the DNS has larger numerical errors

than the previous two cases. This slight difference is also reflected in the underprediction for the

Reynolds stress, u′v′, in Figure 4.20. The production and dissipation are accurately captured

and are at the center core of this thesis. They are shown on Figure 4.5, 4.6, 4.11, 4.12, 4.17, and

4.18.

In summary, the flow properties and turbulence statistics of our DNS have been validated

using the data found in the litterature [KMM]. This will allow to safely use our model to

generate new data points at other Reynolds number.
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Figure 4.5. Production at Reτ = 180
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Figure 4.6. Dissipation at Reτ = 180
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Figure 4.7. Production - Dissipation Reτ = 180
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Figure 4.8. Reynolds Stress Reτ = 180
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Figure 4.9. Velocity Fluctuations Reτ = 180
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Figure 4.10. Velocity Profile Reτ = 180
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Figure 4.11. Production at Reτ = 395
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Figure 4.12. Dissipation at Reτ = 395
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Figure 4.13. Production - Dissipation Reτ = 395
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Figure 4.14. Reynolds Stress Reτ = 395
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Figure 4.15. Velocity Fluctuations Reτ = 395
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Figure 4.16. Velocity Profile Reτ = 395
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Figure 4.17. Production at Reτ = 590
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Figure 4.18. Dissipation at Reτ = 590
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Figure 4.19. Production - Dissipation Reτ = 590
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Figure 4.20. Reynolds Stress Reτ = 590
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Figure 4.21. Velocity Fluctuations Reτ = 590
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Figure 4.22. Velocity Profile Reτ = 590
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4.1.2 Machine Learning Framework

The dataset consists of 56 features, 1 continuous output, and 32 325 instances. All features

are complete with no missing values. Notice the high number of features. To filter out the

unnecessary features, we must remember the end goal of the machine learning approach; to

approximate the TKE production and dissipation. This means we are limited to the same inputs

as exist in the TKE equation. In other words, the dataset (production and dissipation) are

extracted from the DNS of the Turbulent Channel. As such, the Reynolds stress is known but

not in the RANS in framework. Once the features are determined, data transformation by

normalization is applied since it has been shown to speed up convergence via gradient descent

and implicitly balances the contribution of all features.

For each case, we randomly split the training data into 80% training and 20% validation

data. The loss function used is the MSE between the predicted production and the DNS value.

The Adam optimization [adam2014] and ReLU activation [relu2018] are used with an initial

learning rate of 10−6 and a batch size of 10. The weights of the networks were initialized with

He uniform [HeUniform] and biases were initialized as zeros. To prevent over-fitting our model,

a regularization callback is imposed on the loss function and batch normalization is implemented

to accelerate the training.

The proposed cases to evaluate the suitability of a neural network are shown in Table 4.1.

From the training set, the values ranges from 180 to 590. Two new values are added to improve

the diversity of the dataset. For each case, we train on 4 Reynolds number and test on the

remaining one that was left out. This has the purpose to verify if our model can generalize on

unseen data points. Case 1 and 3 are outside of the training set range and we expect both case

to have lower accuracy score.

Case Training set Test set
1 Reτ = [285, 395, 450, 590] Reτ =180
2 Reτ = [180, 285, 450, 590] Reτ =395
3 Reτ = [180, 285, 395, 450] Reτ =590

Table 4.1. Three training-prediction cases
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The training stops when both the validation loss starts to rise and the patience argument is

invoked. In machine learning, increase of validation loss is a strong indicator for over-fitting,

since the model is incapable of giving the correct output on unseen data. The model’s epoch

ranged between 2000-4000. The Figure below shows an example of training and validation loss

as a function of epochs during a training of 100-Neurons-MLP for case 1. The R2 score is a

statistical measure that determines how well a regression prediction approximates the true data

points. An R2 of 1 indicates a perfect fit. Comparing across the three cases from the Table 4.2,

we notice Case 2 has considerably better accuracy. One explanation is that Case 1 and 3 testing

data is outside of the training range. Furthermore, the reason Case 3 has the worst outcome

might stem from the fact the training dataset yields low-Reynolds number effects. Thus, a

solution would be to include training data of higher Reynolds to balance the effect of lower and

higher Reynolds number.
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Figure 4.23. Learning Curve - TC

The Figure 4.23 shows an example learning curve of Case 1. The plot starts with signs of

over-fitting but with time the both the training and validation learning curve merges. However,

they both did not reach the point of stability since both learning curves continue to decrease.

This is because the early-stopping criterion has detected the validation curve started to rise

relative to the training loss. Which leads to over-fit and terminated the training process.
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4.1.3 Results

Since the turbulent flow is symmetric above and below the channel centreline. It was decided to

train on the lower half of the channel data.
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Figure 4.24. Production - Case 1, TC
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Figure 4.25. Production - Case 2, TC

45



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

5 · 10−2

0.1

0.15

0.2

0.25

0.3

y/d

Pr
od

uc
tio

n

Production Value across Turbulent Channel at Re = 590

Prediction
Reference

Figure 4.26. Production - Case 3, TC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

5 · 10−2

0.1

0.15

0.2

y/d

D
iss

ip
at

io
n

[−
ϵ]

Dissipation Value across Turbulent Channel at Re = 180

Prediction
Reference

Figure 4.27. Dissipation - Case 1, TC
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Figure 4.28. Dissipation - Case 2, TC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

5 · 10−2

0.1

0.15

0.2

0.25

y/d

D
iss

ip
at

io
n

[−
ϵ]

Dissipation Value across Turbulent Channel at Re = 590

Prediction
Reference

Figure 4.29. Dissipation - Case 3, TC

47



Case 1 Case 2 Case 3

Train R2 Test R2 Train R2 Test R2 Train R2 Test R2

100-Neurons-Production 0.9178 0.8231 0.9921 0.9898 0.9217 0.7070

100-Neurons-Dissipation 0.9997 0.8228 0.9999 0.9572 0.9997 0.9140

Table 4.2. R2 of production & dissipation predictions, TC

Regression training on the original dissipation data were poor due to small value, skewed

distribution, and its monotonically decreasing nature. A solution was to pre-process the

dissipation value and take the negative natural logarithmic. By applying the log transformation,

the boundaries became easier to recognize for the model and it also did not treated the tail

region of the dataset as outliers anymore. Following the pre-processing, we observe accurate

results on Figure 4.27, 4.28, and 4.29 with the highest score on Case 2 at R2 = 0.9572.

The production data distribution has 1 high peak located on the left region of the graph within

the viscous region of the flow. No prior transformation was performed on the data. Both

prediction for Case 1 and 3 overpredicted the production, shown by Figure 4.24, and 4.26. This

is a consequence of the out of distribution dataset for testing the model. The best result were

obtained by Case 2, shown in Figure 4.25. With a R2 = 0.9898.

As expected, we see better convergence on Case 2 for both production and dissipation which has

kept a good agreement with the reference data. This increase in performance can be attributed

to the fact the test set is contained in the boundaries of the training set.

4.2 NACA 0012 Airfoil

DNS of flow over a NACA 0012 airfoil are performed at Re = 5× 104 and M = 0.2. The Angle

Of Attack (AOA) are from 4 to 12 degrees. The three-dimensional turbulent production and

dissipation values are investigated. Finally, a machine learning model is built to predict the

turbulent production and dissipation values of testing data at different angles.

4.2.1 Case Description

The geometry of an airfoil is defined by the camber, thickness ratio, and leading edge radius.

From a practical standpoint, we want to extract lift, drag, and moments from the airfoil. Thus,

we are interested in the pressure distribution. At low Reynolds numbers and at small AOA, the
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flow on the suction side of the airfoil remains laminar. Conversely, a separation region will grow

downstream due to a strong adverse pressure gradient at high angles of attack. The trailing

edge turbulent region will move upstream with increasing angle of attack. Prediction of this flow

transition and separation is difficult to capture using RANS model.

The first solution point off the wall is located at y+ = 0.5. According to experimental data,

it is within the viscous sublayer of a channel flow [davidson2004turbulence_viscoussublayer].

Each simulation is solved using P = 3 and run for 30 convective times. Statistical quantities are

computed over 25 convective times. Additionally, the pressure coefficient (Cp) is generated at

three sample angles to validate accuracy against reference data. Namely at 5, 8, and 12 degrees

AOA. In Figure 4.35, the flow is transitioning from laminar to turbulent at around 20% of

the chord. The Cp curve drops because the flow transitions to turbulence, driving a pressure

recovery regime. This region tends to get widened with lower-order method, or with coarse

meshes, because numerical dissipation effectively damps the transition mechanism. Therefore,

using high-order methods with PyFR, we were able to generate more accurate results.
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Figure 4.30. Turbulent kinetic energy production distribution at 5 degrees AOA

Figure 4.31. Q-criterion at 5 degrees AOA
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Figure 4.32. Time-averaged pressure coefficient at 5 degrees AOA
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Figure 4.33. Turbulent kinetic energy production distribution at 8 degrees AOA

Figure 4.34. Q-criterion at 8 degrees AOA
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Figure 4.35. Time-averaged pressure coefficient at 8 degrees AOA
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Figure 4.36. Turbulent kinetic energy production distribution at 12 degrees AOA

Figure 4.37. Q-criterion at 12 degrees AOA
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Figure 4.38. Time-averaged pressure coefficient at 12 degrees AOA
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Figure 4.39. Turbulent Production at 0.7c

The production value for three sample degrees have been evaluated at 70% of the chord.

From Figure 4.39, we notice for each AOA there are 2 peaks for production. These are attributed

to the wall effects and the shear layer. We interpret those two zone as the largest concentration

of cross-flow fluctuations which are growing in tandem with the TKE production value. The

flow at 12 degrees is fully detached which explains the production peaks away from the wall. A

fully detached flow at 12 degrees AOA behaviour can be visualized in Figure 4.42.

Figure 4.40. NACA 0012 DNS at 5 degrees AOA
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Figure 4.41. NACA 0012 DNS at 8 degrees AOA

Figure 4.42. NACA 0012 DNS at 12 degrees AOA
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4.2.2 Machine Learning Framework

Inspired by the success of the first experiment in Section 4.1.2, we take a similar approach for

the NACA 0012 at Mach = 0.2. However, there are some noticeable differences between the

first and second experiment. Namely, the NACA 0012 DNS is a quasi-two-dimensional flow,

and generates significantly more data. Knowing this, we introduce two new features during the

model training. They are the Euclidean wall distance and the turbulent kinetic energy. The

intent is to give the model a spatial intuition of its surrounding coupled with the local amount of

turbulent kinetic energy. This could inform the model about the flow properties and ultimately

better generalize the kinetic energy production and dissipation values.

TKE = 1
2
(
(u′)2 + (v′)2 + (w′)2

)
. (4.5)

Figure 4.43. Wall distance contour, ywall

In the case description section we showed that our simulation was able to generate reliable

DNS data. We leverage this ability to simulate the dataset for AOA between 4 and 12. Allowing

us to train the model and predict on unseen data. For each case, we randomly split the training

data into 80% training and 20% validation data. The loss function used is the Mean Squared

Error (MSE) between the predicted production or dissipation and the DNS value. The Adam

optimization and ReLU activation are used with an initial learning rate of 5 x 10−7 and a

batch size of 10. The weights of the networks were initialized with He uniform and biases were
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initialized as zeros. The neural network architecture is 5 layers deep with 64 units on each layer.

Batch normalization is added to accelerate the training. The features are

x, y, ywall, ρ, ρui, ρE, TKE, ∂ρui

∂xi
. (4.6)

From the turbulent channel case, we have learned that the generalization perform best when

the testing set is not situated out of the training boundaries. Therefore, Case 1 and 2 have their

test set fixed in the middle of the training set. However, on Case 3 we fixed the test set to be

outside of the training range. We expect to have better result in Case 1 and 2 over Case 3. This

is summarized in Table 4.3.

Case Training set Test set
1 AOA = [4◦, 6◦] AOA=5◦

2 AOA = [7◦, 9◦] AOA=8◦

3 AOA = [10◦, 11◦] AOA=12◦

Table 4.3. Three training-prediction cases

Figure 4.44 shows the learning curve of Case 1. The validation curve is under the training

meaning it has not over-fitted the training data. Early stopping ended the training after 319

epochs due to no validation loss improvement.
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Figure 4.44. Loss vs epochs for NACA0012 5◦ AOA

4.2.3 Results

In this section we present the outcome of training a neural network on DNS to predict Production

and Dissipation values at 0.7 chord.
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Figure 4.45. Production - Case 1, NACA0012
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Figure 4.46. Production - Case 2, NACA0012
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Figure 4.47. Production - Case 3, NACA0012
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Figure 4.48. Dissipation Case 1, NACA0012
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Figure 4.49. Dissipation Case 2, NACA0012
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Figure 4.50. Dissipation Case 3, NACA0012

Case 1 Case 2 Case 3

Test R2 Test R2 Test R2

64-Neurons-Production 0.7792 0.5277 0.4261

64-Neurons-Dissipation 0.7203 0.8931 0.0019

Table 4.4. R2 of production and dissipation predictions, NACA0012

Training a model where the test set is bounded within the training region results in good
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agreement with the reference data. As the AOA increases, the flow over the airfoil starts to

detach and alters the behaviour of the production and dissipation distribution. In the context of

predicting production values. The model was successfully able to predict the bi-modal behaviour

of the reference data at their peak locations. As illustrated by Case 2 Figure 4.49, prediction is

accurate due to the absence of a sharp dissipation peak, unlike case 1. Instead, Case 2 exhibits a

more smooth dissipation transition away from the wall. However, the production and dissipation

for Case 3 displays an out-of-distribution generalization. Resulting in low prediction accuracy.

This outcome is expected because the model lacks the robustness to evaluate the chaotic nature

of the test data that are different from the training set. From Figure 4.39, we observe the flow

patterns at different AOA. The production peak shifts from left to right which in turn illustrates

how Case 3 does not have the training data to cover the region for the test AOA.

4.3 Discussion

While the results were not as accurate as the previous turbulent channel case. It is relevant to

remember what was fed to the neural network. The feature list for the 3D airfoil case is given

by Equation 4.2.2. Which does not cover all the requirement of production and dissipation -

Equations 3.2.1 and 3.2.1. It was done so to avoid having cross correlations terms as features. As

they are not readily available in the RANS formulation. Therefore, the neural network was able

to find a mapping to predict the objectives without the full knowledge of the flow. This shows

promise for further methodological developments that incorporate neural network in turbulence

modeling. In summary, applying a feed forward neural network approach to find the turbulent

values for production and dissipation proves to be a difficult task but if applied correctly can

yield good results.
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Chapter 5

Conclusion and Future Work

This study has shown the capabilities and limitations of MLP for turbulence modeling. Specifically,

a data driven approach was taken to predict the turbulent kinetic energy production and

dissipation values in the TKE transport equation. Training data were generated through a DNS

for the turbulent channel and the NACA0012 in 3D. The DNS were performed using PyFR.

Benchmarks were performed to evaluate the accuracy and the approach proved to have even

better accuracy than the reference data. For instance the Cp plots on Figure 4.32, 4.35, 4.38

were compared to the reference data from Rodriguez, et al. [NACA0012]. This work shows

the combination of high fidelity CFD and ML have the potential to make a truly meaningful

contribution to enhance or replace turbulence models used with RANS.

The first experiment used the turbulent channel case to validate the methodology. Without being

given the full set of variables, the network learned from DNS to have its own representation of

the production and dissipation. Furthermore, it is able to predict on unseen data given it has

been trained on physically similar configurations. The optimal model results matched with 99%

R2 on the turbulent channel case for the production dataset. With the lowest being 70% R2

for an out of distribution generalization case. Similarly, on the dissipation dataset. The model

achieved 82% R2, 95% R2, and 91% R2 for Case 1 to 3.

Following the encouraging results from the validation experiment, a more challenging complex

non-homogeneous flow case was tested with an MLP. Using a similar architecture, the predicted

values reached good agreement on low AOA. The model achieved 77% R2 for case 1 on the

production dataset. While Case 2 and 3 achieved respectively 53% R2 and 43% R2. The better
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performance on low AOA can largely be attributed to the the lack of flow separation between

the different configurations. Similarly, on the dissipation dataset. The model achieved 72% R2,

89% R2, and 0% R2 for Case 1 to 3.

5.1 Future Work

This research shows encouraging results, but several other directions are possible. A straightforward

improvment would be of applying a rigorous hyperparameter exploration, since only a preliminary

grid search was performed in this thesis. Physics-informed Neural Network (PINN) is the next

step and should be explored to increase prediction accuracy. For instance, one can enforce

the no-slip boundary condition at the wall. This is achieved by re parametrizing the output

from the MLP to the corresponding value. This is motivated by the fact that the MLP has no

embedded knowledge of any physical laws. Rui Wang et al. [RuiPINN] is another example of

PINN. Using an autoencoder they have introduced the Turbulent-Flow Net. A hybrid approach

that combines physical principles (RANS-LES coupling) and learned representation. The encoder

is split into three modules in which each represents the turbulent flow at different scales. The

decoder is a multi-layered deconvolutional layer that takes the aggregation of the previous three

encoders and outputs a 2D velocity field. Currently, data fed to the MLP is only from local

effects. However non-locality should be also addressed and added to the model. The argument

is that the Reynolds stresses not only depend on the shape and intensity of local eddies (rate

of strain). Instead it is affected by a chain of events from past eddies prior to arrival at the

point of interests [davidson2004turbulence]. It is possible to model spatial non-locality using

fractional calculus [Songfractional]. Finally, we examined how the eddy viscosity relates the

Reynolds stress and rate of strain linearly through Equation 3.2. This is in fact incorrect for

many flows since turbulence is inherently anisotropic. To consider anisotropy, a model should be

trained to learn the Reynolds stresses directly, or infer them form the turbulent kinetic energy

quantities. In the future, we can modify the RANS approach. The turbulence model would

rely on the turbulent kinetic energy transport equation coupled with our neural network to

predict the distribution of turbulent kinetic energy in the domain. Then, this distribution would

be coupled with an equation to predict turbulent viscosity, similar to the equations used by

two-equation turbulence models, such as k-epsilon.
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Appendix A: Airfoil Coordinates

Transformation

When building a neural network we need a reliable source of dataset for training our model. In

addition to the freestream values and gradients we require the flow location. This is particularly

important for quasi-two dimensional flow such as the NACA0012. To help generalize on unseen

angle of attack, the distance between the point of interest and the closest wall location (airfoil)

is calculated. This is possible by simply taking the Euclidean distance in a for loop and save the

shortest distance. The NACA0012 coordinates are available online.

1 import numpy as np

2 import pandas as pd

3 import math

4

5 # airfoil coordinates and DNS simulation

6 df_airfoil = pd. read_csv (r"viz - airfoil .csv")

7 df_DNS = pd. read_csv (r"viz -DNS.csv")

8

9 def shortest_wall_distance (k):

10 shortest_distance = []

11 for i in range ( df_airfoil .shape [0]):

12 p1 = [ df_airfoil [’x’][i], df_airfoil [’y’][i]]

13 p2 = [ df_DNS [" Points :0"][k], df_DNS [" Points :1"][k]]

14 distance = math.sqrt( ((p1[0]-p2 [0]) **2) +(( p1[1]-p2 [1]) **2) )

15 shortest_distance . append ( distance )

16 # Take the shortest one and make y_wall = np.min(l)

17 l = np. asarray ( shortest_distance )

18 return np.min(l)

Listing 5.1. Automate search for wall values
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Appendix B: Neural Network with

Tensorflow

1 def build_model ( input_shape ):

2 """

3 The weights are initialised by providing the input_shape argument in the

first layer. Function should return the Sequential model.

4 """

5 model = tf.keras. Sequential ([

6 Dense (64, activation =’relu ’, kernel_initializer =’HeUniform ’,

7 input_shape = input_shape , name=’dense_one ’),

8 BatchNormalization (),

9 Dense (64, activation =’relu ’, kernel_initializer =’HeUniform ’),

10 BatchNormalization (),

11 Dense (64, activation =’relu ’, kernel_initializer =’HeUniform ’),

12 BatchNormalization (),

13 Dense (64, activation =’relu ’, kernel_initializer =’HeUniform ’),

14 BatchNormalization (),

15 Dense (64, activation =’relu ’, kernel_initializer =’HeUniform ’),

16 BatchNormalization (),

17 Dense (1, kernel_initializer =’HeUniform ’)])

18 return model

19

20 def compile_model (model):

21 """

22 This function takes in the model returned from the build_model function ,

and compiles in -place with an optimiser , loss function and metric .

23 """

24 opt = keras. optimizers .Adam( learning_rate =5e -7)

25 model. compile (loss=’mae ’, optimizer =opt , metrics =[tf.keras. metrics .

MeanAbsoluteError ()])
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26

27 def train_model (model , train_data , train_targets , epochs ):

28 """

29 This function should train the model for the given number of epochs on the

train_data and train_targets . Function returns the training history model.

fit.

30 """

31 history = model.fit(train_data , train_targets , epochs =epochs ,

validation_split =0.2 , batch_size =10, verbose =1,

32 callbacks =[ checkpoint , tf.keras. callbacks . EarlyStopping

( monitor =’val_loss ’, patience =20) ])

33 return history

34

35 model = build_model ( input_shape =( x_train_standard .shape [1] ,))

36

37 compile_model (model)

38

39 checkpoint_path = ’model_checkpoints ’ # if you save the whole model it will

40 # create a directory automatically .

41

42 checkpoint = ModelCheckpoint ( filepath = checkpoint_path ,

43 save_weights_only =False ,

44 save_freq =’epoch ’,

45 monitor =’val_loss ’,

46 save_best_only =True ,

47 verbose =1)

48

49 # #######################

50 epochs = 500

51 # #######################

52 history = train_model (model , x_train , y_train , epochs = epochs )

Listing 5.2. Building a Sequential model
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