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Abstract

Early Wildfire Detection, Geolocation, and 3D Reconstruction Using Aerial Visible and
Infrared Images

Shun Li

In this work, a novel unmanned aerial vehicle (UAV) system to detect and monitor early wild-

fire is proposed and verified with experimental flight tests on a DJI M300 quadrotor UAV. Several

strategies and algorithms are employed to fuse the on-board sensor information from the visible

camera, infrared camera, inertial measurement unit (IMU), and global navigation satellite system

(GNSS). Developed strategies achieve the following functions: wildfire smoke and flame detection,

wildfire spot geolocation, visible-infrared image registration, and wildfire local environment 3D re-

construction. For wildfire flame and smoke detection and segmentation, ResNet and attention-gate

U-net are trained and deployed, which provide the semantic information for other modules in the

proposed system. Simultaneous localization and mapping (SLAM) and multi-view stereo (MVS)

algorithms are used to recover the camera poses and estimate the geolocation of the wildfire spot.

With the estimated geolocation information, a mode-based visible-infrared image registration algo-

rithm is developed to decrease the false alarm by fusing the visible and infrared images. After that,

structure from motion (SfM) and MVS are utilized to recover the 3D scene of the local environment

around the wildfire. Three independent outdoor experiments are conducted to verify the proposed

detection, geolocation, registration, and local environment reconstruction algorithms. DJI M300

UAV together with a H20T camera are used as the platform in those flight testing experiments. The

proposed system is proven to have promising applications in wildfire management.
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Chapter 1

Introduction

1.1 Motivation

Wildfires are causing tremendous resources loss every year, in particular in forests worldwide

in recent years due to climate change and global warning. Based on the statistics from the Cali-

fornia Department of Forestry and Fire Protection (CALFIRE), there are an average of 3,311 fires

and 21,343 areas of forest burnt weekly in the state of California in 2022 [1]. Moreover, wildfire

threatens the habitats of animals and the safety of people who live near the forest [2]. In the report

of U.S. Fire Administration [3], 16,600 people were injured, and 52 firefighters sacrificed in the

tragedy of wildfire in 2022. However, significant injuries and damage can be minimized or even

eliminated if the early wildfire can be suppressed before it is out of control. Early wildfire detection

and management are essential in wildfire protection and governance [4, 5].

According to [6], the propagation and evolution of wildfire can be temporally divided into 6

phases. Wildfires before the “flash-over” phase can be considered at an early stage. For wildfire

management, different metrics are concerned at different stages: For early wildfire, the geolocation

of the fire spot [7], the temperature and intensity of the fire, and local environment information [8]

are expected to be acquired. Geolocation is the guide to managing the fire suppression mission.

While the local vegetation and terrain information can be used to predict the propagation of the fire.

However, the fire front and the area information of the roaring wildfire are usually more essential to

manage the control strategies than geolocation or the local information.
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Early wildfire usually has barely visible flame and imperceptible smoke. Compared with roaring

wildfires, satellites or watchtowers usually have insufficient resolution to detect the detailed area for

the early wildfire. Wildfire is usually ignited at random locations in a wide range due to unexpected

and various igniting sources, such as lightning, severe heat, and human activities. Hence, a wide-

scope but the concrete, flexible, time-saving, and cost-friendly approach is needed to detect early

wildfires. Unmanned aerial vehicles (UAVs) or drones have the considerable spatial working ability,

flexible work time and modes, and relatively low cost [4, 9, 10]. Moreover, the spatial flexibilities

enhance UAVs’ ability to perceive wildfire at both long and short ranges. The flexibility of mounting

various payloads allows drones to capture different physical information about wildfires as shown

in Fig. 1.1.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: (a)-(c): Early wildfire spot with thin smoke and no visible flame, which is hard to be detected
with large-scale methods (e.g., satellites); (d)-(f): Roaring wildfire with large-scale smoke and apparent
flame, which can be identified even with human eyes.

To the best of the author’s knowledge, although the visible [11–13], infrared [14, 15], even

multi-spectral cameras [16–18] are widely used for wildfire detection purposes, most of these works

focus on wildfire monitoring and detection of the captured images. Moreover, visible and infrared

images lack efficient fusion methods. Few real-world experiments have been conducted to verify

2



the system’s performance under the real-time situation for the effects of these proposed methods.

For wildfire spot geolocation and 3D scene reconstruction, only a few works have been carried out,

and mostly use the fixed-baseline stereo camera [19, 20]. However, the fixed baseline limited the

distance (depth) estimation range of the wildfire spot.

Therefore, this work aims to design and develop a novel early wildfire spot perception frame-

work by integrating aerial visible-infrared information fusion. The proposed framework focused

on not only the image-based wildfire detection, but also the geolocation and 3D reconstruction to

provide more information around the wildfire spots for the firefighters.

1.2 System overview

The input of the proposed framework is the real-time data of on-board sensors, including visible

camera, infrared camera, inertial measurement unit (IMU), and global navigation satellite system

(GNSS). While the output is detection results, geolocation, and reconstructed 3D scene around the

wildfire spot.

The brief architecture of the proposed framework is shown in Fig. 1.2.

Attention Gate 
U-net

Circle 
Fitting

ORB-SLAM2

Visible Images

Infrared Images

Geometry 
Relation

Detection

Geolocation

Visible-Infrared Registration

Foreground 3D Points Matching
Camera Poses 

Recovery
Key Points 
Extraction

GNSS-IMU

MVS

3D Reconstruction

Feature Extracting 
& Matching

SfM

Figure 1.2: The architecture of the proposed framework : Aerial visible and infrared images, data of IMU and
GNSS are used in four main functional modules: Detection, Geolocation, Registration, and Reconstruction.
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To monitor potential wildfires, a three-stage strategy is designed. The three stages are detection,

geolocation, and reconstruction . The “Detection & Semantic Segmentation” module is used in the

detection stage; While the “Distance Estimation & Geolocation” and “Visual-Infrared Registration”

module are designed for the geolocation stage; finally, the “3D Reconstruction” module is for the

reconstruction stage. The following three sections introduce the logic and functions of the three

above-mentioned modules, according to their stages separately.

1.2.1 Detection stage

Ground Station

Smart Phones

Drone Platforms

Figure 1.3: Detection stage: UAV flies along a predefined zigzag trajectory to cover the given zone.

As shown in Fig.1.3, the early wildfire monitoring mission starts with the detection stage.

During this stage, the UAV will take off and fly along a predefined zigzag trajectory, ensuring that

each part of the given zone can be covered. The zigzag path planning considers the UAV’s power, the

zone shape, and the sensor’s effectual working distance. On the on-board computer, aerial images

captured from a visible zoom camera are processed by the ResNet-18-based image classification

algorithm. The visible image is classified into three possible classes: normal, smoke, and fire;

simultaneously, color space is used to locate the suspect heat spot on captured infrared images. A

confirmation request will be triggered if the classification algorithm or the infrared image-based

algorithm detects the potential wildfire. Otherwise, the UAV will keep flying along the predefined

4



path until the mission finishes or the alarming power triggers returning requests.

As shown in Fig.1.4, visible and infrared images captured at the same time-stamp will be fed

into the two types of detectors to determine if further confirmation is needed.

• If they both have negative results, no event will be triggered;

• If both two detectors give positive results or only infrared image-based detector has a positive

result, the confirmation will be triggered and the gimbal will be rotated;

• If only the visible image-based detector predicts positive, a lower threshold will be used

to segment the infrared image. At this moment, if the infrared image-based detector gives

positive result, then the confirmation request will be triggered. Otherwise, this frame will be

marked as negative.

RGB Image-based Detector Thermal Image-based 
Detector

P N P N

P
P

N
P

P
N

N
N

Thread 1 Thread 2

Use the Thermal 
Location

Using a Lower 
Threshold Negative

RGB & Thermal Images 
Captured at the Same Time 

stamp

P

N

Positive 

Negative

Figure 1.4: Confirmation request generating process.

Once the confirmation is triggered, the UAV will interrupt the patrolling mission and hover.

Then a gimbal controlling algorithm will rotate the camera facing the potential wildfire point ac-

cording to the segmentation on the visible images. The visible images are now sent to the ground

station computer, on which the attention gate U-net-based algorithm runs online to segment the

wildfire flame and smoke. Meanwhile, the visible zoom camera on H20T will also be set to “5×”

in order to capture the potential wildfire point in detail, as shown in Fig. 1.5:
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(a) zoom camera at “2×” (b) zoom camera at “5×”

Figure 1.5: DJI H20T zoom camera.

1.2.2 Geolocation stage
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Figure 1.6: Geolocation stage: UAV flies laterally to estimate the depth of the wildfire spot.

After the confirmation generated by the attention gate U-net, UAV flies laterally from left to

right to capture the visible images to finish the triangulation of the wildfire spot. The left-to-right

movement is to generate enough parallax and improve the reliability of the depth estimation. As

shown in Fig. 1.6, the visible images will be captured at each waypoint. The depth estimated is then

used with the gimbal angle to calculate the geolocation of the wildfire spot.

The camera poses are recovered in real-time by monocular SLAM and IMU-GNSS information

through sensor fusion. Once the camera poses with correct scale is recovered, the 3D points around
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the wildfire spot can be triangulated by epipolar geometry. Using the semantic information, only

the 3D points predicted as “fire” will be reconstructed.

After the triangulation, the depth of the wildfire spot can be estimated. With the estimated depth

and the camera poses, the observed wildfire spot can be geolocated via geometry relationship.

The depth is also an input of the “Visual-Infrared Registration” module. Based on the projec-

tion model of the visible and infrared cameras, this module estimates the extrinsic and intrinsic

parameters by optimization algorithm. The biggest advantage of this module is the calibration-free

property. With this module, the prediction from the deep learning-based algorithms can be validated

by the direct heat information from infrared camera. This strategy reduces the false fire alarm rate

of the pure visible-based detection.

1.2.3 Reconstruction stage

Ground Station

UAV Platforms

Figure 1.7: Environment 3D reconstruction stage: The UAV flies around the wildfire spot to capture more
details of the local environment.

After the wildfire spot is geolocated, a circular trajectory is planned. As shown in Fig. 1.7, UAV

flies around the estimated wildfire spot. During this stage, high-resolution images are now captured

by H20T camera to reconstruct the local environment of the wildfire point. After finishing the whole
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trajectory, all the captured images are sent to the ground station. The structure from motion (SfM)

algorithm is first used to reconstruct the sparse scene: The image features and descriptors are ex-

tracted and calculated in parallel supported by the ground station GPU. Then the GNSS information

is used to match the features between the images sequence. With the matched features, incremental

global bundle adjustments is performed to reconstruct the camera trajectory and sparse 3D points of

the scene.

The output from the SfM will be densified to the dense depth map. Then initial mesh is re-

constructed, followed by mesh refinement. Finally, the terrain and vegetation information will be

textured to the refined mesh from the captured images via multi-view geometry (MVS) algorithm.

Comparing with the general-purpose wild environment reconstruction algorithms, the reconstruc-

tion here is designed for the wildfire management with the higher real-time property.

1.3 Thesis organization

This thesis is organized into seven Chapters.

• The motivation for this work and the proposed framework architecture are introduced in Chap-

ter1.

• The second Chapter reviews the previous works, including the UAV-based wildfire manage-

ment, aerial image processing, depth estimation algorithms, and multi-view geometry in the

relevant fields.

• In Chapter3, the first detection stage is demonstrated: a two-step wildfire detection strategy

is designed, which utilizes the computational power of UAV on-board computer and ground

station computer.

• Chapter4demonstrates the wildfire spot geolocation algorithm in the geolocation stage. Both

altitude and vision-based methods are introduced and compared. The model-based visible-

infrared images registration algorithm is also introduced in this Chapter.

• Chapter5is for the reconstruction stage. The SfM-MVS algorithm is utilized to reconstruct

the 3D local environment around the wildfire spot.
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• In Chapter6, the outdoor experiment platform with DJI M300 UAV and H20T camera is

introduced first. Then three outdoor experiments for the three main stages are designed and

conducted to validate the proposed algorithm framework. The experiment results are also

illustrated.

• Finally, in Chapter7, concluding remarks are presented, and recommended future works are

described.
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Chapter 2

Related Works

Compared with watchtowers, satellites, and other pre-placed sensors, the main advantage of

UAV-based platforms for wildfire detection missions is the flexibility of the UAVs as well as multiple

types of payload sensors. Based on that various physical information of the wildfire, the wildfire

properties can be well-monitored.

According to the three stages of the proposed framework, the previous work in the early wildfire

detection, geolocation, and 3D reconstruction are reviewed in this Chapter. It is notable that the

critical process of the wildfire spot geolocation is to estimate the distance from the camera to the

wildfire point, which is also known as the depth. Thus monocular camera-based depth estimation

works are reviewed in this Chapter.

2.1 Aerial images based wild fire detection

2.1.1 Visible images

Due to their low price and intuitive results, RGB cameras are extensively applied in wildfire

detection missions. Methods and algorithms in computer vision can be directly implemented in

wildfire image processing. Both traditional computer vision and deep learning-based methods are

wildly applied to the wildfire detection mission.

RGB, HSV, and HSI color space, Otsu’s segmentation method [21] and optical flow [22] [23]

are implemented to detect, segment, and track the wildfire flame. Fuzzy logic and extended Kalman
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filters are combined in [24] to segment the wildfire smoke. In [25], the authors proposed 7 segmen-

tation rules based on the YCbCr and RGB color space to segment the wildfire pixel.

Compared with threshold and rule-based methods, combining the human-defined features (color,

texture, motion features) with traditional machine learning algorithms (random forest, support vec-

tor machine, etc.) usually achieve higher accuracy. Flame texture and color features in YCbCr space

are extracted as wildfire features in [26], where an extreme learning machine is trained to classify

through these extracted features. Multiple features and learning-based methods cross-experiments

have been conducted and compared in [27].

The deep learning-based image processing methods represented by convolutional neural net-

works (CNN) can extract more types of features. These deep learning-based methods can be cate-

gorized into three main applications: Classification, semantic and instance segmentation, and object

detection [28]. Several classification algorithms based on CNN, including VGG16, ResNet50 [29],

and MobileNet, etc. have been implemented with DJI M100 and Odroid-XU4 on-board com-

puter [30]. Based on Faster-RCNN, a spatial texture analysis algorithm for wildfire flame detection

is proposed [31]. In [32], DJI M210 is used as the UAV platform on which deep learning algorithms

are implemented for those mentioned above three main tasks. Many general and popular object

detection and segmentation frameworks have been applied in the wildfire detection task: YOLOv3

for fire detection is trained and implemented on the DJI drones, and Manifold on-board computer

in [33] and [34]. A 360-degree sensor and region-based method are proposed to reduce the false

alarm generated by the DeepLabV3+ neural network framework in [35]. Using the RGB image

patches and CNN, the wildfire flame is classified and roughly located in [36].

Smoke and flame during the wildfire, with no rigid structure or salient features, can be consid-

ered as particular targets in the field of object detection tasks. For general object detection tasks,

many popular frameworks are proposed and verified: In [37], ratio-and-scale-aware YOLO (RSA-

YOLO) is proposed to detect small pedestrians in the outdoor environment. In paper [38], faster

region-based convolutional neural network (Faster R-CNN) is applied for object re-detection by

tightly coupling with a multi-stream network, which solves the drift problem of tracking. However,

the performance of those proposed general frameworks significantly relies on the computational

platform and size of the training dataset.
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On the other hand, U-net has a relatively lightweight structure and acceptable segmentation

performance training with smaller datasets [39]. In [40], attention gate (AG) enhanced U-net and

squeeze net modules [41] are applied for fire or flame detection. Although such a plan only worked

on the flame classification, it showed that it is possible to squeeze the size of the U-net and combine

it with an attention mechanism to decrease its false-positive detection.

Thus, U-net combined with attention gate are fine-tuned for wildfire segmentation in this frame-

work.

2.1.2 Infrared images

Infrared cameras directly generate thermal images by capturing information that reflects the

abnormal heat distribution of the wild environment. Each pixel in thermal images stands for the

temperature of that corresponding point.

A DJI M600 drone-based wildfire detection, localization, and suppression system is proposed

in [42], in which thermal images is used to segment wildfire pixels. Besides the value of each pixel

in the thermal images, motion features of the wildfire can also be used for detecting: Optical flow

and Otsu’s segmentation methods are employed to segment and track the fire using thermal images

in [43]. However, only considering the brightness of the infrared to detect the wildfire may lead to

false alarms. Thus, in [44], both brightness motion and flicker features are taken into consideration

to address this problem. Another methods to reduce the false alarms is the sensor fusion: According

to [45], combining visible and infrared images can provide more accurate and reliable data for

fire detection than using either one alone. Moreover, visible images can provide detailed texture

information and color features of the scene, while infrared images can provide thermal radiation

data and temperature differences between objects; the infrared-based detection methods can also

take the reference from the smoke detection results from the visible images. Visible images can

help to identify the type and location of fire sources, while infrared images can help to estimate the

intensity and spread of a fire [46]. The combination can reduce the false alarms for the wildfire

detection [47–49].
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2.1.3 Visible-infrared images registration

Image registration aims to transform different images captured by the same or different sensors

to an accordant coordinate system [50–52]. Among image registration methodologies, feature-

based methods are the most common category. Feature-based methods first extract features from

the salient structure. Then extracted features are matched, and the transformation of two images

is calculated. Several works [53–56] are proposed to improve the feature extraction and matching

process, while some works aim to optimize the transformation description mathematically [57, 58].

In [59], mutual information is used to register the images for medical purpose.

From the perspective of the visible and infrared images fusion, there are plenty of methods have

been proposed: [60] proposes a fast and effective image fusion method based on guided filtering.

The method decomposes each source image into a base layer and a detail layer using a Gaus-

sian filter, which can achieve state-of-the-art performance for fusion of multispectral, multifocus,

multimodal, and multiexposure images. Deep-learning-based methods are also used in the fusion

application. In [61], an effective image fusion method using a deep learning framework is proposed

to generate a single image which contains all the features from infrared and visible images.

However, feature extracting and matching are critical processes for feature-based registration.

As far as we know, infrared images captured in a wild environment have barely salient or stable

features compared with an artificial environment. Thus, based on camera geometry and projection

relationship, we proposed a registration without feature extraction and matching.

2.2 Monocular camera-based depth estimation

Monocular cameras are considered to be bearing-only sensors, which makes it challenging to

estimate the depth with a single image. Many methodologies are proposed to address this problem:

traditional geometry-based methods (structure from motion (SfM) with multi-view stereo (MVS),

simultaneous localization mapping (SLAM), etc.), and deep learning-based methods.

The descriptor-based feature matching is widely used in the SLAM and SfM systems. The role

of feature detecting and matching is to connect the images so that the images can provide different

observations of the same scene and these connections can also constrain the poses of the different
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images.

2.2.1 Feature detection algorithm

Feature points can be categorized into blob detection and corner detection. Blob is the image

zone with relatively high brightness in the gray-scale image. While corners refer to the corners

of objects or the parts where lines intersect in the image. The blob detection methods mainly in-

clude the second-order Laplacian-Gaussian edge extraction algorithm (LOG), scale-invariant feature

transformation algorithm (SIFT) [62,63], speeded up robust features (SURF) [63] and so on. Corner

detection mainly includes Harris corner feature extraction, features from accelerated segment test

(FAST) [64], oriented FAST and Rotated Brief (ORB) [65] and so on.

Table 2.1: Comparison between different feature detection algorithms.

Feature Detection
Algorithm

Advantages Disadvantages

SIFT [62,63] It has great advantages in dealing with se-
vere scale and rotation situations and is
very robust to brightness and noise

The calculation dimension is large, and the
operation speed is very slow

SURF [63] Comparing with SIFT, the calculation pro-
cess of SURF is simpler, and the time con-
sumption is shorter. It has rotation and
scale invariance, good robustness

Calculation is relatively slow

FAST [64] Fast calculation speed Susceptible to noise, no rotation invariance
ORB [65] Fast calculation speed and stable rotation

invariance
No scale invariance

2.2.2 Geometry-based sparse methods

With multiple images, the scene’s structure (even the dense map) and the camera poses can

be optimized and reconstructed simultaneously. SfM-MVS framework [66] are wildly adopted in

the field of geoscience: SfM are employed to access landslide dynamics [67] and map landslide

displacements [68], estimate depth and surface of snow [69, 70], monitor agricultural landscape

[71,72]. Compared with SfM, multiple types of sensors (LiDAR, inertial measurement unit (IMU),
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global navigation satellite system (GNSS), stereo camera, RGB-D camera, monocular camera, etc.)

can be integrated to accomplish the 3D structure and camera poses online. In [13], SLAM is used to

navigate the UAV while monitoring the wildfire in the simulation environment. However, SfM and

monocular SLAM usually needs further scale correction because of the up-to-scale reconstruction.

SLAM systems based on multi-sensors in [73–76] are used to map the forest. In [77], several

popular SLAM frameworks are tested and compared in the forest environment.

2.2.3 Geometry-based dense methods

Dense depth image can be critical in the field of MVS. Dense depth images can be estimated

by multiple geometry-based methods. In [78], the plane-sweeping algorithm is first proposed; then

in [79], this algorithm is used in the 3D reconstruction. The main idea of plane-sweeping is to split

the depth range into several planes and observe the points projected onto the image plane. The color

consistency of the projected points can be used to determine if the points are on the surface of the

objects. However, this algorithm is difficult to deal with the occlusion problem. When the scene’s

texture is weak and the illumination changes greatly, noise points will be reconstructed.

PatchMatch algorithm is first proposed in [80] and utilized in the field of MVS in [81]. The

PatchMatch algorithm is a random initialization method that propagates and searches randomly from

left to right and top to bottom of the image and iterates continuously to find the most suitable patch

to achieve the purpose of image restoration. In [81], the PatchMatch algorithm finds an approximate

nearest neighbor based on a plane. Then the depth and normal vectors of the neighboring pixels are

transformed to the current pixel to obtain a spatial plane, and the spatial plane is projected onto

the image to compare the consistency of the two. If the latter is more consistent, the stored value

of the current pixel is replaced by the stored value of the adjacent pixel. So the propagation and

random search are performed. This method yields better sub-pixels, but it is not effective when

facing regions with missing textures
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2.2.4 Deep learning-based dense methods

Different from geometry-based methods, deep learning-based depth estimation aims to acquire

depth with a single image or multiple images: Considering the difficulty of traditional MVS in deal-

ing with weak textured areas, thin structures, and reflective and projected surfaces, deep learning-

based MVS algorithms are developed. In [82,83], convolutional neural networks (CNN) are intro-

duced to be used in depth estimation. After that, MVSnet [84] is proposed, which is an end-to-end

reconstruction model. As shown in Fig.2.1, the whole model can be separated into six parts: 1)

feature extraction, 2) homograph transformation, 3) cost volume regularization, 4) possibility cal-

culation, 5) initial depth map calculation, 6) depth map refinement.

Figure 2.1: The network design of MVSNet. Input images will go through the 2D feature extraction net-
work and the differentiable homograph warping to generate the cost volume. The final depth map output is
regressed from the regularized probability volume and refined with the reference image.

In recent years, with the development of deep learning-based computer vision, various improve-

ments have been proposed: depth estimation using pyramid-based depth residuals [85, 86]; semi-

supervised adversarial framework training with a small number of images [87]; attention-based

methodologies [88,89]. For geoscience field, [90,91] employ CNN on long-range monocular depth

estimation applications.
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2.3 3D reconstruction

The SfM-MVS process is the typical method to reconstruct the 3D scene. SfM is usually used

to recover the camera poses and generate the sparse landmarks. Then MVS systems take the SfM’s

output as the input to reconstruct the mesh of the 3D scene. Some popular SfM-MVS frameworks

are demonstrated in Table 2.2.

Table 2.2: Some SfM-MVS frameworks and their functions.

Frameworks Point Cloud Dense Cloud Surface Mesh Textured

Bundler [92] ✓ × × ×
CMVS [93] × ✓ × ×
Colmap [94,95] ✓ ✓ ✓ ×
Meshlab [96] × × ✓ ✓
MVE [97] ✓ ✓ ✓ ×
MVS-texturing [98] × × × ✓
OpenMVG [99] ✓ ✓ × ×
OpenMVS [100] × × ✓ ✓
Theia [101] ✓ × × ×
VisualSfM [102] ✓ ✓ × ×

2.3.1 Structure from motion (SfM)

SfM determines the scene’s spatial and geometric relationship through the camera’s movement.

After the feature points are extracted and matched, the SfM reconstruction algorithm is used to

recover the parameters of the camera, the relative position relationship between the cameras and the

sparse point cloud of the scene. Finally, the bundled adjustment (BA) optimizes the camera poses,

camera parameters, and scene structure.

The process of the SfM can be summarized as follows: feature extraction, feature matching,

the estimate of the initial poses (rotation matrix R and translation vector t), triangulation, and BA.

SfM-based reconstruction uses the camera motion trajectory to estimate the camera parameters. The

feature points generated by the feature matching are relatively noisy, so the geometric constraints

are often used to delete the wrongly matched feature point pairs. SfM can be categorized into two
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main types, incremental method and global method.

Incremental reconstruction

Incremental reconstruction is to restore the camera’s rotation matrix R and translation matrix

t from two images, then add the image, use perspective-n-point (PnP) to calculate the R and t of

the third image, and reconstruct more scenes through triangulation. The interference of noise will

cause drift, so BA is required. Every time a new image is added after triangulation, it needs to be

optimized.

However, incremental methods are known to have a fatal drift hazard due to the accumulation

of errors and intractable loop closures of camera trajectories. Meanwhile, the quality of incremental

SfM reconstruction strongly depends on the selection of initial image pairs and the order in which

subsequent images are added. Incremental reconstruction of large-scale scenes will cause scene

drift due to error accumulation, and it takes a lot of time to bundle and adjust repeatedly.

Global reconstruction

Most of the global SfM processing can be divided into the following steps. First, the global

rotation of each view is calculated in the scene, and then the translation and structure of each view

are also calculated on this basis. The benefit of separating the whole process into two steps is

that relative two-view rotation can be estimated fairly accurately even for small baselines, which

is not true for relative translation. These methods consider the entire polar graph, whose nodes

represent views and where edges link views with sufficiently consistent matching points. All cycles

of the graph generate multi-view constraints, that is, local relative motions in successive cycle nodes

should be connected identically at the end of the cycle. Enforcing these constraints reduces the risk

of drift in the incremental method. At the same time, since it only needs to perform a global BA

on the data, its improvement in time efficiency is also very obvious. However, the disadvantage of

global SfM is also obvious. Since it processes all data simultaneously, it is particularly sensitive to

noise. If this processing method is used, the data must be carefully “filtered” to remove the influence

of wrong epipolar information.
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Comparison with Visual SLAM (v-SLAM) and SfM

Both the v-SLAM system and the SfM system can estimate the cameras poses and generate the

spares point cloud. However, there are several differences between visual SLAM (v-SLAM) system

and SfM system:

• The cameras in the v-SLAM system are a known model for which the camera intrinsic param-

eter is calibrated and fixed. But for the SfM system, the cameras can be different models with

different intrinsic parameters, which can be treated as an unknown parameter participating

the optimization.

• The input images of the v-SLAM system are usually time-related, but for SfM system, the

input of the images can be random sequences.

• v-SLAM system is designed for online mapping and localization while the SfM system is

proposed for offline map reconstruction.

• Under the usual situation, the reconstruction error of the v-SLAM system are much bigger

than the SfM system.

Due to the features introduced above, v-SLAM systems are used for online H20T camera pose

recovery and wildfire spot depth estimation. And SfM is used for the offline wildfire spot local

environment 3D reconstruction.

2.3.2 Multi-view stereo (MVS)

The traditional pipeline of the MVS algorithm can be summarized as three categories:

• Images and camera poses → Point cloud reconstruction → Bounding box initialization →

Volumetric fusion → Final refinement [93, 103]

• Images and camera poses → Depth range initialization → Depth map reconstruction →

Bounding box initialization → Volumetric fusion → Final refinement [104–108]

• Images and camera poses → Silhouette extraction → Final refinement [109–112]
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The first two categories can be considered as “depth→mesh” methods, in which the depth infor-

mation of the objects should be first recovered and then fuse the depth information of every image

to form the scene mesh.

Compared with silhouette-based reconstruction, depth-based methods usually achieve higher

precision. These algorithms have relatively loose requirements of the hardware and have a larger

range of the scene. Both geometry-based and deep-learning-based methods to estimate the dense

depth map are introduced in Section 2.2. The intuitive logic behind the silhouette-based reconstruc-

tion is that the different views of the object can be treated as silhouette projection. Then using these

views to “cut” the space, the final common part of the view will be the reconstructed object. The

advantage of this method is its simplicity. However, the shortcomings are also apparent: this method

relies heavily on the image resolution and the object’s contour. Moreover, because of the “cutting

method” to reconstruct mesh, the generated surface usually needs to be smoothed later.
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Chapter 3

Early Wildfire Detection

As mentioned in Chapter 1, at the early wildfire detection stage, a two-phase strategy is de-

signed: Running on the on-board computer, color space-based heat source segmentation, U-net-

based smoke segmentation and ResNet-based classification algorithms determine together if there

are early wildfire spots in the monitored area. If the wildfire is detected, the attention-gate U-net-

based wildfire flame and smoke algorithm running on the ground station is used to provide the

semantic information for the other modules.

ResNet-18 and U-net are more sensitive to smoke than flame. Thus the infrared image is used

to verify if there is suspect heat, because those two models may generate false positive alarms.

3.1 ResNet-18-based wildfire classification

ResNet-18 is used for the on-board early forest fire classification, through which the RGB

images captured by the H20T camera are classified into “normal”, “potential fire” and “potential

smoke”. The priority of the 3 classes is “fire” > “smoke” > “normal”. Thus, wildfire spot with both

flame and smoke is classified to “fire”. The classification model is relatively light weight which can

process the camera video stream in time while the UAV is flying.

The ResNet [29] series use identity mapping to address the vanishing gradient and exploding

gradient problem generated by the layers becoming deep. Fig. 3.1 shows the ResNet-18 architec-

ture: green block shows the basic component in the ResNet; layers among the residual block learn
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residual value instead of the original value, which makes the network more robust while training.

Although ResNet has many variations, they can be separated into 3 parts: input, output, and convo-

lutional module.

Input

Output

Block 4

Block 2

Block 3

Block 1

MaxPool
3x3, stride=2

Conv
7x7, 64, stride=2

Down Sample

Residual x2

Average Pool

FCN

Input

Output

Weight Layer

Weight Layer

Figure 3.1: Brief architecture of ResNet-18 based wildfire classifier.

The input module consists of a 7 × 7 convolutional layer and a 3 × 3 max-pooling layer; the

middle convolutional layer consists of 4 similar residual blocks. The features map channel accu-

mulates from 64 to 512; finally, after an average pooling and fully connected layer, feature channel

changes from 512 to 3, according to three possible classes of an image.

The model is implemented by Pytorch [113]. The training and validating process are introduced

in Chapter6.

3.2 U-net based wildfire smoke segmentation

U-net [39] is widely used in image segmentation. In the proposed framework, U-net is designed

to run on the on-board computer for a complement of the ResNet-18. Hence the early wildfire

usually has very light flame, the U-net here is designed to segment smoke and background only to

reduce the complexity and model size to fit in the on-board computational environment. The flame

segmentation is then processed by attention-gate U-net running on ground station computer.
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Figure 3.2: U-net structure for forest fire segmentation.

The network architecture is as shown in above Fig. 3.2, which can be described as consisting of a

contraction path (left) and an expansion path (right). The contraction path is similar to the traditional

convolutional network. It consists of an un-padded convolution with a convolution kernel size of

3×3. After each convolution, the features pass through a ReLU function and a maximum pool with

a size of 2× 2 and a stride of 2. After max-pooling, the number of channels is doubled.

The expansion path is up-convolution with the size of 2 × 2. The output channels of the upper

convolution are half of the original and then connected in series with the corresponding feature map

(after cropping) to obtain channels of the same size as the original and then pass through two sizes

of 3 × 3 convolution and ReLU function. The corresponding cropping feature map is necessary

because there will be a loss of boundary pixels in the process of our convolution. In the last layer,

the desired target type is obtained through convolution with a convolution kernel size of 1 × 1. In

this network, there are 23 convolutional layers. The network adopts the common Encoder-Decoder

structure, and adds to the original structure the operation of directly intercepting information from

the encoder and placing it in the decoder. This operation can effectively retain the edge detail

information in the original image and prevent excessive edges.

Compared with traditional fully convolutional networks, U-net can achieve relative acceptable

precision from less training data based on the application of skip connection.
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3.3 Attention gate U-net based wildfire flame and smoke segmentation

One critical mission of the attention-gate U-net is to provide the location of the fire on the

visible image for the other modules in the framework. Running on the ground computer, the model

is responsible for segment the fire, smoke and background.

Input Image

(b, 3, h, w)Input Image
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Figure 3.3: Architecture of Encoder part and bottle-neck part of attention gate U-net and the attention gate
for wildfire segmentation.

An attention gate enhanced U-net based on ResNet-34 is firstly designed to generate semantic

information. A trick is that the suspected flame area is labelled in the training dataset. So that the

model could predict the suspected flame area even though there are no apparent flames.

Fig.3.3is a brief architecture statement of the proposed U-net. The main difference between this

model and the original U-net is that the attention gates (AGs) replaced the skip connections of the

original U-net. The skip connections just concatenated the Encoder outputs with the upsampling of

Decoder parts. Because the gate signals play the role of “query”, the foreground of attention signals

is “paid more attention” when the attention signals from the Encoder part flow in. Therefore, such

a model could decrease false-positive detection and increase detection accuracy.

The attention gate could be formulated as Eq. (1)
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qlattention = ϕT (σ1(W
T
xx

l
i +W T

g gi + bg)) + bϕ

attli = σ2(q
l
attention(x

l
i, gi;▽))

(1)

where σ1 and σ2 separately remain the activation of ReLU and sigmoid function; ▽ consists of a

set of AG parameters: the linear transformations Wx ∈ RFl×Fint , Wg ∈ RFg×Fint , ϕ ∈ RFint×1,

and the bias terms bg ∈ RFint , bϕ ∈ R; attli is acquired by linearly mapping concatenated features

x and g to a RFint dimensional space.

Except for the AGs, the entire U-net structure is based on ResNet-34. Between every two down-

sampling blocks, there is a residual connection to keep the feature information of the last block. The

main advantage of such ResNet-based U-net is that a smaller training dataset could still ensure the

prediction performance because features are extracted during each block and fed into the next block

as residual. Transfer learning is applied to save training time.

Focal loss of cross-entropy is used as a loss function for this segmentation network model [114].

It is defined as:

FL(pt) = −αt(1− pt)
γ log (pt) (2)

where γ ≥ 0 is a tunable focusing parameter; αt represents α-balanced variant; pt is defined as:

pt =


p if y = 1

1− p otherwise.
(3)

In the above p ∈ [0, 1] is the model’s estimated probability for the class with label y = 1.

The proposed model is built and fine-tuned with Fastai [115]. A variant of the 1 cycle policy

[116], which uses a warm-up and annealing for the learning rate while doing the opposite with the

momentum parameter [115], is applied to train the model.
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3.4 Color space and sliding window-based thermal image segmenta-

tion

3.4.1 HSV color space

The infrared images captured by the H20T represent the heat radiation at each pixel. Inspired

by the segmentation method proposed in [21], the HSV color space and threshold-based methods

are employed to segment the potential heat source. After that, morphological operations are used to

suppress the noise. Finally, the sliding window finds out the highest potential heat from each patch.

Considering the difficulty separating colors and brightness in RGB space, HSV color space uses

hue, saturation, and value to represent a color. Only the hue channel is used for describing the color,

and the other two channels describe purity and brightness.

In the proposed system, the H20T “north pole isothermal” mode generates the thermal images,

as shown in Fig. 3.4. Under this mode, with the temperature increasing, the color of this point will

change from blue to red; the brightness of this point will also be higher. It is noteworthy that thermal

images generated directly by H20T are still in the format of RGB.

(a) (b)

Figure 3.4: Thermal and RGB images captured by H20T: (a) Thermal images generated by the H20T “north
pole isothermal” mode. (b) Original RGB image (red circle: kettle).

Using HSV color space makes it possible to find a threshold for three channels, especially for

the color channel. Conversion between RGB and HSV color space can be defined by Eq. (4)-(7).
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R′ = R/255

G′ = G/255

B′ = B/255

Cmax = max(R′, G′, B′)

Cmin = min(R′, G′, B′)

∆ = Cmax − Cmin

(4)

H =



0 ∆ = 0

60× (G
′−B′

∆ + 0) Cmax = R′

60× (B
′−R′

∆ + 2) Cmax = G′

60× (R
′−G′

∆ + 4) Cmax = B′

(5)

S =

 0 Cmax = 0

∆
Cmax

Cmax ̸= 0
(6)

V = Cmax (7)

Then a threshold is defined based on the experiment to segment the heat point and background:

Pheat =


1 Tl < H(x, y) < Tu

0 otherwise
(8)

In Eq. (8), P is the rule to segment the heat point; H(x, y) is the H value at (x, y); Tl and Tu are

the lower and upper boundaries, respectively.

After the threshold segmentation, there will be discrete pixels around the heat point. The mor-

phological operation can be used as the geometry filter to reduce the noise. Most of the noise can

be suppressed with the opening operation (erosion first, then dilation).

3.4.2 Sliding window

It could be seen in Fig.3.5, the sliding window (in green) traversals every patch of the thermal

image and compare the heat pixels inside. For the benefit of the real-time property, the size of

sliding window in our proposed system is chosen from three fixed values.

After the sliding window traversal, there are usually multiple windows indicating that the heat

points. To find out the most reliable path, non-maximum suppression (NMS) algorithm is employed:
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The heat pixels amount in the sliding window is used as the score. Consider there are 6 rect-

angular boxes, named from A to F, sorted according to the category score of the candidate boxes,

assuming that the score of belonging to the wildfire spot is sorted as A < B < C < D < E < F.

• Start with the maximum score rectangular box F, and judge whether the intersection over

union (IOU) values of A−E and F are greater than a certain threshold.

• Assuming that the overlapping of B, D and F exceeds the set threshold, then remove B and

D; and mark the first rectangular box F, which is retained.

• From the remaining rectangular boxes A, C, and E, select E with the highest score, and then

judge the overlapping between E and A, C. If the degree of overlap is greater than the given

threshold, then throw it away; and mark E as the reserved rectangle.

This process is repeated until all the preserved rectangles are found.

For example, patch 1 is chosen as the location of the heat point in the following Fig. 3.5:

Sliding Window

Potential Heat

1
2

Figure 3.5: Sliding window generate the patches with heat point pixels.
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Chapter 4

Early Wildfire Spot Geolocation

This Chapter demonstrates two early wildfire spot geolocation methods: UAV altitude-based

geolocation and vision-based geolocation. To estimate the distance to the wildfire spot (depth), both

methods need the wildfire spot location on the visible images. Compared with bare U-net running

on the on-board computer, attention-gate U-net can segment wildfire flame and smoke with higher

accuracy to provide the semantic information for the whole system. On the other hand, this more

complex model needs a more powerful computational resource.

The key to geolocating the wildfire spot is to estimate the distance to the wildfire spot, which is

also known as the depth of the wildfire spot in the camera-fixed coordinates system in the field of

computer vision. The following altitude-based and vision-based wildfire spot geolocation methods

are mainly designed to estimate this depth.

Once the depth is estimated, the geolocation of the wildfire spot can be calculated with the

UAV’s navigation information.

4.1 Altitude-based geolocation

4.1.1 Gimbal control

As shown in Fig.4.2, gimbal angles α and β are needed to estimate the distance to the wildfire.

A simple way to simplify the geometry calculation is to put the heat point in the center of the infrared

image. Then the gimbal angle can be directly used in the geometry calculation without considering
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the angle between the observation and optical center. The input of the gimbal controller is the heat

location on the infrared images and the current gimbal angles.

After the confirmation request is trigged, the gimbal controller will rotate and zoom the H20T

camera to focus on the potential early forest fire point with the location in the thermal image. In-

spired by [117], a PD controller is designed for the rotating task, which is shown in Fig. 4.1: Xerror

and Yerror are defined as the pixel difference between the desired position and the current position

of the fire point. Then the controller is designed and tuned to generate the control command for the

DJI gimbal controller.

��

��
y

x

DJI 
Gimbal 
Control�

������

������

Figure 4.1: Gimbal control by tuning Kp and Kd of a PD controller.

The reason to use PD controller for the gimbal is the unknown parameter of the infrared camera.

A well-tuned PD controller can work without the mathematical model of the controlling target.

4.1.2 Geolocation

Assumption 1: The UAV detects a relatively small area compared to the whole mission zone. So

the terrain changes very slightly around the detected area. The earth’s radius can be approximated

to a constant in this area.

Assumption 2: The altitude of UAV can be estimated with limited error, which can be elimi-

nated compared with the detected area.

Assumption 3: The offset between the UAV body-fixed coordinate system to the H20T camera-

fixed coordinate system can be ignored comparing to the distance to the wildfire. Thus, the global

positioning system (GPS) information of the UAV can be directly applied to the H20T camera.

The geolocation of the early wildfire point can be estimated by the gimbal angle as shown in
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Fig.4.2.

N

E

D

d

�

�

Figure 4.2: Geolocation of the early forest fire point.

In the navigation coordinate system (NED), the relative location can be defined as:


lN = d cosβ cosα

lE = d cosβ sinα

lD = d sinβ

(9)

Notice that the lD can be estimated by the UAV navigation system, the distance to the wildfire

spot d can be expressed as:

d =
lD

sinβ
(10)

where the α and β are the yaw and pitch angle of the gimbal, which can be also accessed by the

DJI OSDK. Once the local position is calculated, the global position of the fire point can be easily

expressed with the UAV’s GPS information as:



lon = lonM300 +
lN
Re

lat = latM300 +
lE

Re cos(lon)

alt = altM300 − lD

(11)

where the lon, lat, alt stand for longitude, latitude, and altitude of GPS location, Re is the average

radius of the earth.
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The disadvantage of the altitude-based method is apparent: The precision of this method is

strongly dependent on the three assumptions mentioned earlier. If the terrain or the altitude estima-

tion is affected by random noise, the distance estimation may not satisfy the localization require-

ments. However, this estimation method is very simple and convenient, which is more appropriate

for use on the on-board calculation system.

4.2 Vision-based wildfire spot geolocation

The multi-view stereo technique is a more reliable and robust approach to estimating the depth.

The first step is to recover the camera poses when observing the wildfire spot. Then with the

semantic information provided by the attention-gate U-net, 3D points around the wildfire spot can

be first matched with image features and descriptors. Then with the triangulation method, the depth

of the triangulation can be calculated.

4.2.1 Camera trajectory recovery

One of the reasons the stereo camera may encounter a problem under the wildfire depth estima-

tion can be explained as follows: For the concern of safety, the UAVs used for wildfire monitoring

and management usually work at a relatively long range to the fire points. That is, the depth to

be estimated is much larger than that in a normal usage scenario of a stereo camera. Such a large

depth value versus a relatively small baseline leads to deficient parallax. Under this situation, noise

contributes to most of the depth estimation.

The monocular reconstruction method can address this problem. The baseline between two

measurements can be adjusted according to enough parallax requirements. However, there are still

two main problems:

• Depth estimation through triangulation requires accurate trajectory of the camera, which can

not be satisfied by the position and altitude provided by the UAV platform directly.

• Monocular camera trajectory recovery needs initialization.
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• Because the monocular camera is considered as the bearing-only sensor, the scale of the

reconstruction is unknown.

(a) (b)

Figure 4.3: (a) Camera trajectory recovered by ORB-SLAM2. Red points: landmarks; blue and green frames:
current frame and historical keyframes. Under the outdoor experiment situation, most of the landmarks are
located in the same plane. (b) ORB features extracted for trajectory recovery. Green rectangles: ORB
features; the red circle is the synthetic wildfire point.

To address those problems, ORB-SLAM2 [118] is first employed to recovery the camera poses

without scale; Then the ground truth scale is corrected by the fused position (GPS and IMU) pro-

vided by the UAV platform.

Monocular camera poses recovery initialization

At the beginning of the monocular camera poses recovery, both 3D points and camera poses are

unknown. Thus the homograph matrix H or the essential matrix E is needed to estimate the initial

motion.
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Figure 4.4: Triangulation scenario between 2 images.

Homograph matrix

The homograph matrix describes the 3D points projected into the image plane are in the same

3D plane. It also can be used to describe the translation between the two images. It should be noticed

that the 3D points around the wildfire are usually on an approximate plane. Under this situation, the

homograph matrix is more accurate than the essential matrix E to estimate the movement.

As shown in Fig.4.4, a 3D point P projecting on two image planes, the projective points on the

images plane are p1 and p2 respectively. According to the definition of the homograph matrix, there

is a translation relationship between the two points:

p2 ≃ Hp1 (12)

where the ≃ is known as up-to-scale equal, which is also one property of the homograph matrix.

Expand the above equation:


u2

v2

1

 ≃


h1 h2 h3

h4 h5 h6

h7 h8 h9




u1

v1

1

 (13)
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According to the third row, remove this non-zero constant:

lu2 =
h1u1 + h2v1 + h3
h7u1 + h8v1 + h9

v2 =
h4u1 + h5v1 + h6
h7u1 + h8v1 + h9

.

(14)

rearrange it:

lh1u1 + h2v1 + h3 − h7u1u2 − h8v1u2 = u2

h4u1 + h5v1 + h6 − h7u1v2 − h8v1v2 = v2

(15)

A pair of matching points can construct 2 constraints. Thus solving 8 unknown parameters needs 4

pairs of matches at least. Stack all 8 equations in a row, and a linear equation is formed:



u11 v11 1 0 0 0 −u11u
1
2 −v11u

1
2

0 0 0 u11 v11 1 −u11v
1
2 −v11v

1
2

u21 v21 1 0 0 0 −u21u
2
2 −v21u

2
2

0 0 0 u21 v21 1 −u21v
2
2 −v21v

2
2

u31 v31 1 0 0 0 −u31u
3
2 −v31u

3
2

0 0 0 u31 v31 1 −u31v
3
2 −v31v

3
2

u41 v41 1 0 0 0 −u41u
4
2 −v41u

4
2

0 0 0 u41 v41 1 −u41v
4
2 −v41v

4
2





h1

h2

h3

h4

h5

h6

h7

h8



=



u12

v12

u22

v22

u32

v32

u42

v42



(16)

The approach to solve the H is also known as direct linear transformation (DLT). Then the

rotation matrix and translation matrix can be calculated by decomposing H . The numerical and

analytical methods can do the decomposition by OpenCV [119].

Essential matrix

According to the epipolar constraints, the essential matrix E = t ∧ R. It is a matrix of 3 × 3

with 9 unknown variables. The essential matrix satisfies the following properties:

• The essential matrix is defined by the epipolar constraint. Since the epipolar constraint is the

constraint of an equal-to-zero equation, the constraint is still satisfied after multiplying E by

any non-zero constant.
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• The singular value of the essential matrix E must be in the form of [σ, σ, 0]T .

• Due to the equivalence of scales, E has 5 degrees of freedom.

To estimate the essential matrix from the feature matches, the eight-point-algorithm is used.

Consider a pair of matched points, their normalized coordinates are x1 = [u1, v1, 1]
T , x2 =

[u2, v2, 1]
T . Then x1 and x2 satisfy:

(u2, v2, 1)


e1 e2 e3

e4 e5 e6

e7 e8 e9




u1

v1

1

 = 0 (17)

Rewrite the matrix E in the form of vector,

e = [e1, e2, e3, e4, e5, e6, e7, e8, e9]
T , (18)

Then the epipolar constant can be rewritten in the linear form:

[u2u1, u2v1, u2, v2u1, v2v1, v2, u1, v1, 1] · e = 0 (19)

Stack all the points into one equation and obtain a linear equation system:



u12u
1
1 u12v

1
1 u12 v12u

1
1 v12v

1
1 v12 u11 v11 1

u22u
2
1 u22v

2
1 u22 v22u

2
1 v22v

2
1 v22 u21 v21 1

...
...

...
...

...
...

...
...

u82u
8
1 u82v

8
1 u82 v82u

8
1 v82v

8
1 v82 u81 v81 1





e1

e2

e3

e4

e5

e6

e7

e8

e9



= 0 (20)

Once the essential matrix E is estimated, the next step is to recover the camera’s movement.
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This process is obtained by singular value decomposition (SVD). Let the SVD decomposition of E

be:

E = UΣV T (21)

The rotation matrix R and translation vector t can be obtained by the following equations.

t∧1 = URZ

(π
2

)
ΣUT , R1 = URT

Z

(π
2

)
V T

t∧2 = URZ

(
−π

2

)
ΣUT , R2 = URT

Z

(
−π

2

)
V T .

(22)

Notice that there are 4 possible pairs of R and t. Then the positive depth condition is used to

validate R and t. Only the R and t pair that makes both depths in the 2 camera-fixed coordinate

system positive is chosen.

To avoid the effects of degradation and noise, homograph matrix H and essential matrix E are

usually estimated simultaneously. Then the initial motion of the camera is recovered by the one

with a smaller reprojection error.

Monocular camera poses tracking

Once the monocular camera SLAM is initialized, the existing 3D points can track new frame

poses. This process solves the 2D-3D problem, which is known as PnP problem. It describes esti-

mating the camera pose when the n 3D points and their projection are known. Unlike the previous

2D-2D problem, it only needs 3 points at least to estimate the camera pose. There are many ways

to solve PnP problem. This work uses non-linear optimization to construct and iteratively solve a

least-square problem, usually known as the bundle adjustment (BA) approach.
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Figure 4.5: The reprojection error.

Consider that there are n 3D points P in the space, and their projection position on the image

plane is p. The objective is to calculate the camera pose R and t by optimization. Suppose the

coordinates of a point is Pi = [Xi, Yi, Zi]
T and their projected pixel coordinates are pi = [ui, vi]

T .

According to the pin-hole projection model, the relationship between the 2D pixel position and the

3D position is:

sipi = KTPi (23)

or in the matrix form:

si


ui

vi

1

 = KT



Xi

Yi

Zi

1


(24)

where K is the camera intrinsic matrix, and T is the camera pose in the form of Lie linear algebra:

K =


fx 0 cx

0 fy cy

0 0 1

 , T =

R t

0T 1

 (25)

This equation includes a conversion from homogeneous coordinates to non-homogeneous coor-

dinates implicitly. Due to the camera poses and noise of the observation points, there is always a
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residual in the equation. Therefore, summing up the residuals can construct a least-square problem

and then minimize it to find the most possible camera pose and 3D points’ coordinates:

P ∗
i , T

∗ = arg min
1

2

n∑
i=1

||pi −
1

si
KTPi|| (26)

This residual term is the error of the projected position and the observed position, which is

called the reprojection error. This residual has the dimension of 2.

After bundle adjustment (BA) optimization, the camera poses and 3D points are both refined.

Scale correction

Visible camera intrinsic parameters are estimated with the camera calibration method proposed

in [120]. Although ORB-SLAM2 estimates camera pose for each frame, only those with a proper

parallax of the potential fire point are chosen to participate in fire spot depth estimation. That is for

suppressing the noise generated by the insufficient baseline.

The gimbal angle is set fixed during each depth estimation process, thus the translation vector

of the body-fixed coordinate system is equal to that of the camera-fixed coordinate system. Then

the translation provided by the UAV the platform can be used to correct the scale estimate by ORB-

SLAM2 as Eq. (27).


si =

√
||tib − trefb ||2

t∗ic = si
tic − trefc√
||tic − trefc ||2

(27)

where si is the real-world scale of the ith frame; t is the translation vector, superscript ref, i and

subscript c, b denote the frame index and coordinate systems respectively. And t∗ic is the scale of the

ith frame in the camera-fixed coordinate system.
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4.2.2 Depth estimation and geolocation

Feature matching

To make the estimation more robust, instead of directly estimating the depth of the centre of the

fire spot, the depth value around a suspect fire point is used to represent the depth of the fire point.

First, the contour of the potential fire point is calculated, and a circle containing the contour with the

minimum area is then fitted. As shown in Fig. 4.6(a), the strategy for choosing a region of interest

(ROI) is designed as follows:

• The center of ROI is the same as the minimum-area circle.

• The circle patch area is 1.5 times the minimum-area circle within a given threshold. The

threshold is adjusted to limit the ROI area.

Then, ORB features [65] are extracted evenly in that patch. Features matching algorithm and

histogram filtering are implemented to find corresponding reliable points between the reference

frame and each additional frame. Finally, these matched points are triangulated into 3D points with

the camera intrinsic parameters and frame poses, which is estimated and corrected in Section 4.2.1.
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Figure 4.6: Depth estimation feature extracting and matching: (a) Projection relationship of the proposed
depth estimation strategy. Red circle in the middle: minimum-area circle containing fire point; blue circle:
the circle area where the matched points are found. (b) ROI based on the U-net segmentation: red circle:
minimum-area circle containing fire points; blue circle: designed patches. (c) ORB features extracted and
matching results: left image is reference frame; right image is the 34th frame.

Triangulation

The poses of a sequence of images and the matching relationship of the features are both known.

Triangulation solves the problem: “to recover the 3D points from the 2D points on the images”.

As shown in Fig.4.4, the 3D point P is projected on the 2 images. The feature points on the

image plane i and j are p1 and p2 respectively. To simplify the derivation, the normalized plane is

introduced. The z coordinate of the normalized plane in its camera-fixed coordinates system always

equals 1. The points x1 on the normalized plane share the same projection location with the 3D

point P . So the projection of P can be substituted by the x1 on the normalized plane. x2 on the

normalized plane j has the same properties. s1 and s2 are the depth to be calculated by triangulation.
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According to the projection relationship, x1 on normalized plane satisfies the following constraints:

s1


x1

y1

1


C︸ ︷︷ ︸

x1

=

[
R t

]
︸ ︷︷ ︸

T1



X

Y

Z

1


︸ ︷︷ ︸
PW

(28)

where the T1 ∈ R3×4 is the translation matrix between the world-fixed and camera-fixed coordinate

systems. PW ∈ R4×1 is the homogeneous coordinate of 3D point P in the world-fixed coordinate

system. Now let v1 substitute the right side and use the row vector to represent T1:

v =

[
R t

]
3×4︸ ︷︷ ︸

T1



X

Y

Z

1


︸ ︷︷ ︸
PW

=


t0P

W

t1P
W

t2P
W

 (29)

Notice that the vector x1 and v1 are parallel now. The cross-product of the 2 vectors should

equal zero.


yt2P

W − t1P
W = 0

−xtP2 W + t0PW = 0

(30)

Similarly, projection on the images j shares the same relationship. The equations of the left and

right images can be compacted to the following Ax = 0 problem:



yt2 − t1

t0 − xp2

y′t′2 − t′1

t′0 − x′p′2


PW = 0 (31)

SVD decomposition can solve this equation. In real-world implementation, C++ library Eigen
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[121] and Sophus [122] are used for the formula.

Depth filtering

As shown in Fig. 4.6(a), A and B are the 3D points with the maximum and minimum depth

values in the estimated zone, respectively. Valid depth range can be expressed as Eq. (32):



dA = d′(1 +
2r

f tanα
)

dO = d′(1 +
r

f tanα
)

dB = d′

(32)

The points along the bright yellow line in the blue circle plane are shown in Fig. 4.6(a) have

the same depth value. It can be implied that the amount of points with the same depth value is

proportional to the yellow line length because the feature points in the patch area are extracted

evenly.

To cull the outliers among the estimations, both valid depth range and three-sigma limits are

implemented. The process to estimate and filter the depth can be summarised as Algo. 1.

Algorithm 1 Depth estimation outliers culling.

Require: Visible camera focal length f ; gimbal pitch angle α; depth estimation values set d =

{d1, d2, · · · , dn} generated from triangulation.

Ensure: The depth estimation values after culling.

1: Find the overall median as initial dO.

2: Calculate the upper boundary dtu and lower boundary dtl of the valid depth values according to

Eq. (32).

3: Calculate the standard deviation σ and calculate the 3σ boundaries dσu and dσl.

4: Update the upper and lower boundary: du = max(dtu, dσu), dl = min(dtl, dσl). Then cull the

estimation outside of the boundaries.

5: Determine if the depth is converged. If converged, stop and return; otherwise go to step 1.

6: return estimated depth
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Figure 4.7: Geometry relation of visible and infrared cameras when observing the same heat points.

Depth-based wildfire geolocation

Once the depth is estimated, the geolocation of the wildfire spot can be derived from the geom-

etry relationship with the gimbal angle.

As shown in Fig.4.2, the depth is now estimated. With the gimbal the angle of the H20T camera,

we can directly use the depth to generate the GPS location with Eq. (9) and (11).

4.3 Model-based infrared-visible images registration

As shown in Fig.4.7, the transformation between visible and infrared cameras can be expressed

by rotation R and translation t, known as camera extrinsic parameters. And the estimated depth in

visible images is denoted as dvi. A heat point i, whose position in camera coordinates are pvi and

pir, is projected into the two cameras. And the pixel values in image coordinates are denoted as qvi

and qir. This projection process can be expressed by Eq. (33):

p = dK−1q, p =


x

y

d

 , q =


u

v

1

 (33)
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where K represents the camera intrinsic matrix (visible or infrared camera), and d is the depth of

the 3D point i.

The same 3D point i projected in the infrared camera coordinate system and visible camera

coordinate system satisfies the following equation:

pir = Rpvi + t (34)

Substitute Eq. (33) into Eq. (34):

qir =
dvi
dir

KirRK−1
vi qvi +

1

dir
Kirt (35)

As shown in Fig.1.6, under the normal situation, the distance between dir and dvi is much less

than that between the drone and the fire points. Thus, dvi
dir

≈ 1. Then Eq. (35) can be simplified to:

qir = KirRK−1
vi qvi +

1

d
Kirt (36)

where d is the depth of the early forest fire or heat point. However, it is unfeasible to manually

calibrate the extrinsic parameters (R and t) and infrared camera intrinsic parameter (Kir) for the

DJI H20T camera.

R, t Kvi and Kir are the camera-based constants. To estimate the unknown registration param-

eters, Eq. (36) can be rewritten to:

qir = R′qvi +
1

d
t′, R′ ∈ R3×3, t′ ∈ R3×1 (37)

where R′ = KirRK−1
vi and t′ = Kirt denotes the unknown parameters of the two cameras, which

could be estimated by the least squares method. The following shows estimation process:

Change Eq. (37) in the form of matrix:


uir

vir

1

 =


R11 R12 R13

R21 R22 R23

R31 R32 R33



uvi

vvi

1

+
1

d


t1

t2

t3

 (38)
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One pair of matched points provides two constraints. Thus, to estimate the R′ and t′, at least six

pairs of matched points are needed. When the number of measurements is more than six at different

depths, a linear least-squares problem can be constructed. For the convenience of programming,

parameters to be estimated can be written into Eq. (39).

x = {R11, R12, R13, · · · , R32, R33, t1, t2, t3} ∈ R12 (39)

If there are n observations, the cost function is:

f(x) =
n∑

j=1

||qjir − (R′qjvi +
1

d
t′)||2, j = {1, 2, · · · , n} (40)

The whole problem can be expressed as:

x∗ = argmin
x

f(x) (41)

After the transformation is estimated, the corresponding wildfire points can be easily located in

infrared images according to Eq. (37).
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Chapter 5

Early Wildfire Spot Local Environment

3D Reconstruction

In this work, 3D reconstruction takes the reference to the most popular multi-view geometry

based reconstruction method: First structure from motion (SfM) is used to recover the camera poses

and sparse 3D points. Then with the multi-view stereo (MVS) system to densify the sparse points

cloud, reconstruct the mesh and texture mesh.

Feature extraction and feature matching are important for SfM because they enable accurate

and robust reconstruction of 3-D scenes from multiple 2-D images. Feature extraction helps to

reduce the dimensionality of the image data and to find correspondences between images. Feature

matching helps to establish geometric constraints between images and to estimate camera poses and

scene structure.

SfM is used to recover the camera poses rather than the SLAM system because of the precision.

Compared with the SLAM system, SfM is used after the image-capturing process, thus, the global

bundle adjustment (GBA) can be conducted. Because of the real-time properties of the SLAM sys-

tem, the scale of its bundle adjustment problem is usually limited. Thus, methods like “marginaliza-

tion” or “co-visibility graph” that comprise precision and real-time properties are used. However,

SfM systems are offline, which can usually conduct GBA multiple times. So the SfM-based camera

and sparse 3D points recovery are used.
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5.1 Feature extracting and matching

5.1.1 Scale space

The basic idea of scale space is: the Gaussian kernel is the only kernel that can generate multi-

scale space. In the input image model, the parameters of the scale are continuously transformed by

the Gaussian blur function, and finally a multi-scale space sequence is obtained. The spatial func-

tion L(x, y, σ) of a certain scale in the image is obtained by convolution of the Gaussian function

G(x, y, σ) with variable parameters and the original input image I(x, y). This image sequence is

known as Gaussian pyramid.

G (xi, yi, σ) =
1

2πσ2
exp

(
−(x− xi)

2 + (y − yi)
2

2σ2

)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

(42)

where σ is known as a scale space factor. Smaller σ represents a less blurred image.

An image pyramid is a set of results obtained from the same image at different resolutions. The

generation process consists of two steps:

• Gaussian smoothing (Gaussian blur) is performed on the image.

• Downsampling is performed on the image, and after dimensionality reduction sampling, a

series of images with continuously reduced sizes are obtained.

The traditional SIFT algorithm extracts feature points by establishing the difference of Gaussian

(DoG) function method. First, the Gaussian difference image is obtained from the difference of

neighboring images at the same scale layer in a group of different scale parameters. Then, the

obtained difference image is convolved with the original image I(x, y) to obtain the DoG function

of Eq. (43).

D(x, y, σ) = [G(x, y, kσ)−G(x, y, σ)] ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)

(43)
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Figure 5.1: Gaussian pyramid: The original image are first convolved by Gaussian kernel, then de-sampled
to be the pyramid. The Gaussian difference pyramid is generated by the difference of the Gaussian pyramid.

Figure 5.2: Feature point (the black cross) is detected, which considers the neighbor and scale information.

5.1.2 Feature point detection

Feature points are composed of local extremal points in the DoG space. To find the extreme

value points of the DoG function, each pixel point is compared with all its neighbors to see if it is

larger or smaller than its neighbors in the image and scale domains.

As shown in Fig. 5.2, the middle detection point is compared with its 8 neighboring points at the

same scale and 9×2 points corresponding to the upper and lower neighboring scales for a total of 26

points to ensure that the extreme value points are detected in both scale space and two-dimensional

image space. Some extreme value points are located at the edge position of the image, because the

edge points of the image are difficult to locate and also easily disturbed by noise, we regard these

points as unstable extreme value points and need to be removed. The principal curvature values are
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larger in the direction of the edge gradient, while they are smaller along the edge direction. The

principal curvature of the DoG function D(x) of the candidate feature points is proportional to the

eigenvalues of the 2 × 2 Hessian matrix H , as in Eq. (44). Dxx denotes the image x-direction

derived twice for a certain scale in the DoG pyramid.

H =

Dxx Dxy

Dxy Dyy

 (44)

Let α = Dxx be the maximum eigenvalue of H , β = Dyy be the minimum eigenvalue of H . Then

we have:
Tr(H)2

Det(H)
=

(α+ β)2

αβ

det(H) = αβ

Tr(H) = α+ β

(45)

where Tr(H) is the trace of matrix H , Det(H) is the determinant of matrix H . When two eigen-

values are equal their values are minimum, so in order to detect whether the principal curvature is

under some threshold Tr, it is only necessary to detect the relationship between the magnitude of

the ratio and the threshold T and filter the unstable edge response points.

Therefore, feature point extraction can be summarized as the following steps:

• Construct a Gaussian scale space to generate Gaussian blurred images of different scales.

• Performing downscaled adoption to obtain a series of images with decreasing size.

• DoG space extreme value detection to remove some edge response points.

5.1.3 Descriptor calculation and feature matching

After the above steps, the feature points that exist at different scales have been found. In order

to achieve the rotation invariance, it is necessary to assign values to the directions of the feature

points. The gradient of the pixels in the neighborhood of the feature point is used to determine

its orientation parameter, and then the gradient histogram of the image is used to find the stable

orientation of the local structure of the key point.
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For the feature point that has been detected, we can obtain the corresponding σ, which deter-

mines the Gaussian image at that scale. To determine the orientation of the feature point, a gradient

histogram statistic is used to count the contribution of the image pixel points in a certain area to the

generation of the feature point orientation.

With the above steps, for each feature point, there are three types of information: location,

scale, and orientation. The next step is to create a descriptor for each feature point so that it does

not change with various changes, such as illumination changes, viewpoint changes, etc. And the

descriptor should have a high degree of uniqueness in order to improve the probability of correct

matching. And the descriptor should have high uniqueness in order to increase the probability of

correct matching of feature points.

As shown in Fig. 5.3(a), the center of the left image is the position of the current feature point.

Each cell represents a pixel in the scale space where the neighborhood of the feature point is located.

The direction of the arrow represents the gradient direction of the pixel, the length represents the

gradient magnitude, and then use the Gaussian window to weight the operation. Finally, the gradient

histogram of 8 directions is drawn on each 3σ × 3σ block (the side length of each square area in

the image is 4), and the cumulative value of each gradient direction is calculated to form a seed

point, as shown in the right figure. Each feature point consists of 4 seed points, and each seed point

has vector information in 8 directions. This joint neighborhood directional information enhances the

noise resistance of the algorithm and also provides more rational fault tolerance for feature matching

containing localization errors.

As shown in Fig. 5.3(b) [63], in the actual computation, in order to enhance the robustness of

matching, it is suggested to use 4× 4 for each key point to describe a total of 16 seed points, so that

one key point can generate a 128-dimensional SIFT feature vector.

To match the features in different images, the similarity is calculated to find the best matched

points, which is evaluated by Euclidean distance as in Eq. (46).

Ri = (ri1, ri2, · · · , ri128)

Si = (si1, si2, · · · , si128)

d (Ri, Si) =
√∑128

j=1 (rij − sij)
2

(46)
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(a) (b)

Figure 5.3: The process to generate the SIFT descriptor: (a) The orientation of each 3σ × 3σ grid, which has
8 direction information. (b) Real-world implementation using 4× 4 grids to generate the descriptor.

where Ri is the descriptor of ith feature in the original image, and Si is in the target image. The

similarity d is the Euclidean distance between Ri and Si.

The final chosen feature should satisfy Eq. (47).

d(Ri, Sj)

d(Ri, Sp)
< µ (47)

where Sj and Sp are the minimum and second minimum distance in the target image. µ is a given

threshold.

5.2 Global bundle adjustment (GBA)

The mathematical principle of BA is introduced in Section4.2. However, in this Section of SfM,

there are three main differences from the previous BA in SLAM system:

• Camera intrinsic matrix K is optimized as an estimated parameter.

• The BA here is always for the global scope.

• The GNSS information is used to constrain the GBA as prior position.

The IMU and GNSS information is fused with EKF to provide the UAV’s attitude and position

information. Compared with the pure vision-based SfM, the fused position can provide the actual

scale of the camera trajectory and the 3D scene.
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As shown in Fig.5.4, several images are captured around the scene. There are several landmarks

observed by those frames. As described in Section 4.2, reprojection error is generated from the

estimated landmarks projected onto the frame, which is a 2-dimensional vector.

GNSS and IMU fused local 
position

Camera local position
3D landmarks

Prior position error

Reprojection error

Figure 5.4: Several images are captured from a circular trajectory. The black points are the local position in
NED fused by the IMU and GNSS. While in the optimization process, the vision-based SfM can not recover
the correct scale of the 3D scene. However, with the constraints from the prior position, the translation vector
can be constrained.

The reason for using the fused local position rather than the global position is the noise of the

GNSS system. The global position is used to geolocate the wildfire spot after finishing the whole

scale correction. Considering the frame i, there are j observations of the landmarks to form the cost

function. The two types of residual in the cost function are:

• Reprojection residual error ev:

evi,j = pi,j −Ki(RiPj + ti) (48)

• Prior position residual error ep:

epi = zi − ti (49)

where pi,j is the observation for landmark j on image i. Pi is the coordinates value of landmark j

in the world-fixed system. The rotation and translation are explicitly represented by Ri and ti for

the ith frame. zi is the fused prior position of the i frame.
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Accumulate all of the observations, the final cost function is:

f(R, t, P,K) =

m∑
i=1

n∑
j=1

||evi,j ||2 + ω

m∑
i=1

||epi ||
2

=
m∑
i=1

n∑
j=1

||pi,j −Ki(RiPj + ti)||2 + ω
m∑
i=1

||zi − ti||2
(50)

where ω is a tunable constant to control the ratio between the two types of the residuals.

Eq. (50) indicates a nonlinear least squares problem. The parameters to be optimized are the

camera poses R, t, 3D points position P , and camera intrinsic matrix K. In this work, ceres [123]

is used to define and solve the problem. The great advantage of the ceres library is the automatic

derivation. There is no need to define the derivative of Eq. (50) manually.

5.3 Multi-view stereo (MVS) reconstruction

In this work, the MVS algorithm is used as the “post-processing” of the SfM. After the poses

and a sparse point cloud is recovered by the SfM system. The output can be used in the following

MVS system to generate the surface information of the local environment scene.

The open-source OpenMVS [100] system is used here. OpenMVS is a relatively classic MVS

open source library, which integrates the entire technical solution of 3D reconstruction (camera

model, multi-view stereo geometry, dense reconstruction, surface reconstruction, point cloud fusion,

texture mapping).

The process of the OpenMVS-based reconstruction involves several steps:

• Scene Reconstruction: This step uses a global formulation of the depth-map estimation prob-

lem that minimizes a cost function based on photo-consistency and smoothness constraints.

The cost function is optimized using a PatchMatch-based algorithm that iteratively updates

the depth values by random sampling and propagation. The output is a set of depth-maps,

one for each input image, that represent the distance from the camera to the scene surface for

each pixel.

• Densify Point Cloud: This step converts the depth-maps into a point-cloud by projecting each
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pixel with a valid depth value into 3D space using the camera parameters. The point-cloud

is then filtered to remove outliers and redundant points using a visibility test that checks if a

point is occluded by other points from multiple viewpoints. The output is a dense and accurate

point-cloud that covers most of the scene surface.

• Reconstruct Mesh: This step uses an implicit surface representation based on signed dis-

tance functions (SDF) to approximate the geometry of the point-cloud. The SDF values are

computed by fitting radial basis functions (RBF) to the point-cloud using an adaptive octree

structure. The mesh surface is then extracted from the SDF using an efficient marching cubes

algorithm that preserves sharp features and topology. The output is a watertight mesh surface

that approximates the point-cloud well.

• Refine Mesh: This step improves the quality of the mesh surface by applying several op-

erations: noise removal, hole filling, sharp feature preservation, and non-rigid deformation.

Noise removal and hole filling are done by applying Laplacian smoothing and Poisson recon-

struction respectively to the mesh surface. Sharp feature preservation is done by detecting

and preserving edges and corners using curvature analysis and normal voting. Non-rigid de-

formation is done by minimizing an energy function that balances data fidelity (alignment

with images) and regularization (smoothness and rigidity) terms using an as-rigid-as-possible

(ARAP) framework. The output is a refined mesh surface that captures fine details and aligns

well with images.

• Texture Mesh: This step computes a texture atlas for coloring the mesh surface by projecting

and blending images on it. The texture atlas consists of a set of charts (patches) that map

regions of the mesh surface to regions of texture images. The charts are generated by par-

titioning the mesh surface into patches using a greedy algorithm that minimizes distortion

and boundary length. The patches are then packed into texture images using an optimization

algorithm that maximizes resolution and minimizes empty space. The colors for each patch

are computed by blending images on it using a visibility-consistent seam leveling algorithm

that reduces color inconsistencies along patch boundaries.

55



Chapter 6

Experiment Design and Results

In this Chapter, the experiments platform with M300 UAV and DJI H20T camera is firstly intro-

duced. The hardware and software environment are both demonstrated. Then three experiments are

designed to validate the proposed framework’s detection, geolocation and reconstruction modules.

These outdoor experiments are performed in a flight club1 airport in Montreal, Canada.

The first experiment is for the detection stage: UAV flies along a zigzag path to cover a given

zone and detect the suspected wildfire spot. The second experiment consists of indoor and outdoor

experiments: for the indoor experiment, infrared-visible registration parameters are estimated; in

the outdoor experiment, UAV will fly laterally to estimate the geolocation of the wildfire spot. In

the meantime, registration for the wildfire spot will be performed. In the third experiment, UAV

will fly around the wildfire spot to capture the higher resolution images for the SfM-MVS system.

Finally, the 3D local environment is reconstructed on the ground computer. The trajectories and

experiments results are demonstrated in the following three sections.

6.1 Experiment platform

6.1.1 Hardware

ZenMuse H20T camera is used as the on-board sensors. It embeds with a wide camera, a zoom

camera, an infrared camera, and a laser rangefinder in one payload, which significantly simplifies
1https://www.wimac.ca/
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Figure 6.1: ZenMuse H20T camera and DJI M300 UAV: (a) ZenMuse H20T camera. (b) DJI M300 UAV
with multiple payloads.

the payload mounting and improves the system reliability. DJI M300 UAV is used as the carrier

platform. The UAV platform hardware is shown Fig.6.1.

The on-board computer is the computational unit for real-time high-level mission control, the

hardware and software device for real-time execution of the image processing and motion control

algorithms for a mission. It equips with GPU(s) to accelerate deep learning-based image processing

inference under limited power. Thus, the iCrest2.0 on-board computer provided by GEOAI and

NVIDIA is chosen for this work. This on-board computer is based on the NVIDIA Jetson Xavier

NX, which can bring up to 21 TOPs accelerated computing power to run modern neural networks in

parallel and process data from multiple high-resolution sensors. With the development of GEOAI,

iCrest2.0 can communicate with DJI M300 and H20T camera online.

The ground station computer should be able to monitor DJI M300 mission states and accelerate a

more complex image segmentation algorithm. For the outdoor experiment, we used Lenovo IdeaPad

15 with Intel i5-6300HQ CPU and NVIDIA GeForce GTX 950M GPU.

The communication between the on-board computer and the ground station is through Wi-Fi.

Wireless cards are equipped both on the two computers, and they both connected to a same local

area network (LAN) generated by a router.

6.1.2 Software

Software is developed based on the robot operating system (ROS) [124] and DJI on-board soft-

ware development kit (DJI-OSDK) [125], which provides communication between our software
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(a) (b)

Figure 6.2: The iCrest2.0 onboard computer and NVIDIA Jetson Xavier NX: (a) iCrest2.0. (b) Jetson Xavier
NX.

applications and hardware abstraction. As shown in Fig. 6.3, sub-modules are designed to work on

the on-board computer and the ground station separately.

ROS + Onboard-SDK-ROS

Onboard-SDK

Ubuntu18.04 (ARM v8)

Mission 
Control

Image 
Processing Geolocaton ...

Flight Control Payload Control

Sensor 
Management

Ubuntu18.04 (X86)

ROS 

Mission 
Control 

Images 
Segmentation Reconstruction

Figure 6.3: Configuration and functions of the proposed system framework.

With the application programming interfaces (APIs) provided by the DJI-OSDK, applications

running on iCrest2.0 can access the real-time data of sensors and send control commands to the flight

control and payload control modules (such as gimbal driver, etc.) via a wired connection. A task

manager, image segmentation applications, and 3D reconstruction applications run simultaneously
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on the ground station computer. The former application is designed to monitor and control the

whole detection mission; the latter is an image segmentation application as a “completion” of the

on-board computer.

The ROS supports the LAN connection naturally. Different nodes running on the different

machines which are under a same LAN can communicate with each other if they are both registered

to a common master node. In this work, the master node is running in the on-board computer.

The reason here is the reliability: because of the limited connection ability of router. If the Wi-Fi

connection is affected by the distance, master node running on the on-board computer can make

sure at least the mission control and part of the image processing applications can run normally.

For the benefit of the real-time application, TensorRT, developed by NVIDIA, is used for op-

timizing and accelerating the deep learning-based algorithms inference [126]. According to the

Pytroch and TensorRT implementation project website [127], ResNet-18 can achieve around 7 times

faster after using the TensorRT on NVIDIA Xavier NX.

The proposed early wildfire detection system does not heavily rely on the hardware platform,

which mainly benefits from the hardware abstraction of the ROS. Theoretically, the proposed al-

gorithm and software can be embedded in any UAV platform, on-board sensors and computer with

similar functions as we use.

In summary, the proposed early wildfire detection system takes the hardware and sensors lim-

itation, algorithms false alarm, and computation power into consideration, achieving considerable

robustness.

6.2 Early wildfire spot detection experiments

6.2.1 Flight trajectory

In the outdoor experiment, a synthetic fire point, which generates heat and smoke through burn-

ing leaves and wood is placed in front of the M300 UAV. After taking off, the system performs

according to our proposed strategy. After the early forest fire is detected and confirmed, the system

gives alarm. Finally, M300 returns home and finishes the mission. Fig. 6.4 shows the trajectory of
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the M300 during the experiment. A video recording of this experiment can be found on YouTube.1

Home Position

Fire Detected

Figure 6.4: M300 planned trajectory and real flight test trajectory

It should be noted that the laser rangefinder can only be manipulated manually due to the insuf-

ficient APIs of DJI-OSDK. But except for that, all the other processes can be done automatically by

the proposed system.

6.2.2 Gimbal control

Through ground testing, the control frequency of the DJI gimbal controller, as shown in Fig. 4.1

is 1 ∼ 2Hz. The main reason is that the gimbal control API in DJI OSDK is based on the ROS

“service” communication method, which has a long delay time. Thus the proposed PD controller

has a frequency of 1Hz.

In the controller software implementation, once the errors are less than the given thresholds, or

it takes too long to control the gimbal, the controller will stop. The following Fig. 6.5 shows the

control output and the pixel error along the yaw and pitch directions; After nine times of control,
1https://www.youtube.com/watch?v=dQG73LW8jxQ
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the pixel errors along x and y directions both converge into the given boundary (20 pixels in the

experiment).
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Figure 6.5: Heat point position and pixel errors: after errors converge into the given boundary, control com-
manding stops.

6.2.3 Infrared images segmentation and localization

RGB color space uses all three channels to express color features, which means using this model

may be more challenging to segment heat points through threshold-based methods than HSV color

space, which only uses the “H” channel for color. Under the “north pole isothermal model”, images

from H20T infrared camera change from blue to red with the temperature increases. All the three

channels in RGB color space will change during the temperature changes, but only the H channel

for HSV color space. For example, when the temperature is relatively low, the red channel can not

be used to locate the heat point, as shown in Fig. 6.6:
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(a) RGB camera (b) Infrared camera

(c) R (d) G (e) B

(f) H (g) S (h) V

Figure 6.6: HSV and RGB color space channels. The red circles indicate heat point. In this example, “R”
channel fails to reflect the heat position.

Therefore, the H channel is used for the following processing, as shown in Fig. 6.7:
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(a) H channel threshold segmentation (b) Morphology opening (c) Sliding window localization result

(sliding window size: 40× 40)

Figure 6.7: Heat point segmentation and localization process.

The location in the infrared image is used to rotate the gimbal.

6.2.4 ResNet-18-based classification

The training and validation datasets are collected from the internet as well as synthetic experi-

ments pictures.

Figure 6.8: Examples of three different class datasets for training ResNet-18-based forest fire classifier. From
top to bottom, the three rows of the examples belong to the “normal”, “fire”, and “smoke” classes respectively.

In the training process, the learning rate is set to 1×10−5. The dataset with 500 images is resized

to 255 × 255. 400 images are used for training. Both batch normalization and data augmentation

63



includes random flipping and rotating and are implemented. Other 100 images of a validation set

are randomly picked from the entire 500 images dataset. After 20 epochs, the average validation

accuracy of “fire”, “smoke” and “normal” achieves over 82%. The following Fig. 6.9 shows training

loss and accuracy during 50 epochs.

Figure 6.9: ResNet-18 training and validation accuracy during 50 epochs.

In the outdoor experiment, parameters trained from 20 epochs are used. Some example classifi-

cation results are shown in Fig. 6.10.

Figure 6.10: ResNet-18 classification result examples.

U-net-based smoke segmentation

Similar to the ResNet-18, the training validation set for U-net is also collected from the internet

and our synthetic data, which the DJI Phantom 4 Pro captures. The mask region is generated by

Labelme [128] manually. Some example images and masks of the training and validation set are

shown in Fig. 6.11.
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Figure 6.11: Examples of three different class datasets for training U-net-based forest fire smoke segmenta-
tion. The first row is the training image examples, and second row is the training mask labeled manually.

The U-net is trained on the ground station computer. During the training process, learning

rate and batch size are set to 1 × 10−6 and 8 separately. In the pre-processing procedure, random

image flipping, rotating and random brightness contrast adjustments are implemented before batch

normalization and training. After 90 epochs, the accuracy achieves over 75% and changes slightly

with any epoch increasing as Fig. 6.12 shows:

Figure 6.12: U-net training loss and accuracy during 120 epochs.
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In the outdoor experiment, the frame rate of the online segmentation is set to 5Hz. Some seg-

mentation result video frames are shown in Fig.6.13: The first row shows the original images with

the mask (in translucent red); the second row shows the segmented smoke in white.

Figure 6.13: U-net smoke segmentation result examples. First row is the original image examples, the second
row is the corresponding prediction generated by the U-net.

Once the smoke is segmented successfully, wildfire alarm will be sent to different terminals.

And the next stage will be triggered.

6.3 Depth estimation experiment

6.3.1 Flight trajectory

Five independent outdoor experiments are implemented to validate the performance of the pro-

posed framework. The scenario of each experiment is shown in Fig. 6.14. A synthetic wildfire point

with flame and smoke is placed on the grass-covering ground to simulate a wildfire. The M300

UAV flies along the predefined trajectories in these experiments, in which the depth of wildfire is

17.1m, 22.4m, 31.6m, 41.2m, and 51.2m, respectively. A laser range finder measures the ground

truth depth at each reference frame. At the same time, the H20T camera takes infrared and visible

images at a frequency of 20Hz. The recorded UAV’s real trajectories are shown in Fig. 4.3. The

video to demonstrate this experiment can be found on YouTube.1

1https://www.youtube.com/watch?v=Sk7nWwYyFZI
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(a) (b)

Figure 6.14: (a) A synthetic early wildfire spot is placed in front of the M300 UAV, while M300 flies horizon-
tally to estimate the distance to the wildfire spot. (b) Five independent experiments with different trajectories
are conducted.

6.3.2 Attention gate U-net segmentation

Hardware: Single GTX 1660 (6GB) GPU is used for training the attention gate U-net for wild-

fire segmentation.

Dataset: The dataset used in this work consists of two parts:

• Mixed dataset: consisting of 619 images mixed by the wildfire images from Kaggle [129] and

experiment captured image. These images are used in the first training steps;

• Experiment dataset: based on the concept of transfer learning, 119 captured images by differ-

ent distances in the designed experiment are used at the second training step.

All these images are labelled through the MATLAB tool (labelling) into three classes: back-

ground, smoke, and flame.

Evaluation: Pixel-level accuracy, ROC-AUC-score, macro F1-score, and average precision are

selected as the evaluation metrics. Table6.1shows quantitatively the performance comparison

between the original U-net and our model, attention gate U-net. And the items are explained as

follows:
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• Models: models “OU” and “AU” stands for original U-net and attention dataset (619 images),

“2” means to train the model with an experiment dataset (119 images);

• lr: the statistics of appropriate learning rates found for Encoder part of the model and un-

frozen entire model respectively;

• Epochs: statistics of the appropriate training epochs found through observing the changing of

validation loss;

• Pixel-ACC: the statistics of pixel-level accuracy;

• ROC-AUC: the statistics of the scores of the area under the curve (AUC) of receiver operating

characteristic (ROC);

• AP: the statistics of the scores of average precision, which summarizes a precision-recall

curve as the weighted mean of precisions achieved at each threshold;

• Macro F1-score: the statistics of scores of the harmonic mean of the precision and recall, in

which “Macro” means to calculate metrics for each label and find their unweighted mean.

Table 6.1: Quantitative performance comparison of original U-net with our work.

Models lr Epochs (Mixed dataset+
Experiment dataset)

Pixel-
ACC
(%)

ROC-
AUC
(%)

AP (%) Macro
F1-score

OU1 4.36e−5, 8.31e−6 16 + 17 96.748 91.874 76.799 62.562

AU1 6.30e−5, 8.31e−6 17 + 6 96.703 92.343 75.131 62.162

OU2 3.63e−5, 2.08e−5 11 + 6 99.419 84.192 53.734 57.139

AU2 3.63e−5, 9.99e−6 10 + 4 99.464 89.341 55.463 57.571

The “Pixel-ACC” shows that the attention gate U-net slightly improves the detection accuracy

and the “ROC-AUC” shows that the model decreased the false positive obviously.

Fig.6.15shows some examples of the segmentation results. The segmentation performance is

acceptable even as there are red clothes disturbances, which is shown in Fig. 6.15(e) and (j).
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(a) o 17.1m (b) o 22.7m (c) o 31.6m (d) o 41.2m (e) o 51.2m

(f) p 17.1m (g) p 22.7m (h) p 31.6m (i) p 41.2m (j) p 51.2m

Figure 6.15: Examples of segmentation results of different depth. o: the images split from the original videos
captured by DJI M300; p: attention gate U-net prediction results.

As stated in Section4.2, the depth of synthetic wildfire point observed in reference frames of

5 independent observations is estimated: The triangulated 3D points in the visible camera-fixed

coordinate system and the depth distribution are shown in Fig.6.16 respectively. Ground truth (GT)

depth, amount of frames, number of triangulated 3D points, median depth, estimated the depth and

the errors are shown in Table 6.2.
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Figure 6.16: First row: triangulated 3d points under visible camera-fixed coordinates system. Second row:
depth distribution histogram.

In the second (GT: 22.4m) and third (GT: 31.6m) experiments, relatively looser criteria are used

to match extracted ORB features, resulting in more matched features and triangulated 3D points.
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Table 6.2: Depth estimation results of individual experiments.

GT(m) Frames 3D points Median(m) Depth(m) Error(%)

17.1 424 6880 15.06 17.02 0.44
22.4 296 12616 21.42 21.46 5.78
31.6 647 12374 29.07 29.67 8.76
41.2 602 2424 40.93 41.26 0.15
51.2 733 5337 50.59 50.85 0.68

Simultaneously, more mismatched features are generated, increasing the estimation errors.

6.4 Visible-infrared images registration experiments

Parameters Estimation

To estimate the model parameters of the DJI H20T camera with the least square method pro-

posed in Section 4.3, an experiment is designed as follows: A stable heating object (which in this

work is a television with a whiteboard) is placed in front of the DJI H20T camera. The whiteboard

makes the corners more distinct for manual matching. Then the camera is moved from 6m to 30m.

During this process, we capture the visible images, infrared images, and distances measured by

the embedded laser rangefinder in H20T. There are totally 28 groups of measurements. After that,

four pairs of corresponding matches in the visible and infrared images are found by hand. Each

pair in each group of measurements stands for a single observation. Thus there are a total of 112

observations. Some examples of captured images and matched pairs are shown in Fig. 6.17.
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(a) 6.9m (b) 9.7m (c) 13.0m (d) 22.5m (e) 28.4m

Figure 6.17: Examples of captured visible and infrared images at different distances. The first and second
rows show the visible and infrared images, respectively. The corners of the whiteboard are matched manually.

Then all of the 112 observations are fed into a parameter estimator program developed with

general graph optimization (g2o) [130] library. We also implement the chi-square method to cull

outliers. The output of the program is the estimated R′ and t′.

To evaluate the estimation results, the following registration error (pixels) is defined:

e =
1

4

4∑
i=1

√
eix

2 + eiy
2 (51)

Fig.6.18shows that the registration error decreases versus the distance. This is because: as

the distance gets larger, the value of dvi
dir

gets closer to 1. In other words, Eq. (37) describes the

transformation of the visible-infrared system more accurately with the depth getting larger.

The registration error is less than 10 pixels when the depth is larger than 15 meters, and less

than 6 pixels for depth over 30 meters.

Outdoor Visible-Infrared Image Registration

With the proposed model described by Eq. (37) and estimated registration parameters (R′, t′)

in Section6.4, the contours of wildfire points predicted by proposed attention gate U-net can be

transformed into infrared images, which is shown in Fig. 6.19:
1https://github.com/ConcordiaNAVlab/registration_vi_ir_images
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Figure 6.18: Mean square error, 4 x-direction errors and 4 y-direction errors. They both decrease with the
depth getting larger, and x-direction errors contribute most of the mean square error.

(a) 17.1m (b) 22.7m (c) 31.6m (d) 41.2m (e) 51.2m

(f) 17.1m (g) 22.7m (h) 31.6m (i) 41.2m (j) 51.2m

Figure 6.19: Smoke and fire point contours are transformed from visible images into infrared images with
the proposed model. White contours: smoke; red contours: wildfire point. The field of view (FOV) of two
types of cameras are different.

With the confirmation of infrared images, false positive detection generated by attention gate

U-net can be further reduced.
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6.5 3D reconstruction experiments

6.5.1 Flight trajectory

In this outdoor experiment, a synthetic fire spot, which generates heat and smoke through burn-

ing leaves and wood, is placed near a cabin in the flight club airport. Then, the UAV flies around the

wildfire spot along a circular trajectory, as shown in Fig. 6.20. During the flight, 40 high-resolution

images of the scene are captured. This experimental scenario can be found on YouTube.1

Figure 6.20: The circular trajectory takes the estimated wildfire spot as the center. When flying, the M300
UAV keeps controlling the H20T camera towards the wildfire spot.

6.5.2 Reconstruction process

After the image set is captured after the flight, the images are sent to the ground station to

perform SfM and MVS reconstruction.

The SIFT features are extracted from each image and then matched via sequence and prior posi-

tions based methods. Comparing with the brute force method, the GNSS prior position constraints

can dramatically decrease the mismatches.
1https://www.youtube.com/watch?v=eU_TpNbQI8M
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As shown in Fig. 6.21(b), the column and row represent the image. While the color represents

the amount of matched features. For example, the element in the ith row and jth column represents

the matching number between image ith and image jth. Due to the circular shape of the trajectory,

the first several images of the sequence have relatively higher amount of matching with the last

several images.

(a) (b)

Figure 6.21: GPU-based feature extraction and matching results: (a) SIFT features extracted from the high-
resolution image (size: 5148×3888). (b) Feature matching matrix, the row and column of the matrix represent
the image ID; Deeper color stands higher amount of matching.

After that, the best image is chosen, and incremental global BA is performed. Finally, the sparse

point cloud and camera poses are recovered.
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(a) (b)

Figure 6.22: SfM process and its results: (a) The reference frame is chosen and incremental global BA is
performed. (b) The camera poses and sparse landmarks are recovered.

Some information on the SfM process is shown in Table 6.3.

Table 6.3: Information of the SfM process.

Images Observations 3D points Mean observations Mean reprojection error
40 229525 47213 5738.125 1.2581

The output of the SfM system can be used as the initial input for the MVS system. As shown

in Fig.6.23, the dense point cloud is first calculated. Then, the initial mesh is created, followed by

mesh refinement. In the last step, the mesh is textured by the input images.

The time consumptions of each steps in SfM-MVS are shown in Table ??. The total time

consumption of this process is 449.27s, which can satisfy the real-time requirements.

Table 6.4: Time consumption of each steps in SfM-MVS (second).

Total Feature
extraction

Sparse
reconstruction

Point cloud
densify

Mesh
reconstruction

Mesh refine Texturing

449.27 18.21 43.68 20.75 21.38 319.59 25.66

Compared with the Google Earth 3D map1, the advantages of the current UAV-based 3D re-

construction is with the live-update feature. The general 3D reconstruction frameworks are usually
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designed for the large scale environment reconstruction, which needs powerful computational re-

sources to spend much longer time to compute. Due to the flexibility of the UAVs, the local envi-

ronment around the wildfire spot can be captured and reconstructed in real-time. Only the images

related to the wildfire are sent to be reconstructed which reduces the computational load.

1https://earth.google.com/web/@45.45536928,-73.91600284,25.22622155a,74.
58212502d,35y,47.57768908h,70.27467085t,0r
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(a) (b)

(c) (d)

(e)

Figure 6.23: MVS process and its results: (a) The reference frame is chosen and incremental global BA is
performed. (b) The initial mesh is generated from the dense point cloud. While some of the details of the
scene are lost. (c) The initial mesh is refined, and details of the scene are now recovered. (d) The refined
mesh is textured with the input images. (e) The same scene was recovered by Google Earth.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Detecting early wildfires from UAV images faces many challenges, such as small fire size,

complex background, image degradation, and limited processing power. To address these problems,

this paper presents a novel early wildfire detection, localization, and reconstruction framework,

which utilizes the following algorithms:

• A ResNet-based algorithm is used to classify UAV images into fire or non-fire categories

based on their visual features. This algorithm is trained and fine-tuned on a large dataset of

aerial images containing various types of fires and backgrounds.

• A threshold-based algorithm using the HSV color-space is applied to segment the potential

heat spots from the infrared images. With the sliding window algorithm, the heat spot can

be localized. Then, the visible and infrared images are aligned and fused to reduce the false

alarm rate of the wildfire detection.

• A U-net-based algorithm is used to segment wildfire regions for distinguishing smoke and

flame for early fire detection from UAV images based on their pixel-level labels.

• An attention-gate U-net-based algorithm is used to estimate the depth map of wildfire regions

from monocular UAV images based on their semantic information. This algorithm leverages

an attention mechanism to focus on relevant features for depth/distance estimation.
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• A monocular simultaneous localization and mapping (SLAM) system is used to estimate the

pose and trajectory of the H20T camera. This system also integrates global navigation satellite

system (GNSS) data to improve its accuracy and recover the correct scale.

• A geometry model is proposed to register wildfire spots in visible and infrared images with

their estimated depth based on their relative positions and orientations. This model does not

require any calibration or parameters of the infrared camera.

• A GNSS-aided SfM-MVS algorithm is used to reconstruct the local environment around the

early wildfire spot based on multiple UAV images taken from different viewpoints. This

algorithm uses GNSS data to improve its scalability and efficiency .

This paper proposes a framework for wildfire monitoring and detection using Unmanned Aerial

Vehicles (UAVs). The framework consists of three modules: wildfire “detection”, “geolocation”,

and local environment “reconstruction”. The wildfire detection module uses both deep learning-

based and traditional computer vision-based algorithms to detect wildfire flame and smoke with

visible and infrared image fusion. The use of various sensors and fusion algorithms improves the ro-

bustness and reduces the false alarm rate of the wildfire detection mission. The wildfire geolocation

module estimates the depth and location of the wildfire spot using gimbal control. The vision-based

depth/distance estimation algorithm does not depend on the terrain information, which enhances

the stability of the estimation. The wildfire reconstruction module employs a GNSS-aided SfM-

MVS algorithm to reconstruct the local environment information (terrain, vegetation, etc.) from

the UAV images. The proposed framework is implemented on a DJI M300 UAV equipped with a

DJI H20T camera that can capture both visible and infrared images. Several independent outdoor

experiments using synthetic fire points are conducted to evaluate the performance of each module in

the framework. Experimental results show that the proposed framework can achieve high accuracy

and reliability in detecting, localizing, and reconstructing early wildfires from UAV images.

In summary, the proposed framework provides the reliable information of existence, geolocation

and local environment for the early wildfire, which can be used as fundamental guidance for further

fire fighting missions.
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7.2 Future work

From the perspective of algorithms and real-world applications, there are several improvements

can be considered in the future:

• Optimizing sensor fusion and image processing algorithms: By using more advanced sensor

fusion techniques such as Kalman filter or particle filter to fuse GNSS and IMU data, the

accuracy and efficiency of the proposed system can be improved. By using more efficient

feature extraction methods such as ORB or SURF, the image processing algorithms will also

be improved. The computational cost will be reduced and the robustness of our system under

different conditions will be increased by these methods.

• Handling more complex scenarios: More complex scenarios will be handled by this system.

These scenarios include multiple wildfires that may interfere with each other’s detection or

geolocation; dynamic environments that may change due to wind or human activities; occlu-

sions that may block part of the fire or scene from view. In terms of scalability, adaptability,

and reliability, new challenges will be posed for this system by these scenarios. To cope with

these challenges and enhance the performance of our system, new strategies and algorithms

will be explored further.

• Developing a real-time communication and visualization module: A real-time communication

module will be developed that can transmit sensor data and fused images between UAVs or

between UAVs and ground stations using wireless networks. A visualization module will

also be developed that can display sensor data, fused images, geolocation information, 3D

reconstruction results on a user interface using maps or augmented virtual reality techniques.

By these modules, users will be enabled to monitor the wildfire situation in real time and

interact with the system in an easy and intuitive way.

• Moreover, multiple UAV cooperation application can improve the automation of UAV-based

wildfire management. For example, the sensor’s information can be shared and merged by

multiple UAVs to monitor the same zone at faster speed; the wildfire spots’ geolocations can

be sent to the fighting UAVs for early wildfire suppression.
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