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Origami is the art of creating a three-dimensional (3D)
shape by folding paper. It has drawn much attention from re-
searchers, and the designs that origami has inspired are used
in various engineering applications. Most of these designs
are based on familiar origami patterns and their known de-
formations, but origami patterns were originally intended for
materials of near-zero thickness, primarily paper. To use the
designs in engineering applications, it is necessary to simu-
late origami in a way that enables designers to explore and
understand the designs while taking the thickness of the ma-
terial to be folded into account. Because origami is primarily
a problem in geometric design, this paper develops a geomet-
ric simulation for thick origami. The actuation, constraints,
and assignment of mountain and valley folds in origami are
also incorporated into the geometric formulation. The ex-
perimental results show that the proposed method is efficient
and accurate. The method can successfully simulate a flat-
foldable degree-four vertex, two different action origami, the
bistable property of a waterbomb base, and the elasticity of
non-rigid origami panels.

1 Introduction
Origami is the art of paper folding, and it can be used to

transform a flat sheet of paper into a three-dimensional (3D)
shape without the paper being stretched, cut, or glued. How-
ever, paper origami is relatively weak and has little industrial
use. When a stiff material is applied in origami, the sheets are
normally joined by hinges where bending occurs. Since the
sheets themselves cannot be bent, this kind of folding struc-
ture is called rigid origami. Just as with paper origami, a
small number of folds can be combined to make intricate de-
signs in rigid origami. As such, rigid origami has many prac-
tical uses, such as applications of stents, space telescopes,
wheels, batteries, meta-materials, and 4D-printing.

As the use of rigid origami has grown, it has inspired
studies in the mathematics of folding. Many designs have
been presented, but because of the complex nature of folding,
many problems remain. There has been a surge in the general
interest in theoretical modeling and simulation that can pro-
mote an understanding and the development of novel folding
solutions. Simulating the deformation of the origami is im-

portant for conceiving, designing, and constructing practical
structures. Because rigid origami structures are stiff panels
connected by hinges, one way to model them is to treat each
hinge as a type of mechanical linkage [1]. To ensure that
configurations are valid and do not contain self-intersections,
constraints are applied to the fold angles. There are also nu-
merical approaches that use spring or truss representation
and triangulated meshes [2] to approximate the deforma-
tions. Although numerical methods may be computationally
expensive because a constrained optimization is required to
establish angle constraints, such methods are sometimes nec-
essary to achieve accurate results, especially when the elastic
properties of panels are also being considered. These meth-
ods focus on ideal origami, i.e., origami using materials of
near-zero thickness, like paper. Nevertheless, thickness af-
fects the folding behavior of a material and is not negligible
in most cases.

The folds in a sheet of near-zero thickness are as simple
as creases. However, the fold lines in a thick material have
more complicated configurations, and they may not even be
located at the same height along the thickness of the mate-
rial. One example of a non-zero-thickness, single-line fold
is a door hinge, which is always installed on the pull side of
the door. Therefore, when there are both mountain and val-
ley folds in a pattern, some of the fold lines are located on
one side of a sheet while other folds are located on the other
side. Various techniques [3] have been proposed to accom-
modate the thickness of materials. One way of implementing
thick origami is to extend the same kinematic model that is
used in near-zero-thickness patterns [4] to include thickness,
for example, by offsetting panels from the original plane [5].
However, these methods are not always successful for typi-
cal rigid origami mechanisms with interior vertices, and they
often require that the input surfaces are not flat. To develop
thick origami, the finite element method (FEM) can be used
as the simulation tool, but it is computationally expensive
and, in general, is useful only in simple folding scenarios.
Moreover, it is unable to easily preserve the assignment of
mountain and valley folds. When a structure cannot make a
sharp bend (as are possible with a creased idealization), the
hinge can be modeled as a shallow cylindrical segment [6]



or a smooth fold [7] (as opposed to creased fold). The ap-
proach models the bent region to exhibit higher-order geo-
metric continuity. The simulation of kinematic response is
enabled by a non-linear and constrained optimization based
on a generalization of Newton’s method.

Although optimization methods perform thick origami
simulations, the computations of these methods are expen-
sive, and the thickness of the material is not directly consid-
ered. The challenges of simulating thick origami have moti-
vated the present work to develop a simulation tool that can
be efficient while accommodating the thickness of the mate-
rial and the rigidity of the panels. Recently, the method of
Geometric-Driven Finite Element (GDFE) [8] has been de-
veloped to analyze problems that primarily focus on shape
deformation. This geometry-based method treats geometric
actuation as inputs and geometric changes as outputs with-
out having to convert the geometric variations into equivalent
stresses and strains, as is the case with a traditional FEM.

The process of folding origami has usually been mod-
eled by using the equations of kinematics. This kind of pro-
cess is often referred to as the study of the “geometry of mo-
tion.” However, kinematics is difficult to be generalized to
consider the different properties of thick origami, such as
the thickness or elasticity of the material. The objective of
the present research is to use a geometry-based method to
develop a general simulation of a thick material while main-
taining the efficiency of origami kinematics. To achieve this
objective, origami actuation, constraints, and the assignment
of mountain and valley folds in the geometric formulation
must be incorporated. The contributions of this paper are
summarized as follows:

1. A framework is developed for the simulation of thick
origami, which can automatically generate a geomet-
ric finite mesh from the origami pattern using different
types of elements to represent the hinges and the panels,
and can achieve real-time computations.

2. The actuation and folding based on the assignment of
mountain and valley folds are realized by a geometry
proximity function and a geometry projection operator.

3. To ensure that the configurations are valid, constraints
on the solution space are incorporated in the projection
operator without any additional burdens being imposed
on the computation.

The experimental results verify the proposed method and
demonstrate that it can simulate the folding of origami of
arbitrary pattern, topology, and shape.

Some results of this paper were presented in a confer-
ence [9]. To be comprehensive, this journal version has pro-
vided more detail in the specific procedure applied to the pro-
cess, given more detailed description of limitations or bounds
on the approach, done some comparisons with existing phys-
ical models from the literature, and added a discussion to
thoroughly explain the setting of the method.

The paper is organized as follows. The rest of this sec-
tion outlines related works. Section 2 gives an overview of
the geometric framework and its fundamentals. Sections 3
and 4 present the geometry proximity function and the geom-

etry projection operator. The experimental results are given
in Section 5. Section 6 discusses the settings and the practi-
cal issues, and the paper concludes in Section 7.

1.1 Related works
Origami simulation provides an understanding of the

structures of origami models and can be used as tools for
iterative design. Therefore, it is very important to users who
apply origami to practical purposes. There are diverse ap-
proaches for origami models, and there are different classifi-
cations of models. This paper will emphasize differences in
terms of the types of input/output of the deformation model.
For this purpose, the classification proposed by Bowen et
al. [10] is applied. That is, deformation models are cate-
gorized as kinematic, dynamic, analytical, and numerical.

Kinematic models are the most common because of their
similarity to the nature of the rigid origami mechanisms – for
example, spherical mechanism kinematics [11]. Because the
panels are considered rigid, which means that the complexity
of the model is reduced, kinematic methods can quickly con-
verge to solutions. However, as aforementioned, kinematic
models must be modified when the thickness or the prop-
erties of the material causes folds to be smooth instead of
creased. For example, the offset crease technique [12] con-
verts the original creases into two parallel symmetric folds
that must stay the same when rotated. This technique results
in a highly complicated model with a complex relationship
that must be maintained [13].

Dynamic models are similar to kinematic models, but
they approximate the hinges via torsional spring-dampers to
account for material stiffness and damping [10]. The defor-
mation is simulated by the force or torque inputs. However,
problems of explicit integration schemes in dynamic models
arise if the step sizes are too large. When simulating the elas-
tic behavior of origami is also necessary, the panels can be
modeled using plate theory [14]. Bar and hinge models [15]
are also used to simulate non-rigid origami structures. With
the help of graphics processing units, Ghassaei et al. [16] ap-
plied compliant constraints to guide the folding of an origami
model, which can achieve an interactive speed that is com-
pensated for by its accuracy.

Assuming specific beam geometries, analytical models
can account for different hinge configurations, variable cur-
vatures, or even elasticity [17]. These approaches explore a
unit cell or a portion of the pattern empirically, which suits
one specific origami pattern very well. However, these ap-
proaches cannot be readily extended to other origami sys-
tems or more complex geometries. Numerical methods, par-
ticularly the finite element (FE) model, discretize the system
into smaller and simpler portions [18]. An FE model can
determine the mechanical behavior of a model as a result of
applied forces and represent the hinges directly as flexible
materials. Alternatively, Tachi [19] derived a set of linear
equations from the kinematics of rigid origami, with the fold
angles considered as variables to represent the configuration
of an origami model. The folding motion is numerically cal-
culated using a linear approximation of constraints by single



vertices. The resultant trajectory is constrained by projecting
the variables onto a feasible region of angular movement.

To summarize, kinematic and dynamic models are fast,
but their use cannot be easily extended to general scenarios
as can be done with elasticity and smooth folds. Analyti-
cal and numerical models are versatile in many aspects, yet
they are generally created for relatively simple folding sce-
narios or small portions of the overall design. Otherwise,
the computation is slow. In terms of rigid panel assump-
tion, it is already considered in kinematic/dynamic models
by representing the panel as a linkage, but this requires ana-
lytical/numerical models to simulate the rigidity through dif-
ferent material properties. There is a need to reach a com-
promise among these model types. This compromise should
be computationally efficient to enable a full investigation of
different families of origami shapes, particularly during the
development of designs.

2 Geometric Simulation for Thick Origami
The FEM takes loads as input and stresses and deforma-

tions as outputs by solving a global system of equations that
is generated from the element equations. While the FEM can
theoretically provide a full understanding of origami design,
it is computationally expensive due to the use of partial dif-
ferential equations (PDE) and integral equations, the dynam-
ics and large deformations in origami, as well as the possible
non-linearity of material properties. These problems moti-
vate this research to apply the principles in kinematics to FE
models and present a geometry-based framework that is both
versatile and efficient for origami simulation. The basic idea
is to develop an FEM for which both its inputs and outputs
are positions (which makes it similar to kinematic models),
such that it can bypass the expensive computation of PDE
and integration.

The framework relies on the concept of shape optimiza-
tion [8]. Similar to FEM, it subdivides the whole model into
smaller and simpler FEs. After knowing a current shape and
defining the desired target shape of an element, a geometry
proximity function can be used to measure the difference be-
tween the two shapes and deform the current shape into the
target shape. Different elements have different properties and
different shape transformations, depending on where they are
located on the origami pattern (i.e., panels or hinges). Based
on their configurations, the deformations and constraints are
applied to each element through a geometry projection op-
erator. The element equations in their geometric form are
then assembled into a global system to compute the shape
of the whole model. This is a unified framework that can
handle origami constraints, thickness, and elasticity in the
same formulation. This way, the computation is efficient and
the implementation of the method is relatively simple. The
present study presents the first time in which a geometry-
based FEM has been applied to origami simulation. In ad-
dition, the framework provides a user-friendly interface that
takes an arbitrary two-dimensional (2D) origami pattern as
the input and automatically generates the finite mesh for the
simulation, by which the hinges and panels are modeled dif-

Fig. 1. (a) A compliant mechanism is based on the straining of
joints [3]. Some examples include (b) using an elastic material at
the joint area [20] and (c) using surrogate folds in a monolithic sheet.

ferently. The details are presented in the following subsec-
tions, starting with a discussion of the compliant mechanism
this paper focuses on.

2.1 Compliant mechanism – strained joint
There are different compliant mechanisms [21] and

thickness-accommodation techniques [3] to apply origami
to engineering materials, including the tapered panel, off-
set panel, hinge shift, doubled hinge, rolling contacts, mem-
brane, and strained joints. These techniques have unique sets
of pros and cons in terms of design complexity, degrees-of-
freedom, extension from zero-thickness patterns, etc. While
most techniques generally require an assembly step and do
not have a flat surface in their unfolded state, the strained
joint technique (SJT) [22] is a compliant mechanism based
on the straining of joints (Fig. 1a), so that it can be applied on
a flat or even a monolithic sheet, thus easing its fabrication.
This paper focuses mainly on the simulation of the SJT.

To allow the straining of joints, the joint areas between
the rigid panels need to be flexible. This can be done by using
elastic materials [20] (Fig. 1b), surrogate folds [23] (Fig. 1c),
or sandwiched structures [24], etc. By putting rigid materi-
als at the panels and elastomers at the hinges, folding can
be achieved through the bending of elastic materials. A sur-
rogate fold is a compliant joint that has a specific geometry
to reduce the stiffness of the material in one or more par-
ticular directions, thus allowing it to be bent. When both
the elastic and rigid materials are sandwiched at the joint
area, the rigid material can also control the direction and the
amount of bend. In any cases, bending occurs at the joint
area, with both compressive and tensile strains. The SJT as-
sumes that the thickness of a material is constant at the panels
and hinges, as well as between its unfolded and folded states.

2.2 Geometric mesh of origami
Although it has been studied for a long time, the creation

of FE meshes remains a challenging task. This is because FE
mesh is not only a representation of the sub-domains but is
also a key factor in geometry conformity, numerical com-
plexity, and – more importantly – the analysis accuracy. A
good mesh generation should apply physics based on an un-
derstanding of how things change. For origami structure, it



Fig. 2. The geometric mesh of thick origami is automatically gener-
ated from the 2D origami pattern with the given assignment of moun-
tain and valley folds, thickness, and the number of hinge subdivisions.

is composed of panels and hinges, which exhibit different
deformation behaviors during folding. Thus, they should be
modeled differently. As origami sheets are 2D patterns with
a particular thickness and the SJT is based on bending at the
hinges, this paper constructs the volumetric mesh of origami
via n-sided prisms, though n might be different for panels
and hinges depending on the geometry of material. Bending
can be approximated by scaling the sizes of the top and bot-
tom faces of the prisms at the hinges. Because the straining
of joints can be realized by different methods, the modeling
of hinge here only aims at replicating the bending behavior
of the joint rather than its exact geometry.

Specifically, the input of this framework is a 2D origami
crease pattern (Fig. 2 left), which can be present in the form
of polygonal mesh as defined by an STL/OBJ file or modeled
by a freehand drawing tool within the interface. The assign-
ment of mountain and valley folds can also be imported to-
gether with the pattern file, or they can be specified manually
by the user. After the user defines the thickness as well as the
width of hinges based on the material being used, the frame-
work automatically generates the geometric mesh of thick
origami. First, a widening operation is carried out on each
hinge to set the width, and the width is then subdivided based
on the user input value. Second, to convert each fold line into
a compliant hinge attached to exactly two adjacent panels,
the fold lines that merge at vertices are decoupled. This can
be done by shortening the hinges to prevent overlapping be-
tween the widened hinges. The shortening length (l) is based
on the width of the hinge (w1) and the width of its adjacent
hinge (w2), as well as the angle between them (θ):

l =
w1

2sin(A)
where A =

sinθ

w2/w1 + cosθ
. (1)

This also results in a hole at the intersection of the hinges.
Third, the thickness of the material is introduced to the 2D
pattern creating volume. This is basically an extrusion op-
eration, but it creates a volumetric mesh constituted by a set
of prisms. The final result is shown on the right-hand side
of Fig. 2. The whole finite mesh generation process is intu-
itive and automatic. The prisms created for hinges and panels
have different shapes and sizes, so that they can reflect dif-

Fig. 3. A flowchart of the proposed geometric simulation framework.

ferent behaviors and be simulated differently, respectively.

3 Geometry Proximity Function
FE models are based on mechanics that take forces or

displacements as inputs. In origami, the pattern is designed
such that the mechanism of each portion has a unique pur-
pose. For example, the creases bend in a defined direction,
and the panels are meant to stay rigid. In other words, the
deformed geometry of different portions can be estimated in
certain ways. Since origami problems are defined by geom-
etry, it is not necessary to convert the position input to the
equivalent forces for stress-strain analysis. Instead, a geom-
etry proximity and optimization can be applied to the FE for-
mulation, which can directly consider the position. To allow
the FE method to take positions as input and output positions,
a geometric formulation needs to be developed for origami.
The formulation must be fast, stable, and controllable so that
it can be applied to various designs and used in an interac-
tive environment. This section presents a geometry proxim-
ity function developed for such a purpose. A flowchart of the
proposed framework is shown in Fig. 3.

3.1 Geometric approximation for strain energy
When an external force is applied to a body, the di-

mensions of the body change. The ratio of this dimensional
change is the strain, which is a description of deformation ex-
cluding rigid-body motions. by modeling this physical phe-
nomenon geometrically, it can be used to measure the “dis-
tance between the differential of deformation and the rotation
group” [25]. In other words, a geometric model for minimiz-
ing the strain energy can minimize the difference between
the deformed and original shapes and compute the optimal
orientation between them. The overall deformation of the
whole body is defined when the total strain energy of the



system is minimized. This work bases the development of
the geometry proximity function on this principle.

Let the geometric mesh of origami be M = (V,E),
where V and E are the sets of vertices and elements. Each
element en ∈ E is an n-sided prism that has 2n vertices (i.e.,
en = [v1 v2 . . . v2n] with {vi} ∈V). Note that n could be dif-
ferent for every element in the mesh, and the list data struc-
ture is used to store the vertices in an element. The subscript
n in en will be omitted in the rest of the paper for simplic-
ity. It is assumed that the target shape of an element can
be computed in a particular deformation instance, and it is
also described by 2n vertices as ẽ = [ṽ1 ṽ2 ... ṽ2n]. The shape
proximity function is defined by measuring the difference be-
tween the current and the target shapes of all elements:

E = ∑
∀e∈E
|e| ·d(e, ẽ), (2)

where d() is the function used to measure the difference be-
tween the input shapes, and |e| is the volume of e to balance
the effect of the element’s size. Measuring the difference
between 3D shapes and optimizing it would be a nontrivial
problem because the orientation, position, and shape of the
elements contribute to the function. To minimize the com-
putational complexity of the optimization, the formulation
needs to be carefully defined such that the factors can be un-
coupled or solved separately. Three aspects are considered:

1. A centering matrix (C) is applied to both shapes, thus
shifting their centers to the origin so that the comparison
is invariant to translation, and the effect of their absolute
position is removed. The centering matrix has a size of
2n-by-2n and is defined as a matrix with all the diagonal
elements as (1− 1

2n ) and all the non-diagonal elements
as (− 1

2n ). Multiplying this matrix by any vector has the
same effect as subtracting the mean of the components
of the vector from every component.

2. Because the current and optimal shapes of an element
have defined one-to-one correspondences, the optimal
orientation (i.e., rotation R) can be pre-computed effi-
ciently for every element in each iteration so that the
optimization can focus only on the shape difference.

3. There are various ways (e.g., Hausdorff distance) to
measure the difference between 3D shapes, but some of
them may not have a closed-form expression or could
result in a nonlinear formulation. To allow the optimiza-
tion to be solved in a polynomial time, the Frobenius
norm is used to compute the distances between the ver-
tices of the element.

As a result, the geometry proximity function used for the
FEM is formulated as

E = ∑
∀e∈E
|e| · ||Ce−Re(Cẽ)||2F . (3)

To minimize this function, its derivative is set to zero, which

results in a system of linear equations:

(A>A)V = A>B, (4)

where A is the global matrix that is constructed by all the
centering matrices (C), and B are the constant terms that
come from Re(Cẽ). Both are multiplied by the weights |e|.
In the conventional finite element method, where the stiff-
ness matrix is used to describe the material property, the ma-
trix must be updated in each deformation state to reflect the
change in the material configuration, taking a long time in
computing. In this geometric formulation, the global ma-
trix A is assembled only by the centering matrices C, which
are always the same regardless of the deformation state –
the shape changes are controlled through the target shapes
ẽ in the matrix B. Therefore, the matrix A>A can be pre-
factorized and reused for all iterations, and thus this system
of linear equations can be solved multiple times efficiently.
There are also other methods that model the strain energy of
SJT, like applying spatial structures to consider thickness in a
bistable interior vertex [26], but none can have such property.

To apply this geometry-based optimization to the simu-
lation of origami, it must be able to consider the actuation of
folding, mountain/valley folds, and angle constraints. When
origami is folded by external actuation (e.g., by using one’s
hands to pin one end down while moving the other), it can
be modeled by geometric constraints. One way to model this
actuation is to add a position target, and the other way is
through the bending of the hinge. The latter method is a type
of geometry projection, which will be discussed in Sec. 4.1,
while the former is discussed presently.

3.2 Actuation – position
A folding operation involves dragging one or more

points to new positions such that the origami is deformed
as desired. Intuitively, it can be modeled by hard position
constraints. However, enforcing a point to be exactly located
at a position is not how origami is folded in practice. Due
to the kinematic constraints of origami, one would push the
material and let the origami deform on its own. An exact
position can be defined if all the kinematic relationships are
mathematically well-defined, but it is difficult when the pat-
tern is complicated and when the material is relatively thick.
Therefore, the position actuation is not modeled by hard con-
straints. Instead, a fitting algorithm is applied here.

Let Vp be the set of points selected and dragged to new
positions, where Vp ⊂V. The points v ∈Vp are attracted to-
wards their target positions ṽ, and the fitting objective func-
tion is defined as:

Epos = ∑
v∈Vp

‖v− ṽ‖2. (5)

After that, the overall energy to be minimized is the sum of
the two functions:

min
V

(E +α ·Epos), (6)



where α is the weighting required to control the rate of re-
sponse to the actuation. If it is too small, the folding process
will be slow. If it is too high, the material will stretch. It
is normally set as 1 at the beginning of the process, and its
value decreases to 0 as the optimization converges. During
the simulation, the user can continuously update the target
positions according to the deformation, similar to the phys-
ical situation. The user can also remove the fitting at any
time.

Both E and Epos have a similar structure (distances from
actual and target positions of vertices) so that they can be
combined into one formulation. The difference between
them is how the target positions are defined. The target posi-
tions in E come from the element shape ẽ based on the defor-
mation of materials, whereas those in Epos are defined by the
dragging of the vertices by the user into new positions. By
comparing it with solid mechanics problems, E accounts for
the internal strain energy, and Epos represents the externally
applied load.

4 Geometry Projection
In the previous section, it is assumed that the optimal

shape of an element is known during deformation. This sec-
tion will discuss how the shape is estimated by a geometry
projection operator. For example, if an element is supposed
to be rigid, this operator takes its original shape as the op-
timal shape (ẽ) and projects that onto its current shape (e).
The optimal orientation (R) can be found by first obtaining
the affine transformation (T) via the equation Te = ẽ using a
least square method and then extracting the rotation compo-
nent by R = UV>, where U and V are the matrices from the
singular value decomposition (SVD) of the affine transfor-
mation (i.e., SV D(T) = UΣV>). Besides rigid elements, this
operator can be applied to model the actuation, the assign-
ment of mountain and valley folds, and the angle constraints,
thus resulting in a general and unified framework for origami
simulation. As the optimization itself minimizes the total
strain energy based solely on the given target shapes, the se-
lection of the target shape is critical, as it determines the final
deformation. Therefore, the target shapes must be carefully
defined to comply with solid mechanics. For example, the
volume of a panel element should be conserved, the defor-
mation of a hinge element should obey bending theory, and
there must be no self-intersections between the elements. In
this paper, the target shapes are computed by projecting the
corresponding current shapes onto the shape space that sat-
isfies these criteria. The details of each projection are given
presently.

4.1 Actuation – hinge
The position actuation was presented in Sec. 3.2 to

mimic the physical folding process via external directional
forces. When the force is applied as a moment to a hinge, or
when the hinge is the active material that causes the defor-
mation (e.g., 3D printed origami [17]), the actuation should
be modeled according to the rotation of the hinge. This

Fig. 4. (a) A hinge element is bent linearly by an angle θ shown in
the front view. (b) A passive hinge can be distorted irregularly during
deformation.

framework models hinge actuation by computing the optimal
shape for a hinge element with a desirable degree of bending
based on bending theory. Given a specific bending angle (θ),
a hinge with a width W is deformed such that the angle be-
tween the normal vectors at their two ends is equal to θ. For
the neutral axis located in the middle of the thickness (H),
the curvature of the bend is κ = 1/(r+0.5H), where r is the
bend radius. The bend can be expressed by the arc equation:

W = (r+
H
2
)θ. (7)

When the elements of the hinge are small enough, the defor-
mation can be approximated linearly (i.e., from a rectangular
shape transformed into a trapezoidal shape). The basic pur-
pose of the transformation is to scale the width of the element
differently along the height dimension.

Specifically, the hinge element generated as described
in Sec. 2.2 is a four-sided prism in the form of a rectangu-
lar bar (width W× height H× length L) in its undeformed
shape. For the optimal shape to be computed intuitively, the
prism must always be aligned with the coordinate system be-
fore any transformation is done. That is, the width and the
thickness (height) of the prism are aligned with the x- and
y-axes (Fig. 4(a)), and the length is aligned with the z-axis,
which is also the axis of rotation. Under this configuration,
the scaling factor can be defined as a function of y:

s(y) = 1− 2y
W
· tan(θ/2). (8)

The element is centered at the origin, meaning that this equa-
tion is valid both for tension and compression. The optimal
shape (ẽ) of a hinge element, given any bending angle θ, can
then be computed by multiplying the scaling factor by all its
vertices (i.e., x = x · s(y)), where x and y are the coordinates
of the vertex.

4.2 Assignment of Mountain and Valley Folds
When a hinge does not actuate, it deforms in a passive

way. For those hinges, it is important that the simulation
takes into account the assignments of mountain and valley



folds, if they are specified. This is because that some SJTs
produce hinges with different stiffnesses along the thickness
to favor or allow one-directional folds. Moreover, an origami
pattern can result in different folded shapes with different
assignments [27]. This section details how the assignment is
satisfied in the presented framework.

Similar to the physical case, a passive hinge bends freely
in such a way that the edges align to a fold angle θ deter-
mined by the overall origami deformation. Therefore, its op-
timal shape should be updated such that the shape proximity
function is minimized. However, unlike the actuating hinge
based on which the final optimal shape is defined, the optimal
shape of a passive hinge is unknown and changes occasion-
ally. Although the deformed shape of passive hinges could
be computed through the optimization of Eq.(2), they might
be distorted randomly and might not even represent the shape
of a hinge (e.g., Fig. 4(b)). As a result, the distorted shape
would not be set as the optimal shape. To overcome this chal-
lenge, the distorted shape is used as a reference to compute
the shape that is closest to a valid hinge shape. Then, the
closest shape is set as the optimal shape. Specifically, the
bending angle (θ) of a passive hinge is estimated based on
the distorted shape, and then Eq.(8) is applied to obtain the
optimal shape for every time instant. A simple and fast way
to estimate the angle is to compute the width difference be-
tween the top and bottom sides along the height of the hinge:

θ = 2tan−1(
Wb−Wt

2Hp
), (9)

where the width and height are computed based on the aver-
age lengths following the notation in Fig. 4(b):

Wt = 0.5(‖v1− v2‖+‖v3− v4‖),
Wb = 0.5(‖v5− v6‖+‖v7− v8‖),
Hp = 0.25(‖v1− v5‖+‖v2− v6‖+‖v3− v8‖+‖v4− v7‖).

(10)
It can be seen from Eq.(9) that the bending angle (θ) would
be positive for a valley fold and negative for a mountain fold.
Here, if the estimated angle of a passive hinge violates the
assignment of mountain and valley folds, it would be set to a
small value according to the hinge’s assignment.

Even the optimal shapes (ẽ) of the passive hinges are
updated at each iteration such that they affect only the con-
stant term (B) in Eq.(4). Without changing the global matrix
(A), the pre-factorization results can be reused, and thus, the
framework can accommodate the change of optimal shapes
efficiently thanks to the geometry-based formulation.

4.3 Angle constraints
Although a hinge enables bending, it is not a rotary joint

that can provide arbitrary or infinite rotation. Therefore, the
bending of a hinge should follow certain constraints, one of
which has already mentioned – the bending process needs to
be confined by the assignment of mountain and valley folds.
Another restraint is the limit of the fold angle, e.g., θmax.

Fig. 5. User interface of the present simulator. In this screenshot,
the pattern and its hinge information are imported, before generating
the volume mesh (which was already shown in Fig. 2).

There are complaint mechanisms like a groove joint that have
a maximum fold angle, and in any case, the fold angle cannot
be larger than π due to the collisions between adjacent pan-
els. Therefore, the range of bend angle is (0 θmax] for valley
folds and [−θmax 0) for mountain folds. When there is no
specified limit, θmax is set as π by default. Once the bending
angle of a passive hinge is estimated by Eq.(9), it is verified
as being within the allowable range. If it does not fall into
the acceptable range, the bend angle is projected back into
the range. In this way, the angle constraints can be easily re-
alized through the geometry projection without the need for
constrained optimization.

The angle constraints presented here prevent only the lo-
cal intersection between the panels at a hinge. This is not true
in general because there could be global intersections (e.g., if
the two tips of a shape resembling the letter ‘C’ were to touch
each other). Collision checks for non-adjacent panels are re-
quired to detect global intersections, and this could be time-
consuming. For the sake of computational speed, global in-
tersection checks are not included in the current experiment.
The local angle constraint serves the purpose generally.

5 Results
The proposed framework is implemented in VC++ and

tested on a standard computer with a 64-bit Win-10 operation
system, Intel (R) Core (TM) i5-1035G4 CPU @ 1.10GHz,
and 8.00 GB RAM. The user interface is shown in Fig. 5.
As mentioned in Section 2.2, the hinge information that is
imported alongside with the mesh file defines one hinge per
line in a format of edge ID, width, mountain/valley, and bend
angle (optional). The bend angle is used when it is an actu-
ated hinge (Section 4.1). The user only needs to specify the
thickness of the material, and the volume mesh will be gen-
erated automatically. Although the CPU can support multi-
core programming, this implementation is single-threaded,
including the solver for linear equation systems, in order
to demonstrate the capability of the geometric simulation.
Because the geometric mesh was generated specifically for
origami simulation, the number of elements is normally in
the tens or hundreds for most origami patterns. With the



Fig. 6. The folding of a degree-four vertex origami: (left) simulated
results and (right) physical results [3].

small mesh size and the simplicity of the geometric formula-
tion, real-time simulation can be achieved with a single core.
Among the cases tested, the slowest one is 3ms per frame,
or 300 frame per second (FPS), which is much higher than
the required rate for real time, i.e., 24 FPS. For the reader’s
information, the nonlinear bar-and-hinge method [28] takes
4 to 11 seconds in its examples.

Five selected examples are presented in this section to
showcase different functionalities, including a degree-four
vertex with flat-folded configuration, a gripper using action
origami, an n-long linear chain with coupled action origami
mechanisms, a waterbomb base with a bistable property, and
a bar with elastic panels. The first two examples are com-
pared with existing physical tests from the literature using
surrogate folds. The last one is 3D-printed with an elas-
tomer. For the sake of diversity, the third and fourth exam-
ples are tested using cardboard models to show the potential
of the framework to be applied in other deformation mech-
anisms. The folding behavior of cardboard is dominated by
the delamination of layers and buckling, and the underlying
layers are incompressible. Although this is different from
the SJT that is based on tension and compression, their be-
haviors share sufficient similarity for a demonstration. The
exact modeling theory for cardboard models will be studied
more thoroughly in the future, but some preliminary tests are
shown here. The cardboard models have a thickness of 3mm.

5.1 Degree-four vertex
A degree-four vertex (D4V) is a single-vertex origami

that is intersected by four hinges in the middle of the pat-
tern (Fig. 6). It also has four sector angles: αi, i = 1, . . .4.
A D4V is very important in the origami design due to two
noteworthy properties. On the one hand, a D4V is flat-
foldable if it satisfies the following condition borrowed from
the Kawasakis theorem: α1 +α3 = α2 +α4 = π. This is an
important feature that many origami designers try to include,
as it can increase the portability and storage space of prod-
ucts. On the other hand, a D4V has only one degree-of-
freedom (DOF) in its motion, which is the key to realize a
single-DOF folding mechanism in an origami design. The

Fig. 7. The origami-inspired gripper is designed and fabricated in a
2D pattern [29] and can be actuated in its deployed state.

combination of these two features is very useful. If all the
vertices of an origami model are flat-foldable D4Vs, the en-
tire set of patterns could fold smoothly from its fully flat to
fully folded states with a single DOF.

To test the proposed framework on this flat-foldable
structure, the D4V design presented by Pehrson et al. [22] is
used here (Fig. 6 right). The design is a circular pattern with
a diameter of 152.4mm and α1 = 135◦, α2 = 90◦, α3 = 45◦,
and α4 = 90◦. The physical model is fabricated with acrylic
with a thickness of 3.175mm and the hinges are created by
the SJT. Because of the material’s thickness, to be flat-folded,
the largest hinge should have a width of at least the sum of
the widths of the other three hinges. In the design, the widths
of the hinges are about 16mm, 4mm, 8mm, and 4mm. The
same parameters are used to construct the simulation mesh,
which is shown on the left-hand side of Fig. 6. For sim-
plicity, the circular shape is not reconstructed – the arcs are
replaced by straight lines – but this simplification will not
affect the results or their accuracy. The arcs can always be
drawn on top of the straight lines during or after the simula-
tion if needed. Following the physical test [22], the interme-
diately folded and flat-folded configurations are simulated.
The simulated and physical models are compared side-by-
side in Fig. 6. The simulation runs in 1ms per frame and it
takes 100 iterations getting to the flat-folded state. This ex-
ample shows that the geometric framework can successfully
simulate the flat-foldable mechanism with sharp bends and
overlapping panels and hinges. The thickness of the mate-
rial is considered, as indicated by the different heights of the
folded shape, which would be missed by using near-zero-
thickness techniques.

5.2 Gripper
The robotic gripper or forceps is widely applied in

grasping and picking operations. Most of them require the
assembly of several mechanical parts to enable motions.
However, the parts often have a high complexity and they



are difficult to be cleaned. Oriceps are origami-inspired for-
ceps devices developed by Edmondson et al. [30]. It can
be fabricated with a single sheet of material, and the same
design can be applied to both macro and micro scales. An
oriceps pattern is shown in the top row of Fig. 7. Oriceps can
be folded into a 3D shape based on the assignment of valley
and mountain folds. The oriceps is an action origami that
can be animated in its folded state. Its design is based on two
spherical mechanisms that are coupled together. Pushing or
pulling from the back causes the oriceps to open or close.

While the current designs are based on Shafer’s “Chom-
per,” a simulation framework would enable the exploration
of various origami gripper designs for different applications.
To test the proposed method, the pattern applied by Butler
et al. [29] is inputted and is used to automatically generate
the geometric mesh with 23 elements of which the thickness
is 0.43mm and the hinge width is 1.52mm. Besides the two
hinges in the middle, which are valley folds, all other hinges
are mountain folds. To fold the model into the deployed state,
the hinges are set with target folding angles of around 50◦,
except those at the top and bottom of the pattern (which are
at the back of the folded forceps), which are set to a larger
angle around 110◦. Under this configuration, the hinges are
actuated, and the origami is formed into the 3D shape shown
on the left-hand side of Fig. 7, which aligns well with the
physical case that was fabricated by Butler et al. [29] using
a 3D printer. In this deployed state, it can be further de-
formed through position actuation to mimic the actual use of
the gripper. Through a comparison with the physical model,
the actuation (and, thus, the action origami) can be simulated
closely owing to the geometric simulation. The simulation
runs in 2ms per frame and it takes 160 iterations to reach the
closed position.

5.3 N-long linear chain
Another type of origami tested is a relatively compli-

cated thick action origami – the n-long linear chain (Fig. 8),
which is built on the foundation of the Shafer’s “Frog’s
Tongue.” A long chain can be designed with any number of
spherical mechanisms that are coupled to one another with
no loops. It is linear because all mechanisms (except the be-
ginning and ending) share only two other mechanisms, but
the orientation of each mechanism can be different. When
one mechanism in the chain is actuated, all the others are
moved together. Therefore, a small motion imposed at one
end of the chain could result in a much larger motion for the
whole origami. It could also be easily extended to “tree”
mechanisms by attaching other mechanisms at the end of
each branch, such as the “Attacking Cobra,” by which the
gripper design is used as the head and the chain design is
used as the body and tail. The capabilities of converting and
magnifying motions from one direction to another and trans-
ferring motions from one mechanism to others have many
potential engineering applications when a material stronger
than paper is used.

Similarly, the 2D pattern is inputted into the proposed
framework and a geometric mesh with 60 elements is gen-

Fig. 8. An n-long linear chain fabricated in 2D can be deployed and
actuated to change its longitudinal length by a small motion in the
transverse direction.

erated: 44 for hinges and 16 for panels, as shown in Fig. 8.
All the hinges are set to around 60◦ according to their own
assignments of mountain and valley folds, and they are ac-
tuated to the deployed state. By controlling the horizontal
displacement at one end, the structure transforms the type
of motion from transverse to longitudinal. During the sim-
ulation, the transverse movement stops when the hinges are
bent to around 180◦, due to the angle constraints. While the
change in the transverse direction is small (from 4.5cm to
3cm), the length in the longitudinal direction changes signifi-
cantly (from 13cm to 4cm). The same results are successfully
simulated, which demonstrates the capability of the proposed
geometric simulation to handle complicated relationships in
action origami. The simulation runs in 3ms per frame and it
takes 30 iterations to be fully compressed.

5.4 Waterbomb base
The origami waterbomb base is a fundamental origami

fold that has spring-like and bistable properties [11]. It is
a single-vertex origami that is intersected by six hinges in
the middle of the pattern (Fig. 9). All hinges have the same
length, and they are assigned with alternating mountain and
valley folds. Because of its unique properties, it is useful in
various applications outside of artistic origami. It has also
been applied as a test bed for smart materials and actuators.



Fig. 9. The origami waterbomb base has a bistable mechanism. To the left, the origami is pushed up on the outside edge, and the middle
vertex points downward. To the right, the vertex points upward when the origami is pushed down.

The term ‘bistable’ is used to refer to mechanisms that
contain two stable equilibrium states. Besides, the origami
waterbomb base also has an unstable equilibrium position,
which is the plane shape shown in the middle of Fig. 9. A
small disturbance causes the origami to leave this unstable
position and reach one of the two stable positions. On the
one hand, if there is a small upward push on the outside edge
of the pattern, the vertex in the middle will quickly displace
downward to get into the first stable position (see the left-
hand side of Fig. 9). On the other hand, if the vertex is dis-
placed so that the structure flattens back onto a plane and
even surpasses the plane, the origami will snap into the sec-
ond stable position (see the right-hand side of Fig. 9). This
behavior is interesting because all of the folds still respect
their own assignment of mountain valley folds throughout
the bistable motion.

A waterbomb base’s kinetic behavior can be simulated
by completing kinematic and potential energy analyses [11].
FEA and virtual work analysis are also used to explore the
locations of the stable equilibrium positions and the force-
deflection response. However, the model is based on certain
assumptions (e.g., symmetric configuration), meaning that
developing analytical solutions to the general configurations
would involve large numbers of variables and nested trigono-
metric functions. The proposed framework is applied to sim-
ulate for this waterbomb base as demonstrated in the top row
of Fig. 9. Without defining the bend angles explicitly, all the
hinges are deformed passively by giving a position actuation,
and the mountain and valley folds eventually converge to dif-
ferent bend angles. The stronger the actuation is applied, the
larger angles can be achieved. Similar results can also be ob-
served in the physical experiments shown in the bottom row
of Fig. 9. The simulation runs in 1ms per frame and it takes
250 iterations converging to one of the stable states.

In addition, to compare with the bistable behavior of ex-
isting physical models from the literature, the results of the
prototype constructed by Hanna et al. [11] are reported in
Table 1, which lists out the bend angles of the mountain and
valley folds for each bistable position correspondingly. The

Position 1 Position 2

θm θv θm θv

Prototype [11] −82◦ 32◦ −20◦ 55◦

Simulated −82◦ 24◦ −17◦ 58◦

Table 1. Folded angles for bistable positions between the proto-
type [11] and the simulated result in this paper. θm and θv (in degree)
are the angles of mountain and valley folds, respectively.

physical prototype was made of acrylic and metallic glass,
where the acrylic glass is for the rigid panels and the metal-
lic glass is for the hinges. It was fabricated in the first stable
state (Position 1) and then moved to the second stable state
(Position 2) by a tensile testing machine. In other words,
the bend angles were predefined as at the Position 1, and it
was to find out the resultant bend angles when the origami
was moved to the Position 2. In order to mimic the condi-
tion in the present simulation, a hinge actuation is applied
based on the bend angles at the Position 1, and then a posi-
tion actuation is applied to move towards the Position 2. The
simulated results are also reported in Table 1. Although the
origami configuration is not exactly the same, similar behav-
ior can be observed. For example, although in magnitude the
bend angle of the mountain fold (θm) is set larger than that of
the valley fold (θv) at the Position 1, it is inverse at the Po-
sition 2 due to symmetry between the two states. However,
since the bend angles are not set according to the Position
2, there are larger internal forces in this position even it is a
local minimum, and thus the resultant bend angles at the Po-
sition 2 are smaller in magnitude than that of the Position 1.
From this result, although the energy associated with bista-
bility may not be not explicitly captured, the positions of the
bistable states are obviously captured.

5.5 Elastic panels
A major advantage of using a FE approach is that it can

be easily extended to general cases. For example, if the pan-



Fig. 10. An elastic bar with a V-shape groove joint at the middle is
first deformed at the joint and then at the panels as bending contin-
ues. The highlights of the physical models are the contours of the
simulated models.

els are not assumed to be rigid and their elasticity needs to
be modeled, this can be realized by generating more subdi-
visions of the FEs for the panels. The models need to be
significantly changed in kinematics or dynamics approaches.
To provide proof-of-concept, a simple bar with a hinge in
the middle is used as shown in Fig. 10. The main focus of
this paper is rigid origami and the framework is developed
to consider the rigid panel assumption. The present example
only aims to demonstrate the possibility of extending the ge-
ometric framework to general situations. Further studies are
needed to model the elastic panels and test the method in real
general cases.

In this example, an elastic bar with a V-shape groove
joint (a type of surrogate fold) at the middle is used as taken
as a target object to test the method. It is made of the
acrylate-based flexible material from ApplyLabWork (elon-
gation = 105− 120%; shore = 82− 85A), and the groove
joint has a physical limit in bend angle of 90◦. Since the
groove joint is a type of surrogate fold that deforms based on
the SJT (see Sec.2.1), it can be modeled by hinge elements
in this framework. A simulation mesh is generated corre-
spondingly with the hinge in the middle and the panels on
both ends. The hinge is assigned as a valley fold and is set to
a maximum bend angle of 90◦. The main difference here is
that the panels are represented by several elements in order to
have more degree-of-freedom to deform. At the beginning of
the bending action, the deformation is localized at the hinge
just like the panels are rigid. When it reaches the maximum

Fig. 11. The relationship between different hinge subdivisions and
widths on a 180◦ sharp bend.

angle for the hinge, the hinge cannot deform further. Then
the panels start to deform elastically. The simulation results
match with the physical ones very well. The simulation runs
in 1ms per frame and it takes 280 iterations to have the panels
also deformed.

6 Discussion
This section discusses some settings of the geometric

simulation framework.

6.1 Hinge width and subdivision
Given the material thickness (H) and the bend angle (θ)

of a hinge, it can be seem from Eq.(7) that the hinge width
(W ) is related to the sharpness of the bend, i.e., the bend ra-
dius (r), which is one of the design parameters that should be
given to the system. It is similar to the calculation of bend
allowance in sheet metal bending operations, where the sheet
thickness, bend radius, and bend angle must be provided. For
example, the hinges shown on the right-hand side of Fig. 11
have a thickness (H) of 0.5mm and a subdivision number of
8. For a bend angle θ= π, when the hinge width W = 0.8mm,
it yields a high curvature sharp bend (i.e., r ≈ 0) with a coa-
lescence of vertices. When W = 1mm, the curvature is lower
with a larger bend radius and the folded structure is thicker. If
either the hinge width or the bend radius is given, the system
automatically calculates the other one. Otherwise, the bend
radius r is set to zero by default to use the smallest width.

In terms of the hinge subdivision, it is known that for any
mesh-based simulations, the higher the mesh resolution, the



smoother the simulation result but also the intenser the com-
putation. Therefore, it is desirable to use the least number
of subdivisions. To illustrate, assume there is only one ele-
ment in the hinge region. If W = 2 and H = 1, the maximum
angle θmax is 2.2rad or 127◦, which is too small to be prac-
tical in an origami design. This is because when only one
element is used to approximate the curved hinge linearly, it
results in a significant error when the deformation is large. If
the same hinge is represented by two elements, each of them
has a size of W = 1 and H = 1. Correspondingly, the max-
imum angle θmax for each element is π/2 or 90◦. The sum
for the whole hinge is π, or 180◦, which is also the phys-
ical limit. Therefore, two elements are necessary for bend
angles larger than 127◦. However, having more elements
is desirable, especially when the bend is sharp. A demon-
stration of the subdivision number and the bend is given in
Fig. 11. For an extreme case (a 180◦ sharp bend), differ-
ent subdivisions give slightly different results due to the ap-
proximation. When there are two subdivisions, the bend is
achieved by only two discrete linear lines, which yields a
large error. When more subdivisions (e.g., 4 or 8) are present,
smoother bends occur, and the curvatures are better approx-
imated. Therefore, although two subdivisions are generally
enough for most bends, more subdivisions should be used
if the bend is large and sharp. As a balance between accu-
racy and efficiency, three to four subdivisions are suggested.
The system could also automatically determine the number
of subdivisions per hinge by the maximum bend angle θmax.

6.2 Thickness
To explore how the thickness of material affects the re-

sults, the five-crease multiple-vertex origami used by Chen
et al. [4] to make boxes (Fig. 2 of their paper) is taken as
an example. The pattern is shown in Fig. 12, which has six
vertices and each vertex is intersected by five hinges. Only
the origami pattern is employed here for the testing, and the
aim is not to compare the results. This is because differ-
ent compliant mechanisms are applied: this paper focuses on
SJT, but Chen et al. [4] converted the five-crease vertices to
Myard (spatial 5R) linkage with varied panel thickness.

Two thicknesses are tested: H = 1mm and H = 4mm,
and the results are also shown in Fig. 12. Apparently, both
the 2D sheets and 3D shapes have quite a difference. From
Eq.(7), the hinge width should increase with the material
thickness. When H = 1mm, the width W should at least be
1.57mm; and similarly W = 6.28mm for H = 4mm. In other
words, the thicker the material is, the larger the hinge width
needs to be in order to achieve the same bend angle. With the
changes in hinge width, the shortening lengths in Eq.(1) are
also altered, as well as the residual holes. All these result in
different 2D sheets. When the sheets are folded into boxes,
the two panels adjacent to the mountain-fold hinge are put
together and protrude in the inside volume. When the hinges
are wider, the protruding parts are relatively shorter as the
panels get smaller. However, they get bigger and more con-
spicuous as the material thickness increases, and the volume
of the box is also reduced. Since the thickness of origami will

Fig. 12. Two thicknesses (H = 1 and 4mm) are tested on a five-
crease multiple-vertex origami [4] in making a box.

change the shape and the volume of the box, the modeling of
it must take the thickness into consideration.

6.3 Target shape
In this geometric simulation framework, the deforma-

tion is basically controlled by the selection of target shapes.
The efficiency of computation is also based on this parame-
ter because the target shape ẽ affects only the matrix B on the
right-hand side of Eq.(4). Thus, the global matrix could be
pre-factorized and reused. Each element (panels and hinges)
yields a set of equations that are related to its vertices, and
a vertex is shared by multiple elements, resulting in more
equations than vertices. The linear system is thus overdeter-
mined and solved by the method of least squares in the form
of Eq.(4). Because of the use of least squares, this formu-
lation is so robust that even when the target shapes of the
neighboring elements are not compatible, it can still find an
approximation to balance the difference by minimizing the
geometrically approximated strain energy. As an illustration,
if two elements have different thickness, the face shared by
them would take the average thickness, and the overall shape
would be like the diffuse necking in the tensile deformation.

In addition, although the geometry projection presented
in Sec. 4 is based primarily on bending, it is not limited
to bending and can be generalized. If a hinge were to ex-
hibit behaviors other than bending, different theories could
be used to define the target shape of the hinge. For exam-
ple, if a hinge was stretched, its target shape should be set as



the stretched shape based on the Poisson effect and then the
framework would stretch the hinge rather than bend it.

6.4 Fracture
With the measure of scaling factor in Eq.(8), the elastic

or fracture strains of the material are possible to be incorpo-
rated to check for failures of the origami. The bending stress
increases linearly away from the neutral axis until the maxi-
mum values at the top or bottom of the beam. The material
fails when the maximum stress exceeds its tensile strength, or
correspondingly when the strain exceeds its fracture strains
(εt and εc, where t and c stand for tensile and compressive).
Since strain is the percent elongation, which is defined as
the ratio between the deformed length and the initial length,
the limits of the approximated hinge strain can be defined in
terms of the scaling factor:

1− εc < s(±0.5H)< 1+ εt .

To identify the point of fracture, the bend angle of every
hinge is first obtained by Eq.(9), and then the scaling fac-
tor s(±0.5H) can be computed using Eq.(8). If the result is
out of the above limits, the material fails at that time step.

7 Conclusion
This research is motivated by the observation that

origami is commonly modeled by the geometry of motion.
A geometry-based simulation framework for thick origami
is presented in this paper. The present geometric simulation
focuses on the shape deformation, and its inputs and outputs
are also positions. The origami actuation, constraints, and
assignments of mountain/valley folds are seamlessly incor-
porated by using a geometry proximity function and a ge-
ometry projection operator. This framework has been tested
with various configurations of origami, such as a gripper ac-
tion origami, a bistable waterbomb base, and a groove joint
with elastic panels. The method is as generalizable as a con-
ventional FEM, but it has the efficiency of kinematic models.
The results of the geometric simulation are very promising
for thick origami, and the simulation can be applied to the
iterative design of thick origami. For example, flat-foldable
origami can be used for many interesting applications. How-
ever, a flat-foldable design normally needs to undergo certain
modifications and adaptions to be applied to thick materials.
Although this method cannot be directly applied to create
such origami, this simulation framework could be used in
combination with a design iteration method to test various
designs if they are flat-foldable. This will be the subject of
future work. Similarly, this framework can also be used to
test different design parameters (e.g., hinge width) and to ex-
plore the relationships among shape, geometry, pattern, and
hinge properties.

Despite the encouraging results presented here, the
framework, in its current state, has some limitations. First, it
does not consider the interference of the origami itself or of
other objects. If the pattern is not well-designed, the model

might involve self-intersections. Although action origami
(e.g., a gripper) is simulated, the loads that can be applied
to the foreign bodies are unknown. In the future, stress re-
covery and contact simulation [31] can be incorporated in
the geometric framework. Second, the current simulation
of elastic panels is for 1D deformations only. More gen-
eral deformations (e.g., the parasitic effect bending along
a diagonal and forming dimples [32] or dents [33]) would
require 2D or even 3D mesh subdivision. The mesh sub-
division is currently defined by the designer. However, the
geometric mesh of origami directly affects its accuracy and
efficiency. To balance these parameters, it is preferred that
an adaptive mesh subdivision is applied during the simula-
tion so that only high-curvature areas are represented by fine
mesh. Third, the present framework assumes the panels are
rigid and not deforming, and thus only one material – the
hinges – is deforming, so the material properties do not mat-
ter. This is because the inputs and outputs of the framework
are positions, and it is just like stretching an aluminum bar
and a steel bar to increase 50% of their length will both give
a strain of 50%. However, it is only true when there is only
one material deforming. If there are more than one material
deforming or the hinges have different stiffness, the material
properties must be considered. This can be realized by set-
ting different target shapes, but more in-depth studies need to
be done to find out how to set the target shapes for different
materials, and it will be a future work. Fourth, the geomet-
ric analysis right down does not report the stress informa-
tion. Since the deformation (i.e., the strain) is obtained, it is
possible to extracted the stress from the displacements, just
like the stress recovery in finite element analysis. However,
the straining of joints could be realized by different meth-
ods (e.g., surrogate folds), the calculation of stress needs to
consider the actual mechanism used to realize the SJT and
maps the deformation from the hinge elements to the exact
geometry of the joints. This would require a more thorough
study and analysis to develop a proper correspondence and
interpolation algorithm in the future.
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