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Abstract

Synthetic Data as a Supplement for Training Deep Learning Models

Jatin Katyal

Training supervised machine learning models with suitable data can be challenging due to the

expensive and time-consuming process of collection and annotation, particularly when publicly

accessible datasets are not available. This work emphasizes the use of synthetic data to reduce the

effort spent on data collection. The study is based on an analysis of three widely-used benchmark

datasets and two synthetic datasets one of which was created for this specific task. The insights

derived from the preliminary analysis identify the required characteristics of the synthetic data that

can consistently lead to improvement in performance metric for the task. In this work, the roles

of synthetic data as a supplement to real data is investigated. Precisely, the impact of synthetic

data with varying proportions and similarities to real data on the performance of Multiple Object

Tracking neural networks based on the Convolutional and Transformer architectures is analyzed.

Experiments demonstrate the superiority of using a combination of simulated and real data, where

the samples of synthetic data are many folds of the real, and the variance of low-level features is

high but limited by the low variance of high-level features. The findings can be applied to other

machine learning tasks and provided guidelines can help improve model performance.
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Chapter 1

Introduction

The ever-growing internet opens the frontiers for data collection through keyword searches and

scraping websites. These methods are often constrained by the absence of labels or the substantial

effort required in labelling. Techniques such as crowd-sourcing and active learning mitigate these

constraints but they come with their own drawbacks. Crowd-sourcing platforms are limited by

uncertainty due to human diligence, the latency between setting up the task on a marketplace &

receiving results, and the compensation of the workers involved [1]. The benefits of Active Learning

are restricted by the scalability of large datasets and the involvement of a human oracle [2]. In

addition, the use of copyrighted materials must be approached with the appropriate ethical and legal

considerations, and sensitive personal information must be handled with care, requiring approval

from appropriate ethics committees or other governing bodies. International incidents can raise

geopolitical tensions over data collection as in the case of a high-altitude balloon [3] alleged for

surveillance and meteorological purposes by two conflicting nations. Thus, gathering high-quality

labelled samples not only requires substantial time and resources but, can have serious consequences

if the collection doesn’t follow through the proper channel. If the collection of data was the sole

purpose of this aircraft, proprietors could have benefitted from the multiple organizations that make

the information accessible to the general public.

The feasibility of leveraging publically accessible datasets seem more practical given the eco-

nomics and resource expenditures associated with the collection of a new dataset. It also eliminates

the aforementioned challenges. In practice, however, straightforward application of such datasets
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may not always be feasible or effective due to a variety of potential challenges or constraints.

The challenges include but are not limited to the following. Data leakage and duplicity issues in

datasets can reduce their eminence for training deep learning models [4]. Duplicates in a generative

setting can output results the same as training set samples which could be an imitation of copyrighted

material [5]. Outdated datasets that may not accurately reflect current or emerging scenarios or

environments [6]. This can be due to a lack of samples with variations (weather, illumination, pose

etc.) leading to overfitting and low accuracy in congested scenes [7]. It is also hard to address

the class imbalance issue on arising tasks using public datasets as the problem continues to evolve

[8]. Even in the existing problem statements, the increasing complexity over the years and the

rarity of specific data in nature are becoming challenging [9]. Also, it is cumbersome to control the

distribution of variables in large-scale datasets and negligence can result in biases that are fatal in

many applications [9]. At times, the large-scale datasets are straightaway restricted to the general

public [10]. Discussed in [11], are the privacy concerns and the privacy-protecting actions taken by

the authorities over the world. These limitations of public datasets reduce their utility for training

deep learning models.

One potential solution to these challenges is utilizing synthetic data in addition to available

limited real-world datasets. The difficulty of collecting a large number of training samples for deep

learning tasks is overcome by simulating diverse scenarios that are automatically labelled without

incurring additional costs [11, 12]. It is demonstrated in [9, 13], that the challenges of bias and

privacy can be mitigated with synthetic data. Troubles with overfitting, class imbalance and data

rarity have also been benefited by the use of synthetic data [7, 8, 9]. Thus by supplementing real-

world data with synthetic data, the limitations inherent to traditional data sources can be overcome.

The adoption of synthetic data has already been investigated in recent literature, in [7, 8, 14]

focus is on domain adaptation while in [9, 10, 12, 13] emphasis is on pre-training with synthetic

datasets. Although both of these methods have their own merits, in this work another approach is

proposed which is both simple and straightforward. It involves the direct utilization of synthetic data

without the need for additional domain adaptation or pertaining steps. This technique is justified

by viewing the domain adaptation or pre-training steps as potentially costly and extra when dealing

with an already challenging task.
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This study investigates how artificial data affects machine learning model performance. As

a first step, a comparison between the synthetic and actual sequences is drawn using the Frechet

Inception Distance (FID)[15]. In accordance with observed patterns, clusters for low-level and

high-level features are formed which raises the question of whether and how these clusters affect the

performance of the models. Following that, the impact of different concentrations of real-synthetic

data in the training set and sequences belonging to different clusters is assessed. The positive role of

synthetic data on three benchmark datasets is demonstrated with a convolutional and a transformer

architecture in a Multi Object Tracking task. Building upon the findings, a set of guidelines for

using synthetic datasets along with actual data are also provided.

The following contributions are presented:

• Investigation of the efficacy of integrating synthetic data with real data for improving

the performance of Multiple Object Tracking. Studies have been conducted to blend in

synthetic data generated through advancements in graphics engines for vision-related tasks

like classification, detection, segmentation, and re-identification. Most of these works utilized

a domain adaptation or pre-training approach. In this work, a direct application without such

additional techniques on Multiple Object Tracking tasks is examined.

• Comprehensive analysis of experimental results and insights on the synergistic effects of

using synthetic data. In the presented work, the symbiotic effect of synthetic and real data

on training deep learning models is studied. Is all synthetic and real data equal? Does the use

of synthetic data induce a positive change in the performance of tracking measures? If there’s

a change, is it influenced by the amount of synthetic data present in the training set? Does the

impact differ for different data?

• General recommendations for generating and incorporating synthetic data to enhance

model performance. After investigating the efficacy of the synergistic effects, this work

discusses on how to achieve similar results by adopting a general set of guidelines. The

discussion is on the lines of the amount of synthetic data that should be used, the factors

that influence the increase in performance and the factors that limit the performance increase.

The discussion also includes the performance increase observed during the experimentation
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presented in this work.

1.1 Notes on Contribution

This thesis presents the manuscript under preparation ”Synthetic Data as a Supplement for

Training Deep Learning Models”, Jatin Katyal, Charalambos Poullis. Jatin Katyal’s contributions

to this work include background research, generation of a synthetic dataset, preliminary analysis

among the real and synthetic datasets, experimentation and writing shown in Chapter 3. Dr. Char-

alambos Poullis’s major contribution includes supervision, guidance and manuscript review.

1.2 Thesis Organisation

The thesis is organized as follows: Chapter 2 accounts for a brief survey of previous works

in regard to Deep Learning, Synthetic Data and Multiple Object Tracking. Chapter 3 presents the

analysis of features of synthetic and real data and demonstrates the improvement in tracking metrics

when using a combination of both under a Multiple Object Tracking scenario. experimental results

and conclusions. Chapter 4 shows the additional results using the technique discussed in Chapter 3.

Finally, Chapter 5 concludes this work with a scope for future works.
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Chapter 2

Background

Abstract

This chapter dives into a brief history of neural network-based machine learning, some of the

methodologies previously employed to create synthetic data for computer vision tasks and different

object-tracking techniques. By exploring these diverse approaches, we aim to provide a compre-

hensive overview of the techniques in the field of synthetic data and object tracking using deep

learning.

2.1 Deep Learning: A brief survey of neural network architectures

The review of the architectures is divided into three categories, early Artificial Neural Networks

(ANNs), Traditional ML for computer vision and Deep Learning.

2.1.1 Early Neural networks

To describe how the biological brain makes decisions, [16] developed the MP-Neuron, which

eventually served as the basis for all familiar neural network topologies. In [17] a classifier was

modelled that could classify linearly separable classes by learning weights. In [18], LeNet was

presented for handwritten digit recognition; this would subsequently serve as the inspiration for

modern methods for resolving computer vision problems.
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2.1.2 Modern Computer Vision

The modern era computer vision focussed on handcrafted features like SIFT[19], SURF[20],

ORB [21] often coupled with traditional machine learning techniques like Support Vector Machines,

K-nearest neighbours, Naive-Bayes, Decision Trees and Random Forests [22, 23]. In general, one

or more such handcrafted features will be selected for extraction. These extracted features are then

utilized to train a traditional Machine Learning algorithm for tasks such as image classification. The

art of feature engineering got redundant as more complex Artificial Neural Network architectures

replaced the conventional machine learning approaches and deep learning gained traction.

2.1.3 Deep Learning Era

Figure 2.1: AlexNet architecture with five convolutional and three fully connected layers

The introduction of AlexNet in [24] revolutionized the field of computer vision by optimizing a

convolutional model to GPU hardware for the task of image classification on a very large dataset.

Since the dawn, there have been numerous developments in the architectural aspect. VGG-16 and

VGG-19 architectures introduced in [25], focussed on increasing the depth of the model. Previ-

ously popular AlexNet had eight layers but these two architectures had Sixteen and Nineteen layers

respectively.

InceptionNet [26], introduced the same year as VGG was special with its Inception Module.

This module contained filters of multiple sizes and can extract features at varying scales. ResNet

[27], attempts at solving the problem of increasing error rates with an increase in the depth of the

architecture. They presented residual blocks with skip connections that let them grow the network
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(a) InceptionNet Module (b) Residual Block

Figure 2.2: Building modules from InceptionNet (left) and ResNet (right).

in depth but without the increase in error rate. U-Net [28], is a fully convolutional architecture

used for image segmentation, the emphasis in this work was on data augmentation to use data

with less number of samples but more efficiency. With Faster-RCNN [29], a novel region proposal

network was introduced that shared convolutions with the object detector and resulted in faster

object detection. YOLO [30], streamlined the object detection architectures further. Instead of

using a sliding window like prior works, they proposed detection by regression which required

evaluating the image only once. More network architectures such as DenseNet [31], CenterNet [32]

etc. and their variations were introduced over time.

An interesting group of architectures that emerged over the years are Generative Adversarial

Networks (GANs) [33]. They follow a two player zero sum game, where a generator produces

samples and a discriminator distinguishes the sample between generated or training data. Some of

the applications in vision include image generation, video generation, image to image translation,

text to image generation among others [34].

Transformers [35], an encoder-decoder architecture first emerged as an improvement to recur-

rent neural networks architectures like LSTM [36] and GRU[37] for Natural Language Processing.

Popular techniques like BERT[38], GPT[39] and their variations are derived from the use of trans-

formers. Its strong dominance in vision applications is also demonstrated in [40, 41, 42, 43].

The latest advances in field of computer vision include Segment Anything Model (SAM) [44],

a promptable zero-shot image segmentation model; Stable Diffusion [45], an open source latent
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diffusion based text to image generator; Dall-E [43] another text to image generator based on trans-

formers;DINO [46], a transformer based object detector.

2.2 Synthetic Data

This section briefly touches upon the past works that utilized synthetic data, going from ap-

proaches to create a synthetic dataset, to some known virtual datasets and finally towards works

where synthetic datasets improved the underlying models.

Firstly, the creation of synthetic data is important and there are a variety of ways to do it. Some

of the noticeable works in the field use engines like RAGE engine as in [7, 47, 48, 49]. Other

engines like Unreal Engine and Unity Engine are also useful, as used in [50] and [51] for generating

corresponding virtual datasets. In [48] evaluation of visual perception tasks was performed on a

custom benchmark created from commercial software by using detouring[52].

For the purpose of detecting and tracking pedestrians, [11] offered a sizable open-source syn-

thetic dataset for substituting real datasets. In [12] Virtual KITTI dataset was published that showed

frameworks that have been pretrained on synthetic data and fine-tuned on actual data surpass those

that have only been trained on only synthetic or real data. Synthia [51] is a collection of synthetic

photos in an urban setting of a virtually generated city used to boost networks for semantic segmen-

tation.

The performance of deep learning models in many computer vision tasks has been improved

by synthetic data. [47] improved their detector by utilizing only synthetic images to train their

model. [7] proposed the SSIM Embedding cycle GAN for their synthetic dataset and improved

model permanence on crowd counting. [14] demonstrated that their Gaussian Process-based frame-

work, trained on synthetic data, outperformed other domain adaptation techniques relying on real

data. [8] exhibited that the performance of convolutional architectures for classification significantly

improved with synthetic chest X-ray scans for a medical image classification task. [50] enhanced the

performance of a person re-identification model by presenting a synthetic dataset with 100 virtual

human subjects under various lighting circumstances.
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2.3 Multiple Object Tracking

Some of the recent Tracking paradigms and techniques are discussed in this section. These

include a wide variety of techniques including, graph models, Siamese networks, convolutional

networks like CenterNet, YOLO etc. and even transformers.

A tracker that employs social and grouping behaviours inside of a graph model and formulates

the tracking as a least cost flow optimization issue was proposed in [53]. MDNet is a multi-domain

learning convolutional neural network architecture proposed in [54] to learn domain-independent

features during pretraining and domain-specific information during the tracking.

[55] developed a fully convolutional Siamese network that was trained offline to learn a similar-

ity function. The trained model was then evaluated online during training to locate a template image

within a search image, using the embeddings learned in the offline phase. In a similar vein [56] pro-

posed a Siamese Region Proposal Network that consisted of a template and a detection branch, both

of which were trained offline. The network formulated tracking as a local one-shot detection task.

Tracktor was developed in [57] and uses bounding box regression to track objects without the

need for extra training. A point-based tracking system called CenterTrack was introduced in [58] It

employs the CenterNet [59] detector which is conditioned on two consecutive frames and predicts

a displacement vector for associating locations of the objects through frames.

FairMOT, another CenterNet based strategy for a multi-task learning approach for detection

and re-identification, was introduced in [60] In this method, fairness was included to handle the

accuracy rivalry between the two tasks. As a consequence, both tasks are treated equally by an

impartial network, which has no adverse effect on accuracy.

As a recurrent extension to YOLO[30], in [61] they added an LSTM stage. The training or

architecture involves three phases: pertaining of convolutional layers, training of object proposal

module and training of recurrent LSTM module.

[62] presented TransTrack an attention-based query-key scheme motivated by transformers [35].

It uses attention to track objects, the framework generates two sets of queries containing informa-

tion for new coming objects and information for maintaining tracklets. Also following the tracking
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by attention paradigm for joint detection and tracking, Trackformer was introduced in [63]. Atten-

tion is computed between frame features, tracks and object queries to provide bounding boxes and

identities.

2.4 Metrics used for tracking

This section discusses some of the popular metrics associated with the task of tracking objects.

Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP)

were introduced in [64], these metrics provide an intuitive measure of performance at detecting and

keeping trajectories.

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

mt, fpt, and mmet are the number of misses, false positives and mismatches respectively.

Identity-based precision (IDP), recall (IDF) and F1 (IDF1) were introduced in [65]. These

metrics were calculated by matching the computed tracks with the ground truths one-to-one with

minimal frame mismatch. Standard Precision, Recall and F1 were built upon this matching.

IDF1 =
2IDTP

2IDTP + IDFP + IDFN

Higher Order Tracking Accuracy (HOTA) which is quite intuitive, was introduced in [66]. It

is the geometric mean of the percentage of aligning detections (Det.A) and average alignment of

trajectories (AssA).

HOTA =
√
DetA ·AssA

2.5 Conclusion

In the chapter, a brief history of computer vision was discussed. From early models like Per-

ceptron to architectures more commonly used in computer vision were presented, along with some

of the latest advances in Computer vision such as Dall-E and DINO. The discussion followed with

an overview of the literature on the use of synthetic data and Multiple Object Tracking.
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Chapter 3

Synthetic Data as a Supplement for

Training Deep Learning Models

This is the manuscript for the paper titled ”Synthetic Data as a Supplement for Training Deep

Learning Models” which is under preparation

Abstract

Obtaining training data for machine learning models can be challenging. Capturing or gathering

the data, followed by its manual labelling, is an expensive and time-consuming process. In cases

where there are no publicly accessible datasets, this can significantly hinder progress.

In this paper, we analyze the similarity between synthetic and real data. While focusing on an

object tracking task, we investigate the quantitative improvement influenced by the concentration of

the synthetic data and the variation in the distribution of training samples induced by it. Through

examination of three well-known benchmarks, we reveal guidelines that lead to performance gain.

We quantify the minimum variation required and demonstrate its efficacy on prominent object-

tracking neural network architecture.
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Figure 3.1: A combination of synthetic and real datasets with more synthetic samples and higher
variance in distribution (top) outperforming another combination with a lower number of synthetic
samples and lower variance in distribution (bottom).

3.1 Introduction

The process of data collecting is not without challenges, requiring substantial investments of

time and resources to obtain labelled samples of high quality. Given the resource and capital costs

associated with data acquisition, it is more pragmatic and cost-effective to utilize publicly available

datasets that have already been published. In practice, however, straightforward application of such

datasets may not always be feasible or effective due to a variety of potential challenges or constraints

such as biases. One potential solution to these challenges is utilizing synthetic data as a supplement

to real-world datasets. By supplementing real-world data with synthetic data, researchers can over-

come the limitations inherent to traditional data sources [13], thereby enhancing the overall quality

and utility of their datasets.
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The utilization of synthetic data has been extensively documented in recent literature, as evi-

denced by multiple works [7, 8, 14]. However, much of this prior research has focused on domain

adaptation techniques. This paper examines the impact of the direct use of synthetic data on the

performance of machine learning models. In a preliminary step, we analyze the Frechet Inception

Distance (FID) [15] between the synthetic and the real sequences for three benchmark datasets.

Building upon the patterns observed, we form clusters for both low and high level features which

makes us inquisitive about the impact of these clusters on the performance of the models, if affected

then by how much and why? Next, we examine the impact of different concentrations of photo-

realistic sequences on training for the three benchmarks and two rendered datasets one of which

is generated by us using a game engine. We demonstrate that the use of synthetic images during

training can positively affect performance. Also, we discuss instances where the clusters from our

preliminary analysis provide an additional stimulus in the form of a gain or drop in performance.

We quantify the variation and provide design guidelines for creating synthetic datasets used to train

object-tracking models.

The approach we propose is both simple and straightforward, involving the direct utilization of

synthetic data without the need for additional domain adaptation steps during training. We justify

this approach by viewing the domain adaptation step as a potentially costly and extra procedure

when dealing with an already challenging task.

Our proposed strategy aligns with prior studies that have incorporated synthetic data into their

training procedures without domain adaptation. However, our approach differs significantly from

those studies. For instance, the Virtual KITTI dataset [12] involves a two-step process where pre-

training is performed on the virtual data followed by fine-tuning on real data. The MOTSynth

challenge [11] encourages training on synthetic data only and testing on real data, without any use

of the latter during the training phase. In contrast, our approach involves fine-tuning models on an

amalgamation of both actual and synthetic data, thereby improving tracking performance. To the

best of our knowledge, this technique has not been previously explored in the literature.

In this paper, we present the following contributions:

• We investigate the efficacy of integrating synthetic data with real data for improving the per-

formance of Multiple Object Tracking.

13



• We conduct a comprehensive analysis of our experimental results and offer insights on the

synergistic effects of using synthetic and real data. Drawing from our observations, we for-

mulate a set of general recommendations for the generation and incorporation of synthetic

data to enhance model performance.

In the following sections, we conduct a literature review of previous works involving synthetic

data and Multiple Object Tracking, followed by an analysis of the similarity between real and syn-

thetic data, our experimentation on different datasets and finally a discussion of the results and

conclusions drawn from it.

3.2 Related Works

This section delves into the various methodologies employed by researchers to generate syn-

thetic data for computer vision tasks. The discussion highlights the value of synthetic data in

improving deep learning models’ performance through techniques such as domain adaptation and

pre-training. Additionally, we examine the different tracking techniques that incorporate various

concepts, including behavioural models, graph models, convolutional architectures, and transform-

ers, to achieve robust and accurate tracking performance.

3.2.1 Synthetic Data

To study the impact of synthetic data, the creation of the dataset is important. [47], [48], [49],

[7] use RAGE for generating their corresponding virtual datasets. Detouring [52] was employed in

[48] to create synthetic a benchmark from commercial software and evaluate visual perception tasks.

In [50] a dataset of virtual human subjects under different illumination conditions was developed

using Unreal Engine. In [51], Unity Engine was used to develop a dataset for semantic segmentation.

Some of the known publically available virtual datasets include Synthia[51] a collection of synthetic

images in an urban environment of a virtual city, MOTSynth [11] a large open-source synthetic

dataset for pedestrian detection and tracking, Virtual KITTI dataset[12] a synthetic adaptation of

popular KITTI Vision benchmark [70].

Various studies demonstrate the efficacy of using synthetic data for enhancing the performance
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(a) A sample frame from the UAVDT benchmark [67] (real)

(b) A sample frame from the VisDrone dataset [68] (real)

(c) A sample frame from the dataset generated using AirSim [69] (synthetic)

Figure 3.2: Samples of UAV datasets used in our experiments for vehicle tracking.
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of deep learning models in various computer vision tasks. In [47] utilized only synthetic images

to train their model, which outperformed the model trained on actual images in object classifica-

tion. Wang et al.[7] simulated a crowd in their GCC dataset and proposed the SSIM Embedding

cycle GAN for counting crowds in the wild. Sindagi et al.[14] demonstrated that their Gaussian

Process-based framework, which was trained on synthetic data, outperformed other domain adap-

tation techniques that relied only on real data. H. Zunair and A. Hamza [8], utilized domain adap-

tation to generate synthetic chest X-ray scans and showed that when used as supplementary data

during training, the performance of convolutional architectures for classification improved. In [50]

a synthetic dataset was used along domain adaptation to improve the performance of a person re-

identification task.

3.2.2 Multiple Object Tracking

L. Taixé et al. introduced a tracker that uses social and grouping behaviours inside a graph

model formulating the tracking as a minimum cost flow optimization problem[53]. H. Nam and B.

Han proposed MDNet[54] a multi-domain learning convolutional neural network framework that

learns domain-independent features during pretraining and domain-specific information during the

tracking.

L. Bertinetto[55] trained a fully convolutional Siamese network to learn a similarity function in

an offline manner to be evaluated online during training to locate a template image within the search

image using the strong embeddings learned in the offline phase. B. Li[56] proposed a Siamese

Region Proposal Network consisting of a template and a detection branch which are trained offline

and correlational maps for feature extraction, the tracking is formulated as a local one-shot detection

task.

P. Bergman and T. Meinhardt introduced tracktor[57] that exploits bounding box regression

of an existing object detector, without any additional training required for tracking objects. Zhou

presented a point-based tracking framework called CenterTrack[58] that uses CenterNet[59] detec-

tor conditioned on two consecutive frames that also predicts a displacement vector for associating

positions of the objects through frames.

Y.Zhang et al. introduced FairMOT[60], also a CenterNet[59] based technique for a multi-task
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learning approach for detection and re-identification. In this technique, the competition for accuracy

between the two tasks was addressed by introducing fairness. This results in an unbiassed network

which treats both tasks equally thus, it doesn’t affect their accuracy adversely.

G. Ning et. al proposed ROLO[61] a recurrent extension of YOLO[30] architecture by adding

an LSTM stage, training involves three phases pertaining of convolutional layers, training of object

proposal module and training of recurrent LSTM module.

P. Sun et al. introduced TransTrack[62] an attention-based query-key scheme inspired by transformers[35]

that uses attention to track objects, their framework generates two sets of queries containing in-

formation for new coming objects and information for maintaining tracklets. T. Meinhardt et al.

introduced Trackformer[63] following the tracking by attention paradigm for joint detection and

tracking, attention is computed between frame features, tracks and object queries to output bound-

ing boxes and identities.

3.3 Synthetic Dataset & Observations

In this section we touch upon the synthetic dataset that we created and a publically available

synthetic dataset for supplementing the real dataset. We also discuss our key observations when

comparing these synthetic datasets to real video sequences using Fréchet Inception Distance (FID)

[15].

Our experimental setup utilizes synthetic video sequences generated with the AirSim plugin

[69] for Unreal engine. Details on the generation of the dataset are discussed in Section 3.4.1.

Along with this new dataset, we use two published Unmanned Aerial Vehicle (UAV) benchmarks

for the detection and tracking of vehicles, UAVDT benchmark [67] and VisDrone dataset [68] as

real sequences. Samples for the synthetic dataset, the UAVDT benchmark and the VisDrone dataset

are provided in Figures 3.2c, 3.2a & 3.2b respectively. To eliminate bias due to the domain and task,

and ensure the generalization of the insights, we additionally use another pair of real and synthetic

tracking datasets with people tracking in place of vehicle tracking as the objective. For this purpose,

we use MOT17 [71] and MOTSynth [11] as real and synthetic datasets respectively. Samples of

both datasets can be found in Figures 3.3a and 3.3b respectively.
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(a) MOT17 (real)

(b) MOTSynth (synthetic)

Figure 3.3: Samples of MOT datasets used in our experiments. (a) Real image from MOT17. (b)
Synthetic image from MOTSynth.

Fréchet Inception Distance (FID) is a quality measure first introduced in [15], for capturing the

similarity of the images generated by GANs, this metric also correlates with human judgement. FID

score for 2 identical images is 0, and for 2 identical sets of images or videos is close to 0. It increases

as the visual similarities between the two images or sets of images reduce as depicted in Figure 3.4.

A synthetic sequence with similar lighting, camera angle and elevation as the real sequence results

in a relatively lower FID in contrast to another real sequence that has different lighting, camera angle

and elevation. We use it to estimate the degree of similarity between synthetic and real images for

each pair of real and synthetic sequences.

We computed the Fréchet Inception Distance for three combinations of real and synthetic datasets
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Figure 3.4: FID computation example for low level features between AirSim generated video se-
quence (top) with a similar looking (bottom-left) and a different looking (bottom-right) real video
sequence from UAVDT dataset. The computed value towards the green end depicts similarity be-
tween the two sequences, and contrary to that towards the red side depicts visual dissimilarity.

from the first pooling layer features (FID64), the second max pooling features (FID192), the pre-

auxiliary classifier features (FID768) and the final average pooling features (FID2048)[72]. The

computations from the second max pooling (FID192) and the final average pooling (FID2048) fea-

tures do not add more information or echoes that the first max pooling features (FID64) and the

pre-auxiliary classifier features (FID768) already express. Thus, we only use FID scores obtained

from the first max pool layer features and the pre-auxiliary classifier features for the low level fea-

tures and the high level features respectively. The FIDs for all synthetic and real datasets are plotted

as heatmaps in Figure 3.5.

In the heatmaps, each row is a real sequence and each column is a synthetic sequence from

corresponding real and synthetic dataset pairs. Within the heat maps for low level features 3.5a,

the combination of UAVDT benchmark and AirSim generated dataset shows patterns of higher FID

scores for some real sequences while most of the real sequences have a relatively lower FID Score.

The other 2 dataset combinations only observe a relatively low FID score for all real and synthetic

sequence pairings. Contrasting to this, the heatmaps for high level features 3.5b, show more patterns
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of high FID scores for real sequences in all three dataset combinations. Interestingly, a pattern for

high FID score is also noticeable for synthetic sequences in the MOT17 and MotSynth datasets

pairing. We discuss these patterns further in this section.

These initial observations from the heatmaps motivate us to define rigid clusters based on the

FID computations. We cluster sequences under 3 categories namely, lower, moderate or higher

degrees of difference in low or high level features. This clustering is required to isolate features on

the basis of similarity and measure their impact on the performance of the training process. We later

use these clusters in further sections for experimentation and discussion.

For the clustering, we create a range between 0 (the minimum achievable distance) and the

maximum calculated FID across datasets with an additional buffer. We fit all the sequences to this

range and normalize it to get a range between 0 and 1. This normalized scale is divided into three

parts using 0.3 and 0.6 as the division points. The sequences that fall under the first, the second

and the third segment are termed as sequences with lower, moderate or higher degrees of difference

respectively.

3.3.1 FID for low level features

The FIDs obtained after first pooling layer features for the sequences from the UAVDT bench-

mark and the AirSim generated dataset, sequences with a higher degree of difference have an aver-

age of 32.80 ±2.60, the same for sequences having a moderate degree of difference is 18.93 ±2.33

and finally the sequences with a lower degree of difference have an average of 7.80 ±2.93. We ob-

serve that all sequences in the VisDrone dataset compared to the synthetic dataset generated using

AirSim have a lower degree of difference for low level features with an average of 7.40 ±2.31. A

similar observation is made for the sequences from the MOT17 and the MOTSynth datasets, all the

sequences lead to an average of 8.66 ±3.48 thus falling under a lower degree of difference for low

level features. The FIDs for all synthetic and real sequences are visually represented in Figure 3.5a,

where the green regions represent the lower degree of difference, yellow-orange shades depict the

moderate degree of difference and dark orange-red represents the higher degree of difference.
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3.3.2 FID for high level features

On the basis of the clustering scheme discussed earlier in this section and the FIDs obtained

from the pre-auxiliary classifier features for UAVDT and AirSim generated sequences, we cluster

sequences among low, medium or high degrees of difference for high level features among real

data. The average values for clusters are 1.60 ±0.05, 2.13 ±0.19 and 2.65 ±0.12 respectively. With

the same synthetic dataset when FID values are calculated along the VisDrone dataset the clusters

obtained have 1.72 ±0.01 for lower degree of difference, 2.07 ±0.22 for a moderate degree of differ-

ence and 2.76 ±0.21 for a higher degree of difference in high level features. When calculating the

FIDs with higher level features for MOT17 and MOTSynth datasets, we obtain 1.75, 1.99 ±0.16 and

2.72 for lower, moderate and higher degrees of differences. Unlike other real and synthetic dataset

combinations, we also observe a pattern for synthetic sequences for MOT17 and MOTSynth. The

average values for lower, moderate and higher degrees of difference in high level features are 1.57

±0.09, 2.01 ±0.20 and 2.68 ±0.18 respectively. We visualize these FID computations in the form of

a heatmap in Figure 3.5b.

3.3.3 Objectives

With the derived insights and our objective of impact investigation of synthetic data as a supple-

ment in combination with real data, we aim to answer the following questions:

• How effective is the use of synthetic data when supplementing a real dataset?

• What is the impact of different real-synthetic concentrations on the performance metric?

• What are the characteristics of the synthetic data that drive this change, the concentration, the

degree of diversity in information brought by the synthetic samples or both factors?

3.4 Experiments

In this section, we discuss in detail the synthetic and the real datasets that we use, our strategy

to answer the questions that were raised in the previous section and our trials.
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(a) FID64: Fréchet Inception Distance obtained from
first pooling features. Left: UAVDT and Air-
Sim, Right-Top: Visdrone and AirSim, Right-Bottom:
MOT and MOTSynth. Each row represents a real
sequence and each column represents a synthetic se-
quence.

(b) FID768: Fréchet Inception Distance obtained from
pre-auxiliary classifier features. Left: UAVDT and
AirSim, Right-Top: Visdrone and AirSim, Right-
Bottom: MOT and MOTSynth. Each row represents a
real sequence and each column represents a synthetic
sequence.

Figure 3.5: FIDs heatmaps for low level features (a) and high level features (b). Dark green repre-
sents lower degree of difference, dark red represents higher degree of difference, and the shades in
between represent moderate degree of difference in lower/higher level features.
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3.4.1 Datasets

As already discussed briefly in Section 3.3, we generate a set of synthetic video sequences us-

ing the AirSim plugin in Unreal engine. To generate the simulated video sequences, we load the

environment with a simulated drone and dictate its flight trajectory by a set of three-dimensional

points in the simulation environment transmitted through APIs. We assimilate input from the cam-

era mounted on the virtual drone and detect vehicles within the field of view of the drone using

another pair of APIs to save frames and annotation to a local storage device. We also alter weather

conditions across different flight paths to create a diverse set of simulated video sequences. In total,

we generated 25 sequences exhibiting different weather conditions, providing a diverse range of

scenarios for evaluation.

For the real dataset we use the Unmanned Aerial Vehicle Benchmark [67] (UAVDT) which is

a collection of video sequences captured by drones. This benchmark dataset offers sequences with

various conditions for illumination, camera viewpoint and elevation. To ensure that our experimen-

tation is not limited to a single dataset, we also conduct tests on another UAV detection and tracking

dataset called VisDrone [68]. It contains both city and country environments with annotations for

many objects in various weather and lighting conditions. Since our synthetic dataset only had infor-

mation about vehicles, we rank all the sequences on the most number of vehicles in the scene and

only considered the top 30 videos which had the most number of vehicles for our vehicle tracking

experiments.

For the extensiveness of our experiments, we use another pair of real and synthetic datasets.

MOT17 [71] dataset which is a pedestrian detection and tracking dataset with video sequences hav-

ing different viewports, camera movements and weather conditions. For the synthetic part, we used

the MOTSynth [11] dataset which was created for pedestrian detection, tracking and segmentation

and contains frames generated using a rendering game engine. We only required a limited number

of sequences according to our experiment setup and a random selection of 21 sequences is used to

serve as the training set.
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3.4.2 Strategy

We use models trained only on real datasets as baseline models to compare and evaluate against

the results obtained from models discussed further in our training strategy. In our strategy, we

keep the total number of real and synthetic training sequences constant, that is the number of real

sequences available for training. We then substitute real sequences with synthetic sequences. We

focus on the substitution and not on the addition of new data for two reasons. First, additional

training data will lead to unfair evaluation as the new dataset will have more training samples when

compared to the baseline model. Second, substitution creates an artificial scarcity of data enabling

us to evaluate the impact of synthetic data when the actual data is insufficient or missing. For these

reasons, we formulate an approach to break down the datasets into different-sized folds such that,

a bigger chunk from the real dataset has a complementary smaller fold in the synthetic dataset and

vice-versa. The combined dataset always accounts for the same number of total video sequences

as originally in the training set for the real dataset. For the vehicle tracking experiments, we use

ratios 1:5, 1:2, 1:1, 2:1 and 5:1 between real and synthetic data i.e. when there are 5 real sequences

we use 25 synthetic sequences, 10 real and 20 synthetic sequences and so on. For people tracking

experiments, we use 1:6, 1:2, 2:1 and 6:1 as the ratios.

We use multiple folds for each concentration of real-synthetic combination to understand the

consistency of the change in the tracking metric with the real-to-synthetic data ratio. Within the

folds, we vary the number of sequences with lower, moderate and higher degrees of difference for

low-level and high-level features as discussed in the previous section. In our experiments, each fold

is denoted by a lowercase letter.

3.4.3 Training

For our experiments, we train FRCNN[73] network for object detection and ResNet50 [74]

model for re-identification, together these two models are used in combination as described in the

Tracktor[57] technique. The datasets, both real and synthetic are aimed for detection and tracking

and not for re-identification. To allow training of re-identification models on these sequences we

create a re-identification dataset from the given frames. We crop the frames where bounding boxes
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are present and use these crops for tracked objects as a re-identification dataset. We use the described

setup of an object detector and a re-identifier with different folds of the training set as discussed in

Section 3.4.2. Models trained on different folds are evaluated using HOTA[66] and IDF1 [65] as

the calculative measures for assessing performance. The metrics are calculated using trackeval

[75]. The results of public detection from different manifestations of the Tracktor on the UAVDT

benchmark and the AirSim generated dataset are reported in Table 3.1, on VisDrone dataset and

AirSim generated dataset are reported in Table 3.2 and on MOT17 and MOTSynth are reported in

Table 3.3. Further, we discuss these results in Section 3.5.

Also, we extend the applicability of synthetic datasets to transformer-based architectures. We

select the Transtrack [62] architecture, which is an encoder-decoder framework with a ResNet-50

[74] backbone network. We train the models on MOT17 and MOTSynth datasets, using the same

concentrations and folds as used for the Tracktor experiments. Results are reported in Table 3.4 and

further discussed in Section 3.5.

3.5 Discussion

Tables 3.1 and 3.3 show a significant increase in performance measure when synthetic data is

included in the training set against the benchmark that only contains all real data. The improvement

is up to a 14% increase for the UAVDT benchmark and up to a 10% increase for the MOT17 dataset.

Also, Table 3.2 shows an increase up to 4% was achieved for the VisDrone dataset. Table 3.4 shows

an increase up to 7% for the MOT17 dataset on a transformer-based architecture. There is a positive

correlation between the percentage of synthetic data in the training set and the performance measure

for the UAVDT benchmark and the VisDrone dataset. The performance increase for the MOT17

dataset is moreover constant and is not affected by changes in dataset concentrations on Tracktor

but we again observe the correlation between the number of synthetic samples and the tracking

metric on transformer-based architecture. We further discuss each dataset individually under the

following subsections.
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Real Set Synthetic Set

Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

5 a 25 a 84.232 83.500 77.950 63.984 83.864 70.489

5 b 25 a 84.877 83.538 75.616 63.979 84.202 69.405

5 c 25 a 78.229 78.535 67.812 59.057 78.382 63.134

5 d 25 a 90.251 87.227 77.166 70.266 88.713 73.504

5 e 25 a 85.501 84.279 72.327 62.985 84.885 67.313

5 f 25 a 85.632 83.054 76.823 64.676 84.323 70.378

10 g 20 b 88.740 82.318 73.588 67.232 85.409 70.252

10 h 20 b 82.459 81.612 68.126 62.729 82.033 65.235

10 i 20 b 87.303 81.945 69.367 64.190 84.539 66.584

15 j 15 c 90.029 79.524 66.662 66.109 84.451 66.259

15 k 15 c 87.484 80.520 67.165 63.453 83.858 65.163

20 l 10 d 81.393 78.686 64.573 61.158 80.016 62.722

20 m 10 e 89.997 76.785 62.950 65.291 82.868 64.004

20 n 10 f 85.122 75.669 62.724 63.897 80.118 63.146

25 o 5 g 81.287 75.073 60.347 60.683 78.057 60.378

25 p 5 h 82.752 77.801 62.214 61.078 80.200 61.513

25 q 5 i 81.746 78.741 64.828 61.166 80.216 62.832

25 r 5 g 86.904 69.093 54.706 62.014 76.982 58.104

25 s 5 h 83.274 74.501 61.816 62.026 78.644 61.744

25 t 5 i 82.871 78.444 63.305 61.988 80.597 62.432

30 u 0 NA 82.085 75.486 61.183 60.948 78.647 60.921

Table 3.1: Results for Tracktor technique trained on datasets with different concentrations of
UAVDT benchmark (real) and AirSim generated dataset (synthetic). Column Size denotes the num-
ber of sequences and Fold denotes which fold was used.
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3.5.1 UAVDT

We observe a direct link between the performance measure and the percentage of the synthetic

dataset in the overall training set, by increasing the number of synthetic samples we notice an

increase in the HOTA metric. It is highest when we use twenty-five synthetic samples and five real

ones, and lowest when use twenty-five real and five synthetic samples across a number of folds.

Also, among folds comprised of five real and twenty-five synthetic sequences, the HOTA metric is

highest when the training set includes sequences with a higher degree of difference for low level

features. Additionally, in the folds consisting of twenty-five real and five synthetic sequences, we

notice that the HOTA metric reduces when the folds are constituted from sequences with low or

moderate degrees of difference for low level features. All experiments are reported in Table 3.1.
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Real Set Synthetic Set

Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

5 a 25 a 69.957 72.991 64.611 57.841 71.442 60.701

5 b 25 a 63.117 65.636 63.323 50.193 64.352 55.975

5 c 25 a 68.029 70.809 59.921 54.752 69.391 56.779

5 d 25 a 68.278 70.847 65.364 55.616 69.539 59.961

5 e 25 a 65.193 67.949 64.281 52.798 66.543 57.834

5 f 25 a 71.052 74.107 61.694 57.558 72.547 59.241

10 g 20 b 63.448 66.078 63.482 50.621 64.736 56.271

10 h 20 b 69.845 72.378 62.859 56.169 71.089 59.043

10 i 20 b 67.547 70.272 63.569 54.147 68.882 58.307

15 j 15 c 66.078 68.449 61.602 51.998 67.242 56.239

15 k 15 c 67.924 70.180 64.041 54.747 69.034 58.902

20 l 10 d 65.904 67.146 61.679 51.545 66.519 56.053

20 m 10 e 65.603 67.782 64.136 51.997 66.675 57.462

20 n 10 f 67.121 68.683 63.215 53.425 67.893 57.779

25 o 5 g 65.085 65.854 62.107 50.922 65.467 55.953

25 p 5 h 65.430 66.037 61.531 50.750 65.732 55.557

25 q 5 i 65.541 66.822 62.856 51.431 66.176 56.511

25 r 5 g 69.491 67.100 62.294 52.595 68.275 56.943

25 s 5 h 72.598 71.483 62.676 55.977 72.036 58.948

25 t 5 i 64.689 65.665 62.643 50.480 65.173 55.885

30 u 0 NA 64.324 64.601 61.910 49.864 64.462 55.252

Table 3.2: Results for Tracktor technique trained on datasets with different concentrations of Vis-
drone dataset (real) and AirSim generated dataset (synthetic). Column Size denotes the number of
sequences and Fold denotes which fold was used.
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3.5.2 VisDrone

Our findings indicate an increasing trend, albeit with a few deviations for the VisDrone and

AirSim datasets. The performance of models trained on different folds generally increases, except

for the folds where five sequences are synthetic the models perform worst than the benchmark but

the performance increases gradually as the percentage of synthetic data increases. Another deviation

is remarked, where models trained on folds with 20 synthetic sequences perform better than the

models trained on folds with synthetic data but the latter still outperforms the benchmark model.

With the FIDs analysis for low level features (Section 3.3.1) as the foundation, it is hard to come

to conclusions as all sequences for this dataset combination fall under a low degree of difference.

Drawing on the insights derived from the FID analysis for high level features (Section 3.3.2), exper-

iments with folds having 5, 10 or 15 real sequences, the fold having the most number of sequences

with a lower degree of difference for high level features outperforms the rest of the folds in that

category.
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Real Set Synthetic Set

Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

3 a 18 a 48.893 63.291 40.617 52.277 55.168 45.904

3 b 18 b 49.996 59.487 41.928 48.766 54.330 45.069

3 c 18 c 53.866 59.708 44.196 49.285 56.636 46.547

3 d 18 d 55.581 62.286 43.842 51.946 58.743 47.559

3 e 18 e 48.792 61.824 41.173 50.731 54.540 45.552

3 f 18 f 50.057 64.044 40.420 53.327 56.193 46.312

3 g 18 g 52.789 61.614 43.340 50.591 56.861 46.726

7 h 14 h 46.250 61.112 39.961 49.537 52.652 44.250

7 i 14 i 52.175 63.552 42.574 52.785 57.304 47.294

7 j 14 j 48.708 62.582 41.035 52.501 54.780 46.313

14 k 7 k 47.634 62.714 40.470 50.411 54.143 45.080

14 l 7 l 49.877 65.935 41.136 56.227 56.793 47.927

14 m 7 m 50.716 63.499 42.412 53.109 56.392 47.333

18 n 3 n 48.730 63.345 40.822 52.392 55.084 46.142

18 o 3 o 50.245 64.282 41.520 53.084 56.403 46.873

18 p 3 p 48.210 63.303 40.821 52.738 54.735 46.289

18 q 3 q 50.598 66.076 41.154 56.023 57.311 47.906

18 r 3 r 49.462 65.915 41.347 55.496 56.515 47.806

18 s 3 s 50.404 65.135 41.934 54.193 56.830 47.570

18 t 3 t 50.398 63.233 41.706 53.768 56.090 47.234

21 u 0 NA 34.597 46.205 40.230 32.198 39.567 35.883

Table 3.3: Results for Tracktor technique trained on datasets with different concentrations of
MOT17 dataset (real) and MOTSynth dataset (synthetic). Column Size denotes the number of
sequences and Fold denotes which fold was used.
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Real Set Synthetic Set

Size Fold Size Fold IDP↑ IDR↑ DetA↑ AssA↑ IDF1↑ HOTA↑

3 a 18 a 62.653 53.443 45.824 49.286 57.683 46.968

3 b 18 b 44.166 72.288 39.513 67.894 54.831 51.514

3 c 18 c 66.111 57.044 47.974 51.432 61.244 49.268

3 d 18 d 67.937 55.626 45.120 53.142 61.168 48.695

3 e 18 e 67.314 64.160 49.847 55.861 65.699 52.523

3 f 18 f 74.162 59.827 51.015 56.889 66.228 53.463

3 g 18 g 62.410 57.089 43.517 53.589 59.631 47.928

7 h 14 h 44.227 73.213 40.035 67.432 55.143 51.738

7 i 14 i 62.208 64.166 48.555 54.669 63.172 51.261

7 j 14 j 63.459 66.120 49.082 58.896 64.762 53.421

14 k 7 k 43.836 78.055 40.616 68.205 56.142 52.385

14 l 7 l 45.196 79.390 41.596 68.821 57.600 53.242

14 m 7 m 60.775 67.998 48.565 59.332 64.184 53.390

18 n 3 n 44.370 78.334 41.759 68.752 56.651 53.378

18 o 3 o 42.178 77.860 40.276 66.858 54.716 51.656

18 p 3 p 44.261 77.375 40.184 69.770 56.311 52.751

18 q 3 q 43.894 78.164 41.590 66.904 56.218 52.510

18 r 3 r 43.388 79.442 40.974 69.318 56.124 53.073

18 s 3 s 60.466 59.020 44.717 56.860 59.734 50.124

18 t 3 t 44.689 81.538 41.186 69.973 57.735 53.523

21 u 0 NA 43.207 79.424 41.177 67.884 55.967 52.633

Table 3.4: Results for TransTrack architecture trained on datasets with different concentrations
of MOT17 dataset (real) and MOTSynth dataset (synthetic). Column Size denotes the number of
sequences and Fold denotes which fold was used.
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3.5.3 MOT17

We observe up to 10% increase in HOTA metric for supplementing the MOT17 dataset with the

MOTSynth dataset. However, unlike the previous two benchmarks where an increasing trend was

observed, our examination reveal about a constant increase in performance measure invariant of the

real-synthetic concentrations throughout the experiments.

Guided by the FIDs analysis of high level features, amongst the folds with 3 real sequences, the

HOTA metric is the least when trained on samples with higher degree of difference for high level

features in comparison to when these samples are excluded. The same is observed in folds with 7

real sequences. This phenomenon becomes hazy for folds with 18 real scenarios. Also to note, the

performance metric improves when sequences with higher degree of difference are excluded from

the folds comprising synthetic data.

Experiments with the TransTrack architecture show a similar result, an almost constant trend

for the HOTA metric. However, the trend is clearly visible in the IDF1 metric. The performance of

the model is directly correlated with the amount of synthetic data in the training dataset. The fold

including the sequences with a higher degree of difference for high-level features, always performs

the worst among the folds of the same size.
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Figure 3.6: Change in tracking performance on increasing the concentration of synthetic samples
in the training set for Tracktor on UAVDT benchmark (top-left), VisDrone dataset (top-right) and
MOT17 dataset (bottom-left); for TransTrack on MOT17 dataset (bottom-right)

3.5.4 Guidelines

Considering the key insights derived in this section we can deduce that by using synthetic data,

one can increase the performance of a model. We derive the following principles from our experi-

ments.

• When synthetic data is used in orders of magnitudes of real data a performance can be antic-

ipated. In our experiments, the increase in performance was up to 15% when synthetic data

accounted five times more than the actual video sequences.

• The performance improvement is higher when the variance in low-level features is high. In

our experiments, we clustered sequences with values greater than 0.6 on our scale (FIDs

greater than 30 units calculated from first pooling layer features) as a high degree of difference

for low-level features. The presence of these sequences resulted in a better performance.

• The increase in performance is limited by the variance in high-level features and is recom-

mended to be kept minimal. Our experiments with sequences with values lower than 0.3 on
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our scale( under 1.75 units for FIDs calculated from pre-auxiliary classifier features) showed

an increased improvement.

3.6 Conclusion

In this study, we investigated the effectiveness of using synthetic data in combination with real

data for Single Camera Multi-Object Tracking tasks. We utilized three different datasets and two

different tracking techniques to evaluate the impact of using synthetic data. Our results indicate

that the inclusion of synthetic data in the training process of deep learning models improves the

performance metrics when compared to using real data alone. Furthermore, we also explored the

specific aspects of synthetic data that should be emphasized to further enhance the performance of

the models.

Our findings suggest that the combination of real and synthetic data can lead to a new paradigm

for training deep learning models. While synthetic data has traditionally been used for pre-training

or domain adaptation, our study highlights the potential for a simpler technique to complement real

data in the training process. We aim to validate the application of synthetic data for solving chal-

lenges such as bias mitigation, generalization of outside datasets, and wider applicability of existing

datasets in our future works. We believe that this approach can lead to improved performance in

a range of computer vision tasks and can pave the way for the development of more sophisticated

and accurate models. Overall, this paper contributes to the growing body of research on the use of

synthetic data and its potential for enhancing the capabilities of deep learning models.
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Chapter 4

Extended Experimentation

Abstract

This chapter presents the experimentation that isn’t documented in previous chapters. A qualita-

tive experiment for assessing models trained real data on a synthetic image, the detailed process by

which synthetic data was generated for experimentation in Chapter 3 with a preliminary evaluation

of models trained in combination with synthetic data. FID heatmaps excluded in from the analysis

in 3.3. An attempt to induce FID variation between synthetic and real datasets. Finally, samples of

the training datasets.
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4.1 Clipart Experiment

Figure 4.1: Model trained on real datasets successfully detecting in a synthetic scenario. Source:
Google Images

A model trained on real data successfully detected vehicles in a synthetic scenario as depicted

in 4.1. This raised the question, will a model trained on synthetic data will perform equally well on

real data?

4.2 Synthetic data generation with AirSim

AirSim[69] is a cross-platform open-source plugin for Unreal engine to simulate cars and drones,

it works as a platform by providing APIs for computer vision and reinforcement learning tasks. The

developers tried to provide close-to real-world physics and visuals for autonomous cars and drone

training. The inbuilt car and drone APIs can be used to communicate and control the choice of ve-

hicle, the Time of Day API lets the user retrieve or set the time of the day by changing the position

of the sun, and the weather API enables or disables different atmospheric conditions such as rain,

snow, dust and fog.

The experimental setup utilizes synthetic video sequences generated from a pre-compiled binary

AirSimNH environment, which was provided as an additional resource for the AirSim plugin [69]

for Unreal engine. This environment simulates a small block in an urban neighbourhood and is
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designed to be easily customizable for different use cases. The particular environment was selected

as it required minimal adjustments and was readily available for use. The objective is to evaluate

the efficacy of synthetic data for the purpose of assessing its impact on object tracking performance,

rather than creating a highly realistic simulation.

To generate the simulated video sequences, the environment was loaded with a MultiRotor

object as the selected vehicle, and two parallel processes were used. The first process dictated the

flight trajectory, while the second process captured the feed from the simulated drone’s camera. In

order to define the flight path, a connection with the environment using the MultiRotorClient API

was established. Once they connected, a set of three-dimensional coordinates were provided to

act as the path for the drone to follow. As the first process guides the movement of the simulated

drone within the environment, the second process assimilates input from the camera mounted on the

virtual drone. This was accomplished by establishing a parallel connection using the VehicleClient

API. An inbuilt detection API was also set up to detect vehicles within the field of view of the drone.

These processes execute in order to save frames and annotations to local storage.

To create a diverse set of simulated video sequences, the aforementioned steps for different

flight paths, and weather conditions were repeated. In total, 25 sequences were generated with an

image resolution of 960x540 pixels. The simulated sequences exhibited varying weather conditions,

including bright and sunlit conditions, rainfall, and snowfall, providing a diverse range of scenarios

for evaluation.
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4.2.1 Prelimnary results of training with synthetic data

Experiment HOTA Det. Acc. Ass. Acc.

R30 Det & ReId 0.61 0.61 0.61

R15aS15 Det & ReId 0.66 0.67 0.66

R15aS15 Det & R30 ReId 0.67 0.67 0.67

R15bS15 Det & ReId 0.65 0.67 0.63

R15bS15 Det & R30 ReId 0.66 0.67 0.65

R30S15 Det & ReId 0.61 0.62 0.60

R30S15 Det & R30 ReId 0.62 0.62 0.62

R30 Det & R30S15 ReId 0.61 0.61 0.60

R30 Det & R15aS15 ReId 0.61 0.61 0.61

R30 Det & R15bS15 ReId 0.61 0.61 0.61

Table 4.1: Tracking metrics for test sequences, quantity after R represents the number of real se-
quences and that after S represents the number of synthetic sequences. R30 Det & ReId is the
benchmark with detector and re-identifiers trained on 30 real sequences.

4.3 Clusters made using Preliminary FID analysis

FID Dims UAVDT VisDrone MOT17

low mod high low mod high low mod high

64 mean 7.80 18.93 32.80 7.40 - - 5.95 - -

std dev 2.93 2.33 2.60 2.31 - - 3.97 - -

768 mean 1.60 2.13 2.65 1.72 2.07 2.76 1.75 1.99 2.72

std dev 0.05 0.19 0.12 0.01 0.22 0.21 - 0.16 -

Table 4.2: FID statistics for different clusters formed as per discussion in Section 3.3

38



4.4 Excluded FIDs

Figure 4.2: FID192: Fréchet Inception Distance obtained from second max pooling layer features.
Left: UAVDT and AirSim, Right-Top: Visdrone and AirSim, Right-Bottom: MOT and MOTSynth.
Each row represents a real sequence and each column represents a synthetic sequence.

39



Figure 4.3: FID2048: Fréchet Inception Distance obtained from final average pooling layer features.
Left: UAVDT and AirSim, Right-Top: Visdrone and AirSim, Right-Bottom: MOT and MOTSynth.
Each row represents a real sequence and each column represents a synthetic sequence.
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4.4.1 Failed attempt on inducing FID changes

Figure 4.4: FID64 (top) and FID768 (bottom) computations for a fold of 5 sequences from VisDrone
dataset with sequences from AirSim generated dataset. Left: Synthetic data is posterized, Right:
real data is posterized. Each row represents a real sequence and each column represents a synthetic
sequence. Posterizing the sequences didn’t bring any significant changes to the FID computation.
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4.5 Samples of Sequences

Figure 4.5: Frames from UAVDT dataset
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Figure 4.6: Frames from UAVDT dataset (contd.)
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Figure 4.7: Frames from UAVDT dataset (contd.)
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Figure 4.8: Frames from VisDrone dataset sequences used for training
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Figure 4.9: Frames from VisDrone dataset sequences used for training (contd.).
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Figure 4.10: Frames from VisDrone dataset sequences used for training (contd.)
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Figure 4.11: Frames from MOT17 dataset
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Figure 4.12: Frames from MOT17 dataset (contd.)
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Figure 4.13: Frames from MOT17 dataset(contd.
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Figure 4.14: Frames from AirSim dataset
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Figure 4.15: Frames from AirSim dataset (contd.)
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Figure 4.16: Frames from AirSim dataset(contd.)
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Figure 4.17: Frames from MOTSynth dataset
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Figure 4.18: Frames from MOTSynth dataset (contd.)
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Figure 4.19: Frames from MOTSynth dataset (contd.)
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4.6 Conclusion

This chapter presented a qualitative assessment of a model trained on real data for a synthetic

image, the process by which synthetic data was generated using AirSim along with a preliminary

evaluation of training in combination with synthetic data. FID heatmaps from the second max

pooling layer and final average pooling layer features. FID heatmap for sequences with an induced

variation. Lastly, samples of the training datasets.
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Chapter 5

Conclusion

The primary objective of this study was to assess the efficacy of incorporating synthetic data

with real data, a Single Camera Multi-Object Tracking task was selected to see this impact. To

this end, two different tracking techniques were employed on three distinct datasets for the goals of

vehicle and pedestrian tracking. The impact of including synthetic data in the training process was

investigated with two different synthetic datasets, out of which one was generated for this specific

purpose. Experimental results suggest that the inclusion of synthetic data as a supplement in the

training yields superior deep learning models compared to using solely real data. Moreover, we also

examined the specific characteristics of synthetic data that could be emphasized to further enhance

the performance of the models.

The findings from our study suggest that the utilization of a combination of real and synthetic

data can represent a novel approach to training deep learning models. While synthetic data has

typically been utilized for pre-training or domain adaptation, our work highlights the potential of a

simpler technique that can supplement real data in the training process. We intend to validate this

application of synthetic data in future works, particularly in resolving issues such as bias mitigation,

generalization of outside datasets, and the wider applicability of existing datasets. New architectures

like SAM [44] opened gateways for new tracking techniques like Track Anything [76], and further

works will also be aligned towards assessing the efficacy of synthetic data with foundation and

promptable models. More specifically, the scope of applying synthetic data to such techniques.

Our work presents a promising opportunity to improve the performance of computer vision
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tasks, paving the way for the development of more advanced and accurate models. Ultimately,

this paper contributes to the burgeoning research on the use of synthetic data and its potential for

enhancing the capabilities of deep learning models.
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