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Abstract

Purpose: Support structures are often needed in additive manufacturing (AM) to print overhangs. However, they are
the extra materials that must be removed afterwards. When the supports have many contacts to the model or are even
enclosed inside some concavities, removing them is very challenging and has a risk of damaging the part. Therefore,
the purpose of this paper is to develop a new type of tree-support, named escaping tree-support (ET-Sup), which tries
to build all the supports onto the build plate in order to minimize the number of contact points.
Methodology: The methodology is to first classify the support points into three categories: clear, obstructed, and
enclosed. A clear point has nothing between it and the build plate; an obstructed point is not clear, but there exists a
path for it to reach the build plate; and an enclosed point has no way to reach the build plate. With this classification,
the path for the obstructed points to come clear can be found through linking them to the clear points. All the
operations are performed efficiently with the help of a ray representation.
Findings: The method is tested on different overhang features, including a lattice ball and a mushroom shape with a
concave cap. All the supports generated for the examples can find their way to the build plate, which looks like they
are escaping from the model. The computation time is around one second for these cases.
Originality: This is the first time truly realizing this ‘escaping’ property in the generation of tree-like support struc-
tures. With this ET-Sup, it is expected that the AM industries can reduce the manufacturing lead time and save much
labor work in post-processing.
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1. Introduction

Additive manufacturing (AM), or three-dimensional
(3D) printing, produces parts by accumulating mate-
rial layer-by-layer. Despite its capability in building
very complex geometry, it is limited by gravity and can-
not add material in the air. When a model has over-
hangs (disconnected regions at a layer) or bridges (can-
tilever beams) that are not supported by anything be-
low, the layered process leads inevitably to the need
of support structures. Support structures have been
considered a necessary evil in AM. On the one hand,
they serve the purposes of part balancing and thermal
dissipation besides ensuring the printability. On the
other hand, since they are not part of the model, addi-
tional work is needed to remove them, which increases
both material and labor costs, and they can damage the
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model. Therefore, many try to minimize the use of sup-
port structures by reorientation [1] or altering the ge-
ometry [2]. However, they are often a must for most
real-world models, especially if they are complicated.
When a printer can fabricate multiple materials, an ex-
cellent option is to use soluble support (e.g., polyvinyl
alcohol and polystyrene), which can be dissolved away
cleanly without worries [3]. Unfortunately, there are
techniques only able to fabricate one material, for ex-
ample, stereolithography (SLA), digital light processing
(DLP), single-nozzle fused filament fabrication (FFF),
electron-beam melting (EBM) [4], and selective laser
melting (SLM) [5]. In these cases, the support struc-
tures must be printed with the same material, and they
need to be broken away after the print.

A common type of the break-away support structures
is the linear or lattice supports [8], which prop the en-
tirety of the overhangs using a set of vertical pillars (see
Fig. 1a). This kind of support is reliable, but they are
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Figure 1: The support structures generated for a mushroom model:
(a) linear support by Cura [6], (b) tree-like support by Meshmixer [7],
and (c) escaping tree-support by the present method.

notoriously harder to remove and more likely to dam-
age the model. Another type of supports is the tree-like
supports [9], which grow branches to touch the over-
hangs (see Fig. 1b). Tree supports use less material and
have less contacts with the overhangs, so that they are
easier to remove and cause less damage. This is why
the tree-like supports have drawn much attention in re-
cent years. However, most existing works (will be re-
viewed) focus on reducing the manufacturing time and
the material waste. Surprisingly, after having years of
experience collaborating with 3D printing industries, it
is found that they actually do not care that much of the
added material cost. The reason behind is that the manu-
facturing cost of a part includes all the processes needed
to produce the part. That is, it is not only determined by
the print time and the material cost, but also the post-
processing like support removal. The lower cost of one
may be overwhelmed by the higher costs of other oper-
ations. For example, 50 grams of support material may
cost only $1, but removing them can take an hour of
labor work, which can cost $20. Some processes, like
DLP, may not even add time to print supports, making
the post-processing the major concern in the increased
cost. There are a few methods addressing the support re-

moval problem, for example, weakening the supports to
facilitate the removal [10] and using robotics to remove
them [11]. However, a significant amount of time is still
needed if there are many contact points, where the sup-
ports fuse to the model. It becomes extremely difficult
when the contact points are located in some concavities
of the model, like the one in Fig. 1b.

This motivates the present research to explore the
possibilities to reduce the number of contact points and
try not to have some supports fully surrounded by con-
cave features. It is observed that the top of the sup-
port is unavoidably in contact with the model, but its
base is attached to either the build plate or the model,
depending on what is beneath. If the bases could be
built not on the model, but only on the build plate (like
Fig. 1c), there would be fewer contact points and all the
structures, including those supporting concave features
would at least have part of them exposed to the outside,
facilitating their removal. However, the generation of
tree-supports is already at least NP-hard [12]. Finding a
tree that does not root in the model is even more chal-
lenging. This paper proposes a practical method to find
such a solution – named Escaping Tree-Support (ET-
Sup). Being practical here means that the method can
determine if there is a solution and find it in a reason-
able time. The main idea is to first classify all the points
need to be supported as clear, obstructed, or enclosed. A
clear point means that there is nothing below it except
the build plate, an obstructed point is not clear, but it can
reach the build plate through branches, and an enclosed
point cannot reach the build plate at all. After that, the
supports are constructed to link the obstructed points to
the clear points, such that the obstructed points ‘escape’
from the model and come clear. The contributions are
summarized as follows:

• Starting from the build plate (bottom-up), morpho-
logical operations that can consider the support
size is applied across the layers to reach and clas-
sify the support points.

• A divide-and-conquer algorithm is employed to
group the support points according to their
height level (top-down) and connect them through
branches based on their classification.

• A ray representation is used to make the above op-
erations can be efficiently performed, including the
clearance check and interference search.

Experimental results show that the present method can
successfully generate ET-Sup for various models in-
cluding the mushroom shown in Fig. 1. ET-Sup facil-
itates its removal and helps the 3D printing industries
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and communities reduce the manufacturing lead time.
This paper focuses on the tree-support structures and the
purpose is to ensure the printability. It is expected fur-
ther research to develop more sophisticated algorithms
for other type of supports and purposes.

The rest of the paper is organized as follows. The
literature is reviewed in Section 2. Section 3 presents
the technical details of the ET-Sup generation. The re-
sults are given in Section 4, and the paper concludes in
Section 5 with discussion and future works.

2. Literature review

Since support structures are often unavoidable in
additive manufacturing, there is growing attention on
them. Interested readers can find the past development
in a review paper [13]. This section surveys the more
recent works in the related topics, in terms of the min-
imization, the detection, and the generation of support
structures.

2.1. Support minimization
When it is still in the design phase, the shape of a

model can be optimized to minimize the use of supports.
For example, support slimming [2] deforms the over-
hangs of a model such that they become self-supported
while preserving the global shape of the model. Re-
ducing support structures can be formulated as a con-
straint in topology optimization [14]. Similarly, there is
also flexibility to design support-free hollowing [15, 16]
during the generation of internal structures. When the
model cannot be altered any more and needs to be
printed as is, advanced manufacturing techniques could
be applied to print the part without supports. For exam-
ple, Dai et al. [17] used a robotic arm to deposit material
along curved layers, and Yang et al. [18] used a rotating
optical fiber to cure materials at different angles. How-
ever, these would require specific tools and make their
use limited to the experts. When multiple parts are fabri-
cated in one build, the support materials can be reduced
by putting a part under another part [19], but this cre-
ates even more contact points on the parts, increasing
the risk of damages and the difficulty of removal.

2.2. Support detection
A straightforward way to detect the support points

(i.e., overhangs) is to compare the facets’ normal of a
standard triangle language (STL) model with the build
direction [20]. However, it is more complicated than
imagine because there are also the self-support capa-
bility and the bridging effect of material, and this sim-
ple checking method may result in much more contact

points than needed. As such, various methods were
proposed to work with other representations. Huang et
al. [21] computed the support regions in image space
by subtracting the slice image of a layer by the one of
the layer below, and Shi et al. [22] sliced on bound-
ary representation (B-rep) models to get the support
points. Huang et al. [23] used surface elements (surfel)
to describe the points on a model’s surface and applied
machine learning for support detection, which can find
much fewer support points. Recently, Jang et al. [24]
applied layered depth images to detect support points,
which can guarantee that no floating island would be
missed. However, none of these methods can classify
if a support point is obstructed or enclosed, which is an
objective of this paper.

2.3. Support generation

To properly hold the detected support points, there
are different support structures developed in the litera-
ture, including vertical array [8], lattice [25], slopping
wall [26], bridge-like [27], and tree-like [28]. Among
them, tree-like support is much considered since it
groups the support branches before reaching the build
plate and thus better utilizes materials. Generating tree-
supports can be described as the Euclidean Steiner Min-
imal Tree problem, which is at least NP-hard [12]. Zhu
et al. [9, 29] used a hybrid of a particle swarm optimiza-
tion and a greedy algorithm to design the tree-supports.
The method saves up to 8% material and 13% print time
compared to the results obtained by the Autodesk Mesh-
mixer [7], and it has a computation time from minutes
to hours. They further stabilized the fabrication process
and reduced the material waste by using a two-level sup-
port structure, where the first level uses beam-supports
and the second level uses tree-supports [30]. To speed
up the tree generation process, Zhang et al. [28] pre-
sented a divide-and-conquer (D&C) strategy to itera-
tively create branches through the local barycenters.
This method reduces the computation time down to sec-
onds and saves even more material up to 50%, compared
to Meshmixer [7]. All these methods aim to reduce
the material waste and the print time, but none made
the supports escape from the model to reduce the post-
processing time. Although Meshmixer [7] allows users
to choose whether they want all supports to be built on
the build plate only, it simply leaves the overhangs un-
supported if it cannot find a solution for them. Properly
achieving this function is another objective of this paper,
even when the support points are obstructed.
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Figure 2: A flowchart of the ET-Sup generation process.

3. Methodology

The overview of the proposed ET-Sup generation is
shown by a flowchart in Fig. 2. As mentioned in the
introduction, the keys to realize the ET-Sup are the clas-
sification of support points and linking the obstructed
points to the clear points. Both operations require
the spatial relations of the support points. Therefore,
a richer representation – layered depth-normal image
(LDNI) – is employed. LDNI [31] is a ray represen-
tation containing the information as of voxel ones, but
taking much less space, and it has been shown to be a
robust tool for geometric operations [32]. It will be first
demonstrated by the identification of support points and
then applied to obtain the needed spatial relations for
the other operations on-the-fly. The required inputs of
the method besides the model are:

• layer thickness (t),
• self-support length (s) – the maximum horizontal

length can be printed in one layer that is not sup-
ported by the previous layer,

• support clearance (c) – the support size, the gap
between the support and the model, etc.

The self-support length is defined by the 3D printer and
the material used, or by the angle threshold for over-
hangs (θ), i.e., s = t tan θ. The clearance controls how
far the supports should be kept from the model, which is
used to reduce the risk of the supports merging with the
model and damaging the model. There are also other pa-
rameters like z-offset and tip size, but they are optional
and have a predefined value.

3.1. Identification of support points
A LDNI is a two-dimensional (2D) image located

on the build plate and large enough to cover the entire
model (see Fig. 3). Through rendering techniques, each
pixel (px) shoots a ray from the build plate to intersect
with the model and stores a sequence of sample points
(p) with a depth and a normal, i.e., p = (i, j, d,n), where

Figure 3: An illustration of converting a letter ‘F’ model to a LDNI.

i and j are the pixel indices, d is the depth, and n is the
normal vector. Thus, the LDNI sample points can give
information along the height, without going through all
the layers or doing 3D intersections. For example, they
can be used to quickly detect whether a position (x, y, z)
is inside or outside (In/Out) the model. Assume the
build plate is located in the x − y plane and the build
direction is along the z-axis, the In/Out check can be
done by first getting the pixel (i, j) where (x, y) is lo-
cated and then comparing the z value to the depth (d) of
the sample points on the ray of the pixel. If it is found
above a sample point where the ray enters the model (in-
point, pin) and below a sample point where the ray exits
the model (out-point, pout), then the position (x, y, z) is
located inside the model. The In/Out of a sample point
can be classified easily by its normal, i.e., if its normal
points towards the build plate, it is an in-point.

Given the LDNI (I), Algorithm 1 shows how to locate
the points need to be supported. Firstly, only the in-
points (pin) need to be checked, which can be collected
by going through all the rays and checking the normal
of all sample points. Secondly, one way is to use the
normal and compare with the build direction to check
if a point needs to be supported, but this method over-
looks the self-support capability of material and identi-
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Algorithm 1: Identify support points
input : LDNI (I), self-support length (s)
output: S upPointList

1 forall in-point pin : (i, j, d) of I do
2 l← layer(d);
3 bS up← f alse;
4 forall px : (m, n) ∈ I | dist(px, pin) ≤ s do

/* dist() returns 2D distances */

5 if I.io(m, n, l) and I.io(m, n, l − 1) then
/* io() checks In/Out */

6 bS up← true; break;
7 end
8 end
9 if bS up = f alse then

10 S upPointList.push(pin)
11 end
12 end

fies more support points than necessary. Given the self-
support length (s), Algorithm 1 checks if there is any
material in the previous layer (l − 1) within the self-
support length centered at the point pin. The function
io() returns true if a position is inside the model. The
layers should be connected to provide the support, so
there should be material at the same position too in the
current layer (l) where pin is located. Finally, if no self-
supporting is found, the point is stored in a list of sup-
port points (S upPointList), which is used for the next
steps.

The number of rays and sample points depends on the
image resolution, i.e., the higher resolution, the more
rays and points. There is a balance between the sam-
pling error and the computation speed. In the context
of support generation, the resolution only needs to be
as high as the required density of the support points. In
other words, each support point can support a portion
of the overhangs, and the size of the portion is related
to the self-support length (s), so the distance between
two support points can be as large as 2s. Similarly, the
pixel size of the image can be 2s as well. To be safe
and to get a smoother result, this paper uses a smaller
pixel size, i.e., 0.5s, and sub-samples the support points
to maintain the distance between points roughly equal
to 2s.

Implementation note
The search of the self-support region in line 4 of Al-
gorithm 1 is a simplified version just to make the algo-
rithm easier to understand. This way does not consider
the connectivity between the pixels, and there may be

a risk that a supported pixel (m, n) is not linked to the
point (i, j). In the actual implementation, a front propa-
gation method is used to make sure there is a connection
to every pixel that is checked for self-supporting.

3.2. Classification of support points

A key component to the success of building ET-Sup is
knowing which support points are reachable by the sup-
port structures that have their bases on the build plate.
This paper classifies the support points into three cate-
gories:

1. Clear: can be directly extruded to the build plate
2. Obstructed: need to be displaced until clear or be

linked to a clear point
3. Enclosed: can only add support onto the model

Examining the clearness of a point is straightforward,
i.e., iterating over all pixels inside a circle of radius c
centered at the point and checking if there is anything
below them. The challenge is how to identify the ob-
structed points from the enclosed ones, because both
are not clear and it requires the spatial relation between
the points and the whole model to distinguish them. A
propagation algorithm and morphological operators are
developed in this paper to make this classification fast.
Note that the support points are commonly offset by a
small distance in the normal direction of the surfaces
they are located, and a cone is built in the offset distance,
so that the supports are always approaching to the sur-
face in its normal direction and the support removal is
easier. Therefore, it is actually the offset support points
here is classifying.

The method to classify the obstructed and the en-
closed points is illustrated in Fig. 4 and detailed in Al-
gorithm 2. The basic idea is to grow a feasible re-
gion (FR) from the build plate all the way to the top
and see which support points are reached. This is re-
alized by two morphological operations and with the
help of a supported region (S R), which is the region
supported by the feasible region of the previous layer.
For the first layer (S R0), the supported region is set as
the whole build plate. The first morphological opera-
tion is a dilation that enlarges the feasible region (FRl)
by the self-support length s to get the supported region
(S Rl+1). The second operation is like an erosion that
shrinks the supported region (S Rl) to obtain the feasible
region (FRl). However, the shrinkage needs to be based
on how the model occupies the space, so this erosion-
like operation is implemented by a subtraction and two
dilation operations. Firstly, since only the supported re-
gion and the region around are of interest, this region
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Figure 4: Support classification: (a) A dilation operation is applied
to the feasible region (green) to get the supported region (yellow) for
the upper layer. (b) An erosion operation is applied to the supported
region to get the feasible region for the same layer. (c) An illustra-
tion of the process applying the dilation and the erosion operations
repeatedly starting from the build plate to reach the support points.

of interest is acquired through applying a dilation oper-
ation to the supported region by the clearance c. Sec-
ondly, the in-region (IR) that the model occupies can be
found by checking the In/Out for each pixel in the di-
lated region. After that, another dilation is applied to
the in-region IR to consider the clearance c. Finally, the
result is subtracted from the supported region S R to get
the feasible region FR at the same layer. These two op-
erations are iterated layer-by-layer until the layer of the
highest support point is checked. All the non-clear sup-
port points that are reached by the feasible region are
the obstructed points, otherwise they are the enclosed
points. This method can quickly classify all the points
with one single pass of propagation, and it can also con-
sider the support clearance (c) in the search.

Implementation note
The layers are relatively quite small compared to the
model, and thus the shape change in the consecutive
layers could be insignificant. Therefore, the search does
not have to be done in every layer, but only every n-
layers (e.g., n = 50), as long as the self-support length
(s) and the support clearance (c) are multiplied by n
too. The exceptions are the layers which contain support
points and where the model has sharp change in shape.
These layers must be checked in order not to miss any
support points or grow the feasible region wrongly. The

Algorithm 2: Classify support points
input : S upPointList, I, s, c
output: ObstructList, EncloseList

1 L← maxlayer(S upPointList);
2 S R0 ← build plate ; // Supported region

3 for l = 0 to L do
/* Erosion-like operation */

4 IR← ∅ ; // In region

5 forall px : (m, n) ∈ (S Rl ⊕ c) do
6 if I.io(m, n, l) then
7 IR.push(px);
8 end
9 end

10 FRl ← S Rl − (IR ⊕ c) ; // Feasible reg.

/* Classification */

11 forall p ∈ S upPointList | layer(p) = l do
12 if p ∈ FRl then
13 ObstructList.push(p)
14 else
15 EncloseList.push(p)
16 end
17 end

/* Dilation operation */

18 S Rl+1 ← FRl ⊕ s
19 end

sharp change in shape can be detected quickly using
LDNI too through the analysis of a shape profile [33].
In addition, because the In/Out check is always from the
bottom to the top, a 2D array can be used to record the
checked sample point on each ray of the LDNI. In this
way, each In/Out check is further sped up, from O(k) to
O(1), where k is the number of sample points on a ray.

3.3. Generation of escaping tree supports
With the support points classified, they can be linked

with branches according to their combinations. To
have an efficient approach, the D&C method [28] is
considered in this paper to generate the tree structure.
Although this method can group the support points
quickly, it is not able to build structures that escape from
the model, so it cannot be directly applied here. In addi-
tion, the previous method processed the support points
by the overhang regions sequentially, which can make
sure the points are close to each other and have similar
property (e.g., height). However, this limits the group-
ing to happen only in each region and eliminates many
combinations that could lead to better solutions. There-
fore, the same D&C strategy is employed here to divide
the support points into different sub-domains and build
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Algorithm 3: Scan points by height
input : S upPointList, I
output: S upport

1 L← maxlayer(S upPointList);
2 mask ← ∅ ; // 2D Array

3 for l = L to 0 do
4 forall p : (i, j) ∈ S upPointList | layer(p) = l

do
5 if mask(i, j) , ∅ then
6 S upport +=

GenerateS upport(mask, l + 1);
7 end
8 mask(i, j)← p;
9 end

10 end
11 S upport += GenerateS upport(mask, 0);
12 S upport += BuildS upportToPlate(mask);

the tree structures partially in each sub-domain, but a
completely new dividing and construction method is de-
veloped for the generation of the ET-Sup.

The support points here are in the form of the LDNI
sample points. Although they do not have the informa-
tion about whether they are from the same overhang re-
gion, their spatial relationship can be obtained through
the image space. That is, the division can be done by
splitting the image into equally sized blocks. In this
way, the support points can be grouped regardless of
their connectivity on the model. However, since all the
support points are considered together, there could be
overlapping (i.e., more than a point located in a pixel),
and some points may differ very much in height even
they belong to the same block. Therefore, a top-down
scanning algorithm is developed to make sure the sup-
port points are processed in order, which is detailed
in Algorithm 3. This scanning algorithm collects sup-
port points to a 2D mask (mask) layer-by-layer from
the highest (L). The mask has the same size of the
LDNI, and the points (p) are stored in the same pixel
location (i, j). This mask is maintained always having
only one point in each pixel. When another point is go-
ing into an occupied pixel, it will pause the scanning at
the height and generate the support structures partially
for the points above (GenerateS upport()). This partial
structure is restricted not to go lower than the height
(l + 1) where the scanning is paused.

The overall D&C approach to generate the support
structure is shown in Algorithm 4. In the dividing step
(DivideS ubRegions()), the mask is divided into a set of
blocks with a size hg. The size of blocks is small at the

Algorithm 4: Generate Support
input : mask, lmin, s, ClearList, ObstructList
output: S upport (partial)

1 hg ← 2s;
2 while hg < size(I) do
3 S ubR← DivideS ubRegions(mask, hg);
4 forall r ∈ S ubR do
5 RoI ← ∅ ; // region of interest

6 switch χ : {∀p ∈ r} do
7 case χ ⊂ ClearList do
8 RoI ← CH(χ) ; // conv hull

9 case χ ⊂ ObstructList do
10 ζ ← FindClearRegion(r);
11 if ζ , ∅ then
12 RoI ← ζ;
13 else
14 RoI ← CH(χ);
15 end
16 otherwise do // clear+obstruct

17 RoI ← CH(χ ∩ClearList);
18 end
19 end
20 pnew ← FindValidNode(RoI, lmin);
21 if pnew , ∅ then
22 S upport += Connect(pnew,∀p ∈ r);
23 end
24 end
25 hg ← 2hg;
26 end

start, i.e., two times the self-support length (s), and it
is doubled in each iteration. Each block is a sub-region
(S ubR), and the conquering step is performed to con-
nect the support points in each sub-region (some exam-
ples can be seen in Fig. 5). The main goal here is to find
a pixel, preferably clear, within each block at a height
such that it is reachable by all support points through
self-supported branches and will not cause any colli-
sion to the model. The collision detection can be done
quickly by the In/Out check in the image space. If there
are multiple solutions, the one that uses the least mate-
rial is selected. This search (FindValidNode()) can be
realized by checking all the pixels within the block and
lowering the height by a layer repeatedly until such a
pixel is found or the height goes below the limit. How-
ever, this way would have many unnecessary checks
when the blocks are large. Therefore, a region of in-
terest (RoI) is introduced to speed up the process, and
the search will be performed only in the RoI. The RoI is
set up based on the classifications of the support points
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Figure 5: Two types of connection to create branches: flat triangle
vs. right triangle, and their way to calculate the height (h). The solid
points (green) represents the clear points, and the hollow points (blue)
represents obstructed points.

(χ). In the case of all clear points (χ ∈ ClearList), the
RoI is the convex hull of these clear points (CH(χ)).
In the case of all obstructed points (χ ∈ ObstructList),
it first tries to find whether there are any clear regions
within the block (FindClearRegion()). If yes, the RoI
is set to these clear regions (ζ), otherwise the RoI is
the convex hull of the points and the new node main-
tains an obstructed status. In the case of having both
clear and obstructed points, the RoI is the convex hull
of only the clear points. Once a valid pixel is found, a
new node (pnew) is created at the pixel’s location, and
all the support points in the block are connected to it
forming branches (Connect()).

After generating the partial tree-supports, there is a
function BuildS upportToPlate() at the end of Algo-
rithm 3 to connects all the latest new nodes (pnew) to
the build plate. These are the nodes can no longer be
grouped to form branches due to their heights being
too low or connecting them will make collision to the
model. If a nodes is clear, a vertical pillar can be built
to connect it directly to the build plate. If a node is ob-
structed, it finds a shortest path to reach a clear location
using the propagation algorithm applied to support clas-
sification in Section 3.2. This would be computationally
expensive, but thanks to the nature of the tree-supports,
only a limited number of nodes near the bases need to
be processed, and surprisingly none of the tested cases
(even the mushroom model) need this operation. Once
the whole tree connectivity is defined, the final support
structures can be obtained by putting a cylinder with a
user-defined size to each of the branches.

Implementation note
For the function FindValidNode() to find a valid node,
it does not have to start from the layer of the lowest point
within the region and lower the height one layer at a
time. Based on the configuration of the points, it is pos-
sible to estimate the height where a valid point is more
likely to be found. There are two different types of con-

nection to create branches as shown in Fig. 5. Gener-
ally, when the points are evenly distributed, the farthest
points are connected together through the lines inclined
at the self-support angle (θ). In this case, the shape of
a flat triangle is formed, and the height (h) below the
lower point can be calculated as: h = (D tan θ − δ)/2,
where D and δ are the horizontal and vertical distances
between the farthest points. When an obstructed point is
far away from the clear points, it should be connected to
the nearest point at the inclined angle, which results in
the shape of a right triangle, and the height is calculated
as: h = D tan θ, where D in this case is the horizon-
tal distance between the obstructed point and its nearest
clear point. In this way, most of the valid points were
found at the first height being checked or among a few
layers under that height.

4. Results

The present methodology is implemented in C++ on
top of the online available source code of LDNI [31]. It
is tested on a PC running 64-bit Windows 10 equipped
with Intel Core i5-6500 CPU@3.20GHz, 8GB RAM,
and NVIDIA Quadro K620. Three examples are used
to demonstrate the method, and the time statistics are
also reported. The results are mainly compared with
the commercial software – Autodesk Meshmixer [7].
Most settings are using the default values for Ultimaker,
but since Meshmixer cannot consider the self-support
length, ‘Angle Thresh’ (i.e., self-support angle) and
‘Density’ are reduced from 45◦ and 75% to 30◦ and
50%, respectively, to mimic the self-support capability.
This change only reduces the number of support points
and thus improves the computational speed for Mesh-
mixer, so it does not exist any unfairness in the com-
parison. ‘Post Diameter’ is also reduced from 3 mm to
1 mm for the sake of saving material. There is an option
of ‘Allow Top Connections’ to switch between whether
the support bases can be located on the model or must
be on the build plate. This feature will be tested as well,
and it will be shown that it is very limited in practice.
For the required inputs of the present method, the layer
thickness (t), the self-support length (s), and the support
clearance (c) are set as follows: s = 1 mm, c = 1 mm,
and t = 0.1 mm.

4.1. Letter ‘F’

In this section, a letter ‘F’ model is used to demon-
strate the present method. A step-by-step illustration
in Fig. 6(a) shows how the ET-Sup is generated af-
ter the support points are identified, offset, and clas-
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Figure 6: (a) The steps of generating ET-Sup. (b) The final result of ET-Sup in different viewing angles. (c) The tree-support generated by
Meshmixer with and without top connections (i.e., root in model).

sified. The letter ‘F’ model has two horizontal over-
hangs: one at the top and one in the middle, and the
support points are located at the bottom of them. The
support points at the top are classified as obstructed, ex-
cept the ones at the tip, and all the other points are clear.
One iteration in the figure is one call of the function
GenerateS upport() in Algorithm 3 to partially gener-
ate support structures when there are overlapping sup-
port points in different height levels. As such, the first
iteration builds support for the top overhang, and the
second iteration builds support for the below one. The
function GenerateS upport() is detailed in Algorithm 4,
where the divide-and-conquer (D&C) takes place to cre-
ate supports in each sub-region. The supports that are
generated in different D&C steps are highlighted in dis-
tinct colors. Usually, the new nodes from higher height
levels would be linked to the points in the lower ones,
but it is not seen in this example because linking them
would cause intersections to the model. At the end of
the iterations, the last nodes are linked to the build plate,
and the final result is shown in Fig. 6(b).

From the front view, it is clear that the obstructed

points at the top have their supports go towards either
the left or the right side of the model where they be-
come clear. This phenomenon is caused by two cases of
handling obstructed points in the D&G algorithm. First,
for the sub-regions on the edge, when all the points are
obstructed, the function FindClearRegion() returns the
nearby region that is out of the model region. A new
node is created in this clear region and thus the node
is clear. For other sub-regions containing all obstructed
points, a new node is created roughly in the center of the
points and remain obstructed. Second, when the sub-
regions get bigger in the subsequent D&G steps, the ob-
structed nodes are grouped with the clear nodes. It be-
comes the case of ‘Clear + Obstructed’, and a new node
is created based on the location of the clear nodes. This
case is applied similarly to the other obstructed nodes in
the middle when the sub-regions are larger and larger.
As a result, the supports are constructed from the model
region to somewhere outside, which looks like they are
escaping from the model.

The tree-supports generated by Meshmixer are shown
in Fig. 6(c) with both allowing and disallowing top con-
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Figure 7: Lattice ball with ET-Sup.

nections. On the one hand, when top connections are
allowed, the supports at the top have both ends touching
the model, which would unnecessarily damage the top
surface of the lower overhang. On the other hand, when
top connections are disallowed, Meshmixer tries to join
the supports such that they do not touch the model, oth-
erwise they are not constructed. In this case, all the
supports at the top are eliminated, leaving the overhang
unsupported, which is obviously not a valid solution.
Therefore, although Meshmixer has the option not to
build the support bases on the model, its algorithm can-
not search for the escaping paths to realize the ET-Sup.

4.2. Lattice ball

A lattice ball shown in Fig. 7 is used to test the capa-
bility of the present method in handling complex topol-
ogy. The lattice ball is made of honeycomb structures
over the surface of a ball, and it has a genus number
of 190, e.g., the number of holes. It can be expected
to be very tedious if one needs to remove the supports
from each of the holes. Similar to a hollow ball shape,
the inner surface of the top half and the outer surface of
the bottom half are the surfaces that face downward and
need to be supported. The ET-Sup has been success-
fully generated for all the support points, and the sup-
port structures are built on the build plate through the
holes of the lattice without intersecting with the model.
This example verifies the generality of the approach,
and it can work for models with various complexity.

4.3. Mushroom

The mushroom model is already shown in Fig. 1. Its
cap has a deep concavity, which could enclose much
support material in it and make the support removal
challenging. This example compares with the results of
two other support generation methods. One is the linear
support generated by Cura [6], and the other one is the
tree-support generated by Meshmixer [7]. Apparently,
the ceiling of the cap cavity needs to be supported, and

Table 1: Material use and print time of different supports for the mush-
room model, where g = gram, h = hour, and m = minute.

Material Print time
Mushroom 20 g 2 h 40 m

Linear support 6 g 1 h 2 m
Tree-support 2 g 2 h 37 m

ET-Sup 1 g 1 h 2 m

all methods generate support inside the cap. Both the
linear and the tree supports have their tops supporting
the ceiling and the bases touching the floor of the cap
cavity. Surprisingly, even in such deep concavity, the
present ET-Sup can find its way out from the cap cavity
and join the supports below the cap. As a result, while
it was difficult to remove the linear and the tree supports
without breaking the stem of the mushroom, the ET-Sup
were successfully removed by a usual forceps.

In addition, with the consideration of self-supporting
and the ease of support removal, the supported surfaces
of ET-Sup have a better finishing even just assessed by
eye (see Fig. 1). To quantitatively measure the surface
roughness, a Phase II+ SRG-4000 Surface Roughness
Tester is used to obtain the profile of supported surfaces
with a sampling length of 0.25 mm. The arithmetic
mean roughness (Ra) is reported, which indicates the
average of the absolute value along the sampling length.
The linear support and the tree-support have a Ra value
of 31.93 µm and 29.79 µm, respectively, while the ET-
Sup has a Ra value of 19.65 µm. This results are in line
with the human visual assessment.

In terms of the material consumption and print time,
the statistics are summarized in Table 1. The mushroom
model itself uses 20 grams (g) of material and takes 2
hours (h) and 40 minutes (m) to print by a FFF printer –
Ultimaker. For each of the supports, the table shows the
extra material and the print time added to the print. For
example, the linear support takes an extra of 6 g material
and 1 h 2 m print time, i.e., a total of 26 g material and
3 h 42 m print time. Oddly enough, the tree-support uses
much less material (2 g) but has a much longer print
time (2 h 37 m). The reason behind is that although
the linear support needs much more material, they are
printed continuously; in contrast, the print head needs to
travel all around the model to print the tree-support, and
thus there are many empty travels resulting in a longer
print time. The ET-Sup uses even less support material
(1 g) than the commercial software. This means that the
previous work does not generate an optimal tree, and
the ET-Sup is an improvement even escaping supports
suppose to use more material.
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Table 2: Time statistics of generating ET-Sup and tree-support (by Meshmixer) on the tested models. m = min, s = second.

Model size (mm) Identify point Classify point Generate support Total Meshmixer
Letter ‘F’ 60 × 28 × 90 0.071 s 0.050 s 0.390 s 0.511 s 30 s

Lattice ball 60 × 60 × 60 0.061 s 0.375 s 0.168 s 0.604 s 4 m 15 s
Mushroom 53 × 53 × 37 0.052 s 0.016 s 1.527 s 1.595 s 1 m

Teeth 42 × 70 × 81 0.016 s 0.433 s 0.504 s 0.953 s 3 m 45 s

Figure 8: The mushroom model is fabricated by a bottom-up DLP
printer (3D Systems FabPro 1000).

One can use multi-material FFF to print the supports
with soluble materials. However, other manufacturing
processes like digital light processing (DLP) can hardly
print different materials and thus the supports must use
the same material. To test the present method in differ-
ent manufacturing processes, it is also applied to gener-
ate ET-Sup for DLP to print the mushroom model. The
DLP printer used is the 3D Systems FabPro 1000, which
is a bottom-up process, i.e., the object is printed upside-
down. The result is shown in Fig. 8, and the supports
were successfully removed from the cap cavity as well
with a usual forceps. This verifies the applicability of
the ET-Sup technique.

4.4. Dental model
To demonstrate the social impact of the method, a

maxillary teeth model is tested. One one hand, this
kind of model normally has some critical surfaces (e.g.,
teeth), and the model should be oriented such that those
surfaces have the least supports. On the other hand,
certain 3D printing processes (e.g., SLA/DLP) require
printing a model at an angle to increase the success rate
and improve the surface finishing. To satisfy both re-
quirements, it would be inevitable to have some parts of
the model on top of the other parts. This could create
unnecessary contact points on the upward facing sur-
faces, and preventing them as well might result in no
solution. The present method can eliminate these un-
necessary points and thus can alleviate the challenges
in finding a suitable print orientation. In this example,
the model is printed on its side vertically with a 10◦ tilt

Figure 9: Teeth model with ET-Sup.

as shown in Fig. 9. Most support points are located at
the sides of the base, and a few at the sides of the teeth.
Many of the upper support points are obstructed by the
lower part of the model, and if vertical pillars are used
to support them, they will be touching the critical sur-
faces of the lower part. The ET-Sup has been success-
fully generated for all the support points, and the sup-
port structures are only built on the build plate. This
example verifies the practicality of the approach, and it
has a great potential for many other applications.

4.5. Time statistics

The statistics of computation time for the three re-
ported models are listed in Table 2. Besides the to-
tal time, the time of each sub-process is also reported,
namely the identification and classification of support
points as well as the generation of ET-Sup. The time of
point identification also includes the time for ray trac-
ing to obtain the LDNI representation. Due to the rea-
son that no other methods can generate ET-Sup, there
is no comparison with other algorithms that work for
the same goal. However, the table also includes the
computation time of Meshmixer [7], which only gen-
erates tree-supports. It can be observed that the time
varies a lot in different models for Meshmixer. It takes
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30 seconds for the letter ‘F’ model, which has a simple
shape, but it takes more than 4 minutes on the lattice
ball model. This reveals that the algorithm highly de-
pends on the shape complexity. Thanks to the LDNI,
the shapes are represented by sample points on the rays,
and they can be processed in a unified way regardless
of the shape complexity. This can be seen from the re-
sults that all the examples are completed in a similar
time (0.5 – 1.5 seconds). In addition, the divide-and-
conquer method [28] also took around 1 second to gen-
erate tree-supports in all their examples. This shows
that the present method is comparable with the state-
of-the-art tree-support generation methods, even though
the search for escaping paths should take a longer time.

5. Conclusion

This paper presents a new support structure that tries
to build the support bases on the build plate to mini-
mize the number of contact points. The support finds its
way out of the model even the support points are located
in a deep concavity, and thus it is named escaping tree-
support (ET-Sup). To realize the ET-Sup, this paper pro-
poses to classify the support points into three categories:
clear, obstructed, and enclosed. There is no solution for
the enclosed points, but the obstructed points can be, for
example, grouped with the clear points to escape from
the model. The classification is realized by a propa-
gation algorithm, and the grouping is implemented in
a divide-and-conquer method. The efficiency of these
operations is achieved with the help of a ray represen-
tation – layered-depth normal images (LDNI). The ex-
perimental results have verified the present method, and
its computational speed is as fast as the state-of-the-art
and much faster than the current commercial software,
although they only generate tree-supports.

However, ET-Sup is not always the best solution.
Since ET-Sup is developed to facilitate material removal
in deep concavities, it does not have much benefit in
simple models. If a model does not have complex over-
hangs or concave features, ET-Sup is essentially a tree-
support. In addition, the linear support is better for sim-
ple models in terms of stability and print time. There
are also other limitations in the current implementation.
For example, the final step of linking the supports to the
build plate may result in some long and thin trunks that
can cause stability issues. The support strength should
be considered, and it could be enhanced by changing
the support size or using networked supports. In re-
gard to the contact points between the supports and the
model, a tip is currently placed on each of them to facil-
itate detaching the supports from the model. However,

a tip still has a strong connection, which requires cer-
tain tools like a forceps to detach it. With the ET-Sup,
it is preferred to design some disassembly features such
that the contact points can be detached automatically or
easily by a simple twist or push, and then the whole sup-
ports can be drawn out from the base. User preferences
can be incorporated too, if in case there is some partic-
ular holes (like in the example of lattice ball) that the
users want the supports to come out from.
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