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Abstract

Application of Attention Mechanism in Deep Neural Network Architecture
for System Failure Prognostics

Hamid Reza Behizadi

Machine health monitoring and management are essential improvements that must be

considered in the industry toward smart manufacturing. Intelligent prognosis and health

management (PHM) systems have demonstrated remarkable capabilities for industrial use

and, consequently, have become active research areas in the last several decades. Predictive

Maintenance (PM) generally predicts faults or breakdowns in a deteriorating system to

optimize maintenance efforts by evaluating the system’s status using historical data. In

this strategy, the Remaining Useful Life (RUL) of the components is anticipated using

characteristics, which typically include sensors and operational profiles.

This research aims to evaluate the possibility of predicting the RUL of a system based

on sensor data by deploying an attention-based deep learning model. RUL prediction based

on the attention mechanism is a relatively new approach with promising results. One advan-

tage of this approach is that it can be useful for interpreting the results and understanding

the underlying factors contributing to the RUL. Applying an attention mechanism to find

temporal dependencies also shows improvement in model performance by detecting the

most important part of the sequences to be passed to the prediction model.

Our proposed model has shown a noticeable impact on the performance of the neural

network architecture from the attention mechanism added to the pipeline by keeping the

model light in terms of computational resources and training time. The proposed model

clearly shows the attention mechanism’s high impact on predicting sequential data. This

technique can also be used in more complex ensemble-based architectures to improve per-

formance.
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Chapter 1

Introduction

Over time, human beings have had to cope with various damages and failures in their

projects related to material degradation, structural weariness, or even poor design deci-

sions. Hence, engineering diagnostics and maintenance are essential in different business

sectors, including heavy industries, aerospace, manufacturing, and automotive. With the

development of technology over the past few decades, maintenance duties have evolved

dramatically. Having more developed and powerful systems plus keeping track of histori-

cal data allows further advancement in diagnostics by predicting the degradation far ahead

of their occurrence. This is where prognostics come into play and can lead the industry

to the next generation of maintenance. This generation change will likely let predictive

maintenance contribute much more and gradually replace older maintenance approaches.

1.1 Background and Motivation

1.1.1 Smart Manufacturing

Smart manufacturing is a rising global need and strategic urgency for developing advanced,

innovative, and reliable predictive health management systems. Furthermore, with the
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growth of the Industrial Internet of Things (IIoT), smart maintenance has become a more

important tool. Consequently, gathering data and integrating devices’ roles have become

crucial to make systems more knowledgeable about smart manufacturing. Maintenance is

a collection of technical, managerial, and administrative actions designed to guarantee a

system’s optimal performance [1]. In particular, Prognostic Health Management (PHM)

is a maintenance strategy focused on forecasting the possibility of component failure and,

as a result, limiting unplanned downtimes in complex systems. Enhancing maintenance

effectiveness, safe functionality, and performance during this procedure is critical [2]. An

overview of the different components and their connections in a predictive health manage-

ment system is depicted in Figure 1.1.

Figure 1.1: An Overview of Different Components in a Predictive Health Management
System

1.1.2 Health Monitoring Systems

Machine health monitoring and management are essential improvements that must be con-

sidered in the physical industry toward smart manufacturing. Intelligent PHM systems are

proving remarkable capabilities for industrial use and, consequently, have become active

research areas in the last several decades [3]. The main benefits of implementing Integrated
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System Health Monitoring (ISHM) are illustrated in Figure 1.2. ISHM refers to the pro-

cedure of gathering, examining, and utilizing data from various sensors and other sources

in order to determine the current state of health of a system or piece of equipment. Using

this data makes it possible to identify and assess prospective issues or failures before they

arise and take the necessary corrective measures to avoid them. ISHM, prognostics, and

other processes like maintenance planning, decision-making, and risk management are all

included in the broader PHM notion. By providing real-time information on the condi-

tion of a system or piece of equipment, ISHM establishes the foundation for PHM, while

prognostics uses this information to make predictions about the system’s future health and

Remaining Useful Life (RUL), which can be used to guide maintenance choices and en-

hance system performance.

Machines must be appropriately controlled and monitored to run with almost no break-

down and reduce the downtime caused by a local machine or component failure. Therefore,

adequate sensors should be applied to devices to gather different measurements and mon-

itor the components’ health status in real time. Subsequently, the control center monitors

and analyses the data gathered and then chooses and implements the best maintenance tech-

niques for each machine and component [4]. Engineering maintenance is critical in various

industries, including aircraft, manufacturing, automotive, and heavy industry.

Figure 1.2: Benefits of Integrated System Health Monitoring (ISHM)
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Modern industries gradually transform traditional diagnostic practices into prognostic

procedures [5]. Diagnostics are examined to identify the nature of problems and faults. At

the same time, prognostics are used to calculate and forecast the future status of machines

or components by estimating their RUL until total breakdown [4]. Based on historical

trajectory data, it is possible to predict the RUL, which is crucial for optimizing mainte-

nance schedules to prevent engineering failures and save associated costs [3]. In general,

prognostics monitors and detects early signs of decline in component performance.

1.1.3 Maintenance Strategies

Systems, machines, and their components have become more complex in recent years, no-

tably for newer transportation vehicles such as airplanes, missiles, and military ships. Ac-

cordingly, a more complete and integrated system is required to manage total maintenance,

operations, and decision-making aspects.

With the intention of PHM, numerous maintenance techniques have been suggested and

put into practice for various asset types [6]. The traditional maintenance approaches, such

as reactive maintenance (RM), condition-based maintenance (CBM), reliability-centered

maintenance (RCM), and preventive maintenance (PM), as well as recently developed

maintenance methodologies, such as maintenance based on information and communica-

tion technologies (ICT), self-maintenance, engineering immune system (EIS), and others,

have aided in the development of PHM [4]. Another study [2] divided maintenance into

two types: corrective (reactive) and preventive, while the latter consists of three sub-types:

Interval-based Maintenance (IBM), Condition-based Maintenance (CBM), and Predictive

Maintenance (PM).
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1.1.3.1 Corrective Maintenance

According to [1], businesses may employ one or multiple maintenance strategies in their

plants. 59% of them use a reactive maintenance strategy, meaning that corrective action is

taken once a problem has occurred. As part of this run-to-failure approach, maintenance

tasks are only carried out after a piece of equipment has malfunctioned. This approach

can be expensive regarding missed production and repair expenses, even though it may be

appropriate for non-critical equipment.

1.1.3.2 Preventive Maintenance

The most common kind of maintenance, preventive maintenance, is practiced by 76% of

businesses [1]. In this technique, maintenance is typically carried out over short intervals

regardless of the equipment’s actual state [2, 7].

Interval-based maintenance (IBM), also referred to as time-based maintenance, is a

maintenance technique in which maintenance tasks are carried out according to a regular

timetable, regardless of the equipment’s real state. Based on the presumption that the equip-

ment will age at a given pace, maintenance tasks are scheduled to either delay or lessen the

effects of failure.

Contrarily, condition-based maintenance (CBM) is a maintenance plan that specifies

when maintenance tasks should be carried out on the actual condition of the equipment.

When certain parameters are fulfilled, CBM uses real-time data, such as vibration, tem-

perature, or pressure, to monitor the equipment’s condition and initiate maintenance pro-

cedures. CBM aims to reduce wasteful maintenance, increase program efficiency overall,

and carry out maintenance only when it is truly necessary.

Predictive maintenance (PM) has recently become popular for failure prediction [1]

since it can forecast approaching failure and enhance the present maintenance system. For

this reason, many companies have adopted this type of maintenance [1]. PM generally

5



predicts faults or breakdowns in a deteriorating system to optimize maintenance efforts

by evaluating the system’s status using historical data [6]. In this strategy, the RUL of

the components is anticipated using characteristics, which typically include sensors, flight

information, and operational profiles. By projecting necessary maintenance tasks for the

future rather than only the present, predictive maintenance sets itself apart from CBM.

Since failure is always foreseen, these strategies may be used to improve maintenance

scheduling. Early predictive maintenance warnings may save costs by enhancing main-

tenance planning, decreasing downtime, and raising safety. Predictive maintenance can

result in newer methods and better operations [3]. These strategies are briefly compared in

Table 1.1.

Future failure monitoring makes it possible to use predictive maintenance procedures at

the correct time, not too early when the equipment is still functional, or not too late when

it has already failed. Predictive maintenance employs condition monitoring by utilizing

various measurement technologies, including vibration analysis, infrared thermography,

oil analysis, and acoustic monitoring, to track the equipment’s real-time condition, identify

impending failures, and proactively schedule maintenance actions.
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Table 1.1: Maintenance Strategies

Strategy Summary Pros Cons

Corrective

Maintenance

Reactive

Maintenance

(RM)

Fixing when it breaks
Most accessible Runaway repair costs

Minimizing the involved

costs before failure

High levels of

machine downtime

Run-to-failure

strategy

The components are

utilized to the max of

their potential and

life-span

High labor cost

No database is required
Large stocks are

required

Preventive

Maintenance

Interval-based

Maintenance

(IBM)

Calculating a specific

interval, based on

failure history

Analysis can be done

to determine when to

replace a specific

component

It is necessary to collect

a large amount of

failure data

Parts may require

inadequate repairs

Widely usage in

maintenance

scheduling

The information may

also be utilized to create

a timetable for routine

maintenance

Applicable to a minimal

number of components

Assuming that all of the

components are evenly

distributed and have the

same failure distribution

Condition-based

Maintenance

(CBM)

Analyses the behavior

of a specific component

or system using sensor data

Component health

monitoring is possible

before critical failure

When anomalies are

detected, no maintenance

recommendations are made

The system may be

monitored based on the

component’s direct

condition

To monitor failure, numerous

sensor and data solutions

are needed

Predictive

Maintenance

(PM)

Based on characteristics,

the RUL of components

is anticipated

Better maintenance

scheduling
Higher initial investment

7



1.1.4 Applications of PHM

Prognostics and health monitoring systems could benefit many fields apart from engineer-

ing. Medicine [8], weather forecasting [9], military, batteries, structures [10, 11], and ve-

hicles are examples of applications of prognostics in industry. In medicine, PHM has been

applied to advise patients and healthcare professionals about the course of a disease and to

estimate the patient’s chance of survival. For example, in [12], a neural network was used

to recognize the four distinct cancer growth patterns. PHM is also an essential element of

weather forecasting since it enables meteorologists to forecast the probability of specific

meteorological conditions at a particular time and location. Prognostics have been used in

the military for a long time. However, specific applications are challenging to acquire due

to security issues [13]. A significant amount of prognostic research has involved battery-

powered applications. This type of system is critical for battery prognostics since batteries

deteriorate over time. A dynamic model for battery health monitoring is presented in [14]

and can be used to analyze structural component failure. However, battery deterioration is

always present and has a distinct degradation pattern. This deterioration trend may be more

challenging to identify when forecasting the RUL of engineering components. Finally, due

to the rapid increase in the number of vehicles in the automotive field, protecting pedestri-

ans and vehicle passengers has become an important objective for vehicle and vehicle parts

companies, manufacturers, and official organizations responsible for verifying this mea-

sure. Prognostics have recently been implemented on vehicles for the sake of continuously

evaluating diagnostics data over time to identify any significant potential degradation of

vehicle subsystems that may cause a fault, predict the remaining useful life of the specific

component or subsystem, and alert the driver before such a fault occurs [15]. The tech-

nique consists mainly of trending residuals taken from diagnostic data [13]. The metrics

are mostly accuracy measurements such as mean squared error (MSE) or Gaussian proba-

bility density function (PDF) overlaps. The entire technique is data-driven and appropriate

8



when important baseline data is available [16, 17, 18].

One of the most crucial applications of PHM is aircraft maintenance since even minor

equipment flaws can significantly affect how safely an aircraft operates. Worldwide air traf-

fic is increasing, and operational performance must rise to meet the economy’s demands.

Optimum aircraft maintenance is necessary for high operational performance. Maintenance

must be performed accurately to maximize uptime, better scheduling, and safety. Addition-

ally, maintenance is estimated to account for 10 to 15 percent of all airline expenses [19].

Therefore, a more efficient failure prediction system can significantly benefit the indus-

try [3]. System health assessments on spacecraft and airplanes are complex, expensive, and

due to the unavailability of parts and components, sometimes impossible. Therefore, the

aerospace sector is the focus of the most active research and development activity in sys-

tems prognostics. To decrease total lifespan costs and increase flight readiness, prognostic

is being applied to the health management systems of the latest military and civilian air-

craft. Governments, equipment manufacturers, small businesses, and even academia have

conducted prognostics in aerospace [20]. Prognostic systems aid in maintenance schedul-

ing, optimal operating mode determination, and asset purchase choices as they enter the

commercial aircraft sector.

1.2 Problem Statement

Monitoring and maintenance have always existed. However, the demand for a comprehen-

sive, integrated system for vehicle fault detection, diagnostics, failure prognostics, mainte-

nance planning, operation decision support, and decision-making grew significantly with

the fast development of engineering systems’ complexity, particularly vehicles [21]. Main-

tenance management choices account for 15–40% of production costs across several indus-

trial sectors, according to [2].

Any unexpected production interruptions are considered unplanned downtime. The
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manufacturing line may experience a significant backlog due to the sudden stoppage, which

might last for a while. Additionally, the cost is far higher in some industries, such as the

auto sector, where downtime may cost up to 50 thousand dollars per minute or 3 million

dollars per hour. On the other hand, a lack of sufficient PHM considerations has led to

many catastrophic occurrences that have resulted in significant environmental harm and a

significant loss of human life [22]. If appropriate maintenance practices had been followed,

many disastrous incidents might have been avoided.

Existing PHM methods are classified into three types: model-based approaches, data-

driven approaches, and hybrid approaches. While detailed modeling of the complex system

degradation makes model-based techniques more accurate, it also necessitates substantial

previous knowledge of physical systems, typically not accessible in practice, such as with

aircraft engines [3].

The purpose of this research is to evaluate the possibility of predicting the RUL based

on sensor data of a system by deploying artificial intelligence and, specifically, deep neural

networks with an attention mechanism. First, the proposed solution needs to be feasible in

terms of design, setup, and implementation. Then the predicted value for the RUL of one

component or generally a system needs to be evaluated as a valid and verified estimation

and at the same time practically applicable and acceptable.

1.3 Research Questions and Objectives

The main goal of this thesis is to design a predictor PHM model established on an attention-

based neural network architecture to estimate the RUL of system components based on

sensor data. We will provide support materials showing the proposed model’s success. In

addition, we will evaluate whether the proposed model is performing well by considering

how late or early it can predict the failure of a component.

In order to achieve the goal above, the following sub-goals were achieved:
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• Determining a system status according to its sensor data to see if it is operating in a

normal healthy state or its degradation has started, see Section 3.4.

• Finding a way to detect and identify the most discriminating related sensor data for

any system that does not need any knowledge from an expert from that specific do-

main, see Section 3.5.

• Evaluating the performance of the model and showing which metric is more suitable

for this research domain, see Section 3.8.

• Determining the sensitivity of the model concerning quality and quantity of data, see

Section 4.2.

• Evaluating the performance of attention-based models on time series data and com-

paring it with other architectures, see Section 4.3.

1.4 Organization of the Thesis

This thesis is organized into five chapters:

• Chapter 1: Introduction (current chapter)

In this chapter, the background and motivations are introduced. The chapter starts

with presenting smart manufacturing and health monitoring systems. Then, different

maintenance strategies are described, and predictive maintenance is discussed in de-

tail. Finally, the chapter presents the problem statement, followed by the goal and

objectives of the research.

• Chapter 2: Literature Review and Theoretical Background

In this chapter, we first review the required technical background. Then, the relevant

literature on the topic for the following thesis developments is presented.
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• Chapter 3: Problem Settings and Preprocessing

This chapter describes the used datasets (C-MAPSS) [23], sensor details, sensor se-

lection, preprocessing, operating conditions, and fault modes, showing the effects of

different time window sizes and evaluation metrics.

• Chapter 4: Experiments

In this chapter, we present the proposed model developed to meet the objective of

this research. In addition, Chapter 4 includes the methodology and evaluation of the

proposed model.

• Chapter 5: Conclusions and Future Perspectives

This is the final chapter in which we summarize our work and wrap up the research

by reviewing the limitations and future work possibilities.
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Chapter 2

Literature Review and Theoretical

Background

This chapter’s main objective is to discuss previous works, fundamental definitions, and

essential concepts required to understand this thesis. In Section 2.1, various facets of the

remaining useful life (RUL) estimation problem are explained. Then, the state-of-the-art in

the research area, presented in Section 2.2, gives an overview of the different models used

in research and industry.

2.1 Background on Machine Learning

Machine learning methods have gained popularity recently due to their ability to handle

large amounts of data and model complex relationships between input and output variables.

Popular machine learning methods for RUL prediction include artificial neural networks

and deep learning models for regression and line series analysis. These methods can be

trained on historical data from the system or component to learn the degradation patterns

and predict the RUL based on current or future operating conditions.
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2.1.1 Machine Learning and RUL Prediction

RUL prediction involves predicting the time a particular component or system has before

it fails or needs to be replaced. RUL prediction is an important application of machine

learning in the field of predictive maintenance, where it is used to optimize maintenance

schedules and reduce downtime. The basic idea behind RUL prediction is to train a model

using historical data on the performance of the component or system. The model then uses

this data to make predictions about the remaining useful life of the component, given its

current state and usage. Figure 2.1 illustrates the concept of RUL graphically.

Figure 2.1: Depiction of RUL through Life Cycles of a Component

There are different approaches to RUL prediction, depending on the type of data being

used and the structure of the model. One common approach is time series analysis, where

the input data consists of time-varying signals such as sensor readings, vibration measure-

ments, or acoustic emissions. These signals are used to model the degradation or wear of

the component over time and to make predictions about its remaining useful life. Another

approach is to use machine learning models such as neural networks, decision trees, or

support vector machines for regression. These models can be trained on various features,

including sensor data, environmental factors, and maintenance records. The goal is to iden-

tify patterns and relationships in the data that can be used to predict the remaining useful

life of the component.

RUL prediction is a challenging task because it requires accurate models that can cap-

ture the complex and non-linear relationships between the input data and the remaining

useful life of the component. It also requires careful data collection, preprocessing, and
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domain expertise to interpret the results and optimize maintenance schedules. However,

when done well, RUL prediction can significantly reduce maintenance costs, improve reli-

ability, and increase uptime.

2.1.2 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are machine learning algorithms loosely inspired by

the structure and function of biological neurons and neural networks in the brain. ANNs

recognize complex patterns and relationships in data by modeling the input data using a set

of interconnected nodes organized in layers.

The basic unit of an ANN is a neuron, which takes a set of inputs, performs some pro-

cessing on those inputs, and produces an output. The inputs to a neuron are multiplied by

weights, and the sum of these weighted inputs is passed through an activation function to

produce the output of the neuron. The activation function introduces non-linearity into the

model, allowing ANNs to model complex relationships in data. ANNs are typically orga-

nized into layers of neurons, each consisting of a set of neurons connected to the neurons in

the previous and next layers. The input layer receives the input data, while the output layer

produces the final output of the model. The hidden layers perform intermediate processing

and computation on the input data.

The weights of the connections between the neurons are learned from the data during

the training process [24]. The objective of the training is to minimize a loss function that

measures the error between the predicted output and the true output for each training ex-

ample. This is typically done using an optimization algorithm that adjusts the weights to

minimize the loss function. ANNs can be used for various tasks, including classification,

regression, and clustering. They have been successfully applied in many areas, such as

image and speech recognition, natural language processing, and financial forecasting. The

effectiveness of ANNs in solving these tasks has made them one of the most widely used
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machine learning algorithms today.

The architecture of an ANN can vary widely, depending on the specific task and the

characteristics of the data. Some common types of ANNs include feedforward neural net-

works (FNN), recurrent neural networks (RNN), convolutional neural networks (CNN),

and self-organizing maps. Overall, ANNs have proven to be powerful tools for solving

complex problems in various domains. Their ability to automatically learn from data and

model complex, non-linear relationships makes them a valuable tool for many applications

in computer science and beyond [25].

Deep learning is a subset of machine learning which uses deep neural networks, i.e

ANNs with many layers. Deep neural networks can learn hierarchical representations of

data, allowing them to capture complex patterns and relationships in the data. Deep learn-

ing has been particularly successful in applications such as computer vision, natural lan-

guage processing, and speech recognition, where large amounts of data are available, and

highly complex relationships between the input and output variables exist.

One of the key advantages of deep learning is its ability to automatically learn feature

representations from raw data, eliminating the need for manual feature engineering. This

is often achieved through the use of convolutional layers, which are designed to learn spa-

tial patterns in image data, and recurrent layers, which are designed to model temporal

sequences in data such as text and speech.

Deep learning models are typically trained using backpropagation, a gradient-based

optimization algorithm that adjusts the weights and biases of the network to minimize the

difference between the predicted and actual output. The choice of optimization algorithm

and hyperparameters, such as the learning rate and regularization strength, can significantly

impact the model’s performance.

While deep learning has achieved remarkable success in many areas, it has limitations.

Deep learning models require large amounts of training data and are often computationally
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expensive to train and deploy. They can also be prone to overfitting, where the model

performs well on the training data but fails to generalize to new data.

Based on the ANN idea, several architectures were created, each with a unique design,

information processing (data), and learning procedure. The most used approaches, which

served as the cornerstones of deep learning are as follows:

1. Multilayer Perceptron Networks (MLPs)

2. Convolutional Neural Networks (CNNs)

3. Recurrent Neural Networks (RNNs)

We discuss and review the details of the first and the third structures as they have been

deployed in our research work. Figure 2.2, depicts various neural networks and visually

explains them.
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Figure 2.2: Neural Network Zoo by the Asimov Institute [26]
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2.1.3 Multilayer Perceptron Networks (MLPs)

Multilayer perceptron (MLP) networks are feed forward artificial neural networks com-

posed of multiple layers of perceptrons, which are the basic building blocks of ANNs [27].

MLP networks consist of an input layer, one or more hidden layers, and an output layer, as

shown in Figure 2.3.

Figure 2.3: An Example MLP Network with One Hidden Layer [28]

The output of each layer is obtained by applying a nonlinear activation function to

the weighted sum of the inputs. The weights and biases of the MLP network are learned

through a process called backpropagation, which involves the propagation of error gradi-

ents from the output layer back to the input layer. The output yk of a perceptron is calculated

as Equation 2.1.

yk = f

(︄
n∑︂

j=1

wkjxj + bk

)︄
(2.1)

where xj is the input to the jth neuron, wkj is the weight connecting the jth input to the

kth neuron, bk is the bias of the kth neuron, f is the activation function, and n is the number

of inputs to the neuron.
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The most commonly used activation function for MLP networks is the sigmoid or lo-

gistic function, which has the form in Equation 2.2:

σ(x) =
1

1 + e−x
(2.2)

Other popular activation functions include the rectified linear unit (ReLU) in Equa-

tion 2.3,

f(x) = max(0, x) (2.3)

the hyperbolic tangent (tanh) function shown in Equation 2.4,

tanh(x) =
ex − e−x

ex + e−x
(2.4)

and the softmax function in Equation 2.5.

Pi =
ezi∑︁K
j=1 e

zj
(2.5)

where Pi is the probability of class i, zi is the output of the ith neuron in the output

layer, and K is the number of classes.

The output of an MLP network is obtained by applying the activation function to the

weighted sum of the inputs of the output layer (except for the softmax as it is defined above)

as shown in Equation 2.6:

yk = f

(︄
n∑︂

j=1

w
(L)
kj y

(L−1)
j + b

(L)
k

)︄
(2.6)

where L is the number of layers in the network, w(L)
kj is the weight connecting the jth

neuron in the (L − 1)th layer to the kth neuron in the Lth layer, y(L−1)
j is the output of the

jth neuron in the (L− 1)th layer, b(L)k is the bias of the kth neuron in the Lth layer, and n is
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the number of inputs to the Lth layer.

The weights and biases of an MLP network are learned by minimizing a cost function

using an optimization algorithm such as gradient descent. The cost function measures the

difference between the predicted output of the network (yk), and the true output (ŷk) for a

given input.

Overall, MLP networks are a powerful tool for modeling complex nonlinear relation-

ships between input and output variables and have been successfully applied in many fields,

including image and speech recognition, natural language processing, and financial fore-

casting.

2.1.4 Recurrent Neural Networks (RNNs)

To model temporal dependency in time series, recurrent neural networks (RNNs) with

nodes connected along a sequence were developed [29]. Recurrent neural networks have

been developed to handle sequential data. It consists of a chain of repeating modules of neu-

ral networks. This repeating module will have a very simple structure in standard RNNs,

such as a single tanh layer as shown in Figure 2.4.

Figure 2.4: Three RNN Cells [29]

The main idea behind RNNs is to use the output of a module (or cell) as an input to the

next module in the sequence, thus allowing the network to maintain a memory of previous

inputs [30]. The formula for a simple RNN is:
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ht = f(Whhht−1 +Whxxt + bh) (2.7)

yt = g(Whyht + by) (2.8)

where ht is the hidden state of the RNN at time step t, xt is the input at time step t, yt is

the output at time step t, Whh, Whx, and Why are weight matrices, bh and by are bias vectors,

f is the activation function used for the hidden state, and g is the activation function used

for the output.

The equation for the hidden state ht shows that it is a function of the previous hidden

state ht−1, the current input xt, and the network weights and biases. This allows the network

to consider the previous inputs as it processes the current input.

One issue with this simple RNN is that the gradients can become very small (or large)

when backpropagating through time. This is known as the vanishing gradient problem [30]

and makes training the network difficult. When modeling long-term dependencies, the

typical RNN performs significantly worse due to the issue of vanishing gradient or gradient

exploding during network training [5]. The vanishing gradient problem arises because

gradients become very small as they are backpropagated through many time steps, making

it difficult for the model to learn long-term dependencies. Several variants of the RNN have

been proposed to address this issue, such as the Long Short-Term Memory (LSTM) [31]

and Gated Recurrent Unit (GRU) [32] networks.

2.1.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) archi-

tecture designed to address the vanishing gradient problem that can occur when training

standard RNNs on long sequences. An RNN is ideally suited for machine RUL prediction
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using successive sensor readings. LSTM networks address vanishing gradient issues by

introducing a memory cell and several gates to control the flow of information within the

network.

The LSTM architecture, first introduced in [31], which may be thought of as a memory

cell made up of a few gates, is a solution to this issue. The gates can capture long-term

dependencies, which can permit or prohibit the passage of information along a sequence.

Because of this, the LSTM network has had considerable success analyzing time-series data

for tasks including occupancy prediction, video analysis, and natural language processing.

Recently, it has also demonstrated excellent performance in terms of RUL prediction [29].

The memory cell of the LSTM is a vector that can retain information over long periods

of time. The cell receives input from the previous hidden state and the current input and

computes an updated cell state. The cell’s output is then determined by a combination of

the current cell state and the output gate, which controls how much of the cell state is used

to compute the output. The input gate determines how much new input should be added

to the cell state, and the forget gate controls how much of the previous cell state should be

retained. These gates are learned during training, allowing the network to adapt.

Figure 2.5: Structure of the LSTM [29]

In Figure 2.5, an LSTM network is depicted. An input gate chooses information from

the input channel. A forget gate discards the unnecessary information from previous time
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steps. An output gate is responsible for the outputs of the LSTM cell. Assuming that xt is

the input at time step t, ht is the hidden state at time step t, Ct−1 is the memory cell state,

wf , wi, wC , and wo4 are the weights, bf , bi, bC , and bo are the biases, and σ and tanh are

the sigmoid and tanh functions, respectively, the LSTM network can be expressed as:

Forget gate:

f t = σ(wf [ht−1, xt] + bf ) (2.9a)

Input gate:

it = σ(wi[ht−1, xt] + bi) (2.9b)

Candidate cell state:

C̃
t
= tanh(wc[ht−1, xt] + bc) (2.9c)

New cell state:

Ct = f t ∗ Ct−1 + it ∗ C̃t
(2.9d)

Output gate:

ot = σ(wo[ht−1, xt] + bo) (2.9e)

New hidden value:

ht = ot ∗ tanh(Ct) (2.9f)

2.1.6 Attention Mechanism

Applying attention mechanisms in neural networks helps models perform better on tasks

that deal with sequential or structured data. It is especially useful when working with

lengthy sequences since it enables the model to concentrate on the most crucial compo-

nents of the input at each stage. The attention mechanism was first introduced in image

processing to recognize objects and was based on the human visual system [33, 34]. Given
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that humans often concentrate on a specific region of an image during identification, it

makes sense that different portions of an image would be assigned variable weights. At-

tention has then been used effectively in works related to time-series data [35], and human

language translation [36].

The fundamental idea underlying attention is to train the model to pay attention to var-

ious input components according to their relevance to the given task. This is accomplished

by providing a series of learnable parameters that establish the relative importance of each

input component [37]. A set of attention weights are computed for each input element

or sequence of elements as part of the attention mechanism’s high-level operation. The

significance of each component for the current phase of the model is represented by these

weights. The weighted sum of the input items is then calculated using the attention weights

as the input to the model’s subsequent step.

Figure 2.6: Structure of an Attention Module

Figure 2.6 shows an attention module in which the model tries to predict the attention

weights (αi,j) according to Equation 2.10. Where hj ∈ Rn is the original input with size

n that the attention weight is calculated for it and si−1 ∈ Rm is the hidden state with size

m of the targeted value for each time step. f1 is a linear or non-linear transformation that

could be any neural network module. The vector ei,j , also known as the alignment score,
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measures the importance of jth item of the ith input sequence. This vector is normalized

by softmax to give a vector of scores (α) indicating how much importance we should put

on the ith sequence.

ei,j = f1(si−1, hj) (2.10a)

αi,j = softmax(ei,j) (2.10b)

The next step is to apply the weights αi,j to the original input elements hj to get the

final target values based on the attention weights. Equation 2.11 shows how the output ci

(context vector) is calculated. Note that the ci is distinct at each time step i.

ci =
n∑︂

j=0

αi,jhj (2.11)

Various attention mechanisms are deployed by deep learning models. Attention can be

generally described as a weight or context vector of importance within a sequence [38]. In

order to create a more accurate representation of a sequence, self-attention is a technique

for focusing attention on the relationships between distinct positions within the sequence.

Self-attention is a mechanism that relates different positions of a single sequence in order to

gain a more explicit representation [39]. Instead of computing a complete summary context

vector based on input/output prediction, as is the case with other attention mechanisms,

self-attention instead calculates the relevance of each sequence token in relation to each

other. To do this, a weighted total of each token in the sequence is calculated, with the

weights acquired from the training. A function that evaluates each token in relation to

every other token in the sequence determines the weight that should be given to it.

Although self-attention and attention function are similar in deep learning, there is a

significant distinction between the two. When a model calculates attention scores between
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various input components and another component of the input or external memory, the term

"attention" is used. In machine translation, for instance, the attention mechanism computes

attention scores between the source sentence and the target sentence, enabling the model

to account for the relative weight of each component of the source sentence in the target

translation. On the other hand, for self-attention, the model uses a mechanism to calculate

the attention scores between various segments of the input sequence. Self-attention enables

the model to assess the relative importance of each installment in the series, identify the

interdependencies between them, and make predictions in light of that information.

In addition to introducing the self-attention mechanism, the work published as "Atten-

tion is all you need" [40] provided a very inclusive and expansive definition of the attention

mechanism based on a key, a query, and a value. As shown in Figure 2.7, a query (Q) and a

set of key-value (K,V ) pairs are mapped to the output by an attention function, where the

query, keys, values, and output are all vectors. The output is computed as a weighted sum

of the values, with the weight assigned to each value determined by the query’s alignment

score function with the corresponding key.

Figure 2.7: Self-attention Module in Generalized Form
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According to Equation 2.12, given a query Q and a set of key-value pairs (K, V), it is

possible to use attention in a more general way to calculate a weighted sum of the values

based on the query and the associated keys. We can say that the query attends to the values

by choosing which ones to emphasize. The self-attention mechanism can be thought of as a

three-step sequence. First, it calculates the alignment score of the query and the keys, then

applies the softmax function to convert the calculated score into a probability distribution,

and finally, selects the key and calculates the output weights (context vector). All of the

keys, values, and queries in a self-attention layer originate from the same source.

Attention(Q,K, V ) = softmax(QKT )V (2.12)

where Q, K, and V are the corresponding query and key-value vectors and T is the

transpose function.

There are several types of self-attention mechanisms deployed in different fields of

deep learning. The main difference between these mechanisms is the alignment score cal-

culation. Figure 2.8 shows the two most frequently deployed types, Scaled Dot-product

Attention and Multi-head Attention.

• Dot-product attention: The dot product of the query and key is used to determine

the alignment score. This was first introduced in [37].

• Scaled Dot-product Attention: The dot product between the query and key vectors

is computed and then scaled by the square root of the dimensionality of the key

vectors [40]. In transformer architecture, this is the type of self-attention that is

employed the most.

Scaled dot-product attention is a common and very powerful attention mechanism

used in transformer-based models. The scaled dot-product attention output matrix is

calculated in Equation 2.13.
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Attention(Q,K, V ) = softmax

(︃
QKT

√
dk

)︃
V (2.13)

where Q is the query matrix, which has dimensions m × dk, K is the key matrix,

which has dimensions n × dk, V is the value matrix, which has dimensions n × dv,

dk is the dimension of the key and query vectors as they have a same dimension, dv

is the dimension of the value vectors.

• Multi-head Attention: The model can pay attention to various representations of

the same input thanks to this particular form of self-attention. The process entails

computing the alignment score for each head of the query, key, and value vectors

before concatenating the results.

Multi-head attention is a variant of the scaled dot-product attention mechanism that

enables the model to simultaneously attend to information from different represen-

tation subspaces at different positions [40]. The multi-head attention formula is as

stated in Equation 2.14.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.14)

where Q, K, and V are the query, key, and value matrices. The number of attention

heads denoted by h, and headi = Attention(QWQ
i , KWK

i , V W V
i ) is the output of

the attention head i. Each attention head output is computed using the scaled dot-

product attention mechanism of Equation 2.13. WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,

and W V
i ∈ Rdmodel×dv are learnable linear projection matrices for the query, key, and

value inputs to the attention head i. The concatenated output of the attention heads

is mapped to the output space of the model using a learnable linear projection matrix

by WO ∈ Rh×dv×dmodel .
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• Relative Self-attention: This type of self-attention computes attention by taking

into account relative positional information. The query and key vectors are given

learnable position embeddings to record their relative distance [41].

• Local Self-attention: This particular form of self-attention confines the calculation

of attention to a small window of the input sequence. When modeling lengthy se-

quences, local self-attention can be helpful because the complete self-attention com-

putation may be expensive [42].

• Multidimensional Self-attention Block: This type of self-attention is a sort of neu-

ral network layer that uses attention mechanisms to focus on relevant information

from various dimensions or channels of input data. This model is employed mostly

when the input is a multidimensional time series. It could be interesting to have one

attention vector per dimension. A multidimensional attention block’s core objective

is to provide the model with the ability to selectively pay attention to various input

data according to their importance for the current task. To do this, a set of atten-

tion weights are computed for each dimension or channel of the input data. These

weights are then used to weigh the contribution of each element in that dimension to

the layer’s final output [43].

• Sparse Self-attention: This type of self-attention only considers a small number

of input tokens while computing attention [44]. When simulating extremely long

sequences when it would not be possible to do the whole self-attention computation,

sparse self-attention can be helpful.
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Figure 2.8: (Left) Scaled Dot-Product Attention. (Right) Multi-head Attention Consists of
Several Attention Layers Running in Parallel [40]

Focusing on several areas of interest by allocating different weights to different at-

tributes at various time steps, we suspect that will be an efficient method for machine RUL

prediction. As we will see in Chapter 4, in this thesis, we will employ a self-attention

mechanism to discover the relevance of the attributes and time phases as there is no prior

knowledge indicating this relevance and links in the attributes.

2.1.7 Neural Network Settings and Hyperparameters

All neural network models include different parameters, such as model size (i.e. the num-

ber of hidden layers and neurons), type, learning method, activation function, etc. These

are known as neural network settings and hyperparameters. The most important ones are

explained in this section.

2.1.7.1 Neural Network Time Window

In a time-series neural network, a time window is a portion of the time series used to train

the network at each time step. The time window determines how many prior time steps

will be fed into the network to forecast the following time step. The time window size

is a significant parameter impacting the network’s performance. The network may not
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have enough context to generate precise predictions if the time window is too limited. On

the other hand, the network could become overloaded with information and have trouble

learning if the time span is too large. The overlap across sequential time windows is an

important parameter in addition to the time window’s size. The network can perform better

and capture long-term dependencies in the input by using overlapping time windows [45].

Grid search, random search, and Bayesian optimization are commonly used methods for

choosing the optimal time window and overlap parameters. The aspects of the time series

data, such as the size of the time series, the length of the time steps, and the complexity of

the sequences and their correlations may affect the optimal values of these parameters.

2.1.7.2 Hyperparameters

Neural networks have many hyperparameters that can be tuned to improve their perfor-

mance on a given task [46]. Here are some common hyperparameters and their descrip-

tions.

• Learning rate: The size of the model’s parameter updates during training is deter-

mined by the learning rate. Faster convergence can be achieved with a larger learning

rate, but the optimization process could become unstable. Although a slower learning

rate may lead to slower convergence and longer training cycles, it can help to assure

stability.

• Optimizer: Neural network optimization is the process of changing a neural net-

work’s parameters to reduce the discrepancy between expected results and actual

ones. Usually, an optimizer or optimization technique is used for this. Stochastic

gradient descent (SGD), Adam, and RMS-prop are among the most well-known op-

timizers in neural networks.

• Number of epochs: The number of epochs indicates how often the neural network
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is trained with the training data. The model’s performance may improve with more

epochs, but there may also be a greater risk of the model overfitting the training data.

• Batch size: How many training samples are utilized at a time to update the model’s

parameters depends on the batch size. Although a larger batch size might shorten

training times, it might also use more memory and produce less consistent updates.

Whilst it could take longer to train, a smaller batch size can help to ensure more

stable updates.

• Number of hidden layers: The depth of the network and its capacity to learn com-

plex patterns depend on the number of hidden layers in the neural network. Whereas

a deeper network might be more capable of discovering complex patterns, it might

also be more vulnerable to overfitting.

• Number of hidden neurons: The network’s capacity and ability to express complex

functions are determined by the number of hidden neurons. Better performance may

come from using more hidden neurons, but overfitting is also possible.

• Activation function: The output of a node is determined by its activation func-

tion given an input or group of inputs. The activation function determines the non-

linearity of the neural network and its ability to represent complex functions. Popular

activation functions include ReLU, sigmoid, tanh, and softmax.

• Regularization: The use of an appropriate regularization strategy helps to avoid

overfitting. One of the most well-known solutions to this issue is a dropout. During

training dropout, randomly sets a portion of the units in a layer to zero, hence block-

ing their contribution. The percentage of units that are arbitrarily dropped out at each

iteration is determined by the dropout rate. It has been shown that the dropout reg-

ularization method works well in reducing overfitting in deep neural networks [47].
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It can be used with several neural network architectures, including feedforward, con-

volutional, and recurrent neural networks. Dropout regularization, however, might

potentially extend the model’s training period because it needs to train multiple sub-

models.

Depending on the particular problem being solved and the properties of the data, the

ideal hyperparameters for a given neural network will vary. Finding the ideal configuration

for a particular task frequently requires testing various hyperparameter values and com-

paring their effectiveness on a validation set. Manual selection of the hyperparameters is

possible, although not systematic. The majority of the hyperparameters interact with one

another and provide a less-than-ideal model. Yet, there are methods [48] to find the optimal

set of hyperparameters. For finding the optimal hyperparameters related to our proposed

architecture we took advantage of the grid search technique.

Grid search involves giving a range of possible values for each hyperparameter and

then evaluating the model’s performance on a validation set for each hyperparameter com-

bination. This can be a lengthy procedure, especially for models with a large number of

hyperparameters or a wide range of possible values.

2.2 State-of-the-Art

Remaining Useful Life (RUL) is an important concept in prognostics, which refers to the

amount of time a system has until it reaches a predefined failure threshold. Accurately

predicting the RUL of a system can help to improve maintenance schedules, reduce down-

time, and improve safety. There has been a growing body of literature on RUL prediction in

recent years, focusing on developing accurate and robust prognostic models using various

machine learning and statistical techniques. In this section, we discuss the literature review

of recent research on RUL prediction.
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The main methods for forecasting RUL in the literature may be classified into physical

model-based techniques, data-driven model-based approaches, and ensemble-based & hy-

brid methods [49]. We review each category and discuss recent research in these categories.

2.2.1 Physics-based Techniques

Physics-based techniques characterize a system’s deterioration stage by building mathe-

matical models based on failure mechanisms or the first principle of damage [50]. The

physical model developed with a thorough understanding of failure mechanisms and excel-

lent parameter estimates may give reliable RUL estimation. Physics-based models consider

the physical degradation mechanisms of the system and can provide more interpretable pre-

dictions. Physics-based techniques are the most used in the industry as they are extremely

trustworthy once the model is developed [51].

However, physics-based techniques have two major drawbacks. First, the developed

physical model is difficult to apply directly to other systems. Due to their dependence on the

behavior of the particular industrial system under study, the solutions in this category only

apply to that system. They are not readily transferable to other systems. In addition, they

need in-depth experimentation, specialized knowledge, and model verification, which may

be difficult and occasionally impossible for complex systems. They need a strong grasp

of the physical process of failure. Establishing an efficient physical model necessitates

sophisticated previous information. Because of these constraints, data-driven techniques

are becoming more popular today.

2.2.2 Data-driven Approaches

Data-driven approaches to RUL prediction have gained significant attention in recent years

as they do not require explicitly modeling the system’s underlying physics. They use

trained models based on historical data from sensors integrated into manufacturing systems
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to model the degradation characteristics. Machine learning, specifically deep learning, has

been widely applied in RUL prediction due to its ability to learn complex patterns and fea-

tures automatically. For example, [52] proposed a support vector regression (SVR) model

for predicting the RUL of rolling bearings. The model uses a set of features extracted

from vibration signals to train an SVR model to predict the remaining useful life of the

bearing. These models can access various data formats and take advantage of data vari-

ances that physics-based techniques cannot recognize. [53] proposed a deep belief network

feedforward neural network (DBN-FNN). Using the help of the learned features, the FNN

performed the RUL prediction after learning representative features with the DBN.

A deep convolutional neural network (CNN) is suggested by [54] for the prediction

of RUL. They investigated the algorithm’s empirical performance on two public datasets,

the NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) and the

PHM 2008 Data Challenge data set, as the first attempt to use CNN for RUL estimation

in prognostics. The results demonstrate that the suggested CNN-based RUL estimation

method outperforms current regression methods. The experimental findings on two datasets

demonstrated that the CNN outperformed several shallow learning algorithms for RUL

prediction [55] and implemented a multiscale convolutional neural network (MSCNN) for

RUL prediction. First, raw sensory data was subjected to a wavelet transform for a time-

frequency representation (TFR). The TFR was then utilized as an input to the MSCNN for

RUL prediction. [56] explored the time-frequently domain information for prognostics and

then suggested an RUL prediction method. They used convolutional neural networks on a

well-known rolling beating dataset to extract the multiscale feature. The outcomes of the

experiments indicate that the suggested approach holds promise for prognostic issues and

is well-suited for commercial use.

A long short-term memory (LSTM)-based RUL prediction is presented in [57]. The
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experimental findings on three datasets revealed that the LSTM outperforms several shal-

low learning techniques like CNN [58] suggested a bidirectional long short-term memory

(Bi-LSTM) approach for RUL prediction. A health index (HI) is first introduced, then the

Bi-LSTM is used to track the final RUL forecasting index variation. The RUL predic-

tion uses a multi-objective deep belief network ensemble (MODBNE) approach from [59].

They used a multi-objective evolutionary method to train DBNs with two competing goals:

accuracy and variety. The developed DBNs were then pooled to build an ensemble model

for the final RUL prediction.

One common deep learning-based technique is to characterize RUL estimation as a re-

gression problem, directly translating input data to RULs. [58] used competitive learning to

divide the training data into multiple degradation phases. Then, using historical data before

the latest state, an Elman RNN network was trained. Finally, the performance of the most

recent state was forecasted using this trained RNN. An LSTM network is applied by [60]

and [61], for directly estimating the RUL. A recent study further attaches a restricted Boltz-

mann machine (RBM) before the LSTM layer. This unsupervised pre-training stage is used

to learn abstract characteristics from raw unlabeled input data automatically. Furthermore,

a genetic algorithm (GA) was used to adjust a large number of hyper-parameters [62].

Autoencoders have also been used to extract features from high-dimensional sensor data

for RUL prediction. [63] proposed a model based on stacked denoising autoencoders for

predicting the RUL of bearings. The model uses a set of features extracted from vibration

signals to train the autoencoder model to predict the remaining useful life of the bearing. An

ultimate intelligent technique for prognosticating and monitoring the condition of standard

rotary machine bearings was proposed in [64]. Their approach was based on autoencoder-

based unsupervised feature extraction from sensors. A valuable trend on the state of the

bearing during the test-to-failure was produced as a result of a correlation analysis on the
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retrieved features. It was determined that autoencoders accurately predicted the degrada-

tion’s starting point while providing an informative trend on how it progressed. It also suc-

cessfully monitored the health of the bearings in several experiments. An attention-based

LSTM is also used in the model proposed in [65] alongside a time series multiple channel

convolutional neural network (TSMC-CNN) to predict the RUL for bearings. The general

attention mechanism is used for decoding the extracted features as the context vector by the

CNN model and feeding the features with different weights to the LSTM network. The ap-

proach showed significant improvement in performance in comparison to the architecture

without taking advantage of the attention layer before the LSTM.

As described above, data-driven approaches have been applied successfully in RUL pre-

diction and have shown promising results in various applications. These approaches pro-

vide a more practical alternative to physics-based models, which require extensive knowl-

edge of the underlying degradation mechanisms of the system. Accurate and reliable RUL

prediction models are essential for improving maintenance schedules, reducing downtime,

and improving the safety of critical systems.

2.2.3 Hybrid and Ensemble-based Methods

Ensemble methods combine multiple models to improve the performance of RUL predic-

tion. Hybrid models combine both data-driven and physics-based approaches to RUL pre-

diction. [66] proposed a hybrid model based on SVR and a degradation law for predicting

the RUL of a gas turbine, achieving high accuracy compared to other models. In another

research [67], high accuracy on prediction is observed by a hybrid CNN and LSTM model

to predict RUL in a bearing dataset, compared to other models. In another study, [68] pro-

posed an ensemble model based on multiple regression models for predicting the RUL of a

gearbox, achieving better performance than individual models.

In conclusion, RUL prediction is an active research area, and various machine learning
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and statistical techniques have been applied to this problem. Accurate and robust RUL

prediction models can help to improve maintenance and reduce downtime, leading to sig-

nificant benefits in many industrial applications. Table 2.1 summarizes the state-of-the-art

approaches to RUL prediction presented in this section.

Table 2.1: State-of-the-art for RUL Prediction

Approach Year Dataset

Autoencoder [64] 2017 Bearing

CNN [56] 2018 Bearing

DBN [69] 2019 Bearing

TSMC-CNN-ALSTM [65] 2020 Bearing

CNN [54] 2016 Turbofan

Multi-DBN [59] 2016 Turbofan

LSTM [57] 2017 Turbofan

LSTM + CNN [70] 2019 Turbofan

Autoencoder [71] 2019 Turbofan

Optimized LSTM-GRU [72] 2021 Turbofan

LSTM [73] 2020 Battery

Bi-LSTM [74] 2020 Battery

CNN-LSTM [67] 2021 Battery

MFO-DNN [75] 2021 Battery

2.2.4 Literature Gap

Due to the limitations of generic RNNs on long-term dependencies, due to the vanishing

gradient problem, these methods do not perform very well on RUL prediction tasks, es-

pecially ones having datasets with longer sequences. On the other hand, although GRUs
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are very fast to train and less computationally expensive than LSTMs, LSTMs often GRUs

outperform when dealing with long-term dependencies and datasets with longer sequences.

The LSTM network, developed to handle sequential data modeling, is naturally suited

for RUL prediction because the sensory data for PHM are time series with temporal depen-

dence. The different features the LSTM network learns at various time steps will contribute

equally to the RUL’s final prediction, which is not necessarily representative of one prob-

lem. Giving more weight to features and time steps that are more significant may be more

representative. As a result, to improve the performance of the RUL prediction, we sug-

gest a self-attention-based deep learning method alongside an LSTM to automatically give

greater weights to more important features and time steps on the input data and the set of

learned features.

2.3 Chapter Summary

This chapter mainly investigated the field’s previous works and reviewed the fundamental

definitions and essential concepts required for our research. Section 2.1 reviewed work

on RUL prediction and how machine learning has been used to help in predictive mainte-

nance. The section explained the fundamentals of artificial neural networks. We targeted

recurrent neural networks and investigated their structure, advantages, and disadvantages.

We explained that LSTM networks were specifically introduced to address the vanishing

gradient problem which RNNs suffer from. Then, we covered the attention mechanism that

helps neural networks to perform well on tasks that model sequential or structured data. By

identifying the most crucial components of features, this mechanism helps work with even

lengthy sequences. We reviewed different attention mechanisms and went through their

implementations. Finally, we discussed the most important hyperparameters in neural net-

works.

In Section 2.2, we reviewed the approaches and different models proposed in academic

40



research and in the industry for prognostics. We first reviewed some works on physics-

based models and pointed out their advantages and disadvantages. Then, we targeted data-

driven approaches and investigated recent advancements and research trends in the field.

Next, we reviewed research works done on hybrid and ensemble-based models, which exist

in the field that we will address in this thesis. These models combine multiple models to

improve performance. Finally, we summarized state-of-the-art works done in recent years

for prognostics and predictive maintenance with their corresponding targeted industry and

explained the gap which we think exists in the field.

In the next chapter, we will explain the experimental setup, the dataset used in this

research, and preprocessing steps for the data preparation to feed to our proposed network.

We will investigate the data environment in detail and then, according to our observations,

will describe the procedures we used to prepare the data for our experiment.
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Chapter 3

Experimental Setup and Preprocessing

The goal of this chapter is to describe the dataset used in our research and its features, and

then explain the necessary steps to prepare the dataset to be fed to our proposed model

described in Chapter 4. This chapter is structured as follows. In Section 3.1, we first intro-

duce the dataset and describe it in detail. Second, in Section 3.2, the data from 21 different

sensors, plus 3 operation conditions are reviewed. In the next session, we go through pre-

processing and parameter adjustment for the training model step. Finally, metrics and target

functions for remaining useful life (RUL) are discussed in Section 3.8.

3.1 Benchmark Dataset

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)[23] dataset

has been used as a dataset in this work to train and evaluate the effectiveness of our pro-

posed model for RUL prediction. C-MAPSS is a simulation tool coded in the MATLAB-

Simulink environment for simulating the engine model of the 90,000 lb thrust class [76].

The simulation tool was used to generate a benchmark dataset, known as the C-MAPSS

dataset. Although the dataset was generated nearly 15 years ago, it remains one of the

most well-known and used datasets in fault detection, prognostics, and diagnostics studies

42



today [20]. One reason for this is the unavailability of other datasets in the field that can

provide the same level of standard in terms of quality. The C-MAPSS dataset was created

to detail the degradation process of aircraft turbofan engines. A simplified depiction of that

is shown in Figure 3.1. The data is simulated in a way to show the fault impact and the

degradation of the main components of the turbofan engine. A few important components

of the engine include a Fan, a Low-Pressure Compressor (LPC), a High-Pressure Compres-

sor (HPC), a Low-Pressure Turbine (LPT), and a High-Pressure Turbine (HPT), which are

illustrated in Figure 3.2.

Figure 3.1: Simplified Diagram of Engine Simulated in C-MAPSS [76]

Figure 3.2: Layout of the Relation between the Main Modules as Modeled in the Simulation
of C-MAPSS [76]

The dataset is divided into four sub-datasets (referred to as FD001 to FD004) by consid-

ering different fault modes and operation conditions. These are shown in Table 3.1. Each
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sub-dataset also has a unique subset of multiple training and test sequences. These sub-

datasets include time-series measurements of different sensors inside one turbofan engine.

All engines are of the same product type, but on their first cycle (first set of measure-

ments), they do not have the same level of degradation. The status for the early stages of

each engine, though, is healthy and functional. With the progression of time, the degrada-

tion impact on the engines becomes increasingly important and eventually leads to engine

breakdown. On the training sequences, for each engine unit, engine breakdown status is re-

ported on the last data entry, while on the test sequences, the last data point for one specific

engine corresponds to one particular point before engine breakdown. The objective of the

test dataset is to estimate the RUL. For each engine in the test sequences, the actual value

of the RUL is reported in the C-MAPSS dataset to validate the model performance.

Table 3.1: CMAPSS Dataset Overview

Sub-Datasets Training Units Testing Units Operation Conditions Fault Modes

FD001 100 100 1 (Sea Level) 1 (HPC)

FD002 260 259 6 1 (HPC)

FD003 100 100 1 (Sea Level) 2 (HPC, Fan)

FD004 249 248 6 2 (HPC, Fan)

Operation conditions are set based on the values of the 3 operating conditions settings.

These are altitude, Mach number, and the throttle resolver angle in which the simulation

takes place [23]. Table 3.2 shows these settings alongside their range and unit.
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Table 3.2: CMAPSS Operating Conditions Settings

Operating Settings Range Units

Altitude [0, 42000] feet

Mach Number [0, 0.84] -

Throttle Resolver Angle [80, 100] ◦ R

3.2 Notations for Time-series Data

In order to facilitate the reading of the rest of the thesis, we provide here the mathematical

notation used in our experiments.

• N ∈ Z is the total number of samples in the dataset. We may also refer to N , as the

total number of observed samples or dataset size. In the case of our dataset, N varies

between 100 and 249 for FD001 and FD004 respectively.

• M ∈ Z is the total number of features. We may also refer to M as the dimension

or the number of attributes. In our experiments M = 24. We have 21 sensors plus 3

operation conditions that act as features.

• P ∈ Z is the total number of samples in a series. We may also refer to P as the

length or the size of samples in a series. In our work, P is between 128 and 362 on

FD001 and 128 and 543 on FD004.

• X = {x0, x1, x2, ..., xM−1} is a set of M features. We may also refer to X as a set

of input values, sets of attributes, or parameters. Each xi ∈ X , i ∈ [0,M), belongs

to a class of possible values. These values may be uninformative, nominal, ordinal,

binary, continuous, or discrete.
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– Useless: denotes non-related features whose value will not change the outcome

value. For example, a unique identification number is a useless feature, and in

changing its value, there is no functional effect on the outcome. If our dataset

includes a feature with such characteristics, there is no point in involving it in

our model. In our dataset, Engine Id belongs to this class of values. It acts as

an identity key for determining a particular engine in the dataset.

– Nominal (or Categorical): consists of discrete values without a meaningful nu-

merical relationship between values. Applying most numerical functions to

them is out of consideration. There is no example of this data type in our

dataset.

– Ordinal: denotes discrete integer values that can be sorted. The main character-

istic of this type of value is that there is no fixed distance between two values

of this class of data. In our dataset, RUL is from this type of data.

– Binary: A binary data can only accept two values. This type of data is very

common as a result or outcome variable in classification. For example, failure

is a flag that only has two possible values, whether it has failed or not.

– Continuous: This type of data accepts values over an existing range of real

numbers. All uncountable and infinite values are part of this data type. An

example of a continuous variable in our dataset is the mass flow rate of air

entering an engine.

– Discrete: Discrete variables take countable integer values, and in comparison

to ordinal and binary variables, all statistical methods can be applied to them.

For example, the number of cycles to failure is a discrete variable. This data

type also consists of interval variables and time series. In our dataset, operation

conditions belong to this type of data.
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• Y = {y0, y1, ...} with its corresponding domain represents the outcome variable,

target, or label. The domain, according to the problem, is determined. For regres-

sion, a number (continuous or discrete) acts as the label for the machine learning

algorithm, while for classification, the label value will be in a binary or categorical

format. For example for continuous RUL, we have ysi ∈ [0,max(RUL)], for bi-

nary type failure we have ysi ∈ {0, 1}, and for categorical RUL, the label should be

ysi ∈ {RUL0, RUL1, RUL2, ..., RULQ} where Q ∈ Z is the total number of dis-

crete values for RUL. For the purpose of this study, we consider the domain of label

(RUL) as a numerical type that will be used in the regression problem.

• S = {s0, s1, s2, ..., sN−1} is a set of N samples. Each si ∈ S, i ∈ [0, N), has M

features xsi = {x(si,0), x(si,1), x(si,2), ..., x(si,M)}, plus a label ysi .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(s0,0) x(s0,1) x(s0,2) · · · x(s0,M−1)

x(s1,0) x(s1,1) x(s1,2) · · · x(s1,M−1)

x(s2,0) x(s2,1) x(s2,2) · · · x(s2,M−1)

...
...

... . . . ...

x(sN−1,0) x(sN−1,1) x(sN−1,2) · · · x(sN−1,M−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2
...

yN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

• T = {t0, t1, t2, ..., tP−1} is a set of time series. For each ti ∈ T , i ∈ [0, P ), we have

ti = {s(ti,0), s(ti,1), s(ti,2), ..., s(ti,P−1)}. Max(RUL) is the maximum value of RUL

in the all-time series. RULt(si,j)
is the RUL of sample si, i ∈ [0, N) for the jth,

j ∈ [0, P ), time series in T .

3.3 Conditions and Sensors

As stated in Section 3.1, based on the values of the operating conditions and fault modes,

the C-MAPSS dataset is divided into four sub-datasets. By taking operating conditions
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into account, firstly, the sub-datasets are divided into two groups. As shown in Table 3.1,

the first group includes FD001 and FD003, with only a single condition of operating at

sea level for the simulation. The second group includes FD002 and FD004, which are

simulated under the impact of six conditions. The next dataset division is done based on

the modes for the failure. This also groups the sub-datasets into two. The first group

includes FD001 and FD002, which have HPC as their only fault factor, and FD003 and

FD004, which have fans alongside the HPC as their fault factors [77].

According to this simulation setup, the least complex sequences are in FD001, as this

dataset only has a single fault mode and single operating condition. On the other hand,

the most complex sequences are in FD004, which has two fault modes and six different

operating conditions. As FD001 is the least complex and FD004 is the most complex

dataset to cover different complexities, we will use these two sub-datasets for training and

evaluating our proposed model. Due to the fact that FD002 and FD003 are special cases

of FD004 and FD001 respectively, the results on FD001 and FD004 can be generalized on

the other two to a certain extent. Also for most of the experiments and preprocessing steps

on the C-MAPSS dataset, we found quite similar behavior from both FD001 and FD004

datasets. So, in the rest of the thesis, we will only illustrate FD004 separately if we find

any different trends or behavior on that dataset at any particular step.

Each sub-datasets is represented by a N × 26 matrix, where N is the number of total

time cycles with 26 columns of numbers as their attributes. The first column is the engine

unit index, and the second column is the sequence time cycle index. Then, we have three

attributes for the operating conditions settings that are discussed above. These settings as

discussed in Section 3.1, are the values of the altitude, Mach number, and throttle resolver

angle. The next 21 columns are sensor signals from various components of the aircraft

turbofan engine. These sensor signals, alongside a short description and measurement

units, are shown in Table 3.3. The complete details of the sensor data can be found in [23].
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Table 3.3: Sensor Description of the C-MAPSS Dataset

Sensor ID Symbol Description Units Trend

S_1 T2 Total Temperature at fan inlet ◦ R ∼

S_2 T24 Total temperature at LPC outlet ◦ R ↑

S_3 T30 Total temperature at HPC outlet ◦ R ↑

S_4 T50 Total temperature LPT outlet ◦ R ↑

S_5 P2 Pressure at fan inlet psia ∼

S_6 P15 Total pressure in bypass-duct psia ∼

S_7 P30 Total pressure at HPC outlet psia ↓

S_8 Nf Physical fan speed rpm ↑

S_9 Nc Physical core speed rpm ↑

S_10 Epr Engine pressure ratio - ∼

S_11 Ps30 Static pressure at HPC outlet psia ↑

S_12 Phi Ratio of fuel flow to Ps30 pps/psi ↓

S_13 NRf Corrected fan speed rpm ↑

S_14 NRc Corrected core speed rpm ↓

S_15 BPR Bypass ratio - ↑

S_16 farB Burner fuel-air ratio - ∼

S_17 htBleed Bleed enthalpy - ↑

S_18 NF dmd Demanded fan speed rpm ∼

S_19 PCNR dmd Demanded corrected fan speed rpm ∼

S_20 W31 HPT coolant bleed lbm/s ↓

S_21 W32 LPT coolant bleed lbm/s ↓
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3.4 Labeling and RUL Target Function

As any supervised machine learning model needs a target variable to do the prediction task,

and since RUL prediction is a typical regression problem, we also need to generate labels

for the training data to be used as the target variable for our proposed regression model. To

achieve this, we use RUL as the output for our sensor signals input data. Figure 3.3 shows

different stages of an engine’s health status through its life cycles from starting point to

failure. It also illustrates how RUL is determined according to the time step.

Figure 3.3: Depiction of an Engine Health Status Through Time

Because the RUL value is not available explicitly in the C-MAPSS dataset, we need

to first calculate the RUL for each engine unit. In order to calculate RUL and label the

dataset, in this thesis, we first defined the value of RUL based on Equation 3.2a, where i is

the engine unit index, j is the current engine time cycle, and Ni is the maximum value for

the time cycle for the ith engine. The RULi(j) is the remaining useful life of ith engine at

time cycle j. By definition, the maximum value for RUL for each engine unit is the value

of Ni, shown in Equation 3.2b. This indicates that the value for the RUL in one engine has

its maximum on the first sequence (j = 0), and it reaches 0 (j = Ni) on the last sequence.
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RULi(j) = Ni − tj (3.2a)

max (RULi) = Ni (3.2b)

The RUL value is used for two purposes. First, it is deployed alongside sensor signals

to give us a better interpretation of the changes in the sensor signal as the engines move

toward failure. The second purpose is to label the datasets, allowing us to predict engine

failure in our proposed model. So in other words, we first calculate RUL to label the C-

MAPSS dataset and use it as the actual remaining life of the engine units, and then based

on the sensor data trend we try to predict the value of RUL for each unit on each time step.

Basically, it is best to have precise knowledge about the RUL value (label here) for

each input data point to increase performance. However, this information is not available

in PHM problems due to the lack of an accurate physics-based model, so it is common

practice to try to estimate the health status of the system in real applications.

Using the definition for RUL in Equation 3.2a, we consider the degradation process as

a declining linear trend on the RUL on each engine time cycle proposed in [78]. According

to the definition of the remaining useful life of a component, a declining linear trend is

the most straightforward and, at the same time, the most rigorous way to show the natu-

ral degradation of a component against the passing of time when there is no knowledge

or insight available to consider, although a declining linear trend seems simple when we

compare it to the sensor signals trends.

Figure 3.4 shows the signal trends of an arbitrary sensor (S7) and compares it to a

linear degradation RUL (in blue) and a piece-wise RUL (in orange), first used in [79], that

divides the RUL into a healthy initial stage and a degradation stage. As the figure shows,

the trends are rather constant and straight at the beginning of the engine lifetime, because
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the degradation process in a system, generally, develops over time and appears at a certain

point of the component lifetime. This behavior was observed on some sensors in the dataset

that will be discussed in Section 3.5 in detail. Hence, we used the piece-wise target function

of [79].

As long as the system is in the healthy stage, there is no visible trend or behavior on

sensor signals indicating any degradation or abnormality. This RUL target function de-

ploys the maximum RUL defined as RULmax according to each sub-dataset sensor signals

trend and sets the numerical value for the RUL above that to the maximum RUL as de-

fined in Equation 3.3, where RULmax is a constant numeric value set for each sub-datasets

differently according to the observation of their signal sensors data.

As Equation 3.3 shows, the new RUL target function limits the maximum value for the

RUL which will help us to prevent the model from overestimating the RUL. It also overlaps

better with signal sensor data trend which is depicted in Figure 3.4 as the degradation of

the system normally happens when the system reaches a certain point.

RULi(j) =

⎧⎪⎪⎨⎪⎪⎩
RULmax if tj ≥ RULmax , healthy stage

Ni − tj if tj < RULmax , degradation stage
(3.3)

This piece-wise RUL target function has been used in many other studies [80, 81, 82,

83] and was shown to be more realistic than the linear version. With our dataset, the

constant numerical value of the RULmax is set to 130 and 150, respectively, for sub-datasets

FD001 and FD004. These RULmax values were determined empirically by observing [59,

54, 57] the critical point on the sensor signals trend, which at that point, the degradation

starts to appear. As shown in Figure 3.4, on sub-dataset FD001 and for sensor S_7, the

deterioration and change in sensor reading visibly starts after passing almost 130 cycles

before failure. The same change in behavior and shift in sensor reading trend is also visible

on sub-dataset FD004 and for sensor S_14 after passing the point that there are 150 more

52



cycles till engine failure.

(a) FD001

(b) FD004

Figure 3.4: Illustrating Linear and Piece-wise RUL Target Functions and Sensor (S_7 and
S_14) Signal in the C-MAPSS Dataset

Choosing the maximum RUL for practical applications at a point where early failure

signaling affects operations and maintenance schedules is recommended since doing the

maintenance at an earlier stage is still less expensive than late maintenance and failure. If

the maximum RUL is set too low, planning maintenance operations may be impossible and

even hazardous in terms of safety. Adopting a maximum RUL that is too high leads to

inaccurate projections, or it may not be required to know because maintenance procedures

are already being performed at a higher interval.
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3.5 Feature Selection

As stated in Section 3.4, each sub-dataset of the official C-MAPSS dataset has 3 op-

erating conditions alongside 21 sensor signal measurements for each engine time cycle.

We consider the operating conditions as three sensor signals, op_cond_1, op_cond_2, and

op_cond_3 because the variation in their values affects the RUL. However, not all 21 other

features significantly impact the degradation process and, accordingly, the RUL prediction.

As more and more complex and advanced models have been introduced, a larger range

of sensor data can be easily deployed. Although dealing with a large number of features

has become more feasible today, recent studies [84] have encouraged work on dimension-

ality reduction of the data by extracting the most representative and beneficial features. In

addition, reducing the feature space will lead to reduced computational complexity, which

in return will improve the prediction phase’s performance.

One argument can be put forth regarding the overlapping role of feature selection and

the use of the attention mechanism. In principle, the attention mechanism should be able

to learn and differentiate between uninformative and impactful features. This characteristic

of the attention mechanism is not opposing feature selection in general, as the attention

mechanism helps to assign proper weights to features according to their importance. On

the other hand, feature selection may eliminate features (filter methods)from the input or

in some cases generate a sub-set of features (wrapper methods) that can implicitly help to

increase the model’s performance.

We will describe the feature selection we performed for each sub-dataset FD001 and

FD004 separately. We will first discuss the steps taken on feature selection on FD001

training data and then will show the same analysis and the output for FD004.
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3.5.1 FD001

For a better illustration, Figure 3.5 shows the distribution of the values of each of the 3

operating conditions values and 21 sensor readings for all the time cycles of all the engines

in FD001. The y axis of each graph shows the domain of the values of the feature, and the

box plot illustrates the spread and locality of the readings. This gives us an overview of

how the readings from each sensor are distributed in their domains.

On the other hand, Figure 3.6 shows the variation of the feature values for all engine

units for all 3 operating conditions alongside 21 sensor signal values through the engine

life cycles. Each sequence from an engine is assigned a specific color to help differentiate

the trends from each other. As we can see some engines have a longer life cycle and their

signal readings start at earlier points. At the end of the engines’ life cycle (x = 0), we

can see some dramatic changes in the trend of some sensors. These are the sensors that

contribute more to RUL prediction as their behavior and readings change according to the

engine degradation stage.

For the sake of dimensionality reduction and increasing the prediction model’s effec-

tiveness, we need to select only the sensors that contribute to the RUL prediction process

the most and deliver helpful degradation information. As shown in Figures 3.5 and 3.6, the

signals from the seven sensors S_1, S_5, S_6, S_10, S_16, S_18, and S_19 do not show any

variation through the engine cycles. In other words, there is no correlation with the time on

these sensors through the engine’s lifetime, and the measurements are always constant.

To accomplish the goal stated above, we considered these seven monotonic sensors as

candidates for removal.
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Figure 3.5: Illustration of All Engine Units Range and Distribution for Three Operating
Conditions Plus Sensor Signal Sequences for FD001
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Figure 3.6: Variation of Feature Values of All Engine Units Operating Conditions Plus
Sensor Signal Sequences for FD001

In order to confirm the lack of influence of these features, we computed the correlation

of all the features with one another. This is shown in Figure 3.7. As the figure shows,

the same features (S_1, S_5, S_6, S_10, S_16, S_18, and S_19) showed zero correlation

to the other ones. So by considering the monotonic behavior and no correlation to the

other features we can say their impact on the RUL estimation is also almost zero. The

weak correlation shown with S_6 is due to fluctuating over a very short range of values

for different engines. As we can see, for the rest of the features, there is not much more

room to do on the feature selection task as the level of correlation and the distribution is

not strong enough to act further.
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Figure 3.7: Pearson Correlation Matrix for All the Engine Units in FD001

Based on the above analysis, we removed the above-mentioned sensors (S_1, S_5, S_6,

S_10, S_16, S_18, and S_19) from our sub-dataset, and the removal was effective according

to what we will show in Section 4.3. The impact of removing these sensors from the

input space is also studied in [79, 85, 86]. As a consequence, each time series data will

have 3 operating conditions corresponding to the output of op_cond_1, op_cond_2, and

op_cond_3 plus 14 features corresponding to the outputs of 14 sensor signals (21 original-

7 removed). The sensors are S_2, S_3, S_4, S_7, S_8, S_9, S_11, S_12, S_13, S_14, S_15,

S_17, S_20, S_21, so the total number of features on FD001 is 17.
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3.5.2 FD004

Figure 3.8 shows the distribution of the values of each of the 3 operating conditions values

and 21 sensor readings for all the time cycles of all the engines in FD004. The y axis of

each graph shows the domain of the values of the feature, and the box plot illustrates the

spread and locality of the readings. This gives us an overview of how the readings from

each sensor are distributed in their domains.

On the other hand, Figure 3.9 shows the variation of the feature values for all engine

units for all 3 operating conditions alongside 21 sensor signal values through the engine

life cycles. Each sequence from an engine is assigned a specific color to help differentiate

the trends from each other. As we can see, some engines have a longer life cycle, and their

signal readings start at earlier points. At the end of the engines’ life cycle (x = 0), we can

see much less dramatic changes in the trend of some sensors in comparison to FD001. As

Figure 3.9 further shows, the level of involvement from sensors in FD004 is much higher

than in FD001, so there is no clear trace of dependency on most of the FD004 sensor

readings. This dramatic change in the behavior and the trends of the sensor readings is due

to the impact of six conditions and two fault modes in the FD004 sub-dataset.

As stated before, to reduce dimensionality and to increase the prediction model’s effec-

tiveness, we need to select only the sensors that contribute to the RUL prediction process

the most and deliver helpful degradation information. As shown in Figures 3.8 and 3.9,

the signals from the two sensors S_13 and S_19 do not show much variation through the

engine cycles. In other words, there is no correlation with the time on these sensors through

the engine’s lifetime, and the measurements are always constant. The change in the trend

line for both of the sensors is due to fluctuating over two values on different engines.

To accomplish the goal stated above, we considered these two monotonic sensors as

candidates for removal.
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Figure 3.8: Illustration of All Engine Units Range and Distribution for Three Operating
Conditions Plus Sensor Signal Sequences for FD004
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Figure 3.9: Variation of Feature Values of All Engine Units Operating Conditions Plus
Sensor Signal Sequences for FD004

In order to further investigate the lack of influence of these features, we computed the

Pearson correlation of all the features with one another. This is shown in Figure 3.10. As

the figure shows, the features S_13 and S_19, unlike what we saw in FD001, have quite a

strong correlation to other sensors and operating conditions. Due to such interconnectivity,

we did not remove these two sensors from the list of features. For the rest of the features

as well, we can clearly observe that the level of correlation between sensors is quite high.
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Figure 3.10: Pearson Correlation Matrix for All the Engine Units in FD004

Based on the above analysis, we kept all the sensors in the features list, and therefore

for FD004 we have a total of 24 features: 3 operating conditions alongside 21 sensors.

3.6 Normalization

To feed the input features to our proposed model, we need to normalize the input data to

reduce the bias effect that the contribution of different scales of variables may cause. The

raw sensor signal values fall into different numerical ranges, which will also cause large

weight updates on backpropagation and a longer duration of the training. The raw sensor

signals on our sub-datasets also have different domains that need to be normalized. The

difference in sensor signal domains after normalization is corrected and all sensor readings
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are scaled.

Usually, normalizing the input data will prevent the exploding gradient problem [48]

that can be caused by raw input data. The exploding gradient is a well-known issue in the

training phase of gradient-based neural networks on the backpropagation step. This hap-

pens when gradients keep getting larger through backpropagation step progression. This

problem, as stated above, will cause large weight updates and divergence of the gradient

descent. We considered both Z-score normalization, also known as standardization [83],

and min-max normalization [87], scaling methods to eliminate the presence of the bias in

the input data and also to improve the convergence speed of the model. As discussed in

Section 3.5 and depicted in Figures 3.5 and 3.6, the outliers are very rare in the C-MAPSS

dataset (almost no outliers). This will give us a better result by normalization of the raw

inputs. As having outliers causes the normalization result to be affected by bias from the

outliers’ values. One important advantage of min-max normalization rather than Z-score

normalization is that it guarantees that all input data will fall into the same range ([0, 1]).

Equation 3.4 shows Z-score normalization.

x′
i =

xi − µi

σi + ϵ
(3.4)

where x′
i is the normalized feature value, xi is the original feature value for the ith sensor

measurements, µi is the mean value of the ith feature, and σi is the feature standard devia-

tion for the time series data. As we are using a piece-wise RUL target function and to avoid

sample imbalance, we need to consider that a large number of training samples will have

the same value of RULmax. The ϵ is added in the denominator of Equation 3.4 first to set

the maximum value of the normalized data slightly less than the true maximum value and

also prevent the denominator to become 0 (division by zero) [88].

Equation 3.5 shows min-max normalization.
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x′
i =

xi −minxi

maxxi −minxi + ϵ
(3.5)

where maxxi and minxi are the maximum and minimum values of the ith feature for the

time series data. The ϵ is added for the same reason as in Equation 3.4.

3.7 Time Window Processing

In order to make use of historical data, we used a fixed-size time window to encapsulate

multi-data points sampled continuously. A time window is commonly used for data seg-

mentation. The data retrieved from the CMAPSS dataset is a long list of values. This

dataset must be split to include each engine separately. In Section 4.4.4 we will show the

result of applying different sliding time windows on the dataset. The next step is to ap-

ply the time windows. An example of data segmentation for a time window is shown in

Figure 3.11. This frame is equal to the number of selected sensors (n) by the size of the

window (s). This window is then placed p time steps further to obtain the next data frame.

This results in a number of data points equal to the length of the life span of the engine (T )

minus the window length (s) of data samples per engine (i.e., T − s). So the RUL of the

(i+ 1)th sample is shown in Equation 3.6.

RULi+1 = T − s− (i× p) (3.6)

Many multivariate temporal data-based prediction models take a multivariate data point

sampled at a single time stamp as an input [54]. This strategy neglects useful temporal in-

formation that may improve prediction performance. To address such an issue, we utilized

a fixed-size time window (TW) to enclose multivariate data points sampled at consecutive

timestamps. Specifically, at any timestamp, multivariate data points within the TW that
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covers the current timestamp and its preceding timestamps are concatenated into a high-

dimensional feature vector which is then fed as input into the prediction model. In practice,

a suitable TW size can be chosen via cross-validation. However, for this study, we have

chosen 30 as our window size (s = 30) and considered our step size to be 1 (p = 1), which

are the same as the parameters used in [59]. With these settings, we change the number

of training samples for dataset FD001 from 20631 to 17731 and from 61249 to 57522 for

dataset FD004. Obviously, for the testing step, we only consider a one-time window for

each engine, giving us the same number of testing samples as the number of engines in the

corresponding datasets.

By going through normalization and applying a sliding time window to our samples,

our training data is finally prepared for feeding to our proposed model.

Figure 3.11: Illustration of the Sliding Time Window Used to Encapsulate Multi-data
Points

3.8 Evaluation

We require some objective performance measurements to fairly compare the estimation

model performance on the dataset. Due to the characteristics of prognostic problems, we

need to evaluate early and late predictions differently. Late predictions need to be more
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penalized because late maintenance can cause severe problems and critical failures rather

than early predictions, which would lead to a waste of resources. Hence, we need to take

into account this requirement when dealing with the evaluation of a model and add more

weight to penalizing late predictions.

Considering the points discussed above, we used two widely used metrics whose ef-

fectiveness has been shown by several studies, such as [79, 89]. These two functions were

introduced to fairly measure and evaluate the performance of the models proposed for the

C-MAPSS dataset. The first metric we considered for evaluation is a scoring function first

proposed by [90], which considers early and late predictions and penalizes more heavily

late predictions to measure the model performance as stated above. Equation 3.7a shows

the definition of this asymmetric function. Where S is the computed score, N is the total

number of samples in the dataset, and di is defined in Equation 3.8. The constant values are

given by the dataset creator [90] to differentiate the penalty on late and early predictions.

Score =
N∑︂
i=1

Si (3.7a)

Si =

⎧⎪⎪⎨⎪⎪⎩
e−

di
13 − 1 for di < 0

e
di
10 − 1 for di ≥ 0

, i = 1...N (3.7b)

di = RULi −RULi (3.8)

Nevertheless, this evaluation has a few drawbacks. The main one is that a single outlier

on a very late prediction would significantly affect the value of the score and the overall

performance level. This will be caused by exponential growth in the scoring function, as

illustrated in Figure 3.12 by the orange curve. Another drawback of this scoring function

is the lack of consideration of the prognostic horizon of the algorithm. The prognostic
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horizon assesses the time before failure and the algorithm can accurately estimate the RUL

value within a certain confidence level [54].

The other metric is the well-known root-mean-square error (RMSE) that is defined

in Equation 3.9. Where same as the scoring function, N is the total number of samples

in the dataset, and di is calculated according to Equation 3.8. RMSE is widely used for

performance evaluation in regression models. The RMSE function gives equal weight to

early and late predictions, which serves the above-mentioned point. Using RMSE alongside

the scoring function of [90] eliminates the tendency to favor an algorithm that artificially

lowers the score by underestimating it but resulting in higher RMSE. Graphically, RMSE

is shown in Figure 3.12 by the blue curve.

RMSE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

d2i (3.9)

Figure 3.12: Illustration of the Scoring Function of [90] and RMSE
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3.9 Chapter Summary

In this chapter, we first introduced the C-MAPSS dataset that simulates turbofan engines.

We described how these datasets are shaped and the corresponding settings for each one.

After that, we briefly introduced the notations used in our thesis and time series data. In

Section 3.3, we discussed the operating conditions and sensors in the C-MAPSS datasets

in detail. We described all four C-MAPSS datasets and their corresponding operating con-

ditions and how these datasets differ from each other. Finally, we reviewed the list of all

available sensors for turbofan engines.

In Section 3.4, we defined the target function of the problem and the label of datasets

as the remaining useful life (RUL) of an engine. We discussed different approaches for

formulating the RUL and defined a piece-wise target function. Then, we described feature

selection. We first showed the raw sensor data and how they are distributed. Then, we iden-

tified monotonic sensors and removed them from the target set of selected features. After

that, we analyzed the possible correlations between pairs of features. We finally normal-

ized the features to reduce the bias effect from different sensor data domains and to scale

our raw features. We deployed min-max and Z-score normalization methods to normalize

the sensor signal readings and to eliminate the impact of bias from sensor readings having

different scales.

In Section 3.7, we introduced the time window processing technique and applied it to

our targeted datasets. By having our features normalized and adding the time window,

the training data was prepared to be fed to our proposed neural network model. Lastly,

in Section 3.8, we discussed the metrics used for evaluating our model. We introduced

RMSE and the scoring function of [90], which penalizes late predictions more than early

predictions due to the nature of prognostic problems.

In the next chapter, we will describe the architecture of our proposed model, and present
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all experiments and fine-tuning procedures that we conducted according to our setup. Fi-

nally, we will evaluate the performance of the proposed model and compare it with other

models in the same predictive maintenance domain.
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Chapter 4

Experiments

This chapter discusses our experiments. We first describe our methodology, architecture

setup, and implementation details, then report on the evaluation of the proposed model.

This chapter is structured as follows: In Section 4.1, we discuss the architecture of our pro-

posed method. In Section 4.2, we present the implementation details of the proposed model

and the hyperparameter settings. In Section 4.3, the results of the experiment on different

datasets are reported. In Section 4.4, we show the effect of different hyperparameters on

the experiment result. Finally, in Sections 4.5 and 4.6 we compare the proposed model to

other recent models and discuss different aspects of the experiments.

4.1 Proposed Models

Remaining useful life (RUL) prediction based on the attention mechanism is a relatively

new approach that has shown promising results in recent studies [65]. The basic idea behind

this approach is to use an attention mechanism to identify the most relevant features or time

steps in the input data that are predictive of the RUL and to weigh these features or time

steps accordingly.

One common way to apply attention mechanism to RUL prediction is to use a recurrent

70



neural network (RNN) or a similar sequential model, where the input data consists of time-

varying signals such as sensor readings or other measurements. The RNN processes the

input data sequentially. At each time step, it uses an attention mechanism to compute a set

of attention weights that reflect the importance of each feature or time step for predicting

the RUL.

The attention weights can be computed using various techniques, such as linear or

non-linear activation function (neural network), a dot product, or other methods (see Sec-

tion 2.1.6). Once the attention weights are computed, they are used to weigh the input data,

which is fed to a linear layer to predict the RUL.

One advantage of this approach is that it can identify the most important features or time

steps in the input data, which can be useful for interpreting the results and understanding

the underlying factors contributing to the RUL. It can also improve the performance of the

RUL predictions by allowing the model to focus on the most relevant parts of the input data

and filter out noise or irrelevant features.

However, attention-based models can also be more complex and computationally inten-

sive compared to other approaches and may require more data and longer training times to

achieve good performance. Nonetheless, with the increasing availability of large datasets

and powerful computing resources, attention-based RUL prediction models are becoming

increasingly popular [91] and a promising approach in the field of predictive maintenance.

Due to the inherent sequential modeling ability of the LSTM network, it has been suc-

cessfully used for machine RUL prediction in [57]. However, conventional LSTM only

uses the learned features at the last time step for regression. This is shown in Figure 4.1

(a). By considering the concept of attention, we propose that the learned features from

earlier time steps could potentially be useful and the network hidden state on each time

step can contribute to the final output of the network, which is the modification depicted in

Figure 4.1 (b). This comes from the idea that on any time series data we may have different
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periods that consist of more important information and also, on the other hand, some se-

quences include more redundant features. Additionally, the learned traits could contribute

differently to the final RUL prediction. So that we may understand the significance of

characteristics and time steps, we used an attention mechanism.

(a) Standard LSTM Architecture Setting (b) Proposed LSTM Architecture Setting

Figure 4.1: LSTM Architectures Used for RUL Prediction

We implemented both a standard LSTM and our proposed LSTM with a self-attention

block to evaluate the effectiveness of the proposed modifications. We conducted the first

experiment (model A) by applying the self-attention layer only to the input data. The archi-

tecture for model A is shown in Figure 4.2a. One advantage of applying the attention layer

to the input was to understand the domain clearly. For the second experiment (model B),

we only applied the self-attention layer to the output of the LSTM layer. The architecture

for model B is shown in Figure 4.2b. The application of the attention layer only on the

output of the LSTM layer helps to consider the importance of the temporal data.

72



(a) Model A

(b) Model B

Figure 4.2: Illustration of the Proposed Architectures for Models A and B

Finally, in the third experiment (model C), we applied the self-attention layer to both

the input layer data and the output of the LSTM layer. As shown in Figure 4.3, the LSTM

network is first loaded with the output of the attention layer on preprocessed sensory input

data to learn a feature representation. The attention layer’s outputs or attention weights,

which embed the significance of each feature and time step, are calculated based on the

learned sequential features as input. The attention block’s outputs are combined with the

learned sequential features obtained from the LSTM layer. After that, we feed the output

into two consecutive fully connected layers (FC), also known as linear layers. This helps

for more abstraction of features and also as we are dealing with a non-linear problem,
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we deployed multilayer perceptron linear layers (2) to represent the convex regions for

overcoming the linear separability. This helps change the dimensionality of the output

from the preceding layer so that the model can easily define the relationship between the

values of the data in which the model is working. Finally, we use a regression layer to

predict the RUL.

Figure 4.3: Architecture of the Proposed Attention-based Deep Neural Network (Model C)

The results with the FD001 and the FD004 datasets are reported in Table 4.1. As we

can see with both the RMSE and the Score metrics, the modifications significantly enhance

the network’s performance. The impact of both attention layers, especially the temporal

one, was more significant on FD001 than on FD004. This may indicate that more complex

datasets may predict a more accurate RUL by having more information. Based on the result

of the experiments we can clearly see that the self-attention layer helped in all proposed

models and the best performance belongs to the model C as we have both input layer and

temporal layer attention.
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Table 4.1: Result of the First Experiments

Model Architecture
FD001 FD004

RMSE Score RMSE Score

Baseline Standard LSTM + 2 Linear Layers + Regression 15.43 410.60 29.12 12551.44

A
Input Attention Layer + Standard LSTM +

14.11 331.60 28.84 11041.63
2 Linear Layers + Regression

B
Proposed LSTM + Temporal Attention Layer +

13.96 297.38 27.33 7354.39
2 Linear Layers + Regression

C
Input Attention Layer + Proposed LSTM +

13.27 270.84 25.16 5065.06
Temporal Attention Layer + 2 Linear Layers + Regression

4.2 Hyperparameter Settings

All four methods in Table 4.1 used the same hyperparameters. To set the dimension of

the LSTM and linear layers, plus considering the randomness in parameter initialization in

them, we used repeated k-fold cross-validation with k = 10. According to the technique, in

the end, we average our results that are achieved at the end of each iteration. In Table 4.2,

we indicate the hyperparameters we selected for our networks and the range of each one

we experimented on. In Section 4.4, we will discuss how these parameters are selected and

tuned.

The next sections will analyze the experimental results. Then, the hyperparameter se-

lection and tuning will be discussed.
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Table 4.2: Hyperparameters Used for the Results Shown in Table 4.1

Hyperparameter Range

Epoch 10, 30, 100, 200

Learning rate 1e-4, 5e-4, 2.5e-4, 1e-3, 1e-2

Optimizer Adam, RMS-prop

Normalization method min-max, Z-score

Time Window Size 10, 20, 30, 40, 50, 60

Batch size 16, 32, 64, 128

Dropout 0.2

Loss function MSE

Recall from Section 3.8, that we used two metrics to evaluate our approach, RMSE, and

the scoring function of [90]. For test purposes, we can obtain RMSE easily from the model

using the mean square error (MSE). For each layer of the network, we can calculate and

backpropagate the MSE loss to obtain error gradients for the particular layer. Then, based

on the error gradients at each layer, the Adam optimizer is used to improve the model

parameters. This method computes adaptive learning rates for each parameter. We will

discuss the optimizer selection in detail, in Section 4.4.

For the batch size, according to recent studies [92], we targeted a range of power of

2s candidates. For tasks where the generalization capability is essential, including image

classification, natural language processing, and time-series analysis, smaller batch sizes

are recommended. Larger batch sizes can be utilized for applications when training time

is more of a concern. Mini-batch gradient descent, where the training data is divided into

mini-batches of size n, where n is the batch size, is frequently used in practice. After

each mini-batch, the model parameters are changed, and the procedure is repeated until

the full training set has been processed. For this research, we applied the optimal batch
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size of 64 based on the performance of the candidates. We also set 0.2 as the dropout rate

as we observed higher probabilities resulted in under-learning by the network and lower

probabilities showed weak effectiveness on regularization.

4.3 Experimental Results

The following section summarizes the proposed network’s prediction performance using

the hyperparameters in Table 4.2. In Figure 4.4, the predicted RULs of the testing engine

units are shown (in blue) alongside the actual RUL (in orange) from test sub-datasets for

FD001 and FD004. Ideally, the predicted RUL should overlap completely with the actual

RUL to have the best performance. In this case, the RMSE value is minimized, but this

will not guarantee model performance on its own. As we discussed in Section 3.8, in the

RUL prediction problem we need to differentiate between early and late predictions. Here

we can see the role of the scoring function of [90] to drive the predictions toward early

predictions rather than late predictions by penalizing more the model on late ones. So the

model can sacrifice an ideal accuracy and performance on RMSE and in return get better

performance on scoring function relatively by not having too late predicted RULs that may

cause serious issues.

As we can see from the predicted RUL of different engines, and also by considering the

results reported in Table 4.1, the number of late predicted RULs is significantly lower than

the number of early predicted ones (7 late predictions in FD001 and 11 late predictions

in FD004 in total). This is due to the role of the scoring function of [90], introduced in

Section 3.8 and the effect of the attention layer in giving more weight to the timesteps

which have a higher level of importance in RUL prediction. In proper settings for a system,

we should set the RUL threshold to values long before severe degradation starts to happen.

This may be because sensor data deviations in the early stages of failure are harder to

identify than those in the later stages.

77



(a) FD001

(b) FD004

Figure 4.4: Illustration of the Results of the Experiments Showing Predicted RUL alongside
Actual RUL of Test Engine Units on C-MAPSS Dataset

As shown in Figure 4.4, due to the more complex and higher level of interdependency

in FD004, the model output shows a better result on FD001 in comparison to FD004. As

we discussed in Sections 3.3 and 3.5, the availability of two different fault modes, plus
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six operating conditions alongside the correlation among the sensor data in FD004, make

the task prediction much more complex and computationally intensive in comparison to

FD001 data. Considering these facts, we can see how the attention mechanism contributes

to the evaluation of each feature and time step, not only on FD001 with its less complex

settings but also on FD004 where feature selection and temporal data analysis is quite an

impractical step in the data preparation and preprocessing stage.

4.4 Effect of Hyperparameters

4.4.1 Learning Rate

The learning rate (LR) hyperparameter regulates how much we modify the weights of our

network in relation to the loss gradient. A dynamic updating strategy for the learning rate

is used in the RMS-prop and the Adam optimizer approaches. The optimizer updates the

learning rate in accordance with the rate of loss determined in each update. So basically,

the learning rate we discuss here is the initial learning rate.

Generally, the model reaches the optimal performance region in fewer epochs by apply-

ing a too-high learning rate. The network will fail to find the optimal point, and divergent

behavior will be seen in the loss function as of the drastic updates. On the other hand, the

network will take too long to find the optimal point and progress when a too-low learning

rate is applied, because it needs numerous updates before reaching the optimal point. That

is why we need to investigate the proper learning rate for the network. A learning rate that

is not too high that skips the optimal point and is not too small that takes a very long time

to train and reach the optimal point.

Figure 4.5 shows the performance of the learning rates listed in Table 4.2 on dataset

FD001 based on 10 experiments. As we can see, the network reached the optimal point in

around 30 epochs. This is depicted in Figures 4.5a and 4.6a for the Adam and RMS-prop
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optimizers. Different colors are used to distinguish each epoch’s result visibly. We compare

the performance based on RMSE and the score function of [90] described in Section 3.8.

(a) LR = 1e− 3, Optimizer = Adam (b) LR = 5e− 4, Optimizer = Adam

(c) LR = 2.5e− 4, Optimizer = Adam (d) LR = 1e− 4, Optimizer = Adam

(e) LR = 1e− 2, Optimizer = RMS-prop (f) LR = 1e− 3, Optimizer = RMS-prop

Figure 4.5: Illustration of RMSE over Epochs by Applying Various Learning Rates on
dataset FD001, Based on 10 Experiments
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(a) LR = 1e− 3, Optimizer = Adam (b) LR = 5e− 4, Optimizer = Adam

(c) LR = 2.5e− 4, Optimizer = Adam (d) LR = 1e− 4, Optimizer = Adam

(e) LR = 1e− 2, Optimizer = RMS-prop (f) LR = 1e− 3, Optimizer = RMS-prop

Figure 4.6: Illustration of Score Metric over Epochs by Applying Various Learning Rates
on dataset FD001, Based on 10 Experiments

4.4.2 Optimizer

The optimizer we choose is one factor that might determine whether our gradient descent

algorithm diverges or converges. Thanks to the development of newer optimizers [93] and
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the introduction of the adaptive algorithms, the value of the momentum (learning step) is

managed and updated by the algorithm. The impact of having a sub-optimal learning rate

and divergence can be eliminated by modern optimizers.

We ran one experiment using both the Adam and RMS-prop algorithms to identify the

best optimizer for our network. In Figure 4.7, we compared the performance of these two

algorithms on dataset FD001 and, based on 10 experiments and by applying the learning

rate of 1e − 3 which we obtained from the previous section. According to the result, the

Adam optimizer leads to better performance and acceptable training time (less than RMS-

prop). We also observed a dramatic fall in score value if we consider the first early epochs

and those that come at the end. Based on the characteristic of the scoring function of [90],

we can see that a significant improvement was obtained from a score of 4000 at early epochs

to the final score of 400.

(a) Adam RMSE (b) RMS-prop RMSE

(c) Adam Score (d) RMS-prop Score

Figure 4.7: Illustration of RUL Prediction Performance over Epochs Using Adam vs. RMS-
prop Optimizer on FD001, with Learning Rate of 1e− 3 and Based on 10 Experiments
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4.4.3 Normalization

In Figure 4.8, we compare the performance of two normalization techniques, min-max and

Z-score, also known as standardization, on dataset FD001, based on 10 experiments and by

applying the learning rate of 1e − 3 which we obtained from Section 4.4.1. According to

the results, Min-max normalization outperforms Z-score normalization with our settings.

(scaling the input data within the range of [0, 1] and no outliers in the datasets).

(a) Min-max RMSE (b) Z-score RMSE

(c) Min-max Score (d) Z-score Score

Figure 4.8: Illustration of RUL Prediction Performance over Epochs Using Min-max vs.
Z-score as the Normalization Method on FD001, with Learning Rate of 1e − 3 and Based
on 10 Experiments
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4.4.4 Time Window Size

As discussed in Section 3.7, the time window technique can help increase the performance

and improve the model’s capability in predicting time-series data. In Figure 4.9, we show

an overview of the network performance for various time window sizes. The overall trend

in the figure is the same for all performance metrics. We considered window sizes of 10,

20, 30, 40, 50, and 60 for the experiments. As illustrated in Figure 4.9, by increasing the

window size at the beginning due to the fact that we increase the size of the information

input, the performance starts to show positive moves. But after increasing the size con-

tinuously, above a certain threshold, we see a negative impact of too much information on

the performance. The figure depicts this trend for dataset FD001. A quite similar trend

was also found on the FD004 dataset as well. Based on the FD004 dataset’s more complex

characteristics, the degradation in the performance is not as significant as FD001. We be-

lieve that this is because as data gets more complex, the level of information the network

needs also increases. We use a window size of 30 for both datasets based on the results

similar to what is suggested in [59].

(a) RMSE (b) Score

Figure 4.9: Illustration of RUL Prediction Performance for Various Time Window Sizes on
FD001, Based on 10 Experiments
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4.5 Comparison with State-of-the-Art

In this section, we compare our proposed architecture to other proposed models in the

field. To verify the effectiveness of the proposed approach, we first performed an initial

test on the training data of FD001, which is split for training and testing. A comparison has

been made between the proposed approach and some widely used benchmark approaches,

including DBN [59], RF [59], CNN [54], and LSTM [57] that all use RMSE and the scoring

function of [90] as their evaluation metrics. We have also compared the proposed approach

with state-of-the-art approaches on the testing data of FD001 and FD004. Table 4.3 shows

the experimental results of the suggested approach and several state-of-the-art approaches

on the two datasets. Overall, all the methods output better performance on the FD001 in

comparison to the FD004. This is due to the FD001’s simplicity, having only one operation

condition and one fault type. Furthermore, the FD004 has 248 engines for testing, which is

significantly more than the FD001. As a result, the scores that are sums of all the engines

of the FD004 and FD001 are of varying magnitude.

Table 4.3: Comparison of the Experimental Results on FD001 and FD004 Sub-datasets
with State-of-the-arts

Criterion RF [59] CNN [54] LSTM [57] DBN [59] Proposed

FD001
RMSE 17.91 18.45 15.42 15.21 13.27

Score 479.75 1286.7 410.60 417.59 270.84

FD004
RMSE 31.12 29.16 29.12 29.88 25.16

Score 46567.63 7886.4 12551.44 7954.51 5065.06

85



4.6 Discussion

The main goals of this research were first to show the impact of proper feature selection

methods on the results of the neural network models and how it can improve the accuracy

and, at the same time, lower the prediction time by reducing the dimensionality of the data.

Many classic to modern dimensionality reduction techniques perform poorly in the final

outputs. So, more advanced and complex approaches must be applied to the features to

find an improving trend. Although recent models can deal with high dimensionality, we

must still maintain the other advantage of that due to these advancements. The model’s

complexity can be lowered, which is one factor that can enhance such selected features.

When using more complex deep learning architecture, reducing the input features can dra-

matically decrease the training time of the model.

The other goal was to show how we can modify the standard LSTM networks and take

advantage of the attention mechanism in RUL prediction, which is a time series sequence

analysis. As of the time of writing of this thesis, the MS-CNN deep learning architecture

proposed by [94] had the highest performance, which is able to obtain an RMSE of 11.44

while in the best run, our proposed model could reach an RMSE of 12.71. This shows

that the performance of the proposed model is not as strong as the hybrid and ensemble

methods published in recent years. We can discuss this further by considering two differ-

ent points. According to our goal and objectives, we wanted to show that the impact of

the attention mechanism, even on a regular neural network architecture, can dramatically

improve performance. So having this hypothesis on hand, we can apply the findings here

to more advanced hybrid stacked architecture and output better results. The other point is

that all hybrid and ensemble-based methods generally sacrifice the complexity and expen-

siveness of computational time and resources for the advancement of current systems. This

may not be noticeable, but feature selection and how to feed the data to the network are

essential in the domain.
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Chapter 5

Conclusion and Future Perspectives

This thesis addressed the problem of system prognostic health monitoring (PHM), specifi-

cally, focusing on predicting the remaining useful life (RUL) of a system. We proposed a

neural network model based on the attention mechanism to help us, first, better understand

the data space, and also to evaluate the importance of each sequence as the output of our

proposed LSTM layer. Experiments and studies were conducted to achieve our objectives,

and their outcomes are presented. In this chapter, we will review our contributions and

future work.

5.1 Contributions

The model proposed in this work, allows us to predict the health status of a system with-

out requiring the knowledge and experience of an expert in the domain. We showed the

importance of targeting each component’s contribution in a predictive maintenance system

and how we can extract the most informative ones for a better view of the whole system’s

status. We experimented with various methods to prepare the raw data for the experiments

and explained how to evaluate and measure different settings’ success. We investigated
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how different machine learning methods obtain their outputs and how we can take advan-

tage of them based on the nature of the problem we focused on. Finally, we described

how we incorporated the attention mechanism into the neural network pipeline and showed

it resulted in noticeable improvements using the RMSE and proposed score function [90]

metrics.

5.2 Future Perspectives

For future work, we suggest the following:

• Our work focused on a single machine learning methodology, to increase the perfor-

mance of RUL prediction, one area to explore is the development of hybrid method-

ologies that integrate several techniques, such as physics-based models and machine

learning algorithms. Also, more research is essential to include RUL prediction in

maintenance decision-making. In order to achieve this, it is important to develop

systems for decision support that can optimize predictive maintenance and reduce

downtime by considering the predicted RUL and cutting repair costs.

• Our work Assumed that the RUL degradation trend is a piece-wise linear function.

In a real-life scenario, this may not be the case. One potential future work would be

to deploy different degradation trends or even try to find patterns similar to the true

degradation in different sensor readings.

• To improve the performance and decrease both training and test time consumption of

models, more advanced and powerful feature selection methods could be applied to

the C-MAPSS datasets to see if they can improve the neural network’s performance

by reducing the dimensionality further. This would allow the inclusion of only the

features with higher contributions to the system that would result in better perfor-

mance. It is worth saying that such improvements would also reduce the impact of

88



biased data on the training procedure and the final model.

• Finally, this thesis has assumed that the datasets were balanced. In real-life scenarios,

the data exhibit a high level of imbalance. This, on its own, is an important topic to

focus on, that is necessary to address in order to deploy any RUL predictor systems

in the industry.
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