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Abstract

Title: Discrete-Time Arbitrage-Free Nelson-Siegel Model and Its Applications in

Participating Life Insurance Contracts and Swaptions Pricing

Ramin Eghbalzadeh, Ph.D.

Concordia University, 2023

This dissertation explores the importance of interest rate modeling in finance and

actuarial science. It emphasizes the significance of yield curve modeling in pricing

financial instruments, such as participating life insurance contracts and swaptions. The

dissertation extends the work of previous studies and proposes a slightly different version

of the discrete-time arbitrage-free Nelson-Siegel model (DTAFNS), providing a

closed-form expression for risk-free spot rates and demonstrating its superior

out-of-sample predictive ability. Additionally, the dissertation focuses on stochastic

interest rates and mortality dynamics’ impact on the pricing, reserving, and risk

measurement approaches of participating life insurance contracts, with the introduction

of a shadow reserve to improve accuracy. Lastly, the dissertation outlines procedures for

pricing swaptions under the DTAFNS model. Overall, this dissertation contributes to the

stability of the financial sector and protecting the financial well-being of individuals and

institutions.
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Chapter 1

Introduction

Interest rate modeling plays a critical role in both finance and actuarial science. In finance,

it is used to determine the value of financial instruments, such as bonds and mortgages,

by taking into account the future behavior of interest rates. This information is then used

to make informed investment decisions and to price financial products accurately. In the

field of actuarial science, interest rate modeling is essential for calculating the present value

of future cash flows, which is used to assess the financial risk associated with insurance

policies, pensions, and other financial contracts. Interest rate models allow actuaries to

make predictions about future interest rate trends, which can be used to design and price

insurance products that are both financially sound and attractive to consumers. The

importance of interest rate modeling in these fields highlights its significance in ensuring

the stability of the financial sector and in protecting the financial well-being of individuals

and institutions.

Modeling yield curves have been a crucial topic in finance for several decades, with a

primary focus on understanding the behavior of interest rates and their impact on various

financial instruments. The yield curve represents the relationship between the yield and

maturity of fixed-income securities, and it is widely used in financial analysis and decision-
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making.

One area where yield curve modeling has significant implications is in the pricing of

participating life insurance contracts. These contracts, also known as PAR policies,

provide a combination of insurance coverage and participation to internal insurance

company performance, and their pricing requires a deep understanding of the interest

rates environment. By incorporating yield curve models, actuaries can better assess the

financial risk associated with participating life insurance contracts and ensure their

sustainability over the long term.

Lastly, the use of yield curve models is also crucial in the pricing of swaptions, which

are options that give the holder the right but not the obligation to enter into a swap

agreement at a pre-determined strike rate. Swaps are financial instruments used to hedge

against changes in interest rates, and the pricing of swaptions requires a comprehensive

understanding of the yield curve and its evolution over time. Yield curve models help to

identify and quantify the various risk factors associated with swaptions, allowing for more

accurate pricing and risk management.

This dissertation first expands on the work of Hong, Niu, and Zeng 2016 and proposes a

slightly different version of the discrete-time arbitrage-free Nelson-Siegel (DTAFNS) model,

making three main contributions. Firstly, a closed-form expression for risk-free spot rates

is derived under this model. Secondly, the DTAFNS model is shown to have superior

distributional out-of-sample predictive ability over benchmarks when applied to historical

Canadian term structure data. Lastly, a modified version of the mixed fund return model of

Augustyniak, Godin, and Hamel 2021 is developed, substituting their three-factor Gaussian

model with the DTAFNS model, justified by the higher performance of the DTAFNS model.

A second objective of this dissertation is to extend participating contract analysis

schemes to include realistic dynamics for the main risk drivers, including stochastic

interest rates and mortality. Fixed premium contracts where bonuses are paid out as
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benefit increases are considered. Bonus calculations are generalized to handle general

stochastic dynamics. Pricing, reserving, and risk measurement approaches are discussed.

The introduction of a shadow reserve is proposed to replace conventional reserving

formulas and provide additional accuracy when measuring liabilities as future benefit

increases beyond the guaranteed rate are recognized. Several numerical tests based on

Monte-Carlo simulations are presented to demonstrate the importance of considering such

a shadow reserve when measuring risk.

This dissertation lastly outlines procedures for the pricing swaptions under the DTAFNS

model. It also demonstrates how to obtain forward measure dynamics of interested under

such model, which can be leveraged to obtain a faster calculation for the price of a

swaption compared to conventional methods relying on the risk-neutral measure. Overall,

this dissertation contributes to the literature on fixed-income securities valuation, life

insurance contract analysis, and swaptions pricing, providing practical applications for

the DTAFNS model in each field.

This dissertation comprises three papers, each of which has been included as a chapter in

the dissertation. As a result, readers may notice some repetition in certain sections of the

dissertation. This is because the content of each paper has been copied exactly into the

corresponding chapter of the dissertation, with the only difference being that appendices

of all papers have been regrouped into a single appendix in the thesis. Nevertheless, the

dissertation as a whole provides a comprehensive and detailed exploration of the topics at

hand, with each paper providing unique insights and findings.

The DTAFNS model is discussed in Chapter 2, which provides a closed-form expression

for risk-free spot rates. Chapter 3 explores how stochastic interest rates and mortality

dynamics impact the pricing, reserving, and risk measurement approaches for participating

life insurance contracts. Finally, chapter 4 delves into the pricing of swaptions, which are

often used to hedge interest rate risk.

3



Chapter 2

Discrete-time arbitrage-free

Nelson–Siegel model

2.1 Introduction

Dynamics of interest rates have implications in different areas such as asset and

derivatives pricing, portfolio management, and risk measurement. In the context of

actuarial science, interest rate models are central to the evaluation of long-term financial

contracts such as standard insurance and annuities, as well as equity-linked products.

Superior models provide enhanced predictive power and risk evaluation ability, which are

crucial to insurers and pensioners. Interest rate models often study the dynamics of the

term structure specifying simultaneously spot rates for different tenors. The evolution of

the term structure can be represented by various types of models, which can be of

statistical, economic, or financial nature. Statistical approaches, such as these of Diebold

and Li 2006, Guidolin and Timmermann 2006 or Engle, Roussellet, and Siriwardane 2017,

mainly rely on time series models. In economic methods, see for instance Ang and

Piazzesi 2003, Hördahl, Tristani, and Vestin 2006 or Ang et al. 2011, the evolution of the
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term structure is linked to macro-economic factors, such as inflation rates, the growth

rate of the economy and the central bank monetary policy. Financial approaches are

based on the absence of arbitrage paradigm ensuring that pricing systems are consistent.

Brigo and Mercurio 2007 is a comprehensive reference describing multiple models from

that category.

Vasicek 1977 and Cox, Ingersoll, and Ross 1985 are early contributions in the stream of

literature of financial models for the term structure. They propose to model the evolution

of the short rate as specific Itô diffusions leading to a closed-form solution for zero-coupon

prices and the corresponding spot rates. Multi-factor generalizations of such models leading

to more flexible term structure shapes and to the ability to properly model correlations

between future spot rates have then been proposed. See for instance Brennan and Schwartz

1979, Chen and Scott 1992, Rogers 1995 and Jamshidian 1996 for example of multi-factor

models of the term structure. Factor models can be motivated for instance by the work

of Litterman and Scheinkman 1991 showing that at least 95% of variation in the yield

curve can be explained by three statistical factors. An important category of financial

factor models for interest rates that is described in Duffie and Kan 1996 is affine term

structure (ATS) models, in which any spot rate is a linear combination of underlying

factors. Such models are typically obtained by assuming diffusive dynamics for the factors

and deriving corresponding bond prices through common no-arbitrage arguments. By

suitably choosing the drift of the factors, it is possible to obtain a model-implied term

structure that exactly match the observed one, see for instance Hull and White 1990. The

latter model is a particular case of the Heath, Jarrow, and Morton 1992 framework which,

instead of directly modeling the short rate, uses the current term structure as initial input

and applies perturbations on it to represent the evolution of the yield curve.

An issue with some multi-factor models of the term structure is that the factors are

sometimes hard to interpret. The seminal work of Nelson and Siegel 1987 and the
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Svensson 1994 extension specifically aim to depict the term structure as a linear

combination of interpretable factors representing the level, slope and humps in the yield

curve. Whereas the latter two models were initially developed in a static setting, Diebold

and Li 2006 extend the Nelson and Siegel 1987 model into a dynamic framework.

However, a drawback associated with the dynamic version of the Nelson and Siegel 1987

model is that it is shown to be incompatible with no-arbitrage theory in Filipović 1999.

The work of Christensen, Diebold, and Rudebusch 2011 successfully attempts to reconcile

both the no-arbitrage strand of literature and the Nelson and Siegel 1987 model by

developing the so-called arbitrage-free Nelson-Siegel (AFNS) model. Such model is an

affine term structure model where the specification of the diffusion followed by term

structure factors is carefully chosen such that factor loadings exactly coincide with these

of the Nelson-Siegel model. The discrepancy between spot rates of the Nelson-Siegel

model and of the AFNS model only stems from a corrective term whose inclusion is

necessary to preclude theoretical arbitrage opportunities. There are debates in the

literature about whether enforcing absence of arbitrage in interest rate models is

necessary for predictive purposes: Duffee 2002 argues that ATS models often have a poor

performance when used for forecasting future Treasury yields. Nevertheless, when

considering asset pricing applications, enforcing absence of arbitrage is often required to

obtain a meaningful model.

Many of the aforementioned financial models of the term structure consider continuous-

time settings. However, most of these models have analog discrete-time counterparts,

many of which are described in Wüthrich and Merz 2013. Discrete-time models often

possess the advantage of being simpler to manipulate, which is favorable in applications.

A discrete-time multi-factor Gaussian term structure model is illustrated in Augustyniak,

Godin, and Hamel 2021, in which it serves as a building block for an econometric model

for mixed equity and fixed income fund returns. That paper uses the mixed fund model to

price variable annuities. The discrete-time analog of the multi-factor Cox-Ingersoll-Ross
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model is developed in the work of Le, Singleton, and Dai 2010, which uses auto-regressive

Gamma processes introduced by Gouriéroux and Jasiak 2006. A discrete-time version

of the AFNS model has been developed in Hong, Niu, and Zeng 2016. As mentioned

above, the AFNS model possesses both the favorable attributes of being consistent with

no-arbitrage considerations and of embedding interpretable risk factors; having a discrete-

time version of such model available is therefore highly relevant for practitioners who desire

avoiding technicalities associated with continuous-time models and who wish to retain

positive features of the AFNS model.

This paper further expands on the work Hong, Niu, and Zeng 2016 and revisits the

discrete-time arbitrage-free Nelson-Siegel (DTAFNS) model, providing the following three

main contributions: (i) obtaining a closed-form expression for risk-free spot rates under

such model, (ii) presenting evidence of superior distributional out-of-sample predictive

ability of the DTAFNS model over benchmarks when applied on historical Canadian term

structure data, and (iii) developing a modified version of the mixed fund return model of

Augustyniak, Godin, and Hamel 2021 by substituting their three-factor Gaussian model

with the DTAFNS model. The latter is justified by the higher performance of the

DTAFNS model outlined in this paper.

The remainder of this paper is organized as follows. Section 2.2 specifies the proposed

interest rate model and provides closed-form expressions for risk-free zero-coupon bond

prices and spot rates. In Section 2.3, the model calibration is illustrated and numerical

experiments assessing predictive performance are provided. Section 2.4 adapts the mixed

fund model of Augustyniak, Godin, and Hamel 2021 to include the DTAFNS model as a

building block for the term structure model. Section 2.5 concludes.
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2.2 Interest rate term structure model

This section presents the mathematical construction of the discrete-time version of the

arbitrage-free Nelson-Siegel term structure model, referred to subsequently as the DTAFNS

model. First, the specification of the traditional Nelson-Siegel model and its dynamic

continuous-time arbitrage-free extension are recalled. Then the dynamics of the short rate

in the DTAFNS model is provided and closed-form formulas for spot rates are derived. As

explained in more details subsequently, the DTAFNS model presented in this section has

a slighlty different specification from that of Hong, Niu, and Zeng 2016.

2.2.1 The Nelson-Siegel term structure representation

Nelson and Siegel 1987 propose a parametric representation of the yield curve of the form

y(t, T ) = X(1) +X(2)

(
1− e−λτ

λτ

)

+X(3)

(
1− e−λτ

λτ
− e−λτ

)

, (2.2.1)

where y(t, T ) is the time-t spot rate with tenor τ = T − t, and X(1), X(2), X(3) and λ > 0

are model parameters. The model leads to a convenient interpretation of the parameters,

with X(1), X(2) and X(3) respectively characterizing the level, slope and curvature of the

yield curve, while λ is a dilation parameter. Although this model has first been considered

in a static setting, Diebold and Li 2006 embed it in a dynamic setting where time-varying

factors X
(1)
t , X

(2)
t , X

(3)
t are considered instead of X(1), X(2), X(3). Several auto-regressive

models are used for the dynamics of such parameters, thereby making it possible to forecast

the term structure.

A pitfall of the dynamic Nelson-Siegel model of Diebold and Li 2006 is its incompatibility

with no-arbitrage theory as discussed Filipović 1999. Christensen, Diebold, and

Rudebusch 2011 therefore adapt the Nelson-Siegel framework and develop the AFNS
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model, an arbitrage-free term structure model whose spot rate formulas match exactly

these of the Nelson-Siegel model up to a correction term. It is obtained by specifying the

short rate risk-neutral dynamics as the following affine Gaussian Itô diffusion:

rt ≡ X
(1)
t +X

(2)
t , (2.2.2)









dX
(1)
t

dX
(2)
t

dX
(3)
t









≡









0 0 0

0 λ −λ

0 0 λ









︸ ︷︷ ︸

κQ









θQ1 −X
(1)
t

θQ2 −X
(2)
t

θQ3 −X
(3)
t









︸ ︷︷ ︸

θQ−Xt

dt+ Σ









dWQ
t,1

dWQ
t,2

dWQ
t,3









(2.2.3)

where {WQ
t,1}t≥0, {WQ

t,2}t≥0 and {WQ
t,3}t≥0 are independent Brownian motions under the risk-

neutral probability measure Q, Σ is a 3× 3 positive semi-definite matrix and θQ1 , θ
Q
2 , θ

Q
3 , λ

are real numbers. As shown in Christensen, Diebold, and Rudebusch 2011, this leads to

the following formulas for spot rates:

y(t, T ) = −1

τ

3∑

j=1

B̃(j)(t, T )X
(j)
t −

C̃(t, T )

τ
, (2.2.4)

C̃(t, T ) =
3∑

j=2

(
κQθQ

)

j

∫ T

t

B̃(j)(s, T )ds+
1

2

3∑

j=1

∫ T

t

(

Σ⊤B̃(s, T )B̃(s, T )⊤Σ
)

j,j
ds(2.2.5)

with

B̃(s, T ) ≡
[

B̃(1)(s, T ), B̃(2)(s, T ), B̃(3)(s, T )
]⊤

≡
[

−τ, −
(
1− e−λτ

λ

)

,

(

τe−λτ − 1− e−λτ

λ

)]⊤

(2.2.6)

and ()j or ()j,j denoting respectively the jth element of a vector or the element at row j

and column j of a matrix, respectively.

Striking similarities can be observed when comparing (2.2.1) with (2.2.4) and (2.2.6).

Indeed, identifying X
(1)
t , X

(2)
t , X

(3)
t with X(1), X(2), X(3), discrepancies between the spot

9



rates from both models is only caused by the corrective term − C̃(t,T )
τ

appearing in (2.2.4).

This leads Christensen, Diebold, and Rudebusch 2011 to describe the arbitrage-free

Nelson-Siegel model (2.2.2)-(2.2.3) as the “closest match to the Nelson-Siegel yield

function” within some class of exponential affine term structure models.

2.2.2 Discrete-time arbitrage-free Nelson-Siegel model

The purpose of this section is to define a discrete-time model analogous to model

(2.2.2)-(2.2.3). In what follows, an arbitrage-free market with discrete time steps

t = 0, 1, ..., T , each separated by a time elapse ∆, is considered. Market dynamics are

defined on probability space (Ω,FT ,P) where P is the real-world probability measure and

F := {Ft}Tt=0 is a filtration characterizing the information flow in the market.

In the discrete-time context, the time-t short risk-free rate rt is the Ft-measurable rate

effective for the period [t, t+ 1). The short-rate dynamics considered are

rt =X
(1)
t +X

(2)
t , (2.2.7)

Xt+1 =Xt + κP(θP −Xt) + ΣZP
t+1, (2.2.8)

where the stochastic factor vectors are Xt =
[

X
(1)
t , X

(2)
t , X

(3)
t

]⊤

, t = 0, . . . , T , κP and Σ

are constant parameter matrices of dimension 3 × 3, and θP is a constant column vector

of dimension 3. The process ZP = {ZP
t }Tt=1 with ZP

t =
[
ZP

t,1, Z
P
t,2, Z

P
t,3

]⊤
is a multivariate

standard Gaussian white noise under P with contemporaneous correlation parameters

ρ
(Z)
i,j ≡ corr(ZP

t,i, Z
P
t,j), t = 1, . . . , T and i, j = 1, 2, 3. The initial value of the factor process

is fixed at X0 = x0 ∈ R3. Σ is assumed to be a diagonal matrix with strictly positive

elements. Equations (2.2.7)-(2.2.8) are meant to mimic (2.2.2)-(2.2.3), except that the

model is specified under the physical measure P instead of under the risk-neutral measure

Q. A more general class of Gaussian discrete-time affine structure models is studied in

10



Wüthrich and Merz 2013, but without specializing to the DTAFNS model which is the

object of this paper.

To obtain the specification of spot rates under the DTAFNS model, risk-neutral dynamics

need to be specified. Indeed, spot rates are given by

y(t, T ) = − logP (t, T )

(T − t)∆

where P (t, T ) is the time-t of a risk-free zero coupon of unit face value with maturity on

time point T . In discrete-time models of the short rate, the relationship between P (t, T )

and the risk-free rate is

P (t, T ) = EQ

[

exp

(

−∆
T−1∑

j=t

rj

)∣
∣
∣
∣
Ft

]

.

To obtain risk-neutral dynamics, following the lines of Augustyniak, Godin, and Hamel

2021 for instance, a discrete-time version of the Girsanov theorem can be invoked to

apply a translation to the drift of short rate factors Xt without altering their volatilities,

while keeping a multivariate Gaussian distribution for innovations. It follows from this

theorem that for a given constant market price of risk matrix γ ∈ R3×3, there exists a

probability measure Q equivalent to P such that the process ZQ = {ZQ
t }Tt=1 defined

through ZQ
t+1 = ZP

t+1 − γXt is also an F -adapted standard Gaussian white noise under Q,

still with contemporaneous correlation matrix ρ(Z) =
[

ρ
(Z)
i,j

]3

i,j=1
. Substituting

ZP
t+1 = ZQ

t+1 + γXt into (2.2.8) leads to

Xt+1 = Xt + κPθP − (κP − Σγ)Xt + ΣZQ
t+1.

Assuming there is a solution (κQ, θQ) with κQ ∈ R3×3 and θQ ∈ R3×1 to the system of

11



equations







κQθQ = κPθP,

κQ = κP − Σγ,

(2.2.9)

then

Xt+1 =Xt + κQ(θQ −Xt) + ΣZQ
t+1 (2.2.10)

and thus the factor process {Xt}Tt=0 preserves its auto-regressive structure under the risk-

neutral measure.

The DTAFNS model relies on specific choices of parameters mimicking the AFNS model.

Zero-coupon bond prices under such specific choices are hereby derived. The proofs for the

next results are provided in Appendix A.1.1.

Lemma 2.2.1. For some integer τ > 0 and a real number r ̸= 1,

ζ0(r, τ) ≡
τ−1∑

u=1

ru =
r − rτ
1− r , (2.2.11)

ζ1(r, τ) ≡
τ−1∑

u=1

uru =
r − τrτ + (τ − 1)rτ+1

(1− r)2 , (2.2.12)

ζ2(r, τ) ≡
τ−1∑

u=1

u2ru =
−(τ − 1)2rτ+2 + (2τ 2 − 2τ − 1)rτ+1 − τ 2rτ + r2 + r

(1− r)3 . (2.2.13)

Proposition 2.2.1. Consider λ ∈ (0, 1) and assume

κQ =









0 0 0

0 λ −λ

0 0 λ









. (2.2.14)

In other words, suppose that the state variables Xt have the following dynamics risk-neutral

12



dynamics:









X
(1)
t+1 −X

(1)
t

X
(2)
t+1 −X

(2)
t

X
(3)
t+1 −X

(3)
t









=









0 0 0

0 λ −λ

0 0 λ

















θQ1 −X
(1)
t

θQ2 −X
(2)
t

θQ3 −X
(3)
t









+









Σ1,1 0 0

0 Σ2,2 0

0 0 Σ3,3

















ZQ
t+1,1

ZQ
t+1,2

ZQ
t+1,3









.

Then, the time-t arbitrage-free price of a zero-coupon maturing at T is, for t = 0, . . . , T−1,

P (t, T ) = Aτ exp
[
−∆B⊤

τ Xt

]
, (2.2.15)

where τ = T − t, Bτ =
[

B
(1)
τ , B

(2)
τ , B

(3)
τ

]⊤

and

B(1)
τ = τ, B(2)

τ =
1− (1− λ)τ

λ
, B(3)

τ =
1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1,

logAτ = −∆θQ2
(
B(1)

τ − B(2)
τ

)
+∆θQ3 B

(3)
τ +

1

2
∆2υτ

with

υτ =
3∑

i=1

3∑

j=1

υ(i,j)τ

υ(1,1)τ = Σ2
1,1

τ(τ − 1)(2τ − 1)

6
,

υ(2,2)τ =
Σ2

2,2

λ2

(

τ − 2

[
1− (1− λ)τ

λ

]

+
1− (1− λ)2τ
1− (1− λ)2

)

,

υ(3,3)τ =
Σ2

3,3

λ2

[

τ − 2 + ζ0
(
(1− λ)2, τ − 1

)
+ λ2ζ2

(
(1− λ)2, τ − 1

)

− 2ζ0 ((1− λ), τ − 1)− 2λζ1 ((1− λ), τ − 1) + 2λζ1
(
(1− λ)2, τ − 1

)
]

,

υ(1,2)τ = υ(2,1)τ = ρ1,2Σ1,1Σ2,2
1

λ

(
τ(τ − 1)

2
− ζ1((1− λ), τ)

)

,

υ(1,3)τ = υ(3,1)τ = ρ1,3Σ1,1Σ3,3
1

λ

[
τ(τ − 1)

2
− 1− ζ0 ((1− λ), τ − 1)− (λ+ 1)ζ1 ((1− λ), τ − 1)

− λζ2 ((1− λ), τ − 1)

]

,

13



υ(2,3)τ = υ(3,2)τ = ρ2,3Σ2,2Σ3,3

(
τ − 2− (2− λ)ζ0 ((1− λ), τ − 1) + (1− λ)ζ0 ((1− λ)2, τ − 1)

λ2

+
−ζ1 ((1− λ), τ − 1) + (1− λ)ζ1 ((1− λ)2, τ − 1)

λ

)

.

This entails that spot rates have the form

y(t, T ) = X
(1)
t +

(1− (1− λ)τ )
τλ

X
(2)
t +

[
(1− (1− λ)τ−1)

τλ
− τ − 1

τ
(1−λ)τ−1

]

X
(3)
t −

1

∆τ
logAτ .

(2.2.16)

Remark 2.2.1. In Proposition 2.2.1, parameter θQ1 does not appear in the zero-coupon price

formula (2.2.15) and thus can be set to θQ1 = 0.

To obtain risk-neutral dynamics of the form proposed in Proposition 2.2.1, the following

physical dynamics is considered:

κP =









κP1,1 0 0

0 κP2,2 −λ

0 0 κP3,3









, θP =









0

θP2

θP3









which allows meeting the second condition in (2.2.9) with

γ =









γ1 0 0

0 γ2 0

0 0 γ3









, γi = (κPi,i − 1{i>1}λ)/Σi,i, i = 1, 2, 3. (2.2.17)

Furthermore, substituting (2.2.17) in the first equation of (2.2.9) leads to

θQ2 = λ−1(κP2,2θ
P
2 + κP3,3θ

P
3 − λθP3 ), θQ3 = λ−1κP3,3θ

P
3 .
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Conversely, physical parameters can be retrieved from risk-neutral parameters through

κPi,i = 1{i>1}λ+ Σi,iγi, i = 1, 2, 3, θP3 = λθQ3 /κ
P
3,3, θP2 =

λ

κP2,2

[

θQ2 −
θQ3
κP3,3

(κP3,3 − λ)
]

.

(2.2.18)

Remark 2.2.2. Since κQ1,1 = 0, an alternative specification enforcing κP1,1 = 0 has been

tested, but it was ultimately not retained due to lower performance. See Appendix A.1.4

for more details. The reason why such alternative specification has been tested is because

it provides for non-stationary dynamics of the first risk factor under P, which mimics its

Q-dynamics.

Remark 2.2.3. The DTANFS model of this paper is specified slightly differently than in

Hong, Niu, and Zeng 2016. In the latter work, the matrix κQ is chosen such that factor

loadings Bτ exactly match that of the Nelson-Siegel model (2.2.1). Conversely, this paper

emphasizes an auto-regressive representation of factors, i.e. Equation (2.2.10), which is

the discrete-time counterpart of the diffusive dynamics of the AFNS model (2.2.3).

Nevertheless, both specifications of the model are quite similar conceptually. In Hong,

Niu, and Zeng 2016, only a recursive representation of Aτ is provided, which makes the

derivation of the closed-form solution for Aτ a useful contribution of the present work.

2.3 Model estimation

This section presents a method to estimate the DTAFNS model using historical spot

curves data. The model is estimated on Canadian interest rate data. The fit performance

is analyzed and benchmarked against the discrete-time Gaussian three-factor model of

Augustyniak, Godin, and Hamel 2021 and a version of the Dynamic Nelson-Siegel model

of Diebold and Li 2006.
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2.3.1 Estimation framework

Several methods have been considered in the literature to estimate factor models of

interest rates, such as conventional maximum likelihood estimation (Chen and Scott

1993), maximum likelihood with Kalman filters (Duan and Simonato 1999; Lemke 2006;

Park 2014; Augustyniak, Godin, and Hamel 2021), the method of simulated moments

(Dai and Singleton 2000) or Bayesian approaches (Hong, Niu, and Zeng 2016). In this

paper, the Kalman filter approach is applied. Observed spot rates (observable data) are

considered to be a noisy version of the true spot rates (the signal). Setting up the

Kalman filter requires to first derive the recursive Gaussian linear relationship between

the observable quantities and factors driving the signal, which is hereby provided.

Assume that on each time t a set of M annualized continuously compounded spot rates

with fixed times-to-maturity n1, ..., nM are observed, which are denoted by the column

vector

ŷ(t) ≡ (ŷ(t, t+ n1), ..., ŷ(t, t+ nM))⊤.

Define also the corresponding model-implied spot rate vector

y(t) ≡ (y(t, t+ n1), ..., y(t, t+ nM))⊤

where (2.2.16) leads to

y(t, t+ n) =
−1
n∆

logAn +
1

n
B⊤

nXt. (2.3.1)

The relationship between observed and model implied spot rate is assumed to be

ŷ(t) = y(t) + ηt

16



where {ηt}Tt=1 is a multivariate Gaussian white noise with diagonal variance-covariance

matrix H. Furthermore, for simplicity, all values on the diagonal of matrix H are assumed

to be identical and equal to some parameter h. This leads to

ŷ(t) = a+ BXt + ηt, (2.3.2)

where

a ≡
( −1
n1∆

logAn1
, . . . ,

−1
nM∆

logAnM

)⊤

, (2.3.3)

βn ≡
(

B
(1)
n

n
,
B

(2)
n

n
,
B

(3)
n

n

)⊤

,

B ≡ (βn1
, . . . , βnM

)⊤ . (2.3.4)

Furthermore, the transition equation describing the dynamics of the latent factors Xt is

obtained from (2.2.8):

Xt+1 = b+DXt + ξt+1, (2.3.5)

where

b ≡ κPθP, D ≡ I − κP, ξt+1 ≡ ΣZP
t+1. (2.3.6)

The sequence {ξt}Tt=1 is therefore a multivariate Gaussian white noise with covariance

matrix

Q = ΣρΣ. (2.3.7)

The representation (2.3.2)-(2.3.5) of state space variables allows estimating the DTAFNS

model using a Kalman filter. The general Kalman filter algorithm is presented in Appendix

A.1.3. The Kalman filter allows deriving the log-likelihood of observed spot rate curves for

a candidate set of parameters. Algorithm 1 indicates steps to calculate the log-likelihood
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function in the context of the DTAFNS model. In this algorithm, p denotes joint density

functions. In the present work, the implementation of the Kalman filter is performed with

the R package FKF. Moreover, to find maximum likelihood estimates of the parameters,

consistently with Augustyniak, Godin, and Hamel 2021, an optimization of the likelihood is

conducted with the R package Rsolnp (Ghalanos and Theussl 2015) applying the nonlinear

augmented Lagrange multiplier optimization method of Ye 1987. The optimization is

performed under the following constraints:

Σi,i ≥ 0, h ≥ 0, −1 ≤ ρi,j ≤ 1, i, j = 1, 2, 3, λ ∈ (0, 1).

Additional constraints could be applied to enforce the positive semi-definiteness of matrices

Σ and ρ, but optimization results obtained with our dataset satisfy such constraints without

explicitly specifying them to the optimizer.

18



Algorithm 1Kalman filter algorithm for the calculation of likelihood function and smoothed
state densities

Input: Initial values x̄1|0 ∈ R3, P1|0 ∈ R3×3, parameters h, λ, θQ, ρ, γ, Σ and spot rate
dataset ŷ(t), t = 0, . . . , T .
Outputs: Log-likelihood L(ŷ) = log (p (ŷ(T ), ŷ(T − 1), ..., ŷ(1))) and smoothed density
moments x̄t|T , Pt|T , t = 1, . . . , T .

Calculating the log-likelihood:
Calculate a,b,D,Q and B with (2.2.18), (2.3.3), (2.3.4), (2.3.6), (2.3.7) and Proposition

2.2.1.

for t ∈ {1, ..., T} do
Calculate p(ŷ(t)|ŷ(1), ..., ŷ(t− 1)):
ȳ(t)← a+ Bx̄t|t−1

Σ̄t ← BPt|t−1B
⊤ +H

p(ŷ(t)|ŷ(1), ..., ŷ(t− 1)) ∼ N(ȳ(t), Σ̄t)

Calculate x̄t|t and Pt|t:

x̄t|t ← x̄t|t−1 + Pt|t−1B
⊤Σ̄−1

t (ŷ(t)− ȳ(t))
Pt|t ← Pt|t−1 − Pt|t−1B

⊤Σ̄−1
t BPt|t−1

x̄t+1|t ← b+Dx̄t|t
Pt+1|t ← DPt|tD

⊤ +Q

end for
L(ŷ)←

∑T

t=1 log p (ŷ(t)|ŷ(1), ..., ŷ(t− 1))

Calculating the smoothed state density:
for t ∈ {T − 1, . . . , 1} do

Jt ← Pt|tD
⊤P−1

t+1|t,

x̄t|T ← x̄t|t + Jt(x̄t+1|T − x̄t+1|t),
Pt|T ← Pt|t + Jt(Pt+1|T − Pt+1|t)J

⊤
t .

end for
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The smoothed state density is the density of time-t factors conditional on all observations

from the sample, namely p(Xt|ŷ(1), . . . , ŷ(T )). Such distribution is multivariate Gaussian

with mean x̄t|T and covariance matrix Pt|T . Such mean and variance are obtained with the

Kalman smoother algorithm (Shumway and Stoffer 2017) which is also shown in Algorithm

1.

2.3.2 Model estimation and analysis

This section presents the DTAFNS model estimation using historical Canadian spot rate

data.

The dataset

To estimate the model, end-of-month Canadian spot rate curves from January 1986 to

January 2022 (434 months) are considered. Such yield curves are provided publicly on the

website of the Bank of Canada1 and are constructed through an exponential smoothing

methodology described in Bolder, Metzler, and Johnson 2004. 33 spot rate tenors are

considered, which include short-end maturities of 3, 6, and 9 months and all integer times-

to-maturity from 1 to 30 years.2

Estimated parameters and performance

Table 2.1 gives estimates of DTAFNS model parameters obtained with Algorithm 1 which

applies the Kalman filter. Factor 1 innovations are negatively correlated with these of

the two other factors, which are positively correlated between themselves. The negative

correlation between the level factor X(1) and the slope and curvature factors X(2) and X(3)

1. Source: https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
2. For all years up to 1990 inclusively, times-to-maturity between 26 years and 30 years are missing in

the dataset and are therefore not considered.
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tends to reduce the frequency of very large or low values of the short rate rt. Furthermore,

it implies that when the long-term rates increase through higher values of X(1), the slope

given by −X(2) also tends to go up. Thus, movements in the long-end of the curve are not

necessarily matched by movements of a similar magnitude and direction in the short-end.

The hump in the curve reflected by X(3) also tends to decrease during periods of increasing

of long-term spot rates. The speed of reversion κPi,i is much lower for the first factor (i = 1)

than for the other two, which is not surprising due to the overall rates level having had a

clear lasting downward trend in the historical sample, representing close-to-non-stationary

behavior. Finally, the estimation implies a long-term average of short rates of θP2 = 0.0301

under physical dynamics.

Table 2.1: Maximum likelihood estimates of the DTAFNS model parameters

i κPi,i γi Σi,i θPi θQi x̄i,1|0 λ h

1 0.0075 2.7923 0.0027 0 0 0.0491
2 0.0288 1.2016 0.0045 0.0301 0.0633 0.0391 0.0233 3.76× 10−6

3 0.0354 1.7167 0.0070 0.0505 0.0766 0.0291

ρ =





1 −0.6303 −0.4097
−0.6303 1 0.2993
−0.4097 0.2993 1



, P1|0 =





4.45×10−6 0 0
0 4.45×10−6 0
0 0 4.45×10−6





Notes: Maximum likelihood parameter estimates for the DTAFNS model presented in
Section 2.2.2 obtained with the Kalman filter (see Algorithm 1). The data sample includes
Canadian end-of-month yield curves from January 1986 to January 2022. x̄i,1|0 refers to
element i of the vector x̄1|0.

Figure 2.1 shows the smoothed value (the smoothed distribution expected value) of latent

factors provided by the Kalman smoother procedure described in Algorithm 1. The black

curve is the short rate implied by the model which is obtained by summing the smoothed

values of the first two factors, consistently with (2.2.7). The decreasing trend of the short

rate throughout the data sample is recovered by the downward trend of Factor 1.

Conversely, Factor 2 and Factor 3, driving the slope and humps in the curve respectively,
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Figure 2.1: Model-implied factors and short rate time series

1990 1995 2000 2005 2010 2015 2020

0.00

0.05

0.10

Factor 1 Factor 2 Factor 3 Short rate

Notes: Time series of DTAFNS model-implied factors which correspond to the smoothed

state inferences EP

[

x
(i)
t |ŷ(1), ŷ(2), ..., ŷ(T )

]

, i = 1, 2, 3 provided by Algorithm 1, and

implied short rates obtained by summing smoothed values of the first two factors. The
model is estimated on the end-of-month Canadian spot rate curves extending from January
1986 to January 2022.

exhibit more stationary fluctuations.

To assess the ability of the DTAFNS model to match observed short- and long-term spot

rates of the term structure, time series of observed spot rates of three-month and 10-year

tenors are compared to the model-implied spot rates for the same tenors. Such time series

are provided in Figure 2.2. The model can be seen to adequately match short- and long-

term rates throughout the entire sample, as differences between the model-implied and

observed spot rates are very small.
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Figure 2.2: Model-implied and observed spot rate time series for 3-month and 10-year
tenors

1990 1995 2000 2005 2010 2015 2020

0.00

0.05

0.10

3−month model 3−month obs 10−year model 10−year obs

Notes: Time series of observed 3-month (short-term) and 10-year (long-term) maturity
spot rates (dotted curves), with corresponding spot rates implied by the fitted DTAFNS
model. The dataset considered is the end-of-month Canadian spot rate curves extending
from January 1986 to January 2022.

2.3.3 Performance assessment and benchmarking

This section analyzes the adequacy of the fit and the predictive performance of the

DTAFNS model through benchmarking.

Benchmarks

The discrete-time Gaussian three-factor model of Augustyniak, Godin, and Hamel 2021,

subsequently referred to as the DG3 model, and a version of the dynamic Nelson-Siegel

(DNS) model introduced by Diebold and Li 2006 are benchmarks considered in this study

for comparison of performance results. See Appendix A.1.2 for a formal specification of

these two models. The main differences between DG3 and the DTAFNS model is that (i)

the latent factors in the former only regress on themselves instead of allowing cross-factor

auto-regressions, (ii) the DTAFNS has a short rate equal to the sum of two of the factors

23



instead of the three as in the benchmark, and (iii) the DTAFNS has a fixed structure for

the matrix κQ driving the auto-regression intensity, unlike the Augustyniak, Godin, and

Hamel 2021 model allowing optimizing such quantities. Regarding the second benchmark,

unlike in the DTAFNS model, the DNS model does not include a deterministic adjustment

term in spot rates to rule out arbitrage opportunities.

Goodness-of-fit of the model and forecasting ability

To assess the model’s ability to adequately fit the observed data, we compare the log-

likelihood of the DTAFNS, the DG3 and the DNS models. Two types of log-likelihoods are

computed: an in-sample version obtained by fitting the models to the entire dataset, and

an out-of-sample version which is obtained by considering an expanding window sequential

approach. For the latter, in the first iteration, data from January 1986 up to the end

of 2016 is considered as a first training set, and data from 2017 is considered as a test

set. In any following iteration, the training sets are expanded by one year and the test

year moves to the year following that of the previous iteration. The last iteration has a

test set including data for both 2021 and 2022 since the dataset only includes data for

January in 2022. The aggregated out-of-sample log-likelihood is obtained by summing the

log-likelihoods associated with all the test set folds using an expanding window sequential

approach. Table 2.2 provides the results. Whereas the in-sample log-likelihood of the DG3

is higher than that of the DTAFNS and the DNS models, the out-of-sample value for the

DTAFNS model is higher than that of the DNS and DG3 benchmarks for the aggregate of

all test years. This implies better distributional predictive ability for the DTAFNS model.

To visualize the ability of the DTAFNS model and benchmarks to replicate observed yield

curves, Figure 2.3 presents the realized spot curves and model-implied counterparts for four

selected dates. These four days are the same that are considered in Augustyniak, Godin,

and Hamel 2021 to display fitting performance, namely December 29, 2006, December 31,
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Table 2.2: Log-likelihood of the DTAFNS model and its benchmarks

Model
Out-of-sample In-sample

2017 2018 2019 2020 2021-22 Aggregated
DTAFNS 2,034 2,001 2,035 2,015 2,183 10,268 65,702
DG3 2,012 1,978 2,024 2,027 2,200 10,241 66,069
DNS 1,985 1,982 1,993 2,001 2,163 10,124 64,610

Notes: Comparison of the log-likelihood of the DTAFNS model of Section 2.2.2 and
of the DG3 and DNS benchmarks described in Appendix A.1.2. The data sample is
the Canadian end-of-month yield curve. The in-sample dataset starts in January 1986
and ends in January 2022. The out-of-sample estimation procedure uses an expanding
window approach described in Section 2.3.3. The aggregated out-of-sample log-likelihood
is ultimately obtained by summing the log-likelihood for all test years.

2008, June 30, 2016 and October 31, 2018. Such dates exhibit several spot curve shapes:

flat, upward sloping or humped. The figure shows that the DTAFNS and both benchmarks

are able to reproduce observed yield curves reasonably well.

Frequency of negative values

A drawback associated with the use of the Gaussian distribution within interest rate models

is the possibility of producing negative short rates. Although negative rates have been

observed in some European markets, such phenomenon almost did not occur in North

America. To investigate the propensity of the DTAFNS model and its benchmarks to

generate negative interest rates, 200,000 five-year monthly paths are simulated under the

physical measure with the estimated parameters drawn from Table 2.1, Table A.1 and Table

A.2, respectively, and starting values for factors being their smoothed values on January

2022.

Table 2.3 reports (i) the proportion of simulated observations below the thresholds 0, −0.01,

−0.02, or −0, 03, and (ii) the proportion of paths with at least one observation below such

thresholds. The DTAFNS model significantly reduces such proportions when compared

with both the DG3 and DNS models, which is desirable.
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Figure 2.3: Model-implied and observed yield curves
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Notes: Realized and model-implied spot rate curves on the four following dates: December
29, 2006, December 31, 2008, June 30, 2016 and October 31, 2018. Dotted black line:
observed spot rates. Full green line: DTAFNS model implied curve. Dashed blue line:
DG3 benchmark implied curve. Red dotted-dashed line: DNS benchmark implied curve.
The observed data are end-of-month Canadian spot rates provided by the Bank of Canada.
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Table 2.3: Probability of observing negative short rates with the DTAFNS model or its
benchmarks

Model
Proportion of months Proportion of paths with at least one month

< 0 < −0.01 < −0.02 < −0.03 < 0 < −0.01 < −0.02 < −0.03
DTAFNS 0.177 0.057 0.015 0.003 0.644 0.299 0.106 0.029
DG3 0.425 0.176 0.058 0.015 0.942 0.629 0.303 0.109
DNS 0.240 0.082 0.022 0.005 0.730 0.379 0.142 0.040

Notes: Within 200,000 five-year monthly simulated paths of the DTAFNS model and the
DG3 and DNS benchmarks described in Appendix A.1.2, the proportion of (i) simulated
months with short rates being smaller than respectively 0, −0.01, −0.02 and −0.03, and
(ii) simulated paths with at least one month below such thresholds are reported. Model
parameters are drawn from Table 2.1, Table A.1, and Table A.2, respectively, with starting
values of the factors being their smoothed values on January 2022.

2.4 An application to mixed fund modeling

One of the main building blocks of the mixed fund (a fund containing both fixed income and

equity) model of Augustyniak, Godin, and Hamel 2021, which is used for variable annuity

pricing, is the underlying factor-based DG3 interest rate model. Since the DTAFNS model

is shown herein to improve predictive performance over the DG3 benchmark, it is relevant

to adapt the Augustyniak, Godin, and Hamel 2021 mixed fund model by replacing the

DG3 model with the DTAFNS model.

2.4.1 Rolling bond fund returns

The dynamics of the mixed fund model of Augustyniak, Godin, and Hamel 2021 involves

a regression on movements of interest rate factors, among other quantities. The inclusion

of such regressors is justified by an analysis of returns of a rolling bond fund, which are

shown to depend on such drivers. Therefore, to adapt the Augustyniak, Godin, and Hamel

2021, the rolling bond fund dynamics is derived under the DTAFNS dynamics.

Consider a fund containing a single zero-coupon of time-to-maturity τ that is rolled-over
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on each period. Denoting its time-t+ 1 log-return by R
(τ)
t+1, (2.2.15) leads to

R
(τ)
t+1 = log

(
P (t+ 1, t+ τ)

P (t, t+ τ)

)

= logAτ−1 − logAτ −∆B⊤
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τ Xt
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. (2.4.1)

Moreover, recalling that rt = X
(1)
t + X

(2)
t and using (2.2.14), (2.2.18), Lemma A.1.2 and

(2.4.1), the excess return can be expressed as
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(2.4.2)

Mimicking Augustyniak, Godin, and Hamel 2021 by considering a portfolio consisting of

M positions with weights ω1, . . . , ωM (where
∑M

j=1 ωj = 1) that are rolled-over on bonds

with fixed time-to-maturities τ1, . . . , τM , the log-return of the rolling bond fund between

times t and t+ 1, denoted by R
(B)
t+1, is approximately characterized by

R
(B)
t+1 −∆rt ≈ ω1R

(τ1)
t+1 + · · ·+ ωMR

(τM )
t+1 −∆rt
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Relationship (2.4.3) will serve as the basis to model the fixed income part of the mixed

fund in the proposed model. The key difference with the Augustyniak, Godin, and Hamel

2021 model is the presence of the last term proportional to X
(3)
t in (2.4.3), which is not

present in their work.

2.4.2 Risky assets returns

The adaptation of the mixed fund model proposed in this paper keeps the same model for

excess equity returns as in Augustyniak, Godin, and Hamel 2021. Returns of q equity assets

are represented with the exponential generalized auto-regressive conditional heteroskedastic

(EGARCH) model of Nelson 1991:

R
(S)
t+1,j −∆rt = λ

(S)
j

√

h
(S)
t,j −

1

2
h
(S)
t,j +

√

h
(S)
t,j Z

(S)
t+1,j, (2.4.4)

log h
(S)
t,j = ω

(S)
j + α

(S)
j Z

(S)
t,j + γ

(S)
j

(

|Z(S)
t,j | −

2√
2π

)

+ β
(S)
j log h

(S)
t−1,j, (2.4.5)

where (ω
(S)
j , α

(S)
j , γ

(S)
j , β

(S)
j ) are parameters associated with the conditional volatility. The

process {h(S)t,j }T−1
t=1 is F -adapted. Parameters λ

(S)
j represent equity risk premia. For j =

1, . . . , q, Z
(S)
j ≡ {Z(S)

t,j }Tt=1 are standard Gaussian white noises under P, independent of Zt,

where the correlation between Z
(S)
t,i and Z

(S)
t,j is denoted Γi,j.
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As in Augustyniak, Godin, and Hamel 2021, the following risk-neutral dynamics for the q

equity assets is assumed:

R
(S)
t+1,j −∆rt = −

1

2
h
(S)
t,j +

√

h
(S)
t,j Z
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+ β
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j log h

(S)
t−1,j,

(2.4.7)

where, under the risk-neutral measure Q, {ZQ(S)
t,j }Tt=1 = {Z

(S)
t,j + λ

(S)
j }Tt=1 are also standard

Gaussian white noises for each j = 1, . . . , q, still with a contemporaneous correlation matrix

Γ = [Γi,j]
q
i,j=1. The independence between the equity innovations {ZQ(S)

t,j }Tt=1 and interest

rate innovations {ZQ
t }Tt=1 is assumed to also hold under Q.

2.4.3 Mixed fund dynamics

To motivate the structure of the proposed mixed fund model, consider a portfolio invested

in the rolling bond fund with weight W and in equity indices with respective weights

ψ̃
(S)
1 , . . . , ψ̃

(S)
q , where W +

∑q

j=1 ψ̃
(S)
j = 1. Its excess return would be represented as
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where

ψ̃0 = W
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ωj

(
logAτj−1 − logAτj

)
, (2.4.9)

ψ̃i = −W∆
M∑

j=1

ωjB
(i)
τj−1, i = 1, 2, 3, (2.4.10)
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ψ̃′
3 = W∆

M∑

j=1

ωj

(
1− (1− λ)τj−1

)
. (2.4.11)

Equation (2.4.8) serves as the conceptual basis for the proposed mixed fund model.

However, instead of relying on (2.4.9)-(2.4.11), model parameters can be directly

estimated from the data in an econometric fashion. Indeed, allocations to fixed income

and equity assets from the mixed funds are not exactly identical to those implied by

previous assumptions–that is an investment in a rolling horizon bond fund and in equity

indices–and basis risk needs to be taken into account. Moreover, as in Augustyniak,

Godin, and Hamel 2021, basis risk is further represented through a noise component also

following EGARCH dynamics. Mixed fund excess returns are thus assumed to be of the

form

R
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t+1 −∆rt = ψ0 +

3∑
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log h
(F )
t = ω(F ) + α(F )Z

(F )
t + γ(F )

(

|Z(F )
t | −

2√
2π

)

+ β(F ) log h
(F )
t−1, (2.4.13)

where the basis risk innovation process Z(F ) = {Z(F )
t }Tt=1 is a standard Gaussian white

noise under P, independent of interest rate innovations ZP and equity innovations

Z
(S)
j , j = 1, . . . , q. Basis risk volatility parameters (ω(F ), α(F ), γ(F ), β(F )) and linear

coefficients (ψ0, ψ1, ψ2, ψ3, ψ
′
3, ψ

(S)
1 , . . . , ψ

(S)
q ) are model parameters to be estimated.

The risk-neutral dynamics can also be obtained along the lines of Augustyniak, Godin,

and Hamel 2021 by translating basis risk innovations {Z(F )
t }Tt=1 by some adapted process

{λ(F )
t }T−1

t=0 : under Q, innovations {ZQ(F )
t }Tt=1 ≡ {Z

(F )
t + λ

(F )
t−1}Tt=1 form a Gaussian white

noise independent of risk-neutral term structure and equity innovations {ZQ
t }Tt=1 and

{ZQ(S)
t,j }Tt=1, respectively. The determination of the process {λ(F )

t }T−1
t=0 stems from the

martingale property that must be satisfied by the mixed fund value process. Its value,
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which characterizes the risk-neutral dynamics of the mixed fund, is provided in the

following proposition whose proof is in Appendix A.1.1.

Proposition 2.4.1. The risk-neutral dynamics of mixed fund excess returns are given by
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and the process {ϵQ(F )
t+1 }Tt=1 is a sequence of independent standardized Gaussian variables

under Q.

2.4.4 Estimation of the mixed fund model

The mixed fund model developed above is estimated on real data. The equity model (2.4.4)

and (2.4.5) is estimated for two equity assets (q = 2), namely the S&P/TSX Composite

and S&P 500 stock indices. For the mixed fund model (2.4.12)-(2.4.13), we consider the

Assumption/Louisbourg Balanced Fund A.3 This is a mixed bond and equity fund composed

approximately of 39% of Canadian fixed income, 36% of Canadian equity, 15% of US equity,

3. https://assumption.lipperweb.com/assumplife/list#FundDetail
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and 10% of other products. Monthly price return data (NAV returns for the mixed fund)

in Canadian currency from February 1986 (from February 1996 for the mixed fund) to

January 2022 are considered, a span which matches the term structure data used in earlier

sections. Note that for the mixed fund, 14 out of the 326 monthly returns are missing

values.

Table 2.4 and Table 2.5 respectively show maximum likelihood estimated parameter and

corresponding standard errors for the equity model (2.4.4)-(2.4.5) and the mixed fund

model (2.4.12)-(2.4.13).4 Note that initial variances h
(S)
0,j , j = 1, 2 and h

(F )
0 are also

considered as parameters to optimize during the estimation. Equity indices are highly

correlated with Γ1,2 = 0.753. Furthermore, the persistence of the volatility for both

indices is high and similar, with β
(S)
1 = 0.628 for the S&P TSX Composite and

β
(S)
2 = 0.697 the S&P 500. Furthermore, the presence of a leverage effect is implied by

negative values of α
(S)
j , j = 1, 2. For the mixed fund model, all parameter estimates are

significant at the 99% confidence level. Negative values for estimates of coefficient ψi,

i = 1, 2 reflect negative correlation between variations of the short rate and returns of the

mixed fund. This is expected due to the fund being partially invested in fixed income,

where bond prices are inversely related to interest rates. Interestingly, the estimate of

coefficient ψ′
3, a parameter not present in the Augustyniak, Godin, and Hamel 2021

model, is also significant and negative. It implies that mixed fund returns are negatively

related to the humpiness of the term structure (and not only to changes in humpiness).

2.5 Conclusion

This paper develops a discrete-time version of the arbitrage-free Nelson-Siegel model for

dynamic term structure modeling which is slightly different than but similar to that in

4. Monthly periods with a missing value for the mixed fund return are discarded in the likelihood
calculation.
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Table 2.4: Bivariate EGARCH equity model parameter estimates

Stock index j λSj ω
(S)
j α

(S)
j γ

(S)
j β

(S)
j Γ1,2

√

12h
(S)
0,j

S&P/TSX 1
0.08443 -2.38375 -0.16171 0.38711 0.62836 14.69%
(0.04574) (0.53917) (0.06079) (0.09043) (0.08330) 0.75281

S&P500 2
0.12605 -1.92871 -0.14922 0.32486 0.69715 (0.02126) 14.98%
(0.04390) (0.61691) (0.05631) (0.08286) (0.09706)

Notes: Maximum likelihood estimates and standard errors (in parentheses) of the equity
model (2.4.4)-(2.4.5). Indices j = 1 and j = 2 are respectively the S&P/TSX Composite
and the S&P 500. The estimation is performed on monthly price return time series
extending from February 1986 to January 2022 (432 returns by index).

Table 2.5: Mixed fund model parameter estimates

Parameter ψ0 ψ1 ψ2 ψ3 ψ′
3 ψ

(S)
1

Estimate 0.00404 -1.72446 -0.76950 -0.44537 -0.05524 0.40076
(0.00123) (0.40433) (0.24252) (0.11151) (0.01935) (0.01464)

Parameter ψ
(S)
2 ω(F ) α(F ) γ(F ) β(F )

√

12h
(F )
0

Estimate 0.13458 -1.03122 -0.09390 0.06653 0.89453 2.61%
(0.01390) (0.01238) (0.03527) (0.02091) (0.00028)

Notes: Maximum likelihood estimates and standard errors (in parentheses) of the mixed
fund model (2.4.12)-(2.4.13). The estimation is performed on a monthly NAV return time
serie for the Assumption/Louisbourg Balanced Fund A extending from February 1996 to
January 2022 (312 returns).

Hong, Niu, and Zeng 2016. A closed-form solution for the price of risk-free zero-coupon

bonds is obtained, which makes it possible to devise a convenient Kalman filter-based

joint estimation procedure for physical and risk-neutral dynamics of factors driving the

term structure. The estimation of the model on historical data for the Canadian spot

curve reveals that the model accurately represents term structure movements and possesses

superior distributional predictive power in comparison to some version of the dynamic

Nelson-Siegel model and to a discrete-time G3 model previously proposed by Augustyniak,

Godin, and Hamel 2021, at least for the considered dataset. The discrete-time arbitrage-

free Nelson-Siegel model also has two other advantages over the latter benchmark: it tends

to produce less frequent negative short rates and it provides better interpretability for the
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three factors underlying the model. Finally, the mixed fund model of Augustyniak, Godin,

and Hamel 2021 characterizing the dynamics of a mutual fund invested in both equity and

fixed income is adapted to integrate the discrete-time arbitrage-free Nelson-Siegel model

as its component to depict interest rates dynamics.
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Chapter 3

Participating Life Insurance Contract

3.1 Introduction

Participating life insurance policies are life insurance contracts that provide some

participation in the insurance company’s profits. They appear under different

mechanisms and were extremely popular before the appearance of equity-linked contracts.

They can provide higher returns to the policyholder than standard insurance policies

since they are linked, among others, to the financial markets. These higher returns are

driven by better than foreseen financial returns, favorable mortality experience, and cost

savings. Unlike equity-linked products which are purely tied to broad market

performance through an index or a mutual fund, participating contracts are tied to the

insurer’s performance.

The participation received by the policyholder is often referred to as bonuses or dividends,

which can take different forms (Booth et al. 2020). Policyholders can use dividends to

reduce premiums. Alternatively, dividends can be invested in a risk-free savings account

or be received in cash. They can also be used as premium to purchase additional one-year

term insurance. Lastly, they can also serve to increase the contract benefits. Examples
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of participating contracts available for sale in North America and Europe include fully

variable life insurance and fixed premium variable life insurance. For both types, insurance

companies share investment profits by increasing associated policy reserves at the end of

each year, with a new benefit level being extracted from such augmented reserves.

Pioneering work in the participating contracts literature is Wilkie 1987 who proposes to

use option pricing theory to evaluate the implicit options embedded in the policies. Key

assumptions required to evaluate such options are the reference portfolio dynamics,

mortality dynamics, and the financial framework. Diverse financial models are proposed

in the academic literature to depict financial risks inherent to various types of life

insurance policies including equity-linked insurance, variable annuities, and participating

contracts, see for instance to Briys and De Varenne 2001 or Hardy 2003.

In the context of participating contracts, earlier works such as Grosen and Jørgensen

2000, Hansen and Miltersen 2002, Tanskanen and Lukkarinen 2003, Haberman, Ballotta,

and Wang 2003, Bauer et al. 2006, Gatzert and Kling 2007 or Gatzert, Holzmüller, and

Schmeiser 2012 often rely on simple assumptions either in their theoretical development

or in their numerical implementation, such as constant interest rates, the

Black-Scholes-Merton financial model for equity returns, or absence of mortality. Simple

assumptions possess the advantage of enhancing the tractability of the model, while

sacrificing some realism. For instance, when working with policies with long maturities,

considering fluctuations in interest rates is a desirable property. The

Black-Scholes-Merton model is furthermore unable to explain the heteroskedasticity, the

positive excess kurtosis, and negative skewness of the asset returns. More recent works

generalize such assumptions and include stochastic interest rates (Zaglauer and Bauer

2008), non-trivial mortality rates (Bacinello 2003) or non-Gaussian financial returns

(Zheng et al. 2019). However, the inclusion of such realistic modeling features is much

more scarce in works considering participating contracts than in the literature dedicated
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to the related equity-linked or variable annuity contracts, where the inclusion of

stochastic interest rate (for example Bacinello and Ortu 1994; Nielsen and Sandmann

1995; Bacinello and Persson 2002; Bernard, Le Courtois, and Quittard-Pinon 2005;

Kijima and Wong 2007; Tiong 2013), or heteroskedastic/fat tailed equity returns (for

instance Hardy 2003; Lin, Tan, and Yang 2009; Ng, Li, and Chan 2011; Fan 2013) is

much more prevalent.

Due to the scarcity of studies on participating contracts embedding stochastic dynamics

for the various risk drivers (including equity risk, interest risk, and mortality risk), the

formulation of many existing quantitative frameworks applicable to the analysis of

participating contracts is not sufficiently general to handle randomness in the entire set of

risk factors. For instance, the variable benefits life insurance approach from Bowers

et al. 1997 reflects deterministic equity returns, interest rate, and mortality assumptions.

Furthermore, formulas from Bacinello 2003 based the compound reversionary bonus

(CRB) method, which is typically used for participating contracts in the UK, also only

reflect deterministic interest rates and mortality. An exception is the cliquet style bonus

distribution scheme studied in Zaglauer and Bauer 2008, which includes a Vasicek process

for the risk-free rate.

The main objective of this study is therefore to bridge that gap in the literature and to

extend participating contract analysis schemes to include realistic dynamics for the main

risk drivers, including stochastic interest rates, and mortality. We focus on the specific

case of fixed premium contracts where bonuses are paid out as benefit increases. First,

formulas for bonus calculations underlying the variable benefits life insurance approach

from Bowers et al. 1997 and the CRB approach of Bacinello 2003 are generalized to

handle general stochastic dynamics. Pricing, reserving and risk measurement approaches

are then discussed in such context. In particular, the stochastic nature of risk drivers

requires the introduction of a so-called shadow reserve representing the genuine actuarial
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present value of future cash flows. The shadow reserve can be integrated into liabilities

evaluation and risk metric calculations to replace conventional reserving formulas and

provide additional accuracy. Several numerical tests based on Monte-Carlo simulations

are presented to outline the importance of considering such shadow reserve instead of the

conventional reserves when measuring risk, as the latter fails to consider future benefit

increases beyond the guaranteed rate. In simulations, dynamics of the separate account

involve returns driven by (i) a mix of equity and fixed income assets, whose modeling is

borrowed from Eghbalzadeh, Godin, and Gaillardetz 2022 and reflects heteroskedasticity

(through GARCH effects) and multi-factor term structure evolution, and (ii) mortality

experience including idiosyncratic mortality effects. Such stylized facts are meant to

improve the realism of the separate account dynamics with respect to models currently

used in the participating contracts literature.

The paper is organized as follows. Section 3.2 reviews standard (i.e. non-participating)

endowment life insurance contracts along with actuarial notation. The participating

contract cash flow mechanisms and benefits dynamics considered herein are presented in

Section 3.3. Section 3.4 focuses on the evaluation of the contract, including fair premium

identification, reserving, and risk measurement. Section 3.5 introduces the stochastic

financial models used to represent the reference account dynamics. Results from

simulation experiments are presented in Section 3.6. Section 3.7 concludes.

3.2 Standard endowment life insurance

This section first introduces the standard actuarial notation describing mortality for a

cohort of policyholders. Standard endowment contracts, which will serve as a basis for the

introduction of participating contracts in subsequent sections, are then discussed.
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3.2.1 Actuarial notations for mortality

Yearly time periods with yearly time points 0, . . . , n are considered. For simplicity, a

homogeneous cohort of N policyholders aged x at time k = 0 with independent and

identically distributed lifetimes is considered. Let Ti be the future lifetime of insured

i, i = 1, 2, . . . , N . Moreover, let kpx and k|qx respectively denote the probability for any

of the policyholders to survive k years, or to survive k years and die within the following

year: for i = 1, 2 . . . , N and k = 0, 1, 2, . . . , n,

kpx = P(Ti ≥ k), k|qx = P(k ≤ Ti < k + 1).

Define a counting process L = {Lx+k}nk=0 giving the number of policyholders still alive at

any time k:

Lx+k =
N∑

i=1

1{Ti≥k}, k = 0, 1, . . . , n

where 1A is the binary indicator function for event A. The number of deaths within the

cohort in the time interval [k, k+1) is represented by Dx+k = Lx+k−Lx+k+1. The filtration

generated by the process L is denoted by {Hk}nk=0. A financial market is also introduced

in subsequent sections, whose information is carried through a filtration {Fk}nk=0. The

combined information from both mortality and the financial market is thus denoted by

{Gk}nk=0 with Gk = Fk ∨ Hk. We suppose independence between the financial market and

mortality events in the cohort of policyholders.

3.2.2 Endowment life insurance

Standard endowment life insurance contracts are now introduced. Related concepts will

allow introducing participating contracts in the subsequent section. Consider a fully

discrete indexed n-year endowment insurance policy. In this case, the insurer pays a
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death benefit at the end of the year of death if the policyholder i dies before age x + n

(i.e. before time n). Otherwise a survival benefit is paid at the time n. Let b0 denote the

initial death benefit that is paid if a death occurs in the first year. Both death and

survival benefits increase by an indexing factor of (1 + g) per year of survival. In

exchange of the future benefit, the policyholder pays annual level premiums Π at the

beginning of each year before n as long as he/she is alive.

Denote the bank account numéraire by B, where B0 = 1. The total time-k insurance

company’s prospective loss is defined as the difference between the present value of future

benefits and the present value of future premiums (including that at time k):

Lk =
n−k−1∑

l=0

bk+lDx+l+k

Bk

Bk+l+1

+ bnLx+n

Bk

Bn

− Π
n−k−1∑

l=0

Lx+l+k

Bk

Bk+l

, (3.2.1)

where

bk = b0(1 + g)k (3.2.2)

is the death benefit associated with deaths during period [k, k + 1). For the endowment

life insurance contract, in (3.2.1), the benefits amounts are deterministic as seen in (3.2.2),

while the number of survivals and deaths are random.

The equivalence premium principle can be used to price these life insurance products. This

approach entails setting the premium in a way to equate expected present values of the

stream of premiums and of the benefit, which is E [L0] = 0. See Bowers et al. 1997 for more

information. In the present work, the valuation is performed with a risk-neutral measure

Q, as required by recent IFRS 17 norms which require market-consistent valuation (see

paragraphs BC153 of the basis of conclusions IASB 2017). This leads to

EQ [L0] = EQ

[
n−1∑

l=0

b0(1 + g)lDx+l

Bl+1

+
b0(1 + g)nLx+n

Bn

− Πnp

n−1∑

l=0

Lx+l

Bl

]

= 0. (3.2.3)
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with the superscript in Πnp emphasizing that such premium is the fair premium for the

non-participating contract. Let P (k, k + l) = EQ [Bk/Bk+l|Fk] be the time-k price of a

risk-free zero-coupon bond with unit face value maturing at time k + l. Furthermore, for

a policyholder aged x+ k at time k, denote by

ȧ̇x+k:n−k| =
n−k−1∑

l=0

P (k, k + l)lpx+k, (3.2.4)

the acturial present value (APV) of a (n− k)−year temporary life annuity and by

Ax+k:n−k|g =
n−k−1∑

l=0

(1 + g)lP (k, k + l + 1)l|qx+k + (1 + g)n−kP (k, n)n−kpx+k, (3.2.5)

the APV of an indexed (n − k)−year endowment insurance with indexing rate g. Using

the independence assumption between the mortality and financial risk, and substituting

(3.2.4) and (3.2.5) into (3.2.3), allows obtaining the fair premium:

Πnp = b0
Ax:n|g

ȧ̇x:n|
. (3.2.6)

The time-k policy reserve kV (Π, bk) for the premium and current benefit levels Π and bk,

respectively, is defined as the APV of the corresponding prospective total loss Lk, which

can be obtained through

Lx+k kV (Π, bk) = EQ

[ n−k−1∑

l=0

bk(1 + g)lDx+k+l

Bk

Bk+l+1

+ bk(1 + g)n−kLx+n

Bk

Bn

−Π
n−k−1∑

l=0

Lx+k+l

Bk

Bk+l

∣
∣
∣
∣
Gk
]

, k = 0, 1, · · · , n.

This leads to

kV (Π, bk) = bkAx+k:n−k|g − Πȧ̇x+k:n−k|. (3.2.7)
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Due to (3.2.3), 0V (Πnp, b0) = 0. Moreover for any value of Π, nV (Π, bn) = bn.

3.3 Participating policies

This section introduces participating life insurance contracts. Participation to insurers

performance can be embedded in various ways into the contracts, with the participation

dividends having several possible forms as mentioned by Booth et al. 2020: decrease in

premiums, immediate dividend payoffs or increased benefits and coverage. This study

focuses on the latter case, with premiums being fixed and benefits being adjusted yearly

through either one of the two following mechanisms that are considered: a standard

approach, which is a generalization of the variable benefits life insurance approach from

Bowers et al. 1997 that we propose, and the compound reversionary bonus approach

detailed for instance in Booth et al. 2020 or Bacinello 2003. In the proposed setting,

dividends are permanently integrated into the contract; benefits can only be increased

and can never be decreased.

For participating contracts considered in this work, the basic insurance component

underlying each participating contract is a discrete n−year endowment insurance policy

with annual premiums. Death and survival benefits increase yearly through the

mechanisms described subsequently, subject to a minimum rate of increase g that is

guaranteed. The total premium charged to the policyholder is split into two parts:

Πtot = Π + Π∗. The portion Π is taken into consideration when determining benefits

increases, while the second part Π∗ is not. The rationale for considering such subdivision

of the premium is explained in further detail below, where it is shown that enforcing

Π∗ = 0 can sometimes lead to the non-existence of a fair premium.
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3.3.1 Standard variable benefit increase mechanism

A first benefit increase mechanism that we propose, referred to subsequently as the standard

mechanism, is a generalization of the variable benefits life insurance approach from Bowers

et al. 1997, which we design to handle randomness in financial returns, interest rates, and

mortality. Indeed, the setting described in Bowers et al. 1997 is fully deterministic, which

therefore requires adaptation to be applicable in the stochastic context of the present work.

For the pool of participating contracts, the portion Π of premiums as well as the policy

reserves are invested in a separate account called the reference account. When using the

standard mechanism, adjustments to the policyholder benefits are determined based on the

reference account performance, which is impacted among others by mortality experience

and reserve levels for the pool of policyholders. On each year, the reference account earns

investment returns. Participation to the reference account performance by policyholders

is only partial: on each period, the insurer deducts a portion θ from the account return to

cover participation guarantees and different expenses.

The reference account value thus evolves according to the following dynamics. At the

beginning of year k, the insurer collects the premiums for all policyholders that are alive:

the total amount of Lx+kΠ is therefore added to the reference account. Then, the reference

account earns log-return R
(F )
k+1, from which a portion θ is removed. Finally, the death

benefits bk are withdrawn from the reference account at the end of the year. Denoting by

Ak the time-k reference account value, this leads to1

Ak+1 = (Ak + Lx+kΠ)
{

1 +
(

exp
(

R
(F )
k+1

)

− 1− θ
)}

−Dx+kbk, k = 0, 1, ..., n−1. (3.3.1)

Then, at the end of year k, the updated account value Ak+1 is used as input to the

1. Although the account value Ak+1 given by (3.3.1) is not bounded below by zero and could in theory
become negative, such situation is not encountered in the simulation experiments present in subsequent
sections. Thus, modifications to (3.3.1) would ensure non-negative account values are not considered.
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calculation of next period’s benefit bk+1. The benefit adjustment is meant to redistribute to

all policyholders the amounts accrued into the reference account while imposing a minimum

rate of increase g. The benefit update formula is

bk+1 = max







Ak+1

Lx+k+1

+Πȧ̇x+k+1:n−k−1|

Ax+k+1:n−k−1|g

, (1 + g)bk







, k = 0, 1, ..., n− 1. (3.3.2)

Indeed, when bk+1 > (1 + g)bk for k ≤ n− 1, this ensures that

bk+1Ax+k+1:n−k−1|g =
Ak+1

Lx+k+1

+Πȧ̇x+k+1:n−k−1|, (3.3.3)

which reflects that the sum of the account value and APV of premiums is equal to the

APV of benefits, assuming these would only increase at the guaranteed rate in the future.

Such benefit increase does not lead to actuarial equivalence between the outflows and the

inflows plus reserve due to (i) the presence of a minimum benefit increase rate g, (ii) the fact

that benefits might increase at a higher rate than g in the future which is disregarded when

considering Ax+k+1:n−k−1|g on the left-hand side of (3.3.3), (iii) the portion θ of returns that

will be deducted from future account returns, and (iv) the portion Π∗ of the premium not

accounted for in the revised benefit calculation.

When the benefit increases beyond its minimum rate of increase g, relation (3.3.3) implies

that the difference between the new benefit bk+1 and that which would have been provided

by a non-participating contract b′k+1 ≡ b0(1 + g)k+1 is, using (3.2.7), given by

(bk+1 − b′k+1) =
1

Ax+k+1:n−k−1|g

( Ak+1

Lx+k+1

− k+1V (Π, b′k+1)

)

. (3.3.4)

Benefits are therefore dependent on the insurer performance through the difference

between the restrospective reserve and the prospespective policy reserve, namely

45



Ak+1

Lx+k+1

− k+1V (Π, b′k+1).

3.3.2 Compound Reversionary Bonus Methods

Booth et al. 2020 describes an alternative mechanism to determine dividends based on

reserve levels. This approach is referred to as the compound reversionary bonus (CRB)

method and is commonly used, for instance, in the United Kingdom (Bacinello 2003).

An extension of such mechanism incorporating for instance stochastic interest rates is

considered in the present paper. This extension is used for comparison with the standard

approach (3.3.2) in numerical experiments of subsequent sections.

Regular benefit adjustment for the compound reversionary bonus method

The CRB approach relies on the idea that updated benefits should be increased in a way

that the policy reserve grows at some bonus rate reflecting reference account performance.

A bonus rate with a similar structure than in Bacinello 2003 is considered,2 which consists

in the adjustment rate δk defined as

δk = max




exp

(

R
(F )
k

)

+mk − θ − Bk/Bk−1

Bk/Bk−1

, 0



 ,

where mk is the mortality excess return. δk reflects the excess rate of the return over

the risk-free rate obtained by the reference account due to financial returns and mortality

experience, from which a portion θ is deducted.3 The excess of expected mortality costs

2. Here we assume that the risk-free rate is used as the so-called technical rate in Bacinello 2003.
3. Generally, the adjustment rate δk is defined by the excess of the return on the reference account over

the expected return plus the excess of the expenses over the occurred ones (Booth et al. 2020). However,
consistently with (Bacinello 2003), expenses are not considered in the present work.
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over actual costs is given by

mk =
bk−1(qx+k−1Lx+k−1 −Dx+k−1) + kV (Π, bk−1)(px+k−1Lx+k−1 − Lx+k)

kV (Π, bk−1)Lx+k

1{kV (Π,bk−1)>0},

where kV (Π, bk−1) is the pre-adjustment reserve (the policy reserve right before the benefit

annual adjustment). It corresponds to the reserve assuming that there is no benefit increase

at time k.

In the CRBM, the new benefit bk is set in a way to reflect the application of the adjustment

rate δk to the pre-adjustment reserve kV (Π, bk−1). Such adjustment is achieved through

the following updating rule for the benefit:

bk = bk−1 max ((1 + Ψkδk), 1 + g) , where (3.3.5)

Ψk =
max (0, kV (Π, bk−1))

bk−1Ax+k:n−k|g

. (3.3.6)

Indeed, if the benefit increase is above the minimal rate g, i.e. bk > bk−1(1 + g), and the

pre-adjustment reserve is positive, i.e. kV (Π, bk−1) > 0, the reserve adjustment is, using

(3.2.7) and (3.3.5),

kV (Π, bk)− kV (Π, bk−1) = bkAx+k:n−k|g − Πȧ̇x+k:n−k| − bk−1Ax+k:n−k|g +Πȧ̇x+k:n−k|

= (bk − bk−1)Ax+k:n−k|g

= bk−1ΨkδkAx+k:n−k|g

= δk kV (Π, bk−1).

An important difference between the CRB method and the proposed standard variable

increase mechanism is that the former uses the prospective policy reserve as a basis for

applying the bonus rate, whereas the latter uses the account value calculated retrospectively

to calculate the redistribution of the surplus over the policy reserve.
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3.4 Pricing, reserving, and risk evaluation for participating

contracts

3.4.1 The shadow reserve

As mentioned above, the policy reserve (3.2.7) is not a good depiction of the insurer’s

liability for participating contracts since such formula does not reflect future participation

bonuses embedded in benefits and the portion of the premium Π∗ not reflected in such

calculation. This leads to considering a quantity referred to as the shadow reserve, which

is defined as the APV of all future cash flows to the policyholder related to the participating

contract. The shadow reserve differs from the policy reserve in the way the benefits are

considered; the true future benefits are considered in the former instead of the minimum

guaranteed benefit reflected in the latter. The shadow reserve represents a best estimate

of the amount that the insurance company needs to set aside to fulfill its future obligations

related to the contracts.

Definition 3.4.1. For premium parts Π and Π∗, the time-k shadow reserve, denoted

Ck(Π,Π
∗), is the risk-neutral conditional expectation of discounted future benefits minus

discounted future premiums: for k = 0, ..., n− 1,

Ck(Π,Π
∗) = EQ

[ n−k−1∑

l=0

bl+kDx+l+k

Bk

Bk+l+1

+ bnLx+n

Bk

Bn

−
n−k−1∑

l=0

(Π + Π∗)Lx+k+l

Bk

Bk+l

∣
∣
∣
∣
Gk
]

,

(3.4.1)

with benefits only being updated considering the premium part Π as exhibited in above

sections.
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3.4.2 The fair premium of a participating contract

Participating contracts are also typically priced using the equivalence premium principle

(Booth et al. 2020). A fair premium of the participating contract is a duplet (Π,Π∗) for

which the initial shadow reserve is set to zero, i.e. C0(Π,Π
∗) = 0. Because participating

mechanisms (3.3.2) or (3.3.5) entail a complex non-linear relationship between benefits and

premiums, isolating Π in the equation C0(Π,Π
∗) = 0 cannot be done and fair premiums

must be calculated numerically.

A natural choice would consist in setting Π∗ = 0 and having the full premium Πtot = Π

being recognized within benefits increases. Unfortunately, the fair premium defined under

this assumption does not always exist, e.g. when the participation deduction parameter

θ is too small. Figure 3.1 shows the initial shadow reserve C0(Π, 0) estimated through

Monte-Carlo simulations versus the premium Π for different spreads θ under the standard

benefit increase mechanism detailed in Section 3.3.1. The financial model used to simulate

cash flows is explained in Section 3.5, and associated parameters are given in Appendix

A.2. For small values of θ, the shadow reserve does not hit zero, implying non-existence of

the fair premium.

When using the standard benefit increase mechanism from Section 3.3.1, an alternative

procedure is therefore considered. We set Π = Πnp as defined in (3.2.6), i.e. benefits are

only incremented based on what the premium would be if the contract was

non-participating. Then the excess part of the premium Π∗ is adjusted to obtain a fair

premium: C0(Π
np,Π∗) = 0.

Conversely, when using the CRB approach from Section 3.3.2 for benefit increases, we

instead set Πtot = Π, and therefore Π∗ = 0. Indeed, cases of non-existence of a fair

premium were never encountered in numerical experiments that were performed with the

CRB mechanism.
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Figure 3.1: Premium vs cost concerning the different spread factors (θ).
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Notes: For a participating contract based on the standard benefit increase mechanism
detailed in Section 3.3.1, this figure reports the initial shadow reserve C0(Π, 0) estimated
through Monte-Carlo simulations (100, 000 simulated paths) versus the premium Π for
different spread values θ. In this example, the initial benefit is b0 = 10,000. There are
Lx = 1000 policyholders at the onset. The term of the contract is n = 10 years. The
guaranteed benefit increase rate is g = 0. The financial model is explained in Section 3.5
and parameters are reported in Appendix A.2.
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3.4.3 Risk measurement

From the insurer’s point of view, participating contracts are risky and need to be well

managed, which means the risk level to the insurer needs to be evaluated.

A first way to do this consists in comparing the prospective reserve (i.e. the shadow reserve)

with a retrospective reserve representing the cash flows accumulated by the insurer to cover

future obligations. Such retrospective reserve is represented by a modified version of the

account value (3.3.1) that includes additional amounts which are charged by the insurers

but which are not reflected when calculated benefit increases. We therefore introduce an

augmented reference account process A∗ represented by the following for k = 0, 1, . . . , n−1:

A∗
k+1 =

(
A∗

k + Lx+kΠ
tot
) (

exp
(

R
(F )
k+1

)

− θ∗
)

−Dx+kbk − Lx+nbn1{k=n−1}, (3.4.2)

with A∗
0 = 0 and θ∗ ≤ θ being the portion of the participation deduction serving company

expenses. The gap between the shadow reserve and the augmented reference account

represents the current losses (gains when negative) associated with the issue of the policy.

A metric commonly used for measuring the contract risk is the net amount at risk (NAAR).

In the literature, the NAAR is often defined for non-stochastic setting (e.g. Bowers et

al. 1997). Hence, we extend the definition for a stochastic framework.

Definition 3.4.2. The net amount at risk is defined as the difference between benefits and

the augmented reference account: for k = 0, 1, . . . , n,

kNAAR ≡ bk −
A∗

k

Lx+k

− Πtot
1{k<n}. (3.4.3)

The NAAR can be understood as a one-year term risk exposure.
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3.5 Financial model

The financial market model considered in subsequent simulation experiments, which is

drawn directly from Eghbalzadeh, Godin, and Gaillardetz 2022, is hereby provided. Unlike

in previous sections where yearly time periods are considered, the models from the latter

work were developed for monthly periods. Relations tying yearly returns to monthly values

generated by the models are provided.

3.5.1 Interest rate term structure model

The year-k bank account numéraire is obtained by accruing risk-free interest over 12k

months:

Bk = exp

(

∆
12k−1∑

t=0

rt

)

, k = 1, . . . , n

with ∆ = 1/12 and rt being the (annualized) risk-free short rate for the t + 1th monthly

period. The interest rate term structure dynamics is modeled by the discrete-time

arbitrage-free Nelson-Siegel (DTAFNS) model of Eghbalzadeh, Godin, and Gaillardetz

2022 which is numerically tractable, easily interpretable and which provides an accurate

depiction of realized term structures. Model parameters considered in subsequent

numerical experiments, which are presented in Appendix A.2 are also drawn from

Eghbalzadeh, Godin, and Gaillardetz 2022. Such parameters were calibrated on historical

Canadian term structure data. See Appendix A.2 for more details. The DTAFNS model

is a three-factor stochastic short-rate model. The short rate is the sum of the first two:

rt ≡ X
(1)
t +X

(2)
t , (3.5.1)
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where the state variable process {Xt}12nt=0 defined with time-t factors Xt = [X
(1)
t , X

(2)
t , X

(3)
t ]

follows the following auto-regressive dynamics under the physical measure P:









X
(1)
t+1 −X

(1)
t

X
(2)
t+1 −X

(2)
t

X
(3)
t+1 −X

(3)
t









≡









−Σ11γ1 0 0

0 λ− Σ22γ2 −λ

0 0 λ− Σ33γ3









︸ ︷︷ ︸

κP









0−X(1)
t

θP2 −X
(2)
t

θP3 −X
(3)
t









︸ ︷︷ ︸

θP−Xt

+ (3.5.2)









Σ11 0 0

0 Σ22 0

0 0 Σ33









︸ ︷︷ ︸

Σ









ZP
t+1,1

ZP
t+1,2

ZP
t+1,3









,

with (θP, κP,Σ) being model parameters, {ZP
t,i}12nt=1, i = 1, 2, 3 being F -adapted standard

Gaussian white noises with contemporaneous correlation parameters ρij = corr(ZP
t,i, Z

P
t,j),

t = 1, . . . , T and i, j = 1, 2, 3. Risk-neutral dynamics of the factor process are

Xt+1 = Xt + κQ(θQ −Xt) + ΣZQ
t+1, (3.5.3)

where

κQ =









0 0 0

0 λ −λ

0 0 λ









and θQ =









0

(θP2κ
P
22 + θP3Σ33γ3)/λ

θP3κ
P
33/λ









. (3.5.4)

and processes ZQ
i = {ZQ

t,i}12nt=1, i = 1, 2, 3 defined through ZQ
t+1,i = ZP

t+1,i − γiX
(i)
t also are

F -adapted standard Gaussian white noises under Q with contemporaneous dependence

parameters ρij, i, j = 1, 2, 3.

Eghbalzadeh, Godin, and Gaillardetz 2022 show that under this model the month-t price
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of a risk-free zero-coupon bond paying one dollar on month T is

P (t, T ) =A(t, T ) exp
[
−∆B(t, T )⊤Xt

]
, (3.5.5)

where B(t, T ) =
[
B(1)(t, T ), B(2)(t, T ), B(3)(t, T )

]⊤
with

B(1)(t, T ) = τ, B(2)(t, T ) =
1− (1− λ)τ

λ
, B(3)(t, T ) =

1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1,

logA(t, T ) = −∆θQ2
(
B(1)(t, T )− B(2)(t, T )

)
+∆θQ3 B(3)(t, T ) +

1

2
∆2υτ ,

υτ =

(
3∑

i=1

3∑

j=1

υ(i,j)τ

)

,

υ(1,1)τ = Σ2
11

τ(τ − 1)(2τ − 1)

6
,

υ(2,2)τ =
Σ2

22

λ2

(

τ − 2

[
1− (1− λ)τ

λ

]

+
1− (1− λ)2τ
1− (1− λ)2

)

,

υ(3,3)τ =
Σ2

33

λ2

[

τ − 2 + ζ0
(
(1− λ)2, τ − 1

)
+ λ2ζ2

(
(1− λ)2, τ − 1

)

− 2ζ0 ((1− λ), τ − 1)− 2λζ1 ((1− λ), τ − 1) + 2λζ1
(
(1− λ)2, τ − 1

)
]

,

υ(1,2)τ = υ(2,1)τ = ρ12Σ11Σ22
1

λ

(
τ(τ − 1)

2
− ζ1((1− λ), τ)

)

,

υ(1,3)τ = υ(3,1)τ = ρ13Σ11Σ33
1

λ

[
τ(τ − 1)

2
− 1− ζ0 ((1− λ), τ − 1)− (λ+ 1)ζ1 ((1− λ), τ − 1)

− λζ2 ((1− λ), τ − 1)

]

,

υ(2,3)τ = υ(3,2)τ = ρ23Σ22Σ33

(
τ − 2− (2− λ)ζ0 ((1− λ), τ − 1) + (1− λ)ζ0 ((1− λ)2, τ − 1)

λ2

+
−ζ1 ((1− λ), τ − 1) + (1− λ)ζ1 ((1− λ)2, τ − 1)

λ

)

and

ζ0(r, τ) ≡
τ−1∑

u=1

ru =
r − rτ
1− r ,
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ζ1(r, τ) ≡
τ−1∑

u=1

uru =
r − τrτ + (τ − 1)rτ+1

(1− r)2 ,

ζ2(r, τ) ≡
τ−1∑

u=1

u2ru =
−(τ − 1)2rτ+2 + (2τ 2 − 2τ − 1)rτ+1 − τ 2rτ + r2 + r

(1− r)3 .

3.5.2 Reference account dynamics

The reference account of participating life insurance contracts in which reserves are invested

is typically composed of a mix of equity and fixed income securities. The mixed fund model

of Eghbalzadeh, Godin, and Gaillardetz 2022 which represents dynamics of funds invested

in both these two classes of asset is therefore used in this work. Such model is an adaptation

of the mixed fund model of Augustyniak, Godin, and Hamel 2021 which uses the DTAFNS

term structure model instead of their conventional three-factor Gaussian model.

Again, the considered model parameters are borrowed from Eghbalzadeh, Godin, and

Gaillardetz 2022, who use monthly time periods in their study. The year-k reference

account annual log-return R
(F )
k is thus represented as the sum of the monthly log-returns

R̃
(F )
k :

R
(F )
k =

12k∑

t=1+12(k−1)

R̃
(F )
t .

The model first considers the dynamics of q equity indices, where index j’s monthly excess

log-return dynamics are driven by an EGARCH process:

R̃
(S)
t+1,j −∆rt = λ

(S)
j

√

h
(S)
t,j −

1

2
h
(S)
t,j +

√

h
(S)
t,j Z

(S)
t+1,j, (3.5.6)

log h
(S)
t,j = ω

(S)
j + α

(S)
j Z

(S)
t,j + γ

(S)
j

(

|Z(S)
t,j | −

2√
2π

)

+ β
(S)
j log h

(S)
t−1,j, (3.5.7)

where (ω
(S)
j , α

(S)
j , γ

(S)
j , β

(S)
j ) are parameters associated with the conditional volatility, λ

(S)
j

is the equity risk premium parameter, {h(S)t,j }12n−1
t=0 is the GARCH volatility process, and

Z
(S)
j = {Z(S)

t,j }12nt=1, j = 1, . . . , q are standard Gaussian white noise under P independent of
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Zt whose contemporaneous correlation is Γij = corr
(

Z
(S)
t,i , Z

(S)
t,j

)

. The EGARCH process

was introduced by Nelson 1991, which has the advantageous properties of embedding Black

1976’s leverage effect, of not requiring constraints on parameters during the calibration to

ensure positive volatilities and of better capturing the persistence of the volatility shocks

than conventional GARCH processes.

The month-t reference account returns R̃
(F )
t+1 is then represented through an econometric

model driven by (i) a linear relationship with respect to term structure shocks and excess

returns on the equity indices, and (ii) a basis risk term independent of above terms which

also follows an EGARCH process:

R̃
(F )
t+1 −∆rt = ψ0 +

3∑

i=1

ψi

(

X
(i)
t+1−

(
1−κQii

)
X

(i)
t

)

+ψ′
3X

(3)
t +

q
∑

j=1

ψ
(S)
j

(

R̃
(S)
t+1,j −∆rt

)

+

√

h
(F )
t Z

(F )
t+1,

(3.5.8)

log h
(F )
t = ω(F ) + α(F )Z

(F )
t + γ(F )

(

|Z(F )
t | −

2√
2π

)

+ β(F ) log h
(F )
t−1, (3.5.9)

where (ψ0, ψ1, ψ2, ψ3, ψ
′
3, ψ

(S)
1 , . . . , ψ

(S)
q ) are parameters associated with the linear mapping

between the account returns and risk factors, (ω(F ), α(F ), γ(F ), β(F )) are parameters

associated with the conditional volatility process {h(F )
t }12n−1

t=1 , and Z
(F )
t := {Z(F )

t }12t=1 is a

standard Gaussian white noise under P independent of Zt and Z
(S)
j , j = 1, . . . , q.

The considered risk-neutral dynamics of the equity indices and account returns, also taken

from Eghbalzadeh, Godin, and Gaillardetz 2022, are

R
(F )
t+1 −∆rt = −

1

2

(

σ
(F )
t

)2

+ σ
(F )
t ϵ

Q(F )
t+1 , (3.5.10)

where

(

σ
(F )
t

)2

≡
3∑

i=1

3∑

l=1

ψiψlΣiiΣllρil +

q
∑

j=1

q
∑

k=1

ψ
(S)
j ψ

(S)
k Γj,k

√

h
(S)
t,j h

(S)
t,k + h

(F )
t ,
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ϕt ≡ ψ0 +
3∑

i=1

ψi

(
κQiiθ

Q
i − λθQ3 1{i=2}

)
+ (ψ2λ+ ψ′

3)X
(3)
t −

q
∑

j=1

ψ
(S)
j

(
1

2
h
(S)
t,j

)

,

ϵ
Q(F )
t+1 ≡

∑p

i=1 ψiΣiiZ
Q(i)
t+1 +

∑q

j=1 ψ
(S)
j

√

h
(S)
t,j Z

Q(S)
t+1,j +

√

h
(F )
t Z

Q(F )
t+1

σ
(F )
t

,

log h
(F )
t = ω(F ) + α(F )(Z

Q(F )
t − λ(F )

t−1) + γ(F )

(

|ZQ(F )
t − λ(F )

t−1| −
2√
2π

)

+ β(F ) log h
(F )
t−1,

λ
(F )
t ≡ 1

√

h
(F )
t

[

ϕt +
1

2

(

σ
(F )
t

)2]

,

and processes {ZQ(S)
t,j }12nt=1 = {Z

(S)
t,j +λ

(S)
j }12nt=1, j = 1, . . . , q and {ZQ(F )

t }12nt=1 = {Z
(F )
t +λ

(F )
t−1}12nt=1

are also standard Gaussian white noises under Q retaining the same dependence structure

than their physical measure counterpart.

For numerical experiments of the subsequent sections, parameters considered are again

drawn from Eghbalzadeh, Godin, and Gaillardetz 2022 and are presented in Appendix

A.2. Two equity indices are considered, namely the S&P TSX and S&P 500. The account

return R
(F )
t+1 parameters were estimated on a time series of NAV returns of the

Assumption/Louisbourg Balanced Fund A mixed fund. See Appendix A.2 for details

about the time series considered.

3.6 Numerical analyses

This section performs numerical experiments and implements both dividend mechanisms

for participating contracts within the proposed financial framework. The objective is to

obtain insight about the level of premiums, the evolution of benefits, and the exposure to

risk of the insurer for the two benefit increase mechanisms and various contract

specifications.

Our examples involve fully discrete ten-year (n = 10) fixed premium endowment
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participating contracts issued to Lx = 1000 individuals aged x = 50-years-old. Unless

specified, a baseline case is considered in which the initial benefit is b0 = $10,000, the

guaranteed benefit increase is nil (g = 0), and no participation spread is considered

(θ = θ∗ = 0). The mortality follows the CPM2014 male mortality table (CIA 2014). The

results provided subsequently are reported in terms of “per policyholder” ratios, i.e. they

are normalized by Lx. The Monte Carlo simulation uses 100,000 generated paths. We

respectively denote by Πtot
st and Πtot

CRB total premiums (i.e. Π + Π∗) obtained with the

standard mechanism (3.3.1) and the compound reversionary bonus method (3.3.5),

respectively.

3.6.1 Fair premiums

For the aforementioned baseline scenario, the fair premium for the non-participating

contract is Πnp = 896.53, whereas it is Πtot
st = 979.44 or Πtot

CRB = 1162.15 for the

participating contracts. As a result, the participation feature raises the fair premium by

more than 9% or 29% over that of the non-participating contract when using the

standard or the CRB mechanism, respectively.

We now analyze the impact on the premium of the policyholder age at initiation and

the contract maturity. Table 3.1 provides premiums for maturities n = 10, 15, 20, 30 and

policyholder ages x = 50, 51, . . . , 60, and 70. As expected, the premium increases with

age and decreases with the maturity. In all cases, premiums obtained with the standard

mechanism are smaller than those obtained with the CRB approach. This reflects the fact

that dividends are generally smaller for the standard contracts than for contracts using the

CRB mechanism.

Table 3.2 shows the fair premium for different values of the guaranteed rate of benefit

increase (g = 0, 1%, 2%, 3% or 5%) and of the loading factor (θ = 0, 0.5%, 1%, 1.5%,

2% or 5%). As expected, the premium increases with the guaranteed rate g and decreases
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Table 3.1: Total premium for different ages, maturities and benefit increase mechanisms.

x
n Non-participating Standard CRB

10 15 20 30 10 15 20 30 10 15 20 30
50 897 567 411 281 979 650 498 379 1162 819 643 469
51 898 568 413 284 981 651 500 381 1163 820 645 471
52 900 570 415 287 982 653 502 384 1165 822 646 474
53 902 572 418 291 984 655 504 386 1166 823 648 477
54 904 575 420 295 986 657 506 389 1168 825 650 480
55 906 577 423 300 988 659 509 392 1169 826 652 484
56 908 580 426 305 990 662 511 396 1171 828 654 489
57 910 582 430 311 992 664 514 400 1173 830 656 494
58 912 585 433 317 994 666 517 405 1174 832 659 500
59 914 588 437 325 996 669 521 411 1176 834 662 506
60 916 591 442 333 998 672 524 417 1178 836 665 514
70 966 664 544 491 1045 738 616 558 1216 890 744 667

Notes: Total premiums (Πtot) for different benefit increase mechanisms (Standard, CRB),
maturities (n = 10, 15, 20, 30) and ages (x = 50, 51, ..., 60, 70), where b0 = 10,000, θ = 0,
and g = 0. The premiums are obtained by equating the initial cost C0 to 0, using Monte
Carlo simulations with 100,000 generated paths. They are rounded to the nearest integer.
The financial variables dynamics are described in Section 3.5.

with the loading factor θ. The premium obtained with the standard participation contract

mechanism is more sensitive to changes in g than that obtained with the CRB mechanism.

Indeed, in the baseline case, when g goes from 0% to 1%, the standard mechanism premium

increases by 10.3%, but such increase is nearly halved (5.4%) for the CRB mechanism.

The evolution of dividends explains such behavior. On average, the first dividend from the

standard approach is higher than that of the CRB. Even though CRB dividends begin at a

lower level, the mechanism provides higher dividend increases than the standard approach

over the course of the contract. Since the minimum guarantee imposes a lower limit to

these dividend increases, the standard mechanism dividends are more impacted than these

from the CRB, which leads to a higher impact on the premium.
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Table 3.2: Total premium for different loading factors θ, minimum guarantee rates g, and
mechanisms.

g
θ Standard participating CRB

0 0.005 0.01 0.015 0.02 0.05 0 0.005 0.01 0.015 0.02 0.05
0 979 970 963 956 951 931 1162 1147 1132 1117 1103 1030

0.01 1080 1070 1061 1054 1048 1026 1225 1210 1195 1182 1168 1100
0.02 1190 1179 1169 1161 1155 1130 1299 1285 1272 1259 1246 1184
0.03 1309 1297 1287 1278 1271 1244 1386 1373 1360 1347 1336 1279
0.05 1582 1568 1555 1545 1536 1503 1595 1583 1572 1562 1552 1506

Notes: Total premiums (Πtot) for different benefit increase mechanisms (Standard,
CRB), guarantee rates (g = 0, 1%, 2%, 3%, 5%), and loading factors (θ =
0, 0.5%, 1%, 1.5%, 2%, 5%), where b0 = 10,000, x = 50, and n = 10. They are evaluated
using Monte Carlo simulations with 100,000 paths and are rounded to the nearest integer.
The financial variables dynamics are described in Section 3.5.

3.6.2 Analysis of benefits

We now analyze the benefits generated by each mechanism. For comparison purposes, the

ratios of benefits over premiums are considered. Figure 3.2 illustrates the average and

the corresponding 95%-level confidence interval across the simulated paths of such ratios

(left-hand side) and of benefit improvements bk−bk−1

bk−1

(right-hand side) versus time t for

each mechanism. The standard approach provides higher benefits during the first years

compared to the CRB mechanism. On average, the survival benefit is approximately $11

per unit of premium for both mechanisms. It represents an average return on investment

of 1.73% per year for both approaches, assuming survival at maturity. However, the CRB

benefits are more volatile than these of the standard approach when the contracts approach

maturity. The investment returns contingent on survival can go up to 7.26% (or as low as

0.4%) if we consider the best (or worst) 2.5% scenarios.

The standard participation mechanism leads to higher benefit increases in the first year

(about 1.6% on average), with the rate of increase declining in subsequent years. In

contrast, the CRB mechanism has the least benefit growth in the initial years (close to
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Figure 3.2: Evolution of the benefit per premium ratio for each mechanism.
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Notes: Left-hand side figure: Solid lines are the mean (across generated paths) of the
benefit per premium ratio, and Dash lines are the 95% confidence intervals. Right-hand
side: Solid lines are the benefit improvement average, and Dash lines are 97.5%-level
quantiles. Note that the 2.5%-level quantiles are 0 for both mechanisms. All numbers are
obtained using b0 = 10,000, x = 50, g = θ = 0, n = 10, and 100,000 simulated paths. The
financial variables dynamics are described in Section 3.5.

0%), with the rate of increase climbing up quickly up to 6.2% in average at contract

maturity. In general, the benefit growth rate for the standard participation mechanism is

higher than that of the CRB method in the first three years, whereas it becomes lower in

the following years.
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3.6.3 Risk exposure

We now analyze implications about risk associated with each mechanism for the insurer.

The reference account evolution can lead to possible future deficits for the participating

contracts line of business. Figure 3.3 depicts the evolution over the contract’s life of the

sample average and 5% confidence intervals, across simulated paths, of the augmented

reference account value (3.4.2) per premium unit. Negative values for the augmented

reference accounts imply that issuers need to inject money into the line of business, which

represents potential liquidity risk. These ratios behave similarly for both benefit increase

mechanisms. They have a positive trend at the beginning, and they decrease sharply at

maturity when survival benefits are paid. In fact, due to low mortality rates, these ratios

are almost identical for both mechanisms since little benefits are paid in the early years.

Negative values for the ratio are more probable towards the end of the contract. Such

negative values are expected since a fair premium principle and the absence of participation

charges (θ = θ∗ = 0) are considered in our simulation. For the standard approach, the

probability of observing a shortfall at maturity is P(A∗
n < 0) = 0.599, whereas the expected

shortfall per premium unit (and per policyholder) is EP[A∗
n|A∗

n < 0]/(ΠtotLx) = −1.449.

These statistics for the CRB mechanism are 0.692 and −1.106, respectively.

We also analyze the NAAR evolution (see Definition 3.4.2) to examine the insurer’s

exposure to losses caused by sudden deaths. Figure 3.4 shows the boxplots representing

the NAAR unconditional distributions obtained over the various simulated paths, versus

time. Both benefit increase mechanisms exhibit similar patterns with a decreasing trend

for the NAAR evolution. Indeed, at inception, the insurer is exposed to the initial death

benefit b0 = 10,000 while it has only received the initial premium. The collection of

annual premiums and investment returns over time progressively dampens the NAAR.
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Figure 3.3: Time evolution of the augmented account value per premium unit and
policyholder.
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totLx), the augmented account value
normalized per premium unit and per policyholder. Results are presented for the standard
and CRB benefit increase mechanisms. Solid lines : average. Dash lines : level-97.5%
quantile, Point and dash lines : level-2.5% quantile. All numbers are obtained using b0 =
10,000, x = 50, g = θ = 0, n = 10, and 100,000 simulated paths. The financial variables
dynamics are described in Section 3.5.
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Figure 3.4: Boxplots of the net amount at risk (NAAR) for each mechanism
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Notes: NAAR sample distribution versus time t. The sample scenarios of NAAR values
for both standard and CRB mechanisms are depicted. The NAAR is computed using
Monte Carlo simulation, as described in Definition 3.4.2. All numbers are obtained using
b0 = 10,000, x = 50, g = θ = 0, n = 10, and 100,000 simulated paths. The financial
variables dynamics are described in Section 3.5.
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3.6.4 Analysis of reserves

As mentioned above, the policy reserve (3.2.7) is insufficient to cover the participating life

insurance liabilities as a result of potential benefit enhancements that are not recognized.

This section analyses gaps between the shadow reserve (3.4.1) and the policy reserve to

determine the extent of underestimation of liabilities when using the policy reserve. The

shadow reserve is also compared to the augmented account value defined in (3.4.2) to assess

the magnitude of potential actuarial shortfalls.

Stochastic on stochastic framework

Evaluating the shadow reserve at any given point in time requires performing a Monte

Carlo simulation. Therefore, depicting the evolution of the shadow reserves across

multiple simulated paths requires applying a so-called stochastic on stochastic framework

involving nested simulations. Under this approach, multiple paths of state variables are

first generated under the physical probability measure, each of these being referred to as

outer loops. Then, on each time point of an outer loop, a nested Monte Carlo simulation

referred to an inner loop is conducted to evaluate the shadow reserve. The inner loop is

performed under the risk-neutral measure, conditionally on the current values of the state

variables provided by the outer loop.4 State variables summarizing the relevant

information up to time k include the number of policyholders alive Lx+k, the current

benefit level bk, the account value Ak, equity indices conditional variances h
(S)
12k,j, j = 1, 2,

the fund-related variance h
(F )
12k and the term structure factors X

(i)
12k, i = 1, 2, 3. Our

simulations involve 10,000 outer loops, each with 10,000 inner loops on any time step of

an outer loop.

4. The shadow reserve, therefore, depicts the market value of future cash flows to the insurer, not their
actual expected value.
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Stochastic on stochastic simulation results

Figure 3.5 exhibits distributions across the paths of differences between shadow and

policy reserves per premium and policyholder for each contract year. As expected, the

policy reserve underestimates future liabilities in most scenarios. Therefore, insurance

companies relying on policy reserves instead of shadow reserves to assess future liabilities

expose themselves to possible shortfalls. For both mechanisms, gaps between reserves are

shrinking as time passes, which can be explained by smaller potential for benefit increases

when approaching maturity. The main distinction between the mechanisms is the size of

gaps between the augmented account value and the shadow reserve. In the standard

participating mechanism, the average gap increases from 1 after year 1 to 1.59 after year

2, before decreasing to 0.91 after year 9. Conversely, for the CRB mechanism, the average

gap first increases from 0.98 to 3 between the first and the fourth year, and then

gradually decreases to 1.43 at time t = 9. Higher gaps associated with the CRB

mechanism are caused by its higher rate of increase for the benefit, as outlined above by

Figure 3.2. Such higher benefit increases are not fully reflected by the policy reserve,

hence causing higher gaps. For both mechanisms, the gap rarely reaches zero, indicating

that the misrepresentation of liabilities stemming from the use of the policy reserve is

systematic.

We also examine to what extent the augmented reference account (3.4.2) is adequate to

cover liabilities by comparing it to the shadow reserve (3.4.1). Figure 3.6 gives the

distribution of the difference between the augmented reference account and the shadow

reserve, versus time, again reported as a ratio per premium unit. While the augmented

reference account seems sufficient to cover the future liabilities at the beginning for both

mechanisms, the probability of a shortfall increases as the contract approaches maturity.

Indeed, the shortfall could be as large as −0.5 per premium unit on average at maturity.

Of course, in practice insurers would charge a premium higher than the fair premium to
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Figure 3.5: Difference between the shadow reserve and the policy reserve for both
mechanisms
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evaluated using the stochastic on stochastic Monte Carlo simulation approach described
in Section 3.6.4 with 10,000 inner loops and 10,000 outer loops. The shadow reserve is
defined in (3.4.1), whereas the policy reserve is given by (3.2.7). All numbers are obtained
using b0 = 10,000, x = 50, g = θ = 0 and n = 10. The financial variables dynamics are
described in Section 3.5.
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Figure 3.6: Difference between the augmented reference account and the shadow reserve
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loops. All numbers are obtained using b0 = 10,000, x = 50, g = θ = θ∗ = 0 and n = 10.
The financial variables dynamics are described in Section 3.5.
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offset such shortfalls and make a profit.

3.7 Conclusion

This paper generalizes existing approaches from the literature to do the pricing, reserving,

and risk assessment for participating contracts issued by life insurers. In particular, the

variable benefits life insurance approach from Bowers et al. 1997 (which we refer to as the

standard approach) and the compound reversionary bonus method presented in Bacinello

2003 are adapted to integrate randomness in interest rates, equity returns, and idiosyncratic

mortality. The latter inclusion is necessary for participation contract bonuses to reflect

insurer performance rather than simply market performance as in equity-linked contracts.

Fixed premium endowment participating contracts are considered. First, we propose

benefit update mechanisms in the stochastic setting. The shadow reserve is then

introduced to obtain a genuine representation of the value of future cash flows, which is

not provided by the conventional policy reserve formula not integrating potential benefit

increases beyond the minimum rate. This allows for the calculation of a fair premium for

the contract. We highlight that unless the portion of the bonus rate retained by the

insurer is sufficiently large, the existence of a fair premium is not guaranteed, at least in

the standard approach. This led to proposing only recognizing a portion of the full

premium when determining participation bonuses.

Numerical experiments based on Monte Carlo simulations are conducted to compare the

behavior of fair premiums, the dynamic benefit per premium ratios, and the risk associated

with participating contracts for the two benefit increase mechanisms. The interest rate

model (the discrete-time arbitrage-free Nelson-Siegel model) and the mixed fund reference

account return dynamics considered in simulations are borrowed from Eghbalzadeh, Godin,

and Gaillardetz 2022. The following observations are made. First, the standard approach
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leads to a slower rate of increase in the benefit than the compound reversionary bonus

method, the former leading to larger benefit to premium ratios when closer to the issue date.

Moreover, the comparison between the shadow and policy reserves shows that the policy

reserves cannot efficiently reflect future liabilities. Indeed, the benefits are stochastic in the

participating contracts, while the policy reserve assumes deterministic benefits. Therefore,

replacing the policy reserves with the shadow reserves leads to a more reliable estimation

of future liabilities.
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Chapter 4

Swaption pricing under the discrete-time

arbitrage-free Nelson-Siegel model

4.1 Introduction

Interest rate risk management is of paramount importance for financial institutions such as

banks and insurance companies. An interest rate swap is a financial contract between two

parties stipulating that a stream of variable payments proportional to a floating interest rate

is exchanged for a series of fixed payments. Using such an instrument allows modifying the

risk exposure of interest-rate-sensitive portfolios, for instance by altering its dependence

on interest rate fluctuations. A swaption is an option conferring the right, but not the

obligation, to enter a swap of pre-determined maturity and payment rate at the maturity

of the option. Such derivatives are useful devices to protect against large increases or

decreases of interest rates.

Pricing swaptions is a sophisticated and difficult undertaking that necessitates a thorough

grasp of the interest rates environment. In particular, such an endeavor requires considering

a stochastic model to characterize future interest rate movements. Such model typically
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depends on parameters that represent, for instance, the drift and volatility of interest rates.

A characteristic specific to swaptions is that, unlike other interest rate derivatives such as

caps and floors, they strongly depend on correlations between future spot rates (Brigo

and Mercurio 2007). For that reason, the incorporation of swaption prices into calibration

exercises for interest rate models is crucial as they contain information that is not provided

by other fixed-income instruments and derivatives.

Single-factor models of the yield curve typically generate comonotonic movements in the

term structure and are therefore not adequate to determine swaption prices. Multi-factor

models are thus more appropriate as they are sufficiently flexible to generate

de-correlated movements of spot rates of various tenors. A common multi-factor

framework used to study term structure fluctuations and price interest rate derivatives is

affine term structure (ATS) models, see Duffie and Kan 1996. Such setting offers the

convenience of very high tractability since spot rates depend linearly on a set of risk

factors. Moreover, it is consistent with no-arbitrage principles.

Several works study the pricing of swaptions in the context of multi-factor or ATS models.

Munk 1999 demonstrates that the price of a European option on a coupon bond (e.g.

a swaption) is roughly equal to some multiple of the price of a European option on a

zero-coupon bond with maturity equal to the coupon bond’s stochastic duration. Collin-

Dufresne and Goldstein 2002 propose to apply an Edgeworth expansion to approximate

the density of the coupon bond price and obtain the price of a swaption. Singleton and

Umantsev 2002 rely on Fourier inversion methods to calculate swaption prices in the ATS

framework. Schrager and Pelsser 2006 propose to approximate the swap rate volatility

under the swap measure, which is a low-variance martingale, by its time-zero value. Such

strategy leads to a closed-form formula for the swaption price.

A common difficulty with several multi-factor term structure models is that the factors

might be difficult to interpret. For this reason, the present work considers the specific
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case of the arbitrage-free Nelson-Siegel (AFNS) model developed in Christensen, Diebold,

and Rudebusch 2011, or more precisely its discrete-time version (the DTANFS model)

outlined in Eghbalzadeh, Godin, and Gaillardetz 2022. Such three-factor model has the

advantage of having a clear interpretation associated with each of the factors, namely the

term structure level, slope and curvature, respectively. The AFNS model builds on the

seminal work Nelson and Siegel 1987 characterizing yield curve shapes and on its dynamic

counterpart, Diebold and Li 2006, by applying corrections to short rate dynamics to ensure

compliance with no-arbitrage pricing principles.

The paper’s main contribution is to provide a fast pricing approach for swaption prices

under the DTAFNS model. The approach relies on Monte-Carlo simulation, which is

straightforward to implement. This paper derives the dynamics of the DTAFNS model’s

risk factors under the forward measure, which leads to a semi-analytic expression for the

price of a swaption. Such formula consists in the expectation of a non-linear function of a

single tri-dimensional Gaussian variable, which can be computed quickly and circumvents

the need to simulate entire paths of the risk-free rate.

The paper is structured as follows. Section 4.2 provides a description of the DTAFNS

term structure model, as well as a review of notions about European swaptions pricing,

including a simulation algorithm relying on the risk-neutral measure. Section 4.3 focuses

on extracting the state variable dynamics under the forward measure, which leads to an

efficient algorithm to obtain swaption prices. Section 4.4 concludes.

4.2 Preliminaries: the DTAFNS model and swaptions

This section begins by discussing the DTAFNS model established by Eghbalzadeh,

Godin, and Gaillardetz 2022, which characterizes dynamics of zero coupon bond prices

and associated discount factors. Then, European swaptions and their pricing under a
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risk-neutral measure are explained.

4.2.1 DTAFNS model

This section provides a description the DTAFNS interest rate term structure model of

Eghbalzadeh, Godin, and Gaillardetz 2022. Consider a discrete-time setting with monthly

time points t = 0, . . . , T and time elapse ∆ year between each point. The filtration F =

{Ft}Tt=0 characterizes the information flow in the market. The DTAFNS model assumes

that the term structure of interest rates is determined by three factors: the long-term level

of interest rates, the slope of the yield curve and its curvature. The time-t short rate

applying over period [t, t+ 1) is

rt = X
(1)
t +X

(2)
t , (4.2.1)

with {Xt}Tt=0 denoting the term structure factor process, where time-t factors are the triplet

Xt = [X
(1)
t , X

(2)
t , X

(3)
t ]⊤.

Under the risk-neutral measure Q, factors exhibit the following auto-regressive dynamics:









X
(1)
t+1 −X

(1)
t

X
(2)
t+1 −X

(2)
t

X
(3)
t+1 −X

(3)
t








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


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
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︸ ︷︷ ︸
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(1)
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0 Σ22 0
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
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t+1,1

ZQ
t+1,2

ZQ
t+1,3









,

(4.2.2)

with scalar λ ∈ (0, 1) and matrices θQ, κQ and Σ, with Σii > 0, representing model

parameters, and {ZQ
t,i}nt=1, i = 1, 2, 3 being F -adapted standard Gaussian white noises with

contemporaneous with correlation Corr[ZQ
t1,i
, ZQ

t2,j
] = 1{t1=t2}ρij represented by correlation

matrix ρ = [ρij]
3
i,j=1.

According to Eghbalzadeh, Godin, and Gaillardetz 2022, under the such model, the time-t
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price of a risk-free zero-coupon bond paying one dollar on maturity T is

P (t, T ) = Aτ exp
[
−∆B⊤

τ Xt

]
, (4.2.3)

where τ = T − t, Bτ =
[

B(1)
τ , B(2)

τ , B(3)
τ

]⊤

and

B(1)
τ = τ, B(2)

τ =
1− (1− λ)τ

λ
, B(3)

τ =
1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1, (4.2.4)

logAτ = −∆θQ2
(
B(1)
τ − B(2)

τ

)
+∆θQ3 B(3)

τ +
1

2
∆2υτ , (4.2.5)

with

υτ =

(
3∑

i=1

3∑

j=1

υ(i,j)τ

)

, (4.2.6)

υ(1,1)τ = Σ2
1,1

τ(τ − 1)(2τ − 1)

6
,

υ(2,2)τ =
Σ2

2,2

λ2

(

τ − 2

[
1− (1− λ)τ

λ

]

+
1− (1− λ)2τ
1− (1− λ)2

)

,

υ(3,3)τ =
Σ2

3,3

λ2

[

τ − 2 + ζ0
(
(1− λ)2, τ − 1

)
+ λ2ζ2

(
(1− λ)2, τ − 1

)

− 2ζ0 ((1− λ), τ − 1)− 2λζ1 ((1− λ), τ − 1) + 2λζ1
(
(1− λ)2, τ − 1

)
]

,

υ(1,2)τ = υ
(2,1)
t = ρ1,2Σ1,1Σ2,2

1

λ

(
τ(τ − 1)

2
− ζ1((1− λ), τ)

)

,

υ(1,3)τ = υ
(3,1)
t = ρ1,3Σ1,1Σ3,3

1

λ

[
τ(τ − 1)

2
− 1− ζ0 ((1− λ), τ − 1)− (λ+ 1)ζ1 ((1− λ), τ − 1)

− λζ2 ((1− λ), τ − 1)

]

,

υ(2,3)τ = υ
(3,2)
t = ρ2,3Σ2,2Σ3,3

(
τ − 2− (2− λ)ζ0 ((1− λ), τ − 1) + (1− λ)ζ0 ((1− λ)2, τ − 1)

λ2

+
−ζ1 ((1− λ), τ − 1) + (1− λ)ζ1 ((1− λ)2, τ − 1)

λ

)

,
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and

ζ0(r, τ) ≡
τ−1∑

u=1

ru =
r − rτ
1− r , (4.2.7)

ζ1(r, τ) ≡
τ−1∑

u=1

uru =
r − τrτ + (τ − 1)rτ+1

(1− r)2 , (4.2.8)

ζ2(r, τ) ≡
τ−1∑

u=1

u2ru =
−(τ − 1)2rτ+2 + (2τ 2 − 2τ − 1)rτ+1 − τ 2rτ + r2 + r

(1− r)3 . (4.2.9)

4.2.2 European swaptions

Swaptions are classified into three types: European, Bermudan, and American, which

differ in their possible exercise dates. Whereas American and Bermudan swaptions allow

the exercise of the option on multiple dates, the European swaption has a single possible

exercise date. We shall focus on European swaptions in this study. The European swaption

considered, which is a payer swaption, is a financial option that gives the holder the right

to enter, at time Tα, into a swap with payment dates Tα+1, . . . , Tβ on which the holder pays

the strike rate as the fixed rate, and receives the prevailing floating rate on each payment

date.1 Typically, the floating rate is tied to an interbank offered rate, such as LIBOR in

the United Kingdom or the CDOR in Canada.

As shown in Brigo and Mercurio 2007, for t < Tα, the time-t price of a European payer

swaption with maturity Tα, strike K, nominal value N and payment dates {Ti}βi=α+1 is

PS [t;Tα;Tβ;K;N ] = EQ

[

D(t, Tα)

(

N (Sα,β(Tα)−K)+
β
∑

i=α+1

τiP (Tα, Ti)

)∣
∣
∣
∣
Ft

]

(4.2.10)

where τi = Ti − Ti−1. The discount factor D(t, Tα) between times t and Tα and the time-t

1. For a payment date Tξ+1, ξ = α, . . . , β − 1, the floating rate is determined at the reset date Tξ.
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forward swap rate Sα,β(t) are

D(t, Tα) = exp

(

−∆
Tα−1∑

j=t

rj

)

, (4.2.11)

Sα,β(t) =
P (t, Tα)− P (t, Tβ)
∑β

i=α+1 τiP (t, Ti)
. (4.2.12)

The swap rate Sα,β(t) corresponds to a value of the fixed rate which would make the time-t

value of the swap nil. The rationale underlying (4.2.10) is that a market participant could,

while exercising the option, enter without fee into a receiver swap with the swap rate as

the fixed rate. Combining both positions would lead to a net payment being the difference

between the swap rate and the strike rate at each payment date.

A straightforward approach to obtain the swaption price via (4.2.10) is to conduct a Monte-

Carlo simulation of the term structure factors under the risk-neutral measure and to average

discounted cash flows to approximate the expectation in (4.2.10). Algorithm 2 summarizes

such process.

4.3 Pricing swaptions under the forward measure

Calculating European swaption prices using Algorithm 2 requires simulating the entire

path of risk-free rate factors, which might be numerically cumbersome in some situations.

For instance, in the context of calibration, swaption prices need to be recomputed for a

wide variety of parameters, and the approach underlying Algorithm 2 might not be feasible

in a reasonable time frame. By applying a change of numéraire, we can obtain a pricing

approach which is more time-efficient. Detailing such an approach in the context of the

DTAFNS model is the objective of this section.

The probability measure using the risk-free zero-coupon bond maturing at time T as a

numéraire is known as the T -forward measure and is denoted by QT . The
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Algorithm 2 Calculating the European swaptions price under the risk-neutral measure

Input: t, X
(1)
t , X

(2)
t , X

(3)
t , K, N , α, β, ∆, κQ, θQ, ρ and Σ

for m ∈ {1, . . . ,M} do ▷ M is the number of simulated paths

Simulate themth path of the state variables, X, denoted by { mX
(i)
t′ }Tα

t′=t+1, i = 1, 2, 3
under the risk neural measure Q

for t′ ∈ {t+ 1, . . . , Tα} do
Calculate the interest rate, r( mXt′), through (4.2.1)

end for
Calculate D(t, Tα) through (4.2.11)
for t′′ ∈ {Tα+1, . . . , Tβ} do

Calculate mP (Tα, t
′′) through (4.2.3)

end for
Calculate mSα,β(Tα) through (4.2.12)
Calculate the payoff for mth path

mPS [t;Tα;Tβ;K;N ] = D(t, Tα)N ( mSα,β(Tα)−K)+
β
∑

i=α+1

τi mP (Tα, Ti)

end for

PS [t;Tα;Tβ;K;N ] ≈
∑M

m=1 mPS [t;Tα;Tβ;K;N ]

M

Radon-Nikodym derivative allowing to pass from the risk-neutral to the T -forward

measure, which is provided by Jamshidian 1996 or Brigo and Mercurio 2007, is

dQT

dQ
=
B(0)P (T , T )
P (0, T )B(T ) =

D(0, T )
P (0, T ) , (4.3.1)

where, B(t) = exp(∆
∑t−1

s=0 rs) is the year-t bank account numéraire under the risk-neutral

measure. Note that the Radon-Nykodyn derivative allowing to go from the forward measure

to the risk-neutral measure is
dQ

dQT
=

(
dQT

dQ

)−1

.

Let ET [·] represent the expectation under the T -forward measure. Asset prices discounted

by the zero-coupon price maturing at T are martingales under the forward measure (Geman

1989). As a consequence, as discussed in Brigo and Mercurio 2007, the time-t price Ht of
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an asset providing a payoff HT at time T is

Ht = P (t, T )ET [HT |Ft] . (4.3.2)

Considering the zero-coupon bond maturing at T = Tα as the new numéraire makes the

computation of the swaption price much more convenient. In such case, the payer swaption

price may therefore be rewritten using (4.2.10), (4.2.12) and (4.3.2) as

PS [t;Tα;Tβ;K;N ] = P (t, Tα)E
Tα

[(

N (Sα,β(Tα)−K)+
β
∑

i=α+1

τiP (Tα, Ti)

)∣
∣
∣
∣
Ft

]

= P (t, Tα)E
Tα







N

(

1− P (Tα, Tβ)−K
β
∑

i=α+1

τiP (Tα, Ti)

)+




∣
∣
∣
∣
Ft



 .

(4.3.3)

Equation (4.3.3) involves the t-conditional expectation of a function of time-Tα zero-coupon

bonds, which are fully characterized by term structure factors XTα
=
[

X
(1)
Tα
, X

(2)
Tα
, X

(3)
Tα

]⊤

.

As a result, in order to calculate (4.3.3), the dynamics of the state variables under the

forward measure must be understood.

4.3.1 Dynamics of the state variables under the forward measure

To simplify the statements of this section, we assume Ti = i for i = α, . . . , β. The following

proposition defines so-called forward measure innovations and outlines their dynamics.

Proposition 4.3.1. For any T ∈ {1, . . . , T} and t < T , conditional on Ft, the forward

measure innovation defined as ZT
t+1 = ZQ

t+1 + ∆ρΣBτ−1 follows the multivariate Gaussian

distribution with mean vector zero and covariance matrix ρ under the T -forward measure.

Proof. See Appendix A.3.1.

Corollary 4.3.1. Since the conditional distribution of ZT
t+1 with respect Ft does not depend
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on ZT
1 , . . . , Z

T
t , and since the latter variables characterize the information contained in Ft,

elements of the sequence {ZT
j }Tj=1 are independent.

Based on the above results, we now provide an expression of the dynamics of term structure

factors {Xt}Tt=0 analogous to (4.2.2), but using instead the T -forward measure innovations.

Define

θT = θQ, κT = κQ, ηt = ∆ΣρΣBτ−1 = ∆ΣρΣBT −t−1. (4.3.4)

A direct consequence of the application of Proposition 4.3.1 into (4.2.2) is that

Xt+1 =Xt − ηt + κT (θT −Xt) + ΣZT
t+1. (4.3.5)

Representation (4.3.5), along with some additional lemmas provided in Appendix A.3.1,

allow obtaining the t-conditional distribution of XT under the T -forward measure.

Proposition 4.3.2. Under the T -forward measure, conditionally on Ft, factors Xt+n follow

the multivariate Gaussian distribution with mean vectorMt,n =
[

M(i)
t,n

]3

i=1
and covariance

matrix Vn =
[

V (i,j)
n

]3

i,j=1
where

M(1)
t,n =X

(1)
t −

n−1∑

l=0

η
(1)
t+l,

M(2)
t,n =X

(2)
t (1− λ)n + (θT2 − θT3 ) (1− (1− λ)n)−

n−1∑

l=0

η
(2)
t+l(1− λ)n−1−l

+ λ

(

nX
(3)
t (1− λ)n−1 + θT3

(
ζ0(1− λ, n+ 1)

1− λ − n(1− λ)n−1

)

−
n−1∑

l=0

(n− l − 1)η
(3)
t+l(1− λ)n−l−2

)

,

M(3)
t,n =X

(3)
t (1− λ)n + θT3 (1− (1− λ)n)−

n−1∑

l=0

η
(3)
t+l(1− λ)n−1−l,

V (1,1)
n =nΣ2

1,1,

V (2,2)
n =Σ2

2,2

(
1 + ζ0((1− λ)2, n)

)
+ λ2Σ2

3,3(1− λ)−2ζ2((1− λ)2, n) + 2Σ2,2λΣ3,3ρ2,3(1− λ)−1ζ1
(
(1− λ)2 , n

)
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V (3,3)
n =Σ2

3,3

(
1 + ζ0((1− λ)2, n)

)
,

V (1,2)
n =V (2,1)

n = Σ1,1Σ2,2ρ1,2ζ0(1− λ, n) + λΣ1,1Σ3,3ρ1,3
ζ1(1− λ, n)

1− λ ,

V (1,3)
n =V (3,1)

n = Σ1,1Σ3,3ρ1,3ζ0(1− λ, n),

V (2,3)
n =V (3,2)

n = Σ2,2Σ3,3ρ2,3ζ0((1− λ)2, n) + λΣ2
3,3

ζ1((1− λ)2, n)
1− λ .

Proof. See Appendix A.3.1.

The following quantities appearing in Proposition 4.3.2 can be further simplified.

Lemma 4.3.1.

n−1∑

l=0

η
(1)
t+l =∆Σ1,1

[

Σ1,1

(

n(T − t− 1)− n(n− 1)

2

)

+
Σ2,2ρ1,2
λ

(
n− (1− λ)T −tζ0

(
(1− λ)−1 , n+ 1

))

+ Σ3,3ρ1,3

(
n− (1− λ)T −t−1ζ0

(
(1− λ)−1 , n+ 1

)

λ

− (T − t− 2)(1− λ)T −t−1ζ0
(
(1− λ)−1 , n+ 1

)
+ (1− λ)T −t−2ζ1

(
(1− λ)−1 , n

)
)]

.

Moreover, for i = 2, 3,

n−1∑

l=0

η
(i)
t+l(1−λ)n−1−l=∆Σi,i(1− λ)n

[

Σ1,1ρi,1
(
(T − t)ζ0

(
(1− λ)−1 , n+ 1

)
− ζ1

(
(1− λ)−1 , n+ 1

))

+
Σ2,2ρi,2
λ

(
ζ0
(
(1− λ)−1 , n+ 1

)
− (1− λ)T −tζ0

(
(1− λ)−2 , n+ 1

))

+ Σ3,3ρi,3

(
ζ0
(
(1− λ)−1 , n+ 1

)
− (1− λ)T −t−1ζ0

(
(1− λ)−2 , n+ 1

)

λ

− (1−λ)T −t−1
[
(T −t−1)ζ0

(
(1−λ)−2, n+1

)
−ζ1

(
(1−λ)−2, n+1

)]
)]

.

(4.3.6)

Lastly,

n−1∑

l=0

(n− l − 1)η
(3)
t+l(1− λ)n−l−2 =

n− 1

1− λ

n−1∑

l=0

η
(3)
t+l(1− λ)n−l−1
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−∆Σ3,3(1− λ)n−2

[

Σ1,1ρ3,1
(
(T − t− 1)ζ1

(
(1− λ)−1 , n

)
− ζ2

(
(1− λ)−1 , n

))

+
Σ2,2ρ3,2
λ

(
ζ1
(
(1− λ)−1 , n

)
− (1− λ)T −t−1ζ1

(
(1− λ)−2 , n

))

+ Σ3,3

(
ζ1
(
(1− λ)−1 , n

)
− (1− λ)T −t−2ζ1

(
(1− λ)−2 , n

)

λ

− (1− λ)T −t−2
[
(T − t− 2)ζ1

(
(1− λ)−2 , n

)
− ζ2

(
(1− λ)−2 , n

)]
)]

,

with the summation appearing in the first term of the right-hand side of the above equation

being given by (4.3.6).

Proof. See Appendix A.3.1.

Proposition 4.3.2 is the key to compute (4.3.3) in an efficient way using Monte Carlo, as it

expresses swaption prices as expectations of a non-linear function of a single tri-dimensional

Gaussian random variable. Algorithm 3 highlights the procedure to price swaptions using

such an approach. Such T -forward measure simulation is much quicker than the risk-

neutral counterpart from Algorithm 2 which requires computing expectations over entire

paths of the term structure factors.

4.4 Conclusion

This paper describes how to calculate swaption prices with Monte-Carlo simulations under

the DTAFNS model. Information contained within swaption prices is important when

calibrating term structure models so as to obtain market-consistent pricing for instruments

depending on interest rates. Whereas the conventional risk-neutral simulation relies on the

simulation of entire paths of the risk-free rate, reliance on the forward measure allows for

much quicker computations. Indeed, this paper derive forward-measure dynamics of term

structure factors and then expresses swaption prices as the expectation of a non-linear

function of a tri-dimensional Gaussian variable, which is very quick to estimate in practice.
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Algorithm 3 Calculating the European swaptions price under the forward measure

Input: t, X
(1)
t , X

(2)
t , X

(3)
t , K, N , α, β, ∆, κQ, θQ, ρ, and Σ

Calculate P (t, α) by (4.2.3) and κT , θT using (4.3.4)
for m ∈ {1, . . . ,M} do ▷ M is the number of simulated paths

Simulate mX
(1)
α , mX

(2)
α , mX

(3)
α from multivariate Gaussian distribution with mean

vector

Mt,α−t and matrix variance-covariance Vα−t defined in Proposition 4.3.2

for i ∈ {α + 1, . . . , β} do
Calculate the zero coupon bond price, mP (α, i) through (4.2.3)

end for
Calculate the payoff for mth path

mPS [t;α; β;K;N ] = P (t, α)N

(

1− mP (α, β)−K
β
∑

i=α+1

τi mP (α, i)

)+

end for

PS [t;α; β;K;N ] ≈
∑M

m=1 mPS [t;α; β;K;N ]

M
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Chapter 5

Conclusion

The modeling of interest rates is of critical importance in the fields of finance and actuarial

science, as it enables accurate pricing and risk management of various financial instruments.

In particular, the modeling of yield curves is essential for understanding the behavior

of interest rates and their impact on fixed-income securities, participating life insurance

contracts, and swaptions. This dissertation builds upon the work of Hong, Niu, and Zeng

2016 by proposing a slightly modified version of the discrete-time arbitrage-free Nelson-

Siegel model and making several contributions, including providing a closed-form expression

for risk-free spot rates, demonstrating its superior predictive ability over benchmarks, and

incorporating it into a modified mixed fund return model.

The dissertation also extends participating contract analysis schemes to include realistic

dynamics for the main risk drivers, such as stochastic interest rates and mortality. It focuses

on fixed premium contracts with bonus calculations, whose setting is generalized to handle

general stochastic dynamics. The dissertation proposes a shadow reserve as a replacement

for conventional reserving formulas, providing additional accuracy in measuring liabilities

by recognizing future benefit increases beyond the guaranteed rate. Several numerical

tests based on Monte-Carlo simulations are applied to demonstrate the importance of the
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shadow reserve when measuring risk.

Additionally, the dissertation outlines procedures for pricing swaptions under the DTAFNS

model. In particular, it illustrates derivations of interest rates dynamics under the forward

measure, resulting in faster calculations for the determination of swaption prices compared

to when risk-neutral measure dynamics are relied upon. Overall, this dissertation provides

practical applications for the DTAFNS model in fixed-income securities valuation, life

insurance contract analysis and swaptions pricing, contributing to the literature on these

topics.
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Appendix A

Appendice

A.1 Discrete-time arbitrage-free Nelson-Siegel model

In this section, proofs of several results mentioned in the body of the manuscript are

provided.

A.1.1 Proofs

To prove Proposition 2.2.1, the following lemma is needed.

Lemma A.1.1. Assume (2.2.10) holds. For t = 0, . . . , T and n = 0, . . . , T − t,

X
(i)
t+n =X

(i)
t (1− κQi,i)n + κQi,iθ

Q
i

n∑

l=1

(1− κQi,i)(n−l) + Σi,i

n∑

l=1

ZQ
t+l,i(1− κQi,i)(n−l)

+
n∑

l=1

3∑

j ̸=i

κQi,j(θ
Q
j −X

(j)
t+l−1)(1− κQi,i)(n−l). (A.1.1)

Proof of Lemma A.1.1: The proof relies on induction. The case n = 0 is trivial when using

the convention
∑0

l=1 xl ≡ 0 for any sequence of real numbers {xl}.
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Then, assume (A.1.1) holds for some n < T − t− 1. Using (2.2.10), for any i = 1, 2, 3,

X
(i)
t+n+1 =X

(i)
t+n +

3∑

j=1

κQi,j(θ
Q
j −X

(j)
t+n) + Σi,iZ

Q
t+n+1,i

=X
(i)
t+n(1− κQi,i) + κQi,iθ

Q
i +

3∑

j ̸=i

κQi,j(θ
Q
j −X

(j)
t+n) + Σi,iZ

Q
t+n+1,i.

Applying (A.1.1) in the latter equality yields

X
(i)
t+n+1 =X

(i)
t (1− κQi,i)n+1 + κQi,iθ

Q
i

n∑

l=1

(1− κQi,i)(n+1−l) + Σi,i

n∑

l=1

ZQ
t+l,i(1− κQi,i)(n+1−l)

+
n∑

l=1

3∑

j ̸=i

κQi,j(θ
Q
j −X

(j)
t+l−1)(1− κQi,i)(n+1−l) + κQi,iθ

Q
i +

3∑

j ̸=1

κQi,j(θ
Q
j −X

(j)
t+n) + Σi,iZ

Q
t+n+1,i

=X
(i)
t (1− κQi,i)n+1 + κQi,iθ

Q
i

n+1∑

l=1

(1− κQi,i)(n+1−l) + Σi,i

n+1∑

l=1

ZQ
t+l,i(1− κQi,i)(n+1−l)

+
n+1∑

l=1

3∑

j ̸=i

κQi,j(θ
Q
j −X

(j)
t+l−1)(1− κQi,i)(n+1−l),

hence completing the induction. □

Remark A.1.1. The result of Lemma A.1.1 is also valid under the P-measure, i.e. when

replacing all Q’s with P’s in the statement of the lemma and the proof.

Proof of Lemma 2.2.1: Equation (2.2.11) is trivial. To show (2.2.12),

τ−1∑

u=1

uru =
τ−1∑

u=1

r
d

dr
ru

= r
d

dr

τ−1∑

u=1

ru

= r
(1− τrτ−1)(1− r) + (r − rτ )

(1− r)2

= r
1− τrτ−1 + τrτ − rτ

(1− r)2

=
r − τrτ + (τ − 1)rτ+1

(1− r)2 .
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Finally, to show (2.2.13),

τ−1∑

u=1

u2ru = r

τ−1∑

u=1

u
d

dr
ru

= r
d

dr

τ−1∑

u=1

uru

= r
d

dr

r − τrτ + (τ − 1)rτ+1

(1− r)2

= r
(1− r)2[1− τ 2rτ−1 + (τ + 1)(τ − 1)rτ ] + 2(1− r)[r − τrτ + (τ − 1)rτ+1]

(1− r)4

=
[r − r2 − τ 2rτ + τ 2rτ+1 + (τ + 1)(τ − 1)rτ+1 − (τ + 1)(τ − 1)rτ+2]

(1− r)3

+
2[r2 − τrτ+1 + (τ − 1)rτ+2]

(1− r)3

=
−(τ − 1)2rτ+2 + (2τ 2 − 2τ − 1)rτ+1 − τ 2rτ + r2 + r

(1− r)3 . □

Proof of Proposition 2.2.1: From (2.2.7), for any τ = 1, . . . , T − t,

τ−1∑

s=0

rt+s =
τ−1∑

s=0

X
(1)
t+s +

τ−1∑

s=0

X
(2)
t+s.

Furthermore, since κQ1,j = 0 for j = 1, . . . , 3, Equation (A.1.1) leads to

τ−1∑

s=0

X
(1)
t+s =

τ−1∑

s=0

[

X
(1)
t + Σ1,1

s∑

l=1

ZQ
t+l,1

]

=τX
(1)
t + Σ1,1

τ−1∑

s=1

τ−1∑

l=1

1{l≤s}Z
Q
t+l,1

=τX
(1)
t + Σ1,1

τ−1∑

l=1

τ−1∑

s=l

ZQ
t+l,1

=τX
(1)
t + Σ1,1

τ−1∑

l=1

(τ − l)ZQ
t+l,1. (A.1.2)
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Moreover, relying again on Equation (A.1.1) and recalling that κQ2,1 = 0, κQ2,2 = λ and

κQ2,3 = −λ,

τ−1∑

s=0

X
(2)
t+s =

τ−1∑

s=0

{

X
(2)
t (1− λ)s + λθQ2

s∑

l=1

(1− λ)s−l + Σ2,2

s∑

l=1

ZQ
t+l,2(1− λ)s−l

− λ
s∑

l=1

(1− λ)s−lθQ3 + λ

s∑

l=1

(1− λ)s−lX
(3)
t+l−1

}

=X
(2)
t

τ−1∑

s=0

(1− λ)s + λθQ2

τ−1∑

s=1

s∑

l=1

(1− λ)s−l + Σ2,2

τ−1∑

s=1

s∑

l=1

(1− λ)s−lZQ
t+l,2

− λθQ3
τ−1∑

s=1

s∑

l=1

(1− λ)s−l + λ

τ−1∑

s=1

s∑

l=1

(1− λ)s−lX
(3)
t+l−1

=X
(2)
t

τ−1∑

s=0

(1− λ)s + λ
(
θQ2 − θQ3

)
τ−1∑

s=1

s−1∑

l=0

(1− λ)l +
τ−1∑

s=1

τ−1∑

l=1

1{l≤s}(1− λ)s−l
(

Σ2,2Z
Q
t+l,2 + λX

(3)
t+l−1

)

=X
(2)
t

τ−1∑

s=0

(1− λ)s + λ
(
θQ2 − θQ3

)
τ−1∑

s=1

1− (1− λ)s
λ

+
τ−1∑

l=1

τ−1∑

s=1

1{l≤s}(1− λ)s−l
(

Σ2,2Z
Q
t+l,2 + λX

(3)
t+l−1

)

=X
(2)
t

1− (1− λ)τ
λ

+
(
θQ2 − θQ3

)
(

τ − 1− 1− λ− (1− λ)τ
λ

)

+
τ−1∑

l=1

(

Σ2,2Z
Q
t+l,2 + λX

(3)
t+l−1

) τ−1∑

s=1

1{l≤s}(1− λ)s−l. (A.1.3)

Note that

τ−1∑

s=1

1{l≤s}(1− λ)s−l =
τ−1∑

s=l

(1− λ)s−l =
τ−1−l∑

s=0

(1− λ)s = 1− (1− λ)τ−l

λ
. (A.1.4)

Placing (A.1.4) in (A.1.3) yields

τ−1∑

s=0

X
(2)
t+s =X

(2)
t

1− (1− λ)τ
λ

+
(
θQ2 − θQ3

)
(

τ − 1− 1− λ− (1− λ)τ
λ

)

+ Σ2,2

τ−1∑

l=1

ZQ
t+l,2

1− (1− λ)τ−l

λ
+

τ−1∑

l=1

[
1− (1− λ)τ−l

]
X

(3)
t+l−1. (A.1.5)
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Additionally, combining (A.1.1) with κQ3,1 = κQ3,2 = 0 and κQ3,3 = λ leads to

τ−1∑

l=1

[
1− (1− λ)τ−l

]
X

(3)
t+l−1

=
τ−2∑

l=0

[
1− (1− λ)τ−l−1

]
X

(3)
t+l

=
τ−2∑

l=0

[
1− (1− λ)τ−l−1

]

[

X
(3)
t (1− λ)l + λθQ3

l∑

k=1

(1− λ)(l−k) + Σ3,3

l∑

k=1

ZQ
t+k,3(1− λ)(l−k)

]

= X
(3)
t

(
τ−2∑

l=0

(1− λ)l −
τ−2∑

l=0

(1− λ)τ−1

)

+ λθQ3

τ−2∑

l=0

1− (1− λ)l − (1− λ)τ−l−1 + (1− λ)τ−1

λ

+ Σ3,3

τ−2∑

l=0

τ−2∑

k=1

1{k≤l}Z
Q
t+k,3

[
(1− λ)(l−k) − (1− λ)τ−k−1

]

= X
(3)
t

(
1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1

)

+ θQ3

τ−2∑

l=0

(
1− (1− λ)l − (1− λ)τ−l−1 + (1− λ)τ−1

)

+ Σ3,3

τ−2∑

k=1

ZQ
t+k,3

τ−2∑

l=k

[
(1− λ)(l−k) − (1− λ)τ−k−1

]

= X
(3)
t

(
1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1

)

+ θQ3

(

(τ − 1)
(
1 + (1− λ)τ−1

)

− 2− (1− λ)τ−1 − λ− (1− λ)τ
λ

)

+ Σ3,3

τ−2∑

k=1

ZQ
t+k,3

[
1− (1− λ)(τ−1−k)

λ
− (1− λ)τ−k−1(τ − 1− k)

]

.

(A.1.6)

Placing (A.1.6) in (A.1.5) given

τ−1∑

s=0

X
(2)
t+s =X

(2)
t

1− (1− λ)τ
λ

+X
(3)
t

(
1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1

)

+ θQ2

(

τ − 1− 1− λ− (1− λ)τ
λ

)

+ θQ3

(

(τ − 1)(1− λ)τ−1 − 1− (1− λ)τ−1

λ

)

+ Σ2,2

τ−1∑

l=1

ZQ
t+l,2

1− (1− λ)τ−l

λ
+ Σ3,3

τ−2∑

k=1

ZQ
t+k,3

[
1− (1− λ)(τ−1−k)

λ
− (1− λ)τ−k−1(τ − 1− k)

]

(A.1.7)
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Define Rt,T ≡ ∆
∑T−1

j=t rj = ∆
∑T−1

j=0 X
(1)
t+j +X

(2)
t+j. Define also

B(1)
τ = τ, B(2)

τ =
1− (1− λ)τ

λ
, B(3)

τ =
1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1.

Based on (A.1.2) and (A.1.7), given Ft, −Rt,T has a Gaussian distribution with mean

−∆
3∑

j=1

B(j)
τ X

(j)
t −∆θQ2

(

τ − 1− 1− λ− (1− λ)τ
λ

)

−∆θQ3
(

(τ − 1)(1− λ)τ−1 − 1− (1− λ)τ−1

λ

)

and variance ∆2υτ where

υτ =
3∑

i=1

3∑

j=1

υ(i,j)τ

with

υ(1,1)τ = VarQ

(

Σ1,1

τ−1∑

l=1

(τ − l)ZQ
t+l,1

)

= Σ2
1,1

τ−1∑

l=1

(τ − l)2 = Σ2
1,1

τ−1∑

l=1

l2 = Σ2
1,1

τ(τ − 1)(2τ − 1)

6
,

υ(2,2)τ = VarQ

(

Σ2,2

τ−1∑

l=1

ZQ
t+l,2

1− (1− λ)τ−l

λ

)

=
Σ2

2,2

λ2

τ−1∑

l=1

(
1− (1− λ)l

)2

=
Σ2

2,2

λ2

(

τ − 1− 2

[
1− (1− λ)τ

λ
− 1

]

+
1− (1− λ)2τ
1− (1− λ)2 − 1

)

=
Σ2

2,2

λ2

(

τ − 2

[
1− (1− λ)τ

λ

]

+
1− (1− λ)2τ
1− (1− λ)2

)

,

υ(3,3)τ = VarQ

(

Σ3,3

τ−2∑

k=1

ZQ
t+k,3

[
1− (1− λ)(τ−1−k)

λ
− (1− λ)τ−k−1(τ − 1− k)

])

= Σ2
3,3

τ−2∑

k=1

[
1− (1− λ)(τ−1−k)

λ
− (1− λ)τ−k−1(τ − 1− k)

]2

=
Σ2

3,3

λ2

τ−2∑

k=1

[
1− (1− λ)k − λ(1− λ)kk

]2
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=
Σ2

3,3

λ2

τ−2∑

k=1

[
1 + (1− λ)2k + λ2(1− λ)2kk2 − 2(1− λ)k − 2kλ(1− λ)k + 2λk(1− λ)2k

]

=
Σ2

3,3

λ2

[

τ − 2 + ζ0
(
(1− λ)2, τ − 1

)
+ λ2ζ2

(
(1− λ)2, τ − 1

)

− 2ζ0 ((1− λ), τ − 1)− 2λζ1 ((1− λ), τ − 1) + 2λζ1
(
(1− λ)2, τ − 1

)
]

and

υ(1,2)τ = υ(2,1)τ = CovQ

(

Σ1,1

τ−1∑

l=1

(τ − l)ZQ
t+l,1,Σ2,2

τ−1∑

l=1

ZQ
t+l,2

1− (1− λ)τ−l

λ

)

= ρ1,2Σ1,1Σ2,2

τ−1∑

l=1

l
1− (1− λ)l

λ

= ρ1,2Σ1,1Σ2,2
1

λ

(
τ(τ − 1)

2
− ζ1((1− λ), τ)

)

,

υ(1,3)τ = υ(3,1)τ = CovQ

(

Σ1,1

τ−1∑

k=1

(τ − k)ZQ
t+k,1,Σ3,3

τ−2∑

k=1

ZQ
t+k,3

[
1− (1− λ)(τ−1−k)

λ
− (1− λ)τ−k−1(τ − 1− k)

]

= ρ1,3Σ1,1Σ3,3

τ−2∑

k=1

(τ − k)
[
1− (1− λ)(τ−1−k)

λ
− (1− λ)τ−k−1(τ − 1− k)

]

= ρ1,3Σ1,1Σ3,3

τ−2∑

k=1

(k + 1)

[
1− (1− λ)k

λ
− (1− λ)kk

]

= ρ1,3Σ1,1Σ3,3
1

λ

τ−2∑

k=1

(k + 1)
[
1− (1 + λk)(1− λ)k

]

= ρ1,3Σ1,1Σ3,3
1

λ

(

(τ − 1)τ

2
− 1−

τ−2∑

k=1

(1 + (λ+ 1)k + λk2)(1− λ)k
)

= ρ1,3Σ1,1Σ3,3
1

λ

[
τ(τ − 1)

2
− 1− ζ0 ((1− λ), τ − 1)− (λ+ 1)ζ1 ((1− λ), τ − 1)

− λζ2 ((1− λ), τ − 1)

]

,

υ(2,3)τ = υ(3,2)τ = CovQ
(

Σ2,2

τ−1∑

l=1

ZQ
t+l,2

1− (1− λ)τ−l

λ
,Σ3,3

τ−2∑

k=1

ZQ
t+k,3

[
1− (1− λ)(τ−1−k)

λ
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− (1− λ)τ−k−1(τ − 1− k)
])

= ρ2,3Σ2,2Σ3,3

τ−2∑

k=1

(
1− (1− λ)τ−k

λ

)[
1− (1− λ)τ−k−1

λ
− (1− λ)τ−k−1(τ − k − 1)

]

= ρ2,3Σ2,2Σ3,3

τ−2∑

k=1

(
1− (1− λ)k+1

λ

)[
1− (1− λ)k

λ
− (1− λ)kk

]

= ρ2,3Σ2,2Σ3,3

×
τ−2∑

k=1

(
1− (2− λ)(1− λ)k + (1− λ)(1− λ)2k

λ2
+
−(1− λ)kk + (1− λ)(1− λ)2kk

λ

)

= ρ2,3Σ2,2Σ3,3

(
τ − 2− (2− λ)ζ0 ((1− λ), τ − 1) + (1− λ)ζ0 ((1− λ)2, τ − 1)

λ2

+
−ζ1 ((1− λ), τ − 1) + (1− λ)ζ1 ((1− λ)2, τ − 1)

λ

)

. □

Lemma A.1.2. Consider assumptions of Proposition 2.2.1. Then, for i = 1, 2, 3,

B
(i)
τ − 1

B
(i)
τ−1

=
(
1− κQi,i

)
− 1{i=3}

(1− λ)τ−1

B
(3)
τ−1

= 1− λ1{i>1} − 1{i=3}
(1− λ)τ−1

B
(3)
τ−1

.

Proof of Lemma A.1.2: Based on Proposition 2.2.1,

B
(1)
τ − 1

B
(1)
τ−1

=
τ − 1

τ − 1
= 1.

Furthermore,

B
(2)
τ − 1

B
(2)
τ−1

=

1− (1− λ)τ
λ

− 1

1− (1− λ)τ−1

λ

=
(1− λ)1− (1− λ)τ−1

λ
1− (1− λ)τ−1

λ

= 1− λ.

Finally,

B(3)
τ =

1− (1− λ)τ−1

λ
− (τ − 1)(1− λ)τ−1
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= (1− λ)
(
1− (1− λ)τ−2

λ
+

1

1− λ − (τ − 2)(1− λ)τ−2 − (1− λ)τ−2

)

= B
(3)
τ−1(1− λ) + 1− (1− λ)τ−1. □

Proof of Proposition 2.4.1: Using (2.2.10), (2.2.14), (2.4.6) and (2.4.12),

R
(F )
t+1 −∆rt = ψ0 +

3∑

i=1

ψi

(

X
(i)
t+1 −

(
1− κQi,i

)
X

(i)
t

)

+ ψ′
3X

(3)
t +

q
∑

j=1

ψ
(S)
j

(

R
(S)
t+1,j −∆rt

)

+

√

h
(F )
t Z

(F )
t+1

= ψ0 +
3∑

i=1

ψi

(

Σi,iZ
Q(i)
t+1 + λθQi 1{i>1} − λθQ3 1{i=2} + λ1{i=2}X

(3)
t

)

+ ψ′
3X

(3)
t

+

q
∑

j=1

ψ
(S)
j

(

R
(S)
t+1,j −∆rt

)

+

√

h
(F )
t Z

(F )
t+1

= ψ0 +
3∑

i=1

ψi

(
κQi,iθ

Q
i − λθQ3 1{i=2}

)
+ (ψ2λ+ ψ′

3)X
(3)
t −

q
∑

j=1

ψ
(S)
j

(
1

2
h
(S)
t,j

)

︸ ︷︷ ︸

=ϕt

−
√

h
(F )
t λ

(F )
t

+
3∑

i=1

ψiΣi,iZ
Q(i)
t+1 +

q
∑

j=1

ψ
(S)
j

√

h
(S)
t,j Z

Q(S)
t+1,j +

√

h
(F )
t Z

Q(F )
t+1 .

Conditionally upon Ft, R
(F )
t+1 −∆rt is therefore Gaussian with variance

VarQ
[

R
(F )
t+1 −∆rt

∣
∣Ft

]

=

(

σ
(F )
t

)2

(A.1.8)

with σ
(F )
t given by (2.4.15). Enforcing that the discounted mixed fund value is a Q-

martingale requires

1 = EQ
[

exp
(

R
(F )
t+1 −∆rt

) ∣
∣Ft

]

= exp

(

ϕt −
√

h
(F )
t λ

(F )
t +

1

2

(

σ
(F )
t

)2
)
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which leads to

λ
(F )
t =

1
√

h
(F )
t

[

ϕt +
1

2

(

σ
(F )
t

)2]

.

Finally, due to (A.1.8), the innovation

ϵ
Q(F )
t+1 =

∑3
i=1 ψiΣi,iZ

Q(i)
t+1 +

∑q

j=1 ψ
(S)
j

√

h
(S)
t,j Z

Q(S)
t+1,j +

√

h
(F )
t Z

Q(F )
t+1

σ
(F )
t

is standard Gaussian under Q, and thus {ϵQ(F )
t+1 }Tt=1 is a standard Gaussian white noise. □

A.1.2 Benchmarks

In this paper, the discrete-time Gaussian three-factor model introduced by Augustyniak,

Godin, and Hamel 2021 and the dynamic Nelson-Siegel model from (Diebold and Li 2006)

are considered as benchmarks for the DTAFNS model. Such benchmarks are presented

below.

Discrete-time Gaussian three-factor model

Augustyniak, Godin, and Hamel 2021 assume that the physical measure P dynamics of the

short rate are that of a discrete-time version of the three-factor Gaussian G3 model:

rt =X
(1)
t +X

(2)
t +X

(3)
t ,

X
(i)
t+1 =X

(i)
t + κi(µi −X(i)

t ) + σiZ
(i)
t+1, i = 1, 2, 3, (A.1.9)

where (κi, µi, σi) are the model parameters and {Z(1)
t , Z

(2)
t , Z

(3)
t }Tt=1 is a Gaussian white

noise process with contemporaneous correlation matrix Γ.

The risk-neutral dynamics of the factors is obtained using a discrete-time version of the

Girsanov theorem. The processes ZQ
i = {ZQ

t,i}Tt=1, i = 1, 2, 3 defined through ZQ
t+1,i =
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Zt+1,i − λiX
(i)
t , with λi ∈ R, are standard Gaussian white noises under the risk-neutral

measure Q, still with contemporaneous correlation matrix Γ. Therefore,

X
(i)
t+1 = X

(i)
t + κQi (µ

Q
i −Xt) + σiZ

Q
t+1, i = 1, 2, 3 (A.1.10)

where

κQi = κi − σiλi, µQ
i =

κiµi

κi − σiλi
.

Augustyniak, Godin, and Hamel (2021) show that under (A.1.10) the time-t price of a

risk-free zero coupon bond paying one dollar at the maturity time T is given by

P (t, T ) = EQ

[

exp

(

−∆
T−t−1∑

j=t

rt−j

)]

= exp

(

Aτ −∆
3∑

i=1

B(i)
τ X

(i)
t

)

,

with τ = T − t and

Aτ =
∆2

2
1
⊤
3 υτ13 −∆

3∑

i=1

µQ
i (τ − B(i)

τ ),

B(i)
τ =

1− (1− κQi )τ
κQi

, i = 1, 2, 3,

where 13 is the three-dimensional column vector containing ones as elements and υτ is a

3× 3 matrix whose element on row i and column l, υi,lτ , is

υi,lτ =
σiσl

κQi κ
Q
l

Γi,l

[

τ − B(i)
τ − B(l)

τ +
1− (1− κQi )τ (1− κQl )τ
1− (1− κQi )(1− κQl )

]

.

The model is estimated with maximum likelihood using a Kalman filter on the Canadian

end-of-month yield curve data from January 1986 to January 2022. Resulting parameter

estimates are given in Table A.1.
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Table A.1: DG3 model parameter estimates

i κi µi σi λi

1 0.00523 0.01780 0.00538 0.72614
2 0.04409 -0.00323 0.00489 -4.76851
3 0.02063 0.05016 0.00810 0.96129

Γ =





1 0.146 −0.785
0.146 1 −0.569
−0.785 −0.569 1





Notes: Parameter estimates for the discrete-time G3 model of Augustyniak, Godin, and
Hamel 2021 given by Equations (A.1.9)-(A.1.10). The maximum likelihood estimation
procedure is conducted with a Kalman filter on the Canadian end-of-month yield curve
data extending from January 1986 to January 2022.

Dynamic Nelson-Siegel model

To represent the DNS model dynamics, we consider the same model specification than for

the DTAFNS model, except that we that we use logAτ = 0 and

Bτ =

[

τ,
1− e−λτ

λ
,
1− e−λτ

λ
− τe−λτ

]⊤

in the bond pricing formula (2.2.15).

A global optimization of the log-likelihood is conducted with the R package Rsolnp on the

Canadian end-of-month yield curve data extending from January 1986 to January 2022.

Corresponding parameter estimates are provided in Table A.2.
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Table A.2: Dynamic Nelson-Siegel model parameters estimates.

i κPi,i γi Σi,i θPi θQi x̄i,1|0 λ h

1 0.0090 1.5184 0.0060 0 0.2000 0.1374
2 0.0142 1.1746 0.0062 0.0175 0.1912 -0.0351 0.0069 4.4281× 10−6

3 0.0226 1.0405 0.0151 0.0686 0.2238 -0.0531

ρ =





1 −0.8397 −0.9202
0.8397 1 0.7106
−0.9202 0.7106 1



, P1|0 =





4×10−6 0 0
0 4×10−6 0
0 0 4×10−6





Notes: Parameter estimates for the dynamic Nelson-Siegel model. The estimation is
conducted with the R package Rsolnp. The data sample consists of Canadian end-of-month
yield curve from January 1986 to January 2022.

A.1.3 Kalman filter

Filtering techniques are statistical methods applied to perform inference on latent variables,

referred to as the signal, based on observations linked to such signal. The most popular

filtering method is the Kalman filter which can be applied under the assumption of linear

and Gaussian dynamics for the evolution of the signal and the relationship between the

signal and observations. More precisely, as presented in Rémillard 2013, the such dynamics

for the signal {Zi}ni=1 and observations {Yi}ni=1 is represented by

Zi = µi + FiZi−1 +Giwi,

Yi = di + UiZi + ϵi,

where µi ∈ Rm, Fi ∈ Rm×m, Gi ∈ Rm×q, di ∈ Rr, Ui ∈ Rr×m, wi ∼ Nq(0,Wi) and

ϵi ∼ Nr(0, Ri). Independent processes {wi}ni=1 and {ϵi}ni=1 are sequences of independent
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and identically distributed random variables. For i = 1, . . . , n, set

Yi|i−1 = E[Yi|Yi−1, ..., Y1],

Zi|i−1 = E[Zi|Yi−1, ..., Y1],

Zi|i = E[Zi|Yi, ..., Y1],

Pi|i−1 = E[(Zi − Zi|i−1)(Zi − Zi|i−1)
⊤|Yi−1, ..., Y1], (A.1.11)

Pi|i = E[(Zi − Zi|i)(Zi − Zi|i)
⊤|Yi, ..., Y1],

ei = Yi − Yi|i−1,

Vi = E[eie
T
i |Yi−1, ..., Y1].

Then, the following proposition holds, see Rémillard 2013.

Proposition A.1.1. Suppose that Z0 ∼ Nm(Z0|0, P0|0). Given Y1, . . . , Yi, the conditional

distribution

• of Zi is Gaussian, with mean Zi|i and covariance matrix Pi|i,

• of Zi+1 is Gaussian with mean Zi+1|i and covariance matrix Pi+1|i,

• of Yi+1 is Gaussian with mean Yi+1|i and covariance matrix Vi+1.

Kalman 1960 provides a recursive algorithm to calculate conditional moments of the signal

and observations outlined in Proposition A.1.1. For given initial moments Z0|0 and P0|0,

the algorithm goes as follows for i = 1, . . . , n:

Zi|i−1 = µi + FiZi−1|i−1,

Yi|i−1 = di + UiZi|i−1,

Pi|i−1 = FiPi−1|i−1F
⊤
i +GiWiG

⊤
i ,

Vi = UiPi|i−1U
⊤
i +Ri,
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Zi|i = Zi|i−1 + Pi|i−1U
⊤
i V

−1
i ei,

Pi|i = Pi|i−1 − Pi|i−1U
⊤
i V

−1
i UiPi|i−1.

Using previous results and calculations, the joint distribution of Y1, ..., Yn can be computed,

and the corresponding log-likelihood L is given by

−L = −
n∑

i=1

log p(Yi|Y1, . . . , Yi−1) =
1

2

n∑

i=1

log (detVi) +
1

2

n∑

i=1

e⊤i V
−1
i ei +

nr

2
ln(2π).

To estimate the parameters of the DTAFNS model, the following substitutions need to be

applied in the above Kalman filter algorithm: Yi = ŷi, Zi = Xi, i = t, r = M , m = q = 3,

µi = b = κPθP, F = D = (I − κP), Gi = Σ, di = a, Ui = B, Ri = H and Wi = ρ.

A.1.4 Alternative parameters selection for DTAFNS

As explained in Remark 2.2.2, it might be possible to consider a specification of the

DTAFNS model under which κP1,1 = 0, which (i) would be consistent with κQ1,1 = 0 and

(ii) would also yield non-stationary dynamics for the first factor under physical dynamics.

From (2.2.17), setting κP1,1 = 0 leads to γ1 = 0. Such specification is tested in this

appendix. Table A.3 shows the parameter estimation results under such additional

constraints.

Table A.4 shows the in-sample and out-of-sample log-likelihoods of both the original version

of the DTAFNS model from Section 2.2.2 and the version with the added constraint κP1,1 =

0. Imposing κP1,1 = 0 deteriorates the results both in-sample and out-of-sample, which

justified ultimately not retaining this specification.
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Table A.3: Maximum likelihood estimates of the DTAFNS model with constraint κP1,1 = 0

ρ =





1 −0.6300 −0.4101
−0.6300 1 0.2991
−0.4101 0.2991 1





i κPi,i γi Σi,i θPi θQi λ h

1 0 0 0.0027 0 0
2 0.2966 1.3807 0.0046 0.0501 0.0637 0.0233 3.76× 10−6

3 0.0361 1.8247 0.0070 0.0495 0.0767

Notes: Maximum likelihood parameters estimates for the DTAFNS model presented in
Section 2.2.2 obtained with the Kalman filter-based Algorithm 1. The data sample is the
Canadian end-of-month yield curve data extending from January 1986 to January 2022.

Table A.4: Log-likelihood of the DTAFNS model with and without constraint κP1,1 = 0

Model
Out-of-sample In-sample

2017 2018 2019 2020 2021-22 Aggregated
DTAFNS (κP1,1 ̸= 0) 2,034 2,001 2,035 2,015 2,183 10,268 65,702
DTAFNS (κP1,1 = 0) 2,005 1,977 2,015 2,002 2,175 10,174 65,700

Notes: Comparison of the log-likelihood of the DTAFNS model of Section 2.2.2 and a
version of the same model with the added constraint κP1,1 = 0. The data sample consists
of Canadian end-of-month yield curves. The in-sample dataset starts in January 1986
and ends in January 2022. The out-of-sample estimation procedure uses an expanding
window approach described in Section 2.3.3. The aggregated out-of-sample log-likelihood
is obtained by summing the log-likelihoods for all test years.

A.1.5 Point prediction performance for spot rates

In this section, we compare the ability of the various considered models to produce accurate

point monthly forecasts for spot rates. Let ŷ(t, t+ τ) be the realized time-t spot rates with

tenor τ , and ỹ(t, t+τ) be its associated model-implied forecast produced at time t−1 with

the expanding window approach detailed in Section 2.3.3, i.e. models are retrained yearly,

with yearly out-of-sample test sets covering the period extending from January 2017 to
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Table A.5: Probability of observing negative short rates with the DTAFNS model with
and without constraint κP1,1 = 0

Model
Proportion of months Proportion of paths with at least one month

< 0 < −0.01 < −0.02 < −0.03 < 0 < −0.01 < −0.02 < −0.03
DTAFNS(κP

1,1 ̸= 0) 0.177 0.057 0.015 0.003 0.644 0.299 0.106 0.029
DTAFNS(κP

1,1 = 0) 0.322 0.141 0.052 0.016 0.826 0.540 0.277 0.113

Notes: Within 200,000 five-year monthly simulated paths of the DTAFNS model (either
with or without constraint κP1,1 = 0), the proportion of simulated months with short rates
being smaller than respectively 0, −0.01, −0.02 and −0.03, and the proportion of simulated
paths with at least one month below such thresholds. Model parameters estimates are from
Table A.3 and Table 2.1, with starting values of the factors being smoothed factor values
on January 2022 associated with such sets of parameters.

January 2022. Define the following performance metrics:

Mean error =
1

T ∗

T ∗

∑

t=1

(ŷ(t, t+ τ)− ỹ(t, t+ τ)),

RMSE(τ) =

√
√
√
√ 1

T ∗

T ∗

∑

t=1

(ŷ(t, t+ τ)− ỹ(t, t+ τ))2,

MAE(τ) =
1

T ∗

T ∗

∑

t=1

|ŷ(t, t+ τ)− ỹ(t, t+ τ)|,

rMAE
(τ)
1 =

MAE
(τ)
DTAFNS

MAE
(τ)
DG3

, rMAE
(τ)
2 =

MAE
(τ)
DTAFNS

MAE
(τ)
DNS

(A.1.12)

where T ∗ is the total number of observations in the union of all test sets and MAE
(τ)
M is

the MAE(τ) for model M. Table A.6 reports the predictive performance results. RMSE

and MAE metrics indicate that the point forecast performance of the DTAFNS model is

quite similar to that of the DG3 and DNS models.

A.1.6 Fit diagnostics output for the mixed fund model

In this section, diagnostic information about mixed fund parameter estimates is presented.

Parameters mu, mxreg1, mxreg2, mxreg3, mxreg4, mxreg5, mxreg6 in the output below

correspond to ψ0, ψ1, ψ2, ψ3, ψ
′
3, ψ

(S)
1 , and ψ

(S)
2 , respectively. Results of several white noise
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Table A.6: Performance metrics for spot rate point predictions

Tenor

(months)

Mean error (in %) RMSE (in %) MAE (in %) rMAE

DTAFNS DG3 DNS DTAFNS DG3 DNS DTAFNS DG3 DNS rMAE1 rMAE2

6 0.048 0.075 0.120 0.707 0.712 0.734 0.612 0.609 0.620 1.004 0.986
12 0.155 0.160 0.166 0.731 0.732 0.742 0.629 0.630 0.634 0.999 0.992
36 0.089 0.054 -0.009 0.661 0.651 0.648 0.527 0.517 0.513 1.019 1.027
60 -0.043 -0.072 -0.137 0.626 0.623 0.628 0.472 0.472 0.484 1.000 0.975
84 -0.186 -0.192 -0.237 0.632 0.631 0.640 0.476 0.477 0.489 1.000 0.975
108 -0.296 -0.280 -0.298 0.652 0.644 0.647 0.484 0.477 0.480 1.014 1.009
132 -0.375 -0.346 -0.337 0.671 0.657 0.648 0.491 0.479 0.469 1.026 1.048
156 -0.433 -0.400 -0.366 0.689 0.671 0.648 0.500 0.483 0.463 1.035 1.081
180 -0.472 -0.443 -0.390 0.701 0.683 0.649 0.510 0.493 0.462 1.034 1.103
204 -0.494 -0.473 -0.408 0.704 0.692 0.649 0.517 0.505 0.465 1.024 1.113
228 -0.498 -0.489 -0.422 0.699 0.694 0.649 0.517 0.511 0.469 1.011 1.102
252 -0.488 -0.492 -0.434 0.684 0.688 0.648 0.505 0.508 0.472 0.993 1.069
276 -0.466 -0.481 -0.445 0.662 0.673 0.648 0.485 0.496 0.475 0.979 1.021
300 -0.433 -0.457 -0.456 0.633 0.650 0.649 0.465 0.478 0.477 0.972 0.974
324 -0.389 -0.417 -0.466 0.599 0.618 0.651 0.441 0.455 0.482 0.969 0.913
348 -0.331 -0.361 -0.476 0.559 0.577 0.652 0.415 0.426 0.489 0.974 0.848

Average -0.286 -0.286 -0.287 0.661 0.660 0.658 0.502 0.501 0.497 1.003 1.011

Notes: Performance metrics for the point forecasting of spot rates by the DTAFNS model
and its two benchmarks explained in Appendix A.1.2. The expanding window approach
detailed in Section 2.3.3 is used for testing: models are retrained yearly, with yearly out-
of-sample test sets covering the period extending from January 2017 to January 2022. The
rMAE metric is explained in (A.1.12). Performance metrics are reported for a selection
of 16 tenors (in months) among the 33 available in dataset, while the average row at the
bottom considers all tenors available.

tests are also presented to verify the adequacy of the model; weighted Ljung-Box tests

on standardized residuals and squared residuals, and weighted ARCH Lagrange Multiplier

(LM) tests are conducted to assess the presence of auto-correlation and volatility clusters

in residuals. See the rugarch package documentation for details of specifications of such

tests.
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Optimal Parameters

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Estimate Std . Error t va lue Pr(>| t | )

mu 0.004039 0.001227 3 .2907 0.000999

mxreg1 −1.724464 0.404332 −4.2650 0.000020

mxreg2 −0.769503 0.242516 −3.1730 0.001509

mxreg3 −0.445368 0.111513 −3.9939 0.000065

mxreg4 −0.055235 0.019353 −2.8540 0.004317

mxreg5 0.400758 0.014636 27.3815 0.000000

mxreg6 0.134577 0.013903 9 .6800 0.000000

omega −1.031221 0.012377 −83.3193 0.000000

alpha1 −0.093903 0.035272 −2.6623 0.007761

beta1 0.894535 0.000279 3205.6931 0.000000

gamma1 0.066528 0.020912 3 .1814 0.001466

LogLike l ihood : 1038.719

Weighted Ljung−Box Test on Standardized Res idua l s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s t a t i s t i c p−value

Lag [ 1 ] 0 .6482 0 .4208

Lag [ 2∗ ( p+q)+(p+q ) −1 ] [ 2 ] 1 .3704 0 .3922

Lag [ 4∗ ( p+q)+(p+q ) −1 ] [ 5 ] 2 .3021 0 .5490

d . o . f=0

H0 : No s e r i a l c o r r e l a t i o n
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Weighted Ljung−Box Test on Standardized Squared Res idua l s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s t a t i s t i c p−value

Lag [ 1 ] 0 .3453 0 .5568

Lag [ 2∗ ( p+q)+(p+q ) −1 ] [ 5 ] 1 .7040 0 .6898

Lag [ 4∗ ( p+q)+(p+q ) −1 ] [ 9 ] 5 .8407 0 .3169

d . o . f=2

Weighted ARCH LM Tests

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S t a t i s t i c Shape Sca l e P−Value

ARCH Lag [ 3 ] 0 .8588 0 .500 2 .000 0 .3541

ARCH Lag [ 5 ] 2 .7687 1 .440 1 .667 0 .3251

ARCH Lag [ 7 ] 4 .7279 2 .315 1 .543 0 .2535

A.2 Participating contract

This appendix reports parameters considered for the financial market model of Section 3.5.

Such parameters are drawn directly from Eghbalzadeh, Godin, and Gaillardetz 2022, which

were obtained by maximum likelihood on monthly historical time series.

Table A.7 provides parameters for the DTAFNS model (3.5.2)-(3.5.3), which were obtained

through calibration to January 1986 to January 2022 Canadian end-of-month yield curve

data.

Two equity indices are considered for the equity model (3.5.6)-(3.5.7): the S&P/TSX and

the S&P 500. Parameters considered are shown in Table A.8 and were obtained from a
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Table A.7: DTAFNS model parameters

i κPi,i γi,i Σi,i θPi,i θQi,i λ

1 0.008 2.792 0.003 0 0
2 0.029 1.202 0.005 0.030 0.063 0.023
3 0.035 1.717 0.007 0.051 0.077

ρ =





1 −0.630 −0.410
−0.630 1 0.299
−0.410 0.299 1





Notes: The data sample used to obtain maximum likelihood estimates is the Canadian
end-of-month yield curve data extending from January 1986 to January 2022.

return time series extending from February 1986 to January 2022.

Table A.8: Bivariate EGARCH model parameters

Stock index j λSj ω
(S)
j α

(S)
j γ

(S)
j β

(S)
j Γ1,2

S&P/TSX 1 0.08443 -2.38375 -0.16171 0.38711 0.62836
0.75281

S&P 500 2 0.12605 -1.92871 -0.14922 0.32486 0.69715

Table A.9 indicates parameters used for the mixed fund model (3.5.8)-(3.5.9), which were

obtained based on a time series of net asset value (NAV) returns for the

Assumption/Louisbourg Balanced Fund A extending from February 1996 to January 2022.

Table A.9: Mixed fund model parameters

Parameter θ0 θ1 θ2 θ3 θ′3 θ
(S)
1

Estimate 0.0040387 -1.7244637 -0.7695032 -0.4453684 -0.0552352 0.4007580

Parameter θ
(S)
2 ω(F ) α(F ) γ(F ) β(F )

Estimate 0.1345770 -1.0312207 -0.0939034 0.0665277 0.8945346

Starting values for interest rate factors and volatilities (both for the equity indices and the

mixed fund) considered in simulations correspond to inferred values on January 31, 2022

and are given in Table A.10.

These values are used as a starting point for the simulation of the various trajectories of

the interest rates, equity indices and mixed fund value.
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Table A.10: Initial financial risk factors parameters for simulations

Interest rate factors S&P/TSX S&P 500 Mixed Fund model

X
(1)
0 X

(2)
0 X

(3)
0

√

12h
(S)
0,1

√

12h
(S)
0,2

√

12h
(F )
0

-3.12% 3.84% 6.88% 11.88% 16.80% 2.62%

A.3 Swaption pricing under DTAFNS model

A.3.1 Proofs

Before proving Proposition 4.3.1, several lemmas are presented.

Lemma A.3.1. For i = 1, 2, 3,

B(i)
τ − 1

B(i)
τ−1

=
(
1− κQi,i

)
− 1{i=3}

(1− λ)τ−1

B(3)
τ−1

= 1− λ1{i>1} − 1{i=3}
(1− λ)τ−1

B(3)
τ−1

.

Proof of Lemma A.3.1: See Lemma A.2 of Eghbalzadeh, Godin, and Gaillardetz 2022.

Lemma A.3.2. There exists the following recursive relation between time t and t+1 for the

zero coupon bond price presented in (4.2.3):

P (t+ 1, t+ τ) =P (t, t+ τ)e∆rt exp

[

log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1

(
κQθQ + ΣZQ

t+1

)
]

.

Proof of Lemma A.3.2: Using (4.2.1) and (4.2.3) for the first equality, and then Lemma

A.3.1 for the third one,

log

(
P (t+ 1, t+ τ)

P (t, t+ τ)

)

−∆rt = log

(
Aτ−1

Aτ

)

−∆
3∑

i=1

B(i)
τ−1

(

X
(i)
t+1 −

(

B(i)
τ − 1

B(i)
τ−1

)

X
(i)
t

)

+∆
3∑

i=1

X
(i)
t

−∆(X
(1)
t +X

(2)
t )

= log

(
Aτ−1

Aτ

)

−∆
2∑

i=1

B(i)
τ−1

(

X
(i)
t+1 −

(

B(i)
τ − 1

B(i)
τ−1

)

X
(i)
t

)

+∆X
(3)
t
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−∆B(3)
τ−1

(

X
(3)
t+1 −

(

B(3)
τ − 1

B(3)
τ−1

)

X
(3)
t

)

= log

(
Aτ−1

Aτ

)

−∆
2∑

i=1

B(i)
τ−1

(

X
(i)
t+1 −

(
1− κQi,i

)
X

(i)
t

)

+∆X
(3)
t

−∆B(3)
τ−1

(

X
(3)
t+1 −

(

(1− λ)− (1− λ)τ−1

B(3)
τ−1

)

X
(3)
t

)

= log

(
Aτ−1

Aτ

)

−∆
3∑

i=1

B(i)
τ−1

(

X
(i)
t+1 −

(
1− κQi,i

)
X

(i)
t

)

+∆
(
1− (1− λ)τ−1

)
X

(3)
t

= log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1

(
κQθQ + ΣZQ

t+1

)
+∆

(

1− (1− λ)τ−1 − B(2)
τ−1λ

)

X
(3)
t

= log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1

(
κQθQ + ΣZQ

t+1

)
.

Therefore,

P (t+ 1, t+ τ) =P (t, t+ τ)e∆rt exp

[

log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1

(
κQθQ + ΣZQ

t+1

)
]

. □

Lemma A.3.3. Consider any integer τ > 0 and any real number r ̸= 1. For functions

ζ0(r, τ), ζ1(r, τ) and ζ2(r, τ) defined in (4.2.7)-(4.2.9),

ζ0(r, τ − 1)− ζ0(r, τ) = −rτ−1 (A.3.1)

ζ1(r, τ − 1)− ζ1(r, τ) = −rτ−1(τ − 1) (A.3.2)

ζ2(r, τ − 1)− ζ2(r, τ) = −rτ−1(τ − 1)2 (A.3.3)

Proof of Lemma A.3.3: This result is a direct consequence of the sum representations of

ζ0(r, τ), ζ1(r, τ) and ζ2(r, τ) provided in (4.2.7)-(4.2.9). □

Lemma A.3.4. The following recursive connection holds for the quantity υτ defined in

(4.2.6):

υτ = B⊤
τ−1Σρ(B⊤

τ−1Σ)
⊤ + υτ−1. (A.3.4)
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Proof of Lemma A.3.4: First,

B⊤
τ−1Σρ(B⊤

τ−1Σ)
⊤ =

3∑

i=1

3∑

j=1

B(i)
τ−1B

(j)
τ−1Σi,iΣj,jρi,j.

Moreover, based on (4.2.6),

υτ − υτ−1 =
3∑

i=1

3∑

j=1

a(i,j)τ Σi,iΣj,jρi,j

with a
(i,j)
τ = (υ

(i,j)
τ − υ(i,j)τ−1)/(Σi,iΣj,jρi,j).

To complete the proof, we now show that a
(i,j)
τ = B(i)

τ−1B
(j)
τ−1 for any i, j = 1, 2, 3.

First, for i = j = 1,

a(1,1)τ =
τ(τ − 1)(2τ − 1)

6
− (τ − 1)(τ − 2)(2τ − 3)

6
.

=
(τ − 1)(2τ 2 − τ − 2τ 2 + 7τ − 6)

6

=(τ − 1)2

=B(1)
τ−1B

(1)
τ−1.

Secondly, for i = 1 and j = 2, using (A.3.2),

a(1,2)τ =
1

λ

(
τ(τ − 1)

2
− ζ1(1− λ, τ)−

(τ − 1)(τ − 2)

2
+ ζ1(1− λ, τ − 1)

)

=
(τ − 1)− (1− λ)τ−1(τ − 1)

λ

=B(1)
τ−1B

(2)
τ−1.

Thirdly, for i = 1 and j = 3, using (A.3.1), (A.3.2), and (A.3.3),

a(1,3)τ =
1

λ

[
τ(τ − 1)

2
− 1− ζ0 (1− λ, τ − 1)− (1 + λ)ζ1 (1− λ, τ − 1)− λζ2 (1− λ, τ − 1)
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− (τ − 1)(τ − 2)

2
+ 1 + ζ0 (1− λ, τ − 2) + (1 + λ)ζ1 (1− λ, τ − 2) + λζ2 (1− λ, τ − 2)

]

=
1

λ

[

τ − 1− (1− λ)τ−2 − (1− λ)τ−2(τ − 2)(1 + λ)− λ(1− λ)τ−2(τ − 2)2
]

=
1

λ

[

τ − 1− (1− λ)τ−2 − (1− λ)τ−2(τ − 1− 1)(1 + λ)− λ(1− λ)τ−2(τ − 2)(τ − 1− 1)

]

=
1

λ

[

τ − 1− (1− λ)τ−2(τ − 1)(1 + λ) + λ(1− λ)τ−2 − λ(1− λ)τ−2(τ − 2)(τ − 1)

+ λ(1− λ)τ−2(τ − 1− 1)

]

=
τ − 1

λ

[

1− (1− λ)τ−2 − λ(1− λ)τ−2(τ − 2)

]

=B(1)
τ−1B

(3)
τ−1.

Fourthly, for i = j = 2,

a(2,2)τ =
1

λ2

(

τ − 2

[
1− (1− λ)τ

λ

]

+
1− (1− λ)2τ
1− (1− λ)2 − τ + 1 + 2

[
1− (1− λ)τ−1

λ

]

− 1− (1− λ)2(τ−1)

1− (1− λ)2
)

=
1

λ2
(
1− 2(1− λ)τ−1 + (1− λ)2(τ−1)

)

=B(2)
τ−1B

(2)
τ−1.

Fifthly, for i = 2 and j = 3, using (A.3.1) and (A.3.2),

a(2,3)τ =
τ − 2− (2− λ)ζ0 (1− λ, τ − 1) + (1− λ)ζ0 ((1− λ)2, τ − 1)

λ2

+
−ζ1 (1− λ, τ − 1) + (1− λ)ζ1 ((1− λ)2, τ − 1)

λ

− τ − 3− (2− λ)ζ0 (1− λ, τ − 2) + (1− λ)ζ0 ((1− λ)2, τ − 2)

λ2

− −ζ1 (1− λ, τ − 2) + (1− λ)ζ1 ((1− λ)2, τ − 2)

λ

=
1− (2− λ)(1− λ)τ−2 + (1− λ)(1− λ)2(τ−2)

λ2
+
−(1− λ)τ−2(τ − 2) + (1− λ)(1− λ)2(τ−2)(τ − 2)

λ

=
(1− (1− λ)τ−2)

2
+ λ(1− λ)τ−2 (1− (1− λ)τ−2)

λ2
+

(1− λ)τ−2(τ − 2) ((1− λ)τ−1 − 1)

λ
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=
(1− (1− λ)τ−2) (1− (1− λ)τ−2(1− λ))

λ2
+

(1− λ)τ−2(τ − 2) ((1− λ)τ−1 − 1)

λ

=
1− (1− λ)τ−1

λ

(
1− (1− λ)τ−2

λ
− (1− λ)τ−2(τ − 2)

)

=B(2)
τ−1B

(3)
τ−1.

Lastly, for i = j = 3, using (A.3.1), (A.3.2), and (A.3.3),

a(3,3)τ =
1

λ2

[

τ − 2 + ζ0
(
(1− λ)2, τ − 1

)
+ λ2ζ2

(
(1− λ)2, τ − 1

)

− 2ζ0 (1− λ, τ − 1)− 2λζ1 (1− λ, τ − 1) + 2λζ1
(
(1− λ)2, τ − 1

)

− τ + 3− ζ0
(
(1− λ)2, τ − 2

)
− λ2ζ2

(
(1− λ)2, τ − 2

)

+ 2ζ0 (1− λ, τ − 2) + 2λζ1 (1− λ, τ − 2)− 2λζ1
(
(1− λ)2, τ − 2

)
]

=
1

λ2

[

1 + (1− λ)2(τ−2) + λ2(1− λ)2(τ−2)(τ − 2)2 − 2(1− λ)τ−2

− 2λ(1− λ)τ−2(τ − 2) + 2λ(1− λ)2(τ−2)(τ − 2)

]

=
1

λ2

[
(
1− (1− λ)τ−2

)2
+ λ2(1− λ)2(τ−2)(τ − 2)2 − 2λ(1− λ)τ−2(τ − 2)

(
1− (1− λ)τ−2

)
]

=
1

λ2

[
(
1− (1− λ)τ−2 − λ(1− λ)τ−2(τ − 2)

)2
]

=

(
1− (1− λ)τ−2

λ
− (1− λ)τ−2(τ − 2)

)2

=B(3)
τ−1B

(3)
τ−1. □

Lemma A.3.5. For i = 1, 2, 3, the following recursive relationships between B(i)
τ and B(i)

τ−1

hold:

B(1)
τ = B(1)

τ−1 + 1,

B(2)
τ = B(2)

τ−1 + (1− λ)τ−1,

B(3)
τ = B(3)

τ−1 + (1− λ)τ−2λ(τ − 1).
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Proof of Lemma A.3.5: Based on (4.2.4), B(1)
τ = τ − 1 + 1 = B(1)

τ−1 + 1. Furthermore,

B(2)
τ =

1− (1− λ)τ
λ

− 1 + 1 = (1− λ)B(2)
τ−1 + 1

= B(2)
τ−1 − 1 + (1− λ)τ−1 + 1 = B(2)

τ−1 + (1− λ)τ−1.

Lastly,

B(3)
τ =

1− (1− λ)τ−1

λ
− 1 + 1− (τ − 2 + 1)(1− λ)τ−1

=(1− λ)
(
1− (1− λ)τ−2

λ
+

1

1− λ − (τ − 2)(1− λ)τ−2 − (1− λ)τ−2

)

=B(3)
τ−1 +

1

1− λ − (1− λ)τ−2

− 1 + (1− λ)τ−2 − λ

1− λ + λ(τ − 2)(1− λ)τ−2 + λ(1− λ)τ−2

=B(3)
τ−1 + (1− λ)τ−2λ(τ − 1). □

Lemma A.3.6. The following recursive relationship holds for quantity Aτ defined in (4.2.3):

Aτ = Aτ−1 exp

(
1

2
∆2B⊤

τ−1Σρ(B⊤
τ−1Σ)

⊤ −∆B⊤
τ−1κ

QθQ
)

.

Proof of Lemma A.3.6: Using Lemma A.3.4, Lemma A.3.5 and (4.2.4) to substitute into

(4.2.5),

log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1κ

QθQ =−∆θQ2

(

B(1)
τ−1 − B(1)

τ + B(2)
τ − B

(2)
τ−1

)

+∆θQ3

(

B(3)
τ−1 − B(3)

τ

)

−∆B⊤
τ−1κ

QθQ − 1

2
∆2 (υτ − υτ−1)

=−∆θQ2
(
−1 + (1− λ)τ−1

)
−∆θQ3 (1− λ)τ−2λ(τ − 1)

−∆B⊤
τ−1κ

QθQ − 1

2
∆2 (υτ − υτ−1)

=∆θQ2 λB
(2)
τ−1 −∆θQ3 λ(1− λ)τ−2(τ − 1)−∆B(2)

τ−1λ(θ
Q
2 − θQ3 )−∆B(3)

τ−1λθ
Q
3
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− 1

2
∆2 (υτ − υτ−1)

=−∆θQ3 λ(1− λ)τ−2(τ − 1) + ∆λθQ3 (B
(2)
τ−1 − B

(3)
τ−1)−

1

2
∆2B⊤

τ−1Σρ(B⊤
τ−1Σ)

⊤

=− 1

2
∆2B⊤

τ−1Σρ(B⊤
τ−1Σ)

⊤. □

Proof of Proposition 4.3.1: The proof relies on calculating the moments generating function

of innovations under the T -forward measure. Consider the row vector Γ = [Γ1,Γ2,Γ3] with

Γi ∈ R for i = 1, 2, 3. Then

ET

[

exp(ΓZT
t+1)

∣
∣
∣
∣
Ft

]

=ET

[

exp(ΓZQ
t+1 + Γ∆ρΣBτ−1)

∣
∣
∣
∣
Ft

]

=

EQ

[

exp(ΓZQ
t+1 + Γ∆ρΣBτ−1)

dQT

dQ

∣
∣
∣
∣
Ft

]

EQ

[
dQT

dQ

∣
∣
∣
∣
Ft

]

=exp [Γ∆ρΣBτ−1]

EQ

[

exp(ΓZQ
t+1)

P (t+ τ, t+ τ)B(0)

P (0, t+ τ)B(t+ τ)

∣
∣
∣
∣
Ft

]

EQ

[
P (t+ τ, t+ τ)B(0)

P (0, t+ τ)B(t+ τ)

∣
∣
∣
∣
Ft

]

=exp [Γ∆ρΣBτ−1]
1

P (0, t+ τ)

EQ

[

exp(ΓZQ
t+1)

P (t+ τ, t+ τ)

B(t+ τ)

∣
∣
∣
∣
Ft

]

P (t, t+ τ)

P (0, t+ τ)B(t)

= exp [Γρ∆ΣBτ−1]
B(t)

P (t, t+ τ)
EQ

[

exp(ΓZQ
t+1)E

Q

[
P (t+ τ, t+ τ)

B(t+ τ)

∣
∣
∣
∣
Ft+1

] ∣
∣
∣
∣
Ft

]

=exp [Γ∆ρΣBτ−1]E
Q

[

exp(ΓZQ
t+1)

B(t)

P (t, t+ τ)

P (t+ 1, t+ τ)

B(t+ 1)

∣
∣
∣
∣
Ft

]

,

where the fourth and fifth equalities rely on the fact that P (·,T )
B(·)

is a Q-martingale.

Define

Y (ZQ
t+1) ≡ ΓZQ

t+1 + log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1

(
κQθQ + ΣZQ

t+1

)
.
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Using Lemma A.3.2 therefore leads to

ET

[

exp
(
ΓZT

t+1

)
∣
∣
∣
∣
Ft

]

= exp [Γ∆ρΣBτ−1]E
Q

[

exp
(
Y (ZQ

t+1)
)
∣
∣
∣
∣
Ft

]

,

where, given Ft, Y (ZQ
t+1) follows the Gaussian distribution with conditional mean and

variance

EQ

[

Y (ZQ
t+1)

∣
∣
∣
∣
Ft

]

= log

(
Aτ−1

Aτ

)

−∆B⊤
τ−1κ

QθQ,

VarQ
[

Y (ZQ
t+1)

∣
∣
∣
∣
Ft

]

=ΓρΓ⊤ +∆B⊤
τ−1Σρ(∆B⊤

τ−1Σ)
⊤ − 2Γ∆ρΣBτ−1.

Thus,

ET

[

exp(ΓZT
t+1)

∣
∣
∣
∣
Ft

]

=
Aτ−1

Aτ

exp

(

−∆B⊤
τ−1κ

QθQ +
1

2
∆B⊤

τ−1Σρ(∆B⊤
τ−1Σ)

⊤

)

exp

(
1

2
ΓρΓ⊤

)

.

Therefore, using Lemma A.3.6 leads to

ET

[

exp(ΓZT
t+1)

∣
∣
∣
∣
Ft

]

= exp

(
1

2
ΓρΓ⊤

)

. □

Lemma A.3.7. Assume (4.3.5) holds. For t = 0, . . . , T and n = 0, . . . , T − t,

X
(i)
t+n =X

(i)
t (1− κTi,i)n + κTi,iθ

T
i

n∑

l=1

(1− κTi,i)(n−l) + Σi,i

n∑

l=1

ZT
t+l,i(1− κTi,i)(n−l)

+
n∑

l=1

3∑

j ̸=i

κTi,j(θ
T
j −X

(j)
t+l−1)(1− κTi,i)(n−l) −

n−1∑

l=0

η
(i)
t+l(1− κTi,i)n−1−l. (A.3.5)

Proof of Lemma A.3.7: This proof is analogous to that of Lemma A.1 from Eghbalzadeh,

Godin, and Gaillardetz 2022, which is based on induction. We apply the convention
∑0

l=1 xl ≡ 0. The case n = 0 is therefore trivial. Then, assume (A.3.5) holds for some

114



n < T − t− 1. Using (4.3.5), for any i = 1, 2, 3,

X
(i)
t+n+1 =X

(i)
t+n +

3∑

j=1

κTi,j(θ
T
j −X

(j)
t+n) + Σi,iZ

T
t+n+1,i − η

(i)
t+n

=X
(i)
t+n(1− κTi,i) + κTi,iθ

T
i +

3∑

j ̸=i

κTi,j(θ
T
j −X

(j)
t+n) + Σi,iZ

T
t+n+1,i − η

(i)
t+n.

Applying (A.3.5) in the latter equality yields

X
(i)
t+n+1 =X

(i)
t (1− κTi,i)n+1 + κTi,iθ

T
i

n∑

l=1

(1− κTi,i)(n+1−l) + Σi,i

n∑

l=1

ZT
t+l,i(1− κTi,i)(n+1−l)

+
n∑

l=1

3∑

j ̸=i

κTi,j(θ
T
j −X

(j)
t+l−1)(1− κTi,i)(n+1−l) + κTi,iθ

T
i −

n−1∑

l=0

η
(i)
t+l(1− κTi,i)n−l

+
3∑

j ̸=i

κTi,j(θ
T
j −X

(j)
t+n) + Σi,iZ

T
t+n+1,i − η

(i)
t+n

=X
(i)
t (1− κTi,i)n+1 + κTi,iθ

T
i

n+1∑

l=1

(1− κTi,i)(n+1−l) + Σi,i

n+1∑

l=1

ZT
t+l,i(1− κTi,i)(n+1−l)

+
n+1∑

l=1

3∑

j ̸=i

κTi,j(θ
T
j −X

(j)
t+l−1)(1− κTi,i)(n+1−l) −

n∑

l=0

η
(i)
t+l(1− κTi,i)n−l,

thereby finishing the induction. □

Lemma A.3.8. For n = 0, . . . , T − t, the factors X
(i)
t+n can be expressed in terms of Xt and

innovations {ZT
t+l}T −t

l=1 as follows:

X
(1)
t+n =X

(1)
t + Σ1,1

n∑

l=1

ZT
t+l,1 −

n−1∑

l=0

η
(1)
t+l,

X
(2)
t+n =X

(2)
t (1− λ)n + (θT2 − θT3 ) (1− (1− λ)n) + Σ2,2

n∑

l=1

ZT
t+l,2(1− λ)(n−l)

+ λ

(

nX
(3)
t (1− λ)n−1 + θT3

(
(1− (1− λ)n)

λ
− n(1− λ)n−1

)

+ Σ3,3

n−1∑

k=1

(n− k)(1− λ)n−k−1ZT
t+k,3 −

n−1∑

k=0

(n− k − 1)η
(3)
t+k(1− λ)n−k−2

)

−
n−1∑

l=0

η
(2)
t+l(1− λ)n−1−l,
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X
(3)
t+n =X

(3)
t (1− λ)n + θT3 (1− (1− λ)n) + Σ3,3

n∑

l=1

ZT
t+l,3(1− λ)(n−l) −

n−1∑

l=0

η
(3)
t+l(1− λ)n−1−l.

Proof of Lemma A.3.8:

From (4.3.4), κT1,1 = κT1,2 = κT1,3 = κT2,1 = κT3,1 = κT3,2 = 0, κT2,2 = κT3,3 = λ and κT2,3 = −λ.

When placed into (A.3.5), this leads to

X
(1)
t+n = X

(1)
t + Σ1,1

n∑

l=1

ZT
t+l,1 −

n−1∑

l=0

η
(1)
t+l,

X
(2)
t+n = X

(2)
t (1− λ)n + λθT2

n∑

l=1

(1− λ)(n−l) + Σ2,2

n∑

l=1

ZT
t+l,2(1− λ)(n−l)

−λ
n∑

l=1

(θT3 −X
(3)
t+l−1)(1− λ)(n−l) −

n−1∑

l=0

η
(2)
t+l(1− λ)n−1−l, (A.3.6)

X
(3)
t+n = X

(3)
t (1− λ)n + λθT3

n∑

l=1

(1− λ)(n−l) + Σ3,3

n∑

l=1

ZT
t+l,3(1− λ)(n−l)

−
n−1∑

l=0

η
(3)
t+l(1− λ)n−1−l. (A.3.7)

Furthermore,

n∑

l=1

(1− λ)n−lX
(3)
t+l−1 =

n−1∑

l=0

(1− λ)n−l−1X
(3)
t+l

=
n−1∑

l=0

(1− λ)n−l−1

[

X
(3)
t (1− λ)l + λθT3

l∑

k=1

(1− λ)(l−k) + Σ3,3

l∑

k=1

ZT
t+k,3(1− λ)(l−k)

−
l−1∑

k=0

(1− λ)l−1−kη
(3)
t+k

]

=nX
(3)
t (1− λ)n−1 + λθT3

n−1∑

l=0

(1− λ)n−l−1 − (1− λ)n−1

λ

+ Σ3,3

n−1∑

l=0

n−1∑

k=1

1{k≤l}Z
T
t+k,3(1− λ)n−k−1 −

n−1∑

l=0

n−1∑

k=0

1{k≤l−1}(1− λ)n−k−2η
(3)
t+k
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=nX
(3)
t (1− λ)n−1 + θT3

(
1− (1− λ)n

λ
− n(1− λ)n−1

)

+ Σ3,3

n−1∑

k=1

ZT
t+k,3

n−1∑

l=k

(1− λ)n−k−1 −
n−1∑

k=0

η
(3)
t+k

n−1∑

l=k+1

(1− λ)n−k−2

=nX
(3)
t (1− λ)n−1 + θT3

(
1− (1− λ)n

λ
− n(1− λ)n−1

)

+ Σ3,3

n−1∑

k=1

(n− k)(1− λ)n−k−1ZT
t+k,3 −

n−1∑

k=0

(n− k − 1)η
(3)
t+k(1− λ)n−k−2.

(A.3.8)

Using (A.3.8) in (A.3.6),

X
(2)
t+n =X

(2)
t (1− λ)n + θT2 (1− (1− λ)n) + Σ2,2

n∑

l=1

ZT
t+l,2(1− λ)(n−l)

− θT3 (1− (1− λ)n) + λ

(

nX
(3)
t (1− λ)n−1 + θT3

(
1− (1− λ)n

λ
− n(1− λ)n−1

)

+ Σ3,3

n−1∑

k=1

(n− k)(1− λ)n−k−1ZT
t+k,3 −

n−1∑

k=0

(n− k − 1)η
(3)
t+k(1− λ)n−k−2

)

−
n−1∑

l=0

η
(2)
t+l(1− λ)n−1−l.

Moreover, using (4.2.7) in (A.3.7) leads to

X
(3)
t+n =X

(3)
t (1− λ)n + θT3 (1− (1− λ)n) + Σ3,3

n∑

l=1

ZT
t+l,3(1− λ)(n−l) −

n−1∑

l=0

η
(3)
t+l(1− λ)n−1−l. □

Proof of Proposition 4.3.2:

The joint normality of Xt+n given Ft is a direct consequence of Lemma A.3.8, which

expresses Xt+n as a linear combination of the Ft-measurable elements of Xt and of jointly

Gaussian innovations ZT
t+1, . . . , Z

T
t+n that are independent of Ft. The composition ofMt,n

is also a direct consequence of Lemma A.3.8, and of the null expectation of innovations

ZT
t+1, . . . , Z

T
t+n given Ft.
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Components of Vn are also obtained through Lemma A.3.8 and (4.2.7)-(4.2.9):

V (1,1)
n =VarT (X

(1)
t+n|Ft) = Σ2

1,1

n∑

l=1

VarT (ZT
t+l,1) = nΣ2

1,1,

V (2,2)
n =VarT (X

(2)
t+n|Ft) = Σ2

2,2

n∑

l=1

(1− λ)2(n−l)VarT (ZT
t+l,2) + λ2Σ2

3,3

n−1∑

l=1

(n− l)2(1− λ)2(n−l−1)VarT (ZT
t+l,3)

+ 2Σ2,2λΣ3,3

n−1∑

l=1

(n− l)(1− λ)2(n−l)−1CovT (ZT
t+l,2, Z

T
t+l,3)

=Σ2
2,2

(
1 + ζ0((1− λ)2, n)

)
+ λ2Σ2

3,3(1− λ)−2ζ2((1− λ)2, n) + 2Σ2,2λΣ3,3ρ2,3(1− λ)−1ζ1
(
(1− λ)2 , n

)

V (3,3)
n =VarT (X

(3)
t+n|Ft) = Σ2

3,3

n∑

l=1

(1− λ)2(n−l)VarT (ZT
t+l,3) = Σ2

3,3

(
1 + ζ0((1− λ)2, n)

)

and

V (1,2)
n = V (2,1)

n =CovT (X
(1)
t+n, X

(2)
t+n|Ft) = Σ1,1Σ2,2

n−1∑

l=1

(1− λ)n−lCovT (ZT
t+l,1, Z

T
t+l,2)

+ λΣ1,1Σ3,3

n−1∑

l=1

(n− l)(1− λ)n−l−1CovT (ZT
t+l,1, Z

T
t+l,3)

= Σ1,1Σ2,2ρ1,2ζ0(1− λ, n) + λΣ1,1Σ3,3ρ1,3
ζ1(1− λ, n)

1− λ ,

V (1,3)
n = V (3,1)

n =CovT (X
(1)
t+n, X

(3)
t+n|Ft) = Σ1,1Σ3,3

n−1∑

l=1

(1− λ)n−lCovT (ZT
t+l,1, Z

T
t+l,3) = Σ1,1Σ3,3ρ1,3ζ0(1− λ, n)

V (2,3)
n = V (3,2)

n =CovT (X
(2)
t+n, X

(3)
t+n|Ft)

=Σ2,2Σ3,3

n−1∑

l=1

(1− λ)2(n−l)CovT (ZT
t+l,2, Z

T
t+l,3) + λΣ2

3,3

n−1∑

l=1

(n− l)(1− λ)2(n−l)−1VarT (ZT
t+l,3)

=Σ2,2Σ3,3ρ2,3ζ0((1− λ)2, n) + λΣ2
3,3

ζ1((1− λ)2, n)
1− λ . □

Proof of Lemma 4.3.1: From, (4.3.4), for i = 1, 2, 3, η
(i)
t = ∆Σi,i

∑3
j=1 Σj,jρi,jB(j)

T −t−1.

Therefore,

n−1∑

l=0

η
(1)
t+l =∆Σ1,1

n−1∑

l=0

(

Σ1,1ρ1,1B(1)
T −t−l−1 + Σ2,2ρ1,2B(2)

T −t−l−1 + Σ3,3ρ1,3B(3)
T −t−l−1

)
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=∆Σ1,1

[

Σ1,1

(

n(T − t− 1)− n(n− 1)

2

)

+
Σ2,2ρ1,2
λ

(
n− (1− λ)T −tζ0

(
(1− λ)−1 , n+ 1

))

+ Σ3,3ρ1,3

(
n− (1− λ)T −t−1ζ0

(
(1− λ)−1 , n+ 1

)

λ

− (T − t− 2)(1− λ)T −t−1ζ0
(
(1− λ)−1 , n+ 1

)
+ (1− λ)T −t−2ζ1

(
(1− λ)−1 , n

)
)]

.

Moreover, for i = 2, 3,

n−1∑

l=0

η
(i)
t+l(1− λ)n−1−l =∆Σi,i

n−1∑

l=0

(1− λ)n−1−l
(

Σ1,1ρi,1B(1)
T −t−l−1 + Σ2,2ρi,2B(2)

T −t−l−1 + Σ3,3ρi,3B(3)
T −t−l−1

)

=∆Σi,i

n∑

l=1

(1− λ)n−l
(

Σ1,1ρi,1B(1)
T −t−l + Σ2,2ρi,2B(2)

T −t−l + Σ3,3ρi,3B(3)
T −t−l

)

=∆Σi,i(1− λ)n
[

Σ1,1ρi,1
(
(T − t)ζ0

(
(1− λ)−1 , n+ 1

)
− ζ1

(
(1− λ)−1 , n+ 1

))

+
Σ2,2ρi,2
λ

(
ζ0
(
(1− λ)−1 , n+ 1

)
− (1− λ)T −tζ0

(
(1− λ)−2 , n+ 1

))

+ Σ3,3ρi,3

(
ζ0
(
(1− λ)−1 , n+ 1

)
− (1− λ)T −t−1ζ0

(
(1− λ)−2 , n+ 1

)

λ

− (1− λ)T −t−1
[
(T − t− 1)ζ0

(
(1− λ)−2 , n+ 1

)
− ζ1

(
(1− λ)−2 , n+ 1

)]
)]

.

Lastly,

n−1∑

k=0

(n− k − 1)η
(3)
t+k(1− λ)n−k−2 =

n− 1

1− λ

n−1∑

k=0

η
(3)
t+k(1− λ)n−k−1 −

n−1∑

k=0

kη
(3)
t+k(1− λ)n−k−2.

Furthermore,

n−1∑

k=0

kη
(3)
t+k(1−λ)n−k−2 =∆Σ3,3(1− λ)n−2

n−1∑

k=0

k(1−λ)−k
(

Σ1,1ρ3,1B(1)
T −t−k−1 + Σ2,2ρ3,2B(2)

T −t−k−1 + Σ3,3B(3)
T −t−k−

=∆Σ3,3(1− λ)n−2

[

Σ1,1ρ3,1
(
(T − t− 1)ζ1

(
(1− λ)−1 , n

)
− ζ2

(
(1− λ)−1 , n

))

+
Σ2,2ρ3,2
λ

(
ζ1
(
(1− λ)−1 , n

)
− (1− λ)T −t−1ζ1

(
(1− λ)−2 , n

))

+ Σ3,3

(
ζ1
(
(1− λ)−1 , n

)
− (1− λ)T −t−2ζ1

(
(1− λ)−2 , n

)

λ
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− (1− λ)T −t−2
[
(T − t− 2)ζ1

(
(1− λ)−2 , n

)
− ζ2

(
(1− λ)−2 , n

)]
)]

. □
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